Hard hit by military cutbacks, our industry must switch to new markets, p. 21

The year of conversion
Optoelectronics course exam
What's available in MSI?
The 12 best IC ideas
Are you still using the same scope you used in college?

If so, you've been missing out on the greatest achievements in scope technology. During the last five years, Hewlett-Packard has quietly but firmly assumed technological leadership in the oscilloscope industry with the revolutionary HP 180 Scope System.

HP's innovations in general-purpose lab scopes include: the first scope with a real-time bandwidth of 250 MHz; the first 18 GHz sampling scope; the first 100 MHz variable-persistence storage scope; the first calibrated TDR scope with 35 ps rise time; and the first and only high-frequency (100 MHz) scope with a "big picture" CRT (8 x 10 div, 1.3 cm/div). And all these have a broad range of compatible plug-ins.

And, as these "for instances" illustrate, HP's innovations are functional improvements that increase your scope's usefulness. No "bells and whistles" that add little to performance and a lot to the price.

This functional approach has been applied to our lower-priced field-service scopes, too. No frills. Just function. With HP, you get the most favorable price/performance ratio of any scopes on the market. And all HP scopes are backed by comprehensive training and service organizations to optimize your scope investment.

It's amazing how many engineers have clung to the "old school traditions" while scope technology has progressed in quantum leaps. Call an HP Field Engineer and find out what the state-of-the-art is today. He'll be glad to give you a side-by-side demonstration with your "old school scope." Or write Hewlett-Packard, Palo Alto, California 94304.

In Europe: 1217 Meyrin-Geneva, Switzerland.

Circle Reader Service #9.
URGENTLY NEEDED: RELIABILITY

FROM SPRAGUE: RELIABLE CAPACITORS

Sprague Electric has long been aware of the crucial importance of reliability ... particularly in medical electronics, where failure can be fatal. The capacitors shown on this page are designed for utmost reliability ... not merely to meet existing standards, but to be as failure-free as the present state of the art will permit.

HYREL® Capacitors

Manufactured under climate- and dust-controlled conditions in factory space used solely for high reliability production. 100% tested for optimum quality. Exceed military and industrial standards for shock, vibration, moisture resistance, life. Reliability documented by extensive test data. Applications now include cardiac pacers and coronary care units. One 4-year user reports no failures. Available in following types:

Type 118P Subminiature DIFILM® Metallized Capacitors

Unmatched for reliability at 125°C by any other metallized paper capacitor. Higher insulation resistance than that of any other metallized paper design. Unique dielectric combines metallized paper and polyester film impregnated with special high temperature mineral wax. Hermetically sealed.

200 to 1000 W VDC, .001 to 12.0 µF

Heart Defibrillator Capacitors

True energy-storage capacitors expressly developed for heart defibrillators. Charged in milliseconds and discharged in a fraction of a millisecond.

Three case sizes available.

Each rated 16 µF, 7500 W VDC.

Type 3090 HYREL® GT Sintered - Anode Tantalum

Type 3500 HYREL® ST Solid Tantalum

Type 3510 Non-Polar HYREL® ST Solid Tantalum

Type 3520- Cylindrical with tapped terminal inserts or power supply filter capacitors with low leakage currents, low ESR, long shelf life. Feature the most reliable seal yet developed for aluminum electrolytics.

Type 3D2—Cylindrical with tapped terminal inserts or solder lug terminals

Type 3D4—Tubular with axial leads

Exceptional versatility and superior electrical characteristics in small physical size. Metallized polycarbonate-film dielectric provides high insulation resistance, high capacitance stability, low dielectric absorption, low dissipation factor. Hermetically sealed.

200 to 600 W VDC, .01 to 10.0 µF

COMPULYTIC® Aluminum Electrolytic Capacitors

For technical literature on any of these capacitors, or engineering assistance without obligation, write or call Mr. John Maynihan, Sprague Electric Company, 233 Marshall Street, North Adams, Mass. 01247. Telephone (413) 664-4411

THE BROAD-LINE PRODUCER OF ELECTRONIC PARTS

The Electronic Engineer • Jan. 1971
about the rectifiers we promised to introduce this month...

THEY ARE NOT JUST "HI-REL". THEY ARE

Centralab

Prime

Microglass Rectifiers

Briefly, here's what the Prime "label" means:
We've initiated a new Program for Reliability, Integrity, and Manufacturing Efficiency for all of our products. Now all Centralab Semiconductor products—incorporating improved designs—are manufactured to JAN quality levels for inherent reliability.

Special conditioning and selection provides products at four levels of reliability—at realistic prices to fit individual needs.

One of our Prime grades will meet any OEM requirement.

Prime grades are:

Prime 1—For critical applications requiring maximum reliability and where repair or replacement is impossible. 100% conditioning, testing and data profiling—in excess of JAN-TX quality provisions.

Prime 2—For military and industrial applications requiring JAN-TX or equivalent parts.

Prime 3—For applications requiring JAN parts.

Prime 4—For commercial and industrial electronics requiring Jedecc or equivalent parts.

Prime is proving itself. Compare the "A" versions of our newly-registered Prime fast-recovery rectifiers against those previously available:

<table>
<thead>
<tr>
<th>JEDEC Type Number</th>
<th>Case Type</th>
<th>Peak Reverse Voltage (VRR)</th>
<th>Maximum Forward Voltage Drop @ 1mA, 25°C</th>
<th>Maximum Reverse Current, If @ 25°C &amp; 100°C</th>
<th>Maximum Reverse Recovery Time, Trf @ 25°C</th>
<th>Maximum Junction Capacitance @ Vf = 0 Volts</th>
<th>Average Rectified Current, Ic, @ 25°C</th>
<th>Surge Current, Imax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N5185 20 50</td>
<td>1.1</td>
<td>5</td>
<td>100</td>
<td>650</td>
<td>250</td>
<td>3</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>1N5186 20 100</td>
<td>1.1</td>
<td>5</td>
<td>100</td>
<td>400</td>
<td>250</td>
<td>3</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>1N5187 20 200</td>
<td>1.1</td>
<td>5</td>
<td>100</td>
<td>320</td>
<td>250</td>
<td>3</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>1N5188 20 400</td>
<td>1.1</td>
<td>5</td>
<td>100</td>
<td>240</td>
<td>250</td>
<td>3</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>1N5189 20 500</td>
<td>1.1</td>
<td>5</td>
<td>100</td>
<td>200</td>
<td>250</td>
<td>3</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>1N5190 20 600</td>
<td>1.1</td>
<td>5</td>
<td>100</td>
<td>160</td>
<td>250</td>
<td>3</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>1N5185A 20 50</td>
<td>1.1</td>
<td>2</td>
<td>80</td>
<td>400</td>
<td>250</td>
<td>4</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>1N5186A 20 100</td>
<td>1.1</td>
<td>2</td>
<td>80</td>
<td>360</td>
<td>250</td>
<td>4</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>1N5187A 20 200</td>
<td>1.1</td>
<td>2</td>
<td>80</td>
<td>250</td>
<td>250</td>
<td>4</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>1N5188A 20 400</td>
<td>1.1</td>
<td>2</td>
<td>80</td>
<td>200</td>
<td>250</td>
<td>4</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>1N5189A 20 500</td>
<td>1.1</td>
<td>2</td>
<td>80</td>
<td>160</td>
<td>250</td>
<td>4</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>1N5190A 20 600</td>
<td>1.1</td>
<td>2</td>
<td>80</td>
<td>120</td>
<td>250</td>
<td>4</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Contact us now for a comprehensive data package describing the program in detail.
January 1971 Vol. 30 No. 1

Cover: Swords into plowshares—an old idea that may have vital importance in the '70s as more and more electronic engineers take their talents and experience into the civil sector. In this issue, our staff analyzes just a few of the areas that have tremendous growth potential, such as, the handling of files, data terminals for department store sales, microwave communications links, video recording and playback for homes, and some of the growing number of electronic applications in automobile design.

21 1971—THE YEAR OF CONVERSION By the staff of The Electronic Engineer

Have defense cutbacks, the aerospace crisis, and general business conditions made our industry seem a house of cards? Well, take a look at some of the relatively untapped areas that may open up whole new opportunities for EEs, with imaginative design and aggressive marketing.

25 WHAT'S AVAILABLE IN MSI? By Larry Beck and Walter Richard

Grouped by function, this is a complete listing of bipolar, digital MSI circuits available today or in the near future. So, if your design requirements are for MSI and anything from a register to a decoder, we have it here.

47 OPTOELECTRONICS COURSE EXAM

Seen the light on optoelectronics? For the past six months, we've brought you the length and breadth of this exciting field—from the basics, through design and packaging, to, finally, the applications. Test your optoelectronics knowledge and earn that certificate.

37 VOTE FOR THE BEST IC IDEA OF THE YEAR

Once again, here's a chance to select the best IC idea of the past year. We have assembled the monthly winners of this popular series for you to judge who should get the blue ribbon—in this case, a Tektronix or Hewlett-Packard oscilloscope.

Sweep circuit has triggered, free-run modes By Chuck Ulrick
Fault monitor checks for circulating logic bit By Robert Serody
Zero-beat detector By Tim K. Aaltinen
Delay circuit makes handy timer By G. Detlof
Op amps give mutually exclusive digital sequencing By Maxwell Strange
Simple-to-make toggling flip-flop By Thomas P. Benzie
A staircase waveform generator By Jim W. Foltz
One video amplifier: three oscillators By Michael English
Function generator has variable polarity exponents By William Neeland
Digital gain control for op amps By William E. Peterson
Feedback eliminates switch contact transients By Veikko O. Jaakola
One shot triggers on both edges of input By Ken Erickson
KEPCO TALKS
POWER SUPPLY TECHNOLOGY:
THERMAL REGULATION IS THE REAL MEASURE OF A POWER SUPPLY

It has long been recognized that a power supply's line and load regulation can, by feedback and very high gain, be reduced to infinitesimal proportions. With high gain, wide-band amplifiers providing nearly complete isolation from the effects of line or load variations, the limiting factor on performance becomes noise. Noise, in this context, encompasses a whole spectrum of continuous or random unwanted deviations, including impulse or spike noise in the megahertz region, "ripple" in the audio-frequency band, jitter in the subcycle region, and over the longer term; drift. Filtering and shielding techniques, work at the higher frequencies, but jitter and drift being mainly thermal effects, their reduction is accomplished only by reducing the thermal sensitivity or the thermal regulation.

Every element in a power supply has a temperature coefficient, the reference, the sampling resistors, the amplifier... their net steady-state value is reported as the "temperature coefficient" on the spec sheet. Some elements in the supply, however, also exhibit a transient response to temperature changes, a large initial deviation which recovers slowly to the steady-state temperature coefficient. In these elements, coefficients of change are balanced against others so that only the differential change appears in the steady-state coefficient. Unequal or localized heating or cooling - even a very small amount - will cause major perturbations which decay only as the elements regain thermal equilibrium.

Conventional, discrete construction, because of the physical separation of the elements, gives rise to the kind of thermal disequilibrium that makes the transient thermal regulation the largest single cause of low frequency jitter, noise and short-term drift.

By using a linear I.C. control amplifier, Kepco has significantly reduced this effect. Our amplifier chips are buried in 0.8 cubic inches of thermally conductive epoxy, to form a thermal low pass filter, filtering out the sudden temperature fluctuations caused by drafts. The monolithic construction amplifier sees only slow homogeneous temperature changes, affecting all parts of the chip simultaneously and eliminating differential heating as a cause of the transient thermal regulation effect. The improvement is several orders of magnitude.

Kepco makes a number of fine power supplies with the thermally isolated I.C. regulator, all of the models in our JQE and CPS series (quarter-, half- and full-rack sizes), the voltage regulators of the PAT, PCX and PCX-MAT group, the current regulating CC models and our high-speed OPS units. We'd like the opportunity to tell you more about individual models.

WRITE DEPT. DF-19

KEPCO, INC. • 131-38 SANFORD AVENUE • FLUSHING, N.Y. 11352
(212) 461-7000 • TXW # 710-582-2631

Circle Reader Service #2.

January 1971
Vol. 30 No. 1

K. Robert Brink, Publisher
Alberto Socolovsky, Editor
John E. Hickey, Managing Editor
Smedley B. Ruth, Associate Editor
Sheildon Edelman, Western Editor
Stephen A. Thompson, Western Editor
Arthur J. Boyle, Technical Editor
John McNichol, Assistant Editor
Dr. O. M. Salati, Consultant
Anne Axe, Editorial Assistant
Alice C. Bach, Editorial Assistant
Lynda Rothstein, Editorial Assistant
Deborah P. Wilkins, Editorial Assistant
Mae Moyer, Editorial Reader Service
Andrew Mittelbrunn, Chilton Art Director
Phaue Featherson, Art Director
George Baker, Washington News Bureau
Neil Regeimbal, Washington News Bureau

Executive and Editorial Offices:
One Docktor Square, Bala-Cynwyd, Pa. 19004
Tel. (215) 567-8000

Address Mail to:
56th & Chestnut Sts., Philadelphia, Pa. 19139

Western Offices:
Stephen A. Thompson
3777 W. 1st St., #202, Los Angeles, Calif. 90005
Tel: (213) 622-1271
Sheildon Z. Edelman
199 First St. Rm. 335, Los Altos, Calif. 94022
Tel: (415) 941-6655

Chilton Officers & Directors: R. E. McKenna, President; J. Kofron, C. W. Heuer, Sr. Vice Presidents; W. A. Barbour, R. H. Groves, K. Robert Brink, Publishing Vice Presidents; James Mades, Treasurer; J. A. Montgomery, Jr., Secretary; T. J. Casper, S. H. Collmann, J. P. Kushenoiic, R. O. Nelson, E. C. Beaudet, Other Directors: J. C. Holloway, Asst. Secretary.

Monthly publication of Chilton Company, Chestnut & 56th Streets, Philadelphia, Pa. 19139. (Area Code 215) $15 per year. Price of single copy is $2.00. Subscriptions rates: U.S. and U.S. Possessions: I yr. $15.00, 2 yrs. $25.00, Canada I year $14.00, 2 yrs. $25.00. All other countries 1 yr. $25.00, 2 yrs. $50.00. © 1971 Chilton Company, Inc. Title Reg. U.S. Patent Office. Reproduction or reprinting prohibited except by written authorization.

The Chilton Electronics and Instrumentation Group
The Electronic Engineer
Instruments and Control Systems
Instrument & Apparatus News
Medical Electronic News
Electronic Components News

The Chilton Company
150 North LaSalle Street
Chicago, Illinois 60601
(312) 427-2000

The Electronic Engineer • Jan. 1971
Somebody Out There Likes Me.

I'm a counter salesman at the branch of a large department store chain. When people give me a credit card or a check, I instantly check their credit on this fast little terminal unit. It's easy. I can verify a check against a driver's license number in a second just by flipping this MINILEVER™ switch. Of course, I have to flip this switch all day long. But I don't mind. "Credit-Chek", produced by Credit Systems Inc., of Colmar, Pennsylvania, was obviously designed by engineers with compassion. They know that if some poor soul has to flip a row of switches all day long, it should be easy and comfortable. Comfort produces accuracy.

MINILEVER is an accurate, easy to use switch. Nice large characters, .200 inches high, that "click" into position by the flip of a lever. The MINILEVER gives you up to 12 positions per module. The modules are on 1/2" centers, with as many in a row as you require. When you wish to reset all digits back to "0", all it takes is a sweep of the hand across the levers.

So, be compassionate, think of the other guy and buy MINILEVER. After all, you'd want him to do the same for you.

Send for our new data sheet.

THE DIGITRAN COMPANY
A Division of Becton, Dickinson and Co.
855 S. Arroyo Parkway, Pasadena, Calif. 91105
Telephone (213) 449-3110 • TWX 910-588-3794

Circle Reader Service #3.
Let Intersil guard you from masking costs and delays with an electrically programable ROM. All you need to code it is a few seconds and a simple program box. No masks. No eight weeks for delivery.

It’s the IM5600, our 256-bit 40-ns T2L ROM packaged in a 16-pin DIP or flatpack. A pin-for-pin replacement for the 9034 and its second sources, only faster. And it’s off-the-shelf from our distributors.

**TWX-a-Code or Code-a-Card.**

For super-fast service, TWX your code to us or your nearest Intersil distributor. We’ll program up to 100 ROMs directly off the wire and have them in the mail to you right away.

Another time saver. Order quantities of blank ROMs, mount them on your own PC cards and stock them. When you need it, program a complete card at a time, plug it in and go!

**Penny a bit, anyone?**

Price for the IM5600 (0 to +75° C version) is $25.70 in 100-piece lots. But if you’re interested in really large quantities we can bring the price down to a fraction of that. Any takers?

**See your friendly Intersil fellow.**

Intersil stocking distributors. Schweber Electronics; Century Electronics; Semiconductor Specialists; DeMambro Electronics; R. V. Weatherford Co.

Intersil area sales offices. Los Angeles (213) 370-5766; Metropolitan New York (201) 567-5585; Minneapolis (612) 925-1844; San Francisco Bay Area (408) 257-5450.


U.S. representatives in all major cities.
Thank you, but the work is only starting

The endorsement is clear, as the cards continue to pour in. So far, about 8000 readers have sent to this magazine the coupon we included in our October issue, endorsing our effort to promote jobs for electronic engineers. In this issue we have outlined how we think jobs can best be promoted, and where the thrust of our effort is to promote them.

Many readers have asked if we are going to Washington to propose "make work" projects for engineers. Nothing could be further from our mind. Our effort is based on the conviction (based, in turn, on our analysis of technological developments for the early '70s) that there will be plenty of opportunities available. These opportunities hold the promise of jobs for electronic engineers. However, while the opportunities are available, it does not follow that they will fully develop, or that American electronic manufacturers will capture them.

For example, the Federal Communications Commission, which is considering applications by over 30 companies to build more than 1700 communications links in the country, has already authorized Microwave Communications Inc. (MCI) to build one of them, between Chicago and St. Louis. The sooner the FCC authorizes these links and resolves the major policy issues* involved in some of these applications, the better for our industry and for our readers. In addition, the availability of an expanded communications network in the country will foster the new applications of data processing equipment and data terminals, which also employ the skills of electronic engineers. (See the article, "The year of conversion," on page 21 of this issue.)

However, if we want American manufacturers to develop both data communications and terminal equipment competitively, we feel they need and deserve help from our government, since the foreign manufacturers who will try to sell that kind of equipment in the United States have the aid and support of their governments. Such help would be nothing new for our government. For example, the Department of Commerce already does an excellent job in helping American manufacturers of data processing equipment and of instruments to sell their products abroad. However, as good as this kind of help is, it is directed at products which exist today, and are already in production. A similar effort is mandatory, we submit, to help our manufacturers produce the equipment that will be needed tomorrow.

For these reasons, this editor has been indicating these areas of opportunity to industry groups and, after receiving your heartening endorsement, we are also outlining them to our government, along with our proposals for official action. In this issue, we are starting to outline them to you, since their success depends on the success of the equipment our readers will design.

We have your endorsement. While you work in developing the equipment of the '70s, we will continue to press for help to make it competitive. The work is only starting.

Alberto Soccolusky
Editor

Making the top ten... For the second consecutive year, Lockheed topped the list of the 10 contractors awarded the biggest dollar volume in Department of Defense prime contracts. Lockheed received $1.84 billion in fiscal year 1970, down $192 million from the preceding year. They were also first in R&D contracts, with $526.3 million. Despite this, the company had to ask the Pentagon in March for $600 million in interim financing for DoD projects.

Borrow a memory... Corning Glass Works is encouraging memory systems designers to borrow glass memory modules to study their memory requirements. To overcome the initial price hurdle engineers face when buying fully assembled glass memory modules, Corning is lending memories for up to two months to selected design engineers with memory requirements.

Government recognition... The American Institute of Aeronautics and Astronautics (AIAA) has enlarged its program to help unemployed engineers and scientists find professional jobs. In addition to the five original locations, workshops will be established in 29 areas. The program will be financed with $129,000, the Department of Labor furnishing $109,000 and NASA, the remainder. Also for unemployed engineers, the Department of Labor has established a national registry, a central file of engineering job openings and job applicants. Set up with the cooperation of the California Department of Human Resources and the National Society of Professional Engineers, the program is funded with $125,000. Although located in Sacramento, the registry will provide nationwide employment assistance to engineers and prospective employers.

A very slight increase... Business opportunities for electronic and aerospace companies will increase 1 to 3% in government markets, predicts the Electronic Industries Association. EIA concludes that DoD and NASA can no longer be considered growth markets for electronic manufacturers. Total DoD and NASA electronic-related spending is expected to be about $15.5 billion in 1979, compared with 1969's $12.6 billion—a 25% increase, but probably only enough to offset inflation. Agencies with programs of most potential for electronics will be the Federal Aviation Administration, Urban Mass Transportation Agency, Department of Housing and Urban Development, Office of Education, and the Law Enforcement Assistance Administration.

Low-noise audio ICs... Toshiba has developed a new process for manufacturing low-noise transistors and ICs. The "perfect crystal technology" (PCT) process insures crystal perfection throughout all manufacturing steps, with a dislocation-free epitaxial layer grown on a dislocation-free silicon substrate. Noise level of ICs at 100 Hz can be reduced to 1/5, and at 10 Hz to 1/20, that of circuits produced by other methods. The circuits will be used for audio frequency amplification.

Military R&D budget... David Packard, Undersecretary of Defense warned about the danger of reducing the military R&D budget. Speaking at the annual show and Convention of the Instrument Society of America (ISA) in Philadelphia, Mr. Packard indicated the many developments, such as glass reinforced pc boards, aluminum and titanium for commercial airplanes, etc., that came about thanks to military R&D. He expressed the hope that Congress would accept the budget for R&D requested by DoD, although the request has already been cut back by the House.

Bits of information... Sylvania Electronic Systems has started an electronics school in Waltham, Mass., to train men and women for various careers. The school offers vocational training in radio and TV, communications, and computer electronics... Control Data Corp. has been awarded two contracts, valued at $15.2 million, by the U.S. Navy. The company will install three CDC 6000 Series and six CDC 1700 computer systems at the Naval Weapons Lab., Dahlgren, Va., and the Naval Ship Research and Development Ctr., Carderock, Md.... Burlington Northern has awarded a $1.2 million contract to Stromberg-Carlson to merge and enlarge the rail's phone systems into an integrated network.

Toshiba of Japan now has a black and white TV that is equipped for both regular broadcast reception and closed circuit TV monitoring of up to four locations within the home... RCA has announced the development of a low-noise avalanche diode oscillator with a noise level 10 times lower than that previously reported for such devices...

Zenith Radio Corp. is introducing an advanced acousto-optic intensity modulation system for the economical application of laser beams in such fields as data processing, communications, and video recording... Optel claims it has the first commercial electronic device using liquid crystal or cathodochromatic screens to display data. The unit is a display terminal... Despite the $1 billion investment in Cape Kennedy, NASA is examining other sites for the $6 billion reusable space shuttle program.

The U.S. supplies an estimated 75% of the $25-million IC market in Great Britain... The microwave oven market may jump from 75,000 units/yr to 200,000 units/yr by the end of 1971... The European MOS market is expected to grow from $42 to $500 million by 1975... Color TV picture tube exports were up 143% as of August last year, although total output was down 22%. Monochrome exports were down 54% and output 25%... Fairchild lost $10 million in the third quarter last year while employment dropped from 23,000 to 16,000 in six months.

Varadyne Inc. has developed a new MOS process called VMO which is said to be as fast as current sinking logic and as inexpensive as standard MOS... Air pollution instrument sales are expected to rise from $12 million to $35 million by 1975... U.S. unemployment averaged 5.1% in August 1970 (vs 3.5% in 1969), while unemployment in California hit 6.5% (vs 4.6% in 1969).
integrated switching circuits cost you less...

and make your work a lot easier.

Unitrode's new industrial 10 Amp silicon planar NPN Darlington transistors offer you the advantages of a monolithic two transistor circuit for less than the price of comparable discrete devices. They're ideal for high gain switching applications such as print hammer drivers, solenoid, servo and lamp drivers and for amplifying applications such as motor controls and linear amplifiers. They're available in two hermetically sealed metal packages — a lead-mounted TO-33 (U2T101) and a chassis-mounted TO-66 (U2T201). Both utilize overlay (multiple emitter) techniques on driver and output transistors. Saturation voltage is 1.5V max. @ 5A and current gain is 2000 min @ 5A. Collector-Emitter voltage ratings are available up to 150 volts. U2T201 has a power dissipation rating of 25W @ a case temperature of 100 °C. For whatever Darlington application you have, Unitrode C-Line Darlington transistors are more efficient and less expensive than any other method of performing the function. Why not make us prove it? (U2T101 is $2.75 ea. in lots of 100.) For fast action, call sales engineering collect at (617) 926-0404 Unitrode Corporation, Dept. 1D, 580 Pleasant St., Watertown, Mass. 02172 Free samples on request.
A "reel" packaging breakthrough

The traditional IC packaging bottleneck appears to have been broken by two new methods for automatically mass producing and packaging ICs. General Electric's multibond™ is a process to automate the assembly of the IC chip to its package while miniMod™ is the name they give to their new packaging concept.

