Special Report:
Ruggedized, off-the-shelf computers

gear up for military use

pg 118
Setting the New Standard in PC Data Acquisition

It takes a serious commitment to quality to deliver data acquisition boards that reliably meet the most demanding specifications. The National Instruments AT-MIO-16F-5 board creates a new standard in excellence with features not found on typical data acquisition boards. Most data acquisition boards have degraded accuracy at high sampling rates and high gains, due to instrumentation amplifier settling time. The AT-MIO-16F-5 does not. The AT-MIO-16F-5 is shipped with NI-DAO™ driver software for Microsoft Windows and DOS, and DAQWare™ getting-started software.

The AT-MIO-16F-5 can also be programmed with LabWindows application software.

Other features of the AT-MIO-16F-5 include:
- 200 ksamples/sec sampling rate
- Instrumentation amplifier that settles at all gains and rates
- 12-bit resolution
- Software-configurable analog input
- True self-calibration
- Dither generator for extended resolution
- RTSI® bus for multiboard synchronization

For more information on the AT-MIO-16F-5 and your free copy of DAO Designer, call us. (512) 794-0100 or (800) 433-3488 (U.S. and Canada)

6504 Bridge Point Parkway
Austin, TX 78730-5309
Fax: (512) 794-8411

Product names listed are trademarks of their respective manufacturers. Company names listed are trademarks or trade names of their respective companies. © Copyright 1992 National Instruments Corporation. All rights reserved.
PRODUCTS: Passive components, including resistors, resistor networks, trimmers and inductors in through-hole and surface mount components.

OBJECTIVE: Develop procedures to reduce the customer’s total cost of acquiring parts through distribution.

In recent years, distributors have assumed greatly increased responsibility in the electronic component supply chain. Because of this, their ability to monitor, control and improve quality has become a pivotal factor in the cost of acquisition. These facts are well recognized in the successful distributor/manufacturer partnership which exists between Dale Electronics and TTI.

The two organizations have a close working relationship dating back to 1974 when Dale® resistors became one of the first products distributed by TTI, Inc.

Since then, other Vishay companies including Angstrohm, Jeffers, Nytron, Ohmtek, Techno, Ultronix and Vishay Resistors have also been integrated into a strong passives distribution partnership with TTI.

Efficiency of the partnership was enhanced when a centralized distribution headquarters for all eight companies was established in Columbus, Nebraska. Concurrently, TTI and these companies accelerated work on standardizing packaging and other labor-intensive areas which could provide more efficient product flow-through at the distributor level. As part of this, use of electronic data interchange (EDI) was expanded together with a system for verifying the accuracy of order entry and processing.

In assessing the results of this activity, a Dale spokesperson commented: “In many cases, it’s administrative errors, rather than product defects, which create major ‘spikes’ in cost of acquisition. So we work closely with all our distributors to support their ability to deliver the specified part in the right quantity with the correct packing at the right time."

“The Total Quality Process system developed by TTI is an ideal vehicle to drive improvement because it interfaces directly with our own quality systems. This enables us to improve customer service by creating a closed loop between manufacturer and distributor which can efficiently identify problems, define the corrective action needed, and make sure it is taken.”

This overall process is monitored through a Supplier Quality Report prepared on a quarterly basis and discussed at regular review meetings. “These reports are vital,” the spokesman continued, “in enabling us to pinpoint variations in performance and in providing guidelines for improvement. Our goals are identical with those of TTI. We want to totally eliminate errors. And we will.”

For more information on how this commitment to effective partnering can benefit your operation, please contact Joe Matejka, Vice President, Quality Assurance, Dale Electronics, Inc., 1122 23rd Street, Columbus, NE 68601-3647. Phone 402-563-6511. Fax 402-563-6418.
MEASURE LEADTIMES IN HOURS, NOT DAYS!

At Digi-Key, more than 99 percent of all orders are shipped within 24 hours!

For all your electronic component needs and free catalog, call toll free: 1-800-344-4539

Digi-Key CORPORATION
701 Brooks Avenue South
Thief River Falls, MN 56701
Toll-Free: 800-344-4539, FAX: 218-581-3380
SPDT switches with built-in driver

ABSORPTIVE or **REFLECTIVE** dc to 5GHz

Truly incredible...superfast 3nsec GaAs SPDT reflective or absorptive switches with built-in driver, available in pc plug-in or SMA connector models, from only $14.95. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' latest innovative integrated components? Check the outstanding performance of these units...high isolation, excellent return loss (even in the "off" state for absorptive models) and 3-sigma guaranteed unit-to-unit repeatability for insertion loss. These rugged devices operate over a -55°C to +100°C span. Plug-in models are housed in a tiny plastic case and are available in tape-and-reel format (1500 units max, 24mm). All models are available for immediate delivery with a one-year guarantee.

SPECIFICATIONS

Model	Frequency (MHz)	Ins. Loss (dB)	Isolation (dB)	1dB Comp. (dBm)	VSWR "on"	Video Bkthr
YSWA-2-500R	500-2000-5000	1.1	1.4	1.9	1.5	30
ZYSWA-2-500R	500-2000-5000	1.8	2.0	2.5	2.0	30

Absorptive SPDT

Model	Frequency (MHz)	Ins. Loss (dB)	Isolation (dB)	1dB Comp. (dBm)	VSWR "on"	Video Bkthr
YSWA-2-50DR	500-2000-5000	1.25	1.35	1.5	1.6	30
ZYSWA-2-50DR	500-2000-5000	1.8	2.0	2.5	2.0	30

Reflective SPDT

Model	Frequency (MHz)	Ins. Loss (dB)	Isolation (dB)	1dB Comp. (dBm)	VSWR "on"	Video Bkthr
YSWA-2-500R	500-2000-5000	1.4	1.4	1.4	1.5	30
ZYSWA-2-500R	500-2000-5000	1.8	2.0	2.5	2.0	30

Price:

- YSWA-2-500R (pin) $14.95
- ZYSWA-2-500R (SMA) $59.95
- YSWA-2-50DR (pin) $14.95
- ZYSWA-2-50DR (SMA) $59.95

Finding new ways... setting higher standards

Mini-Circuits

We accept American Express and Visa

P.O. Box 330186, Brooklyn, New York 11235-0003
(718) 333-4500 Fax (718) 333-4501

Distribution Centers: NORTH AMERICA 800-654-7949 • 417-335-9305 Fax 417-335-9345
EUROPE 44-252-836994 Fax 44-252-83710

For detailed specs on all Mini-Circuits products refer to • THOMAS REGISTER Vol. 23 • MICROWAVES PRODUCT DIRECTORY • EEM • MINI-CIRCUITS 740-pg HANDBOOK

CIRCLE NO. 3
SURFACE-MOUNT or PLUG-IN FROM $3.95

Expose Mini-Circuits' TUF-mixers to 250°C for five minutes, or to the extreme shock and vibration stresses of MIL-STD-28837, or to 200 cycles of thermal shock from -55° to +100°C...they'll survive without any change in specs. They are mighty tough mixers!

Available with LO drive levels from +7 to +17dBm, performance features include very low conversion loss flat over the entire band, high isolation (L-R, L-I), and well-matched VSWR at all ports.

All-welded internal and external construction is used to assemble and package the TUF-unit into its tiny 0.5 by 0.2 by 0.25 in. metal case, for plug-in or surface-mount* assembly. TUF-Ultra-Rel™ mixers are guaranteed for five years and boast unprecedented "skinny" sigma (δ) unit-to-unit repeatability as shown in the Table.

Tough, tiny, and with tight repeatability...Mini-Circuits' Ultra-Rel™ TUF-mixers with a five-year guarantee, priced from $3.95...available only from Mini-Circuits.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Power (dBm)</th>
<th>Freq. (MHz)</th>
<th>Conv. Loss (dB)</th>
<th>Isol. (dB)</th>
<th>Price, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUF-3</td>
<td>0.15-400</td>
<td>4.98</td>
<td>0.34</td>
<td>46</td>
<td>5.95</td>
</tr>
<tr>
<td>TUF-3LH</td>
<td>10</td>
<td>4.8</td>
<td>0.37</td>
<td>51</td>
<td>7.95</td>
</tr>
<tr>
<td>TUF-3MH</td>
<td>13</td>
<td>5.0</td>
<td>0.33</td>
<td>46</td>
<td>8.95</td>
</tr>
<tr>
<td>TUF-3H</td>
<td>17</td>
<td>5.0</td>
<td>0.33</td>
<td>50</td>
<td>10.95</td>
</tr>
<tr>
<td>TUF-1</td>
<td>7</td>
<td>2-600</td>
<td>5.82</td>
<td>0.19</td>
<td>42</td>
</tr>
<tr>
<td>TUF-1LH</td>
<td>10</td>
<td>6.0</td>
<td>0.17</td>
<td>50</td>
<td>5.95</td>
</tr>
<tr>
<td>TUF-1MH</td>
<td>13</td>
<td>6.3</td>
<td>0.15</td>
<td>50</td>
<td>6.95</td>
</tr>
<tr>
<td>TUF-1H</td>
<td>17</td>
<td>5.9</td>
<td>0.18</td>
<td>50</td>
<td>8.95</td>
</tr>
<tr>
<td>TUF-2</td>
<td>50-1000</td>
<td>5.73</td>
<td>0.30</td>
<td>47</td>
<td>4.95</td>
</tr>
<tr>
<td>TUF-2LH</td>
<td>10</td>
<td>5.2</td>
<td>0.3</td>
<td>44</td>
<td>6.95</td>
</tr>
<tr>
<td>TUF-2MH</td>
<td>13</td>
<td>6.0</td>
<td>0.25</td>
<td>47</td>
<td>7.95</td>
</tr>
<tr>
<td>TUF-2H</td>
<td>17</td>
<td>6.2</td>
<td>0.22</td>
<td>47</td>
<td>9.95</td>
</tr>
<tr>
<td>TUF-5</td>
<td>7</td>
<td>20-1500</td>
<td>6.58</td>
<td>0.40</td>
<td>42</td>
</tr>
<tr>
<td>TUF-5LH</td>
<td>10</td>
<td>6.9</td>
<td>0.27</td>
<td>42</td>
<td>10.95</td>
</tr>
<tr>
<td>TUF-5MH</td>
<td>13</td>
<td>7.0</td>
<td>0.25</td>
<td>41</td>
<td>11.95</td>
</tr>
<tr>
<td>TUF-5H</td>
<td>17</td>
<td>7.5</td>
<td>0.17</td>
<td>50</td>
<td>13.95</td>
</tr>
<tr>
<td>TUF-860</td>
<td>7</td>
<td>860-1050</td>
<td>6.2</td>
<td>0.37</td>
<td>35</td>
</tr>
<tr>
<td>TUF-860LH</td>
<td>10</td>
<td>6.3</td>
<td>0.37</td>
<td>35</td>
<td>10.95</td>
</tr>
<tr>
<td>TUF-860MH</td>
<td>13</td>
<td>6.8</td>
<td>0.32</td>
<td>35</td>
<td>11.95</td>
</tr>
<tr>
<td>TUF-860H</td>
<td>17</td>
<td>6.8</td>
<td>0.31</td>
<td>38</td>
<td>13.95</td>
</tr>
<tr>
<td>TUF-11A</td>
<td>7</td>
<td>1400-1900</td>
<td>6.83</td>
<td>0.30</td>
<td>33</td>
</tr>
<tr>
<td>TUF-11ALH</td>
<td>10</td>
<td>7.0</td>
<td>0.20</td>
<td>36</td>
<td>16.95</td>
</tr>
<tr>
<td>TUF-11AMH</td>
<td>13</td>
<td>7.4</td>
<td>0.20</td>
<td>33</td>
<td>17.95</td>
</tr>
<tr>
<td>TUF-11AH</td>
<td>17</td>
<td>7.3</td>
<td>0.28</td>
<td>35</td>
<td>19.95</td>
</tr>
</tbody>
</table>

Notes:
- "X" specify surface-mount models, add SM at end of PIN shown.
- X = Average conversion loss at upper end of midband (L/2)
- δ = Sigma or standard deviation

For detailed specs on all Mini-Circuits products refer to:
- THOMAS REGISTER Vol. 23
- MICROWAVES PRODUCT DIRECTORY
- EEM
- MINI-CIRCUITS' 740-pg HANDBOOK
Electronics Technology for Engineers and Engineering Managers Worldwide

Military Technology Special Issue

Vote for Innovation, Win a Calculator

Your votes will determine the winners in EDN’s Innovations and Innovator of the Year competition. Use the bound-in ballot to make your choices.

Ruggedized computers

Firms that develop and produce ruggedized computers have obtained new customers among prime contractors who no longer have to create computers that meet full military specifications.

—J D Mosley, Technical Editor

Multirate filters alter sampling rates after you’ve captured the data

You’ve digitized an analog signal, but the sampling rate is too high—or too low—for your system. Multirate filters can’t supply missing information, but they can alter the effective sampling rate after you’ve acquired the data.—John Allen Mitchell, Comdico Systems

Board-level protective devices provide insurance against electronic disaster

By augmenting primary system protection with some secondary protection at the pc-board level, you can greatly enhance the reliability of your system.—Tom Ormond, Senior Technical Editor

Continued on page 7

EDN® (ISSN 0012-7515, GST Reg. #123397457) is published 48 times a year (twice monthly with 2 additional issues in a month, except for March and October, which have 3 additional issues and July and December which have 1 additional issue) by Cahners Publishing Company, 44 Cook Street, Newton, MA 02158-1630. Terrence McDermott, President/Chief Operating Officer; Frank Siblany, Executive Vice President; Jerry D. Net, Senior Vice President/Publishing Operations; J. Walsh, Senior Vice President/Finance; Thomas J. DeLamarr, Senior Vice President/Production and Manufacturing; Ralph Kupps, Vice President/Human Resources. EDN® is a registered trademark of Reed Properties Inc., used under license. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Newton, MA 02158. Telephone: (617) 984-4511. Second-class postage paid at Denver, CO 80206-5800 and additional mailing offices. POSTMASTER: Send address changes to EDN®, PO Box 173377, Denver, CO 80217-3377. EDN® copyright 1992 by Reed Publishing USA; Robert J. Krakoff, President and Chief Executive Officer. Annual subscription rates for nonqualified people: USA, $119.95/year; Mexico, $169.95/year; Canada, $181.85/year; all other nations, $279.95/year for surface mail and $329.95/year for air mail. Single copies are available for $20 USA and $25 foreign. Please address all subscription mail to Ellen Porter, 44 Cook Street, Denver, CO 80206-5800.
XWR Series
DC/DC Converters

20Watt
DC/DC Converters
Single/Dual/Triple
34 New Models
- Inputs: 4.6-13.2V, 9-18V, 9-36V, 18-72V
- Typical Efficiencies to 84%+
- World's Only Wide Range 5V
- Extended Operating Temperature
- VIN Adjustment Capabilities (TRIM)
- Insulated Case (will not short PCB)
- TTL-compatible ON/OFF control
- Metal Case Shielding
- Single VOUT: 2.1, 3.3, 5, 12, 15V
- Dual VOUT: ±5, ±9, ±12, ±15V
- Triple VOUT: 5, ±12V and 5, ±15V

General Specifications
- State-of-the-Art Thermal Management
- Continuous Short Circuit Protection
- Internal Input/Output Filtering
- Overvoltage Protection
- 100% Burn-in@ Full Load
- Industry Standard Pinout & Packaging
- Very High Reliability
- Fully Encapsulated
- Delivery From Stock!

For complete data call or write today for a free new Power Supply catalog. DATEL, Inc.,
11 Cabot Boulevard, Mansfield, MA 02048.
Tel: (508)339-3000, FAX: (508)339-6356.
For immediate assistance: all USA, EST business hours 1-800-233-2765; Western region only, PST business hours
1-800-452-0719.
In-circuit programming instruments infiltrate commercial applications

Soldering-in EPROMs and EEPROMs simplifies manufacture and enhances reliability but complicates programming. Commercial in-circuit programming instruments overcome these complications.

—Brian Kerridge, Technical Editor

Portable data carriers: Small, rugged memories put data where it's needed

Cleverly packaged memory devices put data in places where a computer can't go. Some even contain an RF transponder for wireless access.—Gary Legg, Senior Technical Editor
FINALLY, One Company offers you the Power and the ease... with integrated Workstation tools from PADS...

PADS-View
- A complete design entry and simulation solution
- Mixed mode A/D simulation
- Multiple windows for probing simulation results
- Backward and forward annotation to PCB design
- Integrated analysis tools for Engineering Rule Checking
- Cross-probing between PCB and schematic

PADS-Look
- Complete PCB design solution for UNIX™ based workstations
- Easy to install, learn and use
- Excellent price performance ratio
- Complete support of all current printed circuit board technologies
- Specialized tools for analog, digital and high speed design

PADS-ForceRouter
- Autorouting for high density design and testability
- Gridless, shape based architecture supports: metric, fine pitch and off-grid placements
- High speed design toolset with table driven crosstalk analysis
- State-of-the-art “Design for Manufacturability”

PADS offers hardware independent EDA Solutions within your budget and to meet your toughest engineering challenges. PADS products offer you a consistent, easy-to-learn, easy-to-use design environment. For database compatibility, total migration and a common design philosophy between PC’s and Workstations, call 1-800-554-SALES, or your authorized PADS partner.
In this election year, we’re asking you to vote twice—once in November and once now.

When you turn to pg 39, you’ll read descriptions of the finalists in EDN’s annual Innovation and Innovator of the Year Competition. You’ll also find a ballot with a list of this year’s finalists. Vote for your favorite products and people on the postage-paid ballot and return it by September 14. This year, you can even fax the ballot by using an 800 number. By the way, every person who votes will be eligible to win an HP calculator. See the details on the back of the ballot.

EDN was inundated with candidates in our annual Innovation crusade. “Entries were way up this year and that made the judging especially difficult,” says Executive Editor Steve Leibson. “In fact, we had to use a piece of software called Best Choice 3 from Sterling Castle Software to do the judging. It allowed us to judge entries two at a time instead of 30 all at once. All of the judges were pleased with the results.” After making the final determinations, the judges (EDN’s home-office technical editors) wrote up the descriptions you’ll see in our special Innovation section.

We’ve done our work—now it’s up to you. Tell your peers what you think of their efforts by marking your ballots.

Now to the issue you’re holding in your hands—our annual Military Technology Special Issue. The Special Report on ruggedized computers was assigned to Technical Editor J D Mosley, who investigated what’s been happening in that area since the purse strings have been tightened on military spending. She says that although government spending is down overall for military purchases, electronics is not an area that’s feeling the pinch. “The government is trying to work smarter and more efficiently, and that means more electronics and less human intervention,” says Mosley.

More and more, contractors are evaluating off-the-shelf ruggedized computers instead of demanding top-of-the-line customized units. But just how much ruggedization does a manufacturer need to build into its computer to grab a good share of the available purchasing dollars? Mosley says everyone is still feeling their way along, but she believes that the military is providing a good opportunity for the off-the-shelf computer industry to pick up some much-needed business.

Military electronics in general needs a high level of protection against transients to satisfy use in harsh environments. Customarily, protection has been afforded on the system level. That’s just not enough, says Senior Technical Editor Tom Ormond. He sees the need for board-level protection devices, especially when you take into consideration that many high-speed components use submicron fabrication technologies. These components are inherently more prone to damage caused by surges.

Continuing with our military theme is an article by Technical Editor Brian Kerridge on in-circuit programming. Traditionally boosted by the aerospace and military sectors, in-circuit programming is beginning to break through to the commercial side because of the problems in handling small-package devices in manufacture. Kerridge covers the issues and the instruments.

Not all of the articles in this issue are defense-related. For example, read Senior Technical Editor Gary Legg’s report on portable data carriers. Not only does he touch all the bases, but he throws in a few unusual applications—just for the fun of it.

Joan Morrow Lynch
Managing Editor
Our design-for-manufacture process benefits multilayer rigid-flex circuits that require the electrical integrity and high reliability critical for applications like infrared imaging and target acquisition systems.

Systems using fast clock rates—as in telecommunications—need the controlled signal impedance of our mother-daughterboard interconnect.

This fine line flex circuit provides 100 connections per linear inch, ideal for high density, low impedance needs of notebook computers and medical monitors.

Our Gold Dot technology offers very fine line densities with controlled impedance needed for using flex circuits in semiconductor wafer test probes.

Power flex conductors provide low profile and highly efficient interconnects for a wide range of “10 amps plus” continuous current applications.

Hughes Gold Dot flex interconnection systems feature low profile clamping devices providing a high degree of signal integrity for ultrasound equipment and high speed memory devices.

AS YOU CAN SEE, WE’RE

No other flex circuit company can do as much for you as Hughes Interconnect Systems. For a

Send Me Free Literature RSC #72
Hughes' work on the GM electric car has shown that single-sided flex circuitry serves reliably at a lower installed cost and performs well in severe environments such as those found in many automotive sensors.

For surface mounting chips on flex, and other high density applications when materials other than copper are required, our single-sided flex circuits use polyimide insulation on a gold finish.

Gold Dot raised feature contacts use gold finish together with polyimide insulation to provide a clean breakaway technique for this low profile and low installed cost umbilical disconnect system.

Hughes' double-sided flex solutions are designed for imaging systems and other applications where special line routing is key.

The Gold Dot interconnects on high volume jumper circuits yield a superior, very low profile connection for high density controlled impedance environments such as computer peripherals and medical instrumentation.

VERY FLEXIBLE.

free brochure please call 1-800-821-2998.

Call Me I'm Interested RSC#73
Think of it as peer pressure at its finest. All these companies want you to take some time off: Time off your design cycle, and your time to market. They're the Fusion29K™ Partners, and their support helps make the 29K™ Family of embedded RISC processors so fast and easy to use.

Fusion29K Partners include over 100 reputable companies with more than 200 different support products. Together, they provide everything you need to speed up the design process, every step of the way. From evaluation, to system and hardware design, software development, hardware and software integration, system debug—all the way to production.

The Fusion29K Partners have a whole arsenal of time and labor saving devices. You'll find emulators, simu-
ulators, CASE and CAE tools, C compilers, machine and source level debuggers, logic analyzers, and manufacturing support of all kinds. All of the highest quality and performance standards.

And it won't take a lot of time to get acquainted with these development tools, since they include most of the hardware and software products you already know.

For more information on the 29K Family of embedded RISC processors and Fusion29K support, call AMD today: 1-800-292-9263 Ext. 3.

With this much support, you may be able to take some time off for yourself.

Advanced Micro Devices
901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088, © 1992 Advanced Micro Devices, Inc.
29K is a trademark and Fusion29K is a servicemark of Advanced Micro Devices. All other brand or product names are trademarks or registered trademarks of their respective holders.
At Samsung, we're not content to have brought the world its first 16-meg DRAM.

We're extending the gains we've made in this important segment of technology, by introducing a complete family of DRAMS at the highest speeds in use—60 nanoseconds.

These are speeds that will let designers of many 386 systems eliminate SRAM cache altogether. And for many high-end graphics OEMS, it will be possible to eliminate VRAMS.

Of course, one result of those things will be that you'll be able to lower the axe, so to speak, on unwanted costs.
But the advantages don’t end there. Reduced parts count will mean greater reliability, lower power consumption, and reduced assembly costs.

We offer the fast DRAM in 1Mb, 4Mb, and even 16Mb densities. Which not only puts us on the cutting edge. But will do the same for you.

For more information, please call 1-800-446-2760 or 1-408-954-7229 today. Or write to DRAM Marketing, Samsung Semiconductor Inc., 3655 No. First St., San Jose, CA 95135.

A Generation Ahead.
Prepare yourself for HP’s brightest LED yet.

HP’s new AllnGaP lamps put all your applications in a whole new light.

Presenting Hewlett-Packard’s most brilliant lighting innovation to date! These AllnGaP lamps are a full 5 to 10 times more luminous than any other GaP LED available—bright enough to be easily visible during any kind of daylight. Yet they don’t require a single mA of extra power. In fact, AllnGaP lamps deliver their high-efficiency, high-quality output over a range of drive currents. Making them ideal for all applications—from battery powered to automotive lighting and exterior message boards.

With a device lifetime of more than 100,000 hours, these new LEDs offer reliability that’s equally dazzling. And you’ll appreciate the flexibility of having these lamps in your choice of amber or reddish-orange. Other LEDs pale by comparison.

AllnGaP lamps are the world’s best and the brightest LEDs available anywhere—just what you’d expect from HP, long established as a pace-setter in innovative LED technology, reliability, and premier worldwide service.

For a free sample of our AllnGaP lamps, just call 1 (800) 752-0900, ext. 3340 in the U.S.* And get the details on the HP LEDs that far outshine the rest.

There is a better way.

*In Canada, call 1 8000 387-3867, ext. 3340.
Finite element program for electronic applications

MSC/EMAS version 2 from MacNeal-Schwender Corp is a set of tools for dealing with problems in EMI and crosstalk, antennas, electrical apparatus, and RF and microwave equipment. The software applies the finite-element analysis method to problems in each application area.

For EMI/crosstalk, the software determines electromagnetic interference, coupling, and shielding effects at frequencies from dc to RF. The electrical-apparatus section of the tool computes electrical and electromechanical parameters for transformers, actuators, motors, and nondestructive evaluation tools, and electric-field devices such as switch gear and insulators. The antenna section of the software calculates S parameters, far-field radiation patterns, current densities, and other parameters of interest to antenna designers. The RF/microwave part of the tool gives a complete picture of field behavior. The software runs on 11 different supercomputers, mainframes, and workstations, including models from Cray, HP, IBM, Sun, and DEC. You lease this software at a rate that reflects the hardware you are using. For example, base products for workstations described above start at $300 per month. The MacNeal-Schwender Corp, Los Angeles, CA, (213) 258-9111.

Top-down meets bottom-up in ASIC and IC design

At this year’s Design Automation Conference, Silvar-Lisco announced a 3-year, OEM agreement with High Level Design (HLD) Systems to integrate Silvar-Lisco’s place-and-route software with Cadence Design Systems’ tools. The resulting product, a floorplanner from HLD Systems called Design Planner II, lets you use Silvar-Lisco’s place-and-route products, SC (structured custom), and Gards (gate array) from Cadence Design Framework I and II. The layout tools provide 3-level metal placement and routing for mixed-macro and standard-cell designs without the difficulty of using an encapsulated tool or incurring the costs of performing software integration. Available now, the floorplanner costs $25,000 for the SC family and $35,000 for the Gards family. Both families run on the HP700 and Sun SPARCstation. Cadence Design Systems, San Jose, CA, (408) 943-1234. HLD Systems, Santa Clara, CA, (408) 982-2550. Silvar-Lisco, Sunnyvale, CA, (408) 991-6000.

Simulator models large, critical battery arrays

Testing high-capacity dc-power management systems that use large battery arrays is not an easy task. You can, however, substitute batteries with Loral Command and Control Systems’ C03050 battery simulator. The system simulates battery power and backup systems such as those used in space vehicles, satellite battery systems, hospitals, and large telephone switching systems.

The simulator eliminates the need for large chemical batteries during test. Testing is easier because batteries don’t have to be recharged and tests don’t have to be rerun due to failed batteries. The simulator is computer controlled with an optional IEEE-488 link. You can load battery performance/life curves to define simulation for the target batteries. Users can set simulation speed (for rapid charge and discharge cycling), state of charge, and battery voltages. You can also set and simulate battery temperature and pressure.

The simulator has a capacity of up to 200 Ahr, 97A continuous discharge, 15-kW maximum discharge power, 148V dc discharge voltage, and 155V dc charging voltage. The device requires 208V ac, 3-phase at 70A (3-wire and ground). The simulator is available now and costs $199,000. Loral Command and Control Systems, Colorado Springs, CO, (719) 594-1944, contact Robert Golightly.

Video conference will explore virtual reality

On September 30, the IEEE will broadcast a video conference to explore the use of virtual reality and other computer aids as educational tools. “Emerging Technologies: Will Your Company Be Ready?” deals with three main topics: computer aids for product design, computer aids for manufacturing control, and virtual reality for planning, training, and education in the workplace. Dr Leo Young, 1980 president of the IEEE, now with the Office of the Deputy Director for Research and Engineering in the Department of Defense, will lead the video conference. The conference will be broadcast from noon to 3:00 PM EDT. For information on registration and viewing sites, contact Judy Brady, IEEE Marketing Dept, Piscataway, NJ, (908) 562-3991, FAX (908) 981-8062.

Functions enhance DSP library

Although developing DSP applications often involves writing many lines
Software combines neural networks and fuzzy logic

Traditionally, neural networks and fuzzy logic have been treated as two distinctly different technologies. Now National Semiconductor is combining the two technologies for embedded control applications. The company is developing software that uses two steps: using neural networks to define rules and using fuzzy logic to run the rules in real time.

Using the software, neural networks generalize the rules from a set of learned prototypes. The fuzzy-logic system then uses the resultant rules, variables, and variable membership functions to solve a control problem. The fuzzy-logic application takes control inputs and uses the multiple rules to derive a series of control outputs. The fuzzy-logic application runs as an Assembly Language program in a microcontroller. Neural networks are made up of sets of multilevel nodes, each linked to inputs or the previous-level nodes by variably weighted interconnects. The network can learn and store multiple rules, which are produced by an input set of values. The company is using neural networks to learn "correct" rules for fuzzy-logic applications.

The company is developing a neural-network-based, software-development package that generates fuzzy-logic applications. The development software will run on PCs, and the fuzzy-logic applications generated will run on the company's microcontrollers, such as the 4-bit COP4, 8-bit COP8, and the 16-bit HPC/HPC+. The first products are expected in 1993. National Semiconductor, Santa Clara, CA, (408) 721-5000.

of assembly-language or C code, you can also use ready-to-run libraries of functions. Star Semiconductor's cell library now includes 140 DSP functions that you can combine with other functions or "cells" to produce stand-alone DSP software. New functions include filters, signal detectors, I/O operations, math operations, and others. For example, new signal-conditioning blocks provide both A-law and µ-law compression and expansion blocks. You'll use the functions with the company's Sproclab development system to produce operating software for the Sproclab-1400 DSP chip. However, you can also use the development system to code and test complex DSP algorithms on the Sproclab before moving to other families of DSP chips for your final product. Instead of having you write code and link modules, the Sproclab lets you connect the block diagrams of the various DSP functions, after which it produces code and loads it into a Sproclab-1400 chip for testing. The Sproclab development system costs $8950. Star Semiconductor Corp, Warren, NJ, (908) 647-9400, FAX (908) 647-4755.

EE BBS goes on line

Gerald S Harrison's EE Public Domain Library is now available to qualified engineers, for a $45 yearly download fee, from his electronic bulletin board (BBS) at (516) 681-1612. Harrison has been collecting electronic-engineering public-domain programs for 10 years from a variety of sources. The collection fills 32 IBM PC disks. His BBS has free facilities other than the library. Harrison has been distributing the disks for a $10 media fee from his residence at 36 Irene Lane E, Plainview, NY 11803.

Scholarship promotes the future of electronics

Winners of the 1992 IEEE, Region 6 scholarship will be honored at presentation during the Wescon Electronics Show and Convention in Anaheim, CA, November 17 to 19. The winners will be chosen from high-school students from the class of 1993 who attend school in Alaska, Arizona, California, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, and Washington state, and who plan to major in electronics or associated fields at 4-year colleges (in any state). The IEEE, Region 6, will award two scholarships, one for $5000 and one for $3000, for the best essays describing the importance of electronics technology and the future of electronics in the United States. For more information about the scholarship and awards ceremony, contact Natalie Perlins, ECM Marketing Services, Los Angeles, CA, (213) 772-2965.

Port real-time operating system to custom hardware

Developers of real-time embedded systems can now use the Vxworks real-time operating system from Wind River Systems on custom hardware provided the target system uses one of the compatible µP families. The Board Support Package Porting Kit lets you use any hardware that incorporates Motorola 680x0 and 683xx, SPARC, Mips R3000, Intel 80960, Gmicro 100, 200, 300, or the Fujitsu SPARClite family of µPs. The Vxworks base port kit is $985 and a Vxworks development-system license fee is $22,500. Target licenses depend on volume and start at $600 for a single license. Wind River Systems, Alameda, CA, (415) 748-4100.
TO BREAK SPEED RECORDS, TURN TO THE SRAM LEADER.

To break performance records, you need extraordinarily fast SRAM solutions. According to In-Stat, Inc., no U.S. company sells more SRAM parts worldwide than Cypress. Period.

If you need high-performance SRAMs, this broad range of fast memories is at your service. CMOS or BiCMOS, TTL or ECL, from 64-bit to multi-megabit, multichip modules, from standard SRAM pinouts to specialty dual-ports, FIFOs, or Cache SRAMs, we've got your high-speed SRAM solution. Our Data Book will show you. It's a hit. And it's free.

FREE 1992 DATA BOOK HOTLINE: 1-800-852-1810*
Ask for dept C45.

*In Europe, fax your request to the above dept. at (415) 961-4201 or call (32) 2-652-0270. In Asia, fax to the above dept. at (415) 961-4201, © 1992 Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134. Phone 1 (408) 943-2600. Telex: 821032 CYPRESS SNJ UD, TWX: 910-997-0723.

the world's largest selection
2KHz to 10GHz from $2.95

With over 300 standard models, from 2-way to 48-way, 0°, 90° and 180°, 50- and 75-ohms, covering 2KHz to 10GHz, Mini-Circuits offers the world’s largest selection of off-the-shelf power splitter/combiners. And, with rapid turnaround time, we’ll also supply “special” needs, such as wider bandwidth, higher isolation, lower insertion loss and phase matched ports.

Available for use in military and commercial requirements, models include plug-in, flat-pack, surface-mount, connectorized standard and custom designs. New ultra-miniature surface mount units provide excellent solutions in cellular communications, GPS receivers, Satcom receivers, wireless communications, and cable systems.

All units come with a one-year guarantee and unprecedented “skinny” sigma unit-to-unit and production run-to-production run repeatability. All catalog models guaranteed to ship in one week. Mini-Circuits...dedicated to exceed our customers’ expectations.
For detailed specs on all Mini-Circuits products refer to
- THOMAS REGISTER Vol. 23 • MICROWAVES PRODUCT DIRECTORY
- EEM • MINI-CIRCuits 735-pg HANDBOOK.

CIRCLE NO. 28
Memories of Tomorrow. Available Today.

For fast answers, call us at:
USA Tel:1-800-632-3531 Fax:1-800-729-9288. Germany Tel:0221-650302 Fax:0211-6503490. The Netherlands Tel:040-445-845 Fax:040-444-580. Sweden Tel:08-753-6020 Fax:08-755-3506. France Tel:1-3067-5800 Fax:1-3946-3638. Spain Tel:1-504-2787 Fax:1-504-2860. Italy Tel:02-6709108 Fax:02-66881323. UK Tel:0908-691133 Fax:0908-670200. Ireland Tel:01-6794200 Fax:01-6794081. Hong Kong Tel:755-9008 Fax:755-2404. Taiwan Tel:02-719-2377 Fax:02-719-5551. Korea Tel:02-551-0450 Fax:02-551-0451. Singapore Tel:253-8311 Fax:253-8383. Australia Tel:03-8878012 Fax:03-8878014. Japan Tel:03-3454-1111 Fax:03-3798-6059.
NEC offers the industry’s broadest line of thin-package memories.

Super-high-density surface mounting is an innovative design strategy that allows you to reduce system size while boosting performance. The new package technology is especially helpful for compact products including notebook PCs, workstations, and IC cards. To help you implement small, lightweight designs, NEC offers the industry’s broadest variety of TSOP memories.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1M</td>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>DRAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1M</td>
<td>1M x 1</td>
<td>60/70/80 ns</td>
<td></td>
</tr>
<tr>
<td>256K x 4</td>
<td>60/70/80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4M</td>
<td>4M x 1</td>
<td>60/70/80</td>
<td></td>
</tr>
<tr>
<td>1M x 4</td>
<td>60/70/80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>512K x 8</td>
<td>70/80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>512K x 9</td>
<td>70/80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256K x 16</td>
<td>70/80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256K x 18</td>
<td>70/80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16M</td>
<td>16M x 1</td>
<td>60/70/80</td>
<td></td>
</tr>
<tr>
<td>4M x 4</td>
<td>60/70/80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGRAM</td>
<td>2M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256K x 8</td>
<td>70/80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRAM</td>
<td>256K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32K x 8</td>
<td>55/70/85/100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1M</td>
<td>128K x 8</td>
<td>70/85/100</td>
<td></td>
</tr>
<tr>
<td>4M</td>
<td>512K x 8</td>
<td>55/70/85/100</td>
<td></td>
</tr>
<tr>
<td>Fast SRAM</td>
<td>1M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64K x 16</td>
<td>15/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64K x 18</td>
<td>15/20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As the leader in memory technology, NEC is committed to meeting your needs for advanced TSOP devices. For more information, contact NEC today.

From the leader in memory technology
You've chosen the '040 because you need maximum performance in your VME system. But look carefully, because other Single Board Computers may only give you only half of what you expected from the '040.

Compare Synergy's SV430 performance to any other SBC. Compare bus speed, MIPs, support, flexibility, documentation, reliability, I/O intelligence or any spec you can think of. We think you'll find the same thing we did—the SV430 outperforms every other SBC on the market by as much as 150%.

Surprisingly, this kind of quality won't cost you any extra, because Synergy products lead in another important area—value. At Synergy, you don't have to pay a premium price for premium performance.

Let us show you just how far ahead your system can be with a Synergy processor board. Call us today, and get the whole '040 story.

Compare our specs. Synergy is superior across the board!

VME Transfers
VME64 doubles bus performance to 66 MB/s—and the SV430 is the only '040 board that has it. But we don't need VME64 to win this comparison.

Even normal 32-bit transfers race at 33 MB/s. That's 200% faster than Force or Motorola.

VME64 doubles bus performance to 66 MB/s—and the SV430 is the only '040 board that has it. But we don't need VME64 to win this comparison.

Even normal 32-bit transfers race at 33 MB/s. That's 200% faster than Force or Motorola.

'020/'030 Compatibility
Software compatibility between Synergy SBCs means users have simple upgrades to the SV430 from our '020 and '030 SBCs. Force offers compatibility only from the '030 level, and Motorola offers "upward migration"—a polite phrase that means rewriting your code.

Synergy Microsystems, Inc., 179 Calle Magdalena, Encinitas, CA 92024 (619) 753-2191 FAX: 619-753-0903
Reader calls attention to patent
In Richard Quinnell's article about 2-Mbit VRAMs (video RAMs) (EDN, March 16, 1992, pg 37), I was particularly interested in the discussion of the use of the "stop-column" feature that allows a tiled organization of memory pages to increase graphics drawing speed.

Metheus Corporation holds US patent 4,546,451 and foreign patents relating to the organization of pages of page-mode memory devices into tiles to allow more effective use of page-mode operation in graphics display memories.

It is unfortunate that this information was not available to Quinnell when he wrote the article. It might be appropriate to call our patent to the attention of your readers so that they can determine if their particular application of the new VRAM technology will require licensing of our technology.

Bob Bruce
Vice President, Technology
Metheus Corp
Beaverton, OR

(Editor Note: The example I gave in the article is related to the Metheus Corp patent.)

How to prevent viruses from entering your software
Charles Small, (in his article, "Shareware and freeware are a phone call away" (EDN, March 2, 1992, pg 49), should be aware that many companies such as mine absolutely forbid (on pain of instant dismissal) importation of any "unauthorized" software for fear of viruses. We're not just lazy or selfish.

Dennis Block, Manager
AT&T
Bedminster, NJ

(Editor Note: If Dennis Block is afraid of viruses, he can get a clean copy of a shareware program from the original author or a reputable shareware dealer. Even if he cannot import software past his company's defenses, he can still share software he has developed with others.)

Editorial reinforces back-to-basics viewpoint
Three cheers for the editorial, "Don't blame the kids" (EDN, April 23, 1992, pg 41). Jon Titus is right on target. I can only add that we must also return to the basics, and I mean the very basics—reading, writing, and 'rithmetic—not to mention values; that is, right and wrong. More money can't fix it.

Teachers belong to one of the few professions not being judged on the product they produce. American students' performance continues to decline—and with it the future of this country.

Jim Hargraves
Paramax Systems Corp
Paoli, PA

Address correction
Following is the correct address and phone number for Northern Telecom Inc (EDN, March 2, 1992, pg 62):
Northern Telecom Inc
105 Laurentian Blvd
St Laurent, Quebec H4N 2M3,
Canada
(514) 744-8755
Contact: Demetri Elias.

Omission
In the Special Report on 8- and 16-bit microcontrollers (EDN, June 18, 1992, pg 96), Toshiba America Electronic Components Inc (TAEC) was mentioned in the text and tables, but left out of the Manufacturers' List. The address, phone number, and fax number are:
9775 Toledo Way
Irvine, CA 92718
Phone (714) 455-2000
FAX (714) 859-3963

LON™ or LINC™?
Now that engineers have investigated LON technology, many are coming back to the original LINC (the CY233 Local Intelligent Network Controller), or are discovering the CY233 chip for the first time.

