INSIDE:

- Making Basic-2 Programs Sharable
- The RSTS/E Benchmarks Part I
- RSTS/E System Management
- DEB, a Basic-Plus 2 Mini-debugger
- Analyzing and Allocating Data Processing Resources
- DIRECT.TEC
- UK Decus
- JBSTAT
- The VAX-SCENE CONPAX: Conversion of PDP-11 Assembly Code to VAX-11 Native Mode
- RSTS Disk Directories, Part 5
- The RDC Revisited
- CASE - 1578 C.M.
- ODT.DOC (Macro Man)
- Address Four Megabytes with an 11/34
- RSTS/E Monitor Internals, Part 2
- Notes From a Ride on the AMTRAIN(ing)
- More...
Interactive Data Base Management

INTAC is a new concept for data storage and retrieval that features an easy-to-use question and answer format, built-in edit rules, multi-key ISAM data access, interactive inquiry and a unique report generator.

Financial Modeling

MAPS, recognized worldwide for over five years as a leader in financial modeling and reporting, is used to construct budgets, financial forecasts, consolidations and "what if" analyses.

Two Distinguished Products for PDP-11...
And now VAX Users

INTAC™
MAPS™

Ross Systems, with over seven years of proven capability, now offers these two products to current and prospective PDP-11 and VAX users. INTAC and MAPS enable business managers to produce instant reports themselves, and relieve DP managers from the pressures of special requests.

Ross Systems offers these management tools on our timesharing service, for license on existing computers and as part of a complete, in-house timesharing installation.

Call us collect for more information.

1900 Embarcadero Road, Suite 208, Palo Alto, CA 94303 • (415) 856-1100 • Other offices in San Francisco and Los Angeles
Reliable, Economical Printer Systems
At 200, 300, 600 & 900 lpm.

For DEC, Data General, Hewlett Packard, Texas Instruments and most other popular computer systems.

- Low Cost.
 Initial low purchase price, plus the long-term savings resulting from inherent reliability.
- High Performance.
 At 200, 300, 600 and 900 lines per minute.
- Quiet.
 Set new industry standards for impact technology.
- Reliable.
 Built for heavy-duty applications.
- Superior Print Quality.
 Achieved through fully formed steel band technology.
- Easy-to-maintain.
 Latest microprocessor technology and diagnostics make these printers the products for the '80s.
- 30-Day Delivery.
- The Industry Leader At Your Service.

Guaranteed Compatibility.
SSI's interfacing technology guarantees compatibility with DEC, DG, HP, TI, Perkin Elmer and most other processors.

Parallel or Serial.
SSI's pioneering approach in interface technology allows you the choice of parallel or serial operation. In serial interfacing, SSI also offers both asynchronous and the synchronous needed for IBM and Burroughs Polk and Select, plus others.

Nationwide Service.
Unmatched quality of service through SSI's innovative central dispatch control system.

Band-Change Flexibility.
Many different bands provide many different typefaces with a single change by the operator. Special bands available also.

I'd like to know more about the following printer system(s):
- 200 lpm impact matrix
 - The B series (300 or 600 lpm band)
 - High speed 900 lpm band
 - The 2200 series (300, 600, 900 lpm drum)
 - The 2550 (1500 lpm charaband)
 - QT series (600, 1000, 1200 lpm heavy duty band printers)
 - Serial Interfacing (synchronous or asynchronous)
 - Parallel Interfacing

My computer is a_________________________

My requirements are: ___Immediate
___3-6 months ___Information Only

Name_________________________
Title_________________________
Company_________________________
Address_________________________
City_________________________State__________Zip______
Telephone_____________________

Southern Systems
The Printer System Problem-Solvers
2841 Cypress Creek Road
Fort Lauderdale, Florida 33309
(305) 979-1000; (800) 327-5602
Telex 522135
Everyday we find the pressure to produce is being pushed on the programming staffs around the world. Programmer productivity is the name of the game.

Application Development is a time consuming process, and without the proper tools, even the best programmers can get lost in the shadows.

Amcor has the solution for the productivity problem... AMBASE, our revolutionary Application Development System and DBMS. AMBASE is designed to work with DEC PDP-11 computers utilizing the RSTS/E operating system.

AMBASE is helping technical staffs worldwide to improve their productivity from 100-900%. Jobs that took 10 days are being completed in 1 day with AMBASE.

So don't get lost in the shadows, let AMBASE put you out in front.

For more information on AMBASE, or any of AMCOR's complete line of data base oriented applications, give us a call, or use the coupon provided below.

Software for DEC RSTS/E Systems

Please forward information on the following systems:

- AMBASE
- Accounts Receivable
- Accounts Payable
- GL/Financial Mgt. (AMFACS)
- Payroll
- Order Processing
- Inventory Control
- Sales Analysis

Name ________________________________
Company ________________________________
Address ________________________________
City ___________________ State ______ Zip ______
Telephone ________________________________
Computer Type ______________ Operating System __________________

*DEC is a TRADEMARK of Digital Equipment Corp
Contents

MAKING BASIC-2 PROGRAMS SHARABLE .. 8
Dave Kachelmyer and Dan Esbensen
Sharing programs has been a DEC Plus for some time, NOW you can do it in Basic Plus 2!

THE RSTS/E BENCHMARKS — PART I ... 12
Richard A. Marino
Maybe someone knows more about RSTS and hardware, but we think Richard is tops-11.

RSTS/E SYSTEM MANAGEMENT ... 14
Jeffrey R. Harrow
Jeff continued his series on System Management, and seems to dig out interesting management problems.

DEB. A BASIC-PLUS 2 MINI-DEBUGGER 20
Steven L. Edwards
Another wonder from our friends at Software Techniques, we’re STILL speechless.

ANALYSING AND ALLOCATING DATA PROCESSING RESOURCES 32
Mike Draper
RAXCO and Company are RSTS Professionals.

DIRECT.TEC ... 36
David Spencer
How Teco? This shows some of the power of this language for language sake.

UK DECUS, 1981 CONFERENCE .. 40
Pauline Noakes
Our correspondent from the UK reports here.

JBSTAT .. 42
François Dubois
North of the Border, and in English. This status is unique, for example: look at what it tells you about your KB states.

THE VAX-SCENE ... 52
CONPAX: Conversion of PDP-11 Assembly Code to VAX-11 Native Mode
Stephen F. Heffner
Help is here on conversions. By the looks of things we will see more from Steve and his company.

VAX NEWS ... 56
LD1: [1,3] AMORT.BAS ... 57
R. Frazer
Another gem from NDD and R. Frazer

RSTS DISK DIRECTORIES, PART 5 62
Scott Banks
Scott continues his tutorial on directories structure. Read on, your being taught by the finest.

THE RDC REVISITED .. 71
Carl Marbach
We complained and they answered. Managed to fit some skiing in also. Our DDC Internals article.

ODT.DOC .. 74
Bob "MACRO MAN" Meyer
MACRO MAN: When macro doesn’t work, relief is spelled O-D-T.

CASE - 1578 C.M. ... 76
Joel Schwartz, M.D.
Does he specialize in computer psychiatry?

ADDRESS FOUR MEGABYTES WITH AN 11/34 80
ABLE
An 11/34 that doesn’t swap!

RSTS/E MONITOR INTERNALS, PART 2 82
Mike Mayfield
This is beginning to read like a book on RSTS internals, maybe it is.

NOTES FROM A RIDE ON THE AMTRAIN(ing) 90
Peg Leiby and Sue Smith
Two Basic Plus programmers from Philadelphia visit the wild west, and attend AMBASE training.

Coming . . .

- Scott Banks on Disk Directories
- Bob "Macro Man" Meyer on How to Macro
- Technical PDP-11 Internals
- Continued RSTS Internals
- The RSTS Pro Installs Their Computer
- GSYS.BAS
- Disappearing Files
- RSTS Software Hall of Fame
- VAX X.25 Communications
- Modeling the VAX
- EXTEND.BAS
- How to Stretch Your 11/40
- More . . .
From the editors... waiting...

Carl Marbach

Version 7.0 was in its time a neat piece of software. It had all kinds of good new things: big, better, faster FIP. Data caching, QSTATS, lots of new MODES. ANSI magtape routines and lots more. It was a definite improvement over V6C. Sure, it had its problems, but these would be fixed in the next release — wasn't that just a year away?

In the Golden, Olden days, when you purchased a one year support contract for RSTS it guaranteed you at least one new release. We became used to a release cycle of about 1 year. Okay, it slipped once and a while to 18 months, but the clear inference was that we could expect releases at about 1 year intervals. In 1975 we were running V6A. In 1980 we were through 6B, 6C and 7.0 giving us 4 versions in 5 years; pretty close to the cycle we were describing above.

December will mark two (2) years since V7.0 hit the streets and the best DEC GUESS is that the next version is still about 1 more year away! Three years! What's going on? Hardware hasn't exactly been quiet over these 2 years: RMOS, 11/24, immediate delivery (!) on LS120's and VT100's, MCS memories and more.

Maybe V7.0 is so solid it doesn't need a new release. But what about the 11/70 small buffer problem, the 11/34 task building problems (it's still task building!), the RMOS support (it costs extra), 11/24's are anyone's guess, Stats that don't work and worse (they give erroneous figures) and more. Why is it that RSX seems to get the new bells and whistles first; DECNET, 2780 support, FORTRAN 4 PLUS.

Of course the commercial marketplace has made RSTS one of the most active operating systems around. There is Word Processing, List processing, Data bases, Queueing systems, backup packages, magazines, disk structuring packages, modeling systems, languages and editors — all from sources other than DEC. Just look through this magazine for all the good people working for your money.

Insiders tell me that all this time is being spent figuring out the BEST solution to these problems. That they will be worth waiting for. How do all of you out there feel about paying for three years for support and not seeing a new release? We think that although two women can't make a baby in less than nine months, two RSTS developers could produce a new version of RSTS twice as fast as one. Message: get off INDENT, GIGI and frills; make RSTS work the way it should.

What are you waiting for?

Dave Mallery

The big news from Miami is that two years of stone-walling has ended. DEC is talking to us again! One is tempted to attribute the thaw to the effect of tropical breezes and sunny skies on those inhabitants of the frozen north, but I'd rather think that there have been some fundamental changes in policy.

This was obvious right from the start. As soon as the opening salvos of what I had predicted would be "Buffer Wars" were fired, the development folks informed us that they were promising relief in the next release and would tell us more at a later session. The next morning, at a session entitled "Building a RSTS Monitor", Andy Riebs from the development team disclosed two approaches that were in the works to provide the relief.

First, a new memory pool would be established to hold WCB's and FCB's. Secondly, selected code segments would be re-worked to utilize "I" and "D" space—a hardware feature never before used by RSTS. Basically, this presents the developer with a new approach to the buffer pool and the like. Please be very clear that nothing in this article, as well as nothing said at Miami represents a firm commitment by DEC. It is imperative that we accept this information in the spirit in which it was given.

There was also some bad news. The next release is more than six months away. This symposium was highlighted by many excellent user papers. Mike Mayfield from Northwest Digital Software delivered a six hour marathon on Monitor Tables to large, late night audiences.

Mark Diebert from Squibb gave an excellent paper entitled "So Your Disk Is Irrevocably Corrupt" shedding a great deal of light on one of the more ominous init error messages.

Joyce Hayes and Steve Stepanek gave a three session TECO wonderland tour. It's amazing how some things never die. I have attended more funerals for RSTS and TECO than I care to remember. I heard about one site, in Rochester, NY, that uses about forty

...continued on page 28
NOW AVAILABLE FOR PROMPT DELIVERY FROM

HAMILTON

DEC PDP 11 and VAX-11/750
FAMILY OF MINI-SYSTEMS

Software Packages Include:
- Word Processing
- Inventory Control
- Information Storage and Retrieval
- Retail Office Supply
- System Resource Accounting and Performance Monitoring
- File Security & Incremental Backup System
- Container Optimization

RENTAL • SALE • SERVICE • SOFTWARE

The TOTAL Answer

The TOTAL Answer

HAMILTON

HAMILTON

Rental

One Penn Plaza, New York 10119
Pearl Court, Allendale, New Jersey 07401
415 Horner Avenue, Toronto M8W4W3

TOLL FREE

800-223-2430

In New York call: 212-695-1936
In Canada call: 416-251-1166

LONDON PARIS DUSSELDORF CALGARY

DEC, PDP, VAX are trademarks of Digital Equipment Corporation
Dear Dave and Carl,

My subscription to your excellent magazine is now being handled through Pauline [Noakes] in the U.K. As an "original" subscriber, you gave me my first free copy at DECUS San Diego, 1979. I would like to say that the articles have been getting better and better with each issue (I like the new VAX section — keep it going!) and it's a shame that you only publish quarterly. Many thanks.

Yours sincerely,
Collin Shaw, Berkshire, England
P.S. I also appreciate the MACRO-11 sections!

Thank you, Collin, it's nice to know that you've been with us since Volume 1, Number 1. We made a wise investment and so did you.

—

Dear Carl,

I was pleased to see my article that you published in the May/June 1980 issue of the RSTS Professional. You might be interested to know that since it appeared, I have moved to Memphis, Tennessee, and become a software specialist for Digital.

I think very highly of your magazine. The articles are very informative and especially useful for new RSTS users. I strongly recommend the publication to everyone.

Might I suggest a topic for an article sometime? I'd like to see a review of the word processing packages available that run under RSTS. Technical details such as effect on system load, run time system versus multiple copies of a program, etc., would be useful plus an evaluation of user ease, stability of product and the company marketing the product.

Thanks again.

Sincerely,

Susan Blount Duff, Software Specialist

We like your suggestions, Susan. Stay in touch.

—

Dear RSTS Pro,

Early one Saturday, no, late Saturday nite, now early Sunday morning, I found myself reading back issues. The (obvious) motive: Plagiarism.

Nonetheless, I discovered a picture of a Datame­dia DT-80 in Vol. 1, No. 1, but I couldn't find a later reference. Has anyone collected that T-shirt yet?

We have 3 DT-80's in house, and 2 have blown... I Have someone attempt to implement the code listed in the article and following the installation procedure. To wit:

```
TTOPNF: (etc)
  BIC / A<63, *2>, R3

TTSYSF: (etc)
  BIC / A<177>, R2
```

Dave Kachelmyer

North County Computer Services, Inc.
Escondido, CA

Pretty good. Dave. However, the caption that tickled Dave Mallery the most was:

"Small Buffers? — Oh, I've got 2 of those."

Our winner, therefore, is Kim Branch, Daniel International Corp. We're sending Kim a small (but valuable) RSTS Professional Tee-shirt.

How TECO? Why TECO! Who TECO?

Dear Dave:

I thought you might find the attached advertisement from today's Los Angeles Times, amusing.

Sincerely,

Richard A. Marino, Vice President
Data Processing Design, Inc.
Placentia, CA

-continued on page 35
VAXination for DEC* Users.

System Industries disk storage. For immunity against high prices, slow delivery and limited choice. If your VAX-11/780* is waiting for RPOX/RMOX drives, you stand to lose a lot more than valuable time. You stand to lose on price/performance, too.

We can help. We’re System Industries, the world’s largest independent supplier of complete disk systems for DEC users.

Add on or trade out, we’ll save you big money. We’ve been saving DEC users big money on large-capacity disk storage for more than 10 years. And we’ve made it easy.

We can simply add to your present disk storage. Or we can trade your RPOX/RMOX drive(s) for one of our superior disk systems. Whichever way you choose, you can count on 100% software transparency. And substantial dollars saved.

Get a wide choice, including Winchester-SMD combos. Shared data base with multiple CPUs . . . nonstop operation featuring multiple drives . . . one of our many field-proven system configurations is ideal for your VAX disk storage needs.

We even offer Winchester-SMD combos that pack 900 Mbytes into the same floor space you may be using for 300 Mbytes (RM04/05). By trading your RM04/05 for our Winchester-SMD combo, you can net an additional 600 Mbytes. And pay no more than the cost of an RM04/05 from DEC.

Worldwide service and 30-day delivery. We’ve built our entire business around fast, effective service. Beginning with responsive delivery—30 days ARO—and following with customized service contracts, we provide the support to get your system up fast. And keep it running.

So why wait for DEC. Take the System Industries VAXination today. It’s a sure cure for slow delivery and poor price/performance. For details, contact the sales office nearest you. Or use the coupon.

*DEC and VAX-11/780 are trademarks of Digital Equipment Corporation.
Making Basic-2 Programs Sharable
Dave Kachelmyer, Dan Esbensen, North County Computer Services, Inc., Escondido, California

ABSTRACT
With the advent of RSTS/E V7.0, sharable programs provide a simple solution to the problem of large, concurrently used programs degrading system performance.

INTRODUCTION
At our installation, there are several 31K custom data entry programs that are used by 13 to 18 people throughout the day. These programs place a sizable load on our system because of the large memory requirements, RSTS scheduler overhead, and swapping overhead.

The multi-user feature of Task Builder was used to solve this problem. BASIC-2 program pure areas were extracted from the program and placed in a resident library to be shared by all users of the program. With the pure areas removed, the program size dropped to 7K. Converting these programs resulted in increased system performance because more memory was available, and swapping overhead was greatly reduced.

SHARABLE PROGRAMS UNDER RSTS/E
As part of the resident library feature of RSTS/E V7.0, the task builder was upgraded to handle tasks built with read-only code. This feature is called the multi-user task feature. When this feature is used, the task builder takes all read-only code and moves it to the task's upper address space. This code is then marked as read-only sharable code. RSTS/E supports sharable programs as a task file/resident library combination. A multi-user task must be converted into separate read-write and read-only code in order to run correctly. This conversion is done with MAKSI.

When run on a multi-user task, MAKSI splits the task file into an executable task file and a resident library file. The resident library must be ADDed before the task file can be run.

SHARABLE BASIC-2 PROGRAMS
BASIC-2 programs contain two read-only sections, $CODE and $PDATA. The section $CODE contains threaded code generated from the source program. The section $PDATA contains numeric constants and string literals referenced in the program.

BASIC-2 programs also contain a read-write section, called BP2OTS, which is effectively read-only. This section contains BASIC-2 OTS routines referenced by the threads in $CODE. These routines are extracted from the BP2COM library and placed in the task image by the task builder. Because the modules in BP2COM are defined as read-write, task builder places these modules in the task’s lower address space, greatly increasing the size of the non-sharable program segment. This can be avoided by having the task builder force the section BP2OTS into the sharable segment.

BP2OTS is made sharable by forcing the section to be defined as read-only. To do this, a PSECT definition is placed in the program’s overlay description file, defining BP2OTS as read-only. This definition forces the task builder to include the BP2OTS code in the read-only sharable segment. However, because this definition conflicts with the OTS module definitions, the task builder generates a warning message for each module included in the task image. The number of modules included in the task can be reduced by taskbuilding against a resident library.

BUILDING A SHARABLE BASIC-2 PROGRAM
The following describes the procedure for building a sharable task from a BASIC-2 source program. The procedure for making sharable programs requires that the MAKSI patch 11.16.1 be installed. Additionally, the procedure for making a sharable BASIC-2 program requires that the BASIC-2 compiler patch 45.2.12 must be installed. The MAKSI patch may be found in the February Software Dispatch. The BASIC-2 compiler patch is reproduced in Appendix A.

The steps are:
1. Compile program
2. Build task builder control files
3. Edit task builder command file
4. Edit overlay description file
5. Taskbuild program
6. Generate LIB and TSK files with MAKSI
7. Install Resident Library
8. Test program

The first step involves compiling the program into an object module.

OLD TEST
COMPILE TEST/OBJ

The next step is to build the Task Builder CMD and ODL files. The program may be built against a BASIC-2 resident library to reduce the number of OTS modules in the task image.

HISEG
Name [BP2COM]---NONE
Account [LB:]---
BRLRES
File spec [NONE]---LB:BASICS
BUILD TEST
MENU is an applications development aid that provides the DEC RSTS software developer with a powerful process control device.

MENU easily generates menus that guide the application user into selected programs based on his security level.

MENU supplements RSTS security by allowing multi-level access capabilities within an individual account. Separate project-level control minimizes System Manager interaction for system level security.

MENU is driven by simple text files which determine extent of program control, type and level of security, screen displays, and presentation of on-line 'HELP' information.

MENU provides a separate Run Time System to prevent unauthorized access to RSTS 'ready state' resources.

MENU installs in minutes and requires no software modifications.

MENU provides a common interface for all your users and application needs.

For information on MENU, please give us a call. We would be delighted to show you the missing link.

North County Computer Services, Inc.
2235 Meyers Ave.
Escondido, California 92025
(714) 745-6006, Telex: 182773

DEC and RSTS are registered trademarks of Digital Equipment Corporation.

© Copyright NCCS
Once the files are built, the Task builder command file is edited to include the /MU switch in the task file specification. The command file should look something like this:

```
SY:TEST/MU= SY:TEST/MP
UNITS = 12
ASG = SY:5:6:7:8:9:10:11:12
RESLIB = LB:BASICS/RO
EXTSCT = 512
```

Next, edit the PSECT definition into the overlay description file. This involves adding a PSECT statement and inserting a reference to this statement in the ROOT statement. The ODL file should look something like this:

```
.ROOT USER-BP20TS
USER: .FCTR SY:TEST-LIBR
LIBR: .FCTR LB:BP2COM/LB
.PSECT BP20TS, RO:I.LCL, REL, CON
.END
```

The next step is to taskbuild the program. Because of the PSECT definition conflicts, the task builder will print a MODULE MULTIPLY DEFINES PSECT BP20TS message for each BASIC-2 OTS module referenced by the program. These messages (but only these messages) should be ignored.

```
TKB @TEST
MODULE xxxxxx MULTIPLY DEFINES PSECT BP20TS

TASK EXIT STATUS: ERROR
```

Next, run MAKSIL to split the file into LIB and TSK files. For convenience, the SIL output file can be named as a TSK file.

```
RUN $MAKSIL
MAKSIL V7.0-07 + /MU PATCH
Resident library name? TEST
Task-Build Resident Library input file < TEST.TSK > ?
Include symbol table (Yes/No) < YES >? NO
Task Image SIL output file < TEST.SIL >? TEST.TSK
TEST built in 4K-words, 0 symbols in the directory
TEST.TSK renamed to TEST.TSK< 104 >
PIP TEST.TSK <124 >/RE
```

The next step is to add the resident library.

```
UT ADD LIBRARY SY:[1,210]TEST/ADDR:124
```

And then test the program.

```
RUN TEST.TSK
```

Once the test procedure is complete, the program is ready to use. The statements to ADD the resident library segment should be placed in the start-up command files.

ACKNOWLEDGMENTS

This procedure was developed with the aid of information supplied by the Basic-Plus-2 Development Group of Digital Equipment Corporation.

APPENDIX A

RSTS/E V7.0 Software Dispatch, May 1981

BASIC-PLUS-2 V1.60 for RSTS/E V7.0

BASIC2 Compiler Patches

INCORRECT PSECT ATTRIBUTES

PROBLEM:

$PDATA and $CODE PSECT have incorrect access attributes.

SOLUTION:

This mandatory patch to the Compiler for BASIC-PLUS-2 V1.60 will cure the problem. It must be installed on all versions (EIS, FIS, and FPU) of the Compiler. Article seq. 45.2.7 M must be applied before this patch can be applied.

PROCEDURE:

1. Install the following patch using the ONLPAT program supplied on the distribution media:

```
Command file name? <LF>
File to patch? $BASIC2.TSK
Base address? 742:55724-55054
Offset address? 4
  Base Offset Old New?
  000650 000004 002640 ? 2660
  000650 000006 002640 ? ^Z
  Offset address? 12
  Base Offset Old New?
  000650 000012 002440 ? 2460
  000650 000014 002640 ? ^Z
  Offset address? ^Z
  Base address? 574:70456-36734
  Offset address? 1562
  Base Off set Old New?
  031522 001562 053522 ? 47522
  031522 001564 044454 ? ^Z
  Offset address? 1720
  Base Off set Old New?
  031522 001720 026127 ? 26117
  031522 001722 026104 ? ^Z
  Offset address? ^Z
  Base address? 574:70456-36734
  Offset address? 1562
  Base Off set Old New?
  031522 001562 053522 ? 47522
  031522 001564 044454 ? ^Z
  Offset address? 1720
  Base Off set Old New?
  031522 001720 026127 ? 26117
  031522 001722 026104 ? ^Z
  Offset address? ^Z
  Base address? ^Z
  File to patch? ^Z
```

2. The compiler is now ready for use.
That's what happened at San Francisco General Hospital Medical Center. With the addition of Ampex Megastore, processing time was reduced to more than 1/3 the time previously required.

Ed Wong, Manager of Data Processing, was running 4,000 patient tests every day, seven days a week. And he needed help.

Ampex Megastore has been in use over one year for Ed Wong, seven days a week, 24 hours a day, without failure. According to Ed, "We put a lot of time and study into our selection of Megastore, so naturally we're very pleased with the results. Our line printer is now running at maximum rate, 600 LPM. Before it was less than half that. During peak load periods, we have experienced no wait time with our 26 terminals."

Dr. Myron Pollycove, M.D., Director, Clinical Laboratory, added, "We had considerable delays in processing information on the CRT screen, in some cases up to one minute. When you consider the number of inquiries from doctors, that kind of response time is just too slow. Of course, that was before we installed Ampex's Megastore."

With non-volatile storage of from ½ megabytes to 4 megabytes. It's made of core. And it's fast. 3 microseconds, max. And there's no latency. Megastore is transparent to minicomputer software, and requires no program changes. Additionally, it's high reliability improves system uptime and availability.

Megastore. The higher performance alternative to fixed head disks on PDP-11 minis that provides exceptional throughput and reliability.

For more information about how you can put Megastore to work performing for your system, call Cal Goshi at 213/640-0150. Or write him at Ampex Memory Products, 200 N. Nash Street, El Segundo, CA 90245. Ed Wong did.
The RSTS/E Benchmarks
Part I

By Richard A. Marino, Data Processing Design, Inc.

RSTS/E is certainly a durable object and the RSTS/E Professional a landmark publication, but the goal of this series of articles is to present an examination of how one can develop and use benchmarks as reference points in making evaluations of hardware devices and software techniques. The goal of these evaluations being to improve the performance of your RSTS/E system and your RSTS/E applications.

Our interest is in computer benchmarks — that is benchmarking or measuring the performance of a computer system performing a specific task. The term specific task is critical because the goal of benchmarking, like any experiment, is to measure the difference — the difference in performance under differing conditions.

For pure hardware performance this may mean the execution of the same program, typically very scientific and arithmetic in nature, on different hardware configurations and different computer systems. You probably have seen advertisements touting a computer's speed in 'wheatstones per second', one common measure of scientific computational speed. But this type of method neglects one important factor — this benchmark measures one specific condition and this performance cannot typically be generalized to similar tasks. While I am not making an accusation, it would not be difficult to take one of the popular scientific benchmarks and design a FORTRAN compiler or even a hardware instruction set (microcoded as they are) to provide exceptional benchmark performance.

So one of the rules you should follow in reviewing the results of the benchmarks presented in these articles or in any advertisement is:

Benchmarks are specific but do not necessarily reflect performance in general or in your particular system/application environment.

Another oversight it is easy to make while benchmarking is to be overly concerned with pure hardware speed. As many of you have realized there are many ways to improve system performance — while faster hardware is one way it is often times not the best (and certainly not the cheapest) way. Despite the fact that your sales representative may want to sell you that new fast widget — it may only make a marginal difference in performance.

A for-instance is that disk transfer speed is really less important than you might think. Some benchmarks that we will look at later in this series demonstrate that there are other factors that contribute even more to disk throughput. We will look at many different hardware components and compare them, but more to relate their real performance to their theoretical performance. A second general guideline is:

Speed does not in itself determine performance.

For example here is one pure speed benchmark. A program that appeared in volume 1, number 1 of the RSTS/E Professional implemented a bubble sort in Macro-11. I modified the program to do the sort fifty times and then executed it standalone on various configurations. The results:

<table>
<thead>
<tr>
<th>Environment</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/70 RSTS/E</td>
<td>37</td>
</tr>
<tr>
<td>11/44 RSTS/E</td>
<td>55</td>
</tr>
<tr>
<td>11/44 RSX11M</td>
<td>56</td>
</tr>
<tr>
<td>11/44 RT11</td>
<td>51</td>
</tr>
<tr>
<td>11/34 RSTS/E</td>
<td>122</td>
</tr>
<tr>
<td>11/34 RSX11M</td>
<td>141</td>
</tr>
<tr>
<td>11/34 RT11</td>
<td>111</td>
</tr>
<tr>
<td>PDT-150 RT11</td>
<td>236</td>
</tr>
<tr>
<td>11/03 RT11</td>
<td>238</td>
</tr>
</tbody>
</table>

I am not going to attempt to draw any conclusions, but I would be interested in hearing from you if you would like to draw some. In fact I would welcome any suggestions or observations you have about it.

A difficulty in benchmarking and one way in which benchmarks mislead is that no benchmark that I develop is perfectly valid for your environment, even assuming it is perfect for mine. One of the goals of this series is to help you discover how to develop your own benchmarks for your own environment. It isn’t as hard as you might think.

While my benchmarks may not match your environment I will be showing you the results of some benchmarks you can reproduce on your own system. This will allow you to compare your configuration with those I use. This is one... continued on page 76
“DPD . . .
IS GROWING AGAIN!”

between 10:00 a.m. and 4:00 p.m.

Data Processing Design is growing again! We are looking to expand our sales force. We need highly motivated people with moderately good technical backgrounds on any of DIGITALS* Minicomputers.

This growth is due to the continued success of our current products. WORD-11 and Saver for RSTS/E* and the upcoming release of several new and exciting products. The positions are basically ‘inside’ sales, based out of our office in Orange County, California. A lot of the communications with our prospective customers is done over the phone. However, the jobs include traveling to customer sites and conventions.