Both the multibond process and the miniMod package use a polyimide film strip. This very stable, but still flexible, plastic film is made in continuous lengths perforated with indexing holes for mechanized processing and testing. Other holes in the strip will accept the copper leads and will provide access to copper leads so that you can attach your substrate. A 1-oz. copper ribbon is laminated to this strip. Through a photolithographic process a lead frame is etched into the copper ribbon at each index point of the strip. Following this, the lead frames are cut in preparation for pellet attachment.

Each copper lead is etched down to a 4-mil wide finger at the point at which it is to be bonded to a gold bump on the silicon pellet. The finger is cantilevered over the hole which receives the pellet. Away from the pellet, the copper leads are widened to become the package leads.

The pellet itself has been specially processed for use with this lead frame. A standard monolithic IC is fabricated, complete with its aluminum metalization, and then a glass overcoat is deposited over the entire circuit except for the bonding pad areas. Gold bumps are plated into the exposed bonding areas. The pellet is attached to the lead frame by aligning it under the cantilevered fingers and applying heat and pressure to all fingers, simultaneously forming a gold-tin eutectic bond that can withstand temperatures of over 280°C.

Direct connection of the copper leads to the bonding pads by this process eliminates the conventional gold wires used between a pellet and its lead frame.

The company also announced the availability of two products that are being offered in the new package.

The GEL 1741 features short-circuit protection at both the input and output, low power consumption, and offset voltage null capability. It accepts a wide range of common mode and differential mode input voltages and it will not "latch up."

Compact Doppler radar

Entering the consumer applications field for the first time, Hewlett-Packard Co. has a microwave Doppler radar transmitter-receiver module for many consumer and industrial purposes. A completely solid-state module, it is built with hybrid thin-film microcircuits.

The power from a Gunn diode producing 50 mW of power at 10.525 GHz is coupled to the output port through a circulator. Some of the energy from the diode is shunted through a 10-dB coupler to a hot carrier diode mixer. This serves as the reference signal.

The returning rf signal, shifted in frequency as a result of its reflection from a moving object, passes back through the circulator. The circulator isolates incoming and outgoing signals, even though they pass through the same port to and from an antenna. Coming in from the circulator, the received signal moves through a bandpass filter to remove spurious responses. It then moves on to the mixer where the incoming and outgoing signals subtract to generate an audio signal proportional to velocity.

FET reaches 14 GHz

Using ion implantation techniques, scientists at IBM's Research Division have developed an experimental FET with a cutoff frequency of 14 GHz. This is the highest frequency reported to date for a silicon transistor.

The substrate is high-resistivity (100 Ω-cm) p-type silicon. Both source and drain are diffused n+ with phosphorus. The area between the source and drain is then implanted with boron to produce a higher conductivity (1 Ω-cm) p-type material. After the metal electrodes and gate are formed, the device receives a heavy implantation of phosphorus ions to extend the source and drain to the exact edges of the gate.

Experiments to date indicate that the transistor produces high gains in the 5-10 GHz range. In addition, switching speeds of less than 500 ps have been measured. Although the 500-ps value was the resolution limit of the measurement setup, IBM expects the actual switching speed of the unloaded transistor to be less than 100 ps.

All that's needed to form a complete microwave Doppler radar is the module, an antenna, a display, and a power source. Possibilities for consumer uses include automobiles, private airplanes, and pleasure boats. The radar will be used in industrial applications such as intrusion alarms, automatic traffic controls, railroad speed controllers, and automatic aircraft landing systems.

Modules will sell, in quantities of 1000, for less than $150 and, in very large quantities, for less than $100.

Circe Reader Service #282.

The Electronic Engineer • Jan. 1971
Introducing... A New Modular Concept in RCA Hybrid Power Circuits

Take RCA transistor chips with current capabilities up to 80 A, rectifiers with peak currents to 80 A, and resistors to 10 watts. Interconnect them — in any number of ways. What do you get? A power capability up to 800 W, current capability up to 300 A!

Right now, RCA is mass-assembling a variety of thick-film hybrid high-power arrays that are ideal for switching and amplifier applications in military and industrial equipment. Modules are also available in unconnected versions, if you prefer to create your own design. These hybrid power circuits offer obvious power circuit advantages, including: compactness, light weight, fewer parts, minimum assembly costs, factory-selected and matched components, and efficient built-in heat dissipation.

Look over the inverter example illustrated. Then call your local RCA Representative or your RCA Distributor for more information on the modular concept. For RCA's new, detailed brochure, "High-Power Arrays" (HPA-100), write: RCA, Commercial Engineering, Section 59A/UC2R, Harrison, N. J. 07029. International, RCA, 2-4 rue du Lièvre, 1227 Geneva, Switzerland, or P.O. Box 112, Hong Kong.
Quality and reliability are key design parameters built into Adlake's complete line of DRY REED RELAYS. Advanced electrical, mechanical and packaging features qualify these standard, intermediate, and miniature size devices for an extremely wide range of commercial, industrial, and military switching applications, such as control panels, machine process control instrumentation, and telephone and communications apparatus, to mention just a few.

**ELECTRICAL DETAILS:**

Contact Arrangements:
- Up to 4-A or 2-B

Contact Current Ratings:
- Switch 0.5 A; carry 3 A (Miniature & Intermediate)
- Switch 1.5 A; carry 6 A (Standard)

Contact Resistance:
- Initial—50 milliohms, max.;
  - end-of-life—2 ohms max. (Standard)
- Initial—200 milliohms max.;
  - end-of-life—2 ohms max. (Intermediate & Miniature)

Contact Life:
- Rated Loads—20 x 10⁶ operations
- Dry Circuit—500 x 10⁶ operations

Contact Voltage Ratings:
- 100 VDC or 150 VAC (Miniature or Intermediate)
- 150 VDC or 250 VAC (Standard)

Insulation Resistance:
- 10⁵ ohms (min.)

Operating Speed:
- 1 to 2.5 ms (Miniature & Intermediate)
- 2.5 to 4.5 ms (Standard) (Varies with sensitivity and number of poles; including contact bounce and coil time)

**PACKAGING DETAILS:**

Environmental Protection:
- Hermetically sealed contacts. Rhodium plating on contacts for higher loads and longer life characteristics.

Shielding:
- Magnetic shielding layer

Vibration:
- 30 G max. 0-1700 cps (Miniature & Intermediate)
- 0-600 cps (Standard)

Temperature Range:
- -55 to 105°C

Choose from 123 cataloged items. Dry Reed Relays with special features are available on special order with surprisingly short delivery times.

**MERCURY WETTED CONTACT RELAYS**

Low, stable contact resistance and "1-billion-operation" life qualify Sensitive Mercury Wetted Contact Relays for a wide array of switching applications, such as digital and analog computers, telecommunications system, multiplex, industrial control equipment, power control devices. New Series MWK and AWK Sensitive Relays offer contact form K (SPDT, center off)—ideal for multiple channel switching.

**MERCURY DISPLACEMENT RELAYS**

Time delay and load relays meet the toughest, most demanding switching applications. Non-adjustable time delay relays offer contact forms A and B with delays up to 1 hour, current ratings to 15 amps. Load relays switch from 30 to 100 amps with contact forms A and B.

**USE READER SERVICE NUMBER FOR COMPLETE INFORMATION**

Adlake
Dry Reed Relays Series
ARAM & ARM
(typical)

ADLAKE DRY REED RELAYS

ELEKTRONIC RELAYS

Electronics brings the world closer together in this year's IEEE International Solid-State Circuits Conference. The annual meeting, which is scheduled for Feb. 17-19, will again be held at the University of Pennsylvania (afternoon sessions) and the Philadelphia's Sheraton Hotel (evening discussions). Of the 200 papers submitted, 75 were selected, representing more than a dozen nations in Europe, the Far East, and South America.

Just as this year's conference represents a variety of nations, so does the program represent a variety of current topics. Among the subjects covered in the 15 afternoon sessions will be computer-aided design, memories, digital circuit applications of IC technology, linear circuitry, avalanche diode circuits, biomedical electronics, and charge-coupled carrier-domain devices. Topics for the 12 panel discussions in which 75 engineers will participate include microwave power sources, low-noise microwave front ends, high-power IF techniques, microwave broadband transistor power amplifiers, biomedical sensors, silicon-diode array image tubes, the impact of LSI on computer design, and A-D/D-A.

Be sure to attend the keynote address by D. W. Hill on the opening day. Hill is from the Research Department of Anaesthetics at the Royal College of Surgeons of England, located in London. He'll be speaking on the "Impact of Solid-State Circuitry Technology on Biomedical Electronics." Also at this time the IEEE Mervin J. Kelly Prize award will be presented, as well as ISSCC plaques for outstanding contributed papers delivered at the 1970 meeting.

You'll find the Digest of Technical papers more than just a souvenir to return home with. It's filled with 200 pages of information and includes condensed versions of all invited, contributed, and keynote papers. They'll be distributed to all who register at the meeting, but you'll have to pay for them after that.

Registration before the conference is $20 for IEEE members, $25 for non-members. At the door, it's $30 and $35 respectively. If you'd like programs or registrations forms, address your requests to Lewis Winner, 152 W. 42nd St., New York, N.Y. 10036.

The Electronic Engineer • Jan. 1971
The new UM4000 Series is available in a variety of packages in voltages from 100v to 600v at the lowest prices in the industry. (as low as 89c in 10K lots.) Such features as low losses, low thermal impedances, low parasitics, low distortion and high reliability make them ideal for applications from LF to S band. They're especially suited for switches, duplexers, TR switches, receiver protectors, digital phase shifters, attenuator circuits and AGC loops. For fast action, call Steve Nannis collect at (617) 926-0404.

Unitrode Corporation, 580 Pleasant Street, Watertown, Mass. 02172.

UNITRODE quality takes the worry out of paying less.

Circle Reader Service #8.
This is a coaxial cable...

It doesn't look like coaxial cable, but it acts like it. It has the same propagation velocity and controlled cross talk characteristics, as well as matched impedance. It's a piece of Ansley Signaflo® transmission cable. But because it doesn't have the traditional coax form, some people are hesitant to use it... even though it's stronger, lighter, and requires less space in packaging. Ansley Signaflo will even flex and follow complex contours.

Unlike coaxial cable, the biggest benefits are found in the final assembly. Each cable assembly provides exactly the same controlled electrical characteristics. Misassembly errors are eliminated. Total installed cost, a big factor to consider with coax, can be as much as 50% less.

Ansley Signaflo transmission cable is manufactured in a wide range of sizes, configurations and insulating structures available from stock.

Also available is Ansley Flex-Strip® electrical conductor cable. In addition to the standard stocked cables, Ansley will produce any flat cable or terminated cable assembly to suit your specific requirements.

With over ten years of experience in the manufacture of flat cable and custom-engineered flat cable assemblies, we are anxious to prove our capabilities. We have coaxial cable like you've never seen before. Ansley Corporation, a subsidiary of Thomas & Betts Corporation, Doylestown, Pa. 18901 and Los Angeles, Cal. 90065. In Europe, Ansley Elektronik, GmbH, 8766 Grossheubach.
Now ITT can save you something on capacitors too!

Get a free sample of ITT’s competence in capacitors! Learn how you can use miniature resin-dipped solid tantalum devices to cut costs without sacrificing performance. In some areas—impedance, for example—you can even expect performance improvement.

ITT has 31 popular models in stock, and some 25 others available on very short notice. In the combinations shown below, you may select capacitance from 0.1 to 100 μF and voltage ratings from 3 to 35 VDC.

Temperature range is −55 to +85°C, and you may choose either flexible or preformed leads. Normal capacitance tolerance is ±50% to ±20%, but special orders for ±20% or ±10% devices can be filled.

Find out how ITT can save you something on your next capacitor procurement. Use this coupon to get a free tantalum capacitor sample and a price quotation.

### Sample Voltage/Capacitance Combinations Available from Stock

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Capacitance (μF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>0.01 0.15 0.22 0.33 0.47 0.68</td>
</tr>
<tr>
<td>1</td>
<td>1.5 2.2 3.3 4.7 6.8</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.3 4.7 6.8 15</td>
</tr>
<tr>
<td>16</td>
<td>10.0 22</td>
</tr>
<tr>
<td>10</td>
<td>4.7 10.0 15.0 33</td>
</tr>
<tr>
<td>6.3</td>
<td>6.8 15.0 22.0 47.0</td>
</tr>
<tr>
<td>3</td>
<td>33.0 68.0 100.0</td>
</tr>
</tbody>
</table>

Please send me a free capacitor with the voltage/capacitance characteristics circled at right.

Please quote on pieces with the voltage/capacitance characteristics circled at right.

Please send me detailed specification on your capacitor line.

Please have a salesman call.

NAME
COMPANY
ADDRESS
CITY
STATE
ZIP

The Electronic Engineer - Jan. 1971

ITT Semiconductors is a division of International Telephone and Telegraph Corporation, 500 Broadway, Lawrence, Mass. 08142. Phone 617-460-1600. Factories in Florida, Massachusetts, England, France, Germany, Portugal, Australia.
"Many CPUs are in a terrible jam," the Sanders man noted thickly. "Incoming orders are stealing much precious time."

"Let's put MAC 16 on it posthaste," urged his assistant urgently. "With its phenomenal hardware interrupts, Lockheed's mighty mini is the ideal computer for our proposed curative, the Sanders Order Entry System!"

"Interesting," mused the older man, "but what of devices? Can a mini computer control stations enough?"

"An incredible 256 devices!" shrieked the lad. "Plus mass storage and blinding speed!"

"Hmmm. I suppose we could link MAC 16 with our justly renowned Sanders 720 Display Stations..."

"Of course! Two per office—the second one for verification. Why, on-line or off-line, our system will be so foolproof even girls can operate it!" the youngster giggled triumphantly.

"My boy, your enthusiasm is contagious. Consider it done!"

"Our fortunes are made!" his assistant exulted, foaming slightly.

Verily, an apt prophecy it was.

Moral: Fame and fortune await. Merely tell Central you want (213) 722-6810, collect, and become the next clever MAC 16 applicator.

Lockheed Electronics
Data Products Division / Los Angeles (213) 722-6810
A Division of Lockheed Aircraft Corporation

MAC AND THE ELECTRIC ORDER RECORDER
or
Saving the Day for CPUs
**CALANDAR**

**JANUARY**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


**FEBRUARY**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


'70 & '71 Conference Highlights

IEEE—International Convention & Exhibition, March 22-25; New York, N. Y.

WESCON—Western Electronic Show & Convention, Aug. 24-27; San Francisco, Calif.

Call for Papers

Oct. 20-21: Fourth Annual Connector Symposium, Cherry Hill, N.J. Submit four copies of a 200-400 word abstract by March 1 to Program Chairman, ELECTRONIC CONNECTOR STUDY GROUP, P.O. Box 3104, Philadelphia, Pa. 19150.

Matheson's NEW and BETTER way to etch silicon

Chemically speaking, E-GAS® is Matheson's new, specially prepared gas for etching silicon. It displaces Hydrogen Chloride as the "NOW" etching method. Practically speaking here's why:

**E-GAS gives more effective etching.** It enables you to etch through oxide holes with no oxide deterioration or etching of back seal. What's more, E-GAS gives a planar etch, forms flat bottom holes, and is ideal for etching junctions prior to mesa passivation and requires a lower operating temperature (200°C. less than HCl).

**E-GAS stands for economy.** In addition to the many operating economies accrued, only 1/5 as much E-GAS is required to do the job as compared with HCl.

**E-GAS is easier and safer to handle.** It's nontoxic, noncorrosive and does not contaminate. As a result, there's no equipment damage.

You can order E-GAS in No. 1A or No. 3 cylinders. Because of its high etching rate, E-GAS is also being offered in mixtures for lower etch rate applications such as etching silicon prior to thermal or pyrolytic oxidation. These mixtures have a 10% concentration of E-GAS in a choice of background gases.

**Ask to see our etching engineering report!** Write Matheson Gas Products, P.O. Box 85, East Rutherford, N. J. 07073

Circle Reader Service #13.

**MATHESON GAS PRODUCTS**

A Division of Will Ross Inc.

East Rutherford, N. J.; Cucamonga, Calif.; Gloucester, Mass.; Joliet, Ill.; LaPorte, Texas; Morrow, Ga.; Newark, Calif.; Matheson of Canada, Ltd., Whitby, Ont.

Circle Reader Service #14—
Custom(er) Cable Constructions by Chester

Behind every foot of multi-conductor cable produced by our Chester Cable Operations, are the vast resources, technical skills and virtually unlimited facilities of Cities Service. From the basic copper ore to the finished product, every care is exercised in strict quality control to assure you of dependable and practical cable construction to fulfill your most exacting requirements.

The samples of Plasticote multi-conductor cables shown on these pages are but a few of the thousands of "specials" produced for our many customers. No matter what your needs in conductors, insulations or jackets, check first with Chester . . . we know you'll be more than pleased with the results.
A. RECORDING STUDIO: Audio sound cable: 25 shielded pairs, stranded copper conductors, low loss insulation, twisted with uninsulated drain wire, isolated aluminum tape shields, cabled, PVC jacket.

B. TV CAMERA MFR.: Camera control cable for Audio and Video signals: a composite of PVC and polyethylene insulated conductors, cabled, overall braid shield, PVC jacket.

C. AIRCRAFT SIMULATOR MFR.: Control cable: 12 triples shielded jacketed, stranded copper conductors, PVC insulated, individual shield jacket color coded, cabled overall PVC jacket.

D. ELEVATOR MFR.: Control cable: 35 conductors, stranded copper, PVC insulated, conductors coded by colors and printed numbers, cabled with open binder; individual conductors U/L listed.

E. INTERCOM EQUIPMENT MFR.: 250 conductor inter-office communication and signaling cable: solid bare copper, PVC insulation, paired, cabled, PVC jacket; U/L listed.

F. ELECTRIC UTILITY CO.: Station control cable for general use: 37 conductors, stranded, polyethylene and PVC insulated, color coded, cabled, overall tough PVC jacket; per NEMA/IPCEA Specifications.

G. LARGE CITY: Communication cable: 50 pairs, polyethylene insulated, cabled, continuous layer of copper shielding tape, PVC jacket; per spec. IMSA-19-2, 600 volts.

H. LEADING SHIPBUILDER: Shipboard cable: stranded conductors, nylon-jacketed PVC insulation, pairs shielded and jacketed, cabled, PVC jacket, and aluminum braid armor overall; per spec. MIL-C-915.

I. U.S. GOVERNMENT: Coaxial cable: type RG-218/U, solid copper conductor, polyethylene insulated, copper braid shield, PVC jacket; per spec. MIL-C-17/79.

J. BROADCASTING COMPANY: Remote control broadcasting cable: stranded conductors, polyethylene insulation, pairs & triples shielded and jacketed, cabled, PVC jacket overall.

K. COMPUTER MFR.: Computer control cable: 55 conductors, stranded copper conductors, PVC insulated, formed into 7 groups of 7 conductors, cabled, PVC jacket; U/L listed.

L. MACHINERY MFR.: Bus drop cable: 3 PVC insulated stranded conductors, with split uninsulated grounding conductor, cabled, overall PVC jacket; U/L listed; per NEC.
The first monolithic dual J-FET: A standard 2N package with the right answer to \[ \frac{\Delta (V_{GS1}-V_{GS2})}{\Delta T} \]

The trouble with most dual J-FETS is that they're actually two J-FETS, or two J-FETS with an extra P channel tossed in to provide isolation.

The one practically assures you of poor thermal tracking. The other means you can't get the dual J-FET in a standard 6-lead 2N package. (The lead from that extra P channel has to go somewhere. Where? That's your problem, not the J-FET-makers.)

Because the NPNPNPN construction uses up a lot of silicon real estate, good thermal tracking is hard to come by there, too.

Enter our monolithic dual J-FET, the first monolithic dual J-FET.

As you can see, we build it differently.

We lay down SiO₂ boats in the chip and build our J-FETS in there: for the first time, you get a dual J-FET with dielectric isolation. No P channel. No seventh lead. Higher isolation. Lower cross talk. Lower noise.

And, because we use less chip to build in, you get thermal tracking values of 5 µV/°C or better, without fuss.

If all this sounds like the answer to a differential amplifier problem or two, it's because we planned our dual J-FET that way.

We have other J-FET answers to any problems you might be facing with AC, DC, high frequency, or low noise amplifiers; analog or digital switching; or high-voltage hangups. All in our new J-FET spec sheet. Write, and we'll have one in the next mail.

Can't wait that long? Call (215) 355-5000 and ask for Marty Kiousis. Unisem Corporation, P.O. Box 11569, Philadelphia, Pennsylvania 19116.

Another Unisem first: the dielectrically isolated monolithic dual J-FET.
1971: the year of conversion

Technology transfer to consumer needs means the dawning of a new age of electronics—promising real growth in a host of new markets.

Yes, it’s about time. It’s about time to take note of the writing on the wall and really look at its message. And that message tells us to look around, brother, because the days of the big defense money are gone.

And it’s time to make a turnaround just as quickly as we can, before the manufacturing headquarters for the new markets—as has already happened with calculators and color TV—suck out the lure of travel and take up residence in pleasant climes outside of our United States.

You’ve probably noticed this past year that The Electronic Engineer has put more and more emphasis on those ideas which will help shape our industry (our CHALLENGE series and editorials, for example). In doing the research necessary to write such material, the editorial staff has been able to identify a host of new markets which, in this decade, will assume tremendous proportions. A number of them, such as data terminals, communications, video recording, and process control, will grow regardless of what the U.S. electronics industry does about them. So to retain them here in this country, we must start immediately to control their development.

Other markets—notably air traffic control, urban transit, medical electronics, education, pollution control—will need government-directed specifications. But we, as a united industry, must take the government by the hand, and tell it what it needs. We must not drop this responsibility into the laps of the politicians, for if we do, we will surely help to create another monster such as the defense industry was.

Information storage with Videofile™

Ten years ago, government work accounted for about 50% of Ampex Corp’s total business. Today, government business is only about 14% of the corporation’s volume, because Ampex, located in Redwood City, Calif., took pains to make sure that its non-government business grew. As a result, Ampex is moving into markets it has never served before. And an outstanding example of one shift towards consumer electronics is the company’s Videofile Information System.

Videofile uses video tape for the storage and retrieval, via digital addresses, of documents and other graphic images. Such a system does with documents what computer systems do with alphanumeric information. The user can permanently store his records, or edit them in any way he wishes. Because the storage is electronic in nature, the user can move information from place to place in his files, remotely display it, and so forth.

Since Videofile handles a class of files which does not lend itself to storage in digital form, it is not competing with computer or microfilm systems. Instead, Videofile fills a vast market need that exists between those two areas. And its users typically have huge files that need constant updating: dynamic files with many inputs and outputs. The law enforcement community is thus a major market for the system, as is the insurance industry, the medical records field, and the transportation industry.

Videofile is a blend of three technologies which, over the years, have grown at Ampex: video recording (for the

By 1980, most electronic data terminals will be bought and used by people with no electronics background. The chart shows the percentage of terminal points (not units) by end user. Note the importance of retail establishments such as department stores, “fast-food” chains, and supermarkets. (Information courtesy of Datran.)
broadcast industry; computer tape (for the computer industry); and instrumentation recording (which was primarily government oriented). Bear in mind, too, that this technology transfer implies personnel transfer as well. After all, the 500 people at the Videofile division came not only from within Ampex, but also from companies such as Philco-Ford’s Western Development Labs., Lockheed, Sylvania, and so on. These people, who formerly worked in government and aerospace fields, now work on heavily commercially oriented projects.

But these people are the lucky ones. Evan Ragland, president of American Regitel in San Carlos, Calif., comments on the contributions of aerospace to technology, and the transfer of technology to consumer needs. He feels that the private sectors of our industry should accept and use both the contributions of aerospace and the people who made them to solve problems wherever electronics can help to do so. And he stresses the fact that his people do have aerospace backgrounds. Further, their experience is not only applicable, but also important. “A power supply is a power supply, and we use the same MOS ROMS that we see in all other types of equipment.” He adds that “large manufacturers are generally not too anxious to innovate, and thus possibly obsolete their investments. The large companies are moving too slowly toward those problem solutions which will make our lives a little easier and a bit more pleasant. Perhaps we have waited too long for the giants—the IBM’s, RCAs, GE’s—to solve our problems.”

**Cash in on point-of-sale systems**

The cashier at Bullock’s, a department store in Los Angeles, looked hesitantly at the lighted display reading HOW PAY on her new cash register. She pushed the CHRG button on the keyboard, and the display prompted her to insert the sales slip and enter the customer’s credit card number. The register printed it, seemingly without hesitation, although it had already had time to ask its backup Nova minicomputer to check the customer’s credit on an NCR 315 computer.

This illustrates only one example of the many applications for the new point-of-sale terminals which will become popular in the 1970s, and American Regitel is the electronics company supplying the terminals being tested at Bullock’s. Ragland states that he could not have designed these terminals without the help of electronic engineers experienced in modern digital design with complex integrated circuits.

While the application to department stores will be very important, point-of-sale systems will be needed in libraries, “fast-food” chains such as Gino’s, MacDonald’s, or Hot Shoppes and, ultimately, in supermarkets. While the technology required to design terminals for these diverse applications is basically the same, and well-mastered by electronic engineers, they must be designed specifically with the user in mind—a user who, in general, does not have an electronics background.