With CY233s, one IBM-PC COM port can address up to 2048 TTL I/O lines. Try this with LON!

- The CY233 instruction set and features are fully documented. Try getting this info for LON.
- The CY233 does not require a $17,995.00 development system! You can start for $17.95 plus any RS232 port computer.
- No CY233 royalties or licenses required. Be sure to check out LON terms and conditions.
- Learn 7 LON levels or 1 easy LINC level.
- Easy CY233 interface to 8051 and similar microcontrollers.
- The CY233 is in stock now.

Discounted by $17,995.00 to start using LON? If you need a network, but LON is overkill, try these introductory offers! Get started with the CY233 prototyping kit with an onboard CY233 and wirewrap area, ready to assemble, for only $179.95, or try our introductory chip offer of 2 CY233s for only $17.95 each.

Call 415-726-3000 today or Fax 415-726-3003 for info. Say LON sent you, and get these great introductory prices! Credit Cards OK!

The CMOS CY233 operates at speeds up to 57,600 baud and is available from stock in a 40-pin DIP. (44-pin PLCC or Quad Flat Pak available in 1000s.)

Cybernetic Micro Systems
PO Box 3000
San Gregorio CA 94074
Tel: 415-726-3000
Fax: 415-726-3003

LON is a trademark of Echelon Corp.
CY233-LINC is a trademark of Cybernetic Micro Sys.
Limit one of each introductory offer per customer.

CIRCLE NO. 31
AMD Introduces The World's First
386 Microprocessor With 3-Volt Technology.

Two standard dry-cell batteries. There's really nothing special about them. Aside from the fact that they can run a powerful, portable 386 computer for a full eight hours. Provided, of course, that the portable is built around a low-voltage Am386™ microprocessor.

Thanks to the low-voltage Am386 microprocessors, laptop, palmtop and notebook computer designs will become smaller, lighter, and more powerful than ever before.

With battery life of up to eight hours or more. That's a full day's worth of 386 performance—the per-
I

formance you need to run sophisticated applications like Windows™ 3.0.

And rest assured, the low-voltage Am386 microprocessors are proven compatible and comply fully with JEDEC standards for low-power, 3-volt computing. We can even supply you with the 3-volt EPROMs your systems will need. Other 3-volt system logic is also readily available.

For more information on the low-voltage Am386 microprocessors call AMD today at 1-800-222-9323. You’ll never look at dry-cell batteries the same way again.

Advanced Micro Devices
"We’re Not Your Competition.™"
INTRODUCING MICRO-CAP IV.
MORE SPICE. MORE SPEED. MORE CIRCUIT.

PC-based circuit analysis just became faster. More powerful. And a lot easier. Because MICRO-CAP IV is here. And it continues a 12-year tradition of setting CAE price/performance standards.

Put our 386/486 MICRO-CAP IV to work, and you'll quickly streamline circuit creation, simulation and edit-simulate cycles — on circuits as large as 10,000 nodes. In fact, even our 286 version delivers a quantum leap upward in speed. Because, for one thing, MICRO-CAP IV ends SPICE-file-related slowdowns; it reads, writes and analyzes SPICE text files and MC4 schematic files. It also features fully integrated schematic and text editors. Plus an interactive graphical interface — windows, pull-down menus, mouse support, on-line HELP and documentation — that boosts speed even higher.

Now sample MICRO-CAP IV power. It comes, for example, from SPICE 2G.6 models plus extensions. Comprehensive analog behavioral modeling capabilities. A massive model library. Instant feedback plotting from real-time waveform displays. Direct schematic waveform probing. Support for both Super and Extended VGA.

And the best is still less. At $2495, MICRO-CAP outperforms comparable PC-based analog simulators — even those $5000+ packages — with power to spare. Further, it's available for Macintosh as well as for IBM PCs. Write or call for a brochure and demo disk. And experience firsthand added SPICE and higher speed — on larger circuits.

1021 S. Wolfe Road
Sunnyvale, CA 94086
(408) 738-4387 FAX (408) 738-4702
HOW MANY AMPS DOES IT TAKE TO POWER YOUR PRODUCT DEVELOPMENT?
FROM IDEA TO MARKET.
The resources you need for that journey, especially with today's tight development schedules, can tax even the largest companies. AMP can help make your trip to market easier, and faster.

Our capabilities today go far beyond connectors. They include interconnect design, analysis, simulation and validation, systems development, and packaging design. And unequalled production experience in everything from 'metal-and-plastic' to heavy machinery, precision optics to SMT boards to complete plug-and-play systems.

If you're concerned with reducing time to market, dealing with higher clock rates, coping with shrinking envelopes, and generally keeping pace with fast-changing technologies and design methodologies, look into what AMP has to offer, today.

AMP DESIGN SERVICES: EDA TO THE MAX.
One of the toughest jobs you face is analyzing and proving your initial design, and performing board placement and routing. We'll take you from
schematic or logic diagram all the way to a valid software first article.

Our comprehensive EDA toolset includes current, state-of-the-art software programs, and our own interconnect and device models—developed specifically for critical aspects of current design such as net simulation, timing verification, placement optimization uses thermal analysis, along with electrical, power, and manufacturing considerations.

(Courtesy of BETAnsoft, Dynamic Soft Analysis Inc., Pittsburgh, PA)

Characterized device and connector models are used in waveform analysis, timing verification, and board design.

analog transient noise effects, system impedance, and transmission line layout rules.

Talk to AMP early in your design cycle, and we’ll put you on board faster—with flexible service offerings that range from help with specific problems to complete project management. Tap us for the years of experience we’ve put into engineering under critical electrical, mechanical, power, thermal,
and manufacturing constraints. And shave a lot of time-to-market and development cost off your project.

AMP FABRICATION SERVICES: MAKING IT REAL.

Major elements of your job that add up to major time include printed circuit boards, backplanes, card cage design and fabrication, and systems packaging. Our help here can put you ahead of the crowd and let you spend that time on your real business.

Packaging is a crucial element of systems performance, and our modelling, simulation, power and thermal analyses, and noise budget balancing are crucial for packaging success. When you're ready, our manufacturing experience—from clean room to global shop floor—can pay off at any level you choose: board, subsystem, or finished product.

Look to AMP for the help you need to meet tight production schedules and narrow market windows, and the resources you want to move into next-generation technologies. Your knowledge base in fast boards, high-speed cable assemblies, surface mount technology, and related subjects can simplify the transition to faster logic and smaller form factors.

THE BIG PICTURE: FROM CONCEPT TO PRODUCTION.

Your program, and your problems, are unique. Your program is yours alone, but your problems don't have to be. We can help in any of the areas we've listed here.

Or let us put it all together for you, and move you from start to finish. Our specialists can bring our services to you anywhere in the world, and coordinate the AMP resources you need to bring your idea into production. Cost-effectively. And on time.

THIS IS AMP TODAY.
Vote for Innovation

The time has come to vote in EDN's Third Annual Innovation and Innovator competition. You'll find a complete list of the finalists and a ballot in the special Innovation Supplement that accompanies this regular issue of EDN. The finalists our editors have chosen represent the most innovative products and people among the applications submitted to us for judging. To us, a product is innovative when:

- It offers significantly higher levels of performance than were previously possible.
- It solves a continuing problem much more effectively than its predecessors.
- It exhibits a marked degree of "cleverness" that differentiates it from earlier products.
- It embodies new technology that advances the state of the art or uses older technology in a unique and innovative manner.

Such products might not have an immediate, widespread, or obvious use. Some innovative products take time to catch on and fire the imagination of designers.

Our editors also look for innovative people and design teams. They seek people who did innovative work during the past year and people who work in innovative ways. Perhaps a group of workers broke through management barriers to increase their efficiency and creativity. Or, an engineer could have made a significant breakthrough in designing a product or part of a product.

Now that you know what we look for, take a few minutes to read our Innovation Supplement and vote for your choices. We'll announce the winners at Wescon '92 in Anaheim, CA. You'll also hear about the winners in EDN's magazine and news editions.

As you review the finalists, you may be disappointed that none of your company's products or people are among them. Even though a great deal of work goes into each application, we can select only a few finalists in each category. On the other hand, your company may have never entered this year's competition. If you want to be sure to receive a nomination packet for the 1993 Innovation and Innovator awards, drop me a note and I'll make sure we send you one. If you know someone else in your company who should get the information, let me know and I'll make sure we send it to them, too. Our awards program is international, and we seek and receive entries from companies worldwide.

For information on the 1993 awards program, circle number 801 on the Information Retrieval Service form in this issue, reach me via fax, or send your request to EDN Innovation Awards, EDN Magazine, 275 Washington St, Newton, MA 02158 USA.

Jesse H. Neal
Editorial Achievement Awards
1990 Certificate, Best Editorial
1990 Certificate, Best Series
1987, 1981 (2), 1978 (2),
1977, 1976, 1975

American Society of
Business Press Editors Award

Send me your comments via FAX at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241 300/1200/2400, 8,N,1; on 9600-bps modems, try (617) 558-4580, 4582, or 4398.
When Techron began making power amplifiers in 1951, they had no idea how its technology would come to impact human life. What began as a power source for the music industry grew into the wellspring for some of mankind’s greatest achievements and most exciting new developments. A pathway to which Techron is now fully dedicated.

Techron’s reputation for creating a reliable high-power source led it first to industrial and medical applications. A leading blue-chip company required the power, speed and fidelity to run Magnetic Resonance Imaging systems that only a Techron amp could provide. Techron responded with a custom product that could supply the gradient sub-system with precise, controlled power day after day, never wavering.

Since then, the Techron spark of ingenuity has helped pave numerous inroads to a better way of life. After MRI applications came many exciting new fields of research. Most recently, research to make other medical procedures safer and less painful. The clean, steady reliability of Techron power is there.

It started with a product: Strong, clean, reliable power amplifiers. But it grew to fuel a generation of strong new ideas that not only are improving our lives today, but building a better future. We’re proud to be a part of it. And we’re committed to staying here. Right behind your greatest ideas.
Design a winner with our new quad 8-bit serial DAC.

With National's DAC0854, you'll tackle your next design with the advantages of higher speed, higher integration and on-chip diagnostic capabilities. That's the lineup that puts excess wiring, wasted board space, and rising test costs on the defensive. With the DAC0854, more efficient designs are part of every game plan.

Play to win.
To get that competitive edge, call us for a free sample at 1-800-NAT-SEMI, ext. DAC. Or, fax: 1-800-888-5113.
"THIS ONE'S MY FAVORITE. WE LAID IT OUT IN THREE DIFFERENT PROCESSES AND STILL BROUGHT IT IN ON TIME AND UNDER BUDGET THANKS TO NEW EPOCH."

INTRODUCING EPOCH.

We named our new set of IC design tools Epoch because it truly is a new way of looking at IC design.

Whether it's Mentor, Cadence, ViewLogic, VHDL, Verilog or EDIF, with Epoch, you can continue to work in your familiar CAE environment. At the same time, you'll have quick access to Epoch's powerful set of tools. Tools that can help you improve the quality of your physical designs and deliver those complex IC designs on time and within budget.

Epoch is a new version of a tool that engineers throughout the world have used for years to design ICs for all kinds of applications, from engine controllers to consumer electronics and from medical imaging to DSP.

Epoch was developed, tested and proven by a team of engineers with widespread experience in IC design, IC software and a wide variety of foundry processes. This same team is available to provide you with full technical support whenever you need it.

If you're ready to discover a new epoch in IC design productivity and commitment to support, call us. Cascade Design Automation: 1-800-258-8574.

FEATURES AND BENEFITS

- Open architecture for seamless interfacing with a wide range of CAE platforms.
- Process-independent design methodology and a robust, parameterized library for true process migration and design reusability. Instead of simply re-scaling the entire design, Epoch automatically manipulates design rules independently to take full advantage of target processes.
- Performance-driven layout to help create chips with the optimum balance of speed, density and power consumption.
- Automated place and route with optional interactive optimization that enables the designer to fine-tune the design at critical junctures.
EDN
ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS WORLDWIDE

INNOVATION

VOTE FOR INNOVATION WINNERS
VOTE FOR INNOVATION, WIN A CALCULATOR

This year, you can vote for EDN’s Innovator and Innovations of the Year awards and enter a chance to win a Hewlett-Packard 48S scientific calculator at the same time. You can see a photo of the calculator on the ballot.

On the following pages, you’ll find brief descriptions of the finalists in various award-program categories. EDN’s editors selected these finalists from nearly 100 nominations in the 1992 Innovation and Innovator of the Year awards competition.

Carefully consider these finalists and mark your votes on the postage-paid ballot that appears at the end of this special-awards supplement. This year, EDN has one new category—µPs—in addition to the categories of previous years: ICs and semiconductors; test and measurement; CAE/CAD; computers and peripherals; components, hardware, and interconnect; software; power sources; and the Innovator of the Year. Please mark one vote in each category and mail the ballot before September 10.

After an independent accounting firm tallies the votes, EDN will announce the winners at a black-tie awards banquet to be held this November at Wescon/92 in Anaheim, CA. We’ll also print a special section in our November 26 issue naming the winners.

Five ballots will also be drawn at random; the people who sent in these ballots will win the HP 48S scientific calculator. These innovative calculators pack 2100 functions, a graphics display with plotting capabilities, a serial port for communications with PCs, and an infrared printer link. They go beyond mere number crunching by performing symbolic math and dimensional analysis. So go ahead, vote for innovation!
The LT1241 family of pulse width modulators from Linear Technology enable 500kHz operation of off-line switching regulators—with only 50ns of current sense propagation delay. The LT1241/2/3/4/5 are pin-compatible with 3842 type parts and contain all the circuitry necessary for off-line switchers: temperature compensated reference, high gain error amplifier, fast current sensing comparator with blanking, and high current totem pole output stage.

Each of these parts has improved speed and lower quiescent current (8mA typical) than 3842 type devices. Start up current has been reduced to 170µA typical. Cross conduction current spikes in the totem pole output stage have been eliminated—making 500kHz operation practical. To make the LT1241 family easier to use, we’ve added true blanking to the current sense comparator which virtually eliminates the filter and allows the current sense loop to operate with minimum delays.

The LT1241 family eliminates “Band-Aids” in power supply design. Parts are available in 8-pin SO packages or 8-pin DIP. Pricing in 1000-up quantities starts at $1.96. For details, contact Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035/408-432-1900. For literature only call 800-637-5545.

LT1241 FEATURES

- 50ns I Sense Delay
- No Shoot-Thru
- 500kHz Operation
- Wide Controllable Pulse Width at 100kHz
- Low Start Up Current
- Built-in Blanking
- Low Power
- High Speed 3823 Equivalent
- Pin Compatible 3842 Equivalent
- 8-Pin SO Pkg
- Cheap

No Band-Aids. 500kHz Switcher.
Although spectrograms (joint time-frequency analyses or JTFAs) have existed for many years, the conventional method of calculating them, using the short-time Fourier transform (STFT), suffers from a number of problems. DSP Software Manager Dr Dapang Chen (left) and DSP Engineer Shie Qian developed a new spectrogram technique using the Gabor transform. The new technique runs faster and thus allows real-time spectrogram analysis in more situations.

STFTs are slow, so you cannot use them for most real-time applications. The Gabor spectrogram computes six times faster than the STFT. Furthermore, STFT analysis applies a window to the signal, and no compromise window shape can produce good resolution in both the time and frequency domains. In contrast, the Gabor transform employs a Gaussian function that is optimal for both time and frequency.

Chen and Qian also solved the Gabor transform for discrete signals (the discrete Gabor transform or DGT), making the technique far more applicable to digitized signals commonly found in μP-based systems. The solution also covers infinite-duration signals, so the DGT is more practical than FFTs for analyzing real signals in applications such as speech and image processing, synthesized music, sonar, radar, acoustics, vibration analysis, medical imaging, and power monitoring. The company has incorporated the Gabor transform into its Labview graphical programming language.

Analog Devices' ADXL50 Design Team

The Analog Devices ADXL50 design team took a new and unproven manufacturing process called surface micromachining and combined it with mixed-signal electronics to create a low-cost, monolithic silicon acceleration sensor. The team that accomplished this feat includes design, process, and production staff members.

The company decided to bring surface micromachining from the university lab onto the production floor because the technology promised the ability to combine sculpted silicon microstructures with active circuitry. The champion who guided the project to completion was company veteran Dr Richard Payne (center if photo), director of the company's Automotive and Sensor Products Group. Payne is an IEEE fellow.

The team's lead circuit designer, Steve Sherman (left), designed several analog products for the company before attacking the acceleration sensor. He designed the AD645 FET-input, low-noise op amp; the AD526 programmable-gain op amp with a μP interface; and the AD538 simultaneous analog multiplier, divider, and exponentiator. His sensor-circuit design for the ADXL50 can resolve capacitance changes of a mere 30 aF (30 x 10^-18 F). Robert Tsang, an Analog Devices Fellow, developed the fabrication process that combines surface micromachined features and BiCMOS circuitry.

The ADXL50 sensor measures accelerations to ±50g with 8% accuracy over a temperature range of -55 to +125°C. It has a programmable output bandwidth ranging from dc to 1 kHz and operates on power-supply voltages of 5 to 24V. The device costs $5 in automotive OEM quantities.

To vote for this entrant as Innovator of the Year, mark the appropriate box on the ballot.
Designing a signal processing system can be a bear of a problem—immense, mean, and unforgiving. Engineers grappling with conventional analog or digital technologies face risk and unpredictability at every turn, with no guarantee of success. Designers invest months of development time in a brutal design process that's as lengthy as it is frustrating. Productivity and time to market are devoured in the struggle!

SPROC Technology Tames The Task

At the core of STAR Semiconductor’s unique signal processing solution is the SPROC™ chip, the first-ever programmable signal processor using the “Sketch and Realize”™ design approach. With a single SPROC chip and a SPROClab development system, signal processing becomes a tame task.

Why wrestle with circuit breadboards crawling with sensitive analog components? Or agonize over line after line of assembly code? One SPROC chip integrates the functionality of hundreds of analog and passive components to cut system costs. And SPROClab employs system-level graphical programming so you can capture designs as signal flow block diagrams. You gain all the benefits of a digital solution—*without writing software*!

Stop laboring with trial-and-error debug methods, cumbersome logic analyzers, or software simulators to debug a design! Engineers using SPROC technology download designs *directly* onto actual silicon and interactively debug systems as they execute in *real time*! Using the SPROC chip's unique built-in probe feature, you can easily modify design specifications to tune system performance during execution.

SPROC Users Slash Development Time

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>PREVIOUS TECHNOLOGY</th>
<th>PREVIOUS DEV. CYCLE</th>
<th>SPROC DEV. CYCLE</th>
<th>$ SAVINGS (1st YEAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure FSK modem</td>
<td>analog</td>
<td>6 months</td>
<td>3 weeks</td>
<td>$50,000†</td>
</tr>
<tr>
<td>Adaptive noise canceler</td>
<td>DSP</td>
<td>6 months</td>
<td>1 week</td>
<td>$57,500*</td>
</tr>
<tr>
<td>Power supply controller</td>
<td>analog</td>
<td>6 months</td>
<td>1 day</td>
<td>$60,000*</td>
</tr>
<tr>
<td>Closed-loop vibration controller</td>
<td>analog</td>
<td>3 months</td>
<td>2 weeks</td>
<td>$240,000†</td>
</tr>
</tbody>
</table>

†Total system savings including project overhead, engineering resource, and system hardware costs.
*Estimated savings in engineering resource based on cost of $10,000 per man month.

With SPROC technology, engineers focus on designing to create better products in less time.

If you can't bear to see your productivity mauled by the problems of signal processing design, call STAR Semiconductor at 908/647-9400. We'll send you a brochure and demo disk telling how to tame your next signal processing project.

STAR Semiconductor Corporation
25 Independence Boulevard, Warren, NJ 07059
Telephone: (908) 647-9400 FAX: (908) 647-4755

CIRCLE NO. 39

50MHz SPROC Now Available!
IS A 50¢ LINEAR REGULATOR BURNING UP YOUR BOARD?

PLAY IT COOL WITH OUR 1.5 AMP INTEGRATED SWITCHING REGULATOR

Do you have a board with a 3-terminal linear regulator that's generating more heat than an irate customer? Are you locked into a tight compact design that leaves no extra space for a larger heatsink? Fortunately, you can now play it cool with an innovative product from Power Trends—a 1.5 Amp Integrated Switching Regulator (ISR) that needs no heatsink.

Power Trends' 1.5 Amp ISR is pin-compatible with existing 3-terminal "78 and 79 Series" linear regulators, fits into the same space, and is just as easy to use. With 85% efficiency, our ISR provides a cool replacement alternative for a hot linear regulator. Of course it costs more, but it could save you thousands.

Specifications include: laser-trimmed output voltages from 3.3 to 15 volts, calculated MTBF of over 1,000,000 hours, 0.2% line and 0.4% load regulation, and power densities of 25 to 100 watts per cubic inch.

So if you have a heat/space/reliability problem now, or just want to make sure you don't have one in the future—check out Power Trends' super-efficient ISR. Call or write for more information, and ask about samples.
Dr Terry J Scheffer and Benjamin Clifton

While other companies are spending millions of dollars to develop fast, high-contrast LCDs using active-matrix circuitry, Principal Scientist Terry J Scheffer (right) and Senior Design Engineer Beniamin Clifton created a technique, which they call active addressing, that produces the desired results using far less costly passive LCDs. They discovered that by changing the way the LCD panel excites the liquid-crystal material, they could achieve video display speeds and contrast ratios of 40:1 using easily manufactured, inexpensive LCD panels.

The key to this development was recognizing that the apparent incompatibility between fast response and high contrast in conventional passive LCDs could be overcome through unconventional driving techniques. Conventional passive LCDs drive one pixel row at a time. Consequently, fast-response, low-viscosity liquid-crystal material can relax during the relatively long periods between voltage pulses. This relaxation results in low contrast. Active addressing increases the row-excitation rate from the usual 16 Hz to several kHz by exciting several rows simultaneously. Consequently, the low-viscosity liquid-crystal material never has time to relax, and contrast ratios stay high.

The active-addressing technique employs a mathematical algorithm to calculate appropriate row-excitation sequences and voltages. This technique can excite as many as half of the LCD’s rows simultaneously. The active-addressing control circuitry calculates the appropriate drive voltages. Active addressing increases the complexity of LCD-driver ICs, but it eliminates the complex manufacturing process required for fabricating active-matrix panels. Although not yet in production, prototype active-addressing LCDs achieve 50-msec response times with 40:1 contrast ratios.

To vote for this entrant as Innovator of the Year, mark the appropriate box on the ballot.

Jim Williams

Jim Williams’ forte is explaining and popularizing the application of linear-IC technology; the vehicles for his work are application notes, books, and contributed articles in trade journals, including EDN. A recent example is the “Jim Williams papers” on high-speed amplifier techniques. Jim is a staff scientist at Linear Technology. Last year, Linear Tech published a more comprehensive version of the high-speed amplifier series as a 132-page application note.

You might not think that explaining and popularizing a technology involves innovation, but Bob Dobkin, Linear Tech’s vice president of engineering, convincingly argues otherwise. In nominating Williams, Dobkin writes, “The innovation in this process lies in identifying problems a customer will face and then finding and sharing the solutions.” Without Jim’s advocacy to the design community—and that of a dedicated cadre of applications professionals throughout the industry—many promising technologies would languish as laboratory curiosities.

Jim championed the notion that, to be successful, a manufacturer must offer its customers the solutions it has discovered to the problems the customers will face in using the manufacturer’s products. Williams says that customers confront three classes of problems: cost constraints, technical difficulties, and design freedoms. When vendors offer advice, they must keep that context always in mind. To solve problems, Jim says, “you have to stick yourself in your customer’s shoes.”

To vote for this entrant as Innovator of the Year, mark the appropriate box on the ballot.
Jeff Robinson

Frustration forced Jeff Robinson to break the Von Neumann bottleneck for DSP µPs. For years he watched as engineers attacked signal-processing problems using imprecise analog circuits and DSP systems that were forever too slow. In October 1991, 15 months after he acquired the first round of venture capital to start his company, Robinson and his development team produced the Sproc-1000 DSP µP and the Sproc-lab Development System.

At the Sproc-1000’s core is a central memory architecture that accommodates as many as four processors on one IC. Each processor operates from the same software on the same data in round-robin fashion. The net effect is to multiply the basic processor's speed by the number of processors on the chip. Therefore, you can write a DSP program and then buy the appropriate number of processors to produce the desired throughput.

The Sproc-lab Development System allows you to create DSP programs by drawing block diagrams, a method Robinson calls “sketch and realize.” The resulting programs separate the signal-processing tasks, which they assign to the Sproc-1000 µP, from the logical operations, which they assign to a companion µP. Thus, the Sproc-1000 and the Sproc-lab Development System take significant steps toward easing design engineers' frustrations by putting easily scalable processing horsepower and simple DSP programming within their grasp.

To vote for this entrant as Innovator of the Year, mark the appropriate box on the ballot.

ispLSI 1032 PLD

The ispLSI 1032 is a programmable logic device (PLD) that features in-system programming. The reprogrammable device has 6000 gates and uses the company’s 0.8µm E²CMOS process. Because you can program these devices using TTL-compatible logic, you can reconfigure the PLDs without removing the devices from the circuit board. A 5-wire interface provides “on-the-fly” programming.

The chip contains 192 registers, 64 universal I/O cells, 8 dedicated input ports, 4 dedicated clock-input ports, and a global routing pool (GRP). The GRP interconnects all of the elements in the PLD. The basic logic unit in the device is the generic logic block (GLB). There are 32 GLBs, each with 18 inputs and 4 outputs.

The four internal sections of the GLB consist of an AND array, product-term sharing array, reconfigurable registers, and control functions. The AND array consists of 20 product terms, which can produce the logical sum of any of the GLB inputs. You can configure the outputs as combinational or registered. All outputs feed into the GRP for connection to the inputs of any GLB on the device.

The device’s 64 universal I/O cells connect directly to an I/O pin. You can program each cell to be a combinational, registered, or latched input. You can also program the cells to be outputs or bidirectional I/O ports having 3-state interfaces. All I/O signal levels are TTL-compatible. The PLD operates as fast as 80 MHz and has a propagation delay (τ_{pd}) of 15 nsec.

The chip runs on the company’s pDS development system software. The pDS software runs on a DOS-compatible 386 or 486 computer running Microsoft Windows. You can implement multiple hardware configurations on the same board and upgrade the board in the field via a modem link. An isp engineering kit lets you debug programs using a DOS-compatible computer. A chip in an 84-pin plastic leaded chip carrier costs $121.25 (100), the pDS software costs $995, and the isp engineering kit costs $395.

To vote for this entry as IC and Semiconductor Product of the Year, mark the appropriate box on the ballot.
The High Performance of Two Chips from the Lowest Cost Product!

You can't beat Harris Semiconductor's HI5812 for price/performance. It's the lowest cost, 12-bit sampling analog-to-digital converter available today. And with significantly lower power consumption than the competition, it's even more cost effective.

The HI5812 is ideal for numerous applications having input frequencies of up to 30 KHz. It's fast. The throughput rate is 60 kilosamples-per-second. Conversion time is as low as 15 microseconds with a single 5 volt supply.

With track and hold built in, it's the equivalent of two chips needed for other manufacturers' solutions. And you can rely on the HI5812 to meet your design requirements. No missing codes over the full industrial temperature range. User-selectable outputs feature full, high-speed CMOS, three-state bus driver capability. It typically draws just 1.9 mA.

Call Hamilton/Avnet at 1 (800) 442-6458 and receive the complete HI5812 data sheet with application notes.

See how low on cost and high on performance your designs can go.
CP20K FPGAs

The CP20K family of field-programmable gate arrays (FPGAs) provide the best of two worlds. The arrays' design resembles a mask-programmed gate array, which allows the use of industry-standard ASIC design tools, yet is field programmable. FPGAs have a gate-array-like structure with rows of basic gates and register transistor cells. Essentially, they offer an almost sea-of-gates granularity in an FPGA form.

The CP20420 has 4.2k gates in a 155-pin PGA (pin-grid array). A 12k-gate version, the CP21200, will be available in the fourth quarter of 1992 in a 223-pin PGA. The arrays can attain clock speeds as fast as 40 MHz for a counter and 52 MHz for a flip-flop with a fanout of 3.

The arrays use a 0.8-µm, 2-level metal CMOS process. The programmable interconnection is a metal-to-polysilicon antifuse that fits into a via between the two levels. The antifuse has an off-resistance of 1 GΩ and an on-resistance of 100 Ω. Each connection has a capacitance of 0.65 fF per antifuse. Each chip also has five power and ground planes that have four decoupling capacitors.

The arrays also feature RAM logic tiles (RLTs) to implement RAM and sequential logic. The mixture of gates and RLTs provides a dual-granularity structure. In addition, the chips have a JTAG interface for program and test. Variable output drives of 4, 8, and 12 mA are similar to gate arrays.

Taking advantage of the similarity between the FPGA and standard gate arrays, the company integrated the array libraries and tools with the workstation CAE tools from Mentor Graphics, Viewlogic, Synopsys, and Cadence. Therefore, gate-array designers can use the FPGA without changing design tools. The CP20420 costs $203.96 (1000); design kits for Mentor 8.0, Synopsys, Viewlogic, and Cadence workstations cost $3950 to $4950 per license.

ADXL50 Acceleration Sensor

The ADXL50 acceleration sensor combines a surface-micromachined capacitive sensor with on-chip signal-conditioning and self-test circuitry. The sensor can gauge collisions, judge inertial positioning, and monitor active systems. Its primary application is automotive air-bag systems.

Surface micromachining is a process for making silicon structures that can move. Multiple thin films—as well as layers of silicon and silicon oxide—are deposited and etched to produce movable parts with dimensions of 1 to 2 µm. This process lets electronic circuitry and micromachined structures reside on the same chip.

The ADXL50 measures acceleration in a single plane of sensitivity over the ±50g range to an accuracy of 5%. Unlike accelerometers that monitor the resistance changes of stressed piezoresistors to detect acceleration, the ADXL50 measures changes in capacitance and is therefore insensitive to temperature changes.

The signal-conditioning circuitry provides excitation signals for the sensor and amplifies the analog output signal. The ADXL50 comes in a 10-lead TO-100 can and costs $23 (100). The sensor is also available in other package styles, and it costs $5 in automotive OEM quantities.

To vote for this entry as IC and Semiconductor Product of the Year, mark the appropriate box on the ballot.
You'd hate for your system to forget critical data, like programs and setup information. On the other hand, it's very appealing to be able to read and write data quickly. The DS1645 Partitionable Nonvolatile SRAM gives you the best of both worlds with sixteen separate blocks of memory that can each be configured with the characteristics of either ROM or RAM. And you can change those designations at any time — RAM to ROM or vice versa.

Save Space and $8
With program and data memory stored in one chip, a single DS1645 can take the place of multiple existing memories, including ROM, EEPROM, FLASH, and SRAM. In a world where printed circuit board real estate does not come cheap, you can save precious space.

Add, Change, or Eliminate Write Protection
Through easy-to-produce software — 24 read cycles to be exact — you can write-protect any or all blocks of memory. And you can alter that write protection at any time through this software. No additional hardware is needed.

Data Stays When Power Goes
Dallas Semiconductor has been refining the technology of lithium-backed memories for eight years. Like its other nonvolatile RAMs, the DS1645 safeguards data when the power goes out of specification and retains information for over 10 years in the absence of external power.

Prevent Data Corruption
The DS1645 takes a further step towards preventing data corruption by looking beyond voltages, at irregularities in the microprocessor's operation. In sections defined as ROM, a highly structured sequence of operations — one that would never occur normally — is required to overwrite the memory. Through this mechanism, the DS1645 ensures that an out-of-control microprocessor does not destroy data.

A Fast Write
Write cycle times are the same as read cycle times: 70 nanoseconds. Further, there are no limitations on the number of write cycles (unlike EEPROM and FLASH), making the DS1645 ideal for real-time data logging. The DS1645 can do a specific byte write, so you don't have to re-write the entire page every time you need to make an update.

How Much Memory Do You Need?
The DS1645 has one megabit of memory that can be divided into 16 8K x 8 blocks. We also offer 256K and 4-megabit Partitionable SRAMs.

For more information on our complete family of nonvolatile SRAMs, give us a call.
LT1105 Switching Regulator

The LT1105 switching regulator simplifies off-line switching-power-supply design by eliminating the need for an optocoupler, reference, and error amplifier. The regulator supplies a 15V regulated dc output for driving the totem-pole output stage gate of an external FET and provides ±1% line and load regulation. Using flyback-voltage signals available from a power transformer, the LT1105 operates from universal ac line voltages. On-chip circuitry eliminates or minimizes error sources such as primary leakage inductance spikes, parasitic impedances, and nonlinear transformer behavior.

The regulator eliminates flyback-voltage leakage inductance spikes by creating a blanking period that prevents the spike from entering the measurement circuit. It eliminates skin effects via a sampling scheme triggered by the signal that turns the switch back on.

The LT1105 provides an additional level of correction by adjusting the internal reference level upward as the primary current increases. You set the amount of increase by using an external resistor. The regulator costs $4.25 (100).

To vote for this entrant as IC and Semiconductor Product of the Year, mark the appropriate box on the ballot.

Rambus DRAM Technology

The Rambus technology is a revolutionary approach to transferring data between a master and a high-speed RAM that operates at 500 Mbytes/sec. It consists of a 16-line Rambus channel that interconnects Rambus dynamic RAMs (RDRAMs) and a dedicated master, such as a µP or a peripheral. An RDRAM consists of a standard page-mode CMOS DRAM and an on-chip slave Rambus interface. Dedicated µPs and peripherals have a master Rambus interface to control the Rambus channel.

The 16-line Rambus channel consists of nine data, two control, two clock, one ground, one supply, and one voltage reference (VREF) line. The Rambus channel is 10 cm long and has a master on one end and resistive transmission-line terminators on the other. RDRAM packages can be evenly distributed at 100-mil intervals along the line. The two clock lines connect at the master end of the Rambus channel.

The clock signal, which operates at 250 MHz, is synchronous with the data lines and transfers data on both clock edges. Data from the master to the RDRAMs propagates at full voltage and transfers to the RDRAM slave interface on the clock transitions. Data from the RDRAMs must transfer in both directions on the bus. The terminators absorb the data traveling down the receiving end of the line. Half-voltage data levels on the master end reflect to the full-voltage data levels before the master samples the data.

The full-voltage level on the Rambus channel is 600 mV and nominally swings between 2.5V and 1.9V. You can adjust the threshold voltage (VREF) to 2.2V by using external resistors. Currently, the 4-Mbit generation of RDRAMs has a 512k x 9-bit organization. RDRAMs sell at a 25% premium over the price of an ordinary DRAM.

To vote for this entrant as IC and Semiconductor Product of the Year, mark the appropriate box on the ballot.
400 MOPS FOR 6U VMEbus SYSTEMS

This 6U VMEBus board performs 400 million operations per second and is optimized for frequency domain processing such as FFTs and finite impulse response (FIR) filters using fast convolution. The FDaP feature provides phase/magnitude data. The a66540 is available with a processing of real-time data. An additional 32-bit complex speed data I/O bus and extensive double buffering for continuous processing of real-time data. An additional 32-bit complex output provides phase/magnitude data. The a66540 is available in 35 MHz and 40 MHz versions. A single 40 MHz version can execute a 1K point FFT in 132.7 µs and a 64K point FFT in 13.1 ms. These times are nearly halved for real input. Multiple FDaPs can be cascaded to achieve almost linear improvement in FFT performance.

CORNE RTURN PROVIDES QUANTUM LEAP IN 2D IMAGE PROCESSING PERFORMANCE

The a66545 Cornerturn™ board, used in conjunction with the a66540 FDaP board for real-time two-dimensional image processing, is the first capable of processing an entire 256 x 256 pixel frame of image data in 15.2 milliseconds. This equates to a continuous, real time rate of 65 frames per second. For 512 x 512 images, the board set transforms images in 71 milliseconds, or 14 frames per second. Designed for medical imaging, radar, sonar, machine vision, and other real-time 2D image processing applications, the board set features performance of 400 MOPS at a clock rate of up to 40 MHz. The Cornerturn accepts 32-bit complex I/O data through 10 MHz double-buffered external I/O connectors or through the VMEbus and stores it in one of four on-board frame store memory buffers. For technical assistance, call array Microsystems Hotline: 719-540-7999.

OUTSIDE THE USA, CALL YOUR NEAREST INTERNATIONAL DISTRIBUTOR

AUSTRIA, GERMANY and SWITZERLAND - Allarton GmbH, Tel: +49-90-45110-04, FAX: +49-90-45110-254

BELGIUM and the NETHERLANDS - Maxtronix, Tel: +31-73-210400, FAX: +31-73-281190

FRANCE - Microel, Tel: +33-1-69070624, FAX: +33-1-69071723

AUSTRIA, GERMANY and SWIT ZERLAND - Alfatron GmbH, Tel: +49-30-45110-04, FAX: +49-30-45110-254

BELGIUM and the NETHERLANDS - Maxtronix, Tel: +31-73-210400, FAX: +31-73-281190

FRANCE - Microel, Tel: +33-1-69070624, FAX: +33-1-69071723

JAPAN - Nippon Imex Corporation, Tel: +81-03-80906, FAX: +81-03-3325-009

SWEDEN - Selco, Tel: +46-8-733-500, FAX: +46-8-755-5594

UNITED KINGDOM - METL Ltd., Tel: +44-844-278781, FAX: +44-844-278746
R4000 RISC Microprocessor

The Mips R4000 is a third-generation reduced-instruction-set computer (RISC) µP that serves as the core for general-purpose computers and for embedded control systems. The 64-bit chip—the first 64-bit µP—supplies execution units for both floating-point and integer math operations. In addition, the basic R4000 architecture supplies a memory-management unit (MMU), 8 kbytes of primary-instruction cache memory, 8 kbytes of primary-data cache memory, and primary and secondary cache-memory controllers.

Although the R4000 is a 64-bit µP chip, it is compatible with earlier Mips 32-bit devices. For example, you can mix 32- and 64-bit programs in the same R4000-based computer. The chip's flat, unsegmented virtual-address space exceeds 4 Gbytes. The R4000 µP comes in three versions. The R4000PC's primary cache memory is meant for use in low-cost desktop computers and in embedded computers. The R4000SC uses secondary cache memory. For multiprocessing systems, the R4000MC lets you add a secondary cache as well as extra R4000MC chips. The MC version uses cache-coherency mechanisms that are needed to synchronize multiple processors.

The Mips chips use superpipelining so that the chip can issue two instructions on each clock cycle. Clock cycles are divided into subcycles internally, and an instruction is issued on each subcycle. The processor can issue and execute back-to-back arithmetic-and-logic unit (ALU) instructions and load-and-store instructions without restriction.

Internal clock circuits let you program the rise and fall times of transmit clock (TCLK) and receive clock (RCLK) signals so that you can match the clocks' characteristics to those of your external loaded transmission lines. You can program the TCLK and RCLK signals to be either one half or one third of the processor's master clock frequency.

The R4000 chip is available from six semiconductor suppliers worldwide. In quantities of 500, the three configurations have prices from $1050 to $1610 for versions that run at 50 MHz.

To vote for this entrant as Microprocessor Product of the Year, mark the appropriate box on the ballot.

Intel486 DX2 Microprocessor

The Intel486 DX2 microprocessor runs at 50 MHz but uses a 25-MHz CPU bus. Thus, the chip can boost system performance without requiring you to design an entire system for high-speed operation.

Like its Intel486 DX predecessor, the Intel486 DX2 comprises an integer unit, a floating-point unit, and an 8-kbyte cache. An on-chip PLL circuit uses the external system clock as an input and produces a faster internal clock. A 3-layer metal process lets the core CPU run at 50 MHz, which is twice the speed of the CPU bus.

The processor's integer performance is 40.5 MIPS (V1.1 Dhrystones); its overall SPECmark rating is 19.2 (SPEC '89). The device uses a system-management mode for overseeing system power consumption as well as for implementing suspend-and-resume operation. DOS and Unix are among the operating systems ported to the processor. The device comes in a 168-lead pin-grid array and costs $517 (1000).

To vote for this entrant as Microprocessor Product of the Year, mark the appropriate box on the ballot.
HyperSPARC Processor

The HyperSPARC processor provides a superscalar, superpipelined SPARC processor in a selection of four modules. The modules let you select either one or two processors and either 128 kbytes or 256 kbytes of cache memory. The modules operate on the Mbus architecture, which allows designers to upgrade the processor without having to redesign the computer system. Because designers are looking for low power consumption, low cost, and high operating speeds, Cypress uses a 0.65 µm process to produce the chips. The company uses the same process to manufacture static RAMs (SRAMs). The HyperSPARC chips use 3.3V logic levels for communicating with each other on the module. All off-module signals are standard 5V logic levels.

