Integrating data modems with Group 3 fax capability takes a world of experience.

The fast-growing worldwide base of 15 million fax machines is an audience you can't ignore. And nearly 75% use Rockwell International modems. So you know who you can count on for true compatibility in a whole family of integrated datafax solutions—at remarkably reasonable prices. Rockwell technology and worldwide support from software vendors make your project easier to design and faster to market.

Rockwell's TrueFAX modem family offers a clear migration path for present and future applications. Including the RC224ATF—a low-power, fully integrated single device with Group 3 fax send/receive capabilities based on industry-standard ANSI/EIA-578 Service Class 1 AT commands.

For open-architecture solutions, choose from Rockwell's RC9624DP datapump or RC9624AC integrated device-set families. All support major international protocols for data and send/receive fax. The RC9624AC family also offers a fully featured datafax AT command set, plus V.42/V.42 bis.

Low power consumption, low cost and small size. They're all yours with the versatile Rockwell family of datafax modems. For details, contact Rockwell Communication Systems at P.O. Box C, M.C. 501-300, Newport Beach, CA 92658-8902; (800) 854-8099; in California: (800) 422-4230; Fax—(714) 833-4078 or (714) 833-4391.

RC224ATF
• CCITT V.22 bis, V.22 Bell 212A and 103 operating modes
• EIA TR002.288 AT commands
• Group 3 send and receive fax modes
• ANSI/EIA 578 Service Class 1 fax commands
• Single voltage (+5 volts)
• 2-device version available
• AccelerATor™ Kit

RC9624DP/RC9624AC
• CCITT V.22 bis, V.22, V.21, V.23, Bell 212A and 103 modes
• V.29, V.27er, V.21 Channel 2, Group 3 send/receive fax capabilities
• Voice interface
• DTMF generation/detection
• HDLC framing
• Single voltage (+5 volts)

Rockwell International
...where science gets down to business
CIRCLE NO. 107
Imagine the exact circuit you need. Then call Dale® and get dozens of ways to package resistors, capacitors and other components. Reliably. Faster. And in less space.

We're ready to deliver all types of general purpose R/C networks in molded DIP and conformal-coated SIP styles for ECL, line and Thevenin equivalent termination. In addition, we're an established producer of custom circuits which combine a variety of active and passive components in DIP, SIP or special packages.

Need extra precision? Our laser trimming methods can achieve Resistor/Capacitor time constant matching of ±1%. Special testing? Our capabilities include temperature cycling from -55°C to +125°C and power conditioning at room temperature, 70°C and 125°C.

Imagine how Dale networks can help you do a better job. Then call (915) 592-3253 for immediate assistance or write:
Dale Electronics, Inc., Box 26728, El Paso, TX 79926-6728.
Remember, when it comes to delivering the networks you need — Dale Can.

Circle No. 1
What do you get when you
design with our 10 mΩ MOSFET?

NO BIG LOSS.

That's right. Now you can dramatically cut computer system power and voltage losses with the SMP60N03-10L from Siliconix.

This 30 V, 10 mΩ logic-level power MOSFET will revolutionize your computer designs—from laptops to mainframes and everything in between.

Ideal solution for many applications.
The SMP60N03-10L can be used as a battery backup switch, a load manager, a linear regulator, or a synchronous rectifier. And its lower forward voltage drop and bi-directional current capability make it an ideal replacement for relays and Schottky diodes in all computer applications.

Less heat for more efficiency.
The secret? A unique combination of the very high cell density of Siliconix' proprietary SiMOS 2.5 technology and lowering the breakdown voltage of this device for applications that don't require the common 50 V+ rating. The result is 10 mΩ, the industry's lowest rDS(on) available in a TO-220 package. That means increased efficiency because less heat is generated in your system. So now you can save the cost and space of heatsinks and sometimes even eliminate the need for a fan.

Improved device and system reliability.
The SMP60N03-10L is avalanche rated and 100% tested to ensure device reliability. And because of its low gate charge fewer external drive components are required. So you'll not only save space and reduce cost, but your system will be more reliable as well.

Available now!
Cut your losses and design more efficiency into your low power systems! Contact your local Siliconix distributor.
Or call our toll-free hot line now! 1-800-554-5565, Ext. 956.
Ask for our 10 mΩ power MOSFET Design Kit.

 Siliconix
Incorporated
2201 Laurelwood Road, Santa Clara, CA 95056
Tough enough to meet full MIL-specs, capable of operating over a wide \(-55^\circ\) to \(+100^\circ\)C temperature range, in a rugged package… that’s Mini-Circuits’ new MAN-amplifier series. The MAN-amplifier’s tiny package (only 0.4 by 0.8 by 0.25 in.) requires about the same pc board area as a TO-8 and can take tougher punishment with leads that won’t break off. Models are unconditionally stable and available covering frequency ranges 0.5 to 1000MHz, NF as low as 2.8dB, and power output as high as +15dBm. Prices start at only $13.95, including screening, thermal shock \(-55^\circ\)C to \(+100^\circ\)C, fine and gross leak, and burn-in for 96 hours at \(100^\circ\)C under normal operating voltage and current.

Internally the MAN amplifiers consist of two stages, including coupling capacitors. A designer’s delight, with all components self-contained. Just connect to a dc supply voltage and you are ready to go.

The new MAN-amplifiers series... another Mini-Circuits’ price/performance breakthrough.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>FREQUENCY RANGE (MHz)</th>
<th>GAIN (dB)</th>
<th>MAX. OUT/PWR (dBm) (typ)</th>
<th>NF (dB)</th>
<th>DC PWR (12V, mA)</th>
<th>PRICE (ea.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN-1</td>
<td>0.5-500</td>
<td>28</td>
<td>10</td>
<td>8</td>
<td>4.5</td>
<td>60</td>
</tr>
<tr>
<td>MAN-2</td>
<td>0.5-1000</td>
<td>19</td>
<td>1.5</td>
<td>7</td>
<td>6.0</td>
<td>85</td>
</tr>
<tr>
<td>MAN-1LN</td>
<td>0.5-500</td>
<td>28</td>
<td>10</td>
<td>8</td>
<td>2.8</td>
<td>60</td>
</tr>
<tr>
<td>†MAN-1HLN</td>
<td>10-500</td>
<td>10</td>
<td>0.8</td>
<td>15</td>
<td>3.7</td>
<td>70</td>
</tr>
<tr>
<td>†MAN-1AD</td>
<td>5.500</td>
<td>16</td>
<td>0.5</td>
<td>6</td>
<td>7.2</td>
<td>85</td>
</tr>
</tbody>
</table>

†Midband 10\(\mu\)p to \(\mu\)f = \(\pm 0.5\)dB †dB Gain Compression †Case Height 0.3 in.

Max input power (no damage) + 15dBm, VSWR in/out 1.81 max.
Active Directivity (difference between reverse and forward gain) 30 dB typ.
Truly incredible...a superfast 3nsec GaAs SPDT reflective switch with a built-in driver for only $19.95. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits’ YSW-2-50DR?

Check the outstanding performance specs of the rugged device, housed in a tiny plastic case, over a -55° to +85° C span. Unit-to-unit repeatability for insertion loss is 3-sigma guaranteed, which means less than 15 of a 10,000-unit production run will come close to the spec limit. Available for immediate delivery in tape-and-reel format for automatic placement equipment.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>YSW-2-50DR</th>
<th>dc-500MHz</th>
<th>500-2000MHz</th>
<th>2000-5000MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion loss, typ (dB)</td>
<td>0.9</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Isolation, typ (dB)*</td>
<td>50</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>1dB compression, typ (dBm @ in port)</td>
<td>20</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>RF input, max dBm (no damage)</td>
<td>22</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Video breakthrough to RF, typ (mV p-p)</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise/Fall time, typ (nsec)</td>
<td></td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

*typ isolation at 5MHz is 80dB and decreases 5dB/octave from 5-1000 MHz

Mini-Circuits

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 Telexes: 6852844 or 620156

CIRCLE NO. 124
COMPUTERS & PERIPHERALS
SPECIAL ISSUE

SPECIAL REPORT
Cache design

Most high-performance systems can benefit from cache memory. However, designing one isn’t trivial; to avoid wasting your precious cash, you need to know how and why the cache works.
—Michael C Markowitz, Associate Editor

DESIGN FEATURES
Designers’ guide to subranging A/D converters—Part 2

Part 1 of this 3-part series on subranging A/D converters covered the architectures and operation of these specialized devices. Part 2 continues with a discussion of their critical dynamic parameters and specifications.—Ray K Ushani, Datel Inc

Design a digital synchronizer with a low metastable-failure rate

When you’re attempting to synchronize asynchronous data to a system clock, don’t let metastability ruin your design. Carefully considering this problem during the design phase can save you headaches down the line.—Steven R Masteller, Allied-Signal Aerospace, Bendix Engine Controls Div

TECHNOLOGY UPDATES
Digital-paper storage: Flexible optical media boost data density

If you need to store data by the terabyte, watch for digital paper. At one-half cent per megabyte, it may become the archival medium of the nineties.—Chris Terry, Associate Editor

Continued on page 7
You are required to explain why you have exceeded virtually every industry standard for CMOS PLDs. We understand that to obtain samples of the part in question, along with supporting documentation, you can be reached at:

1-800-FASTGAL

CAUSE FOR CITATION:
- HIGH QUALITY
- LOW POWER
- HIGH SPEED

POSTED SPEED: 10 ns
CLOCKED SPEED: 7.5 ns
SPECIAL CONDITIONS: Enhanced ground noise immunity
TECHNOLOGY: E²CMOS
TECHNOLOGY UPDATES (CON’T)

The IEEE-488.2 standard: IEEE-488.2 products are just now appearing

Long on promise, short on delivery, the IEEE-488.2 standard may one day reduce the work of writing test-system programs. But that day hasn’t arrived just yet.—Steven H Leibson, Senior Regional Editor

ATE pin electronics: Versatile ICs reach beyond ATE systems

IC manufacturers have developed pin-electronic circuits that serve as building blocks for ATE systems. But these ICs aren’t limited to ATE applications.—Doug Conner, Regional Editor

EDITORS’ CHOICE

CAE router

PRODUCT UPDATES

Continuous-time programmable filter
X-Window package
Microcontroller family
Fast ADC with S/H amplifier

NEW PRODUCTS

Components & Power Supplies .. 190
CAE & Software Development Tools 197
Integrated Circuits ... 203
Test & Measurement Instruments 208
Computers & Peripherals .. 213

DEPARTMENTS

News Breaks ... 17
Signals & Noise ... 33
Ask EDN ... 45
Calendar ... 56
Editorial ... 67
Design Ideas .. 179
Literature ... 214
Business/Corporate Staff .. 216
Professional Issues .. 227
Career Opportunities ... 233
EDN’s International Advertisers Index 239

EDN April 25, 1991
THE SHOCKING REASON THE TELECOMMUNICATIONS INDUSTRY TURNED TO OMRON.
Recently, the telecommunications industry needed a new breed of low-signal relay—a relay that could withstand a shocking 2,500 volts, almost double the present standard, yet small enough for dense PCB mounting. They turned to Omron.

Omron responded with the G6N relay. It not only withstands a 2.5KV surge between coil and contacts, its footprint is almost 40% smaller than the previous standard. The G6N is the latest product to join Omron's family of low-signal relays for telecommunications, computer peripherals, office automation and more.

Why did the telecom industry turn to Omron? Because we not only have the broadest line of relays, switches and photomicrosensors in the industry, we also have a proven track record of innovation. Last year alone, we invested over $170 million in R&D, employed over 1,000 R&D engineers and introduced nearly 100 new products. The telecom industry was also impressed with our highly-automated manufacturing systems, which enable us to provide products of consistent quality in high volumes. The G6N, for example, undergoes 100% automated inspection on 13 critical performance parameters.

With more than 90 affiliates and subsidiaries, 1,500 sales locations and 17,000 employees worldwide, Omron also met the telecom industry's need to provide product and service support around the globe.

Omron's ability to meet the rigorous demands of the telecom industry may come as a shock to some people. But it effectively demonstrates our ability to meet the control demands of any industry.

For complete information on our broad line of control components, call us at 1-800-62-OMRON.
Because Speed We'll Stop

Fastest High Density CMOS PLDs
At 15 ns

PALCE16V8H-10

Fast Universal CMOS PLD Family
At 10 ns

PAL16L8-5

Fast Bipolar PLD Family
At 5 ns
Whatever kind of PLD you need, the fastest comes from AMD.

We'd love it if all our work amounted to "zero." As in zero delay. And we're not far off.

Not surprising—because AMD invented the PAL® device. That's why we know programmables better. And offer you the most choices of the best devices.

Say you want speed, but can't sacrifice density. Don't. Use our new MACH™ products (Macro Array CMOS High-density) that give you up to 3600 gates and 15ns performance. They're two to three times faster than the competition and cost 40% less.

For more speed, along with low power consumption, try our new 10- and 15-nanosecond CMOS PLDs. Use our 16V8-10s and 20V8-10s anyplace you'd use a GAL® device. Or choose the ever-popular AMD-invented 22V10, at 15ns.

Faster still are our seventh generation bipolar PAL devices. Complete families of 16L8-5s, 20L8-5s, and the 22V10-10s. And for real speed freaks, we're now shipping a 4.5ns bipolar PAL device—the world's fastest TTL programmable logic.

Along with all this speed, we're providing equally fast delivery. In quantity. In fact, we deliver more programmable logic devices than all our competitors combined.

For details, call AMD now at 1-800-222-9323. And let nothing stand between you and your need for speed.
Motorola's In Real
ne glance at the full array of options Motorola offers in real-time, and you'll see why it's become the developer's platform of choice. For both target and host environments, no other single vendor has anything like it.

One reason is our long-time experience with real-time technology, beginning with our pioneering work back in 1980. Another is the broad spectrum of our product line, which includes ICs, boards, systems, and software. In short, Motorola has everything you need to build real-time applications ranging from simulation to industrial automation to imaging and more.

Yet another reason to choose Motorola is our unending commitment to open standards. Our real-time platform gives you standards-based choices at various levels of integration. The centerpiece of this non-proprietary approach is VMEexec, our wide-open, totally integrated development environment. VMEexec allows you to use standard UNIX* interfaces to write a single set of application code, and then reuse it for other projects. Better still, you can combine any software product that conforms to these standards. VMEexec includes a high-performance real-time executive, a strong run-time connection to UNIX-based systems, flexible and efficient real-time I/O and file systems, as well as powerful development and debug capabilities. And because VMEexec is integrated with the hardware, you can begin software development even before the hardware is available.

If you're thinking about real-time, you should be thinking about time to market, and that's all the more reason to think Motorola. Especially when you consider that we can help speed product integration by serving as a single source for boards, software and systems. Add to that the industry's best applications expertise and design support, ranging from small embedded control systems to multi-processor simulation. Then factor in Six Sigma quality control. And remember that Motorola gives you the industry's only true migration path from CISC to RISC in both the development and run-time environments.

Give us a call today at 1-800-624-8999, ext. 230, and put the real-time resources of Motorola on your side. We think you'll find the benefits are very big, and very real.

We Do Real-Time Full-Time.

Motorola, we've dedicated an entire division solely to real-time development systems. Our real-time system architecture begins at the microprocessor level in either CISC or RISC, and extends all the way to the end-user. Today, you can use VMEexec to port UNIX applications to an SVID-compliant (and soon, POSIX-compliant) real-time environment, and vice versa. And they can be used for run-time capabilities as well as for development.

Several human interfaces are available for UNIX, including Motif, X.11 and DeltaWINDOWS®. As for networking, Motorola supports all popular protocols, including TCP/IP, NFS, SNA, OSI, and X.400. We also offer database and CASE tools, and you can work in C, LISP, FORTRAN, ADA, BASIC, COBOL, and PASCAL. Put it all together, and you will discover only one company gives you the full story on real-time, and that's Motorola.
Until now, there's been no volume supplier of the leading-edge 256K CMOS EEPROM, so supplies have been short.

Samsung has changed all that. We're producing extremely high volumes, and as you can see, all kinds of new ways to use the part are turning up.

Large-memory cellular phones, and...well, we're sure you'll think of many other interesting things to do with them.

Also new from Samsung are parts proven for industrial temperature ranges, which means you can use them in robotics, automotive
applications, industrial control and related areas.

Our 256K parts boast a fast, 5 millisecond/page write time. This gives you an effective byte write time (including erase cycle) of just 78 microseconds. And the entire chip can be rewritten in only 2.5 seconds.

What all these things represent is a broad-based commitment at Samsung to EEPROMs. We also offer CMOS 64K and 16K parts, a variety of serial EEPROMs, and forthcoming higher-density serial parts.

Surface mount packaging is available across the entire line.

Request a comprehensive Samsung EEPROM Quality Kit, including samples, by calling 1-800-669-5400 or 408-954-7229 now. Or write to EEPROM Marketing, Samsung Semiconductor, 3725 No. First St., San Jose, CA 95134.

And start planning your own new uses.
Use Samtec's Board-to-Board Interconnect Selector and you can do it in your sleep

Samtec's Board-to-Board Interconnect Selector is an easy-to-use reference book that takes the work out of finding the right interconnect for your board stacking application.

There's more than one way to spec a stacker. It includes thousands of different combinations for board-to-board spacings from .153 inch to 1.935 inches. Interconnect types include:
- Precision machined socket and terminal sets
- .025" square header and socket sets
- .050" centerline micro interconnects
- Low profile, standard and elevated strips
- Surface mount and through-hole designs

And if you can't find exactly what you need, custom and modified standards are a specialty at Samtec.

There's only one way to get "Sudden Service". Wake up to the benefits of Samtec Sudden Service. Call your local stocking Samtec distributor for our Board-to-Board Interconnect Selector and Full Line Catalog. Call toll free for their name.

1-800-SAMTEC-9
SOFTWARE FINDS FAULTS AND CREATES TEST PATTERNS

CX-Test from Crosscheck Technology Inc provides a method of embedding test electronics onto an ASIC. The software creates test patterns and provides fault analysis using such manufacturing defects as bridging and open transistors in addition to the standard stuck-at faults. According to your vote (EDN, January 3, 1991, pg 41), it was the most innovative test and measurement product of last year. The software's embedded circuitry acts as a bed-of-nails tester to ensure high fault coverage for integrated circuits. The technology is available in arrays from LSI Logic (EDN, March 14, 1991, pg 18). The technology presents four design limitations: you must provide initialization and functional vectors; the circuit can't rely on stored charge at any node; you can't use internal free-running oscillators; and you must reserve four pins for the test bus.

The software accepts netlists and functional simulation patterns in Verilog or LSI Logic's Lsim format and creates patterns for synchronous and asynchronous designs and for circuits containing ROM and RAM. To run, the software requires at least 32M bytes of memory on Sun-3 and Sun-4 workstations. Cost depends on your configuration and ranges from $25,000 to $50,000. The software is currently available in LSI Logic design centers and will be available to ASIC designers in the fall. Crosscheck Technology Inc, San Jose, CA, (408) 432-9200, FAX (408) 432-0907. LSI Logic, Milpitas, CA, (408) 433-4584, FAX (408) 433-7241. —Michael C Markowitz

ASIC FOUNDRY SPINS OFF DESIGN-TOOL GROUP

In a move to make its design tools less proprietary, VLSI Technology Inc has spun off its design-tool business unit and made it a separate company. The new company, Compass Design Automation, will take the existing products and develop them for other vendors' ASIC processes and alternative CAE environments. Compass began its operations with 160 employees from the parent company. Compass Design Automation, San Jose, CA, (408) 433-4880, FAX (408) 434-7820. VLSI Technology, San Jose, CA, (408) 434-7726, FAX (408) 434-7931. —Steven H Leibson

486-BASED COMPUTER CACHE USES UNUSUAL ARCHITECTURE

Mosel's Simulcache consists of the MS441 cache controller and MS443 intelligent dual-port memory chips for 486-based systems. The chip set provides a concurrent write-back cache for 80486 µPs. Unlike other write-back schemes, these devices don't connect in parallel with main memory on the CPU bus. Instead, the dual-port devices fit between the CPU and the rest of memory, including memory-mapped I/O ports.

The controller absorbs CPU memory transactions and reorders them to meet the system's needs. It provides burst read and write between the CPU and cache, allows direct access between CPU and noncache memory, and handles read misses by simultaneously passing data to the CPU while updating the cache. The intelligent memories use an internal 128-bit memory bus, support 4-word bursts with 8-nsec access times, and offer 2-way set associativity. Samples of both devices will be available in the second quarter of 1991 with production slated for midyear. The cache controller costs $65 and the intelligent memories cost $9 (10,000). Mosel, Sunnyvale, CA, (408) 733-4556, FAX (408) 733-2271. —Richard A Quinnell
IC MULTIPLIES AND DIVIDES ACCURATELY

The $10.55 AD734 from Analog Devices Inc is a high-accuracy, low-distortion analog multiplier/divider. The device performs the mathematical function \(W = \frac{XY}{U} \), where \(X \), \(Y \), and \(U \) are fully differential, analog-input signals. Operating with a small-signal and full-power bandwidth of 10 MHz, the device exhibits a slew rate of 480V/µsec, a S/N ratio of 94 dB, and a guaranteed conversion accuracy of 0.26% for high-grade devices. As a 4-quadrant multiplier, the IC can function as an oscillator, filter, or voltage-controlled amplifier. When connected as a 2-quadrant divider, the device can function as an AGC amplifier or an rms-to-dc converter. In multiplier mode, the denominator voltage \(U \) can be supplied internally from a 10V buried zener reference. Analog Devices Inc, Norwood, MA, (617) 329-4700, FAX (617) 326-8703.
—Anne Watson Swager

12-BIT, 10M-SAMPLE/SEC ADC MODULE RUNS ON ±5V

The CLC922 ADC module from Comlinear Corp works in systems that need to perform 12-bit, 10M-sample/sec A/D conversions but have limited power supplies. The module incorporates an input amplifier, a low-jitter track-and-hold section, an onboard voltage reference, a 12-bit quantizer with error correction, and output latches. The device uses ±5V power supplies and consumes 4.1W. Guaranteed specs include a S/N ratio of 65 dB min, THD of −63 dB at 404 kHz and −57 dB at 4.996 MHz, 1-LSB-max differential nonlinearity, and no missing codes. The device also has a spurious-free signal ratio of 60 dB min. (This rating measures a converter’s clean dynamic range.) Industrial and military versions of the module cost $470 and $1565 (100), respectively.

The company’s CLC925B uses the same low-power circuits, but requires a 15V power supply in addition to the ±5V supplies. The additional power-supply voltage increases the module’s power consumption to 4.2W. Industrial and military versions cost $449 and $1490 (100), respectively. Comlinear Corp, Fort Collins, CO, (303) 226-0500, FAX (303) 226-0564.—Steven H Leibson

DESIGN AUTOMATION CONFERENCE EXPANDS PROGRAM

This year the Design Automation Conference takes place at the San Francisco Moscone Center on June 17 to 21. Targeting CAD tool users, developers, and managers, the conference has evolved over the years from a strictly technical conference to a combination of technical presentations and product exhibits. More than 130 exhibitors will demonstrate their tools, and more than 64 of the exhibitors will give technical presentations. In addition, more than 40 technical conference sessions and seven tutorials are scheduled.

The conference program includes two industry-oriented panels on June 18. The first panel, “Global Strategies For Electronic Design,” focuses on the interdependency of design-automation, and ASIC and systems companies, and their impact on global competition in the 1990s. The second panel, “Implementing the vision: Electronic design in the 1990s,” will focus on the broader needs of system design.

You can obtain a free pass to the first day of the exhibits by registering before May 17. After May 17 registration is $20. One-day passes for technical sessions, including the panels, are $75. For more information, call MP Associates, (800) 321-4573 or (303) 530-4333, FAX (303) 530-4334.—Doug Conner
Faster circuits for faster systems: Here's the good book.

The 1991 Cypress Semiconductor Data Books are hot off the presses. Highlights include:

- **SPARC® RISC Microprocessors.** The fastest CMOS available. From embedded control to full chipsets.
- **Highest Speed PLDs.** Broad selection, from standards at rocket speeds to functionally specialized systems.
- **Static RAMs.** Biggest selection of high-speed devices, including our 10ns BiCMOS 64Ks.
- **VME Bus Controllers.** The space-saving solution for a broad range of processors.
- **CMOS PROMs.** The broadest line of high-performance PROMs, to 512K densities. We'll fill your order fast.
- **Specialty Memories.** Including ultra-high-speed FIFOs.
- **Multichip Modules.** Including 32-bit space and time savers.
- **And much more.** All in our new Data Book.

*1 (800) 387-7599 in Canada, (212) 2-452-0270 in Europe. © 1991 Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134. Phone: (408) 943-2600, Telex: 92102 CYPRESS SNJ UD, TWX: 910-997-0753. SPARC is a registered trademark of SPARC International, Inc.
EMULATOR SUPPORTS 68302 µP

The 68302 UEM in-circuit emulator from Softaid Inc debugs Motorola’s 68302 µP-compatible systems. The $6495 device provides 256k bytes of emulation memory, a 4k-byte-deep trace buffer, and 151,072 hardware breakpoints. You can set complex breakpoints using the emulator’s 5-level nested-trigger specifier using a specific sequence of events, data values, machine cycles, and address accesses. A pass counter lets you delay the breakpoint by as many as 65,536 cycles. The source-level debugger included with the emulator lets you trace and debug your code in its native appearance using C, PL/M, or assembly language. The debugger works with the emulator’s 256-bin real-time performance analyzer, so you can optimize your software on a function-by-function basis even when you’re programming with a high-level language. The emulator will be available in May. Softaid Inc, Columbia, MD, (301) 964-8455, FAX (301) 596-1852.—Steven H Leibson

HIGH-DENSITY GATE ARRAY FEATURES SPECIALIZED LIBRARY

The LCA200K gate-array family from LSI Logic has 20,000 to 200,000 usable gates in a 0.7-µm, 3-metal-layer CMOS. The family also has a library of more than 1000 specialized macrocells. The cells include conventional logic, MIPS and SPARC CPUs, phase-locked loops for removing interchip system-clock skew, backplane drivers, and differential receivers. Although the chip runs at 5V, its I/O drivers are compatible with 3.3V logic. The I/O drivers also support the JTAG scan-test technique. NRE costs start at $75,000. LSI Logic, Milpitas, CA, (408) 433-4340, FAX (408) 434-6457, contact John Daane.—Richard A Quinnell

LOW-COST CPU CHIP EXPANDS 80486 µP FAMILY

Intel’s 80486SX, a derivative of the basic 80486 µP, is a 32-bit µP chip that can upgrade 80386-based computer designs. The $269 (1000) chip is binary-code compatible with earlier 80386- and 80486-family µP chips. The company claims 16-MIPS performance at 20 MHz. The chip preserves the 32-bit data-bus architecture of its parent, but lacks floating-point math. The company expects to offer a $799 device that will supply floating-point math. For now the chips are simply basic 486 chips with disabled and unpowered floating-point math circuits. As production volume increases, the company will delete the floating-point math section of the 486 so that the derivative chip exists as a separate device. Pinouts of the two chips are not the same. The derivative chip is available in pin-grid-array and plastic packages. Intel Corp., Santa Clara, CA, (408) 987-8080.—Jon Titus

DSP CARDS OFFER FAST, 16-BIT, FIXED-POINT PROCESSING

A pair of plug-in DSP cards from Spectrum Signal Processing Inc bring the signal-processing abilities of the Texas Instruments TMS320C50 to the IBM PC/AT bus. The $3495 system and $2495 processor boards combine the signal-processing µP with 32k bytes of program memory and 32k bytes of data memory. You can expand both memory areas to a maximum of 128k bytes. The system board includes two 16-bit ADCs and two 16-bit DACs capable of 50-kHz conversion rates. The boards also provide a 2.7×3.4-in. prototyping area for additional circuits. Loughborough Sound Images (Loughborough, England) developed the boards. Spectrum Signal Processing Inc, Burnaby, British Columbia, Canada, (604) 438-7266, FAX (604) 438-3046. —Steven H Leibson
It is logical to choose the bus architecture that will deliver the greatest return on your development investment, for the longest possible time.

- Today's Multibus II not only gets you to market quickly, with higher performance and superior reliability. But of all available buses, only Multibus II provides the performance headroom to effectively absorb silicon advances through the 1990s, to protect your investment long into the future.
- During the past year Multibus II has grown faster than any other open architecture. One third more vendors have expanded the range of available Multibus II boards, systems, software and packaging products by nearly 40 percent!
- You can explore the world of Multibus II with your free copy of the new 1991 Multibus II Product Directory. Just send your business card to the MMG.

And, contact the enterprising manufacturers listed below for complete information on Multibus II products that will transport you into the future. Discover Multibus II. Your application will live long. And you will prosper.

CONCURRENT TECHNOLOGIES
Jerry Hoffman 217-356-7004 FAX 217-356-6238
NEW! i486 CPU Board/Communications Controller

INTEL
Call 800-548-4725
NEW! High integration 33 MHz i486 CPU board

MENTEC
Ralph Shaw 800-446-6762 FAX 614-548-6164
NEW! i860-based SBC running UNIX System V Rel. 4

MICRO INDUSTRIES
Bill Jackson 800-446-6762 FAX 614-548-6184
NEW! 060-based RISC development board

SIEMENS AG
Dr. Klaus P. Killian, Germany 089 4144 5737 FAX 089 4144 5841
NEW! Scalar CPU board with Hard-Realtime Unix

MULTIBUS MANUFACTURERS GROUP
© COPYRIGHT 1991 MULTIBUS MANUFACTURERS GROUP
P.O. BOX 6208, ALOHA, OREGON 97007, 503-696-7155
HARDWARE MODELER STARTS A FAMILY

In an effort to lure more system designers into simulation, Logic Modeling Systems will deliver a lower-priced modeler. The 68020-based LM500 and 68040-based LM1200 hardware modelers aid system simulation by allowing you to augment your software models with actual devices configured as models. The 68020-based modeler, which starts at $35,000, models devices with as many as 160 pins. The $87,000, 68040-based modeler simulates 320-pin devices. Both modelers allow simulations to use multiple hardware models, limited only by total pin count—480 signal pins total for the 68020-based modeler and 2560 for the 68040-based modeler. Although its library of models numbers 600 and includes such devices as the i486, 29050, 68040, and R3000A, the company estimates you can build a model for any device you need in less than two days. Both modelers will be available by the end of June. Logic Modeling Systems Inc, Milpitas, CA, (408) 957-5200, FAX (408) 945-9181.

—Michael C Markowitz

AUDIO INSTRUMENTATION AMP FEATURES LOW INPUT NOISE

A distortion-cancellation network on the input of the INA103 monolithic instrumentation amplifier drops the device’s input-voltage noise figure to 1 nV/√Hz typ and its THD-plus-noise rating to 0.0009% (gain = 100, 1 kHz). The amp’s offset voltage is 52 µV max, and the input-offset voltage drift is 1.25 µV/°C. On-chip resistors give the device a gain of 1 or 1000 without additional components, and an external resistor can vary the amp’s gain from 1 to 1000. At a gain of 1000, the amp provides a flat frequency response to approximately 20 kHz. A device packaged in a 16-pin plastic DIP costs $4.85 (1000) and ceramic-packaged devices are also available. Burr-Brown, Tucson, AZ, (602) 746-1111, FAX (602) 889-1510, TWX 910-952-1111, contact John Conlon. —Steven H Leibson

TRANSMISSION-LINE ANALYSIS TOOLS UPGRADED

Quantic Laboratories offers a range of transmission-line analysis tools from its Boardscan board screener up through detailed 2- and 3-D analysis using its Greenfield products. The board screener includes signal-integrity specs such as overshoot, undershoot, settling time, noise margins, time delays, and crosstalk. The analyzers’ component libraries of drivers and receivers accept Spice transistor-based device models and behavioral models for increased simulation speed. The products are now available unbundled so you can obtain only the tools you need. The board screener starts at $15,000, and the analyzers start at $24,000. Quantic Laboratories Inc, Winnipeg, Manitoba, Canada, (204) 943-2552, FAX (204) 957-1158. —Doug Conner

VIDEO ACCELERATOR STANDARD FEATURE FOR WORKSTATION

The SPARC-based S4000 series of color workstations from Solbourne Computer includes accelerated 2-D graphics at no additional cost. Prices range from $11,495 for a diskless workstation with 8M bytes of RAM and a 16-in. color monitor to $22,095 for a workstation with a 400M-byte disk drive, 40M bytes of RAM, and a 19-in. color monitor. The company’s SGA20 accelerated color-frame buffer provides the improved graphics. The buffer can draw 530,000 2-D vectors/sec and can fill areas on the screen at 215M pixels/sec. The workstations accept as many as three SGA20s if you need multiple displays. Solbourne Computer Inc, Longmont, CO, (303) 772-3400, FAX (303) 772-3646. —Steven H Leibson
Introducing Zilog's Smart Access Controller...

Z180 intelligence and SCC communications together in one package.

The Z80181™ SAC™ Controller is the Smart Access Controller™ that combines two powerful standards. You get Zilog's industry standard SCC™ controller for datacom connectivity together with the popular Z180 CMOS controller. And all that utility comes with the user-friendly Z80® code CPU compatible software.

The Superintegration™ SAC Controller packs the popular high performance Z180 architecture into a new cell suitable for many datacom and peripheral control applications. You get the SCC single-channel communication cell with two additional UARTS, a 4 x 8-bit counter timer (CTC) and onboard 16-bit I/O. The SAC Controller runs at 10 MHz and drives fast serial communications at 2.5 Mbits/sec. With the reduced 5 cycles per instruction, the SAC Controller gives you 280 code performance 25% faster. That makes the SAC Controller the highest performance, low power embedded controller around.

The best cost/performance of any embedded controller out there. Whatever your application — data communications, modems, FAXs, printers, terminals, industrial controls — the SAC Controller combination gives you the best cost/performance ratio. Everything you need for your system is on the chip. The SAC Controller brings you all the advantages of Zilog's Superintegration technology: Off-the-shelf and backed by our solid reputation for quality and reliability.

To find out more about the SAC Controller, or any of Zilog's rapidly growing family of Superintegration products, contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 Hacienda Ave., Campbell, CA 95008, (408) 370-8000.

EDN April 25, 1991
the world's largest selection
500Hz to 5GHz from $249

Over 200 off-the-shelf models, from low-cost rugged industrial to Hi-Rel military/space approved types, with LO power level requirements from -4dBm to +27dBm. We offer this wide variety of models, up to 5GHz, to allow you to select exactly what you need... pin, surface-mount, TO-8, flatpack, and connector package types, the specific frequency range your design involves, the optimum LO drive level, and a host of special types.

And, exclusively from Mini-Circuits, ULTRA-REL™ mixers with a five-year guarantee and specification limits held to 4.5 sigma for unprecedented unit-to-unit repeatability.

Choose mixers with low LO drive, low noise, load insensitive, quadrature mixer/modulators, plus a large number of MIL-mixer types tested to MIL-M-28837/A, and TX screened.

For the most comprehensive computer characterization of mixers (isolation, conversion loss, intermod, and VSWR vs frequency), call or write your closest Mini-Circuits' rep or distributor or our office for a free copy of our RF-IF Signal Processing Handbook, Vol. 1/2.
The Oki nX equation for next-generation microcontrollers quickly adds up to a lot of pluses.

Take our 65000 Series, for example. With a 400-ns cycle time at 10 MHz, these speed-enhanced 8-bit MCUs boost performance up to 40% over current 80C51-based devices. Add a variety of on-chip features—A/Ds, I/O lines, PWMs, counters, timers, up to 16K bytes ROM and 384 bytes RAM—and you’ll see how nX equals a tremendous range of cost-effective 8-bit solutions.

Then there’s our 66000 Series of 8/16-bit MCUs, providing a migration path between current 8-bit and new 16-bit devices. And offering even higher levels of integration and memory. Pluses include 8-bit external data bus with 16-bit internal address, up to 68 I/O lines, a 400-ns cycle time at 10 MHz, and up to 32K bytes ROM and 1K byte RAM.

For blazing speed and full 16-bit implementation, explore the high-performance features of our 67000 Series: 200-ns cycle time at 10 MHz, 56 I/O lines, three 16-bit and two 8-bit timers, and more.

But the addition doesn’t stop here. Figure in one-time programmable (OTP) versions. A variety of pinouts and packages. And comprehensive development tools—assemblers, compilers, and translators.

Plus there’s one last number to consider in the nX formula: 1-800-OKI-11NX. Call now and let us bring you up to speed on the nX generation of faster MCUs—from Oki.

Transforming technology into customer solutions
<table>
<thead>
<tr>
<th>Part #</th>
<th>Features</th>
<th>ROM</th>
<th>RAM</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>65511</td>
<td>32 I/Os, 2x8-bit timers, watchdog timer, serial I/O</td>
<td>4KB</td>
<td>128B</td>
<td>40-DIP/44-PLCC/QFP</td>
</tr>
<tr>
<td>65512</td>
<td>32 I/Os, 3x8-bit timers,</td>
<td>8KB</td>
<td>128B</td>
<td>40-DIP/44-PLCC/QFP</td>
</tr>
<tr>
<td>65P512</td>
<td>1x16-bit timers, serial I/O</td>
<td>64-PLCC/QFP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65513</td>
<td>Same as 65512 with 24 8KB</td>
<td>128B</td>
<td>64-SDIP/40-PLCC/QFP</td>
<td></td>
</tr>
<tr>
<td>65P513</td>
<td>additional I/Os</td>
<td>68-PLCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65524</td>
<td>Same as 65512 with 2x8-bit 16KB</td>
<td>384B</td>
<td>64-SDIP/40-PLCC/QFP</td>
<td></td>
</tr>
<tr>
<td>65P524</td>
<td>PWM, 8-bit A/D, additional RDM/RAM</td>
<td>68-PLCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66201/</td>
<td>48 I/Os 16KB</td>
<td>512B</td>
<td>64-SDIP/40-PLCC/QFP</td>
<td></td>
</tr>
<tr>
<td>66P201</td>
<td>10-bit A/D</td>
<td>68-PLCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66P207</td>
<td>4x16-bit timers 16KB</td>
<td>512B</td>
<td>64-SDIP/40-PLCC/QFP</td>
<td></td>
</tr>
<tr>
<td>66P207</td>
<td>2x16-bit PWM</td>
<td>68-PLCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66P201</td>
<td>Serial interface 32KB</td>
<td>1KB</td>
<td>64-SDIP/40-PLCC/QFP</td>
<td></td>
</tr>
<tr>
<td>66P201</td>
<td>Transition detector</td>
<td>68-PLCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66P201</td>
<td>10-bit A/D, 3x16-bit 32KB</td>
<td>1KB</td>
<td>60-QUF</td>
<td></td>
</tr>
<tr>
<td>66P201</td>
<td>4x16-bit PWM, serial interface</td>
<td>60-FQFP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67620/</td>
<td>56 I/Os, 3x16-bit timers,</td>
<td>16KB</td>
<td>512B</td>
<td>64-SDIP/40-PLCC/QFP</td>
</tr>
<tr>
<td>67P520</td>
<td>2x8-bit timers, serial interface</td>
<td>68-PLCC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
It takes experience to handle both limpness and flexibility.

Small, lightweight, flexible—these are the requirements we meet often. But “limp as a noodle?” An appetizing challenge.

Texas Instruments came to us for a complete interconnect system for a gyroscope controlled guidance system. Application-engineered to extremely demanding weight and space requirements, this dynamic system also must endure constant flexing.

At Precision Interconnect, we’re working every day to meet requirements like these. We manufacture microminiature cables with conductors as small as 42 AWG and terminate them to our standard line of Micro-D and linear strip connectors with .050" (1.27mm) centerline spacing. Custom and nano strip connectors with .025" (.64mm) spacing can also be assembled.

Our expertise, increasing with each unique problem we solve, ensures that all critical components of your interconnect system are designed in, built in, and tested. We begin by discussing your specific interconnect system problems.

Maybe over lunch?

This ultra flexible harness for Texas Instruments terminates Nano Strip and Micro-D connectors to 43 conductors, 32 to 40 AWG.

PRECISION INTERCONNECT
16640 S.W. 72nd Avenue
Portland, OR 97224
(503)520-9400
Offices in San Francisco, Dallas, Wilmington, Düsseldorf and Tokyo.
RITTAL Is Going To Change The Way You Think About Enclosures.

The PS 4000 is just one of over 3000 RITTAL solutions. See what the perfect enclosure system can do for you. Call 1-800-4PS 4000 for free RITTAL literature. You'll change the way you think about enclosures, forever.

