If you're not happy with your job, there's a way out.

Like everyone else, we need programmers. But that's where the resemblance between SDS and almost any other company ends. We're expanding so fast our organization chart is on a blackboard. In the past year our programming staff has doubled. Fifty more programmers are needed immediately.

So call Carl Kundman collect at (213) 772-4511. Or send him a note telling about yourself. Within a week you might be able to tell your present boss, "I quit."

Scientific Data Systems, A Xerox Company, El Segundo, California.
The B6500 is just one of the exciting things we've been doing at Burroughs

Burroughs is setting the technological pace with new and exciting long-range product concepts which are already enjoying deserved and widespread respect in the marketplace.

Burroughs is one of the most rapidly growing companies in the electronic data processing industry. World-wide revenue in 1968 was $655 million — up 18 per cent. Earnings in 1968 were $43 million — up 24 per cent. Incoming orders for the past two years — up 52 per cent. To handle this impressive growth, Burroughs has greatly accelerated its announced $200 million program for 15 new plants. Now as never before, the future is wide open, for us in new business, for you in new career opportunities.

Our west coast Pasadena, California and our east coast Paoli, Pennsylvania, locations represent the corporate hubs for design and development of Burroughs language-oriented commercial computer systems. Products such as the B500, B2500, B5500 and B6500 have all been designed and built in Pasadena. The B8500 is being designed and built in Paoli, and...we've done this with relatively small engineering and programming staffs in which each member of the technical team has made meaningful individual contributions.

We are now in a tremendous growth situation, but we do not intend to forsake the very thing that we've achieved...product excellence (based on individual contributions).

So, here is what we offer...

- individual recognition
- fantastic growth
- non-defense industry
- professional environment
- east or west coast location

Current openings exist for software and hardware professionals in Operating System and Compiler Development, Design Automation, Diagnostics, and Simulation. We are looking for people with a variety of backgrounds...primarily degreed types in such disciplines as Computer Science, Electrical Engineering, Mathematics, and Physics who have from zero to five years experience. We will gladly consider other qualified candidates. Why not contact us now?

If your location preference is:

EAST COAST
Send your resume to:
G. McGrath
Burroughs Corporation
Large Computer Systems Orgn.
Paoli, Pennsylvania 19301

WEST COAST
Send your resume to:
M. Olson
Burroughs Corporation
460 Sierra Madre Villa
Pasadena, California 91109

Burroughs Corporation
An equal opportunity employer
financial currents

Honeywell’s new computer equipment manufacturing plant at Billerica, Massachusetts, is aiming for a $30 million production per year rate by end of 1969, which would help the company toward its 1975 target of $1 billion in overall computer revenues.

The plant, dedicated June 19 and situated about 30 miles north of Boston, would in six years contain a manufacturing, research and engineering complex employing nearly 3,500 people. It would be the largest facility in Honeywell’s EDP Division.

Should the EDP Division carry its load in achieving the billion-dollar goal, its revenue will have to triple in five years, its sales force double in three, its engineering force double in four, its programmers double in three and its field service people will have to triple in five years.

Besides the new plant, which is headquarters for the division’s Peripheral Device Operations, the EDP division leases or owns space in six other Massachusetts locations.

Automation will reach into Wall Street’s “cage”—the area where large numbers of stock certificates are received and dispatched—when a securities clearance system being phased into operation becomes fully installed this fall at Goodbody and Company.

Aimed at eliminating clerical logjams plaguing Wall Street during periods of heavy trading, the system—AutoCage—will also be offered to other brokerage firms in the hope of reducing “fails”—the inability to deliver certificates on time. A recently formed company, Goodbody Systems, Inc., will market AutoCage, which utilizes a battery of advanced Bunker Ramo video terminals linked into the firm’s RCA third-generation computer. Other securities firms, including the smaller operations, can use the system either in conjunction with their own computers or through the shared-computer concept.

Data Transformation Corporation, an all-black founded firm which specializes in urban data systems and centers, education and aerospace computer consulting, plans to launch an intensive program to computer users with special emphasis on sociological applications. The national computer software consulting firm is headquartered in New York.

A new data and computer systems firm, Daconics, Inc., has been formed in Sunnyvale, California, to specialize in providing turnkey systems to its customers. Goal of the new firm: “The synthesis and amalgamation of all the techniques necessary to make small and medium size computers real working tools where they are first installed.”

Computer Input Services, Inc., a wholly owned subsidiary of Modern Data Techniques, Inc., has been established in Upper Darby, Pennsylvania, to provide computer and computer-related services in the Philadelphia area.

A new computer complex which will link the business community of North Jersey with a network of computer facilities around the nation has been opened in Paramus. Telecommunications will link data processing equipment at Creative Computer Corporation, subsidiary of Creative Logic, to 1108 Univac computer facilities in Mineola, Long Island; Phoenix; Chicago; and San Francisco.

The remote terminal market is the target of Remcon Systems, Inc., of Garland, Texas, a new generation computer equipment company. Expecting to be in production by first quarter 1970 with a family of remote batch terminal systems priced below that of the competition, Remcon says it is preparing “to challenge the top-ranking firms in the computer equipment business for a share of the peripheral business.”

The first Sigma 7 Computer in the Delaware Valley area was unveiled in Open House ceremonies at Comserv, new computer utility in Philadelphia, which claims “a fresh and exciting approach to the exploding field of computer utility service,” and a new philosophy of information.”

MULTI-FACET PROBLEM SOLVING

The keenly honed perceptual acuity of different minds from a variety of disciplines, thinking alongside each other, brings unique insights into problem solving. At Booz Allen Applied Research Inc., multi-faced non-routine problems are the routine challenge. The assignments undertaken by the more than 500 professional staff members cover a broad spectrum of problem areas that require interdisciplinary involvement of a high order.

Typical assignments might include submarine communications, satellite stabilization, environmental analysis, or cost effectiveness. The range is wide; the probing is deep. Over 30 diverse disciplines interact to contribute to unique solutions.

There are no proprietary hardware interests to cloud the objectivity of the individual professional. The integrity of each staff member is unhampered. Personal fulfillment is limited only by the parameters of his self image because the challenges may take him to the edges of his own vision. Advancement can be either through channels of research or client contact. Personnel selection is necessarily limited to the scientist and engineer of rare quality.

If you are interested in the stimulating environment of interdisciplinary activity, you might well investigate your future possibilities with our expanding, internationally-operating organization. For detailed information, write Mr. Ken M. Christians, Director of Professional Appointments.
Programmers/Analysts:

Give IBM a hand and we'll try to make it a free one

If predictable thinking were what we wanted, we'd just program it. But what we're looking for are imagination and ingenuity. If you have these qualities, and you qualify for a job with IBM, you can be sure you'll get to use them.

Immediate openings

There are openings for Programmers/Analysts at IBM Endicott, N.Y.

You'd design, program, test, and install application programs for our new Manufacturing Information Systems. These systems will aid manufacturing and production planning functions at all IBM facilities.

You will be involved with real-time and on-line processing applications, using IBM System/360 programming.

A Bachelor's degree and at least a year's experience are required. You should have a knowledge of basic assembler language and large-scale computer concepts.

Grow with IBM

Today's major growth industry is information handling and control. And IBM is a leader in that field.

Our job is to help IBM improve its manufacturing and production planning functions by applying information handling and control techniques.

If you're a problem-solver who wants a personal sense of achievement for your hard work in a growth company, consider IBM.

Call or write

Dom Santoni is the man to talk to. Call him collect at (607) 755-2855. Or write him at IBM Corp., Dept. CH1006, 1701 North Street, Endicott, N.Y. 13760.

An Equal Opportunity Employer

IBM
ANALYSTS • PROGRAMMERS

CAN YOU DESIGN OR PROGRAM —

... data base for over 300,000 parts?
... a system to fully load and schedule a machine shop?
... a complete order entry system on line to a 360/65?

OR

... mathematical and simulation models of VTOL aircraft?
... software in support of a real-time data acquisition and reduction system, airborne computers or a major retrieval system for technical data?
... a general purpose program for the optimization of analytical and data-defined functions?
... numerical procedures for the solution of complex engineering problems?

Is this the kind of cerebral involvement you want? (and can take in stride?) You’ll have ample opportunity to prove it ... working with our select group of stimulating, far-thinking people. They’re people who are dedicated to producing the most advanced airborne and surfaceborne transportation systems ... and the computer systems to support them.