Instead of putting all of the SPARC architecture on a single chip, Cypress provides a central-processing unit (CPU) chip, a cache and memory-management/tag unit (CMTU) and a cache data unit (CDU). Each CPU chip—there can be one or two on each module—supplies an 8-kbyte two-way set-associative instruction cache. The 128- or 256-kbyte unified cache on the module acts as a primary cache for data, and as a secondary cache for instructions. The modules operate at a clock rate of 66.7 MHz, but later versions should operate at up to 100 MHz. All of the Mbus operations occur at 40 MHz.

At the 66.7-MHz operating frequency, the company claims performance of 70 SPECmarks (Spec '89) and 55 SPECint (Spec '92). Prices start at $3500 each for sample quantities of the single-processor CYM6221 module.

Sproc-1000 DSP Chip

The Sproc-1000 represents a major departure from the architecture and programming methods used with other DSP chips. The chip consists of a central memory unit shared by as many as four 24-bit fixed-point processors. The Sproc processor incorporates all processor units, interprocessor communication circuits, and memory required to develop DSP applications.

Unlike other DSP architectures, which base real-time operations on allocating processing power as interrupts occur, this processor time division multiplexes its central memory to provide concurrency between various processors. The patented memory multiplexing scheme simplifies the programming and coordination of multiple processors that together run a single application. Input and output data-flow managers handle switching between concurrent tasks. These managers communicate with the processors and other on-chip elements through a 12-bit address and 24-bit data bus, and with off-chip I/O devices through a serial port. Off-chip parallel I/O ports are available, too. The price for the 4-GSP member of the Sproc-1000 family is $70 (1000).

The key to the Sproc architecture is the software-development system that you use to compile your application. You enter your design graphically at the block-diagram level. Block diagrams can incorporate both analog and digital elements that reside in the software's cell library. The software tools include a signal-flow editor, a cell library, custom filter-design software, and loading and debugging programs. The software runs on MS-DOS-based computers. Designing your application and programming a Sproc chip requires four steps: creating a signal-flow diagram, compiling and linking the program, downloading your program to the chip, and testing and debugging.

To vote for this entrant as Microprocessor Product of the Year, mark the appropriate box on the ballot.
The 8680 PC/Chip from Chips & Technologies supplies the heart of a personal computer on an integrated circuit. Its CPU is compatible with 8086-µP instructions. The chip provides a mode of operation called Superstate, which lets you trap any I/O-port or interrupt call so you can actively monitor and control I/O activities. This type of feature is vital for portable and low-power applications. The attendant Superstate table, registers, and operating circuits are all unseen by software during normal operation. The CPU transfers to the Superstate upon I/O-port operations, normal interrupts, activity on four interrupt pins on the IC, or an internal timer interrupt.

You do not have to act on all of the transferred operations. The Superstate processor lets you identify the actions that you want trapped. In general, the Superstate portion of the chip lets you avoid entanglements with the PC's BIOS and its operating-system complexities. The Superstate frees you from having to monitor I/O-port activity and I/O-port access counts, and from having to wake up any sleeping portions of the system to check for activity.

Active Addressing Technology for LCDs

Active addressing lets passive-matrix LCDs display high-contrast moving images for low production costs. Most experts once believed that only active-matrix LCDs could achieve high-contrast, full-motion images. However, active-matrix displays have a hefty price tag because they use a thin-film transistor for every addressable dot on the screen.

Traditionally, passive-matrix LCDs use electronics that address the display one row at a time. When you use fast (low-viscosity) liquid-crystal material to achieve full-motion video, the optical response of one row significantly decays while the electronics addresses the other rows. The result is low contrast.

Using active addressing, a standard passive-matrix LCD can strobe multiple rows simultaneously and maintain precise voltages at each pixel. The control circuitry sequences through the display's rows using an algorithm, which can cause the circuitry to activate half of the rows simultaneously.

The control circuitry uses the algorithm to calculate the column voltages and uses active-matrix-display analog driver ICs to apply the voltages to each row pattern. The circuitry then calculates the next row pattern and applies new voltages to the columns.

Because active addressing increases the pulse rate to the liquid-crystal material from 16 Hz to well over 1 kHz, the crystal's optical response doesn't have time to decay. Prototypes of passive-matrix LCDs that use active addressing have achieved contrast ratios of 40:1 while reaching switching speeds of 50 msec, which is sufficient to display full-motion video.

To vote for this entrant as Computers and Peripherals Product of the Year, mark the appropriate box on the ballot.
Pick up the number one real-time operating system.

And run with it.

In today's competitive market, it's important to run with the best. And when it comes to real time, the iRMX® operating system is the clear favorite.

You see, iRMX has a 13-year track record for proven reliability. In fact, only DOS runs on more X86 systems. Now, iRMX for Windows provides the first real-time operating system with guaranteed response time that runs DOS and standard-mode Windows on the i386™ and i486™ architecture. That's right, true real time on a PC! iRMX for Windows brings more than just affordable hardware to real time. It also gives you a head start on development with access to the huge installed base of DOS applications and tools. In fact, you even have the option to run Windows† (including Windows 3.1).

So take the first step, call (800) GET-iRMX (800-438-4769)† and ask for Lit. Pack. #2D. And start running real time with your favorite DOS and Windows software.
Stingray 1842 1.8-in. Disk Drive

The Stingray 1842 1.8-in. disk drive holds 40 Mbytes and can withstand 300g nonoperating shocks. The dual-platter drive is approximately half the size of a single-platter 2.5-in. drive. With the electronics mounted to the head-disk assembly, the drive measures 76.85 x 50.8 x 15 mm and weighs 3.2 oz.

The drive’s many features let it meet the rugged requirements of mobile computing. For example, in most drives, the heads drag along the disk surface when the spindle motor stops. Repeated head take-offs and landings result in friction-induced damage to the head-disk-assembly interface and can cause long-term reliability problems. In contrast, the Stingray 1842 uses a ramp loading and unloading mechanism to prevent the heads from touching the media.

Because the heads don’t slap the disk during power-down, the drive can resist a 300g nonoperating shock. During power-down and inactivity periods, the spindle motor’s back EMF ensures that the heads are securely loaded and locked on the ramp structure. During power-up, a microprocessor determines when the spindle motor is up to speed before reading the servo bursts and calibrating the heads to read and write data.

The dynamic ramp-loading mechanism lets the drive spin down to sleep mode as many as 1 million times. The drive consumes 15 mW in sleep mode and can recover from this mode in approximately 1.5 sec. Because the heads do not drag on the media, spin-ups and spin-downs are faster and consume less power than those of conventional drives.

Other specifications include an 18-msec access time, 0.8A start-up current, 3571-rpm spindle speed, interface transfer rate of 4.0 Mbytes/sec, media transfer rate as fast as 1.9 Mbytes/sec, –40 to +70°C operation; and a 100,000-hour MTBF. The drive costs $285 ($1000 per month OEM).

To vote for this entrant as Computer and Peripherals Product of the Year, mark the appropriate box on the ballot.

TestGen Sequential ATPG Software

TestGen is automatic test pattern generation (ATPG) software that creates manufacturing test programs for digital sequential integrated circuits. It consists of a sequential vector generator, a high-speed software fault simulator, a suite of test-synthesis and testability-analysis tools, and a dynamic vector compactor.

The software works at the gate level and uses nine proprietary circuit-analysis techniques. It requires only netlist input.

TestGen works with all types of digital integrated circuits from single-clock, fully synchronous circuits to multiple, internally generated, gated clocks in highly asynchronous circuits. It uses a single-fault model: stuck-at-1 and stuck-at-0. The product works with circuits using built-in self-test (BIST), JTAG, and other test methodologies.

The software also identifies and grades difficult-to-test areas on the target circuit prior to vector generation. After the designer selects the percentage of partial scan to use in the current vector generation session, the TestGen selectively includes flip-flops in the scan chain. Before vector generation, it recommends where to add more test structures to the circuit to make it more testable. It also compacts test vectors, thereby reducing test program size by 50 to 300%.

For forward-time processing, the software uses the targeted D frontier technique, which greatly increases the number of mandatory assignments by limiting the D frontier to one target D element. This reduces the overspecification of state variables that can result when using other algorithms. In reverse-time processing, TestGen uses the state knowledge of previously generated vectors for state justification, avoiding the memory overhead of a state-transition diagram.

For faults aborted during the standard test-generation phase, the software uses knowledge that it gained about fault propagation from the fault simulator. A single-process floating license costs $95,000.

To vote for this entrant as CAE/CAD Product of the Year, mark the appropriate box on the ballot.
With Motorola's fuzzy logic educational kit, you can learn how to design systems using Motorola's standard 8-bit microcontrollers that perform better, get to market sooner, at far less cost. And if you're one of the 10 people to score the highest on the fuzzy logic test and project, we'll send you to Hawaii to learn more.

For only $195, our kit** will provide computer-based training materials that will take you step-by-step through fuzzy logic fundamentals, practical application considerations, and a detailed example. You will receive a demonstration version of Aptronix's Fuzzy Inference Development Environment (FIDE) software, an easy-to-follow PC-based tutorial, and other support software. Or if you need real-time evaluation, (not required for successful completion of the course) a limited quantity of board-level evaluation modules (EVM) for Motorola's 8-bit microcontroller plus the

* The kit requires a minimum of a PC-AT™ class or compatible, with one floppy drive, a 60MB hard-drive, a VGA monitor, DOS™ 3.30 with Windows™ 3.0 (DOS 5.0 is recommended)

educational kit will be available for $600.

Qualify to win your place at Motorola's 3-day Fuzzy Logic Seminar in Hawaii.

Simply complete and return the test and the fuzzy logic software project included in the educational kit. The 10 people who score the highest on the test and the project will win a trip to Hawaii this winter for a 3-day seminar on Fuzzy Logic led by the experts in the field. Tests and projects must be postmarked by October 17, 1992.

Order your entry materials today.
To order Motorola's Fuzzy Logic Kit and the details on the Hawaii Fuzzy Logic Seminar Contest, fill out the coupon and mail it and your payment - payable to Motorola (company checks, money orders and cashier's checks accepted) to: Fuzzy Logic Kit, Motorola, Inc, PO Box 1466, Austin, TX 78767. Kits are also available through your local Motorola Sales Office or a participating Motorola authorized distributor.

10 Engineers
Will Win A Free
Trip To Hawaii...
You Could Be
One Of Them.

Complete our Fuzzy Logic test and project to qualify to win a trip to our Fuzzy Logic Seminar in Hawaii.

Offer expires August 31, 1992

ASIC Navigator

Although many ASIC development systems shackle you to one design method, the ASIC Navigator lets you use several graphics- and text-based design techniques to create just one ASIC or systems of ASICs using a top-down approach. This product covers the entire design cycle by providing tools for design specification, verification, partitioning, synthesis, and floorplanning.

Graphic design entry styles that the ASIC Navigator uses include schematics, state-machine diagrams, tables, and data-path diagrams. You can also enter text descriptions of blocks using either VHDL (VHSIC Hardware Description Language) or the Verilog hardware description language. A graphic block diagram ties all of the individually specified blocks together.

The product synthesizes a VHDL model from a system specification using any or all of the above entry methods. This model then becomes the focus of your verification efforts. You verify through simulation. The ASIC Navigator's simulator can handle a mix of behavioral and structural VHDL descriptions, so you can start simulations before your detailed design specification is complete. The product's partitioner divides your design into physically realizable portions and lets you play “what if?” games with your design to find an optimal system configuration.

A Test Assistant module accepts high-level descriptions of your test strategies so that the logic synthesizer can create the appropriate test circuitry. A timing verifier tells you what effect the additional test circuitry will have on your design. The logic synthesizer uses a variety of synthesis and logic compilers to create logic from your design specifications. The individual synthesis tools include modules for synthesizing control circuits, random logic, data-paths, multipliers, memories, and test circuitry. The synthesizer can also handle three-state logic, I/O pads, and balanced clock trees. Prices start at $95,000 per seat.

To vote for this entrant as CAE/CAD Product of the Year, mark the appropriate box on the ballot.

Allegro Correct-By-Design Software

Allegro Correct-By-Design (CBD) software lets you create physical designs for pc boards, hybrid circuits, and multichip modules. Because the package integrates place-and-route tools with front-end design-analysis tools, it short-circuits the design-analyze-redesign loop.

Using Allegro CBD, you can assign system constraints early in the design process. You specify rules by part, net, group, page, and other classifications. Defined component placement, critical timing paths, and etch width are among rules the software can enforce. The software applies these rules across multiple packaging technologies.

Central to the software is a constraints editor that lets you establish electrical, physical, and thermal limits. A design-rule checker ensures that the software adheres to the limits you set during interactive and automatic board-layout sessions. The system can defer or ignore constraints via an overriding configuration-management control module.

The software is available for Hewlett-Packard PA-RISC-based computers, as well as for workstations from Sun Microsystems, Digital Equipment Corp, and IBM. Prices range from $12,500 to $60,000, depending on the configuration.

To vote for this entrant as CAE/CAD Product of the Year, mark the appropriate box on the ballot.
You're looking at the most versatile Arbitrary Waveform Generator you can buy. Speed, resolution and a choice of 1 to 4 synthesized channels mean that Wavetek's new Model 295 can take the place of multiple instruments in a wide variety of applications.

Model 295 is easy to use, too. For example, a handy mouse lets you quickly create waveforms on an oscilloscope. You can use the convenient front panel keyboard to enter math expressions or recall stored waveforms. A sophisticated graphic interface provides windows-like pull-down menus with easy-to-follow steps to make waveform creation and editing easier than ever before.

Waveforms created remotely can be loaded into the Model 295 via GPIB. An optional 3.5" disk drive allows unlimited waveform storage. Waveform looping and linking, along with inter-channel triggering, summing, and phase control, give you still more flexibility.

Each channel can operate like a separate Arb with 50 MHz sampling frequency, exceptional 2 ppm accuracy, and 12 bit vertical resolution. In addition, channels can be synchronized.

It comes to this: Model 295 combines leading-edge performance with traditional Wavetek value and reliability to meet all your Arb requirements.

Call today for Model 295 product information.

(800) 223-9885
Europe: U.K. (603) 404824, Germany (089) 9609490
Asia Pacific: Hong Kong (852) 86519402
©1992 Wavetek Corporation.
Board Station 500 software lets users design high-speed pc boards and multichip modules. The software combines timing-constraint-driven place-and-route algorithms and high-speed design-analysis tools.

The system lets designers specify a set of electrical rules covering topology constraints, interconnect delays, and impedance characteristics. The system maps the electrical design rules into a set of physical design rules, which it uses in subsequent interactive place-and-route design stages. Physical design rules the software can enforce include net topology, minimum/maximum length control, stub-length control, matched-length control for eliminating clock skew, via limits, layer restrictions, and shielding parameters.

Quad Design Technology Inc designed the high-speed analysis tools included in the software. The Board Station 500 costs $127,500 and runs on Hewlett-Packard Apollo and Series 700 systems and Sun Microsystems SPARCstations. Upgrading for present Mentor Graphics customers starts at $30,000.

To vote for this entrant as CAE/CAD Product of the Year, mark the appropriate box on the ballot.

DSP Station Software

The DSP Station software performs top-down design of DSP systems from high-level specifications through simulation and optimization from multiple physical implementations. The software provides analysis tools that address the needs of the DSP designer, such as noise and stability analysis, area vs bandwidth tradeoffs, and frequency-domain sensitivity analysis.

DSP Station also helps you plan development and production times for your proposed DSP system and analyze cost/performance ratios. For fast implementation, you can use the software to generate assembly code for a commercial DSP chip. For quick prototype development, you can synthesize a design for a gate array or an FPGA. For the best cost/performance ratio, you can use high-level synthesis to create designs for standard cell module generators. DSP Station lets you use a common input format to drive all the implementation paths.

The software also helps you analyze hardware/software tradeoffs, as well as analog/digital partitioning, from the early phases of design. It also lets you compare various system architectures.

The package includes three forms of synthesis: filter designs, assembly language code for programmable DSPs, and DSP architectures for custom integrated circuits.

The filter design synthesis uses arithmetic optimization techniques in addition to the normal filter approximation routines. Assembly language synthesis uses optimizing techniques to map all your DSP functions onto the particular architecture of the target programmable processor. Silicon synthesis utilizes either bit-serial or bit-parallel modules configured in an optimal design based on scheduling for each signal processing task.

The product, which starts at $33,000, represents a cooperative development effort of a university research lab (Interuniversity Microelectronics Center), an industrial customer (Philips), and a commercial CAE vendor (Mentor Graphics Corp).

To vote for this entrant as CAE/CAD Product of the Year, mark the appropriate box on the ballot.
When you need something extra to get you through your next project, try a dose of TOKIN Surface Mount Devices (SMDs). Designed to provide maximum working room in tight spaces, TOKIN SMDs offer the ideal remedy for downsizing computers and other electronic or communications equipment and systems. What’s more, TOKIN SMDs come in a wide range of sizes to ensure you of the right formulation for your own special needs. EMC components—such as EMC Chip Filters and ultra-small Solid Chip Inductors and SN Coils—counter noise emissions from compact, high-frequency power supplies, data terminals, personal computers, and so on. SMD Transformers make for easy high-density mounting on a wide range of communications equipment. And High-capacitance Multilayer Ceramic Capacitors enable automatic mounting on PC boards. If you’re not getting the SMDs you need to get you through the day, be sure to call TOKIN.
For capturing single-shot transients, the HP 54720A is, at 4G 8-bit samples/sec on two channels simultaneously, currently the fastest sampling, highest-bandwidth digital scope available as a standard product. Where the waveforms are repetitive, however, sequential-sampling scopes offer greater bandwidth. (The 54720A's bandwidth is 1.1 GHz for single-shot phenomena and 1.5 GHz for repetitive waveforms.) The modular scope has a high-resolution color display, a numeric keypad, and a 3½-in. disk drive. The instrument costs more than $55,000 with probes. You can also configure the scope with four channels that each take 2 Gsamples/sec.

The heart of the scope’s acquisition system is a hybrid-circuit module built around a sampler (a proprietary bipolar IC) and four 0.5-Gsample/sec flash ADCs (implemented on proprietary bipolar ICs that each contain two ADCs). The four ADCs take interleaved samples to form a 2-Gsample/sec converter. When you configure the unit with two 4-Gsample/sec plug-ins, pairs of these hybrid modules act in concert to achieve the 4-Gsample/sec acquisition rate on both channels simultaneously. Hence, each 4-Gsample/sec channel contains eight 0.5-Gsample/sec ADCs.

The sampler uses a sample-and-filter technique in place of more traditional sam-and-hold or track-and-hold circuits. In the sampler, the charge held on the sampling gate bleeds off at a precise rate, halving the required postamplifier bandwidth and permitting the use of an amplifier with only moderately high input impedance. The lowpass filters that follow the postamplifier use thick-film inductors and capacitors printed onto the hybrid substrate. The system exhibits noise of 250 µV rms; with its ¼ sampling-rate finite-impulse-response filters enabled, it exhibits a resolution of 6.2 effective bits with a 1-GHz signal and 7.5 bits with a 1-MHz signal.

Obtaining all of the performance this sampling technology is capable of requires extremely precise triggering. A dual-slope trigger interpolator produces a time-interval measurement resolution of 1 psec and provides timing accuracy of ±(30 psec + 0.007%) when averaging 16 measurements in the equivalent-time sampling mode. The rms jitter is 6 psec ± 0.005% of the delay setting.

The scope also features memory depths to 32 ksamples, a display-update rate of 170 waveforms/sec, and 19 automatic measurements with user-definable parameters.

To vote for this entry as Test and Measurement Product of the Year, mark the appropriate box on the ballot.

TDS 820 Scope

The TDS 820 makes the multi-GHz bandwidth of repetitive-sampling digital scopes, which heretofore had been available only in high-end products, affordable to a much broader group of users. Unlike many high-end sequential-sampling scopes, this scope is truly user friendly. Moreover, it overcomes a frustrating shortcoming of earlier sequential-sampling DSOs—their inability to display pretrigger information.

The 2-channel TDS 820 costs $19,100. It provides 6-GHz bandwidth, 0.4-psec timing resolution, 3-psec rms jitter, a maximum record length of 15,000 samples/channel, 14-bit vertical resolution, and typical input noise of 600 µV (waveform averaging cuts the effective noise by factors as great as 100). Moreover, by holding the bandwidth to a “mere” 6 GHz, the designers incorporated a signal delay line in each channel that stores 1.5 nsec of pretrigger data and allows internal triggering. Deleting the delay lines saves $450, increases the bandwidth to 8 GHz, and cuts the noise by half.

Another innovative feature is the monolithic charge amplifier in the patented traveling-wave-gate sampling system. This IC replaces the hybrid circuit used in the vendor’s 11800 family. The IC’s performance is possible because it is fabricated using a Tektronix-proprietary high-frequency process. The two compensated delay lines and the trigger pickoff for both channels are in a single module that uses a proprietary IC and a Teflon pc board.

The TDS 820’s menu and icon-based user interface is another innovation in sequential-sampling DSOs. The scope’s high-resolution monochrome CRT displays a 16-level gray scale. The scope can present the display in the form of dots or vectors, and you can select infinite or 250-msec-to-10-sec variable persistence. Cursor measurements and 24 automatic measurements with variable thresholds further enhance the unit’s usefulness.

To vote for this entry as Test and Measurement Product of the Year, mark the appropriate box on the ballot.
Our newest line of defense against heat.

A full line of high-temperature DC-DC converters from the industry leader.

Get the hottest technology in board-mounted power supplies. Full military temperature range. Unsurpassed reliability. The lowest profiles. You can get it all with Interpoint's new line of DC-DC converters.

From arctic blasts to desert storms, Interpoint's new generation DC-DC converters stand up to the toughest military environments. They deliver full power over the entire -55° to +125° C. temperature range. And over an unprecedented power range, too. Interpoint can now offer you an off-the-shelf hybrid power supply for any power level from 2 to 200 watts.

For more than a decade, Interpoint DC-DC converters have proven their reliability in many of the world's most advanced weapons systems — including mission-critical electronics on the Patriot and Tomahawk missiles, the Bradley Fighting Vehicle and F/A-18 aircraft. Our new generation converters are the most reliable yet. Each of them was designed with the specific intent of being qualified to the full performance and reliability standards of MIL-STD-883C.

And Interpoint continues to lead the way in power supply miniaturization. With power densities as high as 40 watts per cubic inch and package heights as low as .270 inch, this new generation of converters is built for the tightly packed boards in today's military and commercial avionics, ground vehicles and portables.

It's the hottest new technology in DC-DC converters. And it's available only from Interpoint. For more information, call 1-800-822-8782. In Europe, 44-276-26832.

Interpoint's new line of DC-DC converters features constant PWM switching frequencies from 500 to 700kHz. Built-in sync. Parallel operation. Up to 50dB audio rejection. Line and load regulation as low as 0.1%. And full MIL-STD-704 input for 28- and 270-volt systems.
What do designers of notebook computers and other battery-powered systems get with Siliconix' new power conversion chip set?

That means higher power conversion efficiency, smaller system size, both 3.3-V and 5-V compatibility and longer battery life. DC/DC conversion at 94% measured efficiency.

This high-efficiency produced by our new power conversion chip set, the Si9150DY Synchronous Buck Converter and the Si9943DY LITTLE FOOT™ MOSFET allows your DC/DC converter to run cooler and adds about 10% to battery life during normal operation. And in sleep mode it only consumes 100 µA, to extend battery life by 1000%.

The smallest and simplest high-efficiency solution available.
The controller, in a tiny SO-14 package, is highly integrated and requires few external parts. Team it with our LITTLE FOOT SO-8 to achieve the most compact converter design possible. Our Si9150 design manual includes complete instructions for building your DC/DC converter.

Operating voltage options.
Many "next-generation" designs are employing lower, and sometimes multiple operating voltages. That's why our Si9150DY/Si9943DY buck converter takes unregulated battery voltage and converts it into 5.0 V or 3.3 V.

Get more bang for your buck converter!
For OEM quantities, prices of this 94% efficient power conversion chip set can be yours for less than $3.00.

More power efficiency, more compact design, and more voltage options are as close as your local Siliconix sales office. Or call toll-free hot line now! 1-800-554-5565, ext. 970. Ask for the "More Bang for your Buck" Design Manual.
90-Series Scopemeters

In packages that measure 2.4 x 5.1 x 10.2-in. and weigh 4 lb (with batteries), the 90-series Scopemeters provide all the measurement functions many engineers need. The units act as 2-channel digital storage oscilloscopes (DSSs) with 50 MHz repetitive-signal bandwidth and 4-digit multimeters (DMMs). The 97, which has an electroluminescent back-lit display, also includes a sine/square-wave generator. Prices range from $1195 to $1795.

Although these instruments are not the first small scopes with LCDs, they are the first with such displays to offer so many features. The features include a 3000-count DMM. The DMM, which resolves >4000 counts without overloading, shares its input leads with the scope's channel A. Scopes that make cursor measurements also provide numeric readouts, but few of them can indicate such quantities as an ac waveform's rms value; these units can. Moreover, few scopes include a calibrator—as these units do—to ensure 3%-digit accuracy of their cursor measurements.

Most DSOs of even moderate bandwidth are ac powered and fan cooled. These units use so little power that, not only can they be convection cooled, they are sealed against moisture (they aren't waterproof, however). Furthermore, the units' low power consumption lets them run for four hours before their NiCd cells need recharging. If you don't have access to ac for battery charging, you can replace the NiCd cells with C-size alkaline cells.

Inputs that are isolated from the chassis are commonplace in high-quality digital meters, but you won't find such inputs on most scopes. As a result, measuring waveforms in the presence of high common-mode voltages subjects operators to the possibility of a lethal shock. To provide protection in such applications, the Scopemeters' inputs withstand 600V rms with respect to the case. Using the model 97's RS-232C port to, say, send a waveform to a recorder, doesn't defeat the isolation; the port is optically isolated. The serial-interface cable includes an optical-to-electrical converter powered from the receiving device's RS-232C port.

The most novel technology embodied in the units relates to their measuring capabilities. An 8-bit ADC digitizes the signals for both the waveform and numeric displays at a rate of 25 Msamples/sec. The numeric display uses digital-signal-processing (DSP) techniques implemented in a proprietary IC (one of two in each instrument) to convert the ADC's 8-bit output to a resolution equivalent to approximately 13 bits. DSP techniques also extract the rms values of ac waveforms. On the 95 and 97, you can also obtain readouts in dB and watts.

To vote for this entry as Test and Measurement Product of the Year, mark the appropriate box on the ballot.

DT-Open Layers Software Standard

DT-Open Layers, a proposed software standard for Windows-based data-acquisition and image-analysis applications, offers the possibility of changing your system's hardware configuration without altering your application software. The standard ensures that different hardware devices will perform specific application operations—such as sampling an input voltage or capturing an image—identically, even when those devices require different instructions to perform the operations.

Application programs' hardware independence results from the standard's two main components—a set of application-programming interfaces (APIs) and a system-programming interface (SPI). The APIs are standard interfaces between application programs and function libraries; the SPI is a standard link between function libraries and device-driver software. DT-Open Layers requires use of function libraries and driver software implemented with Windows' dynamic-link libraries (DLLs).

The APIs in DT-Open Layers define generic entry points, parameters, and structures for existing and foreseeable image-processing and data-acquisition functions. The SPI takes advantage of Windows' installable-driver concept; using Windows-compatible message-passing routines, it allows functions and application programs to query and determine the types and abilities of hardware devices, thus taking advantage of hardware features that might otherwise be implemented in software.

The DT-Open Layers standard is available to anyone at no charge.

To vote for this entrant as Software Product of the Year, mark the appropriate box on the ballot.
Gabor Spectrogram

The Gabor Spectrogram represents a signal’s power spectra in the joint time-frequency plane. The spectrogram gives up to twice the resolution of an equivalent short-time Fourier transform (STFT) and runs six times faster due to its greater computational efficiency. National Instruments announced this algorithm at the March 1992 International Conference on Acoustics, Speech, and Signal Processing and includes it in the $1995 Labview for Macintosh and $1495 Lab-windows for DOS Analysis Libraries.

The company developed this spectrogram by first applying its own “orthogonal-like” Discrete Gabor Transform (DGT) to a signal, followed by the pseudo Wigner-Ville Distribution (PWVD). The DGT and the PWVD have been known for decades but have seen limited practical use because they are difficult to implement. The company’s “orthogonal-like” DGT resolves difficulties with the DGT in the selection of basis functions and auxiliary window functions. In addition, combining the DGT with the PWVD removes some of the PWVD’s liabilities.

The DGT decomposes a signal into a linear combination of time-shifted and frequency-modulated Gaussian basis functions. Gaussian basis functions require fewer spectral coefficients than does the STFT, which makes it easier for your computer to perform a DGT. The PWVD also gives better joint time-frequency resolution than the STFT. But the PWVD suffers from mathematical artifacts that lack physical interpretation, such as cross-term interference and negative terms. By using the DGT with the PWVD, the spectrogram separates the artifacts from the useful terms.

The spectrogram also allows precalculating the PWVDs of the basis functions and storing them in a lookup table, making computation faster than the equivalent STFT.

You use the spectrogram for analyzing time-varying signals where simultaneous time-frequency results are necessary. Applications include speech processing and recognition, image processing, synthetic music, seismic exploration, sonar, radar, acoustics, vibration analysis, medical imaging, data compression, and computerized vision.

To vote for this entrant as Software Product of the Year, mark the appropriate box on the ballot.

Peerless Imaging Operating Environment

The Peerlesspage imaging operating environment simplifies the development of printing and imaging application programs and makes those programs virtually hardware independent. Software services provided by Peerlesspage for printing and imaging products are somewhat analogous to the services that MS-DOS provides for PCs.

Designers making use of those services can shorten product-development times.

The heart of Peerlesspage is a real-time multitasking operating system designed specifically for printing, imaging, and graphics applications. Extensions include printer emulations, page-description languages, font management, and control-panel management. Printer languages available with the environment include PCL 4 and 5, Postscript level II, HPGL, IBM Proprinter, and Diablo 630. Font support includes Postscript, TrueType, and Bitstream. A software banding algorithm reduces memory requirements for high-resolution printing—1200 x 600-dpi images require only 2 Mbytes, compared with 10 Mbytes for printers without the software.

Products that can use Peerlesspage include standard page printers, stand-alone network printers, publishing systems, scanning and image-capture systems, multifunction peripherals (printer, scanner, and fax), and graphics-display subsystems. Versions of the environment are available for Intel 8600, AMD 29000, and MIPS R3000 µPs. Price is negotiable with each OEM contract; use of the product typically adds $5 to the end-user price of a printer.

To vote for this entrant as Software Product of the Year, mark the appropriate box on the ballot.
The newest, most sensitive voltmeter in the world is making its debut

with very little noise.

Introducing the new 182 Sensitive Digital Voltmeter. It is, quite simply, the fastest, most accurate and noise-free instrument available for making low-voltage measurements.

From the low-noise input cable to the isolation transformers, the 182 has been designed specifically to measure voltage.

The results: Transfer stability of 5ppm.

Unmatched 1nV sensitivity.

And speeds up to 100 readings per second. All at a noise level of no more than 3nV rms.

Now, get stable, repeatable voltage measurements. Collect more data in less time. Improve your test results.

Call 1-800-552-1115. We'll quietly send you all the details.

KEITHLEY INSTRUMENTS
CIRCLE NO. 45
AX1024 Programmable Interconnect Device

The AX1024 field-programmable interconnect components can create a resistive circuit path between any two of 940 inputs and outputs. Each device has a RAM-based programming scheme that enables you to reprogram device connections on the fly. A programmed connection uses a pass transistor to electrically join two of the I/O pins. Once activated, the pass transistor stays on, making the bandwidth of the AX1024 interconnect independent of the transistor's switching speed. Signals sent through the interconnect device must stay between 0 and 5V, but they do not have to conform to any logic levels; they can even be analog signals. The interconnect device is available in two versions. In addition to its 940 interconnect pins, the $2938 AX1024D provides 64 diagnostic pins on an attached flex cable. The device package features spring-loaded connecting pins and is intended for prototype troubleshooting.

The $1105 AX1024R has no diagnostic pins. This unit is housed in a more conventional surface-mountable pin-grid array. Both of these devices connect to a pc board using a 32 x 32-pad array spaced on 40-mil centers.

You need software to make these programmable devices useful. The development software currently available runs on SPARC-stations and costs $15,000. The company plans to announce PC software shortly. Two prototyping boards are available that will help you use the AX1024 devices.

To vote for this entrant as Component, Hardware, and Interconnect Product of the Year, mark the appropriate box on the ballot.

PURE PERFORMANCE

<table>
<thead>
<tr>
<th>HSP45116</th>
<th>HSP45106</th>
<th>HSP45102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase accumulator size</td>
<td>32 bits</td>
<td>32 bits</td>
</tr>
<tr>
<td>Phase control</td>
<td>16 bits</td>
<td>16 bits</td>
</tr>
<tr>
<td>Frequency control</td>
<td>32 bits</td>
<td>32 bits</td>
</tr>
<tr>
<td>Tuning resolution at maximum speed</td>
<td>0.008 Hz</td>
<td>0.008 Hz</td>
</tr>
<tr>
<td>Interface</td>
<td>Standard µP</td>
<td>Standard µP</td>
</tr>
<tr>
<td>Speed</td>
<td>33 MHz</td>
<td>33 MHz</td>
</tr>
<tr>
<td>Output</td>
<td>16 parallel</td>
<td>16 parallel</td>
</tr>
</tbody>
</table>

DIGITAL MODULATION MADE EASY

- **QAM** - Implement nearly infinite levels of Quadrature Amplitude Modulation
- **PSK** - Implement all forms of Phase Shift Keying from DPSK to 8PSK
- **FM/FSK/FHOP** - Real time frequency control; change frequency in a single clock cycle

For pure performance in frequency synthesis, catch the new wave in DSP. The new wave is Harris.

Our Numerically Controlled Oscillators (NCOs) offer spectral purity of better than 90 dB. Tuning resolution of 0.008 Hertz. 32-bit-wide
Active Eurocard Connector

The Active Eurocard Connector is a pc-board-to-backplane connection system that lets you mount a daughter card having active circuits on the connector. The right-angle connector attaches to the pc board via 126 solder-tail pins on 0.1-in. centerline spacings. The VMEbus- and Multibus II-compatible connector mates with all standard Type C Eurocard DIN backplane connectors having 96 pins on three rows.

By incorporating active devices on the connector, you can shorten the signal path from an IC to the backplane. The shorter distance can improve signal integrity and reduce the bus-loading effects caused by distributed capacitance and inductance. The active connector also frees up board space for other components, which is helpful for dense board designs.

The connector has a liquid-crystal-polymer housing that can withstand infrared and vapor-phase soldering processes. The connector's two metal-on-elastomer strips fit into housing grooves to connect the daughter card to the connector. A module-retaining bracket fits over the daughter card and onto the connector. The card can hold customer-supplied ICs or devices the company supplies. The connector's phosphor-bronze contacts have a minimum of 30 µin. of gold plating.

Tests show that the active connector improves upon standard Eurocard DIN connectors. For example, the Active Eurocard Connector exhibits 6 pF of capacitance and 21 nH of inductance compared with 13 pF and 45 nH for a standard Eurocard connector that has through-hole VMEbus-board design. The active connector also minimizes crosstalk and impedance variations. For 2-nsec rise times and seven lines switching simultaneously, a standard connector exhibits twice as much crosstalk as the active connector. The impedance deviation measures 10% less for the active connector. $14 to $15, excluding active devices (OEM).

To vote for this entrant as Component, Hardware, and Interconnect Product of the Year, mark the appropriate box on the ballot.

Spectral Purity of the Harris NCO Family

Typical spectral purity as measured by 2048 point FFT with Blackman window. The Harris family of NCOs will always have a spurious-free dynamic range better than shown.

- **HSP45116**
- **HSP45106**
- **HSP45102**

No one else offers NCOs that generate signals so pure with so much precision. No one else offers NCOs with so many features, either. Our HSP45116 also implements Direct Digital Down Conversion on the same chip. And our HSP45102 12-bit NCO has a footprint of just 0.28 square inches.

So get in tune with Harris. With our broad line of DSP products — including NCOs, digital filters and image processing — we're the new wave in DSP. Catch it. Call 1-800-4-HARRIS, ext. 1171.

SPECTRAL PURITY OF THE HARRIS NCO FAMILY

THE NEW WAVE IN DSP

HARRIS SEMICONDUCTOR

CIRCLE NO. 46
Flexible Universal PLCC ZIF Test Socket

Devices in plastic leaded chip carriers (PLCCs) can be difficult to test or program because there are at least seven PLCC package types. Instead of fussing with different sockets, you can use the Universal PLCC ZIF Test Socket from Aires Electronics. This zero-insertion-force (ZIF) socket quickly adapts itself to 20-, 28-, 32-, 44-, 52-, 68-, and 84-pin PLCC packages.

As you rotate the handle on the top half of the socket, four jaws open or close in unison to adapt the socket to a specific package. Releasing the handle lets the spring-loaded jaws firmly hold the corners of the chip in the "dead-bug" position (pins pointing up). As you close the clamshell case, the top latches to the bottom to hold the chip firmly for testing or programming. As the socket's name implies, no force is necessary to seat the chip in the socket, although some force is needed to latch the top and bottom parts of the socket assembly.

Closing the socket and latching the top half in place establishes the contacts between the socket's contact springs and the PLCC's leads. The contact springs are actually long fingers that extend into the center of the socket in a pattern resembling the letter X. This arrangement lets the socket accept a large family of PLCC devices without rearranging contacts or using adapter boards. Thus, the same set of metal fingers makes a positive contact with the leads on any of the PLCC packages noted above. The chip-holding mechanism provides inserts that adapt the socket to 32-pin rectangular PLCCs.

The socket suits products that require you to frequently change PLCCs; for example, test equipment, device programmers, and burn-in systems. You can also use the socket in applications that may require different types of PLCCs during development and prototyping. Cost is $200 per socket.

To vote for this entry as Component, Hardware, and Interconnect Product of the Year, mark the appropriate box on the ballot.

HARRIS GENERATES INNOVATIONS WITH

This HFA1100 family's fast performance is made possible by Harris' unique UHF-1 process. The shallow structure of UHF-1 transistors is the result of bonded wafer technology.

Once again, the latest breakthrough in ultra-high-speed op amps comes to you from Harris. This time, it's the HFA1100. Three times as fast as the old record holder. And just what fast-thinking engineers like you have been waiting for. Quickly imagine what you can do with a bandwidth so huge. Providing excellent phase linearity and a remarkable gain flatness of 0.14 dB to 100 MHz. And your creativity needn't stop with standard products. Because the HFA-1 process is available in semicustom, as part of Harris' industry-leading
Megapac Power Supply

The Megapac is a field-configurable, offline switching power supply. The unit consists of a bulk line-to-de supply and any of one to eight slide-in modular assemblies. Each module contains a de/dc converter that can generate as much as 200W at 2 to 95V.

Users can readily customize the Megapac by inserting converter modules of different voltages or power levels. To do so, you remove a single screw, slide the existing module out, and then insert a new module. You can parallel the modules with bus bars to provide high-current arrays of as much as 240A per power supply.

All Megapac outputs feature remote sense, overvoltage protection, and current limit. Line regulation (from high line to low line) equals ±0.1% and load regulation (no load to full load) measures ±1%. Efficiency figures range from 80 to 85%, depending on the output voltage, and set-point accuracy equals ±1%. The units meet VDE 0871 and FCC 20780 class A requirements for conducted EMI.

A fully configured Megapac converter is housed in a fan-cooled package measuring 11.8 x 6 x 3.4 in. The supply is available in commercial and industrial versions with operating ranges of 0 to 65°C and -20 to +65°C, respectively. Prices range from $885 to $1685.

To vote for this entry as Power Source Product of the Year, mark the appropriate box on the ballot.

ASTOUNDING FREQUENCY

FASTRACK™ design system. So rev up your oscilloscopes. And get your hands on some HFA1100s today. Just call 1-800-4-HARRIS, ext. 1173. Today.

HARRIS SEMICONDUCTOR

CIRCLE NO. 47

EDN August 20, 1992 • 73
The 3D-PCB transformer facilitates the design of the magnetics section in high-frequency switching power supplies. Rather than rely on traditional core designs, the unit uses a segmented design, resulting in much lower leakage inductance values.

Transformer construction uses a ferrite core in the form of a torus with a center hole. The primary winding is wound directly around the core. The secondary winding is made up of a number of electrically conductive segments. These segments, which are formed somewhat like U-shaped plates, feature mounting pins that you solder to a PCB board. The transformer is not fully assembled until the secondary segments have been soldered to the board.