Our environment at DPD is dynamic and enthusiastic with ample opportunity for rapid technical and personal growth. Minimal corporate structure cuts out most of the politics that become so tiring in many institutes.

Benefits are excellent. We pay very competitive salaries as well as health, life and dental insurance. You start with 12 days of vacation per year and it grows to 17 days after only three years. As a salesperson, you would either be commissioned or participate in the ‘software bonus pool’ (the software bonus pool generally adds 10-20% to your salary). DPD also has a profit sharing program. Last year was our first ‘profit sharing’ year and we contributed 15%, the maximum allowed by law.

If you have been thinking about making a change, this may be your opportunity. Give me a call—Eric Moothart, 714-993-4160. Hope to hear from you soon.

*Digital and RSTS/E are trademarks of Digital Equipment Corporation, Maynard, Ma.

Here is an opportunity for rising executives who are look...
RSTS/E System Management

By Jeffrey R. Harrow, 485 Creekview Drive, Stone Mountain, Ga. 30083

Does anyone out there use "forms" (or simulated Block Mode) in their applications to make it easier for a user to interact with his application program?

Certainly, there are a large number of applications written in this manner, but unless you have a CTS-500 (commercial flavor) system and are using DIBOL/DECFORM, you have had to code the forms handling yourself using Echo Control Mode.

The good news is that DEC has come out with an across operating system package called Forms Management System (FMS) which, as the name implies, provides high level forms capability for your applications written in any language which supports a "CALL" verb (NOT BASIC-Plus) without your having to do any of the dirty work.

The bad news is that it won't be available for RSTS/E until around the end of 1981.

The good news is that there is an alternative, Interactive Data Entry (INDENT), available for RSTS/E which does many of the same things as FMS (although in a different manner) and does a few things that FMS does not.

The bad news is that, in some shops, an internal problem between DEC's INDENT and RSTS/E groups which left a special operational requirement (more in a moment) will make INDENT realistically unuseable.

INDENT is composed of an INDENT Run-Time System, an INDENT Compiler, and several INDENT utilities which allow you to work with the forms you design. INDENT is a highly sophisticated package which allows easy use of the many special features of RSTS/E (such as multi-terminal I/O) and the VT100 (all attributes).

In brief, to create an INDENT application, you first decide what the form should look like. You then, using an editor, create a text file which is actually the source code for the INDENT compiler. This is NOT an "on-screen" forms editor (like FMS provides), but, like DECFORM, requires you to create the forms description, then compile it, then display it to see what you have done.

Once you have a compiled INDENT form, you can exercise it (and I don't just say "display" it, because INDENT allows extremely sophisticated and versatile forms which can have many parts, chain between forms, do scrolling within a form, etc.) with some of the supplied INDENT utilities. You then put this aside, and create your application program which will "drive" the form. The application program essentially does Field I/O to/from the form using a few CALLS (which are resolved from the INDENT object library at Task Build time).

All fairly simple, except for this one problem: The first thing that your application program must do is "fire up" the INDENT form job. This is necessary because your application program runs in JOB A, linked to whatever Run-Time System is appropriate (BASIC2, RSX, etc.) and your first CALL to INDENT SPAWNS JOB B, which runs the compiled INDENT form and is linked to the INDENT Run-Time System. (When you do the CALLS to do the Field I/O to/from your form, the INDENT routines linked into your application program are actually doing Message Send/Receives to the associated INDENT form job (JOB B).)

And here is the crux of the problem... the SPAWN Syscall requires Privilege, and that means that your application program must have Permanent (shudder) or Temporary Privilege to start its INDENT job.

In any sanely run RSTS/E shop, VERY FEW privileged passwords are up for grabs, and this means that each application programmer who is writing INDENT application programs must go to one of the Systems Staff each time that he re-task builds his application program (which happens quite a bit during program development/testing). If the Systems Staff is conscientious, they must then go over the application program with a fine toothcomb during each of these iterations, to make sure that the program will not compromise the system once he gives it the Temporary Privilege attribute. This can easily constitute an unacceptable level of effort for the Systems Staff (or could cause them to shirk their duty and, perhaps, give the Temporary Privilege attribute to a program with a bug which, while running Privileged, could cause harm to the system or other users).

During the course of my SPRs with DEC on this subject, I received an interesting "finger pointing" response from the INDENT group, indicating that they had requested a Feature Patch to RSTS/E allowing an installation to make the SPAWN Syscall non-privileged, however the RSTS/E group would not commit to providing such a patch, much less provide an expected date. A later communication suggested writing a simple utility which would allow a non-privileged user to make a program privileged himself... anyone willing to have such a utility?

Therefore, although INDENT is an extremely versatile forms package, if you are thinking of purchasing it for your shop consider two items: Can you afford (you can't afford NOT to) the resources to scan your application programmers' INDENT application programs each time a change is made; and do you have any expectation of moving the application to a non-RSTS/E system such as RT11, VAX, or RSX. (Note that INDENT forms bear NO relation to an FMS equivalent, nor will they ever do so.) If these are not problems to you, INDENT may well provide the forms capabilities we've all been waiting for.
but if these are problems, prepare to wait for FMS-RSTS/E.

Concerning the Datatrice problem which I discussed last issue, DEC's response was a change to the installation procedure to remove all protection from the central data dictionary, or use private dictionaries. Come on, DEC! A central precept of the use of DTR in many shops is the use of a central dictionary, and it is against all conceivable security considerations to leave such a central dictionary completely unprotected! I realize that this requires some changes to DTR for RSTS/E (implementing the Temporarily Drop Temporary Privilege Syscall in a few places and giving DTR.TSK a protection code of <232> and LB:QUERY.DEC a protection code of <60>), but we're paying for a product that works correctly on our RSTS/E systems, as well as on RSX11M, etc.

Speaking of DTR, there's another RSTS/E related problem. The RSTS/E standard for error messages is for the first character of an error message to contain either a '?' or a '%' to indicate that it is a FATAL or WARNING message, respectively. DTR does NOT preface its error messages with these characters, which means that you may get quite unexpected results when running DTR as part of a BATCH or ATPK stream. I've submitted another SPR on this subject, and I'll keep you informed on its response. In the meantime, examine any such job streams to be sure that if the DTR portion has a fatal error, the rest of the job stream, which WILL continue, does not do anything which would prevent you from fixing the DTR problem and re-running the job stream. See you next issue.
Imagine the following happens:
1) User (1,10) is reordering account (4,5) which has 200 files in it. The reorder takes a long time.
2) User (4,5) logs in, deletes the first 10 files in his account, and logs off.
3) REORDER.BAC reordered files 150 to 180 while the above was going on. It was not paying attention to files 1-10 which have now been deleted.
4) The scratch directory is copied into the real directory.
I hope I missed something in REORDER.BAC which checks for this, as the results could be grim.
5) The article on RSTS V7 internals was very informative. Most of what was said (almost all of the useful information) is applicable to RSTS V06C.

DEAR RSTS MAN: Problem: A Fortran user (under RSTS/E) has a large program that manages extensive files. During certain points in the program execution he wishes to interrupt the program without terminating its execution. Having so interrupted it, he will handle the situation within his program — i.e., he can tidy his files files and make an orderly exit or resume processing.

It's easy enough to handle this problem if we were dealing with Basic-plus, but in Fortran it's not so simple. The idea was to be able to type a single character at the terminal and the program would test for the existence of it. If it wasn't there, it would go on about its business.

After much trial-and-error coding, the program KBT, attached, worked out but not very well. With a simple Fortran calling program which did nothing but loop on the call to KBT and test the flag, the real time between character input and reaction of the program to it averaged 45 seconds! Secondly, KBT seems only to react to a carriage-return; other characters (without being followed by a return) have no influence on it.

I have two questions: (1) How can I make this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) Will somebody please explain why this program behave as it should, and (2) W
HEXACON from National. A new dimension in inner space.

National unleashes the first DEC®-compatible peripheral controller that does the work of three.

Why waste valuable chassis space on peripheral controllers that can only interface a single device type to DEC's UNIBUS®? This one-to-one approach can only drive your UNIBUS system costs upward and its overall reliability downward.

Now there's no reason to put up with this inefficiency. Now there's the HEXACON™ controller.

HEXACON is our new hex-wide peripheral controller that simultaneously handles up to four RM02/RO3 80 MB disk drives, four TU10 1/2" tape drives and 8 MB of our NURAM™ semiconductor disk. All from just a single slot.

Cut costs in the factory and in the field. By using one board to do the work of three or more — with no degradation — you save a bundle in a number of ways.

Your most immediate savings is the elimination of two comparably priced controller boards. But farther down the line, HEXACON's upgrade flexibility lets you expand a configuration less expensively because you don't necessarily need to buy additional boards or a larger chassis.

This also means your spares inventory costs are cut way back. Not only in the factory, but in the field as well.

And at the same time, HEXACON increases your system's reliability because it uses far fewer ICs to do the whole job (198 in all!).

What these and other cost-benefits all boil down to is a rebalancing of your system operational costs. HEXACON brings the price of I/O processing back in line with the costs of instruction processing and memory. Which makes the old one-to-one approach a thing of the past.

It all stems from our XPU™ architecture. HEXACON is based on our advanced Transfer Processing Unit (XPU) design concept.

The XPU's generalized intelligence emulates the transfer processing logic of DEC's RM02/RO3 disk, TU10 tape and RS04 fixed head disk controllers. So it's fully hardware and software compatible with any UNIBUS system.

By consolidating this logic into a single powerful microengine — and with the aid of on-board multi-sector buffers — HEXACON can simultaneously transfer data at the rates of 1.2 MB/sec (80 MB disk), 320 KB/sec (1600 BPI tape) and 500 KB/sec (8 MB NURAM fixed head disk emulator).

And only one UNIBUS load services all three device types.

Practically prevails. HEXACON's XPU architecture further enhances its overall reliability because it utilizes only proven technologies. There are no risky new and exotic parts to complicate the matter. Just good, solid and efficient design. From the same company that brought solid reliability to DEC add-in memory.

Leave it to the Practical Wizards to add a whole new dimension to inner space.

For complete details on our HEXACON controller, simply send in the coupon below or call Bill LeDuc toll-free at (800) 538-8510 or (800) 538-8514. In California call (408) 736-6994.

HEXACON, NURAM and XPU are trademarks of National Semiconductor Corporation.

DEC and UNIBUS are trademarks of Digital Equipment Corporation.

HEXACON's efficiency and practicality is just what I need to cut my costs down to size. Please send me:

☐ HEXACON information.
☐ NURAM information.
☐ DEC Add-in Memory information.

NAME ____________________________

COMPANY _________________________

ADDRESS _________________________

CITY ____ STATE ____ ZIP _________

PHONE ___________________________

National Semiconductor Corporation
2900 Semiconductor Drive
Mail Stop 70265
Santa Clara, CA 95051

The Practical Wizards of Silicon Valley
DEC Terminals, Peripherals and Supplies?

We’ve got’em!
And we'll get 'em on their way to you right away — usually within 24 hours. Exactly what you wanted. At the right price. In time. On time. Every time. Anywhere in the continental U.S.A. You can count on us. Because we're The Suppliers.

DEC Peripherals
- BA11KE
- DD11CK/DK
- DH11AD
- DL11E
- DZ11-A,B,C,D,E,F
- FP11-A
- MS11LB
- MS11LD
- MSV11DD
- DLV11J
- RM05-AA
- RK07EA
- RK711EA
- RL02-AK
- RL211-AK
- RL01-AK
- RL11-AK
- RLV21
- RLV11
- RX211-BA
- RXV21-BA
- TJE16-EA
- TWE16-EA
- TWU45-AA
- KDF11-AD,HD,HF,HH,HK
- DR11C
- MR11EA
- VT103-AA,BA

DEC Terminals
- LA 34 DECwriter IV
- LA 36 DECwriter II
- LA 38 DECwriter IV
- LA 120 DECwriter III
- LA 180 DECprinter I
- VT 50 DECScope CRT
- VT 52 DECScope CRT
- VT 100 DECScope CRT
- VT 103 DECScope CRT
- VT 132 DECScope CRT

Call us at (904) 434-1022

DEC Supplies
- Disk Cartridges and Packs
- Diskettes
- Diskette Storage Units
- Mag Tape
- Ribbons
- Paper
- Forms Caddy
- Anti-Static Rugs
- Print wheels
- Terminal/Printer Stands
- Forms Bursters
- and Decollators
- Check Signers
- and a whole lot more

Call us for our complete catalogue:
- 1-800-874-9748.
- In Florida, call (904) 434-1022.

114 East Gregory Street Pensacola, FL. 32501

DEC is a registered trademark of Digital Equipment Corporation
DEB, a Basic-Plus 2 Mini-debugger

By Steven L. Edwards, Software Techniques, Inc.
Copyright (C) 1981 by Software Techniques, Inc.

1.0 Abstract

The Basic-Plus 2 language provides the applications programmer with a very powerful program debugging facility. Unfortunately, there are two serious problems with the supported debugging facility: size, and lack of features. The debugging facility described in this article was written with these problems in mind.

2.0 Disclaimer

This article describes the author's experience with RSTS/E V7.0 and Basic-Plus 2 V1.6 and may not be accurate in other operating environments. This document may contain information that is not part of the supported functionality of RSTS/E or Basic-Plus 2 and therefore is subject to change without notice.

3.0 Description

DEB is a tiny Basic-Plus 2 debugging routine, stripped down to the bare minimum functionality to provide some semblance of debugging facility to programs that are too large to make use of the supported Basic-Plus 2 debugging facility. Gone are variable display (PRINT), variable assignment (LET), and most of the breakpoint features. In their place are GOTO's, RESUME's, and executing a trap to ODT (if linked into the program).

In use, DEB replaces the LINS (line number routine). Thus, the resolution of our breakpoint and tracing control is at the line number level, not at the statement level.

4.0 History

Software Techniques is a software house specializing in RSTS/E and Basic-Plus 2/RMS-11K applications. Because of the 16 bit addressing limitation (31KW) on PDP-11's, we found ourselves without any facility to debug large applications programs. DEB was written to give us a trace of the line numbers being executed. However, just watching the trace was not enough, so breakpoints were added. GOTO and RESUME were soon added in response to a dare (who can leave a challenge un-challenged?). We develop our programs in a mix of Basic-Plus 2 and MACRO (see RP, V2 #4), so the 'O' command was added to allow the use of a low level debugging tool like ODT.

5.0 Command Set

The command set available to the applications programmer, while admittedly a restrictive subset of the supported debugger command set, includes a few tricks that belong in the supported debugger. Listed below is the DEB command set. The command parser is very simplistic (less memory), so all commands consist of a single character and a line number if applicable.

- B linenumber — set breakpoint.
- C — continue until next breakpoint.
- E — exit program.
- G linenumber — GOTO linenumber.
- O — enter ODT.
- R linenumber — RESUME linenumber.
- S — step.
- T — enable tracing.
- U linenumber — un-set breakpoint.
- <CR>— step.

6.0 Linking Instructions

Since DEB replaces the LINS routine, compile your program with "/LIN/NODEB" to insure that this routine will be executed at each line number (LIN) and that we have enough memory to execute our program (NODEB).

Do not link to BASICS because references to resident libraries are resolved before references to object modules or libraries.

When you link your program, you will get the 'error' message:

%TKB: 'DIAG': MODULE 'ERROR MULTIPLE DEFINES SYMBOL LINS

Since our module is referenced first, the task-builder will ignore the Basic-Plus 2 routine.

7.0 Linking Example

> BP2

PDP-11 BASIC-PLUS-2 V1.6 BL 01.60

BASIC2

OLD DEBTST

BASIC2
To tell the truth, so are we. We knew DISKIT would amaze RSTS users, but, frankly, we were unprepared for the response. Phone calls, letters, and now the RSTS PROFESSIONAL -- all saying what we want you to know:

DISKIT is a remarkable software tool!

Listen to what else Dave has to say:

"...using DISKIT, I created 130 accounts and fully extended their centered UFDs in 3 minutes and 40 seconds (a job that used to take 4 to 8 hours.)"

"I then copied the full contents of a 300 MB RM05 equivalent to this new 'well-structured' disk in 45 minutes, optimizing clustersize and contiguity in the process..."

DISKIT IS A DISK STRUCTURING UTILITY

As Dave discovered, DISKIT's disk structuring utility, DSU, is fast. It also:

- Optimizes file clustersizes
- Places and pre-extends UFDs
- Performs transfers between unlike disks
- Saves all accounting data
- Allows manual file placement
- Provides full logging and statistics
- Includes sophisticated error handling and recovery

DISKIT IS A DIRECTORY PROGRAM

But DISKIT is more than a disk structuring utility. DISKIT's Macro-11 directory program, DIR, displays directories 12 times faster than before -- looking up files by name, extension, and date (with wildcards) at the incredible rate of 250 files/second.

And DIR is smart. It supports all standard DIRECT switches (including backwards, up to 1,000 files) with features you won't find elsewhere - like password lookup, UFD placement, and UFD size.

DIR even works as a diagnostic tool on dismounted disks, detecting bad directory structures and identifying them with comprehensive error messages.

DISKIT IS AN OPEN FILES DISPLAY PROGRAM

DISKIT's Macro-11 OPEN program displays open files by job - with complete job and file statistics. It even has a "sleep switch", allowing you to dynamically update information at any desired interval.

DISKIT LETS YOU WRITE YOUR OWN DISK HANDLING Routines

Best of all, the very same routines used in DISKIT are included, with documentation, so you can write your own disk handling routines. In minutes.

DISKIT IS THE FIRST SOFTWARE TOOL KIT FOR COMPLETE DISK MANAGEMENT

The DISKIT package provides all the tools and utilities you need to create and manage a well-structured disk. The entire DISKIT package, with extensive documentation, is available now for only $1250.

DISKIT, Dave says, "...is the 'final solution' to structured disks, eliminating all of the time and complexity and reducing the job to one of a SAVRES."

What more could we say?

Once again, we've got the answer.

Software Techniques, Inc.
5242 Katella Avenue, Suite 101
Los Alamitos, CA 90720
8.0 Sample Execution

When the program is run, DEB displays a header, and the first line number awaiting your command. As the program executes, DEB displays the current line number at each breakpoint or step. If the program has an error pending (has not been RESUME'd), the relevant information is displayed before the current line number.
Somewhere out there, several years ago, there was a device driver that emulated an RS and used one or more MB of 11/70 memory instead of a disc. If you just happen to have it, we will spread it around and a lot of people will benefit.

Contact Dave Mallery at (215) 364-2800
This routine replaces the basic-Plus 2 LINS routine. This routine allows you to do some minor debugging, and display some tracing info.

Debugging commands available are:
- B linenumber: Set breakpoint at linenumber.
- C: Continue until next breakpoint.
- E: Exit program.
- G linenumber: Goto linenumber.
- O: Execute BREAK enter OPT.
- R linenumber: Resume linenumber.
- S: Set step mode.
- U: Unset linenumber.
- X linenumber: Un-break linenumber.

Assembly instructions:
- XCD: Advance to next step/breakpoint.

Linking instructions:
- Edit the ODL, CMD, or TRB command line to include a reference to the object module BPT. Note: do not link to BASICS because references to resident libraries are resolved before object modules. Ignore the TRB error message:

TRB -- DIAG-HANDLE ERROR MULTIPLE DEFINES SYMBOL LINS

Since our module is referenced first, the task-builder (RO), (RO) will ignore the Plus-2 routine.

Variable description and initialization:
- **Init:**
 - Bit aligned data.
 - Byte aligned data.
 - Word aligned data.
 - Signed binary.

Mainline Program

Variable output area.
- **$TEXT:**
 - Start of $TEXT.
 - Start of $TEXT.
 - Start of $TEXT.

Symbol output area.
- **$TEXT:**
 - Start of $TEXT.
 - Start of $TEXT.
 - Start of $TEXT.

Data area.
- **TEXT:**
 - Start of TEXT.
 - Start of TEXT.

Global symbols
- **Period:**
 - Initial period.
 - Continue period.
 - Exit.
 - Goto.

Macros
- **Macro Cmd**
 - Character command.
 - Routine address.
 - Exit macro.

Macros
- **Macro Num**
 - Save R1.
 - Save R2.
 - Number in binary.
 - No suppression.
 - Convert Binary to Decimal, Signed.
 - Exit macro.

Macros
- **Macro Num15**
 - Save R1.
 - Save R2.
 - Number in binary.
 - Zero suppression.
 - Convert Binary to Decimal, Signed.

Macros
- **Macro Print**
 - Clear the XRB.
 - Length of text string.
 - Address.

Macros
- **Macro Print**
 - Address requested.

Macros
- **Variable Description and Initialization**
 - **$CODE:**
 - Start of $CODE.
 - **$TEXT:**
 - Start of $TEXT.

Global symbols
- **Global Symbols**
 - **Globl Lin5**
 - Entry points.
 - **Globl c**
 - Pointer.
 - **Globl 50$tav**
 - OTS pointer.
 - **Glob1 Exitx$**
 - Exit macro.

Global symbols
- **Global Symbols**
 - **Globl Lin5**
 - Entry points.
 - **Globl c**
 - Pointer.
 - **Globl 50$tav**
 - OTS pointer.
 - **Glob1 Exitx$**
 - Exit macro.

Global symbols
- **Global Symbols**
 - **Globl Lin5**
 - Entry points.
 - **Globl c**
 - Pointer.
 - **Globl 50$tav**
 - OTS pointer.
 - **Glob1 Exitx$**
 - Exit macro.

Global symbols
- **Global Symbols**
 - **Globl Lin5**
 - Entry points.
 - **Globl c**
 - Pointer.
 - **Globl 50$tav**
 - OTS pointer.
 - **Glob1 Exitx$**
 - Exit macro.
VERSION 2.0 NOW AVAILABLE:

QUE-11 - V2.0

ONE JOB SPOOLER FOR RSTS/E CONTROLS ALL SPOOLING

REPLACES:
- SPLIDL, SPLRUN ... etc.
- BATIDL, BATRUN ... etc.
- QUEMAN, QUMRUN ... etc.
- OPSEC, OPSRUN ... etc.
- ATPRO
- ATPK

QUE-11:
- DEC QUE Compatible
- One job controls all spooling
- Saves small buffers and job slots
- Spawns jobs as needed
- Handles line printer and keyboard spooling
- Controls as many BATCH JOBS as pseudo-keyboards
- Full parameter replacement in QUE calls
- "DO" command replaces indirect processors
- QUEMAN SYS call supported
- Program delivers - NOW
- Only $995 single cpu license
- Trial Version $100

For more information contact:
On Track Systems, Inc., P.O. Box 245, Ambler, PA 19002
Phone: 215/542-7008

RSTS PROFESSIONAL

Box 361 • Ft. Washington, PA 19034 • (215) 542-7008

- PAYMENT ENCLOSED for one year's subscription (4 issues).
 US 3rd class, $25 / Canada & US 1st class $35
 All other countries (air mail): $40, payable in US dollars.
- BILL ME for one year's subscription:
 ☐ US 3rd class / ☐ Canada or US 1st class / ☐ Other foreign.

Please send Back Issues circled:
☐ 10 per issue enclosed.
☐ Bill me for $12.50 per issue.

<table>
<thead>
<tr>
<th>Vol. 1, #1</th>
<th>Vol. 2, #2</th>
<th>Vol. 2, #3</th>
<th>Vol. 3, #1</th>
</tr>
</thead>
</table>

Name ____________________________
Address ____________________________ Suite ____________________________
City ____________________________ State ______ Zip __
Telephone (_________) ____________ Country ____________________________

FREE CLASSIFIED AD WITH SUBSCRIPTION!
Your first 12 words are absolutely FREE, only $1.00 per word thereafter. Use the space provided below.

[V.3.2]
Finally! A publication exclusively for DEC* or DEC-related users, manufacturers, and consultants!

What is HARDCOPY?
HARDCOPY is a bi-monthly magazine written and edited for the community of users and vendors of DEC and DEC-compatible equipment. Topics ranging from new peripherals to software updates give the reader a broader, more in-depth coverage than most all other publications.

Who reads HARDCOPY?
HARDCOPY is exclusively directed at the DEC marketplace. Along with its primary readership of end users, systems analysts, site managers, MIS directors, and engineers HARDCOPY also circulates to manufacturer consultants and OEM's of DEC-compatible peripherals and software vendors.

Inside HARDCOPY . . . a magazine covering it all!
Five HARDCOPY sections - DEC NEWS, EDITORIAL, DEC COMPATIBLES, BUSINESS SPOTLIGHT, SOFTWARE and VAX INFO highlight all the latest topics of interest concerning small, medium and large scale computers.

Why should you subscribe?
If you are a user, manufacturer, consultant or OEM of DEC related equipment, HARDCOPY will provide you with highly informative, up-to-date news ranging from general interest articles to new product announcements.

To receive HARDCOPY Magazine fill out the qualification form below

HARDCOPY Subscription Form

<table>
<thead>
<tr>
<th>Name</th>
<th>CPU</th>
<th>Operating System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Disk</td>
<td>Tape</td>
</tr>
<tr>
<td>Company</td>
<td>Floppy</td>
<td>Printer</td>
</tr>
<tr>
<td>Company Address</td>
<td>CRT</td>
<td>Other</td>
</tr>
<tr>
<td>City/State/Zip</td>
<td>Phone</td>
<td>Phone</td>
</tr>
<tr>
<td>Phone ()</td>
<td>Signature</td>
<td>Signature</td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check here if you wish to receive advertising information from Hardcopy.

HARDCOPY is published six times per year by Seldin Publishing, Inc. One year subscription may be purchased at the following rates:

- United States $16.00
- All Other Countries $25.00

SEND TO **HARDCOPY** BOX 759 — BREA, CALIFORNIA 92621 Phone (714) 632-6924

DEC is a registered trademark of Digital Equipment Corporation
LOOKING FOR A VT100/VT52 ALTERNATIVE?

- $795 (quantity one)
- Volume discounts available
- Extended Parts Warranty available
- Immediate Delivery
- VT52® or ANSI Escape sequence
- High-resolution 24 x 80 CRT, 25th line
- Full ASC II Character Set, upper and lower case with true descenders and VT52® graphics
- Reverse video by character
- Professional-touch keyboard, 72 keys, 12 function keys, 12-key numeric keypad
- Full-screen or line edit/transmit
- Keyboard, switch, or software programmable

LOOK at the “tear-out” cards in this issue.

There's a “HOT to COLD” form for rating our articles. Let us know what is most and least interesting to you.

There's a FREE gift for you. Bring in new subscribers and collect rewards. See “BOUNTY HUNTERS” card.

From the editors . . .

. . . continued from page 4

Dave Mallery

simultaneous TECO users editing macro for micros. Try doing that with EDT.

All of the above sessions are great examples of how the user community can use DECUS to meet its real needs.

The gang from North County Computer Services delivered an excellent series on Basic + 2 while Software Techniques carried on with their specialty—disk optimization.

I noticed large numbers of users complaining about disk problems in the open sessions — “We get multiply allocated clusters all the time”, “My system stops cold and locks up if I run out of room on my RMOS” etc. etc.

Clearly, there are lots of field service and software service types in need of some education. It amazes me to see that so many people could actually believe they have software problems when some controller was delivering data blocks into their satt buffers!

There was an excellent presentation by Glen D. Kinzey from Professional Data-systems on “Basic Communications”. This is a clearly NON DEC area that should be developed in future symposia. So few users have any idea about moderns and muxes. I recently heard about a site using 22 lines and 22 pairs of Bell rented modems on an application that could have used one or two lines and pairs of stat mux’s.

I attended a “Commercial VAX” session. Unfortunately, the title of the session is still a contradiction. The session was like a late—5C RSTS wish list in 1975. I feel it will take two or three more years for VAX to recover from its initial RSX / scientific bias. Boy am I glad I don’t have to waste six DECUS$ lobbying for what I already have. There were practically no user papers from the VAX folks—too bad.

New RSTS Product Manager
J. Thomas McKinney
Miami DECUS

The New 11/24!
The RSTS Engine for the 80’s.
Miami DECUS

I think that the high point for me, was the opportunity to hear Gordon Bell reminisce on the invention of the UNIBUS. His talk consisted of a large number of ‘lessons’ from the history of computers, illustrated profusely with slides from the Digital Computer Museum. DECUS has provided me with the ability to meet several of the heroes and heroines of our industry in person and I am very grateful. I was also delighted that Mr. Bell had indeed heard of our magazine.

The 11/24 was available in the exhibit hall for inspection. This is the RSTS engine for the next few years. It is too soon to really have any good benchmark info. on this machine, but by next DECUS, we should have some good numbers. I wonder (to myself) if it will get CPU bound before it can really use all that memory-time will tell. This is the machine that clearly shows the directions of RSTS, however, Gordon Bell made a remark that impressed me — he said: “always resist the impulse to build the last machine of a series.” I guess that’s why we have an 11/24 and not (yet) and 11/84. The Commercial OEM group stated in a product panel that they have chosen RSTS as the operating system of preference for PDP/11’s in the 80’s. The RSTS product line folks said they expect 20,000 RSTS licenses by 1985 (and agree with me that there are about 8000 known licenses now).

One notable comment — “Datatreive has their WOMBAT, RSTS should have a squirrel mascot because we’re always caching.”

The logistics—Miami is nice, especially after a bad winter. The hotels are beautiful but the prices are more suited to an OPEC meeting or a convention of Cocaine dealers. The “food” that was “served” at the convention center was a disgrace. We stopped eating there after the second lunch. I think DECUS should send out refunds and sue Miami. The campgrounds were so far away that one seriously considered camping there.
A few years ago, you bought DEC controllers or you took chances.

Time was you couldn’t trust anyone. Price was often lower. Delivery was sometimes faster. But let’s just say quality, reliability and service left lots to be desired (if the product even worked at all).

