SPECIAL REPORT
Choosing complex PLDs and FPGAs
pg 74

EDN DIRECTORY
EDN's DSP-Chip Directory
pg 90
Extensive details about 22 DSP chips begin on
pg 100

TECHNOLOGY UPDATE
CAE tools for wireless systems
pg 39
News Breaks
pg 19
Product Updates
pg 57
Processor Updates
pg 65
Design Ideas
pg 143
Designing automotive subsystems? Here’s how to achieve global presence.

More and more, improving—or even maintaining—your position in the automotive market calls for some deft maneuvering on an around-the-world basis. And that’s precisely where Murata Erie can be a valuable ally.

You see, with us as your passive component source, you can count on complete and easily accessed support no matter where your manufacturing and marketing roads lead. Whether you’re making trip/navigation computers in Nürnberg, sensors in Seoul or emission controls in Canada.

And, more than worldwide manufacturing resources, we mean technical support as well. So whether you’re designing—or redesigning—an engine control system, CD player or cellular telephone, we’ll be there. And we’ll put nearly a half-century of technological expertise and leadership to work for you, plus all the advantages of Murata Erie’s 1.0 QRS (100% quality, reliability, service) program.

A final, important point. Because our component line is a massive one, from chip caps to piezoelectric gyroscope systems, it offers real opportunities to gain measurable economic ground while achieving vendor reduction goals.

Call or write for details: Murata Erie North America, Marketing Communications, 2200 Lake Park Drive, Smyrna, GA 30080; 1-800-831-9172. Because, when it comes to global presence, it’s best to travel with people who have it.
Wipers, collectors and screws can’t help you trim circuit adjustment costs.

Dale® Can.

Add trimmers to the list of ways Dale® can help keep your project under budget and on-time. We offer immediate interchangeability with models you’re using now. Ceramic, wire wound, military, industrial, commercial. Square, round, rectangular. Surface mount and through-hole. Discover how Dale trimmers can end your search for multiple suppliers. More than ever we’re your 1-stop source for resistive components — always ready to match your delivery schedule from factory or distributor stock. Call today.

MILITARY TRIMMERS from the Techno Division include broad MIL qualification to RT24, 26, 27, RTR24, RU24, 26 and RJR24, 26. Techno RU24 and RJR24 trimmers offer you 25 turns for precision adjusting, while the RU26 and RJR26 offer 22 turns. They have zero backlash and offer a monolithic clutch. In addition, Techno offers 1/4” and 5/32” multturn trimmers with a TCR of ±50 PPM/°C for precision applications. All Established Reliability trimmers meet the requirements of MIL-STD-202, Method 208. Contact Techno Division, Dale Electronics, Inc., 7803 Lemona Avenue, Van Nuys, California 91405-1139, Phone (818) 781-1642.

COMMERCIAL TRIMMERS include Surface mount. Thick film chips (2W) plus 19/32” (2W) and 1/4” (25W) square ceramic styles. Through-hole ceramic styles include: 9/32” (5W), 5/32” (5W), and 1/8” (5W) square ceramic. Rectangular: 19/32” (75W) wire wound. Ceramic trimmers are available in various sizes.

For more information contact Dale Electronics, Inc., 1155 West 23rd Street, Tempe, Arizona 85282-1883, Phone (602) 967-7874.

Circle No. 1
THE ONLY ATTACHED PROCESSOR WITH FOUR ON THE BOARD AND 2.5 GIGAFLOP PERFORMANCE.

Mercury’s MC860VS. The only attached processor that offers up to 32 Intel i860s in no more than 8 VME slots. So you get 80 Mflops to 2.5 Gflops of horsepower to handle demanding applications in defense signal processing and medical imaging. And all Mercury products can be configured in workstations and chassis systems to deliver scalable performance at a scalable price.

So if you’re building or buying a high performance computing solution, take full advantage of Mercury’s unparalleled investment in standards, innovative hardware, and software development environment. And get the most complete, flexible, high performance computing solutions available. If it’s time you moved into the fast lane, it’s time to call or write Mercury today for more information.
Now available, a large variety of tiny, ultra-rel high performance mixers to handle your applications from extra wideband, high isolation, low two-tone third-order IM, to very low +3dBm LO power.

Mini-Circuits' new LRMS-series Ultra-Rel' mixers are offered with a difference... unprecedented reliability. Units are manufactured with Ultra-Rel diodes, all-welded construction, metal stubs to all connections, and to 4.5 sigma performance repeatability. Each Ultra-Rel LRMS mixer can withstand strenuous shock and vibration, will perform over a -55°C to +100°C range, and is guaranteed for five years.

Aim for 4.5 sigma repeatability in your product designs by specifying Mini-Circuits' Ultra-Rel LRMS mixers, available for immediate delivery in tape-and-reel format (500 units, 16mm width) at prices from $6.25.

SPECIFICATIONS: all spec limits are 4.5 σ from mean

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq. Range</th>
<th>(MHz)</th>
<th>LO Conv. Loss</th>
<th>L-R lsol.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRMS-2L</td>
<td>800-1000 DC-200</td>
<td>6.6</td>
<td>24</td>
<td>6.95</td>
<td></td>
</tr>
<tr>
<td>LRMS-1</td>
<td>0.5-500 DC-500</td>
<td>6.4</td>
<td>45</td>
<td>6.25</td>
<td></td>
</tr>
<tr>
<td>LRMS-1W</td>
<td>2.0-750 DC-750</td>
<td>5.8</td>
<td>45</td>
<td>6.75</td>
<td></td>
</tr>
<tr>
<td>LRMS-2</td>
<td>5-1000 DC-1000</td>
<td>6.8</td>
<td>38</td>
<td>6.95</td>
<td></td>
</tr>
<tr>
<td>LRMS-2D</td>
<td>5-1000 DC-1000</td>
<td>6.8</td>
<td>40</td>
<td>7.25</td>
<td></td>
</tr>
<tr>
<td>LRMS-2U</td>
<td>10-1000 DC-1000</td>
<td>6.5</td>
<td>46</td>
<td>11.45</td>
<td></td>
</tr>
<tr>
<td>LRMS-5</td>
<td>5-1500 DC-1000</td>
<td>6.0</td>
<td>41</td>
<td>13.95</td>
<td></td>
</tr>
<tr>
<td>LRMS-11A</td>
<td>1400-1900 DC-500</td>
<td>7.0</td>
<td>25</td>
<td>16.95</td>
<td></td>
</tr>
<tr>
<td>LRMS-1LH</td>
<td>20-500 DC-500</td>
<td>5.8</td>
<td>47</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>LRMS-2LH</td>
<td>5-1000 DC-1000</td>
<td>6.6</td>
<td>40</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>LRMS-5LH</td>
<td>10-1500 DC-900</td>
<td>6.3</td>
<td>38</td>
<td>14.95</td>
<td></td>
</tr>
<tr>
<td>LRMS-1MH</td>
<td>20-500 DC-500</td>
<td>5.7</td>
<td>44</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>LRMS-2MH</td>
<td>5-1000 DC-1000</td>
<td>5.6</td>
<td>44</td>
<td>9.95</td>
<td></td>
</tr>
<tr>
<td>LRMS-5MH</td>
<td>10-1500 DC-500</td>
<td>5.8</td>
<td>46</td>
<td>15.95</td>
<td></td>
</tr>
<tr>
<td>LRMS-1H</td>
<td>20-500 DC-500</td>
<td>6.3</td>
<td>44</td>
<td>10.95</td>
<td></td>
</tr>
<tr>
<td>LRMS-5H</td>
<td>10-1500 DC-500</td>
<td>7.2</td>
<td>36</td>
<td>11.95</td>
<td></td>
</tr>
</tbody>
</table>

CIRCLE NO. 9
SPDT switches with built-in driver

ABSORPTIVE or REFLECTIVE dc to 5GHz

Truly incredible, superfast 3nsec GaAs SPDT reflective or absorptive switches with built-in driver, available in pc plug-in or SMA connector models, from only $14.95. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' latest innovative integrated components?

Check the outstanding performance of these units...high isolation, excellent return loss (even in the "off" state for absorptive models) and 3-sigma guaranteed unit-to-unit repeatability for insertion loss. These rugged devices operate over a -55° to +100°C span. Plug-in models are housed in a tiny plastic case and are available in tape-and-reel format (1500 units max, 24mm). All models are available for immediate delivery with a one-year guarantee.

SPECIFICATIONS

Absorptive SPDT

- **Frequency**
 - dc: 500-5000 MHz
 - 500-2000 MHz
 - 2000-5000 MHz
- **Insertion Loss (dB)**
 - 1.1
 - 1.4
 - 1.9
- **Isolation (dB)**
 - 42
 - 31
 - 20
- **1dB Compression (dBm)**
 - 18
 - 20
 - 22.5
- **Video Through**
 - 30
 - 30
 - 30
- **Switch Speed (nsec)**
 - 3
 - 3
 - 3
- **Price**
 - YSWA-2-50DR (pin) $14.95
 - ZYSWA-2-50DR (SMA) $59.95

Reflective SPDT

- **Frequency**
 - dc: 500-5000 MHz
 - 500-2000 MHz
 - 2000-5000 MHz
- **Insertion Loss (dB)**
 - 0.9
 - 1.3
 - 1.4
- **Isolation (dB)**
 - 50
 - 40
 - 28
- **1dB Compression (dBm)**
 - 20
 - 20
 - 24
- **Video Through**
 - 22
 - 22
 - 26
- **Switch Speed (nsec)**
 - 30
 - 30
 - 30
- **Price**
 - YSW-2-50DR (pin) $23.95
 - ZYSW-2-50DR (SMA) $69.95

Find new ways...setting higher standards

Distribution Centers: NORTH AMERICA 800-654-7949 • 417-335-5935 Fax 417-335-5945 • EUROPE 44-252-835094 Fax 44-252-837010

For detailed specs on all Mini-Circuits products refer to • THOMAS REGISTER Vol. 23 • MICROWAVES PRODUCT DIRECTORY • EEM • MINI-CIRCUITS' 740-pg HANDBOOK

4 • EDN September 17, 1992 CIRCLE NO. 16
Choosing complex PLDs and FPGAs

Design methodology, performance, and software tools should all influence you as you seek the right high-density PLD. But first you have to know the foundations of complex PLD and FPGA architectures.

—Anne Watson Swager, Technical Editor

EDN's DSP-chip directory

DSP chips have touched almost all areas of electronics. Now the DSP industry is making it easier for you to use these powerful devices. Complete systems in chip-set form are now available, as are good tools to develop DSP applications.—David Shear, Technical Editor

CAE tools for wireless systems:
System simulators meet wireless challenges

Designers of wireless RF and microwave systems can turn to specialized software tools to help them simulate complex systems efficiently.—Doug Conner, Technical Editor

Continued on page 7
EXTRA! CYPRESS STUNS WORLD WITH FIRST FLASH PLD.

Stop the presses! Once again, Cypress has the lead story in PLD technology for high-performance systems. Cypress is first on the world scene with 10 ns, Flash 22V10 devices. Electrically alterable 22V10s are your fastest route to risk-free inventory and ease of design. Cypress scoops the competition again!

Also newsworthy: This 22V10 is CMOS, needing just 90 mA max (commercial) and 100 mA (military applications), so it stays cool for reliable operation. Choose from DIP, PLCC and LCC packaging options.

Cypress’s Flash 22V10 is the latest member in a complete family of landmark PLD products with the widest variety of speeds, densities and architectures to suit your application. Read all about it—call the Cypress hotline for your free Flash sample certificate and data sheet today.

FREE FLASH SAMPLE HOTLINE: 1-800-858-1810*
Ask for dept C47.

*In Europe, fax your request to the above dept. at (02) 2-652-1504 or call (02) 2-652-0270. In Asia, fax to the above dept. at 1 (415) 963-4201. © 1992 Cypress Semiconductor, 3001 North First Street, San Jose, CA 95134. Phone 1 (408) 943-2600, Telex: 32102 CYPRZ SEMI UD, TWX: 910-997-0753.
Systems for EMI detection 57
Modular dc/dc converters 61
Uninterruptible power supplies 62

16-MHz RISC µP 65
8-bit µC for closed-caption TV 65

CMOS switches develop negative voltage 143
Hartley transform beats FFT for DSP µPs 143
VHDL “wait” statement inserts registers 144

Integrated Circuits. .. 151
Computers & Peripherals. 160
Components & Power Supplies. 169
Test & Measurement Instruments. 173
CAE & Software Development Tools. 176

Inside EDN. ... 9
News Breaks. ... 19
Editorial. ... 29
Career Opportunities. 186
EDN’s International Advertisers Index. 192
Objective:	Provide intelligent PCB design assistance on a PC platform.
Education:	Easy to learn, OSF/Motif™ style graphical user interface integrated across schematic capture, layout, autorouting. Toll free hotline support provided.
Personal Skills:	Proactive interface anticipates designer's next move and intelligently defaults to the logical command, saving thousands of keystrokes per design. User defined hot keys and macros multiply this power.
Experience:	Proven ability to design double-sided, multilayer, SMD technology boards. Comfortable with analog, digital, or mixed signals. Capacity for 3,000+ parts and 15,000+ connections.
Description:	Integrated schematic capture, layout, autorouting, manufacturing outputs. 5,000+ part library. Analog design functions include curved tracks, teardrop pads, copper hatching, copper pouring and more. Forward and back annotation. Automatic routines for placement, gate and pin swap, component rename, routing and more.
Associations:	CADSTAR Advanced Router. DOS-based, 100% completion router has gridless, rip-up and retry, shove aside technology. May be bundled with CADSTAR for unparalleled performance at a great price. CADSTAR is fully compatible with MAXI/PC and upwardly compatible with Racal-Redac's sophisticated, workstation-based EDA Expert Series.
References:	10,000+ satisfied design engineers worldwide.
Availability:	Available immediately.
If you’re designing wireless communications systems, you not only have to be an expert, you need help too. Communications is a hot area, and we’re seeing an increasing demand for engineers with experience designing wireless products. Today, those products go beyond cellular phones, from mundane garage-door openers to wireless office networks. Doug Conner takes a look at CAE tools that let designers simulate wireless systems from the beginning to the end of the system. Unfortunately, vendors differ on how they define beginning and end. Some tools help you design modulators and demodulators, and others easily handle the RF front ends of communications systems.

Specifically, Doug’s report looks at how you can use simulation tools to observe the effects of small changes in wireless systems. These are often tough problems to discover and solve. Doug says that engineers facing the challenge of designing sensitive wireless communications systems often don’t know what tools are available.

Engineers can use assistance, too, when trying to decide which type of complex programmable logic device (PLD) or field-programmable gate array (FPGA) to use. Anne Swager’s Special Report gives you a brief tutorial about what’s available and how to approach complex-PLD and FPGA design problems. Anne says that most designers are used to working with simple PLDs. However, the complex PLDs and FPGAs present new problems and require new ways of thinking. FPGAs are blocks of logic functions, but PLDs remain structured sets of sum-of-product blocks. It’s not as easy as it might seem to go from one to the other.

Anne Swager takes a close look at the differences between designing with FPGAs and complex PLDs.

Anne’s report tells you how to compare and select products. She also tells you about the design methods you can choose.

David Shear completes this issue’s line-up with our annual Digital Signal Processor Chip Directory. David has dug deeply through mounds of DSP-chip information to bring you the latest compilation of chip specs, facts, and figures.
AMD Introduces The World's First
386 Microprocessor With 3-Volt Technology.

Two standard dry-cell batteries. There's really nothing special about them. Aside from the fact that they can run a powerful, portable 386 computer for a full eight hours. Provided, of course, that portable is built around a low-voltage Am386™ microprocessor. Thanks to the low-voltage Am386 microprocessors, laptop, palmtop and notebook computer designs will become smaller, lighter, and more powerful than ever before. With battery life of up to eight hours or more. That's a full day's worth of 386 performance—the per-
A performance you need to run sophisticated applications like Windows™ 3.0.

And rest assured, the low-voltage Am386 microprocessors are proven compatible and comply fully with JEDEC standards for low-power, 3-volt computing. We can even supply you with the 3-volt EPROMs your systems will need. Other 3-volt system logic is also readily available.

For more information on the low-voltage Am386 microprocessors call AMD today at 1-800-222-9323. You’ll never look at dry-cell batteries the same way again.

Advanced Micro Devices
"We're Not Your Competition."
Whatever you're working on, please stop. You deserve to take some time off. And with any member of the AMD 29K™ Family of embedded RISC processors, you can take several months off your design cycle.

That's because 29K processors' simple, highly integrated designs will knock time-consuming steps off your schedule. Take the inexpensive, new Am29200™ microcontroller. With many features like I/O controls and serial ports included on-chip, it's the easiest to use embedded processor available. Adding memory requires no interface circuitry. It's as simple as playing "Connect the dots."

Memory interface throughout the rest of the family is fast and easy too. Each processor in the 29K Family integrates easily with low-cost PLDs or simple glue logic to minimize your circuitry needs.

You'll also save valuable time when you're expanding your product line. The entire 29K family is binary compatible. So you just deter-
mine the performance you need and select the appropriate chip—from the Am29200 to the high-end Am29050™ processor. There's no need to recompile your applications' software as you scale up or down the performance ladder.

And thanks to the 29K's RISC architecture, you can use inexpensive memory devices to lower your system costs and still deliver the high performance your customers demand.

For more information on the 29K embedded RISC family call today at 1-800-292-9263 Ext. 3. Then kick back and watch the AMD guys go to work.

Advanced Micro Devices

901 Thompson Place, P.O. Box 1453, Sunnyvale, CA 94088. © 1992 Advanced Micro Devices, Inc. 29K, Am29200, and Am29050 are trademarks of Advanced Micro Devices. All other brand or product names are trademarks or registered trademarks of their respective holders.
Compare Us To The F And You'll Have Second

PLICE antifuse elements combine small size and high reliability, giving you FPGAs with higher speed, lower cost, greater ease-of-design, and more capacity than any other.

Superior Performance.

The antifuse-based ACT 2, the most predictable FPGA available, incurs short delays in interconnecting logic functions, which means higher speeds to keep pace with your latest microprocessor.

Lower Cost.

PLICE antifuse technology results in smaller die sizes, saving you as much as 75% off the cost of the alternative solution.

Once You Witness The Performance Of Our ACT™ 2 FPGAs, You'll Know The Real Leader Is Actel.

If you plan to move to the superior capacity, flexibility and cost of FPGAs, you should know the facts. Compare us against the industry “leader.” You’ll find our ACT 2 FPGAs turn in some very impressive numbers indeed.

#1 in architecture. The ACT 2 family’s innovative PLICE antifuse technology provides the ideal programming and interconnect elements for high-density FPGAs. Our FPGAs offer superior reliability and design flexibility, and give you the most predictable FPGA performance available. And with more than 1 million FPGAs shipped, Actel has more experience manufacturing antifuse-based FPGAs than anyone. That’s experience you can count on.

#1 in speed. The fastest ACT 2 family member—the A1225—offers 2,500 gates of pure speed. With a 4 ns logic delay and system-level speeds up to 66MHz, ACT 2 helps you make the most of your design.

#1 in ease-of-use. With ACT 2, designs are easily captured with standard PLD tools like ABEL™ and PLDesigner-XL™ as well as with your favorite schematic capture program from Mentor Graphics, OrCAD, Valid Logic Systems and Viewlogic. And Actel’s Action Logic™ System rapidly converts captured designs into programmed Actel devices. For years, our 100% automatic placement and routing has simplified the design process. And it’s still faster and easier than any other solution.

#1 in affordability. Our FPGAs also provide the best price/performance available. Actel offers
PGA Market Leader, Thoughts About Who's #1.

Designing Mode Simple.
Actel devices' plentiful routing resources give you 85% gate utilization using 100% automatic placement and routing, letting you place and route a 4,000-gate design in our A1240 chip in only 30 minutes.

Greater Capacity.
With 8,000 gate-array equivalent gates, the A1280 has led the industry in capacity for over 2 years. And it's still the only high-density, high-performance FPGA available in volume production.

Catch Our Next Act.
We're building on this FPGA technology to set new performance levels with our upcoming ACT 3 FPGAs. Whichever ACT you catch, you'll get a long-term partner and the best performance in town.

much quicker time-to-market and complete control of the design process, as well as competitive FPGA prices. Which saves you both money and time.

And #1 in service and support. Customers can call our technical hotline and talk to a real person—not voicemail. Or customers can use our automatic Action FACTS system to fax themselves quick answers to their application questions.

We're building on our experience to bring you the most advanced products for any application, and we're committed to establishing a quality, long-term partnership with you for your future success.

Call 1-800-228-3532 for more information on our powerful family of FPGAs. And discover how far the real industry leader can take you.

The FPGA Design Guide

Broad Family With High Capacity

CIRCLE NO. 23
There are some dramatic advantages to our NEW, COMPLETE 60ns DRAM FAMILY.

Eliminating VRAMs and SRAMs is one of them.

At Samsung, we're not content to have brought the world its first 16-meg DRAM.

We're extending the gains we've made in this important segment of technology, by introducing a complete family of DRAMS at the highest speeds in use—60 nanoseconds.

These are speeds that will let designers of many 386 systems eliminate SRAM cache altogether. And for many high-end graphics OEMs, it will be possible to eliminate VRAMs.

Of course, one result of those things will be that you'll be able to lower the axe, so to speak, on unwanted costs.
But the advantages don’t end there. Reduced parts count will mean greater reliability, lower power consumption, and reduced assembly costs.

We offer the fast DRAM in 1Mb, 4Mb, and even 16Mb densities. Which not only puts us on the cutting edge. But will do the same for you.

For more information, please call 1-800-446-2760 or 1-408-954-7229 today. Or write to DRAM Marketing, Samsung Semiconductor Inc., 3655 No. First St., San Jose, CA 95135.

SAMSUNG
A Generation AHEAD.
Prepare yourself for HP's brightest LED yet.

HP's new AllInGaP lamps put all your applications in a whole new light.

Presenting Hewlett-Packard's most brilliant lighting innovation to date! These AllInGaP lamps are a full 5 to 10 times more luminous than any other GaP LED available—bright enough to be easily visible during any kind of daylight. Yet they don’t require a single mA of extra power. In fact, AllInGaP lamps deliver their high-efficiency, high-quality output over a range of drive currents. Making them ideal for all applications—from battery powered to automotive lighting and exterior message boards.

With a device lifetime of more than 100,000 hours, these new LEDs offer reliability that’s equally dazzling. And you’ll appreciate the flexibility of having these lamps in your choice of amber or reddish-orange.

Other LEDs pale by comparison.

AllInGaP lamps are the world’s best and the brightest LEDs available anywhere—just what you’d expect from HP, long established as a pace-setter in innovative LED technology, reliability, and premier worldwide service.

For a free sample of our AllInGaP lamps, just call 1 (800) 752-0900, ext. 3340 in the U.S. And get the details on the HP LEDs that far outshine the rest.

There is a better way.

*In Canada, call 1 (800) 387-3867, ext. 3340.
Analog ASIC gives choice of design basis

Designers of digital ASICs have long had a choice between gate-array, standard-cell, and full-custom designs, each offering a different tradeoff between circuit density and ease-of-design. Raytheon's Semiconductor Division is now giving analog designers a similar choice by adding a standard-cell library to its RPA160 BiCMOS analog tile-array family. Because the tile array and standard cells share the same process, designers can take advantage of the quick turnaround for the array, then migrate their design to standard cells as production levels warrant.

The npn and pnp transistors of the base process have a toggle frequency (f_t) of 4 and 1.5 GHz and a breakdown voltage of 13V. The resulting cells are also fast and include a 500-MHz buffer, a 70-MHz 8-bit DAC, and a 30-MHz ADC. The standard-cell library also includes digital cells, offering both CMOS and ECL logic. The company has CAD software for both PC and workstation platforms for the array and standard-cell library or will handle your design as a turnkey operation. NRE charges for standard-cell designs begin at $40,000, with prototype delivery in eight weeks. Raytheon Co, Mountain View, CA, (415) 968-9211, FAX (415) 969-8556.

Scalable processor board suits STD 32 Bus

Designs requiring high processing power for industrial applications can take advantage of Ziatech's ZT8911 Scalable Processor Board. The processor board accommodates performance options ranging from a 25-MHz 486SX to a 66-MHz 486DX2. In addition, the replaceable CPU module will also accommodate Intel's next-generation CPU when it becomes available. The board uses the 32-bit capability of the STD 32 Bus with data-transfer rates up to 32 Mbytes/sec.

The scalable processor board can function as the permanent master in multiprocessor systems, providing the bus-arbitration function for as many as six temporary masters in an STD 32 Star system. The board provides two interrupt controllers, two DMA controllers, two serial ports, a printer port, a real-time clock, an optional 64-kbyte second-level cache, and as much as 16 Mbytes of RAM. The processor board also has features for industrial applications such as watchdog timers, ac power-fail detect circuitry, timer/counters, and 24 lines of general-purpose digital I/O. The board occupies two card slots on the backplane. Single-unit price is $3500. Ziatech, San Luis Obispo, CA, (805) 541-0488, FAX (805) 541-5088.

120-MHz frequency generator costs $495

Four independent phase-locked-loop frequency sources on the GT310 let you generate frequencies from 360 kHz to 120 MHz. In addition, one of the four channels includes synthesis down to 0.0024 Hz, generating counted bursts, and precision pulse widths. All channels drive a 50Ω load with TTL-compatible levels. Frequency step size is less than 0.8% of output frequency. The PC/AT plug-in board comes with software for a virtual front panel, drivers, and library functions for Microsoft C or QuickBasic. Guide Technology, San Jose, CA, (408) 246-9905.

Add a solder mask to multilayer pc-board prototypes

When you need a prototype pc board fast, you can use a variety of pc-board prototyping systems to put one in your hands in less than one day. Unfortunately, you often have to give up important features you take for granted in a production pc board, such as multilayer designs with solder masks. Direct Imaging has now added dry-film solder-mask capability to their multilayer prototyping system, letting you create pc boards with solder masks that are as big as 11 x 14 in. and have 12 layers. The solder mask reduces bridging and electrical shorts when the pc board is soldered and provides an environmental barrier. The System Two Soldermask Station is $2995. Complete multilayer prototyping systems including the solder-mask station are less than $50,000. Direct Imaging, West Lebanon, NH, (603) 298-8383, FAX (603) 298-5257.

Software tests embedded systems

Texas Instruments' Scan Engine is a testability software package currently under development. The package will provide scan-based testing in embedded systems, eliminating external field-service test equipment. The software eliminates the test equipment because it can test anything that initiates and executes with boundary scan, such as built-in self-test, interconnect, functional, device, or logic cluster testing. The software lets you embed GO/NO GO tests and...
logging capabilities for batch test programs. The package is portable ANSI C source code that reads serial scan vectors from memory and applies those vectors to the unit under test with the end-user application. Designers receive the source code for the software so they can compile it on their target µP or µC. The source code is used for test application and response retrieval, response logging options, and portability to the embedded environment. User-definable parameters, such as the memory location of the test data, let you customize the test application to the target system. The licensed list price for the software package is $12,000. The company will charge a nominal royalty fee per unit shipped. Texas Instruments, Semiconductor Group, Dallas, TX, (214) 995-6611, ext 3990.

Data converter adds serial link for remote sensing

Many remote-sensing applications use an A/D converter at the sensor end and report data back to the host over a serial link. Now a single IC can handle all of those tasks. The ML2223 combines an A/D converter, S/H circuit, voltage reference, RS-232C UART, and baud-rate generator into one 16-pin plastic DIP. The device’s base A/D converter uses a self-calibrating algorithmic successive-approximation technique to provide 12 data bits with one sign bit for an input-voltage range of -5 to +5V. The device can provide data on command with a conversion time of 45.6 µsec, or send a continuous stream of data over the serial link. The UART will handle RS-232C data rates as great as 19.2 kbps and RS-422 data at rates of 200 kbps. Samples are available for $14.50 (1000), with full production scheduled for September. Contact Micro Linear, San Jose, CA, (408) 433-5200.

Port graphics applications to Sun platforms

If you want to port Silicon Graphics (SGI) applications to a Sun SPARCstation, you can use a $900 software package called Nth Portable GL to accomplish the task within a few days, instead of the months the job might otherwise require. The program provides such high porting speeds because it supports almost all of the 478 SIG Iris GL v4.0 calls and provides a font manager and mixed-windowing functions. The program uses Sun’s native XGL graphics protocol, so the ported application will work with every Sun graphics board. Nth Graphics, Austin, TX, (512) 832-1944, FAX (512) 832-5954.

Engineers work for education

The steady decline in mathematics and science achievement of elementary and secondary students has made it increasingly difficult for American corporations to compete in the world marketplace. To change this trend, engineering professionals are taking to the schools. Engineers for Education is a nonprofit association of 45 engineering professional societies with the objective of recruiting 100,000 engineers as volunteers to improve math and science education in elementary and secondary schools throughout the US. Volunteers will serve as an additional resource for schools’ math and science teachers—enhancing the caliber of education for our students. The group is establishing local coalitions that will work closely with individual schools and school boards to ensure that the programs respond effectively to the schools’ needs.

The group offers many of programs through which engineers can volunteer. Activities depend on the interests and abilities of the volunteer and the needs and desires of the principal and teachers in each local school. Specific assignments are mutually agreed to by all parties. Typical activities include conducting classroom demonstrations and presentations, participating in career days, sponsoring or leading science and technology clubs, arranging field trips, providing mentorship, tutoring individual students, and more.

Volunteers can choose from a variety of programs that cater to specific age groups. For fourth through sixth graders, the group sponsors three programs: “A World in Motion” is a partnership of professional engineers assisting elementary school teachers in motivating students and bringing excitement and relevance to physical science and mathematics. “MAS” is a collaborative program designed to increase interest and achievement in math and science. It was originally used in communities along the Texas-Mexico border but is being expanded nationally. “SKILL” is an after-school and summer program designed to stimulate interest and encourage children. SKILL volunteers work closely with members of the National Action Council for Minorities in Engineering Inc.

Patterned after after-school sports, “Mathcounts” is designed for seventh- and eighth-grade students. “Mathcounts” combines a “coaching” component at the school level with a series of competitions at local, state, and national levels. For high-school students (grades 9 to 12), volunteers can work for “TEAMS.” TEAMs gives students a chance to apply what they learn in math and science classes to real work situations in a national competition. Finally, “Science by Mail” teams up volunteer scientists with children as pen pals.

For more information about these programs or Engineers for Education, call the EFE hotline at (800) 489-0348. For more information on “Science by Mail,” call (617) 589-0437. Engineers for Education, 39 Old Ridgebury Rd, Danbury, CT 06817.
The New Dual '040 VME SBC:
Faster, More Efficient and Lower Cost
Than Any Multi-board Solution

Get on-board multiprocessing and an astounding 40 MIPS throughput, when you power your system with Synergy's new SV420 single-slot SBC. The SV420's dual-CPU design means you'll need fewer boards in your VME chassis, with no VMEbus bandwidth bottlenecks between the '040s, and system-wide cost saving of more than 40%.

And even if you don't need multiprocessing right now, the SV420 still puts you out front. Use the second '040 as a super-smart DMA controller. When combined with the SV420's 66 MByte/sec VME64® circuitry, nothing communicates faster over the VMEbus.

Add even more on-board power by selecting from Synergy's big list of high-performance, intelligent plug-on I/O modules – such as our latest Super-VSB module offering 40+ MB/sec over the VSB bus. Or choose another module, from a T1/E1 controller to a super-fast graphics engine, that plugs onto any Synergy SBC.

Better yet, just tell us what you need. We're the company you can talk to about your VME system design problems. You'll find that we listen and deliver (every Synergy I/O module on our list started as a customer request). We mean business when we say customer support is our most important mission.

So if you want to be out front in system performance, just be up front with Synergy. Call us today.

CIRCLE NO. 26

Synergy Microsystems, Inc.
170 Calle Magdalena, Encinitas, CA 92024
(619) 753-2191 FAX: 619-753-0903
Having difficulty locating RF or pulse transformers with low droop, fast risetime or a particular impedance ratio over a specified frequency range?... Mini-Circuits offers a solution.

Choose impedance ratios from 1:1 to 36:1, in connector, TO-, flatpack, surface-mount, or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55831 requirements*). Coaxial connector models are offered with 50 and 75 ohm impedance; BNC standard, other types on request.

Ultra-wideband response achieves low droop and fast risetime for pulse applications. Ratings up to 1000M ohms insulation resistance and up to 1000V dielectric voltage. For wide dynamic range applications involving up to 100mA primary current, use the T-H series. Fully detailed data appear in our 740-pg RF/IF Designer’s Handbook.

Need units in a hurry?... all models are covered by our exclusive one-week shipment guarantee.

Only from Mini-Circuits.
<table>
<thead>
<tr>
<th>MODEL NO</th>
<th>Q RATIO</th>
<th>FREQUENCY MHz</th>
<th>3dB MHz</th>
<th>2dB MHz</th>
<th>1dB MHz</th>
<th>Qty $</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-1</td>
<td>1</td>
<td>0.05-200</td>
<td>0.05-200</td>
<td>0.08-150</td>
<td>0.2-80</td>
<td>4.45</td>
</tr>
<tr>
<td>T1-3</td>
<td>1</td>
<td>0.015-300</td>
<td>0.015-300</td>
<td>0.021-150</td>
<td>0.03-50</td>
<td>6.95</td>
</tr>
<tr>
<td>T1-4</td>
<td>1</td>
<td>0.02-200</td>
<td>0.02-200</td>
<td>0.025-150</td>
<td>0.05-20</td>
<td>9.95</td>
</tr>
<tr>
<td>T1-5</td>
<td>1</td>
<td>0.03-300</td>
<td>0.03-300</td>
<td>0.045-200</td>
<td>0.1-100</td>
<td>12.95</td>
</tr>
<tr>
<td>T1-6</td>
<td>1</td>
<td>0.03-200</td>
<td>0.03-200</td>
<td>0.035-150</td>
<td>0.2-80</td>
<td>25.95</td>
</tr>
<tr>
<td>T1-7</td>
<td>1</td>
<td>0.03-300</td>
<td>0.03-300</td>
<td>0.045-200</td>
<td>0.1-100</td>
<td>30.95</td>
</tr>
<tr>
<td>T1-8</td>
<td>1</td>
<td>0.04-300</td>
<td>0.04-300</td>
<td>0.05-200</td>
<td>0.5-100</td>
<td>36.95</td>
</tr>
<tr>
<td>T1-9</td>
<td>1</td>
<td>0.05-300</td>
<td>0.05-300</td>
<td>0.06-200</td>
<td>1.0-100</td>
<td>36.95</td>
</tr>
<tr>
<td>TH</td>
<td>1</td>
<td>0.05-300</td>
<td>0.05-300</td>
<td>0.06-200</td>
<td>1.0-100</td>
<td>36.95</td>
</tr>
<tr>
<td>TMO</td>
<td>1</td>
<td>0.05-300</td>
<td>0.05-300</td>
<td>0.06-200</td>
<td>1.0-100</td>
<td>36.95</td>
</tr>
</tbody>
</table>

Notes:
- Denotes 75 ohm models
- For A and B configurations, typical amplitude unbalance:
 - 1 dB over 1 dB frequency range
 - 0.5 dB over entire frequency range
- For C and D configurations, typical phase unbalance:
 - 1° over 1 dB frequency range
 - 5° over entire frequency range

Case styles:
- TH, case W.B. X 65 bent lead version
- NM01 bent lead version
- NEW TC SURFACE MOUNT MODELS from 1 MHz to 1500 MHz

Price: $1.95

Formers (3KHz-1500MHz)

CIRCLE NO. 27

EDN September 17, 1992 • 23

F 72 REV D
We've just tested the performance of our new i960 CF processor.

Make no mistake. This is no middle-of-the-road processor. It's our new superscalar i960" CF chip. And it delivers blistering speed to your high-end printing, imaging, communications and networking applications. Simply put, it outruns every 32-bit embedded processor on the market—and we have over 25 benchmarks to prove it.

You see, only our i960 RISC architecture brings superscalar processing with multiple operations per clock to embedded applications. Our new i960 CF processor is highly integrated with optimized data and instruction caches for throughput up to
twice that of our i960 CA chip. Which makes it the most advanced technology available for embedded applications.

If you’re already using our i960 CA processor, you can quickly shift up to higher performance with full code and pin compatibility. And, of course, we offer a comprehensive array of Solutions960 development tools to further speed up your design process.

So step on it. Call 800-548-4725 and ask for literature packet A9A51 for complete benchmarks. And learn what your applications can do with a faster engine.

intel
The MACH™ Family From AMD:
The Fastest, Most Predictable High Density PLDs Available Today.

Oops! You're a couple of nanoseconds shy this time, and it's going to hurt. Perhaps next time you'll choose a more predictable vehicle. And the most predictable high speed, high-density PLDs available are the MACH family from AMD.

Only the MACH Family offers you worst case delays of 15ns* or less. Because MACH parts are essentially PAL® devices, just like the kind you already know. Not some hybrid PLD/FPGA, where you don't know how it performs — until it's too late. So you don't have to guess your delays or clock speeds, you just read them right off our datasheet.

But they're not just ordinary

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Equiv. Gates</th>
<th>Macro Cells</th>
<th>Max. Delay</th>
<th>System Speed</th>
<th>IO Pins</th>
<th>Hand-Wired Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACH 110</td>
<td>900</td>
<td>32</td>
<td>17ns</td>
<td>60.7 MHz</td>
<td>44</td>
<td>MASC 110</td>
</tr>
<tr>
<td>MACH 210</td>
<td>1800</td>
<td>64</td>
<td>17ns</td>
<td>60.7 MHz</td>
<td>44</td>
<td>MASC 210</td>
</tr>
<tr>
<td>MACH 120</td>
<td>1900</td>
<td>48</td>
<td>15ns</td>
<td>50 MHz</td>
<td>68</td>
<td>MASC 120</td>
</tr>
<tr>
<td>MACH 220</td>
<td>2400</td>
<td>96</td>
<td>15ns</td>
<td>50 MHz</td>
<td>68</td>
<td>MASC 220</td>
</tr>
<tr>
<td>MACH 130</td>
<td>1800</td>
<td>64</td>
<td>15ns</td>
<td>50 MHz</td>
<td>84</td>
<td>MASC 130</td>
</tr>
<tr>
<td>MACH 230</td>
<td>3600</td>
<td>118</td>
<td>15ns</td>
<td>50 MHz</td>
<td>84</td>
<td>MASC 230</td>
</tr>
</tbody>
</table>

*In applications with a full 16 product terms. Every MACH part is specified using real-life conditions with all outputs switching.
PAL devices. They're bigger and better, with densities ranging from 900 to 3600 gates, all in our submicron CMOS technology.

Nor will you face unpredictable delays when you order. Because the entire MACH family is now shipping in volume.

Working with them is equally predictable. You don't have to learn any new techniques, just use the software and test equipment you already know. Like ABEL, CUPL, OrCad, and others. Not to mention the software and support from over 20 FusionPLD vendors — all prepared to bring your products to market on time.

And each MACH part can migrate easily to a pin-compatible, hard-wired MASC™ counterpart for high volume. So you can get the volume you need, without redesign, NRE, or unforeseen delays.

So call AMD today at 1-800-222-9323. And let the MACH family make your design cycle a whole heck of a lot safer.
OrCAD's Schematic Design Tools is the most popular electronic design automation product in the world. Designed by engineers for engineers, its "intelligent" interface and power features are a favorite for electronic designers in huge manufacturing companies and small job shops alike.

Schematic Design tools offers incredible value in a single package: **30+ industry netlist formats** (or write your own); support for hundreds of displays, printers and plotters; the innovative ESP framework, which allows the user to seamlessly transfer information between OrCAD products and many third party products.

In the 60+ libraries are IEEE, TTL, ECL, CMOS symbols and much more. In fact, Schematic Design Tools has over **20,000 unique library parts**. Parts may be rotated, mirrored, converted to DeMorgan equivalent with the press of a single key.

Features and enhancements:
- Virtually unlimited design size
- Virtually unlimited netlisting capacity
- Faster netlisting due to improved memory management and 386/486 optimization
- Compatible with all OrCAD products including OrCAD PCB II, Programmable Logic Design Tools 386+, and Digital Simulation Tools
- Virtually unlimited graphic part size
- All existing SDT designs and libraries may be easily translated into Schematic Design Tools 386+ format.
- Schematic Design Tools 386+ is compatible with nearly every known printed circuit board, programmable logic and FPGA layout system.

Introducing Schematic Design Tools 386+

Designed specifically for 386/486 based PCs.

A true protected-mode product using 32 bit addressing and data structures for maximum performance on today’s faster PCs.

Call today for information including a FREE demonstration disk.
(503) 690-9881

OrCAD®

The Better Solution
3175 N.W. Aloleck Drive • Hillsboro, OR 97124 USA
(503) 690-9881 • Fax (503) 690-9891

CIRCLE NO. 30
We listen

We’re pleased to listen to what readers tell us. Even when we may not like what you have to say, we listen to your comments, criticisms, and ideas. We appreciate your writing, phoning, and keeping in touch. Even if you simply print a quick note on a bingo card, we read it.

As part of our continuing program to improve EDN, we’ve been listening closely to what you have been telling us about your needs for information. You’ve said many times that products and technology are important, followed by information about career planning, education, and professional issues. So, starting in October, you’ll see more of an emphasis on those topics in our companion tabloid edition. Also, to dispel any confusion, both our magazine and our tabloid will simply carry the EDN logo, but you’ll see the subheading, “Products & Careers” on the tabloid. What you’ll see and read isn’t a radical shift for us or for you—we’ve been covering products, technology, and careers since we started tabloid editions several years ago.

You’ll also see a new emphasis on direct communications between you and our editors. We’ll routinely ask your opinions on pressing technical and professional issues. We’ll also ask you to tell us which products you like and which ones you don’t. And we’ll want to know which companies you would like to work for and which ones you wouldn’t. You’ll see your responses in articles that feature poll results and comments from many readers. Numerous articles will ask for reader feedback. In addition to your opinions, EDN Products & Careers will bring you the faces and the stories of your colleagues in engineering and management.