We’ll give you the tools. Our inventory includes UNIVAC 1108’s and IBM 360’s with graphics and teleprocessing.

So, if you’re looking for growing room, we’d like to talk to you about some pretty exciting career dimensions. We have exceptional assignments at all levels of experience for: Programmers and Analysts in both Commercial and Scientific fields.

Send your resume in confidence, stating salary requirements, to:

MR. L. S. SHALVOY, PROFESSIONAL EMPLOYMENT
conference countdown

AUGUST
19-22 Western Electronic Show and Convention (WESCON), San Francisco, Calif. Contact: WESCON, 3600 Wilshire Blvd., Los Angeles, Calif. 90005.

SEPTEMBER
8-9 Society for Management Information Systems First Annual Meeting, Minneapolis, Minn. Contact: G. W. Dickson, Management Information Research Center, School of Business Administration, University of Minnesota, Minneapolis, Minn. 55455.
8-10 American Institute of Aeronautics and Astronautics Computer Systems Committee Conference, Los Angeles, Calif. Contact: Dr. Eugene Levin, Aerospace Corp. P.O. Box 95085, Los Angeles, Calif. 90045.

OCTOBER
27-29 Data Processing Supplies Association's Fall Meeting, New York, N. Y. Contact: Data Processing Supplies Association, 1116 Summer Street, Stamford, Conn. 06905.
A PHILOSOPHY FOR DIGITAL SIGNAL PROCESSORS

L. D. Ingwersen

Introduction

In recent years, a number of methods for shortening computer time used in digital processing of time series data have been presented in apropos journals and trade magazines. These methods are important to two groups of computer users. The first computer user group processes signals on a time-shared company device or at a data center. He wants to minimize the amount of time which appears on his bill.

The second group of computer users processes large amounts of time series data. This user probably has a computer system(s) which is specially configured to enhance the throughput of time series data analysis problems. As the user's quantity of time series data to be processed increased, many of these users purchased peripheral equipment designed to do specific steps of the signal processing arithmetic at high speeds.

The basic operation to be performed on time series data is convolution. So, many computer manufacturers offered high speed digital convolvers. Customers ordered faster Convolvers as data quantities increased further. These first generation convolvers were hardwired to do convolution operations. They were unable to calculate, with sufficient speed, the more recent processing methods which reduce the total calculation steps for given length or types of input data and for given end results.

The objective of this article is to introduce a signal processing philosophy which will allow the above multiplicity of usage at high speeds. The philosophy is to be implemented in a peripheral computation device. These basic capabilities would give the user a device capable of computing via most methods being used now.

Because new techniques of some merit appear quite often, our machine should be structured such that new techniques can be added quite easily.

The device should be capable of Matrix and Vector algebra and running totals. This capability can lead to calculations such as sum of square in addition to Matrix multiplication and addition.

Speed

All of the above capabilities can be obtained by purchasing a general purpose computer. That places us in the first user grouping. Our peripheral signal processing algorithm module should be capable of very high speed arithmetic operation. A reasonable measure of the convolvers speed is its effective multiply-add time. The philosophy to be described can also be measured in this manner.

The signal processing algorithm module should be capable of a very short optimum effective multiply-add time [125 nanoseconds, for example]. To further enhance our speed, the algorithm module should be a completely parallel device. That is, it should be capable of doing a string of jobs without control from the central processor. This parallelism feature, along with the ability to easily keep abreast of new techniques, leads to the conclusion that the device must be programmable.

Arithmetic Instruction Set

The next issue is the instruction set. If we should decide upon arithmetic instructions which effect only a single multiplication or a single addition, or both, we will be no faster than a general purpose computer. We really need a method where one instruction initiates a large number of multiply and add operations ... a macro instruction. We could use some type of hardwired, read-only memory to control the operation performed by an arithmetic unit. Unfortunately, this would necessitate a hardware memory for each method or operation to be used. Further additions, or modifications, would lead to hardware changes to the processor. Thus,
Ingwersen graduated from the South Dakota School of Mines in 1967. Immediately following graduation he joined Control Data where he is a project engineer in the Development Division for CDC's 3000-1700 computer systems. During the time at Control Data Ingwersen has worked extensively on algorithm modules for the seismic industry.

Fig. 2. Signal flow graph illustrating harmonic analysis of an 8-point input signal array \([f_0, f_1, \ldots, f_7]\) by the Cooley-Tukey algorithm. Solid and dashed lines between circles represent multiplying factors of 1.0 and powers of \(W_8 = e^{-\frac{2\pi i}{8}}\), respectively. [adapted from Rader [McCowan [1966]].]

neither hardware nor software macro instructions provide an adequate answer.

What we really need is a compromise. We need an Execute macro instruction which can combine several arithmetic operations into one instruction. The macro needs to be structured such that we can easily chain very few execute instructions together and develop a complex routine such as a Fast Fourier Transform (FFT) or matrix multiplication.

Our hardwired arithmetic macro should be flexible. Thus, it should have variables which are entered, incremented, decremented, and shifted via non arithmetic instructions. These instructions we shall refer to as Augmenting Instructions.

Below is the equation for the macro Execute instruction used in CDC's MAP II.

Eq. 1 \[C_j = d[R_j] + \sum_{i=0}^{LC-1} \text{Ap. bq } j = 0, 1, 2, \ldots, PC - 1 \]

where: \(P = i \text{ ATF } + j \text{ ASAI}\) and \(q = i \text{ BIF } + j \text{ BSAI}\).

Comparing the equation of discrete convolution [Equation 2] with Equation 1 we see that

\[\text{LC - 1} \]
\[\text{Eq. 2 } C_j = \sum_{i=0}^{1 \ldots PC - 1} a_{iAIF} b_{jBIF} + jBSAI \]

convolution is merely a subset of the macro capabilities. By making ASAI = 0, and \(d = 0\), the macro becomes a convolution instruction.

For further illustration of the use of the macro variables, if BSAI was also zero, and the A Array was equal to the B Array \([a_0 = b_0] \) and \(PC = 1\), the macro becomes a sum of squares instruction.

Augmenting the Execute Instruction

To Augment the Execute Instruction, we will need housekeeping instructions. First, we need a variable load instruction. When executed, this instruction will place its operand field in the designated variable's storage area. This instruction may be used for the initial entry of variables.

Several of the methods in which we may develop interest perform an operation several times with only minor alterations of variables. [A good example of this is the Cooley-Tukey Algorithm (6).] It would certainly reduce our programs if we had instructions to slightly alter macro variables, and an instruction which would allow us to use the same slightly altered macro[s] repeatedly.

To alter variables, we will need shift, add, and subtract instructions. These instructions will alter the previous contents of a variable according to the instruction. In order to use the macro subroutines repeatedly, we need an indexed jump instruction.

\[\text{Ins 1} \]
\[\text{Ins 2} \]
\[\text{Ins a - 1} \]
\[\text{Ins m} \]

The nested indexed jump instructions are Instruction \(n - 1\) and \(m\).
Challenging opportunities exist in the design and implementation of a nationwide inventory control system. Our equipment includes 360/20 and 40, using 2314's. We require 2 to 5 years commercial programming experience, preferably utilizing COBOL.

Further, we would like to be able to nest indexed jump instructions to give us capabilities for as many nested do loops as we can get into the program core area. Thus, the indexed jump instruction will give us subroutining and nesting capabilities.

FFT Applications

Looking at Equation 1, it is not immediately obvious that the Cooley-Tukey Algorithm can be computed in this manner. To develop an FFT from this equation, one looks to Shanks and Cairns (2) where the FFT is developed into a series of particle matrix multiples as shown below.

Figure 2 shows an 8 point example of the decimation in time version of the FFT.

From this graph, note that any component of the intermediate arrays can be described by an equation similar to Equation 3.

Expanding Equation 3 into real and imaginary components:

Further:

Separating this into real and imaginary parts:

Thus, each of the values which constitute A₄ are calculated via a multiply-add operation. In fact, only four macro executes are necessary to compute this version of the Cooley-Tukey Algorithm (for up to 4096 points) in CDC's MAP II.

Feedback Applications

To do the various types of feedback filtering, we need the capability to restoring answers into an array area. This area is equal to the operand area in each level of the FFT. Some forms of recursive filtering require a replace-add to storage areas. This explains the [Rd seen in Equation 1. Note that when the variable d = 1, we do a replace-add to storage and when d = 0, we do only a replace to storage.