Times change. Enter Emulex.

First we decided that price shouldn’t be the only reason to buy our controllers even though they cost less. The design goal of every tape, disk and communications controller we make is to go DEC one better. Emulex controllers actually optimize the DEC systems in which they’re installed.

Emulex controllers would also be easier to install – plug ’em right into a backplane – hardware and software transparent.

We decided, also, to concentrate our expertise on DEC. We know DEC computers and designed products to improve them. Others didn’t. You wouldn’t remember their names.

In the last two years one Emulex success has led to another. Today, Emulex provides OEMs and end users with the industry’s broadest line of controllers that improve DEC performance across the board. If we did anything wrong, it was in setting a new standard. Competitors stopped imitating DEC and started trying to imitate us.

So even today, unless you’re careful, you can still take chances. There’s a big difference between an imitation DEC controller and a genuine Emulex.

Emulex. The genuine alternative.
VAX & RSTS/E (V. 7) USERS

OUR RABBIT SYSTEM ALWAYS TELLS THE TRUTH ABOUT YOUR COMPUTER

Like who is using it, when, where, what resources, and how much... all in great detail or summarized - your choice.

RABBIT will give you the most complete set of user accounting info you've ever seen — complete, detailed information for each user session. It even creates invoices, too, if you wish.

RABBIT will also draw a picture worth a 1000 words about your system performance. In fact it will draw you lots of pictures showing CPU, DIO, PAGE FAULTS (and the like) consumed every hour, every day, every week. It'll graphically depict your "average" day...with or without your biggest users so you can better load your system for peak response and throughput.

RABBIT makes life easier for the system user, system manager, operating management and the accounting department...and it never tells a lie.

RAXCO markets a complete line of operational support, financial planning and data management systems for DEC computing equipment. For a free catalog of these systems contact:

RAXCO INC.
3336 N. Flagler Drive
West Palm Beach,
Florida 33407
(305) 842-2115
SYSTEM PERFORMANCE ANALYSIS FOR VAX AND RSTS/E USERS

If your system is suffering from slow response, clogged I/O, reduced throughput, then put RAXCO's RABBIT-2 on your case. RABBIT-2 locates the trouble spots in your operating system and identifies the source of the problems.

RABBIT-2 will chart your system performance, on an hour by hour, user by user, or program by program basis. RABBIT-2 will quickly sketch a profile of your average system day, your average user demands, and your average program resource requirements.

RABBIT-2 provides the tools you need to investigate system throughput in terms of CPU, I/O, memory, connect, KCTs, etc. — over any time period you specify. You can play “What if?” by simulating the removal of the offending program or user and displaying the results of the change.

RABBIT-2 capabilities include:
• Batch and interactive analysis
• Interval or time displays
• Resource consumption diagrams
• User and program investigation
• Graphic or numeric output
• WHO was on WHEN
• Profile analysis of users and programs
• Ratios of resources utilized
• Rankings of users and programs
• Forecasting of future resource consumption

RAXCO markets a complete line of operational support, financial planning and data management systems for DEC computing equipment. For a free catalog of these systems contact:

RAXCO INC.
3336 N. Flagler Drive
West Palm Beach, Florida 33407
(305) 842-2115
ANALYSING AND ALLOCATING DATA PROCESSING RESOURCES
By Mike Draper, RAXCO INC.

Despite the constantly decreasing hardware costs and the improvements in software tools, the cost of data processing activities remains a substantial expense for most companies, regardless of the type of system or service that they use. All too often, some, most, or all of this expense is allocated to the "Data Processing" or "Computer" department. Actually, however, most of the cost of running a computer center should relate to end-users of the system rather than to the group that maintains the system. Whether the users are paying real cash dollars for the computer services or simply shifting around budget allocations makes no difference. A prime concern is still to account fairly and accurately.

Two major problems that prevent many companies from using billing or chargeback as an effective management and control tool might be referred to as the "Shoemaker's Children" and the "Cart/Horse" syndromes. In the former, the DP personnel are so busy processing everyone else’s data that they haven’t the time to process their own. With the latter problem, when the question is asked "Why don’t you do proper accounting?" The answer is all too often, "The machine doesn’t provide the data." And all too often, upper management accepts these excuses thereby sacrificing not only accountability, but more importantly, a large measure of control over computer related facilities.

WHO NEEDS WHAT AND WHY!

A good place to start with this investigation, as with many other types of projects, is at the end. What kind of reports would the controller or VP finance like to see on his or her desk before making decisions about adding hardware? What type of reports would tell the manager of information systems if a new policy was having the desired effect? What information would be valuable to the system manager to evaluate the effect of a department’s use or to anticipate the effect of adding a new application? Perhaps most important of all is what kind of feedback would help the end-user to use the DP resources more effectively?

There is another very important function performed by machine use accountability. Look at this graph:

- This is a very frequent occurrence. The *'s represent the amount of machine resources used each day. The Wednesday amounts are limited by the resource available. The totals for the other days are limited by various other factors. The white space above the the *'s on all except Wednesdays represents idle machine time. There is a similar profile for the hours of the day except it is two humped because of lunch hour.

While this is not the case for all installations, it occurs more frequently than not. It is interesting to note that most DP managers and even fewer people in positions of accounting or responsibility are aware of the extent of the idle time on a "fully loaded system". I would not presume that some sort of resource accounting or auditing can cure this, or that a complete cure is possible or even desirable. Many financial people, however, feel twinges in their ulcers when they compare Mondays and Fridays with Wednesdays.

There are three areas where the information about who is using what, when is useful (or perhaps necessary).

1. Financial Management
2. Operational Management
3. End-user Management

Information, of course, is just the bread of the management sandwich. On top, it tells you where to start and on the bottom, it tells you if anything has changed. Effective resource accounting can also provide much of the meat of the sandwich as a tool for implementing policy.

IMPLEMENTING POLICY.

How can we get more people to use the computer on Mondays and Fridays? One way would be to just tell the worst
offenders (if we can identify them), "You stop using the computer on Wednesdays, you turkeys!!" In addition to perhaps not being an effective management approach, it is also going after a very complicated problem with a very blunt instrument. A more delicate approach might be more effective.

Just the way every department head or project manager must estimate his or her manpower and other physical needs, why not have estimates of computer use? These, of course, might be based on accounting for previous projects or periods. Then, by giving discounts for off-prime time and perhaps even penalties for super-prime time, the users would have the option of trading off convenience and time effectiveness for cost effectiveness. There would be direct feedback every billing cycle and the ability to review patterns of changing use.

Where projects or departments have budgets, the periodic review of percent complete versus budget used would be useful not only in evaluating the current period, but more importantly, for planning the next cycle. I am certainly not recommending the chargeback of computer use as a threat of heads rolling. The state of the art of estimating computer use is still far too primitive to expect accuracy. It is only through constant feedback that the art or science of estimating will develop.

Realize the need for accountability is only the first step. Perhaps you have run through this scenario before.

You: Frank, I need some kind of chargeback, performance evaluation, departmental accounting system.

Frank: Well, you just tell me EXACTLY what you want and I’ll get someone on it as soon as …

You: I’m not exactly sure what I want, but it has to be useful and usable by various management levels.

Frank: [Lecture #324 “Computers Require Precision”]

WHAT YOU REALLY NEED!

You need a tool that will allow you to get answers to the type of questions that you know you have to ask, but that you can’t ask until you get some other answers first.

You need to give Finnicky Frank enough detail to shut him up and Ball-park Bob a brief enough summary so he might read it.

You need simple pictures with simple numbers that the VP finance can stick on his wall and point to in meetings.

You need general information to spot long term trends and specific information to analyze trouble spots.

You need a standard set of reports that can be compared cycle to cycle, plus the adaptability to meet changing requirements and provide special one shot reports.

You need various levels of detail.

You need ALL expenses relating to the DP facility combined into one statement.

You will need various things that neither you nor I can anticipate until their time comes around.

HOW DO YOU GET WHAT YOU NEED?

You could go to your Systems Manager (Frank) and he will do one of two things. He might try to avoid the whole area as in the previous example, or he might say “Hey, that sounds like a terrific idea. I'll get someone on it right away.” In this case you are really in trouble. “Someone” quickly becomes the permanent billing programmer/operator. You will not only not get the information that you need, but you will not get it weeks late and when you do get it, it will be wrong. Not getting what you want will also cost you more than you care to admit.

A better approach might be to look around to see if maybe someone else has attacked the same problem. The manufacturer of your equipment might have some useful software or even more useful ideas about “another 2 meg” or “distributed processing” (another computer). Hopefully the time will come when machine accountability is considered as important a part of an operating system as a good hex dump. You might also take advantage of the various user groups. It is difficult to evaluate software from glossy brochures and slick sales pitches.

How do you know when you do find a piece of software that may do the job? Particularly when you do not know what that job is?

EVALUATING A COMPUTER ACCOUNTABILITY SYSTEM.

The criteria for evaluating a computer auditing tool may be divided into several categories.

Flexibility

While flexibility is a virtue in almost any situation, it is more necessary in the audit and control area than in many other data processing activities. This is due firstly to the changing computer hardware and software environment and secondly to the need of an auditing tool to respond to specific questions that can not always be anticipated. This differs from the usual accounting software that, once installed, requires only minor alteration from time to time.

It is easy to look at a sample of reports and say, “Boy, could we use that kind of data!!”, and forget to question if there is any more where that came from. Both the Data Processing and Accounting people will have various suggestions to improve the reports, and the system that can not easily respond to these suggestions will soon be relegated to a dusty backup tape of once bright ideas.

Completeness

In the area of cost allocation, it is easy to focus on the machine oriented costs and dismiss the so-called “minor” support costs. While it is true that the CPU/CONNECT time values give a good rule of thumb as to who is doing what, there are far more costs associated with a computer center than the computer itself.

Who is responsible for terminals, remote printers, tapes, manuals, courses, deliveries, programming, consulting and support? While sometimes some of these items must be included in “overhead”, more often they can be allocated to specific users (if the system permits allocation of these costs). Many service bureaus have found that thousands of dollars have “slipped through the cracks” before they tightened up their charging system.

Another area of completeness relates to the so-called “special” types of services that each different company provides. Do you offer plotting or data conversion or other off-line
Vendor Support and Response

In areas where the needs are well defined, you can, by carefully choosing the product, be fairly confident that except for bugs and initial training, the product will do the job required. In the fairly new, and usually poorly defined field of computer auditing, after-sales support and response to problems and needs is vital. This goes beyond bugs and training.

It is in the area of strategy that the vendor can be particularly useful. The disadvantage of flexibility is that it is not always obvious how a tool can be used to solve a certain problem. When the software vendor has expertise in the area and is willing to share that expertise in a responsive manner, the tool can always be used most effectively.

Specific Features

Salesmen of all products love to extoll the various features of their products. What you, the buyer, must do is translate those features into benefits as they relate to your needs.

One such ‘feature’ might be the ability to rank the various users of your system by the number of CPU seconds that they have used. This may be interesting, but I am sure that the information could be compiled quickly from existing sources. How about ranking on something more exotic like I/Os or page faults? How about ranking on the ratio of page faults to CPU seconds? The question that you must ask is “How can I use this data to improve efficiency and/or make money?” If this feature looks like it has definite uses fine; if not, do not be misled by clever advertising.

There are three areas that require answers from a computer auditing system. They are WHO, WHAT and WHEN. There are various combinations and permutations of these that give the answer to each specific question.

For billing purposes we need to know WHO used WHAT WHEN.

For performance evaluation the sequence is WHAT was used WHEN by WHO.

By selecting and limiting the WHO, WHAT and WHEN and controlling the format of the answers all of the various ‘features’ are important. Do not limit your thinking to “Boy, that would be nice to have.” Continue with “If I had that and also… I could…”

GETTING EVERYONE INVOLVED!

Often the resource allocation problem is left to the computer department (“They have the computer and the programmers, you know!”). While of course the computer department must be involved in the whole process and will get stuck with running the system, everyone from the financial people to the accounting department, to the various end-user groups must provide input. They will get stuck with the output.

Computer auditing is one of the applications where the dollar savings should be several times the cost of the system the first year and the savings on headaches and ulcers several times that. Experiences in installing systems in the last year have convinced me that savings can be great and the experience relatively painless (nothing involving computers is completely painless).
LETTERS to the RSTS PRO ...
... continued from page 6

Dear RSTS Pro...

It was aggravating! I saw a TECO truck drive by the other day, but I didn't see any company name. However, the phonebook had one potential and here it is:

Trigon Engineering Corporation doing maintenance on a Toll both set up.

Sorry that the guess was so long in coming, but the last time I entered one of your contests you said, "perhaps the folks at SU Computer Services, Seattle Pacific University, can get back to work!" and when RSTS Professional speaks ...

Mark Emerson, Analyst/Programmer
SPU Computer Services, Seattle, WA

*Vol. 2, No. 2, p. 31, col. 3, ...

Well Mark, we're pleased to hear from you again and we're also pleased to see that you're still working [sic] at SPU. Say "Hi" for us to Mark A. and Tim R. and tell them that, right or wrong, we enjoy the time that the folks at SPU spend with us.

Unfortunately, your TECO answer is not quite the one we're after ... READ ON ...

FOLLOWING ARE CORRECT ANSWERS:

Dear RSTS Professional:

I have learned that the answer to "TECO", is a company in Ft. Wayne, Indiana. They produce the lifts and buckets for all kinds of utility trucks. Upon further investigation, I learned that "teco" does not stand for anything. I was told that it was the name of the company, and that was all.

Sincerely, Daniel B. Wheeler
Digital, Indianapolis, IN

Leave it to someone from DEC to solve our TECO problem. Thank you, Daniel. It is interesting to note that after all the mystery and confusion, the answer is so simple. As with the editor — the word is fast, easy to use and extremely versatile.

Dave and Carol, [sic]

Since our company is an Authorized Distributor for DEC dealing with the Utility industry, we did not want an unfair advantage in your picture contest. However, enough is enough; it's time to put an end to this one and go on to something else.

Enclosed is an ad brochure for Teco, Inc. This company manufactures several types of Telescoping Buckets and such for the Utility industry. I hope this is sufficient info in your quest for a correct answer. A large Tee-shirt would be nice.

Sincerely, Thomas E. Nelson
Manager, Technical Services
Digital Systems, Inc.

See cover and Tom in his large Tee-shirt.

finis
DIRECT.TEC

By David Spencer

DIRECT.TEC was born when I began investigating the TECO operator "EN". I had never used it before and needed some application to help discover the kinks. What I finally arrived at was a simple directory program. I then put it away and went on to other things. With the arrival of version seven of RSTS, I returned to my little macro and expanded it to make use of the new FIP PPn wildcards.

Running DIRECT.TEC

The DIRECT.TEC program makes use ONLY of the "EN" verb. The directories contain less information than a program that utilizes "SYS()?" calls (or TECO:EG support). "EN" returns only file specification and protection code.

The information passed to DIRECT.TEC must be a single file specification without switches. Such specs as "SY:" or "[1,2].BAK" which are not completed with the asterisks are allowable, however. If no specification is supplied, then a directory of the current account on the system disk is performed.

The macro itself uses numeric registers zero through six. However, it pushes and pops them so that no data stored in those registers is lost. When running DIRECT.TEC while in TECO, it is VERY important to remember that the macro assumes the file spec to be the complete contents of the text buffer. The result is that the directory will be attempted to be taken on your text file if you haven't done an "EC". Also, after DIRECT.TEC has completed, the text buffer will be cleared. Beware!

There are three regular ways to invoke DIRECT.TEC: by CCL outside of TECO, by "EI" within TECO, and loading the macro into a register and executing it. The CCL for DIRECT.TEC is "FILES". (This of course can be changed.) If in TECO and you want to do a directory, then clear the text buffer area, insert your file specification, and "EI" DIRECT.TEC or load DIRECT.TEC into a register and execute that register name.

What you get.

The directory returned looks a lot like the directory returned by PIP or DIRECT.BAS. The difference is, of course, you get only the disk, account, file name and extension, and protection code. Unfortunately "EN" does not return file sizes, dates, or times. There is a nice summary at the bottom, and if there was a PPn wildcard, a grand total of all files and accounts listed.

Why bother?

Why even write a directory program in TECO? The reasons are not overwhelming. About the only time I ever wind up using it is to impress someone, or, when the system is slow, avoid having to exit TECO and then re-load everything.

There has been an interesting fact revealed from my exploration of the "EN" verb. I'll call this one "The Case of the Missed Edit". This anomaly was uncovered when I was "mass editing" a series of files using a macro that had a wildcard "EN" in it. I had opened my file with "EB" and allowed TECO to create a "BAK" file for me. I would then make the changes (by macro) and get the next file. This would continue until I was out of files to edit.

The problem occurred that I wound up editing EVERY OTHER file, and some files got edited TWICE! The reason was this: "EN" returns the "nth" file number, where "n" is the number of times that "EN" is executed. The trouble was after the first "EN". This causes the next "EN" to get the second file in the directory matching the wildcard. But the first file was edited and the old version renamed to "BAK". Thus the second file in the directory by that wildcard became the first to match. So therefore, every other file would be missed, and some would be mistakenly edited twice from the end of the directory because their name still matches the wildcard.

The moral of this story is to always output to a different extension when doing wildcard edits. I hope this little headache of mine won’t be repeated by those who have read this and not yet explored the mysteries of "EN".

Closing Notes

As with all TECO code, DIRECT.TEC is just a base program. I hope that, as Carl Sagan would say, billions and billions of little macros evolve from this humble beginning. Enjoy!

DIRECT.TEC is a TECO program written to take directory of RSTS/E disks using only the normal "EN" support. It must be noted that the current version requires that the buffer be clear of all data except the file spec to be used for the directory. Failure to clear the buffer before executing DIRECT will certainly result in the loss of some data.
AARDVARK SOFTWARE introduces the complete UCSD PASCAL system available under RSTS/E for the PDP-11 family.

Not merely a compiler!

This system was designed to facilitate software development and create an ideal Pascal teaching environment. Designed and developed by John Hayward, Ph.D. of Wheaton College, Wheaton, Illinois.

ADVANTAGES

* Based on enhanced UCSD PASCAL, utilizing:
 * long integers
 * strings
 * segmented procedures
* Simplified user interface—automatic linking
* Powerful screen editor
* Compatible with UCSD microcomputer systems
* Supports "random access" of files
* Includes Assembler

Price: $995

Write us, or call toll free for information: 1-800-558-1538

AARDVARK SOFTWARE INC.
783 North Water Street
Milwaukee, Wisconsin 53202

UCSD PASCAL is a trademark of the Regents of the University of California.
PDP-11 and RSTS/E are trademarks of the Digital Equipment Corporation.
Due only to the limitations of the data returned from the "EN" operator, DIRECT does not provide a complete directory of all files, even if the terminal is in a scope. DIRECT clears the screen before printing the directory.

If DIRECT is running on version 7 of RSTS, you will find DIRECT will handle multiple accounts that occur with wildcard PPN's.

DIRECT may be executed in one of three ways:

1. Via the CCL *FILES* command
2. By loading the file specification into the text buffer and executing DIRECT
3. Load the macro into a writer and executing it with an *Execute* command.

... continued on page 94

DATA ENTRY/INQUIRY POWER

MULTI-USER DATA ENTRY
- Create, modify or verify data files
- Extensive field editing
- User friendly design
- Extracts ISAM file data

POWERFUL FEATURES
- Dictionary-driven
- Full logic support
- CRT features supported blink, bold, underline, reverse video & cursor

ON-LINE INQUIRY
- Inquiry and/or update for ISAM files
- Multiple ISAM files
- User access control
- Browse feature

DEC INTERFACE
- RSTS/E, RSX11M, RT11
- RMS11K with secondary index support
- Optional support for resident libraries

RESULTS
- Increased productivity
- Macro-coded - FAST!!!
- Single DEUS program replaces user data entry inquiry programs

STRATEGIC DATA SYSTEMS
4N310 Knoll Creek Drive
St. Charles, IL 60174
(312) 377-3396

From $750
WORD PROCESSING

PDP-11 AND VAX

MULTI-USER
Written entirely in MACRO-11 machine language, you can have up to 90 people using the full power of WS-11 word processing simultaneously without impairing the performance of data processing.

EASY TO USE
Color coded commands are clearly labeled on the keyboard. Menus display all choices on the screen. No technical language or cryptic commands to remember. The screen immediately shows all changes you make to your document. No surprises.

FROM PDT TO VAX
WS-11 can be used on the full PDP-11 family using its own operating system. RSTS/E, CTS-500, RSX-11M or VAX/VMS. Transition from one system to another can be made without any change to your documents.

POWERFUL FEATURES
Just a sample: Right margin justification, Centering, Search and replace, Libraries of stored text, Simultaneous editing and printing, Support for a wide range of printers including Xerox, NEC, Qume, Sanders and DEC.

$2000-$3500

WS-11

COMPU-TOME, INC.
668 S. Sunset Avenue
West Covina, CA 91790
(213) 960-2895
The DECUS UK Conference is an annual 4-day event held at a different University Campus each Spring. This year it was the turn of Warwick University in the Midlands to provide the venue, and 400-plus delegates poured in from all over Britain, together with the much-sought-after DEC speakers from the Digital development teams in the USA and a number of DEC personnel from the UK Education Services, Sales, Field Service, etc. divisions.

The site itself is a vast complex of lecture theatres, library, laboratories, residences, etc. which normally houses 3000 students. Therefore, accommodations here allowed all the attendees to stay on the site without the inconvenience and tedium of daily bus rides to and from the sessions.

Conference proceedings officially commenced at Monday lunchtime, enabling most of the delegates to travel from home on Monday morning. There were, however, two extra seminars, on real-time systems design and data communications, held on Monday morning for those who wished to spend a little extra time and money at Warwick, and consequently the influx of computer addicts started on Sunday.

After the traditional New Participants session and a DEC “New Products” session, SIG sessions began in earnest with all the roadmaps held on Monday evening.

For the RSTS/E group, the centre of interest was the sessions given by Jim Condict from the RSTS development team in Merrimac. Jim’s first session outlined the development of the RSTS Monitor through the various releases and explained the way in which the current version works. He also spent some time in talking about the now famous “small buffer problem”, why it exists and what work is being done to try to improve the situation. This session in particular was very well received as it cleared up some of the mysteries of life for the everyday RSTS user and provided food for thought for even the “RSTS hackers” in the audience!

The other two presentations by Jim Condict were (a) Terminal Service Internals and (b) Writing run-time systems and resident libraries for RSTS/E, both of which also attracted large audiences which packed the lecture theatre.

Contributions to the wish-list were discussed in a session which ran for an hour longer than scheduled and produced plenty of ideas for the RSTS developers to ponder over!

The exhibition hall was well attended at all times, with most interest being shown in the colour graphics on GIGI terminals and also in the VAX11/750 system. A competition was held to win a GIGI, the runner-up prize being the chance to buy a GIGI at half-price!! The accent on graphics was continued with the Conference Tutorial, an excellent presentation entitled “From today photography is dead”, an entertaining demonstration of the impact of computing on graphics.

All in all, an excellent 4 days! Thanks to all those involved in organisation, to those who gave their time to prepare and present sessions and, of course, to DEC for all their co-operation in making the event a success.
HAD ENOUGH?

Outrageous Prices?
Impossible Lead Times?
Little Or No After Sale Support?

Compumation, the name that is quickly becoming synonymous with reliability & quality, now offers a complete line of D.E.C. compatible system enhancements.

The newest members of our line are our new Comp-DK & Comp-DF Backplanes, which are DD11-DK and DD11-DF equivalents, and and our Comp-CK & Comp-CF which are DD11-CK and DD11-CF equivalents. Our lead time is typically 30–45 days, ARO.

SUPPORT? We offer the finest, over the phone or on site.

COMPUMATION

Call us. When you've had enough.

2326 Walsh Ave. Santa Clara CA 95051
(408) 988-8600

D.E.C. is a registered trademark of Digital Equipment Corp.
JBSTAT

By Francois Dubois, The City of Longueuil, Quebec, Canada

1. ABSTRACT

JBSTAT is a program which allows you to display the job status and open channel information for any job on a RSTS/E large file system. It is most useful to the system manager because it permits him to see what is going on with a job at any time. The programmers can use it for debugging purposes.

JBSTAT is written in Basic-Plus-2 and works on RSTS/E V7.0 “large files” system only.

2. OPERATION

Type in:

RUN (J,?)JBSTAT
or use the following CCL:

CCL J-BSTAT=(J,?)JBSTAT.TSK:PRIV 31500

Note: LOGIN can be modified to chain to line 32000.

JBSTAT then asks for the job number (or KB number) followed by one or many options.

Examples:

A) J/5:-R4:C4:C12
 J CCL FOR JBSTAT
 / “/” OR “ ” NEEDED IF OPTIONS SPECIFIED
 S INFORMATION ON JOB #5
 - DON’T DISPLAY THE STATUS OF JOB 5
 : “:” CAN APPEAR ANYWHERE AFTER “/”
 R4 REFRESH DISPLAY EVERY 4 SECONDS
 C4 DISPLAY INFORMATION FOR CHANNEL #4
 C12 DISPLAY INFORMATION FOR CHANNEL #12

B) J/12:S
 S DISPLAY ONLY THE STATUS FOR JOB #12

Refer to line 100 of the program to see other examples on how to use the switches.

3. MONITOR TABLES

Some monitor tables are described below to help you understand how JBSTAT gets to the desired information. Please refer to these while reading step #4.

The design of these tables come from the understanding of the SYSTAT program (which is well documented) and the reading of the TTDVR.LST file generated at SYSGEN time. That file contains a complete terminal DDB layout. Also, by studying the “↑R and ↑T handlers” code, one can understand how to get at the data stored in the keyboard’s buffer and display it (JBSTAT displays the data in the KB’s buffer and the typed ahead data, if any, for keyboards opened in mode 8).

4. HOW JBSTAT WORKS

After entering the job number (or KB #), JBSTAT first finds out if that job is active on the system. It does that by examining the job table. A 0 (zero) entry in the job table means an inactive job. A non-zero value is a pointer to the job data block for that job. -1 indicates the end of the job table.

If the job is found active, it will display the status like SYSTAT would do (except for the CPU time).

Then it peeks through the I/O block (pointed to be the first word of the JDB) for that job examining which channel is opened. The I/O block is 16 words long (one word per channel). Each word is a pointer to either a DDB (Device Data Block) or a WCB (Window Control Block). A zero value indicates that the channel is closed.

The first byte of a DDB or WCB is called the driver index and it’s value determines which device is opened on that channel. A value of 0 indicates a disk device, 2 indicates a keyboard, etc... Also, if the driver index is zero, we are looking at a WCB, otherwise it is a DDB. The WCB is connected to the FCB by a pointer, stored in the fifth word of the WCB, which points to the file cluster size stored in the fifteenth word of the FCB (address of FCB + 34 octal).

Once JBSTAT reaches that point it is easy for it to extract from the DDB or the WCB and the FCB all the desired information.

NOTE: JBSTAT can easily be modified to display more information from the DDB, WCB or FCB.

5. DISPLAY

Refer to line 100 of the program for a complete description of the display. Refer to step #7 for examples.

6. NOTE

If you find any bugs in this program, please contact me. To receive this program on a 9-track (800 BPI or 1600 BPI) tape send a $30.00 U.S. Money Order payable to: The City of Longueuil.