**Data terminals and communications**

Together with other equipment such as facsimile, typewriters, remote health monitors, and bank teller registers, point-of-sale terminals are examples of data terminals, peripheral units which provide remote access to or retrieval from a computer, or from electronically stored information (usually called the data base). Since many of these terminals will be far away from their computers or electronic data bases, the increased applications for terminals will demand an expansion and improvement in the communications lines required to connect them. With the exception of oil companies and railroads, which have their own right-of-ways and have installed their own microwave communications systems, most users of data terminals must use the telephone network for their data communications. And, as of this writing, there are before the Federal Communications Commission applications by 30 companies to build over 1700 microwave stations in the country. One of these companies, Microwave Communications Inc., has already been approved to build a microwave link between Chicago and St. Louis. (See the article “Hour of decision at the FCC,” The Electronic Engineer, Nov. 1970, pp. 22-29.) Another applicant, Datran (a subsidiary of University Computing Corp.) has applied for a network engineered and devoted exclusively to digital transmission. It’s based on time-division multiplexing (TDM), unlike the telephone network which is based on frequency-division multiplexing.

With the possible exception of the TDM switching exchanges, which Martin Co. in Orlando is designing under a
contract from Datran, most of the equipment required for these vast communications networks of the 1970s can be designed with the technology and the components developed in the 1960s—a technology well-mastered by electronic engineers. Therefore, the successful designs for microwave transmitters, for power supplies, and for switching and carrier equipment will not be those that push the state-of-the-art at the expense of price, but rather those that implement modern technology and reliability at the lowest cost.

**TV reruns you'd like to see**

In the 1970s consumer electronics will be geared towards the individual consumer as well as towards the consumer industry. The next generation for electronics in the home will be the era of canned TV. Call it what you will—video cassettes, cartridge TV, or prerecorded programming—video recording for the individual consumer is on its way in. And if you listen to the optimists in the industry, its impact on the public is going to be revolutionary.

The whole field of video recording is still up for grabs. About two dozen companies are looking at the hardware aspects with varying shades of enthusiasm. Among them, the companies have come up with five distinct approaches to video recording, but only one approach—magnetic tape—offers a record-it-yourself capability to the user. Not too surprisingly, the largest number of companies are looking in the direction of mag tape right now.

While the mag tape advocates have numerical superiority, the two big guns in the home entertainment market—CBS and RCA—are busy developing two entirely different systems. First to hit the street (with deliveries already underway to Equitable Life Assurance Society) is EVR (electron video recording) from CBS. With EVR, an electron beam writes video information onto photographic film in much the same way that a similar gun creates an image on the face of a CRT. The audio portion of the program is recorded with conventional techniques onto magnetic stripes running along the edge of the film. The playback equipment, manufactured by Motorola, reconverts the information on the film into electrical form and feeds it to the antenna terminals of the TV receiver.

RCA, the other big name in the field, is not nearly as far along as CBS. The RCA system (dubbed SelectaVision) is, technically, a much more complicated process. Its great advantage, however, is that the recording medium is inexpensive vinyl tape. The actual program information, in the form of a holographic pattern, is embossed on the vinyl tape by means of a nickel master.

While CBS and RCA are looking at playback-only systems, a number of companies see more promise in the playback-plus-record capability of magnetic tape. To date the list includes Avco, Ampex, Arvin, Sony, North American Philips, and Panasonic. To further complicate the picture, A.E.G.-Telefunken and Teldec (Telefunken-British Decca) have jointly demonstrated a working system which uses plastic discs resembling phonograph records. At least one company, NordMende of Germany, has a working system that uses Super 8-mm film.

Looking over the pack right now, there is no apparent leader. All of the systems are presently priced too high for the general public and a good many of them are still in the prototype stage, if that far. But judging by the number of companies involved, it's apparent that a lot of people believe "there's gold in them thar hills!"

**Electronics in the driver's seat**

Skidding on a wet pavement—one of the driving mishaps most dreaded by drivers—may be a thing of the past thanks to electronic anti-skid devices. Ford, for example, is testing one designed by Kelsey-Hayes in 1968 which uses an IC computing box by Texas Instruments. For tailgaters, Hewlett-Packard has designed an automatic braking unit which is triggered by a radar sensor.

While these electronic driving aids are still too expensive to be incorporated into any but top-of-the-line autos, all car manufacturers expect to add them to most of their models when prices go down—around 1976—and only electronic engineers can design them, at low cost. In the meantime, the skills of electronic engineers are starting to be applied to repair, rather than to make, automobiles. Two EEs designed an electronic control board for the CSS 7100, a dynamometer manufactured by Clayton Mfg. Co. of El Monte, Calif. While the control board is a very simple combination of instrumentation amplifiers, it had to be designed to withstand the environment of a service shop, and to minimize the downtime produced by any possible failure of an electronic component. Other electronic analyzers made by companies such as Sun Electric, Auto-Scan, and Allen are becoming increasingly popular among service stations, but represent only an early sample of the type of equipment electronic engineers can and will design, at low cost, in the 1970s.
SMALL DIMENSION FUSES and FUSEHOLDERS

FOR THE PROTECTION OF ALL TYPES OF ELECTRONIC & ELECTRICAL CIRCUITS & DEVICES

The complete BUSS line of fuses includes dual-element "slow-blowing," single-element "quick-acting" and signal or visual indicating types... in sizes from 1/500 amp. up—plus a companion line of fuse clips, blocks and holders.

Only a representative listing is shown here of the thousands of different types and sizes of fuses and holders available from BUSS.

All standard items are easily obtained through your BUSS distributor.

When special fuses, fuse clips, fuse blocks or fuseholders are required, our staff of fuse engineers is at your service to help in selecting or designing the fuse or fuse mounting best suited to your requirements.

For detailed information on the complete BUSS line write for BUSS bulletin SFB.

BUSSMANN MFG. DIV., McGraw-Edison Co., ST. LOUIS, MO. 63107
MICROWORLD

What's available in MSI?

Here's a list of bipolar MSI circuits to ease the pain of matching the right device to your particular application.

By Larry Beck and Walter Richard


The table on the following pages lists the bipolar digital MSI circuits available today or in the near future. The list is intended as an aid to design engineers in selecting devices and also to keep them informed of the rapid advances in this field.

The organization of the table groups circuits according to function. (The list does not include memory devices or MOS circuits.) When the information was available, we have also included the operating voltage, typical power dissipation and typical propagation delays for each circuit.

The manufacturers listed in the table can be identified according to the following key. If you want more information on a particular manufacturer's circuits, please use the reader service number indicated.

*Sylvania has dropped out of the IC Manufacturing business. These circuits are included because they are still available from some distributors. There is also a good chance that another manufacturer will buy the line and continue to manufacture the circuits.

---

**REGISTERS**

<table>
<thead>
<tr>
<th>Function</th>
<th>Operating Voltage</th>
<th>Typical Power (mw)</th>
<th>Typical Speed (ns)</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift register, 8-bit</td>
<td>5</td>
<td>175</td>
<td>27</td>
<td>7491A (TI, Nat, Spr, ITT, Syl, Phi, Tns, Fch, Mot, Sig)</td>
</tr>
<tr>
<td>Shift register, 8-bit</td>
<td>5</td>
<td>175</td>
<td>30</td>
<td>8270 (Nat)</td>
</tr>
<tr>
<td>Shift register, 8-bit</td>
<td>5</td>
<td>175</td>
<td>30</td>
<td>8290 (Nat)</td>
</tr>
<tr>
<td>Shift register, 8-bit</td>
<td>5</td>
<td>175</td>
<td>120</td>
<td>8276 (Sig)</td>
</tr>
<tr>
<td>Shift register, 4-bit, parallel-in/serial out</td>
<td>5</td>
<td>175</td>
<td>25</td>
<td>7494 (TI, Spr, ITT, Tns, Fch, Mot, Phi)</td>
</tr>
<tr>
<td>Shift register, 4-bit, parallel-in/serial out</td>
<td>5</td>
<td>250</td>
<td>26</td>
<td>7495 (TI, Spr, ITT, Fch, Mot, Tns, Phi)</td>
</tr>
<tr>
<td>Shift register, 4-bit, parallel-in/serial out</td>
<td>5</td>
<td>250</td>
<td>26</td>
<td>8580 (Nat)</td>
</tr>
<tr>
<td>Shift register, 5-bit, bidirectional</td>
<td>5</td>
<td>250</td>
<td>26</td>
<td>8276 (Sig)</td>
</tr>
<tr>
<td>Shift register, 8-bit, bidirectional</td>
<td>5</td>
<td>360</td>
<td>18</td>
<td>74198 (TI)</td>
</tr>
</tbody>
</table>
### REGISTERS

<table>
<thead>
<tr>
<th>Function</th>
<th>Operating Voltage</th>
<th>Typical Power (mw)</th>
<th>Typical Speed (ns)</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift register, universal</td>
<td>5</td>
<td>360</td>
<td>18</td>
<td>74199 (TI)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>180</td>
<td>25</td>
<td>4012 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>19</td>
<td>—</td>
<td>74199 (TI)</td>
</tr>
<tr>
<td>Data selector/storage register, 4-bit</td>
<td>5</td>
<td>25</td>
<td>—</td>
<td>74L98 (TI)</td>
</tr>
<tr>
<td>Shift register, 8-bit, serial-in; parallel or serial out</td>
<td>5</td>
<td>180</td>
<td>23</td>
<td>74164 (TI)</td>
</tr>
<tr>
<td>Shift register, 8-bit, parallel or serial in; serial out</td>
<td>5</td>
<td>230</td>
<td>17</td>
<td>74165 (TI)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>200</td>
<td>35</td>
<td>8590 (Nat)</td>
</tr>
<tr>
<td>Shift register, 4-bit</td>
<td>5</td>
<td>300</td>
<td>25 MHz</td>
<td>8300 (Ray, Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>300</td>
<td>—</td>
<td>9300 (ITT, Fch, Mot, Phi)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>150</td>
<td>30</td>
<td>8600 (Nat)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>75</td>
<td>10 MHz</td>
<td>9200 (Fch)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>180</td>
<td>20 MHz</td>
<td>9302 (Fch)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>180</td>
<td>20</td>
<td>7270, 7271 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>180</td>
<td>22/bits</td>
<td>4012 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>175</td>
<td>25</td>
<td>7494 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>250</td>
<td>25</td>
<td>7495 (Mot)</td>
</tr>
<tr>
<td>Storage register, 4-bit</td>
<td>5</td>
<td>80</td>
<td>16</td>
<td>RL62, RL63 (Ray)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>80</td>
<td>22</td>
<td>TR62, TR63 (Tns)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>120</td>
<td>20</td>
<td>SM63, SM73 (Sylo); 9655, 9656 (Phi); TR72, TR73 (Tns)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>120</td>
<td>16</td>
<td>RL72, RL73 (Ray)</td>
</tr>
<tr>
<td>Shift register, dual, 8-bit</td>
<td>5</td>
<td>85</td>
<td>10 MHz</td>
<td>9228 (Fch)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>300</td>
<td>22</td>
<td>9328 (Fch, Mot, Phi)</td>
</tr>
<tr>
<td>Buffer register, dual, 5-bit</td>
<td>5</td>
<td>400</td>
<td>30</td>
<td>8200, 8201 (Sig)</td>
</tr>
<tr>
<td>Buffer register, 10-bit</td>
<td>5</td>
<td>400</td>
<td>30</td>
<td>8202, 8203 (Sig)</td>
</tr>
<tr>
<td>Shift register, 4-bit, parallel entry</td>
<td>5</td>
<td>180</td>
<td>20</td>
<td>8270, 8271 (Mot, Sig)</td>
</tr>
<tr>
<td>Shift register, 4-bit, resettable</td>
<td>5</td>
<td>150</td>
<td>25</td>
<td>TR 742526 (Tns)</td>
</tr>
<tr>
<td>Register, 4x4 file</td>
<td>5</td>
<td>480</td>
<td>45</td>
<td>74170 (TI)</td>
</tr>
<tr>
<td>Shift register, 5-bit</td>
<td>5</td>
<td>240</td>
<td>25</td>
<td>7496 (Mot)</td>
</tr>
<tr>
<td>Shift register, serial parallel</td>
<td>3.6</td>
<td>225</td>
<td>55</td>
<td>794, 894 (Mot)</td>
</tr>
</tbody>
</table>

### DECODERS

<table>
<thead>
<tr>
<th>Function</th>
<th>Operating Voltage</th>
<th>Typical Power (mw)</th>
<th>Typical Speed (ns)</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decoder, 24-bit carry</td>
<td>5</td>
<td>150</td>
<td>8</td>
<td>RL 3202 (Ray)</td>
</tr>
<tr>
<td>Fast carry extender</td>
<td>5</td>
<td>95</td>
<td>14</td>
<td>8261 (Sig)</td>
</tr>
<tr>
<td>Decoder/driver, BCD to decimal</td>
<td>5, 55</td>
<td>105</td>
<td>250</td>
<td>7441 (Fch, ITT, Mot, Tns, Spr, Nat, Phi)</td>
</tr>
<tr>
<td></td>
<td>5, 55</td>
<td>75</td>
<td>250</td>
<td>7441 (Sig)</td>
</tr>
<tr>
<td></td>
<td>5, 30</td>
<td>215</td>
<td>50</td>
<td>7445 (TI, Tns, Spr, Mot, ITT, Phi)</td>
</tr>
<tr>
<td></td>
<td>5, 15</td>
<td>215</td>
<td>50</td>
<td>74145 (TI, Tns, Spr, Nat, Mot)</td>
</tr>
</tbody>
</table>

The Electronic Engineer • Jan. 1971
<table>
<thead>
<tr>
<th>Function</th>
<th>Operating Voltage</th>
<th>Typical Power (mw)</th>
<th>Typical Speed (ns)</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 - 30</td>
<td>5 - 15</td>
<td>265</td>
<td>265</td>
<td>100</td>
</tr>
<tr>
<td>5 - 15</td>
<td>265</td>
<td>100</td>
<td>7447 (TL, TNS, NAT, MOT, ITT, FCH)</td>
<td></td>
</tr>
<tr>
<td>Decoder, BCD to seven segment</td>
<td>5</td>
<td>265</td>
<td>100</td>
<td>7448 (MOT; 7449 (TI, TNS, MOT))</td>
</tr>
<tr>
<td>5</td>
<td>165</td>
<td>100</td>
<td>7448 (MOT)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>165</td>
<td>250</td>
<td>6307 (MOT)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>260</td>
<td>100</td>
<td>DM 8848 (Nat)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>140</td>
<td>23</td>
<td>7442 (TI, TNS, SPR, NAT, MOT, ITT, PHI)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>180</td>
<td>15</td>
<td>SM 240 (Syl)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>—</td>
<td>74141 (TL)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>95</td>
<td>20</td>
<td>7251 (MOT; 8251 (MOT, SIG))</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>22</td>
<td>8301, 9301 (MOT)</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>100</td>
<td>36</td>
<td>770, 870 (MOT)</td>
<td></td>
</tr>
<tr>
<td>Decoder, BCD to decimal</td>
<td>5</td>
<td>140</td>
<td>23</td>
<td>7443 (TI, TNS, SPR, ITT, MOT)</td>
</tr>
<tr>
<td>5</td>
<td>180</td>
<td>15</td>
<td>SM 250 (Syl)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>140</td>
<td>23</td>
<td>7444 (TI, TNS, MOT, SPR, ITT)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>180</td>
<td>15</td>
<td>SM 290 (Syl)</td>
<td></td>
</tr>
<tr>
<td>Decoder, one of sixteen</td>
<td>5</td>
<td>175</td>
<td>23</td>
<td>9311 (FCH, MOT) 8311 (MOT)</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>47</td>
<td>9211 (FCH)</td>
<td></td>
</tr>
<tr>
<td>Decoder, seven segment</td>
<td>5</td>
<td>165</td>
<td>250</td>
<td>9307 (FCH, MOT)</td>
</tr>
<tr>
<td>5</td>
<td>140</td>
<td>23</td>
<td>8704 (SIG)</td>
<td></td>
</tr>
<tr>
<td>Decoder, excess-3 to decimal</td>
<td>5</td>
<td>180</td>
<td>23</td>
<td>7443 (TI, TNS, SPR, NAT, MOT, ITT, PHI)</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>23</td>
<td>SM 240 (Syl)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>95</td>
<td>20</td>
<td>74141 (TL)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>22</td>
<td>7251 (MOT; 8251 (MOT, SIG))</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>100</td>
<td>36</td>
<td>770, 870 (MOT)</td>
<td></td>
</tr>
<tr>
<td>Decoder, one of ten</td>
<td>5</td>
<td>145</td>
<td>23</td>
<td>9315 (FCH)</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>23</td>
<td>9301 (FCH, MOT, ITT)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>140</td>
<td>23</td>
<td>SM 290 (Syl)</td>
<td></td>
</tr>
<tr>
<td>Decoder, one of four</td>
<td>5</td>
<td>150</td>
<td>22</td>
<td>9317 (FCH)</td>
</tr>
<tr>
<td>5</td>
<td>110</td>
<td>22</td>
<td>8317, 9317 (MOT)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>14</td>
<td>9321 (FCH)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>245</td>
<td>6.5</td>
<td>1042 (MOT)</td>
<td></td>
</tr>
<tr>
<td>Decoder, (dual), one of four</td>
<td>5.2</td>
<td>25</td>
<td>4</td>
<td>9658 (PHI; SM42 (Syl))</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>4</td>
<td>4032, 4332 (MOT)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>25</td>
<td>RL42, RL43 (Ray)</td>
<td></td>
</tr>
<tr>
<td>Decoder, binary to one of eight-line</td>
<td>5</td>
<td>100</td>
<td>14</td>
<td>4006 (MOT)</td>
</tr>
<tr>
<td>5</td>
<td>85</td>
<td>20</td>
<td>7250, 8250 (MOT)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>210</td>
<td>6/11</td>
<td>1043, 1243 (MOT)</td>
<td></td>
</tr>
<tr>
<td>Decoder, (dual), binary to one of 4-line</td>
<td>5</td>
<td>125</td>
<td>14</td>
<td>4007 (MOT)</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>48</td>
<td>9221 (FCH)</td>
<td></td>
</tr>
<tr>
<td>Decoder, binary to one of 8-line, inverting/non-inverting</td>
<td>5</td>
<td>240</td>
<td>&lt;45</td>
<td>4038 (MOT)</td>
</tr>
<tr>
<td>Decoder, binary to 2 of 8-line</td>
<td>5</td>
<td>200</td>
<td>45</td>
<td>4040 (MOT)</td>
</tr>
<tr>
<td>Decoder, one in eight</td>
<td>5</td>
<td>180</td>
<td>15</td>
<td>SM233 (Syl)</td>
</tr>
<tr>
<td>Decoder, one of ten</td>
<td>5</td>
<td>50</td>
<td>62</td>
<td>9201 (FCH)</td>
</tr>
<tr>
<td>Translator, BCD to 7 segment</td>
<td>5</td>
<td>280</td>
<td>85</td>
<td>SM200 (Syl)</td>
</tr>
<tr>
<td>Converter, 8-bit serial to parallel</td>
<td>5</td>
<td>180</td>
<td>20 MHz</td>
<td>9303 (FCH)</td>
</tr>
<tr>
<td>Converter, binary to BCD</td>
<td>5</td>
<td>240</td>
<td>40</td>
<td>74185 (TI)</td>
</tr>
<tr>
<td>Decoder, 40-bit carry</td>
<td>5</td>
<td>300</td>
<td>12</td>
<td>RL3302 (Ray)</td>
</tr>
</tbody>
</table>
If you need 500 ns
get us this coupon the fastest

You'll get the facts on our new 500ns memories and stacks. Memories and stacks that you can get two months faster than anybody else's.

Ours will likely beat anybody else's price per bit, too. On any size order.

Here's the new line: The CC-50 stack and the CC-50 memory. The CEX-50 stack and the CEX-50 memory.

Between them they'll meet about any need you have for 500ns cycle times.

If it's a million bits or less you need, you're best off with our CC-50. It's 3-wire, 3D. With 4K, 8K or 16K words.

Over a million bits puts you in our CEX-50 class. It comes in 3-wire, 2½D organization. Words: 16K, 32K or 64K.

And, stack or system—CC-50 or CEX-
memories or stacks fast, way you can.

50—you’ll get the only modular 500ns design anywhere.

There’s something else unique about this new line. Something brand new. We don’t have space enough to explain it here, but our spec sheets will give it all to you in glorious detail.

Quick, the coupon.
<table>
<thead>
<tr>
<th>Function</th>
<th>Operating Voltage</th>
<th>Typical Power (mW)</th>
<th>Typical Speed (ns)</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counter, decade</td>
<td>5</td>
<td>160</td>
<td>60</td>
<td>7490 (TI, Sig, Mot, Fch, Tns, ITT, Spr, Nat, Ray, Phi)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>150</td>
<td>30 MHz</td>
<td>838, 938 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>170</td>
<td>10 MHz</td>
<td>9210 (Fch)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>180</td>
<td>35</td>
<td>TRC2516, TRC2518, (Tns)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>300</td>
<td>20 MHz</td>
<td>SM270 (Syl)</td>
</tr>
<tr>
<td>Counter, sync, up/down decade</td>
<td>5</td>
<td>375</td>
<td>20</td>
<td>74190 (TI)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>325</td>
<td>14-35</td>
<td>74192 (TI, Fch, Nat)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>315</td>
<td>20</td>
<td>74192 (Mot)</td>
</tr>
<tr>
<td>Counter, decade, ripple</td>
<td>5</td>
<td>160</td>
<td>18 MHz</td>
<td>9350 (Fch)</td>
</tr>
<tr>
<td>Counter, divide-by-twelve</td>
<td>5</td>
<td>155</td>
<td>60</td>
<td>7492 (TI, Sig, Mot, Fch, Tns, ITT, Spr, Nat)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>140</td>
<td>15</td>
<td>8288 (Sig)</td>
</tr>
<tr>
<td>Counter, 4-bit, binary</td>
<td>5</td>
<td>160</td>
<td>75</td>
<td>7493 (TI, Sig, Mot, Phi, Fch, Tns, Syl, ITT, Nat, Spr)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>16</td>
<td>280</td>
<td>74L93 (TI, Nat)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>300</td>
<td>20</td>
<td>8316, 8316 (Fch, 8316 (ITT)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>300</td>
<td>14-35</td>
<td>8316, 8316 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>300</td>
<td>20 MHz</td>
<td>SM260 (Syl)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>150</td>
<td>27</td>
<td>SM163 (Syl)</td>
</tr>
<tr>
<td>Counter, sync, binary</td>
<td>5</td>
<td>325</td>
<td>14</td>
<td>74161 (TI)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>325</td>
<td>14</td>
<td>74163 (TI)</td>
</tr>
<tr>
<td>Counter, decade, presettable</td>
<td>5</td>
<td>300</td>
<td>14-35</td>
<td>8310, 9310 (Mot)</td>
</tr>
<tr>
<td>Counter, sync up/down, 4-bit</td>
<td>5</td>
<td>375</td>
<td>20</td>
<td>74191 (TI)</td>
</tr>
<tr>
<td>binary</td>
<td>5</td>
<td>325</td>
<td>27</td>
<td>74193 (TI, Mot, Nat)</td>
</tr>
<tr>
<td>Counter, high-speed, presettable</td>
<td>5</td>
<td>190</td>
<td>25</td>
<td>74197 (TI, Spr)</td>
</tr>
<tr>
<td>binary</td>
<td>5</td>
<td>130</td>
<td>20 MHz</td>
<td>8291 (Sig)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>315</td>
<td>20</td>
<td>8284 (Sig, Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>360</td>
<td>20</td>
<td>9326 (Fch)</td>
</tr>
<tr>
<td>Counter, low-power, presettable</td>
<td>5</td>
<td>45</td>
<td>80</td>
<td>8292 (Sig)</td>
</tr>
<tr>
<td>decade</td>
<td>5</td>
<td>45</td>
<td>80</td>
<td>8293 (Sig)</td>
</tr>
<tr>
<td>Counter, BCD decade/storage</td>
<td>5</td>
<td>130</td>
<td>—</td>
<td>8280 (Sig, Mot, Tns, Nat)</td>
</tr>
<tr>
<td>element</td>
<td>5</td>
<td>130</td>
<td>—</td>
<td>US748280 (Spr)</td>
</tr>
<tr>
<td>Counter, 4-bit binary/storage</td>
<td>5</td>
<td>130</td>
<td>—</td>
<td>8281 (Sig, Mot, Tns, Nat)</td>
</tr>
<tr>
<td>element</td>
<td>5</td>
<td>315</td>
<td>20</td>
<td>8284 (Sig, Mot)</td>
</tr>
<tr>
<td>Counter, binary hexidecimal,</td>
<td>5</td>
<td>360</td>
<td>20</td>
<td>9326 (Fch)</td>
</tr>
<tr>
<td>sync, up/down</td>
<td>5</td>
<td>250</td>
<td>10 MHz</td>
<td>4016 (Mot)</td>
</tr>
<tr>
<td>Counter, decade, programmable,</td>
<td>5</td>
<td>250</td>
<td>10 MHz</td>
<td>4018 (Mot)</td>
</tr>
<tr>
<td>cascadeable</td>
<td>5</td>
<td>350</td>
<td>20</td>
<td>8306, 9306 (Mot)</td>
</tr>
<tr>
<td>Counter, presettable, decade</td>
<td>5</td>
<td>350</td>
<td>40</td>
<td>8306 (Fch)</td>
</tr>
<tr>
<td>up/down</td>
<td>5</td>
<td>350</td>
<td>27</td>
<td>SM173 (Syl)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>250</td>
<td>30</td>
<td>SM183 (Syl)</td>
</tr>
<tr>
<td>Counter, BCD, up/down</td>
<td>5</td>
<td>315</td>
<td>30 MHz</td>
<td>7285 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>250</td>
<td>25 MHz</td>
<td>9386 (Fch)</td>
</tr>
<tr>
<td>Counter, decade, up/down</td>
<td>5</td>
<td>315</td>
<td>30 MHz</td>
<td>7285 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>225</td>
<td>30</td>
<td>SM183 (Syl)</td>
</tr>
<tr>
<td>Counter, binary, up/down</td>
<td>5</td>
<td>225</td>
<td>30</td>
<td>SM183 (Syl)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>250</td>
<td>25 MHz</td>
<td>9386 (Fch)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>315</td>
<td>30 MHz</td>
<td>7284 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>315</td>
<td>30 MHz</td>
<td>9386 (Fch)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>225</td>
<td>30</td>
<td>RL3402 (Ray)</td>
</tr>
</tbody>
</table>
### COUNTERS