All segments are metallized portions of the outer surface of a cap made from an electrical insulating material, such as plastic. The design integrates one plastic cap for the earth shield, the secondary insulation provided by the plastic cap itself, and several turns of secondary windings.

You can connect the secondary turns in series, in parallel, or in series-parallel combinations via connections on the PCB board. Thus, you can tailor the transformer to provide output-voltage and current values to satisfy many user-specific applications. The 3D-PCB transformer is currently being used in a line of 300W supplies. Because the unit is a custom design, prices depend on user requirements.

To vote for this entrant as Power Source Product of the Year, mark the appropriate box on the ballot.

We Make 41% Of The World’s Memory Cards.

With a 41% market share, Mitsubishi is the world’s leading supplier of memory cards.

The largest share of today’s memory card users depend on Mitsubishi for two good reasons: meticulous service and the best selection.

We manufacture cards in all five memory types — DRAM, SRAM, EEPROM, flash EEPROM, OTPROM and MROM — in the highest densities (up to 16Mbytes) and in the current versions of PCMCIA, JEIDA and JEDEC standards. Plus, we offer custom cards and custom panel artwork. We can mix memory types, consolidate logic into ASIC, even add MCUs on board.

Whatever it takes, we’ll work with our customers to achieve their memory card needs. With engineering and marketing support, well-stocked inventories and automated shipping services all onshore, Mitsubishi is the world’s leading memory card source.

Call (408) 730-5900, ext. 2214.

Based on independent market research. Information available upon request.
Units provide extra insurance against electronic disaster

TOM ORMOND, Senior Technical Editor

Surges (or transients), be they current or voltage in nature, are a fact of life in any system or electrical interconnection. As a result, proper design techniques must include protective devices. You should not treat transient protection as an afterthought in the system design cycle. In a system with no transient suppression, the weakest device will absorb most of the transient energy and probably fail. If you replace this device with one having higher ratings, then the next weakest device in the system will assume the role of providing transient protection by failing when hit with a burst of transient energy.

A number of factors can cause damage to electronic circuitry—ESD, lightning strikes, inductive surges coupling across traces, ac line surges, and short circuits. Historically, protection has been a system-level consideration. Shielded enclosures took care of ESD problems. Signal lines were guarded as they entered the enclosure, power supplies protected against line surges, and fuses should have handled short-circuit conditions.

There was a time when primary protection schemes were able to handle the task at hand because system operating speeds weren't so fast and pc boards were lightly populated. Therefore, protection problems weren't too tough. Today, system-level-only protection schemes are really not adequate—there's a definite need for secondary board-level circuit protection. Boards containing surface-mount components tend to be rather heavily populated, making them expensive to fabricate. Damage to a single component can become a very expensive proposition.

Military electronics is another area where board-level protection is paramount. Military gear must function in very harsh environments rife with damage-causing factors, like shock and vibration. Portability—a fact of life with much military electronics gear—also increases the chances for ESD problems.

An additional factor that increases the need for board-level protection schemes is that today many high-speed, high-functionality components use submicron
Our new BICMOS UCC3802 family of super-efficient current mode PWM's are small, fast, and accurate. No other PWM offers a lower voltage input (5 volts operational), so why bootstrap around your old IC's limitations?

You can fly - with minimal design-in effort. The UCC3802 is excellent for portable equipment: modems, notebook computers, and other battery-operated equipment are just a few of the applications the UCC3802 makes smarter.

For free samples and application information, give us a call today:

(603) 424-2410
7 Continental Boulevard, Merrimack, NH 03054, FX, (603)424-3460

The UCC3802 Family Advantage
- Low Starting Supply Current: typically 50µA
- Low Operating Supply Current: typically 350µA
- Pinout Compatible with UC3842 and UC3842A families
- 1MHz Operation
- Internal Leading Edge Blanking
- High-Current 1Apk Totem-Pole Output
- Fast Response Current-Sense Response: typically 100ns
- Restart Delay prevents Fast Soft-Start Oscillations
- Current-Mode Control for Automatic Feedforward Compensation
- Tight tolerance voltage reference ±1%

"THE CURRENT MODE PWM LEADER"
BOARD-LEVEL PROTECTIVE DEVICES

fabrication technologies. As a result, these components are inherently more susceptible to damage caused by electrical stresses. In addition, increased chip-trace-density combines with the high speed to increase inductive-coupling problems.

A number of board-mountable, transient-suppression devices are available today, the most common of which are varistors and sidacs (bilateral trigger devices) for overvoltage protection and thermistors and relay-based devices for overcurrent protection.

You can find two types of varistors: silicon and metal oxide. Silicon TVSs (transient voltage suppressors) are available from Motorola and General Semiconductor Industries (Table 1). The silicon TVS is characterized by a fast response time (subnanosecond) and a high surge-handling capability. The silicon TVS has V-I characteristics that are similar to those of other silicon pn-junction devices.

Unlike most diodes, however, silicon TVSs are built with large area junctions. They have a low dynamic impedance in the avalanche mode, which provides the low clamping voltages necessary for protection of semiconductor-based electronics. On the plus side, silicon TVSs are small, have no practical wear-out limitation, and feature a broad voltage spectrum. From a negative standpoint, the silicon TVS have high capacitance values and a relatively low 1-shot current capability.

The second TVS type available is the metal oxide varistor (MOV), which derives its electrical behavior from the semiconducting properties of zinc oxide (ZnO). Philips, World Products, and MCG Electronics make MOVs. The companies produce them by blending fine particles of ZnO, various other metal oxides, and a binder into a powder. This powder is then compacted into a disk shape and sintered until cured.

Many MOVs physically resemble ceramic disk capacitors, but some devices are available in tubular packages. Electrically, MOV material can produce nonlinear semiconductor action that is inherently bidirectional. MOVs can clamp high surge voltages, withstand high surge current and energy, respond rapidly, and have reliably provided ac power protection over the years. On the negative side, MOVs have high capacitance, they are not rated for continuous power, they are somewhat bulky, and you must current-derate them when handling multiple pulses.

As the numbers in Table 1 illustrate, today's TVS devices have a lot to offer. Given the clamping voltage and surge-current handling capabilities listed, the devices will handle a spectrum of applications. Response times are all in the nanosecond range and operating ranges are more than sufficient for both commercial and military applications.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Type</th>
<th>Clamping voltage (V)</th>
<th>Surge current (A)</th>
<th>Response time (sec)</th>
<th>Operating range (°C)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Semiconductor</td>
<td>SMC Series</td>
<td>Silicon</td>
<td>5 to 170</td>
<td>200</td>
<td>1x10^-9</td>
<td>-55 to +150</td>
<td>From $0.52 (5000)</td>
</tr>
<tr>
<td>MCG Electronics</td>
<td>DP-10, -20, -30, -33, -35</td>
<td>Silicon</td>
<td>±11 to ±260</td>
<td>120</td>
<td>1x10^-9</td>
<td>-55 to +85</td>
<td>From $58</td>
</tr>
<tr>
<td>Motorola</td>
<td>MR2535L</td>
<td>Silicon</td>
<td>24 to 32</td>
<td>110</td>
<td>1x10^-4</td>
<td>-65 to +175</td>
<td>$3 (1000)</td>
</tr>
<tr>
<td>Philips Components</td>
<td>2322-592, 2322-593</td>
<td>MOV</td>
<td>14 to 615</td>
<td>100 to 1200</td>
<td>20x10^-9</td>
<td>-55 to +80</td>
<td>From $0.15 (1000)</td>
</tr>
<tr>
<td>World Products</td>
<td>Super S</td>
<td>MOV</td>
<td>205 to 1100</td>
<td>9000</td>
<td>15x10^-9</td>
<td>-55 to +85</td>
<td>$0.07 to $0.30 (10,000)</td>
</tr>
</tbody>
</table>

EDN August 20, 1992 • 77
Although it’s not obvious from Table 1’s listings, the devices shown do have one thing in common—they are all single grain-boundary (junction) devices. The number of boundary interfaces between conducting electrodes determines breakdown voltage. High grain counts satisfy high-voltage applications but low-voltage breakdowns need low grain counts. Single-boundary processing can handle the high grain requirements quite readily, but it’s not as viable for the low grain counts. AVX and Harris have recently introduced suppression devices that overcome this problem.

Improving performance
The multilayer TVS devices in the ML Series (Harris Corp) and Transguard Series (AVX Corp) are compact, surface-mountable chips that are voltage dependent, non-linear, and bidirectional. They have an electrical behavior similar to that of back-to-back diodes—they are fully symmetrical, offering protection in both forward and reverse directions.

The manufacturer constructs the multilayer devices by forming a combination of alternating electrode plates and semiconductive ceramic layers into a block. Each alternate electrode layer is connected to opposite end terminations. This formation enhances the available cross-sectional area for active conduction of transients. The design produces a large increase in active surface area, which results in proportionally higher peak energy capability.

The multilayer construction provides a second advantage. The breakdown voltage of the device is dependent on the dielectric thickness between the electrodes rather than the overall thickness of the device. Vendors can offer a variety of breakdown voltage ratings simply by varying the dielectric thickness.

The Transguard units from AVX have a current capability of 150 to 300A. They have a response time of 1 nsec max and they are available in a variety of surface-mount packages—0805, 1206, 1210, and axial-lead. These low-voltage devices have a circuit-operation capability ranging to 60 working volts. Clamping voltage figures range from 15.5 to 30V and transient energy figures cover a 0.3 to 1.2J spectrum. Transguard suppressor prices start at $0.45 (1000).

The V18MLA Series multilayer TVSs from Harris are aimed at automotive applications. The units are rated for peak currents ranging to 2000A. The devices are specified for voltage ranging to 18V and they have a jump-start overvoltage capability of 24.5V.

V18MLA suppressors are available in 1206-, 1210-, 1812-, and 2220-size packages. Units in the series will accommodate the complete range of automotive transient conditions, from worst-case alternator load dumps to secondary effects such as ignition system transients and ESD. Prices start at $0.46 (1000).

Meet the new kid on the block
Another type of unit on the market offering some pretty impressive performance is the sidac. The sidac is a bilateral trigger device designed for high-energy applications where other trigger devices are unable to function without the aid of

For more information . . .

For more information on the board-level protection products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN’s Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

Advanced Thermal Products Inc
Box 249
St Marys, PA 15857
(814) 634-1541
FAX (814) 834-1566
Circle No. 700

AVX Corp
Box 857
Myrtle Beach, SC 29577
(803) 448-9411
FAX (803) 446-1943
Circle No. 701

General Semiconductor
2001 W Tenth Pl
Tempe, AZ 85281
(602) 731-3221
FAX (602) 966-6396
Circle No. 701

Harris Corp
Box 591
Somerville, NJ 08876
(908) 685-6000
FAX (908) 685-6217
Circle No. 702

Inresco Inc
2411 Atlantic Ave
Monsavon, NJ 08736
(908) 223-6330
FAX (908) 223-2571
Circle No. 703

MCG Electronics Inc
12 Burt Dr
Deer Park, NY 11729
(516) 586-5125
FAX (516) 586-5120
Circle No. 704

Motorola Inc
Power Products Div
5005 E McDowell Rd
Phoenix, AZ 85008
(602) 244-3035
FAX (602) 244-4015
Circle No. 705

Phillips Components
Box 760
Mineral Wells, TX 76067
(817) 325-7871
FAX (817) 325-1052
Circle No. 706

Raychem Corp
300 Constitution Dr
Menlo Park, CA 94025
(415) 361-3333
FAX (415) 361-7911
Circle No. 707

Teccor Electronics Inc
1801 Hurd Dr
Irving, TX 75038
(214) 580-1515
FAX (214) 580-1530
Circle No. 708

World Products Inc
Box 517
Sonoma, CA 95476
(707) 996-5201
FAX (707) 996-3380
Circle No. 709

VOTE . . .

Please also use the Information Retrieval Service card to rate this article (circle one):

High Interest 476
Medium Interest 477
Low Interest 478
ACE Your 1553 Design!

Don't Gamble With Your Design.

Advanced Communication Engine.

• UNDER 2 SQUARE INCHES
• BUS CONTROLLER/REMOTE TERMINAL/MONITOR
• ADVANCED ARCHITECTURE OFF-LOADS HOST

With DDC's Advanced Communication Engine (ACE) 1553 terminals, you're dealt a winning hand every time. A complete processor-to-1553 bus solution. A hand that's strong in every suit: monolithic transceivers, a flexible processor interface, and an advanced functional architecture to off-load the host processor in all modes.

When the chips are down, we're glad to lay it on the table. The ACE, packaged in a 1.9 square inch ceramic MCM, represents an ultra small size, high-reliability 1553 terminal implementation. Fully integrated dual transceiver, encoder/decoder, memory management, processor interface, and 4K X 16 RAM. The choice of RT-only BU-65170 or BC/RT/MT BU-61580 in the identical package footprint.

There's many ways to play this hand. A wide variety of processor interface configurations serve to minimize glue logic and total board space. The winning combinations include fully buffered 8-bit and 16-bit interfaces between any microprocessor, including those without hardware wait states, and the ACE's 4K words of internal RAM. Alternatively, the ACE can access up to 64K words of external RAM in either transparent or DMA configurations.

For BC mode, architectural enhancements include programmable retries and intermessage gaps, major frame time, auto frame-repeat, internal or external BC trigger, and designation of 1553A or 1553B error handling on a message basis. For RT, 1553A/B/1760A/ McAir multi-protocol operation, plus the choice of single message, double buffering, or circular buffering on a subaddress basis, programmable illegalization, including word counts, programmable busy by subaddress, and interrupts on any subaddress or mode code. For MT, true message monitor and combined RT/monitor modes with message selection based on RT address, T/R bit, and subaddress.

With our ACEs in hand, you don't need to bet scared money on your 1553 designs.

For additional information and product literature, call Mike Glass at (516) 567-5600 extension 7545.
additional power-boosting components. Being a bilateral device, the sidac will switch from a blocking state to a conducting state when the applied voltage of either polarity exceeds the break over voltage. As in other trigger devices, the sidac switches through a negative resistance region to the low-voltage on-state and the unit will remain on until the main terminal current is interrupted or drops below the holding current rating.

In operation, the sidac normally connects between the high side of the circuit being protected and ground. As long as the monitored voltage remains below the specified value, the sidac presents a high off-state impedance. If the monitored voltage exceeds the specified clamping-voltage level, the sidac starts clamping in 1 nsec or less.

Sidacs are as fast as other currently used protection devices, and they can respond without a voltage overshoot. The sidac offers a lower impedance than a zener diode during conduction and it can handle higher currents.

Motorola and Teccor Electronics both offer sidac devices. Motorola offers two families of devices. MKP9V units—$0.74 to $1.80 (1000)—have an on-state current rating of 0.9A rms and break over voltages ranging from 120 to 270V. Dynamic holding-current requirements equal only 100 mA. Units in the MK1V Series—$1.04 to $3.15 (500)—feature an on-state rms current rating of 1A and are available with break-over-voltage levels of 115, 125, and 135V. Dynamic holding current for these devices is also equal to 100 mA.

The P Series line of sidacs from Teccor Electronics features more than 30 units covering a break-over-voltage range of 60 to 660V. Surge-current ratings of 150 to 500A are available. Clamping speed is specified at 1 nsec and holding-current values range from 150 to 750 mA.

A 380V unit housed in a TO-220 package costs $2.32 (100).

Voltage suppression is one use of protective devices, another is providing protection against high temperatures caused by excessive current flow. The task of protecting pc boards from excessive currents is gaining in importance as the boards continue to decrease in size while component packing densities increase. Solid-state devices and pc-board traces are particularly susceptible to current-related damage. A number of devices are available that provide the needed protection, but some of these options are devices originally intended for primary protection at the system level. Such devices may not be the best solution for providing secondary protection at the board level.

Secondary (board-level) protection differs from primary (system-level) protection in several ways. First, pc boards are basically dc powered, so you can tailor protection devices for dc Inrush current, which can cause nuisance tripping problems, is not a major concern at the board level.

Energy let-through is a critical parameter with board-level protec-
The Next World Standard for Embedded Systems

IDT's R3051 RISCController™

MIPS® RISC for $30

The 32-bit R3051™ outperforms the i960 and AMD29K, and has everything you need in a high-performance, low-cost CPU:

- Larger Cache — up to 10KBytes of I and D cache on-chip for PostScript®, networking, or X protocols.
- 4-Deep Read and Write Buffers — allow the CPU to run at full speed, even in low-cost DRAM designs.
- Multi-Sourcing — provides form, fit, and function interchangeable products at competitive prices.
- Development Support — 100% software compatible with low-cost MIPS and IDT development tools on PC, SPARC, MIPS, and Macintosh® host platforms.
- In Production Now!

"I could never have imagined that RISC would become so inexpensive, powerful, and pervasive, and IDT's R3051 has made that happen."

Steve Blank
Vice President of Marketing
SuperMAC, Leader in high-end graphics

(800) 345-7015 • FAX: 408-492-8674
ASK FOR KIT CODE 5071

Evaluate the R3051 Today

For a limited time, we're offering a complete R3051 Evaluation Kit, including an evaluation board and software, for $595 (an $895 value).

Call our toll-free hotline to get an IDT RISC Product Roadmap and complete information on the R3051 Evaluation Kit, so you can evaluate the next µP standard for embedded systems today.
You can control any IEEE-488 (HP-IB, GP-IB, 488.2) device with our cards, cables and software for the PC/AT/386, EISA, Micro Channel and Macintosh II. You get fast hardware and software support for all the popular languages, plus a software library of time saving utilities.

Instrument control has never been easier.

FREE Informative Catalog 800-234-4CEC
Applications help 617-273-1818

Capital Equipment Corp.
Burlington, MA. 01803

FULLY QPL'd!
Trompeter's 70 Series...
Twinax/Triax Concentric Connectors

MIL-C-49142/3 MIL-C-49142/8
MIL-C-49142/4 MIL-C-49142/9
MIL-C-49142/5 MIL-C-49142/10
MIL-C-49142/6 MIL-C-49142/11

Send for 70 Series Mil Spec Sheet For pricing and availability contact your Local Trompeter Rep or call our New 800# for Sales/Service/Technical Support.

(800) 982-COAX Inside California Call... (800) 655-2028

Quality doesn't cost... It pays.

TROMPETER ELECTRONICS, INC.
31186 La Baja Drive • Westlake Village, CA 91362 (818) 707-2020 Fax (818) 706-1040

EDN-TECHNOLOGY UPDATE

BOARD-LEVEL PROTECTIVE DEVICES

in response to excessive currents. When the current flowing through the polyswitch is within its maximum rating, the unit’s base resistance is very low. If the current rises above the rated value, polyswitch resistance rises abruptly and decreases the current level until a thermal-equilibrium state is achieved.

Depending on the polyswitch in question and the amount of current flow, the trip time can be as short as 0.1 sec. Once power is removed from the protected circuit, the polyswitch device’s resistance begins to drop towards the normal base value. This in essence resets the device so that normal operation can begin once the fault is corrected and the power is reapplied.

Raychem currently offers six families of leaded polyswitches encompassing more than 80 individual devices. In addition, surface-mount polyswitch protectors are available with ratings ranging from 300 mA at 60V to 1.5A at 30V. The surface-mount units are housed in packages ranging in size from 0.3 x 0.21 to 0.34 x 0.26 in. Prices range from $0.25 to $1.

Advanced Thermal Products’ line of overcurrent protective devices use ceramic thermistors as the temperature-monitoring element. The line includes devices with maximum voltage ratings of 15, 50, 132, 265, and 400V. Minimum must-switch current ratings (value at which the unit must switch into the high resistance state) range from 0.1 to 2.31A. Switching speeds of 100 µsec are available. Prices, depending on quantity and device size, range from $0.20 to $0.80.

Article Interest Quotient
(Circle One)
High 476 Medium 477 Low 478
WHO IS CREATING THE NEXT GENERATION OF HYBRID MODULES FOR CABLE TELEVISION?
THE PEOPLE WHO HAVE ALREADY BROUGHT 110 CHANNELS INTO THE WORLD.

If you believe TV viewers have plenty of choice today, watch out tomorrow.

Community Antenna TV operators are poised to deliver more and more cable channels over the next decade. News and entertainment, home shopping, telephone and HDTV services will all be on the menu. As a mass medium, it's still in its infancy. But already Philips has made a major contribution.

Our 750 MHz wideband hybrid module is the only production device that can deliver 110 channels down a CATV

Philips Semiconductors

Philips Components Discrete Products Division, 2001 W Blue Heron Blvd, Riviera Beach, FL 33404 USA. Tel: 1-800 447 3762.
And for the next generation, Philips is sampling a 1 GHz CATV hybrid module providing up to 150 channels. Comprehensive application support and technical documentation are other Philips specialties. All in all, it's hardly surprising that Philips holds an impressive share of the CATV hybrid module market around the world.

As North America's third largest discrete semiconductor supplier, Philips is ideally placed to develop new technologies and bring new products into the world. It's a role we'll continue to play in the future.
GO AHEAD. PULL THE TRIGGER ON
THE LITTLE RUNT.

Our new TDS 620 and TDS 640 digital oscilloscopes make triggering so easy, it's just like target practice.

See, with an extraordinary sampling rate of 2 GS per second on all 4 channels at once, you can get a precisely detailed look at what you're aiming at. And with the ingenious TDS user interface and application-specific icons, you can now quickly access nearly a dozen extended trigger functions, including runt, logic and glitch. Better still, either model is available for a price noticeably lower than any competitive scope.

The undeniably accurate, remarkably affordable, intuitively trigger-happy TDS 600 Series digital scopes from Tektronix. Without a doubt, they'll make your day. TALK TO TEK/1-800-426-2200 EXT. TDS6

Tektronix
Test and Measurement
Whether your projects are designed for space, extreme or nuclear environments, UTMC delivers your microelectronics solutions. Our rad-hard circuits are designed to perform flawlessly, even in the harshest environments.

We offer a full spectrum of rad-hard products, including high-reliability military standard and semicustom integrated circuits. If your designs require memories, processors, MIL-STD-1553/1773 or ASICs, we deliver on time the parts that meet your needs. Our world-class rad-hard technology results in products that are among the hardest in the industry.

From design through final screening, each phase of UTMC's DESC-certified manufacturing concentrates on satisfying your rad-hard requirements. You can be confident that our rad-hard products will meet datasheet specs after irradiation — we guarantee it!

UTMC is a leader in generic JAN qualification of gate arrays. We offer JAN Class S and Class B, MIL-STD-883C and SMDs. Our CAE tools support your semicustom designs on popular workstations.

UTMC is the fastest growing supplier of radiation-hardened microelectronics. Join us on the continuous improvement path into the next century. If the harsh environment planned for your project calls for kilorad or megarad-plus, call UTMC for a full spectrum of solutions. UTMC is committed to helping solve your microcircuit radiation environment problems.

800-MIL-UTMC
1575 Garden of the Gods Road
Colorado Springs, Colorado 80907

Dedicated to Aerospace and Defense
Soldering-in EPROMs and EEPROMs simplifies manufacture and enhances reliability but complicates programming. Commercial in-circuit programming instruments overcome these complications, but require customization and a lot of forethought.

A few commercial in-circuit programming (ICP) instruments answer the growing need to program EPROMs and PLDs after pc-board assembly. In contrast with early forms of ICP, which were virtually device-specific, today's ICP instruments offer comprehensive and user-oriented facilities similar to those you expect to find in conventional chip-level programmers. Table 1 presents an overview of these ICP instruments and their principal characteristics. Prices range from $3500 for a bench model suitable for programming a single target assembly to $25,000 for a ruggedized portable version that programs multiple assemblies.

ICP remains principally aerospace and military driven because these organizations mandate that all components must be soldered-in to satisfy reliability and ruggedizing requirements. However, ICP is showing signs of migrating to the commercial sector, particularly as designers turn to surface-mount and thin-small-outline-package (TSOP) programmable devices for medical and telecomm products. In commercial applications, the motivation to employ ICP includes reliability as well, but also results from acute difficulties in handling small-package parts in manufacture. Refs 1 and 2 cover the pros and cons of ICP in more detail.

When you're selecting an ICP instrument, you should be just as concerned with selecting a vendor to support you as with the specifications of the programmer itself. ICP still involves a degree of customization and, although most users believe they can handle the work themselves, vendors' experience shows that ICP newcomers still need their support. In fact, many seasoned ICP users continue to rely totally upon their vendor for customizing each new design.

Several ICP instruments have developed from vendors' existing conventional programmer designs. The main difference is that dedicated edge-connector sockets on the ICP instruments replace the usual EPROM zero-insertion-force (ZIF) sockets. The dedicated edge connectors provide many more contacts, which ICP needs for it to take control of all the hardware on your target assembly.

Hardware adapters, either open pc boards or enclosed units, mate with connectors along the right-hand side of Elan Digital Systems' ICP-5 portable benchtop programmer. The ICP-5 provides ZIF sockets to accept source data from programmed devices as an alternative to downloaded files.
IN-CIRCUIT PROGRAMMERS

In principle, ICP is simply a matter of carrying signals, similar to those used for conventional chip-level programming, to similar memory parts permanently soldered onto a pc board. In practice, the problem is channeling those signals around other devices on the same pc board without compromising the programming signals or damaging the other unsuspecting nonprogrammable parts.

To make ICP work, you need more than just the ICP instrument. You need a hardware adapter to link your target assembly to the programmer, and a software configuration file to take control of all hardware and programming of your assembly. In addition, to enable this level of control, it's likely you'll have to build extra hardware into your target assembly, or, at the very least, run additional traces on your pc board. The box "Guidelines for designing-in ICP" answers questions on what you need to do to prepare a design for ICP.

Even accepting that you can install the necessary features on

Table 1—Representative in-circuit programmers

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Model</th>
<th>Type</th>
<th>Number of address lines</th>
<th>Number of data lines</th>
<th>Number of TTL control lines</th>
<th>Max number of target assemblies accepted</th>
<th>(V_{pp})</th>
<th>(V_{cc})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data I/O</td>
<td>Boardsite 4100</td>
<td>Benchtop</td>
<td>32</td>
<td>32</td>
<td>24</td>
<td>4</td>
<td>2</td>
<td>0 to 25V, 2A</td>
</tr>
<tr>
<td></td>
<td>Boardsite 4400</td>
<td>Benchtop</td>
<td>32</td>
<td>32</td>
<td>24</td>
<td>32</td>
<td>2</td>
<td>0 to 25V, 2A</td>
</tr>
<tr>
<td></td>
<td>Boardsite 5100</td>
<td>Ruggedized</td>
<td>32</td>
<td>32</td>
<td>24</td>
<td>8</td>
<td>2</td>
<td>0 to 25V, 2A</td>
</tr>
<tr>
<td>Elan Digital Systems</td>
<td>5-ICP</td>
<td>Benchtop</td>
<td>23</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>3</td>
<td>0 to 25V, 0.8A</td>
</tr>
<tr>
<td></td>
<td>5-ICP/UMI</td>
<td>Benchtop</td>
<td>23</td>
<td>32</td>
<td>16</td>
<td>4</td>
<td>3</td>
<td>0 to 25V, 0.8A</td>
</tr>
<tr>
<td>Logical Devices</td>
<td>Unipro-ICP</td>
<td>Benchtop</td>
<td>20</td>
<td>16</td>
<td>40</td>
<td>8</td>
<td>4</td>
<td>0 to 27V, 2A</td>
</tr>
<tr>
<td>Oliver Advanced Engineering</td>
<td>Omni</td>
<td>Benchtop</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>8</td>
<td>4</td>
<td>±38V, 10A</td>
</tr>
<tr>
<td>Stag Programmers</td>
<td>ICP 9000-1</td>
<td>Benchtop</td>
<td>64</td>
<td>32</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>0 to 25V, 1A</td>
</tr>
<tr>
<td></td>
<td>ICP 9000-2</td>
<td>Benchtop</td>
<td>64</td>
<td>32</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>0 to 25V, 1A</td>
</tr>
<tr>
<td></td>
<td>ICP 9500</td>
<td>Benchtop</td>
<td>128</td>
<td>64</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>0 to 25V, 1A</td>
</tr>
<tr>
<td>Sunrise Electronics</td>
<td>T-2000</td>
<td>Benchtop</td>
<td>24</td>
<td>16</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0 to 30V, 3A</td>
</tr>
<tr>
<td></td>
<td>T-4000</td>
<td>Benchtop</td>
<td>24</td>
<td>16</td>
<td>24</td>
<td>64</td>
<td>3</td>
<td>0 to 30V, 3A</td>
</tr>
<tr>
<td></td>
<td>T-5000</td>
<td>Benchtop</td>
<td>24</td>
<td>16</td>
<td>24</td>
<td>64</td>
<td>3</td>
<td>0 to 30V, 3A</td>
</tr>
<tr>
<td></td>
<td>T-6000</td>
<td>Ruggedized</td>
<td>24</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>0 to 30V, 3A</td>
</tr>
<tr>
<td></td>
<td>T-8000</td>
<td>Benchtop</td>
<td>24</td>
<td>16</td>
<td>24</td>
<td>64</td>
<td>3</td>
<td>0 to 30V, 5A</td>
</tr>
</tbody>
</table>

Notes: 1. \(V_{pp} \)=programming supply, \(V_{cc} \)=power supply.
2. Limitation depends on bus allocation per target assembly. \(V_{cc} \) current rating, or size constraint.
 (It can be faster overall to program and verify fewer target assemblies simultaneously.)
3. Assumes isolation between target assemblies.
your target assembly, other questions arise on how to proceed. The box “Common questions from ICP first-timers” supplies some of the answers.

The most important ICP advice is to think about the consequences of ICP well before you intend to apply it to your design. ICP instrument vendors echo this point over and over, but still it seems some designers ignore the message. The difficulties and costs of back-tracking on an existing design to build-in ICP multiply excruciatingly over the relative ease of designing-in beforehand. Even on a simple target assembly with only memory parts, you need to run multiple traces to some pins, and you generally need to thicken-up traces along principal supply lines. So at the very least, you need a new pc-board issue. If you simply cannot change a pc-board layout, Logical Devices offers the option of using a bed-of-nails connection system with their programmers, but this is not a preferred route.

As part of their ICP applications-

<table>
<thead>
<tr>
<th>Vcc1</th>
<th>Control</th>
<th>Interfaces</th>
<th>Base price</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating per line</td>
<td>External PC</td>
<td>Internal PC</td>
<td>Local panel keys</td>
</tr>
<tr>
<td>2</td>
<td>0 to 7V, 6A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 to 7V, 6A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 to 7V, 6A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 to 8V, 2.4A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 to 8V, 2.4A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0 to 27V, 5A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>±38V, 10A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0 to 7V, 8A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0 to 7V, 8A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 to 7V, 8A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 to 7V, 1.5A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 to 7V, 7.5A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 to 7V, 7.5A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 to 7V, 7A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 to 7V, 10A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IN-CIRCUIT PROGRAMMERS

Although vendors provide a turn-key ICP service, it's still possible to go it alone. A major part of the work consists of developing a software configuration file to drive your assembly. Vendors include a software utility with an ICP instrument to perform this task. You create a source file by entering mostly text information about your target assembly. A compiler feature reformats the file to machine code in preparation for driving your assembly. The ease with which you can operate these tools is clearly an important factor. Data I/O offers you a taste of its software by issuing a PC demo disk (Ref 3) that takes you through the data-entry procedure.

Guidelines for designing-in ICP

Before you can use ICP, you need to build some basic but essential features into your pc-board assembly. If your pc board already has an I/O connector with unused pins, the chances are that this connector will be a suitable access point for ICP. If not, then you will have to design-in a dedicated ICP connector.

The list of recommendations below refers mainly to designs using UV-erasable, one-time-programmable, or flash EPROMs.

- Run separate traces from EPROM pins \(V_{ee} \) (5V supply) and \(V_{pp} \) (programming supply) to the ICP connector. \(V_{pp} \) is at 5V for read/verify mode, but may be up to 25V for programming.

- Build enough copper into the \(V_{pp} \) and \(V_{cc} \) traces to handle currents as high as 50 mA required during programming. A good ground plane is also essential to minimize voltage overshoot—device vendors often specify voltages more strictly for programming than for reading.

- Decouple both \(V_{cc} \) and \(V_{pp} \) close to EPROMs using 0.01- to 0.1-\(\mu \)F ceramic capacitors.

- Ideally, separate \(V_{cc} \) from the pc board’s main 5V supply. Most EPROMs require \(V_{cc} \) at 6V or more during programming (eg, Intel’s “Quick-pulse” algorithm specifies 6.25V). This voltage exceeds the maximum \(V_{cc} \) level of standard LS/HC logic, which can be as low as 5.25V. Even if you do separate \(V_{cc} \) and apply 6V, EPROM data outputs will then switch up to 6V. So check the likelihood of damage to other devices on the data bus.

- Flash EPROMs require 5V on \(V_{ee} \) for programming or erasing, so \(V_{ee} \) separation is unnecessary.

- Run all data and address bus lines from EPROMs to the ICP connector. Also, run EPROM control pins CE (chip enable), OE (output enable), and PGM (program) to the ICP connector.

- If your EPROMs output via a data-bus buffer, you will need to install a bidirectional version to allow for programming as well as read/verify mode. ICP requires control of the DIR (direction) line of this buffer. Normally, you can control DIR by connecting it to OE on the EPROM.

- Don’t indiscriminately mix EPROMs of the same generic type in your design. Some nominally equivalent parts require different programming algorithms (eg, 27C020s from AMD (Sunnyvale, CA) and Texas Instruments (Dallas, TX) use Flashrite and Snap algorithms, respectively).

- When you intend to use ICP with EPLDs’ or µPs’ on-chip programmable memory, it’s likely you’ll need to add 3-state buffers to isolate memory from the remainder of the circuit in the programming mode. At this stage, it’s best to seek advice from ICP specialists.

Acknowledgment

Thanks go to Philip Townley, ICP applications engineer at Elan Digital Systems for helping with these design guidelines.
IN-CIRCUIT PROGRAMMERS

ICP is not necessarily a programming panacea. For plenty of applications, EPROMs in sockets and a $1000 PROM programmer remains a more sensible arrangement. Often, pc boards are not readily removable from an instrument or system; for example, when the system in not based on a backplane construction. In this case, replacing a few socketed chips is vastly easier and faster than wrestling-out a whole pc board. Although quality engineers generally despise general-purpose IC sockets, they can't complain if you use high-quality sockets.

If you're using ICP, and your target assembly uses UV-erasable EPROMs, you'll need to get an outsiz e UV eraser to take whole pc-

Common questions from ICP first-timers

Newcomers to ICP tend to raise certain questions. These questions—and their answers—are as follows:

Are the following pc-board assembly and design characteristics compatible with ICP?

<table>
<thead>
<tr>
<th></th>
<th>Compatible</th>
<th>Incompatible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains memory only</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Contains μPs</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Contains address decoders</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Contains other TTL and VLSI parts</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Uses multiplexed address/data</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Uses dedicated socket for ICP</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Includes multiple edge connectors</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>No access to EPROM Vpp pin</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>EPROM OE pin tied low</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

What if I can't raise an EPROM Vc, pin above 5V or can't apply a programming pulse to the correct pin?

Then you can't use a memory-IC vendor-approved programming algorithm. Alternative general algorithms can do the job, but your choice will depend on the specific memory device and pc-board layout.

How easy is it for my manufacturing and customer-service operators to use ICP?

You can operate most ICP instruments locally using a few basic keys and a simple LCD, just as you would a conventional programmer. Remote operation is also possible if you link the programmer to a PC or a VAX mainframe.

How can I configure an ICP instrument for a specific target assembly?

You need an assembly-configuration software file, and a custom-built hardware adapter to connect your target assembly to the programmer.

You develop a source file for the assembly configuration using an editor utility program, which runs on a PC or on the programmer itself. The same program compiles your source file to machine code for directly controlling and programming your target assembly.

Each time you operate ICP, you download the appropriate assembly-configuration file from an internal hard- or floppy-disk, or from a host computer via RS-232C.

How long does it take to develop an assembly-configuration file?

Depending on assembly complexity, it can take a few minutes or a few hours. Once you've entered the source file, compiling the file takes seconds or minutes depending on which programmer you use.

Programmer vendors offer a service to produce configuration files for you.

Can I gang-program assemblies?

Yes. But be sure to look for a programmer that isolates the connectors for each target assembly to prevent one failed assembly affecting the others. The following is a typical gang-programming arrangement:

Typical number of target assemblies

<table>
<thead>
<tr>
<th>Target-assembly data-bus width</th>
<th>General-purpose programmer</th>
<th>Top-end programmer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 bits</td>
<td>16 bits</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4 assemblies</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

How long will it take to program?

The time varies according to which programmer you use, which algorithm you use, and the parameters of your target assembly. As an example, using an Intel Quick-pulse algorithm, and assuming one device per eight bits, the following times could apply:

Typical programming time in seconds

<table>
<thead>
<tr>
<th>Target-assembly data-bus width</th>
<th>One assembly</th>
<th>Two assemblies</th>
<th>Eight assemblies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.7</td>
<td>15.1</td>
<td>29.1</td>
</tr>
<tr>
<td>8 bits</td>
<td>10.7</td>
<td>15.1</td>
<td>60.4</td>
</tr>
<tr>
<td>16 bits</td>
<td>11.1</td>
<td>15.5</td>
<td>62.0</td>
</tr>
<tr>
<td>32 bits</td>
<td>12.3</td>
<td>Not available</td>
<td>Not available</td>
</tr>
</tbody>
</table>

Acknowledgment

Thanks go to Richard Hough, ICP specialist at Stag Programmers, for helping with the information in this box.
IN-CIRCUIT PROGRAMMERS

board assemblies. If your pc board is particularly large, and you can erase only one assembly at a time, the 20 minutes or so it takes creates a process bottleneck. Added to this inconvenience, you should anticipate spending as much as $10,000 for an eraser, rather than closer to $500 for a chip-size eraser.

Prefer approved algorithms

One of the headaches of the programming business, of conventional or ICP, is staying abreast of changes to programming algorithms. According to Mike Radovich, product manager with Data I/O, a programming algorithm for any device may change four to seven times over a typical 5-year life of the device. The primary reason for algorithm changes is process changes by the manufacturer.

Radovich adds that even where an algorithm is stable for a principal part, don’t necessarily expect the algorithm for its recognized second-source equivalent to be identical. Simply having the same part made in a different foundry can mean you need to use a different programming algorithm. Knowing which algorithm you should be using at any time is where programmer vendors can help you out. Generally, vendors include a 1-year free software-upgrade service with the sale of a programmer. Thereafter, the service becomes chargeable at around $1500 per annum.

Where possible, programmer vendors strive to use the same programming algorithms for ICP as for discrete-chip programming. In most cases, if you adopt your programmer vendor’s advice when laying out your pc board, then there’s no problem in using a standard programming algorithm.
In cases where it's not possible to install some of the recommended features, it becomes necessary to consider special ICP algorithms. As an example, if you can't run separate lines to V_{dd} pins, or you can't isolate all superfluous logic hanging on the data bus, then you won't be able to apply the 6V or greater that some standard programming algorithms specify. In this case, you'll have to use a special low-voltage algorithm (5V on V_{dd}), which consequently extends programming time.

Programmer vendors prefer not to employ special algorithms, although their experience proves such algorithms to be entirely reliable. Such algorithms are officially nonpreferred because, at present, no memory-IC vendor offers approved algorithms with V_{dd} set to 5V. Memory-IC vendors offer a service for approving alternative programming algorithms, but the level of service varies widely between vendors and depends on how significant you are as a customer.

If you use a nonapproved algorithm and subsequently discover programming errors, it's difficult to know who to blame except yourself. This potential predicament reinforces the valuable advice to build-in rather than back-in to ICP.

References
2. Data I/O Corp, "Introduction to in-circuit programming."

Article Interest Quotient
(Circle One)
High 482 Medium 483 Low 484
NEW ABEL-FPGA helps you get the most out of the latest FPGAs. If you want to take advantage of the sophisticated capabilities of today's FPGAs, only Data I/O®'s new ABEL-FPGA™ Design Software has the power to pack in maximum logic. It combines the industry-standard ABEL Hardware Description Language (ABEL-HDL™) with our new intelligent FPGA Device Fitter™ technology. So, you can create more complex designs with less effort—ABEL-FPGA does the hard work for you!

ABEL-FPGA's powerful Device Fitters automatically optimize your circuits for minimum area or maximum speed. Fitters are available for all the leading architectures, including Actel, Altera, AMD, Atmel, Cypress, ICT, National, Plus Logic, Texas Instruments, and Xilinx. And with built-in knowledge of its target architecture, each fitter masters the complex features of its device automatically, intelligently.

Practical, detailed documentation, complete with FPGA design examples, also helps to ensure that you get the most from each architecture. And for added design power and flexibility, ABEL-FPGA lets you specify place-and-route constraints directly in your circuit description, so you can easily migrate the same design between multiple FPGA vendors.