Matrix Operations

The formula for vector multiplication is shown in Equation 5.

This is also a subset of the macro execute instruction. The other Matrix applications are also this simple.

2 For further explanation, see Shanks and Cairns paper.
Flexibility

The only goal not fully discussed in flexibility, the ability to integrate new methods easily. One group of methods now being used in digital processing of radar traces places skirts on the frequency domain power or magnitudes spectrum. Here the K^{th} frequency $[Ak]$ is given added power depending on the frequencies on either side.

For example:

$$A'_k = dAk - 2 + eAk - 1 + Ak + eAk + 1 + dAk + 2$$

This is again a subset of Equation 1 and can be done with one execute instruction.

Another example of flexibility is the use of the macro in separating answers from a dual trace FFT operation. In general, the input array for an FFT program contains all real valued points [the imaginary values = 0]. If a second real valued trace is placed in the imaginary locations, both traces can be transformed at one time. The answer separation is done via the equations:

$$A_k = 1/2[\text{RE}(F_k + F_{n-k}) + \text{iIM}(F_k - F_{n-k})]$$

and

$$B_k = 1/2[\text{IM}(F_k + F_{n-k}) - \text{iRE}(F_k - F_{n-k})],$$

where array A was the real trace. An example program for the separation process contains one execute instruction inside two do loops such as those in Figure 1.

Conclusions

The purpose of this paper is to present a method for building a peripheral signal processor. In the introduction, the goals were presented. These goals are listed below in short phrases.

Convolution

Feedback Filtering

FFT

Flexibility

Matrix Applications

The method used to reach the goals is a macro arithmetic instruction. The value of the macro execute instruction stems from the fact that most of the problems incurred are a subset of the high-speed hardwired macro. Other complex problems, such as an FFT, are easily programmed with very few execute instructions. Note that the method with which the FFT operands are placed in core makes variable increment core storage an important factor.

Although the FFT programmed on this device will not be quite as fast as an algorithm
SYSTEMS
Opening at Sperry Gyroscope

... Where You Match Your Abilities Against the More Demanding Kind of Problems

When a problem looks tough, complex, advanced—someone will say "Send it to Sperry Gyroscope". In turn, our reputation attracts the professional who thrives on this kind of stimulation and enjoys the satisfaction of achievement. We are located in suburban Long Island.

SYSTEMS ANALYST/ENGINEER
with a grasp of interfaces

Responsibilities in design and implementation of systems specifications, reflecting user-defined requirements. Able to deal effectively with all levels of management, and to understand interface between traditional business functions such as finance, marketing, manufacturing, and these functions in the context of the overall organization. Degree essential, and at least 4 years in design, programming and implementation of business systems on large scale computers. Advanced degree desirable.

Call collect or send resume to
Mr. Dan McConnell
Phone: (516) LR 4-3291

SPERRY
GYROSCOPE DIVISION
SPERRY RAND CORP.
GREAT NECK, NEW YORK 11020
An Equal Opportunity Employer M/F

Senior Software Specialist

Management position requiring the ability to provide overall systems direction in the development of advanced computer software.

The individual selected will have recent experience in large scale military digital systems from conception to delivery.

Salary open, depending on individual's qualifications in managing state-of-the-art activities.

Company: Southern California aerospace.

Forward resume in complete confidence to:

S/A BOX 801

an equal opportunity employer M/F

module built specially to do the Cooley-Tukey algorithm, the macro algorithm module is still many times faster than a central processor program. Further advantages are realized by freeing the mainframe for parallel operation.

The device described in this paper is a compromise between a general purpose computer and a single purpose algorithm module. It will effect a savings of time in computing a wide variety of matrix and signal processing problems. By making the device peripheral, the module can then be added to scientific oriented systems where its effects would be most helpful.

References

Fee Paid

$10,000 to $40,000

MIS Managers • Systems Managers • Systems Analysts • Programmers Analysts • Programmers

SYSTEMS and PROGRAMMING SPECIALISTS

(212) MU 2-8600

F-O-R-T-U-N-E
Personnel Agency, Inc.
505 Fifth Ave.
New York, N. Y. 10017
Problem 16: Illegal use of the DO loop control variable
Submitted by J. Kittle

```
DO 10 I = 1,10
I = I + 1
WRITE (6,5) I
5 FORMAT (15)
10 CONTINUE
STOP
END
```

What values of I will be printed?

This problem clearly violates the FORTRAN rules; yet, many compilers
don't bother to give a diagnostic. The author claims that this problem
generated four different results on four different computers. On one com­
puter the same problem coded on three different languages (FORTRAN,
BASIC, AID) generated three different answers. Also, eleven computers ex­
ecuted this program without any diagnostics.
What did your computer do?

Dear TROUBLE-TRAN Reader:

This column is now in its second year and, like most programs you and
I write, it must be revised and improved.
The first and most important change is that, from now on, the answer to
a problem will appear on this column two months after the problem is
published. This is necessary, in order to be able to read your comments
before I write the answers. Writing the answer two weeks before a prob­
lem is published does not even give me the opportunity to comment on
typographical errors.
A few months ago, I had asked for volunteers to test the problems before
they are published and I received many offers. Unfortunately, the task of
corresponding with volunteers and meeting publication deadlines is time
consuming (more time than I can spare). My job will be simplified and
the answers will always be correct if I wait until I read the mail.
Another change which may disappoint some of you is the termination
of prizes for correct solutions. This decision resulted from several com­
plaints of readers who always receive their copy of Software Age late. In
fact, many times I receive mail from readers several days before I receive
my copy of this magazine.
Instead of first and second prizes, this column will recognize those who
send correct solutions by publishing their names. You may still profit by
submitting problems which are worth $50.00 each when published. For
the next few months, I would like to see more problems similar to last
month's problem on "Prime Numbers".

USA Standard FORTRAN

Those of you who are interested in purchasing a copy of this document
should write to USA Standards Institute, 10 East 40th Street, New York,
N. Y. 10016 and inquire about the following documents:
- X3.9-1966 FORTRAN
- X3.10-1966 Basic FORTRAN

Sorry I do not know the price. I received my copy free from a CDC
representative.

TROUBLE-TRAN Winners:

$25.00 for submitting May problem: R. A. Howell, The Dow Chemical
Company, BIS-ADS, Hopkis Building, Midland, Michigan 48640.
$25.00 first prize for May: A. I. Wasserman, The University of Wisconsin,
Computer Sciences Department, 1210 West Dayton Street, Madi­
son, Wisconsin 53706.
$15.00 second prize for May: F. E. Miller, 1624 Alabama Street, Lawrence,
Kansas 66044.
$25.00 for submitting June problem: J. S. Blanchard, General Electric Co.,
Ordnance Systems, Room 2468, 100 Plastics Ave., Pittsfield, Mass.
01201.
$25.00 first prize for June: E. S. Jenkins, The Pennsylvania State University,
Computer Building, University Park, Pennsylvania 16802.
$15.00 second prize for June: Mary E. Rafter, State of Michigan, Depart­
ment of Public Health, 3500 N. Logan, Lansing, Michigan 48914.
If you don’t think your progress is keeping pace with your potential come to RCA.

We’ll give you a chance to get involved in hardware design, and work on a variety of important projects.

Salary? We offer rewards and advancement commensurate with your skills.

Write to us for interview if you’ve had experience in language processors, control systems, operating systems, utility systems, communications systems, micro-programming, sales, product planning, central processors, batch terminals, communications controllers, random access, magnetic storage, advanced tape devices, etc.

Contact Mr. T. A. Beckett, Dept. SW-10, RCA Information Systems Division, Bldg. 202-1, Cherry Hill, New Jersey 08101. We are an equal opportunity employer. During ACM Conference call RCA in San Francisco at (415) 771-0745.
The Mini-Minigame

According to Stephen E. Lowe of Van Nuys, California, this game was played in Philadelphia, in 1936.

Arnold Hanauer (White) vs. Black
1. P-Q4 N-KB3
2. P-QB4 P-K4
3. P-Q5 B-B4
4. B-N5 N-K5
5. BxQ? BxP mate

World Champion Paul Morphy (1858–1859)

Morphy, the greatest USA chess player that ever lived, was born in New Orleans on June 22, 1837. He learned the game from his father at the age of ten, and two years later he was able to beat his uncle, the chess king of New Orleans.