Besides our regular and new career information we’ll also run product-preference polls that let you tell us what you think about products. We’ll publish the results with no holds barred. If you and your colleagues pan a product, we’ll let you know. All too often, publications become cheering sections for advertisers. Not in EDN. To help you find the products you need, we’ve aligned the product classifications we use in EDN Magazine and in our sister Products & Careers tabloid.

Reading any publication should be interesting and enjoyable. We’re adding several new columnists, and you’ll get their biased and unbiased opinions on everything from the latest products and technologies, to the best engineering bookstores, to the neatest high-tech hangouts, museums, and other places you want to know about. Columns will cover technical topics from analog circuit design to power-supply design, too. Also, if you’ve got a puzzle that will stump your colleagues, send it in.

We’re pleased that you’ve been telling us what you think of EDN. I’m sure you’ll be pleased with the Products & Careers tabloid edition of EDN you’ll receive in October. After you read a few issues of EDN Products & Careers, let us know what you think. We’ll be listening.

JD

Send me your comments via fax at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241 300/1200/2400, 8,N,1; on 9600-bps modems, try (617) 558-4580, 4582, or 4398.
In fact, National is the only silicon supplier to offer solutions across all three major networking standards: Ethernet, Token Ring, and FDDI. We know the market demands improved connectivity, performance, quality, and network management. And at National Semiconductor, we’re providing market-driven mixed analog + digital silicon solutions to make all this a reality. Our first ETHERNET silicon helped foster the worldwide acceptance of LANs. In fact, well over 13 million Ethernet adapter cards have been designed using National’s silicon — more than all other suppliers combined. National’s ST-NIC™ was the first single-chip 10BASE-T controller to put 10Mbps Ethernet on standard unshielded twisted pair wire. And our newest 16- and 32-bit solutions are making the first “Network Ready” PCs, MACs and peripherals a reality. National is also developing solutions to simplify the role of NETWORK MANAGEMENT. Our Product of the Year Award-winning RIC™ + SONIC™ chipset is the first to fully support the IEEE 802.3 mandatory and optional repeater management requirements. We’re
also creating silicon solutions to ensure full interoperability of MIXED MEDIA and multiple protocol environments and to deliver new desktop services and applications. We’ve joined efforts with IBM, the leader in Token-Ring technology, to make it easier for your customers to seamlessly connect Ethernet and TOKEN-RING protocols. And we recently introduced TROPIC™, the industry’s first fully-integrated single-chip Token-Ring controller. That’s just the first step in a joint IBM-National relationship that will deliver new levels of flexibility to the world of networking.

STANDARD.

National is also providing new levels of performance with breakthroughs like 100BASE-T™ technology and our upcoming 2-chip FDDI solution. 100BASE-T is the first silicon solution proposed for FDDI across twisted pair copper wire. These solutions will drive affordable FDDI performance to the desktop. We’re supplying proven “National Standard Silicon” today. And together we’re SETTING THE STANDARDS that will take you where networks are going in the future. For more information, give National a call at 1-800-NAT-SEMI (Ext 191). We’ll show you why no one knows networking like National Semiconductor.
NEC offers the industry's broadest line of high-speed memories.

Memory access is as critical as processing speed in the design of a successful system. For memories fast enough to run with your leading-edge processor, come to NEC. We'll help you select the optimum match for your processor and system parameters from the industry's broadest line of high-speed memories.

NEC memories combine fast-access with high-density.

- Fast SRAM
 - 1M 15ns x8, x9, x16, x18
 - 20ns x1, x4
 - 4M 20ns x1, x4, x8
- DRAM
 - 4M 60ns x1, x4
 - 70ns x8, x9, x16, x18
 - 16M 60ns x1, x4
- VRAM
 - 2M 70ns x8
- SRAM
 - 256K 55ns x8
 - 1M 70ns x8

NEC is the front-runner in memory design because we give you more speed and more choice, including low-voltage and thin-package options. For memories fast enough to keep pace with the future, call NEC today.

From the leader in memory technology
FACE IT. WITH TODAY’S FASTER SYSTEMS, YOU’VE GOT A
And that's exactly why we built the TDS 820. The digital oscilloscope that's accurate to within 2 ps and provides time resolution in femtoseconds. In fact, at 0.40 ps with a 6 GHz bandwidth, now even the narrowest timing margin is nothing to be afraid of. Combine that with the intuitive TDS user interface, and applications like device characterization require nothing more than the push of a button. Better still, there is another aspect of the TDS 820 that, upon comparison with any so-called competitive scope, will ease your toughest margin of all: The price tag. TALK TO TEK/1-800-426-2200 EXT. TDS8
With Four Times The Performance Of The Competition, Nobody Else In The Field Is Even In The Running.

Our innovative controllers keep you on the fast track of communications.

With our advanced 8-channel Enhanced Serial Communication Controller—the ESCC8 (SAB82538)—Siemens demonstrates once again why we lead the pack in communication IC technology.

The World's First 8-Channel Multi-Protocol Data IC.

The ESCC8 is the latest in a long line of advanced communications controllers which have made us the industry leaders. Like the HSCX (SAB82525) for telecommunications and the ESCC2 (SAB82532), the first 2-Mbit asynchronous multi-protocol communications controller.

The ESCC8 offers a superior price/performance solution for your communications applications. Compared to the standard 2-channel devices, the ESCC8 provides four times the data throughput, and the fastest speeds in the industry—up to 10 Mbit/sec synchronous and 2 Mbit/sec asynchronous. Which lets you replace four 2-channel devices with one ESCC8, for substantial savings in time, boardspace, and development costs.

The ESCC8 also supports a wide range of protocol options—including X.25, LAPB, ISDN, LAPD, HDLC, SDLC, and both ASYNC and BISYNC—plus easy adaptability to either Intel® or Motorola® microprocessors through the use of a 16-bit data bus interface. For fast, reliable and accurate multi-protocolling.

A New Breed Of Performance ICs.

With 16- or 32-bit CRC handling and 28 programmable universal I/Os, the ESCC8 gives you superior performance in a communications controller. And only the ESCC8 offers a collision detect resolution scheme which provides multiple masters on one bus to prioritize data instructions, plus 64-byte FIFOs per channel for increased storage capabilities.

And Siemens continues to hold a leadership position throughout the rest of the industry, with innovations like the DSP-based ARCOFI-SP, the world's most advanced speakerphone IC for digital terminals. As well as advancements in CMOS echo cancellation technology which have made us the front-runner in single-chip ISDN U-interface transceivers.

For an ESCC8/ESCC2 evaluation kit, or more information on our full line of innovative communications ICs, call 800-456-9229. And put yourself on the fast track of communications.

Ask for literature package M12A014.

Siemens World Wise, Market Smart.
Designers of wireless RF and microwave systems can turn to specialized software tools to help them simulate complex systems efficiently.

CAE TOOLS FOR WIRELESS SYSTEMS

System simulators meet wireless challenges

DOUG CONNER, Technical Editor

Simulating wireless systems requires tools that have the flexibility to simulate systems at a rough block-diagram level, yet can also integrate the results of circuit-level simulations. Furthermore, to be useful, a system simulation must run quickly.

Wireless systems are often complex. The complexity stems not just from the demands of high-frequency analog design of transmitters and receivers. Their complexity is due in part to the fact that wireless systems operate within the RF-to-microwave frequency range where there is great pressure from industry and the government to make efficient use of scarce spectrum. The need to preserve spectrum encourages the use of ever more complex communication techniques to squeeze as many channels as possible into a given bandwidth.

Wireless-system designers also face challenges common to other electronic products. Many wireless systems require portability. The lighter, smaller, and less power consuming, the better. Long battery life is important, but even if great strides are made in the energy density of batteries, most portable systems must remain low-power to minimize the exposure of humans to RF and microwave energy. Efficiency is key. Even if you have a wireless LAN that can plug into the wall for power, you want an efficient system to minimize the RF energy in your office.

The unknown environment between transmitter and receiver adds additional difficulties to wireless systems. You don't need someone actively trying to jam your transmissions, a consideration in military applications, to have transmission problems. Multipath signals caused by reflections from terrain or buildings can impair the signal and degrade system performance. You can evaluate the effects of these transmission problems using simulation with appropriate models for the signal impairments.

To design a wireless system that meets a specification, you need to look at all the function blocks working together to really know if you've designed a suitable system. You can't just throw...
CAE TOOLS FOR WIRELESS SYSTEMS

together a simple prototype for RF and microwave work as you might with low-speed analog or digital designs. Simulation or an expensive prototype are your two choices.

If you choose to enlist the aid of simulation during the design process, then you need to focus on the three fundamentals of simulation—models, stimulus, and measurements.

The right model for the job

When you first start a design and are working at the proposal or preliminary-design stage, you may not have specific hardware and detailed models available. You’ll often be designing and simulating with generic building blocks for amplifiers, mixers, filters, and whatever function blocks your system requires. These generic building blocks are often modeled with idealized functions.

The preliminary-design stage is where you assess different ways of meeting the system requirements. Complexity and higher performance usually must be traded off against cost considerations.

As the system design begins to stabilize, you want more detailed information out of the simulation, which means you need to start using more refined models. At this point in the design you may still be using functional blocks, but you are modeling the nonideal aspects of those blocks more accurately. Eventually, you may start simulating the system with specific components at the circuit level. If the simulator you are using provides a way to mix high-level functional blocks with circuit-level simulation, you’ll be able to make the transition smoothly.

Simulation results are very dependent on how well the models represent the real circuit. With any simulator you’ll hope to obtain a library that includes most, or ideally all, of the models you’ll need for your designs. Library models are typically made up from combinations of data-sheet information, measurements of actual products, and theoretically derived data. For models of system blocks or circuit elements that aren’t available in a library, you’ll have to create the models or obtain them from a company that provides that service.

You can often create components models from data-sheet information, as long as the simulator can use models based on S-parameter data or other readily available data. Another way to create models is to characterize the circuit element with a network analyzer or other test instruments to obtain the necessary data.

Special function blocks that let you easily simulate some of the more complex modulation and demodulation techniques can save you considerable time. For example, function blocks that perform the π/4 DQPSK (differential quadrature phase shift keying) modulation and demodulation will make it easier to create a simulation of a system using that communication technique than having to create your own function blocks. The trend toward ever more complex communication standards will make the

Fig 1—The block diagram shows the IS-54 digital cellular communication system simulated using EEsof’s Omnisys simulator.
availability of these specialized modulation and demodulation function blocks even more of an asset.

As your simulation models become more detailed, especially if you start simulating part or all of a design at the circuit-level, simulation times will increase. Different types of simulators not only provide different results, they also vary in the time required to simulate a given circuit.

Linear simulators typically run the fastest. Linear simulation is useful for some parts of systems, but it isn't adequate for general-purpose system simulation. The major drawbacks to linear simulation are the inability to simulate systems through frequency translation devices such as mixers, and the obvious lack of nonlinear results.

Time-domain simulation methods, such as Spice, can provide nonlinear analysis and can also simulate system transients. Some versions of Spice have extensions to better suit them to RF and microwave applications, especially for circuit-level simulations. Simulating a 1-GHz signal requires extremely small (subnanosecond) time increments in the simulation, yet the modulating signal may be in the tens of kilohertz. To simulate the signal for several milliseconds will take many thousands of time increments, making simulation relatively slow.

Spice analyzes all circuit elements in the time domain, whether they

Fig 2—The schematic shows the 2-stage power amplifier module used in the RF upconverter. The inductor indicated is varied in the simulation to determine the effect of changing the bond lead length.

Fig 3—The figure shows the layout of the substrate for the 2-stage power amplifier. Ground symbols are shown for those elements that have via to the ground plane.
CAE TOOLS FOR WIRELESS SYSTEMS

are linear or nonlinear. Assuming you use accurate models, Spice can accurately simulate highly nonlinear systems. When you simulate linear systems, Spice will also give accurate results, but the simulation will take more time than a simulator that assumes the system is linear.

Harmonic-balance simulation

Harmonic-balance simulation takes the middle ground, using frequency-domain simulation of linear elements and time-domain simulation of nonlinear elements. The method assumes that for a given sinusoidal excitation of a nonlinear circuit, a steady-state solution exists that can be approximated as a finite trigonometric series.

Many RF and microwave circuits have mostly linear elements, primarily passive components, and only a few nonlinear components such as diodes and transistors. If the steady-state response to a sinusoidal input is what you need, then these mildly nonlinear systems can be simulated accurately and much faster than Spice using harmonic balance.

Another approach to simulating complex circuits is a recently announced (December 1992 release) simulator from Hewlett-Packard called HP Impulse. The simulator incorporates frequency-domain components into a time-domain simulator using a technique that the company calls dynamic convolution. Dynamic convolution converts the frequency response of each frequency-domain component into a finite-impulse response. The incoming signal is convolved with the finite-impulse response to obtain the time-domain response. If there are no frequency-domain components, the simulation is very similar to Spice.

System simulators such as Omnisys from EEsof and Success from Compact operate in the frequency domain. Such simulators cannot simulate system transients, although they can simulate nonlinear elements. Also important is the fact that they are multitone simulators, allowing simultaneous analysis of 64,000 tones in the case of Omnisys.

Before you can put a simulator to work simulating a system, you need to create the system stimulus.

Fig 4—Simulation results of the 2-stage power amplifier show the reduction in gain and power added efficiency with the increased inductance.

Fig 5—(a) shows the upconverted and amplified spectrum for the circuit with 0.3 nH of inductance and (b) shows the same plot for the circuit with 0.7 nH of inductance.
Designing a signal processing system can be a bear of a problem—immense, mean, and unforgiving. Engineers grappling with conventional analog or digital technologies face risk and unpredictability at every turn, with no guarantee of success. Designers invest months of development time in a brutal design process that's as lengthy as it is frustrating. Productivity and time to market are devoured in the struggle!

SPROC Technology Tames The Task

At the core of STAR Semiconductor's unique signal processing solution is the SPROC™ chip, the first-ever programmable signal processor using the “Sketch and Realize”™ design approach. With a single SPROC chip and a SPROC!ab development system, signal processing becomes a tame task.

Why wrestle with circuit breadboards crawling with sensitive analog components? Or agonize over line after line of assembly code? One SPROC chip integrates the functionality of hundreds of analog and passive components to cut system costs. And SPROC!ab employs system-level graphical programming so you can capture designs as signal flow block diagrams. You gain all the benefits of a digital solution—*without writing software!* Stop laboring with trial-and-error debug methods, cumbersome logic analyzers, or software simulators to debug a design! Engineers using SPROC technology download designs **directly** onto actual silicon and interactively debug systems as they execute in **real time**! Using the SPROC chip's unique built-in probe feature, you can easily modify design specifications to tune system performance during execution.

With SPROC technology, engineers focus on designing to create better products in less time. If you can't bear to see your productivity mauled by the problems of signal processing design, call STAR Semiconductor at **908/647-9400**. We'll send you a brochure and demo disk telling how to tame your next signal processing project.

SPROC Users Slash Development Time

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>PREVIOUS TECHNOLOGY</th>
<th>PREVIOUS DEV. CYCLE</th>
<th>SPROC DEV. CYCLE</th>
<th>SAVINGS (1st YEAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure FSK modem</td>
<td>analog</td>
<td>6 months</td>
<td>3 weeks</td>
<td>$50,000†</td>
</tr>
<tr>
<td>Adaptive noise canceler</td>
<td>DSP</td>
<td>6 months</td>
<td>1 week</td>
<td>$57,500*</td>
</tr>
<tr>
<td>Power supply controller</td>
<td>analog</td>
<td>6 months</td>
<td>1 day</td>
<td>$60,000*</td>
</tr>
<tr>
<td>Closed-loop vibration controller</td>
<td>analog</td>
<td>3 months</td>
<td>2 weeks</td>
<td>$240,000†</td>
</tr>
</tbody>
</table>

†Total system savings including project overhead, engineering resource, and system hardware costs.

*Estimated savings is engineering resource based on cost of $10,000 per man month.

STAR Semiconductor Corporation
25 Independence Boulevard, Warren, NJ 07059
Telephone: (908) 647-9400 FAX: (908) 647-4755

STAR Semiconductor
The Signal Processing Company

CIRCLE NO. 36

50MHz SPROC Now Available!
Depending on the type of system you are simulating and where you choose to make the system boundaries, you may be using analog or digital inputs. For digital data transmission, you'll often use pseudorandom bit sequences.

The objective of any simulation is to see how the system performs. You can evaluate system performance easiest if you can get output data in a format that is most useful for you. Standard plots such as power vs frequency, voltage vs time, or frequency vs time are commonly available. Eye and constellation diagrams are information that you may have available from test equipment and may also be valuable during simulation too.

For digital transmissions, the bit-error rate may be the most informative overall measure of a system's performance. If the bit-error rate is poor, you'll need other information to diagnose where the problem lies in the system. Budget analysis methods that look at the contribution of each component or system block and compare them to the total are helpful.

DSP methods are having a large impact on wireless communication systems too. Methods that attempt to extract data from a noisy background may be treated as a post processing function on some simulators without DSP function blocks. For these simulators, it's up to you to develop the DSP software algorithm. A more direct approach is to use a simulator that is capable of simulating wireless systems and has DSP function blocks in the simulator.

For example, the Signal Processing Worksystem from Comdisco provides more than 500 system blocks, including many for DSP functions that let you simulate wireless systems. Although the software is capable of simulating complete wireless systems with extensive DSP ability, it concentrates on the baseband signal, the lower frequency signal before modulation, and the lower frequency signal after the demodulation. If you want to simulate the analog details of an RF system between the modulator and demodulator, you'll typically need additional simulation tools, perhaps a circuit-level simulator.

Optimizing for manufacturing

After you've created a satisfactory system design, you can get more utility out of a system simulator that helps you look at manufacturing optimization and yield. By simulating typical component variations, often using Monte Carlo simulation runs, you can see how component variations will affect your design.

Manufacturing optimization methods, such as design centering, help you make sure to choose the
DSPs don't come any better than Motorola's high-performance Military 96002. It's our premier 96-bit floating point digital signal processor, ideally suited for processor intensive applications such as radar and communications.

Available NOW is this single-chip, dual-port, low-power HCMOS general purpose IEEE DSP, screened in accordance with MIL-STD-883. The SMD version is slated for introduction in fourth quarter 1992.

Ada Supported
Motorola understands the unique demands placed upon Military systems and works closely with software vendors to ensure that its products are fully supported.

Available NOW in the "Pin Grid Array" (PGA) and "Ceramic Leaded Chip Carrier" (CLCC) is the Military 56001 HCMOS, low power, general purpose DSP in full MIL-883 and SMD versions. For price and delivery information and Brochure #BR912/D, contact your local sales office.

For more information on the 96002, order our DSP Brochure #BR1402/D by calling toll-free 1-800-441-2447. Or complete and return the coupon below to Motorola, P.O. Box 20912, Phoenix, AZ 85036.

To: Motorola Semiconductor Products, Inc., P.O. Box 20912, Phoenix, AZ 85036
Please send me Motorola's DSP Brochure # BR1402/D.

Name
Title
Company
Address
City State Zip
Call Me ()
correct nominal component value to achieve the best system performance with component variation. When trying to minimize the cost of a system while achieving some minimum performance level for all systems, manufacturing optimization methods help you know which components to spend money on for tighter tolerances and when you can save money on loose tolerance components.

Simulating designs
An example best demonstrates the value of a system simulation tool for a wireless system. The example shown here is a cellular radio using the IS-54 digital cellular communications standard for North America. The system uses the $\pi/4$ DQPSK modulation technique to transmit data at 48.6 kbps. Radio systems designed to this standard are just now starting to appear.

The simulation uses EEsof's Omnisys system simulator for everything except the power amplifier in the upconverter section is modeled using the company's $29,000 J-Omega RF circuit-level simulator. Fig 1 shows the block diagram of the system. The system simulator is used in this example as a way to examine how a circuit-level design change in a power amplifier module affects the whole system.

The 2-stage power-amplifier schematic is shown in Fig 2 and layout of the power-amplifier module is shown in Fig 3. The layout shows schematic ground symbols for those elements that have vias to the ground plane. Two simulation runs look at the effect of changing the bond-lead inductance on the source leg of the output-stage GaAs FET.

<table>
<thead>
<tr>
<th>Table 1—System-level simulators for wireless systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td>Comdisco Systems</td>
</tr>
<tr>
<td>Compact Software</td>
</tr>
<tr>
<td>EEsof Inc</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
</tr>
<tr>
<td>RF Design System</td>
</tr>
<tr>
<td>Tesoft Inc</td>
</tr>
</tbody>
</table>

Note: VHDL = VHSIC Hardware Description Language.

Fig 7—(a) shows the change in bit error rate as a function of the energy per bit per noise output density for the circuit with 0.3 nH of inductance. (b) shows the same plot for the circuit with 0.7-nH of inductance. Note how the system operating point has moved between the two plots, indicating a much higher bit error rate for the 0.7-nH inductance case.
A Truly New Compiler Comes Along Only Once In A Generation.

Introducing **Ultra C**. It lets you explore the boundaries of performance for hard real time.

When performance counts, you need a C compiler that will produce the fastest, tightest code possible—especially in demanding hard real-time applications. Yet most C compilers commonly used today were originally written ten or more years ago. Since then, computer scientists have learned a lot about how to make better compilers.

That’s why Microware undertook the epic task of creating an all-new C compiler based on the latest academic research—a compiler able to eke out every drop of performance from modern 16-, 32- and 64-bit CISC and RISC microprocessors. Microware’s **Ultra C** uses a modular architecture that creates a virtual playing field for vigorous action by dozens of optimizers to analyze, arrange, accelerate and compress code into fast, compact executables. Heuristic analysis of register and variable usage far surpasses the capabilities of what most human programmers could do themselves.

State-of-the-art, plus...

Of course **Ultra C** has all features expected in a state-of-the-art compiler, such as full ANSI C compliance, C source code symbolic debugging, and a comprehensive set of standard libraries including support for the extensive real-time capabilities of the OS-9® and OS-9000® Real-Time Operating Systems. Options allow selection of either ANSI or K&R compatibility. You can even turn the optimization knobs yourself to best match your application’s requirements.

Built-in quality and reliability

You can count on **Ultra C** right now, because it’s probably the most thoroughly tested new compiler in history. Before the first copy went into beta test, it successfully passed the massive Plum Hall ANSI C Validation Suite—eight major sections, in all over 500,000 lines of C compiler torture track. Compilers are not a sideline at Microware—we’ve been developing them in-house since 1978.

CISC now, RISC soon

Ultra C is available now for all 680X0 family and 386/486 family CPUs running Microware’s OS-9 and OS-9000 Real-Time Operating Systems. RISC versions are coming soon.

Call Microware Today!

1-800-475-9000

In California, call (408) 980-0201
Simulating the system with a bond-wire inductance from 0.3 to 0.7 nH is equivalent to a bond-wire length of 12 to 28 mils. A circuit-level simulation of just the 2-stage power amplifier provides the data in Fig. 4.

You can see by comparing the two curves that the output power of the amplifier for a -5 dBm input changes from approximately 31 to 28 dBm with the increased inductance. The power-added efficiency (a ratio of the power out to the dc and RF power in) drops from about 50% at -5 dBm input power to about 37% with the added inductance. The power efficiency reduction is particularly significant for portable handheld units where battery life is important.

The data from the above circuit-level simulation is imported into the system-level simulation using a power-dependent S parameter file. Now you can use the full system-level simulation to evaluate how the power-amplifier change affects the performance of the full system.

The power vs frequency plots in Figs 5a and 5b show a small change. The eye diagrams in Figs 6a and 6b show only a small closing of the eye. The qualitative measurements shown in Figs 5 and 6 might lead you to believe that the system performance has not been significantly altered by the increased inductance.

The bit-error rate tells a different story. Figs 7a and 7b show the change in bit-error rate as a function of the energy per bit per noise output density. The curves marked with the small squares show the theoretical system performance, and the curves marked with the plus signs show the performance of the simulated system.

Although the inductance variation causes only a small divergence at high levels of Eb/No, the system's bit-error rate is significantly affected by the change in operating point. The change in the system's operating point is caused by the lower gain of the amplifier reducing the energy-per-bit value. The bit-error rate of the system changes from approximately one error in 100,000 bits to one error in 3000 bits.

Acknowledgment

I'd like to thank Tim Hopple of EEsof for providing the simulation of the IS-54 digital cellular system.

Article Interest Quotient
(Circle One)
High 479 Medium 480 Low 481

For more information on the CAE products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.
the new abbott SM200.

- Highest density in a military power supply
- 50 Watts per cubic inch
- Size: 2.4" W x 4.6" L x .5" H
- Power limit: up to 280 Watts
- Fixed frequency; no derating
- Temperature range of operation: -55°C to +100°C
- Extended input voltage range: 11-40Vdc
- Output: 5, 12, 15, 24, 28Vdc; sync pin, trim pin
- OVP, TTL included
- Remote Error Sensing
- Qualifications: Mil-Stds 704D, 810E, 901C
- Board-mountable
- Readily available, off-the-shelf military
- Price: very competitive

the sun.

- Highest density in the solar system
- 500,000,000,000,000 Watts per cubic inch
- Size: diameter = 864,000 miles
- Power limit: undetermined
- Variable frequency; derating nonverifiable
- Temperature range of operation: +5500°C to +15,000,000°C
- Extended input voltage range: 1-10⁴Vdc
- Output: unchanneled; scattered dispersion
- Output protections: shade, sunscreen
- No system of error sensing/detection
- Mil-Std qualifications: none
- Board-mountable: not
- Readily available; not deliverable in unit form
- Price: very expensive

COMPARE OUR VERY-HIGH-DENSITY POWER SUPPLY WITH ITS CLOSEST COMPETITOR.

While the competition is admittedly tough, a closer look at the specs should serve to convince even the most skeptical reader of the many practical benefits of our new SM200 very-high-density power supply, which, despite its shorter track record, in reliability is second to — only one.

Abbott Electronics, Inc., 2727 S. La Cienega Blvd., Los Angeles, CA 90034-2643 • Telephone 310/202-8820 • Fax 310/836-1027
When you go with Xilinx, what do you get?

Software so automated it can shrink a development cycle to less than a starting employee's vacation.

The fastest, densest, most cost-efficient devices.

Support from the league-leader in programmable logic.

And a head start on everybody else who didn't go with us.

TOMORROW WILL BE HERE ANY MINUTE.

These days, you just don't have a moment to lose.

You blink twice and there are four competitors with a product just like yours. Only cheaper.

Even being first to market isn't enough anymore. You also have to be the first to follow up with new, feature-rich models.

And in that kind of market environment, Xilinx FPGAs and EPLDs become more valuable than ever.

For starters, our software is virtually automatic.

So we look for all the world like the prototypical prototyping tool.

But why stop there? Our FPGAs can get you into production instantly.

When you need to come back and build new models, it's as easy as reprogramming—something our FPGAs let you do right in the system.

And when you're ready for high volumes, our pin-for-pin compatible HardWire™ Gate Array is ready to go.

THE MOST EXPERIENCED PROGRAMMABLE LOGIC.

In all modesty, we know more about FPGAs than anybody.

After all, we invented them.

Thirteen million devices, and 12,000 development systems later,
we now offer more than 250 options for the widest range of applications.

Our staff of FAEs has more experience designing with complex PLDs than any other single group in the industry. And when you go with us, they're with you.

And no one has more experience working with the third party people you rely on for CAE. You can work with whatever and whomever you're working with now. You don't have to reinvent a thing.

Which means your investment in equipment and training, as well as the future of your future product line, are protected.

THE LOGIC OF OUR APPROACH IS INESCAPABLE.

We're not burdened by expensive fabs, so we can invest where it really counts: in device improvements.

We have the largest software team in programmable logic — half of our total R&D staff.

Our goal is to automate even the toughest designs, till the process becomes just as quick and painless as it possibly can be. We'll also continue to push the industry in device speed and density, something we've done from the very beginning. After all, we're in the best position to do that — our R&D budget is bigger than most of our competitor's revenues.

So find out how we can help.

Call our 24-hour literature hotline at 800-231-3386 for the latest product information and the name of the Xilinx representative nearest you. We'll take it from there. But do it soon.

Because these days, getting ahead is the only way to go.

XILINX
The Programmable Logic Company.

©1992 Xilinx, Inc., 1390 Logic Drive, San Jose, CA 95134. Europe, 44 (02) 884 9540, Japan, 81 (3) 297-8991, Asia, 92 (3) 721-6990, Xilinx and the XC designation are trademarks and The Programmable Logic Company is a service mark of Xilinx, Inc. All other trademarks or registered trademarks are the property of their respective holders.
Making your 24 bits better.
That's AT&T "Customerizing."

"Customerizing" means being ready today with a total 24-bit graphics solution—a complete package to enhance your multimedia PC applications.

It's an industry first from AT&T Microelectronics. A true-color graphics chip set with complete driver support, including 24-bit window drivers. Today!

Developed to give you one-stop, hassle-free, true-color shopping. And priced to take a surprisingly small bite out of a PC design budget.

16 million colors

Offering quick and easy implementation, our chip set includes a True-Color VGA Controller and highly-integrated RAMDACs.

This high-performance system, capable of generating over 16 million colors, makes possible a virtually unlimited range of shading possibilities.

The system also delivers photographic-quality graphics display, provided by an AT&T True-Color VGA Graphics Controller that supports resolutions as high as 1024 by 768.

Integrated Solution

AT&T's chip set is designed for a 5-chip motherboard that consumes only 30 square centimeters, and incorporates two memory devices.

Flexibility? AT&T's chip set offers three RAMDAC options—24, 16/18 and 8/6 bit—so you can differentiate your application with various price/performance points.

Development time? Our complete manufacturing kit helps you sharply reduce design-in time and cost.

For more on how you can give your product a 24-bit edge at the lowest possible system cost, just give AT&T Microelectronics a call at 1 800 372-2447, ext. 903. FAX: 215 778-4106.

(In Canada: 1 800 553-2448, ext. 903)
NEW ABEL-FPGA helps you get the most out of the latest FPGAs. If you want to take advantage of the sophisticated capabilities of today's FPGAs, only Data I/O®'s new ABEL-FPGA™ Design Software has the power to pack in maximum logic. It combines the industry-standard ABEL Hardware Description Language (ABEL-HDL™) with our new intelligent FPGA Device Fitter™ technology. So, you can create more complex designs with less effort—ABEL-FPGA does the hard work for you!

ABEL-FPGA's powerful Device Fitters automatically optimize your circuits for minimum area or maximum speed. Fitters are available for all the leading architectures, including Actel, Altera, AMD, Atmel, Cypress, ICT, National, Plus Logic, Texas Instruments, and Xilinx. And with built-in knowledge of its target architecture, each fitter masters the complex features of its device automatically, intelligently.

Practical, detailed documentation, complete with FPGA design examples, also helps to ensure that you get the most from each architecture. And for added design power and flexibility, ABEL-FPGA lets you specify place-and-route constraints directly in your circuit description, so you can easily migrate the same design between multiple FPGA vendors.

Pack more logic into your next FPGA design, with the single solution to all your FPGA behavioral entry needs: ABEL-FPGA. Call us today to find out more about NEW ABEL-FPGA.

1-800-3-DataIO (1-800-332-8246)

NEW ABEL-FPGA
with FPGA Device Fitters!
Testers let you pinpoint the causes of EMI failures

An irony of electronics is that, despite binary signals' high noise immunity, common types of electromagnetic interference (EMI) are more likely to cause malfunctions in modern digital products than in older analog gear. A group of threats—electrostatic discharge (ESD), electrical fast transients (EFTs), surges, and power-line disturbances—can create problems for which neither the true causes nor the remedies are obvious. Keytek's ECAT systems (for expert computer-aided test) not only simulate these threats but include optically coupled data-acquisition modules to accurately monitor signals within equipment while you apply the threats. Combining simulation and monitoring facilitates finding the causes of failures and fixing them.

If you think that manufacturers of products such as process-control, communications, and military equipment are the only ones concerned with EMI susceptibility, you're wrong. Concern is growing even among manufacturers of consumer products. The International Electrotechnical Commission (IEC) has promulgated a series of test standards (IEC 801-2, -4, and -5), and the European Community (EC) is getting ready to require that several types of products sold in Europe comply with them. In the US, at least one large retail chain requires manufacturers of products sold under its name to certify that the products meet the US equivalents of these standards.

One reason for the great emphasis on EMI immunity is the growing pervasiveness of digital technology; microprocessors have found their way even into such commonplace items as vacuum cleaners. Most digital systems contain circuits that respond to fast edges, which are among the most prevalent of EMI threats; analog equipment rarely had enough bandwidth to respond—some of these edges are as short as a few tens or hundreds of psec. Although some EMI-induced failures are relatively benign (you can correct them by turning the equipment off and then on again), some necessitate costly repairs, and others are life threatening.

Many of the threats are truly massive—kilovolt-level transients, for example. Because the ECAT systems' µP-based Fibersense data-acquisition modules let you monitor both digital and analog signals (including low-level signals) within your product in the presence of disturbances produced by the systems' simulation modules, you can learn exactly what circuits or subsystems malfunction and quickly devise remedies. Heretofore, the only alternatives were tedious series of experiments, which, with luck, would lead you to deduce the problem.

The systems' simulation modules fall into four categories: the E200 series for ESD, the E400 series for EFT, the E500 series for surges, and the EP series for power-line disturbances (the vendor uses the trademark PQF, for power-quality...
We developed some of the first clock oscillators.

But some of the most significant things we've developed have been relationships.

When you design in VCXO or ECL clock oscillators from MF Electronics, you get more than reliable parts. You get the company that pioneered the technology, ready to help with your special needs and unique problems. So write or call: MF Electronics Corp. 10 Commerce Drive, New Rochelle, New York 10801. (914) 576-6570. Fax:(914) 576-6204.

EDN-PRODUCT UPDATE

faults). Of these, ESD, usually from sparks to the chassis of the equipment under test, is best understood. EFT refers to very fast or very-high-frequency transients, normally of relatively low energy, coupled onto signal or power lines from power switching. Surges, which originate in lightning or power switching, are somewhat slower but have much higher energy (currents can be as high as several kA). They most often appear on power lines but can sometimes couple into signal lines. PQFs are dropouts, dips, and other anomalies on the ac line, usually lasting for several cycles.

ECAT systems consist of a controller and one or more simulator modules either in a free-standing arrangement or, in larger configurations, in a 19-in. equipment rack. You can upgrade a system's capabilities at any time by adding modules. Adding modules requires no change to the existing ones. The µP-based controller's keypad and 8-line x 40-character LCD let you completely control the system without a host computer. However, MS-Windows-based software allows remote control of all system functions from a host PC. Pricing begins at $22,630. A system with EFT, surge, and PQF simulators costs $67,170. Shipments have already begun.—Dan Strassberg

Keytek Instrument Corp, 260 Fordham Rd, Wilmington, MA 01887. Phone (508) 658-0880. FAX (508) 657-4803. TLX 951389.

Circle No. 700

What's Coming Up In EDN

Beginning in the October 1 issue, EDN Magazine will show you how to "Design It Right." In this four-part series, we'll relate the do's and don't's that are essential to good product design. Many of these techniques may work for you!
At last. A personal output device that combines the best features of a desktop laser printer with the ability to produce large format drawings. It's called ProTracer™ — a 360 dpi desktop printer/plotter that produces A, B, as well as C-size output.

FEATURES INCLUDE:

- High performance inkjet engine from Canon
- Fast, Intel i960™ processor — drawings that take over one half hour on pen plotters take as little as five minutes on ProTracer!
- Optional HP-GL® and PostScript® language emulations, memory expansion boards, and sheet feeders
- Unsurpassed customer service — 60 day money back guarantee of satisfaction, one year warranty, and free lifetime technical support

PROTRACER
BASE UNIT
- Customized ADI and PADI drivers for AutoCAD users
- Epson and ProPrinter emulations

$1499

PROTRACER
WITH HP-GL
- ProTracer base unit
- HP-GL emulation card
- 5 MB memory

$2249

PROTRACER
FULLY CONFIGURED
- ProTracer base unit
- HP-GL emulation card
- PostScript language emulation card
- 5 MB memory
- Sheet feeder

$2897

If you'd like to expand your printing and plotting capabilities, call Pacific Data Products at (619) 597-3200 ext. 2270, Fax (619) 552-0889.
Let's talk real 8051 8096/196 in-circuit emulation. ... and DSP's too!

Signum Systems' in-circuit emulators offer more standard features than you'd expect, and some you wouldn't.

Features You'd Expect
- Windowed/mouse interface
- Flash download 115 k-baud
- Debug in C and PL/M
- Non-intrusive to target or PC
- Full speed emulation

Signum Extras
- C-51 and C-96 HLL debugger with locals support
- Full bank switching support
- Up to 256K emulation program RAM
- Graphic trigger window
- 32K x 80 real-time trace
- Access on-the-fly to:
 - All emulation RAM contents
 - 3 complex trace triggers
 - 8 level sequencer
 - Trace and execution displays
 - 256K address breakpoints
 - 2 16-bit event counters
- Performance analysis
- Unlimited user support

Performance . . . Ultimately Depends on You

See what Graphic Triggering can do for you. For the first time you can have intuitive, precise control of the full debugging power of your emulator. You'll avoid errors and get more done.

Debugging in a High Level Language means that eventually you will have to track something right down to a member of a local complex structure. Signum lets you zoom in on any structure—with just the click of a mouse.

Opportunity . . . The Signum Advantage

The right tools do make a difference, and there's no equality among emulators. You have to actually use them to appreciate what they can do for you. Better features that are easier to use mean you're finished sooner. That's performance, and that is exactly what we are about at Signum Systems.

Prove it to yourself, check out a Signum emulator today! Write or call to evaluate the Signum advantage.

10 DAY FREE TRIAL
EDN·PRODUCT UPDATE

Modular dc/dc converters develop 3.3 to 48V outputs

SMQ Series high-density dc/dc converters reflect the industry's most popular mounting, dimensional, pinout, and cooling specifications. More than 100 models are available with inputs ranging from 12 to 300V and outputs covering a 3.3 to 48V range. Special versions with 1.2V outputs are available for applications such as backplane termination. Output power capability ranges from 75 to 230W—equivalent to a power density of 40W/in.3

The SMQ converters operate at a fixed frequency between 250 and 300 kHz—a range where low equivalent-series resistance, high-temperature electrolytic capacitors provide low ripple and six times more capacitance than typically found in many competitive units. As a result, SMQ converters have a guaranteed transient response—a characteristic always expected of high-performance, higher-power computer or telecommunications supplies.

Responding to market trends toward fault-tolerant (redundant mode) applications, SMQ converters have single-wire paralleling. To help in fault isolation, they also have a dc-good signal as a standard feature. This feature is almost always found in more expensive, higher-power, off-line power supplies.

The units in the SMQ line rely on a time-proven PWM forward converter with current-mode control. Using a 2-transistor forward converter lessens MOSFET capacitance losses and helps make the power section bullet-proof in terms of susceptibility to overvoltage damage. Limiting the operating frequency to 300 kHz sharply reduces capacitance-related losses, which inherently occur at 750 kHz or higher.

One area of performance often cited by users relates to the differential and common-mode noise that often appears at the output as spike noise. This noise is caused by the power semiconductor switching transitions. In the SMQ converters, a proprietary noise filtering technique significantly reduces this noise.

All SMQ converters incorporate overvoltage, overtemperature, and overcurrent protection along with remote shutdown, option synchronization, and a standard on-status signal to indicate proper drive-chip operation. A preset turn-on delay lets the converters drive incandescent or highly capacitive loads without going into an overcurrent mode—a definite problem with fast turn-on converter designs.

SMQ converters are housed in a 2.4 x 4.6 x 0.5-in. encapsulated package, which is compatible with either surface-mount or through-hole assembly operations. The units use planar magnetics and can deliver a 230W output at an 85°C baseplate temperature. $125 to $250. Delivery, six to eight weeks ARO.

Surfcoil® SMT Inductors

- Inductance from 10 nH to 1 mH
- 8 model series in 3 sizes:
 - 2.5 x 2.0 x 1.6 mm (0.098" x 0.079" x 0.063")
 - 3.2 x 2.5 x 2.2 mm (0.126" x 0.098" x 0.087")
 - 4.5 x 3.2 x 3.2 mm (0.177" x 0.126" x 0.126")
- Shielded, unshielded, ferrite core and nonmagnetic models
- Operating temp: 20° to +85°C
- Carrier and reel standard
- Fully encapsulated

Surftrim® Surface Mount Trimmer Capacitors

- 2 sizes:
 - 3.2 x 4.5 x 1.6 mm
 - 4.0 x 4.5 x 2.7 mm (sealed)
- 4 mounting configurations
- Carrier and reel, or bulk pack
- 1.7 to 50 pF in 7 cap ranges
- Operates to 85°C

Sprague-Goodman

Housed in an industry-standard package, SMQ dc/dc converters feature a 230W output capability. They are available with outputs of 3.3 to 48V and incorporate single-wire paralleling and protection against overvoltage, overcurrent, and overtemperature conditions.
The PA30 from Apex is the first hybrid IC amplifier capable of 2000W rms continuous output power—up to 8000W pulse. Power MOSFETS, on-chip temp sensors and thermal shutdown output make the PA30 extremely reliable. The PA30 is suited to a wide range of applications—sonar transducers, motor drives, power source simulation magnetic deflection and focusing—even welding!

Key Specifications:
- 2000W rms output power
- 100A output current pulse
- 30V to 200V supply
- 1000W power dissipation
- 45V/µs slew rate
- Programmable current limit

Targeted at local-area-network (LAN) applications, Langarde uninterruptible power supplies (UPSs) are available in 400-, 600-, 900-, and 1250-VA models. The smart units feature power-outage warning, advance battery-condition monitoring, and orderly network shutdown. The units also incorporate batteries that the user can replace in 60 sec.

Langedge systems meet the UL1778 rating as a UPS and UL1449 as a transient-voltage surge-suppression device. Suppression circuitry tracks the ac sine wave and provides an effective clamping barrier of less than 50V. The units operate as a line-interactive UPS with a response time that provides 15 minutes of sine-wave output power when connected to a 386 workstation. A boost feature eliminates battery discharge during brownouts.

During a power outage, the Langarde UPS uses the company's Nettrax software interface to automatically notify the LAN administrator of the outage. If no one shuts the network down, the UPS automatically saves files and shuts down any connected equipment. Langarde network power-management software is compatible with windows and supports all major LAN operating systems.