Pack more logic into your next FPGA design, with the single solution to all your FPGA behavioral entry needs: ABEL-FPGA.

Call us today to find out more about NEW ABEL-FPGA.

1-800-3-DataIO
(1-800-332-8246)

DATA I/O
CIRCLE NO. 58
PORTABLE DATA CARRIERS

Small, rugged memories put data where it's needed

GARY LEGG, Senior Technical Editor

Cleverly packaged memory devices put data in places where a computer can't go. Some even contain an RF transponder for wireless access.

Portable data carriers—nonvolatile-memory devices that perform useful functions away from a computer, rather than inside one—are becoming much easier to use. They're small, they're rugged, and they come in handy shapes: everything from keys and tags to buttons and matchstick-sized cylinders (Table 1). Some even transfer data without wires.

Many data carriers now contain an RF transponder, which eliminates the need for electrical contact. With a reader/writer device—either a stationary or a hand-held unit—you can access the data in an RF data carrier from as far away as a meter or more.

Another type of carrier has a simple electrical interface that transfers data at the touch of a single-wire probe. Other carriers, notably key- and tag-shaped ones, plug into special receptacles.

The central feature of portable data carriers is, of course, portability. The smallest and most rugged of carriers can slip on a key ring, stick to an employee badge, or even be implanted under the skin of an animal. The devices are useful not only for transporting data, but, in many cases, for acquiring data. Memory cards (Ref 1) are larger data carriers that tend to find use with computers and instruments; smart cards (Ref 2) serve applications where a card shape isn't a detriment and where ruggedness isn't a primary requirement.

One of the fastest growing applications for portable data carriers is radio-frequency identification (RFID). An RF data carrier attaches to practically anything and contains identifying data that is readable (and often writeable) without physical contact. Most transponders in RF data carriers operate in the range of 125 to 135 kHz.

Seeing great potential for RFID, Texas Instruments last year entered the market with a small, 64-bit, read-only RF memory device. The company now has a read/write version and expects to have products with greater memory capacity by the end of the year. Current devices are available in the form of a glass cylinder 4 × 30 mm (Fig 1). To access data in a TI device, a reader unit or a reader/writer unit first sends a 50-msec, 134-kHz RF power burst via...
Power.

Everyone wants it. You *need* it. For military power supplies — ASAP. Lots of power suppliers *say* that they have it. The big question is, **who do you trust?**

Answer: the one supplier with 30+ years of experience. And **Mil/Pac™** — the *most comprehensive* line of **high density full mil power supplies**.

In single, dual and triple configurations, at 20, 35, 50, 100 and 200 Watts. With input voltages of 28V dc, 155V dc, 115/220V ac, and 270V dc. Field-proven topologies that meet all Mil-Stds including 461C, 704D, 810C, 901C, *and* Mil-Std-2000. The shock is that these are readily available now, **off the shelf**. So whenever reliability is imperative, trust **abbott**.

[And by the way, just *when* is reliability ever really *an option*?]
PORTABLE DATA CARRIERS

an antenna. The power burst charges a capacitor in the data carrier; the capacitor, in turn, provides power for a return data transmission. After a return transmission, the power capacitor discharges and the RF transponder resets.

Data communication takes about 20 msec, and a complete read cycle lasts about 120 msec. Write cycles take longer. All communication occurs via frequency-shift key (FSK) transmissions, with frequency transitions between 134.2 and 122.2 kHz.

Maximum read and write distances depend on several factors: the type of reader (stationary or handheld), type and size of antenna (gate or ferrite rod), transponder orientation with the antenna, and communication regulations of the country where the equipment is in use. Read distances can be as great as 2m; write distances are slightly less.

A new kind of memory will be making its debut in RFID products later this year. Racom Systems (Boulder, CO) is completing development of an RF device that contains ferroelectric RAM. Ferroelectric RAM (FRAM) is dual-mode memory that can operate either as nonvolatile RAM or as dynamic RAM (DRAM) that becomes nonvolatile on power-down. Ramtron Corp (Sydney, Australia and Colorado Springs, CO) developed FRAMs.

According to Charlie Cushing, Racom's executive vice president and chief operating officer, a read/write FRAM will cost about the same as read-only devices using other technologies. Or, compared with other RF read/write devices, a FRAM will offer more memory capacity for a comparable price. Cushing expects that a 256-bit device will sell for $4 to $5 in quantities of 1000. By comparison, a 64-bit read/write device from TI costs $8 to $11.

The two companies' products are dissimilar in several respects, however. Racom's device will be available in packages similar to credit cards (but slightly thicker) and in glass cylinders. The cylinders will be 2 mm in diameter and 11 or 12 mm long—much smaller than the TI devices. However, read and write

Table 1—A sampling of small portable data carriers

<table>
<thead>
<tr>
<th>Device type and characteristics</th>
<th>Memory configuration</th>
<th>Price (1000)</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF memory tag</td>
<td>Mask ROM¹</td>
<td>$6 to $8</td>
<td>Texas Instruments Inc</td>
</tr>
<tr>
<td></td>
<td>Read/Write²</td>
<td>$8.40 to $11.20</td>
<td>Atteboro, MA 02703</td>
</tr>
<tr>
<td></td>
<td>Frequency of data transmissions is 134 kHz. Maximum read distance ranges from about 20 cm to about 2m. Write distance is slightly less.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Touch memory button</td>
<td>Laser-written serial number</td>
<td>$1.59</td>
<td>Dallas Semiconductor</td>
</tr>
<tr>
<td></td>
<td>Static RAM plus 48bit serial number +48</td>
<td>$3.50 to $6.81</td>
<td>4401 S Beltwood Pkwy Dallas, TX 75244</td>
</tr>
<tr>
<td></td>
<td>Insert-and-turn operation (key) or plug-in operation (token).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory key or token</td>
<td>EEPROM</td>
<td>$3.50 to $12</td>
<td>Dakey Inc 407 W Travelers Trail Burnsville, MN 55337</td>
</tr>
<tr>
<td></td>
<td>EEPRROM²</td>
<td>$28 to $100</td>
<td>612) 890-2850</td>
</tr>
<tr>
<td></td>
<td>EPROM²</td>
<td>$15 to $19</td>
<td>Dakey Inc 890-850</td>
</tr>
<tr>
<td></td>
<td>Fuse link</td>
<td>$1.25</td>
<td>Dakey Inc 890-2726</td>
</tr>
</tbody>
</table>

Notes:
1. Each device is factory programmed with a unique ID number. Programming method not identified.
2. Manufacturer would not disclose memory type, citing competitive reasons.
3. Because memory chip is encapsulated without an erase window, the device is one-time programmable.
PORTABLE DATA CARRIERS

Distances will also be much less—25 to 30 cm for a card and about half that for a cylinder.

Read distances can be as great as 15m with a new product from Dallas Semiconductor. (Under some conditions imposed by communications regulatory agencies, such as the FCC, the distance may be less.) The DS2569 touch/proximity chip is a variation of the company’s Touch Memory line, which made its debut a year ago.

For read operations, the device receives RF transmissions at 132 kHz; it generates control signals for an external transmitter that responds at a frequency near 300 MHz. Writing to memory requires electrical contact. The device has 512 bits of battery-backed static RAM (SRAM) (216 of which are available for user applications) and 96 bits of ROM that is programmable during manufacture.

An easy touch

Applications that don’t require RF devices’ “proximity” operation can use cheaper data carriers that rely on electrical contact for all data transfers. Touch Memory products are the easiest of this type to use; they implement a single-wire communication scheme that makes data transfer quick and virtually foolproof. The button-shaped, stainless steel can that holds each memory module has just two contacts—ground, which is on the can’s base and sides, and data, which is on the can’s lid. Internal circuitry guards against data corruption that might result from faulty or momentary contact (Fig 2).

Touch Memory data carriers contain as much as 4096 bits of battery-backed SRAM; the lithium batteries that power the devices are good for ten years. The devices are available in adhesive-backed, stick-on versions or with snap-in receptacles. One receptacle is designed for use on a key chain.

Key-chain data carriers are also available with hefty memory capacities. Datakey, for example, sells memory keys with as much as 256 kbits of EEPROM or 512 kbits of...

Memory tag bytes dog

Throughout Canada and in some US and European locations, memory devices are going to the dogs—literally. Animals unlucky enough to live in one of a few select cities are subject to having their metal ID tags augmented by electronic ones implanted in the neck.

The electronic tags, packaged in tiny, glass cylinders, are injected under the skin. Data stored in a tag identifies not only the animal, but the animal’s owner and address. Each tag contains an RF transponder that can transmit the data to a reader device, so animal-control officers simply “scan” stray dogs to determine where they belong.

A pain in the neck is what dogs probably think of RF dog tags. The identification devices are injected under the skin of the neck.
EDA has had its share of hot shot design tools in the past. But fast, full-capacity simulation with an integrated toolset was always a distant speck on the horizon.

Now Viewlogic presents a high-performance package that finally has the right stuff: powerful simulation tools that push the simulation envelope all the way to reality.

ViewSim lets you simulate digital, analog and mixed-signal designs in a single system-wide environment—and delivers all the speed necessary to create the hottest designs in the shortest period of time. Think of the performance gains you'll make:

- The freedom to use different simulation techniques, including event-driven and compiled code
- The flexibility to simulate at different levels of modeling abstraction, including analog, behavioral, transistor, switch, gate, LMC* and full VHDL
- Backplane simulation with Zycad XP and VHDL accelerators, and LMC models
- The convenience of seamless integration with SPICE simulators to allow mixed-signal simulation
- The ease of native mode, IEEE 1076 VHDL in one environment, featuring dynamic source level debugging and graphical entry via Envision VHDL

The end result? The most powerful simulation ever.

The top gun of simulation and top-down design is here today: Viewlogic's powerful family of design tools with the Powerview framework. If you're ready to break the sound barrier, call 1-800-422-4660 ext. 860 today.

* formerly LAI & LMS
PORTABLE DATA CARRIERS

one-time programmable memory. Necessarily, these devices have much higher transfer rates than smaller-capacity data carriers. They're available in versions with either serial or parallel access.

Because the Datakey devices contain standard memory ICs, they work just like ICs on a circuit board. In fact, each key consists of a tiny circuit board that brings out a flatpack IC's electrical connections to the key shaft. The assembly is surrounded, except for these contacts, with molded static-resistant plastic.

Static resistance is important for key chain use, according to Datakey applications engineer Steve Serber.

A person can carry and transfer a charge of 15 kV in a dry atmosphere, Serber says, yet many data carriers don't provide nearly that much protection. Except for low-cost, light-duty products, all of Da-

Trash-can memory redefines GIGO

You'd think it would have started in Silicon Valley, but computer-aided trash collection is a European invention. In France and Germany, some trash containers now contain nonvolatile memory devices that dump their contents to computers on garbage trucks.

When a garbage truck lifts and empties a container, it also weighs the container and reads a unique number stored in the container's memory device. The number identifies the container's owner, allowing billing according to the amount of garbage produced.

In Paris, trash containers use Touch Memory data carriers from Dallas Semiconductor. Texas Instruments' RF data carriers find use in German trash containers.

Fig 2—Dallas Semiconductor’s Touch Memory data carriers contain features that help ensure data security and integrity. An unalterable, unique 48-bit serial number provides positive device identification, and some carriers also provide for a user password. Use of cyclic-redundancy-check code and scratchpad memory guard against data corruption even if electrical contact with a data carrier is faulty.
BUY A T EkTRONIX SCOPE FROM ONE OF THESE GUYS.

Allied Electronics, TEXAS, (800) 433-5700
Brownell Electro, NEW JERSEY, (800) 828-1552
Carlton-Bates, ARKANSAS, (800) 482-9313
Contact East, MASSACHUSETTS, (508) 682-2000
Dow Electronics, GEORGIA, (404) 448-4004
Electronic Parts, NEW MEXICO, (505) 293-6164
Electronics Supply, KANSAS, (800) 669-3752
EMSCO Division/Hammond Electronics, FLORIDA, (800) 275-3554
EnTest, TEXAS, (800) 955-0077
Frigid North, ALASKA, (907) 561-4633
HARCO Electronics, MARYLAND, (800) 638-7616
ITC Electronics, CALIFORNIA, (800) 225-5482
Inotek Technologies, TEXAS, (800) 492-6767
Instrument Engineers, CALIFORNIA, (800) 444-6106
Jensen Tools, ARIZONA, (800) 426-1194
Joseph Electronics, ILLINOIS, (800) 323-5925
Kendall/Great Lakes Electronics, MICHIGAN, (800) 321-8434
Klaus Radio Supply, ILLINOIS, (800) 545-5287
Marshall Industries, CALIFORNIA, (800) 522-0084
Metermaster, ARIZONA, (602) 431-9304
R.A.G. Electronics, CALIFORNIA, (800) 732-3457
R.S. Electronics, MICHIGAN, (800) 366-7750
Resource Electronics/Dixie Division, SOUTH CAROLINA, (800) 854-1002
NW Test & Measurement, OREGON, (503) 645-9000
Olive Electronics, MISSOURI, (314) 997-7709
Radar Electric, WASHINGTON, (206) 282-2511
Stark Electronics, MINNESOTA, (800) 752-4215
Sunshine Instruments, PENNSYLVANIA, (800) 343-1199
TESSCO, MARYLAND, (800) 638-7666
Transcat, NEW YORK, (800) 828-1470
Zack Electronics, CALIFORNIA, (408) 942-5432
Zorn Industries, MASSACHUSETTS, (603) 894-4950

AND WE’LL KNOCK 1/2 OFF ONE OF THESE GUYS.

OFFER GOOD! (on selected Tektronix oscilloscopes purchased between July 6 and December 31, 1992.) OFFER GOOD! (only on scopes purchased through an authorized Tek distributor.) OFFER GOOD! (in U.S. only.) OFFER GOOD! (trust us.)
No two emulators run the same. The trick is to get the best functionality you can for your investment. With the SIGNUM 8051 family in-circuit emulator you get even more... you get:

- Outstanding price/performance
- Easy window interface & flash download
- Free user support
- C and PL/M debuggers
- Local variable support
- 512K Mappable emulation RAM with 256K H/W breakpoints
- Break on register ranges
- Program & external data access on the fly
- Bank switching

SIGNUM also has the Intel 8048, Zilog Z8 and Super-8, Texas Instruments DSP, the 8051/52 (from AMD, Siemens and Signetics), and more chips covered.

So, don't just look at in-circuit emulators. The only way to truly test an emulator is to use it. Call for your own free trial and demo disk.

You owe it to yourself to find how much emulator you can really get for your money.

10 DAY FREE TRIAL
SIGNUM SYSTEMS
171 East Thousand Oaks Blvd.
Thousand Oaks, CA 91360
Info. Tel: (415) 903-2220 FAX: (415) 903-2221

EDN-TECHNOLOGY UPDATE

PORTABLE DATA CARRIERS

takey's keys do; the cheaper versions protect to 10 kV.
To experiment with data-carrier applications, you can use development kits from the devices' manufacturers. Dallas Semiconductor, for example, sells a Touch Memory starter kit for $75. The kit includes assorted Touch Memory devices, a serial-port adapter, PC software, and assorted hardware. Datakey offers a different kit for each of its different types of carriers, with prices ranging from $250 to $350. TI's $1700 kit includes a stationary read/write RF unit (with antenna) and an assortment of read-only and read/write RF transponders.

References

Article Interest Quotient (Circle One)
High 479 Medium 480 Low 481

What's Coming Up In EDN
The September 3 issue of EDN Magazine will show you how to bring IC layout in-house so you can shorten design cycles and time-to-market. For Futurebus+ fans, Technical Editor John Gallant reports that a Futurebus+ standard seems right around the corner. Also, keep a lookout for some new Design Ideas.
Designated Drivers.

International Rectifier

Now IR's MOS Gate Driver family includes high-voltage devices designated for applications where protection is paramount: Introducing the IR2125 and IR2121, designed to drive and protect motor controls and other circuits up to 30 kHz.

These MGDs outperform costly multi-component drive circuits. They simplify design, provide protection, and can eliminate the transformer and associated components in many applications.

The new 500V IR2125 and 20V IR2121 with 1A/2A source/sink capability can each independently drive one FET or IGBT in a wide variety of motor drive and other applications. Programmable current limiting protects both transistor and drive, and the ride-thru feature can be set to take full advantage of today's rugged devices.

The 500V IR2110 with 2A source/sink capability is setting the industry standard for a half-bridge driver. It's driving pairs of FETs or IGBTs in motor control, UPS, solid state ballast, and switching power supply applications all the way up to 500 kHz.

Designate IR. And leave the driving to us.
CinAps® technology is so flexible and efficient, the world's leading computer and semiconductor manufacturers rely on it in a broad range of demanding commercial and military applications, including:

- Board (or flex-to-board) stacking
- LGA sockets
- Test/Burn-in sockets
- MCM/hybrid interconnect devices
- Various custom interconnects

Today's high speed semiconductor devices can achieve even better performance when they're interconnected by exceptional CinApse button board technology.

CinAps® is densely packaged in extremely low profile configurations that maintain the highest speed signal integrity possible. It was designed to interface microprocessor devices to printed circuit boards without solder. Because lightweight, yet extremely durable, CinAps® accommodates temperature extremes ranging from as high as 200°C to as low as the cryogenic temperatures of liquid nitrogen. CinAps® also provides excellent shock and vibration resistance. Specify the technology that enables your designs to perform at their optimum level – CinAps®.

Call today for a free design consultation or sample – 708.981.6000, Ext. 4291.

CIN::APSE by CINCH

Solutions That Connect

A Division of Labinal Components & Systems, Inc.

© 1992 Labinal Components & Systems, Inc.
Low-cost fiber-optic link achieves 1.5-Gbps data rate

The FTM- and FRM-8500 optical transmitter and receiver modules have changed the economics of implementing fiber-optic data links. These devices use low-cost optical components and a proprietary method for modulating laser diodes to transmit data at 1.5 Gbps over inexpensive multimode fiber.

The laser diodes the modules use as the optical source are the same ones found in compact-disc players and have an MTTF (mean time to failure) of 200,000 hours. The modules connect to standard 50/125- and 62/125-µm multimode fiber. The units are robust enough to tolerate a link having multiple connectors and a mix of fiber types. Data-transfer rates range from 100 Mbps to 1.5 Gbps over distances as great as 500m. The bit-error rate is <10^-12 with a link-loss budget of 10 dB.

The data link comprises three parts: the FTM-8500 transmitter module, the FRM-8500 receiver module, and the FLC-1000 link controller IC. Both modules directly convert between electrical and optical signals, so you can use either encoded or NRZ data formats. The controller IC monitors the status of the transmitter and receiver modules. It provides signal compensation such as receiver gain control and transmitter bias voltages.

The link controller also provides a system-test interface that lets you monitor the data link’s status and performance without using special optical test equipment. For example, the controller can measure optical power levels, report link failures, automatically shutdown optical transmission when you remove a connector, and monitor reliability factors such as drive currents, bias voltages, and transmitter temperature.

Both modules use 5 and 12V supplies and draw 300 mA at 5V and 40 mA at 12V. They measure 0.685 x 0.870 x 2.725 in. and have pin connectors that you can socket or solder to a pc board. The controller is available in a 28-pin DIP or SOIC package.

The transmitter module costs $310, the receiver module costs $300, and the controller IC costs $60, all in small qty. An evaluation board is also available.

—Richard A Quinnell

Circle No. 730

These fiber-optic transmitter and receiver modules use low-cost multimode optical components to send data at 1.5 Gbps over fibers as long as 500m.
Calcomp has built a 600 × 600-dpi laser printer, the CCL 600, around a 16-MHz Intel i960KB RISC µP and 82961KD print coprocessor pair. This printer is the first to deliver 600-dpi resolution for both A- and B-size sheets and sells for $4495. Current high-resolution, B-size printers cost more than $10,000.

Designed for monochrome, high-density printing, the CCL 600 prints the first page in less than 20 sec. Subsequent pages print faster, printing an 11 × 17-in., B-size page at a rate of 4 pages/minute; A-size pages print at 8 pages/minute. Operation is faster if you use a 300-dpi-resolution printer.

The processor combination provides print banding, which processes and prints pages as bands or subsets of the page. Banding minimizes the amount of memory needed for high-resolution printing. The CCL 600 needs only 2 Mbytes of dynamic memory for B-size printing. Memory expands to 42 Mbytes. Banding also speeds up printing—only a small portion of a page is done at a time.

The CCL 600 easily interfaces to standard computers (such as the IBM PC, and Apple Macintosh), workstations, and servers. Standard I/O interfaces include RS-232C, Centronics parallel, and AppleTalk. A SCSI disk interface can also be added. The printer can be networked and can run multiple page-description-language (PDL) emulations. It emulates Postscript (Microsoft Trueimage), HP PCL5, and HP-GL/2 PDLs.

For a fast design turnaround, Calcomp used the Peerless page-imaging operating system to provide a multitasking operation, PDL interpretation, I/O control, and to drive the Intel 82961KD print coprocessor.

See the Editors' Choice for a description of a coprocessor pair used in the CCL 600 printer.—Ray Weiss

Calcomp, Computer Graphics Group, 2411 W La Palma Ave, Anaheim, CA 92801. Phone (800) 932-1212; (714) 821-2000.

Circle No. 731
At last. A personal output device that combines the best features of a desktop laser printer with the ability to produce large format drawings. It's called ProTracer™ — a 360 dpi desktop printer/plotter that produces A, B, as well as C-size output.

FEATURES INCLUDE:

- High performance ink jet engine from Canon®
- Fast, Intel i960™ processor—drawings that take over one half hour on pen plotters take as little as five minutes on ProTracer!
- Optional HP-GL® and PostScript® language emulations, memory expansion boards, and sheet feeders
- Unsurpassed customer service—60 day money back guarantee of satisfaction, one year warranty, and free lifetime technical support

PROTRACER BASE UNIT
- Customized ADI and PADI drivers for AutoCAD users
- Epson and ProPrinter emulations

PROTRACER WITH HP-GL
- ProTracer base unit
- HP-GL emulation card
- 5 MB memory

PROTRACER FULLY CONFIGURED
- ProTracer base unit
- HP-GL emulation card
- PostScript language emulation card
- 5 MB memory
- Sheet feeder (100 sheet)

$1499
$2249
$2897

If you’d like to expand your printing and plotting capabilities, call Pacific Data Products at (619) 597-3200 ext. 2270, Fax (619) 552-0889.

PACIFIC DATA PRODUCTS

* If supporting C-size PostScript documents, an 8 MB memory board must be used. Pacific Data Products, Inc., 9125 Rea Road, San Diego, CA 92121. ProTracer is a trademark of Pacific Data Products, Inc. HP-GL is a registered trademark of Hewlett-Packard Co. Intel and Intel 80686 are trademarks of Intel Corporation. PostScript is a registered trademark of Adobe Systems, Inc. Canon is a registered trademark of Canon, Inc. All other trade names referenced are the trademarks or registered trademarks of the respective manufacturers.

Images courtesy of AutoDesk Inc. ProTracer uses the latest in high technology innovation including PhoenixPage™, the advanced imaging Operating System from Phoenix. PhoenixPage is a registered trademark of Phoenix Technologies Ltd. © 1987, 1988. EUROPEAN OFFICES: England Tel (44) 923-41684; France Tel (33) 1-90-90-09; Germany Tel (49) 210-83-360; Ireland Tel (353) 1-475409; Switzerland Tel (41) 22-234-23-50. Pacific Data Products Inc., 9125 Rea Road, San Diego, CA 92121. © 1992 Pacific Data Products, Inc.

EDN August 20, 1992 • 113
Designing laser-printer controllers is a tough task, combining embedded µPs, staged data processing, and I/O control. One way to minimize glue logic, speed throughput, and simplify printing is to supplement the printer µP with a specialized printer controller. Intel engineers took that tack with the 82961KD, a dedicated printer controller, which teams up with i960 RISC µPs to deliver 600 x 1200-dpi-resolution printing. This combo handles both color and monochrome.

To cut costs, the coprocessor implements print banding, which breaks a print page into sections (or bands) that are processed sequentially. Print banding drops memory requirements by as much as 80% for 600-dpi resolutions, as only one completed band is held in dynamic memory rather than the full page. Banding was pioneered by HP's Laserjet printers running PCLs (printer-control languages), but it hasn't been a commercial success with Postscript-based printers. The 80960/82961KD combination opens up low-cost banding for Postscript printers. Processing is sped up because while the 82961KD processes the current band Display List, the µP concurrently builds the next list instead of waiting for the page to complete. The coprocessor also handles full-page printing.

The i960xx/82961KD combination also minimizes control logic. More than just a printer coprocessor, the 82961KD includes two memory controllers: one for dynamic memory and one for read-only µP program memory. The controllers enable the printer µP to access program memory simultaneously, while the printer coprocessor builds print lines in dynamic memory or moves them out to the printer. The controllers work directly with four banks of page-mode or static-column DRAM (eight with a RAS decoder), and two banks of ROM/EPROM (eight banks with a decoder). At 20 MHz, typical wait states are 2,0,1,0 for 100 nsec, interleaved EPROM memory, and 2,1,1,1 for 70-nsec DRAM. An I/O bus handles font cartridges and serial/parallel interfaces.

The coprocessor relieves the printer µP of graphics processing; it converts the high-level printer display languages into a compact Display List that combines print data limits and pointers with actual coprocessor operators. For execution, the Display List is then passed to the coprocessor by setting a special address register. This address register is double buffered: While one list is processed the next list can be set up. Display List processing completion triggers an interrupt, notifying the printer µP.

The 82961KD is a second-generation coprocessor. The first generation, the 82961KA (introduced in 1991) provides memory, I/O, and printer interfaces; however, it lacked the -KD's graphics-processing capabilities. With the -KA, graphics processing (processing the Display List with fonts) has to be done in the i960 µP. Whereas, the -KD has a Graphics Execution unit with 3-operand bitblt, line-drawing, and fill functions that appear in the coprocessor Display List.

The Graphics Execution Unit sports a simple, powerful 25-operation instruction set. Initialization operations set bit mapping and
Solid Building Blocks

The Planar Products Division of IEE provides military and ruggedized keyboard and display technology encompassing a complete line of standard and custom engineered man-machine interface products.

As a qualified supplier of military hardware, IEE designs and manufactures to meet such diverse requirements as MIL-E-5400, MIL-E-16400, MIL-T-28800, MIL-STD-454 electronics, MIL-STD-2000 soldering and MIL-STD-810 environmental qualities.

Our commitment to quality extends beyond merely meeting MIL-Q-9858 to include a Total Quality Management Program that ensures the highest quality focus throughout all aspects of our company.

For over 45 years, IEE has been an industry leader in keyboard and display technology and we are more committed than ever to provide man-machine interface without equal.
processing parameters; bitblt operators move, process, and logically combine memory bitmaps (including halftone bitmaps). Scanline operations enable programmers to compress font and special images into lines of compressed bit images. Bitmap addresses do not have to be on word or byte boundaries. Control instructions are simple: Jump to a graphic order (operation) in the Display List and STOP, which halts Display List processing.

Graphics processing speeds up with the 82961KD. For example, on a 20-MHz 80960SA CPU, a 2-operation bitblt operation processes 32 bits x 32 scan lines in 165 µsec; it takes only 34 µsec on a 20-MHz 80960SA/82961KD combination.

Scanline tables are a compact mechanism for replicating and filling polygon objects in memory. An object scanline table holds a set of drawing vectors or bounds for building the graphic object. Scanlines use RLL (run-length-limited) compression to reduce memory, storing 64- or 4096-pixel run-lengths into 16 or 32 bits of memory, respectively. Scanlines are represented in the Display List by a destination bitmap address and the Scanline table address. Scanlines save memory because the bitmap image is compressed into a table in memory, rather than being part of a Display List. Halftone tables supplement scanline tables for halftoning objects.

The Peerless Group, a printer-technology company, designed the 82961KD. The Peerless Page Imaging Environment for the printer-chip combination, which includes a printer-oriented, multitasking operating system and a full set of printer services, including font and memory management, control-panel interfaces, and advanced graphics. It handles a number of printer-description languages (PDLs), including HP’s PCL- and Postscript-compatible interpreters. The software is available separately. The software core starts at 60 to 100 kbytes, without fonts and extras. Pricing is OEM based, with royalties running as low as $5 per unit, including software tools.

The 82961KD’s printer partner is the Intel i960, a family of 32-bit RISC µPs. The family’s low end includes the 1960SA/SB, running at 10 and 16 MHz with 512 bytes of instruction cache, and a multiplexed external bus (32 bits address and 16 bits data). The -SB includes an 80-bit floating-point unit. Next is the KA/KB, running at 16, 20, and 25 MHz, with a full 32-bit external bus. Topping the family is the i960CA, a superscalar RISC unit running up to 33 MHz with an 8-, 16-, or 32-bit data bus.—Ray Weiss

The Peerless Group, 2629 Manhattan Beach Blvd, Redondo Beach, CA 90278. Phone (310) 536-0908. Circle No. 732

Intel Corp, Literature Center, Embedded Microprocessor Group, Box 7641, Mt Prospect, IL 60056. Phone (800) 548-4725. Circle No. 733
Samtec jumps to fill every need!

Nobody has more ways to get you from board-to-board than Samtec.

Whether you need headers and sockets, small centerline or low profile interconnects, IDC assemblies or adaptors, Samtec Board-to-Board interconnect solutions are only a cat's jump away.

Our newest Full Line Solutions Guide and Board-to-Board Selector shows thousands of solutions.

And, if you don't see what you need, we'll design to meet your application.

Call today!

1-800-SAMTEC-9

Samtec's International Board To Board Interconnect Selector

New Albany, Indiana USA • Cumbernauld, Scotland UK • Singapore
SAMTEC, INC. P.O. Box 1147 • New Albany, IN 47151-1147 USA • Phone 812-944-6733 • Fax 812-948-5047 • TWX 810-540-4095 • Telex 333-918
CIRCLE NO. 85
US military budget cuts may spell financial disaster for weapons manufacturers. But firms that develop and produce ruggedized computers have obtained new customers among prime contractors who no longer have to create computers that meet full military specifications.

Although the end of the Cold War has terminated many military programs, the electronics industry may actually benefit from the belt tightening and cost scrutiny resulting from military budget cuts. For example, as the US armed forces seek ways to operate more efficiently, an increasing number of contracts are specifying commercial, off-the-shelf (COTS) ruggedized computers instead of custom-built units that meet full military specifications. However, the tricky part involves figuring out just how rugged a computer must be to meet the needs of each military project.

By letting contractors purchase COTS computers, the US government predicts savings of at least 50%. Ed Marcato, Director of Marketing at Mercury Computer Systems, says that where a MIL-spec version might cost five times as much as an ordinary PC, a COTS computer would probably cost about two times as much.

However, the savings is not merely monetary. Purchasing a commercially available computer reduces the time it takes the prime contractor to fulfill contractual obligations. Thus, the cutting-edge technology incorporated into the design at the specification stage still represents the latest engineering developments when the computer reaches its final destination in the field.

The contract won by Texas Microsystems to produce a handheld unit, referred to as the Soldier's Computer, illustrates the time and monetary savings. Scott Hovey, Texas Microsystems' portable products project manager, says, "the challenge is to get on the leading
In a time of military budget cuts, commercial ruggedized computers let the military get the job done for less. (Photo courtesy Texas Microsystems)
edge of technology without being on the bleeding edge.” Therefore, the company plans to implement currently available pen-computing and voice-recognition techniques and to avoid such undeveloped concepts as virtual reality.

Trouble in paradise

Despite the increased latitude now available to computer designers, COTS has also created confusion and frustration. The lack of established precedent for designing less-than-bomb-proof computers that still withstand harsh military treatment has resulted in some contracts that call for COTS computers, but specify modifications that negate any potential savings of time or money. The problem is that no one is certain exactly how much ruggedization is necessary to meet each contract’s specifications.

Yet, the government’s directive is clear: Stop reinventing the wheel for each project. Current military budgets only allow for adaptation costs, not development costs. As Rex Zerger, Vice President of Sales and Marketing at Texas Microsystems, points out, the majority of contracts involve equipment that doesn’t need to withstand battlefield conditions, and budget requirements will eventually drive the specifications into accordance with that reality and stabilize the stipulations placed on ruggedized equipment.

Ruggedization involves taking a commercial product and expanding its environmental performance without altering the schematic. Manufacturers add stiffeners and tie-downs to prevent boards from flexing under impact and house the boards in enclosures that can withstand hostile treatment and surroundings. As Allen Zubatkin, Vice President of Manufacturing at Mercury Computer Systems, notes, innovative packaging plays an important role when ruggedizing products for military applications.

Avionics in particular has stringent space and weight requirements, so contractors must provide maximum processing power in minimal configurations. By adapting commercial products to military needs, contractors not only maximize the processing power per centimeter, they also maximize the processing power per dollar spent.

Furthermore, the government has established standards for ruggedization, such as MIL-810C. Extensive testing to meet those standards and verified data from those tests must be available for government inspection during procurement. When selecting a vendor for ruggedized computers, it is important to ensure that the company has a solid understanding of the rules and regulations, as well as the supporting data for proof of compliance.

Consider, for example, the AN/UGC-144 communication terminal from Group Technologies. Its 8086 terminal processor has its own 40-Mbyte hard-disk drive and uses MS-DOS. The communication µP is an 80386 CPU that provides multitasking, event-driven services. Despite these fairly commonplace features, this terminal meets MIL-STD-810 for operation in rain, sand, dirt, and fungus. Drop testing involved 26 cycles of letting the unit fall 48 in. Its TEMPEST certification indicates that no electronic signals that would be detected by surveillance equipment will escape from the unit. This means even the keyboard’s keystrokes have to be shielded from snoopers. Lightning protection and nuclear survivability round out the list of highlights. Yet the unit is available for as little as $16,000 (100).

John Rogert, marketing manager for Group Technologies, says that the toughest military ruggedization requirements for computers involve temperature. Freezing temperatures cause the lubricants in hard-disk drives to freeze. LCDs experience problems at both ends of the thermometer. Yet, even the relaxed military requirements for ruggedization may specify an operating-temperature range from freezing to 120°F. Storage and transit temperatures vary even more, from −40°F to +160°F. To compensate for such extreme temperatures in a box that has to be impervious to sand, water, and dirt, Group Technologies arranges components for maximum heat dissipation, coats the boards to seal out humidity, and then uses the aluminum enclosure itself as a heat-sink for conductive cooling.

Fault tolerance is another critical factor that frequently appears in military-bid requests. Although not every computer the military uses will wind up on a
battlefield, each of these computers must operate reliably for battlefield conditions. Texas Microsystems has a line of fault-tolerant PCs that use the company’s fault-tolerant system architecture.

The hardware’s design maximizes system availability, data integrity, and data recovery for DOS-based applications. The series of fault-tolerant computers couple selective-component redundancy with diagnostic, regulatory, and recovery systems. The enhanced BIOS comprises a set of programs that coordinate data transfer and control instructions between the CPU, various peripherals and the computer’s custom diagnostic coprocessors. The BIOS functions as a multitasking operating system, performing one layer below DOS to asynchronously control the interaction among the processors and peripherals.

To protect the most vulnerable hardware subsystems, the firm adds a redundant power supply, battery backup, and hard-disk drives. You can configure disk caching for either write-through or write-back operation. And to prevent a CPU crash from corrupting data on the computer’s hard disk, the company uses a set of algorithms referred to as data-change auditing. This software lets you return the hard-disk data to a consistent point predating the hardware failure. A front-panel LCD provides system status and warning messages.

Minimize maintenance, maximize reliability

Even the components of rugged computers can vary from those found in commercial units. Besides the obvious need to use military versions of every IC on board, you may need unique components to meet some of the military’s rigorous needs. Simtek Corp (Colorado Springs, CO) is a manufacturer of nonvolatile static RAMs (SRAMs). David Bowers, the firm’s vice president of sales and marketing, observes that when avionics and weapons incorporate embedded processors, requirements for maximum system reliability often clash with limited available space.

Consider, for example, computer systems for wire-guided torpedoes. The torpedoes receive instructions and power via an umbilical wire attached to the deployment vehicle. At some point, the wire breaks and the torpedo’s computer must reboot as a self-powered device with full knowledge of the weapon’s trajectory and direction. Using batteries to keep the computer’s memory intact introduces yet another level of mainte-
nance and vulnerability. In addition, Bowers says that battery-backed SRAMs aren't available as MIL-STD devices and that core-memories are expensive and heavy. Thus, military contractors have embraced his company's nonvolatile SRAMs, which meet MIL-STD-883 requirements for environmental operation from $-55{}^\circ C$ to $+125{}^\circ C$.

However, Bowers says that the decline in military spending has prompted many IC vendors to drop or simply not develop military versions of their chips. If this trend continues, system designers for military contractors will have an increasingly difficult time ruggedizing units to government specs.

In addition, Hovey says that a lack of components from US companies is prompting contractors to use off-shore devices when prototyping ruggedized units. A prime example involves the shortage of American-made displays for rugged computers. At this point, Hovey has encountered no restrictions on the use of Japanese parts for the contracts his company has obtained. However, he notes that several US companies have shifted their manufacturing sites overseas to avoid the higher duties imposed upon imported components, such as color LCD panels. The duty on fully assembled computers is a fraction of the duty cost for imported parts. These computer manufacturers, unable to obtain US-built panels, are left little choice but to shut down US assembly plants due to this bureaucratic bungle that originally intended to aid US manufacturers of LCD panels.

So although the relaxation of military requirements for computer systems was an attempt by the government to reduce both procurement time and costs, the process is still evolving. As both the contractors and the government go through the growing pains of working flexibility into procurement, the end result promises to provide benefits for everyone—including the taxpayer.

Acknowledgment

Special thanks to Twila Gamble and the engineers at United Technologies Microelectronics Center (Colorado Springs, CO) for the budgetary statistics regarding military electronics. Thanks also to Tracy Markie of Tronix Product Development Corp (Phoenix, AZ) for insights regarding the ruggedized-computer procurement process.

Article Interest Quotient (Circle One)
High 473 Medium 474 Low 475

Manufacturers of ruggedized computers

For more information on ruggedized computers such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codar Technology Inc</td>
<td>2405 Trade Centre Ave</td>
<td>(800) 886-0900</td>
<td>(303) 776-0472</td>
</tr>
<tr>
<td>DTY Systems Inc</td>
<td>21 Fitzgerald Rd</td>
<td>(613) 596-9911</td>
<td>(613) 596-0574</td>
</tr>
<tr>
<td>Ergo Computing Inc</td>
<td>1 Intercontinental Way</td>
<td>(508) 535-7510</td>
<td>(508) 535-7512</td>
</tr>
<tr>
<td>Group Technologies Corp</td>
<td>10901 Malcolm McKinley Dr</td>
<td>(813) 972-6328</td>
<td>(813) 972-6704</td>
</tr>
<tr>
<td>Lockheed Sanders Inc</td>
<td>Box 0868</td>
<td>(603) 885-4321</td>
<td>(603) 885-2066</td>
</tr>
<tr>
<td>Mercury Computer Systems Inc</td>
<td>600 Suffolk St</td>
<td>(508) 458-3100</td>
<td>(508) 458-9580</td>
</tr>
<tr>
<td>Microlithics Corp</td>
<td>17301 W Colfax, Suite 152</td>
<td>(303) 277-0271</td>
<td>(303) 277-1505</td>
</tr>
<tr>
<td>Motorola Corp</td>
<td>2900 S Diablo Way</td>
<td>(800) 254-4803</td>
<td>(800) 254-4803</td>
</tr>
<tr>
<td>Ncube</td>
<td>919 E Hillsdale Blvd. #200</td>
<td>(415) 593-9000</td>
<td>(415) 508-6408</td>
</tr>
<tr>
<td>Sky Computers Inc</td>
<td>27 Industrial Ave</td>
<td>(508) 250-1920</td>
<td>(508) 250-0036</td>
</tr>
<tr>
<td>Texas Microsystems Inc</td>
<td>10618 Rockley Rd</td>
<td>(713) 933-8050</td>
<td>(713) 933-1029</td>
</tr>
</tbody>
</table>

122 • EDN August 20, 1992
Inside Information
On The World's First
Fault Tolerant PC.

INTRODUCING THE FAULT TOLERANT PC FROM
TEXAS MICRO. If you're someone who has to be on-line,
who has to have your data, your PC has arrived.

Head crashes, blackouts, user errors, bad sectors,
power surges, jolts, jars, bumps and bruises can't stop it.

It thrives where others knuckle under. It's the pit bull
of PC-dom. It's the FTSA™ PC from Texas Micro, and it
redefines PC fault tolerance.

THE FTSA PC IS FAULT TOLERANT FROM THE
GROUND UP. The FTSA PC is built with a proprietary
system of fault tolerance—called Fault Tolerant System
Architecture™—that operates at the BIOS level.