<table>
<thead>
<tr>
<th>Function</th>
<th>Operating Voltage</th>
<th>Typical Power (mw)</th>
<th>Typical Speed (ns)</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counter, hexidecimal</td>
<td>5</td>
<td>70</td>
<td>10 MHz</td>
<td>9216 (Fch)</td>
</tr>
<tr>
<td>Counter, BCD, decade up/down</td>
<td>5</td>
<td>360</td>
<td>20</td>
<td>9320 (Fch)</td>
</tr>
<tr>
<td>Counter, universal</td>
<td>5</td>
<td>320</td>
<td>23</td>
<td>9330 (Fch)</td>
</tr>
<tr>
<td>Counter, hexadecimal, up/down</td>
<td>5</td>
<td>315</td>
<td>30 MHz</td>
<td>8285 (Mot)</td>
</tr>
<tr>
<td>Counter, sync, decade</td>
<td>5</td>
<td>195</td>
<td>25 MHz</td>
<td>9305 (Fch)</td>
</tr>
<tr>
<td>Counter, hexadecimal, up/down</td>
<td>5</td>
<td>320</td>
<td>23</td>
<td>9336 (Fch)</td>
</tr>
<tr>
<td>Counter, programmable modulo-N decade</td>
<td>5</td>
<td>250</td>
<td>10 MHz</td>
<td>4316 (Mot)</td>
</tr>
<tr>
<td>Counter, programmable modulo-N hexadecimal</td>
<td>5</td>
<td>250</td>
<td>10 MHz</td>
<td>4318 (Mot)</td>
</tr>
<tr>
<td>Counter, binary up</td>
<td>3.6</td>
<td>180</td>
<td>4 MHz</td>
<td>777, 877 (Mot)</td>
</tr>
<tr>
<td>Counter, decade up</td>
<td>3.6</td>
<td>250</td>
<td>4 MHz</td>
<td>780, 880 (Mot)</td>
</tr>
<tr>
<td>Counter, divide-by-16</td>
<td>5</td>
<td>150</td>
<td>30 MHz</td>
<td>839, 939 (Mot)</td>
</tr>
</tbody>
</table>

### ADDERS AND SUBTRACTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Operating Voltage</th>
<th>Typical Power (mw)</th>
<th>Typical Speed (ns)</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adder, full, gated</td>
<td>5</td>
<td>105</td>
<td>35</td>
<td>7480 (TI, Mot, Fch, Tns, Sig, ITT, Spr)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>110</td>
<td></td>
<td>8286 (Sig)</td>
</tr>
<tr>
<td>Adder, full, 2-bit</td>
<td>5</td>
<td>175</td>
<td>15/12</td>
<td>7482 (TI, Fch, Phil, ITT, Spr, Tns)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>165</td>
<td></td>
<td>15482, 17482, 25482, 27482 (Mot)</td>
</tr>
<tr>
<td>Adder, full, 4-bit binary</td>
<td>5</td>
<td>390</td>
<td>25/13</td>
<td>7483 (TI, Mot, Fch, Tns, ITT, Spr, Nat, Phil)</td>
</tr>
<tr>
<td>Adder, dual, carry-save</td>
<td>5</td>
<td>220</td>
<td>11</td>
<td>744183 (TI)</td>
</tr>
<tr>
<td>Adder, independent, fast-carry</td>
<td>5</td>
<td>125</td>
<td>25/13</td>
<td>4630, 4031, 4330, 4331 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>125</td>
<td>25</td>
<td>TA32, TA33 (Tns)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>125</td>
<td></td>
<td>SM32, SM33 (Syl)</td>
</tr>
<tr>
<td>Adder, dependent, fast-carry</td>
<td>5</td>
<td>125</td>
<td>25/13</td>
<td>4028, 4029, 4328, 4329 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>125</td>
<td>25</td>
<td>TA22, TA23 (Tns)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>125</td>
<td></td>
<td>SM22, SM23 (Syl); 9652 (Phi)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>125</td>
<td></td>
<td>RL22, RL23 (Ray)</td>
</tr>
<tr>
<td>Adder, full</td>
<td>5</td>
<td>90</td>
<td>25/13</td>
<td>4026, 4027, 4326, 4327 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>90</td>
<td>24</td>
<td>TA12, TA13 (Tns)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>90</td>
<td>25</td>
<td>SM12, SM12 (Syl)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>90</td>
<td>25</td>
<td>RL12, RL13 (Ray)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>145</td>
<td>3/8</td>
<td>1019, 1219 (Mot)</td>
</tr>
<tr>
<td>Adder, dual, full</td>
<td>3.6</td>
<td>225</td>
<td>30</td>
<td>796, 896 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>150</td>
<td>28</td>
<td>8304 (Fch, Phil)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>190</td>
<td>60</td>
<td>996 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>110</td>
<td>8-28</td>
<td>8304, 9304 (Mot)</td>
</tr>
<tr>
<td>Adder, 4-bit</td>
<td>5</td>
<td>350</td>
<td>18</td>
<td>RL3102 (Ray)</td>
</tr>
<tr>
<td>Adder/subtractor, 4-bit, anticipated carry</td>
<td>5</td>
<td>300</td>
<td>25</td>
<td>SM310 (Syl)</td>
</tr>
</tbody>
</table>
# MULTIPLIERS & DIVIDERS

<table>
<thead>
<tr>
<th>Function</th>
<th>Operating Voltage</th>
<th>Typical Power (mw)</th>
<th>Typical Speed (ns)</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtractor, full</td>
<td>-5.2</td>
<td>145</td>
<td>4/11</td>
<td>1021, 1221 (Mot)</td>
</tr>
<tr>
<td>Subtractor, full, dual</td>
<td>3.6</td>
<td>225</td>
<td>60</td>
<td>797, 897 (Mot)</td>
</tr>
<tr>
<td>Multiplier, decade</td>
<td>5</td>
<td>125</td>
<td>27</td>
<td>SM92 (Syl)</td>
</tr>
<tr>
<td>Multiplier, decade</td>
<td>5</td>
<td>85</td>
<td>28</td>
<td>SM93 (Syl)</td>
</tr>
<tr>
<td>Multiplier, sync, 8-bit programmable binary rate</td>
<td>5</td>
<td>300</td>
<td></td>
<td>7497 (TI)</td>
</tr>
<tr>
<td>Divider, programmable frequency</td>
<td>5</td>
<td>125</td>
<td>34</td>
<td>SM143, SM153 (Syl)</td>
</tr>
<tr>
<td>Divider, modulo</td>
<td>5</td>
<td>250</td>
<td></td>
<td>8520 (Nat)</td>
</tr>
</tbody>
</table>

# MULTIPLEXERS & DEMULTIPLEXERS

<table>
<thead>
<tr>
<th>Function</th>
<th>Operating Voltage</th>
<th>Typical Power (mw)</th>
<th>Typical Speed (ns)</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplexers, dual 4 to 1 line selectors</td>
<td>5</td>
<td>170</td>
<td>22</td>
<td>74 153 (TI)</td>
</tr>
<tr>
<td>Multiplexers, dual 4 to 1 line selectors</td>
<td>5</td>
<td>170</td>
<td>22</td>
<td>8212 (Nat)</td>
</tr>
<tr>
<td>Multiplexers, 4 to 16 line decoders</td>
<td>5</td>
<td>170</td>
<td>20</td>
<td>74154 (TI) 8213 (Nat)</td>
</tr>
<tr>
<td>Multiplexers, dual 2 to 4 line decoders</td>
<td>5</td>
<td>125</td>
<td>21</td>
<td>74155 (TI)</td>
</tr>
<tr>
<td>Multiplexers, dual 2 to 4 line decoders</td>
<td>5</td>
<td>125</td>
<td>23</td>
<td>74156 (TI)</td>
</tr>
<tr>
<td>Multiplexers, dual 4-bit</td>
<td>5</td>
<td>150</td>
<td>24</td>
<td>9309 (ITT, Fch, Mot, Ray)</td>
</tr>
<tr>
<td>Multiplexers, dual 4-bit</td>
<td>5</td>
<td>130</td>
<td>18</td>
<td>SM213 (Syl)</td>
</tr>
<tr>
<td>Multiplexers, 8-input</td>
<td>5</td>
<td>135</td>
<td>25</td>
<td>9312 (ITT, Fch, Mot, Ray)</td>
</tr>
<tr>
<td>Multiplexers, 8-input</td>
<td>5</td>
<td>160</td>
<td>20</td>
<td>8230 (Sig)</td>
</tr>
<tr>
<td>Multiplexers, 8-input</td>
<td>5</td>
<td>160</td>
<td>20</td>
<td>8231 (Sig)</td>
</tr>
<tr>
<td>Multiplexers, 8-input</td>
<td>5</td>
<td>40</td>
<td>80</td>
<td>9212 (Fch)</td>
</tr>
<tr>
<td>Multiplexers, 8-input</td>
<td>5</td>
<td>40</td>
<td>80</td>
<td>8211 (Nat)</td>
</tr>
<tr>
<td>Demultiplexer</td>
<td>5</td>
<td>40</td>
<td>47</td>
<td>9209 (Fch)</td>
</tr>
<tr>
<td>Demultiplexer, dual 4-bit, low-power</td>
<td>5</td>
<td>325</td>
<td>25</td>
<td>8283 (Sig)</td>
</tr>
<tr>
<td>Demultiplexer, dual 4-bit, low-power</td>
<td>5</td>
<td>350</td>
<td>25</td>
<td>8284 (Sig)</td>
</tr>
<tr>
<td>Demultiplexer, 2-input, 4-bit digital</td>
<td>5</td>
<td>200</td>
<td>27</td>
<td>8286 (Sig, Mot)</td>
</tr>
<tr>
<td>Demultiplexer, 2-input, 4-bit digital</td>
<td>5</td>
<td>200</td>
<td>27</td>
<td>8267 (Sig, Mot)</td>
</tr>
<tr>
<td>Demultiplexer, 2-input, 4-bit digital</td>
<td>5</td>
<td>200</td>
<td>15</td>
<td>8233 (Sig)</td>
</tr>
<tr>
<td>Demultiplexer, 2-input, 4-bit digital</td>
<td>5</td>
<td>200</td>
<td>20</td>
<td>8234 (Sig)</td>
</tr>
<tr>
<td>Demultiplexer, 2-input, 4-bit digital</td>
<td>5</td>
<td>200</td>
<td>20</td>
<td>8235 (Sig)</td>
</tr>
<tr>
<td>Demultiplexer, 2-input, 4-bit digital</td>
<td>5</td>
<td>125</td>
<td>19</td>
<td>9222 (Fch)</td>
</tr>
<tr>
<td>Demultiplexer, 2-input, 4-bit digital</td>
<td>5</td>
<td>45</td>
<td>44</td>
<td>9222 (Fch)</td>
</tr>
<tr>
<td>Demultiplexer, 2-input, 4-bit digital, low-power</td>
<td>5</td>
<td>40</td>
<td>47</td>
<td>9209 (Fch)</td>
</tr>
<tr>
<td>Demultiplexer, 2-input, 4-bit digital, low-power</td>
<td>5</td>
<td>225</td>
<td>15</td>
<td>SM221 (Syl)</td>
</tr>
</tbody>
</table>

32 The Electronic Engineer • Jan. 1971
## DRIVERS & RECEIVERS

<table>
<thead>
<tr>
<th>Function</th>
<th>Operating Voltage</th>
<th>Typical Power (mw)</th>
<th>Typical Speed (ns)</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line driver, dual, 3-input NAND terminated, 3-output</td>
<td>5</td>
<td>44</td>
<td>6</td>
<td>3029 (Mot)</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>—</td>
<td>8T13 (Sig)</td>
<td></td>
</tr>
<tr>
<td>+5, -5</td>
<td>140</td>
<td>20</td>
<td>1582 (Mot)</td>
<td></td>
</tr>
<tr>
<td>+5, -5</td>
<td>180</td>
<td>16</td>
<td>75109 (TI)</td>
<td></td>
</tr>
<tr>
<td>5-30</td>
<td>320</td>
<td>50</td>
<td>74110 (Fch)</td>
<td></td>
</tr>
<tr>
<td>5-12</td>
<td>320</td>
<td>80</td>
<td>9621 (Fch)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>16</td>
<td>TNGS212 (Tns)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>16</td>
<td>TNGS214 (Tns)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>30</td>
<td>TG132, TG133 (Tns)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>170</td>
<td>25</td>
<td>25</td>
<td>RG132, RG133 (Ray)</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>25</td>
<td>SG132, SG133 (Syl)</td>
<td></td>
</tr>
<tr>
<td>Line driver, dual</td>
<td>5</td>
<td>60</td>
<td>16</td>
<td>TNGS212 (Tns)</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>16</td>
<td>TNGS214 (Tns)</td>
<td></td>
</tr>
<tr>
<td>Line driver, quad</td>
<td>5</td>
<td>120</td>
<td>16</td>
<td>TNGS212 (Tns)</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>16</td>
<td>TNGS214 (Tns)</td>
<td></td>
</tr>
<tr>
<td>5, 12</td>
<td>180</td>
<td>10</td>
<td>SS341 (Syl)</td>
<td></td>
</tr>
<tr>
<td>Predriver, quad</td>
<td>5</td>
<td>120</td>
<td>15</td>
<td>4042 (Mot)</td>
</tr>
<tr>
<td>Line driver, party</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8831 (Nat)</td>
</tr>
<tr>
<td>Line driver, dual differential</td>
<td>5</td>
<td>110</td>
<td>10</td>
<td>9614 (Fch)</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>18</td>
<td>6830 (Nat)</td>
<td></td>
</tr>
<tr>
<td>Buss driver, triple 2-input</td>
<td>5</td>
<td>15</td>
<td>15</td>
<td>TG162, 163 (Tns)</td>
</tr>
<tr>
<td>5</td>
<td>140</td>
<td>30-70</td>
<td>RG162, 163 (Ray)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>35</td>
<td>SG163 (Syl)</td>
<td></td>
</tr>
<tr>
<td>Lamp driver, quad 2-input</td>
<td>5</td>
<td>120</td>
<td>16</td>
<td>TNGS612 (Tns)</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>16</td>
<td>RG7520 (Ray)</td>
<td></td>
</tr>
<tr>
<td>Driver, dual 3-input NAND</td>
<td>6</td>
<td>45</td>
<td>—</td>
<td>RM210G (Ray)</td>
</tr>
<tr>
<td>6</td>
<td>45</td>
<td>—</td>
<td>RM220G (Ray)</td>
<td></td>
</tr>
<tr>
<td>Lamp driver, dual 4-input</td>
<td>5</td>
<td>60</td>
<td>16</td>
<td>RG7540 (Ray)</td>
</tr>
<tr>
<td>Driver, dual interface</td>
<td>5</td>
<td>60</td>
<td>12</td>
<td>75450 (TI)</td>
</tr>
<tr>
<td>Line driver, dual 3-input and terminated 3-output</td>
<td>5</td>
<td>56</td>
<td>9</td>
<td>3028 (Mot)</td>
</tr>
<tr>
<td>5-12</td>
<td>135</td>
<td>17</td>
<td>75107 (TI)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>135</td>
<td>19</td>
<td>75108 (TI)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>140</td>
<td>40</td>
<td>1583 (Mot)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>140</td>
<td>40</td>
<td>1584 (Mot)</td>
<td></td>
</tr>
<tr>
<td>5-12</td>
<td>320</td>
<td>38</td>
<td>9622 (Fch)</td>
<td></td>
</tr>
<tr>
<td>Line receiver, dual differential</td>
<td>5</td>
<td>100</td>
<td>20</td>
<td>9615 (Fch)</td>
</tr>
<tr>
<td>5-12</td>
<td>320</td>
<td>35</td>
<td>9620 (Fch)</td>
<td></td>
</tr>
<tr>
<td>+5, -5, +12</td>
<td>280</td>
<td>75</td>
<td>SS337 (Syl)</td>
<td></td>
</tr>
<tr>
<td>Line receiver, EIA</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8822 (Nat)</td>
</tr>
<tr>
<td>Line receiver, triple</td>
<td>5</td>
<td>315</td>
<td>30</td>
<td>8T14 (Sig)</td>
</tr>
<tr>
<td>Line receiver, quad</td>
<td>5</td>
<td>100</td>
<td>60</td>
<td>1489 (Mot)</td>
</tr>
<tr>
<td>Receiver, quad, high logic level</td>
<td>5, 12</td>
<td>180</td>
<td>20</td>
<td>SS345 (Syl)</td>
</tr>
</tbody>
</table>
### Latches

<table>
<thead>
<tr>
<th>Function</th>
<th>Operating Voltage</th>
<th>Typical Power (mw)</th>
<th>Typical Speed (ns)</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latch, 4-bit bistable</td>
<td>5</td>
<td>160</td>
<td>24</td>
<td>7475 (TI, Fch, Tns, Phi, Syl, ITT, Nat, Ray)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>175</td>
<td>16</td>
<td>7475 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>160</td>
<td>16</td>
<td>7475 (Sig)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>175</td>
<td>10</td>
<td>7475 (Spr)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>175</td>
<td>24</td>
<td>8275 (Sig)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>175</td>
<td>20</td>
<td>9314 (Fch)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>150</td>
<td>25</td>
<td>4037, 4337 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>50</td>
<td>60</td>
<td>9214 (Fch)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>320</td>
<td>16</td>
<td>74100 (TI)</td>
</tr>
<tr>
<td>Latch, dual 4-bit</td>
<td>5</td>
<td>325</td>
<td>25</td>
<td>8308, 9308 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>325</td>
<td>22</td>
<td>9308 (Fch)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>90</td>
<td>45</td>
<td>9208 (Fch)</td>
</tr>
<tr>
<td>Latch, 8-bit addressable</td>
<td>5</td>
<td>250</td>
<td>17</td>
<td>9334 (Fch)</td>
</tr>
<tr>
<td>Quad D for party line app.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8551 (Nat)</td>
</tr>
<tr>
<td>Quad latch, open collector</td>
<td>5</td>
<td>140</td>
<td>25</td>
<td>4035, 4335 (Mot)</td>
</tr>
<tr>
<td>Latch, quad</td>
<td>3.6</td>
<td>110</td>
<td>50</td>
<td>767, 867 (Mot)</td>
</tr>
<tr>
<td></td>
<td>−5.2</td>
<td>250</td>
<td>8</td>
<td>1040, 1070, 1240, 1270 (Mot)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>220</td>
<td>35</td>
<td>1913, 1914, 1914 (Mot)</td>
</tr>
</tbody>
</table>

### Data Selectors and Distributors

<table>
<thead>
<tr>
<th>Function</th>
<th>Operating Voltage</th>
<th>Typical Power (mw)</th>
<th>Typical Speed (ns)</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data selector, dual, 4-channel</td>
<td>−5.2</td>
<td>150</td>
<td>11</td>
<td>4000 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>170</td>
<td>5</td>
<td>1028, 1228 (Mot)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>9.24</td>
<td>8309, 9309 (Mot)</td>
</tr>
<tr>
<td>Data selector, 16-bit</td>
<td>5</td>
<td>200</td>
<td>35</td>
<td>74150 (TI, Mot)</td>
</tr>
<tr>
<td>Data selector, 8-bit</td>
<td>5</td>
<td>145</td>
<td>35</td>
<td>74151 (TI, Mot, Phi)</td>
</tr>
<tr>
<td></td>
<td>−5.2</td>
<td>150</td>
<td>7/18</td>
<td>1038, 1238 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>130</td>
<td>35</td>
<td>74152 (TI)</td>
</tr>
<tr>
<td>Data distributor, dual</td>
<td>5</td>
<td>175</td>
<td>10</td>
<td>4002 (Mot)</td>
</tr>
<tr>
<td>Data flow, gate</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8230 (Nat)</td>
</tr>
<tr>
<td>Digital switch, 8-channel</td>
<td>5</td>
<td>100</td>
<td>19</td>
<td>8210 (Nat)</td>
</tr>
<tr>
<td>Position scaler, 8-bit</td>
<td>5</td>
<td>300</td>
<td>30</td>
<td>8243 (Sig)</td>
</tr>
<tr>
<td>Data selector, 4-bit</td>
<td>5</td>
<td>180</td>
<td>10</td>
<td>7266, 8266 (Mot)</td>
</tr>
<tr>
<td>Data selector, 4-bit, open collector</td>
<td>5</td>
<td>180</td>
<td>10</td>
<td>7267, 8267 (Mot)</td>
</tr>
<tr>
<td>Data distributor</td>
<td>−5.2</td>
<td>160</td>
<td>4</td>
<td>1029, 1229 (Mot)</td>
</tr>
</tbody>
</table>

### Multivibrators

<table>
<thead>
<tr>
<th>Function</th>
<th>Operating Voltage</th>
<th>Typical Power (mw)</th>
<th>Typical Speed (ns)</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monostable multivibrator</td>
<td>5</td>
<td>90</td>
<td>25</td>
<td>9601 (Spr, ITT, Fch, Ray)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>75</td>
<td>25</td>
<td>8801, 9601 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>115</td>
<td>25</td>
<td>74121 (Spr, Nat, Ti, Tns, Mot, Phi)</td>
</tr>
<tr>
<td></td>
<td>65 (Tns)</td>
<td>90 (Mot)</td>
<td>30 (Tns)</td>
<td>8162 (Sig)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>65</td>
<td>35</td>
<td>74122 (TI)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>100</td>
<td>20</td>
<td>RX4360 (Ray)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>125</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

The Electronic Engineer • Jan. 1971
<table>
<thead>
<tr>
<th>Function</th>
<th>Operating Voltage</th>
<th>Typical Power (mw)</th>
<th>Typical Speed (ns)</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monostable multivibrator, dual</td>
<td>5</td>
<td>100</td>
<td>20</td>
<td>74123 (TI)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>175</td>
<td>25</td>
<td>9602 (Fch)</td>
</tr>
<tr>
<td>Monostable multivibrator, dual, voltage controlled</td>
<td>5</td>
<td>150</td>
<td>30 MHz</td>
<td>4024, 4324 (Mot)</td>
</tr>
<tr>
<td>Multivibrator</td>
<td>5</td>
<td>125</td>
<td>25</td>
<td>9600 (Fch)</td>
</tr>
</tbody>
</table>

**MISCELLANEOUS**

<table>
<thead>
<tr>
<th>Function</th>
<th>Operating Voltage</th>
<th>Typical Power (mw)</th>
<th>Typical Speed (ns)</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparator, dual, 4-bit</td>
<td>5</td>
<td>175</td>
<td>40</td>
<td>8200 (Nat)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>120</td>
<td>40</td>
<td>8242, 8244 (Syl)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>250</td>
<td>—</td>
<td>8262, 8264 (Mot)</td>
</tr>
<tr>
<td>Comparator, 4-bit</td>
<td>5</td>
<td>175</td>
<td>20</td>
<td>US747200 (Spr)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>170</td>
<td>18</td>
<td>8242 (Sig)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>180</td>
<td>15</td>
<td>8220 (Syl)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>280</td>
<td>32</td>
<td>74H485 (TI)</td>
</tr>
<tr>
<td>Comparator, 5-bit, expandable</td>
<td>5</td>
<td>210</td>
<td>25</td>
<td>9324, 9224 (Fch)</td>
</tr>
<tr>
<td>Comparator, quad-1</td>
<td>5</td>
<td>150</td>
<td>15</td>
<td>7486 (TI, Phi)</td>
</tr>
<tr>
<td>True/complement zero/one element</td>
<td>5</td>
<td>270</td>
<td>14</td>
<td>74H487 (TI)</td>
</tr>
<tr>
<td>Function generator, dual, 2 variable</td>
<td>5</td>
<td>375</td>
<td>20</td>
<td>4610 (Fch)</td>
</tr>
<tr>
<td>Parity generator</td>
<td>5</td>
<td>270</td>
<td>33</td>
<td>8348 (Fch)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>RX4359 (Ray)</td>
</tr>
<tr>
<td>Parity generator/checker</td>
<td>5</td>
<td>250</td>
<td>18</td>
<td>9344 (Fch)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>205</td>
<td>13/14</td>
<td>1046, 1246 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>170</td>
<td>36</td>
<td>74180 (TI)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>125</td>
<td>30</td>
<td>8220 (Syl)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>200</td>
<td>20</td>
<td>8222 (Syl)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>100</td>
<td>36</td>
<td>8220 (Nat)</td>
</tr>
<tr>
<td>Parity tree, 8-bit</td>
<td>5</td>
<td>150</td>
<td>30</td>
<td>4008 (Mot)</td>
</tr>
<tr>
<td>Parity tree, dual, 4-bit</td>
<td>5</td>
<td>125</td>
<td>22</td>
<td>4010 (Mot)</td>
</tr>
<tr>
<td>Character generator, seven segment</td>
<td>5</td>
<td>240</td>
<td>45</td>
<td>4039 (Mot)</td>
</tr>
<tr>
<td>Arithmetic logic unit and function generator</td>
<td>5</td>
<td>450</td>
<td>42</td>
<td>9341 (Fch)</td>
</tr>
<tr>
<td>Arithmetic logic unit</td>
<td>5</td>
<td>400</td>
<td>42</td>
<td>9340 (Fch)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>95</td>
<td>60</td>
<td>9340 (Fch)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>400</td>
<td>20</td>
<td>8260 (Sig)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>400</td>
<td>12</td>
<td>7260, 8260 (Mot)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>450</td>
<td>35</td>
<td>74181 (TI)</td>
</tr>
<tr>
<td>High-speed, carry look ahead</td>
<td>5</td>
<td>180</td>
<td>13</td>
<td>74182 (TI) 9342 (Fch)</td>
</tr>
<tr>
<td>Single-error hamming code detector and generator</td>
<td>5</td>
<td>250</td>
<td>45</td>
<td>4041 (Mot)</td>
</tr>
<tr>
<td>Line selector, dual</td>
<td>5</td>
<td>70</td>
<td>20</td>
<td>4043 (Mot)</td>
</tr>
<tr>
<td>Level translator, quad</td>
<td>5</td>
<td>200</td>
<td>12</td>
<td>1039, 1239 (Mot)</td>
</tr>
</tbody>
</table>

**INFORMATION RETRIEVAL**

Digital design Integrated circuits
Our KUP general purpose relays

switch up to 10 amperes...reliably

KUP-type relays

will sense 60 microwatts, latch, switch alternately or delay time.