Power-monitoring features include a surge counter and power-disturbance snapshot, which captures power disturbances. Also included is the Mousetrax remote system—a peripheral for control and monitoring of ac power and UPS functions. This system continuously monitors all critical functions—UPS load and temperature, battery condition, charge and uptime, outlet ground and polarity, and surge monitoring. These features can often eliminate the need for expensive power monitoring equipment.

Communication between the Langarde UPS and the workstation happens over the network media or by daisy-chaining the units through the serial port, which effectively creates a local UPS network. This serial network lets the network administrator monitor LAN components, such as file servers and workstations, and equipment that is off the LAN, such as a PBX.

While Langarde is primarily designed for LAN applications, it can also back up single computers. The removable remote front panel lets you place the UPS out of the way while still keeping the monitoring display and control switches within easy reach. $499.95 for the 400-VA version.—Tom Ormond

EFI Electronics Corp, 2415 S 2300 W, Salt Lake City, UT 84119. Phone (800) 877-1174. FAX (801) 877-0200.

In U.S. Circle No. 7 In Europe Circle No. 8
Now your motor control designs have just become simpler with DDC's complete family of Smart Power motor drive solutions. We offer an array of full mil, 3-phase and 2-phase motor drives designed to deliver from 5 to 30A of current to the motor with bus voltages from 15 to 270Vdc.

Our 3-phase drives begin with the 250W PWR-82330, which is designed to operate from a 28V MIL-STD-704 power bus and can deliver 5 amps to the load. This high-efficiency MOSFET drive has a self-contained charge pump, complete gate drive including cross-conduction lock out, and operates from either 5 to 15V input logic signals. Housed in a 50-pin PCB mount package, requiring 3.6 square inches of board space, the PWR-82330 measures only 1.4"W x 2.6"L x 0.25"H.

Now you need to upgrade your design for high current, so choose our 4.2kW PWR-82331 drive. Designed to operate up to 140V (after derating), the PWR-82331 delivers 30 amps to the load and requires only 6.3 square inches of space. The PWR-82331 has an internal dc-dc converter for continuous gate drive, a high-efficiency MOSFET drive stage with separate flyback diodes and the same front-end logic as the PWR-82330.

Then you need to further upgrade your system to 270V. No problem, use the 10.5kW PWR-82333, 270V drive with an IGBT output stage. This drive is a pin-for-pin, form fit function, high voltage replacement of our PWR-82331. Both drives are available in a 2.1"W x 3.0"L x 0.39"H package and operate from -55°C to +125°C case temperature.

Additionally we offer complementary 2-phase drives with both high and low voltage capability.

Give Bob Fryer a call at 516-567-5600, ext. 7390 (toll free outside N.Y. 1-800-DDC-1772 ext. 7390) to receive more information and become a member of the family.

WEST COAST (CA): GARDEN GROVE, (714) 895-9777, Fax: (714) 895-4988;

WOODLAND HILLS, (818) 992-1772, Fax: (818) 887-1372

WASHINGTON, D.C. AREA: (703) 450-7900, Fax: (703) 450-6610

NORTHERN NEW JERSEY: (201) 785-1734, Fax: (201) 785-4132

UNITED KINGDOM: 44 (01483) 40155, Fax: 44 (01483) 32264; IRELAND: 353 (21) 341065, Fax: 353 (21) 341568

FRANCE: 33 (1) 4334-5888, Fax: 33 (1) 4334-9762; GERMANY: 49 (1) 3105, Fax: 49 (1) 47433

SWEDEN: 46 (0) 920635, Fax: 46 (0) 353181; JAPAN: 81 (33) 814-7688, Fax: 81 (33) 814-7689
Introducing the premier high speed video op amp – the AD811 from Analog Devices.

What makes the AD811 such a star is that it delivers maximum performance in all the critical specs for video, while costing just $2.85 (in 1000s).

In fact, the AD811 offers excellent specs in bandwidth (140 MHz, $G=+1$), slew rate (>2500 V/µs), differential gain (0.01%) and differential phase (0.01°), and output drive (>100 mA) – and this high performance is achieved whether driving one or two back-terminated 75Ω cables. All of which makes the AD811 not only HDTV compatible, but ideal for professional and consumer video cameras, routers, special effects generators, multi-media and general purpose high speed data acquisition.

The AD811 is one more example of how Analog Devices is the one company you can look to for affordable performance. For our free High Speed Op Amp Selection Guide, SPICE model diskette and an AD811 sample, call 1-800-262-5643. Or write to us at the address below.
16-MHz RISC µP strips down for action

RISC µPs are making it big in the embedded-systems world, especially in printers, X-terminals, and communications gear. In these arenas the push is on for cheaper, minimal RISCs (reduced-instruction-set computers). AMD’s newest member of the 29K family, the 29205, aims to please. A stripped-down 29200, the 29205 delivers four native MIPS sustained, on a 16-bit data bus.

The 29200 was designed specifically for printer-type applications. It interfaces to video RAM, produces printer-control signals, and provides a range of peripheral interfaces. The 29205 trims away the overhead for low-cost, down-in-the-dirt applications. The external memory bus is trimmed from 24-bit address and 16-bit data lines, to 22-bit address and 16-bit data lines. Video-RAM support is dropped, as well as burst-mode ROM accesses. ROM chip selects have been trimmed back, and the chip can use only 8- and 16-bit peripherals. These reductions decrease pin count from 168 to 100 pins.

The 29205 has one programmable 8-bit I/O port; you can program the 8 bits to act as external interrupts for control applications. The chip also handles DMA transfers between on-chip (1 channel) or off-chip peripherals (1 channel) and dynamic RAM (DRAM) memory. DMA off-loads prevent the CPU from obtaining and moving data to memory.

The 29K family members were originally desktop RISC processors, but missed their window. The chips were initially structured for Unix, so they have a supervisor and user mode, which is useful for real-time applications and interrupt handling. In addition, the CPUs contain 192 registers, many of which are available for application tasks. The large number of registers helps keep the top of the user stack on chip and provides fast, local storage for processing data.

One of the most respected features of the 29K family is its simple memory interface, which lets the CPU run with standard, fast DRAM, rather than requiring an on-chip or supplemental cache memory. The 29200, and now the 29205 µPs. Later 29K family chips added a 4-kbyte on-chip cache.

One of the most respected features of the 29K family is its simple memory interface, which lets the CPU run with standard, fast DRAM, rather than requiring an on-chip or supplemental cache memory. The 29200, and now the 29205 µPs. Later 29K family chips added a 4-kbyte on-chip cache.

The clock is counting down: By mid-1993, all new TVs (13 in. or larger) must handle closed captioning. Motorola’s 8-bit 68HC05CC1 will supply a complete TV microcontroller (µC) for TV control, on-screen display (OSD), and closed-caption applications. It makes today’s expensive decoder boxes obsolete.

The 68HC05CC1 is pin and function compatible with the 68HC05T2, which many engineers now use for TV and display control. Using the 68HC05CC1, engineers can upgrade to closed-caption processing with a minimum of hardware design. The chip replaces the older chip with only a few wiring modifications. It handles closed-caption processing with up to 34 characters per line and can fill the full screen or present a smaller number of lines that are scrolled or popped up.

AMD 29205 RISC embedded processor

- 16-MHz, 32-bit CPU
- 192 registers
- 117 instructions with mainly 2-cycle execution (two 16-bit accesses for instruction words)
- No full MPY/DIV instructions done in software
- 4M native MIPS sustained 50% of 29200
- 4-stage, pipelined RISC
- Load/store multiple register instructions for speed
- External memory bus, Harvard architecture with separate 22-bit address and 8-16-bit data lines
- ROM (8-bit), DRAM (16-bit) controller with DRAM page-mode support
- 2-channel DMA controller
- 8-bit I/O port
- 2 external interrupts, also I/O pins programmable as external interrupts
- UART, bidirectional parallel-port video interface for imaging applications
- Interrupt controller, timer
- 2-port peripheral interface adapter
- In 100-pin PQFP, $38.25 (1000)

8-bit µC drives closed-caption TV

The clock is counting down: By mid-1993, all new TVs (13 in. or larger) must handle closed captioning. Motorola’s 8-bit 68HC05CC1 will supply a complete TV microcontroller (µC) for TV control, on-screen display (OSD), and closed-caption applications. It makes today’s expensive decoder boxes obsolete.

The 68HC05CC1 is pin and function compatible with the 68HC05T2, which many engineers now use for TV and display control. Using the 68HC05CC1, engineers can upgrade to closed-caption processing with a minimum of hardware design. The chip replaces the older chip with only a few wiring modifications. It handles closed-caption processing with up to 34 characters per line and can fill the full screen or present a smaller number of lines that are scrolled or popped up.

Providing closed-caption TV
services requires a controller to monitor the video output to the display. The controller detects line 21 of the TV display, which carries the TV-programmer's closed-caption instructions. These instructions are pulled off the transmitted line and used to direct the closed-caption controller in building and transmitting the captions. The 68HC05CC1 Data Slicer peripheral monitors the signal and pulls off the closed-caption directives, which are then stored in RAM for processing. The slicer (and OSD) trigger off of the horizontal and vertical sync signals: All timing is related to the signals.

A Data Slicer interrupt signals the CPU when it receives a new set of caption directives. Software then sets up the Output Screen Device to put characters at a given scan line. The chip compares the current screen line to the event line. When a match occurs, the characters are scanned and output to the RGB signals. A blanking signal, FBKG, blanks the incoming video, eliminating interference with the character pixel stream.

The closed-caption display characters are defined by the OSD character ROM. Users can program it for special character sets. The ROM defines 128 display characters. Each character is 9 bits wide and up to 13 pixels high.

The chip is built on a simple accumulator-based architecture with a single index register, the 68HC05, which serves as a base for more than 130 variations, many of them application-specific CPUs. The 68HC05 is also popular as a low-end 8-bit µC for replacing control logic and tackling simple control problems.—Ray Weiss

Motorola Inc, 6501 William Cannon Dr W, Austin, TX 78735.

Motorola 68HC05CC1 closed-caption µC
- 8-MHz clock, 4-MHz bus cycle
- Accumulator-based architecture with accumulator, index register, and stack pointer
- 16-bit program counter
- 16-kbyte ROM
- 544-byte RAM
- 32-kbyte memory address space for RAM, ROM, vectors, I/O
- 1664 x 9-bit character ROM
- 8-bit pulse accumulator
- Watchdog-timer option
- 8-channel, 6-bit PWM (DAC)
- 1-channel resistive ladder A/D converter
- Serial I/O port with I/C master capability
- Video display outputs (RGB and a signal for blanking video) closed-caption video generator
- Clocks video data in to 28 MHz generated by an internal PLL
- 15 I/O pins
- 45-pin shrink DIP, 40-pin DIP
- Less than $7 (50,000)

Designed for use with the Intel 80486DX and 80486SX microprocessors and the Intel i860XR RISC processor, packaged in 168-pin ceramic PGAs, the EG&G Wakefield 669 Series Heat Sink/Clip Assembly offers a cost-effective heat dissipation solution for today’s high-speed microprocessors. This assembly provides the highest clamping force available with a nylon-coated stainless steel clip, for the most efficient interface heat transfer and to meet system shock and drop test requirements. Our omnidirectional heat sink offers optimized heat dissipation and ease of application; the symmetrical clip is suitable for high volume installation with the EG&G Wakefield 162-IT installation tool.

Heat dissipation with the 669 Series Heat Sink/Clip Assembly is optimized for PC, workstation, and server applications with low airflows (e.g., 50-200LFM). Pressure drop is minimized in multiple-processor applications.

Inte1, 80486, i860XR, and 80386 are trademarks of Intel Corporation.

Call our Application Engineering Department today at (617) 245-5900 for information about the EG&G Wakefield Engineering 669 Series (patent pending) and other heat sinks for the Intel 80386 and 80486 microprocessor family. Also ask for information about the EG&G Wakefield DELTEM™ family of heat sinks for cooling high-speed cache RAM used with 50 MHz microprocessors.
HOW DO YOU BECOME THE POWER BEHIND A WORLD SUPERPOWER?
BY INFILTRATING ITS COMMUNICATION SYSTEMS.

The superpower in cellular radio is the United States. The world leader in RF transistors is Philips. Together they’re creating a revolution in cellular communications.

AT&T, as one of the key players in the industry, relies on Philips’ RF power transmitting transistors for its rapidly growing network of base stations. At the other end of the scale, Philips’ RF wideband transistors are working undercover in the top-rated cellular phone handsets.

Philips’ ability to meet precise specifications, guarantee quality and deliver on time, was key to

Philips Semiconductors

Philips Components Discrete Products Division, 2001 W Blue Heron Blvd, Riviera Beach, FL 33404 USA. Tel: 1-800-447-3762.
this success. But that's not the end of the story.

Our latest RF wideband transistors feature 5 and 4 micron technology, ready for the next generation of equipment.

And our user-friendly Data Disks are further proof of Philips' commitment to communication. They give information on every one of our 4,200 discrete semiconductors – including many that are ideal for phone systems.

So if you want to make the most of the growing telecoms revolution, your course of action is clear. Get in touch with Philips.
MT2 Relays and MT4 Relays

Scoring points is never a coincidence. Neither in sports nor in telecommunications.

We took a three-way approach to make our MT relay family the industry’s top contender. After all, we’ve played the game long enough to know what counts.

First, in the development phase, we made sure that our products thoroughly address current and future requirements. Granted, we have an edge on the competition: we happen to be the largest user of telecom relays.

Second, our specifications in terms of materials and fabrication are probably unmatched. They’re so strict that we had to design and build our own production facilities. Your advantage: greater precision.

And third, our MT4 relay is remarkably compact. It takes up less space without sacrificing reliability or function. That means greater packaging densities and lower cost!

The bottom line: MT2 relays and MT4 relays score top points. Mail the coupon below to join the winners.

We’re interested in scoring big points. Please send us detailed literature on the MT relay family.

Name
Job title
Company
Address
Telephone Telefax

Alcatel STR AG, CH-8055 Zurich, Friesenbergstr. 75
Telephone +41-1-465 21 52, Telefax +41-1-465 21 60

CIRCLE NO. 50
How do you get 1600 x 1280 resolution in an X-terminal design right away?

Use TI's TLC34074 Video Interface.

It's the first 200-MHz video interface optimized for X terminals, enabling 1600 x 1280 resolution at a 72-Hz refresh rate. And it's in distributor stocks now.

The TLC34074 from Texas Instruments integrates a complete grey-scale graphics system back-end onto a single chip, eliminating up to 30 components.

Best yet, it is pin compatible with TI's full-featured TLC34076 palette that supports monochrome to 16- and 24-bit-per-pixel true color. Which allows you to make system cost/performance trade-offs while maintaining a common architecture.

More advantages
- Both devices are compatible with virtually any video controller architecture: CISC and RISC microcontrollers, including TI's TMS340 graphics coprocessors, as well as hard-wired controllers.
- Handles Big- or Little-Endian formats with no hardware modifications.
- Direct interface to VRAM and controller.

For more information
About TI's '34074/76 mail the return card. For faster response call (214) 995-6611, ext. 3429, your local sales office or an authorized TI distributor.
Design methodology, performance, and software tools should all influence you as you seek the right high-density PLD. But first you have to know the foundations of complex PLD and FPGA architectures.

Anne Watson Swager, Technical Editor

Complex PLDs and FPGAs are proliferating, and so are the software tools necessary to work with them. In fact, the task of choosing from such a vast array of high-density programmable logic devices (PLDs) is enough to overwhelm unsuspecting newcomers. However, an overview of the hardware architectures, design methodologies, and other important criteria can help you on your way to choosing the right device for your design.

Not only is there currently a wide assortment of architectures to choose from—both complex PLDs and field-programmable gate arrays (FPGAs)—but the list of such architectures keeps growing. Within the last year, at least three start-ups—Concurrent Logic, Crosspoint Solutions, and Quicklogic—started shipping their FPGAs. AT&T Microelectronics, which currently second-sources a number of FPGA market leader Xilinx's devices, announced a proprietary architecture that will be in full production by the beginning of 1993. Cypress Semiconductor recently announced an agreement with Quicklogic that will potentially lead to wider availability and expanded capability of the latter company's architecture. Motorola (Phoenix, AZ) has announced its intention to enter the FPGA market and, at the time of this article's writing, is close to making its specific plans public. And even Harris Semiconductor (Melbourne, FL) is getting into the FPGA act through an agreement with Xilinx to produce a radiation-hardened version of one of their FPGAs.

Just as there are multiple architectures, so there are myriad software tools, from both IC vendors and third-party vendors, that embody various design-entry approaches, from schematic capture, to Boolean entry, to waveform entry, to hardware-description languages.

CAE vendors have been extremely busy introducing all manner of software tools such as retargeters, which take a design intended for one architecture and transform it for another, and device fitters, which take compiled designs and map them to a specific part.

Taking it all in

Absorbing all of the product and tool information necessary to make an informed choice (Fig 1) could possibly require more time than an entire design project. Becoming familiar with these devices' architectures is a critical first step. When you start learning about these devices, it is simplest to divide high-density programmable logic into two main camps: complex

![Diagram](https://example.com/diagram.png)

Fig 1—FPGAs and complex PLDs don’t exist in a vacuum. Learning about the devices themselves is an important first step, but so is becoming familiar with their dependence on design software, programming hardware, and in some cases, ASIC conversion processes. (Diagram courtesy Actel Corp)
PLDs and FPGAs

The capabilities of computer PLDs and FPGAs do intersect, but different structures mean one or the other may perform a function faster or more predictably. (Photo courtesy Quicklogic Corp)
Choosing complex PLDs and FPGAs

Complex PLDs and FPGAs help you achieve the same goal, that is, to absorb large amounts of standard logic into one device. Using one or the other—or both—for your design requires understanding the strengths of each.

Complex PLDs are essentially large collections of PAL-like structures on one chip. In other words, a complex PLD is a large collection of sum-of-products arrays (Fig 2a). The connections between logic and I/O cells are typically fixed, and the devices feature a centralized programmable interconnect. This setup is sometimes referred to as a segmented-array architecture. These devices’ relatively constrained routing provides them with one of their main advantages: predictable timing. With some exceptions in terms of architectural features, all complex PLDs share the same basic logic structure.

This last statement absolutely doesn’t apply to FPGAs. Grouping diverse devices under the term field-programmable gate array makes FPGAs sound as if they all exhibit gate-array-like characteristics. In fact, they are distinguishable from complex PLDs simply because they comprise arrays of logic blocks connected by rows and columns of distributed interconnect lines (Fig 2b), which is sometimes referred to as a channeled-array architecture. Any more specific resemblance to each other ends there. Only one FPGA manufacturer’s architecture closely resembles a gate array.

Each FPGA vendor’s logic blocks and each product family from one vendor contains a different collection of logic and different levels of logic functionality. FPGAs have no predetermined coupling between logic and I/O blocks, although some devices do have a few dedicated inputs such as clock-drive inputs. These devices’ unrestricted routing structure provides them with one main advantage: flexibility.

Reprogrammable vs one-time-programmable parts

Complex PLDs and FPGAs use different fabrication and interconnect technology. Most complex PLDs are CMOS-EPROM based or EEPROM based, and the PROM memory bit switches a transistor that controls the configuration pattern of the logic. Thus, no hard-wired physical link exists, and most off-the-shelf complex PLDs are reprogrammable. EPROM versions require UV erasure prior to reprogramming, but EEPROM devices do not, although both have to be removed from the circuit for programming. Lattice Semiconductor’s in-circuit programmable device requires neither UV erasure nor removal from the circuit. On-chip charge pumps produce the required programming voltage from the 5V supply. This feature is particularly useful for hard-to-remove surface-mount packages.

Although complex PLDs start out reprogrammable in some form, once a design is established, many companies offer conversions to one-time-programmable versions. Altera offers a third step called MPLD, or

Fig 2—Complex PLDs (a) are large collections of sum-of-products arrays, whereas FPGAs (b) feature an array of identical logic cells connected by rows and columns of interconnect. Not all FPGAs are symmetrical like the array in (b), and internal logic cells and routing structures vary from device to device.

EDN September 17, 1992
"mask-programmable logic device." These one-time and mask-programmable versions offer significant price savings.

FPGAs are available in both reprogrammable and one-time-programmable technologies, static RAM and antifuse, respectively. SRAM-based FPGAs, pioneered by Xilinx, and now manufactured by Algotronix, AT&T Microelectronics, and Concurrent Logic, use a memory bit to program connections open or closed on power up. Thus, SRAM-based FPGAs are reprogrammable and volatile. Like some complex PLD vendors, Xilinx also offers a conversion to a one-time programmable device, which the company calls "hardwire." In antifuse FPGAs, pioneered by Actel, and now manufactured by Crosspoint Solutions, Quicklogic, and Texas Instruments (second source to Actel), the high programming voltage establishes a hard-wired physical link. Thus, antifuse FPGAs are one-time programmable.

Basic architectural and technology differences are just two aspects that distinguish complex PLDs from FPGAs. One of the biggest differences between complex PLDs and FPGAs is the design methodology necessary to implement logic functions in each device. Depending on your design perspective, you may have to make some adjustments. If you have experience designing with 7400 series devices, the jump to FPGAs won't be difficult. In fact, Doug Conner, in his hands-on projects (Refs 1 and 2), found it to be quite easy. And if you're currently a PAL designer, designing with complex PLDs won't take much of a change in your way of designing and implementing standard logic functions.

However, the jump from PLD design to FPGA design will require some adjustments. FPGAs are very flexible devices, and designing with them involves making tradeoffs. Whereas a complex PLD data sheet can closely predict the final speed of the design, the timing of an FPGA is not at all deterministic. How much of the FPGA a logic design utilizes influences the final speed of that logic. For example, a recent EDN Design Idea (Ref 3) shows how you can trade off modules for speed when using FPGAs. This Design Idea shows that using the fewest modules requires the

Benchmarking group grapples with performance comparisons

All vendors of complex PLDs and FPGAs have until now used their own unique ways of quoting system performance for particular designs implemented in their devices. Each of these performance predictions is a type of one-company benchmark—each company uses a different logic implementation to arrive at their performance numbers.

This situation is changing. The Prep Corp (San Jose, CA, (408) 356-2169)—PREP stands for programmable electronics performance—consists of a consortium of IC and software vendors trying to establish a viable benchmarking method. This method should help users make apples-to-apples comparisons of the speed and logical capacities of larger programmable logic devices, namely complex PLDs and FPGAs.

Prep has two essential goals: to help introduce the architecture of different PLDs to users so that they may better understand the factors involved in selecting among them, and to allow experienced users to more quickly evaluate different architectures with respect to a specific design.

The suite of benchmarks includes a set of circuits implemented according to a prescribed methodology for measuring and reporting the capacity and timing measurements. Vendors will measure device capacity by using a "repeat and fill" scheme, whereby they will repeat the particular benchmark circuit as many times as possible, then fill the leftover logic space with filler circuits. Vendors will measure the maximum operating speed of a benchmark circuit by reporting the worst case delay of the circuit's slowest path.

The repeat-and-fill methodology is one of many that the group could have chosen for the benchmarking process. Although the vendors will be at least using the same implementation and measuring procedures to compare the devices, keep in mind that few real designs contain repeated units of the same logic circuits. Thus, it's not wise to use these benchmarks to predict the over all speed of a design that contains a variety of circuits. Clearly, the ultimate benchmark is your circuit implemented in each architecture.

The first suite of benchmarks will include the following circuits: data path, timer/counter, state machine, large state machine, arithmetic circuit, 16-bit accumulator, 16-bit counter, and memory mapper. The small filler circuit is a combination of commonly found logic elements such as 4-bit counters, 4:1 multiplexers, 4:2 encoders, and 4-bit accumulators.

By the time of this article's printing, vendors should be very close to—if not done with—final verification of the benchmarks. Then, final Prep-approved data for each vendor's circuits should be published by the end of the year.
Choosing complex PLDs and FPGAs

largest number of logic levels, thus incurring the worst-case delay. The idea presents alternative designs that use fewer logic levels and decrease propagation delays at the expense of the module count.

Also, the speed of an FPGA depends on the interconnections between logic blocks and, thus, on the layout of the device. Each design, even each iteration of the same design, can use very different routing paths, the length and resulting impedance of which will heavily impact the speed of a final design. A smaller design can have a more efficient layout leading to more efficient routing and faster performance. A denser design places more constraints on layout and routing, leading to possibly slower performance.

The worst-case scenario that can occur with either complex PLDs or FPGAs is when so much logic space in the IC is occupied that there aren't enough routing resources to allow the necessary interconnections. This problem arises most often when I/O pins are fixed early in the design process.

You can use an FPGA's density-vs-speed flexibility to your advantage, but don't expect to predict how fast or slow an FPGA design will run at the outset. Also, routing efficiency—and therefore the IC's final performance—depends not only on how much of the FPGA a design utilizes, but also on the quality of the place-and-route software. Determining that final performance requires post-layout simulation. Having to use and rely so heavily on these software tools is quite different from working with complex PLDs.

Because there isn't one standard FPGA architecture, studying and understanding each architecture is important for designing optimum circuits with that architecture. In some cases, you'll need to learn more efficient ways of implementing certain logic functions such as state machines. Because few internal connections exist within an FPGA, implementing a design takes two steps: partitioning the logic within the logic-cell structure of the FPGA and connecting the various blocks together using the device's routing resources.

Predictable vs unpredictable performance

Vendors of complex PLDs and FPGAs claim their devices can run at high speeds. However, their numbers are very difficult to judge and compare. One thing that you can bank on however, is that complex PLDs are usually a better choice for designs that have very tight speed requirements, simply because of their deterministic timing. This is not to say that the complex PLD will be the fastest implementation of a design, but simply that the final speed will be fairly predictable at the beginning of the design cycle. Creative FPGA design can result in very fast logic, but it can also require time-consuming attention to placement and routing details of internal logic blocks.

When it comes to implementing circuit applications, complex PLDs and FPGAs each have their strong points. However, each new architecture that debuts modifies those points somewhat. The parts themselves are changing to address some of the deficiencies of previous architectures (as the gray area in Fig 3 indicates). For example, Xilinx has improved the FPGA decoding situation in its XC4000 family by providing dedicated wide-decoding logic, which is directly coupled to input pins. Also, Quicklogic claims that its architecture is particularly suited to high-speed state machines. Complex-PLD vendors are adding more registers and I/O to their larger devices.

Still, for some applications, the choice between a complex PLD and an FPGA is fairly clear cut (as on the axes in Fig 3). Generally, complex PLDs excel at implementing large amounts of combinatorial logic, and

Fig 3—Complex PLDs excel at combinatorial functions. FPGAs excel at register-intensive functions. However, there is some gray area between the two. The parts themselves are improving, and techniques exist to implement logic functions in both device types. (Courtesy Advanced Micro Devices)
FPGAs excel at designs that require large numbers of registers. For example, implementing a large state machine or an extremely wide input decoder in an FPGA wouldn't make much sense because complex PLDs have a wide sum-of-products structure and are perfectly suited to that purpose. Likewise, implementing a design that requires many flip-flops, a register file or common-access memory for example, in a complex PLD wouldn't make much sense because FPGAs contain many more flip-flops than complex PLDs do.

These tradeoffs may be clear cut for a single logic circuit. However, if a design involves a variety of logic structures—if the state machine is only one quarter of the design, for example—the choice between complex PLDs and FPGAs isn't black and white. During the initial design-partitioning phase, you may discover that part of the design works well in a complex PLD and part in an FPGA.

If you must fit a variety of logic types into one device, you can implement the same logic function in both devices as long as you use the right structure for each. Techniques do exist to efficiently implement traditional register-intensive and combinatorial-intensive functions in both complex PLDs and FPGAs.

Techniques fit designs into FPGAs

State machines (Fig 4a) and binary counters are two examples that require different implementations to get optimum performance from the complex PLDs and FPGAs. Because of their wide decoding ability, complex PLDs are well suited for maximally encoded state machines, that is, state machines in which a minimal set of variables defines each state (Fig 4b). A 4-bit counter is one example of such a state machine—4 bits define a total of 16 states.

However, implementing a maximally encoded state machine in an FPGA is not a good use of the FPGA's narrow decoding, register-rich architecture. A better approach is to use the state-per-bit or one-hot method (Fig 4c), first proposed by FPGA consulting firm Highgate Design (Saratoga, CA). In this method, the state of a single, or “hot,” register determines the current state. A state machine with 16 states thus requires 16 flip-flops. The input and a small amount of decode logic determine the next state. This approach usually requires fewer logic levels between clock edges than binary encoding and ultimately produces faster FPGA operation. One penalty of this approach is apparent if two registers become active at one time. The design may need extra logic to decode and then prevent such illegal states.

Likewise, implementing a classic binary counter in a complex PLD makes sense. Conventional binary counters use wide fan-in logic to generate high-end carry signals. An FPGA's limited fan-in makes this particular implementation cumbersome. A much simpler structure, the linear-feedback-shift-register (LFSR) counter (Fig 5), sacrifices the binary count sequence but achieves high speed with very simple logic using an FPGA. The counting sequence is the

Fig 4—This very simple state machine (a) reveals the problem of implementing a maximally encoded state machine (b) in an FPGA. The decoding logic required is a waste of the FPGA's architecture. As the state machine grows in complexity, many such decoding blocks would be necessary. However, using the one-hot method (c) in which one and only one register's output (the “hot” one) determines the current state, does away with the decoding blocks entirely.
Choosing complex PLDs and FPGAs

The first thing to recognize when choosing an FPGA is that each vendor’s devices exhibit fundamental architectural differences. These differences manifest themselves in both the individual logic blocks and the routing structure of the devices. Designers of the first FPGAs focused most of their attention on the structure of the logic blocks themselves, only to discover that the lack or abundance of routing channels can make or break the final design. Thus, the latest FPGA designs, from market leaders and recent start-ups, pay close attention to both.

The structure of FPGA logic cells ranges from extremely fine granularity to coarse granularity (Fig 6). Granularity is the amount of logic contained in one logic block. A fine-grained architecture, such as Fig 6a, is one that has very simple, basic blocks, even down to the transistor level. A coarsely grained architecture, such as (Fig 6b), has logic blocks of high complexity containing a number of digital logic functions.

Other than having to sort through architectural details, the most frustrating part of choosing one FPGA

![Diagram of binary and LFSR counters](image)

Fig 5—Implementing conventional binary counters in FPGAs isn’t optimum because these counters use wide fan-in logic to generate high-end carry signals. A linear-feedback-shift-register counter, such as this 3-bit, modulo-five counter, is a more efficient implementation for an FPGA. Note from the state table that the counter skips some states and the counting sequence is a nonbinary, pseudorandom pattern. (Courtesy Xilinx application notes)
over another is that so very little data about the final density and speed is predictable from the outset. Whereas propagation delays of complex PLDs give you a good idea of your final design's performance, delays of the individual blocks within an FPGA are meaningless. The overall speed of an FPGA is determined both by the details of the internal blocks and the interconnect delays of the final utilized chip.

Every FPGA manufacturer’s data sheets state things a little differently and with different underlying assumptions. Although the toggle rates of individual flip-flops inside each logic block tell you the speed possible from that block, there is no way to extrapolate system performance from that number due to the influence of the final routing paths.

Fortunately, more companies are now quoting attainable system-clock rates, but these numbers can also be highly misleading. Because of the speed/density tradeoff inherent to FPGAs, the speed the company was able to achieve for its example depends on the placement, routing, and implementation of the logic. You may see an advertisement for an 80-MHz 16-bit counter, but it’s very possible that to achieve that performance, the FPGA requires expert hand routing and contains no logic other than that lonely 16-bit counter. That same counter combined with other logic may run at only 25 MHz.

Propagation delay is another potentially misleading specification. Because of the structure of a complex PLD, propagation delay is a quite meaningful measure of ultimate system speed. However, because of the structure of an FPGA, you can’t use one logic cell’s propagation delay to predict the timing of the overall design.

Fortunately, help may be on the way in the form of

Fig 6—An FPGA’s granularity can range from fine to coarse, respectively referring to the simplicity or complexity of the internal logic cell’s structure. Crosspoint Solutions’ devices and Xilinx’s 4000 series represent the two ends of the granularity spectrum. Of all the available FPGAs, Crosspoint’s devices, which connect transistor-pair and RAM-logic tiles to form macrocells, most closely resemble gate arrays.
Choosing complex PLDs and FPGAs

benchmarks that have a common methodology and implementation. Both complex-PLD and FPGA vendors are cooperating to produce useful benchmarks that showcase the performance of each architecture under similar implementation conditions (see box, “Benchmarking group grapples with performance comparisons”).

Consider all criteria

Architectural differences, interconnect technologies, and design methodologies inherent in complex PLDs and FPGAs are important factors governing the choice of these devices. Many other criteria will ultimately determine the wisdom of the final choice. These criteria include (but aren't limited to) the following:

- Cost of devices and design tools
- Quality of design tools
- Number of I/O pins
- Number of registers
- Contents of vendor's macro library
- Unique device features
- Packaging
- Power consumption
- Market goals.

Some of these criteria are easy to measure, such as the number of I/O pins and registers. Others on this list deserve more comment. First, the total cost of designing with FPGAs and complex PLDs involves both the cost of the ICs themselves and the cost of design tools. More important than the actual cost per individual IC is the actual cost per function. A more expensive IC may implement a design more efficiently and provide higher performance. Currently, (prices in this business can change rapidly) complex PLDs range in price from $15 (Altera’s EPM7032) to $400 (Altera’s EPM7256). FPGAs range in price from $12 (TI's second source to Actel's ACT 1 family) to $922 (Xilinx's XC4010) for the very high density devices. (Prices are for 100-piece quantities.)

The cost of vendors' proprietary tools is a roadblock to many users, primarily those with investments in other vendors' tools or third-party tools. Vendors' software packages can cost as much as $10,000. In some cases, you don't need a whole suite of tools from any given vendor, but perhaps just one that couples to third-party software. However, you should also be aware that this coupling isn't always optimum. For example, a design captured using third-party software may not run successfully on the vendor's compiler. You may get only a cryptic error message that says something's not right. So, though buying proprietary tools may seem excessive, you may run into some time lags when using coupled software. On the flip side, third-party software can sometimes be better than proprietary tools at performing certain tasks.

Ultimately, judging the efficiency of the software tools isn't easy. One question that may help you judge is to ask vendors if hand routing will be necessary to produce an optimal design.

The completeness of a vendor's macro library—a library of expert-crafted logic functions—can also be a selling point for a particular complex PLD or FPGA. Every vendor supports some type of library. However, not all libraries contain exact equivalents to 7400 series standard logic but, instead, contain vendor-specific functions. Such a library makes retargeting and converting to a gate-array difficult.

Special features of FPGAs may influence your choice of devices. Some of the newest FPGAs include such features as JTAG boundary scan, on-chip RAM, and

Many factors will determine whether a complex PLD or FPGA better suits a particular design. This decision tree includes some basic criteria to consider when choosing between the two types. This tree makes the decision look straightforward, but most complex designs will involve compromises between the two devices' strong points.
The Military 68332 is the first member of the Motorola Military 68300 Family of modular embedded controllers featuring fully static, high-speed complementary metal-oxide semiconductor (CMOS) technology. This monolithic 32-bit integrated microcontroller combines high-performance data manipulation capabilities with powerful peripheral subsystems.

In short, it's fast, flexible, efficient and powerful.

Ada Supported

Motorola understands the unique demands placed upon Military systems and works closely with software vendors to ensure that its products are fully supported.

The Military 68332 is screened in accordance with MIL-STD-883. Electrical samples are available NOW! The 883 version will be available in September '92.

Introducing Additional Configurations

With the introduction of additional configurations powered by the CPU32, the Motorola Military Modular MCU family allows you to leverage your development resources further. The 68340 integrates the CPU32 with a 2-Channel DMA, 2-Channel Serial I/O, and two Multiple-Mode 16-Bit Timers. The 68F333 integrates the same CPU and Timer as the 68332 with a massive array of 64 bytes of Flash EEPROM and an 8-Channel 10-Bit Analog to Digital Converter! Samples are planned for availability in third quarter '92.

For more information on the 68332, order Brochure #BR1406/D by calling toll-free 1-800-441-2447. Or complete and return the coupon below to Motorola, P.O. Box 20912, Phoenix, AZ 85036.

Motorola and ® are registered trademarks of Motorola Inc.
Choosing complex PLDs and FPGAs

fast carry logic. If package style is important, be aware that, for example, not all complex PLDs and FPGAs come in surface-mount packages.

Delving into small details too quickly can obscure some other information that you’ll have to digest to choose the right complex PLD or FPGA. Backing away from the design details and considering overall market goals will also help narrow down the decision.

Most users may start out thinking that their product will sell millions and they’ll end up converting to a gate array (Ref 4). However, according to the vendors and users interviewed for this article, it seems that many FPGAs or complex PLDs find permanent homes in the end product. Still, your estimated production volume will have great bearing on the device you choose, whether it’s because of the specific device cost of the FPGA or because you’re looking for an architecture amenable to gate-array conversion.

Another product development issue to consider is prototyping time. If it’s necessary to turn out prototypes quickly, the design-compiling time and device-programming time may be huge factors in your product’s success. And even though the programming time may not seem critical during development, it may turn out to be crucial to the manufacturing department. Depending on the design platform, PLDs can take minutes to compile, whereas very dense FPGAs can take hours.

Considering all facets of complex PLDs and FPGAs—from the design methodology to market goals—is indeed daunting to the new user, but these devices are too useful to ignore. Although you won’t find any easy answers when it comes to choosing high-density programmable logic, the rewards of density, flexibility, and user configurability are worth the effort.

References

2. Conner, Doug, “Hands-on FPGA Project—Migrating to FPGAs: any designer can do it,” EDN, April 23, 1992, pg 120.

Manufacturers of complex PLDs and FPGAs

For more information on complex PLDs and FPGAs such as those described in this article, circle the appropriate numbers on the Information Retrieval Service cord or use EDN’s Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Actel Corp
955 E Arques Ave
Sunnyvale, CA 94086
(800) 228-3532
FAX (408) 739-1540
Circle No. 650

Altara Corp
2610 Orchard Pkwy
San Jose, CA 95134
(800) 800-7250
FAX (408) 435-1394
Circle No. 653

Atmel Corp
2125 O’Neil Dr
San Jose, CA 95131
(408) 411-0311
FAX (408) 436-4200
Circle No. 654

AT&T Microelectronics
555 Union Blvd
Allentown, PA 18103
(215) 439-5237
FAX (215) 778-4085
Tom Hickey
Circle No. 655

Concurrent Logic Inc
1290 Oakmead Pkwy
Sunnyvale, CA 94086
(408) 522-8703
FAX (408) 732-2765
Circle No. 656

Crosspoint Solutions Inc
5000 Old Ironside Dr
San Francisco, CA 94109
(408) 988-1584
FAX (408) 980-9394
Circle No. 657

Cypress Semiconductor
3901 N First St
San Jose, CA 95134
(408) 943-2600
Circle No. 658

Lattice Semiconductor
Corp
5555 NE Moore Ct
Hillsboro, OR 97124
(503) 327-8425
FAX (503) 681-3037
Circle No. 659

Philips-Signetics
Box 3400
San Jose, CA 95123
(408) 991-2339
Circle No. 660

Quicklogic Corp
2933 Bunker Hill Lane
Santa Clara, CA 95054
(408) 987-2000
FAX (408) 987-2012
Circle No. 661

Texas Instruments
Semiconductor
Group (SC-91084)
Box 809066
Dallas, TX 75380
US and Canada,
(800) 336-5236, ext 700;
outside US, (214) 991-6611,
ext 700
Circle No. 662

Xilinx Inc
2100 Logic Dr
San Jose, CA 95124
(408) 559-7778
FAX (408) 559-7114
Circle No. 663

You can reach Technical Editor Anne Watson Swager at (215) 645-0544.
Terminate Your SCSI Problems

Unitrode’s new BUS BOSS™ - the UC5601 active terminator - is the one chip solution you’ve been waiting for. Let the UC5601 handle your toughest SCSI challenges. It’s not just a regulator.

Connectivity Solution

The UC5601. No other active terminator in the industry offers this level of capability, with these on-board features:

- 18 Thin film termination resistors
- Factory trimmed voltage regulator
- Low level clamping
- Logic command to disconnect all terminating resistors
- Low supply current in disconnect mode
- 28-Pin SOIC / PLCC
- Meets SCSI standards

For more information on the UC5601 and your nearest Unitrode Representative, call, FAX or write us today: Unitrode Integrated Circuits, 7 Continental Blvd., Merrimack, NH 03054, FAX (603) 424-3460.

(603) 424-2410
4-20mA Transmitters for RTDs & Bridges

One Chip Solution
XTR103 and XTR104 are monolithic, two-wire transmitters providing low cost signal conditioning solutions in 4-20mA current loops. **XTR103**—for RTDs—includes a precision instrumentation amplifier, excitation current sources, and current output circuitry. Compensation circuitry corrects the inherent nonlinearity of RTD temperature sensors. **XTR104**—for bridge sensors—adds 5V voltage for strain gages and other sensors. It's versatile linearization circuitry can actually correct sensor nonlinearity. They're your best choice for precision 4-20mA transmitter applications.

9V Operation
XTR103 and XTR104 perform with loop voltages down to 9V—ideal for personal computer-based systems. Compared to discrete designs they reduce complexity, improve performance and lower costs. And, they're specified over the extended -40/+85°C industrial temperature range. Available in 16-pin plastic DIP, 16-lead SOIC, and dice.

Key Specifications:
- 9V to 40V supply range
- ≤ 1% total error (-40/+85°C)
- 110dB PSRR (min)
- Excitation outputs: 0.8mA (two)XTR103
 5VXTR104
- From $6.45
 (U.S. OEM prices, in 1000s.)

FREE Evaluation Kit
For your evaluation kit including samples, applications bulletins, data sheets, and instrumentation amplifier guide, just call 1-800-548-6132. Or contact your local sales representative for more information.