Aesthetic styling
Depth adjustable safety edged mounting plate
Modular construction
Foamed-on seamless gasketing
Patented E-Coat corrosion protection
Strong 9-fold steel frame construction

EDN April 25, 1991

RITTAL Corporation
P.O. Box 1284
3100 Upper Valley Pike
Springfield, OH 45504
Phone: (513) 399-0500
Fax: (513) 328-5299
Extraordinary disc drives require extraordinary parts.

Seagate and the Seagate logo are registered trademarks of Seagate Technology, Inc.
© 1991, Seagate Technology, Inc.
Today’s disc drives are smaller in size and larger in capacity than ever before due to advances in component technology. By designing and manufacturing most of the components ourselves—a concept called vertical integration—we can control the technology, cost, availability and quality of these critical parts.

Technically speaking, no one builds more advanced thin-film discs and recording heads than Seagate. These core technologies help us put 3 gigabytes of storage in a box the size of a toaster. And because we design our own components, we can bring our new products to market faster.

Of course, a key consideration in building our own parts is the cost. By controlling the manufacturing process down to the component level, we can have a significant impact on the cost of our finished products. The end-result is a better value for the customer without sacrificing quality or performance.

In terms of availability, it’s important to know that Seagate shipped over 7 million disc drives last year alone. With volumes like these, building our own components helps us avoid the parts shortages that often plague other disc drive manufacturers.

Most importantly, vertical integration allows us to maximize the quality of every component we produce. With the industry’s most advanced equipment and testing techniques, we consistently turn out components and finished products that are beyond reproach.

Obviously, it takes an extraordinary capital investment to pursue this strategy. But the disc drive companies who control their critical component production will be better able to control their own destinies, as well as those of their customers.

For more information on our complete line of high-performance disc storage products, contact your authorized Seagate distributor. Or call Seagate at 800-468-DISC, or 408-438-6550.
OrCAD has introduced the greatest product upgrade in its history. Memory limits, design restrictions, even boundaries between products are all disappearing.

For years, OrCAD's competitors have been playing a game of catch-up. With the introduction of Release IV, the race is over. No one will match our price/performance ratio on these features:

- Schematic Parts Library has been increased to over 20,000 unique library parts
- Digital Simulation process has been speeded up by an order of magnitude
- Printed Circuit Board Layout package offers autoplacement and autorouting at no extra charge
- Expanded memory capabilities

Best of all, OrCAD introduces ESP

ESP is a graphical environment designed specifically for the electronic designer. Software tools appropriate for different stages in the design process are now linked together to form a seamless flow of information. This easy-to-use framework relieves the designer of time consuming tasks and the inconvenience of moving from one tool set to another. You can now spend more time productively designing.

For more information . . .

You need to know more about Release IV and all of the benefits OrCAD has to offer. Call the telephone number below and we'll send you a free demonstration disk.

For more information, call (503) 690-9881

or write to OrCAD Sales Department, 3175 N.W. Aloleak Drive, Hillsboro, Oregon, 97124
Questions about PLL article

I'd like to comment about the article, "Technique eases design of phase-locked loops" (EDN, August 20, 1990, pg 141). I appreciate seeing this subject published.

However, I found two weak areas in the article. The first area involves the included C-language listings, Listing B-Key routines used in optimizing PLLs based on the 4046 IC. When including source code, sparse commenting and the inclusion of calls to subroutines not included in the listing only add to a reader's difficulty in understanding the code. I refer to the subroutine calls, components() and scan2(). What does "components" do for the program? If it is to read component values, then which components?

Also related to the listing problem is the vagueness of program execution. Which subroutine is executed first, last? In my opinion, had Fred Salvatti omitted the C-code listings, he would not have hindered the technical quality of the article.

The second area with which I'm concerned involves the last paragraph. "You can obtain...the program...for $19.95. Send your request to the author." Surely the cost of a 5½-in. floppy disk cannot be as high as $20.00. It appears that Fred Salvatti intends to make a profit, small as it may be. That being the case, wouldn't this work classify as an advertisement, and if so, should you not charge the author for advertising space? One might infer that EDN employed unfair discriminatory advertising practice.

Concerning Glenn's first question: What does "components()" do? Components() is the function that displays the 4046 menu. In answer to Glenn's second question, scan2() is the function that responds to selections from the 4046 menu.

As to my making a profit, my time is worth more than $25 an hour. It takes me about an hour to copy the program to a disk, test the disk for correct operation, write a personal letter explaining something about the program, package the disk, address the package, and finally go to the post office to mail.
At this point I’m already in the hole more than $5, not to mention all the hours it took to develop the equations and write and debug the program. Surely as an engineering manager, Glenn can see that there’s no way I’m making a profit. And, incidentally, I did this work on my own time.

How do engineers, et al, fare in the marketplace?

In the article, “The Job-Hunting Blues” (EDN, January 21, 1991, pg 230), Julie Schofield is too kind to big business. Businessmen are politicians who find some gadget to sell the government or other big business. They [receive] a little money from bankers and a lot of money from suckers; they find talented, but naive people, and they put together a little military machine that obeys the tenets of Socrates, Adam Smith, F W Taylor, Gantt, and others. The politicians and their cronies get rich! The exploited talent and the exploited labor get old or stale. When people see riches passing under their noses, they may want to share in those riches. But people are expendable, so they get expended.

I could let off steam for thousands of pages, but you get the message.

Robert C Gibson Consulting Engineer Aurora, IL

Who did it?

We inadvertently neglected to let you know that Intel Corp supplied the cover photograph for EDN’s March 28 Software Engineering Special Supplement. Apologies to all concerned.
100 CHANNELS. 100 MHz. 1 CARD.
YOU EITHER HAVE IT

OR YOU DON'T.

See for yourself why competition to the Tek Centurion hasn't materialized. No other logic analyzer, rumored or real, can keep up with the single-card, 100 MHz sync/400 MHz async Tek Centurion, the comprehensive solution for RISC and high-speed CISC.

Compare its accuracy against multi-card 100-channel solutions. Discover its vast expandability for multi­microprocessor debugging. See the advantage of Tek analysis tools, backed by up to 128K/channel memory.

Disassembly support? Only Tek gives you the 80386, 80486, 80960CA, i860, 88100, 68020, 68030, 68040, R3000, R3000A, and AMD 29000. Not soon, someday, or maybe, but shipping now.

Don't buy less without seeing Centurion first! See your Tek sales engineer for a demo, or call 1-800-426-2200 to get the facts.
Before the A500 started testing Motorola's mixed-

Does it meet Six Sigma?

Can it do true mixed-mode testing?

Motorola has adopted a Six Sigma initiative which focuses attention on approaching zero-defect performance in everything we do, including our test systems. Our purchase of the Teradyne A500 test system supports our Six Sigma initiative and our competitive leadership challenge."

Director of Marketing

Motorola knows you can’t have a Six Sigma process unless you can test to Six Sigma standards. That’s why Motorola’s MOS Digital-Analog Integrated Circuits Division chose the Teradyne A500 Analog VLSI Test System. Because, in addition to proving the A500 could handle the complex technical requirements of Motorola’s advanced ISDN interfaces, we also demonstrated that we could perform to Motorola’s stringent quality levels.

"Can it do scan testing? Digitize high-frequency waveforms? Do true mixed-mode testing? Does it have a flexible architecture? Can you give us the support for a Six Sigma process? Applications expertise? Complete documentation? The right tools? In each case, Teradyne answered yes."

Manager, Advanced Test Technology

“Motorola has adopted a Six Sigma initiative which focuses attention on approaching zero-defect performance in everything we do, including our test systems. Our purchase of the Teradyne A500 test system supports our Six Sigma initiative and our competitive leadership challenge.”

Director of Marketing

Motorola knows you can’t have a Six Sigma process unless you can test to Six Sigma standards. That’s why Motorola’s MOS Digital-Analog Integrated Circuits Division chose the Teradyne A500 Analog VLSI Test System. Because, in addition to proving the A500 could handle the complex technical requirements of Motorola’s advanced ISDN interfaces, we also demonstrated that we could perform to Motorola’s stringent quality levels.

"Can it do scan testing? Digitize high-frequency waveforms? Do true mixed-mode testing? Does it have a flexible architecture? Can you give us the support for a Six Sigma process? Applications expertise? Complete documentation? The right tools? In each case, Teradyne answered yes."

Manager, Advanced Test Technology

"Motorola has adopted a Six Sigma initiative which focuses attention on approaching zero-defect performance in everything we do, including our test systems. Our purchase of the Teradyne A500 test system supports our Six Sigma initiative and our competitive leadership challenge.”

Director of Marketing

Motorola knows you can’t have a Six Sigma process unless you can test to Six Sigma standards. That’s why Motorola’s MOS Digital-Analog Integrated Circuits Division chose the Teradyne A500 Analog VLSI Test System. Because, in addition to proving the A500 could handle the complex technical requirements of Motorola’s advanced ISDN interfaces, we also demonstrated that we could perform to Motorola’s stringent quality levels.

"Can it do scan testing? Digitize high-frequency waveforms? Do true mixed-mode testing? Does it have a flexible architecture? Can you give us the support for a Six Sigma process? Applications expertise? Complete documentation? The right tools? In each case, Teradyne answered yes."

Manager, Advanced Test Technology

"Motorola has adopted a Six Sigma initiative which focuses attention on approaching zero-defect performance in everything we do, including our test systems. Our purchase of the Teradyne A500 test system supports our Six Sigma initiative and our competitive leadership challenge.”

Director of Marketing

Motorola knows you can’t have a Six Sigma process unless you can test to Six Sigma standards. That’s why Motorola’s MOS Digital-Analog Integrated Circuits Division chose the Teradyne A500 Analog VLSI Test System. Because, in addition to proving the A500 could handle the complex technical requirements of Motorola’s advanced ISDN interfaces, we also demonstrated that we could perform to Motorola’s stringent quality levels.

"Can it do scan testing? Digitize high-frequency waveforms? Do true mixed-mode testing? Does it have a flexible architecture? Can you give us the support for a Six Sigma process? Applications expertise? Complete documentation? The right tools? In each case, Teradyne answered yes."

Manager, Advanced Test Technology
With the A500, Motorola had the ability to digitize waveforms at 20 MHz, plus the high pin count necessary to guarantee that their ISDN U-Interface worked the way it was supposed to.

Best of all, the A500's full tester simulation and powerful IMAGE™ software provided the design flexibility and rapid debugging Motorola needed to deliver defect-free parts on time.

"The A500 gave us the resources we needed, in one place, to be able to have a functioning test program very quickly – at least two to three times faster than any other test system. This type of support is just what we need to get our complex circuits, such as the U-Interface transceiver, to the marketplace ahead of the competition."

Operations Manager

To Motorola, delivering Six Sigma quality is not just a promise. It's a way of doing business. And it's a test that must be passed by suppliers as well.

To see how our A500 family of test systems can help you deliver quality, call Beth Sulak at (617) 482-2700, ext. 2746.

Or call your nearest Teradyne sales office, or write: Teradyne, Inc., 321 Harrison Ave., Boston, MA 02118.

EDN April 25, 1991
Toshiba Micros. Accelerate Time
Pull into Toshiba for unmatched product selection, service and support. After you’ve conceptualized your latest design and you’re ready to begin the long trip to market, be sure to fuel your silicon needs with Toshiba’s line of 298 varieties of 4-, 8- and 16-bit microprocessors, microcontrollers, as well as development tools.

Toshiba has over 100 4-bit microcontrollers to drive hundreds of consumer and industrial applications with high speed CMOS performance and on-chip ROM/RAM capability. We’re your second source for Zilog Z80 and Intel 8048/8085, as well as Motorola 68HC000, 68HC11 and 68HC05. And our advanced technology lets us offer you Z80- and 68HC000-based ASSPs, too.

Since Toshiba is one of the world’s largest CMOS micro manufacturers, you can count on our production and delivery to make your design/production cycle run smoothly. Our 20 years of experience in fueling fast production starts yields to none. We’re capitalizing on our landmark semiconductor process to propel our diverse 4-bit, 8-bit, 16-bit and future 32-bit micros.

Whenever you’re driving a new design, you can expect a smooth ride on the CMOST Expressway.

Call Toshiba today.

For technical literature, call 1-800-321-1718.

The CMOST Expressway. Paved in silicon with the world’s leading CMOS technology.

In Touch with Tomorrow
TOSHIBA

© 1991 Toshiba America Electronic Components, Inc.
Product names and company names mentioned herein may be trademarks or registered trademarks of their respective companies.
dc to 3GHz from $11.45

lowpass, highpass, bandpass, narrowband IF

- less than 1dB insertion loss • greater than 40dB stopband rejection
- 5-section, 30dB/octave rolloff • VSWR less than 1.7 (typ) • meets MIL-STD-202 tests
- rugged hermetically-sealed pin models • BNC, Type N; SMA available
- surface-mount • over 100 off-the-shelf models • immediate delivery

low pass dc to 1200MHz

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>PASSBAND, MHz (loss <1dB)</th>
<th>STOP BAND, MHz (loss>20dB)</th>
<th>VSWR pass-stop</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLP-10.7</td>
<td>14</td>
<td>19</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-21.4</td>
<td>24.5</td>
<td>32</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-30</td>
<td>35</td>
<td>47</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-50</td>
<td>55</td>
<td>70</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-70</td>
<td>67</td>
<td>90</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-100</td>
<td>86</td>
<td>117</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-150</td>
<td>115</td>
<td>148</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-200</td>
<td>155</td>
<td>210</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-250</td>
<td>195</td>
<td>260</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-300</td>
<td>235</td>
<td>300</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-450</td>
<td>335</td>
<td>400</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-550</td>
<td>435</td>
<td>500</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-600</td>
<td>535</td>
<td>600</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-750</td>
<td>635</td>
<td>700</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-800</td>
<td>735</td>
<td>800</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-850</td>
<td>835</td>
<td>900</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-900</td>
<td>935</td>
<td>1000</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-1000</td>
<td>1035</td>
<td>1100</td>
<td>1.7</td>
<td>11.45</td>
</tr>
<tr>
<td>PLP-1200</td>
<td>1200</td>
<td>1250</td>
<td>1.7</td>
<td>11.45</td>
</tr>
</tbody>
</table>

high pass dc to 2500MHz

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>PASSBAND, MHz (loss <1dB)</th>
<th>STOP BAND, MHz (loss>20dB)</th>
<th>VSWR pass-stop</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHP-50</td>
<td>4</td>
<td>26</td>
<td>1.5</td>
<td>14.95</td>
</tr>
<tr>
<td>PHP-100</td>
<td>8</td>
<td>55</td>
<td>1.5</td>
<td>14.95</td>
</tr>
<tr>
<td>PHP-150</td>
<td>12</td>
<td>95</td>
<td>1.5</td>
<td>14.95</td>
</tr>
<tr>
<td>PHP-175</td>
<td>14</td>
<td>105</td>
<td>1.5</td>
<td>14.95</td>
</tr>
<tr>
<td>PHP-230</td>
<td>18</td>
<td>116</td>
<td>1.5</td>
<td>14.95</td>
</tr>
<tr>
<td>PHP-250</td>
<td>20</td>
<td>150</td>
<td>1.3</td>
<td>14.95</td>
</tr>
<tr>
<td>PHP-300</td>
<td>24</td>
<td>190</td>
<td>1.7</td>
<td>14.95</td>
</tr>
<tr>
<td>PHP-350</td>
<td>30</td>
<td>240</td>
<td>1.7</td>
<td>14.95</td>
</tr>
<tr>
<td>PHP-400</td>
<td>36</td>
<td>290</td>
<td>1.7</td>
<td>14.95</td>
</tr>
<tr>
<td>PHP-500</td>
<td>45</td>
<td>365</td>
<td>1.7</td>
<td>14.95</td>
</tr>
<tr>
<td>PHP-600</td>
<td>55</td>
<td>440</td>
<td>1.7</td>
<td>14.95</td>
</tr>
<tr>
<td>PHP-700</td>
<td>65</td>
<td>520</td>
<td>1.7</td>
<td>14.95</td>
</tr>
<tr>
<td>PHP-800</td>
<td>75</td>
<td>600</td>
<td>1.7</td>
<td>14.95</td>
</tr>
<tr>
<td>PHP-900</td>
<td>85</td>
<td>700</td>
<td>1.7</td>
<td>14.95</td>
</tr>
<tr>
<td>PHP-1000</td>
<td>95</td>
<td>800</td>
<td>1.7</td>
<td>14.95</td>
</tr>
</tbody>
</table>

bandpass 20 to 70MHz

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>CENTER FREQ, MHz</th>
<th>PASS BAND, MHz (loss <1dB)</th>
<th>STOP BAND, MHz (loss>20dB)</th>
<th>VSWR pass-stop</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFB-21.45</td>
<td>21</td>
<td>9.9</td>
<td>12.9</td>
<td>7.5</td>
<td>14.95</td>
</tr>
<tr>
<td>PFB-30</td>
<td>30</td>
<td>26.9</td>
<td>32.3</td>
<td>4.9</td>
<td>14.95</td>
</tr>
<tr>
<td>PFB-40</td>
<td>40</td>
<td>39.8</td>
<td>45</td>
<td>7.5</td>
<td>14.95</td>
</tr>
<tr>
<td>PFB-50</td>
<td>50</td>
<td>58</td>
<td>63.6</td>
<td>9.5</td>
<td>14.95</td>
</tr>
<tr>
<td>PFB-60</td>
<td>60</td>
<td>78</td>
<td>83.2</td>
<td>11.5</td>
<td>14.95</td>
</tr>
<tr>
<td>PFB-70</td>
<td>70</td>
<td>100</td>
<td>106.6</td>
<td>14.4</td>
<td>14.95</td>
</tr>
</tbody>
</table>

narrowband IF

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>CENTER FREQ, MHz</th>
<th>PASS BAND, MHz (loss <1dB)</th>
<th>STOP BAND, MHz (loss>20dB)</th>
<th>VSWR pass-stop</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBPA-10.7</td>
<td>10.7</td>
<td>9.5-11.5</td>
<td>15.6</td>
<td>7.5</td>
<td>18.95</td>
</tr>
<tr>
<td>PBPA-21.4</td>
<td>21.4</td>
<td>19.2-23.6</td>
<td>26.2</td>
<td>15.5</td>
<td>18.95</td>
</tr>
<tr>
<td>PBPA-30</td>
<td>30.0</td>
<td>27.0-33.0</td>
<td>34.0</td>
<td>22.9</td>
<td>18.95</td>
</tr>
<tr>
<td>PBPA-60</td>
<td>60.0</td>
<td>56.0-67.0</td>
<td>64.0</td>
<td>44.4</td>
<td>18.95</td>
</tr>
<tr>
<td>PBPA-70</td>
<td>70.0</td>
<td>63.0-77.0</td>
<td>74.0</td>
<td>51.0</td>
<td>18.95</td>
</tr>
</tbody>
</table>

CIRCLE NO. 136
More professionals in more industries make Fluke their first choice in multimeters.

More choice. No matter what the job, there's a Fluke to handle it.

There’s the new 80 Series—the most powerful, most complete test and measurement system available in a handheld package.

The popular 70 Series—simply put, the most requested DMM in the world, with nearly 2 million units in service since 1984. And the Fluke 21 and 23—70 Series simplicity in high-visibility yellow.

The Fluke 25 and 27—the most rugged meters ever built, totally sealed against water, dust and other contaminants.

And the precise 8060 Series—with the versatility of a test lab, the accuracy of a bench instrument, and the convenience of a handheld.

Smart choice. Compare Fluke DMMs with any other handheld. No one else gives you as much meter for your money. And no other meter costs less to own.

Your choice. For the name of your nearest Fluke distributor, call toll-free 1-800-44-FLUKE, ext. 33. And make a great choice.

John Fluke Mfg. Co., Inc. P.O. Box 9090 M/S 250C Everett, WA 98206 U.S. (206) 356-5400 Canada: (416) 890-7600 Other Countries: (206) 356-5500 © 1989 John Fluke Mfg. Co, Inc. All rights reserved. Ad No. 049-F70

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS

FLUKE

CIRCLE NO. 102

EDN April 25, 1991
Have you been stumped by a design problem so long that you don't know who to turn to? Are you having trouble locating parts? Finding companies? Can't interpret a specsheet? Ask EDN.

This department will serve as a forum to solve nagging problems and answer difficult questions. EDN's editors will provide the solutions. If we can't solve a problem, we’ll find an expert who can, or we’ll print your letter and ask your peers for help. We can’t answer every question, but we’ll try to publish the ones that will help you most in your job.

Address your letters to Ask EDN, 275 Washington St, Newton, MA 02158. FAX (617) 558-4470; MCI: EDNBOS. Or, send us a letter on EDN’s bulletin-board system. You can reach us at (617) 558-4241 and leave a letter in the /ask_edn Special Interest Group.

Searching for synchronous ICs

Is there a PWM current-mode integrated circuit that can be synchronized to a like circuit by merely connecting one pin of each IC together? This synchronization would be similar to that achieved by connecting two SG1525As. I'd appreciate your help.

Michel Masse
Woodland Hills, CA 91364

Associate Editor Dave Pryce replies: The synchronization you refer to for the voltage-mode SG1525A usually takes the form of a sync input to the oscillator section of the PWM regulator. This sync pin enables the user to slave together multiple units or to synchronize a single unit using an external clock.

A number of current-mode regulators have a sync input pin to the oscillator. Among them are the CS-3865 from Cherry Semiconductor; the LT1846, SG1846, and UC1846 from Linear Technology, Silicon General, and Unitrode, respectively; and the SG1528/SG1530 combination current-mode/voltage-mode chip from Silicon General.

Check with these companies to determine if these chips will perform properly in your particular application. For example, the CS-3865 is a dual unit, and the sync pin may only serve to control each internal unit. Each company offers an extensive line of switching regulators and can provide capable applications support:

Cherry Semiconductor Corp
2000 South County Trail
East Greenwich, RI 02818
(401) 885-3600
FAX (401) 884-0790

Linear Technology Corp
1630 McCarthy Blvd
Milpitas, CA 95035
(408) 492-1900
FAX (408) 434-0507

Silicon General
11861 Western Ave
Garden Grove, CA 92641
(714) 898-8121
FAX (714) 893-2570

Unitrode Integrated Circuits
7 Continental Blvd
Merrimack, NH 03054
(603) 424-2410
FAX (603) 424-3460.

Short persistence pays off

Can you tell me where I can purchase CRT projection tubes with short persistence—less than 1 msec? We need such tubes for shuttered 3-D video projection.

Mohammed Arif
Heinrich-Hertz-Institut für Nachrichtentechnik
Berlin, Germany

Among the companies that sell such tubes are

Hitachi America Ltd
2210 O'Toole Ave
San Jose, CA 95131
(408) 435-5800

Video Display Corp
1868 Tucker Industrial Dr
Tucker, GA 30084
(404) 938-2080

Litton Systems Inc
Electron Devices Div
1215 S 52nd St
Tempe, AZ 85281
(602) 968-4471.

Another obsolete part

I am trying to locate an A/D converter once manufactured by National Semiconductor. The part number is MM5863N, and the device is at least 10 years old. National Semiconductor no longer makes it or has a second source for it. Can you help me locate a source for this device?

Tony De Carvalho
Repair and Product Development Manager
Webb Communications Inc
Tampa, FL

If any reader has a secret stash of MM5863Ns, please drop Ask EDN a line.
If this free catalog doesn’t grab you,
Call for our free catalog, or else.
Or else you won’t be able to quickly find everything you need to build affordable, yet superb PC-based test systems. Such as signal sources, DSOs and data acquisition tools.

Nor will you be able to take advantage of our other free offer: Buy a power supply or switching system, plus any GPIB instrument and get a $595 PC GPIB interface card.

But to get your free card, you’ll

EDN April 25, 1991
maybe our other freebie will.

want to see our catalog first?
This offer ends Sept. 27, 1991.
Limit one card per customer.
For a catalog and details, call 1-800-44-FLUKE. Ask for extension 701.
The call is free (what else).

EDN April 25, 1991

CIRCLE NO. 138
From Star Wars
to Price Wars

Our High Rel/Aerospace linear array experience is paying off for companies with high-volume, low-cost applications.

Symbol Technologies is a good example. A tiny Raytheon instrumentation amplifier helped them combine both bar code scanner and decoder in a single, lightweight, handheld unit—that’s tough enough to take a five foot drop onto concrete.

Symbol also took advantage of our Win-Win program. It let them get to market quickly with a semicustom array, then shift to full custom as sales volumes increased.

Win-Win is fast, flexible, and makes good business sense because it eliminates the risk of getting into a full custom array before you’re really ready.

Raytheon is committed to analog technology. From our design kits and engineering support to our fab and plastic assembly facility. We have the experience it takes to help you develop creative, cost effective solutions.

Find out how. Call 1-800 722-7074 for our new analog brochure.
Raytheon Company, Semiconductor Division. 350 Ellis St., Mountain View, CA 94039.
For Most People, It Was Just Another Warm September Day.

For design engineers, it was the day mixed analog/digital design came of age. The event was the mixed-signal design demonstration at the IEEE Bipolar Circuits and Technology Meeting (BCTM). The goal was to give credence to mixed-signal simulation and to benchmark companies in the marketplace. The results were conclusive.

Viewlogic came up with the right answer first. But more to the point, what we did at BCTM in September, we can do for you now. We're the only company with a proven technology and a three year track record of success. The only one that integrates design capture, simulation and analysis.

But that's just the beginning.

Performance and Flexibility available nowhere else. With VIEWsim/SD, you'll get the choices you need. You'll be able to mix behavioral models with gates and SPICE primitives. Choose from leading analog simulators like PSPICE and HSPICE. Include physical hardware models for devices when software models are not available. Use the most popular platforms from SUN, DEC and IBM.

Our white paper "Mixed-Signal Simulation Benchmark Report" proves the point. Call us at 1-800-422-4660, Ext. 102. You'll like the climate we're creating for mixed-signal design.

VIEWlogic
The CAE Company
Viewlogic Systems, Inc.
293 Boston Post Road West
Marlboro, MA 01752
508-480-0881
508-480-0882 FAX

PSPICE and HSPICE are trademarks of their respective companies.
Why 90% of the Top Electronics Companies Use CAPS for IC and Semiconductor Search and Selection

CAPS Saves Time and Money
The CAPS® IC and Semiconductor Search and Selection System boosts your productivity and pays for itself by saving you hours of drudgery and frustration. Engineers and designers who use CAPS consistently report productivity gains between 5:1 and 10:1 over manual methods!

CAPS Keeps Pace with Technology
With CAPS, you get updates every month, including new component information, datasheets, and revisions to existing information. CAPS also keeps track of obsolete components for you.

CAPS Finds Facts Fast
CAPS' CD-ROM database gives you instant access to complete technical data on more than 575,000 IC and semiconductor components from over 485 manufacturers worldwide.

CAPS Gives You Control
CAPS puts you in charge. In seconds, you can search the database using either simple queries or special criteria to pinpoint a specific component or compare several candidates.

CAPS Delivers the Big Picture
CAPS includes hundreds of thousands of digitally-stored images of manufacturers' datasheet pages, complete with unabridged text and graphics. CAPS even provides cost information and tells you how to contact manufacturers.

CAPS Runs on Existing Equipment
When you subscribe to CAPS, you get all the hardware and software you need to add CAPS to your IBM® PC/AT™, 100%-compatible personal computer, or Sun® workstation. So you can get started right away!

Find out why so many of the top companies ranked by Electronic Business magazine have made CAPS their IC and semiconductor search and selection tool.

For complete information about CAPS, call or write today!

Cahners Technical Information Service
275 Washington Street
Newton, Massachusetts 02158-1630
Telephone: 617-558-4960
Facsimile: 617-630-2168
Toll-free: 800-245-6696
You’re looking at the biggest news in signal sources in years: two new families of pulse generators from Tektronix.

You can already see one reason why Tek’s new pulse generators are stirring up so much interest: their what-you-see-is-what-you-get user interface vastly simplifies your life.

Now you can stop piecing the big picture together from one-line LEDs, blinking error lights and trial-and-error iteration. Tek’s new scope-like display lets you set up and modify a whole set of parameters at once, with a true representation of your pulses and instant, visual feedback.

You name your application and logic technology: Tek has a signal source to match. For the first time, you can choose channel capacities from one to six channels, or rep rates from 50 MHz to a remarkable 600 MHz. Choose tools designed for logic, fast logic, or mixed technologies. Vary transition times from 200 ps to 10 ms. Test complex timing relationships with ease.

Add to all this our popular pulse generator plug-ins from Tek TM500/
5000 modular instrumentation, and you can see why we're making waves!

Easier to use, more precise and more expandable, Tek's new pulse generators are doing for signal sources what DSOs have done for measurements.

Contact your Tek sales office for a demonstration, or call for more information.

1-800-426-2200
WE DO 68,000 IMPERSONATIONS. AND THEN SOME.

ZAXPAK in-circuit emulators can impersonate most microprocessors, including the Motorola 68000. So now you can debug and integrate your design faster and more efficiently. We're the leader in 16-bit emulation, including 68000, 80C186 and V50. We also support 8 and 32-bit chips and specials like Mitsubishi's MELPS 7700. ZAX has been delivering design tools for over a decade. Now we've put that experience into our new ZAXPAK family of hardware/software solutions featuring source-level debug and one million breakpoints. All under control of your terminal, PC, work-station or Ethernet. Or use our optional built-in host platform.

So call us today at 1-800-421-0982. (In CA call 1-800-233-9817). And see how doing a few quick impersonations can help you bring your design to market faster.

~IM

Zax Corporation
2572 White Road, Irvine, CA 92714.
Put your design to the test.

WHEN IT COMES TO HIGH ACCURACY CRYSTAL UNITS, ONLY RALTRON HAS IT ALL.

RALTRON manufactures one of the industry's most complete lines of high quality crystal units. Call us for all your crystal needs from microprocessor to AT strip to tuning fork to high accuracy. Or call us for our 28 page catalogue.

HIGH ACCURACY CRYSTAL UNITS
- Frequency Range: 1.0 MHz-360 MHz
- Mode of Oscillation: Fundamental to 9th O.T.
- Frequency Tolerance: ±2.5 ppm to ±100 ppm
- Frequency Stability: ±3 ppm (-10°C to +60°C) to ±50 ppm (-55°C to +105°C)

SURFACE MOUNT CRYSTAL UNITS
HC-45/U SMD, TT SMD, HC-49S SMD
- Frequency Range: 3.5 MHz-360 MHz
- Mode of Oscillation: Fundamental to 9th O.T.
- Frequency Tolerance: ±2.5 ppm to ±100 ppm
- Frequency Stability: ±3 ppm (-10°C to +60°C) to ±100 ppm (-10°C to +70°C)

The Products. The Prices. The People. Only RALTRON has it all.

RALTRON ELECTRONICS CORP.
2315 NW 107th Avenue, Miami, Florida 33172
FAX (305) 594-3973 TELEX 441568 RALSERNUI
(305) 593-6033

CALENDAR

Reliability Engineering for Electronic Products (short course), Madison, WI. Robert Gold, Dept of Engineering, University of Wisconsin at Madison, 432 N Lake St, Madison, WI 53706. (800) 462-0876. May 8 to 10.

41st Electronic Components and Technology Conference, Atlanta, GA. Jim Bruorton, Publicity Chairperson, ECTC, KEMET Electronics Corp, Box 5928, Greenville, SC 29606. (803) 963-6621. May 13 to 15.

For years, dumb UARTs have been the standard datacom solution. Now there's something better for today's multi-user, multi-protocol datacom environment. Our single-chip solution gives you multiple channels — each capable of full-duplex operation at 115.2 kbps — and replaces up to 10 chips.

Cirrus Logic introduces the UXART — the first and only UART with specific features to simplify and speed up serial I/O efficiency by a factor of ten or more. So your UNIX® system can support more users, with better response time — and less waiting.

The CL-CD1400 UXART™ gives you 4 fully independent datacom channels, each capable of full-duplex operation at 115.2 kbps. Each channel has two 12 byte FIFOs, one for transmit and one for receive. Separate vectored interrupts allow quick entry to the correct service routine.

A number of features reduce the load on the host system. Automatic expansion of Newline to CRNL, plus other CR and NL options. User-definable flow control characters for automatic flow control.

All five types of UNIX-specified parity and error handling. And more.

For high-line-count, cost-effective applications, there's the CL-CD180. It offers performance gains similar to the CL-CD1400, plus the advantage of 8 channels in a single 84-pin package.

The CL-CD2400 adds synchronous capabilities. It offers 4 independent, multi-protocol channels, plus an on-chip DMA controller for fast, efficient I/O.

For all your multi-protocol, multi-user datacom needs, the Cirrus Logic family of intelligent, high-performance data communications controllers gives you superior throughput in less space — with less waiting.

Don't wait. Call today for free product information and benchmark report on the CL-CD1400. Call 1-800-952-6300. Ask for dept. LD25

© Cirrus Logic and the Cirrus Logic logo are trademarks of Cirrus Logic, Inc. All other trademarks are registered to their respective companies.
100% STD-AT™
Compatible Computer

- 100% IBM-AT Compatible STD Bus Industrial Computer
- Fast 10, 12, 16 or 20 MHz 80286 CPU
- Phoenix Bios
- 20, 40, 100 Mbyte 27 ms Hard Disk
- VGA, EGA, CGA, MDA Color Graphics
- Industry Standard IEEE 961 STD Bus
- Compact, Rugged, Industrial Packaging

The STD-AT™ is the first 80286 IBM-AT compatible STD Bus computer offering over 18 times the performance over a standard XT. The compact 4.5" x 6.5" STD Bus card size makes it ideal for mounting in disguised and embedded controllers in a wide variety of industrial and commercial applications. The STD-AT is the blending of proven hardware and software standards to provide the most rugged, compatible, cost effective industrial solutions.

WRITE OR CALL FOR A FREE STD-AT BROCHURE
P.O. Box 121361, Arlington, TX 76012 Phone (817) 274-7553 Fax (817) 548-1358

WinSystems®
"THE STD BUS AUTHORITY™"

CIRCLE NO. 7

Imagine a lightweight, precision-expanded metal foil.

Imagine a mesh-like, single-unit structure that eliminates the unraveling and contact resistance of woven mesh.

Imagine it wrapping, laminating, contracting, expanding.

Imagine it with superior shielding, electrical and heat transfer properties.

MicroGrid™ wherever mesh and perforated materials with high precision, mechanical and electrical properties, like EMI/RFI/ESD shielding are required.

Now imagine how you'd use this material. Its called MicroGrid™ Precision-Expanded Foils.

16 Commercial St.
P.O. Box 427
Branford, CT 06405
203-481-4277
FAX: 203-488-6902

CIRCLE NO. 8

EDN April 25, 1991

CALENDAR

American Consulting Engineers Council Annual Convention, Baltimore, MD. ACEC, 1015 15th St NW, Washington, DC 20005. (202) 347-7474. May 19 to 23.

International Semiconductor Manufacturing Science Symposium (ISMSS), Burlingame, CA. SEMI, 805 E Middlefield Rd, Mountain View, CA 94043. (415) 964-5111; (415) 940-6901. May 20 to 22.

Midwest Electronics Exposition, Minneapolis, MN. Leslie Tolworthy, Miller Freeman Expositions, 1050 Commonwealth Ave, Boston, MA 02215. (617) 232-3976. May 21 to 23.

Troubleshooting and Maintaining IBM & PS/2 (short course), St. Louis, MO. Center for Advanced Professional Development, 1820 E Garry St, Suite 110, Santa Ana, CA 92705. (714) 261-0240. May 22 to 23.

International Symposium on Computer Architecture, Toronto, ON, Canada. Prof Z G Vranesc, Dept of Electrical Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada. (416) 978-5032. May 26 to 30.
When it comes to affordable DSP, no one has it down like Analog Devices.

- At 10 MIPS, the ADSP-2105 is the fastest DSP in its price category, and it's even faster than many other DSPs costing a lot more. Plus the price is the same whether you buy 100 or 100,000.
- The ADSP-2105 builds on the high performance ADSP-2100 family architecture, so it's code compatible. You can quickly port ADSP-2100 or ADSP-2101 code to the ADSP-2105 or use our C Compiler for a fast start.
- Not only is the ADSP-2105 code compatible, it's also pin compatible with the ADSP-2101. So it provides a complete upgrade path to higher performance.
- The ADSP-2105 packs plenty onto one chip, including 1024 words of program RAM, 512 words of data RAM, full serial port, hardware companding, timer and more.
- It's easy to get the ADSP-2105 up and running with our inexpensive EZ-KIT, a complete software and hardware design package.

Introducing the ADSP-2105 at only $9.90 each.

Introducing a DSP that could only come from Analog Devices, the ADSP-2105. An exclusive because it combines the high performance of our ADSP-2100 family with an unprecedented price in DSP—just $9.90 each. So now you can consider the power of DSP in a host of new applications.

Just how well does the ADSP-2105 combine low price with high performance? Find out for yourself by ordering our EZ-KIT from your local Analog Devices sales office today. Or call DSP Marketing at (617) 461-3771.
IN THE ERA OF MegaChip™ TECHNOLOGIES

Sometimes you need easy-

“Sorry, guys. There's been a last-minute change in the spec.”
These are the gate arrays you design at your desk. And redesign until they're exactly right. Then it's on to silicon — fast. Our free interactive diskette will show you just how easy easy can be.

Even when you hit last-minute changes, have a sudden inspiration or are simply intent on getting the job done, field programmable gate arrays (FPGAs) from Texas Instruments can speed your design from start to finish.

Our FPGAs are channeled devices, which gives them their true gate array characteristics. They combine the time-to-market advantages of programmable logic devices (PLDs) with the densities of gate arrays. You have a choice of 1,200 or 2,000 equivalent gate complexities, with 4K and 8K densities coming. And military versions are available too.

Throughout the design cycle, you are in complete control, minimizing risk and avoiding nonrecurring engineering costs.

Accelerated development
Our advanced development environment, the TI Action Logic™ System (TI-ALS), lets you design and redesign at your desk. You use TI-ALS to validate, automatically place and route, analyze, program, test and debug — all within hours.

You can always see what's going on within your design. Only the unique antifuse architecture allows 100% observability of internal nodes. And you can achieve gate utilizations of up to 90%.

TI-ALS operates on 386 personal computers or popular workstations running familiar CAE tools. You can program in minutes using our Activator™ hardware.

Unmatched service and support
From hands-on workshops at our Regional Technology Centers to a global network of sales offices and distributors, only TI can meet your FPGA needs across the country and around the world.

What's more, you can pick up the phone and talk with our FPGA applications specialists during regular working hours (CST). Just dial our FPGA Help Line — 1-214-997-5492.

To see how easy easy can be, call 1-800-336-5236, ext. 3712, for our free interactive diskette. It will show you why our FPGAs are easy-ASIC and will introduce you to system design advantages that you can achieve quickly and efficiently.

The diskette runs on any MS-DOS® PC with an EGA or VGA graphics card, and we'll include the diskette with our FPGA DataFile. Just call the number above or complete the return card.
Reduce interference problems and costs at their source: The initial design and material selection stage.

If you fail to consider potential EMI and RFI problems at the design stage, meeting FCC or foreign standards and your own performance requirements can become an expensive and time-consuming task. Often, it involves costly corrective shielding measures, complex design retrofits, and possibly compromised system performance.

By targeting potential EMC (Electromagnetic Compatibility) problems during initial design—well before the required testing stage—designers can cost-effectively implement EMC controls, and achieve optimum system efficiency.

Remedial EMC controls: A negative trade-off in volume, weight, efficiency, and cost.

When a system exceeds restrictions, designers are often forced to trade efficiency for acceptable EMC performance—with undesirable results. As a finished design is modified to accommodate necessary remedial shielding measures, weight and volume inevitably increase, and overall efficiency drops.

Planned EMC controls and testing during the design phase, on the other hand, not only help you maintain the integrity of the original design, but allow modifications in favor of greater system efficiency. In computer design, for example, EMC considerations such as selecting lower clock frequency, maintaining the smallest possible circuit layout areas, utilizing multi-layer boards, and minimizing the use of multiple shielding all contribute to optimum design efficiency.

The three EMC design techniques.

Achieving EMC is largely a function of three control techniques: Suppression, Isolation, and Desensitization. Through a combination of these methods, undesirable signals (EMI/RFI) are suppressed at their origin... generating circuits are isolated... and susceptible circuits are desensitized. When applied from the beginning, these techniques help you create fully integrated designs that offer both optimum performance and the best possible production economies.

Instrument Specialties: A total resource for state-of-the-art shielding technology, products and design assistance.

After implementing proper circuit-design controls, the most significant EMC design technique to reduce interference and susceptibility is effective shielding.