At the age of twenty he went to New York, where he gained first place in the first American chess championship. The following year he traveled to Europe, where he defeated every opponent he played, including Adolf Anderssen. His greatest disappointment was the refusal of Staunton to play him.

Morphy returned to New Orleans and declared his brief but brilliant chess career closed, at the age of twenty one. After trying unsuccessfully to take up law (his father was a judge), Morphy gradually relapsed into a state of seclusion and eccentricity, and died of congestion of the brain at the age of forty-seven.

During his illness, Morphy imagined himself persecuted by people and suspected his brother-in-law of trying to poison him. He would see no one except his mother. His mode of life was a daily walk and going to the opera alone, never missing a performance. He would only talk about his father's fortune ($146,162.54), and the mention of chess was sufficient to irritate him.

Solution to Problem 15
1. N-R8, K-Q3; 2. K-Q4, K-B3; 3. Q-Q5 mate

Solution to Problem 16
1. Q-R6! if 1..., PxQ; 2. N×P mate
 if 1..., P-N4ch; 2. Q×P mate

Solution to Problem 17
1. R-Q8ch, RxR; 2. R-B8ch, KxR; 3. N-N6 mate
 if 2..., K-R7 or K-B7; 3. P-N6 mate
Programmers—
We know where you can find a better job.

Work in the most dynamic EDP community in the country where the nation's top companies are hungrily looking for skilled programmers. Like you.

Personal and professional growth is rapid. Salaries are high and the diversification of opportunities is unsurpassed.

We know, because Drew is New York's leading EDP placement specialist. We work closely with over 300 national companies headquartered here who have exciting programming and systems openings. Applications programmers, systems programmers, software programmers—are the people these companies need. Drew has been chosen to supply them with the necessary talent.

Send us your resume and we'll give you the inside story on all of these openings.

Do it today. This could be the start of bigger and better things.

DREW
Personnel Placement Center
160 Broadway, New York, New York 10038
Phone 212/684-8150

Purpose

The purpose of this article is to explain the functions and capabilities of the PL/1 pre-compile time facilities. The main emphasis will be placed on describing how pre-compile time facilities can be used to solve specific classes of programming problems. The technical details of the operation of the preprocessor will be kept to a minimum. The reader is referred to the reference for more details.

Judicious use of preprocessor capabilities can result in many advantages to the programmer. Initially, the dangers of handling large decks of cards can be avoided because entire programs can be placed on a source library, and can be de-bugged by changing individual program statements on the library. This saves the program from the usual dangers involved in handling card decks.

Coding time can also be saved because common routines and record formats can easily be included in any program once they have been written and placed on the library. Under second generation computer concepts the programmer wasn't concerned with the size of his program as long as it was small enough to fit into the machine. However, the machine can be used more efficiently by writing smaller programs so that, in multi-programming, more jobs can be running simultaneously. The preprocessor allows you to compile only those portions of your program that are necessary for a particular run. This is especially applicable in the case of writing utility programs. In addition, the use of pre-compile time facilities opens up an entirely new way to write programs and encourages programmers to come up with imaginative ways to solve problems.

Description of the Preprocessor

The preprocessor is a program that operates on source text before the text is compiled by the processor stage of the compiler. At the preprocessor level the user's source coding is scanned for special expressions called preprocessor statements. These special statements cause the original source coding to be altered in a way specified by the programmer. The altered text then serves as input to the second stage which is the regular compilation. The preprocessor scans each character of the input source coding looking for special pre-compile time statements. If a special pre-compile time statement is encountered, it is executed right there at the preprocessor stage. This execution can cause the scanning of the source program to be altered in one of two ways:
The preprocessor may be instructed to continue its scan from a different point in the program. This can result in one of two possible situations. In the first place, source text that was already scanned can be re-scanned and can be included in the program many times. In the section called Using the Preprocessor there is an example illustrating this point.

The second result that is possible when a re-scan takes place is that portions of the source text may be skipped for a particular run of a program. For example, a multi-purpose program could be designed to perform more than one function. If the program size is to be kept to a minimum only the needed sections of the program are compiled. This type of operation is called conditional compilation.

Replacement activity may be initiated. This capability can best be described by the use of an example.

1. `% DECLARE A CHARACTER;
2. `% A = 'B + C';
3. X = A;

The first statement is a preprocessor DECLARE statement that indicates that A is eligible for replacement wherever it is encountered in the program (all preprocessor variables must be declared). The percent sign is the preprocessor indicator. Statement 2 is a preprocessor assignment statement which assigns the character string 'B + C' to A.

The third statement is a non-preprocessor statement and is not executed at this time. However, because this statement contains a preprocessor variable (A) the current value of A will replace it in that statement. Statement 3 will then appear in the compiled listing as:

\[X = B + C; \]

Once preprocessor statements have been evaluated, they are blanked out and appear in the compiled listing as blank lines.

To summarize thus far, the preprocessor performs two functions, conditional compilation of parts of a program, and the replacement of variable names by some value generated at pre-compile time.

Using the Preprocessor

There are many preprocessor operations available and the syntax of some are similar to the regular PL/I operations; however, the results of these manipulations are nothing more than changes in the status of the scanning and outputting of source text. The rest of this article

PROGRAMMERS SYSTEMS AND BUSINESS

Systems programming is in three areas of application: 1) Develop on-line systems for hospital data management. Must have IBM 360/DOS and assembly language background; 2) Perform test data programming on advanced aerospace projects. Must have CDC 6000 experience; 3) Coordinate between programming and manufacturing organizations. Must have A.P.T. systems experience. BS in math or engineering is required for all above positions.

Business programming: Develop COBOL programs for hospital business offices. Must have degree and two years' experience.

For further information please write H. W. Bissell, Professional Placement Manager, P. O. Box 504, Sunnyvale, California 94088. An equal opportunity employer.

Our National Computer Salary Survey and Career Planning Guide

The all new 1969 Edition of Source Edp's Computer Salary Survey and Career Planning Guide is now available containing up-to-the-minute information vital to every computer professional. Subjects include:

- The annual Source Edp Survey of Computer Salaries broken down by 28 separate levels of professional and managerial classifications ranging up to $75,000.
- A comprehensive analysis of current trends in computer employment opportunities.
- A study of information processing development within major industrial classifications including user and non-user industries.
- An examination of the techniques and strategy in career planning.

All of this information has been compiled and edited by the people at Source Edp—the largest nationwide recruiting firm devoted solely to the computer field. To receive your free copy of the 1969 Edition of Source Edp's Computer Salary Survey and Career Planning Guide, circle the reader inquiry card. Or, to speed delivery, write directly to the Source Edp office nearest you.

For more information, circle No. 4 on the Reader Service Card

SOURCE EDP

record formats or to size. Any valid text is permissible, since the preprocessor only checks for unmatched quotes and unmatched comma delimiters.

In addition to record formats being included in a program, general purpose routines that have to be tailor-made are especially appropriate. An example of such a routine is a heading routine. The author has written a routine that can be included in any PL/1 program and performs the following functions:

1. Opens the standard print file.
2. Writes heading and footing lines when the end of page is reached.
3. Automatically maintains and updates the page count.

All that the user supplies to the program is any heading or footing lines that he wants printed. If none are supplied standard ones are printed. The significance of this type of routine is very simple. Those types of functions are done in practically every program. By writing it once and allowing other programmers to use it, countless programmer hours wasted in duplication are saved.

Another very useful function of the compile time operation is that of substitution. This ability is especially useful when one is writing general purpose utility program. For instance, let us say that we have a program that prints the value of any field from a record. The field and the length of the field are supplied at pre-compile time. The following shows how the program looks before the preprocessor operation takes place:

```
PROCA: PROCEDURE;
% DECLARE VAR1 CHAR, VAR2 FIXED,

% VAR1 = 'FLDA';
% VAR2 = 5;

PUT EDIT (VAR1 (A(VAR2)));
```

Notice that all of the preprocessor statements have been prefixed with a percent sign. This informs the preprocessor that these statements must be evaluated at pre-compile time. Notice, also, that any pre-compile statement must first be declared and that the only two types of variables that are allowed are fixed decimal and character. The length of the variables is not specified. The character variables are of varying length, and the decimal variables have the default length (50). The values are assigned to the two variables as indicated in the program. When the print statement is encountered, the current values of VAR1 and VAR2 are substituted in the statement. In the source program the statements that contained pre-compile time variables show up as blank lines and the substituted values show up in the program:

```
PROCA: PROCEDURE;

% VAR1 = 'FLDA';
% VAR2 = 5;

PUT EDIT (FLDA) (A(5));
```

This technique is extremely useful in writing multi-purpose programs.