Burr-Brown Corp.
P.O. Box 11400
Tucson, Az 85734

CIRCLE NO. 66
The Fluke PM 3094 is the only 200 MHz analog oscilloscope offering full 4-channel performance for under $3,500. Only Fluke’s PM 3094 gives you true 4-channel input, allowing four individual amplitude settings, with a full range from 2 mV to 5V on each channel. Plus dual trace differential measurements. And verniers are always calibrated. All for about half the price of other 4-channel scopes.

And about the same as "2 + 2" scopes that don’t offer nearly the performance or flexibility. Dedicated switches for all major functions make the PM 3094 easier and more intuitive to use. Unlike other scopes with fewer buttons that force you to search through multiple layers of menus. All operations and settings are micro-controlled. And the Autoset function instantly displays any input signal, without manual set-ups. Get the one scope that’s at the four-front of price, reliability and accuracy: The PM 3094 from Fluke.

For a Scope Selection Guide, literature, or a demonstration, call 1-800-44-FLUKE.
Desktop CAE means every engineer has his or her own design station, providing a comprehensive workspace for conceiving and designing the product to fulfill an engineering task. All of the engineer’s design needs are at his or her fingertips.

The Design Center provides just this! As a universal circuit design environment, analog and digital circuits can be created using a schematic editor, then directly simulated and graphically analyzed for correct behavior. Whether you’re operating on a Sun workstation running OpenWindows, or on an IBM-PC running Microsoft Windows, all of this is achieved from a single system designed for user friendliness. This is Desktop CAE.

The Design Center is a self-sufficient system, easily maintained and used by the engineer to whom it belongs. Easy installation, intuitive user interface, and comprehensive documentation are characteristic of the Design Center. Everything you need to get the job done is on your desktop. This is Desktop CAE.

MicroSim Corporation is proud to provide you with the Design Center for Desktop CAE. We believe the Design Center stands on its own. But if you ever need assistance, our development and application engineers are always available through our free technical support program.

The Design Center is synonymous with Desktop CAE. Consider the Design Center for your engineering business, and make it the most effective and productive business that it can be. For more information on the Design Center, please call us toll free at (800) 245-3022 or FAX at (714) 455-0554.

MicroSim Corporation
The Standard for Circuit Design
20 Fairbanks • Irvine, CA 92718

THE MAKERS OF PSpice

PSpice is a registered trademark of MicroSim Corporation

EDN 88 September 17, 1992 For More Information on IBM PC Circle #150 On Macintosh Circle #151, On SPARCstation Circle #152
TI's 7.5-ns '22V10. For those times you're torn between profit and performance.

Trying to get the best performance on a tight budget can create a few hang-ups. Texas Instruments has a simple solution. Introducing the TIBPAL22V10-7. TI's newest high-performance programmable logic device that's designed to fit the bottom line as easily as it meets your design specs.

High performance, low price
While competitive pricing is one of our '22V10's most outstanding features (less than $17 when you purchase 5,000 or more), you'll be even more impressed by its performance. At an incredibly fast 7.5 ns, our '22V10 supports system speeds up to 50 MHz with a variable term distribution that gives you more design freedom with complex functions. It's an excellent choice for high-end systems using the latest microprocessors. And since all this is achieved using our proven bipolar process, the '22V10 provides a universal architecture that's easy to work with using familiar design tools.

Accurate, dependable and available today
Speed and ease of use mean nothing if difficult programming keeps your product from getting to market on time. That's why our '22V10 is designed for quick, dependable programming with your present tools. In fact, we're running at a 99.4% first-time programming success rate.
Best of all, our 7.5-ns '22V10 is available in volume today with just-in-time and ship-to-stock delivery programs tailored to meet your needs. You'll also have the backing of our global support network to help keep things running smoothly.

Hang in there — a free sample is on the way
Simply return the attached reply card or call 214-995-6611, ext. 3717, for one free TIBPAL22V10-7.
DSP chips have touched almost all areas of electronics. Now the DSP industry is making it easier for you to use these powerful devices. Complete systems in chip-set form are now available, as are good tools to develop DSP applications.

The DSP industry is expanding into an ever increasing number of applications. DSP chips have invaded disk drives, cellular telephones, modems, radios, medical instruments, appliances, automobiles, and a number of other products. DSP is well beyond a strange new technology looking for applications. It is a maturing industry with chip sales alone exceeding a billion dollars in 1991. The expected growth is more than 30% per year for the next few years. The chances that one of your projects will benefit from using these devices is better than ever.

The biggest obstacle to many engineers is the perceived difficulty of using DSP. It would be very difficult if you just grabbed a DSP chip and a data book and tried to use it. That is what you would have had to do a few years ago. But the DSP industry has not been just sitting around. Many vendors are working hard to make DSP easier to use. You have many choices as to how you will use DSP. It is not necessary to spend months or even years becoming a DSP expert.

The easiest method of using DSP is to buy a chip set that was created to fit a market niche. Modem chip sets are a perfect example. You can create a high-speed modem without really concerning yourself with the DSP portion of the system. For example, AT&T has a chip set for 9600-baud and above modems. In this application, a DSP16A works as a data pump in conjunction with an analog front end and a digital interface chip.

Motorola is working with many vendors to be able to license niche-application code directly. The company wants to be a one stop shop for DSP. You will be able to buy the DSP chip and the software from the same vendor. But if you wish, you can negotiate directly with the algorithm developer.

The DSP chip manufacturers aren't the only ones providing chip sets with software and hardware support. DSP Group Inc (San Jose, CA) is an example of a company that is providing niche market chip sets. They use custom versions of TI's fixed-point DSP chips to implement a variety of functions. For example, they provide a chip set for digital answering machines. You don't have to be aware that there is a DSP chip in the chip set. You just tell it what you want done and the chip set does it.

Analog Devices is attempting to create an open standard for DSP called Signal Computing. This unites a general-purpose DSP with third-party software so that you can gather the DSP functions you need. Independent Algorithm Vendors (IAVs) create the code that runs on the DSP, which you can license. With the
The future looks bright for the DSP market

According to Will Strauss, President of Forward Concepts Co (Tempe, AZ), the total DSP-chip market was worth more than a billion dollars in 1991. This is divided into general-purpose, function- and algorithmspecific, building-block, and μP/μC DSP chips. The general-purpose DSP chips make up 36%, or $395 million, of the total market (Fig A).

Strauss expects the total DSP market to grow 29% next year, with the general-purpose DSP-chip market growing 39% in 1992. This growth is expected to continue for many years. There are so many applications and so much growth that there is room in the market place for many different products.

TI is still way out in front with 57% of the market (Fig B). Many large-volume applications are beginning to hit production. The largest market is modems, followed by disk drives and then by speech and audio applications. Digital cellular phones are coming on strong and will be one of the top applications soon.

Fig A—This chart shows the total DSP market for 1991. (source Forward Concepts)

Fig B—This chart shows the general-purpose DSP market for 1991. (source Forward Concepts)
ten for them then any others. Many of the DSP text books you can use to get up to speed in using DSP have examples written for the TI chips.

Block-level programming

If you have to create your own algorithms, you may consider using a block-diagram type of programming system. Comdisco, Mentor, and Star Semiconductor have systems that let you create your program with block diagrams and then let the system implement it. Comdisco and Mentor have the ability to simulate the design and then implement it in a variety of ways.

Each of these systems has a library of blocks you can choose from. You use a graphical method to draw a signal-flow diagram to implement your algorithm. You can also create your own blocks to expand on the existing blocks.

Once the design is completed, you can simulate it and modify it to tune it to your application. After proving your concept, the system can automatically generate code for general-purpose DSP chips. You can implement your DSP system on an FPGA or other ASIC, or you can synthesize a custom IC.

Star Semiconductor uses a different approach. You enter the design in a similar manner but skip the simulation step because you can run the code directly on the SPROC-1000. The company's block-diagram programming tools work only with their chips. This has the disadvantage of requiring you to implement your design with their devices. It has the advantage of letting you design your program and quickly implement it in real time on the actual device. The development cycle time is greatly reduced because you don't have to go through lengthy simulations; you can use the real thing.

Menu-based programming

Array Microsystems has a similar approach to programming their chip set. The ArraysoFFT package lets you select what you want the chip set to do from pull-down menus (Fig 1). This chip set is more limited than most general-purpose DSPs but is very fast, performing a 1024-point FFT in 131 µsec.

Even if you can't use the easiest approaches, you still may be able to use a DSP library to get the job done. There are many companies that sell libraries that have standard algorithms in either source code or object code. Sonitech International Inc (Wellesley, MA) is an example of a company that sells DSP libraries as well as board-level DSP products and also licenses code for many of the popular algorithms.

There is more to most DSP projects than just the creation of code to run algorithms. You will often have to write a large portion of the code to take care of system functions such as controlling indicators, communicating, interfacing with an operator, or controlling a few lines here and there. High-level languages and operating systems have been available for DSP chips for many years. The most popular high-level language is C. Almost all of the floating-point chips have a C compiler. Most also include source-level debuggers. The TI floating-point DSP chips (C3X and C40) also have an Ada compiler.

Even though the DSP portion of code generation can be tough, you will probably have to write plenty of normal µP-type code. The first DSP chips were difficult to program, but the more recent devices are fine µPs. Their architectures and many of their instructions are similar to a µP, and quality tools are available.

Real-time operating systems

Another major aid to using DSP chips is a real-time operating system. The most popular operating system for DSPs is Spox by Spectron Microsystems Inc (Santa Barbara, CA). It is a real-time operating system that provides a real-time multitasking kernel and modules for memory management, stream I/O, DSP math functions, and a C library. The company has just added a debug feature and multiprocessing support. Spox runs on Analog Devices'
THE DaSP/PaC CHIPSET:
The heart of the world's fastest DSP product family

The Digital array Signal Processor (DaSP) executes 16 high-level instructions, including FFT butterflies, windowing, complex multiplies, and general-purpose functions. The Programmable array Controller (PaC) manages the entire system, including address generation for the DaSP and memory, and I/O up to 80 MHz. Using a single chip, for example, a 1024 point FFT requires only 12 instructions and can execute in only 131 µsec; a complex FIR filter, using 28 instructions, processes at a 2.3 MHz rate. For even higher performance, you can cascade the chipsets. Both utilize a 144-pin PGA format and are available in 30 and 40 MHz versions. To receive complete technical information, call array Microsystems' Hotline: 719-540-7999.

400 MOPS FOR 6U VMEbus SYSTEMS

This 6U VMEbus board performs 400 million operations per second and is optimized for frequency domain processing such as FFTs and finite impulse response (FIR) filters using fast convolution. The FDaP features a private 32-bit, 20 MHz high-speed data I/O bus and extensive double buffering for continuous processing of real-time data. An additional 32-bit complex output provides phase/magnitude data. The a66540 is available in 25 MHz and 40 MHz versions. A single 40 MHz version can execute a 1K point FFT in 132.7 µsec and a 64K point FFT in 13.1 ms. These times are nearly halved for real input. Multiple FDaPs can be cascaded to achieve almost linear improvement in FFT performance. Plug 400 MOPS into your system by calling array Microsystems' Hotline: 719-540-7999.

CORNERTURN PROVIDES QUANTUM LEAP IN 2D IMAGE PROCESSING PERFORMANCE

The a66550 Cornerturn™ board, used in conjunction with the a66540 FDaP board for real-time two-dimensional image processing, is the first capable of processing an entire 256 x 256 pixel frame of image data in 15.2 milliseconds. This equates to a continuous, real time rate of 65 frames per second. For 512 x 512 images, the board transforms images in 71 milliseconds, or 14 frames per second. Designed for medical imaging, radar, sonar, machine vision, and other real-time 2D image processing applications, the board sets features performance of 400 MOPS at a clock rate of up to 40 MHz. The Cornerturn accepts 32-bit complex I/O data through 10 MHz double-buffered external I/O connectors or through the VMEbus and stores it in one of four on-board frame store memory buffers. For technical assistance, call array Microsystems' Hotline: 719-540-7999.

OUTSIDE THE USA, CALL YOUR NEAREST INTERNATIONAL DISTRIBUTOR

Call the DSP Hotline: 1-719-540-7999 • 1420 Quail Lake Loop, Colorado Springs, CO 80906 Telephone 719-540-7900, FAX 719-540-7950 Email support@array.com

Advertisement

The heart of the world's fastest DSP product family

Performance Benchmarks

<table>
<thead>
<tr>
<th>FFT size</th>
<th>a66500/32K @25MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 Real</td>
<td>7.2 µs</td>
</tr>
<tr>
<td>64 Complex</td>
<td>10.9 µs</td>
</tr>
<tr>
<td>1024 Real</td>
<td>125.9 µs</td>
</tr>
<tr>
<td>1024 Complex</td>
<td>209.9 µs</td>
</tr>
<tr>
<td>32K Real</td>
<td>5.90 µs</td>
</tr>
<tr>
<td>32K Complex</td>
<td>10.49 µs</td>
</tr>
<tr>
<td>64K Real</td>
<td>15.73 µs</td>
</tr>
<tr>
<td>64K Complex</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Call the DSP Hotline: 1-719-540-7999

EDN September 17, 1992 • 93

Circle No. 120 For Literature Only Circle No. 121 For Sales Rep to Call

PC-FDaP PERFORMS 250 MOPS!

The a66550 Frequency Domain array Processor (FDaP) brings high performance FFT processing to any PC-AT compatible computer. The two board set will fit into two full size PC-AT slots, operate on the 16 bit PC-AT (ISA) bus, and allow real or complex input from either the high speed connectors on the back panel or from the PC-AT bus. The FDaP accommodates an optional complex I-Q to magnitude and-phase converter for post-FFT processing. Available in two memory configurations, the a66550 handles complex FFTs up to 32K points and real FFTs up to 64K points. The a66550 can compute a 1024 point complex FFT in just 210 µsec. For complete technical information, call array Microsystems' Hotline: 719-540-7999.
21000 family, Motorola’s 96002, and TI’s C3X and C40.

A new version for the fixed-point family, MicroSpox, has been running on Motorola’s 56000 and is now available for Analog Device’s ADSP2100 family and TI’s TMS320C2X and TMS320C5X family. MicroSpox contains only the multitasking kernel, I/O, and memory management.

Motorola’s 56000 also runs VRTX from Ready Systems, a real-time operating system that runs on virtually all major µPs. National Semiconductor is planning to have a real-time operating system for the 32SF640 available by the end of the year.

AT&T and Spectron Microsystems both have software interfaces between the DSP chip and the end-user application. VCOS from AT&T is an operating system that implements the DSP3210 on the mother board of a PC or workstation. OSPA from Spectron Microsystems works with Spox and serves a similar purpose with other DSP chips.

Both products isolate the application programmer from the algorithm developer. You can just call DSP functions and let the operating system take care of everything else.

In almost all projects you will have to write some portions of the code in assembly language. In some projects you may have to write all of the code in assembly language. Often the DSP portion must be optimized by programming in assembly language. Writing assembly code for DSP chips is often like writing code for your favorite µP. Many DSP chips are capable µPs. It is difficult to generate assembly code that takes advantage of all of the parallel features of the DSP chips. Unfortunately, this is usually the code that

Key to abbreviations used in block diagrams

AB	combined program-and-data address bus
ACC	accumulator
ADC/DAC	analog to digital and digital to analog converter
ADDR GEN	address generator
ALU	arithmetic logic unit
BIT MANIP	bit manipulation
BS	barrel shifter
CDB	control data bus
CM	cache memory
CPU	CPU bus
DAB	data address bus
DB	combined program-and-data data bus
DDB	data data bus
DM	memory for data only
DMAAB	DMA address bus
DMADB	DMA data bus
DMAC	direct memory access controller
FX	fixed-point
FP	floating-point
GDB	global data bus
HOST INTER	host interface
IDB	instruction data bus
INT	external interrupt
MAC	multiplier accumulator
MULT	multiplier
PAB	program address bus
PDB	program data bus
P/DM	program and data memory
PIO	parallel I/O
PM	memory for program only
PPCP	parallel processor communication port
PRAB	peripheral address bus
PRDB	peripheral data bus
REG	register
REGB	register bus
SIO	serial I/O
TIM	timer
XAB	external address bus
XDB	external data bus
XDAB	external data address bus
XDDB	external data bus
XIOAB	external I/O address bus
XIODB	external I/O data bus
XPAB	external program address bus
XPDB	external program data bus
Drive your DSP design all the way home.

Why complicate your travel plans? Zip along the entire DSP design route with SPW™ — the Signal Processing WorkSystem® from Comdisco.

SPW is the only DSP and communications design software tool that’s complete and integrated. The only one that can take you all the way from idea to implementation. No matter where you’re headed. No matter which road you take. And it’s fast. It has all the horsepower you need to cut design time by as much as 90 percent.

First, SPW helps you choose your destination. You can quickly draw from its extensive libraries of reusable function blocks. And you can take advantage of SPW’s open architecture to incorporate your own models.

After this, SPW automatically transforms your design into an error-free simulation program. One that lets you perform accurate design, prototyping and analysis. One that confirms that you’re headed in the right direction.

And, to assure that your way is free from bumps, potholes, and those awful “dead end” signs, SPW comes with the industry’s widest range of implementation options. Options that generate code for floating- and fixed-point DSP chips as well as DSP systems with multiple processors. Options for bit-true fixed-point simulation that automatically generate VHDL and provide seamless links to the leading logic synthesis tools. Options that pave the way to fast FPGA and ASIC production.

So, how about a test drive? Call us at 415-574-5800. And learn how SPW can put you in the fast lane to market.

Comdisco Systems, Inc

CIRCLE NO. 58 EDN September 17, 1992 • 95
has to be optimized for speed.

But vendors do not leave you on your own to create assembly-language programs. There is a considerable amount of free DSP code. You can find it on computer bulletin boards operated by the DSP vendors. Or, you can get it out of some of the excellent application manuals that are available. By looking at this code, you can quickly get up to speed on using assembly language. You may even be able to modify some existing code to get what you want.

Almost all of the DSP manufacturers have developed evaluation packages that include an evaluation board and enough software tools to give you a feel for what the chip can offer, what their support is like, and how well their tools work (Ref 1). Spending a couple of bucks and a few days can give you the confidence to make informed choices about which part to use.

Another trend that will make your job easier is custom DSP chips. You can take a DSP core and surround it by the memory and peripherals you need. So far, this approach is only viable for very-high-volume applications. All DSP chip makers are migrating their chips into a core that lets you surround the basic chip with the peripherals you need. At present TI sells between 10 and 20% of their products as custom devices based on their fixed-point core. Within a few years, custom devices are expected to grow to 50% of production. As the volume grows, it will become cheaper to get the DSP chip you need, and lower-volume applications will be able to take advantage of it.

You should also keep an eye on µPs and microcontrollers (µCs) because many are gaining some DSP capability. You will continue to see multipliers and other DSP elements sprout on these chips. But just sticking a multiplier on a chip doesn’t mean that it can perform DSP functions. Many of the devices that have limited DSP capability are designed for a particular application. Your algorithm may or may not be enhanced by the added circuitry.

An example of DSP growth on a µC is Motorola’s 68HC16. It is a 16-bit device that can perform a multiply and accumulate in 720 nsec. In terms of traditional DSP, this is not very fast. But for the applications it was designed for, it works very well. This chip was designed for disk-drive applications but is useful elsewhere.

Motorola admits that the device is not fast but points out that many applications can’t afford, and don’t need, full general-purpose DSP capability. When reviewing requirements with potential customers, Motorola blocks out a combined µC and DSP including memory for both devices. Everyone gets excited until the cost is discussed. All of that silicon costs a lot of money.

By adding incremental DSP capability, an incremental cost is incurred. By knowing your algorithm and knowing how to get by with only the capabilities you really need, you can reduce the cost of the µC chip.

National is approaching the problem in a similar manner to Motorola. Almost all of their µP products have some DSP capability on the chip. Each version is intended for a niche market, from digital answering machines, to modems, to faxes, to printers, to combined office equipment that does all of these functions. Each chip has a different amount of DSP based on the needs of the algorithm in the circuitry.

Zilog has looked at the problem and decided to create its own DSP chip (Z89C00) and integrate it onto a Z8 µC. The µC and the DSP chip each have their own

Index to DSP µPs included in this directory

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Device</th>
<th>Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Devices</td>
<td>ADSP-2100 family</td>
<td>16-bit fixed-point</td>
<td>100</td>
</tr>
<tr>
<td>Analog Devices</td>
<td>ADSP-21020</td>
<td>32-bit floating-point</td>
<td>121</td>
</tr>
<tr>
<td>Array Microsystems</td>
<td>a66 chip set</td>
<td>16-bit fixed-point</td>
<td>136</td>
</tr>
<tr>
<td>AT&T</td>
<td>DSP16 family</td>
<td>16-bit fixed-point</td>
<td>101</td>
</tr>
<tr>
<td>AT&T</td>
<td>DSP32C/3210</td>
<td>32-bit floating-point</td>
<td>122</td>
</tr>
<tr>
<td>Motorola</td>
<td>DSP56156</td>
<td>16-bit fixed-point</td>
<td>102</td>
</tr>
<tr>
<td>Motorola</td>
<td>DSP56001/2</td>
<td>24-bit fixed-point</td>
<td>103</td>
</tr>
<tr>
<td>Motorola</td>
<td>DSP96002</td>
<td>32-bit floating-point</td>
<td>125</td>
</tr>
<tr>
<td>National</td>
<td>NS32SF640</td>
<td>32-bit fixed-point</td>
<td>104</td>
</tr>
<tr>
<td>NEC</td>
<td>77C25</td>
<td>16-bit fixed-point</td>
<td>105</td>
</tr>
<tr>
<td>NEC</td>
<td>77016</td>
<td>16-bit fixed-point</td>
<td>106</td>
</tr>
<tr>
<td>NEC</td>
<td>77220</td>
<td>24-bit fixed-point</td>
<td>109</td>
</tr>
<tr>
<td>NEC</td>
<td>77240</td>
<td>32-bit floating-point</td>
<td>132</td>
</tr>
<tr>
<td>SGS-Thomson</td>
<td>ST18 family</td>
<td>16-bit fixed-point</td>
<td>110</td>
</tr>
<tr>
<td>Sharp Electronics</td>
<td>LH9124/9320 chip set</td>
<td>24-bit fixed-point</td>
<td>141</td>
</tr>
<tr>
<td>Star Semiconductor</td>
<td>SROC-1000</td>
<td>24-bit fixed-point</td>
<td>113</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>320C1X</td>
<td>16-bit fixed-point</td>
<td>114</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>320C2X/5X</td>
<td>16-bit fixed-point</td>
<td>117</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>320C3X</td>
<td>32-bit floating-point</td>
<td>135</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>320C40</td>
<td>32-bit floating-point</td>
<td>126</td>
</tr>
<tr>
<td>Zilog</td>
<td>Z89C00</td>
<td>16-bit fixed-point</td>
<td>118</td>
</tr>
<tr>
<td>Zor on</td>
<td>34325</td>
<td>32-bit floating-point</td>
<td>129</td>
</tr>
</tbody>
</table>
Ariel V-C40 Hydra Breaks the BOPS Barrier

1.1 billion operations per second sets the record for 6U VMEbus coprocessor cards

Only Ariel’s Hydra combines four TI TMS320C40 DSPs to deliver twice the processing speed and four times the I/O bandwidth of any 6U VMEbus coprocessor card. It’s the only choice for the most compute-intensive multiprocessor applications.

The V-C40 packs up to 64 Mbytes of DRAM as well as up to 5 Mbytes of SRAM in eight banks—two per processor. Each DSP has direct access to memory via dual 32-bit memory buses, as well as six parallel I/O ports and a high-speed six-channel programmable DMA controller. All six channels can transfer data simultaneously without interrupting program execution.

Hydra also includes a 24-bit parallel ADbus that lets you access a wide range of high-speed data acquisition cards. Development support includes an ANSI C compiler and the first PC-based XDS510 in-circuit emulator to support parallel processing. And of course, with Ariel’s legendary technical support, you’ll never work alone.

To learn more about the V-C40 Hydra, or any of Ariel’s DSP products for ISA/EISA, VMEbus, SBus, Hewlett-Packard, NeXT, or Macintosh computers, send us a fax, leave us a message on the BBS or E-mail, or just give us a call.
Fast lane, flat out. Only open road ahead. And no looking back. Just another day in the life of a disk drive designer.

Well, strap yourself in a little tighter—the race is picking up.

VTC proudly submits its latest addition to your high-tech disk drive toolbox for the '90s: the world's first 3-volt read/write preamp. Now ready for you to put through the paces.

It's another in a long line of industry firsts from VTC, your trusted partner in read/write electronics for almost three decades. The company that's been there through it all—and intends to stay right there in it with you.

The VM3200 is a high-performance, very low power read/write preamp for two-terminal thin-film/MIG recording heads. It operates on a single 3.3V power supply, making it ideal for battery-powered 2.5 and 1.8-in drives in laptops, notebooks, and palmtop PCs.

The innovative circuit design of the VM3200 maintains 5V performance at 3.3 volts. Not only does it meet your needs in today's mixed 5V/3V environment, it makes your transition to the complete 3V system much easier.

Key features include fast current rise time, low input noise level, and a sleep mode that reduces power dissipation to 1.8mW. It's available for two or four channels, in a variety of packages.

The VM3200: another first for VTC. Because we put you first.

So what's the first thing you do? Call us, of course, and—may we suggest speed dialing? VTC Inc., 2800 East Old Shakopee Road, Bloomington, MN 55425 USA. 612/853-5100. Fax 612/853-3355.

Call 1-800-VTC-DISC
memory and communicate to each other via a set of common registers. The combined chip is intended for modem and fax applications. In these applications, the requirements of the DSP portion of the code are compute intensive enough to warrant more capable DSP hardware on the same chip. But even this chip is limited in order to keep the cost down. It doesn’t have a barrel shifter or zero overhead looping, it only has a 24-bit accumulator, and it lacks a few more features of other DSP chips. But you don’t always need all of the functions of a general-purpose DSP chip. By leaving some things off the chip, it costs a lot less.

It is also possible to let the DSP chip absorb the µC functions. In many applications a µC will run much less than 1 MIPS. When a DSP chip is runs at 20 MIPS, it usually has plenty of power to spend some time on the functions normally taken care of by a µC.

Some DSP applications need as much power as possible. In these cases, like video compression, the DSP chip will usually be doing just DSP functions. But many other applications leave the DSP chip idle some of the time. With the increasingly capable tools, you should be able to bring the control functions into the DSP chip.

All of these methods have varying degrees of difficulty and flexibility. It is sometimes dangerous to adopt a new technology and expensive to acquire the expertise. There are many companies that are doing their best to reduce the danger and cost. But the most dangerous approach is to ignore DSP all together. You can be assured that your competition isn’t ignoring it. It has been proven that DSP can bring immense performance and functionality gains to a product.

Reference

Author’s biography

David Shear is one of EDN’s technical editors. He can be reached at (503) 754-9310.

Article Interest Quotient (Circle One)

High 473 Medium 474 Low 475
ADSP-2100 FAMILY

16-BIT FIXED-POINT CMOS DSP µP

AVAILABILITY: All units are in production now.

COST: ADSP-2100 $45 (1000); -2101, $36 (1000); -2102, $34 (min 5000); -2105, $9.90 (1); -2106, $11.39 (min 25,000); -2111, $48 (1000); -2112, $46 (min 25000); -21 msp50, $57 (1000); -21 msp51, $40 (min 25000).

SECOND SOURCE: None.

DESCRIPTION: The ADSP2100 family offers a variety of options, ranging from the 2100, without any on-chip memory and a Harvard architecture brought off-chip, to the 21 msp51, with program and data ROM and data RAM and peripherals, including an ADC, DAC, and host-interface port, on-chip. The data memory has a 16-bit width, but the program memory has a 24-bit-word width to control the parallel operations. Low voltage versions are now sampling.

FEATURES: 60-, 77-, 80-, 100-, 125-, and 167-nsec cycle-time versions.

Separate on-chip program and data buses.

On-chip memory: The 2100/A has no on-chip memory. The 2101 has a 2k x 24-bit program RAM and a 1k x 16-bit data RAM. The 2102 has a 2k x 24-bit program ROM or RAM and a 1k x 16-bit data RAM. The 2105 has a 1k x 24-bit program RAM and a 512 x 16-bit data RAM. The 2106 has a 1k x 24-bit program ROM or RAM and a 512 x 16-bit data RAM. The 2111 and 21 msp50 have a 2k x 24-bit program RAM and a 1k x 16-bit data RAM. The 2112 has a 2k x 24-bit program ROM or RAM and a 1k x 16-bit data RAM. The 21 msp51 has a 2k x 24-bit program RAM, 2k x 24-bit program ROM, and a 1k x 16-bit data RAM.

Separate program and data buses brought off the chip only on the 2100/A.

All other parts combine program and data buses off the chip.

Off-chip memory capacity: The 2100/A has 32k x 24-bit program data memory capacities. All the others have 16k x 24-bit program and 16k x 16-bit data memory capacities.

Boot memory controller loads program from external byte-wide EPROM (except 2100/A).

On-chip peripherals: The 2100/A has no on-chip peripherals. The 2101 and 2102 have two serial I/O ports and a timer. The 2105 has one serial I/O port and a timer. The 2111/2 have two serial I/O ports, a timer, and a host interface port. The 21 msp50 has two serial I/O ports, a parallel I/O port, a timer, and a 16-bit ADC/DAC (linear codec).

Multiplier/accumulator accepts 16-bit fixed-point input and creates 32-bit fixed-point results within a 40-bit accumulator. 16-bit ALU. 32-bit bidirectional barrel shifter. 40-bit accumulator.

Multiplier/accumulator, ALU, and shifter are separate blocks connected by the 16-bit R-bus and the data bus.

Zero-overhead looping.

Only the 2100/A has a 16 x 24-bit on-chip cache.

Direct, indirect, immediate, circular, and bit-reversal addressing modes.

Two address generators.

No on-chip DMA. Serial port and codecs have auto buffer, which transparently transfers data to and from memory. 16-level hardware stack. Status stack limits interrupts to four levels of nesting on the 2100/A, seven levels on the others.

Four external interrupts on the 2100/A; three external interrupts on others.

The 2100/A has only hardware wait states. Others have only software-programmable wait states.

No on-chip emulation port.

Only the 21 msp50 has power-down mode to CMOS standby levels. The 2101, 2105, 2106, 2111, and 2112 have an idle mode, which lowers power until an interrupt is detected.

Packaging: 2100/A, 100-pin PQFP and 100-pin PGA. 2101/2, 68-pin PGA and 68-pin PLCC. 2105/6, 68-pin PLCC. 2111, 100-pin PQFP and 100-pin PGA. 21 msp50/1, 100- and 132-pin PQFPs, 144-pin PGA.

HARDWARE

Full featured in-circuit emulator.

Low-cost in-circuit emulator board.

Demo board.

Evaluation packages.

Third-party support: Contact Analog Devices for a list of third-party vendors.

SUPPORT

C compiler. Simulator.

Macroassembler/linker.

Application libraries.

Upcoming Numerical C.

SOFTWARE

Full-featured in-circuit emulator.

Low-cost in-circuit emulator board.

Demo board.

Evaluation packages.

Third-party support: Contact Analog Devices for a list of third-party vendors.
AVAILABILITY: The DSP16A, DSP16C, DSP1610, and DSP1616 are in production.

COST: DSP16A, $22.60; DSP1610, $91; DSP1616, $35.70 (1000).

SECOND SOURCE: None.

DESCRIPTION: The members of the DSP16 family have long been the fastest fixed-point DSP chips. The DSP16A has a 25-nsec cycle time. The DSP16A and DSP16C also have the largest on-chip program memory at 12k x 16 bits. Many applications that would require external ROMs with other DSP chips can fit within the DSP16 family's on-chip memory. The DSP16C has an ADC and a DAC on-chip. The DSP16C also has a 4-pin JTAG interface, which assists in testing tightly packed boards.

A 3.3V version of the DSP16A is available. The DSP1610/1616 are enhanced versions intended for digital cellular telephone use.

FEATURES:
- 25-, 33-, and 55-nsec cycle-time versions. The DSP16C has 25-, 28-, 33-, and 38-nsec cycle-time versions.
- Separate on-chip program and data buses.
- On-chip memory: The DSP16A and -16C have a 12k x 16-bit program ROM and a 2k x 16-bit data RAM. The DSP1610 has a 512 x 16-bit boot ROM and an 8k x 16-bit dual-port RAM. The DSP1616 has a 12k x 16-bit ROM and a 2k x 16-bit dual-port RAM.
- The program ROM on the DSP16A and -16C can be replaced or augmented with as much as 64k words of external memory.
- The DSP1610/1616 can access two external 64k address spaces.
- Parallel and serial I/O port.
- The DSP16C has an on-chip codec.
- The DSP1610/1616 each have an on-chip timer.
- The multiplier accepts 16-bit fixed-point data and creates 32-bit fixed-point results within a 36-bit accumulator.
- 32-bit ALU.

HARDWARE
- Development system with in-circuit emulation.
- Evaluation board that plugs into a PC.

SOFTWARE
- Assembler/linker.
- Simulator.
- Application library.
- Third-party support includes filter-design packages. Contact AT&T for a list of third-party vendors.
DSP56156

16-BIT FIXED-POINT CMOS DSP μP

AVAILABILITY: Now.

COST: DSP56156—40 MHz, $72 (1), $50 (1000); 60 MHz, $108 (1), $75 (1000).

SECOND SOURCE: None.

DESCRIPTION: The 56156 is a 16-bit subset version of the 56001. It is intended for cellular telephone and other communication applications. It has a built-in codec and phased-locked loop. Development tools are similar to the 56001 and the 96002.

FEATURES:
- 33- and 50-nsec cycle-time versions.
- Three address buses and three data buses.
- On-chip memory includes a 2k x 16-bit program RAM and a 2k x 16-bit data RAM.
- ROM-based version (DSP56156ROM) contains a 12k x 16-bit program ROM.
- Separate external program and data memory spaces. Each can address 64k x 16-bit locations.
- Can load program from external EPROM.
- Asynchronous and synchronous serial I/O ports.
- Parallel port can interface with a host μP.
- Has on-chip phase-locked loop (PLL).
- On-chip sigma-delta voice band codec.
- Multiplier accepts 16-bit data and returns 40-bit results to 40-bit accumulator.

HARDWARE

Application development system includes in-circuit emulator.
Contact Motorola for a list of third-party vendors.

SOFTWARE

Macro cross assembler.
Linker.
Application development board.

Motorola Inc
Microprocessor Products Group
6501 William Cannon Dr
Austin, TX 78735
(512) 891-2030
FAX (512) 891-3874
Circle No. 671
24-BIT FIXED-POINT CMOS DSP µP

AVAILABILITY: Now.
COST: DSP56001: 27 MHz, $33 (1), $27 (1000); 33 MHz, $40 (1), $33 (1000). DSP56002: 40 MHz, $55 (1), $43 (1000).
SECOND SOURCE: None.

DESCRIPTION: The 56001 provides one 24-bit data word and two 56-bit accumulators. This extended precision lets the chip process 16-bit data more easily than the 16-bit machines can. A 24-bit-word width eases scaling, and the 56-bit accumulators prevent overflow. The 24-bit data width suits digital audio applications. The 56002 is a high-speed, low-power, low-voltage version of the 56001 that is 100% software compatible, and includes a PLL and on-chip emulation.

FEATURES: DSP56001 60- and 74-nsec cycle-time versions. DSP56002 50-nsec cycle-time.
Three address buses and four data buses.
Separate address buses for program ROM and the two data RAMs.
Separate data buses for program ROM, the two data RAMs, and global data.
On-chip memory includes a 512 x 24-bit program RAM, a 32 x 24-bit boot ROM, dual 256 x 24-bit data RAMs, and dual 256 x 24-bit data ROMs.
ROM-based version (56000) available.
Three separate memory spaces (X, Y, and P). Each can address 64k x 24-bit locations.
Can load program from external EPROM.
Asynchronous 8-bit serial I/O port.
Synchronous 8- to 24-bit serial interface.
Parallel port can interface with a host µP.
56002 has on-chip PLL.
Multiplier accepts 24-bit data and returns 48-bit results to 56-bit accumulator.

ALU performs arithmetic operations on 56-bit data and logical operations on 24-bit data.
No barrel shifter.
Two 56-bit accumulators.
Zero-overhead looping.
Immediate, direct, indirect, circular, and bit-reversed addressing modes.
Two address generators.
No DMA support.
System stack is 15 levels deep but can be read by program to extend stack into main memory.
Two external vectored interrupts on 56001, three on 56002.
Hardware and software-programmable wait states.
Only the 56002 has on-chip emulation.
Low-power mode.
Low-voltage version of 56002 by fourth quarter 1992.
56001 is packaged in a 132-pin ceramic quad flatpack or 88-pin PGA. 56002 is packaged in a 132-pin PGA or PQFP.

HARDWARE

Application development system includes in-circuit emulator.
Contact Motorola for a list of third-party vendors.

SOFTWARE

C compiler.
GNU C compiler and source-level debugger.
Macro cross assembler.
Linker/librarian.
Simulator.
Code translator from TMS320C10 to 56001.
Third-party support includes filter-design software, and VRTX32/DSP56001 and Spox real-time operating systems.

EDN September 17, 1992 • 103
NS32SF640

32-BIT FIXED-POINT CMOS DSP µP

AVAILABILITY: Available now.

COST: NS32SF640-25/50, $195 (10,000).

SECOND SOURCE: None.

DESCRIPTION: Called Swordfish by National, the 32SF640 has a 64-bit data bus but operates on 32-bit data. The 32SF641 is identical except that it includes a floating-point unit. A highly pipelined architecture lets the device perform more than one operation per cycle. It is more of a RISC µP than a DSP, but the 20-nsec multiplier lets it perform many DSP functions.

FEATURES: 20-, 25-, and 31-nsec cycle-time versions.

- One 32-bit address bus, two 64-bit data buses, and one 32-bit I/O data bus on chip.
- Separate data buses for program and data.
- No on-chip memory.
- 4G words of external address space.
- Two 32-bit ALUs.
- IEEE-754 32-bit and 64-bit floating-point unit on the 32SF641.
- Multiplier accepts 16- or 32-bit fixed-point data and returns 32-bit results.
- 512 × 64-bit instruction cache.
- 128 × 64-bit data cache.
- No barrel shifter.
- Thirty-two 32-bit register-based accumulators.
- DMA is supported via two DMA controllers.
- The stack is maintained in main memory.
- 15 external vectored interrupts.
- Hardware wait states.
- Serial debug port for in-circuit debugging.
- Packaged in a 223-pin PGA.

HARDWARE

- Hardware evaluation system includes development board.
- In-circuit emulator by the end of 1992.

SUPPORT

- GNX tool set includes C compiler, Assembler, Source-level debugger, Profiler.
- PXROS real-time operating system due by the end of 1992.
16-BIT FIXED-POINT DSP µP

AVAILABILITY: The 77C25 is available now.

COST: The 77C25 costs $9 (5000); the 77P25 costs $45 (1000).

SECOND SOURCE: Oki Semiconductor (Sunnyvale, CA) also makes the 7720.

DESCRIPTION: The 77C25 is an upgrade of the 7720, which was one of the first successful DSP chips. The basic architecture is out of date, and its memory can't be expanded off chip. The manufacturer says there is still interest in new 77C25 designs because of the chip's low cost. The 77P25 is an EPROM version of the 77C25.

FEATURES:
- 100- and 122-nsec cycle time.
- Single address bus only for program memory.
- Pointers address data memory.
- Single data bus for both program and data.
- On-chip memory: The 77C25 has a 2k x 24-bit program ROM, a 256 x 16-bit data RAM, and a 1k x 16-bit data ROM. The 77P25 has the same memory as the 77C25 but replaces ROM with EPROM.
- No external memory expansion.
- One 8-bit serial I/O port.
- Parallel I/O port.
-Multiplier accepts 16-bit fixed-point data and produces 31-bit fixed-point results within two 16-bit accumulators.

HARDWARE
- Evaluation kit for application development also functions as an in-circuit emulator.

SUPPORT
- Assembler/linker.
- Third-party simulator available.

SOFTWARE
- EON
µPD77016

16-BIT FIXED-POINT CMOS DSP µP

COST: 7.7016, 33 MHz, $55 (1000).

SECOND SOURCE: None.

DESCRIPTION: This DSP is optimized for digital cellular phones and high-speed data/FAX modem applications. It has a Harvard architecture that is maintained off chip and a large amount of on-chip memory. The serial debug port allows for low-cost in-circuit emulation.

FEATURES: 30- and 50-nsec cycle-time versions. Separate program and data buses maintained off chip. Three internal data buses.

On-chip memory includes a 1.5kx32-bit program RAM, a 4kx16-bit data RAM, and a 4kx16-bit data ROM.

Off-chip memory can be expanded to 64kx32-bit program memory and 128kx16-bit data memory.

Two serial I/O ports.

Parallel I/O port can be used as host µP interface.

Four general-purpose parallel I/O ports.

Multiplier accepts 16-bit fixed-point data and creates 40-bit fixed-point results within a 40-bit accumulator.

40-bit ALU.

40-bit barrel shifter.

Eight 40-bit accumulators.

Two address ALUs with circular buffering and bit-reversal addressing support.

On-chip DMA.

Zero-overhead looping.

12 interrupts (4 external/8 internal)

Wait-state control on both external buses.

On-chip emulation port.

Low-power mode.

Packaged in a 160-pin PQFP.

HARDWARE

Hardware emulator works with on-chip emulation port and runs on IBM PC.

SOFTWARE

Assembler/linker.

Simulator.

C compiler planned.

SUPPORT

Assembler/linker.

Simulator.

C compiler planned.
When time-to-market is critical, embedded PCs are a snap.

Ampro offers you fast, flexible answers to embedded PC development. Little Board™ single board systems on the left below, CoreModule™ CPUs on the right. Plus Mini-Modules™ that snap onto either. That means you can snap together a system customized to your specific application. Now.

Above, shown actual size: a complete AT-compatible system. 80286 processor, 4Mbytes of DRAM, floppy and IDE I/O, 2 serial and one parallel port, SVGA display driver... and more. It was snapped together in less than two minutes using Ampro’s CoreModule/286 and two MiniModules. It fits in a space just 3.6”x3.8”x1.8.” And it draws under 5W. Embedded PCs don’t get easier than that. CoreModules are now available in XT, 286 or 386SX. Your choice.