Francois Dubois
The City of Longueuil
C.P. 5000
Longueuil, Quebec
Canada
J4K 4Y7
Tel: (514) 670-2220

7. EXAMPLES
RSTS V7.0-07 LONGUEUIL JBSTAT 07-Apr-81 13:58

<table>
<thead>
<tr>
<th>Job</th>
<th>Who</th>
<th>Where</th>
<th>What</th>
<th>Size</th>
<th>State</th>
<th>Rts</th>
<th>Prio/Brst</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>[1,105] KB19</td>
<td>DUMPTO</td>
<td>16/31K</td>
<td>DB</td>
<td>BASIC</td>
<td>-8/6</td>
<td></td>
</tr>
</tbody>
</table>

Chn Dev PPn File Name Size Flags Prot Clu Op/Rr User Block

1. MM0: Density: 1600 BPI, Status: Write End-of-File
2. DBO: [95,1] DSD14B.TSK 35 C <124> 4 0/1 RdWR 35
3. DBO: [1,105] BAC953.LST 7 <60> 4 1/0 RdWR 7
11. DBO: [1,105] DUMP16.TMP 1 D <60> 4 1/0 RdWR 1

RSTS V7.0-07 LONGUEUIL JBSTAT 07-Apr-81 14:01

<table>
<thead>
<tr>
<th>Job</th>
<th>Who</th>
<th>Where</th>
<th>What</th>
<th>Size</th>
<th>State</th>
<th>Rts</th>
<th>Prio/Brst</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>[75,91] KB17</td>
<td>IPA001</td>
<td>15/31K</td>
<td>RN</td>
<td>...RSX</td>
<td>1/12</td>
<td></td>
</tr>
</tbody>
</table>

Chn Dev PPn File Name Size Flags Prot Clu Op/Rr User Block

1. DBl: [75,2] FPAMAS.IND 3696 U <42> 128 1/0 RdWRCaUp 373
2. KB17: Mode: CrLf Echo Field: Kpch 0 DH11[12]
 Type ahead: <cr><cr>dubois francois<cr> |
4. DBl: [75,2] FPAREF.IND 82 U <42> 4 1/0 RdWRCaUp 13
15. DBO: [75,1] IPA001.TSK 58 C <232> 4 0/1 RdWR 38

RSTS V7.0-07 LONGUEUIL JBSTAT 07-Apr-81 14:18

<table>
<thead>
<tr>
<th>Job</th>
<th>Who</th>
<th>Where</th>
<th>What</th>
<th>Size</th>
<th>State</th>
<th>Rts</th>
<th>Prio/Brst</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>[1,3] Det</td>
<td>SPLRUN</td>
<td>16/31K</td>
<td>SL</td>
<td>BASIC</td>
<td>-8/6</td>
<td></td>
</tr>
</tbody>
</table>

Chn Dev PPn File Name Size Flags Prot Clu Op/Rr User Block

1. DBO: [1,3] SPL004.WRK 9 <60> 4 1/0 RdWr 5
2. LPO: Status: Hung
3. NL:
4. DBO: [1,3] CHARS.QUE 2 <60> 4 1/0 Rd 0

RSTS V7.0-07 LONGUEUIL JBSTAT 07-Apr-81 14:25

<table>
<thead>
<tr>
<th>Job</th>
<th>Who</th>
<th>Where</th>
<th>What</th>
<th>Size</th>
<th>State</th>
<th>Rts</th>
<th>Prio/Brst</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>[***] KB11</td>
<td>LOGIN</td>
<td>14/31K</td>
<td>KB</td>
<td>...RSX</td>
<td>0/6</td>
<td></td>
</tr>
</tbody>
</table>

Chn Dev PPn File Name Size Flags Prot Clu Op/Rr User Block

SOME MONITOR TABLES

JOB TABLE

<table>
<thead>
<tr>
<th>0</th>
<th>Pointer to Job 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pointer to JDB 2</td>
</tr>
<tr>
<td>4</td>
<td>JDFLG 2</td>
</tr>
<tr>
<td>6</td>
<td>JDFLG 2</td>
</tr>
<tr>
<td>10</td>
<td>JDFJDB 2</td>
</tr>
</tbody>
</table>

JOB DATA BLOCK

<table>
<thead>
<tr>
<th>0</th>
<th>Pointer to Job 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pointer to JDB 2</td>
</tr>
<tr>
<td>4</td>
<td>JDFLG 2</td>
</tr>
<tr>
<td>6</td>
<td>JDFLG 2</td>
</tr>
<tr>
<td>10</td>
<td>JDFJDB 2</td>
</tr>
</tbody>
</table>

I/O BLOCK

<table>
<thead>
<tr>
<th>0</th>
<th>Pointer to Job 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pointer to JDB 2</td>
</tr>
<tr>
<td>4</td>
<td>JDFLG 2</td>
</tr>
<tr>
<td>6</td>
<td>JDFLG 2</td>
</tr>
<tr>
<td>10</td>
<td>JDFJDB 2</td>
</tr>
</tbody>
</table>

WCB

<table>
<thead>
<tr>
<th>STS FLG</th>
<th>IDX</th>
<th>FLG BITS:JB #2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KB DDB

<table>
<thead>
<tr>
<th>STATUS</th>
<th>IDX</th>
<th>OUT BUF. EP</th>
<th>OUT BUF. FP</th>
<th>OUT BUF. COUNT</th>
<th>MODE</th>
<th>CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FCB

<table>
<thead>
<tr>
<th>Cluster Size 34</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First WCB 36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
The Supermarket of Computer Products
PRESENTS
Disk Sub Systems Ala Carte

DEC, DATA GENERAL and Others
*Trademark of Digital Equipment Corp.

Featuring:
- CONTROL DATA's
 SMD, CMD, MMD, FMD,
 HAWK, LARK, PRINTERS,
 TAPE DRIVES & MEMORIES
- KENNEDY's
 WINCHESTERS
 & TAPE DRIVES
- DATA PRODUCT's
 PRINTERS
- CENTURY DATA's
 TRIDENTS

Plus a Menu of CONTROLLERS:
- EMULEX • SYSTEM INDUSTRIES
- WESTERN PERIPHERALS
- DILOG • BYTRONIX • RIANDA
- MCT • DIGIDYNE

ONLY GF OFFERS THIS UNIQUE COMBINATION:
- CUSTOM-TAILORED TO YOUR EXACT REQUIREMENTS
- FULL EMULATION
- COST SAVINGS OF 50%
- FAST DELIVERY
- EXPERT INSTALLATION & SERVICE
- OEM DISCOUNTS AVAILABLE

And these other GF products: Printers & Subsystems; Tape Drives & Subsystems; Computers, Memories and Controllers;
CRTs, Terminals & Media; Turnkey Business Systems; Software (Operating & Application)

GEORGE FÖLDVARY & ASSOCIATES, INC.
400 S. Beverly Drive, Suite 310, Beverly Hills, CA. 90212
(213)551-2840 • TWX 910-490-2511

GF: I am interested in:

[] Printers [] Tapes
[] Controllers [] CRTs
[] Memories [] Media

I am an:
[] End user [] Institutional [] OEM

My requirements are:
[] Immediate [] 3-6 months [] Information only

My computer is a

Name ____________________________
Title ____________________________
Company _________________________
Address __________________________
City _____________________________ State ______ Zip ______
Telephone (______) ____________________________
WCB

Window Control Block

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FsLinkId</td>
<td>0</td>
</tr>
<tr>
<td>FsPtr</td>
<td>2</td>
</tr>
<tr>
<td>FsStat</td>
<td>7</td>
</tr>
<tr>
<td>FsProt</td>
<td>7</td>
</tr>
<tr>
<td>FsCnt</td>
<td>17</td>
</tr>
<tr>
<td>FsFlags</td>
<td>3</td>
</tr>
<tr>
<td>FsIndex</td>
<td>0</td>
</tr>
<tr>
<td>FsStatFlag</td>
<td>0</td>
</tr>
<tr>
<td>FsFlag</td>
<td>3</td>
</tr>
<tr>
<td>Job</td>
<td>2</td>
</tr>
<tr>
<td>FsNxt</td>
<td>16</td>
</tr>
<tr>
<td>FsVbn</td>
<td>6</td>
</tr>
<tr>
<td>FsWcb</td>
<td>10</td>
</tr>
<tr>
<td>FsWcbForThis</td>
<td>14</td>
</tr>
<tr>
<td>FsWcbForFlag</td>
<td>14</td>
</tr>
<tr>
<td>FsWnd</td>
<td>22</td>
</tr>
<tr>
<td>FsWnd</td>
<td>22</td>
</tr>
<tr>
<td>FsWcb</td>
<td>36</td>
</tr>
<tr>
<td>FsWcbFirst</td>
<td>36</td>
</tr>
</tbody>
</table>

FCB

File Control Block

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FsLinkId</td>
<td>0</td>
</tr>
<tr>
<td>FsPtr</td>
<td>2</td>
</tr>
<tr>
<td>FsStat</td>
<td>7</td>
</tr>
<tr>
<td>FsProt</td>
<td>7</td>
</tr>
<tr>
<td>FsCnt</td>
<td>17</td>
</tr>
<tr>
<td>FsFlags</td>
<td>3</td>
</tr>
<tr>
<td>FsIndex</td>
<td>0</td>
</tr>
<tr>
<td>FsStatFlag</td>
<td>0</td>
</tr>
<tr>
<td>FsFlag</td>
<td>3</td>
</tr>
<tr>
<td>Job</td>
<td>2</td>
</tr>
<tr>
<td>FsNxt</td>
<td>16</td>
</tr>
<tr>
<td>FsVbn</td>
<td>6</td>
</tr>
<tr>
<td>FsWcb</td>
<td>10</td>
</tr>
<tr>
<td>FsWcbForThis</td>
<td>14</td>
</tr>
<tr>
<td>FsWcbForFlag</td>
<td>14</td>
</tr>
<tr>
<td>FsWnd</td>
<td>22</td>
</tr>
<tr>
<td>FsWnd</td>
<td>22</td>
</tr>
<tr>
<td>FsWcb</td>
<td>36</td>
</tr>
<tr>
<td>FsWcbFirst</td>
<td>36</td>
</tr>
</tbody>
</table>

Bits in FsStat of FCB

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>US.DEL</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>US.UPD</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>US.NOK</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>US.NOK</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>US.UPD</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>US.UPD</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>US.PLC</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>US.OUT</td>
<td>0</td>
</tr>
</tbody>
</table>

BITS IN DDSTS OF WCB

```
<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCSUSE</td>
<td>WCSUPD</td>
<td>WCLCK</td>
<td>WCCLTG</td>
<td>WCSUPD</td>
<td>DDLWLO</td>
<td>DRLLO</td>
<td>DNF</td>
</tr>
<tr>
<td>WRITE</td>
<td>FILE</td>
<td>LOCK</td>
<td>CONFIG</td>
<td>UPDATE</td>
<td>WRITE</td>
<td>READ</td>
<td>NFS</td>
</tr>
<tr>
<td>PKIVS</td>
<td>ISUPD</td>
<td>ISON</td>
<td>FILE</td>
<td>MODE</td>
<td>LOCK</td>
<td>LOCK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

BITS IN W#FLAG OF WCB

```
<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCSEFF</td>
<td>WCSDLW</td>
<td>WCSEX</td>
<td>WCSEXT</td>
<td>WCSOK</td>
<td>WCSAS</td>
<td>DDLW</td>
<td>DDLR</td>
</tr>
<tr>
<td>NFSBY</td>
<td>FIX</td>
<td>32</td>
<td>EXTN'D</td>
<td>LENGTH</td>
<td>OF</td>
<td>CURRENT</td>
<td></td>
</tr>
<tr>
<td>CLUST</td>
<td>DATE</td>
<td>WCB</td>
<td>IMPLICIT</td>
<td>LOCK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

BITS IN W#WCB OF WCB (CONTINUED)

```
<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>ADDRESS</td>
<td>OF</td>
<td>NEXT</td>
<td>WCB</td>
<td></td>
</tr>
<tr>
<td>WCSCSQ</td>
<td>WCSRE</td>
<td>WCSEX</td>
<td>WCSEXT</td>
<td>WCSPU</td>
<td>WCRR</td>
<td></td>
</tr>
<tr>
<td>SEQ'L</td>
<td>USER</td>
<td>ALWAYS</td>
<td>SPEC'L</td>
<td>READ</td>
<td></td>
</tr>
<tr>
<td>CACHE</td>
<td>CACHE</td>
<td>EXTEND</td>
<td>UPDATE</td>
<td>RDRLS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
```

THE ADDRESSES GIVEN BELOW ARE OCTAL NUMBERS

JOB TABLE

- **2 TO END**: POINTER TO JOB DATA BLOCK FOR EACH JOB
 - **NOTE**: A POINTER VALUE OF -1 INDICATES THE END OF JOB TABLE

JOB DATA BLOCK

- **0**: POINTER TO I/O BLOCK
- **2 (JDBLGS)**: JOB STATUS FLAGS
- **10 (JDBLSZ)**: POINTER TO JOB DATA BLOCK EXTENSION

I/O BLOCK

- **0**: POINTER TO USER'S KB DDB
- **2 TO 36**: POINTER TO EITHER A DDB, SCB OR WCB

JOB DATA BLOCK 2

- **14 (J2WAME)**: FIRST 3 CHARACTERS OF JOB NAME (RAD50)
- **16**: LAST 3 CHARACTERS OF JOB NAME (RAD50)
- **30 (J2PPM)**: ACCOUNT NUMBER

WCB

- **0**: DRIVER INDEX
- **1**: STATUS BITS FOR FILE
- **2**: JOB NUMBER * 2
- **10**: POINTER TO FILE CLUSTER SIZE STORED IN FCB
- **14**: POINTER TO THE NEXT WCB FOR THIS FILE AND OTHER FLAGS

FCB

- **0**: POINTER TO THE NEXT FCB FOR THIS UNIT
- **4**: NUMBER OF TIMES THIS FILE IS OPEN (NOT REGARDLESS)
- **6**: NUMBER OF TIMES THIS FILE IS OPEN REGARDLESS
- **8**: FILE SIZE (MB)
- **10**: FILE SIZE (MB)
- **16**: FILE SIZE (MB)
- **31**: FILE SIZE (MB)
- **32**: FILE SIZE (MB)
- **34**: FILE SIZE (MB)
- **36**: POINTER TO FIRST WCB FOR THIS FILE
APPLICATIONS SCALE IN YOUR FAVOR...WITH USER-11.

USER-11 is a comprehensive applications development facility for the DEC RSTS operating environment. Dozens of integrated programs harness RSTS's power for unparalleled productivity and performance in constructing on-line and batch application systems.

PRODUCTIVITY...
A MATTER OF TIME.
More than a data management system, USER-11 features common-function programs that permit numerous applications to be installed without writing a single line of code. Complete building blocks and interfaces are provided for those remaining applications requiring custom work.

PERFORMANCE...
SIMPLY INCREDIBLE.
USER-11 combines advanced BASIC and MACRO coding techniques with ultra-efficient file accessing mechanisms to optimize application system performance.

RELIABILITY...
A PROVEN FACT.
USER-11 is currently installed on hundreds of time-sharing systems worldwide with a reliability record that users repeatedly praise. All software is exhaustively tested and benchmarked prior to any distribution release.

SECURITY...
MORE THAN RSTS.
USER-11 incorporates a unique MENU system which flexibly and securely controls all processes. Secondary, encoded security databases are provided for each project. A special Run Time System is invoked to prevent accessing the RSTS ready state, unless the software developer desires this for the user.

STANDARDIZATION...
A BYPRODUCT.
All USER-11 generated packages employ programming and documentation conventions which enhance compatibility, readability, and maintainability.

ADAPTABILITY...
NO PROBLEM.
USER-11 programs are dictionary and parameter driven throughout. Files can be restructured without program modifications.

DOCUMENTATION...
GOOD AND PLENTIFUL.
USER-11 features a wealth of easy-to-follow documentation. An extensive on-line "HELP" facility is at software developer and user fingertips. All documentation is maintained and distributed on your system's compatible media.

TRAINING...ALL KINDS.
USER-11 training courses are held frequently with instructional programs to suit your need—beginner to expert.

FEATURES...ON AND ON.
USER-11 includes virtually every facility needed to quickly construct high performance management applications—nothing else is required. If you find this hard to believe or would like more information, contact us; we will furnish you with solid user proof!

North County Computer Services, Inc.
2235 Meyers Ave.
Escondido, California 92025
(714) 745-6006, Telex: 182773

DEC and RSTS are registered trademarks of Digital Equipment Corporation.
MENU/AUTHORIZATION PROCESSOR SYSTEM

MAPS is a system to generate Application Menus and provide system security by controlling user access.

- Unlimited number of menu levels
- Menu entry points may vary between users
- Three levels of user authorization privileges
- "Keywords" to jump between menus
- Variable arguments passed between menu and program
- Menus are all file driven
- And more...

Written in MACRO for RSTS, E, RTI, RSXi, M and VAX.

CALL OR WRITE
(414) 784-8250

McHUGH, FREEMAN AND ASSOCIATES, INC.
1135 LEGION DRIVE • ELM GROVE, WISCONSIN 53122
INSIDE:

☐ CONPAX: Conversion of PDP-11 Assembly Code to VAX-11 Native Mode

☐ VAX News
CONPAX:
Conversion of
PDP-11 Assembly Code
to VAX-11 Native Mode

By Stephen F. Heffner,
President, PSI (Pennington Systems Inc.)

PSI is a software vendor specializing in software products for the DEC PDP-11 and VAX-11 computers. In late 1980, we found ourselves faced with the task of converting two of our products from the PDP-11 to VAX-11 native mode. The products were VIDO/11, a CRT-independent video terminal I/O subroutine library, and SCRNO/11, a subroutine library and screen form editor utility for CRT-independent screen form use and management. The two products together contained about 7,000 lines of Macro-11, which would have to be converted to Macro-32.

We considered the alternatives that presented themselves. We could recode the assembly code by hand; we could rewrite the assembly code sections in a higher language; or we could attempt some kind of automatic conversion. Our conversion schedule made the first two options unattractive, so we looked more closely at the possibility of automating such a conversion.

It was quickly apparent that a fully automatic conversion was not possible; there would be too many cases where human judgment would have to be injected into the process. However, the similarity of both the VAX-11 architecture and its assembler to the PDP-11 encouraged the development of a conversion tool to automate as much as possible. Our next question was whether it would be possible to design and implement such a tool to be of general use, beyond our immediate need. Our analysis was positive; the result was CONPAX (CONvert Pdp-11 to VAX).

Using a first version of CONPAX, the 7,000 lines of assembly code were converted and debugged in about 10 man-days. This is perhaps not broadly representative, since the conversion was done by two highly experienced systems programmers on code which was cleanly structured and thoroughly documented. However, subsequent experience on unfamiliar and less documented code has underscored the usefulness of the tool for conversion. We have been gratified to find that CONPAX not only performed very well on the specific conversion that prompted its development; it is proving to be highly successful on other conversions, and in fact is in use at several large DEC customer sites.

The reasons for such conversions are several. "Compatibility mode" on the VAX-11 is limited both in its performance (running at about half the speed of "native mode") and in its 64KB address space. In addition, all components of
a task must be in compatibility mode, ruling out the use of the VAX's native mode compilers and run-time services. CONPAX, by making possible a rapid, clean conversion to native mode, opens up the full power of the VAX-11 for existing PDP-11 applications containing assembly code.

In the conversion process, CONPAX uses addressing modes and other information from the PDP-11 assembler code to produce the VAX-11 conversion for each line, including multi-line alternatives when appropriate. Simple editing procedures and a post-processor allow the user to code to produce the VAX-11 conversion for each line. In select the desired conversion and eliminate unwanted alternatives. During this refinement process, which can be iterative if necessary, VAX-11 assemblies are always possible.

CONPAX automatically handles details such as supplying octal radix indicators, translating ASCII literals to VAX-11 format, and substituting standard VAX-11 register names. The spacing of input lines is preserved or, optionally, aligned to the user's specification.

The CONPAX conversion process is controlled by tables which can be used to "fine tune" the conversion for particular programming environments. For instance, the conversion can be biased toward either 16 or 32 bit arithmetic. Special substitutions for names or argument strings can be accommodated. Substitution for any given symbol can be limited to a particular field of the input line — label, opcode, operand, or comment. Normally, conversion produces VAX-11 instructions, not macros. However, the control tables can be used to produce special conversions (including multi-line) of PDP-11 opcodes, macros, or operands.

CONPAX is available under permanent license or as a service from PSI. As a service, an initial $1,500 fee includes initial consultation, training, and conversion of 500 lines of source code. Additional conversion costs $5.00 per line. A permanent license costs $5,000 for one user site (either PDP-11 or VAX-11 version), including installation, initial conversion consultation, and training. Additional sites can be licensed at substantial discounts. Consulting and conversion assistance are also available from PSI on a per diem basis.

Further information can be obtained from PSI (Pennington Systems Inc.), 65 South Main Street, Pennington NJ 08534; phone: (609) 737-2727; cable address: PSIUSA.

CONPAX Conversion Example

This example of CONPAX conversion consists of a PDP-11 assembler subroutine and the resulting VAX-11 source code. This is immediately followed by notes which apply to specific lines of the source code.

Except as indicated, the conversion of each line from PDP-11 to VAX-11 code was automatic: the first (or only) alternative produced by CONPAX was the final output. No user action was required in these cases. Otherwise:

- **(C)** marks lines where the user chose a secondary alternative. The choice was made by entering a one-character code.
- **(D)** marks lines where the choice of a secondary alternative was deferred until after a trial assembly. The choice was then made by entering a one- or two-character code. Note that the conversion tables can be set up to eliminate the need for trial assembly of the converted VAX source; the trade-off is slightly less space-efficient VAX code.
- **(M)** marks lines where manual conversion was necessary.

The CONPAX conversion process is controlled by tables. The particular tables used for the conversion shown here were designed to maintain the existing size (8 or 16 bits) of data in memory. However, data in registers and on the stack are handled as 32-bit quantities, since experience has shown that this is most generally effective. And, of course, addresses change from 16 bits on the PDP-11 to 32 bits on the VAX-11, whether they are stored in memory, in registers, or on the stack.

The notes given below further reflect the specific conversion tables used, as well as the general action of CONPAX.

COPYRIGHT 1981 by Pennington Systems Incorporated. Reprinted by permission. PDP-11 and VAX-11 are registered trademarks of Digital Equipment Corporation.

CONPAX Conversion Example: Macro-11 Subroutine

<table>
<thead>
<tr>
<th>Notes</th>
<th>CONPAX Conversion Example: Macro-11 Subroutine</th>
<th>Macro-11 Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>ERMES -- CONSTRUCT ERROR MESSAGE</td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>CALL ERMES</td>
<td>CALL ERMES(SUP,SUBLEN,ERCCOD,ERRTXT,ST)</td>
</tr>
<tr>
<td>(M)</td>
<td>WHERE</td>
<td>WHERE</td>
</tr>
<tr>
<td>(M)</td>
<td>BUF = BUFFER TO RECEIVE MESSAGE (ASCII ENDED WITH NULL)</td>
<td>BUF = BUFFER TO RECEIVE MESSAGE (ASCII ENDED WITH NULL)</td>
</tr>
<tr>
<td>(M)</td>
<td>SUBLEN = LENGTH OF BUFFER, OF BUFFER</td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>ERCCOD = ENCODED ERROR NUMBER AND FLAGS</td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>ERRTXT = MESSAGE TEXT (ASCII ENDED WITH NULL)</td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>ST = SET TO STATUS: 0 = (X, -1) = BUF TOO SHORT</td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>TITLE ERMES</td>
<td></td>
</tr>
<tr>
<td>(N1)</td>
<td>.SECT INST,RO,1,LCL,REL,CON</td>
<td></td>
</tr>
<tr>
<td>(N2)</td>
<td>.GLOBAL MOVST</td>
<td>"MOVE STRING" UTILITIES ROUTINE</td>
</tr>
<tr>
<td>(N2)</td>
<td>.GLOBAL MOVVS,MOVVC2</td>
<td>"MOVE CHARACTER" UTILITIES ROUTINES</td>
</tr>
<tr>
<td>(N3)</td>
<td>ERMES: CLR CLS FLGS</td>
<td>INIT LOCAL FLAGS</td>
</tr>
<tr>
<td>(N4)</td>
<td>TST RS LST</td>
<td>JRL ARGUMENT COUNT</td>
</tr>
<tr>
<td>(N5)</td>
<td>MOV (RS)+,T0</td>
<td>BUFFER ADDRESS</td>
</tr>
<tr>
<td>(N6)</td>
<td>MOV #32+T1</td>
<td>BUFFER LENGTH</td>
</tr>
<tr>
<td>(N7)</td>
<td>MOV PTRY,T2</td>
<td>ADDR OF INITIAL TEXT</td>
</tr>
<tr>
<td>(N8)</td>
<td>JSR PC,MOVE</td>
<td>MOVE TO BUFFER, UPDATE PTR + COUNT</td>
</tr>
<tr>
<td>(N9)</td>
<td>BCS EKERNL</td>
<td>ERROR, BUFFER TOO SHORT</td>
</tr>
<tr>
<td>(M)</td>
<td>.BA</td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>MOVN $1,-(T)+</td>
<td>ADD PERIOD TO BUFFER</td>
</tr>
<tr>
<td>(M)</td>
<td>MOVN $7,-(T2)</td>
<td>SEPARATE NUMERIC CODES</td>
</tr>
<tr>
<td>(M)</td>
<td>JSR PC,MOVEHC2</td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>(HC) MOVE 1(T2),T2</td>
<td>SET CONTROL COUNT</td>
</tr>
<tr>
<td>(C)</td>
<td>(HC) RIC</td>
<td>+1727,T2</td>
</tr>
<tr>
<td>(M)</td>
<td>(RD) GTIN (T2)</td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>(RD) ADD</td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>(SF) RIC</td>
<td></td>
</tr>
</tbody>
</table>

Notes Macro-11 Source

<table>
<thead>
<tr>
<th>Notes</th>
<th>Notes Macro-11 Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>; ERMSG -- CONSTRUCT ERROR MESSAGE</td>
<td></td>
</tr>
<tr>
<td>; CALL</td>
<td>CALL ERMSG(SUP,SUBLEN,ERCCOD,ERRTXT,ST)</td>
</tr>
<tr>
<td>; WHERE</td>
<td>WHERE</td>
</tr>
<tr>
<td>; BUF = BUFFER TO RECEIVE MESSAGE</td>
<td>BUF = BUFFER TO RECEIVE MESSAGE (ASCII ENDED WITH NULL)</td>
</tr>
<tr>
<td>; SUBLEN = LENGTH OF BUFFER</td>
<td>SUBLEN = LENGTH OF BUFFER, OF BUFFER</td>
</tr>
<tr>
<td>; ERCCOD = ENCODED ERROR NUMBER AND FLAGS</td>
<td>ERCCOD = ENCODED ERROR NUMBER AND FLAGS</td>
</tr>
<tr>
<td>; ERRTXT = MESSAGE TEXT</td>
<td>ERRTXT = MESSAGE TEXT (ASCII ENDED WITH NULL)</td>
</tr>
<tr>
<td>; ST = SET TO STATUS: 0 = (X, -1) = BUF TOO SHORT</td>
<td>ST = SET TO STATUS: 0 = (X, -1) = BUF TOO SHORT</td>
</tr>
<tr>
<td>; TITLE</td>
<td>TITLE</td>
</tr>
<tr>
<td>; .SECT INST,RO,1,LCL,REL,CON</td>
<td>.SECT INST,RO,1,LCL,REL,CON</td>
</tr>
<tr>
<td>; .GLOBAL MOVST</td>
<td>"MOVE STRING" UTILITIES ROUTINE</td>
</tr>
<tr>
<td>; .GLOBAL MOVVS,MOVVC2</td>
<td>"MOVE CHARACTER" UTILITIES ROUTINES</td>
</tr>
<tr>
<td>; ERMES: CLR CLS FLGS</td>
<td>INIT LOCAL FLAGS</td>
</tr>
<tr>
<td>; TST RS LST</td>
<td>JRL ARGUMENT COUNT</td>
</tr>
<tr>
<td>; MOV (RS)+,T0</td>
<td>BUFFER ADDRESS</td>
</tr>
<tr>
<td>; MOV #32+T1</td>
<td>BUFFER LENGTH</td>
</tr>
<tr>
<td>; MOV PTRY,T2</td>
<td>ADDR OF INITIAL TEXT</td>
</tr>
<tr>
<td>; JSR PC,MOVE</td>
<td>MOVE TO BUFFER, UPDATE PTR + COUNT</td>
</tr>
<tr>
<td>; BCS EKERNL</td>
<td>ERROR, BUFFER TOO SHORT</td>
</tr>
<tr>
<td>; .BA</td>
<td></td>
</tr>
<tr>
<td>; MOVN $1,-(T)+</td>
<td>ADD PERIOD TO BUFFER</td>
</tr>
<tr>
<td>; MOVN $7,-(T2)</td>
<td>SEPARATE NUMERIC CODES</td>
</tr>
<tr>
<td>; JSR PC,MOVEHC2</td>
<td></td>
</tr>
<tr>
<td>; (HC) MOVE 1(T2),T2</td>
<td>SET CONTROL COUNT</td>
</tr>
<tr>
<td>; (HC) RIC</td>
<td>+1727,T2</td>
</tr>
<tr>
<td>; (RD) GTIN (T2)</td>
<td></td>
</tr>
<tr>
<td>; (RD) ADD</td>
<td></td>
</tr>
<tr>
<td>; (SF) RIC</td>
<td></td>
</tr>
</tbody>
</table>
ROSS/V is a software package, written in VAX-11 MACRO, which provides a RSTS/E monitor environment for programs running in PDP-11 compatibility mode on DEC's VAX-11.

ROSS/V supports:
- The BASIC-PLUS interactive environment.
- Concurrent use of multiple run-time systems.
- Update mode (multi-user read/write access to shared files.)
- CCL (Concise Command Language) commands.
- An extensive subset of RSTS/E monitor calls.

ROSS/V runs under VMS and interfaces to programs and run-time systems at the RSTS/E monitor call level. ROSS/V makes it possible for DEC PDP-11 RSTS/E users to move many of their applications directly to the VAX with little or no modification and to continue program development on the VAX in the uniquely hospitable RSTS/E environment. Most BASIC-PLUS programs will run under an unmodified BASIC-PLUS run-time system.

RSTS, PDP-11, VAX-11, and DEC are trademarks of Digital Equipment Corporation.

ROSS/V is available from:

(Eastern U.S.)
Evans Griffiths & Hart, Inc.
55 Waltham Street
Lexington, Massachusetts 02173
(617) 861-0670

(Central U.S.)
Interactive Information Systems, Inc.
10 Knollcrest Drive
Cincinnati, Ohio 45237
(513) 761-0132

(Western U.S.)
Online Data Processing, Inc.
N. 637 Hamilton
Spokane, Washington 99202
(509) 484-3400

Notes:
- [N1] Appropriate substitutions were made for the .PSECT arguments which differ from PDP-11 to VAX-11. These arguments are changed only if they are .PSECT arguments appearing elsewhere, it would not be changed.
- [N2] _GLOBL was changed to the more specific .LCL.
- [N3] The double call produced the "END", and the instruction moved down to a new line.
- [N4] Note that DS was converted to DP. The alternative with "DS" would have been chosen if the register were not being used as an argument list pointer. The conversion produces long-word instructions as the default for AD-relative values, since such values are usually addresses.
- [N5] The VAX-11 assembler does not allow symbolic names for registers. CONPAX substituted explicit register names as specified by the user through the control table.
- [N6] The 16-bit value was extended to 32 bits since this is often useful, and rarely undesirable, for values in registers.
- [N7] The MOVX alternative was chosen since the quantity moved is an address.
- [N8] The "PC," was automatically deleted and an extra tab inserted to keep the comment properly aligned.
- [N9] Conditional branches do not reach as far on the VAX-11 since destination offsets are byte-relative rather than word-relative. This alternative was chosen after preliminary assembly on the VAX showed that a simple branch (the default alternative) would not reach the destination. CONPAX generated the selected three statements as a single alternative, which was chosen with a single one-character command. CONPAX generates local labels as necessary, from a user-specified starting number.
- [N10] "ADO" is not converted unless it appears in the instruction field.
- [N11] The single-quote (one-character) and double-quote (two-character) ASCII literals allowed by the PDP-11 assembler are not permitted by the VAX assembler. CONPAX automatically converts these to the delimited "\" construction. Note that CONPAX picks a delimiter which isn't in the literal.
- [N12] The "AO" instruction was deleted because the "MOVZB" on the VAX made it unnecessary. The deletion was done with a one-character command.
- [N13] This required manual recoding, since the directive on the VAX is different from the one on the PDP-11.
- [N14] CONPAX automatically doubled the destination operand, as required for the VAX "ASHL" instruction.
Many Systems to Choose from . . . both New & Used Choice of PERIPHERALS & SOFTWARE

ALSO: Full Range of DEC 11 Systems
OVER 5000 OTHER ITEMS IN STOCK!