This specialized, DOS-compatible BIOS binds the fault
tolerant components together, creating an umbrella of fault
tolerance, and a level of protection never before achieved in
PCs. While maintaining a high standard of performance.

Supplementing the disk array, the FTSA PC employs sophisti-
cated data auditing and archiving systems that virtually
guarantee data integrity, even in the event of a system crash,
corruption or unexpected system shutdown.

The FTSA PCs modular design gives you plug-and-play
access to every major component, including CPU and option
cards, which gives you a 10-minute Mean Time To Repair,
and CPU upgradability.

FTSA'S BIGGEST BREAKTHROUGH IS PRICE. In
fact, the only thing with comparable fault tolerance is a
minicomputer, which costs 5 to 10 times more.

Detailed information about the FTSA PC and our free
"Guide to Fault Tolerant Computing" are just a phone call
away. Find out today how you
can benefit from a PC that has
inner strength.

Get An Insider's Look At The FTSA PC. Call 1-800-627-8700.

All trade names referenced are the service mark, trademark or registered trademark of the respective manufacturer.

CIRCLE NO. 86
Power tool
The lobster's claw can move quickly and is a real threat in its natural habitat (as shown, it was a threat mostly to our photographer, who reported: Delicious!). Our habitat is an analog "real" world. To model and simulate it, Kepco's ATE, BOP, BHK and OPS are the fastest analog power tools around. They offer the kind of voltage agility that allows a current stabilizer to recover quickly from the transient of a dynamic load. They provide you with the speed to program test voltages in rapid sequence. Tools include power to 1000 Watts, voltage to 5000 Volts and lobster to 5½ lbs. The bipolar models (BOP) operate in 4 quadrants. Conventionally filtered power tools are at home in your laboratory habitat.

Power tools

d-c unipolar power

50-1000 Watts
- Conventional filtering & high speed, user selectable.
- High speed: slew up to 1 Volt per microsecond.
- Conventional speed:
 - Energy storage typically > 100µF per Ampere.
- Precision stabilization:
 - 0.001% source, 0.0002% load.
- Analog programmable.

 Kepco Group ATE Power Supplies

d-c bipolar power

100-400 Watts
- High speed: slew up to 11 Volts per microsecond.
- Source and sink. Four quadrant operation.
- Precision stabilization:
 - 0.001% source, 0.002% load.
- Analog programmable.

 Kepco Group BOP Power Supplies

d-c bipolar power, high voltage

±500V & ±1000V, 40 Watts
- High speed: slew up to 3 Volts per microsecond.
- Source and sink. Four quadrant operation.
- Precision stabilization:
 - 0.0005% source, 0.0005% load.
- Analog programmable.

 Kepco Group BOP-HV Power Supplies

d-c unipolar power, high voltage

0-500V, 1000V and 2000V, 20 Watts
- Conventional speed:
 - Energy storage typically > 100µF per Ampere.
- Large meters and 10-turn controls for ease of adjustment.
- Precision stabilization:
 - 0.001% source, 0.005% load.
- Analog programmable.

 Kepco Group APH Power Supplies

d-c unipolar power, high voltage

0-500V, 1000V, 200 Watts
- Conventional filtering & high speed, user selectable.
- Precision stabilization:
 - 0.005% source, 0.01% load.
- Analog programmable.

 Kepco Group BHK Power Supplies

KEPCO ANALOG PROGRAMMABLE POWER...

HIGH SPEED
UNIPOLAR
BIPOLAR

Instrumentation
and Bench

Switching
a-c to d-c and
d-c to d-c

146-1716
146-1704
146-1760

SEE OUR PAGES IN VOLUME D eem

KEPCO, Inc., 131-38 Sanford Avenue, Flushing, NY 11352 USA • Tel: (718) 461-7000 • Fax: (718) 767-1102 • Easylink (TWX): 710-582-2631

Eastern Region: 131-38 Sanford Avenue, Flushing, NY 11352 USA • Tel: (718) 461-7000 • Fax: (718) 767-1102 • Easylink (TWX): 710-582-2631

Western Region: 800 West Airport Freeway, Suite 320, LB 6018, Irving, TX 75062 USA • Tel: (214) 579-7746 • Fax: (214) 579-4608

Kepco Europe, Ltd., London, England, Salamander Quay West, Park Lane, Hereford, Middlesex UB9 6NZ • Tel: +44 895 825046 • Fax: +44 895 825045

CIRCLE NO. 100

EDN August 20, 1992 • 127
When it comes to embedded systems design, nobody offers better solutions than FORCE. But, we have to admit, we had a little help. From you.

At FORCE, we get inside the heads of our customers to learn about their requirements. The result is the world's most advanced CISC and SPARC-based VME single board computers. And bus extensions—like SBus and our own FLXibus.

When you need to design the next generation, you can count on FORCE for the best in VME64/Plus™ or Futurebus/Plus. Because better products come from better knowledge.

For a partner that can get you up and running fast, call 800-237-8863, ext. 10. In Europe, call 49.89.608-14-0. And thanks for keeping an open mind.
Multirate filters alter sampling rates even after you’ve captured the data

John Allen Mitchell, Comdisco Systems

You’ve digitized an analog signal, but the sampling rate is too high—or too low—for your system. Multirate filters can’t supply missing information, but they can alter the effective sampling rate after you’ve acquired the data. With graphical development tools, designing such filters isn’t difficult.

Recent advances in DSP ICs and development software have made digital-signal-processing techniques more attractive than ever. Digital filters are particularly appealing because they offer stability, predictability, and ease of control that are difficult, if not impossible, to achieve using analog techniques. However, the very proliferation of DSP systems brings with it the need for accurate communication at different data rates. Transferring music from a CD to digital audio tape (DAT), for example, means having to switch from the 44.1-kHz sampling rate of CDs to the 48-kHz rate used by DAT recorders. This example is typical of multirate systems, which shift the effective sampling rate of discrete-time signals up and down. Usually, these shifts occur in multirate filters. Using the techniques explored here, you can design efficient multirate filters for any DSP application.

In a typical DSP system, an analog signal first passes through a lowpass antialiasing filter that removes unwanted components. The system then samples the signal and converts it to a digital format. The digitized signal next proceeds to the heart of the system, the digital signal processor, which performs the numerical manipulations. The DSP algorithm—a program employing binary addition, subtraction, multiplication, and other numerical processes—dictates the exact nature of the manipulations. For example, when the DSP μP performs the filtering, it would numerically convolve the digitized signal with a set of filter coefficients that define the filter’s response. After processing, the system converts the digital signal back to an analog format and smooths it with a lowpass reconstruction filter.

DSP design tools generally fall into two classes: those that use a data-driven computational model and those that use a time-driven model. This article explores the time-driven style because of its simplicity and suitability for multirate filter design.

In the time-driven style of control, a master clock runs at the highest signal frequency in the DSP system. The clock is incremented in discrete steps, or iterations, at the inverse of the sampling frequency. Each block in the design performs its particular function once every iteration unless a special “hold” input is high. In that case, the block is disabled. A disabled block ignores data arriving at its input; data at the block’s output remains unchanged. (The behavior is much like that of synchronous digital circuits.) By selectively enabling and disabling function blocks, you can create different kinds of multirate filters.

The following discussion presents three multirate filter designs. All of them change an input sample rate by strategically enabling and disabling the hold inputs of function blocks. Note that you can consider a block to be enabled if its hold input is not connected; that is, the block behaves as if its hold input were pulled to zero.

These designs are synchronous—all the sampling
MULTIRATE DSP FILTERS

rates are rational multiples of each other. You can realize asynchronous systems in a similar way, but their implementation is beyond the scope of this article.

Without multirate filtering, the only way to shift from one sampling rate to another is to convert the digital signal to a continuous analog waveform and then resample the analog waveform at the new rate. Though straightforward, such an inelegant solution carries with it analog-type problems, such as instability and noise—to say nothing of expense. Obviously, a better solution is to manipulate the sample rate entirely in the digital domain without any intermediate analog processing.

There are a number of multirate filter methods that work almost equally well, although all involve various tradeoffs that the designer must be evaluate. These tradeoffs include algorithmic complexity, digital-signal-processor loading, and system memory requirements.

First classical method

Increasing a signal’s sampling rate by some integer factor \(L \) is called interpolation. Decreasing the sampling rate by an integer factor \(K \) is called decimation. By combining these two operations you can change the sampling rate of a given signal by any rational factor. You can express this factor as the ratio \(L/K \), where \(L \) represents the ratio of the number of a data set’s real and interpolated samples to its real samples and \(K \) represents the ratio of samples retained to the set’s total number of samples after interpolation.

Consider the following up-sampling example. Suppose an A/D converter samples a signal at 1 kHz, but for the sake of further digital signal processing, you must increase the sampling rate to 1.5 kHz. The ratio \(L/K \) would be 1.5/1; its simplest fractional equivalent is 3/2. This ratio tells you to first interpolate the signal by 3 and then decimate it by 2. The process involves inserting \(3 - 1 \), or 2, samples between each pair of input samples and then discarding \(2 - 1 \), or 1, sample out of every 2—that is, every other sample—to achieve the new rate.

Fig 1 illustrates this process. First, increase the sampling rate by zero padding—adding zero-valued samples between each pair of input samples. This operation raises the effective sampling frequency to 3 kHz. Shifting to the final 1.5-kHz rate is a simple matter of halving the 3-kHz value by discarding every other sample. However, discarding every other sample at this stage would eliminate half of the original samples. The effect is the same as sampling the signal at a rate lower than twice the highest frequency component, an operation that violates the Nyquist criterion. The reconstituted signal would consequently suffer from aliasing.

You can avoid this problem by inserting an interpolating filter between the zero-padding and decimation stages. (The filter coefficients are at the top of the diagram.) The filter assigns approximate values to the zero-padded samples in much the same way that an integrator smooths a spiky analog signal. Once the waveform is properly interpolated, you can safely discard samples to achieve the new down-sampled rate.

The signal-flow diagram in Fig 2 represents what is probably the simplest means of achieving sample-rate conversion using decimation and interpolation. The symbology is similar to that used in the DSP Framework from Comdisco Systems (see box, “Auto-
Automating multirate-filter design

In the multirate systems discussed in this article, the output is precise, stable, and predictable because mathematical functions, as opposed to physical circuit properties, dictate the waveform manipulation. This predictability is the beauty of DSP.

But DSP does have an uglier side; to process waveforms under software control, you must have software. Traditionally, programming DSP µPs has involved hand coding—a task so complex and laborious that many designers avoid it out of sheer intimidation, clinging, instead, to older, less elegant approaches. This situation needn't exist. With today's graphics-based DSP-software development tools, you can design, test, and even implement sophisticated DSP systems without writing (in the usual sense) a single character of code.

Graphics-based DSP software tools let you design DSP systems as if you were building them from discrete components. You need not even be aware that software is what determines the system characteristics. You create designs by drawing on a workstation screen and connecting blocks (icons) to form signal-flow diagrams. These diagrams take the place of DSP-algorithm programs expressed as text. The diagrams incorporate the mathematics for filters, multipliers, channels, and similar functions. The computer handles the arcane formulas that were once the province of mathematicians. You can concentrate on your design rather than on programming details.

Traditionally, engineers have been forced to hand-craft complex models to simulate various DSP designs and compare tradeoffs among them. This process is time consuming and error prone and tends to inhibit the number of iterations a designer is willing to try. Comdisco Systems' graphical DSP Framework lets users design, analyze, and even automatically implement any DSP system, including those discussed in this article.

The DSP Framework lets you create signal-flow diagrams by connecting DSP function blocks. The blocks have a hold input that disables the function for as long as a nonzero value is present. When a block is disabled, it ignores any input and does not update its output. Therefore, you can control a signal's sample rate by selectively enabling and disabling the function blocks that process the signal.

Because the polyphase filter allows efficient execution but is difficult to design from scratch, Comdisco Systems now includes a custom polyphase-filter block as part of its DSP Framework library. To use the block, you enter the interpolation rate, the decimation rate, and the name of the file containing the FIR-Filter coefficients. The software automatically creates the necessary number of subfilters, apportions the coefficients among them, and generates the input and output clocks.

Thus, with just a few commands, users can automatically create polyphase filters of any complexity. Issuing a few more commands automatically generates code to program the design into a fixed- or floating-point DSP processor. The DSP Framework can also automatically partition a design for execution on multiple processors and can generate VHDL code to synthesize an ASIC or an FPGA.

The input for this design originates at the signal-source block. This block represents a file containing the original data. In practice, the source might be a block of memory, the digital portion of an A/D converter, or some other supply that you can enable. The output of the source block goes to a multiplexer. The multiplexer's other input is left unconnected and is
MULTIRATE DSP FILTERS

therefore interpreted as zero. Because the multiplexer’s control input is connected to the same clock as the source block’s hold input, the multiplexer selects the output from the source block whenever the source block fires; it otherwise selects a zero. The multiplexer therefore outputs a signal having a 3-kHz sample rate; two out of every three samples have a value of zero.

The output of the multiplexer goes to an interpolating filter of the finite-impulse-response (FIR) variety. The filter rejects spectral components that would lead to aliasing and interpolates the proper magnitudes for the zero-padded samples. Generally, you select the passband of this filter to be symmetrical about

\[\frac{1}{f_s} \]

where \(f_s \) represents the new sampling rate. You determine the filter’s cutoff frequency \((f_c) \) by halving the smaller of the two sampling frequencies and selecting a value just under that value. Because 1 kHz is the smaller of this system’s two sampling frequencies, the filter’s \(f_c \) should fall just below 500 Hz—say, at 400 Hz or so. This choice ensures that the filter will attenuate alias components close to the 1-kHz sampling frequency.

The last stage in the system is the signal sink. This block represents a file that receives the interpolated digital signal from the filter. In a real multirate-filter system, the signal sink could be a block of memory, the digital section of a DAC, or some other stage that you can enable. A clock whose interval is 2 switches the signal sink on and off at every other sample, thereby decimating the 3-kHz digital signal to 1.5 kHz.

Although this multirate system is straightforward and requires a minimum of hardware, it is inefficient in several ways: One is that the filter computes all of the outputs when only every second output is required. Another is that it multiplies outputs by 0 two out of three times. Thus, this implementation wastes processor cycles computing unneeded outputs and performing unnecessary multiplications. It wastes memory too because the filter’s tapped delay line must store unnecessary data. These drawbacks can prove burdensome in systems where memory is tight and execution time is at a premium. One way to tackle these shortcomings is to focus on conserving CPU time and not give too much thought to conserving memory. Doing so yields the next approach to multirate filtering.

Second classical method

Fig 3 shows a multirate-filter design that doesn’t compute outputs it doesn’t need. This design is about twice as fast as the previous one. Note that the input stage, which comprises a clocked signal source and a 2-input multiplexer, is the same as before. The difference lies in the FIR-filter section, which the diagram breaks down into its three constituents. These are a tapped delay line, a dot-product section, and a source of filter constants. Understanding how the overall design works requires a slightly more detailed look at the filter constituents.

Fig 4 illustrates the workings of the three FIR-filter sections. The tapped delay line consists of a series of cascaded delay elements, the number of which depends on the filter order. (For simplicity, the number of stages in this illustration is just four.) Data moves sequentially down the delay line. After going through

Fig 3—This more efficient approach enables the dot-product stages only when you need their outputs.
No One Offers More 1 Meg SRAMs. Period.

SRAMs built to run at extended operating temperatures, yet take only 12 µA.

Plus fast cache and quick delivery so you can get better products to market sooner.

Sony knows low power, small spaces, high volume, quality, and reliability like no other company.

Call 1-800-288-SONY. Or FAX your current requirements to (714) 229-4333 in U.S.A., (416) 499-8290 in Canada.

We make the chips. You make the history.

© 1992 Sony Corporation of America
Sony is a trademark of Sony.
each delay element, the data goes to the dot-product section, which performs the necessary convolution.

The dot-product section multiplies the input samples by a set of filter coefficients, b_0 to b_n. These coefficients, which define the filter's impulse response, are stored in the filter-constants block. The output of the dot-product stage is therefore a sum-of-products, the value of which is a linear function of present and previous input values. The process is akin to what happens in an analog lowpass filter integrating a continuous function. By enabling the dot-product stage only when it is needed, you can both modify the sampling rate and save on execution time.

Now go back to Fig 3, where the FIR filter appears in a simpler, high-level format. Note how blocks substitute for the delay-line, dot-product, and filter-constant sections, and how single lines represent the multiple lines that actually connect the blocks.

Unneeded operations go on hold

The tapped delay line sends its data to the dot-product stage, which multiplies the data by the filter coefficients before sending outputs to the signal sink. The dot-product stage performs the X-Y operation only for every second multiply. During the other intervals, the interval-2 clock places the multiply on hold and suppresses the output from the signal sink.

Fig 5 demonstrates the relationship between the input and output clocks. Notice that the up-sample clock is high two out of three samples, thus halting the signal source. The down-sample clock is high every second sample. (The two sinusoids look as if they have differ-

![Diagram of FIR filter](image)

Fig 4—In this FIR filter, the data moves sequentially down the delay line. After each delay element, the data goes to the dot-product section, which performs the necessary convolution.

![Graphs of sampled signals](image)

Fig 5—This display shows an input signal sampled at 1 kHz ($S1$), the output signal sampled at 1.5 kHz ($S2$), the up-sampled clock signal ($S3$), and the down-sampled clock signal ($S4$).
"Why can't I get a full Mil-Spec, conduction-cooled VME board with advanced commercial functionality?"

"You can! From Radstone."

Leave it to Radstone to combine the enormous processing power of the 68040 microprocessor with full Mil-Spec reliability on a single VME board. With the CPU-40, Radstone brings the high performance, functionality and flexibility previously available only in advanced commercial VME processor boards to high-rel NDI Mil-Spec applications.

Powerful, Flexible, Expandable
This high speed, single-board computer has features like a 25 MHz 68040 microprocessor, SCSI and Ethernet ports, up to 8 Mbytes of dual-ported RAM, up to 4 Mbytes of 32-bit wide Flash EPROM and much more. It also boasts the first Military Expansion Bus for other functions like MIL-STD-1553B, serial/parallel I/O, VSB or customer-specific functions.

And that's not all. The CPU-40 is available in conduction- and air-cooled full Mil-Spec or ruggedized models, and software development models. All five models are 100% software compatible to meet all your applications precisely.

Ultimate Boards/Total Systems
And there's even more in the Radstone arsenal. Full Mil-Spec, ruggedized and development boards for graphics, intelligent I/O, memory... plus ATR chassis, rugged enclosures and software support. A total embedded systems capability.

When you need the high performance and functionality of commercial boards...with full military reliability...at an off-the-shelf price...call Radstone. We invented Mil-Spec VME...and we're continually perfecting it.
MULTIRATE DSP FILTERS

different frequencies because both use the same scale but have different sample rates. You can easily verify, however, that the sinusoids do have the same frequency.

Because calculating multiplicative convolutions and convolutional sums is so processor intensive, this multirate implementation saves time by performing those operations only when they are necessary. However, the system is still inefficient because two of every three inputs to the tapped delay line are zero. Although not computing outputs that are destined to be ignored saves time, multiplying by zero wastes time too. The next implementation avoids this difficulty by exploiting the structure of the FIR filter.

In contrast to the previous "brute force" designs, the following multirate implementation wastes no time adding zero-valued samples that end up being discarded or multiplied by zero. This technique is accordingly more efficient, although its operation is certainly less intuitive.

The previous designs used a single filter, which took combined input samples and zero-valued samples, performed calculations on them using a set of internal filter coefficients, and produced an output with a new sample rate. The next approach splits the filter into several subfilters, each of which takes a subset of the overall filter coefficients, performs the necessary calculations, and outputs the result at a specified time. The outputs from the various subfilters then combine sequentially into a single output. Because each subfilter performs its calculations at a particular time or phase, this implementation is called the polyphase technique.

Fig 6 shows the basic operation of a polyphase filter. Note how different its action is from that of the previ-

Fig 6—The polyphase filter achieves its efficiency by interpolating the proper sample magnitudes at the same time it assigns positions. No decimation takes place.
EPSON

WORLD LEADER IN MEMORY CARD TECHNOLOGY PRESENTS:

MEMORY CARDS

<table>
<thead>
<tr>
<th>JEIDA/PCMCIA</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>68 PIN STD</td>
<td>256KB - 16MB</td>
</tr>
<tr>
<td></td>
<td>16KB - 4MB</td>
</tr>
<tr>
<td></td>
<td>128KB - 16MB</td>
</tr>
<tr>
<td></td>
<td>64KB - 4MB</td>
</tr>
<tr>
<td></td>
<td>16KB - 2MB</td>
</tr>
</tbody>
</table>

JEDEC/JEIDA

| 60 & 88 PIN STD | 1MB - 8MB |

DRAM

NOTE: FOR DETAILED INFORMATION ON CARD EDGE MEMORY CARDS, PLEASE CONTACT EPSON.

SPECIALTY CARDS

DUAL OPERATING VOLTAGE:
3.3 & 5.0 V OPERATING VOLTAGE FOR SRAM & MROM CARDS.

SRAM WITH SUB-BATTERY:
ADDITIONAL RECHARGEABLE LITHIUM BATTERY, WHICH ALLOWS REPLACEMENT OF MAIN BATTERY WITHOUT DATA LOSS, FOR APROX. 10 MINUTE.

HIGH SPEED & LOW POWER:
UTILIZING THE LATEST HIGH SPEED IC'S, SPECIAL GATE ARRAYS AND LOW POWER CONTROL IC'S.

COMBINATION CARDS

FOR DUAL PURPOSE APPLICATIONS:
(i.e. SOFTWARE AND STORAGE)

<table>
<thead>
<tr>
<th>FLASH</th>
<th>OTP</th>
<th>MROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>256KB-2MB</td>
<td>256KB-2MB</td>
<td>512KB-2MB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SRAM</th>
<th>64KB-2MB</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FLASH</td>
<td>256KB-2MB</td>
<td>X</td>
</tr>
</tbody>
</table>

I/O CARDS COMING SOON

FAX MODEM CARD
LAN CARD

EPSON EPSON AMERICA, INC.
COMPONENT SALES DEPARTMENT
TEL: (310) 787-6300, FAX: (310) 782-5320

CIRCLE NO. 97
ous examples. The designs that used interpolation and decimation first assigned positions to the samples by zero padding. They then interpolated to assign the proper magnitudes to the zero-valued samples before decimating them. The polyphase filter achieves its efficiency by interpolating the proper sample magnitudes at the same time it assigns positions. No decimation takes place.

Once again, the f_c of the filter is the least common multiple of the input and output frequencies (in this case, 3 kHz). The filter coefficients are divided into three groups. Now follow the action of the filter as it increases the sampling rate of the 1-kHz input to 1.5 kHz. You’ll note that at t_0, the first input sample is convolved with the first filter coefficient in group 1. The result appears at the output. At the next instant, the corresponding filter coefficient in group 2 would go unused because no output is destined for that time. Therefore, the filter ignores that coefficient and jumps to group 3 because the corresponding coefficient there will determine an output. As with t_1, no output is destined for time t_2, so no convolution takes place. The filter jumps to the next coefficient that will cause an output. This coefficient comes from group 2. In a like manner, the next coefficient to result in an output will come from group 1.

As you can see by following what happens at each instant, t_n, the filter selects a coefficient from group 1, then from group 3, then from group 2, and repeats the process. The coefficient-group selector commutates this sequence. (In an actual polyphase filter, a clock controls coefficient selection.)

Polyphase filter uses three subfilters

The high-level system block diagram for the polyphase filter appears in Fig 7. Note the three subfilters and the 3-phase clock, which enables each filter at the proper time. The overall sample rate is equal to the input or output sample rate, whichever is larger. In this case, the output frequency of 1.5 kHz determines the overall sample rate, which is also the speed at which the signal sink is clocked. However, the signal source (input), though clocked at 1.5 kHz, needs to run at 1 kHz. The data-read clock, which holds the signal-source block for one out of every three samples, accomplishes the adjustment. The source block therefore outputs at 1 kHz.

The subfilters are sequentially enabled by a 3-phase

Fig 7—In this high-level system block diagram for the polyphase filter, note the three subfilters; note also the 3-phase clock, which enables each filter at the proper time. The overall sample rate is equal to the input or output sample rate, whichever is larger.
Under the DIP caps – Micro/Q 1000 & 2000

Standard Capacitors:
- Improve board performance without redesign.
- Solve noise problems by retrofitting existing boards.

Custom Capacitors:
- Special pinouts to address wide variety of specialty DIPs such as analog devices, op-amps, center pinout advanced CMOS devices.
- Applications: decoupling, EMI/RFI filtering, compensation.

Under the PGA caps – Micro/Q 3000

- Reduce PGA and PLCC noise.
- Several part sizes address a variety of package sizes.
- Designed for all 16/32-bit MPUs, DSPs, GSPs, FPPs, gate arrays, standard cells, and fully custom ASICs.

Micro/Q capacitors, Q/PAC® components and Mini/Bus® bars take the headache out of a host of design problems quickly and easily.

Micro/Q decoupling capacitors reduce EMI/RFI and noise voltage spikes in ICs by as much as a factor of ten. They can mount under the IC or share mounting holes to improve noise suppression where it’s most effective - at the source.

Q/PAC components give two-layer boards multilayer electrical performance, eliminate discrete decoupling capacitors, and boost the reliability of the PCB assembly.

Mini/Bus bars provide high current distribution and high capacitance, eliminate up to half the decoupling capacitors, and fit between or beneath ICs to reduce required board layers.

Find out more about how we can solve your noise, EMI/RFI or space problem today. Call a Product Specialist at (602) 967-0624 (Fax 602-967-9385) and ask for more information.

Circuit Components Inc.
Formerly a Division of Rogers Corporation
2400 South Roosevelt Street, Tempe, AZ 85282
602 967-0624, FAX 602-967-9383

DISTRIBUTION: Europe, Japan, Taiwan, Singapore, Hong Kong, Korea, Brazil, Australia, India

Micro/Q, Q/PAC and Mini/Bus are registered trademarks of Circuit Components, Inc.

Two layer PCBs power distribution and decoupling caps – Mini/Bus and Q/PAC

Mini/Bus Bars
- Distributes power to ICs
- Eliminates up to half the decoupling caps
- Fits between or beneath the ICs

Q/PAC Components
- Deliver efficient power distribution
- Provide built-in capacitance
- Eliminate decoupling capacitance
- 2-layer economy, 4-layer low noise levels

High Current/High Capacitance Components
- High current power distribution up to 64 amps
- High cap values available
- Board rigidizer
- Heat sinking function

Under the PLCC - SMT caps Micro/Q 3500

- Surface mount capacitors.
- Fit under 44, 52, 68, 84/larger pin count PLCCs.
- Low inductance, 0.5 - 0.6 nanoHenries.
- Pads absorb coefficient of thermal expansion mismatch between board and device during soldering.
- Supplied in tape and reel or in bulk.
- Available with Z5V or X7R dielectrics.
MULTIRATE DSP FILTERS

clock—a tapped delay line with three outputs. The outputs are skewed so that only one is low (active) at any time. Accordingly, at any given time, only one subfilter will compute a dot product, output it, and have it selected at the adder.

Fig 8 shows the components of each subfilter block. Each block has shift and filter inputs. When the shift input is low (zero), the subfilter reads a new input sample. When the filter input is low, the block computes and outputs a dot product. Otherwise the subfilter multiplexer selects a zero to be output. (Note that for demonstration purposes, the Fig 6 example used only one dot-product stage. In actuality, each subfilter performs its own dot-product calculation, as Fig 8 shows. The result is the same.)

The 3-phase subfilter clock ensures that only one subfilter outputs sample data at a given time, while the other two output zeros. The use of this clock explains why Fig 7 conveniently substitutes an adder for the multiplexer normally used to commutate the three subfilter outputs into a single output.

Because of their relative efficiency, polyphase filters are better for multirate filtering than simpler implementations. They do, however, take significantly longer to design. This statement is especially true when the difference between the original and interpolated sampling rates is great because a polyphase filter would require many subfilters and subcoefficients.

Keep in mind the following when planning polyphase systems of the type presented here:

• The simulation clock (master clock) should match either the input or the output sample rate, whichever is higher.
• The sampling frequency you assume when designing the filter will be the least common multiple of the two sample rates.
• When the sample-rate change is expressed as a ratio L/K, L represents the number of subfilters needed, and K represents the factor by which you will be decreasing the sampling rate. If L > K, hold L - K out of L inputs. If K < L, hold K - L out of K outputs. (K will be 1 in cases of pure interpolation, and L will be 1 in cases of pure decimation.)

Although the two classical multirate filter designs yield equally accurate results, the polyphase implementation saves the most CPU time. Polyphase filters are undeniably more complex than ones that use traditional zero-padding methods, but polyphase filters’ complexity shouldn’t dissuade you from experimenting. You might, for instance, use only one tapped delay line for all three subfilters. Because splitting up the subfilters takes more glue logic, you might arrive at an implementation in which the three filters are not really separate. The filter selects only one coefficient at a time, so you might use a single filter along with an addressing scheme that assigns coefficients as needed.

Author’s biography
John Allen Mitchell is a technical marketing engineer with Comdisco Systems in Foster City, CA, where he has worked for three and a half years. His responsibilities include writing of application notes, articles, and marketing literature. He holds a BS in electronic engineering technology from California Polytechnic State University. John’s hobbies include creating electronic music (he has a recording studio in his home), writing poetry, and painting. His paintings have been exhibited in two galleries.

Article Interest Quotient (Circle One)
High 470 Medium 471 Low 472

For More Information on Datakey Circle No. 90.,
Silicon Valley Institute

PRESENTS

PROJEXPON 92

November 4–6, 1992, San Jose Convention Center, San Jose, California

Implementing Today’s Revolutionary New Developments in Project Management, Strategic Planning and Concurrent Engineering

SOME OF THE ORGANIZATIONS PROVIDING CONFERENCE SPEAKERS
Apple Computer • Tandem Computers • Len Research • Solectron Corp. (Malcolm Baldridge Award Winner) • Symantec • U.S. FDA • Microsoft • Signetics • Varian Associates • Solectron Corp. (Malcolm Baldrige Award Winner) • Symantec

CONFERENCE BENEFITS:
• Slash Project Costs and Compress Timelines
• Master Resource Utilization
• Achieve Higher Quality Standards
• Gain International PM Perspectives
• Analyze Leadership Skills Unique to Project Situations
• Discover How Other Organizations in Your Industry or Specialty Tackle PM Problems
• Review State-of-The-Art PM Software
• Talk One-On-One with PM Software Publishers
• Critique Industry Consultants
• Evaluate Industry Trainers
• Meet (and Discuss Industry Trends) with Thousands of Other Delegates

CONFERENCE FEATURES:
• 19 Concurrent Special Interest Tracks
• 228 By-Invitation-Only Presentations
• 57 Track-Specific, No-Holds-Barred Panel Sessions
• 19 Concurrent Special Interest Tracks
• 3 Keynote Presentations
• Galo Exhibitors Reception
• More than 100 Exhibits
• Gala Exhibitors Reception
• 3 Keynote Presentations
• Freewill-registration

CONFERENCE ENDORSED BY:
• Project Management Institute
• INTERNET — International Project Management Association
• Concurrent Engineering Research Center at West Virginia University
• Society of Cost Estimating and Analysis

19 CONCURRENT TRACKS
Leadership in a Program Environment • Strategic and Executive Planning • Total Quality Management • Where the Rubber Meets the Road — Putting Project Management Processes to Work • Project Management Software and Hardware Selection Strategies • Project Management Applications for MIS Professionals in All Disciplines • Project Management in Communication Systems Design and Production • Project Management in Electronic Systems Design and Production • Project Management in Computer, Peripheral Equipment and Hardware Development and Production • Achieving World Class in Aerospace • Project Management in Biotechnology and Pharmaceuticals • Project Management in Software Design and Production • Project Management in Semiconductor Design and Production • Concurrent Engineering — from Marketing to R&D to Production • Project Earth — Project Management for Environmental Programs • Project Management in International Programs • Cost Engineering • Project Management Applications for Insurance, Banking and Finance • Project Management Training and Consulting

CALL OR FAX FOR FREE 48 PAGE BROCHURE

Registration Form (Photocopy for additional registrants)
To Register (or for a free brochure): Mail this form to Silicon Valley Institute, 1250 Oakmead Parkway, Suite 210, Sunnyvale, California 94088-3599; Fax this form to 408-746-3640 or Call 408-730-6830

Name/Title
Organization
Address
City/State/Zip
Tel/Ext/Fax

Conference Fee: US $895 per person

☐ Check enclosed ☐ Bill my organization ☐ Send free brochure
Don’t let 3V stop your Design.

Linear’s High Performance VoltSavers.

Nobody offers you a bigger selection of high-performance 3V analog parts than Linear Technology. We’ve been helping customers solve high speed, precision low power design problems with 3V analog solutions for years.

Our family of Voltsaver products covers a wide spectrum of 3V linear functions. Guaranteed performance at 3V levels allows you to work with confidence at this new power supply voltage. Power supply circuits are available to operate down to 2V and below or regulate 5V down to 3V. Micropower low dropout and micropower switching regulators reliably give 3.3V or 5V in portable systems, and 3V high-side switches provide power management. Op amps and instrumentation amplifiers have guaranteed performance at 3V and below. Also, RS232 interface circuits are designed to operate with the new 3.3V logic levels.

Voltage references with guaranteed temperature performance are available at 1.2V and 2.5V—ideal for 3V systems. Micropower comparators that operate on 3V, down to as low as 1.1V, can provide system resets as well as battery detection. A full line of 8-bit, 10-bit and 12-bit analog to digital converters are available with guaranteed specifications for 3V operation. Also, microprocessor supervisory circuits for 3.3V applications are available.

Call today for our Design Note 56 “3.3V Operation of Op Amps” and our 3V Selection Guide. For details, contact Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035/408-432-1900. For literature only call 800-637-5545.
Spice models low-bias op amps correctly

Bonnie C. Baker, Burr-Brown Corp., Tucson, AZ

Having correct values for input-bias currents of low-bias operational amplifiers is critical, especially when you model transimpedance circuits. Yet Spice macromodels for operational amplifiers do not always model dc parameters correctly. This Design Idea presents an example of a technique you can use to correct the Spice model of any low-bias op amp.

In the Spice macromodel in Fig 1, the input bias current of the OPA627 should equal twice the IS of the P-channel JFET model JX, or 1.0 pA. However, a Spice simulation will predict that the gate current from J1 and J2 is 10 to 20 pA, depending on the common-mode voltage of the input stage and the magnitude of the supply voltages. The way the model simulates the drain-to-gate and source-to-gate nodes of the input FETs generates this additional current.

The culprit causing the additional current is the Spice default value, GMIN. In this case, 1/GMIN is the impedance between the drain-and-gate and the source-and-gate. This impedance keeps the gate node of each FET from floating. The default value for GMIN is 1 x 10^{-12}.

For example, if \(V_{DG} = 14\) V, \(V_{GS} = 1.6\) V, and IS = 500 x 10^{-12} A, the op amp’s simulated bias current will register greater than the expected 1.0 pA. The simulated bias is

\[
I_{BIAS} = IS \times 2 + I_{GS} + I_{DG}, \quad I_{BIAS} = IS \times 2 + V_{GS} \times GMIN + V_{DG} \times GMIN, \quad I_{BIAS} = 0.5 \times 10^{-12} A \times 2 + 1.6 V \times 1 \times 10^{-12} A, \quad I_{BIAS} = 16.6 \text{ pA}.
\]

The solution is to add two voltage-controlled current sources (G11 and G21) to each gate of the differential pair of the operational amplifier (Fig 1). Adding G11 to the gate node of J1 and G21 to the gate node of J2 results in the following calculations (assume the voltage across G11 is 15V):

\[
I_{BIAS} = IS \times 2 + I_{GS} + I_{DG} - I_{G11}, \quad I_{BIAS} = IS \times 2 + V_{GS} \times GMIN + V_{DG} \times GMIN - V_{G11} \times GMIN - I_{G11}, \quad I_{BIAS} = 0.5 \times 10^{-12} A \times 2 + 1.6 \times 10^{-12} A + 14 \times 10^{-12} A - 15 \times 10^{-12} A - (1.6 \times 10^{-12} A + 14 \times 10^{-12} A - 15 \times 10^{-12} A), \quad I_{BIAS} = 1.0 \text{ pA},
\]

where the \(V_{G11} \) term in the second equation accounts for the current through the resistor from a JFET’s gate to ground (not shown in figure) that is part of

Fig 1—Adding a pair of voltage-controlled current sources, G11 and G21, to this Spice macromodel of a JFET-input op amp cancels side effects of the JFETs' models to yield accurate simulations of input-bias currents.
the current source’s Spice model. Also note that the current \(I_{MN} \) in the second equation expands to three terms in the third equation because \(G_{11} \) has three control voltages (see listing).

Another solution to this problem is possible. You could change \(G_{MIN} \) to a smaller value, such as \(1 \times 10^{-3} \). Changing \(G_{MIN} \) to \(1 \times 10^{-13} \) will give an input-bias current of 1.156 pA. This approach may seem to be the most logical. However, changing this parameter can cause convergence problems elsewhere in the model and will not give an accurate simulation.

EDN BBS /DL_SIG #1170

To Vote For This Design, Circle No. 747

How to use our bulletin board

This icon identifies those Design Ideas that have computer-readable material posted on EDN’s bulletin-board system (BBS). Call our free BBS at (617) 558-4241 (300/1200/2400 8,N,1). Not every Design Idea has downloadable material, but each one does have a BBS number printed at the end of it. Once you get into the system, you can use that number to find more information on a particular idea. If you’d like to comment on any Design Idea, include the number in the subject field of your message.

Buffer splits power supply

Stuart Smith, Elantec Inc, Milpitas, CA

The high-speed buffer (IC) in Fig 1 can sink or source enough current to derive a new, stable output ground, splitting the input supply. The 7805 and 7905 3-terminal regulators supply 1A max, and the buffer handles 1.5A. The EL2008 shown has a 1Ω output impedance.

The buffer allows the circuit to handle unbalanced load currents that a simple resistive divider could not; if your circuit has both digital and analog circuitry, the +5V rail would typically source more current than the −5V rail would. You can also use LH0033 and LH0063 buffers if you need only 100 mA or 250 mA, respectively. If you need a 12V supply instead of 5V, simply substitute a 22-kΩ resistor for \(R_1 \) and a 7812 for the 7805 regulator. Of course, you will also need to up your input voltage to ~22V to account for the regulators’ dropout voltages.

EDN BBS /DL_SIG #1171

To Vote For This Design, Circle No. 748

144 • EDN August 20, 1992
RF TRANSFORMERS

Over 80 off-the-shelf models...

3KHz-1500MHz from $195

Having difficulty locating RF or pulse transformers with low droop, fast risetime or a particular impedance ratio over a specified frequency range?... Mini-Circuits offers a solution.

Choose impedance ratios from 1:1 to 36:1, in connector, TO-, flatpack, surface-mount, or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55831 requirements*). Coaxial connector models are offered with 50 and 75 ohm impedance; BNC standard, other types on request.

Ultra-wideband response achieves low droop and fast risetime for pulse applications. Ratings up to 1000M ohms insulation resistance and up to 1000V dielectric voltage. For wide dynamic range applications involving up to 100mA primary current, use the T-H series. Fully detailed data appear in our 740-pg RF/IF Designer's Handbook.

Need units in a hurry?... all models are covered by our exclusive one-week shipment guarantee. Only from Mini-Circuits.