Single Board Solutions. Little Boards offer single board solutions to embedded systems. Little Boards accept all MiniModules. That means you can build custom systems as simply as stacking Legos.” PC/AT-compatible Little Board capabilities include: a choice of PC, 286, 386SX, 386, and 486 CPU. Up to 16Mbytes of on-board DRAM. Dual serial and one parallel controller. Floppy, IDE and SCSI controllers. Bootable solid state disk... and more. Plus, compatibility with all PC/AT operating systems and software. All, in the form factor of a 5.25” disk drive.

The PC/104 standard. Ampro started it. But today you can buy PC/104 StackThru modules from 15 state-of-the-art manufacturers on three continents. The result? Snap-together systems specific to your embedded application.

Flexible answers. When it comes to embedded PC/AT computer systems, you can’t buy faster, smaller, or more flexible answers. CoreModule or Little Board-based systems. Mini-Modules. Development systems. And complete technical support. Flexible answers. Fast.

Hitting the window. When time-to-market and development costs are critical considerations in your embedded applications, Ampro products can help you significantly decrease both.

Write or call today. If you’re developing products with embedded controllers, Ampro offers fast, cost-effective alternatives to in-house development. Call, write or fax. We’ll send you Ampro’s 80-page, full line catalog. Proven, cost-effective answers to high development costs and product introduction delays. Embeddable systems. In a snap.

Fast Answers. Toll Free
1-800-966-5200

Proven Solutions for Embedded Control
Ampro Computers, Inc.
900 Almanor Ave., Sunnyvale, CA 94086
Phone: (408) 522-2100 Fax: (408) 720-1305

*All Trademarks are the property of their respective owners
"THIS ONE’S MY FAVORITE. WE LAID IT OUT IN THREE DIFFERENT PROCESSES AND STILL BROUGHT IT IN ON TIME AND UNDER BUDGET THANKS TO NEW EPOCH."

INTRODUCING EPOCH.

We named our new set of IC design tools Epoch because it truly is a new way of looking at IC design.

Whether it’s Mentor, Cadence, ViewLogic, VHDL, Verilog or EDIF, with Epoch, you can continue to work in your familiar CAE environment. At the same time, you’ll have quick access to Epoch’s powerful set of tools. Tools that can help you improve the quality of your physical designs and deliver those complex IC designs on time and within budget.

Epoch is a new version of a tool that engineers throughout the world have used for years to design ICs for all kinds of applications, from engine controllers to consumer electronics and from medical imaging to DSP.

Epoch was developed, tested and proven by a team of engineers with widespread experience in IC design, IC software and a wide variety of foundry processes. This same team is available to provide you with full technical support whenever you need it.

If you’re ready to discover a new epoch in IC design productivity and commitment to support, call us. Cascade Design Automation: 1-800-258-8574.
24-BIT FIXED-POINT CMOS DSP µP

AVAILABILITY: 100- and 122-nsec versions available now.
COST: $30 (5000).
SECOND SOURCE: None.

DESCRIPTION: The 77220 is a scaled-down version of the 32-bit floating-point 77230. The chip size and pin count are reduced by using 24-bit data and removing the floating-point exponent hardware. The 24-bit-word width suits the digital audio market. The instruction set is a subset of the 77230 and is source-code compatible with the floating-point device. The vendor says the 77220's architecture is optimized for adaptive filter applications. The 77P220R EPROM version and the 77P220L one-time-programmable version are for prototyping and low-volume applications.

FEATURES: 100- and 122-nsec cycle-time versions. Separate on-chip program and data buses. On-chip memory includes a 2k x 32-bit program ROM, dual 256 x 24-bit data RAMs, and a 1k x 24-bit data ROM. Off-chip memory can be expanded to 8k x 32-bit program memory and 8k x 24-bit data memory. One serial I/O port. Parallel I/O port can be used as host µP interface. Multiplier accepts 24-bit fixed-point data and creates 47-bit fixed-point results within a 47-bit accumulator. 47-bit ALU. 47-bit bidirectional barrel shifter.
16-BIT FIXED-POINT CMOS DSP μP

AVAILABILITY: Now.

COST: ST18930, $15 (10,000); ST18931, $75 (100); ST18942, $35 (10,000); ST18R942, $80 (100). The ST18932 is only available for ASIC designs.

SECOND SOURCE: None.

DESCRIPTION: The ST18 family consists of four devices. The ST18930 and -31 are CMOS versions of the NMOS original with a few enhancements and twice the speed. The ST18932 is a core for use in custom DSP μPs. The CMOS ST18942 offers further enhancements in its arithmetic capabilities, addressing modes, and I/O functions. All family members can operate on complex and double-precision data. The ST18932/42 have a 32-bit ALU and 16-bit data buses.

FEATURES: The ST18930/31 have 80-nsec cycle times. The ST18932 has a 50-nsec cycle time. The ST18942 has a 100-nsec cycle time.

Two address buses and four data buses on chip.

On-chip memory: The ST18930 has a 3k x 32-bit program ROM, a 192 x 16-bit data RAM, a 128 x 16-bit data RAM, and a 512 x 16-bit data ROM. The ST18931 has the same memory as the ST18930 but without ROM. The ST18942 has a 4k x 32-bit program ROM, two 256 x 16-bit data RAMs, and a 512 x 16-bit data ROM. The ST18R942 is a ROMless version of the ST18942 and has two 256 x 16-and one 128 x 16-bit data RAMs.

64 x 32-bit external program memory (except ST18930). ST18930/31 4k x 16-bit external data memory space. ST18932 8k x 16-bit external data memory. ST18942 and ST18R942 64 x 16-bit external memory.

Only the ST18942 has both a serial I/O port and a parallel I/O port.

ST18932/42 multiplier accepts 16-bit fixed-point data and returns 32-bit fixed-point results to a 32-bit accumulator. The ST18930/31 returns 16-bit results.

In complex mode, the multiplier multiplies two complex numbers in two cycles.

16-bit ALU in ST18930/31. 32-bit ALU in ST18932/42.

16-bit bidirectional barrel shifter in ST18930/31. 32-bit bidirectional barrel shifter in the ST18932/42.

ST18930/31 has two 16-bit accumulators. ST18932/42 has four 32-bit accumulators.

Zero-overhead looping.

Immediate, direct, indirect, and circular addressing modes.

The ST18942 has on-chip DMA.

ST18930/31 has 1-, ST18932 has 2-, and ST18942 has 8-level hardware stack for interrupts and subroutines. All can be expanded into main memory with software.

Three external interrupts on the ST18930/31 and eight on the ST18932/42.

Hardware and software-programmable wait states.

Only the ST18932 has an on-chip emulation port.

Low-power mode.

Packaging: ST18930, 48-pin DIP, and 52-pin PLCC. ST18931, 124-pin PGA. ST18942, 160-pin PQFP. ST18R942, 160-pin PQFP and 144-pin PGA.

HARDWARE

Software development system provides in-circuit emulation of as many as three DSP chips in real time.

Stand-alone emulator board connects to an IBM PC.

EPROM module. A ROMless version with EPROMs on a small board that plugs into a ROM-version socket.

SUPPORT

Macroassembler/linker.

Simulator.

SOFTWARE
VALLEY Announces
a way for its high-speed DSP users
to save thousands of dollars
on DSP Code Development.

"THE BUGBUSTER"
for VE32C Boards

FEATURES:
- Menu-driven, screen oriented.
 Command lines aren't needed!
- Real time execution of application programs
 right on our DSP32C boards.
- Allows DSP32C serial I/O to occur between
 breakpoints.
- User can debug program code in final hardware.
- 4 debug sessions maintained simultaneously
 concurrently debug programs residing in up to
 4 DSP.
- Save entire debug session on disk and
 resume later at stop point.
- Compatible with SUN 3/4 and SPARC
 w/SBus-VME. Also SUN OS and Vx WORKS.

$499.00
Available June '92

Also ask about our . . .
- High speed serial port upgrades.
- Family of DSP32C boards.
- Enhanced memory to 8 MB per/DSP
- 40 MHZ instrument grade compatible
 analog module.
- A/D, D/A ICS interfaces.

For further information, call:

VALLEY ENTERPRISES, INC.
RD#4, ROUTE 309 • TAMAQUA, PA 18252 • USA
PHONE: (717)668-3737 • FAX: (717)668-6360

See us at Booth No 324 at DSPx For details on 3 hot new DSP products.
XWR Series
DC/DC Converters

20Watt DC/DC Converters
Single/Dual/Triple
34 New Models
- Inputs: 4.6-13.2V, 9-18V, 9-36V, 18-72V
- Typical Efficiencies to 84%
- Extended Operating Temperature
- \(V_{OUT} \) Adjustment Capability (TRIM)
- Insulated Case (will not short PCB)
- TTL-compatible ON/OFF control
- Metal Case Shielding
- Single \(V_{OUT} \): 2.1, 3.3, 5, 12, 15V
- Dual \(V_{OUT} \): ±5, ±9, ±12, ±15V
- Triple \(V_{OUT} \): 5, ±12V and 5, ±15V

10Watt DC/DC Converters
Single/Dual/Triple
25 New Models
- Inputs: 4.7-7V, 9-18V, 18-72V
- World's Smallest Commercial 10W
- Typical Efficiencies to 84%
- Insulated Case (will not short PCB)
- Metal Case Shielding
- Single \(V_{OUT} \): 3.3, 5, 12, 15V
- Dual \(V_{OUT} \): ±5, ±12, ±15V
- Triple \(V_{OUT} \): 5, ±12V and 5, ±15V

3 Watt DC/DC Converters
Single/Dual Output
15 New Models
- Inputs: 4.5-9V, 9-18V, 18-72V
- Switching Frequency 200 KHz (typ)
- Black Plastic Case
- \(V_{OUT} \): 5, 12, 15, ±12, ±15

General Specifications
- State-of-the-Art Thermal Management
- Continuous Short Circuit Protection
- Internal Input/Output filtering
- Overvoltage Protection
- 100% Burn-in@ Full Load
- Industry Standard Pinout & Packaging
- Very High Reliability
- Fully Encapsulated
- Delivery From Stock!

For complete data call or write today for a free new Power Supply catalog. DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048. Tel: (508)339-3000, FAX: (508)339-6356. For immediate assistance: all USA, EST business hours 1-800-233-2765.
24-BIT FIXED-POINT CMOS DSP μP

AVAILABILITY: Now.

COST: 50-MHz SPROC-1400 (four processors on chip), $70 (1000). By mid 1993, the SPROC-1000 (one processor) will cost $15 and the SPROC-1400 will cost $50.

SECOND SOURCE: None.

DESCRIPTION: The SPROC family has one, two, or four general-purpose processors on the chip. Programs are generated with signal flow diagrams, which are converted into code for the processors. Automatic partitioning of the code isolates you from the complexities of multiprocessing. You can very quickly create a system and see the results in real time. A probe port lets you see what the signal looks like anywhere in the block diagram.

FEATURES:
- 20-, 40-, and 50-MHz versions.
- One to four general-purpose processors share common program and data memory.
- Multiported data memory lets each processor access memory each cycle.
- Separate instruction and data bus on chip.
- Can access external memory via parallel port.
- Serial data flow into and out of chip is controlled by Data Flow Managers with no impact on performance.
- 24-bit multiply with 56-bit accumulation.

HARDWARE

An interface box and an evaluation board are included with the SPROC lab.

SUPPORT

SPROC lab graphical development system. Includes signal flow editor, function block library, filter design tool, compiler, loading, and debugging tools.

SOFTWARE

Two serial input ports and two serial output ports.
- Serial ports configurable for 8-, 12-, 16-, or 24-bit data.
- Initialized by μP or external 8-bit EPROM.
- Access port for development and debugging.
- Probe port allows view of data at any point in the program.
- Output to DAC board allows real-time view on oscilloscope.
- Parallel port transfers data to an external controller, peripheral, or memory.
- Parallel port has hardware and software wait states.
- Packaged in a 132-pin PGA.
TMS320C1X

16-BIT FIXED-POINT CMOS DSP μP

AVAILABILITY: The C10, C15, C16, C17, E14, E15, E17, P15, P17, P14, LC15 (3.3V), LC16 (3.3V), and LC17 (3.3V) are available now. The C14 will be available in the third quarter of 1992.

COST: C10 (20 MHz), $4.90; C14, $10; E14, $45; P14, $22; C15 (20 MHz), $7; E15 (20 MHz), $36; P15, $17; C16, $8.40; E17, $39; P17, $19 (C10, quantity 1; all others, quantity 1000).

SECOND SOURCE: Microchip Technology (Chandler, AZ) second-sources the C10, C14, and E14. No second source for other parts.

DESCRIPTION: This first generation of the vendor's DSP family was introduced in 1982. Although this family is difficult to use and slower than similar devices, the chip's cost—which has fallen to $3 in high volume—and the large body of associated software and expertise will keep this family going for some time. Newer family members have additional memory and peripheral options. EPROM (TMS320E1X) and one-time-programmable (TMS320P1X) versions are also available. 3.3V versions of the C1X family are now available. TI continues to support this family by adding new versions and tools.

On-chip memory: The C10 has a 1.5k x 16-bit program ROM and a 144 x 16-bit data RAM. The C14, C15, and C17 have a 4k x 16-bit program ROM and a 256 x 16-bit data RAM. The E14, E15, and E17 have a 4k x 16-bit program EPROM and a 256 x 16-bit data RAM. The C16 has an 8k x 16-bit program ROM and a 256 x 16-bit data RAM. P1X versions are one-time programmable.

Program and data buses are combined off chip.

4k x 16-bit total external memory except the C16, which has 64k x 16-bit external memory, and the C17, which has no external memory.

On-chip peripherals: The C10, C15, and C16 have parallel I/O. The C14 has serial and parallel I/O. The C17 has two serial I/O ports, parallel I/O, and a compander.

Multiplier accepts 16-bit fixed-point data and creates 32-bit fixed-point results within a 32-bit accumulator.

32-bit ALU.
16-bit left barrel shifter.
Single 32-bit accumulator.
No zero-overhead looping.
No DMA.
4-level hardware stack except the C16, which has an 8-level hardware stack.
Single external interrupt.
No wait states.
No on-chip emulation.
LC1X devices operate at 3.3V.

Packaging: C10, 40-pin DIP or 44-pin PLCC. C14, 48-pin PLCC. C15, 40-pin DIP or 44-pin PLCC. C16, 64-pin QFP. C17, 40-pin DIP or 44-pin PLCC.

HARDWARE

In-circuit emulator.
Evaluation module.
Software development system.
Many third-party support tools. Contact manufacturer for a list of third-party vendors.

SUPPORT

Assembler/linker.
Simulator.
Application library.
Many third-party support tools.

SOFTWARE
We've lowered the cost of high performance for *FrameMaker*.

THE PERSONAL DECSTATION STARTS AT $3995.

Today’s applications like *FrameMaker* demand the balanced performance of a complete workstation and only the Personal DECstation™ gives it to you at such an affordable price.

Many of the features other low-priced workstations offer, such as an open bus, 8-plane graphics and color, are add-ons. With the Personal DECstation, they’re standard. And it’s built for the future with new CPU and graphics cards, multimedia technology, network interconnects and upgrades.

The Personal DECstation from Digital. The power of a workstation. The productivity of a workstation. The price of a PC.

DIGITAL'S SPEED AND FLEXIBILITY ARE PERFECT FOR FRAMEMAKER.

FrameMaker and Digital combine to provide a complete document publishing system for creating business and technical documents. *FrameMaker* incorporates full-featured WYSIWYG word processing, graphics, page layout, tables, conditional text, equations editing, and structured document tools into a single, easy-to-use application.

FrameMaker supports the Motif® windowing environment and takes advantage of the innovative tools available with Digital, such as Display PostScript®. In addition, *FrameMaker* supports Digital's multimedia capabilities and allows you to seamlessly incorporate audio and video into your *FrameMaker* document. *FrameMaker* on the Digital platform is the complete solution for your document publishing needs.

For a trial version of *FrameMaker*, please call 1-800-U4-FRAME, EXT. 145.
Only Hypertronics ends the compromise in quick-disconnect plugs and receptacles... by combining patient-proof design, economical plastic housings and the reliability of military approved contacts in a line of electrical connectors.

Our injection-molded polycarbonate and polysulfone housings completely shroud current-carrying elements to avoid both reliability and repair problems, as well as user hazards. Yet a simple push-button release allows quick disconnects by untrained personnel.

The economically priced D Series connectors are available in 3, 7, 9 and 12 position modules. Each incorporates the Hypertac® low insertion force contact for unique operational and cost efficiency.

Now you can have it all... in long-life, user-friendly circular connectors for medical, personal computer and other equipment. End the connector compromise by calling 1-800-225-9228, toll free.

HYPERTAC®:
Inserting pin into hyperboloid sleeve.
16-BIT FIXED-POINT CMOS DSP µP

AVAILABILITY: The C25, C26, E25, C50, and C51 are available now. The C28 is sampling now and will be in production in the first quarter of 1993. The C53 is sampling now and will be in production in the fourth quarter of 1992.

COST: C25 (33 MHz), $13; C25 (40 MHz), $13.50; E25, $67; C26, $15; C50, $106; C51, $33; C53, $50 (C25 quantity 1, all others, quantity 1000).

SECOND SOURCE: None.

DESCRIPTION: These chips make up the second and third generation of the vendor's fixed-point DSP family. They offer higher performance than the first-generation chips and are easier to use. For many applications, the C25's price has fallen to a point where the chip is replacing the C1X. The CSX parts are enhancements to the C25. They use the same basic core architecture as the C25 but have double the performance level, additional on-chip peripherals, and expanded memory. New family members include the C28 (which expands memory and adds a power down mode to the C25) and the C53 (which expands memory to the C5X).

On-chip memory: The C25 has a 4k x 16-bit program ROM and a 544 x 16-bit data RAM. The C26 has a 1.5k x 16-bit program RAM with boot ROM to load programs from external memory and a 544 x 16-bit data RAM. The C28 has an 8k x 16-bit program ROM and 544 x 16-bit data RAM. The C50 has a 5k x 16-bit program/data RAM and a 1056 x 16-bit dual-access RAM. The C51 has an 8k x 16-bit program ROM, a 1056 x 16-bit dual-access RAM. The C53 has an 18k x 16-bit program ROM, a 3k x 16-bit program/data RAM, and a 1k x 16-bit dual access RAM.

Program and data memory are combined off chip. The C2X and CSX can address 64k x 16-bit program and 64k x 16-bit data memory.

The C25 and C26 have one serial port each. The C5X has two serial ports.

Multiplier accepts 16-bit fixed-point data and creates 32-bit fixed-point results within a 32-bit accumulator.

32-bit ALU.

The C5X has a separate 16-bit parallel logic unit for manipulating bits without affecting the contents of the accumulator.

16-bit left barrel shifter.

Single 32-bit accumulator.

Next-instruction-repeat looping. Only the C5X has zero-overhead block looping.

Immediate, direct, indirect, and bit-reversal addressing modes. The C5X also has circular addressing.

No DMA.

8-level expandable hardware stack.

C5X has a 1-level-deep shadow RAM, which stores some registers.

C2X has three external interrupts; C5X has five.

Hardware wait states. The C5X also has software-programmable wait states.

The C5X has an on-chip emulation port.

The C2X is source-code compatible with the C5X.

The C5X has a JTAG interface.

The C25 and C26 have an idle mode. The C28 and the C5X have a power-down mode.

Packaging: C25 and C26, 68-pin PGA or PLCC. C28, 80-pin QFP. C50, C51, and C53, 132-pin QFP.

HARDWARE

Both the C2X and CSX have an in-circuit emulator, a software-development board for the IBM PC, evaluation boards.

Many third-party support tools. Contact manufacturer for a list of third-party vendors.

SOFTWARE

C compiler.

Source-level debugger.

Assembler/linker.

Simulator.

Application library.

Many third-party support tools.

SUPPORT

Texas Instruments Inc
Semiconductor Group
Box 809066
Dallas, TX 75380
(214) 995-6611, ext 3990
Circle No. 679

EDN September 17, 1992 • 117
Z89C00

16-BIT FIXED-POINT CMOS DSP μP

AVAILABILITY: Now
COST: Z89C00, $15 (100), $5 (25,000).
SECOND SOURCE: None.

DESCRIPTION: Zilog created the Z89C00 to let them provide system-level μCs with on-chip DSP capability. They consider the Z89C00 to be a competitive DSP chip and are supporting it as a stand-alone device. In 1993 they will introduce an enhanced version that will be code compatible with the Z89C00. The device is made with a process that can be made to operate at 3V.

FEATURES:
- 100-nsec cycle time.
- On-chip memory: 4k × 16-bit program ROM and dual 256 × 16-bit data RAM.
- 64k × 16-bit off-chip program ROM.
- Can access external memory via eight 16-bit memory locations.
- Intended to interface to FIFO, DMA controller, or μC.
- 16-bit parallel I/O, two output flags, and two input flags.
- Multiplier accepts 16-bit fixed-point data and creates 32-bit fixed-point result, but only the top 24-bits are usable.
- 24-bit ALU.
- No barrel shifter.

HARDWARE
- Single 24-bit accumulator.
- No zero-overhead looping.
- 8 address registers. Circular buffering supported.
- No on-chip cache.
- No DMA.
- 6-level hardware stack.
- 3 external interrupts.
- Hardware wait states.
- Power down via external pin.
- No on-chip emulation.
- Packaging: 68-pin PLCC.

SOFTWARE
- In-circuit emulator.
- Evaluation board.
- Assembler/linker.
- Simulator.
- C compiler.
- Source-level debugger.
- Application library.
- TMS320 to Z89C00 assembly code translator.
EMS II High Power Switchers.
You've never seen power this clean.

The new EMS II Series Switch Mode DC Power Supplies give you clean power, every time...with no glitches, spikes or headaches. In fact, they handle the highest load of power per cubic inch in the industry. Here are some more features to make your decision easier:

• 50mV P-P PARD, 35mV typical
• 0-3 VDC @ 600A to 600 VDC @ 16A

• Models available from 600 Watts to 15,000 Watts, 1Ω and 3Ω
• No derating required
• Overload and short circuit protection
• IEEE-488 programmability and RS-232.

The EMS II DC Switchers. They can wash away your high power problems... once and for all. For more information or literature, contact:

ELECTRONIC MEASUREMENTS, INC.
405 Essex Road, Neptune, NJ 07753 • Telephone: 908-922-9300 • FAX: 908-922-9334
CIRCLE NO. 70
POWER To Configure

MegaPAC™

Power: Up to 1200 Watts
Input: 110/220 VAC, strappable; 300 VDC
Outputs: 1 to 8 isolated and fully regulated, 2 to 95 VDC
Size: 11.8"L x 6.0"W x 3.4"H

Plug into instant power supply configurability with the new MegaPAC switcher from our Westcor division. MegaPAC outputs can be configured in virtually an infinite number of voltage and power combinations using up to 8 slide-in ModuPAC™ assemblies. Want to change a voltage or power level at your factory or at a customer site? No problem... shut down input power, slide out the ModuPAC you want to replace and slide in the new one. It's that simple.

MegaPAC's instant configurability takes Westcor's popular StakPAC to the next level of customization and flexibility. And its improved manufacturability means a substantial price reduction too! At the heart of each plug-in ModuPAC is a standard Vicor VI-26X series DC-DC converter module...over 1 million are operating reliably in systems world-wide. With potential applications around the globe, MegaPAC is designed to meet stringent UL, CSA, and IEC safety standards (approvals in process).

So take the risk out of specifying your system power supply. Contact us today and request ordering information... then sit back and relax... your custom-tailored MegaPAC will be delivered within four weeks.

Call VICOR EXPRESS (800) 735-6200 for information and be sure to ask for a MegaPAC data sheet. Or call WESTCOR (division of Vicor) at (408) 395-7050. Fax us at (508) 475-6715 or (408) 395-1518.

VICOR Corporation
23 Frontage Road, Andover, MA 01810

Component Solutions For Your Power System

CIRCLE NO. 71
32/40-BIT FLOATING-POINT CMOS DSP µP

AVAILABILITY: The ADSP-21020 and ADSP-21010 are now in production.

COST: ADSP-21020, 33-MHz, $220 (1000); ADSP-21020, 20-MHz, $176 (1000); ADSP-21010, 12.5-MHz, $49.90 (100).

SECOND SOURCE: None.

DESCRIPTION: This family has an off-chip Harvard architecture and is similar to the fixed-point 2100 family. On-chip emulation is supported via a JTAG port. The device conforms to the IEEE-754 floating-point standard. It has an algebraic-like assembly language along with high-level-language support. The ADSP-21010 is a new lower-cost addition to the family. It lacks only the 40-bit floating-point support.

FEATURES: 21020 has 30-, 40-, and 50-nsec cycle-time versions. 21010 has 80-nsec cycle time.
One 32-bit and one 24-bit address bus.
One 40-bit and one 48-bit data bus.
Seven 40-bit additional buses in the CPU.
Separate program, and data buses (off-chip Harvard Architecture).
4G x 40-bit external data memory and 16M x 48-bit external program memory.
One 32-bit timer.
IEEE-754 32-bit and 40-bit floating point format. 21010 supports only 32-bit format.
Multiplier accepts 32 and 40-bit floating-point data and returns 32 or 40-bit results. 32-bit fixed-point operands produce 64-bit fixed-point products. The multiplier also incorporates dual 80-bit fixed-point accumulators.
ALU accepts 32 and 40-bit floating-point data and returns 32 or 40-bit results. 32-bit fixed-point operands produce 32-bit results.

HARDWARE

Full-speed in-circuit emulator.
Demo board for IBM PC.
Evaluation package.
Third-party support: Contact Analog Devices for a list of third-party vendors.

SOFTWARE

Optimizing ANSI C and Numerical C compilers.
Source-level debugger for ANSI C/Numerical C.
Simulator, Assembler, Linker, PROM Splitter.
Application libraries.
Third-party support includes real-time multitasking operating system (SPOX), filter design packages with code generation, block-level algorithm development package.
DSP32C/3210

32-BIT FLOATING-POINT CMOS DSP µP

AVAILABILITY: The DSP32C and DSP3210 are available now.
COST: DSP32C, $70 (1000); DSP3210, $50 (100,000).
SECOND SOURCE: None.

DESCRIPTION: The DSP32C has one of the simplest architectures of the 32-bit floating-point DSP chips. It uses a single 4M-word linear memory space instead of the separate program and data memory common in other DSP chips. You can access the single address bus and single data bus as many as four times per cycle. You can access each internal memory as many as two times per cycle. The DSP3210, along with the VCOS operating system, is intended for use on the mother board of personal computers and workstations where it shares memory with the host.

FEATURES: 80- and 100-nsec cycle-time versions.
Single address and data buses. Each can be accessed as many as four times per cycle to imitate separate buses.
DSP32C has three on-chip 512 x 32-bit RAMs. Optional ROM-based DSP32C replaces one RAM with a 4k x 32-bit ROM.
The DSP32C can address as much as 4M x 32-bits of external memory. The DSP3210 can address 4G bytes of external memory.
All memory is a general resource; both program and data can exist anywhere.
Data addressable as 8-, 16-, or 32-bit words.
DSP3210 can load program from external EPROM.
The DSP32C has on-chip serial and parallel I/O. The DSP3210 has serial I/O, timer, DMA controller, and a 32-bit bus interface that is compatible with Motorola and Intel µPs.
The serial I/O is a double-buffered port that allows concurrent input and output of 8-, 16-, 24-, or 32-bit data widths.
The DSP32C has an 8- or 16-bit parallel I/O port that an external µP can control.
Proprietary 32-bit floating-point format.
Single-cycle conversion to/from nonstandard DSP32 floating-point format from/to IEEE-754 floating-point format.

HARDWARE

In-circuit emulator.
IBM PC-based development board.
VME bus-based development board.
Many third-party support tools, including the HP64773 in-circuit emulator from Hewlett-Packard. Contact AT&T for a list of third-party vendors.

SOFTWARE

Optimizing C compiler.
Assembler/linker.
Simulator.
VCOS operating system and multimedia modules.
Twice the Logic in Half the Space

DOUBLE-DENSITY™
FROM IDT

46% Board Savings
IDT's new 16-, 18-, and 20-bit Double-Density FCT-T Logic family offers the performance of two octal logic devices in one flow-through 48- or 56-pin high-density, JEDEC-standard, shrink small outline package (SSOP) or Cerpack, for twice the functionality in half the board space.

A WIDEBUS™ Upgrade
IDT's Double-Density logic family is more than twice as fast as ACT, uses 35% less power than ABT, and it's form-, fit-, and function-compatible with both of TI's Widebus families. The Double-Density family also offers typical pin-to-pin skew of 250ps and quiescent supply current at 0.05mA (typ.).

3 Application Choices
5V High Output Drive
Ideal for low-impedance bus and backplane applications.
5V Balanced Drive (Low Noise)
Contains on-chip, source-terminating resistors to minimize signal noise. These devices are ideal for driving point-to-point transmission lines and highly capacitive loads, such as a bank of DRAMs or SRAMs.

3.3V Low-Power Logic
Designed for regulated or unregulated 3.3V power supplies, these devices use less power than 5V parts, without sacrificing high speed. 5V-to-3.3V unidirectional and bidirectional translators are also available.

Free Samples
Call today for free samples and a copy of the new High-Performance Logic Data Book and start your Double-Density logic design today!

(800) 345-7015 • FAX: 408-492-8674
ASK FOR KIT CODE 3071

CIRCLE NO. 72
What do designers of notebook computers and other battery-powered systems get with Siliconix’ new power conversion chip set?

That means higher power conversion efficiency, smaller system size, both 3.3-V and 5-V compatibility and longer battery life. DC/DC conversion at 94% measured efficiency.

This high-efficiency produced by our new power conversion chip set, the Si9150DY Synchronous Buck Converter and the Si9942DY LITTLE FOOT™ MOSFET allows your DC/DC converter to run cooler and adds about 10% to battery life during normal operation. And in sleep mode it only consumes 100 µA, to extend battery life by 1000%.

Operating voltage options.
Many “next-generation” designs are employing lower, and sometimes multiple operating voltages. That’s why our Si9150DY/Si9942DY buck converter takes unregulated battery voltage and converts it into 5.0 V or 3.3 V.

Get more bang for your buck converter!
For OEM quantities, prices of this 94% efficient power conversion chip set can be yours for less than $3.00.

More power efficiency, more compact design, and more voltage options are as close as your local Siliconix sales office. Or call toll-free hot line now! (0635) 30905, ext. 970. Ask for the “More Bang for your Buck” Design Manual.

Siliconix
Weir House, Overbridge Square, Hambridge Lane, Newbury, Berks RG14 6UX
32-BIT FLOATING-POINT CMOS DSP µP

DESCRIPTION: The 96002 is an architectural superset of the fixed-point 56001. The 96002 continues Motorola's emphasis on precision. The 96-bit accumulators will support future double-precision parts. The 32-bit floating-point device conforms to the IEEE-754 floating-point standard. The dual 32-bit external buses support glueless multi-96002 systems. The external buses can access external memory and peripherals or communicate with a host µP.

FEATURES: 50-, 60-, and 74-nsec cycle-time versions.
Three 32-bit address buses and five 32-bit data buses on chip.
Separate address buses for program and the two on-chip RAMs.
Separate data buses for program, the two on-chip RAMs, global data, and DMA.
On-chip memory includes a 1k x 32-bit program RAM, a 64 x 32-bit boot ROM, dual 512 x 32-bit data RAMs, and dual 512 x 32-bit data ROMs.
On-chip boot ROM loads program from external byte-wide EPROM.
Revised version will let the internal 1k x 32-bit program RAM function like an instruction cache.
Two complete 32-bit external expansion ports for memory and I/O.
Three separate memory spaces (X, Y, and P). Each can address 4G words.
Each memory space is divided into eight 0.5G-word areas. Each can be programmed to either the A or B expansion ports.
Two host interfaces allow interface to µP or other 96002s. No other on-chip peripherals.

Hardware evaluation system includes in-circuit emulator.
Some third-party hardware products are available. Contact Motorola for a list of third-party vendors.

IEEE-754 32-bit floating-point format.
Multiplier accepts 32-bit floating-point data and returns 44-bit results. Multiplier accepts 32-bit integer data and returns 64-bit results.
32-bit bidirectional barrel shifter.
Ten 96-bit or thirty 32-bit register-based accumulators.
Zero-overhead looping.
Immediate, direct, indirect, circular, and bit-reversal addressing modes.
Two address ALUs.
Supports DMA. Uses its own internal bus and doesn't cycle-steal. Can use all of the addressing modes, including bit-reversal, with the DMA controller.
The stack is 15 levels deep, expandable into main memory.
Three external vectored interrupts.
Hardware and software-programmable wait states.
Serial debug port for in-circuit debugging.
Low-power mode.
Packaged in a 223-pin PGA.

SUPPORT

Optimizing C compiler.
Assembler/linker.
Simulator.
Application library.
GNU C compiler and source-level debugger.
Third-party support includes optimizing C compiler, block-level diagramming language, filter-design software, and real-time operating system (SPOX).
TMS320C40

32-BIT FLOATING-POINT CMOS PARALLEL DSP µP

COST: Pre-production $390 (100). Production $250 (5000).
SECOND SOURCE: None.

DESCRIPTION: This device was designed for applications that require the performance of parallel processing. It is upward compatible with the C30 but adds six 32-bit FIFO dual-buffered communication ports, two complete 32-bit external buses, an analysis module that supports multiprocessor debugging via a JTAG interface, and a 4G-word address space. The chip also features single-cycle conversion to/from the IEEE floating-point standard and a cycle time of 40 nsec. Each communication port can transfer data to/from another C40 at 20 Mbytes/sec without any external logic.

FEATURES: 40- and 50-nsec cycle time.
Four 32-bit address buses and three 32-bit data buses.
Two 32-bit and two 40-bit additional buses in the CPU.
Separate program, data, and DMA buses.
Each internal RAM and ROM allows two accesses per cycle.
Any of the separate memories can be used for program or data. Two on-chip 1k x 32-bit RAMs and a 4k x 32-bit ROM.
Dual 32-bit external buses. Each has a 31-bit address, so the 4G-word memory is equally divided between the two buses.
Six independent 32-bit communication ports for glueless communications between C40s. Separate 8 x 32-bit FIFOs for input and output buffering.
No on-chip serial ports. Two 32-bit timers.
Proprietary 2’s complement 32-bit floating-point format.
Single-cycle conversion to/from the IEEE-754 32-bit format.
Multiplier accepts 32-bit floating-point data and returns 40-bit floating-point data. 24-bit integers result in 32-bit fixed-point results.
ALU operates on 40-bit floating-point and 32-bit fixed-point data.

HARDWARE
Development system includes in-circuit emulation via JTAG interface.
4-processor host-independent evaluation board.
Third-party support. Contact TI for a list of vendors.

SUPPORT
Optimizing ANSI C compiler with parallel-processing runtime support.
Application library.
Third-party support includes SPOX, Helios, 3L, parallel C and Ada operating systems and languages.
SONY MAKES THE CHIP. SUN MAKES THE HISTORY.

Sun Microsystems' new SPARCstation® 10 is fast making history running at speeds to
400 MIPS and beyond. Inside is SuperCache™ a Sony-designed, 20 ns,
one-meg, self-timed static RAM that's optimized for SPARC® processors. The CXK77910J-20.

This synchronous "STRAM" gives Sun's power users three times more
fast cache than any other workstation. You, too, can make history with Sony SRAMs and
other breakthrough ICs. Call 800-288-SONY. Or FAX your current requirements
to 714-229-4333 in U.S.A., 416-499-8290 in Canada.

Sony is a trademark of Sony. Sun, Sun Microsystems, and SuperCache are trademarks or registered trademarks of Sun Microsystems, Inc.
All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. SPARCstation is licensed exclusively by Sun Microsystems, Inc.
For custom shielding, nobody helps you beat the clock—and the costs—like Instrument Specialties.

Using the most modern CAD capabilities plus a half-century of EMC experience, our experts can quickly determine the best shielding for your design... often before you've built it.

With maximum flexibility and minimum tooling, our prototyping capabilities are both fast and economical. We've even dedicated an entire fabricating operation just for short runs. Our in-house design, plating, photoetching and heat treating also keep your costs down. Or we could modify our standard shielding products to fit your application... helping you save even more time and money.

When you do decide to start full production, you'll have the complete in-house capabilities of a leading worldwide shielding supplier behind you... including wire EDM toolmaking, sophisticated fabrication techniques, and comprehensive EMC testing—all assuring just-in-time deliveries.

So call Instrument Specialties for your next custom shielding project. Because whether you need 5 parts or 5 million, we'll be on time... and on budget.

Instrument Specialties

Headquarters: Delaware Water Gap, PA 18327-0136
TEL: 717-424-8510 FAX: 717-424-6213

Western Division: 505 Porter Way, Placentia, CA 92670
TEL: 714-579-7100 FAX: 714-579-7105

European Division: 3 Avenue du Progres, B4432 Alleur, Belgium
TEL: +32-41-63-3021 FAX: +32-41-48-4892
32-BIT FLOATING-POINT CMOS DSP µP

AVAILABILITY: Now.

COST: The 34325 (25 MHz) costs $137; the 34325 (20 MHz) costs $124 (10,000).

SECOND SOURCE: None.

DESCRIPTION: The ZR34325 is a vector-signal processor, which is a DSP chip that operates on complex data and large blocks of data with single high-level instructions. The instruction set includes a single instruction to calculate an FFT, FIR filter, IIR filter, and other complex functions. The highly specialized architecture is optimized to perform these functions quickly. The architecture also eases programming because the programmer doesn’t have to write code for complex DSP functions. The 32-bit floating-point data conforms to the IEEE-754 standard.

FEATURES: 80- and 100-nsec cycle-time versions.
Single address and data bus. Vector instructions generally take longer to execute than to fetch, so little speed penalty is incurred with this simple bus architecture. High-level instructions, such as those to calculate FFTs and FIR and IIR filters, simplify programming.

256 x 32-bit coefficient dual-port ROM and 128 x 32-bit dual-port RAM on chip.
No on-chip program memory.
Internal memory can be directly accessed by external device.
16M x 32-bit memory space.
No on-chip peripherals.
IEEE-754 32-bit floating-point format.
Multiplier accepts 32-bit floating-point data and creates 44-bit results.
Three ALUs: two floating point and one integer. 32-bit floating-point data can be added to 32 bits with one ALU and to 44 bits with the other.

24-bit bidirectional barrel shifter.
Two 32-bit accumulators.
No zero-overhead looping.
Direct, indirect, register, immediate, circular, and bit-reversed addressing modes.
Address generators for internal RAM and ROM.
On-chip DMA.
Slave mode opens chip to external access.
Hardware stack maintained in main memory.
Single external interrupt.
Hardware wait states.
No on-chip emulation port.
No low-power mode.
Packaged in an 84-pin PGA or 84-pin MQFP.

HARDWARE

Hardware-development-system board.
VME bus-based product for development.
Third-party hardware available.

SOFTWARE

Assembler/linker/simulator (MS-DOS and VAX/VMS).
Application library (MS-DOS and VAX/VMS).
PSS ADA Compiler for VAX/VMS.

SUPPORT

Zoran Corp
1705 Wyatt Dr
Santa Clara, CA 95054
(408) 986-1314
FAX (408) 986-1240
Circle No. 688
When systems demand extra can shape a TMS320 to your
-special DSPs, we need.

Choosing the right DSP for your application is vital to your marketplace success. Only TI has the customizable capability and broad TMS320 family to help you get what you need.

What you want is what you get
With our unique customizable digital signal processing (cDSP) capability, you can achieve the integration and product differentiation you want. You can choose system peripheral functions (A/D, D/A, serial ports, timers, phase comparators and oscillators), add interface logic and then integrate them all directly on proven TMS320 DSP chips. You can even change the mix of on-chip memory and peripherals. Yet device development cycles are shorter and costs are lower than with full-custom gate-level approaches.

Over the past five years, this innovative TI technology has created winning solutions for hundreds of high-volume market leaders.

Broad TMS320 family
Our more than 30 standard DSP solutions can meet the majority of your price/performance needs.

You can choose from our 16-bit fixed-point DSPs that start at $3 or from our 32-bit floating-point devices beginning at $25.

There are family members delivering 50-MFLOPS performance, EPROM and OTP DSPs and those optimized for specific applications, plus military versions.

When you want super-processing power, our parallel-processing TMS320C40 DSP allows direct processor-to-processor communications to achieve the MOPS, MBPS, MIPS and MFLOPS your design requires.

World-class support
To speed you to market faster, you can talk with TMS320 specialists, attend hands-on workshops, read over 2,000 pages of applications notes and contact more than 100 third parties and consultants.

The development environment you will use is the same as that for general-purpose microprocessors whether you are working with a standard TMS320 or a cDSP. It includes high-level-language optimizing compilers, multitasking operating systems and realtime emulation.

To make your DSP match, call 1-800-336-5236, ext. 3538
You will receive information on our cDSP capability, the complete TMS320 family of devices and our world-class support. What's more, we'll send you "Designing with DSPs is Easy" - an interactive disk that gives you a personal look at TMS320 support and the TMS320 Programmer's Interface.
The 77240 is a 32-bit CMOS floating-point DSP chip. The internal instruction and data ROM are preprogrammed with math matrix routines. It has two external buses: one for data addressing up to 16×32 bits, and the other for instruction addressing up to 64×32 bits. The vendor says the architecture suits adaptive filter applications.

FEATURES:
- 90-nsec cycle time.
- Separate on-chip program and data buses.
- On-chip memory: 2×32-bit program ROM (preprogrammed), dual 512×32-bit data RAMs, and a 1×32-bit data ROM (preprogrammed).
- External memory expansion: 64×32-bit program memory and 16×32-bit data memory.
- Separate external program and data buses.
- The 77240 has no on-chip peripherals.
- Proprietary 32-bit floating-point format.
- Multiplier accepts 32-bit floating-point data and creates 55-bit floating-point results.

- Multiplier accepts 24-bit fixed-point data and creates 47-bit fixed-point results.
- 47-bit ALU.
- 47-bit bidirectional barrel shifter.
- Eight 55-bit register-based accumulators.
- Direct, indirect, immediate, circular, and bit-reversal addressing modes.
- Three address ALUs.
- No on-chip DMA.
- The stack is eight levels deep and is not expandable.
- Two external interrupts.
- No wait states.
- No on-chip emulation port.
- No low-power mode.
- Packaging: 132-pin PGA.