NCR CENTURY SERIES

Dayton, Ohio

1. **APPLIED PROGRAMMING DEVELOPMENT:** Programmers and systems analysts experienced in on-line, commercial, industrial, financial or retail applications programming. Positions involve working on third generation equipment. A minimum of one year programming or systems experience is required.

2. **COMPETITIVE PRODUCT EVALUATION:** This position requires preparation of reports concerning the capabilities of competitive computer hardware and software, technical sales assistance to the NCR field Marketing forces, analysis of the computer marketplace of the future and development of strategies to take advantage of the market. An ideal background will include three to six years experience in marketing, either in sales or systems with a vendor, or experience directly in the evaluation area. The successful candidate will have the ability to perceive salient features of computer systems and relate them to NCR products.

3. **FIELD SYSTEMS:** Field analyst with pre and post sales responsibilities to a number of varied installations. The position is in hardware/software technical support of third generation mixed tape and disc. Experience in magnetic file computer most helpful. Intermediary in all major software problems from initial prototype demonstration through the debugging stages. The position will carry full responsibility for the software support of the new Century Series and 315 Systems.

4. **MANAGEMENT INFORMATION SYSTEMS SPECIALIST:** MIS specialist needed to formulate and direct the implementation of information retrieval systems for a major division of NCR. Candidate will have previously directed the development of such systems and been a direct contributor to their design. He will be well versed in all phases of file structure and list processing techniques and be capable of training and directing others in these activities. A degree is required, preferably an advanced technical degree. A minimum of five years experience necessary in MIS development with large computers.

5. **EXECUTIVE SOFTWARE SYSTEMS PROGRAMMERS:** Junior and senior level persons to work in the following areas: design and implementation of advanced time sharing, multi-programming, and multi-processor operating systems executives. Design and implementation of on-line languages, file systems, and compilers to operate exclusively in a time shared environment. You will be working in a free thinking environment with first hand knowledge of hardware available. Prefer a B.S. degree or two years or more systems software experience with large scale hardware.

6. **ENGINEERING DEVELOPMENT PROGRAMMERS:** Software to support state-of-the-art remote terminal design, development and testing. Program design for latest technology equipment. Programs will be written in several languages and executed on various computers. In addition to terminal support, requirements exists in engineering applications. Minimum of one year experience. Previous experience with remote terminal devices is especially useful, although not essential.

7. **EDP PROGRAMMING WRITERS:** Prepare technical manuals and sales material on new or modified systems, devices, equipment or installations. This material is to be used primarily by Customer Service Technicians and Field Personnel for training, reference, education and maintenance. Degree plus 2-3 years experience in EDP writing.

For confidential consideration, forward resume including salary requirements to:

Mr. Ronald L. Lauterbach
Executive & Professional Placement
The National Cash Register Company
Main & K Streets
Dayton, Ohio 45409

AN EQUAL OPPORTUNITY EMPLOYER (M/F)

August, 1969

19
Univac: Where you can help make the world a little bit better

There is no pat solution to the problem of our ghettos. But concerned governmental agencies and private industry, with the help of UNIVAC® computers, are making steady progress toward a healthier environment in the depressed Watts area of Los Angeles.

One of the world’s largest architectural and engineering firms is Daniel, Mann, Johnson and Mendenhall. The company uses a sophisticated UNIVAC computer system to supply its planners with information on population density, housing data and other facts in fractions of the time that used to be required. As a result, Watts residents are nearing a residential and business environment dramatically improved from conditions only a short time ago.

We at Univac know that our kind of people want to feel that they are helping find new solutions to the world’s social problems. So you won’t find yourself doing busy work here. You will be occupied with meaningful projects.

You will be making a real contribution. You will receive compensation and promotion as fast as you are ready, of course. But your ultimate reward will go beyond purely material matters.

If we sound like your kind of company, we know that you are our kind of person. Please look over the job opportunities on the facing page.
because, when high level languages are used, record fields are usually referred to by the use of a symbolic name rather than by relative position from the beginning of the record as is the case when using AUTOCODER or BAL.

The use of conditional statements at the preprocessor level allows the user to compile pieces of his program to satisfy specific situations. This ability makes the source program smaller which in turn can help increase throughput when operating in a multi-programming mode. For instance, suppose a program has two routines, one for printing a record and one for writing a tape copy of the record. The user has the option of either getting tape output, printer output or both. If one of the options is not required, there is no need to compile that particular routine into the program. For this example suppose that all the user wanted was printed output.

PROCA: PROCEDURE;

```plaintext
% DECLARE (I, CNT) FIXED;
% CNT = 3;
% DO I = 1 TO CNT;
% Z (I) = X (I) + (I);
% END;
```

For this run, the statement in the loop would be generated three times since ‘CNT’ was set equal to 3. The following statements would be generated:

\[
Z(1) = X(1) + Y(1);
Z(2) = X(2) + Y(2);
Z(3) = X(3) + Y(3);
\]

The above is a fairly trivial example of a DO loop. To get a little more sophisticated, suppose we had a program that could print up to five fields from a record, but the actual number of fields is a variable that is supplied by the user. This variable is again called ‘CNT’. The names of the fields to be printed out are defined to the program as ‘FLDx’ where x can be any number from 1-5. In this example we make use of the concatenate operator and the SUBSTR built-in function which are both perfectly legitimate operators to use at the preprocessor level. For this particular run, we will print 3 fields out: ‘NAME’, ‘ADDRESS’, ‘ACCT #’.

```plaintext
% DECLARE (I, J, CNT) FIXED;
% CNT = 3;
% FLD1 = 'NAME';
```

Perhaps the most powerful ability of the preprocessor is that of actually generating source text. One way this is accomplished is through the use of the compile time DO loop. Let us first consider a very simple application. Suppose we wanted to generate a particular statement a different number of times depending on the program requirements. Every time that the program was run, a number ‘CNT’ would be supplied to the program indicating the number of times that the statement is to be generated. The preprocessor coding would be as follows:

PROCA: PROCEDURE;

```plaintext
% DECLARE (I, CNT) FIXED;
% CNT = 3;
% DO I = 1 TO CNT;
% Z (I) = X (I) + (I);
% END;
```

For this run, the statement in the loop would be generated three times since ‘CNT’ was set equal to 3. The following statements would be generated:

\[
Z(1) = X(1) + Y(1);
Z(2) = X(2) + Y(2);
Z(3) = X(3) + Y(3);
\]

Perhaps the most powerful ability of the preprocessor is that of actually generating source text. One way this is accomplished is through the use of the compile time DO loop. Let us first consider a very simple application. Suppose we wanted to generate a particular statement a different number of times depending on the program requirements. Every time that the program was run, a number ‘CNT’ would be supplied to the program indicating the number of times that the statement is to be generated. The preprocessor coding would be as follows:

PROCA: PROCEDURE;

```plaintext
% DECLARE (I, CNT) FIXED;
% CNT = 3;
% DO I = 1 TO CNT;
% Z (I) = X (I) + (I);
% END;
```

For this run, the statement in the loop would be generated three times since ‘CNT’ was set equal to 3. The following statements would be generated:

\[
Z(1) = X(1) + Y(1);
Z(2) = X(2) + Y(2);
Z(3) = X(3) + Y(3);
\]

The above is a fairly trivial example of a DO loop. To get a little more sophisticated, suppose we had a program that could print up to five fields from a record, but the actual number of fields is a variable that is supplied by the user. This variable is again called ‘CNT’. The names of the fields to be printed out are defined to the program as ‘FLDx’ where x can be any number from 1-5. In this example we make use of the concatenate operator and the SUBSTR built-in function which are both perfectly legitimate operators to use at the preprocessor level. For this particular run, we will print 3 fields out: ‘NAME’, ‘ADDRESS’, ‘ACCT #’.

```plaintext
% DECLARE (I, J, CNT) FIXED;
% CNT = 3;
% FLD1 = 'NAME';
```