*units are not QPL listed.
World Leader in High-Speed Analog High-Speed Amps/Buffers

MONOCHROME & COLOR VIDEO AMPLIFIERS
- Cable Drivers
- Distribution Amps
- Gain Blocks

CURRENT MODE FEEDBACK VIDEO AMPS

<table>
<thead>
<tr>
<th>P/N</th>
<th>BW</th>
<th>@ 100 pc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL2020</td>
<td>50 MHz</td>
<td>2.80</td>
</tr>
<tr>
<td>EL2022</td>
<td>60 MHz</td>
<td>3.90</td>
</tr>
<tr>
<td>EL2023</td>
<td>85 MHz</td>
<td>3.25</td>
</tr>
<tr>
<td>EL2120</td>
<td>100 MHz</td>
<td>2.80</td>
</tr>
<tr>
<td>EL2030</td>
<td>120 MHz</td>
<td>3.25</td>
</tr>
<tr>
<td>EL400/EL2070</td>
<td>200 MHz</td>
<td>4.95</td>
</tr>
</tbody>
</table>

VOLTAGE FEEDBACK VIDEO AMPS

<table>
<thead>
<tr>
<th>P/N</th>
<th>GBW</th>
<th>@ 100 pc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL2044</td>
<td>120 MHz</td>
<td>1.80</td>
</tr>
<tr>
<td>EL2075</td>
<td>2 GHz</td>
<td>5.25</td>
</tr>
</tbody>
</table>

VIDEO BUFFERS

<table>
<thead>
<tr>
<th>P/N</th>
<th>BW</th>
<th>I/O @ 100 pc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL2001</td>
<td>70 MHz</td>
<td>±160 mA</td>
</tr>
<tr>
<td>EL2002</td>
<td>180 MHz</td>
<td>±160 mA</td>
</tr>
<tr>
<td>EL2003</td>
<td>100 MHz</td>
<td>±230 mA</td>
</tr>
<tr>
<td>EL2004</td>
<td>200 MHz</td>
<td>±230 mA</td>
</tr>
<tr>
<td>EL2005</td>
<td>300 MHz</td>
<td>±70 mA</td>
</tr>
<tr>
<td>EL2006</td>
<td>500 MHz</td>
<td>±70 mA</td>
</tr>
<tr>
<td>EL2007</td>
<td>1 GHz</td>
<td>±70 mA</td>
</tr>
</tbody>
</table>

GENERAL PURPOSE HIGH-SPEED AMPS/BUFFERS
- High-Speed Signal Processing
- Instrumentation
- Medical Instruments

FAST AMPLIFIERS

<table>
<thead>
<tr>
<th>P/N</th>
<th>GBW</th>
<th>S/R*</th>
<th>@ 100 pc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL2424</td>
<td>60 MHz</td>
<td>200</td>
<td>6.95</td>
</tr>
<tr>
<td>EL2425</td>
<td>30 MHz</td>
<td>40</td>
<td>5.25</td>
</tr>
<tr>
<td>EL2435</td>
<td>70 MHz</td>
<td>50</td>
<td>5.25</td>
</tr>
<tr>
<td>EL2041</td>
<td>90 MHz</td>
<td>250</td>
<td>3.75</td>
</tr>
<tr>
<td>EL2006</td>
<td>60 MHz</td>
<td>450</td>
<td>22.59</td>
</tr>
<tr>
<td>EL2044</td>
<td>120 MHz</td>
<td>325</td>
<td>1.80</td>
</tr>
<tr>
<td>EL2030</td>
<td>1 GHz</td>
<td>3.90</td>
<td></td>
</tr>
<tr>
<td>EL2039</td>
<td>600 MHz</td>
<td>550</td>
<td>2.75</td>
</tr>
</tbody>
</table>

FAST BUFFERS

<table>
<thead>
<tr>
<th>P/N</th>
<th>BW</th>
<th>S/R*</th>
<th>@ 100 pc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL2004</td>
<td>350 MHz</td>
<td>2500</td>
<td>21.00</td>
</tr>
<tr>
<td>EL2005</td>
<td>140 MHz</td>
<td>1500</td>
<td>20.15</td>
</tr>
<tr>
<td>EL2031</td>
<td>550 MHz</td>
<td>7000</td>
<td>40.00</td>
</tr>
</tbody>
</table>

ANNOUNCING THE EL2044C 120 MHz VOLTAGE FEEDBACK OP AMP
- ONLY 1.5¢/MHz
- Drives Unlimited Load Capacitance
- 325 V/µs Slew Rate
- Single or Split Supplies as Low as 2.5V
- 120 MHz (-3 dB) BW @ Gain = 1
- $1.80 @ 100 pc. - P-DIP ($1.90 - SO-8)

FOR SAMPLES CALL OUR APPLICATIONS HOTLINE: (800) 333-6314 ext 311, Literature Only - ext 234

ELANTEC, INC. 1996 Tarob Court Milpitas, CA 95035 (408) 945-1323 (800) 333-6314 FAX (408) 945-8305

EDN August 20, 1992 CIRCLE NO. 87
Integrated S/H and A/D converter.
The ADC4345 unit integrates a S/H circuit and a 16-bit A/D converter in a 2.5 x 3.5 x 0.44-in. module. It can digitize 250-kHz signals, using a 500-kHz sampling rate. Step response is 800 nsec, and the noise specification is 50-µV rms maximum. S/N ratio from dc to 100 kHz is 95 dB, and the peak distortion at 100 kHz is -99 dB. $460 (100). Analogic Corp, Data Conversion Products Group, 360 Audubon Rd, Wakefield, MA 01880. Phone (508) 977-3000. FAX (617) 245-1274. Circle No. 391

Light-sensor array.
The TSL214 integrates a 64 x 1-pixel charge-mode array, 64-bit shift register, clock generator, S/H circuit, and analog buffer in a single 14-pin clear-plastic DIP. You only have to supply an external clock between 10 kHz and 500 kHz and a control signal to initiate an integration period. Each pixel measures 120 x 70 µm, and they are spaced 125 µm center to center. $6.80 (1000); evaluation kit, $125. Texas Instruments Inc, Semiconductor Group, Box 809066, Dallas, TX 75380. Phone in US and Canada, (800) 336-5236, ext 3990; (214) 955-6611, ext 3990. Circle No. 392

PCM transmission chips.
The MV1403 family combines frame synchronization, time-slot 16 signaling functions, HDB3 (high-density bipolar) encoding and decoding, and cyclic-redundancy-check circuits on a single chip to transmit PCM signals according to CCITT recommendations. The series features several dual-function devices: the MV1442 device that has an HDB3 encoder/decoder and provides clock regeneration for 2.048-Mbps transmission; the MV1443 time-slot zero transmitter/receiver; the MV1444 transmitter and HDB3 encoder; and the MV1445 receiver and HDB3 decoder. $10.74 to $13.50 (1000). GEC Plessey Semiconductors, 1500 Green Hills Rd, Scotts Valley, CA 95067. Phone (408) 438-2900. Circle No. 393

Fast SRAMs.
The HM6708SH 256-kbyte static RAMs have a 65,536 x 4-bit organization. The 5V devices feature access times of 10 and 12 nsec. The 0.8-µm devices have TTL-compatible inputs and outputs, and are suitable as secondary cache RAMs for 1486, 68040, or R4000 µPs operating at 40 or 50 MHz. The devices come in a 24-pin SOJ package and draw 140 mA operating and 40 mA in standby. The 10-nsec version, $29; 12-nsec version, $23 (1000). Hitachi America Ltd, Semiconductor & IC Div, 2000 Sierra Point Pkwy, MS-080, Brisbane, CA 94005. Phone (800) 448-2244; (415) 589-8300. FAX (415) 583-4207. Circle No. 394
Floppy-disk controllers. The FDC37C651 and FDC37C652 controllers contain the company's 765B CMOS floppy-disk controller core, a digital data separator, two 16450-compatible UARTs, a bidirectional parallel port, multiple power-down circuitry, an IDE port, and on-chip, 24-mA ISA bus drivers. You can software-select the options for the FDC37C651 chip through configuration registers. The FDC37C652 chip has game-port select logic to integrate an on-chip game port. FDC37C651, $6.35; FDC37C652, $5.39 (10,000). Standard Microsystems Corp, Component Products Div, 80 Arkay Dr, Hauppauge, NY 11788. Phone (516) 435-6000. Circle No. 395

LCD driver IC. The e1350 LCD driver IC operates on supply voltages as low as 3V and typically draws 95 µA. It communicates with most 4-, 8-, and 16-bit µPs to drive 128 segments (16 characters) on an LCD. You can cascade as many as eight devices to drive 128 characters. Other features include an I²C bus interface, an integrated oscillator, display-memory switching, and automatic increment loading. The 40-pin DIP, less than $3 (OEM qty). Siliconix Inc, 2201 Laurelwood Rd, Santa Clara, CA 95054. (408) 988-8000. Circle No. 396

0.8-µm CMOS gate arrays. The TGC1000 and TGC1000LV series consists of 12 arrays ranging from 16k to 455k gates. The TGC1000 arrays operate from 5V, and the TGC1000LV arrays consume 0.8 µW/MHz/gate, operating from 2.7 to 3.6V. The low-voltage arrays have fail-safe input buffers that let you mix 3 and 5V logic. A library contains macros for internal and IEEE-1149.1 scan testing. NRE charges, from $20,000. Texas Instruments Inc, Semiconductor Group (SC-92053), Box 809066, Dallas, TX 75380. Phone (214) 995-6611, ext 3990. Circle No. 397

Analog ASIC. The VRSA-Tile RPA-160 analog array consists of 16 tiles in a 4 x 4 grid pattern. Each tile contains 24 npn and 18 pnp transistors; two Shottky diodes; two programmable MOS capacitors; and 13 programmable thin-film resistors. Macrocells consist of op amps, comparators, multiplexers, analog multipliers, and analog buffers operating as fast as 200 MHz. NRE costs for turnkey designs, $50,000 to $75,000. Raytheon Co, Semiconductor Div, Box 7016, Mountain View, CA 94039. Phone (415) 968-9211. Circle No. 398

One-time-programmable memory. The Am27V010 1-Mbit one-time-programmable memory device operates from 3.3V ±0.3V; it has an access time as short as 200 nsec. Maximum power consumption in standby mode is 90 µW. When you access the device at a 5-MHz rate, the power consumption is 54 mW. The chip comes in a 32-pin plastic leaded
Raltron manufactures its compact VC 7025 Voltage Controlled Crystal Oscillator to meet your Phase Locked Loop specifications, delivering deviation sensitivity or pullability of up to ±100 PPM. Big performance in a small package. At a price you’ve been looking for.

VCXO WITH PULLABILITY

Raltron manufactures a complete line of the highest quality VCXO's to both standard and custom specifications. Send us your VCXO specifications today or call (305) 593-6033 for more information.

Raltron Electronics Corp.
2315 NW 107th Avenue,
Miami, Florida 33172 U.S.A.
FAX (305) 594-3973
TELEX 441588 RALSEN

Telecommunications:

If you’re into it, listen to this!

VCXD WITH PULLABILITY

Raltron manufactures a complete line of the highest quality VCXO’s to both standard and custom specifications. Send us your VCXO specifications today or call (305) 593-6033 for more information.

Ralphtron

2315 NW 107th Avenue,
Miami, Florida 33172 U.S.A.
FAX (305) 594-3973
TELEX 441588 RALSEN

PC BOARD SOFTWARE

Great Features • Great Value • Great Price

EAGLE 2.6

Schematic • PCB Layout Editor • Autorouter

Over 8000 copies sold worldwide!

- EAGLE is a high value, low priced program. With the first layout you will see an immediate return on your investment.
- EAGLE is very easy to use and to understand.
- Unlike many other PCB programs, EAGLE has virtually no limitations. Design any board on your AT compatible computer which can be manufactured.
- EAGLE’s Autorouter and Schematic Modules are fully integrated with the Layout Editor. Full SMD and Multilayer support, up to 255 layers. Libraries and Drivers included. Find out for yourself. Call for 100% working demo which includes original manual.

EAGLE Demo $12
EAGLE Layout Editor $399
Schematic Module $399
Autorouter Module $399

To order call toll-free 1-800-858-8355

CadSoft Computer, Inc. • 801 S. Federal Highway
Delray Beach, FL 33483 • Fax (407) 274-8218

Brushless DC motors provide extended life in demanding applications

These compact 12-24 VDC motors are designed for tape cartridge drives, business machines, medical equipment, pumps/compressors and similar applications. Available in 2.0" and 3.2" diameters with stall torque from 10 to 84 oz-in. Custom shaft and housing configurations to match your requirements. AMETEK, Technical Motor Division, 627 Lake Street, Kent, OH 44240. Tel: 216-673-3452. Fax: 216-678-8227. In Europe, Friedrichstrasse 24, D6200 Wiesbaden, Germany. Tel: 0611-370031. Fax: 0611-370033.
SHARE YOUR DESIGN INNOVATIONS IN THE USE OF DA TOOLS!

The Design Automation Conference, the premier conference in the DA field, has broadened its scope of interest to include the use of automation in the design of electronic systems. The user-oriented sessions of the 1992 DAC were well attended and very successful. Building on the success of the 1992 DAC, we encourage submissions which will interest circuit and systems designers, design managers and DA support engineers.

TOPICS OF INTEREST
Submissions on all aspects of the use of computers to aid the design process are invited. The list below represents suggested topics; submissions do not have to be limited to this list. Feel free to contact us concerning a topic of your choice.

- Concurrent Engineering
- Integration of Vendor DA
- Standards Issues: VHDLCF/EDIF
- Design For Manufacture
- Selecting and Managing DA Systems
- Silicon Strategies: FPGA, PLD, ASIC
- Support For EDA Systems
- Design Reuse

SUBMISSION TO DAC
A submission to DAC can be a regular paper or a proposal for a panel, tutorial or a special session (a group of related papers or tutorials). You should contact all of the participants mentioned in your proposal for panel, tutorial, or special session before submission.

DEADLINE: Submissions should be postmarked no later than October 23, 1992. Notice of acceptance will be mailed by February 14, 1993.

For more information and specific requirements for submission please contact:
Design Automation Conference
Attn: Publication Dept.
7490 Clubhouse Rd., Ste. 102
Boulder, CO 80301
phone: (303) 530-4333 fax: (303) 530-4334
email: DACINFO@dac.com

To encourage those who have never submitted to DAC, assistance is available for the preparation of your proposal for a panel, tutorial or special session. Please contact the address above.

EDN-NEW PRODUCTS
Integrated Circuits

High-slew-rate buffer amplifiers.
The BUF600 and BUF601 monolithic, open-loop, unity-gain buffer amplifiers have a symmetrical slew rate of 3600V/μsec. An automatic quiescent-current control circuit produces a 320-MHz bandwidth at a quiescent current of 3 mA for the BUF600 and 6 mA for the BUF601. The devices have a 1.5-nsec rise and fall times, -62-dB total harmonic distortion, and operate from -40 to +85°C. BUF600, from $5.68; BUF601, from $5.83 (100). Burr-Brown Corp., Box 11400, Tucson, AZ 85734. Phone (800) 548-6132; (602) 746-1111. FAX (602) 889-1510.

Motor-control chips. The TDA5340/5341 disk-drive motors drive full-wave brushless DC motors without requiring commutation sensors. They have a voice-coil motor driver, start-up circuitry, and an automatic park procedure. The TDA5341 chip includes a frequency-locked loop to control motor speeds as fast as 6000 rpm. Maximum spindle-drive current is 1.6A. A sleep-mode function draws 200 μA. TDA5340, $7.80; TDA5341, $8.75 (1000). Signetics Co. Box 3409, Sunnyvale, CA 94088. Phone (408) 991-2000.
Introducing the AD620, the In Amp of the 90's.

MAKE

BUY

90% fewer parts.
90% of the power.
90% less design time.
90% space savings.
90% fewer problems.
90% of the cost.

If you're not designing with the AD620, you're behind the times. Because it's the one totally integrated instrumentation amplifier that delivers the highest price/performance combination possible.

Since the AD620 is a full function monolithic in amp, it (and the single supply AD626) does away with all the design hassles of discrete parts. Available in an 8-pin SOIC — the first of its kind — or in a DIP, it requires less space and just 1.6 mA of supply current. Plus it gives you a wide power supply range (± 2.3 V to ± 18 V), low input offset voltage and drift (125μV and $<1 \mu$V/°C, respectively), and flexible gain setting with only one external resistor.

With all this, the AD620 delivers higher reliability and outperforms any 'make' or 'buy' solution. And best of all, at 3.27 (in 1000s), it costs far less than any other solution.

For a free AD620 Design In Kit which includes In Amp Applications and Selection Guides, samples and data sheets, call 1-800-262-5643 or write to us at the address below. You'll see that when it comes to affordable performance, the AD620 is ahead of its time.
Rotation sensors. TLE Series sensors operate over a -40 to +150°C range and feature reverse polarity and over-voltage protection. The 4921U and 4922U have dynamic mode operation for speed detection and timing applications. The 4971U, 4973U, and 4974U units feature static operation for zero-rotation speed sensing. The 4973U has a 2-lead connection for applications requiring long wire runs; the 4974U offers symmetrical output for applications requiring a 50% duty cycle. $2.54 to $2.85 (1000). Siemens Components Inc., Integrated Circuit Div, 2191 Laurelwood Rd, Santa Ana, CA 95054. Phone (408) 980-4598. Circle No. 351

LCD module. The G2446 module has a 240×64 dot-matrix format and features a built-in controller and dc/dc converter. It incorporates edge lighting. Contrast equals 6:1, and brightness measures 60 cd/m². The module's power requirements are 5V at 12 mA; an inverter for the edge lighting requires 5V at 700 mA. Operating range spans 0 to 50°C. $143 (100). Delivery, stock to eight weeks ARO. Seiko Instruments USA Inc, 2980 Lomita Blvd, Torrance, CA 90505. Phone (310) 517-7829. FAX (310) 517-7792. Circle No. 352

Two-wire transmitter. The self-powered, IXR100 2-wire transmitter excites and linearizes signals from RTDs and can condition thermocouples while supplying power on a single 4- to 20-mA wire pair. It provides as much as 1500V rms galvanic isolation for industrial signals in noisy environments. The unit provides matched current sources for sensor excitation. It operates from supply voltages of 36 to 11.6V. From $49 (100). Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Phone (800) 548-6132; (602) 746-1111. FAX (602) 889-1510. Circle No. 354
Elastomeric interconnector. The GN is a strip connector with conductors spaced on 0.1-mm centers. The connector can carry 200 mA/mm² with a 0.6-mm-wide electrode. The units come in lengths of 2 to 5 mm and in widths of 2 to 4 mm. $1 per linear inch. Shin-Etsu Polymer America Inc., 34135 Seventh St, Union City, CA 94587. Phone (510) 475-9000. Circle No. 355

Panel switch. The Touch-Tell switch combines a programmable LCD module, tricolor backlighting, driver, and a momentary-action pushbutton switch in a single housing. The display provides a full-screen graphics capability and has 864 pixels in a 24×36 matrix. The SPST internal switch is rated for 12V dc at 50 mA and it has a 10-cycle lifetime. $49.25. Cherry Electrical Products, 3600 Sunset Ave, Waukegan, IL 60087. Phone (708) 360-3483. Circle No. 356

DC/DC converters. PKE Series converters are designed for 48 and 60V systems. The line consists of five single-, dual-, and triple-output models. Input-to-output isolation equals 1500V dc and efficiencies range from 80 to 85%. The outputs are short-circuit proof, and the input incorporates a transient suppressor. Dual-output module, $98; triple-output module, $105 (250). Ericsson Components Inc, 403 International Pkwy, Richardson, TX 75081. Phone (214) 997-6561. Circle No. 357

DC/DC converters. K Triple Series 55W converters feature two separate power sections. Each section operates antiphase to the other to reduce ripple current stress. Efficiencies range as high as 90%. Isolation equals 1544V dc. The units operate over a −25 to +80°C range. $150.50 (100). Calex Mfg Co Inc, 2401 Stanwell Dr, Concord, CA 94520. Phone (800) 542-3355; (510) 687-4411. FAX (510) 687-3333. Circle No. 358

Indicator lights. Series 5700 indicators feature incandescent and LED illumination in a variety of colors including a red-green bicolour LED. Versions are available for operation with voltages of 5 to 28V, and nominal lamp life equals 25,000 hours. Operating range spans −20 to +75°C. From $0.90 (1000). C&K Components Inc, 15 Riverdale Ave, Newton, MA 02158. Phone (617) 964-6400. Circle No. 359

Keypad switches. These switches are available in three versions—12- and 16-position units and a 12-position model with LCD. All units employ conductive rubber switching and are constructed from plastic that has a UL 94V-0 rating. The two circuit codes are decimal and matrix. The 12-position model, $16 (500). Augat Inc, Box 779, Attleboro, MA 02703. Phone (508) 222-2202. FAX (508) 222-0693. Circle No. 360

No Noise Is Good Noise
The SR560 Low-Noise Preamplifier

is the ideal voltage amplifier for the most demanding applications. With a low 4 nV/√Hz of input noise, even the smallest signals won't get lost. Two adjustable signal filters, each configurable as high or low pass, attenuate unwanted interference. Internal batteries provide operation isolated from the AC line.

And the best news of all, the SR560 is priced at only $1895, including remote interface. Whether you need lower noise, higher gain, or greater bandwidth, call Stanford Research Systems and take a closer look at the SR560.
VME 4-channel DSP board. The MM1-420 6U VME board contains four 27-MHz 56001 DSP chips. The board encodes 16-bit audio signals at sampling rates of 48 kHz for DAT (digital audio tape) and 44.1 kHz for CD. Each chip has a 16k x 24-bit static RAM, 16k x 24-bit data memory, and 16-kbyte boot EPROM. The DSP chips and the VMEbus have access to a multiport 4-Mbyte RAM. A variety of daughter boards can access one or more DSP chips. $3225. Vogra Inc, 4901 Morena Blvd, Bldg 502, San Diego, CA 92117. Phone (619) 483-1197. FAX (619) 483-7531.

Leather-covered laptop computer. The Notepad 386SX, a leather-covered laptop computer, runs at 20 MHz, is 1.5 in. thick, and fits in a leather portfolio carrying case. The computer comes with DOS 5.0, 2 Mbytes of RAM (expandable to 4 Mbytes), 3.5-in. floppy-disk drive, and options for a 40-, 60-, or 80-Mbyte internal hard-disk drive. A fax/modem, PS/2 mouse, serial and parallel ports and a 4.4-Ahr rechargeable NiCd battery are standard. With

15-in. high-resolution color monitor. The ECM 1560 is compatible with VGA, Super VGA, XGA, IBM's 8514A, and Mac II standards. Digital memory sizing lets you preprogram preferred frequencies. The flat square tube has a maximum resolution of 1024 x 768 pixels. The Vari-Scan monitor features a 40-MHz bandwidth, 9-pin-analog and 5-BNC-analog input ports, a 0.28-mm dot pitch and a 50- to 100-Hz vertical scan rate. Approximately $1395. Electrome Inc, 809 Wellington St N, Kitchener, ON N2G 4J6, Canada. Phone (519) 744-7111. FAX (519) 749-3131.

SCSI-2 solid-state drive. With a 68020 32-bit microprocessor and a dedicated 40-MHz SCSI-2 processor, the SiliconDisk Pro achieves an access time of 0.02 msec and a transfer rate of 10 Mbytes/sec. The solid-state drive automatically formats when installed in an IBM, DEC, Sun, DG, SGI, HP, and other SCSI-based systems. Capacity ranges from 8 to 512 Mbytes. $3995 to $58,995. Atto Technology Inc, Baird Research Park, 1576 Sweet Home Rd, Amherst, NY 14228. Phone (716) 688-4259. FAX (716) 636-3630. Circle No. 382

VGA to video-scan converter. Simulscan converts RGB video-graphics-array (VGA) output to composite RS-170 and S-video formats. The exter-

No matter how fast you want to go, Orion's 8800 Emulator/Analyzer can take you there.

For the 68302, 80C196, 68000, and other high-performance 16-bit & 16/32-bit processors, nothing's as fast as the new 8800. With support for emulation memory access times of less than 40 nsecs* and bus cycle times of only 30 nsecs, you can debug tomorrow's faster processors today—at full-speed, transparently, with no cycle stretching or wait states. Of course, the 8800 sports a range of features making it the world's leader in other categories, too.

For example, with 16K trace standard and 64K optional, you get the deepest traces in the industry. In addition, a unique Clip-On™ emulation option works with soldered-in processors. And since user memory and

8332, 80C186 & 68HC16 available soon
nal unit lets you display computer-screen images on a TV or record them on a VCR. The unit converts 640 × 480 VGA pixels into video-formatted signals having 24-bit resolution to display 16 million colors. To install the unit, you unplug the VGA monitor, plug the existing unit into the VGA card, and plug the VGA monitor and TV into the converter. $495. IEV International Inc, Visual Information Processing, 3030 S Main St, Suite 300, Salt Lake City, UT 84115; Phone (800) 438-6161; (810) 466-9093. FAX (801) 466-5921.

Circle No. 384

PCMCIA 2.0 industrial interface. The ZT 8921 STD-32 Bus module provides two card slots for memory cards adhering to the PCMCIA (Personal Computer Memory Card International Association) standard. The module also has a 16-kbyte PROM socket for BIOS extensions and comes with Microsoft’s Flash File System Version 2.0 device drivers. $485. Ziatech Corp, 3433 Roberto Ct, San Luis Obispo, CA 93401; Phone (805) 541-0488. FAX (805) 541-5088.

Circle No. 385

Bar-code scanner and decoder. Scanteam 5600, a fixed-mount, moving-beam, laser-diode-based bar-code scanner, features a compact design for limited mounting spaces; the unit’s noncontact scanning suits scanning on curved and irregular surfaces. The scanner measures 2.3 × 2.3 × 2.7 in. You can attach as many as three scanners to the Scanteam 7300 programmable decoder board, which provides a host-computer interface. Scanteam 5600 and 7300, $1195 and $430, respectively. Welch Allyn Inc, Data Collection Div, 4619 Jordan Rd, Skaneateles Falls, NY 13153; Phone (315) 685-8945. FAX (315) 685-3172.

Circle No. 386

Short-range modem. Model 1080 short-range modem communicates synchronously or asynchronously over an RS-232C link. The modem communicates half- or full-duplex over a distance of 13 miles at data rates from 1.2 to 19.2 kbps. You can initiate local analog-loopback or remote digital-loopack test via the front panel switch or the RS-232C link. You can also set the RTS-to-CTS delay to 7 or 53 msec. $295. Patton Electronics Co, 7958 Cessna Ave, Gaithersburg, MD 20879; Phone (301) 975-1000. FAX (301) 869-9293.

Circle No. 387

SBus frame grabber. A single-slot SBus frame grabber, Data Cell S220, provides real-time 24-bit color image capture and display. The card accepts composite video/S-Video (NTSC/PAL), Sound too good to be true? Not from Orion. We’ve been making emulators since 1980. The new 8800 is just the latest in a long line of innovative products to make your debugging efforts more productive. And every system we sell is backed by the Performance Promise;™ your assurance that our solutions solve your problems. Best of all, a complete 8800 system starts at just $8800. Why get slowed down with someone else’s emulator?

Call today for a fast response on the world’s fastest emulator.

1-800-729-7700
All PICO surface mount units utilize materials and methods to withstand extreme temperature (220°C) of vapor phase, IR, and other reflow procedures without degradation of electrical or mechanical characteristics.

AUDIO TRANSFORMERS
Impedance Levels 10 ohms to 10,000 ohms, Power Level 400 milliwatt, Frequency Response ±2db 300Hz to 50kHz. All units manufactured and tested to MIL-T-27.

POWER and EMI INDUCTORS
Ultra-miniature Inductors are ideal for Noise, Spike and Power Filtering Applications in Power Supplies, DC-DC Converters and Switching Regulators. All units manufactured and tested to MIL-T-27.

PULSE TRANSFORMERS
10 Nanoseconds to 100 Microseconds. ET Rating to 150 Volt-Microsecond. All units manufactured and tested to MIL-T-21038.

Unix-network server. The NS 5500 Netserver, configured for eight Ethernet, can process more than 2250 I/O operations/sec. A multiprocessor architecture separates network file- and disk-management functions and allocates them to specialized processors. Three storage processors control 30 SCSI channels and 81 Gbytes of disk storage, $124,900; with redundant power supply, $149,000. Auspex Systems Inc, 2562 Bunker Hill Lane, Santa Clara, CA 95054. Phone (408) 492-0900. FAX (408) 492-0909.

Color text terminal. TR-170 terminals contain a firmware driver that allows them to run Software Link's PC-MOS operating system. Twenty-five TR-170 terminals can share a single DOS-compatible computer. The terminals run VGA text mode and feature a 14-in. non glare CRT. A multipage feature stores eight application-session pages, allowing you to hot-key between sessions. $895. ReliSys, 320 S Milpitas Blvd, Milpitas, CA 95035. Phone (408) 945-9000. FAX (408) 945-0587.
DESIGNING YOUR OWN SWITCHING CIRCUITS?
WHY RE-INVENT THE WHEEL?

TELEDYNE SOLID STATE HAS IT!

If your system requires I/O or power switching and you're considering a discrete or hybrid circuit approach we should talk! And here's why —
- We now offer an extensive "menu" of military/aerospace solid state relays for DC, bi-directional, and AC loads from low level to 25 Amps.
- Our latest designs feature "smart" options such as: output status for built-in test, short circuit protection and CMOS logic compatibility.
- All of our relays are designed and tested to MIL-R-28750 and applicable portions of MIL-STD-883, and most are qualified to existing MIL slash sheets or DESC drawings.
- We've already selected, derated, sourced, and qualified the required chip components, i.e., opto-couplers, drivers, FETs, SCRs, etc.

And if what you need is not in our catalog, call 1-800-284-7007, or FAX 1-213-779-9161. Chances are we're already working on it.
Can you pick out the right EMI solution for your design?
We can.

It's easy to achieve electromagnetic compatibility when you know what product to use. And where to use it.
But you don't have to know the difference between wire mesh and finger stock to succeed. You just have to know Instrument Specialties.

We start at the drawing board, so you don't have to go back to it.

Our engineers work with yours to develop a total shielding solution right from the design stage. It can save plenty of costly rework—and worry.

Say goodbye to frantic product searches.

Everything you need is already in-house or in stock—whether it's conductive elastomers, wire mesh, or the best beryllium copper fingers (to name just a few)... plus specified platings. With our prompt shipping, off-the-shelf parts can be at your door in no time. And our capabilities like CAD/CAM, phototetching and wire EDM not only make customization fast and easy, but downright economical too—especially with Finite Element Analysis, which tests parts before production.

You don't even have to go somewhere else for certified testing.

We can test for all current EMC specs and standards, at your facility or ours. And with our EMC experts helping you from design to production, passing the test will be a lot easier.

So why settle for just shielding, when you can have solutions? Call Instrument Specialties today at 717-424-8510, and find out what it's like to be EMC worry-free.

Instrument Specialties

Where Shielding is a Science
CIRCLE NO. 109

Headquarters: Delaware Water Gap, PA 18327-0136
TEL: 717-424-8510 FAX: 717-424-6213

Western Division: 505 Porter Way, Placentia, CA 92670
TEL: 714-579-7100 FAX: 714-579-7105

European Division: 3 Avenue du Progres, B4432 Alleur, Belgium
TEL: +32-41-63-3021 FAX: +32-41-46-4862
3½-digit DMM for less than $30. The DM2 weighs 7 oz and is the size of a deck of cards. It measures dc current with 0.1-µA resolution on its most sensitive range and checks diodes. Other functions include measuring dc voltage to 1 kV, ac volts to 500 V, resistance to 2 MΩ, and dc current to 200 mA. Accuracy is 0.8%. A fuse protects the current ranges. The meter comes with a manual, test leads, and a spare fuse. $27.95. Beckman Industrial Corp., 9883 Ruffin Rd, San Diego, CA 92123. Phone (619) 495-3200. Circle No. 363.

Data-acquisition-and-control system. The SI-100, which mounts in a 19-in. EIA rack, is programmable via an RS-232C port. It transmits all of its data via an RS-422 interface at any rate from 0 to 6 MHz. The unit accepts from 1 to 16 modules. Analog-input modules have eight channels. You can vary each channel's gain over a range of 0.8 to 100 and its offset to ±2.5 V. The A/D converter takes a maximum of 500 ksamples/sec (total for all channels) and produces data with a selectable resolution of 8 to 12 bits. You can vary the sampling rate of any one channel from 0.12 to 62.5 ksamples/sec. As you vary the sampling rate, you also vary an antialiasing filter's cut-off frequency. For each channel, you can select a filter that has flat, Bessel, or elliptic response. Analog output modules have eight channels, each with a 12-bit multiplying DAC. Digital I/O modules have 24 channels each. From $7200; channels cost $400 to $1100, depending on how many you order. Sheldon Instruments, Box 877, Orem, UT 84059. Phone (801) 376-7861. FAX (801) 374-8022. Circle No. 362.

60-MHz analog-digital oscilloscope. The 2212 operates as a DSO with two channels, 8-bit resolution, 4 kbytes/channel of memory, and a 20-Msample/sec acquisition rate. For viewing signals faster than 10 MHz, it converts at the touch of a button to an analog scope. The unit provides automatic setup; setup storage; cursor measurements of voltage, time, and frequency; an X-Y display mode; and a parallel printer interface. $2495; IEEE-488 and RS-232C options, $300. Tektronix Inc, Box 1520, Pittsfield, MA 01202. Phone (800) 426-2200. Circle No. 361.

4-channel, 50-MHz arbitrary-waveform generator. The Model 295, which uses direct digital synthesis, provides a frequencies accurate to 2 ppm. Channels can operate independently, or you can lock their frequency and phase to the master channel. For example, this capability lets the generator accurately synthesize 3-phase voltages. Nonvolatile memory stores 10 standard waveforms; 30 more waveforms are furnished on a 3¼-in. disk. You can create waveforms by entering mathematical expressions, or by drawing with a mouse. Each channel's memory is 32 kpoints (128k optional). Operating modes include continuous, triggered, burst, gate, and sweep. The unit can add waveforms and can produce amplitude and phase modulation. $5995 (one channel) to $18,410 (four channels with all options). Delivery, 4 to 6 weeks ARO. WaveTek Corp, 9045 Balboa Ave, San Diego, CA 92123. Phone (619) 279-2200. Circle No. 364.

Harmonic analyzer. The TCI 5-19 measures harmonic distortion in 60-Hz power-distribution systems. (A 50-Hz version is also available.) The handheld, battery-powered, µP-based unit, which is supplied with voltage probes and a 1000A clamp-on current transformer, displays five functions of the first 19 harmonics on a graphical LCD screen. The unit works with voltages to 1 kV, $1895; thermal recorder for waveforms, $400. Trans-Coil Inc, 7878 N 86th St, Milwaukee, WI 53224. Phone (800) 824-8282; (414) 357-4480. FAX (414) 357-4484. Circle No. 365.

Handheld 2-channel, audio-frequency analyzer. The 3569A functions as a sound-level meter, a real-time sound-intensity meter, an octave analyzer, a 1/3-octave analyzer, a 2-channel FFT analyzer with a 20-kHz frequency span, and a reverberation-time analyzer that computes reverberation times in octave and 1/3-octave bands. The unit accepts inputs directly from microphones; it can store calibration factors for 15 microphones. With a $250 utility package, it can transfer data to the vendor's Model 95 palmtop PC, which can store the data on RAM disk cards. $13,000; FFT- and reverberation-time analysis require the installation of $2000 options. Delivery, 8 weeks ARO. Hewlett-Packard Co, Box 58059, MS 51L-SJ, Santa Clara, CA 95051. Phone (800) 452-4844. Circle No. 366.

Debug support for Microtec C compiler on 68K and Z180. The debugger that is integrated with the 68000 UEM in-circuit emulator now includes source-level-debugging support for Microtec Research's C compiler on the 68000 and Z180 µPs. This integrated package also supports compilers from several other vendors. $5500. Softaid Inc, 8900 Guilford Rd, Columbia, MD 21046. Phone (800) 433-8812; (410) 290-7760. FAX (410) 381-3253. Circle No. 367.

PC-based test tools for boundary-scan pc boards. Asset 1.2, which runs on 80386- and 486-based PCs, allows quick design verification and debugging of pc boards that incorporate a boundary-scan interface conforming to IEEE-1149.1. The software supports a scanpath selector and linker, and it permits importing device- and board-level vectors in the TSSI format. Test system, $7495; diagnostic system, $13,495; scanfunction library, $2495; boundary-scan demonstration module, $685; general demonstration module, $995. Texas Instruments Inc, Box 800066, Dallas, TX 75380. Phone (800) 396-5295, ext. 3990; outside the US, (214) 995-6611, ext 3990. Circle No. 368.
Would you like to add TCP/IP network services to your system designs, but feel you can’t afford the time or the resources?

With our flexible C source-code architecture, we can add the industry standard TCP/IP protocol suite, with an optional SNMP agent (MIB II), to your system designs. We do all this quickly and efficiently so you can get your product to market without wasting precious time or resources.

Our engineering staff has extensive experience porting our FUSION architecture to hundreds of process-control, embedded systems and other hardware applications such as printer controllers, terminal servers, and data-acquisition systems.

Our list of OEMs includes:

- Digital Equipment Corp.
- Motorola
- EDS
- Sony
- Hitachi
- Stratus
- Intel
- Texas Instruments

For a FUSION Developer’s Kit information package, including data sheet, technical specifications and porting questionnaire guide, call: 800-541-9508 or 805-485-2700, FAX 805-485-8204

Call today and we’ll send you our colorful TCP/IP protocol stack poster for FREE!
DSP Framework version 3.0 includes the DSP design system. Additions to the price for Sun-4, DECstation, and HP/ System Option, the Simulation Toolset, Signal Calculator, the Hardware Design and Filter Design System. Base

disco Systems Inc, 919 E Hillsdale Blvd, Foster City, CA 94404. Phone (415) 574-5800. FAX (415) 358-3601.

Autosketch for Windows. You can use the Autosketch illustration tool for technical illustration, architectural drafting, engineering drawings, flowcharts, and information graphics. The program comes with more than 2000 predrawn symbols and stores files in a DXF format. Autosketch for Windows 3.0 or higher, $299; update, $75. Autodesk Retail Products, 11911 North Creek Pkwy S, Bothell, WA 98011. Phone in US and Canada, (800) 228-4940. Circle No. 369

Fax management under Unix. Replix Unix-based fax-management software allows you to send, receive, route, view, and manage faxes from your desktop computer. It runs with Sun-3, SPARC, IBM AIX RS/6000, HP 700, SCO Unix, ISC Unix, and Samsung i860 workstations. Base price, $2395. Samsung Software America, 1 Corporate Dr, Andover, MA 01810. Phone (508) 685-7200. FAX (508) 685-4940.

Programming tools for board tester. The Test Xpress set of PC Unix-based software tools speed programming for test of PC boards on the G992X tester. The set consists of three tools. ATG Xpress is a test-program development environment; Wave-Link, a waveform editor, takes simulation vectors from a design simulator, reformats them and produces input circuit programs for the tester; and FS-ATG generates test programs for PAL devices, PLDs, and PGAs, accounting for design types, packaged styles, and board-level constraints. ATG Xpress, $12,500; Wave-Link, $15,000; FS-ATG, $4600. GenRad Inc, 300 Baker Ave, Concord, MA 01742. Phone (508) 369-4400, ext 2970. Circle No. 372

CAD/CAM developers' kit. Release 11 of the CAD/CAM Developers Kit/ DXF is a library of C functions that reads and writes Release 11 DXF files with a few lines of C language code. The kit runs with the following compilers: Microsoft C 5.1 and 6; Borland Turbo C 2.0 and C++; Metaware C 3.6; and Watcom C 386 8.0, 8.5, and 9.0. Personal edition for in-house use only, $599; professional edition including royalty-free distribution rights, $1199. Building Block Software, 371 Moody St, Waltham, MA 02154. Phone (617) 899-4350.

Modeling and simulation for packaging designs. Aztec System models and simulates advanced electronic packaging designs. The system provides accurate prediction of pulse shape, delay, and crosstalk. Magnetic properties of the interconnections are accounted for in calculating frequency-dependent inductance and skin-effect resistance matrices. From $35,000; individual modules, from $10,000. Arizona Packaging Software Inc, 1840 E River Rd, Suite 100, Tucson, AZ 85718. Phone (602) 577-8886. FAX (602) 577-0687.

Signal-analysis software. The Xmath signal-analysis module (SAM) provides a library of signal-processing and communications-analysis functions for Xmath. Using Xmath's object-oriented architecture helps to speed up analysis. Signals are represented by objects called parameter-dependent matrices. For SPARCstation or DECstation, from $6000. Integrated Systems Inc, 3260 Jay St, Santa Clara, CA 95054. Phone (408) 980-1500. FAX (408) 980-0400.

Unix software-engineering package. Treesoft 2.1 applies a tree structure to the development and maintenance of application and real-time software written under one or more programming languages. The package provides project modeling; generation of makefiles; graphical viewports; configuration management; testing of unit, integration, and regression; reusability; problem-report management; profiling; project communications; and report generation. Software for Sun-3 and Sun-4 workstations, $8500. +1 Software Engineering, 2510-G Las Posas Rd, Suite 438, Camarillo, CA 93011. Phone (805) 389-1778. Circle No. 376

Cost model for ASICs. Using the ASIC Standard Cost Model to calculate the manufacturing cost and estimate the fair market value for an ASIC device allows you to make design/cost trade-offs. The program calculates costs for CMOS gate-array, standard-cell, and full-custom designs. For PC or Macintosh computers, $1995. Valence Associates, Box 14932, Fremont, CA 94539. Phone/FAX (510) 651-5453. Circle No. 377

PC telecom software. Crosstalk Communicator 2.1 enables PC users to communicate with other personal computers, bulletin-board and on-line services, and minicomputers. This revision includes a split-screen "chat" utility and an archive-file content viewer. $99; upgrade, $20. Digital Communications Associates Inc, 1000 Alderman Dr, Alpharetta, GA 30021. Phone (800) 348-3221; (404) 442-4521. FAX (404) 442-4364. Circle No. 378

Test-loaded PC boards. The 9400-401 CAD-MAP program uses CAD system ASCII output to reduce test-preparation time after fixturing. It converts the CAD database into a set of test files that are ready to debug with the company's 9420 manufacturing-defects analyzer. The program also provides test-fixture build specifications from the CAD database. $2495. John Fluke Mfg Co Inc, Box 9090, Everett, WA 98206. Phone (800) 443-5853; (206) 347-6100. FAX (206) 356-5116.
Globe Motors is now offering a newly developed line of size 15 motors and gearmotors, complete with an external electronic commutation module.