HARDWARE
Evaluation kit, which includes an in-circuit emulator.

SOFTWARE
Assembler/linker and simulator.
C compiler.
Targets Your Costs Without Compromising Your Standards.

Defense dollars have been significantly reduced but the performance demands of your system have not. IEE has NDI (non-development-item), MODIFIED NDI and OFF-THE-SHELF keyboard and display solutions to your man-machine interface requirements.

Flat Panel Displays

IEE designs and manufactures ruggedized and full-military VF, LCD and ACTFEL displays. VF displays are available with hermetically sealed and/or QPL components as well as shock mounting. Our standard LCD displays operate over a wide temperature range and can be illuminated. Our standard 3×5 and 4×8 ACTFEL displays are available in rugged and full-military configurations which can be EMI/RFI shielded.

Interactive Displays

IEE interactive displays combine VF, DC plasma, and ACTFEL displays with optical and mechanical touch switches to provide an integrated man/machine interface device. Information from a host system can be readily displayed, understood and controlled from a single assembly. Our V.I.P.™, PEP™ and EL interactive displays provide very sophisticated operator interface in a minimum amount of space.

Keypads and Keyboards

IEE Thinswitch, Panelswitch, Telswitch and Sealedswitch keypads are available in various standard configurations. These keypads incorporate such features as proprietary gold-plated switch domes, environmental sealing, integral illumination and EMI/RFI shielding.

Our FTMK (Full-Travel Modular Keyboard) is available with "full-travel data entry" or "snap-function" modular keyswitches. The FTMK has proven itself in the most demanding operational environments and has unequalled survivability.

Control Display Units

Our Standard Full-Military Handheld and Portable CDUs function as complete stand-alone man/machine interface devices. The Handheld CDU incorporates a dot matrix LCD with NVIS illumination, the Portable CDU an ACTFEL display. Both CDUs have sealed, backlit keypads. These environmentally rugged assemblies have been fully qualified and field proven.
Zilog's Z8® family offers an impressive range of microcontrollers: Every one of them aimed at optimum cost/performance in your system, in your market.

The Z8 family is one of the broadest MCU lines in the industry. Choose from 1K to 16k ROM, and from 18 to 100 pins configured in the latest packages. It's a family of cost-effective, high-performance 8- to 16-bit microcontrollers . . . precisely targeted for particular applications in specific markets, such as mass storage, auto, computer peripherals, speech processing, and general purpose embedded control.

Zilog's Superintegration™ technology means more performance with fewer components. The Z8's familiar, elegant architecture guarantees ease of programming and use. Whether you need a highly sophisticated microcontroller, like the Z86C95™ with DSP or something much simpler, you'll find what you're looking for in the Z8 family - on target.

ASSPs are the best choice for a fast growing number of today's designs. At Zilog, we've been producing ASSPs and refining the technology in more innovative ways longer and better than anyone. We offer one of the industry's largest library of familiar cores and cells in the industry and a simple code-compatible migration path. Our own fabrication facilities provide the high standards of quality and reliability for which Zilog has always been known.

To find out more about the Z8 Microcontroller family, or any of Zilog's rapidly growing Superintegration product families, contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 East Hacienda Ave., Campbell, CA 95008-6600, (408) 370-8000.
32-BIT FLOATING-POINT CMOS DSP µP

AVAILABILITY: The C30 (27, 33, and 40 MHz) and the C31 (27, 33, and 40 MHz) are available now.

COST:
- C30, $156
- C30-27, $137
- C30-40, $200
- C31, $56
- C31-27, $55
- C31-40, $67 (1000)

SECOND SOURCE: None.

DESCRIPTION: This device was the first floating-point member of the vendor's TMS320 family. It is not code compatible with the fixed-point chips. The C30 is available in a slower, lower-cost version called the C30-27. The C31 is object-code compatible with the C30 and C30-27 but has only one serial port, one parallel port, and one timer. This feature reduction reduces the chip size and pin count, which lets TI offer a floating-point DSP for $35 in high volume.

FEATURES:
- 50-, 60-, and 74-nsec cycle-time versions.
- Four 24-bit address buses and three 32-bit data buses.
- Two 32-bit and two 40-bit additional buses in the CPU.
- Separate program, data, and DMA buses.
- Each internal RAM and ROM allows two accesses per cycle.
- Any of the separate memories can be used for program or data.
- Two on-chip 1k × 32-bit RAMs and an on-chip 4k × 32-bit ROM.
- 24-bit external memory-address bus provides 16M × 32-bit total address space.
- 13-bit external I/O address bus provides 8k × 32-bit I/O ports, which are mapped into the 16-Mbyte address space.
- Proprietary 2's complement 32-bit floating-point format.
- Multiplier accepts 32-bit floating-point data and returns 40-bit floating-point result. 24-bit integers result in 32-bit fixed-point results.
- ALU operates on 40-bit floating-point and 32-bit fixed-point data.
- Parallel multiplier and ALU operations in a single cycle.
- 32-bit bidirectional barrel shifter.
- Eight 40-bit register-based accumulators.
- Single-instruction and zero-overflow block looping.
- 64 × 32-bit instruction cache.
- Cache can be disabled when not needed and frozen to keep an often used portion of code available in the cache.
- Register, direct, indirect, immediate, relative, circular, and bit-reversed addressing modes. Two address ALUs.
- DMA controller allows concurrent I/O and CPU operation.
- Hardware pointer to software stack.
- Four external vectored interrupts.
- Hardware- and software-programmable wait states.
- Serial debug port can provide in-circuit emulation.
- Packaging: C30, 180-pin PGA. C30-27, 180-pin PGA. C31, 132-pin QFP.

HARDWARE SUPPORT SOFTWARE

SOFTWARE
- Optimizing ANSI C compiler. Source-level debugger and code profiler. (PC or Sun).
- Assembler/linker. Simulator. (PC or Sun).
- Application library.
- Third-party support includes real-time multitasking operating system (SPOX), Ada compiler, filter-design packages, and block-level diagramming language.
a66 FAMILY

16-bit FIXED-POINT DSP CHIP SET

AVAILABILITY: Now.
COST: a66111, 40-MHz, $700; a66211, 40-MHz, $680; a66311, 40-MHz, $520 (1).
SECOND SOURCE: None.

DESCRIPTION: The a661XX combines arrays of adders, multipliers, and ALUs for high-performance DSP applications. The a662XX provides system control and five address generators for FFT applications. The a663XX is a reconfigurable memory array that can be used with the family to reduce chip count. A 1024-point complex FFT can be calculated in 131 µsec. DSP operations are controlled by high-level DSP instructions.

FEATURES: 30- and 40-MHz versions.
Internal block floating-point maintained by a661XX.
16 high-level instructions execute FFT and general-purpose operations.
a662XX has 32-word instruction store for DSP programs.
Unlimited program size via external memory.
Directly supports up to 64k-point complex or 128k-point real data frames.
Simultaneously generates up to five 16-bit addresses to control memory array.
Program can be initialized by host µP or automatically booted from ROM.
a663XX contains 64k-bit of configurable static RAM.
One a66111, one a66211, and three a66311 chips create a complete 1024-point double-buffered FFT engine.
Multichip-module version being developed.
MIL-883 versions available.
Packaging: 144-pin PGA.

HARDWARE
VME and pc boards available.

SUPPORT
Software development environment includes code generator, assembler, and graphical interface.

SOFTWARE

NOTE: ALL RAM EXTERNAL TO CHIP SET. a663XX CAN BE USED FOR MEMORY.
Our free information kit will change the way you pinpoint problems in your digital design.

If you only rely on an oscilloscope to locate flaws in your digital design, you're playing a game of trial-and-error.

Want some free advice?

Then order HP's information kit on the tool that can increase your test capabilities: the logic analyzer. You'll learn how a logic analyzer lets you view multiple channels at once, and see them the same way your hardware does — information your scope alone just can't analyze.

Your kit includes the invaluable book *Feeling Comfortable with Logic Analyzers*. Plus handy information that reveals when to use your scope and when to use a logic analyzer.

Order your free digital debugging info kit today. And see how easy it is to hit the bull's-eye.

Call 1-800-452-4844 and ask for Ext. 3315 to get your free debugging info kit.

In Canada call 1-800-387-3867, Dept. 456.

There is a better way.

CIRCLE NO. 80

© 1992 Hewlett-Packard Co.
New Tango-Route PRO is the fastest, high-completion PCB autorouter for PC workstations. Its speed, ease of operation and professional results set Tango-Route PRO apart from all other autorouters. Whether you're a novice or an experienced designer, you’ll find Tango-Route PRO packed with features to help you be more productive, design better boards and get your products to market faster.

Unrivaled Performance and Features.

Tango-Route PRO has a unique “reconstruct” algorithm which iterates to 100% completion up to five times faster than comparable PC-based “rip-up and retry” or “push and shove” PC-based autorouters. Its automated options work like an “expert system” selecting the optimum routing configuration right out of the box for best results in the shortest time. Intelligent algorithms produce boards with fewer vias and shorter trace length to ensure high yields, lower fab cost and enhance board aesthetics. Uniform-, non-uniform- and off-grid routing offer performance equal to or better than “gridless routers.” The program fully supports the 32-bit power of 386/486 computers, virtual memory and all current PCB technologies including advanced SMD. And you’ll drive Tango-Route PRO with the easy-to-use, Windows™-like Tango interface.

Benchmark Tango-Route PRO.

Tango-Route PRO, together with our design editor, Tango-PCB PLUS, can greatly enhance your productivity. But don’t take our word for it... call toll-free for complete specs and a free evaluation package to see the future in auto-routing for yourself.
24-bit FIXED-POINT DSP CHIP SET

AVAILABILITY: Now.
COST: LH9124, $1200; LH9320, $260 (100).
SECOND SOURCE: None.

DESCRIPTION: The LH9124 is optimized for block-oriented algorithms and array processing. It is microcoded to perform standard DSP functions in time domain or frequency domain. The LH9320 is an address generator with many patterns to support DSP algorithms. High-level DSP commands simplify software generation. A 1024-point complex FFT can be performed in 81 µsec.

FEATURES: 33- and 40-MHz versions. LH9124 maintains internal block floating-point. 26 high-level instructions execute FFT and general-purpose operations. Multiple units can be paralleled or cascaded for higher performance.

Data width can be 8- to 24-bit real or complex. No on-chip memory. Packaging: LH9124, 262-pin PGA; LH9320, 68-pin PLCC.

HARDWARE
System-validation card for each chip.
Evaluation module.

SUPPORT
PC-based real-time simulator.
Object-oriented high-level-language development system.

SOFTWARE
PC-based real-time simulator.
Object-oriented high-level-language development system.

Circle No. 687
Nobody offers you a bigger selection of high performance 3V analog parts than Linear Technology. We've been helping customers solve high speed, precision low power design problems with 3V analog solutions for years.

Our family of VoltSaver products covers a wide spectrum of 3V linear functions. Guaranteed performance at 3V levels allows you to work with confidence at this new power supply voltage. Power supply circuits are available to operate down to 2V and below or regulate 5V down to 3V. Micropower low dropout and micropower switching regulators reliably give 3.3V or 5V in portable systems, and 3V high-side switches provide power management. Op amps and instrumentation amplifiers have guaranteed performance at 3V and below. Also, RS232 interface circuits are designed to operate with the new 3.3V logic levels.

Voltage references with guaranteed temperature performance are available at 1.2V and 2.5V—ideal for 3V systems. Micropower comparators that operate on 3V, down to as low as 1.1V, can provide system resets as well as battery detection. A full line of 8-bit, 10-bit and 12-bit analog to digital converters are available with guaranteed specifications for 3V operation. Also, microprocessor supervisory circuits for 3.3V applications are available.

Call today for our Design Note 56 "3.3V Operation of Op Amps" and our 3V Selection Guide. For details, contact Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035/408-432-1900. For literature only call 800-637-5545.

VoltSavers is a trademark of Linear Technology Corporation.
CMOS switches develop negative voltage

Lubomir Galaty, Ustav Automatizacie a Komunikacie, Severna, Ceskoslovensko

The simple negative-voltage converter in Fig 1 works over an input range of 3 to 9V with an internal resistance ranging from 2000 to 4000Ω (depending on input voltage and output loading). The converter’s negative output is nearly equal in magnitude to the input voltage.

Resistor R_1, capacitor C_1, and switches IC$_{1A}$ and IC$_{1B}$, functioning as inverters, form an RC oscillator. Switches IC$_{1B}$ and IC$_{1C}$ alternately charge C_2 from V_{IN} and discharge C_2 into C_3.

If you use a 74HC4053 instead of a CD4053, the circuit will have a lower internal resistance, but function only over a V_{IN} range of 2 to 5V. If the negative output is greater in magnitude than the input, the circuit can feed energy back from output to input.

Hartley transform beats FFT for DSP µPs

Vladimir Bochev, Universite De Nancy, Nancy, France

Bergland’s well-known algorithm for the FFT (Ref 1) has drawbacks in light of modern DSP µPs. His algorithm decreases the memory requirements and the number of operations of a bit-reverse FFT by a half. But Bergland’s FFT has a much more complicated addressing scheme compared with the simple bit-reverse for the complex FFT.

The Hartley transform is a real transform for a real signal. Furthermore, the inverse-transform algorithm is exactly the same as the forward transform. The overspeculated fast Hartley transform (Refs 4 and 5) better suits DSP µPs such as the TMS320C25. The fast Hartley transform is not faster than real valued FFTs and requires the same storage. It requires even a few more operations (Refs 6 and 7) to obtain a meaningful frequency spectrum. But the fast Hartley transform is faster than complex FFTs and requires less storage.

Its real-valued nature and the low memory requirements along with easy address generation makes the
fast Hartley transform the algorithm of choice for frequency analysis of real-time signals on DSP microprocessors.

The listings are much too long to be printed here. But you can find source code and examples that you can run on both the Bergland FFT and Hartley transforms, along with some handy utilities, posted on the EDN BBS. After obtaining the files, you can call the program \texttt{fft_real}, written in 80x86 assembly language, directly from a C program running on your PC. \texttt{fft_real} is very easy to understand—especially the section on the butterfly computations. To simplify generating addresses for the data and coefficient array, all addresses are precomputed and stored in an include file, as are the sine and cosine values needed.

No one should be foolish enough to try to input by hand the contents of these include files. Three programs—\texttt{bergland.c}, \texttt{sintab.c} and \texttt{hex2asca.c} generate the include files. The first program generates a table of all the addresses needed by this kind of FFT. The second generates two files which contain the sine and cosine values needed by the FFT. All three generated files are in a binary format, so the third program, \texttt{hex2asca.c} will convert them to text files containing the proper declarations for the assembler.

\texttt{fht.tms} provides the source code for a fast Hartley transform for the TMS320C25. \texttt{fht.tms} requires its own coefficient table containing \(\tan(x)\) and \(\sin(x)\) from \(x = 0\), up to—but not including—\(\pi/2\). A procedure similar to \texttt{sintab} for the Bergland FFT will generate the table in for the fast Hartley transform. To make an include file you'll need to slightly modify \texttt{hex2asca.c} to emit, for example, \texttt{DATA} statements instead of “\texttt{dw}”, and also the proper “\texttt{hex}” header and not suffix “\texttt{hi}”.

\textbf{References}

VHDL “wait” statement inserts registers

Steve Carlson, Synopsys Inc, Mountain View, CA

The circuit in Fig 1 illustrates how a logic synthesizer interprets the VHDL (VHSIC hardware-description-language) \texttt{wait} statement (Listing 1). In the Listing, the \texttt{wait} keyword tells the logic synthesizer to store certain logic values. The synthesizer then inserts registers where required.

Listing 1—VHDL wait example

```vhdl
entity VHDL is
  port(
    ENABLE : in BIT;
    CLOCK : in BIT;
    TOGGLE : buffer BIT
  );
end VHDL;

architecture VHDL_1 of VHDL is
begin
  process begin
    wait until not CLOCK'stable and CLOCK = '1';
    if (ENABLE = '1') then
      TOGGLE <= not TOGGLE;
    end if;
  end process;
end VHDL_1;
```

EDN BBS /DL_SIG #1183

To Vote For This Design, Circle No. 749

EDN BBS /DL_SIG #1181

To Vote For This Design, Circle No. 750

Fig 1—A logic synthesizer will generate a register like this one in response to a VHDL wait statement in the listing.

DIGITAL STEP ATTENUATORS

up to 35dB
10 to 1000MHz

FROM $5995

<table>
<thead>
<tr>
<th>TOAT-R512</th>
<th>ZFAT-R512</th>
<th>TOAT-124</th>
<th>ZFAT-124</th>
<th>TOAT-3610</th>
<th>ZFAT-3610</th>
<th>TOAT-4816</th>
<th>ZFAT-4816</th>
<th>TOAT-51020</th>
<th>ZFAT-51020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
</tr>
<tr>
<td>(dB)</td>
<td>(+/-dB)</td>
<td>(dB)</td>
<td>(+/-dB)</td>
<td>(dB)</td>
<td>(+/-dB)</td>
<td>(dB)</td>
<td>(+/-dB)</td>
<td>(dB)</td>
<td>(+/-dB)</td>
</tr>
<tr>
<td>0.5</td>
<td>0.12</td>
<td>1.0</td>
<td>0.2</td>
<td>3.0</td>
<td>0.3</td>
<td>4.0</td>
<td>0.3</td>
<td>5.0</td>
<td>0.3</td>
</tr>
<tr>
<td>1.0</td>
<td>0.2</td>
<td>2.0</td>
<td>0.2</td>
<td>6.0</td>
<td>0.3</td>
<td>8.0</td>
<td>0.3</td>
<td>10.0</td>
<td>0.3</td>
</tr>
<tr>
<td>1.5</td>
<td>0.32</td>
<td>3.0</td>
<td>0.4</td>
<td>9.0</td>
<td>0.6</td>
<td>12.0</td>
<td>0.6</td>
<td>15.0</td>
<td>0.6</td>
</tr>
<tr>
<td>2.0</td>
<td>0.2</td>
<td>4.0</td>
<td>0.3</td>
<td>10.0</td>
<td>0.3</td>
<td>16.0</td>
<td>0.5</td>
<td>20.0</td>
<td>0.4</td>
</tr>
<tr>
<td>2.5</td>
<td>0.32</td>
<td>5.0</td>
<td>0.5</td>
<td>13.0</td>
<td>0.6</td>
<td>20.0</td>
<td>0.8</td>
<td>25.0</td>
<td>0.7</td>
</tr>
<tr>
<td>3.0</td>
<td>0.4</td>
<td>6.0</td>
<td>0.5</td>
<td>16.0</td>
<td>0.6</td>
<td>24.0</td>
<td>0.8</td>
<td>30.0</td>
<td>0.7</td>
</tr>
<tr>
<td>3.5</td>
<td>0.52</td>
<td>7.0</td>
<td>0.7</td>
<td>19.0</td>
<td>0.9</td>
<td>28.0</td>
<td>1.1</td>
<td>35.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Price $ (1-9 qty) TOAT $59.95/ZFAT $89.95

Finally...precision attenuation accurate over 10 to 1000MHz and -55°C to +100°C. Standard and custom models are available in the TOAT(pin)- and ZFAT(SMA)-series, each with 3 discrete attenuators switchable to provide 7 discrete and accurate attenuation levels.

The 50-ohm components perform with 6µsec switching speed and can handle power levels typically to +15dBm. Rugged hermetically-sealed TO-8 units and SMA connector versions can withstand the strenuous shock, vibration, and temperature stresses of MIL requirements. TOAT pin models are priced at only $59.95 (1-9 qty); ZFAT SMA versions are $89.95 (1-9 qty).

Take advantage of this striking price/performance breakthrough to stimulate new applications as you implement present designs and plan future systems. All units are available for immediate delivery, with a one-yr. guarantee, and three-sigma unit-to-unit repeatability.
INDUCTORS

Call Nytron for fast access to MIL-C-39010.

Save time. Call Nytron and get broad, one-stop coverage of MIL and commercial inductors, especially:

• "E-REL" Inductors, MIL-C-39010.
 Coverage includes M39010/01 through M39010/10 at "R" and "P" levels, plus
• MIL-C-15305 in a wide range of standard sizes, and
• High Current Chokes featuring many special designs.

Call today.

NYTRON INDUCTORS, INC., (VSD, Inc.)
Offered by DALE ELECTRONICS, INC.
East Hwy 50 • P.O. Box 180 • Yankton, SD 57078-0180
Phone (605) 665-9301 • Fax (605) 665-1627

CIRCLE NO. 84

POWER SUPPLY DESIGN TIPS

STRIFE TESTING INCREASES RELIABILITY

• STRIFE = Stress + Life
 • Temperature / Vibration / Electrical Overload Beyond Specification Limits
 • Make Your Design More Robust
 • Reduce Failure Rate 2 to 3 Times

For Information on Standard Distributed and Custom Switching Power Supplies

CALL

MicroENERGY INC
745 W. State Road 434 • Longwood, FL 32750-4909
PHONE: (407) 831-2000 • FAX (407) 831-1100

CIRCLE NO. 85

PROBE QUAD FLATPACKS

With the QFP Emulator Foot

• Solder in place or put into socket.
• Then plug a Socket/Test Probe assembly onto the foot. The Socket/Test probe assembly available in ZIF or production sockets with probing header for each pin with annotated overlay.
• Excellent lead coplanarity for reliable solder connection.
• Custom overlays and configurations available on request.
• Available in many sizes.

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121
(612) 431-7025; FAX (612) 432-8616

CIRCLE NO. 86

STARLIGHTS: A new fuseholder generation

Yet another innovative result of Wickmann technology. Fuseholders for 5 x 20 mm and 6.3 x 32 mm fuses feature extra solid contact pins, compatibility with existing shock-safe fuseholders, and sealed terminals. Now everyone can afford superior circuit protection.

Wickmann-Werke GmbH
Postbox 2520 • D-5810 Witten • Tel. 02302/6620 • Fax 02302/66 22 19

CIRCLE NO. 87
When space is at a premium, stacking makes a lot of sense.

Micro/Q® 3500SM noise decoupling capacitors save valuable board space by surface mounting below PLCC packages.

In today's high-density designs, you need to maximize every square inch of PC board space. The low profile of the Micro/Q 3500SM makes it easy to mount under the PLCC, saving space and improving noise suppression at the same time.

Surface mounting under the PLCC increases board density by eliminating the need for traditional decoupling capacitors around the perimeter of the IC package. This "stacking" technique also helps to lower inductance and impedance compared to conventional multi-layer capacitors.

Very thin (0.020" MAX) metallic-parallel plate construction results in less than 1nH of inductance. Low decoupling loop inductance value improves control of EMI/RFI. Besides providing superior noise reduction, the Micro/Q 3500SM also absorbs CTE mismatch and prevents electrical failure caused by cracks typical of MLC chips.

The device is ideal for wide frequency bandwidth applications such as 16/32 bit MPUs, DSPs, FPPs, gate arrays, standard cells and custom ASICs. Now available in two sizes: 0.520" to fit below 44 and 52 pin PLCCs, and 0.820" for placement under 68, 84 and higher pin-count PLCCs. Choose either X7R or Z5V dielectric, in tape and reel or bulk formats.

To see how all the advantages stack up, call a Circuit Components, Inc. Product Specialist today at (602) 967-0624. Ask for your free Micro/Q 3500SM specifier’s kit.
TO MOTOROLA,
THIS BOX REPRESENTS
A VERY VISIBLE
MEANS OF SUPPORT.

The Sensible Choice
When Motorola went looking for a software partner committed to the entire
68000 family, they decided on Intermetrics. With superior product performance, a full range
of software tools, and a reputation for high-quality technical service, Intermetrics was the perfect choice to support Motorola’s line of premier embedded processors.

Hot Compilers For Hot Chips
Intermetrics InterTools C Compilers produce highly optimized code for all 68000 family processors, including the new EC series chips. This means that you can evaluate, prototype and build top-performing, Motorola-based systems in record time.

Expert Debuggers For Every Problem
Intermetrics also makes XDB Source Level Debuggers which are available in many configurations—from low-cost ROM Monitor-based systems to sophisticated emulator-based environments. XDB can help you debug fully optimized code, and is compatible with many popular embedded real-time operating systems.

Real Support, Real Time
At Intermetrics, the engineers who designed our products are only a phone call away. After all, they’re the ones who really understand your needs and can help you.

Call Now For Product Information
For the latest information on our full line of products that support the 68000 family, call Intermetrics or your Motorola representative today, and you’ll discover why Motorola made the perfect choice when they needed a dependable software partner.

Make Every Bit Count

Intermetrics Microsystems Software, Inc.
733 Concord Ave., Cambridge, MA 02138

800-356-3594
MA: 617-661-0072
CA: 714-891-4631
FAX: 617-868-2843
Looking for monumental embedded solutions?
Let our SPARC lite family lead the way.

Chip by chip, we’ve built a highly advanced family of processors which enables designers of embedded systems to scale greater heights than ever before. The SPARC lite family of RISC processors from Fujitsu Microelectronics gives you a wide range of bright solutions. From an inexpensive entry point into the world of SPARC embedded computing, all the way up to clock speeds of 40 MHz. Providing 40 MIPS peak and 37 MIPS sustained performance. And soon, even higher speeds will be available.

Our SPARC lite family of solutions can easily be designed into your embedded applications. Giving your designs much greater performance at very competitive prices. And to get you to market more quickly, they’re complemented by a full range of multi-platform support tools. Like real-time operating systems, compilers, in-circuit emulators and evaluation boards. From the leading names in development systems.

What’s more, as your computing needs grow, so does our SPARC lite family. In fact, by the end of this year, two new SPARC lite products will be added, bringing the family to four. Each and every one software compatible with the industry standard SPARC high-performance RISC architecture.

So call us at 1-800-642-7616. And discover our family of SPARC lite processors. Built to lead the way—now and for the future.

FUJITSU MICROELECTRONICS, INC. 3545 N. First Street, San Jose, CA 95134-1804. Ph: 408-456-1161 Fax: 408-943-9293.
FUJITSU WIKROELEKTRONIK GmbH (Dreieich-Buschlag, Germany) Ph: 06103-6900 Fax: 06103-690122.

SPARC lite is a trademark of SPARC International, Inc., licensed exclusively to Fujitsu Microelectronics, Inc. SPARC is a registered trademark of SPARC international, Inc. © 1992 Fujitsu Microelectronics, Inc.
Every company experiences finger pointing when a design doesn't work.

Your circuit designers claim the models are not accurate. The model developers claim the process shifted since the time they began work on the models. The process engineers claim the model developers aren't tracking the process.

Meta eliminates finger pointing and helps you get it right first time™. Meta-Labs modeling services, combined with the HSPICE circuit simulator, provide the crucial link between your fab and circuit designers. The Meta-Software methodology helps your design, process, and modeling groups work together as one team.

Get back in the chips with Meta-Software. For a right first time information package, call toll free (800) 442-3200, ext. A2.
SPARC peripheral chip set. The SPARCset 7-chip chip set lets you build Mbus modules ranging from a single processor, 33-MHz CYM6001 SPARC-set module to a dual-processor 66.7-MHz CYM6226 hyperSPARC module. The CY7C617 is a graphics controller that interfaces directly to the Mbus. The CY7C616 and CY7C618 provide an Mbus to SBus interface. The CY7C613 is a memory controller, and the CY7C604/5 is a cache controller/memory-management unit. The CY7C614 and CY7C615 are I/O controllers. Chip set, $250 (100). Cypress Semiconductor, 3901 N First St, San Jose, CA 95134. Phone (408) 943-2600.

QPSK modulator. The HPMX-2002 is a monolithic quadrature-phase-shift-keyed (QPSK) modulator and dual-conversion unit. It modulates signals in the 40- to 300-MHz frequency range and transmits RF data at frequencies as high as 2 GHz. The I and Q bandwidths are greater than 10 MHz, and the output power is −11 dBm. The 20-pin plastic chip consumes 60 mW when operating from 5V and 50 μW in standby mode. $8.75. Hewlett-Packard Co, Box 58059, Santa Clara, CA 95052. Phone (800) 752-0900.

Sampling amplifier. The AD901 Sampling amplifier consists of a track and hold amplifier driving a positive gain op amp with a gain of 4 in a 20-pin SOIC or ceramic LCC package. Acquisition time to 0.4% of amplitude is 5 nsec, and 0.01% of amplitude is 11 nsec. The rms noise when the amplifier is tracking the input is 3.3 nV/√Hz. The harmonic distortion during hold mode is −75 dB below full scale for a 50M-sample/sec sampling rate and a 23-MHz input sine wave. $33 (100). Analog Devices Inc, Computer Labs Div, 7910 Triad Center Dr, Greensboro, NC 27409. Phone (919) 668-9511. FAX (617) 821-4273.

Windows accelerator. The HT216-32 Windows Express is a local-bus VGA controller. It accelerates Windows applications for 486 and 386 µPs. The controller is register compatible with the IBM VGA standard and operates at CPU clock speeds from 16 to 40 MHz. Hardware in the controller assists the CPU in controlling Windows operations. $25 (1000). Headland Technology, 46221 Landing Pkwy, Fremont, CA 94538. Phone (510) 623-7857.

FIFO memories. The Q87201 and Q87202 asynchronous FIFO memories have 12-nsec access times and 512x9-bit and 1kx9-bit densities, respectively. The asynchronous Q87203 and Q87204 FIFO memories have 10-nsec access times and 2kx9-bit and 4kx9-bit densities, respectively. The syn-
Chronous QS7223 and QS7224 FIFO memories operate with 66-MHz clocks and have 2k x 9-bit and 4k x 9-bit densities, respectively. $30.15 to $98.50. Quality Semiconductor, 851 Martin Ave, Santa Clara, CA 95050. Phone (408) 450-8000. FAX (408) 496-0691.

Circle No. 369

Board-history recorder. The Scope Diary TMS29F816 JTAG-compatible chip maintains the operational history of a PC board. It stores serial and model numbers, calibration constants, engineering revisions, elapsed operation time, repair history, and power-down status log. In addition, the chip has one-time write protection, 16 kbits of memory, and nonvolatile storage. $15 (1000). Texas Instruments Inc, Semiconductor Group, Box 809066, Dallas, TX 75380. Phone (214) 995-6611, ext 3990.

Circle No. 370

GaAs products. This family of prescalers and gain-block amplifiers are the company's first commercial GaAs products. The divide-by-4, -8, and -32 prescalers operate from a -5.2 to -6V supply and from dc to 14 GHz. The gain-block amplifiers provide 10 or 20 dB of gain from dc to 10 GHz. The amplifiers operate from a 4 to 7V supply and consume 200 mW. Divide-by-8 prescaler in die form, $14.95; 10-GHz gain block in die form, $9.95. Rockwell/MTC, 2427 W Hillcrest Dr, Newbury Park, CA 91320. Phone (805) 375-1237. FAX (805) 375-1268.

Circle No. 371

10- to 1500-MHz amplifier. The UTO-1576 RF amplifier provides 10.5 dB of gain from 10 to 1500 MHz. It comes in a T0-8 package and exhibits 50 dB of reverse isolation. Other features include 0.5-dB gain flatness, 5-dB noise figure, and a 1-dB gain compression point of 9 dBm. The amplifier operates from -55 to +85°C. $120. Hewlett-Packard Co, Box 58059, Santa Clara, CA 95052. Phone (800) 752-0900.

Circle No. 372

4M-bit video RAM. This video RAM includes reading and writing of bits to split registers, 4 x 4 x 4 block writes for fast area-fills, and CAS-before-RAS refresh. The chip integrates a 256k x 16-bit dynamic RAM with a 256-bit serial-access memory. One version has a 70-nsec row-enable access time and a 20-nsec serial-data access time. Another version has an 80-nsec row-enable access time and a 25-nsec serial-data access time. From $70. Texas Instruments Inc, Semiconductor Group, Box 809066. Dallas, TX 75380. Phone in US and Canada, (800) 336-5236, ext 3990; (214) 995-6611, ext 3990.

Circle No. 373

3V 22V10 PLDs. The AT22LV10 and AT22LV10L are 3V versions of the industry-standard 22V10 PLD. Both chips operate from 3 to 5.5V. Propaga-

PURE PERFORMANCE

<table>
<thead>
<tr>
<th>HSP45116</th>
<th>HSP45106</th>
<th>HSP45102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase accumulator size</td>
<td>32 bits</td>
<td>32 bits</td>
</tr>
<tr>
<td>Phase control</td>
<td>16 bits</td>
<td>16 bits</td>
</tr>
<tr>
<td>Frequency control</td>
<td>32 bits</td>
<td>32 bits</td>
</tr>
<tr>
<td>Tuning resolution at maximum speed</td>
<td>0.008 Hz</td>
<td>0.008 Hz</td>
</tr>
<tr>
<td>Interface</td>
<td>Standard µP</td>
<td>Standard µP</td>
</tr>
<tr>
<td>Speed</td>
<td>33 MHz</td>
<td>33 MHz</td>
</tr>
<tr>
<td>Output</td>
<td>16 parallel</td>
<td>16 parallel</td>
</tr>
</tbody>
</table>

DIGITAL MODULATION MADE EASY

QAM
Implement nearly infinite levels of Quadrature Amplitude Modulation

PSK
Implement all forms of Phase Shift Keying from DPSK to 8PSK

FM/FSK/FHOP
Real time frequency control; change frequency in a single clock cycle

For pure performance in frequency synthesis, catch the new wave in DSP. The new wave is Harris.

Our Numerically Controlled Oscillators (NCOs) offer spectral purity of better than 90 dB. Tuning resolution of 0.008 Hertz. 32-bit-wide
tion delay for both devices is 20 nsec. The AT22V10 draws 40 mA of standby current, and the AT22V10L draws 4 mA from a 3.6V supply. Packaged in plastic DIPs, AT22LV10, $8.40; AT22LV10L, $6.60 (100). Atmel Corp, 2125 O'Nel Dr, San Jose, CA 95131. Phone (408) 441-0311. Circle No. 374

386DX ISA bus controller. The VL82C380 is an ISA bus controller chip with on-chip cache. Its cache controller employs a look-aside, write-back architecture. The chip controls 1- or 2-bank cache RAMs and maintains coherency during DMA and master-mode cycles to eliminate flushing and invalidating operations. The memory controller can access as much as 64 Mbytes of main memory. Approximately $20 (OEM qty). VL82 Technology Inc, SC386, 200 Parkside Dr, San Fernando, CA 91340. Phone (602) 752-6212. FAX (602) 752-6000. Circle No. 375

Quad video buffers. The SI584 monolithic quad video buffers have a 200-MHz bandwidth and an output drive-current capacity of ±20 mA. The unity-gain buffers don't require any external components, and the differential gain and phase errors are 0.8% and 0.1°, respectively. The chip comes in a 14-pin DIP or SO-14 package. $10.15 (100). Siliconix Inc, 2201 Laurelwood Rd, Santa Clara, CA 95054. Phone (800) 554-4454, ext 1900; (408) 988-8000. Circle No. 376

Combustion-engine peripheral. The 67F687 controls the spark and fuel control systems in 4-, 6-, or 8-cylinder engines. Because the chip generates fewer interrupts than other engine peripheral ICs, you can use simple, inexpensive µPs. On-chip features include sensor conditioning and output predrivers. A digital phase-locked-loop circuit tracks engine position using two sensor inputs. $3.50 to $15. Silicon Systems, 14351 Myford Rd, Tustin, CA 92680. Phone (714) 573-6200. FAX (714) 573-6914. Circle No. 377

Audio chip sets. The Aria family consists of three chip sets for synthesizing music on a computer. The STS800 emulates Creative Lab's Sound Blaster board and has a joystick port, a MIDI port, a Rowland MPU-401 port, and digital recording and playback. The STS8001 and STS8002 offer the same features and have a 512-kbyte and 1-Mbyte sound library, respectively. $30 to $60 (10,000). Sierra Semiconductor, 2075 N Capitol Ave, San Jose, CA 95132. Phone (408) 263-9300. FAX (408) 263-9337. TLX 384467. Circle No. 378

Power op amps. The single OMA541 and dual OMA2541 power operational amplifiers operate from ±40V power supplies and deliver 5A of continuous phase accumulation. No one else offers NCOs that generate signals so pure with so much precision.

No one else offers NCOs with so many features, either. Our HSP45116 also implements Direct Digital Down Conversion on the same chip. And our HSP45102 12-bit NCO has a footprint of just 0.28 square inches. So get in tune with Harris. With our broad line of DSP products — including NCOs, digital filters and image processing — we're the new wave in DSP. Catch it. Call 1-800-4-HARRIS, ext. 1171.

CIRCLE NO. 130

EDN September 17, 1992 • 153
output current. The OMA501 delivers ±10A and is stable in a unity-gain configuration. OM501AK, $76.90; OMA2541SK, $106.70 (100). Omnirel Corp, 205 Crawford St, Leominster, MA 01453. Phone (508) 534-5776. FAX (508) 537-4246.

Single-supply communications transceivers. The AD7306 combines two RS-232C and configurable RS-232C or RS-422 receiver in a 24-pin SOIC package. The chip operates from a single 5V supply and internally generates ±10V for the transceivers. A charge-pump voltage converter operates with an external nonpolarized 0.1-µF capacitor. Analog Devices Inc, 181 Ballardvale St, Wilmington, MA 01887. Phone (617) 937-1428. FAX (617) 821-4273.

Real-time clock. The DS1587 serial real-time clock is a timekeeper that can switch on a DOS-compatible computer to perform a scheduled task. It has a permanent 64-bit serial number to identify the computer. Besides the standard real-time clock registers and 50 bytes of user nonvolatile static RAM, the chip provides an additional 60 bytes of nonvolatile static RAM. $15.50 Dallas Semiconductor, 4401 S Beltwood Pkwy, Dallas, TX 75244. Phone (214) 450-0448. FAX (214) 450-0470.

ISDN buck regulator. The PWR-SMP402 de/de converter for nonisolated ISDN (Integrated Services Digital Network) power-supply applications. The device accepts 20 to 72V de inputs and generates a 5V supply line using a buck regulator. The IC meets ISDN specifications for T1 telecommunications requiring output power greater than 1W. A MOSFET power switch operates from 50 to 500 kHz. $2.30 (1000). Power Integrations Inc, 411 Clyde Ave, Mountain View, CA 94043. Phone (415) 960-3572.

Wireless communications chips. The PMB2200 transmit modulator and PMB2400 receive demodulator comply with the Cellular Telecommunication Industry Association-endorsed IS-54 standard and the Groupe Speciale Mobile standard for digital wireless communications systems. The PMB2200 converts baseband signals to RF carrier frequencies between 700 MHz and 1 GHz. The PMB2400 converts the RF carrier to baseband signals, using dual-stage heterodyne receivers. $7.85 each (1000). Siemens Components Inc, Integrated Circuit Div, 2192 Laurelwood Rd, Santa Clara, CA 95054. Phone (408) 980-4500.
Announcing the Economic Recovery Plan from Hewlett-Packard. Trade up to the new test equipment you need. And recover 20%.

Although technology is growing by leaps and bounds, chances are your budget isn't.

So, how can you get the new test equipment it takes to keep up, without breaking the bank?

With the Economic Recovery Plan from Hewlett-Packard — that's how. It's the best way to get the new-generation HP test equipment you need. At a substantial savings.

Just trade in your present high-performance oscilloscope, portable logic analyzer, or spectrum analyzer*, any time before January 31, 1993. And we'll give you a 20% credit toward an upgrade to one of HP's new state-of-the-art instruments.

If you'd like more information about our new test products — or if you're ready to trade up — call 1-800-452-4844 Ext. 7046 or your local field engineer.

But don't wait. If you miss this opportunity to save 20% on HP test equipment, you might never recover.

Trade in your old equipment and save 20% on the latest models from HP.

HP 54700 family of high-performance, modular oscilloscopes lets you capture your most elusive problems.

- 1 GHz single shot bandwidth (4 GSa/s)
- Accurate waveform reproduction with non-intrusive probing
- Modular system adapts to your changing needs

HP 1660 family of portable logic analyzers gives you the confidence to solve your toughest digital problems.

- 100 MHz state and 500 MHz timing
- 34, 68, 102, and 136-channel models
- Intuitive mouse, keypad, and keyboard interface

HP 8560 and 8590 E-Series of portable spectrum analyzers offer the highest performance for the price.

- Improved phase noise and narrower resolution bandwidth
- Many application-specific, one-button measurement functions
- User-friendly interface

There is a better way.

*Certain restrictions apply.

CIRCLE NO. 95
Think Low Power.

2.4µW/MHz/gate

Think Mitsubishi Gate Arrays.

Whether you're designing your next gate array, or your first, you've got to think about system power requirements. Your very next thought should be:
Mitsubishi Gate Arrays.

Our 0.8µm arrays give you four speed/power options to control total chip power consumption. Four transistor sizes within each macro allow optimization for either high speed or low power. The result is power dissipation as low as 2.4µW/MHz/gate, at 5V. And, with Mitsubishi's 3V library, you can achieve even lower power dissipation. You can switch more nodes in the array, control the power and still use lower-cost, plastic packaging.

Add to all of this 400,000 gates, 512 I/Os, and Mitsubishi's exclusive µPitch TAB" packaging with pin counts as high as 576.

We also offer design kits for industry's most popular workstations, from logic synthesis, to simulation, to automatic test pattern generation (ATPG). So you can design on your own workstation or ours.

With both local design support and the global resources of a stable, well-capitalized company, Mitsubishi is one of the world's top 10 semiconductor suppliers. We've been in the ASIC business for over 15 years and we're continuing to invest in technologies for the next decade.

When you think gate arrays, think low power. Then think Mitsubishi. You'll be glad you did.