Instrument Specialties helps you integrate EMC into your designs... from the beginning.

Shielding not only contains radiated electromagnetic fields, but significantly reduces internal and circuit path coupling and overall common-mode coupling. In many cases, shielding eliminates the need for EMI filtering. In instances where filtering is required for conducted emissions, shielding can augment the performance characteristics of the filter.

Instrument Specialties has been the leader in the science of shielding since EMI and RFI first became a problem. During this time, we have become the industry's most comprehensive resource for shielding design, manufacturing technology, and custom-design services... facilitating the use of lighter, thinner enclosure materials and enhanced system performance.

From concept to completion, teams of skilled specialists are at your disposal, providing assistance with state-of-the-art testing for FCC and global standards, as well as consulting, custom manufacturing, prototype production, and a vast range of standard off-the-shelf shielding configurations.

Don't wait! Call or write for further information today.
TWISTITE™
MAGNET WIRE

For superior performance and tighter
tight control over twisted wire construction.

Developed for use in the production of
custom toroid, ferrite or recording head
coils, specialty audio and R.F. transformers,
TWISTITE offers a number of distinct
advantages.

TWISTITE is custom produced to offer
a wider range of twisting construction.
Manufacturing capabilities include:
• Up to 33 Twists Per Inch on fine wire.
• Twisting tolerance as tight as ± 1%.
• Tightly controlled capacitance, inductance
and impedance characteristics.
• Up to 10 colors in some sizes for conductor
identification.
• Huge selection of insulations: NEMA
MW 1000, JW1177, 105–220°C (single
through quadruple film builds).
• Wide range of sizes: 24 AWG and finer.
• Wide variety of conductor materials:
copper, silver, plated conductors, and
special alloys.

Call or write for your free copy of our
new Technical Data and Capabilities
Brochure. It contains valuable information
on all wire produced and inventoried by
MWS Wire Industries. Samples
of TWISTITE are available
upon request.

MW5
Wire Industries
31200 Cedar Valley Drive, Westlake Village, CA 91362
CALL TOLL FREE 800 423-5097
818 991-8553 FAX 818 706-0911

CIRCLE NO. 144
TWISTITE is a trademark of MWS Wire Industries
"Integrating analog
But we have a bigger tool
anyone else in the world."

HOW NATIONAL SEMICONDUCTOR IS
HELPING YOU PUSH THE LIMITS OF ADVANCED
SYSTEMS PERFORMANCE.

Tom Redfern, National’s
Director of New Product Development, Interface/Peripherals Group, talks about the challenges of mixed
analog + digital technology.

Making Futurebus+ a reality.

“Traditional bus protocols are
starting to hit the wall. They can’t
accommodate the wide data paths
and high transfer rates demanded
of the next generation of 32- and
64-bit microprocessors.

“That’s why we’ve been an
active participant on the IEEE’s
Futurebus+ committee since its
founding in 1979. And that’s why
we invented the Backplane Transceiver Logic (BTL) that makes
Futurebus+ a reality today.

“Our first Futurebus+ chipset
contains five devices, and they
employ some of the most advanced
analog + digital integration ever
achieved. Our BTL drivers, for
example, let the digital CPU send
information to the digital memory
over the analog bus at peak rates
of 2-3 Gbytes/second!

“This is the future— and we’ve
got it today.”

Setting the pace in
system-level integration.

“Another great example is
CLASIC, our powerful Custom
Linear ASIC family.

“To reach system-on-chip
performance, you’ve got to inte-
grate analog and digital functions
onto the same substrate.

“Well, CLASIC does that.

Eating bread Controller

ISDN U Interface

Futurebus +

ADC1251 A/D Converter

ISDN U Interface

Futurebus +

ADC1251 A/D Converter

Hard Disk
Synchronizer/ENDEC

Futurebus +

ADC1251 A/D Converter
and VLSI digital isn't easy. box for doing that job than time and a ±1/2 LSB non-linearity accuracy while dissipating 113mW max at ±5V.

"Try to find that in any other ADC. You can't!"

Pushing the limits of analog + digital integration.

"To achieve these levels of integration, you need powerful tools in the hands of experienced designers.

"We've got them. A full range of process technologies, including fourth generation bipolar ECL and BiCMOS, which give us 0.8µ lithographies with bipolar F_T of 15GHz and 50ps gate delays.

"We also have some of the most advanced design tools in the industry, developed through our strategic alliance with Cadence.

"And we have seasoned analog and digital designers who know the art of putting those tools to work in advanced analog + digital designs.

"This is the leading edge—and we're leading it."

Putting it all to work for you.

"The only way to make the systems-performance breakthroughs and the systems-cost breakthroughs demanded by next-generation products is to integrate analog + digital. We're doing it all, right now. So if I were a designer, I'd call us. Soon!"

1-800-NAT-SEMI, Ext. 117

© 1991 National Semiconductor Corporation
CLASSIC is a trademark of National Semiconductor Corporation.
Better ideas are commonplace at Sumitomo Metal and Mining Co., Ltd. (SMM). As we explore the frontiers of electronics technology, we are constantly discovering new applications for SMM’s four hundred years of integrated expertise.

Built on solid ground and rich in corporate resources, SMM has grown and diversified in step with the rapid changes in the electronics industry. By constantly keeping one eye on the future, we have become a major supplier of semiconductor packaging materials, solid laser crystals, and optoelectronics devices, among other high technology products, as well as a leader in metal refining and in the mining of gold and other precious metals.

From minerals to megabytes, Sumitomo Metal and Mining Co., Ltd. is a total manufacturer, providing new materials for a better tomorrow.
Everyone knows that the US is in a recession. We are bombarded daily with the awful news—unemployment is up, sales are down, companies are retrenching, consumers aren't buying. Almost all of the economic and business reports tell of gloom and doom. Historically, though, the news is worst just before things turn around. Now is the time to look at the positive news and its effect on all of us.

The crazy pattern of borrowing and lending in the 1980s appears to have ended. Banks are more cautious about whom they lend money to, and with good reason. The companies that get credit are the ones unburdened with debt—the ones most likely to survive and to lead recovery. Interest and mortgage rates have also come down considerably in the last few months as the Federal Reserve loosens credit. More people are thinking about buying real estate. Here in New England, an area in which the real estate market has been badly depressed, some agents believe the devaluation of property is at an end.

Oil prices, which shot up at the start of the Middle East crisis, continue to drop and may go lower still if OPEC decides against strict limits on oil production. Cheaper energy and raw-material costs help spur a recovery. Now that the war is over and oil prices are dropping, people are showing signs of confidence that the recession will also end. Retail sales rebounded from −0.9% in January to 0.5% in February. In December, sales were −1.5%. The increase from month to month seems small, but combined with other signs shows a pattern of economic improvement. I'm not an economist, and I cannot make quantitative predictions. However, the fact that most of the economic news in a recent issue of Business Week was bad convinced me that we're ready for a steady recovery this year. Over the years I have noticed that when the business press convinces itself times are bad, the economy starts to pick up.

Here in the US there's a tendency to look at the worst and ignore the best. Recovery depends on you and me, and we can start by concentrating on the positives. People are still doing business in this country. Let's talk about it. Let's talk about the orders we are getting and why we got them. Let's be enthusiastic about the good people who work for us and concentrate on keeping them as valued employees. Let's promote ourselves as fair and reliable working partners. Let's trumpet the new technologies and products we're developing, and let's hail our breakthroughs and achievements. We've got a lot of good news to spread. I'm all ears.

Send me your comments via FAX at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241 300/1200/2400, 8, N, 1.
They also cut your product costs, with prices low enough to impact your bottom line.

As for logic delays, we've cut them down to a remarkably low 12ns.

So now you can cut something from your design: PALs and GALs. Because our Classic parts give you a combination of speed, density and flexibility you won't find in other PLDs.

All of which helps you cut the time it takes to produce a superior design.

For example, our 20-pin, 8-macrocell EP330 is the perfect replacement for over 20 types of PALs and GALs. It stretches counter frequencies to 125 MHz while sipping one-fourth the power of a standard PAL. And its quiet output switching circuitry allows the EP330 to run faster in-system than a 10ns 16V8.

Our 24-pin, 16-macrocell EP610 delivers 60% more logic density than a 22V10. And unlike a 22V10, the 15ns EP610 consumes a mere 20μA in standby. And its registers
can be programmed for D-, T-, JK- or SR-operation or for asynchronous clocks.

To replace multiple PALs and GALs with a single chip, try our 44-pin EP910 or 68-pin EP1810. Both offer superior logic density and greater I/O at a lower cost than any other mid-range CMOS PLD.

Our Classic EPLD family also helps you get to market faster. Thanks to a host of powerful logic development tools from Altera and third parties.

What's more, we offer the industry's broadest, most flexible line of CMOS PLDs. With devices ranging from 20 to 100 pins, and logic densities from 8 to 192 macrocells, there's an EPLD for every logic design task.

So call Altera today at (408) 984-2800 for more information. And discover programmable logic that's a cut above the rest.
Bring the Modulation Domain designing on a higher level.
to your lab and start

These days, designers face problems that require a level of understanding beyond the scope of conventional measurement techniques. The Modulation Domain can give you that level of understanding. With a new dimension in signal measurement that makes it possible to analyze frequency, time-interval, and phase over continuous time. And now, HP brings the Modulation Domain to your lab with high-performance analyzers that give you insight into your designs you’ve never had before.

The HP 53310A streamlines Modulation Domain analysis with a simplified user interface, one-button signal acquisition and real-time measurements for fine-tuning your designs. It gives you continuous frequency and time-interval measurements for analyzing modulations in RF and microwave signals. Characterizing VCOs, phase-locked loops, and electromechanical devices. Locating sources of jitter. And much more.

The HP 5372A is ideal for gathering in-depth Modulation Domain information in single-shot events. In addition to frequency and time-interval measurements, it also displays phase over continuous time. And analyzes even the most complex signals with incredible detail.

Find out how to take your design skills to new heights. Call 1-800-752-0900. Ask for Ext. 1852, and we will send you a Visitor's Guide to the Modulation Domain on floppy disk. That way, you’ll be up on all the latest developments.

There is a better way.
Goes great
If you've been following the developments in high-density multichip modules, you know the great promise that lies there.

If you've been leading the developments, however, you know the great problem that lies there.

Namely, the search for a polymer dielectric that can make multichip modules truly practical.

For which reason we are pleased to introduce you to new bisbenzocyclobutenes (BCBs) from Dow.

BCBs offer big advantages over the polyimides you may have been experimenting with. To start, they simply perform better—by about 50%. And in the process, they simplify manufacturing and lower your overall costs.

CHIPS WITHOUT RIDGES.

Where does BCB's advantage come from?

For one thing, from its extremely low dielectric constant. In general, you can get away with layers 25% thinner than you'd need with polyimides. This means higher density and, therefore, higher performance.

You also get much better leveling than with polyimides. BCB planarizes more than 90%, compared with the 30% or less typical of polyimides. This nearly ridgeless surface reduces crosstalk and improves etching as well.

And BCB can take the heat, literally. It shows great thermal stability at curing temperatures. This, together with its naturally low modulus, gives you a finished module created with less stress than one made with most polyimides.

NO MORE SOGGY CHIPS.

Water, a byproduct of the polyimide curing process, is the enemy of the multichip module. It complicates manufacturing and robs polymers of their dielectric appeal.

BCB, on the other hand, produces no water. So there's no need for additional drying during manufacture. And since it vigilantly resists moisture (absorbing just 0.25% of its weight after 24 hours at 100°C), the dielectric properties you design in, stay in.

BCB also offers excellent adhesion to aluminum, copper, silicon dioxide—and to itself.

So there's no need for the metal tie layers other dielectric materials require.

YOUR CHIPS, OUR DIP.

All in all, this means you can manufacture high-density modules faster, with fewer rejects and, therefore, less expensively with BCB. And wind up with modules that perform far better than they would with polyimides.

If BCB sounds good in theory, we invite you to learn from the experience of those who have put it into practice—including one manufacturer who has successfully gone into full commercial production.

If you'd like more information, call us today at 1-800-441-4DOW.

See us at Nepcon Booth #1110
The right tools make all the difference...

Introducing jOMEGA!

Tired of Using RF Design Tools That Don't Measure Up to the Task?
EEsof introduces jOMEGA, the first design automation software developed expressly for RF engineers. jOMEGA has the features you need for fast, manufacturing-oriented design at frequencies below 3,000 MHz: easy-to-use schematic entry, fast linear and nonlinear circuit simulation, an RF-oriented model set including large-signal BJT transistor library, and built-in documentation capability.

jOMEGA Has the Edge You Need to Create Better RF Designs in Less Time:
jOMEGA's harmonic-balance simulator gives you fast optimization of linear and nonlinear circuits with simultaneous access to circuit response in both time- and frequency-domains. And jOMEGA has advanced features, like manufacturing yield optimization and optional board layout, that let you make manufacturing tradeoffs during engineering design.

Breaking the Barriers...

Call Us Today, Let Us Show You How jOMEGA Can Make the Difference on Your Next RF Design!
We'd like to send you an informative product brochure which describes the many features of jOMEGA. Call us at (800) 624-8999, ext. 155. Or if you prefer, contact us by FAX at (818) 889-4159. In Europe, call (49) 8105-24005 or FAX (49) 8105-24000.

CIRCLE NO. 92
Flexible optical media boost data density

“Digital paper” is a write-once optical data-storage material that provides prodigious advantages, including:

- Far greater data density than any other medium
- Chemical stability that makes it immune to wide variations in ambient temperature and humidity
- An archival life of at least 15 years
- Extremely low cost to the user (one-half cent per megabyte).

The potential applications for digital-paper storage already number in the hundreds. The list of applications is starting to look more and more like a sci-fi description of a 22nd-century all-purpose material. So far, however, only two commercial manifestations have reached the production and marketing stages: write-once optical tape and small identification tags.

The small tags can hold more than 1000 bits of information in a space less than one square centimeter and can be read from a considerable distance. Current uses for such tags include identifying machine-tool bits and providing instructions for their use. You can also use similar tags to hold positioning data; mechanisms that employ these tags can identify the position of a moving part with an accuracy of ±1 µm relative to a previously established reference point.

The optical tape comes in two formats, one for 35-mm open-reel drives (1 terabyte per reel) and the other for half-inch IBM 3480-compatible cartridges (50G bytes per cartridge).

In addition, ICI Imagedata employed Bernoulli Optical Systems Corp (Boulder, CO) to perform a considerable amount of research and development work on Bernoulli-effect floppy-disk drives that employ digital paper as their storage medium. ICI Imagedata expects to license this technology to disk-drive manufacturers. If drive manufacturers fulfill ICI’s expectations, we may see 2-in. floppy disks—that hold 100M bytes per side—within a year or two.

The name “digital paper” was coined by the developing company, ICI Imagedata, a Wilmington, DE-based subsidiary of the British chemical firm, Imperial Chemical Industries (ICI) Ltd. The name was intended to suggest that this data-storage medium could become a reliable electronic replacement for almost all archival paper and paper derivatives such as microfilm and microfiche. In practice, however, the name has proven highly confusing and misleading to potential users, who tend to associate the bulk, fragility, and erasability of wood-based paper with the name.

Al Conover, president and CEO of Lasertape Systems (which makes IBM 3480-compatible optical cartridge drives) prefers to call the material “digi-
More project managers are using Microsoft Project for Windows than any other package.

Probably because Microsoft Project for Windows wouldn't be any different if you’d planned it yourself.

Work with data easily. Create customized filters, tables, even output.

Manipulate PERT and Gantt charts by clicking and dragging.

See for yourself. Just give us a call at (800) 541-1261, Dept. P97, and we’ll send you a free working model.
Digital-paper storage

tal optical tape" (DOT). His sales team finds that this name, by its similarity to the widely known DAT (digital audio tape), more forcibly suggests the high capacity and high performance inherent in the medium. Lasertape Systems has trademarked the new name and its abbreviation. However, they encourage any vendor of devices that employ the material to use both trademarked monikers (with suitable acknowledgement).

Physical characteristics

David Owen, development executive for storage products at ICI Imagedata, points out some of digital paper's technical advantages over other media. Some of these advantages hold good even in applications that currently use erasable rather than write-once optical media.

First, the high data density (200M bits/in.²) makes the medium attractive for applications in which space is at a premium. The high data density goes hand-in-hand with a high data-transfer rate (currently 3M bytes/sec, potentially upgradeable to 6M or even 12M bytes/sec) that allows fast searching—you can find any file within a 200M-byte space in less than 1 sec, and any file on a 50G-byte cartridge in less than 15 sec. For Creo's 1-terabyte open-reel drive, average access time is 28 sec, and worst-case access time is 60 sec.

Second, the flexibility of the medium makes it potentially usable in a startling variety of forms. You can cut the material into disks, strips, or tapes, as well as sheets, creditcards, security badges, and odd-shaped identification tags.

Third, the chemical stability maintains data integrity. By contrast, when you cut magnetic recording web into tapes, it's not always possible to maintain a perfect seal at the cut edges; such sealing defects in metal-particle tapes can greatly reduce data life. Humidity can start corrosion at the outer edge of an unsealed tape, and this corrosion can spread inward toward the center of the tape.

Wear is not an academic issue

Al Conover adds several other advantages of optical tape over magnetic tape. Wear on the DOT, for example, is minimal, mainly because reading and writing do not require physical contact between the head and the tape. Furthermore, in Lasertape's drives the active layer is on the outside of the tape and does not come into contact with rollers and guides. A low-friction coating over the active layer improves the physical flow of the tape by helping to reduce binding between layers on a reel.

Of course, you don’t have to worry about wear if you're using erasable or write-once magnetothermal media or magnetic hard disks (unless a head crash occurs). But if you're using magnetic tape storage, tape wear is by no means an academic issue—it's a serious problem in industrial-strength applications. For example, video rental companies are finding that significant picture deterioration starts to appear after a video tape's tenth rental, and the tape becomes almost unviewable after 15 to 20 rentals. Playing the tape on a variety of old and inadequately maintained machines both abrades the recording surface with dirt and corrupts the picture data with residual magnetic fields that are never degaussed. If the recording were on DOT, however, this deterioration would be eliminated.

As yet there are no VCR drives that can use DOT, but such drives will become a necessity for HDTV. Current VHS tapes could hold only about ten minutes of HDTV material, whereas currently available 50G-byte DOT cartridges could hold about eight hours of HDTV material. These cartridges certainly have the bandwidth needed for video recording, and they would be extremely resistant to the deterioration of magnetic tapes experienced by rental companies today.

The economics are attractive

By now you may be saying, "Sounds wonderful, but why should I switch to a new medium? What's it going to cost me? What about my old drives? Isn't there a catch somewhere?" The answers to these questions will depend on how much data you need to store.

If you need only a few hundred megabytes, then digital paper won't do much for you. If you need to store as much as a terabyte (10¹² bytes) of data at a time, then you're stuck with Creo's $225,000 35-mm optical tape recorder for the moment. Of course, if your application

<table>
<thead>
<tr>
<th>Table 1—Lasertape Systems' digital optical tape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Capacity</td>
</tr>
<tr>
<td>Transfer rate</td>
</tr>
<tr>
<td>Average seek time</td>
</tr>
<tr>
<td>Average seek time</td>
</tr>
<tr>
<td>Bit error rate</td>
</tr>
<tr>
<td>Dimensions</td>
</tr>
<tr>
<td>Interfaces</td>
</tr>
<tr>
<td>Expansion</td>
</tr>
<tr>
<td>Prices</td>
</tr>
<tr>
<td>Value</td>
</tr>
<tr>
<td>50G bytes</td>
</tr>
<tr>
<td>3M bytes/sec</td>
</tr>
<tr>
<td>600 m/sec (200M bytes)</td>
</tr>
<tr>
<td>15 sec (50G bytes)</td>
</tr>
<tr>
<td><10⁻¹² (corrected)</td>
</tr>
<tr>
<td>19 x 8 in. rack mount</td>
</tr>
<tr>
<td>SCSI-1 and SCSI-2</td>
</tr>
<tr>
<td>Fully 3480 plug compatible</td>
</tr>
<tr>
<td>Autorloader for 10 cartridges</td>
</tr>
<tr>
<td>Drive: $25,000</td>
</tr>
<tr>
<td>Autorloader: $1500</td>
</tr>
</tbody>
</table>

EDN April 25, 1991
needs that much storage on a reel, the price shouldn't be any great shock to you.
But if you need to store tens or a few hundreds of gigabytes, look seriously at Lasertape Systems’ DOT cartridge drives from three points of view: drive replacement costs; savings on media; and savings on the labor costs of mounting and dismounting magnetic cartridges.

There’s no question that a DOT drive costs more ($25,000) than the corresponding IBM 3480 magnetic cartridge drive ($15,000 to $20,000). But this difference may turn out to be smaller than it seems. Consider that a DOT cartridge drive is little more than a standard IBM 3480 drive with an optical read/write head instead of a magnetic head. Falling prices of laser diodes and Bragg cells (a component of the scanner) are likely to make the price difference negligible within a year or two.

DOT cartridge drives require no changes to the operating system or file system because the DOT drives, like IBM 3480 drives, employ the SCSI interface. Furthermore, DOT cartridges follow the 3480 standard for writing data—no catalogs, merely a series of variable-length records.

You can save as much as $3500 in media costs each time you use a DOT cartridge rather than a 3480 cartridge. A 200M-byte 3480 cartridge costs $5, whereas the DOT cartridge costs $250. But the DOT cartridge holds 50G bytes (250 times as much as the magnetic cartridge), so the cost per megabyte comes down from $0.025 to $0.005. If you completely fill your magnetic cartridges, one DOT cartridge will replace 250 3480 cartridges, and you’ll save $1000 and about three cubic feet of storage space. However, most users don’t fill every 3480 cartridge they store. So, one DOT cartridge may replace as many as 750 average 3480 cartridges—if you fill the DOT cartridge—saving you $3500 and about ten cubic feet of storage space.

Remember, too, that your application often may need to store large volumes of data without needing more than a few gigabytes on line. At these times, mounting and dismounting cartridges can become a labor-intensive—and hence, expensive—operation. Switching to DOT cartridges is likely to reduce the number of mounts and dismounts and therefore your running costs.

The banking industry is just one example of a high-volume user that needs to be able to access archived documents quickly. Banks capture images of checks digitally and then transfer the images to microfiche for archiving. The labor involved in transfer and storage is quite costly. Many such records are never looked at again, but when an image is required for verification, further considerable labor costs are entailed in retrieving it. Check-image storage could benefit from DOT technology.

Another banking application that could benefit is the overnight London-to-New York funds-transfer service. This service would like to log every transaction included in a transfer, but has found that present media do not have either the performance or the capacity to create such an on-the-fly log. Using standard data storage, transactions currently have to be recorded only upon reaching their final destination. DOT has both the capacity and the performance needed to create a complete log either at London or at the New York center where transactions are regrouped geographically for retransmission to the destination banks.

Likewise, many sites that handle medical records already have as many as 1 million IBM 3480 cartridges (200M bytes each), and the number is increasing daily. That makes for much mounting and handling. A switch to DOT could greatly reduce both media and handling costs at these sites.

What makes a DOT system inexpensive to purchase and run is that it’s an extension of well-understood 3840 technology. The substrate of DOT is identical to that of 3840 magnetic tape (see box, “How digital optical tape works”). In fact, except that optical cartridges are built to slightly tighter mechanical specs than magnetic cartridges, a standard 3480 drive has no way of telling whether magnetic or optical tape is loaded. In building their optical subsystems, Lasertape Systems could retrofit an optical head (which has no moving parts) to any IBM 3480-compatible drive.

Compatibility with the 3480 extends to the device interface. Effectively, the operating system (OS) uses a magnetic cartridge as a write-once medium; there are no catalogs or directories on the tape, and you cannot perform the record

<table>
<thead>
<tr>
<th>Table 2—Creo Products’ 1003 optical tape recorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Capacity</td>
</tr>
<tr>
<td>Transfer rate</td>
</tr>
<tr>
<td>Seek time</td>
</tr>
<tr>
<td>Bit error rate</td>
</tr>
<tr>
<td>Dimensions</td>
</tr>
<tr>
<td>Interfaces</td>
</tr>
<tr>
<td>Price</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Count On IDT

The R3001 RISCController™: The Embedded Processing Solution

The R3001 is the first derivative of the R3000 processor designed specifically for embedded control applications. Compared to the Intel 960 and AMD 29K processors, the R3001 is the most cost-effective solution for these applications—we have the data to prove it! Call and ask for KIT CODE 0091A to get an R3001 Performance Comparison Report.

BiCEMOS™ ECL SRAMs: Technology for the '90s

Design the fastest systems with IDT's BiCEMOS ECL family. At 7ns, the IDT10494 is the fastest BiCMOS 64K ECL SRAM in production. 256K and synchronous self-timed SRAMs are also available in 10K/100K/101K configurations. Call and ask for KIT CODE 0091B to get a copy of the BiCEMOS ECL Product Information booklet.

FCT-T Logic: Fastest Speed/Lowest Ground Bounce

IDT's FCT-T Logic Family is the fastest logic family available and has the lowest ground bounce—up to 40% less than previous FCT devices! The FCT-T family provides direct TTL logic compatibility and is available in FCT, FCT-AT, and FCT-CT speeds. Call today for KIT CODE 0091C and get a copy of the High-Speed CMOS Logic Design Guide.

The SyncFIFO™ Family: Double Your FIFO Performance

SyncFIFOs offer leading-edge performance that is 50% faster than other FIFOs. The synchronous architecture is easy to implement and reduces chip count 9-to-1. SyncFIFOs have 18-bit buses and are ideal for 32-bit systems. Ask for KIT CODE 0091D to get AN-60: Designing with the IDT SyncFIFO™.

IDT Subsystem Modules: Building Blocks for the '90s

IDT offers a complete line of board-level subsystem products, including cache memory, shared-port memory, writable control store, RISC CPU, high integration modules, and custom designs for specific applications. Call today for KIT CODE 0091E and receive technical data and a free IDT puzzle!

12ns Cache Tag SRAMs: Wait No Longer

IDT's cache tag SRAMs have the features you want to design in: single-pin block reset, totem-pole match output, 4K and 8K depths, industry standard pinouts, and an on-board comparator to simplify design. Call and ask for KIT CODE 0091F to get free samples of the IDT6178 cache tag.

Contact us today to receive data sheets and other design information on IDT's products.

(800) 345-7015
FAX: 408-492-8454

3236 Scott Boulevard, P.O. Box 58015, Santa Clara, CA 95052-8015

When cost-effective performance counts

IDT Integrated Device Technology, Inc.
How digital optical tape works

Digital optical tape (DOT), also known as digital paper, consists of four basic layers (Fig A):
- a substrate of Melinex polyester,
- a metallic reflecting layer,
- a dye-containing polymer layer,
- a protective overcoat.

It's worth noting here that the DOT substrate material is the same as the substrate material of the magnetic tape used in IBM 3480 cartridges. Hence, manufacturers can produce DOT tape using many of the standard methods. Not needing significantly altered production methods, DOT media costs shouldn't adversely affect the cost of DOT systems.

Writing to DOT

To write data to the DOT, the system turns a laser beam on or off. Unlike the ablative techniques of WORM drives, which burn holes in the metallic reflector, the DOT pyroplastic technique merely deforms the dye-polymer layer, producing a pit (Fig B). Because the dye-polymer layer is a very poor conductor of heat, the heat produced by the laser beam does not spread nearly as rapidly as it does when burning a WORM reflector layer, which is highly conductive. Thus, the heating effect of the laser is confined to a very small area of the DOT active layer.

As a result, the pits can be as small as 1 micron in diameter and have very sharp edges. Spacing between longitudinal tracks can be as small as 1.6 microns. The small pits with their steep edges produce very sharp transitions between pit and no-pit conditions and permit data to be written and read at rates as high as 3M bytes/sec. Conventional ablative WORM techniques cannot support such high data-transfer rates. In a WORM disk, losses due to absorption and scattering of the laser beam produce pits whose edges slope more gradually than those of a DOT system.

Reading from DOT

A DOT drive reads data from the tape by means of a low-power laser beam that cannot deform the active layer but can detect the presence or absence of a pit. In the absence of a pit, the distance between the top surface of the active layer and the bottom surface adjacent to the metallic reflector is a whole number of half wavelengths of the laser light. Thus, reflections from the top and bottom surfaces of the active layer reinforce each other. When the beam encounters a pit, however, the distance between top and bottom surfaces of the active layer is not a whole number of half wavelengths, so the reflected rays partially or completely cancel each other (Fig B).

The optical head

Lasertape Systems Inc and Creo Products Inc have taken different approaches to creating multiple tracks. Lasertape Systems, in the interests of robust miniaturization, uses a purely electronic scanner; the creation of 40 tracks on a 3480-compatible optical cartridge does not require any physical movement.
Fig C—A DOT tape scanner has no moving parts; the angle at which the beam emerges from the crystal depends on the radio frequency applied to the crystal via a transducer.

of the head. Instead, Lasertape's method shifts the laser beam by passing it through a crystal to which they have attached a transducer (Fig C). Applying a radio frequency of approximately 100 MHz to the transducer creates a supersonic flexing action in the crystal. The angle at which the laser beam emerges from the crystal varies with the precise frequency you apply to the transducer. This type of scanner is small enough to allow an optical head to be retrofitted to a standard 3480 drive. The drive records one track at a time in alternate directions for a total capacity of 50G bytes.

Creo did not have to contend with such rigid size constraints, and therefore adopted the scheme shown in Fig D. An array of laser diodes (one for each of the 32 tracks on the tape) send their beams into a collimator. The collimated beam is then positioned and focused on the tape track to be used. A slide running in an air bearing performs the positioning; a lens focuses the collimated beam. The optical encoder of the positioning mechanism turns on the appropriate diode in the laser-diode array. The slide also directs the reflected beam to the sensor associated with the current track. Again, there are 32 sensors in the sensor array (not shown in the diagram). The system writes 32 bits across the tape in one direction, then steps the tape and writes 32 bits in the other direction. Each physical record is 32 bits wide by 20,000 bits long, for a total of 80K bytes. An 880-meter reel of tape has a total capacity of 1 terabyte (1000 gigabytes).
Cheyenne™ 7130A

Set your sights on the highest capacity and performance available in an inch-high, 3.5-inch form factor disk drive. Maxtor's Cheyenne Series Model 7130A delivers peak specs including an unsurpassed 130MB of formatted storage.

Powerful features such as a 64KB cache, 6MB/sec transfer rate and low 3.7 watts power requirement are packed into the 7130A, making it the crystal clear choice for desktop and portable laptop computers.

Effective electronic communications require speed. Compare the Maxtor 7130A's fast 15ms access time to the competition's 19ms access time. Maxtor's two-platter design increases its reliability to a towering 150,000 hours MTBF, compared to the competition's 40,000 hours.

Call and ask about our Cheyenne family of high-performance, inch-high AT and SCSI drives with capacities from 40MB to 130MB. Don't fall for the others' claims. Instead, set your sights on peak performance with Maxtor. Call your nearest Authorized Maxtor Distributor.

CIRCLE NO. 35

<table>
<thead>
<tr>
<th>3.5-Inch Disk Drive Comparison Criteria</th>
<th>Maxtor Cheyenne 7130A</th>
<th>Conner Model 30104</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (formatted)</td>
<td>130MB</td>
<td>120MB</td>
</tr>
<tr>
<td>Cache size</td>
<td>64KB</td>
<td>64KB</td>
</tr>
<tr>
<td>Transfer rate</td>
<td>6.0MB/Sec</td>
<td>4.0MB/Sec</td>
</tr>
<tr>
<td>Seek time</td>
<td>15ms</td>
<td>19ms</td>
</tr>
<tr>
<td>MTBF</td>
<td>150,000 hours</td>
<td>40,000 hours</td>
</tr>
</tbody>
</table>

We Drive Harder.

Maxtor®
Call Your Authorized Maxtor Distributors

A.D.P.I.
1-800-275-2374
301-258-2744
Anthem Electronics
408-452-2287
Arrow Commercial Systems Group
1-800-323-4373
Arrow/Klerulf
1-800-777-2776
Avnet Computer
1-800-422-7070
B.S.M./Business Solutions in Micro
1-800-888-3475
214-699-8300
Cal Aeco
818-704-9100
800-669-2226
Compac Micro Electronics
1-800-426-6722
415-656-2244
Computer Brokers of Canada (C.B.C.)
416-660-1616
604-273-1155
CPC
714-757-0505
800-582-0505
Data Storage Marketing (D.S.M.)
1-800-543-6098
303-442-4747
Firstop Computer
1-800-832-4322
Future Electronics
514-694-7710
Intelect
(011-525) 255-5325
JACO
214-733-4300
Marshall Industries
1-800-522-0084
Microware Distributors
1-800-777-2589
503-646-4492
Mini Micro
408-456-4500
1-800-628-3656
Pioneer Standard Electronics
1-800-874-6633
Pioneer Technologies
1-800-227-1693
S.E.D.
1-800-444-8962
404-491-8962
Tech Data
1-800-237-8931
813-539-7429
Technology Factory
1-800-848-2073
1-800-227-4712
Technology Marketing Group
1-800-688-7000
612-942-7000
U.S. Computer
305-477-2228
Wyle Laboratories
1-800-289-9953

EDN April 28, 1991

TECHNOLOGY UPDATE

Digital-paper storage

Digital-paper storage updates or random data replacement that characterize magnetic or erasable-optical disks. You erase everything in the cartridge only when all of that data can be discarded or has already been moved to some other medium. The OS expects to write and read only a series of variable-length records, using tracks in alternate directions. DOT systems fulfill all of these expectations. The only differences the OS must take into account are that each track of a DOT holds far more data, and a DOT has 40 tracks instead of the 18 of a standard magnetic cartridge.

A DOT cartridge is potentially erasable and reusable, although nobody has implemented the careful reheating that would be needed to remove the pyroplastic deformations (pits) from the dye-polymer layer.

Large-volume techniques

The Creo open-reel DOT recorder can store 1 terabyte (1000 gigabytes) on a 12-in. reel of 35-mm tape, which satisfies the requirements of most satellite data-logging applications.

But, if you've made the decision to go with Lasertape Systems' 50G-byte cartridges for the sake of compatibility and cost reduction, you may some day find your data requirements outgrowing your system. In that case, you can immediately expand your system by adding Lasertape Systems' $1500 auto-loader, which allows a single drive to handle ten cartridges for a total capacity of 500G bytes. If you're still under capacity, your existing controller will handle three more drives, each equipped with an auto-loader, yielding a total capacity of 2 terabytes for the four drives (40 cartridges).

And if you still don't have enough capacity (23 million ASCII pages on each of 40 cartridges), there are silo and ATL systems that can handle as much as 64 petabytes (1 petabyte is 10^15 bytes). That should accommodate all of your data and the 2050 AD edition of the Encyclopedia Galactica!

For more information . . .

For more information on the digital-paper products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Creo Products Inc
119 Discovery Park
3700 Gilmore Way
Burnaby, BC V5G 4M1
Canada
(604) 437-6879
FAX (604) 437-9891
Circle No. 700

ICI Imagetdata
Concord Pike
Wilmington, DE 19897
(302) 886-8494
Circle No. 701

Lasertape Systems Inc
51 E Campbell Ave, Suite 110
Campbell, CA 95008
(408) 370-9064
FAX (408) 370-9120
Circle No. 702
NO INDUCTORS!

+5V IN/-5V OUT INVERTER
POWERS 100mA LOADS

MAX660 Plus 2 Capacitors Deliver 95% Efficiency

Using two low-cost capacitors, Maxim's new MAX660 charge-pump voltage inverter converts a 1.5V to 5.5V input to a -1.5V to -5.5V output. The charge pump's 100mA output replaces switching regulators, eliminating the need for inductors and their associated cost, size and EMI. For instance, with a 5V input, the MAX660 delivers 100mA at -4.35V. Compact 8-pin DIP and SOIC* packages coupled with a 95% power-conversion efficiency make the MAX660 ideal for battery-powered applications.

- Only 2 Capacitors, NO Inductors
- 10kHz and 45kHz Internal Oscillator
- Voltage Inverter Mode: \[V_{OUT} = -V_{IN} \]
- Voltage Doubler Mode: \[V_{OUT} = 2 \times V_{IN} \]
- 1.5V to 5.5V Input Voltage Range
- 200mA No-Load Supply Current
- Only $2.95†

Maxim's new MAX660 voltage inverter powers 100mA loads.

FREE DC-DC Converter/Power Supply Design Guide

Design Guide includes:
- Application Notes
- Complete Data Sheets
- Free Samples

Simply circle the reader response number, contact your Maxim representative or Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

* SOIC packages available after August, 1991
† FOB USA, 1000-up

Maxim is a registered trademark of Maxim Integrated Products. © 1991 Maxim Integrated Products.
INDUSTRIAL 12-BIT A/D NEEDS NO ADJUSTMENTS OVER -55°C TO +125°C

Maxim's new MAX178 and MAX182 are automatically corrected at every conversion, eliminating adjustments and holding total error below 1 LSB. By including a track/hold on chip, accuracy of the complete 12-bit CMOS system is guaranteed over time and temperature, eliminating trimpots, a common source of error and drift. The MAX182 combines a 4-channel multiplexer with all the features of the single-input MAX178.

- 1 LSB Total Unadjusted Error Over:
 - -55°C to +125°C & -40°C to +85°C
- On-Chip Track/Hold
- Easy-to-Drive (RIN < 500 MΩ) Inputs
- On-Chip Voltage Reference:
 - 40 ppm/°C Max Drift
- 100% Tested DC and Dynamic Specs
- 8- or 16-bit µP Interface
- 60 µs Conversion Time
- Pin-Compatible Upgrade for AD7578/AD7582

Faster Upgrades for 7578/7582 at No Extra Cost

If you are presently using a 7578 or 7582, reduce conversion time by 40 µs, and eliminate the external sample/hold and reference—at no additional cost—by upgrading to the MAX178/182. Improve performance and board reliability in your system while reducing power consumption, component count, space, and overall cost.

FREE A/D Converter Design Guide

Design Guide includes:
- Application Notes
- Complete Data Sheets
- Free Samples

 Simply circle the reader response number, contact your Maxim representative or Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

Maxim is a registered trademark of Maxim Integrated Products. © 1991 Maxim Integrated Products.

CIRCLE NO. 94
1pA MUX LEAKAGE CURRENT!
150Vp-p FAULT PROTECTION!

MUXs Offer 1000X Less Leakage Than DG508/509

Maxim’s MAX328/329 CMOS multiplexers feature the industry’s lowest on and off leakages, <1pA, providing system accuracy up to 16 bits over temperature. Low input leakages allow use of high-value resistors (43kΩ) in series with channel inputs. These resistors can withstand over 110V AC faults indefinitely while maintaining <40nV offset error voltages.

- Single-Ended, 1-of-8 Device (MAX328)
- Differential, 2-of-8 Device (MAX329)
- 1pC Charge Injection
- 4.5 mW Power Dissipation (±15V supplies)
- Single-Supply (+10V to +30V), or Dual-Supply
 (±5V to ±18V) Operation
- Analog-Signal Range Includes Rails
- Plug-in Upgrade of DG508/509 for only $4.70
 (1000-up)*

Fault Protection: MAX378-150V, DG508-0V!

The MAX378/379 provide ±75V of fault protection with supplies off, and ±60V with supplies on — the highest in the industry! Unlike other fault-protected multiplexers, both input and output pins are current limited to only nanamps under overvoltage conditions. This protects sensors, signal sources, ADCs, or other valuable circuitry from destruction.

- 8-Channel, Single-Ended, 1-of-8 Device (MAX378)
- 4-Channel, Differential, 2-of-8 Device (MAX379)
- ±75V of Protection with Supplies Off
- ±60V of Protection with Supplies On
- Only Nanocmperes of Input Current Under All Fault Conditions
- Dual-Supply Operation (+4.5V to ±18V)
- Latchup-proof Construction
- Plug-in Upgrade of DG508/509 for only $11.30 (1000-up)*

Call your Maxim representative or distributor today for applications information, datasheets and samples. Or, write Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

~ FOB, U.S.A.

Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona, (602) 730-8893; California, (408) 248-5300; (619) 287-0217; (714) 764-2103; (818) 704-1655; Colorado, (303) 799-3435; Connecticut, (203) 384-1112; Delaware, (302) 778-5353; Florida, (954) 426-4601; (407) 830-8444; Georgia, (404) 447-6124; Idaho, (208) 335-6222; Illinois, (708) 335-6222; Indiana, (317) 844-4662; Iowa, (619) 292-2322; Kansas, (616) 436-6445; Louisiana, (504) 238-7600; Maryland, (301) 644-1700; Massachusetts, (617) 320-3454; Michigan, (313) 583-1500; Minnesota, (612) 944-8545; Mississippi, (601) 830-0498; Missouri, (314) 830-0498; Montana, (406) 436-6445; Montana, (504) 292-8840; Nebraska, (816) 436-6445; Nevada, (702) 238-7600; New Hampshire, (603) 788-5353; New Jersey, (201) 428-0600; New Mexico, (505) 778-5353; New Mexico, (505) 778-5353; New York, (212) 648-0600; (805) 754-2171; N. Carolina, (919) 851-0010; Ohio, (216) 659-9224; Oklahoma, (405) 292-8840; Oregon, (503) 292-8840; Pennsylvania, (610) 885-1447; S. Carolina, (803) 292-8840; Tennessee, (615) 278-0714; Texas, (214) 238-7500; Utah, (801) 389-2426; Utah, (801) 561-5099; Virginia, (703) 844-4662; Washington, (206) 823-9535; W. Virginia, (540) 278-0714; Canada, (416) 238-0366; (613) 225-5161, (604) 276-8735, (514) 337-7540.

Maxim is a registered trademark of Maxim Integrated Products. © 1991 Maxim Integrated Products.
1 μA OP AMP EXTENDS BATTERY LIFE 15X

3.6 μW Power Consumption — Lowest Ever

Maxim's new MAX406 op amp is the lowest power op amp on the market today, requiring a maximum supply current of only 1.2 μA — leakage current in most battery-powered applications. And, it consumes less than 3.6 μW of power enabling lithium or alkaline batteries to last years longer. A review of the specs below will show you that the new MAX406 is the ideal op amp for solar powered products, hearing aids, barcode readers, and many other micropower applications.

- 1.2 μA max Supply Current
- < 0.1 pA Input Bias Current
- 0.5 mV max Input Offset Voltage
- Input Voltage Range Includes Neg Supply Rail
- 40kHz Gain Bandwidth
- Wide Supply Voltage Range: +2.4V to +10V or ±1.2V to ±5V

Rail-to-Rail Output Sources 2,000X Supply Current

The MAX406 maintains linearity under heavy load conditions and is capable of sourcing as much as 2 mA from a 9V battery. The output swings rail-to-rail while the input voltage range extends to the negative supply rail. The new device operates from voltages as low as 2.4V while maintaining widest input and output voltage ranges.

Lowest Bias Current, Highest Stability

Input bias current of the MAX406 is less than 0.1 pA — a 10X improvement over other low-power op amps. Input offset voltage is 0.5 mV maximum, eliminating the need for offset nulling in most applications. As a buffer, the MAX406 is extremely stable without any external compensation, even when driving capacitive loads as high as 1 μF.

Call your Maxim representative today for applications information, data sheets and samples. Or, write Maxim Integrated Products, 120 San Gabriel Dr., Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

* From 3V supplies

MAX406 VS. ALTERNATIVES

<table>
<thead>
<tr>
<th>Device (TA = 25°C)</th>
<th>IQ μA max</th>
<th>VOS mV max</th>
<th>IB pA typ</th>
<th>Rail-to-Rail Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX406</td>
<td>1.2</td>
<td>0.5</td>
<td><0.1</td>
<td>YES</td>
</tr>
<tr>
<td>ICL7611</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>YES</td>
</tr>
<tr>
<td>TLC271</td>
<td>23</td>
<td>2</td>
<td>0.1</td>
<td>NO</td>
</tr>
<tr>
<td>OP90</td>
<td>20</td>
<td>0.15</td>
<td>4000</td>
<td>NO</td>
</tr>
</tbody>
</table>

Maxim is a registered trademark of Maxim Integrated Products. © 1991 Maxim Integrated Products.

EDN April 25, 1991 CIRCLE NO. 96
Sony's family of 1-Meg SRAMs gets larger and larger all the time.

Our newest additions will include an industrial-grade temperature range, synchronous ASM (Application Specific Memory), and a low, 3-volt power requirement.

We've also adopted all of the industry's most popular package styles, making our family more compatible with all of your PCB designs.

And with the full support of two production facilities — plus another one due soon in San Antonio, TX — we'll be producing more 1-Meg SRAMs than ever.

If you still can't find the right high-density SRAM, we've got your answer — a full team of designers in the USA, armed with 0.8-micron CMOS technology. And they're ready now to discuss your needs.

So, for the strength and security of the largest 1-Meg SRAM family, look to Sony. You'll find us at Sony Corporation of America, Component Products Company, 10833 Valley View St., Cypress, CA 90630. For details, call us at (714) 229-4190, FAX us at (714) 229-4285, or write to us "Attn: Communications."
THE IEEE-488.2 STANDARD

IEEE-488.2 products are just now appearing

When first adopted in 1975, the IEEE-488 (GPIB) standard brought order to the chaotic instrumentation world. Prior to this standard's appearance, an army of incompatible instrument-interface schemes made test-system design a nightmare.

The present roster lists thousands of instruments and instruments with GPIB ports. This adherence to the standard aids the assembly of "rack-and-stack" instrumentation systems, but the unique command sets, syntax requirements, and data structures employed by the many products still give test-system programmers headaches.

The IEEE-488.2 standard, adopted in 1987, attempts to resolve many of the remaining problems. Products designed before this standard arrived obviously don't offer its capabilities, but newer products that do have IEEE-488.2 features give you a taste of the future.

First, you should understand that the IEEE-488.2 standard augments the original IEEE-488 spec and does not replace it. To signify the coexistent nature of the two specs, the IEEE changed the number of the original standard to IEEE 488.1. That standard specified the electrical and mechanical characteristics of the interface. It also introduced the concept of talkers, listeners, and controllers. Talkers place data on the bus; listeners consume that data; and controllers assign the roles of talker and listener to the instruments connected to the bus. One IEEE-488 bus accommodates as many as 15 devices.

The IEEE-488 standard also specified the byte-level handshake mechanism and defined the bus-control mechanisms. In the interest of maximizing flexibility, the standard's creators intentionally did not specify message protocols and loosely stipulated that data be transmitted using any "standard" alphanumeric, binary, or BCD code. The IEEE-488 spec did not further define what these standard codes might be. In addition, the creators loosely defined the IEEE-488 standard's method for polling the status of an instrument requesting service over the bus.
VMIC is the one stop shop for VMEbus I/O products. With an I/O product line of over 60 boards and hundreds of off-the-shelf options, VMIC offers the most extensive I/O product line in the industry.

Our digital product line allows the user to select from such features as optical isolation, programmable I/O, high voltage I/O, logic level I/O, high density, voltage sourcing, current sinking, relay/ lamp drivers, current sourcing and many other features.

Our analog product line offers a wide variety of resolutions, features and benefits to provide high performance, high density, low cost solutions to the user.

Our synchro/resolver product line provides flexibility for system designers by offering a wide selection of resolutions, high accuracy, fast sampling times and many unique features.

Many of our I/O products are offered with Built-in-Test, P2 I/O, front panel fail LED's, power-up replacement options, and other unique features. A subset of VMIC's products are supported by our Intelligent I/O Controller product line, and all products are supported by VMIC's Unix shared memory I/O Board Support routines. Vx Works drivers are available for many products.

When you need off-the-shelf solutions with proven quality, reliability, and maintainability, call VMIC - the one stop shop for VMEbus I/O Solutions.

VMIC products are internationally represented by distributors throughout the world. Call or fax VMIC for complete information.
The IEEE-488.2 standard

The flexibility permitted by the original IEEE-488 standard did indeed encourage innovative instrument design. In fact, vendors innovated in nearly every direction. Although all of the resulting products communicated over the IEEE-488 bus, every instrument seemed to speak a different dialect. The resulting cacophony created the test engineer's equivalent of the Tower of Babel. Engineers producing test programs had to employ different software handlers for each new instrument. Thus, the original IEEE-488 standard made the job of physically connecting instruments to controllers much easier but did little though all of the resulting products activated in nearly every direction. As a result, every instrument saw the same bus usage by developing additional standards. Their work culminated in the IEEE-488.2 spec, which the IEEE adopted in 1987. The IEEE-488.2 standard specifies codes, data formats, message protocols, and common commands to address some of the software-related problems encountered by users of diverse products incorporating the IEEE-488 bus.

The new standard also requires the complying product to have a minimum set of capabilities, including the ability to both talk and listen. The standard adds rigor to the design of complying equipment but does not require vendors to adopt the IEEE-488.2 specification; they can continue to use just the IEEE-488.1 spec.

One of the key components of the IEEE-488.2 standard deals with the possibility that instruments conforming only to IEEE-488.1 might be mixed with IEEE-488.2-compliant equipment on one bus. The IEEE-488.2 spec introduces the ideas of "precise talking" and "forgiving listening" to accommodate such mixed systems.

Talk precisely

Precise talking restricts the way an IEEE-488.2-compliant instrument can generate messages. For example, a data message containing a reading expressed as a floating-point number must always be transmitted as a floating-point number, not as another number type. Thus a 1V floating-point reading may be sent as the string "+1.000E+0" or "+1.0E+0" but not as "1" which is an integer or "1.0" which is a fixed-point value. Precise talking simplifies test software because your program need only accept floating-point numbers if that is all it expects. However, you must remember that equipment conforming only to the older spec may generate messages in any format. If you are working with a mix of old and new instruments, you must still write smarter code to cover all cases.

Forgiving listening is the opposite of precise talking. A piece of IEEE-488.2-compliant equipment must accept messages in any legal numeric format. A forgiving listener will accept and correctly evaluate a 1V reading expressed as "1" (an integer), "1.00" (a fixed-point value), or "+1.00E+0" (a floating-point number). This requirement excuses you from having to precisely format commands you send to IEEE-488.2-compliant equipment. Once again however, you'll need to be more careful when writing programs for mixtures of old and new equipment. Older listeners aren't always so forgiving.

In conjunction with forgiving listening and precise talking, the IEEE-488.2 standard specifies several message formats. Text messages use the 7-bit ASCII code, binary blocks are sent most-significant byte first, and binary floating-point numbers employ the IEEE-754-1985 standard format. The IEEE-488.2 standard also contains...
precise definitions for integers, fixed-point numbers, and floating-point numbers expressed as ASCII strings.

Common commands unify

The IEEE-488.2 standard's designers also provided more ways to exert control over equipment on the bus through a set of common commands. Some of these commands are required in all devices, some are optional, and some are required only if the device has certain features such as the ability to respond to a parallel poll on the bus. All of the common commands must start with an asterisk, whereas the standard forbids device-dependent commands to use an asterisk as the leading character. A list of these common commands appears in Table 1.

The common commands do not control measurements. Instead, they manage the operation of an instrument. Internal-operation commands standardize the way you instruct an instrument to perform a calibration cycle, execute a self-test program, reset to a known state, or learn a setup. Synchronization commands allow you to control the sequence of operations in an instrument. Device-trigger commands define a sequence of events that will occur when the instrument receives an IEEE-488.1 group-execute-trigger (GET) command. (The GET command is a way to activate several instruments simultaneously.)

An optional autoconfigure command group allows a controller to detect instruments on the bus and assign them a bus address. Currently, most IEEE-488 equipment employs DIP switches on a back panel to set this address. Using the autoconfigure commands, a system can theoretically configure itself when powered up and can automatically adapt to newly added equipment. Because the autoconfigure feature is optional, and because you can mix IEEE-488.2-compliant and older equipment on the same bus, you may find this new feature somewhat useless now. It does, however, seem to have a useful future.

Standardizing requests

The IEEE-488.2 standard's status and event commands give a test program far more control over an instrument's use of the IEEE-488 bus' service request (SRQ). The SRQ line allows an instrument to request service over the bus asynchronously. The SRQ is the IEEE-488 bus' interrupt. Many existing instruments allow the system programmer to define events that may cause such an interrupt, but IEEE-488.1 doesn't specify how. Consequently, use of the IEEE-488.1 standard's service request varies from instrument to instrument. The IEEE-488.2 standard specifies an extended-status model and the status-and-event command group that at least make an attempt to
The ADC-00145 is a 14-bit resolution, 200nsec update rate (5MHz) track/hold and A/D converter hybrid in a 40 pin TDIP package. Containing T/H, A/D, data registers, tri-state output buffers, timing circuits, and precision references, the ADC-00145 is the fastest and smallest digitizer of its kind. The ADC-00145 operates over a temperature range of -55°C to +125°C with military processing available. The hybrid gives very high performance (75dB signal-to-noise ratio and 78dB harmonics) with a low power dissipation of 2.9W.

The ADC-00145 uses a two-step A/D conversion algorithm. The application of a pulse to the Encode Command pin initiates the conversion cycle. The track/hold samples and stores the analog input, then a flash ADC generates a coarse encode of the sampled voltage and stores its 8 bits in the MSB register. At the same time a high-speed DAC and amplifier converts the 8 bits to an analog voltage, and subtracts it from the original input. Next, the flash ADC generates a fine encode of the subtracted voltage and stores these 8 bits in the LSB register. Digital error correction combines coarse and fine data to yield a 14-bit output. This process is repeatable at a 5MHz rate.

Many factors contributed to achieving the ADC-00145’s technical breakthroughs in speed, size, and power. Foremost among them were the high-speed T/H, DAC, and the gain amplifier; all are DDC proprietary designs and single custom monolithics. In addition, judicious use of thin- and thick-film hybrid technology resulted in minimum layout area.

With its high speed, small package, and wide operating temperature range, the ADC-00145 is ideal for the most demanding military and industrial data conversion applications. Typical applications are radar, infrared, and sonar digitizing, medical and nuclear instrumentation, and high-speed data-acquisition systems.

For additional information contact Mike Johnson (1-800-DDC-1772) ext 384.

WEST COAST (CA): GARDEN GROVE, (714) 895-9777, FAX: (714) 895-4988;
WOODLAND HILLS, (818) 992-1772, FAX: (818) 887-1372; SAN JOSE, (408) 236-3260, FAX: (408) 244-9767
WASHINGTON, D.C. AREA: (703) 450-7900, FAX: (703) 450-6610
NORTHERN NEW JERSEY: (201) 785-1734, FAX: (201) 785-4132
UNITED KINGDON: 44 (635) 40158, FAX: 44 (635) 32264; FRANCE: 33 (1) 4333-5888, FAX: 33 (1) 4334-9762
GERMANY: 49 (831) 3105, FAX: 49 (831) 474533; SWEDEN: 46 (8) 920635, FAX: 46 (8) 353181
JAPAN: 81 (3) 814-7988, FAX: 81 (3) 814-7988; IRELAND: 353 (21) 341065, FAX: 353 (21) 341568

EDN April 25, 1991 Circle No. 89 for Sales Contact Circle No. 90 for Literature
The IEEE-488.2 standard standardize this capability. For detailed information regarding the IEEE-488.2 standard's status mechanisms (Ref 1).

You may not be surprised to discover that all of these marvelous new features have not caused a stampede. Instrument vendors have shown an understandable reluctance to change the designs of products that already work well existing systems. Nevertheless, you will find that new IEEE-488 equipment often complies with the IEEE-488.2 spec.

The most visible type of the new, compliant products is the IEEE-488 controller card. In this crowded and hotly-contested market, vendors constantly seek ways to outdistance the competition, and compliance with the IEEE-488.2 standard is certainly one way to leapfrog ahead. However, you must scrutinize a controller card's conformance with the IEEE-488.2 spec because you may not be getting all that you expect. The standard lists several optional features, and not all features are offered by all controller cards.

Table 2 lists several representative IEEE-488 controller cards that support the IEEE-488.2 standard. With the exception of National Instruments, all of the card vendors use either the 7210 controller chip from NEC (Mountain View, CA) or the 9914A from Texas Instruments (Dallas, TX).

IC remedies flaws
National Instruments developed its own controller chip, the NAT4882, to alleviate what the company claims are problems and deficiencies with the other controller ICs. The one clear deficiency of NEC’s 7210 is that it provides no way to sense the state of the SRQ line, and the IEEE-488.2 standard requires this sensing capability. Vendors that use NEC’s 7210 for IEEE-488.2-compliant controller cards provide an alternate mechanism for sensing the SRQ line’s state. The Texas Instruments 9914A does not use the IEEE-488.2 standard’s preferred mechanism for requesting service via the SRQ line, although it does use a method allowed by the spec. The NAT4882 uses the preferred method of requesting service in both the 7210 and 9914 emulation modes.

Because the hardware differences caused by the IEEE-488.2 are slight, you need to make few modifications to an IEEE-488 controller.
TECHNOLOGY UPDATE

card to achieve compliance. To create compliant products, vendors have altered the software for these controller cards, but the changes are largely invisible. If you look at data sheets for the controller cards listed in Table 2, you'll find few specific software features that support the IEEE-488.2 requirements. Again, that's because the IEEE-488.2 spec augments and fills in the details of the IEEE-488.1 standard instead of replacing it.

The biggest changes made by the IEEE-488.2 standard occur in the test-equipment firmware and test-system software. The common commands added by the IEEE-488.2 standard are just text strings sent using mechanisms established in the IEEE-488.1 standard. Further, the extended status- and event-reporting model created by the IEEE-488.2 spec is controlled and interrogated using these common command strings. Consequently, the changes made to the controller-board software are largely invisible.

Software hasn't changed

This transparency allows you to use existing software for test-system program development. For example, TransEra claims that its HT Basic language packages need no changes to be compatible with the IEEE-488.2 spec. The company's language products run on DOS-based PCs and include I/O drivers for most of the IEEE-488 controller cards listed in Table 2. HT Basic emulates HP Basic (formerly called Rocky Mountain Basic). Hewlett-Packard supplies HP Basic with its 82300C and 82324A Measurement Coprocessor boards. HT Basic runs on the PC's processor and costs $625 to $925. HP Basic runs on the 68000-family µP residing on the Measurement Coprocessor board and is part of the product. Like TransEra, Hewlett-Packard says it has made no changes to HP Basic relating to the IEEE-488.2 standard.

You'll find most of the changes wrought by the IEEE-488.2 standard in the newest test equipment. For example, Hewlett-Packard's $11,300 1652B logic analyzer, introduced in 1990, complies with the IEEE-488.2 specifications. The product combines a 100-MHz, 80-channel logic analyzer with a 400M samples/sec, 2-channel digital sampling oscilloscope. As an instrument with a large number of functions and capabilities, the 1652B makes

REAL FACTS!

Single Board Computer

- COM 1, COM2 Serial Ports
- Digital VGA Port
- Keyboard Port
- On-Board Battery for CMOS RAM
- Analog VGA Port
- PS/2 Mouse Port
- High Performance VGA Supports Digital or Analog CRTs to 800 X 600 Resolution
- Industry Standard Custom BIOS
- Surface Mount Technology
- Manufactured In-House (U.S.A.)
- Future Domain SCSI
- Bi-directional PS/2 Printer Port
- 2 Serial Ports - Up to 115K Baud
- Future Domain SCSI
- IDE Interface
- Floppy Interface
- VGA/Flat Panel Interface
- Double Sided
- Manufactured In-House (U.S.A.)
- Landmark V1.14
- Speed at 20MHz

<table>
<thead>
<tr>
<th>COMPARE FUNCTION</th>
<th>DTI CAT 970 386SX</th>
<th>Competitor 1 386SX</th>
<th>Competitor 2 386SX</th>
</tr>
</thead>
<tbody>
<tr>
<td>16, 20MHz CPU - Shipping Now!</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Up to 16M RAM Onboard</td>
<td>✔</td>
<td>Up to 4Mb</td>
<td>Up to 5Mb</td>
</tr>
<tr>
<td>Noise Reduction Circuitry For FCC Class B</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PS/2 Mouse Support</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Keyboard Support</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>On-Board Battery Real Time Clock</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Bi-directional PS/2 Printer Port</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>2 Serial Ports - Up to 115K Baud</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Future Domain SCSI</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>IDE Interface</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Floppy Interface</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>VGA/Flat Panel Interface</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Double Sided</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Manufactured In-House (U.S.A.)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Landmark V1.14</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Speed at 20MHz</td>
<td>25.6</td>
<td>25.6</td>
<td>25.6</td>
</tr>
</tbody>
</table>

Call us toll free for orders and information. 1-800-443-2667

Diversified Technology
An Ergon Co.
U.S.A. · (601) 856-4121 Fax (601) 856-2888
Outside U.S.A. · (201) 891-8718 Fax (201) 891-9629
Table 2—Representative controller cards for IEEE-488.2 systems

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Product</th>
<th>Host Bus</th>
<th>Maximum transfer rate (bytes/sec) (See Note)</th>
<th>IEEE-488 software interface</th>
<th>Price</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Equipment Corp</td>
<td>Max488</td>
<td>Apple Macintosh II</td>
<td>>650,000</td>
<td>Language extensions and subroutines for Quickbasic, Turbo Pascal, C, and Hypertalk</td>
<td>$450</td>
<td>Package includes Hyper-card interactive test stack.</td>
</tr>
<tr>
<td>PC < 488</td>
<td>IBM PC</td>
<td></td>
<td>350,000</td>
<td>DOS device driver and language extensions for Basic, Quickbasic, Turbo Pascal, C, and Fortran</td>
<td>$450</td>
<td>Package includes interactive test program, printer/plotter redirector.</td>
</tr>
<tr>
<td>PS < 488</td>
<td>IBM Microchannel (short card, fits IBM P70)</td>
<td></td>
<td>320,000</td>
<td>DOS device driver and language extensions for Basic, Quickbasic, Turbo Pascal, C, and Fortran</td>
<td>$450</td>
<td>Package includes interactive test program, printer/plotter redirector.</td>
</tr>
<tr>
<td>Hewlett-Packard Co</td>
<td>82300C</td>
<td>IBM PC/AT</td>
<td>110,000</td>
<td>HP Basic</td>
<td>$1695</td>
<td>Software runs on an on-board 68000 auxiliary processor.</td>
</tr>
<tr>
<td></td>
<td>82324A</td>
<td>IBM PC/AT</td>
<td>350,000</td>
<td>HP Basic</td>
<td>$2795</td>
<td>Software runs on an on-board 68030 auxiliary processor.</td>
</tr>
<tr>
<td></td>
<td>82335A</td>
<td>IBM PC/AT</td>
<td>205,000</td>
<td>Command libraries for Vectra Basic, GW Basic, Quickbasic, Compiled Basic, Pascal, C, Quick C, Turbo C, and Turbo C++</td>
<td>$525</td>
<td>Package includes printer/plotter redirector.</td>
</tr>
<tr>
<td>Iotech</td>
<td>Personal 488plus</td>
<td>IBM PC/AT</td>
<td>300,000</td>
<td>DOS device driver and subroutines for Basic, C, and Pascal</td>
<td>$395</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Personal 488/2plus</td>
<td>IBM Microchannel</td>
<td>300,000</td>
<td>DOS device driver and subroutines for Basic, C, and Pascal</td>
<td>$495</td>
<td>Board has a 40-line digital I/O port.</td>
</tr>
<tr>
<td></td>
<td>Power 488</td>
<td>IBM PC/AT</td>
<td>1,000,000</td>
<td>DOS device driver and subroutines for Basic, C, and Pascal</td>
<td>$495</td>
<td>Board has a 40-line digital I/O port and five 16-bit timers.</td>
</tr>
<tr>
<td></td>
<td>Power 488CT</td>
<td>IBM PC/AT</td>
<td>1,000,000</td>
<td>DOS device driver, subroutines for Basic, C, and Pascal</td>
<td>$595</td>
<td></td>
</tr>
<tr>
<td>National Instruments</td>
<td>GD-GPIB</td>
<td>Grid System 1500</td>
<td>400,000</td>
<td>DOS device driver or Microsoft Windows dynamic-link library. Interfaces for several programming languages also offered.</td>
<td>$695</td>
<td>Package includes interactive bus-control program.</td>
</tr>
<tr>
<td></td>
<td>GPIB-PCII/IIA</td>
<td>IBM PC</td>
<td>>400,000</td>
<td>DOS device driver or Microsoft Windows dynamic-link library. Interfaces for several programming languages also offered.</td>
<td>$395</td>
<td>Package includes interactive bus-control program.</td>
</tr>
<tr>
<td></td>
<td>GPIB-SE/30</td>
<td>Apple Macintosh SE/30</td>
<td>1,000,000</td>
<td>Device manager calls and interfaces for Quickbasic, Think C, MPW C, and Hypertalk</td>
<td>$495</td>
<td>Package includes interactive bus-control program.</td>
</tr>
<tr>
<td></td>
<td>GPIB-SPARC1-B</td>
<td>Sun Sbus</td>
<td>1,000,000</td>
<td>Multitasking software driver</td>
<td>$995</td>
<td>Package includes interactive bus-control program.</td>
</tr>
<tr>
<td></td>
<td>GPIB-98 Turbo</td>
<td>NEC PC-9801</td>
<td>1,000,000</td>
<td>DOS device driver or Microsoft Windows dynamic-link library. Interfaces for several programming languages also offered</td>
<td>¥117,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LC-GPIB</td>
<td>Apple Macintosh LC</td>
<td>1,000,000</td>
<td>Device manager calls and interfaces for Quickbasic, Think C, MPW C, and Hypertalk</td>
<td>$495</td>
<td>Available with 68882 floating-point unit for $745.</td>
</tr>
<tr>
<td></td>
<td>MC-GPIB</td>
<td>IBM Microchannel</td>
<td>1,000,000</td>
<td>DOS device driver, Microsoft Windows dynamic-link library, OS/2 driver, Unix driver. Interfaces for several programming languages also offered.</td>
<td>$495</td>
<td>Package includes interactive bus-control program.</td>
</tr>
<tr>
<td></td>
<td>NB-GPIB</td>
<td>Apple Macintosh II</td>
<td>800,000</td>
<td>Device manager calls and interfaces for Quickbasic, Think C, MPW C, and Hypertalk</td>
<td>$495</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VXIpc-030</td>
<td>VXI</td>
<td>1,000,000</td>
<td>Device manager calls and interfaces for Quickbasic, Think C, MPW C, and Hypertalk</td>
<td>$14,800</td>
<td>An Apple Macintosh SE/30 on a VXI card with an IEEE-488 interface port.</td>
</tr>
<tr>
<td></td>
<td>VXIpc-386</td>
<td>VXI</td>
<td>1,000,000</td>
<td>DOS device driver</td>
<td>$9000</td>
<td>An 80386-based PC on a VXI card with an IEEE-488 interface port.</td>
</tr>
</tbody>
</table>

Note: Actual transfer rates depend more on the host bus and the software than the interface card. The absolute maximum transfer rate over the IEEE-488 bus is 1M bytes/sec. Actual performance can be less than the maximum.
The IEEE-488.2 standard

a good candidate for the IEEE-488.2 standard's abilities. The 1652B's status register follows the standard's guidelines and it understands the required common commands.

If you need to create IEEE-488.2 test systems, you'll be happy to know the necessary controller boards and software already exist. As time passes, the growing number of instruments that comply with the IEEE-488.2 spec will allow your test programs to become somewhat less complex. When all the instruments in your system understand the IEEE-488.2 common commands, you will be able to create standard routines to manage much of the test-system's overhead. However, until you can equip an entire system with IEEE-488.2-compliant instruments, your programming job really won't be any easier than it has been. Even one exception to the IEEE-488.2 rules forces you to create unique software for the nonconforming instrument.

Reference

Article Interest Quotient
(Circle One)
High 515 Medium 516 Low 517

WHAT'S NEXT

Look for EDN Magazine's Analog Technology Special Issue on May 9, 1991. Among other analog-related stories, the issue will include a staff-written Special Report on single-supply, analog-design techniques and a Technology Update on switching regulator ICs. Look for coverage of other topics and regular departments, too.
Power tool
KEPCO ac-de dc-de SWITCHING POWER SUPPLIES

Field-proven in a broad spectrum of applications and certified by the world's safety agencies, here are versatile, rugged power tools for your design needs. Choose voltages up to 48V dc; power up to 3000W; ac or dc input. Features include active soft-start, remote voltage control, overvoltage protection, current limiting and built-in EMI filtering. The 600W and 1500W models provide for current-share paralleling. Kepco's switchers are also available in low-cost open frame and pc-card styles for OEM applications.

Power tools

SEE OUR PAGES IN VOLUME D

Kepco, Inc., 131-38 Sanford Avenue, Flushing, NY 11352 USA (718) 461-7000 • FAX (718) 767-1102 • Easylink (TWX): 710-582-2631
KEPCO EUROPE, LTD., London, England: Salamander Quay West, Park Lane, Harefield, Middlesex UB9 6NZ • Tel: +44 895 825046 • Fax: +44 895 825045 • UNITED KINGDOM: PPM Instr. Ltd. • Tel: (0483) 301333 • Fax: (0483) 300862
GERMANY: Computess Elektronik GMBH • Tel: (089) 32 00 95 56 • Fax: (089) 32 00 95 25 • FRANCE: M.B. Electronique • Tel: (1) 39 39 39 31 • Fax: (1) 39 39 39 44 • ITALY: Sistret, S.p.A. • Tel: (02) 618 1893 • Fax: (02) 618 2440
From LaserJets® to fighter jets, our high-performance FACT QS and FCTA set the pace in logic.

Delivering high performance to a broader range of applications.

Whether it's a printer churning out 8 PPM or an F-18 scorching the sky at Mach 2+, your application requires advanced logic solutions that deliver low power. Which is exactly what you get with our low-noise FACT Quiet Series and high-speed FACT FCTA families.

Together, these devices provide innovative solutions to the distinctly different needs of a broad spectrum of high-performance applications.

Needs that range from the ultra-low power of battery-operated systems to the searing speeds dictated by RISC processing. To guaranteed 50-ohm dynamic drive for low-impedance bus environments (something that reduced-output swing ACMOS technologies and BCT can't do). To the 64mA low-level static drive required of VME-type termination schemes.

Silencing noise with advanced circuitry.

Beyond speed, power, and drive there's the issue of noise. Our USC™ (Under-Shoot Corrector) and patented GTO™ (Graduated Turn-On Output) circuits enable our devices to offer the lowest ground bounce of any ACMOS family. And their split-ground bus results in the best dynamic noise margins of any logic technology.

Plus, with controlled output edges and negligible ringing, FACT QS generates lower spectral content than BCT and non-standard-pinout ACL families.

Producing a complete family of ACMOS logic.

With our high-performance FACT QS and FACT FCTA devices, we've enhanced our multi-functional, broad-based line of ACMOS logic devices, which already includes standard FACT and FCT. What's more, FACT is available with Standard Military Drawings, JAN 38510 level B, and S-level processing. So regardless of your application, we have the solution.

Keep pace with the leaders in logic.

For more information, including datasheets and samples, on our ACMOS families, call or write us today.

We'll get you up to speed in no time at all.

1-800-NAT-SEMI, Ext. 111
National Semiconductor Corp.
P.O. Box 7643
Mt. Prospect, IL 60056-7643

© 1991 National Semiconductor Corporation. USC and GTO are trademarks of National Semiconductor Corporation. LaserJet is a registered trademark of Hewlett-Packard Company.

*From a 1990 study conducted by Washington Labs Inc., a subsidiary of Viellese Engineering Corporation.
Forging The ISDN Revolution
One of the most dramatic changes emerging today is the revolution in global communications. ISDN is transforming our lives by enabling transmission of digitalized information signals in a variety of equipment from G4 facsimiles to video telephones, to high-speed personal computer communications.

But it's not magic—this transition requires much labor. Exchange and terminal equipment must synchronize with intermediate circuits—a critical task requiring transformers that can transmit pulse signals with start-up and transient response characteristics.

The Challenge of Miniaturization
Another major challenge is miniaturization: along with outstanding performance, the DC-DC converters and AC-DC isolation chokes used in communications equipment must offer thinner, more compact configurations.

An Unsurpassed Lineup Of Surface Mount Transformers
Tokin offers the most exceptional line of surface mount transformers available—from high density mounting to low height installations, DC-DC converters, and pulse transformers. We match our customers' needs with the finest materials, most innovative designs and the most appropriate magnetic circuits. A strategy that ensures the best transformer technology available.

Give us a call and see what Tokin can do for you.

Features
- Thin, compact configurations are ideal for high-density mounting
- Flawless magnetic circuit designs offer high-inductance properties
- Multi-terminal configuration enables discrete circuit applications
- Convenient for automatic mounting with robots or other machines

Applications
- DC-DC converters, pulse transformers, and a wide range of ISDN response and communications equipment

<table>
<thead>
<tr>
<th>Shapes and Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEY 1.7/7.3</td>
</tr>
<tr>
<td>FEY12.8/11.5</td>
</tr>
<tr>
<td>FEY15.3/15.0</td>
</tr>
<tr>
<td>FED11.6</td>
</tr>
<tr>
<td>FEP7T</td>
</tr>
<tr>
<td>FEB5</td>
</tr>
</tbody>
</table>

Tokin Corporation
Hatazama Bldg., 5-8, Kita-Aoyama 2-chome, Minato-ku, Tokyo 107, Japan
Phone: 03-3402-6166 Fax: 03-3497-9756

Tokin America Inc.
155 Nicholson Lane, San Jose, California 95134, U.S.A.
Phone: 408-432-8020 Fax: 408-434-0375

Tokin Electronics (HK) Ltd.
Room 806 Austin Tower, 22-26A Austin Avenue,
Tsuen Wan, New Territories, Hong Kong
Phone: 367-9157 Fax: 739-5950

Tokin Europe GmbH
Kronstr. 142, 8000 Munchen 45, Germany
Phone: 089-311-10-66 Fax: 089-311-35-64

Tokin Corporation
Tokin Corporation
Hatazama Bldg., 5-8, Kita-Aoyama 2-chome, Minato-ku, Tokyo 107, Japan
Phone: 03-3402-6166 Fax: 03-3497-9756

Tokin America Inc.
155 Nicholson Lane, San Jose, California 95134, U.S.A.
Phone: 408-432-8020 Fax: 408-434-0375

Tokin Europe GmbH
Kronstr. 142, 8000 Munchen 45, Germany
Phone: 089-311-10-66 Fax: 089-311-35-64

You can reach our agents by phone: Denmark (03) 63 3830, France (1) 45-34-7535, Italy (0331) 87 8096, Spain 729-1165, Switzerland (01) 830-3161

CIRCLE NO. 88

EDN April 25, 1991
Each StakPAC output is factory configured utilizing Vicor's robotically manufactured power converters...VI-200 series modules. Consider the advantages of a StakPAC customized for your system needs with automated power modules:

USER DEFINABLE OUTPUTS—The use of proven standard catalog modules offers the features of a custom without the associated risk or investment.

STANDARD MODELS—Many preconfigured standards available.

QUICK DELIVERY—Typical delivery 1 week or less for custom or standard evaluation units.

COMPACTNESS—Low profile packages provide up to 6 watts/cubic inch, twice the industry norm.

UL, CSA, TUV SAFETY AGENCY APPROVAL—All StakPAC configurations are approved, standard or custom.

EMI—FCC/VDE Level A, conducted.

For ordering information call Vicor Express at 1-800-735-6200 or (508) 470-2900 at ext. 265.

For technical information contact Westcor at (408) 395-7050 or FAX (408) 395-1518 or call Vicor.

WESTCOR CORPORATION
485-100 Alberto Way
Los Gatos, CA 95032

VICOR CORPORATION
23 Frontage Road
Andover, MA 01810
AUTOMATION CONTROLS

From Parker, the leading producer of motion control components and systems for industrial markets

Innovative Positioning Systems Combine Daedal Tables and Compumotor Controls

Daedal Division is the most recent addition to the growing Parker Hannifin motion control group. Daedal specializes in the manufacture of custom positioning systems as well as standard components including ball slides, stages, and motorized linear and rotary tables. Together, Compumotor and Daedal provide complete solutions. With fully compatible components from machine controllers, drives and motors to mechanical positioning tables and feedback systems, each system is manufactured, tested and shipped from a single supplier. The net result is an integrated system, tailored precisely to the demands of a specific application.

Feed-to-Length Application Solutions

"Everything has been thought of before, the problem is to think of it again."—Johann W. von Goethe.

Each machine design requirement may be unique, but most can be characterized within a basic application category. At Compumotor, our focus is to prevent 're-inventing the wheel.' One such application category, involves the repeated feed of material a specific distance to a stationary position, followed by some other process. Examples include: Thermoforming for tire rubber or plastic film; Labeling/cutting of optical fibers, paper or plastic bags; Drilling; Milling; Bending; Stamping; Core Cutting; and Indexing for a variety of industries.

Compumotor has been providing tailor-made, high performance motion control solutions for more than ten years. With contributions from industry experts, Compumotor has compiled this expertise into a Feed-to-Length Application Handbook to help machine designers and engineers make informed decisions about their applications—to improve machine flexibility and productivity. This reference provides information on important application considerations and insight to application solutions. For a copy of this handbook, contact your local Compumotor Automation Technology Center.

An automated system for testing bar-code scanners, from Hewlett Packard, combines Compumotor and Daedal technology.

Supply of Material
Material Feed Process
Finished Material Handling

Parker
Dispensing Excellence—Four Axis Motorized Syringe

A unique process requires a metering/dispensing system to apply highly volatile liquid catalysts to a new product. The first catalyst must be applied in a touching off manner from a syringe; the second requires dispensing of 0.3 microliter volumes in a circular path. Inaccurate mechanics and human error in the existing design resulted in liquid flashing and low yields.

Daedal and Compumotor combined efforts to meet system requirements. Daedal tables surpass the customer's specifications for accuracy and repeatability at 0.0001 inches. This, coupled with extremely smooth motion of the Daedal tables, prevent liquid flashing. The transverse cross roller table carrying the X-Y-Z positioning system provides excellent rigidity and stiffness to the syringe needle motion.

Compumotor's Model 4000 provides a self-contained control for all four axes of motion including the circular interpolation capability. An encoder option on the motor verifies position and provides stall detection.

Motion Requirements
- Multi-axis controller—4 axis control of syringe motion
- Contouring—Circular dispensing paths
- High accuracy lead screw stages—Syringe placement to 0.0001 inches
- Microstepping motor resolution—Smooth dispensing of .3 micro-liter liquid volumes
- Incremental encoder feedback—Ensure position integrity and stall detection

Products Used
- Indexer—Compumotor Model 4000
- Motor/Drives—Compumotor S57-102-E (4)
- X/Y/Z motorized positioning system—Daedal Ball-Bearing Linear Tables
- Transversing positioning system—Daedal 4" Cross Roller Table

Checkered Flag for High-Speed Feed-to-Length

Problem: A machine manufacturer for the paper, film and foil industry was challenged with an application in which labels were to be printed and cut at high speeds. The design in use had a geared servo motor and drive attached to nip rollers for the material feed. Printing and cutting operations were activated with the feed rollers at rest. This design had unacceptable end-of-move overshoot when throughput requirements were increased. A new design required lower settling times, improved accuracies and adjusting for label shrinkage through the use of registration marks.

Solution: The Dynaserv Direct Drive motor from Compumotor replaces the servo system and its inaccurate mechanical transmission. Directly attached to the feed nip rollers, the Dynaserv provides true servo positioning without harmful backlash. The internal construction of the Dynaserv compensates for the large feed roll inertias better than other motor technologies. These advantages provide the printing operation with a compact solution for high press speeds with minimal end-of-move overshoot.

The Model 500 Indexer provides command signals to the Dynaserv, and I/O interface to the printing and cutting operations. Material feed distances are fully adjustable, and determined by the registration mark on the label. Operator interface is simple thumbwheel input of press speed and feed distance. Nonvolatile storage of the 500 Indexer's command program provides cost-effective stand-alone press control.
The Dynaserv, a direct drive servo from Compumotor, is a natural replacement for index table applications.

Index tables—commonly used in industries such as machine tool, cellular manufacturing, welding and large inertia positioning—require accurate rotary positioning while supporting a large load. Mechanical indexing tables requiring gears and cams to produce the desired motion are typically used for these applications. Gears introduce backlash, frictional inaccuracies, and greatly reduced cycle time. The internal clutch of a mechanical table is noisy and subject to wear. In addition, specific cam curves must be ordered for each table required. This adds set-up time and cost, especially if many different tables are needed.

The Dynaserv features a high torque to motor size ratio with stability at all speeds. 1,024,000 step/rev controlled to one step is achievable. A flat speed-torque curve provides greater controllability—with smooth rotation across the system's full dynamic speed range. Because the unit is gearless, faster settling time is realized. This serves to increase productivity, and creates a virtually maintenance-free unit.