It's all in the family

First off, our KUP relays save you money. More than $2.00 each, compared with octal-type pin terminals. Then, to make your design job easier, the range of optional features includes a slotted case for direct-to-chassis mounting; sockets with solder, printed circuit, quick-connect or screw terminals; push-to-test button; indicating lamp; choice of .187” or .205” terminals. U/L recognized. Contact arrangements to 3 Form C. Rated 5 or 10 amperes. Coil voltages to 120 VDC, 240 VAC. List $4.10 to $6.05.

The KUP spawned a remarkable family of switching devices. They are housed in the same case (some ¼" higher), use the same sockets, cover a wide variety of control functions:

KUA Amplifier-Driven Relay. Standard sensitivity: 60 microwatts. DPDT contacts switch 5 amperes at 28 VDC or 120 V 60 Hz., 80% PF. Features continuous operation, built-in polarity protection. Recommended for interfacing low-level logic circuits and work-performing loads such as motors, contactors, solenoids. As low as $14.25 list.

KUL Magnetic Latching Relay. Takes half the space of mechanically-interlocking latches. Provides permanent memory, continuous duty operation. DPDT contacts switch 5 to 10 amperes. Contacts remain in last position without power. $5.45 to $7.10 list.

KUR Alternate Action, Impulse Relay. Features unique combination of KUL single coil magnetic latching relay with solid state flip-flop circuit drive. Pulse width of 25 milliseconds will effect switching. Contacts switch 5 or 10 ampere loads. List price, $15.10 (DPDT).

CU Time Delay Relay. Low cost solid state relay for timing increments from 1 to 120 seconds. Switches 10 amperes and comes in 3 AC or DC versions: fixed time delay on operate; resistor-adjustable; knob adjustable. Priced as low as $14.20 each, list.

CL Time Delay Relay. Provides a delay on operate. Won't false operate. Times as low as 0.1 second. Otherwise similar to CU. $17.35 to $21.15 list.

Standard versions of these relays are available now from your electronic parts distributor. For complete information, call your local P&B representative or Potter & Brumfield Division of AMF Incorporated, Princeton, Indiana 47670. Telephone: (812) 385-5251.

Vote for the best IC Idea of the year

It is time once again to vote for the best IC Idea of the year. The twelve circuits you will find on the following pages were chosen as monthly winners between April 1969 and April 1970. Now, look at the circuits again and select the winningest winner. The lucky author receives an oscilloscope as his prize.

MONTHLY WINNERS

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>941</td>
<td>Sweep circuit has triggered, free-run modes</td>
<td>38</td>
</tr>
<tr>
<td>942</td>
<td>Fault monitor checks for circulating logic bit</td>
<td>39</td>
</tr>
<tr>
<td>943</td>
<td>Zero-beat detector</td>
<td>40</td>
</tr>
<tr>
<td>944</td>
<td>Delay circuit makes handy timer</td>
<td>40</td>
</tr>
<tr>
<td>945</td>
<td>Op amps give mutually-exclusive digital sequencing</td>
<td>41</td>
</tr>
<tr>
<td>946</td>
<td>Simple-to-make toggling flip-flop</td>
<td>42</td>
</tr>
<tr>
<td>947</td>
<td>A staircase waveform generator</td>
<td>42</td>
</tr>
<tr>
<td>948</td>
<td>One video amplifier: three oscillators</td>
<td>43</td>
</tr>
<tr>
<td>949</td>
<td>Function generator has variable polarity exponents</td>
<td>44</td>
</tr>
<tr>
<td>950</td>
<td>Digital gain control for op amps</td>
<td>44</td>
</tr>
<tr>
<td>951</td>
<td>Feedback eliminates switch contact transients</td>
<td>45</td>
</tr>
<tr>
<td>952</td>
<td>One-shot triggers on both edges of input</td>
<td>45</td>
</tr>
</tbody>
</table>

VOTE for the one you like best

Write the number of the idea you like best in the box on the inquiry card and send it to us.

SEND us practical, reproducible ideas that are original with you and have been implemented with linear or digital ICs. If we publish your idea, you win a check for $25.00. If our readers vote yours the best of the issue in which it appears, you have your choice of a Simpson 270 or Triplet 600 multimeter. After 12 issues, our readers will vote on the best idea for all 12 issues. The winner gets his choice of either a Hewlett-Packard 1206A or a Tektronix 3104A oscilloscope.

Submit your IC Ideas to:
Alberto Socolovsky, Editor
THE ELECTRONIC ENGINEER
Chestnut & 56th Sts.
Philadelphia, Pa. 19139
941 Sweep circuit has triggered, free-run modes

Chuck Ulrick
Collins Radio, Cedar Rapids, Iowa

This linear sweep circuit has many of the features of sweeps used in lab-type scopes. It consists of a control flip-flop, a capacitor charging circuit, a voltage comparator, and a hold-off multivibrator that prevents triggering of the sweep during its recovery time.

Half of the Sylvania SG143 is wired as a set-reset control flip-flop. During standby, it holds the cathode of the clamp diode (D1) near ground, preventing C1 from charging through R1. The RCA CA3018 operates as a Darlington buffer and differential comparator. During standby, it sends a HIGH RESET input to the flip-flop.

If you set the stability control so that input A of the first NAND gate is just below threshold, then positive triggers cause it to set the flip-flop, releasing the clamp. C1 then charges through R1. When the comparator sees that this sweep voltage is at the desired amplitude (set by the sweep length control), it resets the flip-flop. C1 discharges through D1, forming the retrace.

At the same time, the reset action of the flip-flop sends a positive pulse through C2 to the hold-off circuit. This gives a LOW output until C2 discharges through the 1 kΩ resistor. Thus, trigger pulses are not effective during this interval, and each sweep starts only when the circuit is fully recovered.

If you set the stability control so that input A is above the gate threshold, the circuit free-runs. It gives you a continuous train of sweep pulses, each with a period equal to the sweep time plus the hold-off interval.

C1 and R1 determine the sweep rate, and, in general, $C_2 = 0.1C_1$. For very long sweeps that need a large $C_1$, replace $D_1$ with a pnp transistor emitter-follower. You will have to do this when the gate cannot discharge the timing capacitor in the desired time. Connect the transistor's base to point x, its emitter to y, and ground the collector.

Sweep linearity depends on the values of $V++$ and $R_1$, both of which can be very high. The IC's see only the charging current (produced by $V++$ and $R_1$), never the high $V++$. 
Fault monitor checks for circulating logic bit

Robert Serody
Raytheon, Bedford, Mass.

This circuit monitors the operation of a ring counter to determine that only one bit is circulating. When this condition does not occur, the monitor sends a reset pulse to correct the counter and register a fault condition.

Previously, you had to use separate test/monitoring circuits to sense the presence of the circulating logic bit. A typical way would be to sum every state of the counter with a summing amplifier, and compare that output with two comparators that define the acceptable voltage range. If the counter states fall outside this range, the monitor resets the counter. Such a method needs a circuit with precision components, usually mounted on a separate module, with several power supplies necessary to operate it.

The new ring counter/fault monitor combines the counter and monitor into one circuit that checks periodically for proper operation. This is possible because the monitor checks for the presence of only one state of the ring counter.

As an example, consider the 3-state counter/monitor shown here. A NAND gate, HY-1, monitors the first state. (One input to HY-1 is a Q output; the other inputs are Q.) The absence of this state shows that either all outputs of the counter are 0, or that more than one logic 1 is circulating. In either case, the output of HY-1 stays HIGH, and C1 charges to the supply voltage via HY-2's pull-up resistor.

When the voltage across C1 reaches the logic threshold level, HY-2 sends a logic 0 through HY-3 and HY-4 to reset the counter. This, in turn, forces HY-1's output to drop to a 0 and discharge C1 through D1. The input to HY-2 thus drops below threshold, removing the reset pulse.

A time lag set by C2 ensures that the reset pulse does not disappear before the flip-flops can reset. Gates HY-3 and HY-4 decrease the transition times of the reset pulse. Diode D1 isolates C1 from HY-1 during the recharge interval.

The circuit doesn't need precision components because the time constant set by C1 and the pull-up resistor in HY-2 need be only long enough to prevent C1 from reaching the threshold voltage between discharge times. The time between each discharge is the period of the ring counter. The fault monitor will reset the counter at turn-on, or when any extra bits are generated by noise spikes, or when the counter becomes defective.

You can use the monitor in a timing system by connecting the fault output of HY-3 to a register which is reset periodically. Connecting the register to trigger an alarm warns you if too many faults occur in a given time.

The ring counter may have any number of states. But the fault monitor always retains its basic simplicity of design because it need monitor only one of the states. In general, you can use the monitor to check the operation of many other circuits which involve a change of state in their operation.
943 Zero-beat detector

Tim K. Aaltonen
ARZ Assoc., New Rochelle, N. Y.

Keep this circuit in mind if you have to adjust two frequencies to within several cycles of each other.

The particular problem was to zero-beat two 15-kHz signals to within ±5 Hz, quickly and accurately. A dual-trace scope was not accurate enough, while a counter took too long for production-line use.

How to do it? A two-bit comparator solved the problem. It detects a zero-beat between two frequencies. When they match within a few cycles, the lights blink slowly on and off.

The circuit accepts signals of up to 5-V peak amplitude, and is relatively insensitive to amplitude.

944 Delay circuit makes handy timer

G. Detlof
Tel. AB L.M. Ericsson Stockholm, Sweden

With a unijunction transistor and an RS flip-flop, you can build a circuit useful in timing and control applications.

Closing the momentary-contact switch RESETS the flip-flop, and simultaneously discharges the capacitor through the diode. (Resistor \( R_3 \) limits the diode's current.) When the switch opens, the capacitor starts to charge through \( R_1 \) and \( R_2 \), and the output goes LOW.

The output stays LOW until the capacitor reaches the UJT's peak-point voltage. When the UJT fires it puts a positive signal into the first gate which, in turn, SETS the flip-flop with a negative signal. The output is again HIGH.

The values of \( R_1 \), \( R_2 \), and \( C \) set the output pulse width, which can be several minutes long.
Op amps give mutually-exclusive digital sequencing

Maxwell Strange  
NASA, Goddard Space Flight Center, Greenbelt, Md.

Here's a way to generate any number of sequential, mutually-exclusive outputs to isolated loads such as reed relays, miniature lamps, and so forth. The circuit is self-decoding, simple, and lower in cost than the usual digital approach that uses a clocked ring counter or a decoded ripple counter.

At the start of the input ramp, the outputs of all threshold detectors $A_1$ through $A_n$ are negative, and the relays are not energized. When the ramp crosses level $V_1$, $A_1$'s output goes to positive saturation, driving $L_1$ on. As the ramp increases, it crosses level $V_2$, switches $L_2$ on and, since $A_1$'s output stays positive, simultaneously switches $L_1$ off. As the ramp reaches each successive threshold, the next relay is driven on and the previous one switched off.

You can individually adjust the output pulse widths with threshold divider resistors $R_1$ through $R_{n+1}$. The ramp can come from a simple $RC$ network or an operational integrator. For very slow ramps, $4.7 \, \text{M}\Omega$ feedback resistors across the op amps provide hysteresis to prevent threshold chatter.

The variable-dwell feature makes this circuit useful as an event programmer. Or, as a data commutator, you can vary the sampling time to suit the data rate and give efficient synchronization. Further, the last output pulse can reset the ramp for continuous cycling or, by incorporating a simple SET-RESET flip-flop, return it to a standby mode until another START command appears to begin a new cycle.
Here is a toggle-mode flip-flop that you can make simply and economically from a single, quad 2-input NAND gate. In this case, the circuit shown uses a Fairchild DTµL9946.

The circuit triggers from a positive clock pulse with an amplitude between 2 and 3.5 V, and a duration that can be as narrow as 25 ns.

Resistor $R_1$ determines the clock pulse level that you need to trigger the flip-flop. If you should use a gate other than the DTµL9946, you may have to adjust $R_1$ to a value other than the 680 Ω shown here.

---

A staircase generator is useful for time-amplitude coding applications, and you can build such a device with the circuit shown here.

Two Motorola MC856, dual J-K flip-flops form a four-stage counter. The outputs of this counter feed a four-input NAND gate, which gives a negative pulse equal in width to the clock period, and occurring every 16th clock pulse.

The MC862 inverter thus supplies a positive charging pulse to $C_1$. But the clock input, applied to $C_2$, removes an amount of charge ($C_2V_2$) from $C_1$ with each clock pulse, generating the staircase.

You adjust the threshold voltage, $V_2$, and the step amplitude by varying the ratio $C_1/C_2$. The number of counter stages determines the number of steps in the waveform.
One video amplifier: three oscillators

Michael English
Fairchild Semiconductor, Mountain View, Calif.

The three oscillators shown here use an IC video amplifier as their active element. Oscillation frequencies range from several Hz to more than 10 MHz, and the output signals can directly drive DTL or TTL circuits. Output rise times and fall-times are less than 10 ns.

The Fairchild µA733 has differential inputs and outputs, and a 120-MHz, 3-dB bandwidth when operated at 20-dB voltage gain. It needs no external frequency-compensation. Gain-adjustment terminals let you continuously vary the IC's gain from 10 to 400 with an external resistor; without external components, you can still select fixed gains of 10, 100, or 400.

The basic oscillator is an RC relaxation circuit, with the other two being variations upon it. In this basic circuit, capacitor C and the voltage divider formed by R1 and R2 supply positive feedback. The period of oscillation, T, is

\[ T = \frac{2 \pi}{\omega_n} = \frac{2 \pi}{\omega_c} \approx 1 \text{ MHz} \]

The equation is due to the fact that the IC draws input bias current when the input signal is positive, but none when the input is negative. This means that the duty factor of the oscillation differs slightly from the ideal value of 50%, and thus the coefficient of the equation is not exactly two.

A voltage gain (A) of ten holds the division ratio R1/R2 to values between 0.2 and 0.4. The equation for T sets the lower limit, because the inequality \[ A, R_1/(R_1 + R_2) \geq 2 \] must hold for practical solutions. The single-ended output swing, and the input range of the device (±1 V), set the upper limit.

You can control the oscillation frequency in two ways, both of which give rise to the voltage-control variant of the basic circuit. In one method, you shunt an FET across R1, and vary the FET's drain resistance by its gate voltage. Take care that you still satisfy the division ratio restrictions for the combination of R1, R2, and the FET.

A second method of frequency control uses the fact that the period, T, is proportional to the natural log of the gain. So, to control the gain, connect an FET across the gain-adjustment terminals of the device, as shown. A junction FET as the gain control element gives about a 3:1 frequency variation: the higher the gain, the lower the oscillation frequency.

Another variant of the basic relaxation circuit comes about because, in principle, you can replace capacitor C with a crystal of the desired frequency. To prevent excitation of the crystal's overtone modes, put a tuned circuit in the feedback loop. This tank favors oscillations at its own resonant frequency, but suppresses other, spurious modes. To sustain oscillations, the voltage division ratio, \[ C_1/C_2 \], must be greater than the reciprocal of the amplifier gain.
949  Function generator has variable polarity exponents

William Neeland
Kaiser Aerospace and Electronics, Palo Alto, Calif.

You can generate a linear sawtooth waveform in many ways (as, for example, with a constant-current source charging a capacitor). But suppose, instead, you have need of an exponential sawtooth for nonlinear function generation—how would you generate such a signal? One way is to use the circuit shown here: its output is an exponential function in which you can vary the magnitude and sign of the exponent.

Resistors \( R_1 \) and \( R_2 \) control the amount of positive feedback around the op amp—a National Semiconductor LM101—and thus also the circuit’s exponential output. The output is of the form \( e^{kx} \) where

\[
k = \left( \frac{R_1}{R_2} \right) R_L R_2,
\]

and \( e_0 = 2e^{(e^x - 1)/kR_2} \).

You generate exponentials of various powers by adjusting the ratio of \( R_1 \) to \( R_2 \).

If \( R_1 = R_2 \), then \( k = 0 \) and the equation for \( e_0 \) reduces (by l’Hôpital’s rule) to that of a linear sawtooth waveform: \( e_0 = 2e^{t/CR_1} \).

950  Digital gain control for op amps

William E. Peterson
ITL Research Corp., Northridge, Calif.

Try this unusual approach to control the gain of a linear amplifier; it solves many a problem in computer-controlled, analog systems.

The circuit uses an op amp in a non-inverting connection, so that its voltage gain is \( 1 + R_f/R_x \), where \( R_x \) is the resistance between the non-inverting input terminal and ground. If you restrict \( e_0 \) to analog signals that are positive with respect to ground, then feedback current \( i_1 \) will always flow in the direction shown.

In the circuit diagram, \( R_x \) of the gain equation is replaced by \( R_2, R_3, \) and \( R_4 \). The hex inverter connects these resistors to ground either singly or in any combination, according to the drive supplied to it, and thus sets the circuit’s gain.

If any inverter output is a logic 1 (about 5 or 6 V), then the diode in series with that output is reverse biased, and the associated resistor is not in the gain control loop.

The illustration shows eight \( (2^3) \) digital gain settings, but you can extend this number to whatever you need, simply by adding more inverters. And you can use any op amp or inverter that’s handy.
951 Feedback eliminates switch contact transients

Veikko O. Jaakola

This monostable circuit lets you use a pushbutton or toggle switch to generate a single pulse without worrying about transients.

When \( S_1 \) is closed, it causes the output of the Fairchild DT\( \mu \)L 946 gate to go to +5 V turning on transistor \( Q_1 \). The feedback to the input of the gate keeps its output high for as long as \( Q_1 \) is on, despite any transients in the switch. You can even open the switch and still get the output pulse.

The pulse width is determined by the \( R_1C_1 \) time constant and you can get pulses from 1.5 ms to several seconds with this circuit.

952 One-shot triggers on both edges of input

Ken Erickson
Interstate Electronics Corp., Anaheim, Calif.

This circuit gives you a pulse of the desired width whenever the input changes logic states. If the input is a symmetrical square-wave you can use it as a frequency doubler. Another application is as a detector to monitor changes in digital data.

If the \( Q \) output of the flip-flop is initially at logic 0, when the input changes state, the output of the exclusive OR gate goes to a 1 level and triggers the one-shot. When the one-shot times out, the output goes low and the inverted output goes high thus toggling the flip-flop to the logic 1 state. This causes the output of the gate to go low and removes the input to the one-shot. With each half cycle of the input square wave this sequence is repeated.
International technological forum


Leipzig Fair, market-orientated, comprehensive, planned for the buyer, brings together leading firms of the world, and offers the visitor a standard of service which has no equal.

High-level technical symposia and congresses, plus some 200 specialist lectures make Leipzig as important to research and development as it is to trade.

Fair Cards and information about travel to Leipzig obtainable from Globe Travel Service, Inc. 127, North Dearborn Street, Chicago 2 (Illinois), Tel. Dearborn 2-0090 • Krueger’s Travel Service, Bergenline Ave. at 65th St., P.O.B. 209, West New York, N.J. 07093, Tel. 868-9623 (N.J. Area Code 201), 564-6654 (N.Y. Area Code 212), Trans-Global Travel Bureau, 6333 Wilshire Blvd., Los Angeles 48, Calif., Tel. Olive 3-6100 or at the GDR State frontier.

Leipzig Trade Fair
German Democratic Republic
14/23 March 1971

NOW...
the only one of its kind available!

A Course in MOS INTEGRATED CIRCUITS

The editors of The Electronic Engineer have just compiled a complete 9 part course on MOS technology, applications and costs which appeared originally in The Electronic Engineer. It is a definitive volume that provides you with all the background you need as a user or a designer to master this new technology.

This state of the art course in MOS technology presents completely authoritative, up-to-the-minute guidance in using every aspect of this dynamic science. It covers the processing of MOS circuits, applications of MOS circuits, complementary MOS, MOS memories (random access, read only, associative memories and cost) and the testing of complex MOS integrated circuits.

This course is an exclusive from The Electronic Engineer. It is, in fact, the only one of its kind available. The authors, all recognized experts in their respective fields, take you with technical precision from the fundamentals on through to the most sophisticated phases of this dramatic technology. This course is the one authoritative way to keep ahead in these changing times.

Order your copy of the only course available on the new MOS technology and manufacturing processes for only $5.00 per copy. Send your order today to: The Electronic Engineer, One Decker Square, Bala Cynwyd, Penna. 19004, Dept. E-1

Enclosed is my check or money order for $____ for____ course(s) on MOS technology at a cost of $5.00 each. Send as soon as possible to:

Name
Address Company
City State Zip

Send me special quantity prices □

The Electronic Engineer • Jan. 1971
We will send you a certificate of successful completion for the Optoelectronics Course if you pass the examination below.

Please enclose $1.00 to cover cost of handling, grading and printing of certificate.

Indicate your answer by blackening the box that corresponds to the statement you consider correct for each question. All of these questions are based on information presented in the Optoelectronics Course series. After you have completed all the questions, tear out this page and mail to:

Optoelectronics Course Examination
The Electronic Engineer
One Decker Square
Bala-Cynwyd, Pa. 19004

Don't forget to fill in your name and address at the end of this exam.

1. The widest application of optoelectronics devices is
   (a) sensing. (b) character recognition. (c) counting. (d) readout.

2. The visible spectrum is closest to
   (a) 0.29 to 0.73 µ. (b) 0.33 to 0.65 µ. (c) 0.33 to 0.76 µ. (d) 0.39 to 0.71 µ.

3. One angstrom is equal to
   (a) $10^{-9}$ meters. (b) $10^{-3}$ microns. (c) $10^{-10}$ meters. (d) $10^4$ microns.

4. Basically, leakage current in an optoelectronic device is referred to as the device's
   (a) color temperature. (b) light current. (c) black body. (d) dark current.

5. The most common compounds for light emitters are
   (a) III-V compounds. (b) II-VI compounds. (c) II-V compounds. (d) III-VI compounds.

6. "LED" stands for
   (a) large emitter devices. (b) light energized dice. (c) low emitter devices. (d) light emitting diodes.
7. Which of the following is not correct?  
(a) optical lenses increases gain. (b) light must focus on device's active area. (c) lenses can be plastic. (d) intense light can saturate devices.

8. The defining factor for the photometric system spectral response curve is  
(a) unit response for all wavelengths. (b) that of a standard observer. (c) a light bulb. (d) radiant energy from a standard resistor.