Phone (408) 730-5900, ext. 2106.
EPSON The CrystalMaster
Awards its customers with the latest in CRYSTAL technology

C RyS TALS

THRU-HOLE
C-2
- LOW FREQUENCY TUNING FORK TYPE
- 32.768 KHz
- 20 KHz - 100 KHz
CA-301
- HIGH FREQUENCY AT - STRIP TYPE
- 4.0 MHz - 67.0 MHz

SMD
MC-405/6
- HEAT RESISTIVE C-2H INSIDE
- L10.4xW4.05xH3.56mm
- 20 KHz - 100 KHz
MA-505/6
- HEAT RESISTIVE CA-303 INSIDE
- L13.46xW5.08xH4.57mm
- 4.0 MHz - 67.0 MHz

MINIATURE SMD
MC-306
- NEW TUNING FORK CRYSTAL TECHNOLOGY
- L7.9xW3.8xH2.5mm
- 32.768 KHz
MA-306
- NEW AT - STRIP CRYSTAL TECHNOLOGY
- L7.9xW3.8xH2.5mm
- 17.7 MHz - 40.0 MHz

OSCILLATORS

THRU-HOLE
SG-51/531
- COST EFFECTIVE AUTO INSERTABLE FULL SIZE (SG-51) AND HALF SIZE (SG-531) DIP'S
- CA-301 CRYSTAL INSIDE
- 1.025 MHz - 67.0 MHz

SMD
SG-615
- SURFACE MOUNTABLE
- HEAT RESISTIVE CA-303 INSIDE
- L14.0xW9.8xH4.7mm
- 1.025 MHz - 67.0 MHz

MINIATURE SMD
SG-636
- MINIATURE SURFACE MOUNT
- NEW AT - STRIP CRYSTAL TECHNOLOGY
- L10.3xW5.8xH2.8mm
- 220 kHz - 40.0 MHz

EPSON EPSON AMERICA, INC.
COMPONENT SALES DEPARTMENT
TEL: (310) 787-6300, FAX: (310) 782-5320

CIRCLE NO. 97
IDE module. The Portfolio is a 13-port multifunction IDE (integrated-drive-electronics) interface module for serial, parallel, floppy, and game-port functions. Using this unit you can connect a laser printer, a dot-matrix printer, as many as four 1.2- or 1.44-Mbyte floppy-disk drives, two IDE drives, a tape-backup unit, a serial mouse, a modem, and a joystick. $79. Quadrtek Corp, 6034 W Courtyard Dr, Suite 305-74, Austin, TX 78730. Phone (512) 338-2125. FAX (512) 338-2127. **Circle No. 384**

Multiprocessor application accelerators. The Skybolt-mp Shamrock offers processing speeds as high as 1.28 Gflops in a 9U VME slot, and the Skybolt Shamrock offers processing speeds as high as 320 Mflops in a 6U VME slot. The accelerators feature a modular design with an Intel i960 processor controlling several Intel i860 processors. The 6U Skybolt Shamrock, from $27,450; 9U Skybolt-mp Shamrock, from $32,350. Sky Computers Inc, 27 Industrial Ave, Chelmsford, MA 01824. Phone (508) 250-1920. FAX (508) 250-0036. **Circle No. 385**

Multifrequency monitor. The Spectrum Autosync monitor has a 20-in. dark tube and is compatible with PGA, VGA, extended VGA, 1024x768-pixel and 1280x1024-pixel formats. The monitor automatically adjusts picture size from horizontal frequencies of 29 to 66 kHz and vertical frequencies of 40 to 120 Hz. $3195. Aydin Controls, 414 Commerce Dr, Fort Washington, PA 19034. Phone (215) 542-7800. **Circle No. 386**

Super-VGA board. The VGAwonder XL24 displays 16.7 million colors in 640x480-pixel resolution or more than 32,000 colors in 800x600-pixel resolution. The board is available in 512 kbyte or 1 Mbyte and comes with drivers for Microstation, CADKey, OS/2 2.0, and Windows 3.X. $179. ATI Technologies Inc, 3761 Victoria Park Ave, Scarborough, ON M1W 3S2, Canada. Phone (416) 756-0718. FAX (416) 756-0720. TLX 06966540. **Circle No. 387**

Super-VGA graphics card. The SVG Multiview/Micro Channel graphics card provides a 115-Hz refresh rate on the Micro Channel bus. The card and its software utilize Windows in 1024x768-pixel and 800x600-pixel resolutions and more than 16.7 million colors. $549. Radius Inc, 1710 Fortune Dr, San Jose, CA 95131. Phone (408) 434-1010. FAX (408) 434-0770. **Circle No. 388**

Solid-state power controllers. The SSP-21120 series solid-state power controllers operate as high as 80A at 28V dc. The controllers include a thermal memory that shortens trip times when repeated attempts are made to turn on

KEPCO ANALOG/DIGITAL PROGRAMMABLE POWER.

HIGH SPEED/UNIPOLAR/BIPOLAR

The power golfer relies on his putter as much as the driver. The putter is his money club. A delicate touch is needed to wield this tool. The same sort of delicacy and precision you'll find in our analog-controlled operational power supplies. 120 dB of gain at your disposal, wide bandwidth. Single quadrant and four-quadrant voltage and current stabilization.

5-YEAR WARRANTY
Available from Stock. Call: 718-461-7000. Ask for Tom Fischer. He can arrange a demo in your place.

Call/fax/write to
Dept. MUH-12
for any of our catalogs.
the device into an overload condition. Using several devices in parallel yields higher current ratings. From $1295. Delivery, 60 to 90 days. ILC Data Device Corp, 105 Wilbur Pl, Bohemia, NY 11716. Phone (516) 567-5600, ext 7381. FAX (516) 567-7358. Circle No. 389

Minicartridge tape products. The three drives in the Tape250 series are QIC-80 tape drives that are able to read Irwin-formatted tapes and are based on the floppy-disk interface. The drives come with Central Point Backup software for DOS and Windows and data-compression software that allows the drives to store as much as 250 Mbytes. Insider, $299; Insider Half-Height, $349. Both drives fit into a standard 3½-in. bay. PC Powered drive, an external device, $499. Iomega, 1821 W 4000 S, Roy, UT 84067. Phone (800) 456-5522. FAX (801) 778-3450. Circle No. 390

32-I/O line interface board. The Digital 488/32/OEM 4×4-in. 32-I/O line interface board enables data transfers between the IEEE-488 bus and devices equipped with 8-, 16-, or 32-bit-wide digital ports. The 32 TTL-level lines are programmable in 8-bit groups as either inputs or outputs. $495. Iotech, 25971 Cannon Rd, Cleveland, OH 44146. Phone (216) 439-4091. FAX (216) 439-4093. Circle No. 391

Memory cards. For pen-based and palmtop systems, the SmartRAM memory-card family combines flash and static-RAM (SRAM) memory and includes a built-in controller and battery backup circuitry. The PCMCIA-standard cards have average read-access and write-cycle times of 150 nsec each. The cards, which weigh 35g, allow data-write cycles at 5V and incorporate 256 kbytes of SRAM and 768 kbytes of flash memory for a total of 1 Mbyte. $160 (100). Smart Modular Technologies, 45531 Northport Loop W, Bldg 3B, Fremont, CA 94538. Phone (510) 623-1231. FAX (510) 623-1434. Circle No. 392

Ruggedized VMEbus module. The CP UC32 is a cost-reduced version of a militarized single-board computer for the VMEbus. The board is based on the 68030 processor and has as much as 4 Mbytes of battery-backed static RAM. Operating systems include OS-9 and VxWorks. $5000. Alpha Technology Corp, 6202 S Maple Ave #128, Tempe, AZ 85283. Phone (602) 838-2428. FAX (602) 838-4477. Circle No. 393

Memory-card drives. These open-frame memory-card drives are compatible with JEIDA 4.0 and PCMCIA memory cards. The drives accept 512-kbyte to yet-to-be-released 64-Mbyte memory cards. Both drives are the
The Key Building Block in High-Frequency EDA Applications

From cellular and satellite communications to radar and electronic defense, EEs of's electronic design automation (EDA) software suite is the key building block in today's rapidly growing RF and microwave applications. In fact, EEs of is the world leader in EDA software tools for high-frequency analog circuit and system design.

Top electronic engineering firms use EEs of's powerful design-for-manufacturing software to increase design efficiency, reliability and yields while reducing time-to-market.

Our easy-to-use tools provide engineers with a complete hierarchical suite to support advanced circuit design...from top-down design of high-frequency systems, to bottom-up development of detailed electrical models. EEs of provides the most complete line of high-frequency simulators, along with libraries of circuit and system models. We support industry manufacturing standards like Gerber™, GDSII™ and IGES™ and interfaces to Cadence, Mentor Graphics and other top EDA vendors.

Make EEs of the key building block in your applications. Call, FAX or write EEs of for more information on the complete suite of integrated high-frequency analog simulation software.

5601 Lindero Canyon Road
Westlake Village, CA 91362 USA
Phone: 1-800-34-EESOF
FAX: 1-818-879-6467.

©1992, EEs of Incorporated
same size as a standard 3.5-in. floppy-disk drive. The MCRW-B has an RS-232C port; the SCSI version is the MCDisk-1. $495. Gespac Inc., 50 W Hoover Ave, Mesa, AZ 85210. Phone (602) 962-5559. FAX (602) 962-5750. Circle No. 394

HCl CPU module. The 68HC11 includes a 68HC811E2FN 8-bit microcontroller, 2-Mbyte flash EPROM, 32-kbyte nonvolatile RAM, 2-kbyte EEPROM, 8-channel 8-bit A/D converter, a real-time clock calendar, RS-232C and RS-485 ports, 16-bit timer, open-architecture 64/96 DIN expansion bus, and C and assembler routines. The module comes with 24-hour BBS support. $287. Ackerman Computer Sciences, 4276 Lago Way, Sarasota, FL 34241. Phone (813) 377-5775. Circle No. 395

I/O-module interface cards. The PSROO and MSRO1 Power 110 Module interface cards are compatible with Opto22, Gordos, Burr-Brown, and Potter and Brumfield. The PSROO is for ISA- or EISA-style computers, and the MSRO1 is for Wintek 6800- and 6809-based computer systems. As many as 24 I/O channels may be used as inputs or outputs in any combination. PSROO, $159; MSRO1, $125. Wintek Corp, 1801 South St, Lafayette, IN 47904. Phone (800) 742-6809; (317) 448-1903. FAX (317) 448-4823. Circle No. 396

Networked microcontroller. Based on the Motorola MC68HC11F1 chip, the GCB11 is an 8-bit, networked microcontroller hardware-and-software package for distributed-control applications. The 3 × 4-in. board includes 32 kbytes of static RAM and 32 kbytes of ROM. The package comes with a set of development tools and network and application libraries. $179. Coactive Aesthetics, Box 425967, San Francisco, CA 94142. Phone (415) 626-5152. Circle No. 397

High-speed development platform. The DPS-1 Rev C is an SBus development platform for prototyping hardware and software. The development platform allows the designer to adapt new hardware or convert existing systems to the SBus. The kit uses LSI-Logic's L64853A DMA Plus controller. $1095. Dawn VME Products, 47073 Warm Springs Blvd, Fremont, CA 94539. Phone (800) 258-3296; (510) 657-4444. FAX (510) 657-3274. Circle No. 398

EDN-NEW PRODUCTS

Computers & Peripherals

same size as a standard 3.5-in. floppy-disk drive. The MCRW-B has an RS-232C port; the SCSI version is the MCDisk-1. $495. Gespac Inc., 50 W Hoover Ave, Mesa, AZ 85210. Phone (602) 962-5559. FAX (602) 962-5750. Circle No. 394

HCl CPU module. The 68HC11 includes a 68HC811E2FN 8-bit microcontroller, 2-Mbyte flash EPROM, 32-kbyte nonvolatile RAM, 2-kbyte EEPROM, 8-channel 8-bit A/D converter, a real-time clock calendar, RS-232C and RS-485 ports, 16-bit timer, open-architecture 64/96 DIN expansion bus, and C and assembler routines. The module comes with 24-hour BBS support. $287. Ackerman Computer Sciences, 4276 Lago Way, Sarasota, FL 34241. Phone (813) 377-5775. Circle No. 395

I/O-module interface cards. The PSROO and MSRO1 Power 110 Module interface cards are compatible with Opto22, Gordos, Burr-Brown, and Potter and Brumfield. The PSROO is for ISA- or EISA-style computers, and the MSRO1 is for Wintek 6800- and 6809-based computer systems. As many as 24 I/O channels may be used as inputs or outputs in any combination. PSROO, $159; MSRO1, $125. Wintek Corp, 1801 South St, Lafayette, IN 47904. Phone (800) 742-6809; (317) 448-1903. FAX (317) 448-4823. Circle No. 396

Networked microcontroller. Based on the Motorola MC68HC11F1 chip, the GCB11 is an 8-bit, networked microcontroller hardware-and-software package for distributed-control applications. The 3 × 4-in. board includes 32 kbytes of static RAM and 32 kbytes of ROM. The package comes with a set of development tools and network and application libraries. $179. Coactive Aesthetics, Box 425967, San Francisco, CA 94142. Phone (415) 626-5152. Circle No. 397

High-speed development platform. The DPS-1 Rev C is an SBus development platform for prototyping hardware and software. The development platform allows the designer to adapt new hardware or convert existing systems to the SBus. The kit uses LSI-Logic's L64853A DMA Plus controller. $1095. Dawn VME Products, 47073 Warm Springs Blvd, Fremont, CA 94539. Phone (800) 258-3296; (510) 657-4444. FAX (510) 657-3274. Circle No. 398

OTE and flash memory cards. The company's one-time-programmable (OTP) and flash memory cards follow PCMCIA standards and come with 256 kbytes to 1 Mbyte. Flash cards are available in 2-Mbyte density. OTP cards, $72 to $180; flash cards, $117 to $521. Texas Instruments Inc, Semiconductor Group SC-92044, Box 809066, Dallas, TX 75380. Phone in US and Canada, (800) 336-5236, ext 3990; elsewhere, (213) 995-6611, ext 3990. Circle No. 399

The 3900 supports more devices.

Starting at just $2995, the 3900 family of programmers gives you more for the money. The 3900 offers the broadest device support including leading-edge FPGAs, PLDs, memory devices, and microcontrollers up to 100 pins. This support comes in device libraries, so you pay for only what you need. And, the 3900 uses semiconductor manufacturer-certified algorithms, exclusively, to ensure the most reliable programming.

To hear more reasons why the 3900 is the engineer's ultimate programmer, call today. We'll send you a FREE copy of our popular Wall Chart of Programmable Devices.

1-800-3-DataIO
(1-800-332-8246)

DATA I/O

CIRCLE NO. 100

EDN September 17, 1992 • 163
Go ahead, search all you want. But we don't think you'll find a lower cost or higher quality 200 MB class disk drive than our new 7213.

The reason is simple. We made it with very few parts. Far fewer than any other drive in its class. So it's not only easier to manufacture, it assures exceptional reliability.

And that's critical. Because it's that level of reliability that keeps your customers sold.

Now you might be thinking, "How could Maxtor possibly produce a quality 200 MB drive at such a low cost?" Well, after producing more than 3 million 7000 series drives, you get real good at it.

The 7213 is just one more example of the New Drive at Maxtor. A very serious commitment to customer satisfaction.

Unmatched service and support. And visionary product design.

For more information, please call 1-800-4-MAXTOR. Quite frankly, you won't find a better bargain than this.

Maxtor

There's a new drive at Maxtor.

Maxtor Corporation, 211 River Oaks Parkway, San Jose, CA 95134
Magneto-optical drive. A 3.5-in. rewritable optical disk drive, the RF-3000 provides as much as 128 Mbytes of storage and is compatible with ISO/ANSI-standard 3½-in. magneto-optical disks. The drive has an average seek time of 38 µsec and transfer rates of 640 kbytes/sec. The drive is controlled through a SCSI bus, and two drives can be daisy-chained together. $2195; internal model, $1995. Plasmon Data Systems Inc, 1654 Centre Pointe Dr, Milpitas, CA 95035. Phone (800) 445-9400; (408) 956-9400. FAX (408) 956-9444. Circle No. 400

Keyboard network station. The 386SX-25-IDE Keyboard Network Station includes an IDE hard-disk drive in either 40, 80, 100, or 200 Mbytes. The pc within a keyboard has a standard 101/102 key standard 101/102 keyboard, 1 Mbyte of RAM (expandable to 16 Mbytes), a Super-VGA adapter, a 3½-in. floppy-disk drive, one parallel and two serial ports, and a 16-bit expansion slot. $1095. Advanced Interlink Corp, 15181 Springdale St, Huntington Beach, CA 92649. Phone (714) 894-1675. FAX (714) 893-1546. Circle No. 401

Multiple-VGA adapter kit. The Theos+Grafx Multi VGA Adapter Kit allows you to connect as many as four VGA monitors to one 386 or 486 host PC running DOS. The kit comprises the TG/4 multuser video graphics adapter, software drivers, controller boxes, and cables. Kit for four users, $1895. Theos Software Corp, 1777 Botelho Dr, Suite 360, Walnut Creek, CA 94596. Phone (510) 935-1118. FAX (510) 935-1177. Circle No. 402

Multipurpose video boards. The Tango and Mambo boards for MS-DOS computers integrate multiple sources required for networked digital multimedia. Each board includes video display drivers, Ethernet drivers and interfaces, digital audio and video interfaces, and audio recording and playback capabilities. Tango, for standard monitors, $1895; Mambo, for portable computers with LCD screens, $1495. Mediaware Corp, 2903 Corte Del Nogal, Carlsbad, CA 92009. Phone (619) 931-7171. FAX (619) 431-5752. Circle No. 403

SBus board with SCSI interface. The TMS320C30 SBus board is based on the TMS320C30 floating-point digital signal processor. The board has as much as 512k words of static RAM, dual-port RAM, analog-to-digital options, high-speed digital I/O from a disk at 2 Mbytes/sec, and a SCSI interface. $4795; with TI's Sun-4-based assembler/linker/C compiler, SMON30 debug monitor, C interface library, and SunOS device drivers, $9795. Spectrum Signal Processing Inc, 8525 Baxter Pl, 100 Production Ct, Burnaby, BC V5A 4V7, Canada. Phone (604) 421-5422. FAX (604) 421-1764. Circle No. 404

The 3900 supports more packages.

Starting at just $2995*, the 3900 family of programmers gives you more for the money. The 3900 offers the broadest package support including TSOPs, QFPs over 100 pins, PCMCIA cards, PLCCs, LCCs, JLCs, SOICs, and PGAs. Its flexible universal socketing technology easily accommodates all of these packages, today and in the future. And, the 3900's 88 universal pin drivers provide full functional test for the highest reliability.

To hear more reasons why the 3900 is the engineer's ultimate programmer, call today. We'll send you a FREE copy of our popular Wall Chart of Programmable Devices.

1-800-3-DataI/O (1-800-332-8246)

DATA I/O
The Software is the Instrument
...You Choose the Computer

LabWindows for DOS

LabVIEW for Windows
LabVIEW for Sun
LabVIEW for Macintosh

ACQUISITION
GPIB • Data Acquisition • VXI • RS-232 • Instrument Drivers

ANALYSIS
DSP • Statistics • Linear Algebra • Filters • Windows

PRESENTATION
Graphical User Interface • Hard Copy • File I/O

C and BASIC Programming
Graphical Programming

Call for FREE demo disks
(800) 433-3488 (U.S. and Canada)

Branch Offices:
Australia 03 879 9422 • Belgium 02 257 02 20 • Canada 519 622 9310
Denmark 45 76 73 72 • Finland 90 524 686 • France 1 48 63 33 70 • Germany 089 714 50 93
Italy 02 48301892 • Japan 03 5788 1921 • Netherlands 01720 45761 • Norway 22 46 866
Spain 91 886 5247 • Sweden 08 989 0700 • Switzerland 056 27 00 20 • U.K. 0635 521545
© Copyright 1992 National Instruments Corporation. All rights reserved. Product and company names listed are trademarks or trade names of their respective companies.
DESIGNING YOUR OWN SWITCHING CIRCUITS?
WHY RE-INVENT THE WHEEL?

TELEDYNE SOLID STATE HAS IT!

If your system requires I/O or power switching and you’re considering a discrete or hybrid circuit approach we should talk! And here’s why—

- We now offer an extensive “menu” of military/aerospace solid state relays for DC, bi-directional, and AC loads from low level to 25 Amps.
- Our latest designs feature “smart” options such as: output status for built-in test, short circuit protection and CMOS logic compatibility.
- All of our relays are designed and tested to MIL-R-28750 and applicable portions of MIL-STD-883, and most are qualified to existing MIL slash sheets or DESC drawings.
- We’ve already selected, derated, sourced, and qualified the required chip components, i.e., opto-couplers, drivers, FETs, SCRs, etc.

And if what you need is not in our catalog, call 1-800-284-7007, or FAX 1-213-779-9161. Chances are we’re already working on it.

TELEDYNE SOLID STATE

Home Office, 15925 Daphne Avenue, Hawthorne, CA 90250 • Telephone: 213-777-0077 • FAX: 213-779-9161

OVERSEAS: GERMANY, 0611-7636-0, ENGLAND: (081) 571-9596, FRANCE: 41-71-86-19, BELGIUM: (02) 673-99-88, JAPAN: (3) 3797-6956.

See EEM Volume B, Pages 1608-1612 CIRCLE NO. 104 EDN September 17, 1992 • 167
Sierra Systems undefeated on the 68040.

Two benchmarks were selected, Dhrystone 2.1 (the Toy program) and the Sierra Systems production C compiler (the Real program). The compiler was selected because both its size and complexity are representative of real-world applications.

The Sierra C™ compiler delivers unchallenged compilation times with industry leading runtime performance on all applications. Add our equally fast QuickFix™ source-level debugger, and you have a package with all the quality, speed, and ease-of-use demanded by today’s design teams.

68000 Compiler Benchmark Results.

68332 and 68010 standings also available.

For more detailed results, additional information, and a competitive edge for your products, call 800-776-4888.

Won/Lost Record: For each benchmark, the compilers’ run-time performances were compared to each other with wins and losses tallied in round-robin fashion. (See Dhrystones and Execution Time columns on scoreboard.)

Compilers: GNU 2.0, Intermetrics 8.0, Introl 3.06, Microtec Research 4.2d, Oasys/Green Hills 1.8.5RC, Sierra Systems 3.0, Software Development Systems 5.1.

Hosts: 33 MHz 386 Zeos PC and Sun SPARCstation IPC. All compilers were run on the PC, except for GNU and Oasys/Green Hills, which were run on the Sun. Running the Sierra Systems compiler on both host systems allowed the Sun times to be scaled to PC time for the scoreboard.

Target: Motorola VME 167, 25 MHz 68040 with caches enabled.
Components & Power Supplies

Surface-mount socket. This 100-position development socket is a surface-mountable component with essentially the same pc-board footprint as the quad flatpack (QFP) device. In this way, you can prototype a pc board using the socket and then transfer to production using bare QFPs, without board layout changes. $35. Altera Corp, 2610 Orchard Pkwy, San Jose, CA 95134. Phone (408) 984-2800. Circle No. 413

Interface converter. Model 285 RS-232C to RS-422/RS-485 interface converter can be configured in five user-selectable modes. This flexibility allows support of any master-slave configuration found in industrial applications. Other features include a DTE/DCE switch, TD and RD LEDs, and a programmable terminating resistor. $148. Telebyte Technology Inc, 270 E Pulaski Rd, Greenlawn, NY 11740. Phone (800) 372-2447, (516) 385-8184. Circle No. 414

Optical modules. The Astrotec 1238 transmitter operates at rates of 1200 Mbps. The 1318 receiver provides conversion for data rates of 20 to 150 Mbps. The receiver’s dynamic range measures 26 dBm. Both units are housed in 20-pin DIPs compatible with SONET standard packages. Model 1238, $1285; 1318, $1000. Delivery, 12 weeks ARO. AT&T Microelectronics, 555 Union Blvd, Dept 520404200, Allenstown, PA 18103. Phone (800) 372-2447, ext 843; in Canada, (516) 553-2448, ext 843; (908) 771-2826. Circle No. 415

Sensing resistors. PMA-Cu and PMB-Cu 4-terminal resistors are rated for 1 and 2.5W, respectively. Designed for Kelvin measurements, the units are available with values as low as 0.001ohm. Construction features Manganin alloy foil banded to copper substrates for good thermal performance and accuracy to 0.5%. From $1.50 (10,000). Delivery, stock to eight weeks ARO. Isotek Corp, 566 Wilbur Ave, Swansea, MA 02777. Phone (508) 673-2900, FAX (508) 676-0885. Circle No. 416

Power supplies. PU110 Series supplies are available in single- (5V/22A, 12V/9A, 15V/7.5A, and 24V/4.5A) and multiple-output (combinations of 5V/10A, 12V/5A, 24V/1A, -5V/1A, and -12V/2A) models. Features include EMI filter, power-fail signal, overvoltage protection, and short-circuit protection. Efficiency equals 65%. $115; less than $60 (OEM qty). International Power Sources Inc, 200 Butterfield Dr, Ashland, MA 01721. Phone (508) 881-7434. FAX (508) 879-8669. TWX 510-100-3630. Circle No. 417

Low-profile transformers. DLP Series transformers have a 0.13-in.-high profile and are designed for MIL-STD-1553A or B serial-data-bus systems. The line includes 14 models that feature frequently used turns ratios. They are available with either straight tin-plated flatpack leads or tin-plated gull-wing leads for surface-mount packages. All units have center-tapped primaries and multtapped secondaries. $125. Delivery, 12 weeks ARO. Beta Transformer Technology Corp, 40 Orville Dr, Bohemia, NY 11716. Phone (516) 244-7393. FAX (516) 244-8893. Circle No. 418

LEDs. These multichip lamps have a warm white output. The units are available in T-1-1/4 and T-3-3/4 models with voltage ratings ranging from 5 to 120V ac and dc. Available bases range from midget flanged to miniature screw and include wedge, bi-pin, bayonet, and all telephone-style slide bases. Life ratings equal 100,000 hours. From $4.99. Delivery, stock to 75 days ARO. Lamp Technology, 1645 Sycamore Ave, Bohemia, NY 11716. Phone (516) 567-1800. FAX (516) 567-1806. Circle No. 419

Relays. Designed for switching capacitive loads, this line of relays includes 15 models capable of isolating as much as 65,000V dc and switching currents as high as 1500A at speeds of 500 nsec. The relays are sealed so there’s no contact oxidation. In addition, the sealed units are compatible with applications involving explosive atmospheres. From $105 (100). Kilovac Corp, Box 4422, Santa Barbara, CA 93140. Phone (800) 241-3439; in CA, (805) 987-8741. TWX 910-336-1297. Circle No. 422

Power supplies. The modular construction of the SPR5 Series 2000W power supply allows for as many as 15 outputs with an ac input and 9 outputs with a 48V dc input. The units are certified to UL1950 and IEC950 and feature fan cooling. Available options include battery backup, output paralleling with current sharing, and VME/VXI-compatible signals. $1150 (100) for a 3-output model. Power One, 740 Calle Plano, Camarillo, CA 93010. Phone outside CA, (800) 235-5943; in CA, (805) 987-8741. TWX 910-336-1297. Circle No. 421

Connectors. The NE-1 is a metal-on-elastomer connector, which features more than 200 conductors per inch. With a 0.6-mm electrode, the unit can carry 100 mA/mm². With 0.25-mm-wide gold-plated electrodes, contact resistance measures less than 50 mΩ. The connectors are available in lengths 5, 6, 8, and 12 inches. Delco Elec, 401 Vine St, Niagara Falls, NY 14303. Phone (716) 435-0635. FAX (716) 435-0646. Circle No. 423
Edge connectors. Designed specifically for AT- and XT-compatible computers, Lyte Series connectors feature a double row of solder tails on 0.2-in. centers. Contact positions are 18/36 + 31/62, 31/62, and 18/36. The units meet the performance criteria of MIL-C-21907 and operate over a -55 to +105°C range. $0.24 to $1. Cinch Connectors, 1500 Morse Ave, Elk Grove Village, IL 60007. Phone (708) 981-6000, ext 6043. Circle No. 425

Inductors. Series 2512 molded surface-mount power inductors cover a range of 1 to 100 µH. Standard tolerances equals 10%. Maximum current ratings range from 260 to 1640 mA. The solder-coated copper terminations are compatible with all soldering operations. $0.599 (1000). Delivery, four to six weeks ARO. American Precision Industries, 270 Quaker Ed, East Aurora, NY 14052. Phone (716) 652-3600. FAX (716) 652-4814. Circle No. 426

8051 & 68HC11
PC-Based
In-Circuit Emulators

Nohau
Covers All Your Development Needs for the 8051 and 68HC11 Families!

Free Demo
You can start your debugging with this FREE demo simulator. You can load up to 512 bytes of code, assembler, C, or PL/M and do full debugging/simulation in assembly and source level. A great way to get started for FREE! Fantastic for schools! Just call and we'll send it!

Full Simulator
The full-blow simulator is an extension of the DEMO. You can load up to 64K of code and use 64K of XDATA space. You can program an "external environment" to interact with your code to simulate your target system. The emulator is the hardware extension of the simulator!

In-Circuit Emulation
The 30MHz real-time emulator has been the industry standard for years. With its complex breakpoint logic and advanced trace, nobody can beat it for performance. Plug-in or RS-232 configuration. All 8051 derivatives are supported!

Call Nohau’s 24-hour information center to receive info on your FAX 408-375-2912

Identical User Interface for All Three Products — You Can’t Go Wrong!

LED lamps. SLR Series LEDs have a 10,000-hour operating life. Model SLR-56 is a T-1-1/4 lamp with an illumination of 6.3 to 10 mcd. Models SLR-37 and SLR-34 are T-1 devices with luminous intensities of 10 to 16 mcd. All units are available in red, red-orange, yellow, yellow-green, and green. From $0.07 (1000). Delivery, eight weeks ARO. ROHM Corp, 3034 Owen Dr, Antioch, TN 37012. Phone (615) 641-2029, ext 131. FAX (615) 641-2022. Circle No. 427

Headers. TMT Series surface-mount units are available with either single or double rows of contacts on 0.05-in. centers. Lead coplanarity measures 0.006 in., and the plastic housings can withstand infrared and vapor-phase soldering processes where temperatures do not exceed 230°C for 60 sec and 260°C for 10 sec. From $0.089 per pin. Samtec Inc, Box 1147, New Albany, IN 47151. Phone (800) 726-8329; (812) 944-6733. FAX (812) 948-5047. TLX 333918. Circle No. 428

Pin monitors. The PLeCM0-84-ZL/ A takes the place of 84-pin plastic leaded chip carriers (PLCCs) in a target socket. The hinged ZIF lid accepts PLCCs as well as J-bend and ceramic LCCs. The lid is rated for 10,000 insertions min. It accepts 50-mil pitch devices. The unit terminates in a male PLCC plug. $221. EDI Corp, Box 366, Patterson, CA 95363. Phone (209) 892-3270. Circle No. 429

Inductors. RL-3745 and RL-3750 devices are low-power inductors available in values ranging from 150 to 1000 µH. Current ratings range from 0.5 to 1.7A. The devices are available in packages for vertical mounting with a pcb-board footprint of 0.5 x 0.7 in. or in low-profile packages with a mounted height of 0.45 in. $0.99 (1000). Delivery, stock to eight weeks ARO. Renco Electronics Inc, 60 Jefryn Blvd E, Deer Park, NY 11729. Phone (516) 586-5566. Circle No. 430
Supporting Motorola's 68HC11, 68HC16 and many others - Call for the complete list!

PENTICA SYSTEMS INC
IN-CIRCUIT EMULATORS
"We love to solve puzzles!"

Supporting Motorola's 68HC11, 68HC16 and many others...

Call for the complete list!

#1. We stand by you.
"Plan for success! The right tools do the job right—With Pentica emulators, solving puzzles can be FUN again!"

---Tom Baccei
President

Pentica Systems, Inc.
19A Crosby Drive
Bedford, MA 01730
Tel: (617) 275-4419
Fax: (617) 275-6514

PENTICA SYSTEMS INC.
IN-CIRCUIT EMULATORS
"We love to solve puzzles!"

Only $851 for iceMASTER-PE
The world's most innovative 8051 emulator is incredibly affordable. Metalink's unique Advanced Emulation Technology (AET, patent pending) delivers the best possible emulator value for engineers, consultants and students.

AET is a revolutionary design architecture that provides more features with 75% fewer components, smaller board space and lower cost. Emulator and probe electronics are integrated in a single package only 3" by 4".

Metalink also delivers leading-edge customer service, including a 30 day money back guarantee, 10 day trial for qualified customers, rental plans and free technical support.

- Up to 40 MHz Operation
- 64K Emulation Code Memory
- 64K External Data Memory
- 128K Hardware Breakpoints
- 1.6K Trace Memory
- Transparent Trace (View Trace While Executing)
- Real Time & Nonintrusive
- Symbolic & Source-Level Debug
- Built-In Soft Test
- Windowed User Interface
- Serial Link to Any PC
- Performance Analyzer
- Macro Cross Assembler
- Supports 8031/8032's
- Supports F8X751/X8X752's

Call today for FREE DEMO DISK!
(800) METACE (800) 638-2423

Metalink Corporation PO Box 1329 Chandler, Az 85244-1329
Phone: (602) 926-0797 Fax: (602) 926-1198

100% Satusfaction Guaranteed

The 400 Series combines all of the essential elements necessary for a complete data acquisition system, including: DMA sample transfers from input to output, digital I/O, and counter-timers—all on half-sized cards for ISA 8 and 16 bit busses.

When you add HTBasic's development software, you have the most powerful data acquisition system available for PC operation. HTBasic runs HP BASIC programs and offers advanced features, like instrument control, data analysis, and graphic presentation capabilities.

So, put a powerful data acquisition system into your PC with TransEra's 400 Series plug-in boards and HTBasic. Find out more today.

TransEra
Engineering Excellence for 15 Years™
3707 N. Canyon Road • Provo, UT 84604
(801) 224-6550 • Fax (801) 224-0355

CIRCLE NO. 123
CIRCLE NO. 124
CIRCLE NO. 125
EDN September 17, 1992 • 171
INTRODUCING MICRO-CAP IV.
MORE SPICE. MORE SPEED.
MORE CIRCUIT.

PC-based circuit analysis just became faster. More powerful. And a lot easier. Because MICRO-CAP IV is here. And it continues a 12-year tradition of setting CAE price/performance standards.

Put our 386/486 MICRO-CAP IV to work, and you'll quickly streamline circuit creation, simulation and edit-simulate cycles — on circuits as large as 10,000 nodes. In fact, even our 286 version delivers a quantum leap upward in speed. Because, for one thing, MICRO-CAP IV ends SPICE-file-related slowdowns; it reads, writes and analyzes SPICE text files and MC4 schematic files. It also features fully integrated schematic and text editors. Plus an interactive graphical interface — windows, pull-down menus, mouse support, on-line HELP and documentation — that boosts speed even higher.

Now sample MICRO-CAP IV power. It comes, for example, from SPICE 2G.6 models plus extensions. Comprehensive analog behavioral modeling capabilities. A massive model library. Instant feedback plotting from real-time waveform displays. Direct schematic waveform probing. Support for both Super and Extended VGA.

And the best is still less. At $2495, MICRO-CAP outperforms comparable PC-based analog simulators — even those $5000+ packages — with power to spare. Further, it's available for Macintosh as well as for IBM PCs. Write or call for a brochure and demo disk. And experience firsthand added SPICE and higher speed — on larger circuits.
Low-cost, modular 200-MHz logic analyzers. You can configure the PM 3585/30 and PM 3585/31 with 32, 64, or 96 channels. Any channel can simultaneously capture data for state and timing analysis. The analyzers have support packages for more than 110 µPs, and the manufacturer is continually developing more. The /31 version works with IEEE-488.2 and SCPI (standard commands for programmable instruments). $3450; $3890 with IEEE-488.2 and SCPI support; upgrade to 64 channels, $4975; upgrade to 96 channels, $6995.

John Fluke Mfg Co Inc, Box 9090, Everett, WA 98206. Phone (800) 443-5853; (206) 347-6100. FAX (206) 356-5116. Circle No. 405

8-channel, 250k-sample/sec, simultaneous S/H ADC board for ISA bus. The DT2833 has eight differential inputs. It can simultaneously sample all of its input signals and then convert them with 12-bit resolution at 250k samples/sec. The board includes patented circuits that correct for offset on any channel. It also includes a pair of 12-bit DA converters, eight lines of digital I/O, and two counter timers. The vendor supplies an MS-Windows data-acquisition library for its Global Lab software at no cost with the board. The library costs $98 if purchased separately. You save $1000 if, when you buy the board, you also buy Global Lab, its signal-processing library, and printing module. $2595. Data Translation Inc, 100 Locke Dr, Marlborough, MA 01752. Phone (508) 481-3700. FAX (508) 481-8620. TLX 951646. Circle No. 407

WAN protocol analyzer. The 4959A is intended for installation and maintenance testing of wide-area networks (WANs). It has an expansion slot that you can use to adapt it to testing of high-speed networks, such as 2-Mbps SMDS (switched-multimegabit data service) and frame-relay networks. The unit also runs MS-DOS application software on an 80386SX µP with as much as 8 Mbytes of RAM. $10,995; remote troubleshooting software, $990. Hewlett-Packard Co, Box 58059, MS 51L-SJ, Santa Clara, CA 95051. Phone (800) 452-4844. Circle No. 408

Transformer tester. The AT3500 mounts on a bench top; it measures transformer turns ratios, mutual inductance, leakage inductance, magnetizing current, winding resistance, open-circuit voltage, and interwinding ca-

THREE THINGS TO THINK ABOUT

When You Select I/O Cards For Your PC-Based Data Acquisition System...

COST: Don’t just THINK purchase price. CONSIDER the time and effort it takes to get your system up and running.

PERFORMANCE: PONDER hardware performance, but don’t forget software, too!

AVAILABILITY: THINK off-the-shelf and then call ACCES. We’ve got a whole catalog full of PC-based I/O Boards.

Don’t just SIT there! Call us today!

ACCES I/O Products, Inc.

TOLL FREE (800) 326-1649

9400 Activity Rd.
San Diego, CA 92126
(619) 693-9005
Fax: 619-578-9711

CIRCLE NO. 109

When customers demand the best, give 'em EL.

PLAYVAR

503-690-1100

CIRCLE NO. 110 173
It also measures line-frequency breakdown voltage between windings and from the windings to the core. You can vary the ramp and dwell times in breakdown tests. The unit can make most measurements at frequencies from 10 Hz to 1 MHz. It measures magnetizing current to 2.5 kHz. The tester operates in stand-alone mode or coupled to a PC. $49,000. Voltech Inc., 200 Butterfield Dr, Ashland, MA 01721. Phone (508) 881-7329. Circle No. 409

8/16-channel, 12-bit, 100k-sample/sec ADC boards for ISA bus. The DAS-1400 series includes two units, each with four programmable gains (1, 2, 4, and 8 or 1, 10, 100, and 500). A 3-channel programmable timer and several counters in the boards’ ASIC provide flexible triggering. A burst mode mimics simultaneous S/H operation for slowly changing signals. The boards include eight digital-I/O channels. The vendor supplies drivers for several versions of Basic and a terminate-and-stay-resident application that lets you pop a control panel onto the screen. A $99 software option includes drivers callable from programs in additional languages and file I/O drivers for all languages. $699. Keithley Metrabyte, 440 Myles Standish Blvd, Taunton, MA 02780. Phone (508) 880-3000. FAX (508) 880-0179. Circle No. 410

Deep-memory DSOs. The Pro 32 (2 channels, 12 bits, 20M samples/sec), Pro 42 (4 channels, 12 bits, 20M samples/sec), Pro 34 (2 channels, 14 bits, 5M samples/sec), and Pro 44 (4 channels, 14 bits, 5M samples/sec) are modular units that can have memory, which can store 4M samples. The Pro 92 includes both the 12-bit digitizer of the Pro 32 and 42 units and an 8-bit, 200M-sample/sec ADC. $11,490 to $29,990. Nicolet Measurement Instruments, 5225 Verona Rd, Madison, WI 53711. Phone (800) 356-8088; (608) 271-3333. FAX (608) 273-5061. Circle No. 411

Universal IC programmer. By using “job disks,” production personnel can quickly set up the Allpro-88XR to program specific devices for specific applications. The job disk (a floppy disk) contains data and programming algorithms as well as command sequences that you would normally enter from the keypad or a host PC. The 88-pin programmer has a DAC-per-pin architecture and handles devices packaged in DIPs and plastic leaded chip carriers. It operates in stand-alone and PC-hosted modes and includes a floppy-disk drive, an LCD, and a keypad. A 40-Mbyte hard drive is optional. You can use either a parallel or a serial (57.6-kbps) interface to link the programmer to a PC. The software runs under MS Windows, $9995. Logical Devices Inc, 1201 NW 65th Pl, Fort Lauderdale, FL 33309. Phone (305) 974-0967. FAX (305) 974-8531. Circle No. 412
Minimum Daily Requirement

Compact TOKIN Surface Mount Devices get you through the day with flying colors.

When you need something extra to get you through your next project, try a dose of TOKIN Surface Mount Devices (SMDs). Designed to provide maximum working room in tight spaces, TOKIN SMDs offer the ideal remedy for downsizing computers and other electronic or communications equipment and systems. What's more, TOKIN SMDs come in a wide range of sizes to ensure you of the right formulation for your own special needs. EMC components—such as EMC Chip Filters and ultra-small Solid Chip Inductors—and SN Coils—counter noise emissions from compact, high-frequency power supplies, data terminals, personal computers, and so on. SMD Transformers make for easy high-density mounting on a wide range of communications equipment. And High-capacitance Multilayer Ceramic Capacitors enable automatic mounting on PC boards. If you’re not getting the SMDs you need to get you through the day, be sure to call TOKIN.