The ZXF Servo System from Compumotor incorporates a full-functioned velocity and position follower with a digital signal processor-based servo drive in a cost effective package. The ZXF is ideally suited to improve performance in positioning applications such as thermoforming, packaging, labels, tire making, pick and place, automated assembly, winding and stamping. Encoder following capabilities allow the ZXF to be applied in processes requiring operations between separate operations. Features include:

- Velocity and position following
- Recede and advance while following
- Registration while following
- Following a pulse and direction or quadrature encoder signal
- Following data entry through external thumbwheels or RS232 terminal

Programming is easy with Compumotor's powerful and standard extended X-programming language.

Circle 305

Follow with the Leader

The ZXF Servo System from Compumotor incorporates a full-functioned velocity and position follower with a digital signal processor-based servo drive in a cost effective package. The ZXF is ideally suited to improve performance in positioning applications such as thermoforming, packaging, labels, tire making, pick and place, automated assembly, winding and stamping. Encoder following capabilities allow the ZXF to be applied in processes requiring operations between separate operations. Features include:

- Velocity and position following
- Recede and advance while following
- Registration while following
- Following a pulse and direction or quadrature encoder signal
- Following data entry through external thumbwheels or RS232 terminal

Programming is easy with Compumotor's powerful and standard extended X-programming language.

Circle 305

Daedal offers a variety of metric products for increased systems compatibility, especially in the European and Pacific Rim markets. All components are manufactured to meet current metric standards for both industrial and scientific applications. The new Daedal metric engineering guide highlights these products, most of which are in stock and ready to deliver. The guide features: Manual positioners including ball slides, 1-3 axis linear stages, rotary stages, manual and digital micrometers. Motorized positioning table selection includes ball bearing linear tables, open frame tables, rail tables, cross roller tables and rotary tables.

Tables are available in standard and precision grades, and in single and multiple axis configurations. Travel lengths to 3050 mm (rail table) and payloads to 130 kg are available with life ratings in excess of 2.5 million meters. Rotary tables are available in diameters to 300 mm and loads to 90 kg.

Other points of interest: Daedal stocks more than 1,500 leadscrews and ball screws to tailor table performance to specific applications. Positioning tables and controls are integrated and tested as complete systems.

When your components and systems must measure up, look to Daedal for solutions.

Circle 306

This bag-maker takes advantage of the accuracy and repeatability of the ZXF Servo System.
A company whose business it is to test and judge quality, demands high standards for equipment—it’s their job. Daedal accepted a positioning challenge for one such company, Ultran, in State College, Pennsylvania.

In ultrasonic non-destructive materials testing, an Ultran NDC 7000 Imaging System looks for defects in materials without damaging them. The system requires fine resolution, extreme rigidity, and straight-line accuracy. And because a variety of sizes and weights of material are tested, flexibility in test-equipment configurations is essential.

Daedal worked with Ultran to establish a system that met requirements of existing applications. And flexibility was built in at the onset so Ultran’s system can grow with changing needs. The Ultran imaging system is stored on CAD disk and application alterations can be recalled and designed quickly, avoiding the time and talent needed for redesign.

In the new system, square rails replaced ball bushing rods, contributing greater rigidity and support throughout the full length of travel. The square rail table construction is ideal for the varying travel lengths and often heavy payloads of this application. Constructed with efficient, double-nut ball screws, the gantry system provides high-speed positioning over travel lengths to 24 by 36 inches.

Ultran will continue to require variations of this system and worked with Daedal to establish a base system for upcoming projects. A standard application has been established, and any variations are easily accommodated such as length, width, payload and Z-axis travel. This helps the company’s long-term budgeting and ensures quick turn-around of new products.
IC manufacturers have developed pin-electronic circuits that serve as building blocks for ATE systems. But these high-performance ICs aren't limited to ATE applications.

ATE Pin Electronics

Automotive test equipment (ATE) pin electronics must meet severe demands for speed and timing accuracy. To serve the particular requirements of ATE, IC manufacturers have developed high-performance, moderately priced chips for use as pin drivers, comparators, time-delay generators, and combinations thereof. These chips not only simplify life for ATE designers, but they can also function well in other electronic applications.

To understand what ICs for pin electronics can do, you need to understand the basic functions performed by pin electronics. If you are not familiar with ATE pin electronics, see the box, "Basic ATE pin-electronic functions."

Pin Drivers

In high-performance ATE applications, pin drivers output high-quality waveforms. The waveforms need to have a minimum of ringing and undershoot/overshoot. Edge transitions need to be fast and repeatable for accurate timing calibration. Pin-driver ICs typically have slew rates from about 1.5 to greater than 10V/nsec for some GaAs ICs from Gigabit and Triquint (Table 1). Devices such as the 16G061A dual pin driver from Gigabit offer variable edge rates for compatibility with different logic families.

Although pin drivers need low propagation delays, accurately calibrating pin-driver timing places emphasis on stable propagation delay through the IC. Sensitivity to temperature, duty cycle, and other conditions affecting the propagation delay is more important than the absolute value of the delay. High-speed pin drivers also need to have accurate edge-to-edge matching (a measure of the difference in propagation delay between rising and falling edges).

To achieve the high speeds typically needed for ATE applications, pin drivers are usually ECL compatible. However, some pin-driver ICs will also accept TTL or CMOS logic levels.

A measure of the speed capability of a pin driver is the maximum toggle rate of the device. The maximum toggle rate defines how fast the pin driver can output data and still slew to the final value before changing to the next output state. The maximum toggle rate typically decreases as the voltage difference
ATE pin electronics

between the output logic-high and logic-low states increases.

You should note how well isolated the output of the driver is when you switch the driver to the off or high-impedance state. Some devices have off-state leakage currents lower than a µA. Other pin drivers in the off state still load the circuit lower than a µA. Other pin drivers have off-state leakage currents with a 50Ω termination to -2V.

You need high isolation when the pin driver is in the off state, some switches the driver to the off or high-impedance state. Some devices output of the driver is when you need high isolation when the pin driver is in the off state, some have off-state leakage voltages can vary. If you have to buffer the voltage references for each pin driver, you'll need to factor in the additional PCB-board space, power, and cost.

Pin-driver ICs provide a general-purpose building block for driving digital signals in applications whose logic levels need to be varied. You can use these ICs to build ATE, but you can also use them for the output of variable-level pulse generators. Pin driver ICs can even drive 50Ω transmission lines, although they may not be able to do so over their entire output voltage range.

Table 1—Representative pin-electronic devices

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Product</th>
<th>Key features</th>
<th>Price (100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Pin drivers and combined products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Devices</td>
<td>AD1321</td>
<td>100-MHz toggle rate; -2 to 7V output range; 200-nA max off-state leakage.</td>
<td>$45</td>
</tr>
<tr>
<td>AD1322</td>
<td>200-MHz toggle rate, otherwise same as AD1321.</td>
<td>$85</td>
<td></td>
</tr>
<tr>
<td>Brooktree</td>
<td>BT698</td>
<td>Pin driver, comparators, dynamic loads; 125-MHz toggle rate with 1V swing; -3 to 8V operating range.</td>
<td>$130</td>
</tr>
<tr>
<td>Comlinear</td>
<td>CLC600</td>
<td>200-MHz operation; -2 to 7V output range; 40-nA typ off-state leakage.</td>
<td>$42.50</td>
</tr>
<tr>
<td>Gigabit</td>
<td>16G061A</td>
<td>Dual pin driver; 800-MHz bandwidth; variable slew rate: 2.5 to 17 inline; 50-µA off-state leakage.</td>
<td>$95</td>
</tr>
<tr>
<td>Pulse Instruments</td>
<td>PT40B</td>
<td>100-MHz clock rate; 0.3 to 8V output range; 10-pin S/D hybrid.</td>
<td>$36.25*</td>
</tr>
<tr>
<td>Triquint</td>
<td>TQ8330</td>
<td>100-ns rise and fall times for 1V swing; -3 to 3V for 50Ω loads.</td>
<td>$115</td>
</tr>
<tr>
<td>B. Comparators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Devices</td>
<td>AD1317</td>
<td>Dual comparator with latch; 100-µA input-bias current; inputs switchable to high-impedance state.</td>
<td>$25</td>
</tr>
<tr>
<td>AD96685</td>
<td>Latching comparator; -2.5 to 5V input range.</td>
<td>$4.60</td>
<td></td>
</tr>
<tr>
<td>AD96687</td>
<td>Dual version of AD96685.</td>
<td>$6.40</td>
<td></td>
</tr>
<tr>
<td>AD9696</td>
<td>TTL-compatible comparator; 45-ns propagation delay.</td>
<td>$3.50</td>
<td></td>
</tr>
<tr>
<td>AD9698</td>
<td>Dual version of AD9696.</td>
<td>$6</td>
<td></td>
</tr>
<tr>
<td>Brooktree</td>
<td>BT687</td>
<td>Dual latching comparator; 20-µA input-bias current; -3.3 to 3.3V input range.</td>
<td>$12</td>
</tr>
<tr>
<td>BT688</td>
<td>-4.0 to 10.2V input range; 2-µA typ input-bias current; 2.8-ns propagation delay.</td>
<td>$20</td>
<td></td>
</tr>
<tr>
<td>BT681</td>
<td>-4 to 8.2V input range; 2-µA typ input-bias current; 2.6-ns propagation delay.</td>
<td>$37</td>
<td></td>
</tr>
<tr>
<td>C. Time-delay generators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Devices</td>
<td>AD9500</td>
<td>8-bit digital delay generator (ECL); 2.5-ns to 10-µsec range; 100-MHz max trigger rate.</td>
<td>$16</td>
</tr>
<tr>
<td>AD9501</td>
<td>8-bit digital delay generator (TTL/CMOS); 2.5-ns to 10-µsec range; 50-MHz max trigger rate.</td>
<td>$8.60</td>
<td></td>
</tr>
<tr>
<td>Brooktree</td>
<td>BT604</td>
<td>8-bit digital delay generator; 4- to 40-ns delay range; 120-MHz, programmable on the fly.</td>
<td>$33</td>
</tr>
<tr>
<td>BT622</td>
<td>Dual-channel delay line; independently adjust rising and falling edge; 10-, 20-, 30-ns ranges.</td>
<td>$37</td>
<td></td>
</tr>
<tr>
<td>BT624</td>
<td>Quad version of BT622.</td>
<td>$46</td>
<td></td>
</tr>
<tr>
<td>D. Dynamic loads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Devices</td>
<td>AD1315</td>
<td>Complete dynamic load; ±50-mA range; -2 to 7V compliance range.</td>
<td>$40</td>
</tr>
</tbody>
</table>

Price for quantities of 1000 or more.

Fast comparator, stable delay

Every electronic engineer is familiar with the performance of analog comparators, but the performance requirements placed on comparators for ATE applications are particularly demanding. ATE applications typically place three tough requirements on comparators.

First, the comparator must be fast. Propagation delays of a few nanoseconds are acceptable, but, as is the case for pin drivers, a stable propagation delay is very important.

Second, the comparator needs a relatively wide input-voltage range. ATE applications typically need a -2 to +7V range, although more is desirable. However, narrower voltage ranges make it easier to design a comparator for speed.

Third, ATE applications often need comparators with a low input-bias current for use in testing low-power CMOS devices. But it is easier to make fast comparators when you can use relatively high input-bias currents.

Like many engineers, ATE designers can't always buy what they need, so they sometimes have to design around the comparator. In the past you might have bought a fast comparator with a limited input-voltage range and a low input impedance. You'd have to add your own circuitry to buffer and scale the inputs to get the needed voltage range and input impedance. Now you can buy comparators off the...
Basic ATE pin-electronic functions

The overall function of ATE pin electronics is to drive input pins and measure outputs. To keep ATE general purpose, the pin electronics are usually designed to support both drive and measure functions on every channel.

Pin drivers for ATE provide inputs to the device under test (DUT). Pin drivers (Fig A) typically support three states: logic-high, logic-low, and a high-impedance or off state. You program the logic high and low levels with analog voltage inputs. The programmable range of the high and low states is typically -2 to +7V, providing sufficient range for compatibility with TTL, CMOS, and ECL voltage levels.

When measuring a DUT's outputs, the test system switches the pin driver to an off state and measures the output levels with comparators (Fig A).

If you go by the data-book specifications, a device's logic high doesn't occur until the voltage exceeds the minimum logic high, and its logic low doesn't occur until the voltage falls below the maximum logic low. Because ATE systems normally test using data-book specifications, designers usually use two comparators in a window-comparator arrangement. The test system latches the output of the two comparators at the programmed test time, and the state of the comparators shows whether the output pin was in a high, low, or intermediate state.

Testing ICs to data-book specifications also requires testing output-drive capabilities. Output-drive testing verifies the current a device output can source in a logic-high state or sink in a logic-low state. Dynamic-load circuits provide the current sinks and sources needed by ATE to test the output drive.

Fig A diagrams the basic operation. Positive and negative current sources connect to the output pin of the device under test through a diode quad. When the output voltage drops below the threshold voltage set on the opposite side of the diode quad, the DUT must sink the current from the current source. Conversely, when the DUT output voltage goes above the threshold voltage, the DUT must source current to the dynamic load. Dynamic-load circuits, although important in ATE systems, don't have wide application in other electronics systems.

Fig A—The basic ATE pin-electronic devices are drivers, comparators, and dynamic loads.
ATE pin electronics

shelf that measure up well against ATE requirements. Hence, you can design with more freedom.

Comparators available from both Analog Devices and Brooktree, some of which have TTL-compatible outputs, offer a range of performance capabilities.

For example, Brooktree’s BT681 dual comparator has attractive performance not only for ATE applications but also for instrumentation, line-receiver, and other thresholding applications. The comparator can track inputs that slew at 4V/nsec over a range from −4 to +8.2V. The typical input-bias current is 2 µA, but you can reduce it to 100 nA with a selectable power-down mode when you can afford to trade speed for a lower input-bias current. A level-select control lets you reduce the complementary ECL output swing from a nominal 800 mV to 400 mV. The reduced amplitude lets the comparator follow short pulses while maintaining timing specifications.

Remove timing skew

High-performance ATE systems also use time-delay generators extensively. The delays are used both to remove timing skew in systems and to create time increments smaller than standard clock cycles.

Time-delay circuits provide the general capability of distributing precisely time-aligned signals throughout any electronic system. For ATE systems, time-delay circuits can remove timing skew to make the outputs of all pin-driver channels in the system reach the device under test simultaneously.

Typical time-delay ICs offer resolutions in the tens of picoseconds. For this type of time-delay generation, the stability of the time delay is important, as is the recycle time on the time delay. The recycle time is the time you need to wait for the delay circuit to reset before it can accept another trigger.

Another application for time-delay circuits is generating periods. Whether on ATE or on any other electronic equipment where you need to generate variable periods from a digital clock, you’ll need some way to create time increments that are not full clock cycles.

For example, if you have a 100-MHz clock in a system and you need to generate a 30-MHz clock, you need to create clock pulses every 33.333 nsec. Starting from your system clock, you count out three 10-nsec clocks plus a 3.333-nsec delay for the first cycle. The second 30-MHz clock cycle is 66.667 nsec from the beginning, so after the sixth pulse you count out a delay of 6.667 nsec. The third clock cycle coincides with the tenth system clock pulse. In this example, the circuit controlling the time delay must switch the delay rapidly from 0 to 3.333 to 6.667 nsec and repeat.

When you need a time-delay circuit for applications such as period generation, you need circuits that can be set to new values rapidly, sometimes within one clock cycle. Designers refer to the ability to accommodate these rapid changes as “changing timing on the fly.”

Time-delay circuits contain . . .

Fig 1 shows the typical components of a time-delay IC. One input of a comparator receives a voltage ramp, typically generated using a current source to charge a capacitor. The other input to the comparator is an adjustable voltage reference that determines when the comparator will change state. A trigger input allows the current source to begin charging the capacitor. When the capacitor charges to the voltage of the reference input, the comparator...
THE POWER STRUGGLE

...IS OVER. At Unitrode Integrated Circuits, we have the right power management IC for a myriad of power supply and motor control applications. We're working smarter than ever to help our customers deliver their products with innovative solutions for the highest performance control of switching power supplies and fractional horse power DC motors. We guarantee a continued commitment to uncompromised quality. From designing your most sophisticated custom requirement, to offering you new world standards with our catalog products, no other company can offer you the circuit and application 'know-how' you need today!

PWM's
The Current Mode Leader

<table>
<thead>
<tr>
<th>Military</th>
<th>Commercial</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC1823</td>
<td>*UC1823A</td>
<td>UC3823</td>
</tr>
<tr>
<td>UC1825</td>
<td>*UC1825A</td>
<td>UC3825</td>
</tr>
<tr>
<td>UC1840</td>
<td>UC3840</td>
<td>UC3840</td>
</tr>
<tr>
<td>UC1841</td>
<td>UC3841</td>
<td>UC3841</td>
</tr>
<tr>
<td>UC1842</td>
<td>*UC1842A</td>
<td>UC3842</td>
</tr>
<tr>
<td>UC1843</td>
<td>*UC1843A</td>
<td>UC3843</td>
</tr>
<tr>
<td>UC1844</td>
<td>*UC1844A</td>
<td>UC3844</td>
</tr>
<tr>
<td>UC1845</td>
<td>*UC1845A</td>
<td>UC3845</td>
</tr>
<tr>
<td>UC1846</td>
<td>*UC1846A</td>
<td>UC3846</td>
</tr>
<tr>
<td>UC1847</td>
<td>UC3847</td>
<td>UC3847</td>
</tr>
<tr>
<td>UC1851</td>
<td>UC3851</td>
<td>UC3851</td>
</tr>
</tbody>
</table>

Improved Versions

Resonant Controllers

<table>
<thead>
<tr>
<th>Military</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC1860</td>
<td>UC3860</td>
</tr>
<tr>
<td>UC1861</td>
<td>UC3861</td>
</tr>
<tr>
<td>UC1864</td>
<td>UC3864</td>
</tr>
<tr>
<td>UC1865</td>
<td>UC3865</td>
</tr>
</tbody>
</table>

Power Factor Controllers

<table>
<thead>
<tr>
<th>Military</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>*UC1852</td>
<td>*UC3852</td>
</tr>
<tr>
<td>*UC1853</td>
<td>*UC3853</td>
</tr>
<tr>
<td>UC1854</td>
<td>UC3854</td>
</tr>
</tbody>
</table>

*Available Mid-1991

High Power FET Drivers

<table>
<thead>
<tr>
<th>Military</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC1705</td>
<td>UC1709</td>
</tr>
<tr>
<td>UC1706</td>
<td>UC1710</td>
</tr>
<tr>
<td>UC1707</td>
<td>UC1711</td>
</tr>
<tr>
<td>UC1708</td>
<td>UC3708</td>
</tr>
</tbody>
</table>

F.H.P. Motor Drivers

<table>
<thead>
<tr>
<th>Military</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC1620</td>
<td>UC3620</td>
</tr>
<tr>
<td>UC1625</td>
<td>UC3625</td>
</tr>
<tr>
<td>UC1655</td>
<td>UC3655</td>
</tr>
</tbody>
</table>

Advanced Information

UC3724	High Side Driver Pair
UC3725	High Side Driver Pair
UC3875	Phase Shifted PWM
UC3908	Load Sharing Control
UC3825A	High Frequency PWM

*Samples Available Early 1991

Look to Unitrode Integrated Circuits to provide unique solutions for your design needs. For more information contact your Unitrode Representative or call:

INTEGRATED CIRCUITS

(603) 424-2410

7 Continental Boulevard, Merrimack, NH 03054-0399 Fax (603) 424-3460

CIRCLE NO. 69
Technology Update

ATE pin electronics

For more information . . .

For more information on the pin-electronic products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN’s Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

<table>
<thead>
<tr>
<th>Company</th>
<th>Address/Direct Line</th>
<th>Access Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Devices Inc</td>
<td>851 Woburn St, Wilmington, MA 01887</td>
<td>(508) 657-7900</td>
</tr>
<tr>
<td>Comlinear Corp</td>
<td>4800 Wheaton Dr, Fort Collins, CO 80525</td>
<td>(303) 226-6500</td>
</tr>
<tr>
<td>Brooktree Corp</td>
<td>9550 Barnes Canyon Rd, San Diego, CA 92121</td>
<td>(619) 452-0090</td>
</tr>
<tr>
<td>Gigabit Logic</td>
<td>1908 Oak Terrace Lane, Newbury Park, CA 91320</td>
<td>(815) 696-9610</td>
</tr>
<tr>
<td>Pulse Instruments</td>
<td>1234 Francisco St, Torrance, CA 90502</td>
<td>(213) 515-5353</td>
</tr>
<tr>
<td>Triquint Semiconductor Inc</td>
<td>Group 700, Box 4835, Beaverton, OR 97076</td>
<td>(503) 641-4227</td>
</tr>
</tbody>
</table>

Some other specifications to watch for on time-delay circuits are how linear and monotonic the delay is. If you can measure when you have set the time delay correctly, then you don’t necessarily need a perfectly linear time delay versus voltage. As long as the time delay is monotonic, you can reach the correct value within a few trials. If you’ll be changing the time delay on the fly or don’t have a way to measure the accuracy of the setting, then linearity may be important.

Delay circuits may respond only to a rising or falling edge and output a fixed pulse, or they may delay both the rising and falling edges. Some time-delay ICs that delay both the rising and falling edges allow you to adjust the two edges independently.

You don’t need to be an ATE designer to benefit from the time-delay ICs available. Any time you need to create short, stable time delays adjustable with fine increments, you should consider time-delay ICs.

Article Interest Quotient

(Circle One)

High 503 Medium 504 Low 505

Ask EDN

The Ask EDN column serves as a forum to solve nagging problems and answer difficult questions. Address your questions and answers to Ask EDN, 275 Washington St, Newton, MA 02158; FAX (617) 558-4470; MCI: EDNBOS. Or, send us a letter on EDN’s bulletin-board system. You can reach us at (617) 558-4241 and leave a letter in the /ask_edn Special Interest Group.
Power Tool.
A Massive Commitment To Process Development.
We Engineer Materials.
We Produce Opportunities.

GE Plastics' one-of-a-kind Alpha I, combining more than seven different processes to develop the next generation of large, complex parts. Centerpiece of the massive, 120,000-square-foot Polymer Processing Development Center, the most advanced facility of its kind in the world. State-of-the-art plastics converting equipment of every type, all under one roof, all dedicated to customer application development. An unprecedented commitment from a materials supplier—only from GE.

For more information on advanced process technologies from GE, call (800)845-0600.
Surprisingly, it doesn't cost much to move into our 32-bit architecture.

You don’t need a French Provincial budget to move into the i960™ SA/SB processors. Not even close. In fact, at under $20, the i960 SA/SB processors are comparable in cost to a 16-bit system. And yet, with a full 32-bit internal architecture and a 16-bit data bus, they give you five to six times the performance of any other 16-bit embedded processors.

Or in other words, for almost nothing down you can own an impressive new home. With an architecture that’s perfect for today’s more demanding applications, such as entry-level page printers, I/O controllers, and communication products.

Naturally, when you move up to a 32-bit architecture, you want to be sure it’s a place where you can stay and grow. Which is why you’ll be happy to know that the i960 SA/SB
processors are part of a close-knit neighborhood of Intel SuperScalar i960 microprocessors. So you get software compatibility across the board as well as an easy performance path up to 100 MIPS.

And while great price performance and compatibility are important, they're not the only reasons some very important companies have already moved into the i960 line. They were also impressed with the comprehensive array of development tools and the outstanding technical support that made them feel right at home with the technology.

So when you are ready to move into the i960 SAB line, call 800-548-4725 and ask for the 960 Welcome Guide. We'll not only make the move less expensive, we'll even help you set up.
...Are Not Transient Events!

If your system prime power comes from a DC source, you know how troublesome...or even catastrophic...unpredictable overvoltage events can be. Load dumps, lightning strikes or cleared fuses result in voltage surges and high voltage transients which can exceed the voltage ratings of your power system and cause interruptions in system operation or outright system failure. How can you ensure safe, uninterrupted operation of critical equipment in the face of input source transients and surges?

Vicor Has The Solution...

Our new family of Input Attenuator Modules (VI-IAM) provides maximum protection against source transients and surges while occupying a minimum amount of valuable board space. If your prime power source is 24, 48 or 300 Volts...your output voltages are between 2 and 95 Volts...and your system has to comply with the rigorous surge and transient requirements imposed by Bellcore, British Telecom or IEC specifications, then combining a VI-IAM with standard Vicor VI-200 converters is your solution for providing up to 400 Watts of protected system power. Need more power? VI-IAM lets you expand to 800 Watts. And IAM’s small size and high efficiency—greater than 96%—perfectly complement the efficiency, density and reliability advantages of Vicor’s component-level power converters.

EMI/RFI

VI-IAM and VI-200’s are a winning combination that won’t talk back in your most demanding Telecommunications or Industrial applications...IAM’s built-in filter meets Bellcore, British Telecom and FCC/VDE specifications for EMI/RFI.

VI-IAMs Are Designed For Use With The Following Products:

VI-200 Series DC-DC Converters and Power Boosters™
- Up to 50 Watts/cubic inch
- Inputs 10 to 400 VDC
- Outputs 2 to 95 VDC
- 50 to 200 Watts
- UL, CSA, TÜV, VDE

VI-J00 Minimod™ Series DC-DC Converters
- Up to 50 Watts/cubic inch
- Inputs 10 to 400 VDC
- Outputs 2 to 95 VDC
- 25 to 100 Watts
- UL, CSA, TÜV (IEC 950)

Vicor Corporation 23 Frontage Road, Andover, MA 01810
Tel: 800-735-6200 • Tel: 508-470-2900 • Fax: 508-475-6715
Vicor GmbH Tel: 49-8031-42083 • Fax: 49-8031-45736
CAE router uses reconstruct algorithm to increase pc-board layout efficiency

The Tango family of CAE software for PCs now includes an automatic circuit board router that uses a “reconstruct” routing algorithm. The Tango-Route Pro software also performs a pass on completed pc-board layouts using manufacturing-improvement algorithms. These algorithms eliminate extra vias between layers and reduce trace lengths by angling signal routes at 45°.

The reconstruct algorithm allows Tango-Route Pro to handle circuit-layout roadblocks differently from other routers. Router software that uses traditional “rip-up and retry” algorithms removes hundreds of previously placed signals when a roadblock occurs. Such software routes the removed signals in random order on successive retries, solving roadblocks by time-consuming trial and error. Tango-Route Pro analyzes all of the previously placed signals that prevent routing a new signal and reconstructs a single blocking trace to solve routing conflicts.

The Tango router supports board designs as large as 32 x 32 in. and features a resolution of 1 mil. You can lay out boards having as many as 4000 components, 10,000 signal nets, and 256 connectors. The CAE package supports as many as 15 layers—10 signal layers, 1 power layer, 1 ground layer, and 3 miscellaneous layers.

The Tango-Route Pro software can analyze a circuit design and automatically set routing parameters such as number of layers, grid size, and even general signal direction for specific layers. You can change any settings via Tango’s standard user menus.

You can set design rules such as pad-to-pad, track-to-track, and pad-to-track on a layer-to-layer basis. The software also uses T-routes in the pc-board layout, which makes trace lengths shorter and therefore uses less copper. During the manufacturing pass, the router’s special algorithms reduce trace lengths even further.

The software saves the results of each routing pass during operation and at any user-specified interval. Therefore, you can recover from power or human interruptions and resume routes in progress. You can monitor designs in progress on screen, and check the status of operations via user menus. The router also generates a report that documents statistics pertinent to all routing passes.

The Tango-Route Pro software costs $5500 and is available now. The program runs on 80386- (with a 387 numeric coprocessor) or 80486-based computers with MS-DOS 3.3 or later and a minimum of 4M bytes of RAM. The software supports Hercules-compatible monochrome, EGA, VGA, and numerous high-resolution video cards. You must also own Tango-PCB circuit-board-layout software to use the router.

—Maury Wright

Accel Technologies Inc, 6825 Flanders Dr, San Diego, CA 92121. Phone (619) 554-1000. FAX (619) 554-1019.

Circle No. 730
Continuous-time programmable filter spans 1.5 to 15 MHz

The IMP42C55 is a continuous-time lowpass filter IC with a programmable cutoff frequency. Because the device is tailored for serial data recovery, you can also adjust the filter’s zeros, allowing you to reshape pulse signals.

The IC provides four filter elements with second-order frequency responses, called biquads. The first biquad section forms an all-pass filter for phase equalization. You can program the section’s center frequency and Q, or, if you don’t need equalization, you can program the IC to bypass the section.

The remaining sections implement a sixth-order Bessel filter with programmable cutoff frequency. Two of the sections offer programmable zeros, letting you adjust the filter’s response to rising and falling edges separately. The effect on pulse signals is to narrow the pulse while making the pulse shape more symmetric.

The 16-pin CMOS IC requires no external filter components. Instead, an on-chip, phase-locked-loop (PLL) control circuit locks onto a user-supplied reference clock to set the filter’s cutoff frequency. Because each filter section uses a transconductance amplifier, the ratio of the amplifier’s conductance to an integrating capacitor sets the filter’s pole. The PLL control circuit sets the filter’s cutoff frequency by adjusting the amplifier’s conductance ratio in two ways: changing the capacitance and changing the conductance current.

Each filter section forms its integrating capacitor from a bank of eight individually switchable capacitors. The control circuits switch in and out of the eight capacitors as needed for coarse frequency adjustments. The control circuit makes fine adjustments by injecting bias currents into the amplifiers.

The control circuit derives its intelligence from the reference clock. By feeding the clock into a master biquad and developing an error signal from the biquad’s quadrature output, the circuit can tune the master biquad to operate at the desired cutoff frequency. The same error signal tunes the four biquads in the Bessel filter, forcing them to track the master biquad. The control circuit also tracks and adjusts for IC process variations and environmentally induced drift in the amplifiers and will hold the cutoff frequency within 10% of the frequency setting.

You program the IC through a 3-input serial interface. You clock in an 8-bit serial data packet (3 bits of address and 5 bits of data), then activate a strobe line to load the data into control registers within the IC. You can also read back the value of any register on a fourth line. The filter remains operational while you enter data, allowing you to dynamically adjust the filter’s response as your signal changes.

You can vary the filter’s cutoff frequency over a range of 10:1 by programming a reference-frequency prescaler in the PLL control loop. The prescaler yields the cutoff frequency of

$$f_c = \frac{3}{2} \frac{k}{f_{REF}},$$

where $i = 1-4$ and $k = 7.17/(3.17 + n)$, and where $n = 0-7$. The IC supports a cutoff frequency between 1.5 and 15 MHz.

The IMP42C55 comes in a 16-pin, 15 DIP or 15.25 SOIC package. The filter consumes 100 mA when active and 250 µA when programmed into power-down mode. It uses TTL-compatible control lines and accepts 1V p-p analog signals. Both versions are available in sample quantities.

—Richard A Quinnell
International Microelectronic Products Inc, 2830 N 1st St, San Jose, CA 95134. Phone (408) 432-9100. FAX (408) 434-1335. TLX 499-1041.

Circle No. 732

A phase-locked loop ensures the stability of this programmable sixth-order Bessel filter IC. The lowpass filter offers a cutoff frequency ranging from 1.5 to 15 MHz.
The K324 Quad Modem

Non-stop to Europe.

We’ve thrown out all stops between your modem design and the European market.

Our new Silicon Systems K324 is the first low power single-chip Quad Modem which complies with key CCITT European standards. Pin-compatible with our proven K Series family, it is a high-performance modem IC that will significantly reduce your system cost, cut power dissipation and board space, and minimize design time.

You might even think of the K324 as the best way to upgrade to first-class capability. It’s ideal for low-power, laptop computer applications and certainly worth a call to your nearest Silicon Systems representative or distributor. Or call us for literature package CPD-5.

Silicon Systems, Inc.
14351 Myford Road, Tustin, CA 92680
Ph 1-800-624-8999, ext. 151. Fax (714) 669-8814
European Hdq. U.K. Ph (44) 79881-2331
Fax (44) 79881-2117
X-Window package provides user interface for embedded real-time applications

OS-9 real-time operating-system users can add X-Window-based graphical user interfaces to their 68000-based embedded real-time systems. The OS-9/X-Window software package provides a complete X-Window client implementation. You can use the software in OS-9-resident development environments and Unix- or MS-DOS-based cross-development applications. The X-Window implementation is compatible with a variety of networked X-Window servers, and the company offers embedded X-Server support for OS-9 and specific graphics boards.

The software package complies with the X-Window version 11 release 4 package from MIT. The product includes X-Client support including X-Window development libraries, runtime client programs, sample source code for client programs, and the MIT Tab window manager. You can expect the company to add an OSF Motif window manager to the package in the third quarter of this year.

The X-Window development libraries include Xlib (X-window library), Xt (X toolkit intrinsics library), Xaw (X athena widgets library), Xm (X miscellaneous utilities library), and Xdmcp (X display manager control protocol library). Runtime client programs enable programmers to perform system-level functions, such as initializing and starting up the X-Window package. The xterm program, for example, lets you open terminal-emulation windows.

The package includes sample source code for several X-Window-client programs including maze, xcalc, and xclock. The package also includes a Unix-compatible library, which adds OS-9 system functions that emulate Unix functions found in X-Window routines. You can therefore port applications from Unix to OS-9, and vice versa.

Initially, the package provides X-Window-server support for OS-9 systems that use the MMI-250 graphics board from Vigra Inc (San Diego, CA). The package also includes sample X-Window-server source code that users can port to other boards.

For now, users can port industry-standard windowing packages to their systems and provide operators with graphical interfaces. The development tools included in the OS-9/X-Window package simplify developing graphics-based application programs. X-Window real-time systems can operate in X-Window networks of heterogeneous systems.

All members of the OS-9/X-Window family are available now. The full X-Window client development package costs $995. You can buy the client runtime package, a runtime version ready for delivery, for $195. Full source code for the client development package costs $15,000. The server source code package costs $150.—Maury Wright
Microware Systems Corp, 1900 N W 114th St, Des Moines, IA 50322. Phone (515) 224-1929. FAX (515) 224-1352.

Circle No. 733
Introducing the wave of the future. The industry’s first and only low-noise GAL devices.

Silencing device noise with our new GAL® Quiet Series™ family.

The tide of events for CMOS-based logic is sure to change course with the introduction of our new GAL Quiet Series devices. Because now you can design high-speed logic devices without having to design out noise.

Through our advanced proprietary circuitry, we keep noise to a bare minimum. Our GTO® (Graduated Turn-on Output) circuit, which retards the output buffers, results in smoother edge rates, diminished output undershoot, and greatly reduced ground bounce (V_{OLP} max of 1.5V).

What's more, these devices utilize unique ground and power buses, which effectively isolate inputs from output noise and improve dynamic threshold.

Minimizing system noise.

Not only will our high-speed GAL QS devices improve your system performance, they'll reduce your overall system noise. And that means extraneous noises like Electromagnetic Interference (EMI), crosstalk, and ringing, the effects of which often result in false clocking.

Delivering higher speeds at 1/2 and 1/4 the power.

What more would you want in a GAL device other than high speed and low noise? Our answer is less. That's why we offer reduced-power versions of our 15ns devices. Which means now you can get half- and quarter-power GAL devices—in either 20- or 24-pin DIP and PLCC packages—that draw a max I_{CC} of 90mA and 55mA respectively at 15MHz.

Building on our Quiet Series heritage.

When we designed our low-noise GAL devices we talked to the experts. National's team of ACMOS logic designers. After all, they invented FACT Quiet Series, which is globally accepted as the quiet standard. And now standard on our new GAL devices.

Riding the crest with National.

For samples, call or write us today. And find out why our new GAL Quiet Series devices are making waves.

1-800-NAT-SEMI, Ext. 125
National Semiconductor Corp.
P.O. Box 7643
Mt. Prospect, IL 60056-7643

Quiet Series and GTO are trademarks of National Semiconductor Corporation.
GAL is a registered trademark of Lattice Semiconductor.
©1991 National Semiconductor Corporation
Microcontroller family features configurable 8- or 16-bit registers

The H8/300 microcontroller (µC) family features an 8-bit external bus and a 16-bit internal bus, although the ALU is 8 bits. The µCs' internal register scheme is a feature that makes this family unusual; under software control, you configure the 16 8-bit or 8 16-bit registers. In addition, the µCs' register-to-register operations allow each register to act as an accumulator.

Although the CPU uses an 8-bit ALU, both 8- and 16-bit adds and subtracts execute in one instruction cycle (two clock cycles). An 8×8-bit multiply and a division of 16-bit dividends by 8-bit divisors occupy seven instruction cycles. At 10 MHz, these add/subtract instructions execute in 200 nsec, whereas the multiply/divide instructions execute in 1400 nsec. The family's 57 instructions are either 2 or 4 bytes, but they aren't compatible with other µC instruction sets.

Software support, running on IBM PCs and sometimes VAX workstations, includes a real-time kernel based on the Industrial TRON (The Real-time Operating System Nucleus) specification. Ready Systems (Sunnyvale, CA) is developing another kernel, based on the VRTX-RTOS. C-language development tools are available from Avocet (Rockport, ME), Microtec Research (Santa Clara, CA), and Software Environments (Dallas, TX).

The µC family also features a fuzzy-logic compiler, developed by Togai Infralogic (Irvine, CA). Other development tools such as assemblers, simulator/debuggers, librarians, and ICEs are available from Hitachi or third-party developers.

The 10-MHz H8/310 includes 8k bytes of EEPROM, 10k bytes of masked ROM, 256 bytes of RAM, and a 1-bit I/O pin. The pin enables fast data transmission and prevents serial ports, four external interrupts, and 16 internal interrupts. These µCs are available in 6-, 8-, and 10-MHz versions. Prices range from less than $9 (OEM qty) to $14.25 (100).

The H8/330 µC includes an 8-bit, 8-channel ADC; 16k bytes of masked ROM or one-time-programmable EPROM; 512 bytes of RAM; 15 bytes of dual-port RAM; an 8-bit, a 16-bit, and two PWM timers; and a serial port. The controller also offers 27 interrupt sources, 9 of which are external. These µCs cost less than $10 (OEM qty) and $17.45 (100). Samples of the 310, 320, and 330 devices are currently available.

Samples of the high-end 350 µC won't be available until later this year. The chip contains an 8-bit, 16-channel ADC; 32k bytes of masked ROM or one-time-programmable EPROM; and 512 bytes of RAM. It features one 19-bit, two 16-bit, two PWM, and six 8-bit timers. Under software control, you can configure these timers in many ways. This model offers 56 interrupts, 9 of which are external. Depending on quantity, these devices cost $15 to $25.

—Michael C Markowitz
Hitachi America, Semiconductor and IC Div, 2000 Sierra Point Pkwy, Brisbane, CA 94005. Phone (800) 448-2244.

Circle No. 734
We put our
ER Series 300W power supplies
on a strict diet!

And the results are amazing! Weight down from 35 lbs. to 18 lbs. over the older WG Series. Panel height down from 5 inches to 3.5 inches. They perform better too! Ripple is reduced from 0.15% to 0.03% RMS of rated voltage at full load. And with no increase in price!

The ER Series is available in eleven output ranges, from 0 to 2 KV through 0 to 75 KV, and three panel versions...analog voltage and current meters, digital readouts, or a blank panel for OEM/system applications. All feature full remote control facilities including voltage and current program/monitor terminals, TTL high voltage enable/disable, safety interlock terminals, and a +10 V reference source.

Try one in your next application. You'll find it slim, trim and rarin' to go!

Glassman High Voltage Inc.
Route 22, Salem Industrial Park, PO Box 551
Whitehouse Station, NJ 08889
Telephone (201) 534-9007, TWX 710-480-2839
FAX (201) 534-5672
ADC betters predecessor in speed, sampling, and cost

The AD1674 pin-compatible ADC from Analog Devices includes a S/H amplifier and is four times faster than the company’s AD574A converter. The guaranteed conversion rate of the $18 (100), 12-bit ADC is 10 µsec. In stand-alone mode, the device has the same interface requirements as the AD574A and AD674A converters; in full-control mode, slight control-timing modifications are required.

The ADC’s internal S/H amplifier avoids problems that are common to other auto-zeroing amplifiers by performing secondary sampling at the output. The additional sampling reduces hold-mode settling time, resulting in a 1-µsec acquisition time, a full-power bandwidth of 1 MHz, and 12-bit performance over the -55 to +125°C temperature range.

The monolithic ADC also includes a 10V reference, a clock, and 3-state output buffers. The device’s dc specifications include an integral nonlinearity of ±1/2 LSB and no missing codes at 12 bits. The company tests and specifies the device for ac performance. The converter has a minimum signal-to-noise and distortion ratio of 70 dB, a maximum total harmonic distortion of -82 dB, and a maximum intermodulation distortion of -80 dB.