NEW TERMINALS IN STOCK!

DEC: LA34AA, LA34DA, LA36DK, LA120AA, LA120RA,
LS120HE (USED), VT100AA, VT132AA

TELETYPE: 4320AAK, 4320AAB, 4320AAL, 4330-2ACA, 4340BAB

GE: 2030 TI: 743 IBM: 3101-12, 3101-22 QUME: SPRINT 5/55

CALL 617-437-1100
For Our Latest Listing of DEC CPUs & Peripherals.

AMERICAN USED COMPUTER
P.O. Box 68, Kenmore Station, Boston, Massachusetts 02215

Leaders in Used DEC Hardware Since 1968.

*Registered Trademark of Digital Equipment Corporation
VAX NEWS

VAX/VMS INCREMENTAL FILE BACKUP AND RESTORE SOFTWARE

RAXCO, Inc., West Palm Beach, Florida, announces the immediate availability of RABBIT-5, Incremental File Backup and Restore (IFBR), a new VAX/VMS software utility system that provides incremental backup and restore capability for data files. RABBIT-5 will save only the files selected from disk by writing them to a specified tape. It will then discretely restore specified files on request.

RABBIT-5 IFBR is designed to provide maximum efficiency for both the user and the computer system when saving and restoring data files. Files are saved and restored approaching tape passing speed. The user may select file-names, extensions and versions to be saved and/or restored. "Wild card" operations are permissible. Creation date and update, with greater-than/less-than arguments may be used. Last file versions may be selected.

RABBIT-5 operates in a "novice" or "expert" mode. In the novice mode, a prompter requests "fill-in-the-blanks" information to save or retrieve files. In the expert mode, all system commands plus wild carding is permissible. However, the prompter is disabled for efficiency.

While RABBIT-5 IFBR may be used by anyone, it is particularly useful to system management and operational personnel as it offers full and partial disk backup and restore capability. The system may be operated interactively or may "wake-up" and produce backup files automatically. Long jobs may utilize RABBIT-5 for checkpoint and restart procedures.

Some capabilities of RABBIT-5 include:

- ability to save/restore files by date.
- ability to save/restore file types with wild card notation.
- ability to save/restore files based on actual length in blocks to reduce data storage.
- ability to exclude/include files when saving or restoring.
- ability to produce a directory of file names.
- HELP command.

RABBIT-5 is written in FORTRAN-IV and macro assembler, and will operate under VMS version 2 and above. RABBIT-5 may be purchased for $3750 or rented for $149/month.

RABBIT-5 is the newest member of the VAX/VMS RABBIT Family which includes RABBIT-1 Resource Accounting and Billing; and RABBIT-2 System Performance Analysis.

RAXCO, Inc., also announces the immediate availability of Version 3.0 of RABBIT-1, a Resource Accounting and Billing System for VAX/VMS users.

Major improvements include a new menu selection approach, more efficient processing, plus several new optional features.

The RABBIT-1 menu allows the user to select from more than 10 categories of major transactions to be effected. Transactions include:

1. File Creation of Users
2. File Management
3. Name and Address Modifications
4. Report Specifications
5. Rates and Discounts
6. Disk File Management
7. Run Disk Job
8. Run Editor
9. Run Update
10. Run Reports

The RABBIT System may be run interactively, serially, step by step, or batch. Resource summaries, billing recaps, cross footing and balancing are automatic features.

RABBIT-1 options include:

- User Budget System
- Program Accounting System
- Communications Post Accounting System
- Project Code Accounting System
- Disk Accounting System
- Tape Storage System
- Report Generator

RABBIT-1 is written in FORTRAN IV and runs in VAX native mode. RABBIT-1 base price is $2495. Options are available for $250 each. Rentals are $99/month and $12.50/month respectively.

RAXCO develops and markets a full line of DEC software systems and a complete line of DEC VMS and RSTS/E operating systems including system support, data management and financial planning. RABBIT Systems are marketed and supported throughout the U.S.A., Canada, U.K., France and Germany.

RABBIT Systems are available for RSTS/E Version 7 plus users also.

For more information contact: Joseph Musler, RAXCO Inc., 3336 N. Flagler Drive, West Palm Beach, Florida 33407, U.S.A., Telephone: (305) 842-2115.
LD1: [1,3] AMORT.BAS

By R. Frazer, Applications Analyst for Nationwide Data Dialog, Inc.

FORTRAN PAYROLL PACKAGE

SOURCE, COMMAND FILES and DOCUMENTATION for a COMPLETE SYSTEM with FIVE SPECIAL DEDUCTION, CHECK WRITING, and REPORT GENERATION. $500

(Sample State Income Tax Module included.)

GOLDEN TRIANGLE COMPUTERS
Phone 713/883-4588
Box 1866, Orange, TX 77630
1000

1020

1040

1060

1080

1100

1120

1140

1160

1180

1200

1220

1240

1260

1280

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1520

1540

1560

1580

1600

1620

1640

1660

1680

1700

1720

1740

1760

1780

1800

1820

1840

1860

1880

1900

1920

1940

1960

1980

2000

2020

2040

2060

2080

2100

2120

2140

2160

2180

2200

2220

2240

2260

2280

2300

2320

2340

2360

2380

2400

2420

2440

2460

2480

2500

2520

2540

2560

2580

2600

2620

2640

2660

2680

2700

2720

2740

2760

2780

2800

2820

2840

2860

2880

2900

2920

2940

2960

2980

3000

3020

3040

3060

3080

3100

3120

3140

3160

3180

3200

3220

3240

3260

3280

3300

3320

3340

3360

3380

3400

3420

3440

3460

3480

3500

3520

3540

3560

3580

3600

3620

3640

3660

3680

3700

3720

3740

3760

3780

3800

3820

3840

3860

3880

3900

3920

3940

3960

3980

4000

4020

4040

4060

4080

4100

4120

4140

4160

4180

4200

4220

4240

4260

4280

4300

4320

4340

4360

4380

4400

4420

4440

4460

4480

4500

4520

4540

4560

4580

4600

4620

4640

4660

4680

4700

4720

4740

4760

4780

4800

4820

4840

4860

4880

4900

4920

4940

4960

4980

5000

5020

5040

5060

5080

5100

5120

5140

5160

5180

5200

5220

5240

5260

5280

5300

5320

5340

5360

5380

5400

5420

5440

5460

5480

5500

5520

5540

5560

5580

5600

5620

5640

5660

5680

5700

5720

5740

5760

5780

5800

5820

5840

5860

5880

5900

5920

5940

5960

5980

6000

6020

6040

6060

6080

6100

6120
A Free Resume Kit... An Ivaluable Aid In Your Job Changing Process:

Invaluable Aid In Your Job Changing Process:

From the Only Employment Service with Twin Inhouse PDP 11/70 RSTS systems.

The Kit presents in an uncomplicated format what we’ve learned in over 15 years of employment service to the computer industry. Fill out the coupon and return it to us. We’ll send you our free Resume Kit.

Name
Address
City State Zip
Phone
Hardware

Applications
Degree Yr. Grad. No. Yrs. Experience
Current Employer
Job Title
Languages

Scientific Placement, Inc. Employment Service
P.O. Box 19949 Houston, Texas 77024 (713) 496-6100

We have many exclusive Data Processing positions available — locally and nationwide.

June 1981 page 61

RSTS DISK DIRECTORIES, Part 5

By Scott Banks, Systems Design

Introduction

I have planned this fifth episode, a general overview of FIP's role in maintaining disk directories, not to require the previous articles. We'll deal with conceptual OPENs, CLOSEs, and such, concerning ourselves little with all the blasted details. It would only be fair to admit that I currently have Volume 2, Number 1 of the RSTS Pro in front of me right now. So, if you want 'em, the UFD layouts begin on page 45. Hmmm... the 'marked for deletion' bit...

FIP and SATT.SYS

The File Processor, FIP, is a major component of the RSTS monitor. FIP is the code responsible for overall file management. All operations that affect the directory structure occur via FIP. This set of chores is more comprehensive than it appears at first. For instance, the RSTS monitor creates a new job, but it is FIP that (after running LOGIN) actually 'logs' the user into the system. Ditto for error messages (the text is located in [0,1] ERR.SYS) and run-time system changes (true, the linked list is in memory, but remember all those files with .RTS extensions). FIP even worries about magtape and other devices. For the moment, we'll restrict ourselves to those FIP operations that deal with disk directory maintenance and are readily enjoyable by the Basic-Plus programmer. In the interest of clarity, I will ignore the effects of any caching or large-files optimization.

Every RSTS disk must have a file in [0,1] called SATT.SYS, the Storage Allocation Truth Table. Each PDP-11 word has 16 bits, and 256 of these fit into a disk block. Therefore, each block of SATT contains 4096 bit flags. There is one bit flag for each device cluster available to the system. The filesize of SATT depends on the device clustersize and the total number of clusters. SATT can never be greater than 16 blocks (65536 clusters). Remember that we must always be able to describe uniquely any DCN via a 16-bit unsigned integer.

The SATT must be a contiguous file. When a disk is mounted, the location of its SATT is noted. FIP operations that affect the allocation of disk clusters to files reference and update the SATT. Any cluster that is currently not allocated to any file will have its corresponding bit clear. That bit is set to 1 when the cluster is allocated, and reset to 0 when it is again free.

Your Basic File Search

For one reason or another, FIP may search for a specific file. There are three essential pieces of information required to do this. Two of these, the disk device (e.g. DBO:) and the account or PPN (e.g. [2,3]) are often allowed their default values. When supplied, they may be specified explicitly or by logical names or special characters (such as $). In any event, the device and PPN are definitely known with the effect that the search is narrowed down to exactly one UFD. The initial DCN (device cluster number) of this UFD may already be available. The UFD for SY:[1,2] and that of each job currently logged-in (corresponding to its PPN on SY:) appears in a monitor table. For random account selections, the MFD of the appropriate disk must be searched for the UFD entry. Obviously, if this is a fruitless effort, the file does not exist.

The UFD search is a serial scan of the linked list of Name blockettes. If one is stumbled upon that has a match for our desired filename, the search ends successfully. The search terminates in failure when the end of the UFD is reached. If the status byte of a name blockette has either its 'MFD' or 'marked for deletion' bits (6 and 7) set, that entry is ignored.

OPENing an Existing File

The Basic-Plus OPEN FOR INPUT statement, for example, attempts to open an existing file. FIP performs a search for the specific file, terminating with an error 5 if the file cannot be located. But even if it is there, the work is only half complete. The status and protection bytes in the Name blockette (word 4) determine whether or not the file may be accessed. The rules for file protection are applied to decide read vs. write access privileges. If no valid access is possible, the file is not opened and an error is returned.

The open file count, the lower byte of word 5 of the NB, will be zero if we are opening this file at a time when no other job already has it open. The upper byte (the read-only regardless open count) is of no significance in this respect. Assuming we are first in line, we have our choice of update mode or normal mode. These two may never be mixed, so we use bit 4 of the status byte to determine (from now until no channel has this file open) whether this is an update mode or a normal mode file. If this is an update OPEN, bit 4 will be set, else it will be cleared. Something must also be done about bit 2. For files opened mode 0 and write-access available, bit 2 will be set to indicate that write access has been given. If write access is not granted (either by restriction or mode request) bit 2 will be cleared.

If the file is already open by one or more jobs, special restrictions apply. If bit 3 of the status is set, this would mandate that the current OPEN itself be seeking update mode. On the other hand, if the bit is clear, this OPEN must not be attempting update mode. For normal mode OPENs, write access will not be granted if bit 2 is already set. If
write access is given for this OPEN, then the bit will be set at this time.

For all files that are truly opened (no errors occur), the open file count is incremented. After some internal bookkeeping, the OPEN is logically complete. The job that requested the OPEN is now allowed to continue. All read and write transfers need only refer to the channel number under which the OPEN occurred.

In both large and small-files systems, a certain amount of information is kept in memory. Each open channel has a file control block that retains data about the file opened. Large-file systems minimize disk transfers by using the directories only to locate files. All the status bytes and access counts are kept in memory via window control blocks. Furthermore, directory caching eliminates physical disk reads by keeping current copies of UF D blocks in memory.

KILLing a File

The first requirement for removing a file from the system is that it must exist. Assuming the file search has indeed located the doomed denizen of disk, the protection code and status bytes of the file must be checked. KILL demands that the protection code allow write access to the file (from whatever account and privilege status you happen to be under). Additionally, the delete/rename protection (bit 5 of the status byte) must not be selected. Even with permanent privilege, you cannot delete a file (such as SATT) when it has delete/rename protection (look for the P after the filesize).

If a KILL has made it to this point, the file will eventually be deleted from the system. Normally, it will be removed immediately. The file's Name blockette will be unlinked from the remaining NB's in the UFD. The device clusters allocated to the file will be returned to system by clearing one or more bits in the SATT for the proper disk. Then each blockette consumed by this directory entry will be zeroed, thus forming Hole blockettes available for future reuse. But I did say eventually, didn't I? If the file to be killed happens to be currently open, we just can't delete it. This could possibly allow two files to share the same space on disk, in a totally random and changing fashion. It's easy enough to check if any channel has this file open. If so, FIP simply marks the file for deletion by setting bit 7 of the status byte. In the section on CLOSE, we'll see how this action affects the file.

For non-executable files, the privilege bit of the protection code may be set to zero all blocks of the data file. This happens during the kill phase. For files of significant size, say 10000 blocks, this can take several minutes. Since FIP is single-threaded, it must complete this operation before going on to another job's request. Such an operation will effectively stop the computer, as few jobs go very long without a FIP request. This is an extreme example, but serves to illustrate the point that FIP optimization is an important part of getting the most out of RSTS. File and directory entry placement, minimizing OPENs and KILLS, FIP buffering, and FIP code residency are investments with a good return.
CLOSEing an Open Channel

As expected, CLOSE reverses the OPEN process. Most important is the fact that the open file counter is decremented. RSTS insists that no file or device may be opened on a channel that is already in use. BASIC-PLUS and other high-level environments buffer us from this decree by automatically issuing a CLOSE request before the OPEN is attempted.

If a file is marked for deletion, CLOSE depends on the KILL code to now do away with the file. Of course, if multiple channels have had the file open, this will happen when the access count finally drops to zero. Until such time, the file will not be accessible to OPENs. KILLS, and other directory operations. Aside from its appearance on DIRECTORY listings, the file is gone.

Another detail about CLOSE is that it has a counterpart called RESET. RESET is accessible in BASIC-PLUS by means of a CLOSE referencing a negative channel number. The RESET operation bypasses certain device related functions (such as final magtape EOF marks). For disk, this leads us to tentative files. When a file is created tentatively using MODE 32%, it is also marked for deletion. Performing a normal CLOSE on the channel will clear status bit 7, thus allowing the file to become permanent. This new file will supersede an existing file of the same name, working much like OPEN FOR OUTPUT. If you CLOSE using the negative of the channel number, the resulting RESET will kill the tentative file.

Creating a New File

The OPEN FOR OUTPUT statement will create a new data file. If a file of the same name already exists, that file will first be deleted. Therefore, as far as directory maintenance is concerned, the first step is to search the file. If the file is not found, the creation simply continues. If it does exist, progress then becomes dependent upon whether it is allowable to delete the file. In such cases, the KILL routine is called.

FIP locates a hole (unused blockette) by scanning the UFD until it encounters a blockette with zero in word 0 and 1. This is to be the Accounting blockette and is loaded with two dates (today for both), a time (now), an RT$ name (whatever run-time system happens to be running the current job), and the file's clustersize (which must remain constant for the life of the file). The filesize is set to 0 for now. The attribute link will be null.

A second hole is singled out for the distinction of becoming the Name blockette. The filename and extension, protection code (default unless specified), status byte, open counts, and the link to the AB (which is now known) are all initialized. The link to the next NB is made null to indicate that this is to be the last file in the UFD. The link to the Retrieval blockette is made null for now, consistent with a filesize of 0.

The new NB must be linked into the list of existing NB's. In order to create this file, the directory has been searched and found not to contain a duplicate, an entire scan of the NB list has been made. The last NB was noted, and will be the one whose link changes from null to point to the new guy. If we are now creating the first file in a UFD, the Label blockette will effectively play this role. In the event that new-files-first is invoked, the scene is only slightly different. The link from the Label blockette is copied to the new Name blockette and the LB is then set to point to the new NB.

If the creation did not require that a file of some definite size be created, we are done. If so, the procedure is essentially an extend operation. Let's see...

Extending a File

The length of a file may be increased by attempting to PUT a record that is beyond its last block. Files are always extended in increments of their own private clustersize. When the file's clustersize exceeds that of the device, two or more adjacent device clusters must be available and properly aligned to form the required extension cluster. The SATT is scanned to locate the correct pattern of 0 bits, indicating the cluster is available. As most files are created (and therefore extended) by the default clustersize, this really turns into a search for the first 0.

As clusters are allocated to the file, they are noted in the Retrieval blockettes of the directory entry. New RB's are taken from Holes as needed. The two advantages of using large clustersizes are fewer window turns and less directory space. Even for contiguous files, which completely eliminate window turns, choose a sensible clustersize in order keep the directory trim.

A file is extended until its filesize is long enough. If this cannot be done the operation ends in error. Usually the clusters can be allocated and the desired filesize is achieved. This doesn't mean that the last cluster allocated is completely used. For a new, zero length file having a clustersize of 256, PUTting record 6 will cause the filesize to become 6. Although PIP has actually allocated 256 blocks to the file, you cannot GET block 7. If the file is extended further, such partially used clusters are exploited completely before new ones are allocated.

Renaming a File

PIP is commonly used to rename files. The name, extension, and protection code, and run-time system are easily changed. If the filename and extension are not changed, there is no great impact upon the remainder of the UFD. Any valid protection code, for example, may be rewritten into the Name blockette without concern. Changing the filename/extension, on the other hand, implies a search of the UFD to ensure that the new filename will still be unique. As far as PIP goes, it will leave the file unchanged if the new name exists.

There is another mode in which rename may operate, in which a renamed file will supersede an existing one of the same name. TECO and other editors use this feature when properly exiting an edit session. Assume you have been editing PROG.BAS and have done so before so that PROG.BAK
An Abundance Of EXCESS TIME on DEC-11/70 RSTS/E

Let us know what you need! Make us an offer!
300 baud and 1200 baud ports available now.

Call:
C. Hartman
(312) 298-0997

1580 N. Northwest Highway Park Ridge, IL 60068

also exists. First, TECO will rename (with supersede) PROG.BAS to PROG.BAK (forcing the old PROG.BAK to be killed). Then the temporary work file TECOnn.TMP will be turned into the new PROG.BAS, again using the rename feature.

Wildcard Directory Lookups

FIP has a mechanism which allows system and application programs to lookup directory entries. To view the entries in a given UFD, the device, PPN, and filespec must be specified, typically through SYS() call. The filespec may optionally contain " or ? characters. In addition, the caller must supply an index value greater than or equal to 0. FIP will return information on the first file in the UFD that matches the filespec if an index value of 0 is given, the second match for index = 1, and so on. The SYS() call is repeatedly issued with ever increasing index values. When an index value greater than the number of matching files is attempted an error is returned, indicating the end of the directory.

The procedure followed is essentially the basic directory search, but allows wildcard matches and demands that a counter equal the index value. PIP issues this FIP call process for all its operations. The technique is inherently inefficient because, as the index value increases, the entire UFD Name blockette list up to that point must be traversed. The DIRECT program opens each UFD as a virtual array (as demonstrated in earlier articles of this series), but suffers from other high-level language drawbacks. I know of at least two macro directory listing programs which operate by opening a disk in nonfile-structured mode and use large buffersizes to optimize the whole affair.

Wildcard PPN lookups are accomplished similarly by suppling a device and one or two "s in the PPN. Here the index value is again used with repeated SYS() calls to get each desired PPN. PIP combines both the wildcard PPN and filespec techniques to effect global listings and transfers.
You will recall that in the last article we reviewed methods of doing input and output to simple and more complicated devices attached to the PDP 11. The data transfers were accomplished simply by loading the appropriate registers with information and then checking other status registers to determine what had happened to that information. The simplest example was a terminal which has a control and status register and a data register. I/O can be accomplished simply by putting data into the register then checking the control status register to make sure that the data has either been read or written.

It is possible to transfer data using interrupt structure available on the PDP 11. Using the control and status register, it is possible to set the interrupt enable bit which then causes a processor interrupt when data is either read or written. This allows the processor to go about other business without having to be constantly looking or polling the terminals to determine if there is input or output to be processed.

The next level of input/output also utilizes the interrupt facility, but in this case, more than one byte or word of data can be transferred at a time without involving the processor. This was the so-called cycle stealing mode. In this mode the processor steals a cycle or cycles from whatever programs happen to be operating and loads into the various registers, information necessary to transfer one or more bytes of data; then returns to the program. When the data has either been successfully transferred or an error condition has arisen, an interrupt occurs from the device. The processor can then either steal more cycles in order to transfer the data or go off to an error processing routine to process the error condition.

By way of an example, let us examine in more detail how a multiple data transfer might be accomplished from a specific location in memory onto magnetic tape utilizing the TU 10 magnetic tape drive. The PDP 11 Peripherals Handbook describes the operation beginning on page 4-501 with a description of the TM 11 controller and the TU 10 drive. The first register in the TM 11 is the status register. Each of the 16 bits in this register indicate the status of the particular drive in question. These include a bit for illegal command, end of file, cyclical redundancy check, parity error, bus grant late error, end of tape, record length error, bad tape error, non-existent memory error, select tape, beginning of tape, whether it’s a 7 or 9 channel tape, whether the tape is slowing down, whether the tape is write-locked, the current rewind status of the drive, whether the tape unit is ready. In addition to the status register, there is a command register. This 16 bit register is used to set information necessary for the data transfer. It is possible to set the density of the tape, to clear the tape drive, set the parity, select one of 8 units, enable the interrupt, set a particular function; that is, read or write, space forward or space backward. The final bit is a go bit telling the drive controller to begin the operation.

A third register in the TM 11 is a byte record counter. This is simply a 16 bit binary counter which is used to count bytes in a read/write operation. This register should initially be set by the program to the two's compliment of the number of bytes to be written on the tape. When this register becomes zero after the last byte of the record has been read or written, a control signal (interrupt) is sent indicating that there are no more data characters to be read or written from the tape. In addition to the number of bytes necessary to be transferred, a fourth register, the current memory address register, contains the memory address at which the transfer operation is to begin. Although this is a 16 bit register, it is possible to address 18 bits of memory. That is because in the command register bits 5 and 4 contain the two high order bits necessary for addressing the 18 bit address space. There are an additional two registers, a data buffer and read lines register, also in the TM 11.

In general, the following steps would be carried out in order to transfer data from memory to the TU 10 mag tape. First, using the command register, we would select the unit that we are planning to use. Selection is simply made by loading bits 10, 9 and 8 with the drive number we plan to use. After the unit has been selected, the status register is checked to find out the current status of the tape, and back once again to the command register to enable the interrupt. Since we want to write the data on the beginning of the tape, we should at this point rewind it. Using the command register, bits 3, 2 and 1 are function bits. Setting these bits all
to 1 indicates that the function we wish the tape to execute is the rewind function. Finally, by setting bit 0 in the command register to 1, the tape will begin to rewind. It is not necessary for the CPU to wait while the tape rewinds since when the tape is rewound (we have enabled the interrupt), the TM 11 will interrupt the CPU and the status register will indicate that the tape has been rewound. Now, seeing that the tape is ready by looking in the status register, we would set the density and parity to 1 and the function will begin. Once again it is not necessary for the CPU to wait while the tape is being rewound. Now, seeing that the status register will indicate that the tape has been rewound, we would set the density and parity to 0, 1 and 0 for bits 3, 2 and 1, respectively, indicating a write operation. Then, finally, set the go bit to 1 and the function will begin. Thus, many data transfers can be made from different memory locations by the TM 11 utilizing only a few cycles of the CPU to effect these transfers.

What happens internally during this transfer of data from memory to the TU 10? Over what paths does the data flow? Over what paths do the control signals flow? How does the interrupt get back to the processor? These paths can vary depending upon the peripheral device and the PDP 11 model in question. Continuing to utilize our TU 10 example, the TU is connected to the unibus of the PDP 11. Also connected to the unibus are the processor, memory, terminals, disks and many other types of input and output equipment. All data that flows from memory to the TU 10 flows via the unibus. This includes control signals and interrupt signals. Communication between the two devices on the unibus can be controlled by those two devices themselves. When the TM 11 is controlling transfer between the TU 10 and memory, it is in control of the unibus. Since the unibus is used by the processor in many I/O devices, a priority structure is used to determine which device can obtain control of the bus at any one time. By now we should know that all devices attached to the unibus have an address, (maybe more than one address), an interrupt vector, as described

TTOPNF.MAC & TTDVR.TEC

`.continued from page 35`

```
$W$V$OM: .BLKW  ;NEXT VIRTUAL BLOCK MSB
$W$VOL: .BLKW  ;NEXT VIRTUAL BLOCK LSB
$WS$CF: .BLKW  ;FCS & FCLUS
$WS$RE: .BLKW  ;RETRIEVAL ENTRY NUMBER
$WS$CO: .BLKW  ;NEXT WC8 THIS FCB * FLGS
$WS$NTX: .BLKW  ;FBB OF NEXT RETREIVAL WINDOW
$WS$NOD: .BLKW  ;CURRENT WINDOW
$WS$W: .BLKW  ;WORD TWO OF WINDOW
$WS$W: .BLKW  ;WORD THREE OF WINDOW
$WS$W: .BLKW  ;WORD FOUR OF WINDOW
$WS$W: .BLKW  ;WORD FIVE OF WINDOW
$WS$W: .BLKW  ;WORD SIX OF WINDOW
$WS$W: .BLKW  ;WORD SEVEN OF WINDOW

.BSEC
BITS FOR FILE STATUS

US.OUT: .BLKB  ;FILE IS PHYSICALLY ON ANOTHER DISK
US.PLC: .BLKB  ;FILE HAS BEEN PLACED
US.WRT: .BLKB  ;FILE IS OPEN FOR WRITE ACCESS
US.UPD: .BLKB  ;FILE IS OPEN FOR UPDATE
US.NXT: .BLKB  ;FILE IS CONTIGUOUS
US.NXT: .BLKB  ;FILE CAN'T BE KILLED DURING TIMESHARING
US.UPD: .BLKB  ;NAME ENTRY IS A UFD
US.DEL: .BLKB  ;FILE IS MARKED FOR DELETE

.BSEC
BITS FOR WSTTS O DISTS

.WSLB
OPEN NON-FILE STRUCTURED
.BLKB
READ-Lock ON FILE
.BLKB
WRITE-Lock ON FILE
.WCUSLPD: .BLKB  ;UPDATE MODE ON FILE
.WSCTY: .BLKB  ;FILE IS NO EXTEND (CONTIGUOUS)
.WSLCR: .BLKB  ;FILE IS ON IN FILE
.WCSUPD: .BLKB  ;FILE IS A UFD
.WUSE: .BLKB  ;WRITE PRIVS GRANTED

.BSETL TSTOPN - PRINT OPEN FILES FOR USER

.BSET TSTOPN - PRINT OPEN FILES FOR USER

.CALL: R1 -> TO CONSOLE DOB

.BACK: C-BIT SET IF CAN'T DO

.DEF ORG TSTOPN

TSTOPN: MOV     DBJ$=NO(R1),R3  ;SET OWNING JOB # +2
    BIC    #C=63..22,R3  ;AND ENSURE A VALID JOB # +2
    BEQ    10$  ;NO JOB, NO OPEN FILES
    MOV    JOBTBL(R3),R3  ;SET JOB DATA BLOCK POINTER
    BEQ    10$  ;NO JOB, NO OPEN FILES
    BIT    #PPRIV,DPFLGCR3  ;ARE WE PRIVILEGED?
    .PRVF   BNE     =  ;NO, DO NOT SHOW OPEN FILES
    BIT    #DDCONS,DDCNT(R1)  ;REALLY CONSOLE DEVICE FOR JOB?
    BNE    10S  ;GO SHOW OPEN FILES
    BNE    10S  ;MARK AS NO GOOD
    RETURN  ;AND RETURN

.INVALID <JOBTBL>

.EHABL LSB

.UFS$MD: .ASCIIZ USER FILE DIRECTORY:K11>

.NFS$MD: .ASCIIZ <T11>C:NON-FILE STRUCTUREDK11>

.EVEN THIS COULD BE ANNOYING

.DOOPNF: MOV     R5,-(SP)  ;SAVE AN IMPORTANT REGISTER
    CRPO    DMORC(R1),DMORC(R1)  ;SAVE CARRIAGE CURRENTLY RESTORED?
    BEQ    10$  ;YES
    MOV     R5,-(SP)  ;SAVE THIS POINTER
    CALL    ASCOUT:R5,CLFL:0  ;NO, SO RESTORE THE CARRIAGE
    MOV     (SP)+,R3  ;SET IT BACK
    10$: MOV     JOIBCR(R3),R3  ;POINT TO THEIR I/O BLOCK
    TST     (R1)  ;SKIP THEIR CONSOLE TERMINAL
    CLR     R5  ;LET R5 BE THE CHANNEL COUNTER
    20$: CALL    30$  ;OUTPUT NEXT CHANNEL
    CMP     #R5,0  ;LAST LAST CHANNEL
    BT     20$  ;NOT YET
    CALL    ASCOUT:R5,CLFL:0  ;TO MAKE IT LOOK GOOD
    MOV     (SP)+,R5  ;RESTORE THE IMPORTANT REGISTER
    CLR     RETURN  ;AND EXIT
    30$: INC     R5  ;SET NEXT CHANNEL NUMBER
    MOV     (R3)+,R4  ;SET POINTER TO WCB
    BEQ    40$  ;NOTHING THERE, GO FOR NEXT
    BIT    #1,R4  ;GOO ADDRESS?
    BNE    40$  ;QUIT
    AR     50$  ;CONTINUE
    40$: RETURN  ;IF PRE-MATURE RETURN
    50$: MOV     R5,-(SP)  ;SAVE THIS POINTER
```

in the first Newsletter article, and a unibus priority which is known as bus request level.