Perhaps the most powerful ability of the preprocessor is that of actually generating source text. One way this is accomplished is through the use of the compile time DO loop. Let us first consider a very simple application. Suppose we wanted to generate a particular statement a different number of times depending on the program requirements. Every time that the program was run, a number ‘CNT’ would be supplied to the program indicating the number of times that the statement is to be generated. The preprocessor coding would be as follows:

PROCA: PROCEDURE;

```plaintext
% DECLARE (I, CNT) FIXED;
% CNT = 3;
% DO I = 1 TO CNT;
% Z (I) = X (I) + (I);
% END;
```

For this run, the statement in the loop would be generated three times since ‘CNT’ was set equal to 3. The following statements would be generated:

\[
Z(1) = X(1) + Y(1);
Z(2) = X(2) + Y(2);
Z(3) = X(3) + Y(3);
\]

The above is a fairly trivial example of a DO loop. To get a little more sophisticated, suppose we had a program that could print up to five fields from a record, but the actual number of fields is a variable that is supplied by the user. This variable is again called ‘CNT’. The names of the fields to be printed out are defined to the program as ‘FLDx’ where x can be any number from 1-5. In this example we make use of the concatenate operator and the SUBSTR built-in function which are both perfectly legitimate operators to use at the preprocessor level. For this particular run, we will print 3 fields out: ‘NAME’, ‘ADDRESS’, ‘ACCT #’.

```plaintext
% DECLARE (I, J, CNT) FIXED;
% CNT = 3;
% FLD1 = 'NAME';
```

Perhaps the most powerful ability of the preprocessor is that of actually generating source text. One way this is accomplished is through the use of the compile time DO loop. Let us first consider a very simple application. Suppose we wanted to generate a particular statement a different number of times depending on the program requirements. Every time that the program was run, a number ‘CNT’ would be supplied to the program indicating the number of times that the statement is to be generated. The preprocessor coding would be as follows:

PROCA: PROCEDURE;

```plaintext
% DECLARE (I, CNT) FIXED;
% CNT = 3;
% DO I = 1 TO CNT;
% Z (I) = X (I) + (I);
% END;
```

For this run, the statement in the loop would be generated three times since ‘CNT’ was set equal to 3. The following statements would be generated:

\[
Z(1) = X(1) + Y(1);
Z(2) = X(2) + Y(2);
Z(3) = X(3) + Y(3);
\]
personal lines

Gerald G. Wisz and Edward N. Murray have been elected Assistant Vice Presidents of Marine Midland Services Corporation ...

Charles G. Abbott has been appointed Vice President in charge of the Consulting Services Division of Data Management Services, Inc. ... Freas-Rooke Computer Center at Bucknell University has appointed George L. Weber as a systems analyst.

Larry Vehorn, Marvin Leeger, Larry Serbie and Errol Rovner have all been promoted to Director, Management Services, at Wellington Computer Systems Incorporated ... CommEd, Inc., a subsidiary of Comrex, has named John S. Williams as Vice President and Technical Director ... Joseph F. Cashen has been named Engineering Director for Industrial Controls Systems at Honeywell's Computer Control Division in Framingham ...

Max Muir has joined Information International as senior project engineer, Richard J. McQuillin as senior analyst—graphic systems ... New at Computek Corporation are Ronald A. Zarski and Kenneth K. Warlick—both as senior project specialists ... James A. Ferguson has joined Infodata Systems, Inc., as Manager, Engineering Software Systems ... Computer Image Corporation has named William W. Jacquish as Director of Special Projects.

Virgil L. Swearingen has been appointed Applications Programming Manager of the Technical Division at Tymshare Corporation ... COM- NET has named Douglas M. Hutt as Manager of Operating Systems in Washington, D. C. ... Joseph E. Izzo is new Director of Western Region Services at Comrex, Inc.

David W. Coats has been appointed Manager, Computer Center Services, by the Field Services Division of Computer Industries, Inc. ... Brandon Systems Institute has appointed Edwin E. Klein as Director of Research and Development ... Tally Corporation announces a new manufacturing management team: David H. Moul- tan, Director of Manufacturing; Bart Parsini, Production Manager; Michael Tremoglie, Production Control Manager.

John Certo has been named Senior Applications Engineer, Product Marketing Group, at Applied Logic Corporation ... Electro-Optical Systems has promoted Donald L. Smelser to Manager of Organization Development ... Appointed Manager of Systems Programming for the Computer Systems Division of Graphic Controls Corporation was Dr. Eamonn McQuade ...

John G. Seay has joined Leasco Systems and Research Corporation as Seminar Consultant. Peter F. Urbach has come aboard as Director of Product Planning for Leasco Information Products ...

Applied Computer Sciences, Inc., has appointed Richard N. Germano as Senior Consultant ... At System Development Corporation, Marc Bendick was named Manager, Engineering and System Evaluation Department, in the Air Operations Division.

COMPUTER PROFESSIONALS:

"HOWARD LEVIN IS PROBABLY THE WORLD'S BEST QUALIFIED*

EDP EMPLOYMENT AGENT"

*MBA, Personnel management, 5 years industrial personnel experience for a major electronics and computer firm; 5 years hands-on computer programming and systems analysis experience; Director and placement counselor for RSVP SERVICES since 1966. His personal services are free and convenient. Why settle for less?

SERVING

PHILADELPHIA, NEW JERSEY, NEW YORK

CALL COLLECT: N.J. (215) 687-4488
PHILA. (215) 922-3993

(24 HOUR LIVE ANSWERING SERVICE) or send resume or rough notes of objective, salary, education, and experience to:

HOWARD LEVIN
Director, Dept. S
RSVP SERVICES
ONE CHERRY HILL MALL (Suite 714)
CHERRY HILL, N.J., 08034

Recruitment, Selection, Vocational Training, Placement for Computer Oriented Companies

PROGRAMMERS

BOLD CHALLENGES IN DATA PROCESSING!

The name of the game is "Do a better job—faster!!" We play it all the time at the Army Air Force Exchange Service—the civilian organization which serves the Armed Forces personnel through "PX" and "BX" outlets—where we seek more and better EDP information to improve our performance in retailing!

If you enjoy a challenge, and the opportunity to show what you can do with excellent equipment and professional associates, your route to success may be with us! We need:

$9,000—$10,000

You'd be writing specific programs to organize and process our management information by the most rapid and meaningful methods.

Our EDP division is fully equipped with 360 MOD 20/30/40 Disk/Tape/Card systems using ALC or COBOL, and staffed with real professionals who know how to use them!

In addition to a good starting salary, you'll receive outstanding fringe benefits, including life insurance, family coverage in our hospital—medical—surgical plan, liberal vacations, sick leave, retirement programs, and opportunity for advancement and promotion throughout our worldwide network. We try to promote from within—so you have an opportunity for great personal growth!

Relocation expenses will be paid.

If you qualify, AIRMAIL your resume, which must include SALARIES EARNED, to:

MR. M. W. CARTER
DEPT. 8-S

ARMY AIR FORCE EXCHANGE SERVICE

3911 Walton Walker Blvd.
Dallas, Texas 75222

(You will be contacted within two weeks.)

Equal Opportunity Employer
new products

A 4800 bit per second, automatically equalized, high-speed data modem has been developed by American Data Systems, Chatsworth, California.

Called, the ADS-448, the new modem eliminates the problem of manual equalization. The receiver automatically equalizes within milliseconds after turn on, and automatically and continuously tracks any changes in prevailing telephone line characteristics without adjustments of any kind. Error rate is said to be five times less than other existing modems.

The new modem transmits and receives data at 4800 bits per second (or any combination of 1200, 2400, 3600, equaling a total of 4800 bits per second), over Bell System Series 3002 telephone data lines. These lines can be either unconditioned, or C1, C2 or C4 conditioned.

Another major feature of the new modem is its front panel display, which provides not only a visual indication of relative Line Conditions, but also of Receiver and Transmitter Data and Baud Rates, Carrier Detection and Receiver Phase-lock.

ADS-448 also incorporates a Loop Back Capability for both Local and Remote operations, as well as other internal self-checks to aid in system trouble-shooting.

For more information, circle No. 7 on the Reader Service Card.

A computer-oriented employee attendance reporting system has just been announced by North Electric Company, Galion, Ohio, a subsidiary of United Utilities, Inc.

According to Norman Hackler, director of marketing, the bottle-neck of time clocks, collection and distribution of time cards and in and out time clock punching are all eliminated with the new attendance reporting system (ARS). Simple insertion by the employee of his own, personal, specially-prepared identification card into an ARS station automatically provides payroll time-keeping information at the computer center.