The converter’s power-supply requirements are either 5 and ±12V or 5 and ±15V. Bus access time is typically 75 nsec, 150 nsec max. The device uses laser-trimmed scaling and offset resistors to provide four calibrated input ranges: 0 to 10V, 0 to 20V, ±5V, and ±10V.

<table>
<thead>
<tr>
<th>Features</th>
<th>AD574A</th>
<th>AD674A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum conversion time</td>
<td>35 µsec</td>
<td>10 µsec</td>
</tr>
<tr>
<td>Resolution</td>
<td>12 bits</td>
<td>12 bits</td>
</tr>
<tr>
<td>Internal S/H Amplifier</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Minimum signal/noise + distortion ratio</td>
<td>Unable to specify</td>
<td>70 dB</td>
</tr>
<tr>
<td>Pin and package</td>
<td>28-pin DIP and SDIC</td>
<td>Pin and package compatible with AD574A</td>
</tr>
<tr>
<td>Maximum power consumption</td>
<td>725 mW</td>
<td>575 mW</td>
</tr>
<tr>
<td>Price (100)</td>
<td>$22.60</td>
<td>$18</td>
</tr>
</tbody>
</table>

The converter is available in five different grades specified over three temperature ranges of 0 to 70°C, -40 to +125°C, and -55 to +125°C. The converters come in 28-pin plastic DIPs and SOICs and 28-pin ceramic DIPs.

Anne Watson Swager
Analog Devices Inc, 181 Ballardvale St, Wilmington, MA 01887. Phone (617) 397-1428. FAX (617) 326-8703. Circle No. 731

ASK EDN
Have you been stumped by a design problem? Are you having trouble locating parts? Ask EDN.

The Ask EDN column serves as a forum to solve nagging problems and answer difficult questions. Address your questions and answers to Ask EDN, 275 Washington St, Newton, MA 02158; FAX (617) 558-4470; MCI: EDNBOS. Or, send us a letter on EDN’s bulletin-board system. You can reach us at (617) 558-4241 and leave a letter in the /ask_edn Special Interest Group.
With the development of the new Enhanced Serial Communication Controller (ESCC2), Siemens has demonstrated a new genius in high-speed multi-protocolling. The ESCC2 (SAB 82532) offers an extraordinary range of protocol options at a high-speed transfer rate of up to 10 Mbit/sec in synchronous mode. Supporting X.25 LAPB, ISDN, LAPD, HDLC, SDLC, and both ASYNC and BISYNC, the ESCC2 offers outstanding capabilities for a wide variety of applications. And it is as adaptable as it is powerful. The ESCC2's flexible 8/16-bit bus interface allows it to easily adapt to either Intel or Motorola microprocessors. Plus, it provides direct 8/16-bit accessibility to all registers, as well as DMA and both vectoring and non-vectoring interrupt modes. This ensures efficient data transfer to and from host system memory, for fast, accurate and reliable multi-protocolling.

For superior performance and flexibility, the ESCC2 features clock recovery up to 4 Mbit/sec, storage capability of 64 bytes in each of its four on-chip FIFOs and four encoding schemes: NRZ, NRZI, FMx and Manchester. In addition, it offers user-programmable features such as 16/32-bit CRC, time slot assignment, and an 8-bit parallel port. The result is an excellent CMOS device with only 40 mW power consumption for all kinds of multi-protocol applications.

For more information on the ESCC2, or to find out how you can receive your inexpensive PC-based evaluation kit (EASY532), call 800-456-9229, or write: Siemens Components, Inc. 2191 Laurelwood Road Santa Clara, CA 95054-1514 And put the communications genius of Siemens to work for you.
Challenging the limits of is the core of our success

For NCR, it's defined by the very things that drive our industry. The changing technology that is the core of what we do. And people who join you in a partnership and provide service that actually exceeds customer expectation.

Because our designers avidly pursue new ideas, they can help make the complex a bit simpler.

And when your challenge is to design a system that goes beyond known boundaries – they will provide myriad resources to help you push that design to the limit.

Those resources include industry-leading products like mixed-signal ASICs, Ethernet and SCSI, already considered standards. Or, when your latest design requires a custom solution, these products become the cores for unique devices – providing ever-increasing levels of integration in ever-decreasing space. Moreover, because you can design systems to higher levels of abstraction... you're free to explore a universe of limitless applications... and still save time, money and reduce the...
risks associated with new product introductions.

And your design, when completed, will test and perform exactly as agreed. After all, your success, and ours... depends on it.

For more information, call NCR Microelectronics Division: 1-800-334-5454.
TE-158 Telephone Control Card:
Take total control over your telephone communication. Direct telephone line interface gives you control over line connect/disconnect, touch-tone decoding and encoding, and detects call progress. Set your computer to dial out automatically, to keep trying if busy signal, control voice synthesizer, tape recorder with complete in/out capability. FCC approved.

Relay Card:
8 individually controlled industrial relays. 5A at 120VAC, SPST.

RE-140: $142

8 Bit A to D:
8 Analog inputs.
0.5-1.5V, 20mV steps.
7500 readings/sec.

AD-142: $142

Temperature Sensor:
Range 0-200°F. 10mV/°F Resolution with AD-142.

TS-111: $12

Digital Input:
8 opto-isolated inputs. Read voltage presence or switch closures.

IN-141: $65

Latched Digital Input:
8 opto-isolated inputs. Each input individually latched to catch switch closures and alarm loops.

LI-157: $85

Smart Quad Stepper Controller:
On board microprocessor controls four motors simultaneously. Uses simple commands like “MOVE ARM 10.2 (INCHES) LEFT”. Set position, ramping, speed, units. Many inputs for limit switches etc. Stepper motors available.

SC-149: $299

NEW
FA-154 High Speed 12 Bit A/D Converter:
Blinding speed at low cost! Convert at 10 μs. Eight input channels accepting 0-5V signals. Special onboard variable gain amplifier lets you read signals less than 1LSB (1.2μv).
For value combined with speed in data acquisition and signal processing, this converter leads the pack!

FA-154: $179.00

Temperature Sensor:
Range 0-200°F. 10mV/°F Resolution with AD-142.

TS-111: $12

Digital Input:
8 opto-isolated inputs. Read voltage presence or switch closures.

IN-141: $65

Latched Digital Input:
8 opto-isolated inputs. Each input individually latched to catch switch closures and alarm loops.

LI-157: $85

Smart Quad Stepper Controller:
On board microprocessor controls four motors simultaneously. Uses simple commands like “MOVE ARM 10.2 (INCHES) LEFT”. Set position, ramping, speed, units. Many inputs for limit switches etc. Stepper motors available.

SC-149: $299

NEW
FA-154 High Speed 12 Bit A/D Converter:
Blinding speed at low cost! Convert at 10 μs. Eight input channels accepting 0-5V signals. Special onboard variable gain amplifier lets you read signals less than 1LSB (1.2μv).
For value combined with speed in data acquisition and signal processing, this converter leads the pack!

FA-154: $179.00

24 line TTL I/O:
Connect 24 signals, TTL 0/5V levels or switches. (B255A)

DG-148: $72

DA-147: $149

D/A converter:
4 Channel 8 Bit D/A converter with output amplifiers.

AN-146: $153

A-Bus Adapters:
IBM PC/XT/AT & compatibles.

AR-133: $69

MicroChannel Adapter:
Parallel Adapters also available for Apple II, Commodore 64, TRS-80.

AR-170: $93

Serial Processors:
Built in BASIC for off-line monitoring, logging, decision making.

SP-127: $189

These products work with IBM PC, Apple II, Commodore and Tandy, etc. Our serial interfaces let you use any computer with an RS-232 port.

For a complete list of products and pricing, please refer to the catalog in the back of the magazine.
Propel your portable product to the top

with NEC's single-chip EIA-232-D line driver/receiver, featuring a single +5V power supply and more.

Before you weigh your portable down with a multi-chip set that requires multiple power sources, consider this: NEC has a single-chip CMOS EIA-232-D (RS-232C revised version) line driver/receiver that does everything you need with a single +5 volt power supply.

The µPD471X family integrates a DC-DC converter with up to 5 drivers and receivers, all on a single chip. And it gives you a standby mode to further reduce power consumption.

Our streamlined solution improves performance, too. The drivers have a hold feature that eliminates terminal malfunctions caused by turning power on or off. The receivers can choose between two threshold voltage levels to reduce error rates in high-speed synchronous transmission. And you can connect or disconnect while power is on because we've put an end to latch-up problems.

Designers of successful portable products face a constant struggle to reduce system size, weight, complexity and power consumption. Our single-chip CMOS EIA-232-D line driver/receiver does just exactly that. For more information, contact NEC today.

<table>
<thead>
<tr>
<th>Device</th>
<th>Driver</th>
<th>Receiver</th>
<th>Standby mode</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>µPD4711A</td>
<td>2</td>
<td>2</td>
<td>o</td>
<td>20-pin DIP/SOP</td>
</tr>
<tr>
<td>4712A/B</td>
<td>4</td>
<td>4</td>
<td>o</td>
<td>28-pin DIP/SOP</td>
</tr>
<tr>
<td>4713</td>
<td>3</td>
<td>3</td>
<td>o</td>
<td>24-pin DIP/SOP</td>
</tr>
<tr>
<td>4714</td>
<td>3</td>
<td>5</td>
<td>o</td>
<td>28-pin DIP/SOP</td>
</tr>
<tr>
<td>4715</td>
<td>5</td>
<td>3</td>
<td>o</td>
<td>28-pin DIP/SOP</td>
</tr>
</tbody>
</table>

For fast answers, call us at:
USA Tel: 1-800-632-3530. Fax: 1-800-729-9288. Germany Tel: 0211-650302. Telex: 8569960.
The Netherlands Tel: 040-445-845. Telex: 51923.
Spain Tel: 1-419-4150. Telex: 41316. Italy Tel: 02-6709108. Telex: 315355.
UK Tel: 0908-691133. Telex: 926781. Ireland Tel: 01-6754200. Fax: 01-6754081.
Hong Kong Tel: 755-9098. Telex: 64501. Taiwan Tel: 02-719-2377. Telex: 22372.

CIRCLE NO. 71
Deciding how to implement a cache is like buying a car: after you decide which car, you have to choose the color, leather or cloth upholstery, power or crank windows, whether you want a big engine or better economy, and more. Like buying the car, your cost and the system’s performance is highly dependent on your selections.

Most high-performance systems can benefit from cache memory. However, designing one isn't trivial; to avoid wasting your precious cash, you need to know how and why the cache works.

Michael C Markowitz, Associate Editor

A cache is a small, fast, and, therefore, more expensive memory that acts as a buffer between a device that uses large amounts of memory and its large, slow, and less expensive main memory. The cache's purpose is to reduce average memory-access time. This reduction is achieved by maximizing the probability of finding a memory reference in the cache (the hit rate), minimizing the access time to information that is in the cache, and minimizing the penalty of accessing data that is not in the cache. Generally, caches fit between CPUs and main memory; however, they can also operate between main memory and the computer's disk drives (see box, "Caches crush disk access times").

Caches are effective because of two properties of software programs: spatial and temporal locality. Spatial locality asserts that because programs are generally composed of subroutines and procedures that execute sequentially, they often use data and instructions whose addresses are proximate. Temporal locality recognizes that since many programs contain loops and manipulate data arranged in lists and arrays, recently used information is more likely to be reused than older information.

Since a cache operates by anticipating data- and instruction-location accesses in memory, you would expect that large caches offer greater performance than small caches. Generally this is true; however, several factors may blunt or invalidate the gains expected by increasing cache size. First, you can expect diminishing returns as you incrementally increase the size of your cache. Where adding a 16k-byte cache might offer dramatic performance improvement over a system with no cache, doubling the cache to 32k bytes could add only half as much performance (Table 1). Then, application software and architectural considerations may limit the gains of a cache.

Consider how the µP and the cache work with the memory subsystem during read operations. Without a cache, when the µP needs data, it makes a request to the dynamic RAM (DRAM). It then waits while the DRAM (whose 65-nsec access times are considered high speed) accesses the data and puts it on the bus. With a cache, the µP asks 10 to 25-nsec static RAMs (SRAMS) for the data. The cache controller checks to see
if the cache-data SRAM has the data. Tags, or partial addresses stored in the cache-tag SRAM, tell the cache controller whether or not the cache contains the requested data. If the data is in the cache—a hit—the controller sends the data to the µP. If the data isn’t in the cache—a miss—the µP must get it from the DRAM.

Caches can wait for the cache controller to indicate a miss before instigating a DRAM access. These serial caches are called look-through caches. Alternatively, parallel, or look-aside, caches access DRAM and cache-data SRAM concurrently. If the controller finds its data in the cache, it aborts the DRAM access cycle. Look-aside caches are easier to
A cache subsystem consists of a memory to store data, a way to catalog the data, and a controller that acts as a traffic cop.

design and offer faster memory-subsystem performance, but tie up the memory bus during all memory accesses. As a result, DMA and other attempts to use the memory must stall the CPU. Look-through caches pay higher cache-miss penalties and are more complex, but they only use the memory bus during cache misses. If your cache has a hit rate of more than 90%, these penalties may be a minuscule por-

Caches crush disk-access times

Accessing information from a hard disk takes tens of milliseconds, where main-memory reads take hundreds of nanoseconds. Therefore, a disk cache can greatly improve system performance, especially in I/O-intensive system applications and in systems with small main memories. In designing a system, you must match your disk subsystem and cache design to your choice of operating system, host bus, and host architecture.

You can choose to add a disk cache in several forms. You can use SCSI- or IDE-disk drives that include embedded controllers and typically include a cache on the controller. Some manufacturers of intelligent SCSI host-bus-adapter boards include a cache. Likewise, manufacturers offer caching host-bus-resident controller boards for device-level-interface St-506/412 and ESDI drives. And you can choose to dedicate a portion of your system's main memory as a disk cache.

SCSI and IDE drives use 32k- to 256k-byte read-ahead caches to prefetch data that the system will likely request soon. The onboard controller simply continues to read sequential data after satisfying a system I/O request and therefore depends on the theory of spatial locality to operate efficiently. Quantum Corp (Milpitas, CA (408) 432-1110) pioneered the idea of an on-drive cache and offers among the most comprehensive on-drive cache designs.

You can create more than ten active cache segments on Quantum drives via an operating-system driver—essentially the equivalent of making a main-memory cache set-associative. Multiple segments ensure a greater hit rate in multitasking systems. Quantum's drives can also continue to prefetch data while servicing an I/O request from previously cached data. The drives use a least-recently-used algorithm to flush data when segments become full.

A cache-based drive can respond to a read request in less than 5 msecs on hits compared with typical seek and latency delays of 20 to 50 msecs on misses. Companies such as Data Technology (Milpitas, CA (408) 262-7700) perform similar prefetch operations with its host-resident controller boards for use in IBM-compatible PCs. The company's boards use an algorithm that evaluates recent disk accesses to predict whether future accesses are sequential or random.

You do not need a special operating-system driver for better performance from caches on drives, controller boards, and host adapter boards. But, all of these techniques require a 1- or 2-stage movement of data from the cache to main memory. In all three cases, the data is transferred across a system bus. SCSI-based systems must also transfer data across the SCSI bus, incurring delays from bus arbitration and the data transfer. Such caches, therefore, eliminate the electromechanical delays of disk drives, but still suffer from some overhead.

Main-memory caches simply set aside a partition of memory for disk caching. Such caches typically don't perform prefetch operations, but operate on the temporal-locality theory that the system will request once-used data again. Caches in main memory incur the least overhead on hits because retrieving the data requires only a memory-to-memory block move. But either your operating system or an application program must control a main-memory cache.

In IBM-compatible PC designs, you must consider the delays caused by a relatively slow system bus compared with an operating system that doesn't have cache support. Drive- and board-resident caches provide the simplest integration path and don't infringe on the limited 640k-byte main-memory map of MS-DOS. However, main-memory cache programs, such as PC-Kwik from Multisoft Corp (Beaverton, OR (503) 644-5644), can perform better and don't use much of your 640k bytes when run in expanded or extended memory.

The Unix operating system, conversely, includes a main-memory cache by design. And many Unix gurus believe that money for extra memory is best spent increasing main-memory size rather than adding auxiliary caches. Others think the combination of a drive-based cache with the main-memory cache provides the best performance, because the two caches operate differently.—Michael C Markowitz and Maury Wright
tion of overall system performance.

If the data that the µP needs isn't in the cache, the microprocessor gets the data from slower main memory. Since temporal locality suggests that this data is likely to be needed again, while the CPU is accessing this data, the cache is also putting the requested data into its data SRAM. Spatial locality implies that nearby information will also be needed, so the cache also requests and stores several additional bytes of information. The cache needs to keep an inventory of its contents so that it can react the next time the processor asks for this data. The tag SRAM keeps the list of information by using a portion of the requested data's high-order address, called the tag.

The number of bits in the tag depends on how big the tag RAM is, how big the cache is, and the block or line size of the cache. A block, or line, is the minimum number of bits of code or data that move between main memory and cache during a transfer. Although spatial locality recommends larger block sizes, your design must balance the block size against the time and bandwidth it takes to transfer the data on the memory bus.

In order to indicate a match, logic compares each tag to the appropriate bits from the requested data. The amount of comparison logic depends on the cache's mapping policy. Allowing any block of data to map to any location in the cache demands that you compare each block's tag to the requested tag. As a result, either you need a small cache, large block sizes, or fast comparison logic to build a cache that fully associates memory with the cache. In addition to the comparison logic, you also need logic to determine which data to replace, called the replacement policy, determines which information in the cache is least valuable and can be overwritten by new information.

Comparison and replacement logic isn't the only consideration with mapping policy. At the other extreme from a fully associative cache is one that maps each location in memory to only one location in the cache—a direct-mapped (or 1-way set-associative) cache. If the system executes a program that loops between two addresses that map to the same cache location, every memory access will be a cache miss. As a result, the computer will thrash, continually overwriting data that the cache will actually need with data its algorithms think it will need.

Table 1—Cache hit rates

<table>
<thead>
<tr>
<th>Cache configuration</th>
<th>Hit rate (%)</th>
<th>Cache size (bytes)</th>
<th>Associativity</th>
<th>Line size (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>1k</td>
<td>Direct</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>8k</td>
<td>Direct</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>16k</td>
<td>Direct</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>32k</td>
<td>Direct</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>32k</td>
<td>Two-way</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>64k</td>
<td>Direct</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>64k</td>
<td>Two-way</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>64k</td>
<td>Four-way</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>128k</td>
<td>Direct</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>128k</td>
<td>Two-way</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>32k</td>
<td>Direct</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>64k</td>
<td>Direct</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>64k</td>
<td>Two-way</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>128k</td>
<td>Direct</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

EDN April 25, 1991
Read operations occur more frequently than write operations, therefore it makes sense to optimize your cache for reads.

You can limit the amount of comparison and replacement policy logic by restricting where data can go in the cache. For example, if you only allow data at a particular address in the DRAM to map to four locations in the cache, you need only compare four tags to the requested tag. If a cache miss occurs, you load the new information into one of the four possible sites. Restricting the mapping locations to one or two further reduces the complexity of the design.

A fully associative cache won’t thrash because it uses a replacement policy that saves recently used data and instructions. The disadvantage of a fully associative cache is its cost. A cache that minimizes thrashing, but doesn’t use as much comparison logic, restricts data in memory to a finite number of banks, called ways, in the cache. Generally, the performance improvement of building a system containing more than four ways is not worth the added complexity of the design. A 2-way set-associative cache allows each location in memory to map to two locations in the

Table 2—Representative ICs and chip sets for cache-based systems

<table>
<thead>
<tr>
<th>Company</th>
<th>Part number</th>
<th>Part type</th>
<th>Features</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT&T Microelectronics</td>
<td>7C180 and 7C174</td>
<td>Cache-tag SRAM</td>
<td>4kx4-bit memory with 10- to 25-nsec access times. 8kx8-bit memory with 12- to 25-nsec access times.</td>
<td>$22.85/28.10 (100) for 10/12 nsec DIPs</td>
</tr>
<tr>
<td></td>
<td>7C183 and 7C157</td>
<td>Cache-data SRAM</td>
<td>8kx16-bit memory with 25- to 45-nsec access times. 16kx16-bit latched, self-timed memory with 20- to 33-nsec access times.</td>
<td>$22 (100) for 25-nsec DIPs $74.90 (100) for 20-nsec PLCCs</td>
</tr>
<tr>
<td>Austek Microsystems</td>
<td>A38202SX and A38202</td>
<td>Cache controller with integrated tag RAM</td>
<td>Supports 16k- to 64k-byte (SX) or 32k- to 128k-byte, two-way set-associative or direct-mapped, write-through caches.</td>
<td>$31.74 (1000) for 20-MHz A38202SX $57.01 (1000) for 33-MHz A382022</td>
</tr>
<tr>
<td>Chips and Technologies</td>
<td>Peak/sx</td>
<td>Chip set with cache controller for 80386sx-based systems</td>
<td>Supports 16k or 32k bytes of cache with a programmable two-way set associative or direct-mapped, write-through cache.</td>
<td>$69 (1000)</td>
</tr>
<tr>
<td></td>
<td>Peak/DM</td>
<td>Chip set with cache controller for 80386sx-based systems</td>
<td>Supports as much as 256k bytes of direct-mapped cache.</td>
<td>$64 (1000) for 25-MHz set $78.20 (1000) for 33-MHz set</td>
</tr>
<tr>
<td>Cypress Semiconductor</td>
<td>7C064</td>
<td>Cache tag, controller, and memory-management unit</td>
<td>Provides control for 64k-byte direct-mapped cache for Sparc. 604 is uniprocessor version and 605 (due late '91) supports multiple processors.</td>
<td>$431 (100)</td>
</tr>
<tr>
<td></td>
<td>7C157</td>
<td>Cache data SRAM</td>
<td>16kx16-bit SRAM that offers a self-timed write mechanism and latched data inputs and outputs.</td>
<td>$83 (100)</td>
</tr>
<tr>
<td>Elite Microelectronics</td>
<td>Eagle</td>
<td>Chip set with cache controller and tag RAM for 386- and i486-based systems</td>
<td>Supports 32k to 128k bytes of two-way set-associative or direct-mapped, buffered write-through cache. Also includes DRAM controller for efficient DRAM refresh and memory access.</td>
<td>$168 (1000) for 33-MHz set</td>
</tr>
<tr>
<td>Eteq Microsystems</td>
<td>Cougar</td>
<td>Chip set with cache controller and tag RAM for 386- and i486-based systems</td>
<td>Supports 16k to 512k bytes of direct-mapped, buffered write-through cache. Also includes DRAM controller for efficient DRAM refresh and memory access.</td>
<td>$33 (1000) for 33-MHz set</td>
</tr>
<tr>
<td>Fujitsu Microelectronics</td>
<td>MB8299-25</td>
<td>SRAM</td>
<td>32kx9-bit SRAM with 12-nsec output enable access time, 25-nsec memory access time.</td>
<td>$17.50 (10,000)</td>
</tr>
<tr>
<td>Integrated Device Technology (IDT)</td>
<td>71589</td>
<td>Cache-data SRAM</td>
<td>32kx9-bit SRAM that offers a burst mode that can be synchronized to the CPU, and a synchronous write capability.</td>
<td>$79.25 (100) for 33-MHz version</td>
</tr>
<tr>
<td></td>
<td>71B256, 61B238, and 71B258</td>
<td>BiCMOS SRAM</td>
<td>32kx8- and two 64kx4-bit SRAMs. 5- to 6-nsec output enable times and 12- to 15-nsec address access times.</td>
<td>$69.25 (100) for 15-nsec '256 $86.75 (100) for 12-nsec '296 and '258</td>
</tr>
<tr>
<td>Intel</td>
<td>82395SX and 82395DX</td>
<td>Integrated controller, tag and data SRAM</td>
<td>8k- (SX) and 16k- (DX) byte—cascadable to 64k bytes—four-way set-associative, cache that uses a pseudo-least-recently-used replacement policy and has a 16-byte line size.</td>
<td>$44 (100) for 20-MHz SX devices $90/100 (1000) for 25/33-MHz DX devices</td>
</tr>
<tr>
<td>Matra Design Semiconductor</td>
<td>C395e/C415</td>
<td>i386- and i486-based chip set with controller and tag SRAM</td>
<td>Supports 32k- to 256k-byte and 128k- to 256k-byte, two-way set-associative, four-way set-associative, or direct-mapped caches with copy-back or write-through policies.</td>
<td>$60/72 (10,000) for 25/33-MHz C395e sets $99/119 (10,000) for 25/33-MHz C395e/C415 sets</td>
</tr>
</tbody>
</table>
cache. Similarly, a 4-way set-associative cache maps each memory location to four locations in cache. Conceptually, each way is a page, and each location in memory can map to only one location on a page.

Choosing which location on the page to map the data to is the function of the replacement policy. A 2-way cache often uses a least-recently-used (LRU) policy to decide which of the two memory locations to overwrite. An extra bit at each location tracks accesses and keeps the data that was most recently needed.

Guess which data you won’t need

A 4-way set-associative cache offers more replacement alternatives. Random replacement is the simplest to implement, though using such a policy may violate temporal locality. First-in, first-out (FIFO) replacement stacks all of the information in the cache and deletes the oldest—even if it is the most recently used. A variation of the LRU policy, called not-most-recently-used or pseudo-LRU, recognizes the importance of temporal locality and the logic efficiency of random replacement by tracking and protecting the most recently used information and randomly overwriting the information at the appropri-

<table>
<thead>
<tr>
<th>Company</th>
<th>Part number</th>
<th>Part type</th>
<th>Features</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micron Technology</td>
<td>56C0816 and 56C2816</td>
<td>i386- and i486-compatible cache-data SRAM</td>
<td>8x16- and 8x18-bit SRAMs that include address latch and multiplexing between two RAM banks.</td>
<td>$15.71 (1000)</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>M5M51014, M5M51001, M5M5155, and M5M5180</td>
<td>SRAM</td>
<td>25-nsec, 1Mx4-bit SRAM, available in June. 25-nsec, 1Mx4- or 256kx4-bit SRAM. June delivery. 15-nsec, 64kx4-bit SRAM with OE. June delivery. 20-nsec, 8x8-bit SRAM with OE.</td>
<td>$85 $85 $25 $10</td>
</tr>
<tr>
<td>Mosel</td>
<td>MS441</td>
<td>Integrated cache controller for i386- and i486-based systems</td>
<td>Uses two concurrent 386486 bus controllers along with dual-port memories to allow background write back while read and write cache hits continue. Supports 2k-block, 64k-byte, two-or one-way set associative cache.</td>
<td>$65 (10,000)</td>
</tr>
<tr>
<td></td>
<td>MS443</td>
<td>Dual-port burst SRAM</td>
<td>16kx9-bit, dual-port SRAMs with parity, input and output registers to buffer bursting and memory accesses.</td>
<td>$9 (10,000)</td>
</tr>
<tr>
<td>Motorola</td>
<td>62486, 62940, and 62950</td>
<td>Application-specific SRAM</td>
<td>32kx9-bit memories for memory subsystems for 80486, 88840, and Sparc microprocessors.</td>
<td>$57.20 (500)</td>
</tr>
<tr>
<td></td>
<td>4180</td>
<td>Cache-tag SRAM</td>
<td>4x4x8-bit 18-nsec tag SRAM.</td>
<td>$10.40 (500)</td>
</tr>
<tr>
<td>NEC Electronics</td>
<td>46710 and 46741</td>
<td>BICMOS SRAM for R3000-based systems</td>
<td>8x20-bit x2-bank and 16kx20-bit x2-bank memories with address latches and 15-nsec access times.</td>
<td>$45 (1000)</td>
</tr>
<tr>
<td>Quality Semiconductor</td>
<td>8885, 8886, and 8888</td>
<td>SRAM</td>
<td>All CMOS 16kx4-bit SRAMs with access times as fast as 10 nsec. '85 has 2 CSs, '86 offers OE; both with separate I/O lines. '88 has common I/O.</td>
<td>$30.54 (1000)</td>
</tr>
<tr>
<td>SGS Thomson</td>
<td>41S80, 48574/90, and 4202</td>
<td>Cache-tag SRAM</td>
<td>4x4- , 6kx8- , and 2kx20-bit memories with address-compare access times as fast as 12 nsec. Used to design 32k- to 128k-byte caches.</td>
<td>$13 (1000)</td>
</tr>
<tr>
<td>Silicon Connections</td>
<td>SC5204 and SC4109</td>
<td>SRAM and self-timed RAM</td>
<td>5204 is an 8-nsec, 256kx4-bit BICMOS RAM. 4108 is a 5-nsec, 64kx9-bit self-timed RAM. Both available third quarter of 1991.</td>
<td>$330 (1000)</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>2155, 2163, and 2164</td>
<td>Cache-tag SRAM</td>
<td>2kx8- (2155) and 16kx5-bit cascadable SRAMs with 3-state (2163) or open Drain (2164) Match Output. The 2155 supports the 68030 burst-fill capability.</td>
<td>$19.58 (10,000)</td>
</tr>
<tr>
<td>Toshiba America</td>
<td>55187 and 55188</td>
<td>Cache-data SRAM</td>
<td>2kx8-bit SRAMs. Configurable for either direct-mapped or 2-way set-associative caches. Control logic for 2-way cache is on-chip Memory access time of 20, 25, and 30 nsec.</td>
<td>$11 (1000)</td>
</tr>
<tr>
<td>VLSI Technology</td>
<td>82C325 and 82C335</td>
<td>Cache-controllers (these devices are part of 386SX- and DX-based chip sets)</td>
<td>Supports as much as 32k bytes (325) and 64k bytes (335) of cache memory with look-aside, write-through architectures. Implements 2-way set-associative cache with least-recently-used replacement.</td>
<td>$40 (500)</td>
</tr>
</tbody>
</table>
Cache design

Different ways to maintain temporal locality.

Replacement, mapping, and look-through or look-aside architectures are all related to memory-read operations. Because in most applications, memory reads account for the majority of memory accesses, you are wise to prioritize your design to speed read operations. However, don’t ignore memory writes.

If the data is in the cache when the CPU tries to write data to memory, you have two alternatives. The simplest approach is to write the data to both the cache and main memory. This write-through approach ensures data coherency between cache and memory. The penalty for using a write-through scheme is the wait states that the DRAM controller imposes as a result of the write operation. You can attenuate this penalty somewhat by using a buffer that writes the data from the cache to the memory, relieving the CPU of that responsibility.

Snooping maintains coherency

Copy back is a more complicated scheme for writing information to cache and main memory. This technique maintains a bit that stores the coherency of the cache and DRAM memory. If the data is inconsistent, or dirty, then whenever the cache controller decides to overwrite the dirty location, it must first copy the valid data back to the DRAM. Similarly, if another device requests the data from the DRAM, the cache controller must monitor, or snoop, the bus to copy back the dirty data to the DRAM before the DRAM supplies that data to the other device. (For a detailed discussion of snooping and cache coherency, see “Protocols keep data consistent,” EDN, March 14, 1991, pg 41.)

Deciding what to do on a write operation that causes a cache miss is more difficult than deciding what to do when a write operation results in a cache hit. Temporal locality suggests that information read from a cache once is likely to be read again. Equivalency would suggest that an address recently written to is likely to be accessed again. However, reading recently written information is application dependent and is generally not as common as rereading memory locations you recently read. In addition, write operations consume a small percentage of a system’s operating time.

Two-way set-associative caches (a) are more complex than direct-mapped caches (b), and as a result, cost more. However, 2-way set-associative caches perform better.
Globally Connected.

Siemens provides computer and peripheral manufacturers with a worldwide connection for state-of-the-art integrated circuits.

Siemens is building on a tradition of innovation with state-of-the-art technology in the workplace. And we back it with worldwide service and support, providing a global partner for all your system designs.

For applications such as laptop PCs, printers and disk drives, which require lower power consumption, we offer CMOS 8-bit microcontrollers based on the 8051 architecture. Like the SAB80C537, with advanced features such as 16-bit hardware multiply/divide, and 8 data pointers.

We're also the only European DRAM manufacturer, providing high-quality 1-Mb and 4-Mb DRAMs. In fact, we're one of the world's leading suppliers, with DRAMs available worldwide, in volumes which have doubled since 1989. And we're continuing to advance this technology with our 16-Mb and 64-Mb DRAM programs.

Siemens has a wide range of ICs for PCs. Our powerful 80286 microprocessors include a super-fast 16 MHz design. And we provide the 82C206 and the NEAT® chipset for optimized, low-cost solutions.

Plus, Siemens offers an extensive line of CMOS ASIC devices.

For innovative solutions for computer and peripheral manufacturers, Siemens is the best connection you can make.

For details, call (800) 456-9229, or write:

Siemens Components, Inc.
2191 Laurelwood Road
Santa Clara, CA 95054-1514

Ask for literature package M14A013.
Cache design

Caches that load themselves with written data on cache misses are called allocate write. To save logic, you can design a nonallocate-write cache, which doesn't load written data to cache on a miss. The incremental performance improvement of an allocate-write cache may not be worth the effort.

Overemphasizing reads is an effective strategy except when the CPU contains an onboard cache. These generally small caches, called primary caches, already intercept a large percentage of read requests. A secondary cache optimized for read operations is a superset of the on-chip primary cache. As a result, a secondary cache is somewhat redundant and provides a smaller return on your memory and cash investment.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Look-aside</th>
<th>Look-through copy back</th>
<th>Look-through write through</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read hit</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Write hit</td>
<td>System-memory wait states.</td>
<td>0</td>
<td>0, unless the write buffer is already full with a pending write.</td>
</tr>
<tr>
<td>Read miss (excludes line-fill cycles)</td>
<td>System-memory wait states.</td>
<td>System-memory wait states +1 due to an extra look-up cycle.</td>
<td>System-memory wait states +1 due to an extra look-up cycle.</td>
</tr>
<tr>
<td>Write miss</td>
<td>System-memory wait states.</td>
<td>0, unless the write buffer is already full with a pending write.</td>
<td>0, unless the write buffer is already full with a pending write.</td>
</tr>
</tbody>
</table>

Alternatively, a secondary cache optimized for write operations can boost performance of the portion of the cache's operation that the primary cache does little to improve. A cache technique under development by Mosel uses dual-port SRAMs and takes advantage of the burst-memory data access. The SRAMs, which will work with 80386- and 80486-based systems, facilitate building 64k-byte, 2-way set-associative caches. The memories operate by simultaneously latching all 128 bits in a 5-cycle, 16-byte burst using 7-nsec latches at

Caching branches reduces pipeline stalls

When designers at Advanced Micro Devices were designing the 29000 RISC µP family (the 29005 16-MHz device costs $50 (1000), they realized their transistor budget would allow them to implement a small cache on-chip. Because the processor has both an instruction bus and a data bus, they needed to decide whether to build an instruction or data cache.

They also realized that, because the processor uses instruction prefetching, it would perform better if they could prevent pipeline stalls. Combining the transistor budget with the need to eliminate stalls, the designers came up with a branch-target cache (BTC).

The BTC functions like a normal cache in that it stores data already in the dynamic RAM (DRAM). However, it differs by only storing the four instructions following a branch. If the branch was previously taken, the processor executes the branch in a single cycle.

When the processor executes a branch for the first time, the cache doesn't contain the succeeding instructions. It takes one cycle to execute the branch from memory and five cycles to refill the instruction pipeline. AMD claims a 60% hit rate for the 512-byte BTC on the 29000.

The BTC is organized as a 2-way set-associative cache. Each way comprises sixty-four 32-bit words divided into 16 blocks of four words each. These four words define a branch target entry. Each block is associated with one 28-bit cache tag. The tag includes 26 bits derived from the address and two bits, called the Space ID, that indicate whether the instructions were fetched from instruction/data memory or from read-only memory and whether the instructions were fetched in user or supervisor mode. Finally, each word in the cache has an associated valid bit that indicates the instruction's validity.

After a branch, the address of the fetched instruction selects a line to store the instruction sequence of the branch, if that branch instruction sequence isn't in the BTC. The processor uses a random replacement scheme based on the processor clock to choose which set to replace. The processor then sets the address tag and the space ID to properly describe the instructions being stored in the cache before loading the instructions into the cache.

BTCs are more efficient than conventional caches when the caches are smaller than about 1k byte, according Dr Mark Hill (Ref 1). Conversely, Hill says that conventional caches are preferable when larger than 8k-bytes. He further says that intermediate-sized BTCs and conventional caches offer comparable performance.
Portable data products from Datakey are meeting the needs of electronic OEM design engineers in a wide range of commercial and military applications. They can help you:

- Save valuable system space
- Reduce system power requirements
- Cut the cost of memory/feature expansion
- Improve system and facility security
- Speed data transfer, make data handling more convenient
- Make ROM upgrades quicker, easier
- Simplify system design and manufacturability
- Ruggedize your system or I/O device
- Reduce repetitive data input
- Differentiate your product in the marketplace

These versatile devices withstand rough handling and retain your data even when exposed to dust, dirt, moisture, magnetic fields, and other environmental hazards.

We've developed a whole array of solutions for tough portable data applications — including the access device for the U.S. government's secure phone system. Hundreds of thousands of these devices are in use today.

Choose from our standard products, including:
- **Serial Memory Keys** (1K, 2K, or 4Kbit capacity),
- **Parallel Memory Keys** (16K to 512Kbit capacity, 8-bit word length),
- **Memory Cards** (chip-on-card or edge-connect with embedded memory),
- **Low-Cost Personal ID and Memory Tokens**, **Mechanical/Electronic Keys**, and more.

We also design and manufacture custom portable data devices.

So, call today for our free booklet. It just may help you solve some of the toughest design problems around. Yours.

Call 1-800-328-8828
Need it fast? We'll fax it.
Cache design

the input and output of the memory array. The memories will be available in the third quarter of 1991.

Caches speed sequential writes

The dual-port memories boost performance on a write miss. The miss causes a burst allocate-write cycle that fills the secondary cache with 16 sequential bytes of data. If the next write is to the next memory location, that data will already be in the cache. According to statistics compiled by Mosel, 70% of write operations are sequential. Further, 50% are at least three sequential writes. The company expects its technique to provide write hit rates exceeding 96% while maintaining read hit rates higher than 96%.

After designing your cache, you can evaluate its effectiveness using a trace-driven cache simulator. Two such simulators, written by Professor Mark Hill of the University of Wisconsin Computer Sciences Department, are tycho and dinero III, which are quasi-shareware packages available on the EDN bulletin-board system (BBS). Both C-based simulators use the same ASCII trace format.

After you create a list of memory references from an executing applications program, you use the list to drive the simulators. In response, the simulators report the behavior of one or more alternative cache designs.