The maximum transfer rate on the unibus using optimum device design would be one 16-bit word every 400 nanoseconds or 2.5 million 16-bit words per second. Although at first glance this seems very rapid, remember that the PDP 11 processors are capable of executing instructions in close to 1 microsecond. Assuming that each instruction that the processor executes has to be gotten from memory, as would be the case in a program, each of these instructions took 1 microsecond to execute. One out of every three words transferred via the unibus would consist of the processor getting its instructions from memory, leaving only 66% of the unibus available for transfer. The word "only" here means approximately 1.6 million words per second are transferrable via the unibus. In contrast, the PDP 11 high-speed controllers which interface the device itself are capable of executing instructions in one 16-bit word every 400 nanoseconds or close to 400,000 words per second, it is approximately 1.6 million words per second, it is only 66% of the unibus available for use.

The high-speed peripherals, which in this case could include terminals and TU tape drives, are four high-speed controllers which interface themselves to the unibus. However, the only signals that pass over the unibus are the control signals and status and interrupt signals as described earlier. The actual data transfer of data occurs via special high-speed I/O bus to the mass storage peripherals, such as in RP04 or a TU16 tape and via another high-speed bus directly linked to a special memory bus through the cache memory of the PDP 1170. This relieves the unibus of the high-speed data transfers between memory and peripheral devices. In this case at least, data can be transferred simultaneously via the unibus and the high-speed controller bus, sometimes called a mass bus, to the high-speed peripherals.

Since we have reviewed earlier input and output operations via TU 10 and TM 11 controller, it is interesting to compare the similarities and differences between this tape drive and a TU16 controller and TU 16 tape which operate utilizing a high-speed controller attached to the separate I/O bus and high-speed bus directly to the memory. In the first control and status register, bit 13 is set by a parity error on the control bus although the control bus is not the high-speed bus going to the high-speed device itself. Parity errors occurring on that bus are indicated in another register. The second register is a word count register.
DATA BOSS/2 USERS:

LET DBQ break the CHAINing Habit
and release the full power of your DBMS

THE DBQ extensions to DB2 let you

ENTER REMOVE REPCHN

records DIRECTLY from your Basic Program

and ALSO provide:

Logical record locking
Journaling
Corruption proof
& and , (comma) permitted in key fields

The DBQ module RTV (an NRTRV1 replacement) allows user programs to enter or REMOVE records and change key fields (REPCHN) WITHOUT writing A.S.C.I.I. files and chaining to a DB2 utility. The RTV module is compatible with NRTRV1 and olds (Basic +) at just 6K, and expands to only 8K with 5 open databases (maximum 9K).

Disk journal and audit trail can be selected for any database. Databases updated with RTV cannot be corrupted under normal system conditions including powerfails. Sort keys (except DRK) can have & and , (comma) characters

For more information call our computer from a 300 baud (103/113 type coupler) at (305) 634-7402

OR WRITE/CALL

SYSTEMS ASSOCIATES, INC.
P.O. Box 450429
Miami, Florida 33145

(305)634-8114
(305)447-2695

Data Boss/2 is a licensed product of Florida Computer, Inc.
99 N.W. 183rd Street, Suite 230, North Miami, Fla. 33169
which operates exactly like the matching register in the TU 10. Also, the unibus address register, which really is a memory address register, operates in a similar fashion to the one in the TU 10, even to the degree that the high order two bits are contained in the control and status register; one in order to give 18 bit addressing capability. While spacing forward records or characters was controlled in the TU 10 in a different fashion, the TU 16 has a different frame count register which contains a two compliment number of records to be spaced over, characters to be written or characters that have been read. There is a second control and status register. This register contains some additional information including bit 8 which is the mass i/o bus data bus parity error. This is the error that sets on a parity error indication on the high-speed bus. The drive status register contains similar information, some additional peripheral information. One of the additional capabilities that the TU 16 has on an optional basis is to write in phase encoded 1600 bits per inch. There is an error register in which each of the 16 bits contains a certain particular error. An attention summary register in the controller enables the programmer to determine immediately which of the 8 drives has interrupted rather than looking at the status of all 8 drives of the sequence. A character check register contains the cyclic redundancy check character that is used on the TU 16. There is the same data buffer register as well as a drive type register which allows the program to find out what type of drive this is. There are also serial number registers containing the serial number of the drive and a tape control register to control the density and format of the data being written. So, although the TU 16 has a few more registers than the TU 10, most of the additional data available is better error checking, increased error diagnostic aids and little, if any of it, has to do with the difference in architecture between the way the data is transferred via a high-speed controller. Thus, the fact that the TU 16 can operate via a mass bus and a high-speed controller is transparent to the programmer who has to program applications for it.

AUTHORS!!!
SEND YOUR ARTICLES TO THE RSTS PROFESSIONAL ON MAG TAPE, IN EITHER RNO, PIP OR WORD-11 FORMAT.

Eighty percent of this issue of the RSTS Professional was transmitted via telecommunications from author's mag tapes to phototypesetting equipment and was not retyped.

<table>
<thead>
<tr>
<th>BIT</th>
<th>#US.NOK,(SP)</th>
<th>;PERMANENT FILE?</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEQ</td>
<td>10$</td>
<td>;NOPE</td>
</tr>
<tr>
<td>CALLX</td>
<td>OUTCHR,R5<SP></td>
<td>;RETURN</td>
</tr>
<tr>
<td>10S</td>
<td>BIT #US.NOK,(SP)</td>
<td>;CONTINUOUS</td>
</tr>
<tr>
<td>BEQ</td>
<td>20$</td>
<td>;NOPE</td>
</tr>
<tr>
<td>CALLX</td>
<td>OUTCHR,R5<SP></td>
<td>;RETURN</td>
</tr>
<tr>
<td>20S</td>
<td>BIT #US.UP,SP</td>
<td>;OPEN FOR UPDATE</td>
</tr>
<tr>
<td>BEQ</td>
<td>30$</td>
<td>;NOPE</td>
</tr>
<tr>
<td>CALLX</td>
<td>OUTCHR,R5<SP></td>
<td>;RETURN</td>
</tr>
<tr>
<td>30S</td>
<td>BIT #US.UPDUS.WRT,(SP)</td>
<td>;WE HAVE WRITE PRIVILEGES?</td>
</tr>
<tr>
<td>BEQ</td>
<td>40S</td>
<td>;YES, SO IGNORE</td>
</tr>
<tr>
<td>CALLX</td>
<td>OUTCHR,R5,<R></td>
<td>;IF NOT, SAY READ ONLY</td>
</tr>
<tr>
<td>40S</td>
<td>BIT #US.PLC,(SP)</td>
<td>;ARE WE A PLACED FILE</td>
</tr>
<tr>
<td>BEQ</td>
<td>50$</td>
<td>;NOPE</td>
</tr>
<tr>
<td>CALLX</td>
<td>OUTCHR,R5<SP></td>
<td>;RETURN</td>
</tr>
<tr>
<td>50S</td>
<td>TST (SP)+</td>
<td>;GET RID OF STATUS</td>
</tr>
<tr>
<td>RETURN</td>
<td>;AND GO BACK</td>
<td></td>
</tr>
</tbody>
</table>

.05AB LS8

,SBTTL PRINT OUT SINGLE OR DOUBLE INTEGER

, DBLNUM - PRINT OUT DOUBLE PRECISION INTEGER

, WITH OR WITHOUT LEFT JUSTIFICATION

, SP -> LSB OF INTEGER, MSB OF INTEGER

, CALL DBLNUM

, R2 - R5 RANDOM

, .ENAB LS8

DBLNUM: MOV (SP)+,R5 ;SNAG RETURN ADDRESS

CLR R2 ;CLEAR A HIGH ORDER

BSB (SP)+,R2 ;GET THE HIGH ORDER OF THE INTEGER

MOV (SP)+,R5 ;GET THE LOW ORDER

MOV R5-,(SP) ;REPLACE THE RETURN ADDRESS

DIV #10000,R2 ;SPLIT THE NUMBER

MOV R5-,(SP) ;SAVE LOW ORDER

TST R2 ;IS THERE A HIGH ORDER?

BEQ 10$;NO HIGH ORDER

MOV R2-R3 ;SET TO OUTPUT IT

CALL 20$;DO IT

SEC ;LOW ORDER SHOULD'T SUPPRESS LEADING ZEROS

10S: MOV (SP)+,R3 ;DO LOW ORDER NOW

CALL 20$;OUTPUT THE LOW PART

RETURN ;AND GO BACK

20S: CALL DODIVS,R5,30$;DO THE DIVISIONS, PRINTING ASCII DIGITS

, .WORD 1000,100,10

RETURN ;EXIT

30S: MOV 50$,(R2)+,R2 ;GET THE NUMERIC

40S: CALLRX CHOUTE ;OUTPUT THE CHARACTER

50S: ASCII "$7" ;NUMBERS

,EVEN

;* FLMAN - PRINT OUT A FILENAME

, R5 -> TO THREE FILENAME WORDS

, CALL FLMAN,R5

, *

FLMAN: MOV #70$-(SP) ;PUSH FOR EXTENSION

MOV PC-,(SP) ;BACK HERE ONCE

60S: MOV (R5)+,R3 ;GET THE RSDS WORD

SEC ;DON'T SUPPRESS LEADING ZEROS

CALL DODIVS,R5,50$;DO THE DIVIDES

, .WORD 50,50,50

RETURN ;EXIT

70S: MOV #0$-R2 ;SET TO OUTPUT A "."

CALL RX CHOUTE ;AND CALL ROUTINE TO DO IT

BR 60S ;AND CONTINUE

80S: TST R2 ;CHECK FOR A SPACE

BEQ 90S ;OUTPUT A SPACE

ADD #A-1,R2 ;ADJUST FOR ALPHABETICS

CMP R2,#53<SP> ;IS IT IN FACT ALPHABETIC?

YES, GO USE IT

SUB #40<R2,R2 ;ADJUST FOR NUMERIC (ZERO = D)

BR 50$;GO DO IT

90S: MOV #0$-R2 ;SET SPACE AS CHARACTER

BR 40S ;AND OUTPUT IT

,* OUTFZS - PRINT A NUMBER 0-255 WITH LEADING ZERO SUPPRESSION.

; SP -> NUMBER (HIGH ORDER BYTE IGNORED), ...

June 1981
The RDC
Revisited
By Carl Marbach

Some months ago I wrote an editorial about some bad experiences I had with Digital's Remote Diagnosis Center. For the uninitiated, the DDC (Digital Diagnosis Center) is a facility of DEC that is set up to do Remote Diagnosis on 11/44's, 11/70's, and VAX's. They accomplish this feat by dialing up your computer's console from Colorado Springs, Colorado. Once connected they do strange and unintelligible (until now) things to your computer. Rumor has it that they then call your branch field service people and send the engineer with the right parts to fix your problem. Sounds good? Works even better provided you follow some ground rules, and are willing to help out.

I was invited to visit the DDC by Al Toussach, who is in charge of Field Service Marketing in Maynard. Now if you're like me, you didn't know that DEC marketed Field service. Al helps to sell DECsystems by selling Field service; in fact it is the other way around - I sell them. You see I like people and I can say that I have had a perfect record with field service (I do seem gruff at times, and I hate it when my machine is down). If I have had a problem, they tried to solve it. A case in point is the RDC (now DDC) problem I had. We solved it. Me, my branch, and the DDC. I would like to tell you now what I learned so your problem can be solved before it happens.

First, the DDC is not located near SAC, nor is it buried deep inside a mountain. It is just off the interstate on a beautiful site of many, many, many acres that goes right up to the Rocky mountains themselves. It is
nice. Why here? Well, telephone charges are minimized because it is very close to the center of the U.S. But they admit that it is easier recruiting people to the quality of life available in the Rocky Mountain foothills. There is also unlimited expansion available on the large site they occupy. The DCC shares the facility with the telephone support group and a disk manufacturing facility. Growth has been so rapid that there are signs of people being moved all over; new desks, new terminals (some in boxes), new walls, and new people.

I met Al in Denver and we drove the one and half hours to ‘the springs’. The DCC itself is spectacular, it sits alone on what appears to be miles of land mostly covered by low vegetation. At the end of the land are the foothills of the Rockies and the Rockies themselves with Pikes Peak standing out like a sore thumb that isn’t sore, just pretty to look at. I suppose they get used to it, but guys, it sure is nice looking.

Once inside I met Bob Ross, fugitive from Detroit who is PDP-11 family manager (see corporate chart). Bob suggested that before we went into detail about the DCC itself that I might like a tour of the building and the disk manufacturing facility it contains. Warren Shubert was our guide through a plant that manufactures RK07’s, pseudo-manufactures RM03’s and RM05’s (really CDC) and RP06’s (memorex). They are also making the disk packs for the RK07’s in a ‘clean room’. In another ‘clean’ room they are showing me various installations including mine. All this for the sake of my disposition. Warren showed us the new packaging and shipping area that had recently been moved all over; new desks, new terminals (some in boxes), new walls, and new people.

According to Bob, they are getting close to achieving the 90% effectiveness that they are shooting for. To you and me this means that they will make the correct recommendation to the branch for repair within 1 hour of your call about 90% of the time. Great.

In addition there is a ‘hot call’ list. ‘Hot calls’ are for VIP’s, loud yellers, intermittent problems, and continuing problems. You can be put on this list by your branch, who will then agree on a plan of action with the DDC. You should be an integral part of this plan if they don’t ask you, then ask them. Remember, this is your machine. Once you are flagged on their data base as a ‘hot call’, the DDC will continue to follow up on the problem, i.e. if they don’t hear from the branch or you for a week they will call to find out what’s happening.

Why does the DDC work? Mostly because of the people who actually do the diagnosis (they get help from the computer of course). Jim Porter gave us a demonstration of exactly how the diagnosis is done. The computer is an 11/70 (they have four of them) running RSTS (we’re moving to VAX). Jim sat at a VT100 and paged through their data base showing me various installations including mine. All necessary data is stored including your configuration, telephone number, contact, contact number, and DDC history. The engineer can look at all this to determine how to proceed. After looking up your configuration, Jim asks the computer (DCC) to connect to the remote location; connection and dial-out (Vadic auto-dialers) is automatic. Once connected he can instruct the computer to run through several ‘scripts’ of diagnostic sessions. There is a general check-out script as well as many specialized ones. Jim and his fellow engineers know these systems inside and out, you are guaranteed to get an expert. Nice is a keyword here, but then when they go to lunch they look out at Pikes Peak and that is bound to help even my disposition.

The DCC was the bottleneck in production. A new system of wrapping and shipping area that had recently been moved all over; new desks, new terminals (some in boxes), new walls, and new people.

With the new system of wrapping and shipping area that had recently been moved all over; new desks, new terminals (some in boxes), new walls, and new people.

The DCC was the bottleneck in production. A new system of wrapping and shipping area that had recently been moved all over; new desks, new terminals (some in boxes), new walls, and new people.
group, who are trained to route the calls to the proper engineers, and to make you feel good about talking to the DDC.

Located in the middle of this floor is a library of documentation that has a microfiche directory. All (or most) of DEC's documentation is here and available to the people when they need it.

Remote Diagnosis involves several groups within DEC. They include Field Engineering, The DDC, Remote Diagnosis Engineering, Maintainability Engineering, Diagnostic Engineering and Central Engineering. All these groups together make up the RD concept and bring it to fruition. What are they working on?

- Improve call handling
- Make the DDC look like a branch
- DDC movie
- DDC Notebook (hurray)
- Host software
- Diagnostic enhancements
- Review process for repeat problems, etc.
- U.S. Technical library
- System Products telephone support
- Area support
- DDC account Rep program

They are busy trying to improve what is already a good deal.

We ended what had been a most informative day. No longer is the DDC a phenomena in the mountains, they are made up of some real fine people out to do the best job they know how. We can help them do the job by doing a few simple things, and knowing a few things about them and our machines. Next issue I'll discuss how we can help them help us. I also had a chance to visit with the telephone software support people and I'll tell you what I saw there.
ODT.DOC
By Bob “MACRO MAN” Meyer

I’m Back! Sorry for missing last month’s RSTS Professional; I would have been here much sooner, but I had to wait for a BP2 Task-build... (snicker!)

Anyway... We now present your previously promised article on:

ODT!!

“What’s he getting us into this time”, you’re probably asking. Program bugs have been and will be in existance for about as long as programmers, as we all know. And a major aspect of programming is, of course, debugging. However, when you get yourself a bug in assembly language, ya’ got yerself a BUGG!

We can all deal with messages like:

‘Can’t find file or account’
or:

‘I/O channel not open’
and so on; but the real killers are the ones that say:

‘Memory Manglement Violation’
or:

‘Reserved Instruction Trap’
or maybe:

‘Odd Address Trap’

Now under normal circumstances, we should never have the honor of seeing one of these beauties on our screen (unless of course we’re using BP2...); but in Macro Land, these can become quite a common occurance, as some of you have already found out.

So long ago and far away, one (or more) of my Great Ancestors (Forefathers?) in Dec Land devised the infamous ‘Octal Debugging Tool’ (or was it ‘Online Debugging Technique’...). Well, whatever it’s really called, ODT has saved MY life more times than I can count in 16 bits or less, so I feel it may be of great assistance to some of you out there. (Probably only those of you that make mistakes.)

Due to time & space limitations, I’m only going to present some of ODT’s basic commands, and a few simple examples. I strongly recommend reading the ODT Reference Manual as a supplement to this article. It comes shipped with the RSTS and RSX-11 manual sets.

Other than taking a ‘PM Dump’, this is about the only way of debugging pure assembly language programs. ODT can also be helpful if you’re calling Macro subroutines from your favorite high-level language, as many run-time/object-time systems aren’t expecting ‘Odd address traps’ from the code generated by the respective compiler.

Some of the things we can do with ODT are:

Examine/Alter the contents of any memory location available to our program.

Examine/Alter our own General Registers.

Set ‘breakpoints’ within the program. (much like the Basic ‘Stop’ statement)

Single-step through the program.

Remember, ODT’s functionality goes a good bit beyond this list, so leaf through the manual when you feel your getting the hang of what we’ve covered here.

I usually find it easier to explain things with an example, so I’ll wait while you key in the small program in Figure 1...

Good! Your typing’s getting a little better.

Here’s how to assemble the Demo program:

MAC DEMO,DEMO = DEMO

and to link the task and ODT together:

TKB DEMO/DA,DEMO = DEMO

The ‘/DA’ switch on the task image instructs TKB to link in the Debugging Aid. This is ODT.OBJ, and should exist in LB:SYSLIB.OLB. If it doesn’t, the task builder will let you know.

Before we go on, you should PIP out the .LST & .MAP files you just created. These will be useful, and may even start to make sense after a while.

You can now

RUN DEMO

and on your screen you should see:

ODT:DEMO

That’s ODT letting us know he’s linked in (and has control of your task), as well as the name of the task being debugged, and finally, his prompt.

The only other thing you’ll need to know is that ODT talks with your terminal in Binary or single character input mode; (also known as ‘ODT submode’ or ‘ODT Submode’ to us old DEC-10’ers). This means that he looks at each character as you type it in; the Return key is not needed to send commands to ODT, and in fact has the function of change the contents of memory (only in your own workspace, of course), so be careful not to hit it out of habit.

Also note that ODT, being designed for Macro minded folks like us, displays and accepts ALL numbers in OCTAL. This will take a bit of getting used to, but when dealing with a 16 bit machine, makes good sense. One of those new-fangled Octal/Decimal & Hex calculators would be helpful, or TECO has the ability to convert between octal & decimal very nicely.

If you’ve typed in the Demo program, you can try some of the following commands.

First, let’s look around in memory a bit. To examine a single memory location, we use the ‘/’ character as follows:

2000/ 000007

(remember, no return after the slash)

That command shows us the contents of memory location 2000 (octal) relative to the start of our task image. If you typed in the program as printed, you should see a seven, which corresponds to the following line in the source:

ONE:: .WORD 7.

To look at any location in our workspace, type that memory location followed by the slash. If you try to examine something out of the range of your task, the results will look like this:

150000/ ?

indicating that the address is out of range. No harm is done. . . . continued on page 77
ODT.DOC
By Bob "MACRO MAN" Meyer

Insert for page 74, RSTS PROFESSIONAL, June 1981.

Dear Readers:
We’re pleased to present [HOT OFF THE PRESS], Figure 1.

```
.title demo
one:: .word 7
two:: .word 6
demo:: mov one,r0
       add
       bpt
.end  demo
```

FIGURE 1.
With LSI 11/PDP 11 Software
Compatible Disc/Tape Controllers Offering Single
Board Low Power µP Based Design and Low Cost...

Plus Many Other Good Reasons!
The reasons start with DILOG’S (Distributed Logic Corp’s.) full time engineering and design staff. Not outside suppliers. That means when you contact DILOG for product selection or after sale service, you’ll get “first hand” assistance…along with years of experience manufacturing µP based controllers that interface with DEC 11 CPUs.

The intelligent products you’ll discuss all utilize common proprietary architecture and DILOG automated design techniques—products with exceptional reliability and cost efficiency…mostly available from stock. And when you plug a DILOG controller into your DEC CPU it’s ready-to-run because it’s fully operating system software compatible.

These high performance data storage interface products also feature: • minimum bus/space requirements • up to 60% less power • 10 to 50% lower cost • automatic self-test… and numerous other features for easy system integration.

Consult the DILOG/disc-tape compatibility table for your needs. Then ask for detailed data on existing, or future products from DILOG… #1 in single board DEC 11 compatible disc/tape controllers.

Distributed Logic Corp., 12800-G Garden Grove Blvd., Garden Grove, CA 92643, Phone: (714) 534-8950 • TELEX: 681 399 DILOG GGVE

DISC/TAPE DRIVE MANUFACTURER COMPATIBILITY CHART

<table>
<thead>
<tr>
<th>MAGNETIC TAPE</th>
<th>DISC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4" REEL-TO-REEL STD. & STREAMER</td>
<td>2315/5440/RK05 CARTRIDGE CLASS</td>
</tr>
<tr>
<td>2315/5440/RK05 CARTRIDGE CLASS</td>
<td>CMD CARTRIDGE MODULE</td>
</tr>
<tr>
<td>2315/5440/RK05 CARTRIDGE CLASS</td>
<td>SMD STORAGE MODULE</td>
</tr>
<tr>
<td>2315/5440/RK05 CARTRIDGE CLASS</td>
<td>WINCHESTER 5¼", 8" OR 14"</td>
</tr>
<tr>
<td>AMPEX</td>
<td>AMPEX CONTROL DATA</td>
</tr>
<tr>
<td>CIPHER</td>
<td>CENTURY DATA</td>
</tr>
<tr>
<td>CONTROL DATA</td>
<td>CONTROL DATA</td>
</tr>
<tr>
<td>DIGI-DATA</td>
<td>DEC</td>
</tr>
<tr>
<td>KENNEDY</td>
<td>DIABLO</td>
</tr>
<tr>
<td>MICRODATA</td>
<td>IOMEC</td>
</tr>
<tr>
<td>PERTEC</td>
<td>MICRODATA</td>
</tr>
<tr>
<td>TANDBERG DATA (IDT)</td>
<td>PERTEC</td>
</tr>
<tr>
<td>WANGCO</td>
<td>WANGCO</td>
</tr>
<tr>
<td>TDX</td>
<td>WESTERN DYNEX</td>
</tr>
<tr>
<td>DRI</td>
<td></td>
</tr>
</tbody>
</table>

CAPACITIES 2.5 TO 300 MB

See all the new DILOG products
NCC ‘81 BOOT H 5007 - 5009
CON COURSE LEVEL • MccORMICK PLACE
THE RSTS/E BENCHMARKS, Part I

... continued from page 12

you can reproduce on your own system. This will allow you to compare your configuration with those I use. This is one of the important techniques of benchmarking creating 'easily reproducible tests'. One of my favorites is the building of the RSTS/E cusps, a benchmark I've run on a variety of configurations.

Having written several times on performance evaluation and non-hardware methods to improve performance (file characteristics, caching, etc.) I will be taking some of those theories out of the classroom and into the laboratory to show the results of efforts I and others are promoting (such as well-structured disks). I am also going to try and test as much new hardware as I can get access to — the 11/44 and 11/24 will be primary targets as will some non-digital hardware such as solid-state swapping disks and replacement terminal multiplexors. I hope the trip down benchmark lane will be enlightening for all of us.

FREE SOFTWARE COULD BE PICKING YOUR POCKET.

When the software you get with your PDP-11 purchase is not powerful enough, or specific enough, to handle your work, you'll pay in increased programmer time and system resources. That's why we developed WAFE, the program and file editor that's as strong as our WORD-11 word processing system. Come to the experts for PDP-11 software or turnkey systems.

Data Processing Design, Inc.

CASE -1578 C.M.

By Joel Schwartz, M.D.

One cold February night in 1979 I received a call from a man asking for help. His voice was filled with anxiety. "Doctor, I'm at a WITTS end." "I can't take it anymore." "Tell me about it," I responded in my best psychiatric tone. "First I couldn't get the bird in the cage, then I couldn't get the clam through the door, and now I'm at WITTS END," he replied. There was no question about it, this man needed help. "I'll come right over," I said, slamming down the phone. "Where are you going?" asked my wife. "I have an emergency, something about a bird and a clam. I'll be back within the hour." When I arrived, it was almost too late. The man was pushing <CR>, dowm <CR>, North <CR>, South <CR>, East <CR>, West <CR>, in a perseverative fashion. "Can you help him?" begged his wife. "Please save our daddy..." Sobbed the children. I told everybody to leave and then I locked the door. This case would take all the skill I possessed.

"How did this begin?" I said, sitting down beside the man. He looked up at me, his glassy eyes showing pain and frustration. "Somewhere nearby is a colossal cave" he muttered softly, "where others have found fortune and treasure in gold, but some who have entered have never been seen again." "Very interesting" I said, nodding my head and stroking my beard. He continued, "You start in a small brick building which is a well house for a large spring. You must try to find your way into an underground cave." "Hmm", I hmmd. "And where is this cave?" His face brightened up and his arms flew wildly into action as he began to push all sorts of keys. "Look" he said, pointing to the screen. Instructions and the beginning of this so called ADVENTURE game appeared before me. "Sit and play," he said emphatically. Not wanting to upset him more, I sat down and began.

YOU ARE IN FRONT OF A BUILDING. AN OLD WELL HOUSE. A STREAM FLOWS NORTH. "Punch in" he said, and I did. INSIDE THERE IS A LAMP, SOME KEYS, A BOTTLE, SOME WATER, AND SOME FOOD. "Take it all." I typed in "Out". "YOU ARE NOW OUTSIDE." "Go downstream." I was becoming annoyed, "Let me do this myself!" I said. Downstream. YOU ARE IN A VALLEY WITH STEEP ROCKS. Up <CR>. YOU ARE AT A STEEL GRATE. IT IS LOCKED. "Hey Doc, I feel much better now." Open grate. THE GRATE IS OPENED. "Doc, you can go now, I'm fine." "Thanks." In. YOU ARE IN A NARROW EASTWEST PASSAGE. "Hey Doc, I'm OK. Look, Doc." WEST <CR>. YOU ARE IN A CAVERN WITH ROCKS, ROCKY WALLS. ON THE FLOOR IS A CAGE. Take cage. TAKEN. "Doc, speak to me. Doc, speak to me." West. East. Up...

JOEL SCHWARTZ, M.D.
ODT.DOC

...continued from page 74

Let's look at our program in memory. The task builder map tells us that the program occupies memory starting at location 2000. So one way to look at it would be to type:

```plaintext
_2000/000007
_2002/000006
```
and so on. An easier way to look at successive memory locations is to use the Line Feed key. Line Feed means 'close the current location, and open the next sequential location'. So we could also do it this way:

```plaintext
_2000/000007 <LF>
_2002/000006 <LF>
_2004/016700
```
and continue to the end of the program.

If we want to look at a large chunk of memory, we can use the 'L' command:

```plaintext
2000:2010L  
000007 000006 016700 177770 066700
```
Although that's not a REAL large chunk, you get the general idea. (and I don't have to type all those numbers in...)

We can also use the slash to look at our registers. This is done by typing a `$` followed by the register we wish to examine (0-7):

```plaintext
$0/000000
```
Lord only knows what'll be in them, until you put something there.

Since the BPT (breakpoint) instruction in our program will be intercepted by ODT, we can issue the 'Go' command, and watch our demo fly!

```plaintext
_G
BE:002014
```
'BE' means ODT picked up a breakpoint. He prints the location of the breakpoint, and returns control to us. At this point, we can check to see if our addition worked by looking at the contents of register 0:

```plaintext
$0/000015
```
and as we all know, octal 15 is decimal 13, so it seems that the hardware really CAN add.