- Operating range 22-32 VDC
- Speeds to 14,000 RPM
- Continuous torque ratings:
 - Motors to 14.5 oz. in.
 - Geartrains to 550 in. lbs.
- Bi-directional operation
- RPM output signal from Hall sensors
- Thermal overload protection in electronics module

AVAILABILITY: Call Hall-Mark, or Jaco for overnight delivery or call:

GLOBE MOTORS
A Division of Labinal Components and Systems, Inc.
513-228-3171

CIRCLE NO. 112

HIGH POWER FACTOR
Custom Switching Power Supplies
for
- Engineering work stations
- Computer main frames
- Computer peripheral equipment
- Business equipment
- Telecommunications
- etc.

- High power factor 0.99
- Design, manufacturing in Japan
- Repair center in U.S.A.

FDK also specializes in DC-DC converters, hybrid ICs, memory cards, ferrite cores, lithium batteries, stepper motors, optical isolators, etc.

FDK
Your Best Strategic Partner
FDK AMERICA, INC.
A Division of Fuji Electrochemical Co., Ltd.
San Jose Office: 3099 North First Street, San Jose, CA 95134, U.S.A.
TEL: 408-432-8331 FAX: 408-435-7478

Dallas TEL: 214-650-7742 FAX: 214-650-7792

CIRCLE NO. 113

CUSTOM THICK FILM NETWORKS

AVAILABILITY: Call or Fax your requirements to:

DALE ELECTRONICS, INC.
Techno Division
7803 Leona Avenue
Van Nuys, CA 91405-1139

Phone (818) 781-1642 • FAX (818) 781-8647

CIRCLE NO. 114

EDN INFO CARDS

THE 2¢ SOLUTION

to your marketing budget blues—the EDN Info Card Pack. At 2¢ per name, the EDN Info Card Pack can reach over 131,000 engineering specifiers affordably.

EDN
A Partnership in Power and Prestige Worldwide

CIRCLE NO. 115
PORT•FOLIO
13 PORTS IN ONE CARD

• 2 IDE, 2 parallel,
• 4 serial, 4 floppy, 1 game
• Serial ports configurable as com 1-4
• 16 bit, 3/4 size card, SMT circuit design
• Saves ISA bus slots on your PC
• Cables for 9 pins included
• Made in the USA

$79

TO ORDER CALL
800-324-TREK (in USA)
512-338-2127 (fax)
512-338-2125 (outside USA)

QUADTREK CORPORATION
6034 W COURTYARD DR
STE 306-74
AUSTIN TX 78730

CIRCLE NO. 331

48 Channel 50MHz Logic Analyzer

Complete System $1895.00
New Windows 3.0 Compatible Software
• 48 Chans @ 50 MHz x 4 words deep
• 16 Trigger Words/Level Trigger Sequence
• Storage and recall of traces/setups to disk
• Disassemblers available for: 6800, 8088, 8086, 6801, 6811, 209, 6860, 6869, 6923, 6927, 6931

NCI
6430 UNIVERSITY DRIVE,
HUNTSVILLE, AL 35806
(205) 837-6667 FAX (205) 837-5221

CIRCLE NO. 334

EP-1140
E/EPROM PROGRAMMER
$895.00

• Supports all E/EPROMs from 2716 to 8 Mbit, including
16-bit wide EPROMs
• Supports all derivatives of the 87C51 family of
controllers from AMD, INTEL and SIGNETICS
• Contains a built-in file editor for editing EPROM data
in Hex, ASCII, Binary
• Works with any speed PC via the parallel printer port
• Qualified by Intel, NS, Signetics and others
• Includes lifetime FREE software updates via BBS
• Call 1-800-225-2102 for a lit packet and demo disk
• MADE IN THE USA

Wintek Corporation
1801 South St., Lafayette, IN 47904
(800) 742-6809 or (317) 448-1903

CIRCLE NO. 337

MINC PLDesigner®
Up to 75% Off!!

Extended through November 30, get full-
featured MINC PLD Design Synthesis software at low prices. An incredible value, PLDesigner System 200 offers a complete PLD device library with functional simulat-
ation and automatic device selection for only $495*. PLDesigner System 300 adds automatic multiple-device partitioning for only $995*. Optional schematic interfaces available. Call MINC now at 800/775-FPGA or 719/590-1355 to order! Visa and MasterCard accepted. *U.S. List Price Only

MINC CORPORATION
2400 S. Roosevelt St., Tempe, AZ 85282
602/967-0624

CIRCLE NO. 338

The power of a consistent and colorful
campaign can be yours with EDN's Product
Mart Section.

CIRCLE NO. 339
HD64180, HD647180X, Z80, Z180, Z280

• ANSI/IEEE 754/Intel floating point support.

32 Fn. Real-Time Executive incl. Source - $399

Main Features:
- Full ANSI Cross-C Compilers & Assemblers
- HD64180, HD647180X, Z80, Z180, Z280 & NSC800.
- DOS based cross-compilers for ANSI and K&R C code.
- Completely automatic MMU support (no programming effort) for UP TO 1 MEG Z180 programs.
- Includes HD64180X support library with source.
- Complete with high-speed assembler, linker, and librarian.
- Supports C ISR’s. Can compile to use defined segments.
- 32 functions or real-time exec. (RTX) available from C.
- All code is reentrant and ROMable.
- Fast ANSI/IEEE 754/Intel floating point support.
- Supports C ISRs. Can compile to user defined segments.
- All ANSI J files and libraries provided. Source available.
- Chair types are not promoted to int. Generates inline port I/O.
- Allows in-line assembly with access to C variables.
- Code is used by LOMab.
- Fast ANSI/IEEE 754/Intel floating point support.
- Supports C ISRs. Can compile to user defined segments.
- All code is reentrant and ROMable.
- Fast ANSI/IEEE 754/Intel floating point support.
- Supports C ISRs. Can compile to user defined segments.
- All code is reentrant and ROMable.
- Fast ANSI/IEEE 754/Intel floating point support.
- Supports C ISRs. Can compile to user defined segments.
- All code is reentrant and ROMable.

ADVIN versus DATA I/O
- Data I/O and Model 2900: reputable company, dependable equipment, supports 40-pin. Software updates: fair amount.
- ADVIN and PILOT-U40: reputable company, dependable equipment, supports 40-pin. Software updates: free via electronic BBS.

Advln
- Fast ANSI/IEEE 754/Intel floating point support.

32 Fn. Real-Time Executive incl. Source - $399

Full ANSI Cross-C Compilers & Assemblers
- HD64180, HD647180X, Z80, Z180, Z280 & NSC800.
- DOS based cross-compilers for ANSI and K&R C code.
- Completely automatic MMU support (no programming effort) for UP TO 1 MEG Z180 programs.
- Includes HD64180X support library with source.
- Complete with high-speed assembler, linker, and librarian.
- Supports C ISR’s. Can compile to use defined segments.
- 32 functions or real-time exec. (RTX) available from C.
- All code is reentrant and ROMable.
- Fast ANSI/IEEE 754/Intel floating point support.
- Supports C ISRs. Can compile to user defined segments.
- All code is reentrant and ROMable.
- Fast ANSI/IEEE 754/Intel floating point support.
- Supports C ISRs. Can compile to user defined segments.
- All code is reentrant and ROMable.
- Fast ANSI/IEEE 754/Intel floating point support.
- Supports C ISRs. Can compile to user defined segments.
- All code is reentrant and ROMable.
- Fast ANSI/IEEE 754/Intel floating point support.
- Supports C ISRs. Can compile to user defined segments.
- All code is reentrant and ROMable.

SAdvin
- ANSI C Compiler, Assembler, Linker - $699
- Assembler and Linker Only - $279
- 32 Fn. Real-Time Executive incl. Source - $399

Circuit NO. 340

CIRCUIT NO. 341

SIGNAL SOURCE SELECTION GUIDE
Make waves without getting soaked

Fluke and Philips offer a signal source to meet both the needs and the budget of virtually any user. Whether the buyer is looking for a high-performance generator to use in design manufacturing, communications, avionics, or radar applications, Fluke and Philips have the right signal source. To help users sort out the choices, "Make Waves Without Getting Soaked," a four page brochure from Fluke, offers a comparison chart on Fluke and Philips' wide range of synthesized RF signal generators and RC and function generators. Call 800-44-FLUKE.

Fluke Corporation
- 703/440-0222
- 703/440-9512

SOFTOOLS, INC.
- 8770 Manahan Drive
- Ellicott City, MD 21043
- (410) 750-3733
- FAX (410) 750-2008

CIRCUIT NO. 343

CIRCUIT NO. 344

WAVEFORM DIGITIZERS

STR-825
- 25MHz transient rate
- dual channel available
- DC to 25MHz bandwidth, -3dB
- up to 100MHz in time equivalent mode

STR-864
- 64MHz transient rate
- dual channel available
- 8MB memory per channel
- DSP Link

STR-8100
- 100MHz transient rate
- 1.5GHz throughput rate
- numerous trigger modes
- up to 800MHz in time equivalent mode

SONIX
- 703/440-0222
- 703/440-9512

CIRCUIT NO. 345

NEW POWER SUPPLIES

MicoENERGY INC
- 745 W. State Road 274
- Largo, FL 33750-4999
- PHONE: (407) 831-2000 • FAX (407) 831-1100

CIRCLE NO. 346

CIRCLE NO. 347

CIRCLE NO. 348

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
THIN BEND/flex® LAMINATE FOR STATIC FLEX CIRCUITS

BEND/flex® bendable circuit laminate material is now available in 0.005" thickness. Less expensive than polyimide. Available in rolls or sheets. UL94VO rating.

ROGERS CORP.
COMPOSITE MATERIALS DIVISION
One Technology Drive
Rogers, CT 06263

CIRCLE NO. 349

EMBEDDED PC CRASH COURSE

Be the embedded PC expert in your design group! Don't miss the next session of PC Design for Embedded Applications. In three days and two evenings with the experts, you'll cover the firmware, software, and hardware aspects of PC compatibility. Learn how BIOS works, how to build diskless systems, how to get DOS in ROM, and more! The tuition includes meals, course materials worth over $700, and all the questions you can ask!

September 23, 24, 25, 1992

Other courses cover Protected Mode Programming, Flash Memory, and EISA Bus Spec. We also have a one week course on the job.

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

CIRCLE NO. 752

REMOVE HARDWARE LOCKS

PROTECT YOUR INVESTMENT!
MAINTAIN PRODUCTIVITY!
Software utility that allows for the removal of hardware locks.

Available for most major CAD/CAM and PCB software programs

Easy - Simple - Guaranteed

Programs start at $99.00 U.S.

Visa and Mastercard Welcome
Call or Fax for more Information

Syms Inc.
301 Saddle Road
New York, NY 10010

(212) 463-8589
Fax: (212) 463-8590

CIRCLE NO. 753

ABEL-PLD:
Logic design for less.

■ 150 PLD architectures supported (more than 4000 devices)
■ Uses ABEL® Hardware Description Language (ABEL-HDL®)
■ Intelligent synthesis and optimization
■ Upgradable to full-featured ABEL Design Software

Includes the 212 Multi Programmer with logic module, ABEL-PLD® and PROMLink™ Ltd. PC Interface Software.

Supports 20- and 24-pin CMOS logic devices

Save $1000 on our entry-level logic system.

Just $495* &

New $495*

CALL DATA I/O®
Direct today to order ABEL-PLD®

CIRCLE NO. 754

RUGGED & HIGH PERFORMANCE COMPUTER SYSTEMS WITH FOLD DOWN KEYBOARD & VGA MONITOR FOR RACK, BENCH OR PORTABLE APPLICATIONS

STANDARD FEATURES INCLUDE:
■ 12 SLOT PASSIVE BACK PLANE, 250W POWER SUPPLY
■ 80386 CPU CARD AT 26/25/33 MHz, UP TO 8MB OF ZERO WAIT STATE RAM
■ SONY TRINITRON TUBE, HIGH RESOLUTION VGA (640 x 480) MONITOR AND CARD
■ ROOM TO MOUNT THREE HALF HEIGHT DRIVE
■ 2 SERIAL, 1 PARALLEL PORT, MS DOS/GW BASIC, ALSO AVAILABLE WITH 80486 OR 80286 CPU CARDS IN VARIOUS CONFIGURATIONS, FOR FURTHER DETAILS CONTACT:

IBI SYSTEMS INC., 6842 NW 20 AVE. FT. LAUDERDALE, FL 33309. 305-976-9225
Fax: 305-978-9226

CIRCLE NO. 751

Free Catalog
The World's Largest Collection of Adapters &
Accessories for VLSI/Surface Mount Devices

- Emulator Pads & Adapters
- Debugging Accessories
- Debug Tools
- Prototyping Adapters
- Engineering Adapters
- Socket Converters

Emulation Technology, Inc.
2344 Walsh Ave. Santa Clara, CA 95051
Phone: 408-982-0660 Fax: 408-982-0664

CIRCLE NO. 755

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

166 • EDN August 20, 1992
SILICON VIDEO® MUX™
Flexible Frame Grabber For The PC/AT

- 8 to 8000 pixels per line
- 2 to 40 MHz sampling/display rate
- 2 to 1020 lines per field
- 1 or 4 Mbytes of Reconfigurable Image Memory
- Standard/Nonstandard Video Acquisition
- 6 Input Video Multiplexer
- CT, MR video capture
- Interface to high-resolution CCD cameras
- Extensive software

EPIX®
3005 MacArthur Blvd., Northbrook, IL 60062
Tel. 708-498-4002 FAX: 708-498-4321

CIRCLE NO. 758

Communicate Weekly

to the electronics OEM through EDN's Magazine and News Editions

Product Mart

CIRCLE NO. 761

SOIC TO DIP

WITH DIP/SOIC PACKAGE CONVERTER

- Convert surface mounted SOIC pattern to DIP.
- Solder to SOIC Land Pattern.
- Then plug DIP IC into DIP socket.
- DIP pins are gold plated machined pins.
- Recessed screwnut for added strength
- Multiple sizes available

IRONWOOD ELECTRONICS
P.O. BOX 2151, ST. PAUL, MN 55121
(612) 431-7025; FAX (612) 432-8616

CIRCLE NO. 760

FREE DATA ACQUISITION & COMMUNICATION HANDBOOK

1991-1992 handbook features 86 pages of the latest information on our complete line of communication, data acquisition and waveform synthesizers.

1-800-553-1170

QUATECH

662 Wolf Ledges Parkway
Akron, Ohio 44311
(216) 434-3154

CIRCLE NO. 763

DATA RELIABILITY PREDICTION SOFTWARE

ARE YOUR PRODUCTS RELIABLE?
The RelCalc 2 Software Package automates the reliability prediction procedure of MIL-HDBK-217, or Bellcore, allowing quick and easy reliability analysis of electronic products on your PC. Say goodbye to tedious, time consuming, and error prone manual methods!

- NEW UPDATE! VERSION 3.1 now available.
- User friendly: pop-up menus, hypertext help.
- Very easy to learn and use; quick data entry.
- Global editing functions for what-if? trials.
- Reports which clearly organize results.
- Save time & money as you design for quality.

Try our Demo Package today for $25.

T-Cubed Systems, 31220 La Baya Drive, Suite 110, Westlake Village, CA 91362
CALL: (818) 991-0057 FAX: (818) 991-1281

CIRCLE NO. 766

400 MHz Logic Analyzer

- upto 128 Channels, Timing and State
- 400 MHz Max Sampling Rate
- Timing and State Simultaneous on Same Probe
- 16K Samples/Channel (high speed mode)
- 16 Levels of Sequential Triggering
- Variable, TTL, or ECL Logic Threshold Levels
- 8 External Clocks
- FREE Software Updates on 24 Hour BBS

$799 - LA12100 (100 MHz)
$1299 - LA32200 (200 MHz-32channels)
$1899 - LA32400 (400 MHz-32channels)
$1990 - LA64200 (200 MHz-64channels)
$2750 - LA64400 (400 MHz-64channels)

CIRCLE NO. 759

TURBO XT CPU BOARD

- PC BUS, 4.2" x 5.4", made in USA
- Compatible with MS-DOS 2.0 - 5.0
- Dual speed (4.77 MHz/10MHz) CPU
- Up to 2 Meg DRAM on board (SIMMs)
- Includes EFS 4.0 Memory Manager
- Processor: V20 Coprocessor: 8087
- $182 qty. 1; Quantity Pricing Available

TEL: (813) 643-2424
(800) 634-0701
FAX: (813) 643-4981

295 Airport Road
Naples, FL 33942

CIRCLE NO. 764

UNIVERSAL PROGRAMMER

- PAL
- GAL
- EPROM
- EEPROM
- PROM
- 87xxx...
- 22V10
- 26CV12

16Bit EPROMs FLASH EPROMs
5ns PALs 4 Meg EPROMs
FREE software updates on BBS

Call - (201) 808-8990
Link Computer Graphics, Inc.
369 Passaic Ave. # 100, Fairfield, NJ 07004 FAX 879-8786

CIRCLE NO. 765

DATA RELIABILITY PREDICTION SOFTWARE

ARE YOUR PRODUCTS RELIABLE?
The RelCalc 2 Software Package automates the reliability prediction procedure of MIL-HDBK-217, or Bellcore, allowing quick and easy reliability analysis of electronic products on your PC. Say goodbye to tedious, time consuming, and error prone manual methods!

- NEW UPDATE! VERSION 3.1 now available.
- User friendly: pop-up menus, hypertext help.
- Very easy to learn and use; quick data entry.
- Global editing functions for what-if? trials.
- Reports which clearly organize results.
- Save time & money as you design for quality.
- Try our Demo Package today for $25.

T-Cubed Systems, 31220 La Baya Drive, Suite 110, Westlake Village, CA 91362
CALL: (818) 991-0057 FAX: (818) 991-1281

CIRCLE NO. 766

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
EDN August 20, 1992 • 167
Engineering Opportunities

Rockwell International's Collins Avionics & Communications Division, the world class leader in electronics and technology for communications, guidance, control and test, has a number of challenging engineering opportunities in our Cedar Rapids facility.

MECHANICAL ENGINEER

Mechanical Engineer to join an Environmental Effects Engineering - Design Support Team which supports 5 Cedar Rapids divisions to ensure designs meet Qual/TSO test requirements the first time. BS in Mechanical Engineering with a minimum of 6 years experience in mechanical design of avionics equipment and related production processes. Vibration/shock test analysts experience preferred. Good working knowledge of computer aided engineering tools, finite element analysis and modal analysis required.

GEMS ENGINEERS

Software/Systems Engineers to participate in GPS receiver and new GPS product development. Responsibilities include requirements definition, documentation per military standard, design, code, test, and integration of software with hardware. Will be working with real-time multi-tasking operating systems and multi-processor architectures. BS in Electrical Engineering, Computer Science or Math with a minimum of 2 years' applicable experience is required. Jovial, Fortran, ADA, C, C++ programming experience desired.

Software Engineer to maintain and update both OFFLINE and POSTEST software segments of GPS Simulation and Evaluation System (SEVS). Segments are written in FORTRAN and executed under VAX/VMS. Requires an experienced software designer who can estimate costs, design, code, test and control configurations. BS degree with a minimum of 2 years' software engineering experience is required.

Hardware Engineers to perform RF (L-Band) design tasks in support of GPS product development. Must be familiar with CAE tools, specifically PSpICE, SPICE and/or SABER. BSEE with a minimum of 4 years' RF design experience and thorough knowledge of RF design concepts are required.

ATF DESIGN ENGINEERS

Design Engineer to support digital and analog ASIC development. Experience with high speed digital circuitry and broadband analog circuitry desirable. Experience with ASIC CAD/CAM synthesis/simulation tools mandatory. Knowledge of VHDL desirable. BSEE with a minimum of 4 years' applicable experience is required.

RF Design Engineer to design and support RF circuits and L-Band technology on the F-22 ATF program. These circuits will be using discrete, MMIC and hybrid technology. Experience in RF design, specifically receivers, synthesizers and RF switching preferred. Experience with RF CAD tools (touchstone) is desirable.

Hardware/Software Engineers to develop/support engineering and factory test equipment for F-22 ATF program. Experience required in hardware and software development. Familiarization/experience with ADA software, programmable logic devices, RF testing, EEE-448 and VXI control bus is essential. BSEE with a minimum of 4 years' applicable experience is required.

Senior Design Engineer to serve as assistant technical director for major CNI program. Previous experience as a technical director/major product engineer involving interface with customers and multiple internal disciplines required. Must be self-motivated and interact well with others. Some travel required. BSEE/MSEE with a minimum of 6 years' applicable experience is required.

DIGITAL SIGNAL PROCESSING ENGINEERS

DSP Design Engineers to design and develop signal processing algorithms. Verify performance of algorithms through simulation prior to implementation into applications-specific ICs. Design and verify ASIC devices. BSEE/MSEE with a minimum of 6 years' applicable experience is required.

DSP Sr. Design Engineer to perform project planning, cost and schedule status tracking for DSP design teams designing high-performance data systems. In addition, you will provide technical and administrative direction to small teams of engineers developing algorithms, software simulations and ASIC designs. BSEE/MSSE with a minimum of 8 years' applicable experience is required.

Successful candidates will be required to pass a drug screen test.

Rockwell International offers an excellent salary and complete benefits package. Qualified candidates should submit resume and salary history in confidence to: C.G. Boardman, Rockwell International, Collins Avionics & Communications Division, 320 Collins Road NE, Cedar Rapids, IA 52498. Or, FAX to (319)395-2001.

Applicants selected may be subject to a security investigation, and if so, must meet eligibility requirements for access to classified information. Equal Opportunity Employer.

Radar Engineers

This industry leader in cockpit avionics is expanding its commercial Airborne Radar Development Group, creating the following opportunities which offer stability, growth, and technical challenge.

SR. STAFF ENGINEERS

Requires a BSEE and at least 10 years airborne radar experience.

STAFF ENGINEERS

Requires a BSEE and 3-10 years airborne radar experience.

Call today for information on Recruitment Advertising:

East Coast: Janet O. Penn (201) 228-8610
National: Roberta Renard (201) 228-8602

Radar Engineers

Florida

This industry leader in cockpit avionics is expanding its commercial Airborne Radar Development Group, creating the following opportunities which offer stability, growth, and technical challenge.

SR. STAFF ENGINEERS

Requires a BSEE and at least 10 years airborne radar experience.

STAFF ENGINEERS

Requires a BSEE and 3-10 years airborne radar experience.

Positions require a background in design, system analysis, and simulations in the following areas:

- Pulse doppler radars from L-band to W-band
- Precision ground mapping
- Doppler beam sharpening
- SAR
- Image processing
- Target recognition
- Mono-pulse

For confidential consideration, please forward your resume to: R. Thomas Welch, RIC Corporation, 900 E. Ocean Blvd., #232, Stuart, FL 34994. An equal opportunity employer.

RIC CORPORATION
WE'RE KNOWN BY THE CONTRACTS WE KEEP.

Lear Astronics Corp., a leading supplier of Avionics, Radar and Advanced Electronic Systems, has opportunities for:

SYSTEMS ENGINEERS
Requires a BSEE and design experience including digital computer architecture definition, redundancy management, HW/SW integration and system integration.

SOFTWARE ENGINEERS
Qualifications include a BSEE/BSCS degree and 5 years experience in embedded SW development and integration. Ideal candidates will have experience with 80960 or 1750A and Ada.

SYSTEMS ENGINEERING MANAGER
Requires BS/MSEE and 15 years experience in automatic flight control system proposal generation, design and integration. You must have at least 5 years management experience developing and implementing new designs, plus a solid understanding of aircraft systems/SW. Will be responsible for schedules and budgets.

WE WILL BE COMING TO YOUR AREA SOON.
FOR A LOCAL INTERVIEW APPOINTMENT,
CALL CHUCK DOYLE AT: 1-800-LEAR-JOB

Lear Astronics Corp., Dept. M25, 3400 Airport Ave., Santa Monica, CA 90406. (310) 915-6745. FAX (310) 915-8387.

WE'RE GENERAL RAILWAY SIGNAL, a world leader in the innovation, design and manufacture of transportation control and communications systems and equipment. With a strong history of industry firsts behind us and the support of outstanding international technical resources, we're positioned for further success well into the next century.

Engineering Group Manager
We are currently seeking an experienced technical professional to coordinate and supervise a staff of 10-12 Engineers in the design of hardware and software to support transit and railroad innovations. You'll provide technical direction for developing digital/analog hardware and real-time control software, interfacing with customers, consultants and management, as well as oversee group budgeting. We require a creative, results-oriented BSMSEE with a strong record (7+ years) of technical and supervisory experience, able to bring personal leadership and technical supervision together to achieve dynamic results.

GRS offers excellent compensation, including relocation assistance, strong benefits and outstanding growth potential. Please send or fax your resume to: Human Resources Dept. 2, General Railway Signal Corporation, P.O. Box 20600, Rochester, NY 14602-0600; fax (716) 763-2099.

On The Move.
An Equal Opportunity Employer

GRS

THE POWER OF New Ideas

We're GENERAL RAILWAY SIGNAL, a world leader in the innovation, design and manufacture of transportation control and communications systems and equipment. With a strong history of industry firsts behind us and the support of outstanding international technical resources, we're positioned for further success well into the next century.

Engineering Group Manager
We are currently seeking an experienced technical professional to coordinate and supervise a staff of 10-12 Engineers in the design of hardware and software to support transit and railroad innovations. You'll provide technical direction for developing digital/analog hardware and real-time control software, interfacing with customers, consultants and management, as well as oversee group budgeting. We require a creative, results-oriented BSMSEE with a strong record (7+ years) of technical and supervisory experience, able to bring personal leadership and technical supervision together to achieve dynamic results.

GRS offers excellent compensation, including relocation assistance, strong benefits and outstanding growth potential. Please send or fax your resume to: Human Resources Dept. 2, General Railway Signal Corporation, P.O. Box 20600, Rochester, NY 14602-0600; fax (716) 763-2099.

On The Move.
An Equal Opportunity Employer

GRS

ENGINEERING

Your Next Tactical Decision.
Consider your options. Plot your strategy. Make your move. Your next decision could put you among a select group of engineers assigned to the F-22 Advanced Tactical Fighter. General Dynamics Fort Worth Division is working on engineering and manufacturing development of the F-22 Advanced Tactical Fighter as part of a three-company team with Lockheed and Boeing. The Air Force plans to procure the F-22 to replace the current F-15 Eagle air superiority fighter. The F-22 production phase will begin in 1996 and extend to the year 2014. Your next move could put this project within your reach.

The following NON-SUPERVISORY positions require a BS/MS in EE, ME, AE or Computer Science Engineering, plus APPLICABLE ON-THE-JOB TECHNICAL EXPERIENCE:
• Ada and OOD
• Aircraft Electrical Power System Design
• Algorithm Development
• Avionic Software Systems Test
• Avionics Circuit/Design Analysis
• Electronic Hardware/Software Design
• Electronic Warfare Systems
• Electromagnetic Environmental Effects
• Embedded Computer Software Development
• Flight Control Systems Software/Hardware
• Integrated Sub-system Control Design
• RF/EO/CNI Systems Design
• Systems Mechanization/Control
• Weapons Design Integration

Make your next strategic step a career move to General Dynamics. We offer competitive salaries and comprehensive benefits. For immediate consideration, please respond by resume only: Supervisor of Professional Staffing, General Dynamics Fort Worth Division, P.O. Box 748, Dept. 02E63A, Fort Worth, TX 76101. An Equal Opportunity Employer. U.S. Citizenship may be required. Principals only.

GENERAL DYNAMICS
Fort Worth Division

GRS

SASIB
ALL SYSTEMS GO.

Today, we're guiding electronic warfare into a new age with the electronic combat suite for the F-22 Advanced Tactical Fighter and the Advanced Threat Infrared Countermeasures System - two of the most sophisticated avionics architectures ever designed. We're now hiring for these large scale, long term programs as well as a number of other challenging project areas. Specific opportunities include:

ENGINEERS

Hardware
- IR/EOCM
- MMIC DESIGN/DEVICE PHYSICS
- MMIC/MFG PROCESS DEVELOPMENT
- MECHANICAL ANALYSTS & DESIGNERS
- MICROWAVE PACKAGING
- AERONAUTICAL
- RF DESIGN
- SYSTEMS/ATE, RADAR, AVIONICS, WEAPONS CONTROL, ESM

VHDL DESIGNERS
- DIGITAL SIGNAL PROCESSING
- GRAPHIC/LCD DISPLAYS
- DIGITAL ASIC DESIGN
- ANTENNA
- CAE TOOL SUPPORT

Software
- SYSTEMS DEVELOPMENT
- 2167A, EMBEDDED SYSTEMS
- OPTICAL DESIGN

SYSTEMS/ATE, RADAR, AVIONICS, WEAPONS CONTROL, ESM

MANAGERS

- BUSINESS DEVELOPMENT
- MECHANICAL/PRODUCT DESIGN

HARDWARE DESIGN
- PROGRAM(WEAPONS CONTROL)

Lockheed Sanders offers competitive salaries and benefits in a "close to everything" Southern New Hampshire location where you can enjoy an enviable style of living. Forward your resume to Lockheed Sanders, Inc., Attn: 2034RS, P.O. Box 2029, Nashua, NH 03061-2029. Lockheed Sanders is an equal opportunity/affirmative action employer. Applicants selected may be subject to a security investigation and meet eligibility requirements for access to classified information.

Knock, Knock.

In EDN's Magazine and News Editions, opportunity knocks all the time.

Systems Engineer

Develop designs and queuing models in Asynchronous Transfer Mode (ATM) fast packet switching technology directed toward development of ATM multiplexing, switching and transmission systems for a nationwide fiber optic telecommunications network. Develop network planning and evaluation algorithms to model, simulate and analyze ATM traffic management and performance evaluation systems. Plan and conduct engineering experiments to test prototype ATM systems. Salary: $34,500/year for 40 hrs./wk. Requires Master's Degree in Electrical Engineering or equivalent. Must have 3 semester hours (or equivalent) each in Performance Evaluation of Telecommunications Networks, Fiber Optic Transmission Systems, Random Processes and Digital Communication Systems. Apply at the Texas Employment Commission, Houston, Texas, or send resume to the Texas Employment Commission, TEC Building, Austin, Texas 78778, J.O. #6644411. Ad Paid by An Equal Employment Opportunity Employer.

The Institute for Micromanufacturing, Louisiana Tech University is inviting applications for tenure-track faculty, research engineers/associates, visiting scholars, postdoctoral and technician positions in optical/x-ray lithography, metrology, materials science, micromechanics and technology transfer to support the development of micromechanical systems (MEMS). Appointments will be considered at Assistant/Associate/Full Professor rank commensurate with qualifications, including an earned doctorate in mechanical/electrical engineering, materials science, physics, chemistry, biology or a related field, and a strong commitment to education, developing externally funded research. Group leaders, qualified at the full professor level, are being sought in several areas. Research engineer/associate positions require a BS degree as minimum and professional experience in the above-mentioned areas. Screening will begin immediately; applications accepted until the positions filled. Some positions will not be filled until 9/1993 or after. Send resume, three professional references and teaching/research interests to Dr. Robert O. Warrington, Director, Institute for Micromanufacturing, Louisiana Tech University, P.O. Box 10348, Ruston, LA 71272-0046, USA.

Louisiana Tech University is an equal opportunity employer. Women and minorities are encouraged to apply.
Great Work. Great Living.
IBM Burlington, Vermont.

One of the world's most advanced semiconductor operations is what you'll find at IBM's major development and manufacturing facility in Burlington, where continued business growth is matched by a superb living environment. We now have outstanding career opportunities for engineers with the specialized computer skills to make significant impact on RISC microprocessor development.

Logic Design
Responsible for definition, logic design and verification of high performance RISC microprocessors. To qualify, you must possess a BSEE or higher, with an emphasis on Computer Engineering, and be capable of carrying logic design through to physical chip design stage. Minimum of 3 years in logic/chip, CMOS and VLSI design required. RISC experience is key. Background in microprocessor and multiprocessor design desirable.

Circuit Design
Will design CMOS circuitry for RISC-based microprocessor functions. Includes custom SRAM cache design, complex logic dataflow circuitry, random logic, IO, clocking and other circuitry in custom microprocessor layouts. Requires BSEE or higher with emphasis on Computer Engineering or Circuit Design. Ability to design complex CMOS or BiCMOS circuits and perform circuit analysis and verification is essential, along with minimum of 3 years circuit design experience in industry. CMOS, VLSI, digital circuit design is a prerequisite.

Physical Design
Responsible for CMOS VLSI chip physical design of RISC microprocessor in advanced CMOS technology. Includes using state-of-the-art CAD tools to perform chip layout, wiring and chip timing analysis. A BSEE or higher, with emphasis on Computer Engineering or Circuit Design, is essential, along with at least 3 years of physical design experience in industry. RISC and CMOS, VLSI design experience (chip layout/wiring) necessary. Background in microprocessor design desirable.

Located between Lake Champlain and Vermont's Green Mountains, Burlington offers year round recreation and open space. Unspoiled beauty, affordable housing and a sense of community come together here. This is life at its most enjoyable; technology at its best.

IBM offers salaries commensurate with qualifications and a comprehensive benefit package. For confidential consideration, please send your resume, indicating area of interest, to: IBM Corporation, Professional Recruiting, 1000 River Street, Essex Junction, VT 05452.

IBM
An equal opportunity employer.
PICO’s New “AT” Series

0.2” Ht.
DC-DC Converters

No External Components Required

Low Profile .5” x .5” x .2” ht., up to .75 Watts. Single & Dual Output

Low Current Consumption for Battery Applications

Optional Environmental Screening and Expanded Oper. Temp. (−55 °C to +85 °C)

• Up to .75 watt output at −25°C to +70°C ambient
• Encapsulated semiconductors conservatively rated for maximum reliability
• Ultra-miniature size (0.2” height)
• Input voltage ranges 3, 5, 9 and 12V DC
• 100 megohm @ 500V DC isolation
• Input/output isolation
• Single and dual output
• No heat sink required

Also PICO’s A + AV Series
• Up to 1000V DC output
• Ultra-miniature .5” x .5” x .3”

Abbott Electronics 100
ACCEL Technologies Inc 165
Advanced Micro Devices Inc . .12-13, 26-27
Advin Systems Inc 165
Amitek 149
AMP 29-32
Analog Devices Inc 151
Annbooks 166
Aptek Microtechnology Corp .. 31
Array Microsystems Inc 51
BP Microsystems 164
Burr-Brown Power Convertibles .. 108
CadSoft Computer Inc 149
Cahners CAPS 165, 166
Capilano Computer Systems Inc .. 165
Capital Equipment Corp 82
Cascade Design Automation 38
Cinch Connectors 110
Circuit Components Inc 139, 164
C&K Components Inc 160
Cooper Industries/Belden Div ... 137
Cybernetic Micro Systems Inc 25
Cypress Semiconductor 19
Dale Electronics Inc 162
dale Electronics Inc, Vishay Techno Div . 1
Dallas Semiconductor 38, * 98, 166
Datakey 140A-H
Datel 6, 172E
Delevan Div, API 112
Design Automation Conference .. 150
Digi-Key 10
ELAN Electronics 146
Eletech 163
Electronic Measurements Inc . 147
Emulation Technology Inc 166
ERX Inc 167
Epson America Inc 157
Fisher Controls Corp 162
Force Computers Inc 128
Globe Motors 162
Hamilton Avnet Electronics 47
Harris Semiconductor 70-71, 72-73
Hewlett-Packard Co 10-11
Hughes Interconnect Systems 10-11
IBI Systems Inc 166
IDT 81
IEEE 115
IEEC 149
ILC Data Device Corp 79
Illinois Capacitor 148
Incrediile Tech 163
Instrument Specialties Co Inc . 158
Intel 57
International Rectifier 109
Interpoint 65
Ironwood 167
John Fluke Manufacturing Co Inc . 165
Keithley Instruments 69
Kecpo Inc 126-127
Linear Technology Corp 41, 142
Link Computer Graphics Inc 167
Logisoft 165
Meta Software Inc 13
Microenergy 165
Micro Link Corp 164
MicroStar Labs 79
Microtime Computer Inc 165
Minc 164
Mini-Circuits Laboratories ... 3, 20-21, 4, 145
Mitsubishi Electronics America Inc . 74
Motorola Semiconductor Products Inc . 59
National Instruments 158
National Semiconductor Corp . 35-37
NEC Corp 22-23
NCI 164
Network Research 160
Nohau Corp 163
Orion Instruments 154-155
Pacific Data 113
PADS Software Inc 8
Paralan 165
Philips Design & Tool* 131
Philips Semiconductor 83-85
Pico 156, 172
Power Trends Inc 44
ProExpo ‘92 141
Quatech 167
Radstone Technology 135
Railtron 149
Rogers Corp 166
Safe Soft Systems 166
Samsung Semiconductor 14-15
Samtec 116-117
Siemens AG 170-171
Sierra Circuits 163
Signum Systems 108
Siliconix Inc 66
Softools 165
Sonix 165
Sony Semiconductor Div 133, 169
Spectrum Software 28
Sprague-Goodman Electronics Inc . 9
Stanford Research Systems Inc ... 153
Star Semiconductor Corp 43
Synergy Microsystems 124
T-Cubed Systems Inc 167
Technicon Industrial Power 34
Tektronix 86-89, 105-107
Teledyne Solid State 157
TempusTech Inc 167
Texas Microsystems Inc 123-125
Tokin America 63
Transera 156
Tribal Microsystems 163
Trumpeiter Electronics Inc 82
United Technologies 90
United Microelectronics Center 90
Unitrade Integrated Circuits 76
Viewlogic Systems Inc 103
VMETRO Inc 152
Wavelet 61
Wintek Corp 164
Xicor Inc 164
Ziatech Corp 97
Z-World 163

Recruitment Advertising 168-171

General Dynamics (Fort Worth Div)
General Railway Signal
Lear Astronincs Corp
Lockheed Sanders
Louisiana Tech University
RFI
Rockwell International
(Sassns Avionics and Communications Div)

*Advertiser in European edition

This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.
Every company experiences finger pointing when a design doesn’t work.

Your circuit designers claim the models are not accurate. The model developers claim the process shifted since the time they began work on the models. The process engineers claim the model developers aren’t tracking the process.

Meta eliminates finger pointing and helps you get it right first time™. Meta-Labs modeling services, combined with the HSPICE circuit simulator, provide the crucial link between your fab and circuit designers. The Meta-Software methodology helps your design, process and modeling groups work together as one team.

Get back in the chips with Meta-Software. For a right first time information package, call toll free (800) 442-3200, ext. A2.
4 REASONS TO SPECIFY BELDEN FOR YOUR GOVERNMENT AND MILITARY APPLICATIONS

Selection. We offer a broad line of electronic wire and cable designed to meet military specifications such as MIL C 17, MIL C 49055, MIL W 16878, MIL W 22759 and others. Many are QPL listed.

From fiber optic cable to multi-conductor and high temperature cables, choose the cable best suited to your specific application. Or work with our Product Engineering Group to design specialty cable to your exact requirements.

Belden Innovation. We're a leading innovator in shielding technology and patented testing methods. Our shielding is designed to meet the highest performance standards in the industry—including military TEMPEST requirements. To make your cable decision easier, we provide you with all the test data necessary to choose the proper and most cost-efficient shield for your application. We also offer a variety of insulations and jacketing materials designed to provide superior performance under hostile environmental conditions. Critical application requirements are not a problem when you work with Belden.

Quality and Reliability. After working with governmental and military applications for over 30 years, we understand the interrelationship of quality components and critical requirements. We believe quality is the responsibility of leadership. That's why our Quality Assurance Department has full authority to maintain high quality standards for our products. And we use patented testing methods to guarantee our product reliability. Choosing Belden means choosing high quality, reliable products.

The Belden Government Department. Since we understand how the government and prime contractors work, we provide you with full support services—from sales and engineering support to contract administration. We're ready to help with your design decisions where and when you need us.

To make your design project easier, call us for technical assistance. Because when you specify Belden, "There is no equal."

Contact Cooper Industries, Belden Division, P.O. Box 1980, Richmond, IN 47375.

Phone: 1-800-BELDEN-4