Both simulators evaluate unprocessor caches. Tycho allows simultaneous evaluation of many alterna-

Manufacturers of cache SRAMs and controllers

For more information on the ICs and Chip sets to implement caches such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Address</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Micro Devices Inc</td>
<td>9900 E Ben White Blvd, Austin, TX 78741</td>
<td>(512) 462-3561, (512) 462-3821</td>
</tr>
<tr>
<td>AT&T Microelectronics</td>
<td>555 Union Blvd, Allentown, PA 18103</td>
<td>(610) 773-2447, (610) 778-4106</td>
</tr>
<tr>
<td>Austek Microsystems</td>
<td>2903 Bunker Hill Ln, Santa Clara, CA 95054</td>
<td>(408) 988-8556, (408) 988-0818</td>
</tr>
<tr>
<td>Chips and Technologies, Inc</td>
<td>2062 Zanker Rd, San Jose, CA 95134</td>
<td>(408) 434-4900, Circle No. 652</td>
</tr>
<tr>
<td>Elite Microelectronics</td>
<td>4065 N First St, San Jose, CA 95134</td>
<td>(408) 943-6500, FAX (408) 943-0561</td>
</tr>
<tr>
<td>Eteq Microelectronics</td>
<td>1900 McCarthy Blvd, Milpitas, CA 95035</td>
<td>(408) 432-3147, FAX (408) 432-8146, Circle No. 655</td>
</tr>
<tr>
<td>Fujitsu Microelectronics</td>
<td>Integrated Circuits Div, San Jose, CA 95134</td>
<td>(510) 292-9263</td>
</tr>
<tr>
<td>Integrated Device Technology Inc</td>
<td>Box 59515, Santa Clara, CA 95052</td>
<td>(408) 727-0116, Circle No. 657</td>
</tr>
<tr>
<td>Intel Corp</td>
<td>1900 Prairie City Rd, Fremont, CA 94530</td>
<td>(925) 548-4725, Circle No. 658</td>
</tr>
<tr>
<td>Matra Design Semiconductor</td>
<td>2956 Northwestern Pkwy, Santa Clara, CA 95051</td>
<td>(408) 986-9000, FAX (408) 748-1038</td>
</tr>
<tr>
<td>Micron Technology Inc</td>
<td>2956 E Columbia Rd, Boise, ID 83706</td>
<td>(208) 363-3990, FAX (208) 363-4617, Circle No. 660</td>
</tr>
<tr>
<td>Mitsubishi Electronics</td>
<td>America Inc, Sunnyvale, CA 94086</td>
<td>(408) 730-6600, FAX (408) 730-0429</td>
</tr>
<tr>
<td>NEC Electronics Inc</td>
<td>Box 7241, Mountain View, CA 90439</td>
<td>(818) 632-3531, FAX (818) 729-9288, Circle No. 663</td>
</tr>
<tr>
<td>Nexel Corp</td>
<td>1566 Halford Ave, Suite 410, Santa Clara, CA 95051</td>
<td>(408) 421-7565, FAX (460) 243-6922, Circle No. 664</td>
</tr>
<tr>
<td>Quality Semiconductor Inc</td>
<td>2946 Scott Blvd, Santa Clara, CA 95054</td>
<td>(408) 986-1700, FAX (408) 496-0773, Circle No. 665</td>
</tr>
<tr>
<td>SGS-Thomson</td>
<td>1000 E Bell Rd, Phoenix, AZ 85022</td>
<td>(602) 867-6228, FAX (602) 867-6102</td>
</tr>
<tr>
<td>Silicon Connections Corp</td>
<td>18906 Via Del Campo Ct, San Diego, CA 92127</td>
<td>(619) 674-1050, FAX (619) 674-1218, Circle No. 667</td>
</tr>
<tr>
<td>Texas Instruments Inc</td>
<td>Semiconductor Group (SC-9022), Box 809066, Dallas, TX 75280</td>
<td>(800) 232-3200, ext. 700</td>
</tr>
<tr>
<td>Toshiba America Electronic Components Inc</td>
<td>9775 Toledo Way, Irvine, CA 92718</td>
<td>(714) 455-2000, FAX (714) 859-3863, Circle No. 669</td>
</tr>
<tr>
<td>VLSI Technology Inc</td>
<td>Products Div, 8576 S River Pkwy, Tempe, AZ 85284</td>
<td>(602) 752-6220, FAX (602) 752-6000, Circle No. 670</td>
</tr>
</tbody>
</table>

VOTE...

Please also use the Information Retrieval Service card to rate this article (circle one):

- High Interest 512
- Medium Interest 513
- Low Interest 514

EDN April 25, 1991
NAT4882
The Only Way to Reach Full 488.2 Compatibility

- Industry Standard
- 7210/9914 Compatible

PC AT
- The New Industry Standard
- 16-bit speed

Sun SPARCstation SBus

DECstation TURBOchannel

Macintosh NuBus

IEEE-488.2
- Turbo488
- 1 Megabyte READY
- 1 Megabyte WRITES

VXI Embedded Controllers

IBM PS/2 and RISC System/6000

Macintosh SE/30

Continuing Unchallenged Leadership

NATIONAL INSTRUMENTS
The Software is the Instrument

Call for a FREE Catalog
(512) 794-0100
(800) IEEE-488 (U.S. and Canada)

6504 Bridge Point Parkway
Austin, TX 78730
DID YOU KNOW?

Half of all EDN’s articles are staff-written.

EDN

Cache design

tive caches; dineroIII only evaluates one cache per simulation run. The simulators also differ in their capabilities. Tycho is a more restrictive simulator in that all caches in a simulation must have the same cache size, don't prefetch data, and use least-recently-used replacement. DineroIII allows you to vary more cache design options, such as write-back vs write-through, random vs least-recently-used replacement, and demand fetching vs prefetching.

The simulators have been distributed to both commercial and academic sites. You can obtain copies of either or both simulators either by contacting Mark Hill directly, or via the EDN computer bulletin-board system (BBS). (Phone (617) 558-4241 with modem settings 300/1200/2400,8,N,1. Access /freeware SIG and specify (r)ead option followed by (k)ey-word search for “SR #425”.) Professor Hill asks for, but does not require, a $500 donation to the University of Wisconsin to support his continuing research.

Reference

Article Interest Quotient
(Circle One)
High 512 Medium 513 Low 514

WHAT'S NEXT

The number of linear ICs tailored to operate from a single power-supply voltage has dramatically increased in the last few years. Look for our Special Report in the May 9, 1991, issue and catch up on the developments in single-supply, analog-design techniques and applications.
What makes good designers great?

Top down design with System HILO™ 4.

It enhances design productivity through Language Driven Design.

It simplifies design with Source-Level Debug and an X-windows graphic interface.

Its FASTCELL™ ASIC libraries simulate submicron technology accurately. And up to eight times faster than traditional gate-level modeling while using less memory.

It has outperformed golden simulators in accuracy in several benchmarks at ASIC foundries.

It's the ideal core simulation toolkit to support a concurrent engineering environment, with simulation for logic verification, worst case timing, fault grading, and non-intrusive ATPG.

Find out more about how System HILO 4 can help you become a great designer.

Call 1-800-4-GENRAD in the U.S., or the GenRad office nearest you in Austria, Canada, England, France, Germany, Italy, Japan, Singapore, Switzerland.
The newest system through space-time.

The AMP Z-Pack Interconnection System is a scalable, high-density board-to-board/cable-to-board system for nanosecond and subnanosecond applications, in 2 mm and .100" grid sizes to accommodate global packaging requirements.

The fastest members use stripline technology, introducing reference planes between pin columns to retain maximum pin counts in a controlled impedance interface.

The design advantages are immediate: Z-Pack .100" stripline connectors accommodate 250 ps edge rates with no sacrifice in signal density; four rows = 40 lines per inch.
Space: 40 lines/inch.
Time: 250 ps.

2 mm stripline versions (500 ps) require just one pin row for reference, and open pin field versions in both centerlines handle 1.8 ns risetimes with a 3:1 signal/ground ratio. Standard spacing minimizes board redesign, and system modules stack end-to-end with no loss of signal positions, offering true form/performance scalability in Futurebus-like applications.

For more information on the Z-Pack Interconnection System, call our Product Information Center at 1-800-522-6752. AMP Incorporated, Harrisburg, PA 17105-3608.

For advanced design and manufacturing of complete characterized multilayer backplane systems, contact AMP Packaging Systems, Inc., P.O. Box 9044, Austin, Texas 78766, (512) 244-5100.
INTERNATIONALLY APPROVED CIRCUIT BREAKERS

When you're designing your product for global markets, take steps to protect it right. Choose Airpax. We build in the quality, performance and reliability you demand as well as the required international certification that will assist you in marketing your product anywhere in the world. From initial design through final shipment we can help you every step of the way.

Step-by-step help on three continents.

Engineers at our design/manufacturing centers in Belgium, Japan and the U.S. will assist in your design requirements by recommending the correct magnetic circuit breaker. When you're ready to manufacture, we're strategically located to provide on-time/just-in-time delivery anywhere.

50 milliamps to 100 Amps, 1 to 6 poles and more.

Consider your choices: SNAPAK® in rocker, toggle, paddle, baton, push-pull or push-to-reset styles; IEL, DIN rail mount in single or multi-handle;

Wherever You Design Your Product, We're With You Every Step Of The Way.

UL, VDE, CSA, TUV and SEV approvals.

For any international marketer, it can be a maze of acronyms out there. Not for Airpax, because ours is the broadest line of magnetic circuit breakers fully accepted for international applications in marine, instrumentation, medical systems, appliances, power supplies, information processing systems, industrial controls, HVAC equipment and other devices that demand reliable circuit protection.

The next step is up to you.

To find out more, write us. Or to secure prototypes fast for testing, built to your requirements at no extra cost, call our HOTLINE (301) 228-4600. Airpax, Woods Road, Box 520, Cambridge, MD 21613. FAX (301) 228-8910.

CIRCLE NO. 148

EDN April 25, 1991
New one megabit SRAMs from NEC

Keep your designs small without getting power hungry

Thin Fast
The Natural, Healthy Way to
SAVE BOARD SPACE
Fortified with
Silicon & Plastic
DIP, SOP, & TSOP
Fast & Dense
STATIC RAMS
Globally Flavored

Runs at high speed on low power
Your battery-backed portable designs will run lean and mean with our very low power μPD431000A-70/85/10/12LL. And you don’t have to sacrifice speed or density to get these incredible power savings. These 128K by 8 devices access at a sizzling 70 nanoseconds, while consuming less than 50 microamps during battery backup.

No fat chips
Need to save board real estate as well as power? Our exciting new TSOP is thinner than thin. If you’ve been squandering board space, NEC’s TSOP package can take valuable inches off your waste. And, of course, standard 32-pin DIP and SOP versions are available too.

Get the real skinny on NEC SRAMs
NEC’s heavyweight global manufacturing strength provides a full menu of SRAMs. And our state-of-the-art manufacturing plants in Japan and Roseville, California are the best in the world. To learn more about thin and fast NEC static RAMs, order your free copy of our mammoth 1991 memory products data book today.

NEC Electronics Inc.
401 Ellis St.
P.O. Box 7241
Mountain View, CA 94039-7241
1-800-632-3531/1-415-965-6158

Free Data Book
Send or Fax Business Card
Fax 1-800-729-9288
Info Pack #311
CIRCLE NO. 79

©1990 NEC Electronics Inc.
When you need to cut costs without cutting corners...

The more defense agencies put on the pressure to curb hardware costs for military computer systems, the smarter it is to use NDI Mil-Spec VME computer hardware from Radstone Technology.

Radstone offers the world's most extensive range of Non-Developmental Item VME processor, memory, communications, controller, I/O and graphics boards—plus ATR chassis, and software and development support. This NDI line—produced in a facility qualified to MIL-Q-9858A and AQAP-1—enables military systems integrators to reduce design time, project overhead costs and system development time by more than half!

Design-In Flexibility

Off-the-shelf Mil-Spec products from Radstone allow you to design flexibility into your equipment without compromising system performance or compliance with military specifications. Existing hardware can be readily adapted and factored into future proposals and contracts without a major redesign effort and, in many cases, without any redesign effort. This eliminates additional costs and reduces program overruns and risks.

Cost-Effective Mil VME...now!

With so much performance-proven NDI Mil-Spec VME available right now from Radstone, why incur any unnecessary design, production and integration time and costs? And, with the defense agencies mandating the use of existing technologies, you'll be meeting everyone's criteria for cost, performance and reliability. Only with Radstone NDI Mil-Spec VME. For details call or write. And put your competition on the defensive.
Dynamic specifications describe performance of subranging ADCs

Quantization maps the analog input range into 2^N digital words. Because the best resolution attainable from an analog input signal is 1 LSB, an infinite number of points are identifiable between any adjacent code centers (Fig 1). As a result, quantization causes an error of ± 0.5 LSB max.

Quantization is an irreversible process. Once an ADC quantizes a signal, the signal’s original analog information is lost forever—an occurrence comparable to what happens to an analog signal in the presence of white noise. Because of this similarity, many engineers refer to quantization error as quantization noise.

Ray K Ushani, Datel Inc

In the world of high-speed data-acquisition components, the conventional dc parameters are not sufficient to specify the performance of A/D converters. Under dynamic conditions, an ADC’s transfer function may exhibit large errors even though the dc test results appear close to the ideal limits. This disparity is especially common in digital-signal-processing applications.

In practice, no single specification or test can completely characterize a high-speed A/D converter’s performance under dynamic conditions. Therefore, ADC users and designers should comprehend the significance of every dynamic specification. In all, there are nine dynamic parameters you should understand before attempting any test techniques. These parameters include quantization error, the signal-to-noise ratio, harmonic and intermodulation distortion, and the differential phase and gain.

Fig 1—Quantization maps the analog input range into 2^N digital words. This process results in a quantization error of ± 0.5 LSB max.
In applications such as high-speed data-acquisition systems, the dc parameters of an A/D converter are not sufficient to specify the device's performance.

Because the quantization error (QE) is as often positive as negative, its average value is precisely zero, which gives no information about the size of the error. A more meaningful measure is the quantization error's root-mean-square value. The following relationships let you calculate the maximum rms quantization noise ($V_{\text{NOISE (RMS)}}$):

$$QE = \frac{V_{\text{IN(I)}} - IQ}{Q}$$

$$QE_{\text{RMS}} = \sqrt{\frac{1}{Q} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left(\frac{V_{\text{IN(I)}} - IQ}{Q} \right)^2 dV_{\text{IN}}}$$

$$= \frac{Q^2}{12}$$

$$V_{\text{NOISE (RMS)}} = \frac{Q}{\sqrt{12}}$$

where Q = LSB weight, $QE(I) = I$th code quantization error, and $V_{\text{IN(I)}} = \text{input range that produces code I}$.

In an actual A/D converter, the quantization band for certain codes can be significantly larger or smaller than ideal. Nonideal quantization bands represent differential nonlinearity errors.

For a signal with a peak amplitude of $Q(2^N)$ that an N-bit ideal converter quantizes, the maximum rms sine-wave value is

$$V_{\text{SIGNAL (RMS)}} = \frac{Q(2^{N-1})}{\sqrt{12}}.$$

The rms signal-to-noise ratio (SNR) is then

$$\frac{V_{\text{SIGNAL (RMS)}}}{V_{\text{NOISE (RMS)}}} = \frac{Q(2^{N-1})/\sqrt{2}}{Q/\sqrt{12}} = 2^{N-1}(\sqrt{6}).$$

The rms SNR for an ideal N-bit A/D converter is

$$\text{SNR} = 20\log(\sqrt{6}(2^{N-1})) = 6.02N + 1.76 \text{ dB}.$$

However, for an actual A/D converter, calculate the SNR as follows:

$$\text{SNR} = -20\log \sqrt{10^{-\text{SNRWD}+10} + 10^{-\text{THD}+10}},$$

where SNRWD is the SNR without distortion and THD is the total harmonic distortion, both in decibels.

Because most of the noise in an A/D converter appears at the harmonic frequencies, the SNR plus distortion is a good estimate of the total harmonic distortion. Furthermore, SNR is the cumulative effect of many error sources such as quantization error, missing codes, integral and differential nonlinearities, total harmonic distortion, aperture uncertainty, and noise. Because of these myriad contributions, SNR is the primary figure of merit in applications such as radar and signal-detecting systems.

The effective-bits (EB) value is the number of bits an ideal A/D converter requires to yield the SNR previously calculated for an ideal N-bit converter:

$$\text{EB} = \frac{\text{SNR} - 1.76}{6.02}.$$

The effective-bits value is a global description of the ADC's dynamic performance. It provides a general measure of how much the ADC's nonlinearity impairs its overall usefulness at a given input condition. If the quantization noise is uniformly distributed and the quantization errors from sample to sample are statistically independent, the expression for effective bits is

$$\text{EB} = \log_{10} \left(\frac{\text{full-scale volts}}{\sqrt{2} E_{\text{RMS}}} \right).$$

where E_{RMS} is the error of the digitized signal.

Harmonic and intermodulation distortion

The output signal of a linear device differs from its input signal only in amplitude when you measure the signals in either the time or frequency domain. Any nonlinearity a device introduces will manifest itself as a deviation from the sinusoidal response in the time domain or as new frequencies in the frequency domain. This nonlinearity is distortion.

When an ideal A/D converter with infinite resolution digitizes an ideal sine wave, the digital output fully represents the original sine wave with no distortion at any frequencies. Looking at the discrete-Fourier-transform (DFT) amplitude spectrum of such an output, you can observe a sharp peak at the input frequency. At any other frequency the amplitude will be zero. However, in the case of an actual A/D converter, the amplitude spectrum also contains peaks at integer multiples of the fundamental frequencies. These peaks
represent harmonic distortion (Fig 2). From these peaks, you can calculate the percentage of total harmonic distortion (THD) using the following relationships:

$$\text{THD} = \sqrt{\sum_{n=2}^{N} (\text{HD}_n)^2} \times 100\%$$

$$\text{HD}_N = 10^{-\left(\text{PEAK N} \times 20\right)},$$

where peak N is the Nth-harmonic distortion peak, and the harmonic distortion (HD_n) is equal to the amplitude of the signal at the Nth harmonic divided by the amplitude of the signal at the input frequency.

For an A/D converter, you can calculate THD in decibels as follows:

$$\text{THD} = 20\log \sqrt{\sum_{n=2}^{N} (\text{HD}_n)^2}.$$

The integral nonlinearity of the A/D converter's transfer function can also cause intermodulation distortion (IMD). IMD is the change in one sinusoidal input that the presence of another sinusoidal input at a different frequency causes. For example, let the input of the A/D converter be the sum of two sinusoids with equal amplitudes but different frequencies: $\sin\omega_1 \pm \sin\omega_2$. Not only will harmonic distortion occur at $N\omega_1$ and $N\omega_2$, but harmonics will also appear at $N\omega_1 \pm K\omega_2$, where N and K are any integers (Fig 3).

This IMD interaction between input sinusoids is significant in both audio and RF-communications applications. The value, in decibels, for the intermodulation distortion when $N = 1$ and $K = 1$ is

$$\text{IMD} (\omega_1 \pm \omega_2) = 20\log \frac{\text{amplitude at } \omega_1 \pm \omega_2}{\text{amplitude at } \omega_1 (\text{or } \omega_2)}.$$

When the input sinusoids are not of the same amplitude, $\text{IMD} = 20\log (\text{rms value of the sum and difference distortion products + rms value of the fundamental frequencies}).$

Spurious-free dynamic range

The spurious-free dynamic range (SFDR) is analogous to the dynamic range for slow, high-resolution A/D converters. As the name implies, SFDR is the range in the amplitude spectrum where no frequency components other than the fundamental exist (Fig 4). SFDR expresses the peak distortion of an A/D converter and is a measure of the device's dynamic range under different input conditions. Mathematically, $\text{SFDR} = \text{the amplitude of the fundamental} - \text{the next highest frequency component, with all values in decibels}.$

The SFDR parameter is of primary importance for A/D converters in noisy receiver environments where the converter must digitize a small-amplitude signal.
Once an A/D converter quantizes a signal, the signal's original analog information is lost forever.

Noise/power ratio (NPR) is another indicator of an A/D converter's dynamic performance. NPR expresses the quality of an A/D converter in broadband frequency-domain applications, such as a multiplexed system. NPR is the ratio of the power of the reconstructed output at two different conditions for a particular frequency (f). The first condition is the full-scale input containing white noise. The second condition is the same input using a notch filter with a center frequency of f. The expression for NPR in decibels is

\[
NPR = 10 \log \left(\frac{\text{1st condition power}}{\text{2nd condition power}} \right)
\]

The NPR caused by quantization noise for an ideal A/D converter is

\[
NPR = \frac{\text{full-scale volts of the ADC}}{K \text{ (quantization noise)}} = \frac{Q \left(2^N\right)}{KQ\sqrt{12}} = \frac{2^N \left(\sqrt{12}\right)}{K},
\]

where Q is the quantization level, \(Q\sqrt{12}\) is quantization noise, N is the number of bits, and K is a loading factor equal to the full-scale volts divided by the rms noise level.

The NPR in decibels is

\[
NPR = 6.02N + 20 \log (\sqrt{3}/K).
\]

For example, a 12-bit ideal A/D converter with a loading factor (K) of 5, has a NPR of 62.7 dB.

Fig 5 helps explain the loading factor. The peak-to-peak noise is a function of \(\sigma\) (\(\sigma\)=rms noise level). If K is 2, for example, 68% of the signal will be within the full-scale value of the converter (32% will exceed full scale). In this case, clipping will result, producing additional distortion. For this reason, you should select a loading factor that will keep the clipping to a small percentage and the signal at a maximum. For a 12-bit A/D converter, the LSB is 0.0248% of full scale, so a loading factor of 8 would be appropriate.

Differential phase (DP) and differential gain (DG) are relevant specifications for video applications. They express the quality of the A/D converter under two different input levels (usually one near zero and the other near full scale).

Differential phase is the difference in the output
Dialight LED bi- and tri-level CBI (Circuit Board Indicator) skyscrapers save valuable real estate. Ideally suited as logic status, circuit board and polarity indicators as well as panel illuminators, the Manhattan Series can satisfy your most demanding design requirements. Offered in two sizes—T-1 (3 mm) and T1¼ (5 mm bi-level only) in a wide variety of LEDs (diffused, non-diffused, super-bright, super-efficient, integral resistor), they can be ordered in standard and custom combinations of red, yellow and green. Operating temperatures range from −55° to +100°C. Manhattan CBIs have specially designed standoffs to facilitate board cleaning and washing. The housing materials meet UL94V-0 flammability rating.

Because we pay strict attention to lead tolerance and alignment specs of automatic insertion equipment, Dialight’s packaging has become the standard by which others are measured. The Manhattan CBI Series is available from stock through our wide network of distributors.

For more information contact: Dialight Corporation, 1913 Atlantic Avenue, Manasquan, New Jersey, 08736; Tel.: (908) 528-8932; Fax: (908) 223-8788.

DIALIGHT
Nonlinearity in the A/D converter's transfer function can cause both harmonic and intermodulation distortion.

Phase of an A/D converter when a small, high-frequency sine-wave signal is superimposed on a low-frequency signal at two predescribed amplitudes. Differential gain is the ratio of the output amplitudes of an A/D converter with this small, high-frequency sine-wave superimposed on the low-frequency signal at the two predescribed amplitudes.

The theoretical differential phase and differential gain for an N-bit ideal A/D converter is

\[DP = \frac{Q}{A} \cdot \frac{2}{3} \]

\[DG = 100\% \cdot \frac{Q}{A} \cdot \frac{2}{3} \]

\[Q = \frac{\text{full-scale volts}}{2^N} \]

DP is the differential phase in radians (1 rad = 57°), Q is the LSB size in IRE (Institute of Radio Engineers) units, A is the amplitude of the subcarrier in IRE units, and DG is the differential gain in percent. For example, consider an 8-bit system converting a signal having a peak-to-peak value of 140 IRE units (1 V):

\[Q = 0.546 \text{ IRE units} \]

Suppose a test signal consists of a subcarrier having a peak value of 10 IRE units (20 IRE units p-p), then

\[DP = \frac{0.546}{10} \cdot \frac{2}{3} = 0.0364 \text{ rad} = 2.07° \]

\[DG = 100\% \left(\frac{0.546}{10} \right) \cdot \frac{2}{3} = 3.64\% \]

These two parameters directly affect the performance of any color-graphic system, such as a high-resolution optical reader or a conventional TV. Differential gain will distort the degree of color saturation. This distortion occurs because the amplitude of a small signal superimposed on another signal represents the saturation of the color. This distortion also affects the brightness of the color. Differential phase will cause incorrect hues in the reproduced picture. In an ADC, the analog section of the converter is the primary generator of these distortions.

The analog input circuitry determines the bandwidth, which tells you at what input frequency you can expect amplitude attenuation to begin. The bandwidth is normally defined as the maximum sinusoidal input frequency at which the amplitude of the output signal, derived from the digital data, decreases by 3 dB with respect to the amplitude of the output for a low-frequency sinusoidal input. A more appropriate parameter for an A/D converter is its full-power bandwidth. This parameter specifies the maximum frequency at which the converter can accurately quantize a full-scale-input sine wave without generating any spurious or missing codes.

Engineers often overlook full-power bandwidth when evaluating a high-speed A/D converter. A wide bandwidth results in reduced amplitude roll-off and less time-delay distortion. It also minimizes the interaction between the poles of the ADC's input and the poles of any antialiasing filter before the input. A narrow bandwidth could cause time-delay distortion due to nonlinear phase response, amplitude error, or rise-time error.

To illustrate the effects of the A/D converter's bandwidth, consider the amplitude attenuation and time-delay distortion when a full-scale 5-MHz sine wave is applied to the input of an equivalent A/D converter that has a 20-MHz bandwidth (Fig 6). Assuming a single-pole model, the equivalent RC network will attenuate the input by 3% of its original value and shift the input's phase by \(-14.05°\). The result of this action is a time delay of 7.8 nsec. The following formulas express the amplitude (A), the phase (\(\phi\)), and the time delay (\(\tau\))

\[\tau = \frac{R}{2\pi f} \]

\[A = \frac{1}{\sqrt{1 + (2\pi f RC)^2}} \]

\[\phi = -\tan^{-1} \left(\frac{2\pi f RC}{1} \right) \]

Fig 6—This equivalent circuit illustrates the effects of a band-limited A/D converter compared with an ideal infinite-bandwidth converter.
Our permanent magnet alloys, VACODYM® on NdFeB base and VACOMAX on a CoSm base, give you the chance to increase the efficiency and the dynamic behaviour of your products. The extremely high energy density of the magnets offers more power and improved miniaturization, e.g. in motors from the micro to the megawatt range, in magnetic couplings for chemical pumps, in electro-acoustic transducers etc.

VAC not only supplies the magnets but also the know-how for successful application. For instance, advice on individual designs and the production of tailor-made magnet systems. Why not take advantage of the head start our materials offer your products?

*licenser Sumitomo Special Metals.
delay (ΔT) of the output of an A/D converter with a bandwidth of Δf, where f is the frequency of the input signal:

\[A = \sqrt{\frac{1}{1 + (f/Δf)^2}} \]

\[\phi = -\tan^{-1}(f/Δf) \]

\[ΔT = \frac{\phi}{360f}. \]

The transient-response time is the time the A/D converter requires to settle to its final accuracy when the input changes from negative full scale to positive full scale or the other way around. This response time depends primarily on the sample-and-hold acquisition time. Transient-response time is important in transient analysis and in applications in which the input of the A/D converter is multiplexed to increase the number of channels, as in data-acquisition systems.

When the input of an A/D converter exceeds the full-scale range, the analog section of the converter saturates. Because the error amplifier usually has a high gain, saturation is particularly significant for a subranging ADC. If the operating conditions do not let the ADC fully recover from saturation, the converter might produce an erroneous code for a valid input. The time the ADC requires to recover from saturation is called the overvoltage recovery time. The recovery time is measured from the time the input returns to the ADC’s operating range until the time that the ADC can make a proper conversion. The recovery time increases as the overrange voltage increases.

Part 3 will conclude this subranging-ADC series with a discussion of test methods for evaluating these dynamic parameters and specifications.

Author’s biography

Ray Ushani is the manager of the Advanced Development Group at Datel Inc (Mansfield, MA). He has been with the company for six years and has been instrumental in the development of several A/D converters, multiplexers, and S/H circuits. Ray has an MSEE from Northeastern University (Boston, MA) and is a PhD candidate at Tufts University (Medford, MA). Not one to stray far from his vocation, Ray’s hobbies include RF and microwave design.

Article Interest Quotient (Circle One)

High 494 Medium 495 Low 496
The secret to better Ethernet is NICE.
And simple.

With the unveiling of NICE, Ethernet LAN technology reaches a new level of integration.

Now LAN system designers can have an Ethernet controller, buffer management unit and 10 Mbit per second Manchester encoder/decoder on a single chip. So you can now develop high-performance LAN boards more cost effectively than ever before.

For instance, design adapter cards for high-performance buses using just two Ethernet chips instead of the usual three. Simply combine NICE with our new MB86962 10BASE-T transceiver, the most advanced solution for twisted-pair needs. Or choose our MB8392A if you need a coax interface.

And used with our MB86953 PC Bus Interface Unit, NICE can further reduce costs and complexity when developing PC XT/AT™ adapter cards. Replacing the need for up to ten separate parts.

All in all, NICE has some impressive features to enhance your LAN’s entire performance. Such as a data bus transfer rate of 20 Mbytes per second. A low-power standby mode. And bus compatibility for most standard microprocessors.

But what’s really nice is our understanding of the marketplace. As Fujitsu’s American arm, we know what it takes to get you there a lot faster. With greater cost effectiveness.

So now that the secret is out, call us at 1-800-866-8608. And discover NICE. The world’s most advanced, highly-integrated Ethernet solution.

NICE is a trademark of Fujitsu Microelectronics, Inc. XT and AT are trademarks or registered trademarks of IBM Corp. ©1991 Fujitsu Microelectronics, Inc.

FUJITSU MICROELECTRONICS, INC., Advanced Products Division. 77 Rio Robles, San Jose, CA 95134-1807.
Be Brilliant At In Production

7:05 am: Breakfast
Suddenly, between bites, the answer to that new system design jumps right into your brain. But how to make it work in silicon? Use an Actel field programmable gate array!

8:50 am: Design
You warm up the design program on your 386 and put in the final touches. Then a quick rule check and 25 MHz system simulation with the Action Logic System software.

11:00 am: Place & Route
You watch the system place and route all 1700 gates (out of 2000 available) in under 40 minutes. 100% automatically! A final timing check. Then think of something to do until lunch.

12:00 pm: Lunch
Remember lunch? Normal people actually stop working and have a nice meal—right in the middle of the day! With Actel’s logic solution, this could become a habit.

Actel Field Programmable Gate Array Systems.
They’re a feast for your imagination.

Actel’s ACT™ arrays bring you a completely new approach to logic integration. Not just another brand of EPLD, PAL* or LCA™ chips. But true, high density, desktop configurable, channelled gate arrays.

They’re the core of the Action Logic System, Actel’s comprehensive design and production solution for creating your own ASICs. Right at your desk. On a 386 PC or workstation. With familiar design tools like Viewlogic™, OrCAD™, and Mentor™.

And do it in hours instead of weeks. Even between meals.

How? With features like 85% gate utilization. Guaranteed. Plus 100% automatic placement and routing. Guaranteed. So you finish fast, and never get stuck doing the most.

Actel FPGA Product Family

<table>
<thead>
<tr>
<th>Equivalent Gates</th>
<th>Gate Array</th>
<th>1010A</th>
<th>1020A</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLD/LCA</td>
<td>3000</td>
<td>6000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User I/O</th>
<th>57</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Clock (MHz)</td>
<td>20-40</td>
<td>20-40</td>
</tr>
<tr>
<td>Availability</td>
<td>NOW</td>
<td>NOW</td>
</tr>
<tr>
<td>Technology (micron)</td>
<td>1.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

EDN April 25, 1991
You load the Activator™ programming module with a 2000-gate ACT 1020 chip and hit "configure." Take a very quick coffee break while your design becomes a reality.

You do a complete, real-time performance check, with built-in test circuits that provide 100% observability of all on-chip functions. Without generating any test vectors.

Your pride and joy is designed, created, tested, and off to the boys in Production. And you're finished way ahead of schedule! Better think of something to do until 5:00.

Remember dinner? Normal people actually go home and eat with their families. On your way, start thinking about how Actel's logic solution can help you be brilliant tomorrow.

Design verification is quick and easy with our Actionprobe™ diagnostic tools, for 100% observability of internal logic signals. Guaranteed. So you don't have to give up testability for convenience.

In fact, the only thing you'll give up is the NRE you pay with full masked arrays. You can get started with an entry level Action Logic System for under $5000. Guaranteed.

And Actel FPGAs are even 883 mil-spec compliant.

You can be brilliant right now with 1200- and 2000-gate devices, and a whole new family of 8000-, 4000- and 2500-gate parts are on the way. Call 1-800-227-1817, ext 60 today for a free demo disk and full details about the Action Logic System.

It could make your whole day.

Risk-Free Logic Integration

You loved ACT 1. Now catch ACT 2. Phone 1-800-227-1817, ext. 62 to reserve a place at the Actel FPGA Technology Seminar coming soon to your area.

© 1991 Actel Corporation, 955 E. Arques Ave., Sunnyvale, CA 94086. ACT, Action Logic, Activator, and Actionprobe are trademarks of Actel Corporation. All other products or brand names mentioned are trademarks or registered trademarks of their respective holders.
Three finely-tuned instruments for embedded-system development.

AvCase™ 8051, 8096, 64180/Z80

AvCase™ C Compiler, Assembler, and Simulator from Avocet. Play them solo, for peak performance. Or bring them together in perfect harmony as an integrated system. AvCase will manage all the steps—from editing source code, compiling, assembling, and linking, all the way to debugging. • High-level language in the key of C. AvCase C Compiler is our biggest seller. It produces fast, tight, optimized code that helps speed development time.

• Clear, concise scoring. AvCase Assembler is the classic Avocet assembler tuned-up and ready for your most demanding applications.

AvCase Simulator lets you test code on debugging feature you can work at both the C and assembly begin. If you want to meet your project deadlines—come in on bug-free product—you simply can’t do better than AvCase. Full dress rehearsal without leaving your desk.

your own PC. With the new source-level language level. • Let the music budget—and develop a high-quality, Find out more about these finely-tuned instruments. Fax, write, or call toll-free 1-800-448-8500 for complete information, including a free AvCase Brochure and Avocet Catalog.

Avocet Systems, Inc., 120 Union St., P.O. Box 490, Rockport, Maine 04856. Telephone 1-800-448-8500/in Maine, or outside the U.S. call 207-236-9055/FAX 207-236-6713. TLX 467210 Avocet CI
Vertical Mount Fixed Resistors

Series RSS Vertical Mount Metal Oxide Fixed Resistors feature self-standing, snap-in terminals, and they exhibit an excellent high frequency response and low inductance, making them suitable for PC board mounting in power supplies, switching regulators, monitors, printers, and color TVs.

Model RSS3FB is rated at 3W with a resistance range of 1Ω to 100KΩ. Model RSS5FB is rated at 5W with a resistance range of 1Ω to 2.4KΩ. Both are available in 15mm and 25mm heights. Free samples are available, contact Noble at 708/364-6038.

2-, 4-Bit and 5-Bit Rotary Encoders

Noble SDB161 2-, 4- and 5-bit encoders are compact (21mm ø) with a low profile (under 10mm height). Built with a sturdy diecast and steel construction, these encoders offer long life and reliability.

SDB161 encoders are for relative (2-bit) and absolute (4-bit, 5-bit) reference applications. 2-bit switches offer 36 detented positions; 4-bit switches offer 12 or 16 detented positions; 5-bit switches offer 24 or 32 detented positions. All encoders feature continuous rotation. The 2-bit is available in gray code; the 4-and 5-bit versions offer either binary or gray code. Custom designs can be accommodated. For free samples, contact Noble at 708/364-6038.

4mm Surface Mount Trimmers

TMC4K "chip" trimmers feature a ceramic substrate, a metal glaze element, and an insulated knob for easy adjustment. The TMC4K can withstand operating temperatures of -30°C to +125°C and is rated at 0.2 watts of power at 20V. Its standard resistance range is 200Ω to 1MΩ. Outside dimensions are 3.8mm wide x 4.5mm long (2.1mm height).

Available on tape and reel. Can be held to a circuit board by an adhesive for reflow soldering. Call Noble at 708/364-6038 for a free sample.

Slide Potentiometers

The VJ Series High and Low Profile Slide Potentiometers are lightweight, durable, and provide smooth operation. They function as volume, balance, brightness/contrast, temperature, lighting and graphic equalizer controls.

The Low Profile Series (with single or dual elements) features a slide travel of 15, 20, 30, 45, or 60mm. The High Profile Series is available in 30, 45, 60, 80 or 100mm travel.

Custom designs can be accommodated. Contact Noble at 708/364-6038 for a free sample.
NJ® Power Supplies

1Φ & 3Φ Regulated AC/DC Power Supplies

15 W to 2 kW

High Frequency — High Current Switchers

MK & MKA Series
- 750 W to 2 kW
- 40 Models From 2 VDC @ 150 A to 48 VDC @ 40 A
- ®Recognized & CSA Certified
- N+1 Redundancy of Parallelable Outputs
- 5 Year Warranty

Linears — Enclosed & Open Frame
- Single, Dual & Triple Outputs 5 Year Warranty
- 405 Models From 2 VDC to 500 VDC
- ®Recognized & CSA Certified
- Remote Programming Capability
- Rack Mounting Hardware Options

Ferro Resonant to 650 W
- 36 Standard Models From 8.5 VDC to 125 VDC
- Customs to 2 kW & 400 VDC
- 4 Package Sizes
- Rack Mounting Hardware Options

Lab Supplies to 850 W
- SVC Series CV/CC
- 12 Models From 0-20 VDC to 0-125 VDC
- Rack Mounting 5 Year Warranty
- Regulation — Line & Load ±0.01%
- Metered V & A

For information on NJ® Power Supplies or a copy of the latest NJ® full line catalog, call TOLL FREE 1-800-631-4298 or write:

ELECTRONIC MEASUREMENTS INC.
405 Essex Road, Neptune, NJ 07753
(In NJ, HI, AL and Canada, call 908-922-9300)
Design a digital synchronizer with a low metastable-failure rate

When you're attempting to synchronize asynchronous data to a system clock, don't let metastability ruin your design. Carefully considering this problem during the design phase can save you headaches down the line.

Steven R Masteller, Allied-Signal Aerospace, Bendix Engine Controls Div

Metastability is a type of failure that can occur when digital circuits attempt to synchronize asynchronous digital data. The failure is more prevalent at fast asynchronous data rates and, thus, fast synchronizing clock frequencies. If you don't consider metastability during the design phase, this monster can bite you later by producing intermittent failures that are extremely difficult to diagnose.

Although metastability is theoretically unavoidable in synchronizers, you can reduce the probability that a failure will occur during a specified time period. The common response for combating metastability failures is to use multistage synchronizers, which can reduce the number of failures to an arbitrarily small value. Understanding the various factors that influence metastability leads to a qualitative design procedure for multistage synchronizers that effectively makes the problem negligible.

Digital designers often overlook metastability and its effects because traditional textbooks don't address this type of failure. To understand the problem better, consider the simple SR flip-flop in Fig 1. A conventional digital analysis of this circuit gives rise to only two possible logic states for the inputs and outputs: logical 1 and logical 0. However, all digital circuits must pass through an active region when transitioning from one state to another. Fig 2a shows a typical transfer function, H, for a NAND gate having one input at a logical 1 while the other input undergoes a transition from a logical 0 to a logical 1. The following equation represents the transfer function:

$$V_{OUT} = H(V_{IN}).$$

Fig 1—The cross-coupled NAND gates of an SR flip-flop can reach a metastable condition because the output of one gate is an input to the other.
Although metastability is theoretically unavoidable in synchronizers, you can reduce the probability of a failure within a specified time period.

When you cross-couple two NAND gates to create the SR flip-flop in Fig 1, the output of one of the gates becomes one of the inputs to the other gate. The following equations define this feedback arrangement:

\[V_{IN1} = V_{OUT2} \]
\[V_{IN2} = V_{OUT1}. \]

You can superimpose the transfer functions for both NAND gates on a single graph to find the points of equilibrium (Fig 2b). Because the previous three equations make the following relationships true:

\[V_{IN1} = H(V_{IN2}) \]
\[V_{IN1} = H(V_{OUT1}) \]

the circuit reaches equilibrium at any point where

\[V_{IN1} = H(H(V_{IN1})). \]

The points where the two superimposed transfer-function curves in Fig 2b intersect are the equilibrium points. The equilibrium points labeled "stable" are the logic states conventional analysis predicts. However, the superimposed curves identify an additional equilibrium point labeled "metastable." The logic level for the metastable point is halfway between a stable logical 1 and a stable logical 0. Theoretically, the SR flip-flop can stay in the metastable condition indefinitely if noise or some other disturbance doesn't dislodge the circuit from this state.

It's just like rolling downhill

You can make an analogy between the metastable state and a ball resting precariously at the top of a smooth hill (Fig 3). If you carefully balance the ball at the top of the hill, the ball will sit quietly until disturbed. When you disturb the ball slightly, which is analogous to a noise disturbance in a metastable circuit, the ball will roll to one side or the other and come to rest at the bottom of the hill, which is analogous to the circuit arriving at one of the two stable points. Which point the ball will arrive at is indeterminate. A ball at the bottom of the hill, which is analogous to an SR flip-flop in a stable state, will remain there barring any large disturbances.

Metastability occurs when a circuit violates the timing restrictions that the specification data impose on a flip-flop. Such restrictions include minimum pulse widths and minimum setup and hold times. If you main-
tain adequate timing margins in a synchronous circuit, metastability will never occur. However, in the many applications in which you must synchronize asynchronous data to a system clock, eliminating the synchronizing circuit's potential for becoming metastable is impossible.

Metastability causes the propagation delay of an SR flip-flop to be greater than its specified value. The metastable state is evidenced by a plateau in the output of the SR flip-flop (Fig 4a). The likelihood that an SR flip-flop will remain in a metastable state decreases exponentially with time. Metastability also increases the propagation delay of a D flip-flop from its specified value even though a metastable plateau is not evident on the output of the device (Fig 4b). The internal steering latches, which a D flip-flop employs to direct signals to its master SR flip-flop, smooth out the plateau region. Metastability can cause both types of flip-flops to generate a runt pulse. The runt pulse occurs when the flip-flop returns to the original stable state from the metastable state instead of making a transition to a new stable state.