Employees are issued wallet-sized plastic cards pre-punched with their payroll identification code. When they insert their card into any ARS station, their time-in and time-out is automatically recorded on punched cards, magnetic tape or as type-written copy and then it is fed into the computer.

A single digital clock assures time accuracy, and the entire time-in or time-out procedure is handled within two seconds. Separate attendance reports for any employee or group of employees can be produced at any time as a by-product of the ARS in addition to its providing payroll information input.

For more information, circle No. 8 on the Reader Service Card.

GDI Inc., a manufacturer of computer peripheral equipment, has announced the Model CT-300 Card Transmitter, designed to transmit punched card data at a rate of up to 2400 BPS over standard dial-up or private lines. The system will interface directly with a Bell 202E2 or 202C or equivalent data sets. The interface conforms to EIA standard RS-232B and transmits data in standard bit serial USASCII II language. A directly compatible interface with MDS 1103 and 6403 data recorders is also available.

The model CT-300 is designed for use in applications where the prime requirement is for transmission of punched card data from remote sites to a central location where it can be received by a data recorder, a central data switching unit, or the central computer. In these applications, keyboards and recorders are unnecessary and have been eliminated. This greatly simplifies the system and the result is a low cost reliable system.

A new unit, the Model 208 Control Computer, has been added to the family of mini-computers of Computer Automation, Inc., Newport Beach, Calif. It is an 8-bit, stored program, parallel computer and features a new high speed memory with 2.6 micro-seconds full cycle time.

The Model 208 is expected to find service in concentrating and routing messages, monitoring and controlling traffic and computing service charges. It is also expected to find wide application in data acquisition and process control systems where high speed, reliability, I/O flexibility and programming convenience are important.

For more information, circle No. 9 on the Reader Service Card.
exception errors while testing. DEEP/360, a product of Macro Services Corp., Boston, Mass., eliminates the problem of premature job cancellation caused by invalid data. It repairs faulty data, reexecutes the affected instruction, reports the action via console message, and continues with the user’s program. The purchase price includes a BAL source listing, a job stream for cataloging DEEP/360 into the user’s relocatable library, and operating instructions.

For more information, circle No. 11 on the Reader Service Card.

The PUNCHMASTER is a new automated control from California Computer Products, Inc. of Anaheim, Calif. The unit is attached to an IBM cardpunch or verifier to speed the conversion of source data into punched cards. The time-saving features include: a keypunch buffer allowing the operator to keypunch or verify at normal typing speeds; a program memory capable of handling up to 22 different card formats at one time; automatic left zero fill, with or without two-field accumulator; and an optional instruction display for faster, more reliable operator training.

For more information, circle No. 12 on the Reader Service Card.

IBM has announced several major additions to its tele-processing product line, including a small keyboard terminal for telephone audio-response systems. The terminal is called the 2981 alphanumeric keyboard. It is a special order device that allows users to enter alphabetic and numeric information, as well as queries, into a system/360 and get computer spoken responses over the telephone. Once the user has established telephone contact with the computer, he keys in his message, selecting from among 48 keys. The 26 alphabetic keys are arranged sequentially so that anyone can locate a letter quickly. There are also 22 keys representing numbers and special characters. As each key is depressed, an audible tone confirms that the information has been sent to the computer.

The 2981 uses elastic diaphragm switch technology (EDST)—flat, prewired switches that eliminate mechanical key linkage. The absence of moving parts in this technology is expected to keep maintenance requirements to a minimum.

For more information, circle No. 13 on the Reader Service Card.

At Pratt & Whitney Aircraft, world’s leading producer of dependable jet engines, you will find everything your analytical mind desires. Myriad business applications probing ever deeper into every facet of this vast aerospace organization. Manufacturing • Product Support • Engineering • Finance • Purchasing • Advanced Planning • Operations Research . . . and much more. Ours is one of the most advanced and sophisticated business information computer complexes in the country. We have come as far as any. We will go further than most. Projects vary from simple card systems to complex on-line systems involving, for example, a Full Production Information System, Automated Financial Analysis and Reporting, and an Integrated Material Control System which includes procurement, forecasting and scheduling. Tools include 360 models 20, 30, 40 and 50; tapes and random devices; data collection equipment; on-line facilities; DOS and OS.

The total commitment of Information Systems to serving the needs of management at P&W means real-time opportunity for EDP professionals with promise. Our Systems-Programming Analysts are exposed to virtually every phase of the business. They get to move around, and they get to move up . . . just as fast as their talents will take them. Isn’t it time you talked to P&W?

If this sounds like your kind of action, why not send your resume with salary requirement to Mr. H. M. Heldmann, Professional Placement, Office A-43, Pratt & Whitney Aircraft, East Hartford, Connecticut 06108. An equal opportunity employer.
Gilbert Lane's job is to get you a better one

Our emphasis is on the total man...what he wants in a career and for the future. It's a principle that has helped thousands of candidates to reach top positions.

One of the companies we represent enjoys...and will continue to enjoy...an impressive growth rate. The firm's management—progressive in personnel policies as well as production—is looking for men on the way up in the field of computer technology.

We strongly suggest that opportunities for professional growth are greater with this organization than those you may have at present.

These positions are with a multi-plant international organization with an unusually fine growth pattern.

Fees and other expenses paid by our client.

Call or submit resume.

Gilbert Lane
Personnel Agencies, Inc.
Lake Success, N.Y. 11040
3000 Marcus Avenue
Newark, N.J. 07102
10 Commerce Court
New York 10017
505 Fifth Avenue
Pittsburgh, Pa. 15222
903 North American Rockwell Bldg.
Washington, D.C. 20036
1025 Connecticut Avenue
Offices in other major cities

Free ...

Pocket Data Decoder ... Dozens of uses daily. Unique data decoder solves information problems instantly. Yours for the asking. No obligation.

For more information, circle No. 17 on the Reader Service Card.

PLUS, a Program Library Update System has been announced by Cullinane Corp., Boston, Mass. The program provides for storage and maintenance of source language programs on tape or disk. Any program language may be stored or intermixed in the file including COBOL, Assembly, PL/I, and FORTRAN. Test data decks, object decks, and job control language decks may also be stored in the library. The program also will generate a job stream file with job control setup to compile or assemble modified programs.

One feature of the program is the generation of a Library Index Report following each run. This report is a table of contents of the PLUS program library. It includes such information as a Version Number automatically given to each program and increased with each entry of an entirely new program version, and a Modification Number given a program and increased each time any change is made. The Program description, the date of last revision, the language, the author, the number of statements, and the number of changed statements are also reported.

In addition to the Library Index report, two other reports are produced. A Report of Changes itemizes changed statements, providing a valuable historical record of all maintenance activity on a program. A Job Schedule Report, listing job control setups, is produced when this facility of the program is used. PLUS also reproduces all or portions of any source programs on the printer listing or on punch files.

For more information, circle No. 14 on the Reader Service Card.

A new unit, the DIMBO-10, manufactured by BCD Computing Corp., Deer Park, New York, is a self-contained electronic information storage and retrieval system. It utilizes a disk memory for information storage and has optional input-output configurations.

The DIMBO-10 system will store 1200 to 40,000 32-character records; 64-character or larger record lengths, and larger file capacities (practically without limit) are available as options. Other options include magnetic or paper tape input and output for file loading and audit trail, an arithmetic capability, and remote consoles for inquiry into the central file.

Average access time is less than 0.1 second. Standard operation includes: ENTER a new item; DELETE an item; SEARCH for an item; ALTER an item and restore it; and PRINTOUT the entire file.

DIMBO-10 is intended for the user who must search a large list of entries in order to retrieve information on one of them. A search consists of locating an item from its identifier which is then typed in the DIMBO-10. The system locates the proper item and types all the stored information for the user's study. The item may then be altered and returned to the file or deleted and a new item entered.

For more information, circle No. 15 on the Reader Service Card.
S/A market place

130,000

where you can reach programmers, mathematicians, analysts and EDP managers

SITUATIONS WANTED

TAX AUDITOR without EDP exp. seeks part time work, Los Angeles area. S/A Box 803, 2211 Fordem Ave., Madison, Wis. 53701.