9. Efficiency of a light emitting device is  
(a) based upon lumens radiated. (b) emitted flux density. (c) light output power divided by total input power. (d) power consumed in heat divided by input power.

10. The human eye peaks around  
(a) blue. (b) red. (c) violet. (d) green.

11. DC electrical properties normally specified for discrete LEDs are  
(a) forward voltage drop and the breakdown voltage. (b) current and power consumption. (c) light current and dark current. (d) breakdown current and maximum voltage.

12. For monolithic numeric displays, how many segments are commonly used?  
(Don't include decimal point.)  
(a) 6. (b) 7. (c) 8. (d) 9.

13. What is the most common visible color emitted from today's LEDs?  
(a) green. (b) blue. (c) red. (d) orange.

14. In a phototransistor the  
(a) base-emitter junction is very large. (b) lens is mandatory. (c) collector-base junction and photodiode junction are identical. (d) photoresistive element must be as large as possible.

15. Photoconductive devices are used for  
(a) fast response. (b) large light-to-dark ratios. (c) high gain. (d) broad spectrum response.

16. Coupled pairs are popular because of their  
(a) high isolation capabilities. (b) speed of response. (c) environmental capabilities. (d) none of the above.

17. Light intensity, $H$, is normally given in  
(a) lumens/distance. (b) $W/cm^2$. (c) watts/distance. (d) $mW/cm^2$.

18. A photovoltaic component  
(a) generates a voltage when light is absorbed. (b) primarily senses far infrared. (c) has an output directly proportional to the square of applied voltage. (d) generates light with an applied voltage.

19. Placing a lens over a light detector will  
(a) give 360° of light detection. (b) reduce internal light reflections. (c) greatly improve speed of response. (d) none of the above.

20. What is the prime advantage of a phototransistor over a photodiode?  
(a) better parameters. (b) better isolation. (c) amplification. (d) wider spectrum response.

Don't forget to fill in your name and address and enclose $1.00 to cover costs.

Please send my Certificate to:

Name: __________________________ Title: ____________________

Company: ________________________

Street: ___________________________ City: ______________________

State: ___________________________ Zip Code: ________________
No. 1: The 24-Second Q Meter

Think back to the last time you used a Q Meter. It was probably an ancient-looking monster that you couldn't operate without studying a manual. A lot of cumbersome controls took strength and patience to manipulate. Once you got the hang of it, you still had to spend about a minute to get a reading...and then, you had to multiply that reading by another to get the answer you were looking for.

No more. Now, there's HP's 4342A—the Q Meter that lets you take readings in 24 seconds or less, start-to-finish. A single indicator gives you Q directly, over a range from 5 to 1000; there's no Q-multiplier to contend with. Fingertip controls let you choose any frequency from 22 kHz to 70 MHz—a wider range than ever before. Likewise, you can select L, C, or ΔC scales effortlessly, in seconds.

The 4342A is just one of HP's family of "Useables"—easy-to-use instruments for testing components. For further information on the 4342A, or on any of the "Useables," contact your local HP field engineer. Or write Hewlett-Packard, Palo Alto, California 94304. In Europe: 1217 Meyrin-Geneva, Switzerland.

HEWLETT PACKARD

COMPONENT-TESTING INSTRUMENTS YOU CAN USE

The Useables:


The Electronic Engineer - Jan. 1971

Circle Reader Service #20.
Cal-Comp specifies a Cornell-Dubilier Interface Filter to meet the critical requirements for proper EMI/EMC control in their computer system.

Cornell-Dubilier filters are designed to control potential electromagnetic interface susceptibility and emission problems, insuring system compatibility with commercial power inter-facing. Computer system filters require close liaison between supplier and user, to achieve compliance to international electromagnetic interference specifications. It is not enough to buy and install a filter; its effect must be proven. Cornell-Dubilier specializes in pre- and post-design assistance to systems manufacturers. Cornell-Dubilier’s track record for efficiency and reliability can help you set performance records, too.

For more information about CDE components... capacitors, relays, filters...write today.

CDE Computer System Filters are designed to comply with applicable UL, Military, and European specifications.
ATTENTION: Computer Designers

The first nation-wide Computer Designer's Conference devoted exclusively to the interests of design engineers, not users, who build and test computer systems will be held this month (Jan. 19-21) at the Anaheim Convention Center in Anaheim, Calif.

Current innovations in the design of computer systems will be spotlighted in 12 technical sessions. More than 60 papers are scheduled for these morning sessions.

Computer Designer's Conference & Exhibition

<table>
<thead>
<tr>
<th>Time</th>
<th>Tuesday, Jan. 19</th>
<th>Wednesday, Jan. 20</th>
<th>Thursday, Jan. 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 A.M.</td>
<td>Registration</td>
<td>Technical Sessions</td>
<td>Registration</td>
</tr>
<tr>
<td>8:30 A.M.</td>
<td></td>
<td>Design of Computer-Controlled Communication Systems</td>
<td>Technical Sessions</td>
</tr>
<tr>
<td>11:45 A.M.</td>
<td></td>
<td>Design of Computer-Controlled Hybrid Systems</td>
<td>Technical Sessions</td>
</tr>
<tr>
<td>11:30 A.M.</td>
<td></td>
<td>Design of Computer-Controlled Systems</td>
<td>9) Advanced Memories</td>
</tr>
<tr>
<td>6:30 P.M.</td>
<td></td>
<td>6) Design and Application of Digital Building Blocks</td>
<td>10) Firmware—Its Impact and Application</td>
</tr>
<tr>
<td>8:30 P.M.</td>
<td></td>
<td>7) Arrays/Hybrids—Capabilities and Application</td>
<td></td>
</tr>
<tr>
<td>8:30 A.M.</td>
<td></td>
<td>4) Techniques for Domain Data Conversion</td>
<td>12) Control of Noise Within Digital Systems</td>
</tr>
<tr>
<td>6:30 P.M.</td>
<td></td>
<td>5) Design of Computer-Controlled Hybrid Systems</td>
<td></td>
</tr>
<tr>
<td>8:30 P.M.</td>
<td></td>
<td>9) Advanced Memories</td>
<td></td>
</tr>
</tbody>
</table>

Exhibits

<table>
<thead>
<tr>
<th>Time</th>
<th>Tuesday, Jan. 19</th>
<th>Wednesday, Jan. 20</th>
<th>Thursday, Jan. 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 A.M.</td>
<td>Registration</td>
<td>Discussion Seminars</td>
<td>Registration</td>
</tr>
<tr>
<td>6:30 P.M.</td>
<td>A) Implementation of Multiprocessors</td>
<td>C) Selecting Main Frame Memories</td>
<td></td>
</tr>
<tr>
<td>8:30 P.M.</td>
<td>B) Aerospace Computer Requirements and Developments</td>
<td>D) Redundant Design Techniques for Achieving Long-Term Digital Systems Reliability</td>
<td></td>
</tr>
<tr>
<td>8:30 A.M.</td>
<td></td>
<td>E) Effective Selection of Communications I/O Functional Modules for Computer Systems</td>
<td></td>
</tr>
</tbody>
</table>

Complementing the technical program will be a 200-250 booth exhibition—the largest ever held in this field—featuring the latest components, subsystems, and test instruments for the design and construction of analog, digital, and hybrid computers.

Engineers will find an opportunity to exchange ideas with other engineers representing all fields of design during the five evening audience participation seminars. Both the technical sessions and the seminars are oriented towards providing solutions to the many design problems facing today's engineers. Attention is directed to the design of peripheral equipment as well.

To give you an idea of what to expect at the discussion seminars, here's a brief look at Session C, "Selecting Main Frame Memories." An introductory talk by the chairman precedes brief commentaries by each panelist in his area of expertise. Following this will be questions from the chair or floor directed to the panel.

An impressive panel of manufacturers and users will assemble for Session C. Participating will be: Ralph Gabai, Lockheed Electronics; Philip A. Harding, Electronic Memories; Linder C. Hobbs, Hobbs Associates; Cloyd E. Marvin, Four-Phase Systems; and Robert N. Noyce of Intel. Leading the session as chairman will be our Western Editor in Los Angeles, Steve Thompson.

Steve's introductory talk, "A Way of Looking at Memories," will introduce a method of relating currently available main frame memories in terms of cost, performance, technology, and size, all in a single graphic presentation.

Further discussion by the panelists will cover such areas as: cost-performance tradeoffs, the interrelationship of memory choice with system design and software, and the availability of memories. Be sure to bring your main frame memory problems and your design questions along.

The entire conference offers you an excellent opportunity to get up-to-date information from a well-qualified group. The Electronic Engineer is an associate sponsor of the Computer Designer's Conference. Be sure to look for us at our booth. In the meantime, for more information, contact Industrial & Scientific Conference Management Inc., 222 W. Adams St., Chicago, Ill. 60606.
Gunn and Impatt diodes.
What you need is what you get.

Impatt or Gunn, standard or custom. Varian sells the works:

Impatt diodes at frequencies from 3.2 to 22.0 GHz. Powers to 1 watt. Efficiencies to 8%.

Gunn-effect diodes up to 60 GHz, putting out 5 mW on a 4 Vdc bias. 200 mW at 10 GHz. Down to a 100 mW, 6 GHz diode that operates on only 11 volts.

Varian has more experience than any other supplier, and sells the most complete line of both types of diodes. For off-the-shelf delivery or fast prototype design, we’ll work with you to find the best answer for your design problems.

Talk to the man who sells ‘em all at more than 30
electron tube and device group
sales offices throughout the world.
Or contact our solid state division,
Palo Alto, California;
or Beverly, Massachusetts.
Data communications system has a heart of MOS

At least one company, Larse Corp., of Palo Alto, Calif., is applying MOS LSI technology to products other than computers, peripherals or calculators. They are now using their own MOS LSI chips in Data Communicator™ modules that form a complete digital data transmission and receiving system.

The transmitter, which scans 16 parallel data channels (time-division multiplexing) and encodes the data into a serial stream of binary-coded pulses, is called a Sen™. The receiver, which decodes and demultiplexes the data, is called a Rede™.

Communication between the Sen and Rede units can be any type of link. It may be a simple twisted pair (19-gauge wire will take your data 10 miles); a voice-grade line; or you may choose to use a radio link, with the Sen modulating, say, a vhf transmitter.

Transmission reliability

These modules use a special "Larse" code for data transmission. The Sen’s data work output comprises 16 data bits (one per input channel), plus sync pulses that result from one scan of the input circuits. A complete word uses 34 bits—16 data bits, 16 clock pulses, and two sync pulses.

The high ratio of data bits to the total number of bits transmitted is a feature of the code. The code also combines the advantages of synchronous and stop-start codes. And, its self-clocking feature means that there are predictable transitions that allow rigorous checking of the data receiver by the Rede unit.

The Rede unit actually performs 144 code-element checks, and 44 word checks.

Modes and rates

Sen and Rede units are available for communications via fsk tone, a-m tone, EIA RS-232-B, line switch, or line relay. (The mode determines the model number.) Communication rates are a function of the transmission mode. Standard rates vary from 60 to 1440 bps.

You can set up Sen/Re de systems for simplex operation (one-way only); half-duplex (two-way, same frequency, but time-phased); or duplex operation (two-way, same time, but different frequencies).

Further, you can choose from among eight transmission modes. Built-in address coding gives you even more flexibility.

Interfacing

You can interface the Rede module with both visual and audible alarms. Its 16 data outputs will each sink 15 mA from 24 Vdc.

For interfacing with other gear, both the Sen and the Rede provide for 5- and 12-V logic, and are compatible with TTL, TRI, HNL, and MIH circuits.

List prices for the various Sen models hover at about $600, while those for the Rede models are about $700. Larse Corp., 1070 E. Meadow Circle, Palo Alto, Calif. 94303. (415) 493-0700.

Circle Reader Service #215.

D to A is the name, but multiplication is the game

Here are a couple of devices that may seem a bit bizarre if you are accustomed to working with conventional (or fixed reference) D-A converters. These units, called multiplying D-A converters, are marked by their ability to handle variable, and even ac, references.

Manufacturers of conventional D-A’s carefully design their devices so that the analog output is a function of just one variable—the digital input. The analog output from a multiplying D-A, however, depends on two variables, the digital input and the varying analog input. The multiplying D-A does in fact perform full four-quadrant multiplication of the digital input with the instantaneous value of the analog input.

Among the applications for the devices are CRT displays. With the converter output controlling the beam position, the digital input can, in conjunction with a ramp on the analog input, be used to generate segments and patterns. Other applications include digitally controlled audio attenuators and hybrid (digital plus analog) computation systems, to name a few.

Two companies have recently jumped into the multiplying D-A field. One of these is Analog Devices Inc., with their DAC-M series of converters. These units come in 8- and 12-bit versions and will accept analog inputs in the dc-100 kHz range. Input and output full scale ranges are ±5 or ±10 V. The prices are $195 (8-bits) and $295 (12-bits).

Hybrid Systems Inc. also has a new line of multiplying D-A converters. Carrying part numbers 315-10, 315-11 and 315-12, they offer 10-, 11- and 12-bit resolution respectively. Bandwidth of the analog input is dc-400 kHz and full scale output is ±10 V. Prices are $125, $150, and $175 for the three resolutions.
**NEW PRODUCTS**

**It's a switch**

Here's a switch that's 100% IC compatible, that has a "piggyback" feature to let you plug any standard 14-pin device into it, and that you can couple in "tandem" for design versatility. Only 0.230 in. high, the switch lets you stack PC cards in ¼-in. increments.

Unlike prior DIP-adaptable switches, the Dipswitch is designed so that a cam lifts a moveable contact arm, giving a definite wiping action. This ensures a clean contact surface and low contact resistance.

Closure and opening of contact pairs is precisely controlled by individual cams having hexagonal shafts and cam bores. This means that the cams can be oriented to any of six different positions. Thus, the company can, through the use of only a few basic shapes, build almost any desired program into the switch without any special tooling and assembly costs.

A total of six pairs of contacts can be programmed to open or close in any desired sequence by simply rotating a screwdriver slot provided in the front of the switch.

The Dipswitch, which can be wave soldered onto a PC card, is impervious to attack by normal cleaning solutions. It is rated at 115 Vac or 28 Vdc at 125 mA. Contact resistance is 10 mΩ max., dielectric strength 500 Vac, insulation resistance 10,000 MΩ, life expectancy 100,000 detent operations minimum, and operating temperature range -65° to +185°F.


Circle Reader Service #218.

**CASETTE RECORDER**

Model 400T incremental magnetic tape recorder is for data communications and time share applications. It has selectable read/write baud rates of 110, 150 and 300. You can stop and start on a character in the read mode without losing a character. Because of this feature it becomes a convenient replacement for paper tape devices. Storage capacity is greater than half a million data bits on a single 300 ft. cassette of ⅛ in.-wide tape. Mobark Instruments Corp., 1038 W. Evelyn Ave., Sunnyvale, Calif. 94086.

Circle Reader Service #219.

---

**ELEXON BLUE RIBBON POWER SUPPLIES**

- **INPUT:** 120 or 240 VAC ± 10% 47-420 Hz
- **REGULATION:** ±1%, RIPPLE & NOISE .1%

<table>
<thead>
<tr>
<th>MODEL NO. &amp; SIZE</th>
<th>VOLTAGE</th>
<th>LIST PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMPS</td>
<td></td>
</tr>
<tr>
<td><strong>ELV-25</strong></td>
<td>3 4 5 6 8 9 10 12 14 15 16 18 20 22 24</td>
<td></td>
</tr>
<tr>
<td>4Hx5/1/2Wx6/1/2L</td>
<td>5 5 5 4.2 3.2 2.8 2.6 3 2.6 2.4 2.2 2 1.8 1.6 1.5</td>
<td>66.00</td>
</tr>
<tr>
<td><strong>ELV-75</strong></td>
<td>15 15 15 12.6 9.6 8.4 7.8 7 6.1 5.8 5.5 5 4.6 4.3 4</td>
<td>90.00</td>
</tr>
<tr>
<td>5/1/8Hx5/3/4Wx8L</td>
<td>25 25 25 21 16 14 13 12 10.3 9.6 9 8 7.2 6.5 6</td>
<td>148.00</td>
</tr>
<tr>
<td><strong>ELV-125</strong></td>
<td>25 25 25 21 16 14 13 12 10.3 9.6 9 8 7.2 6.5 6</td>
<td>190.00</td>
</tr>
<tr>
<td>6Hx6/1/2Wx11L</td>
<td>50 50 50 42 32 28 25 20 18 17 16 14 12.5 11.4 10.4</td>
<td></td>
</tr>
<tr>
<td><strong>ELV-250</strong></td>
<td>50 50 50 42 32 28 25 20 18 17 16 14 12.5 11.4 10.4</td>
<td></td>
</tr>
<tr>
<td>6Hx10/1/2Wx11L</td>
<td>1422 E. ST. GERTRUDE • SANTA ANA, CALIFORNIA • 92605</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CALL (714) 540-9510</td>
<td></td>
</tr>
</tbody>
</table>

Circle Reader Service #23.
LED display and decoder/driver

Motorola has announced a pair of new products, including its first light emitting diode display.

The decoder

The MC4050 counter-latch-decoder combines the functions of an SBCD (Natural Binary Coded Decimal) counter, four-bit latch, and LED decoder/driver. This monolithic MSI package replaces three others, costing $14.80 (in 100 quantity), with a $9.00 package. It comes in a 16-pin DIP ceramic or plastic version.

There are two types of LED seven-segment displays: hybrid and monolithic. The MC4050 is designed to drive the hybrids (which have individual diodes mounted on a substrate and require current-sinking because their segment anodes are tied to a positive supply). The MC4051 (to be announced) will be a current-sourcing driver for the cathodes in a monolithic display (which are all diffused into a common substrate). With additional circuitry, the MC4050 could drive monolithic LEDs. If output current is supplemented, it can also drive incandescent displays.

Power dissipation in the 4050 is 450 mW/package and toggle frequency is 35 MHz. It will sink 40 mA/segment at 0.4 V or 20 mA/segment at 1.6 V.

Monolithic display

The MOR 33 seven-segment monolithic display has a 0.125 in. character height. Even though monolithic LED displays are small, the human eye responds to them as if they were about twice their size. The MOR 33 is a pn Gallium Arsenide Phosphide 350 mW display that emits in the visible red (6600 Å). Designed for digital displays, brightness is typically 200 ft. L/segment at 10 mA, $7.50 (in quan.). Motorola Semiconductor, 5005 E. McDowell Rd., Phoenix, Ariz. 85036.

Circle Reader Service #285.

DUAL IN-LINE PACKAGES

New 14 and 16-lead DIPS feature headers with extended terminals for solderless wrap or bonded terminations.

Also, the lead frame is rugged enough so that the extended terminals may be bent over an inserted substrate for direct solder connections. Header and case in 24 set prototype kits cost $25.00/k. Aura Mfg. Co., 50 McDermott Rd., North Haven, Conn. 06473. (203) 777-2541.

Circle Reader Service #286.

POWER TRANSISTORS

Operating range of these transistors is from 175 MHz in the vhf band through the L and S bands to 2 GHz. They can produce up to 10 W of output power with a min. of 6 dB gain at 1 GHz. The line features the 2N5108A npn “overlay,” ultra-low leakage transistor, which can produce a min. of 1 Wac output power when operated at 1 GHz with a gain of 5 dB. Raytheon Co., Lexington, Mass. 02173. (617) 862-6600.

Circle Reader Service #287.

COMPUTER SYSTEM

The GE-PAC™ 30010 offers full process control capability for small or less complex applications. Developed around the GE-PAC 30 process minicomputer, it delivers full process I/O capability and includes interfacing for a broad range of process sensors and transducers. General Electric Co., Process Computer Dept., 2255 West Desert Cove Rd., Phoenix, Ariz. 85029.

Circle Reader Service #288.

FLAMEPROOF RESISTORS

These glass tin-oxide resistors are for use in TV sets, test equipment containing CRT readouts, and laser power supplies. Resistance ranges up to 100 MΩ and voltage performance to 10 kV. Designated HV¾, HV1, HV1¾, and HV2, they have a ±1 of −2000 ±500 ppm over a temp. range of 25° to 100°C. Electronic Products Div., Corning Glass Works, Corning, N.Y. 14830.

Circle Reader Service #289.

DISPLAY NUMERALS

New R7M-111 and R7M-191 gallium arsenide phosphide display numerals are 0.110 and 0.190 in. high, and come in a flatpack configuration, making them well suited for PC mounting. The display emits light in the 6450 A (red) region at an output illumination of 100 ft/segment at 10 mA. Bowmar Canada Ltd., 1257 Algoma Rd., Ottawa, Ont., Canada. (613) 746-3100.

Circle Reader Service #291.

MODULAR POWER SUPPLIES

New line of current stabilized supplies offers programmable current with adjustable voltage limiting. A fast recovery current control circuit allows the output to stabilize in as little as 2 μs/V of compliance. Six current ranges are available in the CCP modules: 0-0.2 A to 0-2 A with loading from 0-100 V to 0-7 V. Source and load effects are below 0.0005% and 0.005% respectively. $150.00. Kepco, Inc., 131-38 Sanford Ave., Flushing, N.Y. 11352. (212) 461-7000.

Circle Reader Service #292.
The WANG 700 Series

Now a calculator that lets you write your own programs and store them on a tape cassette

It's easy to store, enter or change programs with a 700 Series and there are no language problems. You already have the knowledge you're now using to solve your problems.

With the Wang 700 you'll have more than a calculator. There are 16 special function keys that make it personally yours - you can determine the function each performs. A choice of typewriter or printer/plotter output turns the 700 Series into a fully programmable calculating system.

And to make it even easier, Wang offers a library of pre-programmed cassettes for the many standard needs. Want a demonstration? Call Mr. Courtney collect at 617-851-7211 or send us the coupon.

Wang Laboratories, Inc., Dept. EE-1
636 North Street, Tewksbury, Mass. 01876
I'd like a 700 demonstration as soon as possible. Call me at _ _ _ _ _ _ _ _ _ for a date.

(Phone number)

Name
Company
Street
City _ State _ Zip

OEM SERIES POWER SUPPLIES

ADJUSTABLE

$24.95

TO 12 AMPS

4 TO 26 VDC 3 TO 12 AMPS

ripp le: 1 MVRMS

SHORT CIRCUIT PROTECTED

FOLD BACK CURRENT LIMITING

OPTIONAL OVER VOLTAGE PROTECTION

REGULATION: LINE ±0.25% LOAD ±0.25%

MODEL | PRICE | DIMENSIONS

---|---|---

2B5 - 3 AMPS | $24.95 | 4.8 W X 5.7 L X 1.8 D

2C5 - 6 AMPS | $44.00 | 4.8 W X 9.1 L X 3.3 D

2C5 - 12 AMPS | $75.00 | 4.8 W X 9.1 L X 3.3 D

OEM CONTRACTS AVAILABLE

A DIVISION OF

POWERTEC AIRTRONICS INC.

9168 DESOTO AVENUE

CHATSWORTH, CALIFORNIA 91311

(213) 882-0004 TWX 910-494-2092

Circle Reader Service #24.

The Electronic Engineer • Jan. 1971

COMPLEX FUNCTION CIRCUITS

These four devices are derived from the XC-170 128-bit read-only memory and are electrically compatible with all other MTT L lines. The devices are the MC4038P and MC4040P gated decoders, the MC4041P Hamming code detector and generator, and the MC4039P 7-segment character generator. Characteristics shared by the circuits are a total power dissipation of 200 to 240 mW/package, < 7.0 pF output capacitance and outputs capable of sinking 20 mA.

The 1000-4999 prices are $5.10 ea. for any device. Technical Information Center, Motorola Semiconductor Products Inc., Box 20924, Phoenix, Ariz. 85036. (602) 273-3589.

Circle Reader Service #225.

DECODER/DRIVER CIRCUITS

This series includes three types of BCD to 7-segment decoder/drivers that operate the manufacturer's MAN-1 discrete and MAN-3 monolithic 7-segment displays. Both the MSD 101 and MSD 102, are active high devices specifically designed for the MAN-3 display. Both have binary-coded decimal inputs that are DTL/TTL compatible. The MSD 101 is recommended for individually addressing the MAN-3, while the MSD 102 is for multiplexing up to eight displays. The MSD 047, a monolithic active-low decoder/driver, is recommended for the MAN-1 7-segment light-emitting diode display.

Prices start at $9.50 ea. (1-9 quant.) Monsanto Electronic Special Products, 10131 Bubb Rd., Cupertino, Calif. 95014.

Circle Reader Service #226.

HYBRID VOLTAGE REGULATORS

Both of these regulators, the C-216 single positive-voltage regulator, and the C-226 dual-voltage regulator, can drive external pass transistors to increase current output to several amperes. The C-216 has a 0.001%/C temp. coefficient, adjustable resistor-programmed current limits, 0.005% line regulation; 0.01% load regulation; and a 200 mA output current capability. The model C-226 offers a ±15 V output with ±±0.1 mA output current capability. Features include external adjustable output voltages of from 12 to 37 V, load regulation of 0.005% and line regulation of 0.01%. Bell & Howell, Control Systems Div., 706 Bostwick Ave., Bridgeport, Conn. 06605. (203) 368-6751.

Circle Reader Service #227.