If you'd like to see that in slow motion, we can single-step through the program. First let's exit and start over:

```plaintext
_X
Ready (or '>' or '.' or whatever...)
RUN DEMO
ODT:DEMO
```
to single-step, simply type the letter 'S' for each instruction you wish to step through. ODT will allow your program to execute one complete instruction, then return control to you:

```plaintext
_S
8B:002010
```
'8B' is basically the 'eighth' breakpoint, which ODT uses for single step mode. The number printed is the address of the NEXT instruction to be executed.

Now let's ALTER the program a bit with ODT. Exit (X) and re-run the program. This time we'll modify one of the constants, proceed with program execution, and check the results:
Last of all, I'll give a simple example of how to set breakpoints in your program. Breakpoints give us the ability to monitor and/or control the execution of the program, by halting the task at a location which we specify. Let's first make a small modification to our demo program remove the BPT instruction, which will cause the program to loop indefinitely. Now rebuild the task as before, and fire it up:

RUN DEMO
ODT:DEMO

Looking at the task builder map (under 'MEMORY ALLOCATION SYNOPSIS:'), we can find that our program ('DEMO' if you used the '.TITLE' directive in the beginning of the source, else '.MAIN.') begins at memory location 2000. Now referring to the Macro listing, a nice place to stop the task would be just before the instruction 'BR START'. This instruction (according to the listing) starts at 14 (octal) from the top of the task. Since 2000 + 14 = 2014, we could set the breakpoint as follows:

_.2014:B

To start the program on it's way, we GO as before:

_.G
OB:002014

'OB' means we've stopped at breakpoint 0, (we have from 0-7 available) and the address of the next instruction to be executed is printed. As before, we can check the results:

_.S0/000015

Change values (or instructions):

_.2000/000007 2
And PROCEED (always proceed after breakpoints, not GO):

_.P
_.OB:002014

And remember, the ONLY way out of ODT is X:

_.X
Ready

That sums up what I wanted to cover here. Again, there's a LOT more to ODT than what you've seen here, so if you intend to use it to it's fullest extent, I suggest reading the manual.

GOOD LUCK
WITH YOUR
BUGGS!
PDP II USERS

WANT AN ALTERNATIVE?
YOU CAN HAVE ONE

with **computer maintenance**

from **Tymshare**

- Maintenance Provided on PDPII Systems
- Mixed Vendor Systems Is Our Specialty
- Servicing Most Major U.S. Cities

Don't wait until your system is down again.
For more information write or call now!

Return to: Tymshare Inc. • 1513 E. Del Amo Blvd. • Carson, CA 90746 or call 213-638-0574

YOUR NAME __________________________
YOUR TITLE _________________________
COMPANY NAME _____________________
ADDRESS ____________________________
PHONE NO. __________________________

☐ I WOULD LIKE TO BE CONTACTED BY TYMSHARE TO DISCUSS MY MAINTENANCE NEEDS IN MORE DETAIL.

☐ I WOULD LIKE A PRICE QUOTE ON THE COST TO MAINTAIN MY COMPUTER SYSTEM

TYPE OF MAINTENANCE COVERAGE YOU DESIRE (CHECK ONE)

☐ 8 am to 5 pm Monday through Friday
☐ 8 am to 8 pm Monday through Friday
☐ 24 hour Monday through Friday
☐ 24 hour, 7 days per week
☐ Per Call Only
☐ Other — Please indicate below:

MY PRESENT CONTRACT EXPIRES _____________

EQUIPMENT TYPE QUANTITY EQUIPMENT TYPE QUANTITY

ADDRESS FOUR MEGABYTES WITH AN 11/34

May, 1981
ABLE 34 MAGNUM™ AND 44 MAGNUM™ BRING COM-
PATIBLE ALTERNATIVES TO DEC SYSTEMS
MARKETPLACE.

Irvine, California — ABLE Computer has entered the
computer systems market with the introduction of 34 MAG-
NUM and 44 MAGNUM. Both are high performance and
high reliability alternatives to existing Digital Equipment
Corporation computer models while maintaining hard-
ware/software compatibility. The 34 MAGNUM provides
significantly enhanced PDP-11/34 class performance
while the 44 MAGNUM performs as an economic alterna-
tive to the PDP-11/44. Both ABLE computers evidence
design emphasis on system integrity and application with
stringent up-time demand.

Standard system configuration for the ABLE alterna-
tives consists of a CPU with floating point and memory
management, serial console interface, extended memory
addressing to 4M bytes, dual TUSB cartridge tape units
including interface, programmable line time clock, boot-
strap loader, 8K byte cache memory, microcoded I/O and
maintenance console. The 34 MAGNUM comes with 256K
bytes of memory, the 44 MAGNUM with 512K bytes as
standard. Other ABLE Unibus compatible controllers are
optional. Several standard MAGNUM items such as float-
ing point, cache and the integral tape units are extra-cost
options on certain DEC equivalents.

The two ABLE MAGNUMS are designed for high
commercial reliability and dependability. They fill the qual-
ity gap between DEC models and those intended for MIL-
SPEC operation. Mean-Time-to-Repair has been reduced
to a minimum by features such as easy accessibility, a
built-in front panel voltmeter and display of critical sig-
nals on the front panel. Other important features include
a bus bandwidth greater than the alternatives, inexpen-
sive loading of diagnostics or software updates and self-
adaptive remote sensing of the power supply.

The ABLE 34 MAGNUM and 44 MAGNUM are sup-
ported by RSTS/E, RSX-11M and RT-11 software operat-
ning systems as authorized by DEC. Both systems optimize
embedded DEC CPU's in a stylish rack mountable chassis
24.25 inches deep, 17 inches wide and 10.5 inches high.
U.S. list prices are $21,000 for the 34 MAGNUM and
$27,000 for the 44 MAGNUM, according the user lower
prices than those of the DEC equivalents. Delivery is less
than 60 days ARO, another important advantage for the
user.

ABLE is the world's largest independent supplier of
enhancement interfaces for the VAX, PDP-11, System 20
and LSI-11 series of computers. The company manufac-
tures an extensive line of communications, memory and
general-purpose products of all which are hardware com-
patible with and software transparent to the host
machine. They are supported and serviced worldwide
with offices and plants located throughout the United
States, as well as in England, Germany and Puerto Rico.

ENABLE/34 allows expansion of main memory up to four million bytes for
existing PDP-11/34* RSTS/E systems.

FEATURES:
- ENABLE/34 is a hardware/software solution for extending the address
 space of an existing PDP-11/34 series machine to 4 megabytes of
 main memory:
 + Substantially increases system throughput
 + Allows all currently executing programs to remain memory resident
 + CPU speed becomes the only performance limiter

- ENABLE/34 is implemented simply by a RSTS/E software enhancement
 supplied and supported by ABLE:
 + Installation and removal of software are accomplished by an AUTO-
 PATCH procedure
 + System can be tested, maintained, and operated with ENABLE/34
 or as a standard PDP-11/34 system.

- ENABLE/34 is most effective alternative:
 + If your replacement system will not be delivered when you need it,
 or
 + If your budget does not yet support the acquisition of a larger
 system, or
 + If you simply wish to optimize your existing investment.

- Present memory can be used in concert with the added 22-bit memory
 or memories.

GENERAL DESCRIPTION
The ENABLE/34 consists of the ENABLE CONTROL, the BUS
ISOLATOR, an optional cache memory, and unbundled software.

The ENABLE CONTROL is a single, modified hex-width board that installs
in the second slot of any DD11-C or DD11-DK system unit. It is con-
ected to the processor simply by standard Unibus cable. All DMA
devices are connected to the Unibus in front of ENABLE/34 to allow I/O
mapping to occur.

The BUS ISOLATOR is a single, modified dual-width board. It is provided
to allow the use of up to 256K bytes of installed 18-bit addressable
memory.

The ENABLE CACHE is a quad-width board that installs in the first quad
SPC slot of a system unit. The CACHE contains 8K bytes of high speed
memory that can significantly increase the throughput of your system.

Note that the ENABLE/34 is not intended to replace newer or larger
machines. It is designed to upgrade existing systems.

*Trademark of Digital Equipment Corporation
ENABLE and ENABLE/34 are trademarks of ABLE Computer.

We reserve the right to improve our products at any time.
10042X08-0581
THERE'S A WAY TO SAVE MONEY ON DEC TECHNOLOGY: DON'T CALL DEC.

They're the world's leading supplier of general purpose minicomputers. And they make equipment recognized for its high technology.

They also sell it at very high prices.

You can do better.

You can select from a wide range of disk drives—some with more capacity and more efficiency than anything DEC is offering. For instance, our DRM05 300 MB drive was available a year ahead of DEC. And our DRM07 600 MB drives are being installed now—again, ahead of any DEC announcement. And, you can choose from subsystems that include tape decks, add-in or add-on memory, multiplexers, disk drive controllers, and more.

All are media compatible. Software transparent. Easy to install. In fact, most of our peripherals come from DEC's own suppliers, but we offer them at a fraction of DEC's prices. For example, their RM05 drive (CDC's 9766) is listed at $34,000; while an identical drive, our DRM05, is available for $17,000. That's half DEC's price.

We're Data Systems Services. And we're the people who can do what we believe DEC can't: solve your DEC problems.

DSS: Whenever you need DEC, call us.
This is the second in a series of four articles describing the internal structures and operation of RSTS/E V7.0. The last article described the job control structures used for each active job. This article will describe the control structures necessary to control the memory used by a job.

My goal in writing these articles is to provide a complete description of the internals of the RSTS monitor in a format that is understandable to someone who is not a systems programmer. By using this information you can better understand what RSTS is attempting to do for you and work with it, instead of against it (alas, the normal case). The result should be an overall improvement in system performance and a more informed user who can intelligently interact with DEC on technical questions.

This may seem like a lofty goal, but judging from the responses I've received from the first article, it can be achieved. However, I need your help. Please let me know what you like and don't like about these articles. Your input will be useful in writing the next articles as well as in some others I have planned for the future.

2.0 MEMORY CONTROL

Memory is used for many different purposes. The monitor and cache buffering use a large chunk. Runtime systems and resident libraries take their toll. And, of course, let's not forget application programs. They are what we bought this machine for in the first place.

With all these demands on memory, RSTS has to make some pretty smart decisions to control this resource efficiently. The primary way it provides this control is through memory control sub-blocks.

2.1 MCB — MEMORY CONTROL SUB-BLOCKS

The available memory on a system is typically broken into many pieces, each being used for a different purpose. Memory control sub-blocks (MCB) are used to keep track of each of these pieces of memory.

An MCB is not a structure by itself. It is a part of other structures that describe functions which use memory, such as the job data block (JDB). The structures which contain memory control sub-blocks are: job data blocks (JDB), runtime system descriptor blocks (RTS), library descriptor blocks (LIB), the RSTS monitor, XBUF, locked out memory and non-existent memory.

The memory control sub-blocks are always in one of three states: (1) linked into a list of current memory users, (2) linked into a list of structures that desire memory, (3) not in memory and not desiring to come into memory.

The memory control sub-block is defined as follows:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>M.PPRV</td>
<td>Pointer to the previous memory control list at offset M.PNXT.</td>
</tr>
<tr>
<td>2</td>
<td>M.PNXT</td>
<td>Pointer to the next memory control sub-block in this memory control list.</td>
</tr>
<tr>
<td>4</td>
<td>M.TSIZ</td>
<td>Number of K-words mapped by this MCB. This size includes the amount of memory used by the structure which contains this MCB plus any available memory that follows it.</td>
</tr>
<tr>
<td>6</td>
<td>M.SIZE</td>
<td>This byte contains the number of K-words in use by the structure containing this MCB. This size subtracted from M.TSIZ yields the number of K-words following this structure which are available for other uses.</td>
</tr>
<tr>
<td>7</td>
<td>M.CTRL</td>
<td>This byte contains the memory status information about the portion of memory mapped by this MCB (see 2.1.1).</td>
</tr>
<tr>
<td>8</td>
<td>M.PHYA</td>
<td>This word contains the physical starting address of the piece of memory mapped by this MCB divided by 64.</td>
</tr>
</tbody>
</table>

2.1.1 M.CTRL — Memory Status Information

The memory status information bits contained in M.CTRL are defined as follows:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>REQ</td>
<td>Residency is requested but the MCB is not linked into RESLST because it is currently being swapped out.</td>
</tr>
<tr>
<td>9</td>
<td>OUT</td>
<td>Entry should be removed from memory or is currently removed from memory.</td>
</tr>
<tr>
<td>10</td>
<td>IN</td>
<td>Entry should be brought into memory.</td>
</tr>
<tr>
<td>11-13</td>
<td>SWP</td>
<td>A swap is desired. OUT and IN determine the swap direction.</td>
</tr>
<tr>
<td>15</td>
<td>LCK</td>
<td>The memory segment described by M.SIZE is not available for allocation for other uses or swapping out.</td>
</tr>
</tbody>
</table>

Some typical combinations of bits in M.CTRL are:

LCK, SWP, OUT The entry is resident but should be swapped out.

LCK, OUT The entry is in the process of swapping out.

LCK, SWP, IN The entry has been allocated memory and should be swapped in now.
The entry is in the process of swapping in.
The entry is not available for swapping out.
The entry is not currently in memory and does not desire to be made resident.

2.2 MEMLST — RESIDENT MEMORY LIST

All of the memory on a system is defined by the resident memory list, MEMLST. As memory is divided among several different usages the memory control sub-blocks for each usage are linked into MEMLST in ascending order. Thus, by following the links between each MCB we have seen all available memory in the order it is allocated.

The memory control list is based at the location MEMLST. This location is the address of the first entry in the memory control list, rather than a pointer to the first entry as in most other linked lists. The first entry describes the memory used by the monitor and any free memory following it.

The memory control list always contains at least three entries. These are the root MCB, the system default runtime system, and the tail MCB. The root is actually the monitor MCB. The tail terminates the list and shows the highest memory location addressable on the system.

2.2.1 Root Memory Control Sub-Block

The first entry in the resident memory list is the root MCB. This entry starts at location MEMLST and describes the memory used by the monitor and any free memory following it.

The format of the root MCB is as follows:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>M.PPRV</td>
<td>The link to the previous entry is 0 since this is the first entry in MEMLST.</td>
</tr>
<tr>
<td>2</td>
<td>M.PNXT</td>
<td>Pointer to the next entry in MEMLST.</td>
</tr>
<tr>
<td>4</td>
<td>M.TSIZ</td>
<td>The total of the monitor's size plus any free memory following the monitor.</td>
</tr>
<tr>
<td>6</td>
<td>M.SIZE</td>
<td>This byte contains the size of the monitor in K-words.</td>
</tr>
<tr>
<td>7</td>
<td>M.CTRL</td>
<td>The status bit LCK is set to show that the monitor's memory is not available for other uses.</td>
</tr>
<tr>
<td>8</td>
<td>M.PHYA</td>
<td>The starting physical address is 0 since the monitor always starts at location 0.</td>
</tr>
</tbody>
</table>

2.2.2 Tail Memory Control Sub-Block

The tail MCB is the last entry in MEMLST. It terminates the list and defines the highest memory address available on the system. The format of the tail MCB is:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>M.PPRV</td>
<td>The backwards link points to the previous entry in MEMLST at its M.PNXT entry.</td>
</tr>
</tbody>
</table>
We have the key to your database!

The Generalized Reporting System

Gr8 unlocks the true potential of your database:

- Total reporting flexibility
- Can access any database
- Online, English query language
- Suitable for non-technical users

Gr8 is available now for DEC PDP-11 computers. Call or write us for complete details.

2.3 RESLST — DESIRED RESIDENCY LIST

When an entry is not currently resident in memory and wants to become resident, it is linked onto the end of the desired residency list, RESLST. The memory manager uses this list in a first-in/first-out basis to keep track of requests for memory beyond what is available in MEMLST.

When an entry is added to RESLST, the memory manager is scheduled to fulfill the desired residency request. If there is not enough memory available to honor the residency request, entries that are currently resident in memory are reviewed. Those which are eligible for swapping are then scheduled to be swapped out. Once sufficient memory is available, the requestor is made resident and the MCB is removed from RESLST and added to MEMLST.

The first entry in RESLST is pointed to by the location RESLST. If no entries are in the desired residency list the location RESLST will contain a 0.

Memory control sub-blocks in RESLST have the following format:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>M.PPRV</td>
<td>Pointer to the next entry in RESLST or 0 if this is the last entry.</td>
</tr>
<tr>
<td>2-5</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>M.SIZE</td>
<td>The size of this entry in K-words.</td>
</tr>
<tr>
<td>7</td>
<td>M.CTRL</td>
<td>The control bits LCK, SWP and IN are set to show that swap-in is desired.</td>
</tr>
<tr>
<td>8</td>
<td>M.PHYA</td>
<td>This word contains either a 0 to show that no specific memory address is required or it contains the desired memory address divided by 64.</td>
</tr>
</tbody>
</table>

2.4 RTS — RUNTIME SYSTEM DESCRIPTOR BLOCK

Every runtime system that is currently installed in the system has an RTS descriptor block associated with it. This structure contains all the information about the runtime system, including its name, memory control information, disk address and characteristics.

The RTS block has the following format:
<table>
<thead>
<tr>
<th>Offset</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>R.LINK</td>
<td>This word contains the address of the next runtime system descriptor block. If this entry is the last RTS block in the list it will contain a 0.</td>
</tr>
<tr>
<td>2</td>
<td>R.NAME</td>
<td>These two words contain the runtime system name in RADSO.</td>
</tr>
<tr>
<td>4</td>
<td>R.DEXT</td>
<td>This word contains the default extension (in RADSO) for executable files used by this RTS. If a RUN command is issued without specifying an extension for the file to be executed this value will be used for the extension on files executed under this runtime system.</td>
</tr>
<tr>
<td>6</td>
<td>R.MCTL</td>
<td>These five words are the memory control sub-block for the runtime system. See section 2.1 for more information.</td>
</tr>
<tr>
<td>14</td>
<td>R.KSIZ</td>
<td>This word (within the memory control sub-block) contains the size of the runtime system in K-words.</td>
</tr>
<tr>
<td>18</td>
<td>R.DATA</td>
<td>These three bytes contain the FIP block number of the first block of the runtime system image. When a runtime system is loaded into memory it is accessed on disk by this block number. Byte 20 is the most significant byte of the block number.</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>This byte is the FIP unit number for the disk containing the runtime system. It is used when loading the runtime system image and when closing the runtime system file when the RTS is removed.</td>
</tr>
<tr>
<td>22</td>
<td>R.FILE</td>
<td>These three bytes contain the FIP block number of the block that contains the UFD name entry for this runtime system. It is used to close the RTS file when the RTS is removed.</td>
</tr>
</tbody>
</table>

When DEC users demand quality software, we listen.

For nine years we've been listening to DEC users' demands—demands for unique systems software with strong technical support. And we've responded with products like:

EasyEntry The full screen data entry system which improves programmer and data entry operator efficiency.

AIS-PL/I The easy and powerful programming language for scientific, commercial, and systems applications.

BURCOM-11 The DEC/Burroughs communication tool for distributed processing systems.

WP Saturn The multipurpose word processing software.

If you too are a demanding DEC user, contact us. We'll listen.
25 This byte is the offset to the name entry of the RTS file within the directory block specified by R.FILE divided by 2.

26 R.CNT This byte contains a count of the number of jobs currently using this runtime system.

27 This byte contains a count of the number of jobs using this runtime system which are currently resident in memory. If the residency count is 0 the runtime system is eligible for "swapping out". If a runtime system is loaded with the /STAY switch the high bit of this byte is set, ensuring that the residency count will never be 0 and the runtime system will always remain in memory.

28 R.SIZE This byte contains the maximum size for a job image using this runtime system.

29 R.MSIZ This byte contains the minimum size for a job image using this runtime system.

30 R.FLAG If the PF.EMT bit (see 2.4.1) is set in the high byte of this word this low byte contains the special EMT prefix value. See the RSTS Programming Manual for more information.

31 This byte contains a set of bits that describe the characteristics of the runtime system (see 2.4.1).

2.4.1 R.FLAG — Runtime System Characteristics Flags

The runtime system characteristics flags contained in the word R.FLAG are defined as follows:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>Special EMT prefix (see PF.EMT below)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PF.KBM</td>
<td>The runtime system can act as a keyboard monitor.</td>
</tr>
<tr>
<td>9</td>
<td>PF.1US</td>
<td>The runtime system is single user, non-sharable.</td>
</tr>
<tr>
<td>10</td>
<td>PF.RW</td>
<td>Map runtime system read/write.</td>
</tr>
<tr>
<td>11</td>
<td>PF.NER</td>
<td>Do not log errors occurring under this runtime system.</td>
</tr>
<tr>
<td>12</td>
<td>PF.REM</td>
<td>Remove the runtime system image from memory when R.CNT becomes 0.</td>
</tr>
<tr>
<td>13</td>
<td>PF.CSZ</td>
<td>Compute initial job size.</td>
</tr>
<tr>
<td>14</td>
<td>PF.SLA</td>
<td>Load at the address specified by M.PHYA of the MCB.</td>
</tr>
<tr>
<td>15</td>
<td>PF.EMT</td>
<td>Low byte of R.FLAG is special EMT prefix code.</td>
</tr>
</tbody>
</table>

2.4.2 NULRTS — Disappearing RSX RTS

One of the options at sysgen time is to embed support for the RSX emulator into the monitor. When this is done the RSX runtime system disappears after initiating program execution.

One of the requirements of every job on the system is that it have a runtime system associated with it at all times. RSTS meets this requirement when using the disappearing RSX runtime system through use of the null RTS descriptor block, NULRTS.

The null RTS descriptor block is not linked into RTSLIST, the list of RTS blocks. It is only used to give the job descriptor block (JDB) an RTS block to point to.

The format of the null RTS block is the same as a normal RTS block. All the fields contain 0 except the following:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.NAME</td>
<td>"...RSX" in RAD50</td>
</tr>
<tr>
<td>M.CTRL</td>
<td>LCK bit set</td>
</tr>
<tr>
<td>R.SIZE</td>
<td>System swap maximum</td>
</tr>
<tr>
<td>R.MSIZ</td>
<td>1</td>
</tr>
</tbody>
</table>

2.4.3 RTSLIST — Runtime System List

The RTS blocks are linked together in a list pointed to by the location RTSLIST. The first entry is always the system default runtime system. It links to the other RTS blocks in the order displayed by SYSTAT.

2.5 LIB — RESIDENT LIBRARY DESCRIPTOR BLOCK

Each resident library installed in the system is described by a resident library descriptor block (LIB). A library descriptor block is very much like an RTS block in that it contains information about the resident library's name, memory control information, disk address and characteristics.

Refer to the description of the .PLAS call in the RSTS System Directives Manual for a complete description of resident library support and the use of memory windows.

The format of a resident library descriptor block is as follows:

<table>
<thead>
<tr>
<th>Pointer to the next LIB block</th>
<th>0 R.LINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resident library name (RAD50)</td>
<td>2 R.NAME</td>
</tr>
<tr>
<td>PPN of library</td>
<td>4</td>
</tr>
<tr>
<td>Memory control sub-block</td>
<td>6 L.PPN</td>
</tr>
<tr>
<td>Starting block # of library</td>
<td>8 R.MCTL</td>
</tr>
<tr>
<td>Library size</td>
<td>10</td>
</tr>
<tr>
<td>Starting block # of library</td>
<td>12</td>
</tr>
<tr>
<td>Library characteristics</td>
<td>14 R.KSIZ</td>
</tr>
<tr>
<td>FIP unit number</td>
<td>16</td>
</tr>
<tr>
<td>Block # of library directory entry</td>
<td>18 R.DATA</td>
</tr>
<tr>
<td>Offset in block/2</td>
<td>20</td>
</tr>
<tr>
<td>MSB of R.FILE</td>
<td>22 R.FILE</td>
</tr>
<tr>
<td>Residency count</td>
<td>24</td>
</tr>
<tr>
<td>User count</td>
<td>26 R.CNT</td>
</tr>
<tr>
<td>Library characteristics</td>
<td>28 L.LSTAT</td>
</tr>
<tr>
<td>Protection code</td>
<td>30 R.FLAG</td>
</tr>
<tr>
<td>Status</td>
<td></td>
</tr>
</tbody>
</table>
BACmac can do it all!

BAC into RTS / BAC into MAC / BAC into BAS

BACmac is a unique software tool, running under RSTS/E, which provides the following conversions:

- translation from Basic-Plus “compiled” back to Basic-Plus source code (only the comments will be missing)
- translation from Basic-Plus into Macro source code, which compiled under RSTS runs faster than Basic-Plus
- translation from Basic-Plus into Macro source code which may be compiled under RSTS for execution under RT11 — a migration facility
- translation from Basic-Plus into a RUN-TIME-SYSTEM. Now you can write an RTS in Basic-Plus.

The ideal solution to memory thrashing due to “multi-copy” applications programs.

RSTS/E, RT11, Macro-II and Basic-Plus are trademarks of Digital Equipment Corporation.

Please write for more information

<table>
<thead>
<tr>
<th>Offset</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>R.LINK</td>
<td>This word contains the address of the next resident library descriptor block. If this entry is the last LIB block in the list it will contain a 0.</td>
</tr>
<tr>
<td>2</td>
<td>R.NAME</td>
<td>These two words contain the resident library name in RADSO.</td>
</tr>
<tr>
<td>4</td>
<td>L.PPN</td>
<td>This word contains the account number (PPN) of the resident library file. The project number is in the high byte. The programmer number is in the low byte.</td>
</tr>
<tr>
<td>6</td>
<td>R.MCTL</td>
<td>These five words are the memory control sub-block for the resident library (see 2.1).</td>
</tr>
<tr>
<td>14</td>
<td>R.KSIZ</td>
<td>This word (within the memory control sub-block) contains the size of the resident library in K-words.</td>
</tr>
<tr>
<td>18</td>
<td>R.DATA</td>
<td>These three bytes contain the FIP block number of the first block of the resident library image. When a resident library is loaded into memory it is accessed on disk by this block number. Byte 20 is the most significant byte of the block number. This byte is the FIP unit number for the disk containing the resident library. It is used when loading the resident library image and when closing the resident library file when the resident library is removed.</td>
</tr>
<tr>
<td>25</td>
<td>L.CNT</td>
<td>This byte contains a count of the number of jobs currently attached to this resident library.</td>
</tr>
<tr>
<td>26</td>
<td>R.CNT</td>
<td>This byte contains a count of the number of jobs using this resident library which are currently resident in memory. If the residency count is 0 the resident library is eligible for “swapping out”. If a resident library is loaded with the /STAY switch, the high bit of this byte is set, ensuring that the residency count will never be 0 and the resident library will always remain in memory. This byte is used to differentiate between an RTS block and a LIB block. If bit 7 (symbolically, LS.LIB) is set this is a LIB block, otherwise it is an RTS block. LS.LIB is the only bit currently defined for L.CNT.</td>
</tr>
<tr>
<td>28</td>
<td>L.STAT</td>
<td>These three bytes contain the FIP block number of the block that contains the UFD name entry for this resident library. It is used to close the resident library file when it is removed. This byte is the offset to the name entry of the RTS file within the directory block specified by R.FILE divided by 2. This byte contains a count of the number of jobs currently attached to this resident library.</td>
</tr>
</tbody>
</table>
| 29 | L.PROT | This byte is the library protection code. The protection code is used to control access to the memory space of a res-
ident library. It is identical in usage to the file protection codes except that bits 6 and 7 have no meaning.

This word contains a set of bits that describe the characteristics of the resident library (see 2.5.1).

2.5.1 R.FLAG — Resident Library Characteristics

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-8</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PF.1US</td>
<td>The resident library is a single user, non-sharable.</td>
</tr>
<tr>
<td>10</td>
<td>PF.RW</td>
<td>The resident library may be mapped read/write if requested by a privileged user.</td>
</tr>
<tr>
<td>11</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>PF.REM</td>
<td>Remove from memory when R.CNT becomes 0.</td>
</tr>
<tr>
<td>13</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>PF.SLA</td>
<td>Load at specific address. This bit is always set for a resident library since libraries must be loaded at a specific address.</td>
</tr>
<tr>
<td>15</td>
<td>Unused</td>
<td></td>
</tr>
</tbody>
</table>

2.6 WDB — WINDOW DESCRIPTOR BLOCK

A job's memory space consists of the user low segment, the runtime system and up to five resident libraries mapped by up to seven windows. If a job is not using any resident libraries the job's memory requirements are totally described by the memory control sub-blocks in its JDB and RTS blocks.

However, when a job attaches to one or more resident libraries an additional control structure is needed to keep track of the extra memory windows. This structure is the window descriptor block (WDB).

The WDB consists of up to three small buffers of information and describes up to seven memory windows and five resident libraries. Up to two windows and five resident libraries can be described with a single small buffer. An additional small buffer is required for each three additional windows.