EMPLOYMENT AND SEARCH COMPANIES

SCIENTIFIC PROGRAMMER

Offering a stimulating variety of work with primary emphasis directed toward the analysis and programming of reactor engineering and physics problems. Fortran programming utilizing IBM 1130, 1800, 360/40, 360/50, 360/75 and CDC 6400. BS or MS degree in mathematics, physics or engineering with 2 or more years scientific programming experience required. Resume should include references and salary. Write or phone Frank Nitzberg, Personnel Coordinator, phone (313) 962-9510. ATOMIC POWER DEVELOPMENT ASSOCIATES, INC., 1111 First Street, Detroit, Michigan 48226. An Equal Opportunity Employer.

DATA PROCESSING POSITIONS IN THE SOUTHWEST

Contact:

DATA PROCESSING CAREERS
Richard Kemerly, Suite 1109, Towers West, Dallas, Texas 75201. Phone: (214) 694-8296.

 PENNSYLVANIA, NEW JERSEY, DELAWARE
contain diversified opportunities for professional talent in all functions of EDP. If you desire to pinpoint your search in our area, contact us. With 9 highly effective years behind us we need not employ gimmicks nor shotgun duplicating techniques. We are large enough to have extensive knowledge of the market yet disciplined enough to remain personal and confidential. All fees paid. K. J. Gillespie, ANDERSON-TAYLOR Associates, 230 S. 15th St., Philadelphia, Pa. 19102. (215) 26-6333.

PROFESSIONAL SERVICES

ADD/SUBTRACT 6-DIGIT HEXADECIMALS in seconds with 100% accuracy. The pocket HEXADDER, $15. Free brochure from HEXCO, Dept. SA, P. O. Box 55588, Houston, Texas 77035.

CONSULTANTS: Commercial applications 1400, 360. Conversions, programming, systems design, testing, documenting. Job or contract. Computerized business mailing list, United States, $35 per 1000 names. ALLIED COMPUTER CONSULTANTS, Box 133, Fairlawn, N. J. 07410.

EDP RESUMES

A comprehensive manual on how to write your own resume, written especially for EDP personnel. Send $4.25 to K & H ASSOCIATES Dept. S. P. O. Box 265 Horseheads, New York 14845

WE WILL CONTRACT system planning, application, or system work to $10,000. We possess a complete background in statistics, linear programming, mathematics, civil engineering, processors, business data systems, data retrieval/processing; with a unique knowledge of OS/360 software and hardware. For more information in your field, write: SYSTEM PLANNING AND SOFTWARE MANAGEMENT, S/A Box 802, 2211 Fordem Avenue, Madison, Wisconsin 53701.

PRODUCTS

WANTED—USED CARD FILES: MacDonald, Box 27, 68—501, Miami, Florida 33168.

Coming in September

SA’s Annual

Guide to EDP Employers

CLASSIFIED ADVERTISING ORDER FORM

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35

Words

$

NAME

ADDRESS

CITY STATE ZIP

Signature

WORD COUNT: Includes name and address (unless blind ad). The name of the city (Des Moines), state (New York) and zip code are counted as a total of two (2) words. Each abbreviation, initial, single figure or group of figures or letters count as a word. Symbols such as 35mm, COD, AC, etc. count as a single word. Hyphenated words count as two (2) words.
You probably aren't our kind of engineer.

No offense intended. We just know what we want. We're computer memory specialists. If you know our products, you know we're good.

Not surprisingly, we're growing fast. So we need engineers. Good minds. Good technical backgrounds. But that's not all.

You see, back when we were small we learned an important lesson. Each of our engineers had to get involved in everything: research, design, costing, marketing, production - you name it. Being involved, they became committed. And worked better for it.

That's how we got our reputation for doing what we do better than anyone else. We intend to keep it.

That's why we take such a close look at all applicants for our engineering positions. We'll talk to you about interests and aspirations and experience. And, at some point along the line, we'll draw this diagram:

It's the essence of what we mean by our kind of engineer. An interest in and understanding of all aspects of our company's activities. You could call it balance. Whatever it is, it works for us.

What can we offer you?

First, a good salary. (We want the best and we're willing to pay for it.) Second, the opportunity to advance rapidly along either engineering or administrative lines. (Lots of outfits will tell you this, then stick you in an isolation ward. We mean what we say.) Third, the opportunity to grow with the best engineering staff in the industry. Fourth, the satisfaction and pride of seeing the products you work on produced and sold.

We make memory systems and stacks and planes and printed circuits. We're looking to the future with research in plated wire and films. And we're in the process of introducing a brand new product: MAC 16, a compact, inexpensive Multi-Application Computer. Our division is going to keep right on growing. And we'll need even more of our kind of engineers.

If we sound like your kind of company and if you have an M.E. or E.E. degree and computer-related experience, let's get together.

Write me a letter: Mr. E. A. Gage, 6201 E. Randolph Street, Los Angeles, California 90022. Or, call me collect at (213) 722-6810.

Naturally, we're an equal opportunity employer.

LOCKHEED ELECTRONICS COMPANY
Data Products Division • Lockheed Aircraft Corporation

28 Software Age
CONFIDENTIAL INQUIRY

Your original copy of this form will be retained at the offices of SOFTWARE AGE and will be used for no other purpose than to notify the specific firms which you have checked (on the reverse side) of your interest.

TYPE OR PRINT CLEARLY FOR PHOTO REPRODUCTION

JOB DESIRED:

List computer hardware knowledge (names of systems, tape, disk, terminals, etc.):

Programming specialties and years of experience (commercial, scientific, theoretical, experimental, analog, etc.):

Systems programming on which you have had development experience (compilers, assemblers, executives, monitors, O.S., etc. Indicate for what computer):

Programming languages used and extent of experience (COBOL, FORTRAN, etc.):

Applications programmed (aerospace, banking, insurance, math subroutines, compilers, etc.):

Systems analysis experience (card design, flow charting, operation analysis, etc.):

EDP management experience (include years and number of people reporting to you):

SALARY: ___________________________ (current) ___________________________ (desired)

DATE OF AVAILABILITY: ___________________________

EDUCATION: Indicate major as well as degree unless self-explanatory.

Degrees ___________________________ ___________________________

Years ___________________________ ___________________________

Schools ___________________________

EMPLOYMENT: Indicate present employment and previous jobs below.

Employer ___________________________ ___________________________ ___________________________

City ___________________________ ___________________________ ___________________________

Years to to to

Title or Function ___________________________ ___________________________ ___________________________

Name ___________________________ Signature ___________________________

Home Address ___________________________ (city) ___________________________ Home Phone ___________________________

(state) ___________________________ (ZIP code) ___________________________

Security Clearance ___________________________ Location Preference ___________________________

Marital Status ___________________________

Military Status ___________________________

BE SURE YOU HAVE CHECKED ON REVERSE SIDE THE COMPANIES YOU WANT TO SEE THIS INQUIRY.

PUT FORM IN STAMPED ENVELOPE AND MAIL TO:

SOFTWARE AGE

MAGAZINE

P. O. BOX 2076

2211 FORDEM AVE., MADISON, WIS. 53701
check your interests here

Fill in the confidential inquiry form on the other side of this sheet. This form provides all the information advertisers require to screen applicants. If further information is desired, you will hear from the advertiser direct. Then, check below the boxes of those companies to which you want copies of your form sent. Mail to SOFTWARE AGE, P.O. Box 2076, 2211 Fordem Avenue, Madison, Wisconsin 53701. (Please do not send us your own resume. We will only process this form. A new form must be filled out for each issue in which you are answering ads.)

EMPLOYMENT AND SEARCH AGENCIES

- 22. Drew Personnel Placement Center
- 23. Fortune Personnel Agency
- 24. Fox-Morris Associates
- 25. Robert Half Personnel Agencies
- 26. Input, Inc.
- 29. LaSalle Associates
- 30. Lawrence Personnel
- 31. Management Scientists, Inc.
- 32. RSVP Services
- 33. Source EDP

PRODUCTS AND SERVICES

(Use Reader Service Card)

- North American School of Systems & Procedures

□ I do not now receive S/A. Please enter my FREE subscription.

Name.. Street Address..

City.. State... Zip Code........

Prime Experience in What Industry.................. My Specialty

□ Technical Degree □ Non-Technical Degree □ No Degree

Year Born.. □ I Have Analog/Hybrid Experience

P. O. Box 2076
2211 Fordem Avenue
Madison, Wisconsin 53701

Software Age