HYBRID INTERFACE CIRCUITS

These three quad peripheral drivers are for interface applications calling for high-current, high-voltage, and low standby power consumption. The HICO40 has a high-current capability and fast switching speed that makes it useful as a systems master clock driver. The HICO67 performs especially well in lamp and relay drivers. The HICO68, with a 180 V breakdown voltage, is especially suited as a driver for high-voltage tubes and displays. Prices (1000 pc. quan.) are $12.70 for the HICO40; $12.90 for the HICO67; $11.65 for the HICO68.

Texas Instruments Incorporated, Inquiry Answering Service Box 5012, M/S 308, Dallas, Tex. 75222. (214) 238-3741.

Circle Reader Service #228.
FAST SLEWING OP AMP
The 531 has a large-signal response that is nearly identical to its small-signal performance. Typical slew rate at unity gain is 40 V/µs. Small-signal bandwidth is 1 MHz, and large-signal bandwidth is 500 kHz. Supply voltage can range from ±6 to ±18 V. Signetics Corp., 611 E. Arques Ave., Sunnyvale, Calif. 94086. (408) 739-7700.
Circle Reader Service #229.

BI POLAR ROM
The M5S200 features an access time of 30 ns and a power dissipation of 0.35 mW/bit. The chip stores 1024 bits in a 256-word by 4-bit format. It also has full address decoding on the chip and is directly TTL compatible. The 0 to +75°C version is $50.00 ea. in 100-999 quantities. Monolithic Memories, Inc., 1165E. Arques Ave., Sunnyvale, Calif. 94086.
Circle Reader Service #230.

SEVEN SEGMENT INDICATOR
Because of its unique construction, the Data-Lit 3 can be plugged into a PC board edge card connector for a vertical display. Since it requires only 1.7 V/segment you can power the display from the same supply as the logic card. $9.85 ea. (1000 quan.). Litronix, 10440 N. Tantau Ave., Cupertino, Calif. 95054. (415) 329-0810.
Circle Reader Service #231.

EXPANDED C-MOS LINE
The new devices include a 16-bit programmable rom (SCL-5510); a one-of-eight strobed decoder (SCL-5206); a high-speed 64-bit shift register family (SCL-51300 series); a presetable 8-bit program counter (SCL-5401); an 8-bit data and/or address register (SCL-5402); a high-speed 256-bit read/write memory (SCL-5553); an 8-bit synchronous binary counter (SCL-5404); and a quad exclusive-or (parity detector) (SCL-5201). Solid State Scientific Montgomeryville, Pa. 18936.
Circle Reader Service #232.

POWER BOOSTER
You can use the Model 3329/03 in cascade with all general purpose op amps. It functions as a high current output stage and is used inside the feedback loop as though it were an integral part of the op amp. Unit price is $20.00. Burr-Brown Research Corp., International Airport Industrial Park, Tucson, Ariz. 85706. (602) 294-1431.
Circle Reader Service #233.

MULTIPLEXER
The MP4108 8-channel MUXPAC™ offers 2000 MHz input impedance and −80 dB crosstalk in applications to 200 kHz. It functions in single-ended or differential mode, and includes buffered feedback for positive switch control. $130.00 ea. Analogic Corp., Audubon Rd., Wakefield, Mass. 01880.
Circle Reader Service #234.

FET SWITCH/DRIVERS
This line includes the DG151A series (military) and DG151B series (industrial) of 2-channel, SPST and DPST switch/drivers. Also being offered are the DG161A (military) and DG161B (industrial) single channel, SPST and DPST switch/drivers. Siliconix Inc., 2201 Laurelwood Rd., Santa Clara, Calif. 95054. (408) 246-8000.
Circle Reader Service #235.

LOW POWER MSI DEVICES
The 93L0I and 93L28 offer one-fourth the power consumption at 40% of the speed of the original 9301 and 9328 devices. The 93L01 is a BCD to decimal decoder, whereas the 93L28 is a high-speed, dual 8-bit shift register. Advanced Micro Devices Inc., 901 Thompson Pl., Sunnyvale, Calif. 94086.
Circle Reader Service #236.

TEN BIT D/A CONVERTER
Each DAC-49 is a complete converter and requires no external components for operation. You can select unipolar or bipolar outputs by externally programming the units. Full scale output can be either 0 to +10 V or ±5 V at 5 mA. Output settling time to ±0.1% is 25 µs. Varadyne Systems, 1020 Turnpike St., Canton, Mass. 02021. (617) 828-6395.
Circle Reader Service #237.

CORE MEMORY SENSE AMP
The µA761 is a two-channel core memory sense amplifier with a 25 ns response time and a typical threshold accuracy of ±2 mV. Independent strobe inputs on each channel enable the amplifier during core peaking times. You can combine the device with the MSI 9314 quad latch to provide a complete memory data register. Fairchild Semiconductor, 464 Ellis St., Mountain View, Calif. 94040. (415) 962-3563.
Circle Reader Service #238.

MOS 1024-BIT DYNAMIC SR
This four-phase register operates up to 1.0 MHz with a 25 pF load. The register interfaces with standard mos input and output levels, and can be serially coupled to form higher orders. Operating range is −55 to 125°C and the arrays come in 14-lead flatpack or dip. Price $20.00 (100 quan.). Collins Radio Co., mos Marketing Dept. 600, Newport Beach, Calif. 92663.
Circle Reader Service #239.

LOW INPUT CURRENT OP AMP
The ICH8500/ICH8500A includes a monolithic op amp, a pair of mos FETs, a junction FET constant current source and a thin-film resistor network. The ICH8500A has a max. input current of 0.01 pA from −25 to 85°C while the ICH8500 features 0.1 pA over the same range. $28.25 ea. for the ICH8500 (100 pcs) and $29.77 ea. for the ICH8500A. Intersil, 10900 N. Tantau Ave., Cupertino, Calif. 95014. (408) 257-5450.
Circle Reader Service #240.
Vishay puts the state-of-the-art performance of its fixed resistors into trimming potentiometers! Here, for the first time is a combination of precision/stability/TC/resolution which eliminates the need for padding resistors, decreases test time, improves product performance — and YES! Vishay trimmers meet or exceed all requirements of MIL-R-27208 and/or MIL-R-22097 characteristic C. Send for your free copy of Bulletin TR-101 describing this new line of total performance trimmers.

This oscilloscope time-base plug-in has a delayed sweep that gives 1 ns/cm sweep time. Designed for use with HP’s 183 series oscilloscopes, the Model 1841A plug-in has 21 sweep times ranging from 10 ns/cm to 0.1 s/cm. Delay time is selected by a 10-turn control working across the time range selected by the sweep time switch. The X10 magnifier in the main frame gives 1 ns/cm sweep time on the fastest range, a practical sweep time in view of the 183A/B’s fast writing speed of 4 cm/ns. Price, $1150.00 with delivery time 8 wks.

Inquiries Manager, Hewlett-Packard Co., 1601 California Ave., Palo Alto, Calif. 94304.

DIGITAL PLOTTER

The Auto-Pro 3500 accepts serial data from a time-share computer or parallel data in dedicated computer applications. Designed expressly to process time share data from scientific instruments, you can use it as both an incremental digital plotter and a 10 in. analog strip chart recorder. Because of its high and low speed input capability, (110 or 300 baud) the plotter/recorder can be used with modern high speed data terminals. It offers an input sensitivity of 100 mV full scale when used as an analog recorder. Technical Information Section, Automation Products Activity, Beckman Instruments, Inc., 2500 Harbor Blvd., Fullerton, Calif. 92634. (714) 871-4848.

FOUR DIGIT DVM

Model 8110A has a dc accuracy of ±(0.01% of input +0.01% of range) for 90 days and is within ±(0.01% of input +0.02% of range) after six months. Sixth month ac and resistance accuracies are ±0.3% and ±0.02% with higher accuracies for shorter periods. The ac and dc ranges are 1, 10, 100, and 1000 V with 20% over-ranging on all ranges. Resistance ranges are 1, 10, 100, 1000 kΩ and 10 MΩ with 20% over-ranging. A rechargeable battery pack which can be installed in either the factory or field is priced at $100. $850.00.

VSWR/WATTMETER

The THRULINE Model 3122 displays supplied power, reflected power and VSWR simultaneously on a single meter face. Forward and reflected power are shown by individual pointers and VSWR is monitored on a third scale from the intersection of the two power pointers. Bird Electronic Corp., 30303 Aurora Rd., Cleveland (Solon) Ohio 44139. (216) 248-1200.
Circle Reader Service #244.

PHOTOMETER/RADIOMETER

The Model 10A uses feedback techniques for short and long term stability and linearity. The instrument measures from $10^{-3}$ to $10^0$ ft. candles and ft. L or $10^{-4}$ W to $10^1$ W within a spectral range from 2200 to 11,500 Å. You can also get a 10B telephotometer/microphotometer lensing system and fiber optics probes as accessories. United Detector Technology, 1732 21st St., Santa Monica, Calif. 90404.
Circle Reader Service #245.

FREQUENCY COUNTER

The Model 325B is a dc to 32 MHz frequency counter with five digits of stored display. Pushbutton selection of gate times provides resolution from 0.1 Hz to 1 kHz in decade steps. A 1 MHz crystal oscillator provides accuracies of 1 PPM over a 30 day period. Eldorado Electrodata Corp., 601 Chalomar Rd., Concord, Calif. 94520. (415) 686-4200.
Circle Reader Service #246.

LINEAR IC TESTER

You can use the Model 735 to test opamps, regulators and comparators with up to 14 individual tests. Test time is typically under 1 s. The tester has a master pass-fail indicator, individual lights for each parameter and a digital reading of all parameters. Prices start at $7850.00. Microdyne Instruments, 203 Middlesex Tpk, Burlington, Mass. 01803. (617) 272-5691.
Circle Reader Service #247.

Triad gives you a lot less for your money

If size makes the big difference in your design, chances are that Triad makes the size you need. Triad’s famous Red Spec series, designed specifically for use in transistor and printed circuit applications, have maximum base dimensions of only .310 by .410 inches and meet MIL-T-27 Grade 5 Class S specifications. Many input, output, driver, interstage and reactor types are available from stock—plus plug-in designs for your miniature solid state circuits. Open-type miniatures are also ready for immediate delivery from your nearest distributor in a wide range of ratings, mounting types and sizes. You get modest cost, minimum size and consistently stable characteristics.

Triad’s new series of transformers for transistorized control and instrumentation include units for both audio and power applications. Fifteen of these transformers provide a voltage stepdown and isolation from power line at relatively low power levels of 1 1/2, 4 1/2 and 7 watts at 4 to 38 volts when connected in parallel, and 8 to 76 volts when series-connected. Precision spaced plug-in terminals provide fixed mounting centers—the kind usually found only in costly molded units. You get the benefits without the high cost. For maximum power with optimum equipment miniaturization, see your industrial electronic distributor today. Available from stock. Triad Distributor Division, 305 North Briant Street, Huntington, Indiana 46750.
NEW PRODUCTS

FAST-SETTLING FET OP AMP

Model 1025 FET input op amp settles to 0.01% of final value in 300 ns. Designed for inverting applications, it also offers a wideband positive input with ±2 V common mode range. Gain bw product is 50 MHz and open-loop gain is 100,000. Output is ±50 mA at ±10 V, with a slew rate of 500/µs over a temp. range of -25 to +85°C. $75.00 (1-9). Teledyne Philbrick Nexus, Allied Dr. at Rte 128, Dedham, Mass. 02026. (617) 329-1600.

Circle Reader Service #248.

SCR CAPACITORS

This family of SCR capacitors provides the low inductance and low effective series resistance (ESR) needed for commutating SCR circuits. Made with extended foil and other modifications, they can handle the high rep. rates and high peak currents found in commutating SCR circuits. Aerovox Corp., New Bedford, Mass. 02741. (617) 994-9661.

Circle Reader Service #249.

SOLDERING MATERIALS

These materials were designed to solve critical joining and cleaning problems found in microelectronic circuit manufacturing. Line includes microcreams, micropastes, microelectronic grade Vaculoy® solder, conductive inks, microfluxes, microdryer. Alpha Metals, Inc., 56 Water St., Jersey City, N.J. (201) HE 4-6778.

Circle Reader Service #250.

PHOTOTRANSISTORS

New CLT 2100 line of high gain phototransistors provides light currents to 12 mA at 5 V and 5 mW/cm. Dark currents are 25 nA at 10 V with collector-to-emitter breakdown voltages to 50 V. From $1.15 to $1.38 (500 quan.). Clairex Electronics, 560 S. Third Ave., Mt. Vernon, N.Y. 10550.

Circle Reader Service #251.

HF TUNING CAPACITORS

Capacitance of these precision capacitors can be adjusted with linearies as low as 0.3%. A patented contacting mechanism provides long life with >100,000 tuning cycles. $3.00 to $7.75. Johanson Mfg. Corp., 400 Rockaway Valley Rd., Boonton, N.J. 07005. (201) 334-2676.

Circle Reader Service #252.

SS LIGHT PEN

Model LP 200 light pen is for symbol sensing and editing functions in modern high data rate CRT displays. It features 3 µs response time, < 2 fl sensitivity, interchangeable optics and a touch actuated switch. Information Control Corp., 9610 Bellanca Ave., Los Angeles, Calif. 90045. (213) 641-8520.

Circle Reader Service #253.

GaP CRYSTALS

These gallium phosphide single crystals are for production use in light emitting devices. Available in both ingot and polished wafer form, they may eventually replace many filament-type lamps. Imanco, 40 Robert Pitt Dr., Monsey, N.Y. 10952. (914) 356-3331.

Circle Reader Service #254.

SOLID STATE LAMPS

Solid-Lite red light-emitting lamps use GaP electroluminescence for brighter light at lower current. Compatible with ic output, they produce 2 med luminous intensity at only 15 mA drive current. OSL-1 provides wide-angle viewing with good visibility over 180°; OSL-2 features higher luminous intensity with a narrower viewing angle. OPCOA Inc., 330 Talmadge Rd., Edison, N.J. 08817.

Circle Reader Service #255.

SERVO CONTROLLER

Here's a precision "Bang Bang" controller that can translate the analog signal of any transducer into a controller function. The Model 551 Voltensor controller has an input Z >50 kΩ and input overload capability of ±200 V. $68.00 ea. fab. factor. ($47.60 ea. at 100 pcs.). California Electronic Mfg. Co., Inc., Box 555, Alamo, Calif. 94507. (415) 932-3911.

Circle Reader Service #256.

DIGITAL READOUT

This digital readout plugs directly into a std. 0.050 in. center edge connector solving existing readout packaging problems and saving space. The Lite-Pak display also features low voltage (3 to 5 V), low current (as low as 8 mA), and long life (100,000 h). It is readable in direct sunlight and has distortion-free viewing. Pinlites Inc., 1275 Bloomfield Ave., Fairfield, N.J. 07007. (201) 226-7724.

Circle Reader Service #257.

DIFFERENTIAL AMPLIFIER

Open loop gain of 2 x 10⁴ and freq. response to 5 MHz are features of the Ampac™ MP215 ±10 V inverting amp. It slews at 30 V/µs and settles to 0.01% in 1.5 ms. The τc is 20 µV/°C. Input is 10⁻¹ V, input bias current only 50 pA and noise only 15 µV rms. Output is ±10 V at 20 mA, short-circuit-proof to ground. $80.00 ea. Analogic Corporation, Audubon Rd., Wakefield, Mass. 01880. (617) 246-0300.

Circle Reader Service #258.

WIDEBAND OP AMP

Model 9491A op amp has a guaranteed 6 dB/octave roll-off rate typically beginning at 1.5 MHz and crossing unit gain at 1 GHz min. Closed loop bw in excess of dc to 300 MHz are practical just by using a feedback resistor and an input resistor. Open loop gain is 60 dB min., and min. slewing rate is ≥1000 V/µs. $60.00 (1-2), $54.00 (3-9) and $49.00 ea. (10-29). Optical Electronics, Inc., Box 11140, Tucson, Ariz. 85706. (602) 624-8358.

Circle Reader Service #259.

Circle Reader Service #250.
MODULAR POWER SUPPLIES
LW series supplies perform at >50% efficiency at current ratings to 200 A and voltage ranges to 48 Vdc. Self-restoring current limiting and a self-resetting thermostat provide full protection. Features include remote sensing, remote programming, and complete serviceability. Lambda Electronics Corp., 515 Broad Hollow Rd., Melville, N.Y. 11746. (516) 694-4200.
Circle Reader Service #261.

CLEAR CASTING RESIN
After cure, Stycast 1269-A epoxy casting resin becomes so crystal-clear that it can be used in optical applications such as windows, and lenses. Thus, shatterproof lenses and windows are possible, and lenses can be cast to exact size and shape eliminating costly grinding. An interesting, recently developed application is the encapsulation of LEDs. The two part system cures in 16 hrs at 210°F. $2.35/lb. (16 lb. kit). Emerson & Cuming, Inc., Canton, Mass. 02021. (617) 828-3300.
Circle Reader Service #262.

VC XTAL OSCILLATORS
Model 6668 WA, a 20 MHz VCXO, (voltage controlled crystal oscillator) can be modulated at rates up to 75 kHz with a resulting fm distortion of <3%. Frequency deviation is ±0.1% (±20 kHz pk). Other models in the 5 to 35 MHz range are available with deviation and modulation capabilities varying in proportion to center freq. Damon Corp., 115 Fourth Ave., Needham Heights, Mass. 02194. (617) 449-0800.
Circle Reader Service #263.

HEADERS WITH CAPS
These 14-pin headers, with caps, have gold plated pins laid out in the std. 0.100 x 0.300 in. dim. grid. U-shaped openings in the tops of the pins accept component leads to wire size 24. Soldering is the normal means of component attachment, $0.75 to $1.20 ea. (< 100 pcs.). Design & Production Associates, 1600 N. Arrowhead Ave., San Bernardino, Calif. 92405. (714) 886-8612.
Circle Reader Service #264.

Who delivers design specs for reconstituted Mica Capacitors the same day you ask?

CUSTOM ELECTRONICS
Custom Electronics' exclusive dedication to the development and production of Reconstituted Mica Capacitors has made it a foremost authority in capacitor design and applicability. On the strength of this specialized experience, Custom can deliver capacitor designs and job quotes within hours of your inquiry. And designs for high reliability in applications above 1KV are continually improving at Custom Electronics, which means you can save time by consulting us from the beginning of your design project.

Don't worry about your purchasing department either. Custom's rather fanatical belief in quality control has reduced overall cost by eliminating expensive final production mistakes. That same adherence to QC also means a more reliable capacitor for your system.

Call Custom Electronics, Inc. with your capacitor design problem!

The QC Fanatics
CUSTOM ELECTRONICS, Inc.
Brown St., Oneonta, N.Y. 13820
Phone: 607-432-3880

Circle Reader Service #28.
SMALLEST PHOTOREACTOR?

"HT-series" "Micro Sensor" consists of either a photo transistor or a photodarlington sensor bonded to a ceramic substrate with three leads attached (emitter, base, and collector). HT-700 series offers low cost and fast switching speeds; HT-800 series has high gain and high sensitivity. The HT-700 is $1.51 and the HT-800 is $1.86 ea. in 100 lot quan. HEI, Inc., Jonathan Industrial Ctr., Chaska, Minn. 55318. (612) 448-3510.
Circle Reader Service #265.

DIP TRIMMERS

Two new DIP model pots are for machine insertion and production soldering on PCBs. Series 2600 (wire-wound element) dissipates 1 W at 40°C. It comes in a range from 10Ω to 50 kΩ with std. tol. of ±10%. Series 8600 (film element) dissipates ¼ W at 25°C in a range from 10Ω to 2 MΩ. Intermediate values (100Ω through 500 kΩ) are available with ±10% tol. All other values have ±20%. Dale Electronics, Inc., Dept. 860, Box 609, Columbus, Nebr. 68601.
Circle Reader Service #266.

ILLUMINATED ROCKER SWITCH

This switch, which features front access for easy lamp replacement, mounts in a 0.655 x 0.730 in. panel cutout. Rocker switch units come in three circuit configurations, with a DPDT design. Contact rating is 5 A at 125 Vac; contact resistance, 10 mΩ Max. (at 2-4 Vdc, 1 A); and ins. res., 1000 MΩ at 500 Vdc. Shelly Associates, 111 Eucalyptus, El Segundo, Calif. 90245. (213) 322-2374.
Circle Reader Service #267.

VDR FOR COLOR TV TUBES

The AZ 9501 voltage dependent resistor used with the appropriate line transformer and high voltage cascade, produces the focus voltage for color picture tubes. It has a solder fuse which assures greater protection for the color receiver against increases in VDR current. $1.30 ea. Siemens Corp., 186 Wood Ave. So., Iselin, N.J. 08830. (201) 494-1000.
Circle Reader Service #268.
INDUSTRIAL SCR'S
ID100-104 series devices feature hermetically sealed TO-18 JEDEC metal can packaging at prices competitive with plastic devices. They are for low-current sensing applications. Prices start at $0.45 ea. in 1000 lots. Unitrode Corp., 580 Pleasant St., Watertown, Mass. 02172. (617) 926-0404.
Circle Reader Service #269.

CHIP CAPACITORS
Type MB multilayer chip capacitors are for use in hybrid circuits. Range is 10.0 pF to 1.0 µF. They are available in four proposed std. EIA sizes and std. capacitance values. Temperature range is -55° to +125°C. Standard ratings are 50, 100, and 200 Vdc. Allen Bradley Co., 1201 S. 2nd St., Milwaukee, Wis. 53204.
Circle Reader Service #270.

ONE COMPONENT EPOXY
This family of fast cure, one component epoxies is useful for end sealing capacitors, potting electronic components, heat sink bonding, lead bonding and PCB coating. Polymer Products Div., Amicon Corp., 21 Hartwell Ave., Lexington, Mass. 02173. (617) 862-7050.
Circle Reader Service #271.

MINIATURE READOUT

Series 0400 display features 0.50 in. message, viewable at 10 ft.; 60 fl. brightness using 6 V lamps; front panel access; 0.752 in. center-to-center spacing, and a total weight of only 3 oz. Input is straight decimal (1 lamp/input terminal); or BCD with IEE driver/decoder. Industrial Electronic Engineers, Inc., 7720-40 Lemona Ave., Van Nuys, Calif. 91405. (213) 787-0311.
Circle Reader Service #272.

CHIP RESISTOR
Model 110 semiconductive glass resistors span a range from 10¹ to 10¹¹ Ω. Chip size is 0.050 x 0.100 x 0.012 in. Operating temp. is -270° to +200°C with a TCR of -0.3%/°C max. $2.00 ea. (1000 pcs.). Eltec Instruments Inc., Box 46, Lancaster, N.Y. 14086. (716) 683-8421.
Circle Reader Service #273.

The A/D of the future is here now! Computer Labs Model VHS-630 has:
- Six-bit resolution
- 30 MHz word rates
- 75 picoseconds aperture
- 15 nanoseconds transient response
- 30 nanoseconds overvoltage recovery
- Front panel calibration
- Self-check features

This latest member of the Computer Labs family of high-speed converters is the...

A/D of the future!!

Computer Labs for tomorrow's technology today

1109 South Chapman St. / Greensboro, N. C. 27403 / (919) 292-6427

Circle Reader Service #32.
MODULAR A/D CONVERTERS

These converter modules are available in 8 (ADC-8H) and 10 bit (ADC-10H) resolutions and accuracies. The ADC-8H is $195.00 (1-9) and the ADC-10H is $225.00 (1-9). Features include: small size (2 x 4 x 0.4 in.); 5 input voltage options; binary, offset binary, 2's complement and BCD codings; speed (18 µs, max. for 10 bits); parallel and serial output standard; and various external connections for complete system compatibility. Analog Devices, Pastoriza Div., 221 Fifth St., Cambridge, Mass. 02142. (617) 492-6000.

Circle Reader Service #274.

KEYBOARD-DISPLAY

Model 522 keyboard-display is a complete stand-alone system that can be substituted directly for teletype equipment. It contains keyboard, CRT display, memory, power supply and communications interface. It has selectable transmission rates to serve low and medium speed time-sharing as well as high-speed communications. Uni-Comp Incorporated 18219 Parthenia St., Northridge, Calif. 91324. (213) 886-7722.

Circle Reader Service #275.

4800 BPS MODEM

Modem 4500/48 is for users who require dedicated full duplex service. It calls for Type 3002, C-2 lines. The data set automatically equalizes, (without special programming) and then adaptively tracks any changes in the amplitude or delay distortion characteristics of the line. International Communications Corp., 7620 N.W. 36th Ave., Miami, Fla. 33147. (305) 691-1220.

Circle Reader Service #276.

VIDEO SWITCH

Model VS50P can switch video by inserting unit directly in 50 or 93 line. It operates in 70 ns. Isolation is 70 dB, insertion loss 0.4 dB, and video 1/2 20 MHz. The built-in switch driver is compatible with micrologic. $195.00. Analog Research, Box 22023, Dallas, Tex. 75222. (214) 521-7056.

Circle Reader Service #277.
Published information is vital to your job. To save time in finding this information, we have abstracted the important technical features from eight electronic engineering publications. Should any of these articles interest you, contact the magazine. Reprints of articles with an asterisk are available free. Save this section for future reference.