The format of the first window descriptor block is as follows:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>W.LINK</td>
<td>If this job has more than two windows in use this word contains the address of the second window descriptor block at offset W.ALIB. Otherwise this word contains a 0.</td>
</tr>
<tr>
<td>2</td>
<td>W.ALIB</td>
<td>These five words contain pointers to the library descriptor blocks for up to five libraries. If less than five libraries are in use the unused entries will be 0.</td>
</tr>
<tr>
<td>12</td>
<td>W.WIN1</td>
<td>These five words are the first address window (see 2.6.1)</td>
</tr>
<tr>
<td>22</td>
<td>W.WIN2</td>
<td>These five words are the second address window (see 2.6.1)</td>
</tr>
</tbody>
</table>

2.6.1 W.WIN? — Address Windows

If a window is not in use its first word will be 0. An address window has the following format:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>W$NAPR</td>
<td>This byte contains the APR number for the base of the window.</td>
</tr>
<tr>
<td>1</td>
<td>W$NSTS</td>
<td>This byte contains a bit pattern describing the status of the window (see 2.6.1.1).</td>
</tr>
<tr>
<td>2</td>
<td>W$NSIZ</td>
<td>This word contains the desired window size in bytes divided by 64.</td>
</tr>
<tr>
<td>4</td>
<td>W$NLIB</td>
<td>This word is the address of the pointer (in W.ALIB) to the library descriptor for the library associated with this window.</td>
</tr>
<tr>
<td>6</td>
<td>W$NOFF</td>
<td>This word is the map offset into the library divided by 64.</td>
</tr>
<tr>
<td>8</td>
<td>W$NBYT</td>
<td>This word is the map length in bytes.</td>
</tr>
</tbody>
</table>

2.6.1.1 W$NSTS — Window Status

The current status of each window is described by the bits contained in the byte W$NSTS in each address window. These bits have the following meaning:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>WSSWRT</td>
<td>Write access is desired.</td>
</tr>
<tr>
<td>9-14</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>WSSMAP</td>
<td>The window is currently mapped.</td>
</tr>
</tbody>
</table>
2.6.2 Extended Window Descriptor Blocks

If more than two windows are defined for a job an additional window descriptor block is allocated and linked to be the primary window descriptor block. If more than five windows are defined a third WDB is allocated and linked to from the second one.

The format of the second WDB is as follows:

The format of the third WDB is as follows:

The format of each address window is identical to that of the first WDB. See 2.6.1.1 for more information.

In the next issue: FILE AND DEVICE CONTROL

SPECIAL OFFER

A wall chart showing the linkages between all tables in the RSTS/E monitor is available for $2.00.

Send your requests to:
Northwest Digital Software
Box 2-743
Newport, WA 99156

NCA AND YOU

ON-LINE: THE BOTTOM LINE IS INCREASED PRODUCTIVITY

Companies which include apple Computer, Allen Chaplin, Canadian General Electric, General Electric, Hitachi, and others use NCA's software for increased control and improved manufacturing productivity. NCA's operating systems for the DEC PDP-11 family of computers makes it simple for NCA to provide complete user support programs.

CALL TODAY for complete brochures and a free 1981 calendar.
Notes from a Ride on the AMTRAIN(ing)

By Peg Leiby and Sue Smith

Ambase is a data base management system offered by AMCOR, Inc. of Louisville, KY. We recently attended the training at AMCOR Headquarters.

One of the first things that become obvious about AMSCHOOL is that EVERYTHING seems to have a prefix of "AM". Please bear with the "AMing", since we are now AMBASE graduates.

AMDAY 1:

The training began early on Monday morning, sometime around 8:00 A.M. We were surprised since other classes we've attended tended to have shorter days. Our instructor, Cliff Jeffries, introduced the three other students in the class, two from LIFEBOAT Associates, located in New York, and one an AMCOR employee trainee. AMCOR insists that the class size be small. In fact, to keep the classes small, they were running a second section of training at the same time with another teacher. We were each given a training manual with a 38 point outline breaking down the week's course into the lectures and labs to be covered. Along with the manual, all hand-outs for the day were delivered separately in a packet.

We began with an introduction to AMBASE: an overview of the product, review of the file structures, methods of fielding, sorting, etc. To use AMBASE, application programs must access what is known as the schemata, a file in which all fields, their names, verification checks, aid messages, packing techniques, and sort definitions are stored. This is the "black box" of AMBASE which accesses the key and data files, which together, are known as "data-sets". Each data-set can be formatted up to three different ways, which enables more than one kind of record of different sizes in a data file. This saves channels, among other things. Each data-set may have up to 42 different keys, although few of them, the more, more efficient the processing.

An overview of the features offered seemed a bit overwhelming at first. What do two BASIC+ programmers know about terms like Screen Generator, Report Generator, Query Language, Code Generation... ah yes, no wonder the days are so long—there's a lot to learn, and we did as the week progressed.

After the overview, we discussed eleven of the AMBASE utilities: how to define a dataset, display its contents, and modify it with a general file maintenance, etc., all of which are easily mastered.

We had three lab sessions on AMDAY one, two students to a terminal. The labs that day were spent defining datasets, which were provided in the training manual on nice lay-out sheets describing the field and sort structures. By the end of the lab sessions, we had used AMBASE utilities to define datasets, and then to add and display records. During dataset definition an ascii definition file is created which when 'recoed' for desired changes and passed thru the definition utility will re-define the data-set in a matter of minutes. Two utilities we'd like to mention are AMPOR and AMSTAT.

AMSTAT is the statistics utility which returns the number of insertions, deletions and changes that have occurred to the key files, shows amount of used and unused space of data, and gives a degradation analysis which is used to determine key optimization. AMSTAT statistics are easily reset when desired.

AMDAY 2:

We learned how to interface AMBASE with BASIC+ 2 code via the AMBASE standard calls which access the schemata. The calls reviewed included AMOPEN—opening the dataset files, AMREAD and AMWRITE—reading and writing to the files, AMPACK and AMUNPK—getting and replacing fields, and AMASK—the method used for all operator interaction and prompting. The nice thing about using the AMASK call is making use of the data dictionary (schemata) for valid answers, CVT$$ conversion, default values, aid messages, and oh yes, the BACK feature, which sends the program back to the last AMASK! By using these AMCALLS, you accomplish one of the things that AMCOR can boast about its package; data independence, since the code written will then be flexible enough not to change when changes have been made to the file structures. By the way, AMBASE is now supplied as a MACRO-based resident library.

There were three labs again. Because of time restrictions, AMCOR supplies shell programs for the trainees to use and modify. By the end of the lab sessions we had successfully passed through the datasets which were defined the day before, using partial keys in BASIC 2. We unpacked and displayed fields using the AMCALLS, compiled and TKB'd the code and ran the programs. The lab assignment was to give everyone in the dataset an immediate 10% pay raise. We had placed our names in the dataset the previous day, with huge salaries and naturally didn't mind this task. We were both a bit humbled, however, when we noticed what appeared to be a loop—continuous 10% increases. Our attitude became one of—well, so what, you know computers; how could we be upset about increases that kept us so far above the inflation rate. "Wait a minute,—why is my zip code getting larger, and larger, and larger..." As it turned out we not only were updating the zip codes by 10% to infinity, we weren't even getting a raise! Cliff didn't seem to be mildly amused, he was down right laughing. He quickly showed us our error, which we did fix and re-run. Quite a long day, this one was; no swimming at the motel pool tonight, but a day well spent.

AMDAY 3:

Today we spent time discussing key considerations in great depth, basically to determine the pros and cons of having duplicate or blank keys defined for the dataset. More of the AMBASE calls were reviewed as well.

The bulk of AMDAY three was spent on the Screen Generator, a method of quickly producing file maintenance or inquiry programs by answering a dialogue. The AMBASE screen generator creates code which is appended and compiled to the supplied utility shells. An ascii definition file is created for easy editing and re-run to make changes at a later time. We both found the utility dialogue somewhat confusing; however after practicing, most of the confusion was overcome. Calculations can be defined to occur upon operator input, and data can be verified against other data-sets in the
schemata. (although not updated, one of the shortcomings of the ambase product as it is today.) The cursor/echo control can be defined for most terminals through their standard definitions. Ambase really generates a lot of code!

Again, three labs, with lots of practice using the screen generator. We defined and laid out the screen with little problem and then added, deleted and updated fields easily. Lots of strange looking zip codes... Our program used the calculations entered through the dialogue as various fields were updated.

AMDAY 4:

A thorough explanation of data-set relationships, called logical views, a way of re-defining your data into specific and limited groups of fields, perhaps from several related files. This is accomplished through a utility known as the subschemata librarian. Much time was spent discussing “parent” to “child” relationships as either one-to-one, or one-to-many types.

Much time was also spent on AMDAY 4 learning to utilize the Report Generator facility. This utility is a powerful programmer tool to quickly create reporting programs. The dialogue is somewhat complex, but not meant to be run by the everyday user of the system. By answering the utility dialogue, the entire report lay-out, headings, details, breaks, paging, totals, etc can all be defined with an opportunity to modify the print-using formats if desired.

The query language, which we were to learn on AMDAY 5, can also be interfaced with the report generator. The technical aspects of the programs we reviewed extensively in order to fully understand the typical modifications users make to the actual code.

During the three labs, we produced reports using the pre-defined datasets from prior days, as well as defining a subschema, which was used in the report.

AMDAY 5:

Query Language—Among other things, this facility allows for special inquiries by non-technical people. We learned that the query language utility can be used in three different ways: directly, interfaced to any user program or interfaced to the report generator. At run time, many different field parameters can be selected by employing the basic-plus verbs, such as “if”, “or”, “ “, “ + “, “unless”, etc. AMBASE is somewhat deficient at this time in that only one dataset can be queried, however this is very high on the Amcor amwish list for product improvement. A somewhat complicated method to get around some of the query language limitations was discussed.

The rest of the lecture was spent on installation, design considerations and various tips.

AMHOME:

Overall, we found the training to be conducted in a very professional manner. Not only did we learn the product, but our general knowledge was also enhanced. After all, our experience in BASIC+2 was somewhat limited, neither of us ever having used the BASIC+2 calls before.

Much exhausted, but intellectually stimulated, we were both eager to return home to use what we learned. Cliff had stressed in the beginning that the best way to start was to go easy at first. No showing off with a big project. Waiting, however, was a complete conversion of 7 DMS-500 mailing list files to AMBASE, with 4-up labels needed almost immediately. After defining the file and sort structures, AMLOAD, the utility to transfer foreign data to AMBASE was used. Unfortunately, AMLOAD was not reviewed at the class, and the documentation, at least for us, wasn’t the easiest to understand. It is basically geared toward magtape transfer, and this was all from disk files. The support from AMCOR was excellent, we couldn’t have asked for more. The best time to do the data transfers were during the night. The report generator isn’t able to produce something like 4-up labels, therefore a suggestion from AMCOR was to copy over and modify one of the utilities. (The source code is included with the AMBASE package for many of the utilities.) AMDIS, the utility that basically dumps out the records in a nice format was used. It turned into a bit of forced training since much of it didn’t apply to the code needed but before long a label program was produced. I found, though, that one of the DMS-500 files had had some inconsistent file lay-outs with part of the city tagging along the prior address lines. Time to learn more, with the deadline approaching. With a quick AMCHG, a call to update non-key fields, which passed through the entire file (20,000) records, all was in order, verified by using the AMDIS and AMGENT utilities.

Once the 100,000 or so labels were produced and out of the way, screen generators, report generators and query language attempts were made with ease. All in all, a great learning experience and we’re sure a valuable product.
CLASSIFIED

HIGH SPEED Data Acquisition under RSTS. R.B. Lake, 2540 Derbyshire, Cleveland, OH 44106. (216) 932-5434.

DEC COMPUTERS AND components bought and sold, 617—774-4942.

80MB CDC DISKS 8000 w/CTRL 12000 97 tape 4000 w/CTRL 7500. Jon Wells 714—641-9141.

WOULD LIKE to exchange information on law enforcement systems. Livonia Police Dept., 15050 Farmington, Livonia, Michigan 48154.

TIMESHARING IN Claremont and Pomona. PDP11/34 RSTS. Reasonable. Call (714) 626-4611.

DEC PERIPHERALS WANTED. Douglas Mayers, Box 1067, Gambier, Ohio 43022.

SOFTWARE SUPPORT from Free Lance Logic, Santa Ana, CA (714) 979-7860.

DIGITAL BUSINESS Computers, DEC hardware/software, Kitchener, Ont., Canada. (505) 662-3596.

LOOKING for other 11/44's in the South Texas area and also for other supermarket companies under RSTS. Buz Waitz, Carl's Grocery Co., Inc., 1123-A E. 9th, Mission, Texas 78572. (512) 685-4578.

GREETINGS from First RSTS Product Manager, Tom Barnett. Digital Merrimack, NH 03054.

ANALYSIS and DESIGN, custom business software, facilities management, timesharing services, media conversions. (714) 293-3200.

CLAIMS PROCESSING - the specialists in hospital outpatient systems. Phone (201) 731-9252.

RSTS/E BASIC+, DIBOL Programmers call or send resume to Scientific Placement, Inc., P.O. Box 19949, Houston, TX 77024; (713) 496-1600.

MR. BOOKER'S Computer Concepts is Addison County Vocational's most unusual course.

7-ELEVEN is Alive & Well in WV. Oh Thank Heaven!

VAX TIME AVAILABLE. Call Ron Moehler, (412) 321-7400, for very competitive rates.

FOR SOFTWARE AND Timesharing call Data Processing Service of Findlay at 419—423-8575.

SHEA & SHEA accountants, incorporated. 80 stonestown, san francisco 94132. 415/661-6660.

COMPUTER TIME. Information Engineering, Box 155, Mt. Clemens, MI 48043. 313—286-8488.

RSTS CONSULTING. RODAV Business Systems, 3351 Demott Avenue, Wantagh, New York 11793.

SHA COMPUTERS. Systems for softdrink bottlers. A complete system for all accounting.

MEDIA TRANSFER SERVICES - We can transfer your data between any of the following media: RL01, RL02, RP05, RK05, RK06, RK07, RX01, and 800/1600 BPI 9Track MT. We handle most DIGITAL directory structures on a fast turn around basis and also offer programming services for any special transfer problems you may have. Call (201) 584-4026.

FREE LANCE PROGRAMMER / ANALYST. Get the manpower to finish that project on time, or design and organize an upcoming one. 6 years RSTS experience. Box 12302, Lexington, Ky. 40582.

FOR SALE - IMSAI 8080 - send for list - SHCI, 42 W. 39th St., NYC 10018.

FOR SALE - CORE MEMORY (DEC 96K words). Call - L.R. Christiansen Co. 309—762-8886.

FOR SALE: IBM 029 Keypunch, $500.00. Phone (219) 982-2141, ext. 281.

USED RK05 DISK PACKS for sale. Contact: Bill Ferris 203—888-1567.

WANTED

WANTED - USED DEC Tape Drive. $7 to $10,000 range. Call 207—775-5601, ext. 49.

WANTED: RSTS ECAP. MSOE, P.O. Box 644, Milwaukee, WI 53201. Attn: Computer Center.

HELP AVAILABLE

STATISTICAL CONSULTATION, Dave 412—561-2569, eve., weekends.

EXPERIENCED FREE LANCE Basic Plus, RSTS/E Programmer Analyst, Boston area, call 926-6025.

FREE LANCE PROGRAMMER/ANALYST. Brought to you by OnTrack Systems, Inc.

RSTS RESCUE SQUAD

We salvage all kinds of disasters:

• unreadable disks
• ruined UDFs and MFDs repaired
• immediate response
• telephone DIAL-UP
• on-site
• software tools
• custom recovery

Send Classified Ads to: RSTS Classified, P.O. Box 361, Fort Washington, PA 19034. $1.00 per word, first 12 words free with one year's subscription. [Be sure to include a phone number or address in your message.]

FREE LANCE RESCUE SQUAD

Brought to you by On Track Systems, Inc. and a well known (and read) Disk Directory expert. CALL 24 HOURS 215—542-7008
$200 RSTS/E*
WORD PROCESSOR
CBEDIT.BAS

Single Basic-Plus* program with
CRT input, window edit and file
save. Add, locate, change, replace,
delete, block move & copy, stan-
dard paragraph append, etc. VT*
series and Hazeltine terminal
drivers. Others easy to add.
Fully formatted output (margins,
justify, center, underscore,
headers, page numbers, etc.)
to terminal, disk or line printer.
Bi-directional driver for Diablo. We
use it daily for all our secretarial
work.

9-Track $200 RK05 $260 ppd
T. F. Hudgins & Assoc., Inc.
P.O. Box 10946 Houston TX77018
Woods Martin 713/682-3651

*TM Digital Equipment Corporation
NEWS RELEASES

Occasionally we are requested to print news that may be of interest to the RSTS community. We are happy to offer this feature to our readers. We reserve the right to print only as time and space permit. We cannot return photos or manuscripts. Send news releases to: RSTS NEWS RELEASE, P.O. Box 361, Fort Washington, PA 19034.

March 19, 1981

LOW COST SINGLE QUAD SIZE DISC CONTROLLER THAT INTERFACES UP TO TWO SHUGART, MEMOREX OR FUJITSU DISC DRIVES TO A DEC LSI-11

Garden Grove, California — A low cost, single quad size Disc Controller that interfaces DEC LSI-11, 11/2 or 11/23 microcomputers with two each Shugart SA4000, Fujitsu 2301 or 2302, and memorex 101 or 102 along with other hard disc drives having a Shugart SA4000 type interface, is now available from DLOG (Distributed Logic Corp.), Garden Grove, CA.

Designated the Model DQ401, the up-based controller emulates the DEC REV-11/RKOS disc subsystem and is compatible with DEC RT-11 & RSX-11 software. It occupies one card slot of a DEC or DEC compatible LSI-11 Q-Bus chassis, and interfaces to the drive(s) via a jumper selectable single or dual cable arrangement.

Features include data buffer for the elimination of data late errors on the Q-Bus, automatic on-board bootstrap and extended memory addressing to 256K bytes. In addition, there is an automatic self-test with indicator and data protect.

Price: $1,580, in small quantity.

Delivery: Stock to 30 days A.R.O.

DIRECT INQUIRIES TO: Mr. Les Alberts, Sales Manager, DLOG (Distributed Logic Corp.) 12800-G Garden Grove Blvd., Garden Grove, CA 92643. Phone: (714) 534-8950. NCC '81.

Booths 5007-5009.

DILOG (Distributed Logic Corp.) introduces an inexpensive disc subsystem and is compatible with DEC RT-11 and interfaces to the drive(s) via a jumper selectable single or dual cable arrangement.

DIRECT:TEC

...continued from page 38

DILOG (Distributed Logic Corp.) introduces an inexpensive disc subsystem and is compatible with DEC RT-11 and interfaces to the drive(s) via a jumper selectable single or dual cable arrangement.

DIRECT:TEC

...continued from page 38

DILOG (Distributed Logic Corp.) introduces an inexpensive disc subsystem and is compatible with DEC RT-11 and interfaces to the drive(s) via a jumper selectable single or dual cable arrangement.

DIRECT:TEC

...continued from page 38

DILOG (Distributed Logic Corp.) introduces an inexpensive disc subsystem and is compatible with DEC RT-11 and interfaces to the drive(s) via a jumper selectable single or dual cable arrangement.

DIRECT:TEC

...continued from page 38

DILOG (Distributed Logic Corp.) introduces an inexpensive disc subsystem and is compatible with DEC RT-11 and interfaces to the drive(s) via a jumper selectable single or dual cable arrangement.

DIRECT:TEC

...continued from page 38

DILOG (Distributed Logic Corp.) introduces an inexpensive disc subsystem and is compatible with DEC RT-11 and interfaces to the drive(s) via a jumper selectable single or dual cable arrangement.

DIRECT:TEC

...continued from page 38

DILOG (Distributed Logic Corp.) introduces an inexpensive disc subsystem and is compatible with DEC RT-11 and interfaces to the drive(s) via a jumper selectable single or dual cable arrangement.

DIRECT:TEC

...continued from page 38

DILOG (Distributed Logic Corp.) introduces an inexpensive disc subsystem and is compatible with DEC RT-11 and interfaces to the drive(s) via a jumper selectable single or dual cable arrangement.

DIRECT:TEC

...continued from page 38

DILOG (Distributed Logic Corp.) introduces an inexpensive disc subsystem and is compatible with DEC RT-11 and interfaces to the drive(s) via a jumper selectable single or dual cable arrangement.

DIRECT:TEC

...continued from page 38

DILOG (Distributed Logic Corp.) introduces an inexpensive disc subsystem and is compatible with DEC RT-11 and interfaces to the drive(s) via a jumper selectable single or dual cable arrangement.

DIRECT:TEC

...continued from page 38

DILOG (Distributed Logic Corp.) introduces an inexpensive disc subsystem and is compatible with DEC RT-11 and interfaces to the drive(s) via a jumper selectable single or dual cable arrangement.

DIRECT:TEC

...continued from page 38

DILOG (Distributed Logic Corp.) introduces an inexpensive disc subsystem and is compatible with DEC RT-11 and interfaces to the drive(s) via a jumper selectable single or dual cable arrangement.

DIRECT:TEC

...continued from page 38

DILOG (Distributed Logic Corp.) introduces an inexpensive disc subsystem and is compatible with DEC RT-11 and interfaces to the drive(s) via a jumper selectable single or dual cable arrangement.

DIRECT:TEC
recently completed merger "provides AMCOR with the necessary financial and human resources to take advantage of existing and new market opportunities in a much earlier time frame."

AMCOR, located at 1900 Plantside Drive, will continue to operate from Louisville. Aubrey will remain president and chief executive officer. Since 1970, the company has been in the minicomputer business providing application software and a comprehensive data base management system for Digital Equipment Corporation's PDP-11 series of computers.

According to Aubrey, the U.S. Navy uses the sophisticated system for management control on one of its ships. "A similar program also is being used by Litemaster Products Ltd., a firm located in Johannesburg, South Africa," he added, "and by Hitachi Metals Ltd. in White Plains, N.Y."

Other customers, Aubrey said, include Equitable Life Assurance Society of the United States and Cooper Industries in Texas.

AMCOR will become part of Kane's ARC Automation Group, Inc., whose member companies provide computer products and services to independent insurance agents, funeral homes and, most recently, have developed and marketed a family of microcomputer terminals for retail, service and commercial operations.

According to Dr. Robert Bower, Jr., president and chief executive officer of ARC Automation Group, "AMCOR gives us the software expertise which, when combined with our hardware and computer application experience, creates new market opportunities for the group."

ARC Automation Group is headquartered 90 miles north of Houston in Bryan-College Station, Texas.

Kane is a diversified international energy resources and financial services company with primary operations in oil and gas, coal and general contracting, and financial intermediary and specialized computer services.

March 9, 1981

NEW WORD-11 FILE SECURITY SYSTEM FOR DEC RSTS/E USERS

West Palm Beach, Florida — RAXCO Inc. announces the availability of a new software option designed to specifically protect confidential WORD-11 files. This new option prevents access to classified or confidential WORD-11 data by unauthorized personnel. Even privileged users may be excluded from data files secured by RABBIT-4 software. Coupled with normal security measures, RABBIT-4 will ensure file integrity while monitoring all file access attempts.

For more information contact: RAXCO, Inc., 3336 N. Flagler Drive, West Palm Beach, FL 33407. Telephone (305) 842-2115.

April 23, 1981

SS!’S ‘PEACE OF MIND’ PRINTER SYSTEM DESIGNED FOR ZERO DOWNTIME

Fort Lauderdale, Florida — The "Peace of Mind," a redundant printer system designed for users requiring zero downtime in printer function, has been announced by Southern Systems, Inc. (SSI) computer printer company.

Formally called the PS-10, the "Peace of Mind" consists of a primary printer and a lower speed back up printer and a switching mechanism.

The switching mechanism for the "Peace of Mind" can be connected with the computer and the two printers either with parallel or serial (synchronous or asynchronous) interfacing.

Cost of the "Peace of Mind" system is usually less than the cost of a single comparable printer from a prime computer vendor, explained James W. Rule, SSI vice president/marketing. "The cost-efficiency of the Peace of Mind is even more apparent since the redundancy factor guarantees zero downtime and is obviously totally dependable," said Rule.

Various combinations of speeds in the dual-printer systems are offered by Southern Systems.

"A user who needs a 1,500 lpm printer may want the 900 lpm printer as his back-up for the Peace of Mind system," explained Rule. "Other customers may require a 900 lpm band as the primary printer with a 200 lpm dot matrix or a 300 lpm based as the back-up. In each and every combination the cost is below that of a single printer from a computer vendor," said Rule.

Depending on the printer combination within the system, costs will range from about $4,000 to about $55,000.

April 10, 1981

FINAR INTRODUCES ENHANCED SOFTWARE AT ANNUAL USERS' MEETING

Denver, Colorado — Mr. Michael Hulme, Marketing Director at Finar Systems Ltd., announced the availability of FINAR version 5.05, and distributed tapes of the enhanced software to attendees of the Annual Users' Meeting held on April 9 - 10, 1981.

FINAR, the Financial Analysis and Reporting language, carries out budgeting, forecasting and modeling on DEC PDP-11 and VAX-11 computers. The new FINAR version 5.05 offers worksheet consolidation—a faster and more efficient technique to consolidate results, as well as new methods of data input, enhanced calculation features and improvements to the report generator.

New this year to the Users' Meeting was an Advanced Techniques Seminar with several in-depth presentations on the new worksheet consolidation feature, efficient model writing, simulation and "what-if?" analysis, and how to get the most out of FINAR and your computer.

The meeting concluded with discussions on new features to be included in FINAR version 6.0, and the informative user application presentations — this year made by an oil company that uses FINAR to forecast oil and gas prices in a fluctuating economy, a paper/pulp mill making long range profit plans, a CPA firm integrating FINAR with other systems, and a manufacturer of satellite communication systems that uses FINAR in a decentralized organization.

For further information contact: Michael Hulme, Finar Systems Ltd., 6000 E. Evans, Suite 2-300, Denver, CO 80222, (303) 758-7561.
Add a new dimension of speed and reliability to your minicomputer with economical, high-capacity BULK MEMORY from Dataram. The world leader in minicomputer-compatible disk emulation systems. Dataram's wide range of disk emulations — twice as many minicomputer interfaces as anyone else! — brings the proven performance of BULK MEMORY to your application requirement.

Dataram's BULK CORE and BULK SEMI systems operate at speeds which are orders of magnitude faster than the mechanical disks which they replace, and do it with the reliability inherent in all-electronic devices. What's more, BULK MEMORY provides up to 8.0 MB in a 15¾" chassis, and offers dual-port capability to enable BULK MEMORY to be shared by two host minicomputers.

If you have a minicomputer and are looking for a way to get more for your storage dollar, Dataram has a BULK CORE or BULK SEMI system ready to work for you. If your minicomputer is not listed below, tell us about it. We'd like to add your name to our growing list of BULK MEMORY users.

MEMORY FROM THE LEADER

DEC, LSI-11, and PDP are registered trademarks of Digital Equipment Corporation. Eclipse and Nova are registered trademarks of Data General Corporation.

DATARAM CORPORATION

Princeton Road
Cranbury, New Jersey 08512
Tel: 609-799-0071 TWX: 510-685-2542

<table>
<thead>
<tr>
<th></th>
<th>DEC PDP*11</th>
<th>DEC LSI-11*</th>
<th>DEC PDP-15</th>
<th>DATA GENERAL NOVA*</th>
<th>DATA GENERAL ECLIPSE*</th>
<th>ROLM 1602</th>
<th>PERKIN ELMER</th>
<th>MODCOMP</th>
<th>HONEYWELL 316 and 516</th>
</tr>
</thead>
<tbody>
<tr>
<td>BULK CORE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>BULK SEMI</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DUAL PORT</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Canada: Ahearn & Soper Ltd. 416-245-4848 • Finland: System OY. (80) 73 72 33 • France: YREL. (01) 95 81 42 •
Hungary/Poland/Romania: Unitronex Corporation, WARSAW 39 6218 • Italy: ESE s.r.l. 02-607 3626 • Netherlands: Technitron b.v. (020) 45 87 55 •
Sweden: M. Stenhardt AB. (08) 739 06 50 • Switzerland: ADDCOMP AG. 01-730 48 40 • United Kingdom: Sintrom Elifor Ltd. (0734) 8464 •
West Germany: O.E.M.-Elektronik GmbH. 07 11-78 62 47 • Yugoslavia: Institut Jozef Stefan. 263-261 • Australia/New Zealand: Anderson Digital Equipment. (03) 543-2077 •
India: Infosystems Private Limited. 79281 • Israel: Minix Computers & Systems Ltd. 03-296783 • Japan: Matsushita Electric Trading Co. Ltd. 06 (282) 5111 •
Hotwire your UNIBUS

ABLE deals a powerful data-communications hand

We've moved well into data communications and already have a fist full of cards that sell for less than the competition but do a lot more. They all will save you space, power, bus loading and money while giving better performance, reliability, flexibility, and convenience. Take a look at the facts, then decide for yourself. Along with our powerful communications package and world-wide product support we have a complete selection of cache buffer memories, Fastbus memories, DMA interfaces, UNIBUS repeaters and LSI Q-bus adaptors. Write for details. You'll find out why our customers consider us the leader among manufacturers of UNIBUS enhancements.

ABLE the computer experts

ABLE COMPUTER, 1751 Langley Avenue, Irvine, California 92714. (714) 979-7030. TWX 910-506-1729 ACT IRIN.
ABLE COMPUTER-EUROPE, 74/76 Northbrook Street, Newbury, Berkshire, England RG13 1AE. (0635) 32125. TELEX 848507 HJULPHG.
WORD-II. WORD-II is a complete word processing system. It's responsive. It's powerful. And it's sharable on up to fifty terminals while running concurrently with data processing.

WORD-II is talented, too. Designed to work on Digital's family of mini-computers, WORD-II has all the standard word processing functions. For more sophisticated requirements, WORD-II provides multiple dictionaries for spelling error detection. Automatic index and table of contents creation. Text search and replace. User-defined keys. User-controlled hyphenation. And automatic footnoting.

In addition to standard list processing, WORD-II offers fast sorting. Flexible selection. And extensive math functions.

And WORD-II has been proving itself for years. You'll find successful installations in small businesses, Fortune 500 companies, in universities and in banks—wherever Digital computers are in place.

Yet despite its sophistication, WORD-II is easy to learn and easy to use. It's extremely cost effective. And it's available on RSTS/E, RSX-11M and RSX-11M-PLUS.

Data Processing Design, Inc.