VHDL source-code libraries. The VHDL Source Model Libraries consist of a Small Scale Integration (SSI) Library with more than 600 standard logic parts and a Memory Library with more than 1200 commonly used memory devices including static RAMs, dynamic RAMs, and EPROMs. Both libraries comply with VHDL (VHSIC Hardware Description Language) IEEE-1076 and run in Mentor System 1076, Cadence VHDL-XL, Viewlogic Viewsim, Synopsys VHDL System Simulator, and Vantage Spreadsheet. Site licenses for Memory Library, from $18,000; for SSI Library, from $12,000. Logic Modeling Corp., 1520 McCandless Dr, Milpitas, CA 95035. Phone (408) 957-5200. FAX (408) 945-9181. Circle No. 352

Nonlinear curve-fitting software. Peakfit 3 is an update to the company's chromatography/spectroscopy-analysis software package for PCs. The analysis techniques use nonlinear curve fitting to reduce noise and separate and characterize unresolved peaks in overlapping peak data. You can observe and control the nonlinear fitting process graphically on screen. $585. Jandel Scientific, 2591 Kerner Blvd, San Rafael, CA 94901. Phone (800) 874-1888; (415) 453-6700. FAX (415) 453-7769. Circle No. 353

Schematic-capture tools for Unix. Capfast EDA tools provide hierarchical schematic capture, interface, and symbol translation under the X-Window system as well as DOS. You use the tools to translate and extract data between proprietary formats, such as Mentor, and ASCII and EDIF 2 0 0 formats. The software lets you customize data-passing between schematics, layout tools, and simulators. The network version runs under Unix on Sun/SPARC, HP, and DEC workstations. $4995 per host computer; annual support fee, $600. Phase Three Logic, 1600 NW 167th Pl, Beaverton, OR 97006. Phone (503) 645-0313. FAX (503) 645-0207. Circle No. 354

Internal and boundary-scan test translation. With software called TSSI version 5.0 you do scan test using existing testers and without dedicated scan-test hardware. The Waveform Database portion of the software stores, edits, manages, and augments test data produced by CAE tools such as those from Cadence, Synopsys, and Texas In-
Instruments. The software combines scan and primary input and output values with timing information, tester protocols data on shift chain order and produces programs that are tester ready. From $10,000. TSSI, 8205 SW Creekside Pl, Beaverton, OR 97005. Phone (503) 643-9281. FAX (503) 646-4954. Circle No. 355

Synthesis tools. The suite of synthesis tools called Dazix Synergy Synthesis assists with the design of ASICs. The software provides Archsyn for behavioral synthesis of VHDL, Verilog, and C HDLs (hardware-description languages), $15,000; Macrosyn for datapath synthesis, $10,000; Logsyn for timing-driven logic synthesis and optimization, $30,000; Testsyn for test synthesis and automatic test-pattern generation, $25,000; and Libsyn for building synthesis models, $10,000. Dazix, 1 Madison Industrial Park, Huntsville, AL 35894. Phone (205) 730-2000. FAX (205) 730-8344. Circle No. 356

DSP source-code interface. Using any one of more than 35 plug-in DSP boards, Hypersignal-Macro lets you create and add DSP algorithm and product code. The DSP Source Code Interface available for a variety of popular DSP chips, contains a library of math and DSP routines. The interface allows transfer of data, such as data recording, instrumentation, measurement, and simulation acceleration, between the DSP chip and the software. Hypersignal-Macro software, $899; DSP Source Code Interface, $795. Signalogic, 9704 Skillman, #111, Dallas, TX 75243. Phone (214) 343-0069. FAX (214) 343-0163. Circle No. 357

Numeric compiler. Adding to the High Tech Basic product line, the HTBasic DOS 386/486 Numeric Compiler focuses on the subroutines, which often require the greatest amount of time to execute. The compiler lets you produce numeric-intensive subprograms without requiring additional programming skills. The company claims that much of the PC-based Rocky Mountain Basic code will run at speeds comparable to the fastest HP Basic workstations. $1325. Upgrade for current HTBasic users, $450. Transera Corp, 3707 North Canyon Rd, Provo, UT 84604. Phone (801) 224-6550. FAX (801) 224-0355. TLX 296438. Circle No. 358

Behavioral model synthesis. Analog Model Synthesis for the company’s Saber simulator eliminates the use of equations or modeling code to create behavioral models. Instead, it uses graphical data from previous simulations or laboratory instrument readings and automatically transforms them into behavioral models. $2000. Analogy Inc, 9205 SW Gemini Dr, Beaverton, OR 97075. Phone (503) 626-9700. FAX (503) 643-3361. Circle No. 359

Multidescription design-capture tools. Design Expressions, a suite of multidescription design-capture tools, lets you define functionality at any level of abstraction by a variety of familiar graphical and textual methods. It includes gate-level designs with schematic capture, register transfer level with state machines, graphical state diagrams, truth tables, and Boolean equations; behavior, structural and data-flow designs with VHDL syntax-
directed editor; and analog behavioral-level designs. $15,000. Dazix, 1 Madison Industrial Park, Huntsville, AL 35801. Phone (205) 730-2000. FAX (205) 730-8344. Circle No. 360

ROM development kit. C-thru-ROM version 2.00 is a development kit to build stand-alone programs that run from ROM on Intel's 80x86 or NEC's V-Series CPUs. It works with Microsoft C7 or C++, Borland C++, and the manufacturer's ROMView debugger. The ROMView debugging tool lets you start remote debugging on a stand-alone target system without tying up target-system serial ports or RAM. ROMView works with Borland's Turbo Debugger or the company's RDEB debugger. C-thru-ROM, $495; ROMView, $395. Datatight, 307 N Olympic Ave, Suite 201, Arlington, WA 98223. Phone (800) 221-6630; (206) 435-8086. FAX (206) 435-0253. Circle No. 361

Engineering-change-order software. SherpaView lets you view and comment on documents electronically, eliminating serial, paper-based approval processes. The product is integrated in Sherpa/PIMS, the company's information-management system, which eliminates the need for CAD seats for simply viewing documents; you can view data and make annotations from a 386-based PC on the network. Single copy, $745 to $1445. Sherpa Corp, 611 River Oaks Pkwy, San Jose, CA 95134. Phone (408) 433-0455. FAX (408) 943-9507. Circle No. 362

Real-time operating system. OS-9000 version 1.3 allows real-time data-acquisition and control tasks to be combined with DOS supervisory or postprocessing programs. The package includes VPC (Virtual PC), a DOS emulation program that runs DOS and Windows programs under OS-9000. The module emulates the DOS BIOS from OS-9000 RAM and transfers data between the two operating systems. $995. Microware Systems Corp, 1900 NW 144th St, Des Moines, IA 50325. Phone (800) 475-9000; (515) 224-1929. FAX (515) 224-1352. TWX 910-520-2535. Circle No. 363

Test system for ICs. The Analytical Probestation is an integrated system for CAD-driven probing and testing of complex integrated circuits. The system combines accurate probing and automated layout integration for verification, characterization, and failure analysis. The integrated system eliminates the need to assemble lab components from various sources. XL/ATS configuration, $400,000. Integrated Measurement Systems Inc, 9525 SW Gemini Dr, Beaverton, OR 97005. Phone (503) 626-7117. FAX (503) 644-6969. Circle No. 364
This advertising is for new and current products.

Please circle Reader Service number for additional information from manufacturers.

Looking for a Quality Programmer?

SPRINT Universal Programmers

Call now and find out why SPRINT is the fastest growing 84 pin programmer in North America.

Tel 800/722-4122 Fax 206/883-8601 for a free demo disk

SMS
North America Inc.

INDUSTRIAL PC SINGLE BOARD COMPUTER & BACKPLANE B'D

- Full surface mount technology.
- Single board is compatible with IBM and PC bus system. And all kind of industrial PC I/O board.
- 266C-12, 286/EXC-16/20, 386DXC-33 CPU board.
- 6, 8, 12, 14, 18, 20 slot backplane board.
- Split backplane board is available.
- 19" rackmount PC enclosure is available.
- Centralized LAN station system (security)

COMY TECHNOLOGY
62 Bonaventura Dr.
San Jose, CA 95134
Tel. #: California: 408-456-0333
Nationwide: 800-875-0333
Fax #: 408-456-0366

NEW! Little PLC™ $195

Program It In C

Our new Little PLC™ measures only 4.33 x 2.85 inches and can mount on standard DIN rail. This miniature controller costs only $195, including 8 optically isolated inputs and 8 relay driver outputs. Low cost expansion cards allow you to add more inputs and outputs: digital and analog. It has dual RS-485 serial I/O, battery backed memory and time/date clock, programmable timers and a watchdog. Dynamic™ integrated development system also costs $195. You can write simple programs in an hour, or you can develop major applications with 20,000 lines of C language.

Z-World Engineering
1724 Picasso Ave., Davis, CA 95616
(916) 757-3737 Fax: (916) 757-4333
24 hr. Automatic Fax: (916) 757-0655
(Call from your fax, request catalog #18)

PRODUCT MART
September 17, 1992 • 179
Control Cross-C

Full ANSI Cross-C Compilers & Assemblers

- HD64180, HD641780X, Z80, Z180/1, Z380, 8085.
- DOS based cross-compilers for ANSI and K&R C code.
- C & assembler demos available on 24 hour BBS.
- Completely automatic MMU support (no programming effort) for UP TO 1 MEG Z180 programs.
- Includes HD64180/Z180 support library with source.
- Comes with high-speed assembler, linker, and librarian.
- Includes macros to interface C and assembly.
- All ANSI, H files and libraries provided. Source available.
- Generates inline port I/O. C files are not promoted to it.
- Allows in-line assembly with access to C variables.
- All code is reentrant and ROMable.
- Fast ANSI/IEEE 754/INTEL floating point support.
- Converted plain ASCII text into high quality speech.
- Unlimited vocabulary-no custom recording needed.
- Requires only a single SV supply and speaker.

TURBO 320

Realtime DSP Development System

User application daughter board

- Digital Signal Processor development environment using TI’s TMS320C30 40 MHz floating point DSP and the TI Compiler, Assembler, Linker and Debug software.

FEATURES

- Optional daughter board interface • 6 Mb RAM
- 40 MHz speed • TI Software compatible

APPLICATIONS

- TMS320 DSP’s
- Multi-channel 250 KHz Analog I/O
- Development, FFT, Data Acquisition & Signal Display Software
- Other DSP Products Available

Diploma SPRY

89 Westlanding Avenue, Rochester, NY 14618

(716) 473-3810
Fax (716) 271-8380

DALANCO SPRY

4MEG VIDEO Model 10

Flexible Image Processor and Application Accelerator For The PC/AT

- 8 to 8000 Pixels per Line
- 2 to 19 MHz sampling/display rate
- 10 MIPS Programmable Accelerator
- 4 Megabytes of Reconfigurable Image Memory
- RS-170, RS-330, and CCIR input/output
- Analog or digital inputs
- Genlock to external timing sources
- Software programmable timing/resolution

- CIRCLE NO. 331
- CIRCLE NO. 332
- CIRCLE NO. 333

48 Channel 50MHz Logic Analyzer

Complete System $1895.00

New Windows 3.0 Compatible Software

* 48 Chnnds @ 50 MHz x 4 Kwords deep
* 16 Trigger Words/16 levels Trigger Sequence
* Storage and recall of traces/setups to disk
* Disassemblers available for: 68000, 8088, 8086, 6801, 6811, 283, 80386, 6802, 6803, 6833, 8321

EPLD, MICROCONTROLLER AND EPROM PROGRAMMER

Supported Devices: DIP, PLCC and QFP Microcontrollers (8751/8BH, 87C51/2, 87C51FA/FB/FC/GB, 87C751/2, 67C652/4, 87C528, 87C550, 87C552, 87C562, 87C451, 87C592 and more), EPROMs (2716 to 2764), NMOS and CMOS, and EPROMs (Signetics/Atmel 22V10, AT7500, AT25000 and AT9500).

Serially linked to a PC. Lock Bits, Encryption Tables and Security bits are supported.

MP-51

SCANTEAM® COMPONENT PRODUCTS

FIXED MOUNT MOVING BEAM BAR CODE SCANNER

Welch Allyn’s SCANTEAM® 5600 is a high performance, laser diode based bar code scanner. Its rugged housing and mechanical design, together with all solid state electronics, combine to produce a highly reliable product which features:

- Compact Design (2.3 x 2.3 x 2.7") Ideal for applications where mounting space is limited
- Non-Contact Scanning
- Scans on curved and irregular surfaces in hard-to-reach locations
- Scan Range (200 to 600)
- Adaptable to meet system requirements

Communicate Weekly

to the electronics OEM through EDN’s Magazine and News Editions Product Mart

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

EDN's Magazine

September 17, 1992
ADVIN versus DATA 1/0
- ADVIN and PILOT-40: reputable company,
- Data 1/0 and Model 2900: reputable company.

T H O S E E N G I N E E R S L T D
Fax +44 (0)81 906 0969
dependable equipment. supports 40-pins. Software updates: free via electronic BBS.

or Charles on +44 (0)81 906 0155 (Europe)
800 - 627 - 2456, 408 - 243-7000, Fax 408-736-2503

Easy
• Form Overlay and Vector Graphic Command• Use as a Raster Transfer Plotter or as a High Speed (16 PPM) PCL4 Compatible Printer
• Centronics Compatible Interface Capable of Continuous Plotting 274K Bytes Per Second
• Users-customized screen interface
• Slow motion and automatic screen update
• Graphical display of data
• Supports DSP56001 and DSP56002
• Emulates from 0 to 40 MHz

To hear more from the little bird about pointless simulation
phone Fred on 313 663 8810 (USA)

New emulator for Motorola's DSP56001
- True In Circuit Emulator (ICE)
- C and assembly language debugging
- Hardware breakpoint on program or data
- User-customized screen interface
- Slow motion and automatic screen update
- Graphical display of data
- Supports DSP56001 and DSP56002
- Emulates from 0 to 40 MHz
- PC based with mouse interface

CIRCLE NO. 340
CIRCLE NO. 341
CIRCLE NO. 342
CIRCLE NO. 343
CIRCLE NO. 344
CIRCLE NO. 345

REMOVE HARDWARE LOCKS
PROTECT YOUR INVESTMENT!
MAINTAIN PRODUCTIVITY!
Software utility that allows for the removal of hardware locks.
Available for most major CAD/CAM and PCB software programs
Easy - Simple - Guaranteed
Programs start at $99.00 U.S.
Visa and Mastercard Welcome
Call or Fax for more information

Safelock Systems Inc.
302-100 Condor Ave.
Winning, Mb. R2K 4R8
FAX (204) 648-3644
Canada

CIRCLE NO. 346

LaserPlotter

• Infinite Length Plots on Plain Fanfold Paper
• 300 DPI Resolution Laser Electrophotography
• 2.9 Inches Per Second Plot Speed
• Continuously Plotting 274K Bytes Per Second
• Use as a Raster Transfer Plotter or as a High Speed (16 PPM) PCL4 Compatible Printer
• Form Overlay and Vector Graphics Commands Ideal for Telemetry and Medical Strip Charts
• Low Operating Cost Per Page
• Perfect Replacement for Electrostatic Plotters

Ægis Engineering, Inc.
8133 Leesburg Pike, Suite 780
Vienna, VA 22182
Phone: (703) 847-2013
Fax: (703) 760-0840

CIRCLE NO. 347
CIRCLE NO. 348

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

EDN September 17, 1992 • 181
INTRODUCING PROTERM
FIRST IN A FAMILY OF LARGER DISPLAY OPERATOR INTERFACES
• 8 lines by 24 characters or 16 lines by 32 characters (selectable)
• VT-100 compatible (ANSI 3.64)
• User programmable keypad
• 30, or 45 key keypad
• Readily customized to suit your application
• RS-232 or RS-422 interface
• Two year warranty

TWO TECHNOLOGIES, INC.
419 SARGON WAY
HORSHAM, PA 19044
(215) 441-5305 Fax (215) 441-0423

CIRCLE NO. 349

320C25 DSP ASAP $1,995
Drive your embedded 320C25 design to market as fast as possible with our 320C25 in-circuit emulator. The MACROCHIP C25 emulator features real time emulation to 50 MHz with no wait states, 64K words of program overlay memory, simple software breakpoint, single step trace, dis­sembler, and RS-232 communications for fast downloading of programs from your PC COM port.
Call, write or fax for literature:
1301 N. Denton Drive
Carrollton, TX 75006
Tel 1-800-783-9546 Fax 214-245-1005

CIRCLE NO. 350

FREE DATA ACQUISITION & COMMUNICATION HANDBOOK
1991-1992 handbook features 86 pages of the latest information on our complete line of communication, data acquisition and waveform synthesizers.
1-800-553-1170

CIRCLE NO. 751

TEMPUSTECH, INC.
TE L: (800) 634-0701 195 AIRPORT ROAD
FAX: (813) 643-4981 NAPLES, FL 33942

CIRCLE NO. 752

TURBO XT WITH SOLID STATE DISK
• PC Bus, 4.2" x 6.7", MS/DOS 2.0 - 5.0
• 2 Serial Ports, 1 Parallel Port
• Up to 2 FLASH SSDs, Bootable
• 1Meg total FLASH storage, 2 Meg DRAM
• 90MHz Operation, WatchDog Timer
• Software Included / SSD, EMS Handling
• 6 Layer, CMOS, Wide Temp. Range
• Made in the U.S.A. / 1 Year Warranty
• $295.00 qty. 1, Quantity Pricing Available
TEL: (800) 634-0701 FAX: (813) 643-4981
295 Airport Road Naples, Fl. 33942

CIRCLE NO. 753

4 Color Product Mart Ads Are Now Available In EDN's Magazine and News Editions!
Call Joanne Dorian for more information
(212) 463-6415

CIRCLE NO. 754

STANDARD DISK
• BOOTABLE
• VERSATILE
• SIMPLE
• COMPATIBLE
• DURABLE
• FAST
• RELIABLE
• ANOTHER SEALLEVEL/ANNABOOKS INNOVATION

SEALEVEL SYSTEMS
PO BOX 830 LIBERTY, SC 29657 803-843-4343

CIRCLE NO. 755

State Machine Design
For Complex & High Density PLDs

The most powerful PLD/FPGA CAE design software from $495.00
CUPL" 4.2
1-800-331-7766

CIRCLE NO. 756

Device Programming
Certified by the Semiconductor Industry
World's largest selection of PC based and stand-alone programmers from $395.00 to $10,000.
ALLPRO™ 88
1-800-331-7766

CIRCLE NO. 757

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
182 • EDN September 17, 1992
ABEL-PLD: Logic design for less.

• 150 PLD architectures supported (more than 4000 devices)
• Uses ABEL(®)

Hardware
Description
Language
(ABEL-HDL™)

1-800-3-DataI/O
(1-800-332-8216)

*US list price only.

Call Data I/O®
Direct today to order
ABEL-PLD.

Save $1000 on our entry-level logic system.

• Includes the 212 Multi Programmer with logic module, ABEL-PLD™ and PROMinX™ Ltd.

PC Interface Software
• Supports 20- and 24-pin CMOS logic devices

1-800-3-DataI/O
(1-800-332-8216)

*US list price only.

Call Data I/O®
Direct today to order the 212 Logic System.

FREE DEMO DISKS

See why over 20,000 engineers rely on SCHEMA for their design needs.

✓ Schematic Capture
✓ PCB layout & routing
✓ Simulation
✓ PLD design

Call 800-553-9119
UNIVERSAL PROGRAMMER

PAL EPROM FLASH
GAL EEPROM MICRO

$475.00

5ns PALs
4 MEG EPROM (8 & 16 bit)
22V10 & 26CV12 GALs
Parts added at your request
Free software updates on BBS
Powerful menu driven software

400 MHz LOGIC ANALYZER

- up to 128 channels
- Variable threshold
- up to 400 MHz
- 8 External clocks
- 10K samples/channel
- 16 level triggering

Call for information on
100 M Sa/s Pattern Generator (option)
Price is Complete

CIRCLE NO. 777

Digital Voice Module

DM1000LP-1 (425, EPROM chip extra)
- Plays natural-sounding pre-digitized voice
- Playback triggered by contact closures
- Up to 256 seconds of message (8M-bit EPROM)
digitized by using our VP980 digitization board
- Totally self-contained, single-voltage requirement
- 1uA standby current, great for battery operation
- Built-in 3W power amplifier
- Many other models available, call for brochure

ELETech ELECTRONICS, INC.
1262 East Katella Avenue, Anaheim, CA 92805
Tel: 714-385-1707 Fax: 714-385-1708

CIRCLE NO. 778

ISA & EISA THEORY & OPERATION

Here are the timing specifications for the ISA, EISA, and E-ISA buses explained in text, diagrams, and tables. Ed Solari, author of our famous "AT Bus Design", covers every type of cycle: memory access, DMA transfer, refresh, and bus master arbitration. He explains in detail how source and destination of different data widths (8, 16, and 32 bits) can operate with each other in any combination.

"ISA & EISA Theory & Operation" defines each bus signal line, and how it functions for different types and lengths of cycles. You will learn how to use wait states and data type swapping to accommodate resources of various types. And you will see the effect that bus terminations, pull-up values, and signal distribution methods have on the bus timing.

Order now! This hard-bound book, containing over 500 pages and hundreds of diagrams and tables, is only $49.95. It is without a doubt the most important ISA and EISA bus design reference.

ANNABOOKS
15010 Avenue of Science, Suite 101
San Diego, California 92128

1-800-435-1042 619-673-0870 619-673-1432 FAX

CIRCLE NO. 782

OMNIPRO-10

UNIVERSAL PROGRAMMER from $299.00

Now supporting entire MACH family!

- EPROMs to 4 meg/EEPROM & Flash
- GALs & EPLDs
- High Density PLDs/FPGAs/Mach 21X
- Micros, Intel, Signetics, Zilog
- Gang and Set Programming option

VAIL SILICON TOOLS

305 570 5580

CIRCLE NO. 783

PLD-1128 LOGIC DEVICE PROGRAMMER $995.00

Program over 1100 different PLDs including the latest architectures from AMD, Cypress, N5. Qualified by AMD, Lattice, National Semiconductor, Signetics and others. Supports all MACH and MAPL devices, all versions of 22V10, including the /4 from AMD. -5 & -7 PLDs from N5, and Altera 900 & 1900 series EPD-P DIS. Only uses the manufacturer approved programming algorithms to ensure accuracy.

LIFETIME FREE SOFTWARE UPDATES VIA BBS and US MAIL. Risk free 30-day money-back guarantee MADE IN THE USA

BP MICROSYSTEMS
1-800-225-2102
Houston, Texas 77043-3219 (713) 461-9410 • (713) 461-7413

CIRCLE NO. 784

Loop Current Detectors

M-949 Line Sense Relays prevent failures caused by transients and current surges in the

RUGGEDIZED PACKAGE

- phone line.
- Superior reliability means your products will last longer.
- Better survivability than optoisolators.
- Improved RFI shielding.
- For on-hook/off-hook monitoring, switchhook flash detection, and rotary dial pulse counting.
- Available in UL-approved versions

1-800-426-3926
Or: 206-487-1515 Fax: 206-487-2288

TELETTONE

305 570 5580

CIRCLE NO. 785

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

EDN September 17, 1992 • 185
Loral Information Display Systems, a division of Loral Corporation (NYSE), designer of digital electronic information systems and graphic displays for military applications, has the following immediate opportunities:

MECHANICAL ENGINEER - BSME with 5-10 years experience in military displays and display processor design preferred. Knowledge of CAE simulation technologies helpful.

DIGITAL DESIGN ENGINEER - BSEE with 8-10 years experience in high speed microprocessor based computer graphics design. Experience in military displays and display processor design preferred. Knowledge of CAE simulation technologies helpful.

PROJECT ENGINEER - BSEE with 5 years experience in project engineering or project management in a military electronics development engineering environment. Must have extensive scheduling, budgeting, and customer interface experience. Systems engineering background helpful.

RELIABILITY ENGINEER - BSEE with 5-10 years experience in reliability analysis and predictions, creating reliability test plans and performing stress analysis. Knowledge of Mil Std 217, 781, 785, and 1629 necessary. Background in failure analysis and maintainability a plus.

INTEGRATION ENGINEER - BSEE with 8-10 years experience in hardware/software design experience plus proven experience in Engineering Lab Integration and Testing.

MARKETING ENGINEER - BSEE with minimum 7-10 years experience in technical marketing of military electronic or avionics systems to prime contractors, Air Force and Navy. Prefer specific background in airborne and ground display systems. Responsibilities include generating new business opportunities with prime DOD contractors and Air Force and Navy customers.

Loral Information Display Systems is a progressive company offering unusual growth opportunities in our own office park in NE Atlanta. We provide top industry pay and benefits. If interested, please send or fax resume with salary history to: Robert C. Hall, Loral Information Display Systems, Dept. EDN917, 6765 Peachtree Industrial Blvd., Atlanta, GA 30360. FAX (404) 448-9163. EOE, M/F/H/V. U.S. Citizenship required.

ATLANTA

EDN-CAREER OPPORTUNITIES

1992 Recruitment Editorial Calendar

<table>
<thead>
<tr>
<th>Issue</th>
<th>Issue Date</th>
<th>Ad Deadline</th>
<th>Editorial Emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>News Edition</td>
<td>Oct. 8</td>
<td>Sept. 24</td>
<td>CAE • PC/Workstation Design • Engineering Management Special Series</td>
</tr>
<tr>
<td>Magazine Edition</td>
<td>Oct. 15</td>
<td>Sept. 24</td>
<td>Disk Drives • Portable-Computer Design • Switching Power Supplies • Design it Right Series—Part II</td>
</tr>
<tr>
<td>News Edition</td>
<td>Oct. 22</td>
<td>Oct. 8</td>
<td>Data Storage Technology Communications Technology Regional Profile: Michigan, Illinois, Missouri</td>
</tr>
<tr>
<td>Magazine Edition</td>
<td>Oct. 29</td>
<td>Oct. 8</td>
<td>ELECTRONICA SHOW ISSUE • Object-oriented Programming • Chips for PCs Design it Right Series—Part III Wescon Preview Issue</td>
</tr>
<tr>
<td>News Edition</td>
<td>Nov. 5</td>
<td>Oct. 22</td>
<td>COMDEX/WESCON SPECIAL ISSUE • Special Supplement: Design for Portability • Microprocessors • Wescon/Comdex Hot Products • CAE Software • Diversity Special Series</td>
</tr>
<tr>
<td>Magazine Edition</td>
<td>Nov. 12</td>
<td>Oct. 22</td>
<td>COMDEX/WESCON SPECIAL ISSUE • Integrated Circuits • Test & Measurement • Design it Right Series—Part IV</td>
</tr>
<tr>
<td>WESCON '92 SHOWGUIDE & PRODUCT SPOTLIGHT</td>
<td>Oct. 9</td>
<td></td>
<td>A free page available to all advertisers running a full page in 2 out of 3 Wescon issues.</td>
</tr>
</tbody>
</table>

News Edition

<table>
<thead>
<tr>
<th>Issue</th>
<th>Issue Date</th>
<th>Ad Deadline</th>
<th>Editorial Emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>News Edition</td>
<td>Nov. 19</td>
<td>Nov. 5</td>
<td>CAE Software • EDN’s “Innovation Crusade”—Winners Coverage • Communications Technology • Regional Profile: So. California, Nevada</td>
</tr>
<tr>
<td>Magazine Edition</td>
<td>Nov. 26</td>
<td>Nov. 5</td>
<td>19th Annual Microprocessor Directory • ASICs • Sensors • EDN’s “Innovation Crusade”—Winners Coverage</td>
</tr>
</tbody>
</table>

News Edition

<table>
<thead>
<tr>
<th>Issue</th>
<th>Issue Date</th>
<th>Ad Deadline</th>
<th>Editorial Emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>News Edition</td>
<td>Dec. 3</td>
<td>Nov. 19</td>
<td>ICs & Portable Computers • Power Sources • Laptops/Portables • Low-power Design • Regional Profile: Massachusetts, New Hampshire</td>
</tr>
</tbody>
</table>

Magazine Edition

<table>
<thead>
<tr>
<th>Issue</th>
<th>Issue Date</th>
<th>Ad Deadline</th>
<th>Editorial Emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magazine Edition</td>
<td>Dec. 10</td>
<td>Nov. 19</td>
<td>INTERNATIONAL PRODUCT SHOWCASE—Vol. I • Power Sources • ICs & Semiconductors • Software • Hardware & Interconnect</td>
</tr>
<tr>
<td>Magazine Edition</td>
<td>Dec. 24</td>
<td>Dec. 3</td>
<td>INTERNATIONAL PRODUCT SHOWCASE—Vol. II • Computers & Peripherals • Components • Test & Measurement • CAE</td>
</tr>
</tbody>
</table>

Call today for information on Recruitment

East Coast: Janet O. Penn (201) 228-8610
National: Roberta Renard (201) 228-8602
THE TECHNOLOGY IS WIRELESS.

While everyone has been talking about wireless computer networks, we have been designing, manufacturing and selling them. Symbol Technologies, Inc. has already installed over 3,000 Spectrum One wireless cellular networks. Symbol's Spectrum One Network gives our wireless hand held computers direct access to the user's host computer for applications in retail, manufacturing, military, healthcare and warehousing industries.

At Symbol Technologies, Inc.'s Costa Mesa (Southern California) and San Jose (Northern California) facilities, you will join an innovative team of Engineers involved in RF circuit design, digital communications research, RF and LAN protocol and software development. Your ideas will become reality in our next generation of wireless networks.

Back your career with the strength and resources of an industry leader. Please mail your resume with salary history (indicating position and location of interest) to: Symbol Technologies, Inc., Attn: Dick Stasion, Human Resources, Dept. EDN/917, 340 Fischer Avenue, Costa Mesa, CA 92626. Equal Opportunity Employer M/F/D/V. Principals Only.
Harris Corporation's RF Communications Division is a worldwide supplier of complete radio communications systems solutions to U.S. Government and international customers in over 100 countries. Growth of domestic and international business has created opportunities including:

FIRMWARE
Develop real-time embedded processor (8.16 bits) firmware utilizing structured software development methodologies and object-oriented design. "C" and ADA required; INTEL a plus.

SYSTEMS ENGINEERING
Analyze, design and develop HF/VHF/UHF and microwave communications systems; mobile and fixed configurations. Networking experience a plus.

SOFTWARE

Positions require a BSEE or equivalent and 3+ years' relevant experience; an MS is desirable. Some positions require ability to obtain U.S. Security Clearance. Multilingual skills are desirable.

For prompt consideration, please send resume in confidence to: HARRIS CORPORATION, RF Communications Group, HR Dept. EDN, 1680 University Avenue, Rochester, NY 14610.

An Equal Opportunity Employer M/F/D/V.

WE'RE KNOWN BY THE CONTRACTS WE KEEP.

Lear Astronics Corp., a leading supplier of Avionics, Radar and Advanced Electronic Systems, has opportunities for:

SYSTEMS ENGINEERS
Requires a BSEE and design experience including digital computer architecture definition, redundancy management, HW/SW integration and system integration.

SOFTWARE ENGINEERS
Qualifications include a BSEE/BSCS degree and 5 years experience in embedded SW development and integration. Ideal candidates will have experience with 80960 or 1750A and Ada.

SYSTEMS ENGINEERING MANAGER
Requires BS/MSEE and 15 years experience in automatic flight control system proposal generation, design and integration. You must have at least 5 years management experience developing and implementing new designs, plus a solid understanding of aircraft systems/SW. Will be responsible for schedules and budgets.

WE WILL BE COMING TO YOUR AREA SOON. FOR A LOCAL INTERVIEW APPOINTMENT, CALL CHUCK DOYLE AT: 1-800-LEAR-JOB

Lear Astronics Corp., Dept. M25, 3400 Airport Ave., Santa Monica, CA 90406. (310) 915-6745. FAX (310) 915-8387. EOE. Employment offers are contingent on satisfactory preemployment drug tests. You will be contacted only if we are considering you for the positions advertised.

Your Future Starts Here

If you're looking for work, just look here.
Senior Principal Engineer - manage team of microcode engineers on ESCON part development for a complex disk drive subsystem for IBM mainframe application. Responsible for all aspects of project including management, research, definition, implementation and testing of subsystem. Requirements include Master of Science degree in Computer Science or related field, with at least four years managerial experience in design and modeling of software for reactive (real-time embedded) systems in a mixed hardware/software environment; strong background in definition of software development procedures and standards for software life-cycle, including budget/methods and tools, partition and configuration control; thorough knowledge of CASE tools; software paradigms (requirement analysis and design); software architecture, quality evaluation, metrics, reverse engineering methods, communication protocols and integration of high-level languages with assembly language. Salary $80,000/year. 40 hours/wk. Respond with two copies of resume to Job Order #21075, P.O. Box 8968, Boston, MA 02114

ENGR, Design: Logic design, circuit design, simulation, layout, testing & verification of new high performance digital integrated circuits. Min. MS or equiv. EE. Applicants must have project/research background in IC design (including mfg. & testing, logic & circuit design, logic & circuit simulation, layout & verification); advanced coursework in digital & analog circuit design; knowledge of h/w & s/w tools required for IC design (workstations, operating systems, schematic capture, circuit simulation, logic simulation, layout and verification). $3615/month. Applicants clip ad and send w/resume to: Miss. State Employment Service, 100 Felix Long Drive, Starkville, MS 39759-9983, Job Order Number MS2619052.

Knock, Knock.

In EDN's Magazine and News Editions, opportunity knocks all the time.

Join the Leader in Wireless Digital Access Telephone Systems!!

The IMM Corporation designs, patents, manufactures and markets the telephone industry's most sophisticated and effective technology and products for the worldwide Wireless Digital Access market. IMM's breakthrough technology, Time Division Multiple Access (TDMA), has been selected by the Cellular Telecommunications Industry Association (CTIA) as the IS-54 United States digital cellular standard. With hundreds of systems currently up and running in six different countries; dramatic sales and revenue increases in the last two years; imminent cutover to operation of the first all wireless telephone service city in the United States; and its first royalty bearing technology license in place, IMM is about to embark on a major development effort which will truly extend the state of the art and result in a product line destined to maintain IMM's leadership position through the year 2000.

Qualified applicants will have a BSEE, BSME or BSCS and a minimum of 5 years experience in the telecommunications environment. An advanced degree and knowledge of Bellcore and/or CCITT standards will decidedly enhance an applicant's competitiveness. Specific opportunities are available for:

- SENIOR TELECOMMUNICATIONS SYSTEMS ENGINEERS
- SENIOR TELECOMMUNICATIONS HARDWARE ENGINEERS
- SENIOR MECHANICAL ENGINEERS
- SENIOR RADIO FREQUENCY ENGINEERS
- SWITCHING SYSTEMS MANAGER

If you have the experience we seek and want to share this exciting opportunity with some of the most creative telecommunications engineers in the business, send your resume and salary history to: IMM Corporation, Human Resources, Department ED-8, 2200 Renaissance Boulevard, Suite 105, King of Prussia, PA 19406-2755. Equal Opportunity Employer.

IMM Corporation

The Company

EDN Magazine Edition News Edition

A Partnership in Power and Prestige Worldwide

EDN September 17, 1992 • 189
Professional Profile

Announcing a new placement service for professional engineers!

To help you advance your career, Placement Services, Ltd. has formed the EDN Databank. What is the Databank? It is a computerized system of matching qualified candidates with positions that meet the applicant's professional needs and desires. What are the advantages of this new service?

- It's absolutely free. There are no fees or charges.
- The computer never forgets. When your type of job comes up, it remembers you're qualified.
- Service is nationwide. You'll be considered for openings across the U.S. by PSL and its affiliated offices.
- Your identity is protected. Your resume is carefully screened to be sure it will not be sent to your company or parent organization.
- Your background and career objectives will periodically be reviewed with you by a PSL professional placement person.

We hope you're happy in your current position. At the same time, chances are there is an ideal job you'd prefer if you knew about it. That's why it makes sense for you to register with the EDN Databank. To do so, just mail the completed form below, along with a copy of your resume, to: Placement Services, Ltd., Inc.

IDENTITY

Name: _____________________________

Home Address: _____________________________

City: __________________ State: ______ Zip: ______

Home Phone (include area code): _____________________________

PRESENT OR MOST RECENT EMPLOYER

Parent Company: _____________________________

Your division or subsidiary: _____________________________

Location (City, State): _____________________________

Business Phone (if O.K. to use): _____________________________

EDUCATION

Degrees (List)

Major Field GPA Year Degree Earned College or University

POSITION DESIRED

EXPERIENCE

Present or Most Recent Position

From: ______ To: ______ Title: __________

Duties and Accomplishments: _____________________________

Industry of Current Employer: _____________________________

Reason for Change:

PREVIOUS POSITION:

Job Title: _____________________________

Employer: _____________________________ From: ______ To: ______ City: ______ State: ______

Division: _____________________________ Type of Industry: _____________________________ Salary: ______

Duties and Accomplishments: _____________________________

COMPENSATION/PERSOmal INFORMATION

Years Experience Base Salary Commission Bonus Total Compensation Asking Compensation Min. Compensation

Date Available I Will Travel _____________ Light Moderate Heavy I own my home. How long? _____________ I rent my home/apt. _____________

□ Employed □ Self-Employed □ Unemployed □ Married □ Single Height: ______ Weight: ______

Level of Security Clearance □ U.S. Citizen □ Non-U.S. Citizen My identity may be released to: □ Any employer □ All but present employer

□ WILL RELOCATE □ WILL NOT RELOCATE □ OTHER

EDN Databank

A DIVISION OF PLACEMENT SERVICES LTD., INC.

265 S. Main Street, Akron, OH 44308 216/762-0279
Fully QPL'd!

Trompeter's 70 Series...

Twinax/Triax Concentric Connectors

MIL-C-49142/3 MIL-C-49142/8
MIL-C-49142/4 MIL-C-49142/9
MIL-C-49142/5 MIL-C-49142/10
MIL-C-49142/6 MIL-C-49142/11

Send for 70 Series Mil Spec Sheet
For pricing and availability contact your Local Trompeter Rep or call our New 800# for Sales/Service/Technical Support.
(800) 982-COAX Inside California Call... (800) 655-2028

Quality doesn't cost... It pays.

3186 La Baya Drive • Westlake Village, CA 91362
(818) 707-2020 Fax (818) 706-1040

CIRCLE NO. 116

IEEE-488

You can control any IEEE-488 (HP-IB, GP-IB, 488.2) device with our cards, cables and software for the PC/AT/386, EISA, Micro Channel and Macintosh II. You get fast hardware and software support for all the popular languages, plus a software library of time saving utilities. Instrument control has never been easier.

FREE Informative Catalog 800-234-4CEC
Applications help 617-273-1818

CIRCLE NO. 117

Now up to 100V DC Output

PICO DC-DC Converters

Wide Input Range 5 to 72V DC

Regulated 5 to 30 Watts

• 365 Standard Models
• Single, Dual & Triple Output
• Remote Disable Pin Standard
• Up to 100V DC Output now Standard
• 500V DC Isolated Input to Output
• All Units Shielded

MIL-STD-883 UPGRADES AVAILABLE

• Expanded operating temp. (−55°C to +85°C)
• No Heat Sink Required
• Stabilization Bake (125°C ambient)
• Temperature Cycle (−55°C to +125°C)
• Hi temp., full power burn in (100% power, 125°C case temp.)

PICO also manufactures over 850 standard DC-DC converters and over 2500 ultra-miniature transformers, inductors and new AC-DC power supplies.

Delivery—stock to one week

See EEM or call 914-699-5565 or send direct for FREE PICO Catalog

PICO Electronics, Inc.
453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552
Call Toll Free 800-431-1064
IN NEW YORK CALL 914-699-5514

CIRCLE NO. 118
DC-DC Converter Transformers and Power Inductors

These units have gull wing construction and are packaged in shipping tubes, which is compatible with tube fed automatic placement equipment or pick and place manufacturing techniques. Transformers can be used for self-saturating or linear switching applications. The Inductor current range to 23 amps

- Transformers have input voltages of 5V, 12V, 24V and 48V. Output voltages to 300V.
- Transformers can be used for self-saturating or linear switching applications.
- Schematics and parts list provided with transformers.
- Inductors to 20mH with DC currents to 23 amps.
- Inductors have split windings.

PICO Electronics, Inc.
453 N. MacQuesten Pkwy, Mt. Vernon, N.Y. 10552
Call Toll Free 800-431-1064
IN NEW YORK CALL 914-699-5514
FAX 914-699-5565

EDN INTERNATIONAL ADVERTISERS INDEX

This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.

© 1992 EDN Magazine. All rights reserved.
HP’s new 4 GSa/s scope helps you capture high-speed glitches.

The new HP 54720A has the speed you need to solve intermittent problems.

When digital designs reach clock speeds above 33 MHz, you run into a new class of problems. That’s when critical timing and noise margin analysis are crucial. And that’s where the HP 54720A helps the most.

The HP 54720A has the highest sample rate available on multiple channels with exceptional real-time bandwidth — as well as low noise and jitter. So you get repeatable, high-fidelity waveform capture. And a clearer picture of the input signal.

To make sure the captured signal is reliable and distortion free, the HP 54720A has high vertical and horizontal accuracy. It teams up perfectly with the new non-intrusive HP 54701A active probe. And it’s ideal for use with HP logic analyzers when you need maximum insight into digital system problems.

Plus, to make sure you have the information you need, HP offers educational programs, application notes, and seminars on solving high-speed digital design problems.

So, if intermittent problems are plaguing you, call 1-800-452-4844.*

Ask for Ext. 3079, and we’ll send you a brochure and an application note that explain how the HP 54720A helps you get a clearer understanding of your high-speed digital designs.

There is a better way.

* In Canada call 1-800-387-3867, Dept. 453.
WORLD CLASS TRANSFORMERS FOR WORLD CLASS CUSTOMERS

Signal International Series Transformers are VDE and CSA certified, UL recognized and comply with applicable IEC specifications. In an era of global marketing, and the inception of the European Economic Community in 1992, using Signal Transformers can open up new trade routes for you.

We'll even give you a competitive edge by customizing a JIT program for you that will reduce your inventories and provide you with only as many Signal Transformers as you need, only as you need them. While our Pronto "24 hour service will ship standard catalog transformers in just one business day.

Naturally, with timing this critical you've no time for reject replacements. No problem. Our Total Quality Control Program utilizes the industry's most modern, automated test equipment to verify that every single unit meets with your specifications. And, because we use cellular assembly lines dedicated to one project at a time, nobody beats our quality in producing quantities under tight deadlines.

If you want to profit from a global economy while saving money by buying direct, call for more information or a free catalog: Signal Transformer, 500 Bayview Avenue, Inwood, NY 11696.

FAX (516) 239-7208
BUY DIRECT (516) 239-5777.

You can send a Signal anywhere.