Charts and Nomographs
Find insertion loss at a glance, F. Calandra and H. Hausman, Cutler-Hammer. "Electronic Design." Vol. 18, No. 23, Nov. 8, 1970, pp. 78-79. A chart is presented for finding the midboard insertion loss for But-terworth bandpass filters from the first through the tenth orders, as a function of the ratio of loaded Q to unloaded Q.


Circuit Design
DC motor control is easy with transistors, Fred W. Kev, Spartan Southwest. "EDN." Vol. 15, No. 20, Oct. 15, 1970, pp. 41-43. Mr. Kev briefly describes five simple circuits to control dc motors. The circuits are specifically identified for use in motor starting and stopping, constant speed control, overload and over-speed protection, and speed sensing.

Want a bandpass filter?, Bud Broeker, Motorola Semiconductor Products Inc. "Electronic Design." Vol. 18, No. 22, Oct. 25, 1970, pp. 76-78. Commutating filters operate over a wide frequency range, are small, can vary resonant frequency, and provide easy bandwidth adjustment. Use of commutating filters to build simple low-pass filters is discussed.

Sensitivity—key to analog active filters, EDN Staff, "EDN." Vol. 15, No. 21, Nov. 1, 1970, pp. 17-25. This report describes the state-variable method for the design of active filters. Sensitivity—the percent change in a filter's characteristics caused by percent changes in the filter's components—receives special emphasis. There is also a brief discussion of programmable filters.

One adjustment controls many regulators, Robert C. Dotkin, National Semiconductor. "Electronic Design." Vol. 15, No. 21, Nov. 1, 1970, pp. 33-35. Mr. Dotkin points out that the internal reference voltage of IC voltage regulators may vary as much as 10% from unit to unit. In power supply systems with more than one voltage, it is often technically and economically desirable to adjust all supplies from a single potentiometer. He shows how to do this in light of the reference-voltage variations, and gives application examples of positive-negative, multi-regulator supplies.

Designing sampling phaselock loops, Dieter Lohmann, U.S. Army Electronics Command. "Electronic Design." Vol. 18, No. 23, Nov. 8, 1970, pp. 74-76. Sampling phaselock loops make it very easy to lock the VCO to a high-order harmonic of the reference signal, and produce very little spurious output. They are difficult to design because their stability is complicated. An approximate stability criterion is suggested that applies over a wide range of disturbance frequencies.

Communications
Information: Its measure and communication, Richard D. Bruggger, Elgin Electronics Inc. "Computer Design." Vol. 9, No. 11, Nov. 1970, pp. 115-120. Discrete message transmission systems are brought into perspective through a discussion of pertinent aspects. In this article the author contends that the nature of information is often obscured by hardware that "information" brought about. His discussion contains the basis for a description of information, channel capacity, and entropy.

Digital Design

Frequency comparator performs double duty, Reginald C. E. Thomas, Sunstrand Aviation. "EDN." Vol. 15, No. 21, Nov. 1, 1970, pp. 29-32. Mr. Thomas states that only a few phase-comparison circuits are capable of producing a correct-polarity error signal when frequency errors are large. Such applications must use either a dual-mode phase comparator, or a phase and frequency comparator. The author describes three new circuits which transfer from frequency to phase comparison when the input frequencies are equal, and give definitive responses for simultaneously-occurring input pulses. The circuits each use several IC packages, but are amenable to construction on a single silicon chip.

Three-level logic eliminates inverters, Edmond Vina-rub, Reflectone, Inc. "Electronic Design." Vol. 18, No. 24, Nov. 22, 1970, pp. 36-37. Gate count can be reduced by using 3-level NAND logic. The penalty is an increased propagation time through the network. Three examples are worked.


Integrated Circuits
"What's available in MSI?, Larry Beck and Walter Richard, Honeywell, Inc., Framingham, Mass. "The Electronic Engineer." Vol. 30, No. 1, Jan. 1971, pp. 21-23. This is the year when a host of new markets will reveal their potential for growth. Video recording, data terminals, point-of-sale systems, information storage systems, and automotive electronics are among the markets promising to lead the industry in this decade.

Miscellaneous
"1971: the year of conversion, Staff Report, "The Electronic Engineer." Vol. 30, No. 1, Jan. 1971, pp. 21-23. This is the year when a host of new markets will reveal their potential for growth. Video recording, data terminals, point-of-sale systems, information storage systems, and automotive electronics are among the markets promising to lead the industry in this decade.

The employment problem: Can IEEE help?, John V. Granger, President, IEEE. "IEEE Spectrum." Vol. 7, No. 11, Nov. 1970, pp. 32-33. Ex-president Granger of the IEEE presents the results of an IEEE Board of Directors meeting which considered the possibility of a change in organizational direction. The results are disappointing for those searching for a new outlook. The only change from the traditional role is an increased emphasis on specialized retraining, while IRS rules prevent the IEEE from being more of an activist society.

Test and Measurement
The latest word in leak detection, Irving Litant, NASA. "EDN." Vol. 15, No. 20, Oct. 15, 1970, pp. 35-38. Many of us work with hermetically-sealed products such as transistors, ICs, relays, and so forth. According to Mr. Litant, there are many ways to detect leaks in such packages, but only a few can accurately determine the leak rate, and still fewer can pinpoint the leak site itself. The author supplies a brief discussion of gross and fine leak test procedures, and tells of the shortcomings of present methods. Mr. Litant then concludes with a description of a new leakage test developed at NASA.
LITERATURE

TTL Family catalog
Here are 112 pages (plus a fold-out chart) of solid product information describing probably the most complete line of TTL circuits available today. These logic, memory, and interface functions are standard, off-the-shelf building blocks that interface directly with each other. Because the line is extensive, you can choose almost any speed/power combination that you may need. Fairchild Semiconductor, 313 Fairchild Dr., Mountain View, Calif. 94040.
Circle Reader Service #361.

MOS/LSI catalog
Filled with circuit diagrams, this 212-page catalog clearly illustrates and describes 34 standard MOS/LSI circuits. You'll find complete specs for 15 shift registers (from a dual 16-bit to a dual 512-bit), eight read-only memories/character generators, programmable logic arrays (and how to program these logic circuits), a 128-bit content-addressable memory, a digital differential analyzer, and a six-stage frequency divider. In addition you're provided with information on MOS/LSI system compatibility, packaging, custom MOS/LSI, and interfacing MOS/LSI with TTL/DTL logic families. This comprehensive catalog is offered to you by Texas Instruments Inc., Box 5012, M/S 308, Dallas, Tex. 75222.
Circle Reader Service #362.

1971 component catalog
Fixed, variable, and step attenuators and rf components are detailed in this 1971 catalog. Application and design data is featured in a special 20-page section. This includes information on power dividers, terminations, mismatches, and connectors as well as attenuators. The 80-page catalog also provides illustrations of featured products and detailed drawings of the interface dimensions of various connectors. This comprehensive catalog represents Weinschel Engineering, Gaithersburg, Md.
Circle Reader Service #363.

D/A converter
An entire D/A converter is incorporated into a single hybrid IC package. This 12-page application note discusses the use of this technology in the Model 845 D/A converter. Its construction is described in detail, while photos and block diagrams supplement the information given for the 8-bit thick film unit. Helipot Div., Beckman Instruments Inc., 2500 Harbor Blvd., Fullerton, Calif. 92634.
Circle Reader Service #364.

Fast settling amps
The basic types of fast settling amp responses plus the amps performance under various operating conditions are discussed in an application note. Phase shift and amplitude error introduced by stray capacitance are also covered. Formulas, charts, and tables pertaining to fast settling systems are included too.
Circle Reader Service #365.

Peripheral devices
A series of peripheral devices that offer a new concept in computer-controlled, real-time system implementation is discussed in a 16-pager. The line is comprised of analog and digital input and output units that operate under the control of any modern, general-purpose digital computer with the use of the universal 1/o expander. Included in the series are high and low level analog input systems, D/A output systems, sample and hold D/A output systems, and various types of digital input/output systems. Computer Products, Box 23849, Ft. Lauderdale, Fla. 33307.
Circle Reader Service #366.
Semiconductor price list

More than 23,000 types of electron tubes and semiconductors are covered in this 60-page price list catalog. Within the 40 sections, you'll find data on industrial CRTs, microwave diodes, solid state tube replacements, transistors and SCRs, diodes and rectifiers, and ICS. You'll find the products of the best known manufacturers in this catalog brought to you by JSH Electronics Inc., Subs. of Varadyne Inc., Box 2898, Dept. NR, Culver City, Calif. 90230.

Circle Reader Service #367.

Transformer core laminations

Here's a 152-page loose-leaf notebook filled with information about transformer core laminations. Each page illustrates and describes a lamination shape and the variety of magnetic materials available for that particular shape. You'll also find information on tolerances, surface insulation, testing, packaging, design formulae, and applications. Magnetic Metals Co., Hayes Ave. at 21st St., Camden, N.J. 08101.

Circle Reader Service #368.

IC sockets and systems

Integrated circuit sockets, systems, and accessories are the subject of this 38-page catalog. You're given detailed information on dual-in-line, flat pak, and TO-5 ic products, as well as burn-in, breadboard, and wire wrapping systems for test and production. Photos accompany each product description, and charts provide necessary specs. Robinson-Nugent Inc., 800 E. Eighth St., New Albany, Ind. 47150.

Circle Reader Service #369.

MOS/LSI calculator circuits

Six chips make a calculator. Well, you still need a readout (or printer), a power supply, a cabinet, and a keyboard. But the six circuits described in this 12-page brochure provide all the logic required to implement an eight-digit, desk-top calculator. The brochure not only describes the circuit on each of the six chips (and provides a schematic for each), but also diagrams the interconnections necessary to make a calculator. Electronic Arrays Inc., 501 Ellis St., Mountain View, Calif. 94040.

Circle Reader Service #370.

Instrumentation rental

Hundreds of items by hundreds of manufacturers are featured in this 108-page instrumentation rental catalog. There's information and complete specs for transducers, oscillographs, tape recorders, oscilloscopes, amplifiers, digital systems, and computers, and many more. Products are indexed by manufacturer and model number so you're sure to find just what you're looking for. Datacraft Inc., 13714 S. Normandie Ave., Gardena, Calif. 90249.

Circle Reader Service #371.

Instant circuit boards

Here's a 16-page catalog that shows you how to go from schematic drawings to card cage systems in one step. A new packaging system, a complete family of circuit sub-elements and circuit materials, allows you to combine all types of circuit-element configurations on the same board. This time-saving idea is brought to you by Circuit-Stik Inc., 1518 W. 132nd St., Gardena, Calif. 90249.

Circle Reader Service #372.

Test Clips

Push Posts

Adjustable tension, threaded studs or plug in bases, various sizes.

Plunger action lets you connect and disconnect quickly and easily, assures positive contact.

Binding Posts

Screw type or spring loaded, banana plug or stud mounting, single or multiple units, with various colors for circuit identification.

Stand-Off Insulators

High dielectric strength, low loss insulation, low moisture absorption, various mounting styles.

Sockets

Lamp or transistor, various colors, various mountings including printed circuit.

Custom Molded Parts

Tight tolerances provide you with "assembly ready" units. Thermosetting plastics to meet most specifications.

For your Grayhill Engineering Catalog offering complete technical data—contact

543 Millgrove Avenue
LaGrange, Illinois 60525
Area Code 312, Phone 354-1040

... the Difference Between Excellent and Adequate

Circle Reader Service #38.
Circuit modules
A condensed product guide gives you 48 pages of material on functional circuit modules. With the designer in mind, the catalog serves as a reference manual for selection guidelines, application tips, and operating techniques for analog instrumentation. You’re given complete product performance characteristics for analog computing components, op amps, nonlinear function modules, test instrumentation, and related equipment. Teledyne Philbrick Nexus, Allied Dr. at Rte. 128, Dedham, Mass. 02026.

Circle Reader Service #373.

ECL system applications
This 24-page booklet describes the manufacturer’s 9500 ECL family, its system applications, and wiring rules. This series has 2- to 3-ns propagation delays, and is temperature-compensated for easy use in low-cost equipments. Besides describing the family members, the booklet goes into detail on wiring rules, microstrip, noise considerations, and special clock circuits to 100 MHz. Application Brief 157. Fairchild Semiconductor, 313 Fairchild Dr., Mountain View, Calif. 94040.

Circle Reader Service #374.

Optical components
A 36-page brochure devotes itself to optical components and accessories. Featured are the company’s optical interference filters with the humidity resistance required for general use outside a controlled laboratory environment. Also listed are exciter and barrier filters, a new low-cost line of neutral density filters with flat transmittance curves (from about 4,000 Å to 2.5 µm), and a series of laser line filters with peak transmittances up to 90%. Available from the System Components Div., Baird-Atomic Inc., 125 Middlesex Turnpike, Bedford, Mass. 01730.

Circle Reader Service #376.

Light-emitting diodes
A complete selector chart for GaAs light-emitting diodes provides data on wavelengths, brightness, power output, I, and Vf. The chart will help you to select the correct LED for such applications as card readers, tape readers, computer peripherals, optical logic drives, and panel indicating lights. And when you ask for the chart, you’ll also receive a copy of “Semiconductor Report,” news of the latest in technology, products, prices, and economics of the semiconductor industry. Semiconductor Specialists Inc., Box 66125, O’Hare International Airport, Chicago, Ill. 60666.

Circle Reader Service #377.

Creating social progress
A very readable 32-page brochure devotes itself to specific instances of aerospace-generated technology being applied to the solutions of domestic problems. Improving man’s relationship to his environment, the major challenge of this decade, is discussed as related to such areas as air, water and land pollution, urban transportation, teaching methods and job training, crime control, and inadequate housing. The booklet offers solutions to the problems and explains that through the technology and techniques of the aerospace programs hopeful means are now possible. Available from the Publications Office, Aerospace Industries Association, 1725 DeSales St., N.W., Washington, D.C. 20036.

Circle Reader Service #378.
Data communication
Descriptions and specs for 11 ICC modems are provided in this 8-page catalog. The modems operate at speeds from 300 b/s up to 1 million b/s. Also included is information on multiplexers, transmission test equipment, and specialized modems for OEM users. For those interested in computer communication, this booklet is available from International Communications Corp., 7620 N. W. 36th Ave., Miami, Fla. 33147.
Circle Reader Service #379.

Surveillance antennas
A wide variety of broadband antennas is described in this 29-page guide. The antennas—loops, log periodic, omnidirectional, dish and feed, and horns and spirals—span the frequency spectrum from 2 MHz to 18 GHz. Technical descriptions include gain and VSWR vs frequency, E- and H-plane radiation patterns, dimensions and weights, and so forth. Watkins-Johnson, 3333 Hillview Ave., Stanford Industrial Park, Palo Alto, Calif. 94304.
Circle Reader Service #380.

Oscillograph recording systems
Oscillograph recording of dynamic variables is covered in bulletin G-3. The 12-pager describes the components used in oscillograph systems and includes specs and prices for each. B&F Instruments Inc., Cornwells Heights, Pa. 19020.
Circle Reader Service #381.

Time sharing systems
Members of Honeywell’s new series H1640 family of time-sharing systems are discussed in a most informative brochure. The systems, which are dedicated, conversational, and problem solving, are based on the first time-sharing system ever built by a computer manufacturer. The catalog provides complete descriptions for each member of the family, discusses the languages available, includes salient features of using such systems, and covers applications and peripheral options. Available from Honeywell, Computer Control Div., Old Connecticut Path, Framingham, Mass.
Circle Reader Service #382.

Electromagnetic indicators
Catalog P68-0570 describes five basic indicator types and explains how they may be used as single elements or as stacked assemblies operable from a variety of digital computer signals. Details relating to input codes, connections, electrical and mechanical characteristics, and construction are provided, as are schematics and a polarity excitation table. Singer-General Precision Inc., Kearfott Div., 1150 McBride Ave., Little Falls, N.J. 07424.
Circle Reader Service #383.

Programmable data terminal
An operator’s manual for the company’s 711 programmable data terminal includes complete keyboard operating instructions. The 28-page booklet details how to get on-line and off-line, discusses installation, storage and protection of the integral tape cassette cartridges, and provides simple maintenance and adjustment directions. Available from Daedalus Computer Products Inc., Box 248, N. Syracuse, N. Y.
Circle Reader Service #384.
A/D-D/A converters

Detailed electrical and mechanical data for a line of ultra-mini A/D and D/A converters, in addition to accessory sample and holds, multiplexers, and mini PC power supplies, are contained in a comprehensive 28-page catalog. Various models of 10 series are described; the hardware discussed forms the basic building blocks for data acquisition, data analysis, data reproducing, and graphic display equipment. Varadyne Systems, 1020 Turnpike St., Canton, Mass. 02021.

Circle Reader Service #385.

MOS clock driver

"A High Performance MOS Clock Driver" is an 8-page application note suggesting various uses of mos clock line drivers. It discusses general considerations of clock line driving and details a complete four-phase system utilizing the Cermetek CH1033. Cermetek Inc., 660 National Ave., Mountain View, Calif. 94040.

Circle Reader Service #386.

Scan converter tubes

Do you know what it means to prime a storage tube? It's to charge the storage surface of a tube to determine a reference voltage for erasure. This and other terms you can find in the glossary included in this interesting booklet on scan converter tubes. Actually, the main feature of this booklet is a very clear explanation of the often misunderstood principles of storage in converter tubes. Most of its 16 pages are packed with technical, yet clearly explained information, and it provides, as well, diagrams, characteristic tables and graphs, and fields for applications. Hughes Aircraft Co., Industrial Products Div., 2020 Oceanside Blvd., Oceanside, Calif. 92054.

Circle Reader Service #387.

Precision switches and assemblies

Hermetically sealed and high temperature switches are covered in catalog 72-2. The 15-pager contains operating characteristics, definitions, dimensional data, and schematics for the series, as well as suggested applications. Hayden Switch and Instrument, Inc., 1500 Meriden Rd., Waterbury, Conn. 06720.

Circle Reader Service #388.

Connector design guide

Plate connector and molded connector products are described in this 36-page design guide. It explains the design and construction of components for wire-wrapped plate systems, and illustrates numerous plate connectors and pc components. A variety of standard and special configurations are illustrated for center-to-center terminal spacings of 0.050 to 0.200 in. National Connector Div., Fabri-Tek Inc., 9210 Science Center Dr., Minneapolis, Minn. 55428.

Circle Reader Service #389.

FREE CATALOG!

148 PAGES • MORE THAN 4000 UNUSUAL BARGAINS
SCIENCE • OPTICS • SPACE

100's of HARD-TO-FIND BUY'S FOR INDUSTRY.

Speed your work! Improve quality! Cut development and production costs! Completely new edition loaded with on-the-job help, quality control aids, unique items available nowhere else. 148 easy-to-read pages packed with new products, charts, diagrams, illustrations. A treasure house of optical and scientific equipment available direct from stock for industry, research labs, design engineers, experimenters, hobbyists.

AMERICA'S GREATEST ONE-SOURCE MARKET PLACE


ORDER DIRECT WITH ABSOLUTE CONFIDENCE

Edmund ships more than 5,000 orders monthly to the country's largest industries. Every item completely guaranteed. You must be satisfied with any purchase or return it in 10 days for your money back. Shop the catalog of America's largest Science-Optics-Space Mart. Send for your free copy today. Absolutely no obligation. Request FREE catalog "EE".

EDMUND SCIENTIFIC CO.
300 EDSCORP BLDG.
BARRINGTON, NEW JERSEY 08007

MAIL COUPON FOR GIANT FREE CATALOG!
EDMUND SCIENTIFIC CO.
300 Edscorp Building, Barrington, N. J. 08007
Please send Free Giant Catalog "EE"

NAME ____________________________
COMPANY ____________________________
ADDRESS ____________________________
CITY STATE ZIP ____________________________

OEM DIGITAL CLOCKS

Buy the time without the timepiece.

Want digital output of time and date for system applications? Buy only what you need with a Series 50,000 IC digital clock circuit board. Costs for unnecessary hardware and sheet metal are eliminated. Choose BCD or NIXIE display, any combination of output time formats including hours, minutes, seconds, month-and-day or day-of-year; parallel and/ or serial buffered outputs ... and more. Over 375 combinations of options. Low cost, too. For more data, write or call: Chrono-log Corp., 2583 West Chester Pike, Broomall, Pa. 19008; phone (215) 356-6771.
Becon Solderless Printed-Circuit Connectors

5 BASIC TYPES FOR DESIGN FLEXIBILITY

Type A
90° Board-to-Board

特点:
- 无焊接
- 方便的连接
- 安全的连接

Type B
180° Board-to-Board

特点:
- 无焊接
- 环保的连接
- 简单的设计

Type C
Board-to-Wire

特点:
- 无焊接
- 适合工业应用
- 有效的连接

Type D
Board-to-Cable

特点:
- 无焊接
- 可用于复杂系统
- 通用的连接

Type E
Flatpack (for direct microcircuit mounting)

特点:
- 无焊接
- 适合微小组件
- 易于安装

SEND FOR FREE CATALOG

410 SOUTH CEDROS AVE. — SOLANA BEACH, CALIF. 92075 — (714) 755-1181

TELEDYNE KINETICS

Circle Reader Service #45

The Electronic Engineer • Jan. 1971

71
UNIVERSAL
IC PACKAGING PANEL

INCREASES FLEXIBILITY
IN PROTOTYPING
PRODUCTION AND
FIELD SERVICE

U Series panel with
point to point wiring
saves time, space and money

- Available in multiples of 9 row sections up to 54 rows.
- Each 9 row section accepts 3 plugs for interfacing or input-output connections.
- Accepts 14, 16, 24 and 36 lead Dual-in-Line integrated circuits.
- Double sided board with power and ground planes connected to additional wire wrap terminations outside of contact row.
- Wire wrap terminations with tri-level connection length.

Request complete I.C. folder.

Tel: 617-222-2202
39 Perry Ave., Attleboro, Mass. 02703

Circle Reader Service #46.

FREE 1971 MINIATURE
CERAMIC
CAPACITOR
CATALOG

New from USCC/CENTRALAB! 16 informative pages featuring the latest in miniature ceramic capacitors. Shown are both lead and chip types with higher capacitance values in your choice of NPO and W dielectrics. Included are listings of MIL-C-11015 and MIL-C-39014 capacitors, the HI-REL tests available, typical characteristics graphs and other technical data.

For your free copy, write:
USCC/CENTRALAB, 2151 N. Lincoln St., Burbank, California 91504, (213) 843-4222 — or circle the information retrieval number below.

USCC
U.S. CAPACITOR CORPORATION

CENTRALAB Electronics Division • GLOBE-UNION INC.

WELCOME

Talk about technology

First the fixings—new facilities and the right equipment—and then the people, and as of May 1, Unisem, formerly the Electronic Components Division of United Aircraft, was on its own. Finding operations uncomfortable with ECD's ground rules, United Aircraft decided to spin it off as a separate corporation. Other personnel came from Union Carbide's recently sold semiconductor division, including the new company's president, Jim Paris.

Mr. Mauri Morin, director of marketing, describes his company's capability in MOS/LSI as "a technology that is unique to the industry. We are the only people today that can consistently manufacture MOS/LSI integrated circuits that are completely bi-polar compatible, both in input and output, without any external components at all." Unisem attributes this capability to a simple engineering process that their engineers came across, and it works repeatedly.

In the area of hybrids, Unisem boasts of the capability of putting down ten layers of metal on a ceramic substrate prior to placing the components. The repeatable process allows 30 IC chips to be completely interconnected regardless of the number of layers required to cover all functions.

As for JFETS, Unisem is pushing monolithic dual JFETS, "because they are truly state-of-the-art and because of their leadership position in technology." Although their products are not oriented towards distribution, Unisem believes "the JFETS represent a good market for distribution and provide a good base from which to work into the hybrid market."

RF power transistors constitute an area less state-of-the-art than the other areas the company is working with, but Unisem believes it will find more attention in the near future.

Located in Trevose, Pa., the company now employs approximately 275 people. Believing that they are in a market that is very flexible and that requires a fast response to growth and change, the founders structured their organization vertically. "The man responsible for MOS knows that his job begins with the engineering and continues until the product exits out the back door."

Unisem believes this flexibility is a necessity in the ever-changing electronics market of today.

Circle Reader Service #495.
Great 'Standards' by the Power Professionals

We set out to engineer standardized power modules with some pretty high standards to meet. Yours. We had two things going for us. Nearly four decades of custom power experience... and, the determination to make an off-the-shelf line that was not merely good... but great! It paid off.

North's standard power units offer you real cost economy plus the utmost in reliability. May we suggest you look over our catalog... then take your own measure with a test unit.

Call 419/468-8244 or TWX 419/468-4860.

North Electric Company • Electronetics Division / Galion, Ohio • A subsidiary of United Utilities, Incorporated

Circle Reader Service #48.
Cut the Size of Your Power Supply in Half with Fast, High-Voltage Transistors from RCA.

Conventional 5 V, 25 A Supply

New 5 V, 50 A Supply

For details and application note, write: RCA, Commercial Engineering, Section 59A/UT14, Harrison, N.J. 07029

Circle Reader Service #49.