Metastability in D flip-flops can cause two types of failures. One type occurs when a metastable condition prevents a D flip-flop from changing to a different state. In this case, an entire event can be lost. Timing failures can be even more insidious. The worst case occurs when the output of a flip-flop drives several destination flip-flops via circuit paths that have different propagation delays. A delayed output signal caused by a metastable condition may reach some of the destination flip-flops before the next clock occurs; the same output signal would arrive at other destination flip-flops after the next clock. This condition can cause some circuitry to recognize an event, such as an interrupt, one clock cycle late.

A simple equation predicts the MTBF

You can estimate a synchronizing flip-flop's mean time between failures (MTBF) due to metastability if you know the asynchronous data rate, \(F_n \); the synchronizing clock frequency, \(F_c \); the synchronizing flip-flop's propagation delay, \(T_p \); the synchronizing flip-flop's inverse gain-bandwidth product, \(G \); and the total gate delay between the synchronizing clock edge and any destination flip-flops that receive the synchronized data, \(T_D \). The equation is as follows (Ref 1):

\[
MTBF = \frac{e^{\left(F_n/F_c - T_D/G\right)}}{2F_cF_nT_p}
\]

Theoretically, you should include the circuit’s rise and fall times as well as the average time for the circuit’s noise to dislodge the flip-flop from the metastable state in the \(T_p \) term. However, the exponential factor dominates the MTBF equation for MTBFs greater than a few years. Therefore, the propagation delay of the synchronizing flip-flop is an adequate approximation.
Metastability occurs when a circuit violates the timing restrictions that a flip-flop's specification data impose.

for T_p. An increase in the circuit noise or the rise and fall times only marginally improves the MTBF.

The G term is in the exponential factor of the MTBF equation and thus has a large effect on the resulting MTBF. Essentially, you'll produce more-reliable synchronizers by using flip-flops with large inverse gain-bandwidth products. G depends on both the internal design of the flip-flop and the process technology used to construct the device. As a general rule, fast technologies result in large G values and, consequently, synchronizers with high MTBFs for a specific clock frequency. Ref 2 describes a method for measuring G for a flip-flop.

The T_0 term is the sum of all the time delays between the synchronizing clock edge and a destination flip-flop. The sum includes not only the propagation delay of the synchronizing flip-flop but also any intervening-gate propagation delays as well as the setup and hold times of the destination flip-flop. The T_0 term is in the exponential factor of the MTBF equation and has its most pronounced effect on the MTBF at high clock frequencies. Minimizing T_0 can be an effective way of increasing the MTBF but is usually difficult.

To illustrate the effects of the circuit parameters on a synchronizer’s MTBF, consider the following typical time delays and a worst-case inverse gain-bandwidth product for a single-stage D flip-flop built using a 2-µm process (Fig 5):

- Propagation delay = 7.0 nsec typ
- Setup time = 1.5 nsec typ
- Hold time = 2.5 nsec typ
- Inverse gain-bandwidth product (G) = 2.1 nsec max.

Using these time delays,

$$T_p = 7.0 \text{ nsec}$$

$$T_0 = 7.0 + 2.5 + 1.5 = 11.0 \text{ nsec}.$$

When the clock frequency (F_C) is 8 MHz and the asynchronous data rate (F_I) is 4 MHz, the synchronizer's MTBF calculates to be

$$MTBF = \frac{e^{(8 \text{ MHz}) - 11 \text{ nsec}/2.1 \text{ nsec}}}{2(8 \text{ MHz})(4 \text{ MHz})(7 \text{ nsec})}$$

$$= 27,000,000,000 \text{ years.}$$

Clearly, an MTBF of 27 billion years doesn't pose a significant risk of metastable operation in this synchronizer at these frequencies. However, when you double the clock frequency and the asynchronous data rate to 16 MHz and 8 MHz, respectively, the same synchronizer's MTBF calculates to be

$$MTBF = \frac{e^{(16 \text{ MHz}) - 11 \text{ nsec}/2.1 \text{ nsec}}}{2(16 \text{ MHz})(8 \text{ MHz})(7 \text{ nsec})}$$

$$= 6.9 \text{ hours.}$$

Simply doubling the operating frequency causes the synchronizer's MTBF to plummet from billions of years to approximately seven hours. And any synchronizer—no matter how well behaved at a particular operating frequency—will produce unacceptable failure rates at some higher frequency. You should always examine the circuit parameters for potential metastability problems whenever you upgrade a system to a higher data rate.

Changing the inverse gain-bandwidth product, G, also has a dramatic effect on the synchronizer’s MTBF. Changing G from a worst case of 2.1 nsec to a best case of 1.2 nsec, while maintaining the clock frequency at 16 MHz and the asynchronous data rate at 8 MHz, increases the MTBF to

$$MTBF = \frac{e^{(16 \text{ MHz}) - 11 \text{ nsec}/1.2 \text{ nsec}}}{2(16 \text{ MHz})(8 \text{ MHz})(7 \text{ nsec})}$$

$$= 77,000 \text{ years.}$$

Both the process technology and the flip-flop design determine the value of G, so small process variations can have a large effect on G. Therefore, be sure to measure G for flip-flops from different batches of chips to establish a worst-case value. Process variations and, therefore, G tend to be constant for all chips from the
The pressure is always on. You've got to figure out how to get to market faster and more cost-efficiently. You've got to reduce the after-sales service costs that dilute profitability. Plus, you've got to increase your share-of-market and maintain revenues that will keep your management and the stockholders happy.

Card technology offers the newest concept in memory storage. And, it's the technology that could catapult your company ahead of the competition.

But, once you've decided to base your next-generation systems or software on memory cards, the design decisions don't stop there.

There's the issue of standard versus custom cards. And, with card standards garnering significant press coverage, plus some standards not yet finalized, every decision is critical.

Most important, whatever the decision, you need to know you can get your products to market on time and within budget. That means getting the memory type and density you need, standard or custom, from one convenient source.

Solutions, fast and simple.
Small changes in a circuit parameter can drastically change the calculated MTBF.

Fig 6—You can build a 2-stage synchronizer by cascading two D flip-flops that have a common clock. Continue adding D flip-flops to build a multistage synchronizer.

same batch. Obtaining one batch of chips that doesn’t exhibit metastable operation for a given set of conditions and another batch of chips that exhibits frequent metastability failures under the same conditions is indeed possible.

Although the clock rate, synchronous time delay, and process technology have pronounced effects on the MTBF due to metastability, you’ll often have no control over these variables. In these cases, you should consider a multistage synchronizer to reduce metastable failures. You can construct a multistage synchronizer by cascading stages of multiple D flip-flops and providing a clock frequency that is common to all stages.

To illustrate the effectiveness of a 2-stage synchronizer (Fig 6), consider the same circuit parameters that produced the previous MTBF of 6.9 hours, or 24,958 sec, in a single-stage D flip-flop synchronizer. Only unsynchronized data caused by metastable operation in the first stage can cause a potential metastable failure in the second stage of a 2-stage synchronizer. Therefore, you can use the MTBF of the first stage to calculate the asynchronous data rate of the second stage. Using the following circuit parameters:

\[
\begin{align*}
T_D &= 7.0 \text{ nsec} \\
T_{PD} &= 7.0 + 2.5 + 1.5 = 11.0 \text{ nsec} \\
G &= 2.1 \text{ nsec} \\
F_c &= 16 \text{ MHz} \\
F_P &= 1/24,958 = 40.1 \text{ µHz},
\end{align*}
\]

1. the MTBF of the 2-stage synchronizer is

\[
\text{MTBF} = \frac{e^{(1/16 \text{ MHz} - 11 \text{ nsec}/2.1 \text{ nsec})}}{2(16 \text{ MHz})(40.1 \text{ µHz})(7 \text{ nsec})} = 16,000,000 \text{ years}.
\]

Adding one more stage to the synchronizer increased the MTBF from 6.9 hours to 16 million years. Although this failure rate is comfortably large, adding a third stage would effectively eliminate metastability as a problem.

These examples show that a small change in a circuit parameter can cause a drastic change in the MTBF. Small variations in the data can cause large variations between the calculated MTBF and the actual MTBF. A rule of thumb for designing a highly reliable synchronizer is to achieve a calculated MTBF of at least 10,000 years. This large MTBF figure should provide an adequate safety margin against small parameter variations causing excessive field failures.

Another suggestion is to multiply the 10,000-year MTBF times the number of units you expect to sell to arrive at a calculated MTBF for a single unit. For example, if you expect to sell 100 synchronizers, the calculated MTBF of a single synchronizer should be at least 1,000,000 years. This extra margin guards against field failures that you can’t repeat in the laboratory.

References

Author’s biography

Steven R Masteller has been a design engineer with the Bendix Engine Controls Div of the Allied-Signal Aerospace Co (South Bend, IN) for the past three years. He currently specifies and develops standard-cell AS/Cs for high-reliability, high-performance electronic engine-control circuits. Steven has a BSEE from Purdue University and enjoys travel, sky diving, and science fiction in his spare time.

Article Interest Quotient (Circle One)
High 488 Medium 489 Low 490
At Mitsubishi, we give you memory card solutions, not more decisions.

We help you determine the benefits of both standard and custom cards, then provide you with the version that best suits your design needs. We give you cards in the memory type you need. In quantity. Fast.

If your objective is hardware or software compatibility across several platforms, standard cards may be the best choice. As the world's leading supplier of cards, Mitsubishi serves on all three standards committees (PCMCIA, JEIDA and JEDEC). So, our cards are available in the current version of each standard. Plus, we'll keep you abreast of the status and future of standards issues. In fact, over the past four years, we've found that our 50- and 60-pin devices have become standards for many users.

If a proprietary design is the only way to maintain your competitive edge, Mitsubishi offers custom cards. We mix memory types, consolidate logic into ASIC, even add MCU on board. Whatever it takes, we work with you to achieve your custom card needs.

No matter what design decisions you face, Mitsubishi gives you the solutions. Standard or custom. All memory technologies. The highest densities. From the same source. Fast and simple.

MITSUBISHI MEMORY CARDS

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Density Range</th>
<th>PCMCIA</th>
<th>JEIDA</th>
<th>JEDEC</th>
<th>CUSTOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM</td>
<td>128KB - 2MB</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>OTPROM</td>
<td>128KB - 4MB</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>MASK ROM</td>
<td>512KB - 8MB</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>1MB</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>EE PROM*</td>
<td>8KB - 192KB</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>FLASH EE PROM*</td>
<td>512KB - 2MB</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>DRAM</td>
<td>4MB - 12MB**</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

* Available soon
** 12MB DRAM cards available soon

Recognized under the Component Program of Underwriters Laboratories Inc.

Call today and set your vision into action with memory card solutions. (408) 730-5900, ext. 2214.
Adjust your battery to any voltage.

Micropower DC to DC converter.
1 volt, 1 inductor, 1 cap.

Finally, a true micropower switching regulator with user-adjustable current limit. Linear's new LT1073 is a versatile micropower switching regulator optimized for single-cell inputs. It's small, simple, efficient, and delivers all the features you need right now.

- Only three external parts needed
- Operates at supply voltages from 1.0V to 12V
- Startup guaranteed at 1.0V
- Consumes only 95µA supply current
- Space-saving 8-pin Mini-DIP or SO8 package
- Works in step-up, step-down, or inverting mode
- Low-battery detector comparator on-chip
- User-adjustable current limit
- Internal 1 amp power switch
- Fixed or adjustable output voltage versions
- Programmable current limit with single resistor
- No frequency compensation required

Operation of the LT1073 is guaranteed down to 1.0V, so you can squeeze more useful energy out of a battery. Its duty cycle is set at 72%, optimizing operation where \(V_{OUT} = 3V_{IN} \). And the LT1073 delivers 5V at 40mA from a single cell, and 5V at 100mA from a 3V input.

The LT1173 is optimized for higher input voltages (two or more cells) up to 30V.

It's ideal for low-to-medium power step-down applications. The LT1173 features a 50% duty cycle and operates with as little as 2 volts input. Both the LT1073 and LT1173 are available now. Pricing in quantities of 100 are $3.15 for the LT1073CN8 and $2.40 for the LT1173CN8. For true micropower switching solutions and more details on these new parts contact: Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035. Or call toll free 800-637-5545.
Regulator accepts high or low input

Brian Huffman
Linear Technology Corp, Milpitas, CA

The switching regulator in Fig 1 produces a constant 12V dc output from inputs ranging from 8 to 20V dc, a typical requirement for battery-powered applications. The circuit uses a simple inductor, L1, instead of the more common, and more expensive, transformer.

The circuit is a buck-boost switching regulator. Its switches (D1, D2, Q1, and IC1's internal switch (VSW)) alternately connect the inductor L1 across the input and then the output.

IC1 has a high-side switch, which connects one end of the inductor to the positive rail (-1.5V). Q1 connects the other end of the inductor to ground. IC1's VSW pin provides enough drive to turn on Q1. During Q1's on period, the inductor accumulates energy. D1 blocks the output capacitor from discharging through Q1.

When IC1's power switch turns off, the voltage on IC1's VSW pin decreases until the clamp diode, D2, is forward-biased. At the same time, the falling voltage on the VSW pin turns off Q1, causing Q1's drain voltage to rise until D1 clamps it. D1 and D2 then provide a current path for the inductor to transfer its energy to the output. If you need to handle a higher input voltage, be sure to clamp the gate of Q1 below its 20V-max rating.

IC1's internal pulse-width modulator controls the energy transfer. IC1's feedback pin, VFB, samples the output from the 11.0-kΩ/2.49-kΩ divider. IC1's error amplifier compares the feedback pin's voltage to its internal 2.21V reference and controls the duty cycle, completing a control loop. You can change the output voltage by varying the resistor-divider ratio. The RC damper on IC1's VC pin provides loop-frequency compensation.

The inductor supplies output current in pulses. The output capacitor, C2, smoothes the current pulses. During the time IC1's switch is on, the output capacitor delivers current to the load. The input capacitor, C1, provides a low-resistance ac path for the inductor's current during this period. The input capacitor reduces the ripple seen on the VIN pin.

The circuit's efficiency can exceed 70% for output currents greater than 0.5A. Also, for input voltages above 15V, it can supply more than 2A of output current. (EDN BBS/DL.SIG #943)

To Vote For This Design, Circle No. 746

Fig 1—This switching regulator is suitable for battery-powered applications because it produces a 12V dc output from inputs ranging from 8 to 20V dc.

= 1% FIlM RESISTORS
D1 = MOTOROLA - MBR745
C1 = NICHICON - UPL1E102MRH6
C2 = NICHICON - UPL1C472MRH6
L1 = COILTRONICS - CTX25-5-52

EDN April 25, 1991 179
Transistor sensor needs no compensation

Jim Williams
Linear Technology Corp, Milpitas, CA

The thermometer circuit in Fig 1 uses an inexpensive transistor to accurately measure temperature without compensation or calibration. Almost all transistor sensors use the base-emitter diode's voltage-shift with temperature as their sensing mechanism. Unfortunately, the absolute diode voltage is unpredictable, necessitating circuit calibration each time you fit a new transistor sensor.

The circuit in Fig 1 overcomes this limitation. The circuit provides a 0-to-10V output corresponding to a 0-to-100°C input. Unadjusted error is <±1%.

The basis for the circuit is the predictable relationship between current and voltage in a transistor's V_{BE} junction. At room temperature, the V_{BE} junction diode shifts 59.16 mV per decade of current. The temperature dependence of this constant is 0.33%/°C, or 198 µV/°C. The ΔV_{BE}-vs-current relationship holds, regardless of the V_{BE} diode's absolute value.

An internal oscillator controls the state of the switches in IC1, the LTC1043. The 0.01-µF capacitor at pin 16 sets the IC's oscillator frequency at about 500 Hz. Q1 operates as a switched-value current source, alternating between about 10 and 100 µA as IC1 commutes switch pins 12 and 14. The two currents' exact values are unimportant, so long as their ratio remains constant.

Because of this constant ratio, Q1 requires no reference, although its emitter resistor's ratio must be precise. The alternating 10/100-µA stepped current drive

![Diagram](image-url)

Fig 1—The transistor Q_2 senses temperature. This circuit requires no compensation, even if you change transistors.
Mini-Circuits
A Division of Scientific Components Corporation
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500
Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156

WORLD'S SMALLEST SURFACE MOUNT MIXERS

up to 1500MHz LO up to +17dBm from $6.25

If your systems designs require surface-mount mixers, check Mini-Circuits’ expanded RMS-series for models that best meet your specific needs. Units are assembled using all-welded construction and Ultra-Rel diodes for improved reliability and then packaged in a tiny 0.25 by 0.3 by 0.2 in. non-hermetic case.

Wideband models extend to 1500MHz, -U models offer high isolation, -L models operate at low LO, and -MH and -H models are designed for low and very low two-tone, third-order IM requirements (RMS-H models are the only +17dBm surface-mount mixers available in this small a package). The RMS-series, available in tape-and-reel format, can be attached to a pc board by manual soldering or with automatic equipment. RMS ULTRA-REL™ mixers are guaranteed for five years. And 4.5 sigma repeatability is also guaranteed, meaning less than 4 out of a 1,000,000-unit production run will come close to the spec limit.

So don’t settle for imitations or “equivalents”… insist on surface-mount ULTRA-REL™ mixers, available only from Mini-Circuits.

SPECIFICATIONS: all spec limits are 4.5 σ from mean

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq. Range (MHz)</th>
<th>LO Level (dBm)</th>
<th>Conv. Loss (dB)</th>
<th>L-R Isol. Mean (X)</th>
<th>Price $</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS-2L</td>
<td>800-1000</td>
<td>+3</td>
<td>6.6</td>
<td>24</td>
<td>6.95</td>
</tr>
<tr>
<td>RMS-1</td>
<td>0-500</td>
<td>+4</td>
<td>6.4</td>
<td>45</td>
<td>6.25</td>
</tr>
<tr>
<td>RMS-1W</td>
<td>2-750</td>
<td>+7</td>
<td>5.8</td>
<td>45</td>
<td>6.75</td>
</tr>
<tr>
<td>RMS-2</td>
<td>5-1000</td>
<td>+7</td>
<td>6.8</td>
<td>38</td>
<td>6.95</td>
</tr>
<tr>
<td>RMS-2D</td>
<td>5-1000</td>
<td>+7</td>
<td>6.8</td>
<td>40</td>
<td>7.25</td>
</tr>
<tr>
<td>RMS-2U</td>
<td>10-1000</td>
<td>+7</td>
<td>6.5</td>
<td>46</td>
<td>11.45</td>
</tr>
<tr>
<td>RMS-1L</td>
<td>5-1000</td>
<td>+7</td>
<td>6.0</td>
<td>41</td>
<td>13.95</td>
</tr>
<tr>
<td>RMS-1H</td>
<td>2-500</td>
<td>+10</td>
<td>5.8</td>
<td>47</td>
<td>7.95</td>
</tr>
<tr>
<td>RMS-2LH</td>
<td>5-1000</td>
<td>+10</td>
<td>6.6</td>
<td>40</td>
<td>8.95</td>
</tr>
<tr>
<td>RMS-2LH</td>
<td>10-1500</td>
<td>+10</td>
<td>5.4</td>
<td>38</td>
<td>14.95</td>
</tr>
<tr>
<td>RMS-1MH</td>
<td>2-500</td>
<td>+13</td>
<td>5.7</td>
<td>44</td>
<td>8.95</td>
</tr>
<tr>
<td>RMS-2MH</td>
<td>5-1000</td>
<td>+13</td>
<td>6.6</td>
<td>44</td>
<td>9.95</td>
</tr>
<tr>
<td>RMS-5MH</td>
<td>10-1500</td>
<td>+13</td>
<td>5.8</td>
<td>46</td>
<td>15.95</td>
</tr>
<tr>
<td>RMS-1H</td>
<td>2-500</td>
<td>+17</td>
<td>6.3</td>
<td>44</td>
<td>10.95</td>
</tr>
<tr>
<td>RMS-2H</td>
<td>5-1000</td>
<td>+17</td>
<td>7.2</td>
<td>36</td>
<td>11.95</td>
</tr>
<tr>
<td>RMS-2UH</td>
<td>10-1000</td>
<td>+17</td>
<td>7.1</td>
<td>38</td>
<td>14.45</td>
</tr>
<tr>
<td>RMS-5H</td>
<td>10-1500</td>
<td>+17</td>
<td>7.2</td>
<td>45</td>
<td>17.95</td>
</tr>
</tbody>
</table>

So don’t settle for imitations or “equivalents”… insist on surface-mount ULTRA-REL™ mixers, available only from Mini-Circuits.

CIRCLE NO. 111
to the sensor transistor, \(Q_2 \), causes the theoretical 59.16-mV excursion at 25°C to appear across the \(V_{BE} \) junction.

\(C_1 \) couples this signal to a switched demodulator that strips off \(Q_2 \)'s dc bias. Thus IC\(_1\)'s pin 2 sees only the 59-mV waveform, which the demodulator action at pins 5 and 6 references to ground. Pin 5, connected to capacitor \(C_2 \), sits at pin 2's peak dc value. IC\(_2\) amplifies this dc signal, with VR\(_1\) providing offset so that 0°C equals 0V output. The optional 10-k\(\Omega \) resistor protects against ESD (electrostatic discharge) events, which may occur if \(Q_2 \) is at the end of a cable.

Using the components in Fig 1, the circuit achieves \(\pm 1\% \) error over a sensed 0-to-100°C range. Substituting randomly selected 2N3904s and 2N2222s for \(Q_2 \) showed less than 0.4°C spread over 25 devices from various manufacturers. (EDN BBS/DL.SIG #945)

Reference(s)

To Vote For This Design, Circle No. 747

Feedback tames detector overshoot

Jerald Graeme
Burr-Brown Corp, Tucson, AZ

The peak detector in Fig 1 employs positive feedback, rather than using phase compensation or reducing the circuit's feedback factor (increasing gain), to control overshoot. A peak detector must control overshoot because uncontrolled overshoot leads to errors of 30% or more. Using positive feedback for control expands your choice of op amps beyond those that allow only external compensation.

Resistors \(R_1 \) and \(R_2 \) provide the necessary positive feedback. Op amp IC\(_1\) buffers and charges the holding capacitor, \(C_H \). Voltage follower IC\(_2\) isolates the hold capacitor from the load. A feedback loop removes IC\(_2\)'s errors from the output.

Diode D\(_1\) switches the feedback loop to control peak detecting. As long as the voltage on \(C_H \) is higher than the input, D\(_1\) is reverse-biased, and the feedback loop is open. When the input rises above the voltage on \(C_H \), IC\(_1\) charges the holding capacitor to this new value and D\(_1\) switches on the feedback loop, ensuring an accurate stored voltage on \(C_H \).

Without overshoot, the circuit's error is just the input error of IC\(_1\) (\(\sim V_{os} + V_{IN}/A \)). But three factors make peak detectors prone to overshoot: normal op-amp overshoot, capacitive output loading, and having two amplifiers in a feedback loop.

Most op amps have 50 to 60° of phase margin. This compensation offers the best settling time and best real-time accuracy for most applications. However, for peak detectors, this phase margin causes 10 to 15% overshoot. The inherent capacitive loading and the 2-op-amp design result in even greater overshoot.

The positive feedback via \(R_2 \) and \(R_1 \) has a positive feedback factor \(\beta \) equal to \(R_2/(R_1+R_2) \). This positive feedback combines with the unity negative feedback from the output of IC\(_2\) to the negative input of IC\(_1\).
THE MULTIPLE CHOICE ANSWER FOR SMD TRIMMERS

New! New! New!
4mm Sealed Multiturn

The only way to get multiturn trimming precision in a 4mm surface mount environment is with sealed trimmers. Bourne's new Bourns® Model 3934 features a rugged, 11-turn, sealed trimmer. Dynamic specifications: Rugged construction, with 200 cycles and 4mm Open-Frame Single-Turn

With a cost-effective chip style design, the model 3934 features a cross-slot rotor that is ideal for automatic assembly and adjustment techniques.

<table>
<thead>
<tr>
<th>Size</th>
<th>4.8mm x 1.8mm x 2.4mm</th>
<th>200 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Resistance Variation</td>
<td>5% max.</td>
<td></td>
</tr>
<tr>
<td>Insulation Resistance Range</td>
<td>10 ohms - 2 megohms</td>
<td>5% max.</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>250ppm/°C</td>
<td>10 ohms - 2 megohms</td>
</tr>
<tr>
<td>Rotational Life</td>
<td>200 cycles</td>
<td>200 cycles</td>
</tr>
</tbody>
</table>

CIRCLE 44 CALL ME CIRCLE 49 SEND LITERATURE

3mm Open-Frame Single-Turn

With a thin-film resistor, it can be either wave or reflow soldered.

<table>
<thead>
<tr>
<th>Size</th>
<th>3.6mm x 1.3mm x 1.3mm</th>
<th>70 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Resistance Variation</td>
<td>5% max.</td>
<td></td>
</tr>
<tr>
<td>Insulation Resistance Range</td>
<td>100 ohms - 2 megohms</td>
<td>5% max.</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>200ppm/°C</td>
<td>100 ohms - 2 megohms</td>
</tr>
<tr>
<td>Rotational Life</td>
<td>100 cycles</td>
<td></td>
</tr>
</tbody>
</table>

CIRCLE 46 CALL ME CIRCLE 49 SEND LITERATURE

4mm Sealed Single-Turn

The rugged Model 3314 trimmer is ideal for reliable performance in harsh environments. Top and side adjust styles provide excellent comparability with pick-and-place assembly techniques.

<table>
<thead>
<tr>
<th>Size</th>
<th>4.8mm x 1.8mm x 2.5mm</th>
<th>100 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Resistance Variation</td>
<td>1% max.</td>
<td></td>
</tr>
<tr>
<td>Insulation Resistance Range</td>
<td>10 ohms - 2 megohms</td>
<td>20% max.</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>100ppm/°C</td>
<td></td>
</tr>
<tr>
<td>Rotational Life</td>
<td>100 cycles</td>
<td></td>
</tr>
</tbody>
</table>

CIRCLE 50 CALL ME CIRCLE 51 SEND LITERATURE

Surface Mount Trimmer Design Kit

Get samples fast for prototyping with the Surface Mount Trimmer Design Kit. Over 200 trimmers in popular sizes, styles and resistance values.

CIRCLE 42 CALL ME CIRCLE 43 SEND LITERATURE

Call Me Circle No. 52
Send Literature Circle No. 53

For a FREE BROCHURE and the telephone number of your nearest sales office providing technical assistance.
Thus the circuit has a reduced feedback factor without resorting to increasing its gain.

For the components in the figure, the overall feedback factor β is 0.09, which has the same stabilizing effect as raising the circuit's gain to 11. Overshoot is now a residual 0.2% resulting from feedback-delay oscillations.

Adding R_1 and R_2 does not alter the circuit's gain because the input signal does not appear across these resistors. For unity gain, the voltage across R_2 must, after all, be only the error signal. This error voltage injects a small current into R_1. The resulting voltage differences on R_1 and R_2 define an input-to-output voltage difference equal to $(V_{IN} + V_{OUT}/\beta)$. This difference is small because $V_{OUT} = V_{IN}$ during continued operation.

This analysis also demonstrates two other effects of the positive feedback. First, the circuit amplifies the input-error signal of IC$_1$ by $1/\beta = 11$ rather than by unity. Second, the circuit’s input resistance is much higher than you would expect. An input signal driving a feedback network normally suggests a low input resistance for an op-amp circuit. However, the positive feedback bootstraps the circuit’s resistance in the critical sample interval. The current R_1 draws from the input equals $V_{OUT}/A \cdot R_2 = V_{IN}/A \cdot R_2$. Thus, the circuit’s input resistance is $A \cdot R_2$ during the sample interval.

8051 program converts BCD to binary

John T Hannon
Stewart Warner Alemite, Charlotte, NC

The assembly language program in Listing 1 for 8051-family single-chip µPs converts a BCD number to binary. Unlike other special-purpose, BCD-to-binary routines, you can easily extend this program to convert numbers larger than the 5-byte BCD numbers allowed here.

Before kicking off the program, you must store the 5-byte BCD number in a 5-byte register and allocate a 2-byte register for the binary result. During initialization, the program sets up pointers to these two registers and clears the binary register. Then the program stores the first BCD digit in the result register.

The program has two routines. After initialization, the first routine sets up the conversion factor for the first bit of each BCD digit. The initial value for the
EXABYTE revolutionized the tape storage industry in 1987 by introducing the first 8mm cartridge tape subsystem. Since then, the high capacity and low cost of 8mm digital recording has made it the technology of choice for mass storage.

Over 180,000 EXB-8200 8mm Cartridge Tape Subsystems have been installed in more than 85 system environments. With 2.5 gigabytes of uncompressed data capacity and optional high-speed search functionality, it's no wonder the EXB-8200 has become the de facto data storage standard in workstation, midrange system, and file server environments.

Now, EXABYTE's next generation of 8mm technology advances beyond the performance and capacity of the EXB-8200. The EXB-8500 8mm Cartridge Tape Subsystem provides over 5 gigabytes of uncompressed storage capacity on a single 8mm tape while achieving an extraordinary data transfer rate of 500 Kbytes/second. In addition, high-speed search at 37.5 Mbytes/second allows for rapid file retrieval. It's designed to meet the growing demands of today's supermini and mainframe computer systems.

So if you're searching for the solution to today's data intensive storage requirements, call the regional office nearest you or write EXABYTE Corporation at 1685 38th Street, Boulder, CO 80301.

And find out why 8mm digital recording technology is mass storage with mass appeal.

Eastern U.S. (407) 352-5622, Ext. 82
Central U.S. and Canada (708) 953-8665
Western U.S. (714) 582-5211, Ext. 4
Europe (Amsterdam) 31-3403-51347

CIRCLE NO. 112
Listing 1—8051 BCD-to-binary conversion program (continued)

```
MOV R5,#03H ; OF FOURTH BCD DIGIT (1000)
CALL BCDCON
MOV R4,#10H ; CONVERSION NUMBER FOR FIRST BIT
MOV R5,#27H ; OF FIFTH BCD DIGIT (10000)
MOV R2,#03H ; CHECK ONLY 3 BITS OF FIFTH DIGIT
CALL BCDON
RET

BCDON: MOV R2,#04H ; CONVERSIONS PER BCD DIGIT
INC R0 ; INCREMENT BCD REGISTER TO NEXT DIGIT
MOV A,#RO ; GET BCD DIGIT
ANL A,#0FH ; MASK OFF UPPER FOUR BITS
MOV R3,A ; AND STORE IN TEMPORARY REGISTER
CALL BCDON1 ; GET BCD DIGIT
INC R0 ; SHIFT DIGIT ONE BIT RIGHT
MDV A,R3 ; STORE SHIFTED DIGIT AGAIN
JNC BCDON2 ; IF NO CARRY, DO NOT ADD FACTOR
MDV A,@R0 ; GET FIRST BYTE OF BINARY RESULT
ADD A,R4 ; ADD FIRST BYTE OF CONVERSION FACTOR
MDV @R0,A ; STORE FIRST BYTE OF BINARY RESULT
INC R0 ; INCREMENT TO 2ND BYTE OF BINARY REG
MDV A,R5 ; ADD (WITH CARRY) 2ND BYTE OF FACTOR
DEC R0 ; STORE SECOND BYTE OF BINARY RESULT
MDV A,R5 ; DECREMENT POINTER TO FIRST BYTE OF
BCDCON1: MDV R2,#04H ; BINARY REGISTER
INC R0 ; DOUBLE VALUE OF CONVERSION NUMBER
MDV R3,A ; FOR EACH BCD DIGIT BY SHIFTING R4
JNC BCDON2 ; AND R5 ONE BIT TO THE LEFT.
MDV A,R3 ;
RRC A ;
MDV A,R3 ;
JNC BCDON2 ;
MDV A,R3 ;
INC R0 ;
MDV A,R3 ;
ADD A,R4 ;
MDV A,R3 ;
DEC R0 ;
DEC R0 ;
MOVC A,R5 ;
DJNZ FC:, BCDON2
RET ; DECREMENT CONVERSION COUNTER
; REPEAT UNTIL ALL BITS CHECKED
```

The conversion factor is 10_{10} ($000A_{HEX}$). Then the first routine calls the second routine as a subroutine to do the actual conversion. If the BCD digit's bit is a one, the subroutine adds the conversion factor for that bit to the partial binary result. Then the program adjusts the conversion factor to correspond to the next bit in the selected BCD digit. The program checks each bit in a similar fashion.

The program uses a loop counter to check all four bits of each BCD digit. When the loop counter reaches zero, the program increments the BCD-register pointer, gets the next BCD digit, and masks off the digit's upper four bits in case the number is in ASCII. The program then shifts one bit to the right through the carry bit and stores the shifted number.

Checking the carry bit determines if the conversion factor gets added to the binary result or not. If the bit is a zero, the conversion factor does not get added; if the bit is a one, the conversion factor does get added.

To repeat the bit-conversion loop, the program shifts the conversion factor one bit to the left, doubling its value. The result of decrementing the bit counter determines if the loop needs to be repeated or not. This test allows the conversion routine to test each bit in a BCD digit and add 10_{10}, 20_{10}, 40_{10}, and 80_{10} for each bit, respectively, that is a one.

After converting the first digit, the program returns to the initialization section, adding 100_{10} (00064_{HEX}) to the conversion factor. The program then repeats, converting the second, third, and fourth BCD digits. For the fifth—or ten-thousands—digit, the bit counter's value is only 3 instead of 4 because a 5-digit BCD number cannot be greater than 65,535.

You can easily extend this program by expanding the registers and extending the counters. You can obtain the listing from the EDN BBS (617) 558-4241, 300/1200/2400, 8, N, 1—from main menu, enter (s)ig, <s/di_sig>, rk941), (EDN BBS /DL_SIG #941)
SOLID STATE RELAY

Our FB Series military solid-state relay features high speed and low off-state leakage.

Here's what you get:

- Availability to pending DESC drawing 89116 with screening to "W" and "Y" levels of MIL-R-28750.
- High-voltage output
- Very-low leakage current (200 nA)
- DC or bi-directional power FET output (see wiring diagrams)
- Ideal for ATE applications
- Optical isolation
- Fast switching speed
- Adjustable turn-on times
- Low profile 6-pin mini-DIP
- Cost efficiency

Review the electrical characteristics below and call us for immediate application assistance.

INPUT ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Part Current</th>
<th>FB00CD</th>
<th>FB00FC</th>
<th>FB00KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Continuous Input Current (I_{IN})</td>
<td>10</td>
<td>50</td>
<td>mA_{DC}</td>
</tr>
<tr>
<td>Input Current (Guaranteed On)</td>
<td>10</td>
<td>mA_{DC}</td>
<td></td>
</tr>
<tr>
<td>Input Current (Guaranteed Off)</td>
<td>100</td>
<td>µA_{DC}</td>
<td></td>
</tr>
<tr>
<td>Input Voltage Drop at (I_{IN}) = 25mA</td>
<td>3.25</td>
<td>V_{DC}</td>
<td></td>
</tr>
</tbody>
</table>

OUTPUT ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>FB00CD</th>
<th>FB00FC</th>
<th>FB00KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bidirectional Load Current (I_{LOAD})</td>
<td>±1.0</td>
<td>±0.50</td>
<td>±0.25</td>
</tr>
<tr>
<td>DC Load Current (I_{LOAD})</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Bidirectional Load Voltage (V_{LOAD})</td>
<td>±80</td>
<td>±180</td>
<td>±350</td>
</tr>
<tr>
<td>DC Load Voltage (V_{LOAD})</td>
<td>80</td>
<td>180</td>
<td>350</td>
</tr>
<tr>
<td>ON-Resistance (R_{ON}) at (I_{LOAD}) max.</td>
<td>0.72</td>
<td>1.8</td>
<td>12.9</td>
</tr>
<tr>
<td>Turn-On Time (T_{ON})</td>
<td>800</td>
<td>800</td>
<td>500</td>
</tr>
<tr>
<td>Turn-Off Time (T_{OFF})</td>
<td>300</td>
<td>600</td>
<td>500</td>
</tr>
</tbody>
</table>

Notes:
1. A series resistor is required to limit continuous input current to 50mA (peak current can be higher).
2. Rated input current is 25mA for all tests.
3. Loads may be connected to any output terminal.
4. ON resistance shown is for the bidirectional configuration. The DC ON resistance is 1/4 of these values.

"CREATING THE STANDARD OF THE FUTURE"

A Division of Teledyne Relays

*For immediate application assistance call 1-800-284-7007 or FAX us at 213-779-9161.

Teledyne Solid State, 12525 Daphne Avenue, Hawthorne, California 90250.

EDN April 25, 1991
CIRCLE NO. 113
Design Entry Blank

$100 Cash Award for all entries selected by editors. An additional $100 Cash Award for the winning design of each issue, determined by vote of readers. Additional $1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.

To: Design Ideas Editor, EDN Magazine
Cahners Publishing Co
275 Washington St., Newton, MA 02158

I hereby submit my Design Ideas entry.

Name ___

Title ___________________________ Phone _______________

Company ________________________________
Division (if any) _____________________________
Street _________________________________
City ________________ State ________________
Country ________________ Zip _________________

Design Title _______________________________

Home Address ________________________________

Social Security Number ________________________
(Must accompany all Design Ideas submitted by US authors)

Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must not be patented, and must have no patent pending. Design must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested. Please submit software listings and all other computer-readable documentation on a 5¼-in. IBM PC disk.

Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.

In submitting my entry, I agree to abide by the rules of the Design Ideas Program.

Signed __

Date ___

ISSUE WINNER

Your vote determines this issue's winner. All designs published win $100 cash. All issue winners receive an additional $100 and become eligible for the annual $1500 Grand Prize. Vote now, by circling the appropriate number on the reader inquiry card.

Relay guarantees polarity protection

N Kannan
Centre for Development of Imaging Technology, Thiruvananthapuram, India

The two most common methods of reverse-polarity protection for dc circuits do not absolutely guarantee that the "protected" circuit will always be safe and operate properly. Using a series diode in the power line wastes power, causes a voltage drop, and impairs regulation. The combination of a series fuse and a reversed shunt diode will clear the fuse if you apply reverse-polarity power. But the diode and the fuse take a finite time to open the power lines. During this interval, damage can occur.

Fig 1—This simple relay circuit provides absolute reverse-polarity protection because it will not apply power to the load unless the power's polarity is correct.

The simple circuit in Fig 1 will not apply power to the load unless the power's polarity is correct to begin with. The circuit consumes little power, causes no voltage drop, and does not impair regulation. Switch S is an optional on/off switch. (EDN BBS /DL_SIG #942)

To Vote For This Design, Circle No. 750

EDN’s bulletin board is on line

Call EDN's free bulletin board service (BBS) at (617) 558-4241 (1200/2400,8,N,1) and select /DL_SIG to get additional information or to comment on these Design Ideas.
NEW PRODUCTS

COMPONENTS & POWER SUPPLIES

Electromechanical Relay
- Handles 2500V surges
- Rated to switch 1A
Housed in a 12-pin DIP measuring 11 × 7.5 × 15 mm, the G6N electromechanical relay has a 2.5-kV-surge withstand voltage rating. The unit has a 2 Form C (dpdt) contact arrangement and handles currents of 1A max; maximum switched power rating equals 30W or 62.5 VA. Coil pick-up power requirement equals 140 mW, and contact resistance measures 50 mΩ max. Operate and release times equal 3 and 2 msec, respectively. Dielectric strength measures 1000V ac between each contact and 1800V ac between contacts and coil. The relay service life is 500,000 operations with a 1A, 30V dc load and 200,000 operations for a 0.5A, 125V ac load. Operating range spans -40 to +85°C. The relay is fully sealed to accommodate water-soluble flux immersion cleaning methods. $4.05
Omron Electronics Inc, 1 E Commerce Dr, Schaumburg, IL 60173. Phone (708) 843-7900. FAX (708) 843-7787. Circle No. 357

Power Oscillators
- Provide a 5-VA output
- Output frequency ranges from 0.4 to 10 kHz
Series 110A100 solid-state power oscillators develop a 5-VA sine wave output. Designed for synchro, resolver, LVDT/RVDT, or inducto-
COMPONENTS & POWER SUPPLIES

Syn conversion systems, the oscillators operate over a 0.4- to 10-kHz range and develop output voltages of 6 to 115V rms. The power-output stage is short circuit and overload protected. The units also have an automatic-thermal-shutdown feature to protect against failures caused by long-term overloads. A potentiometer allows you to adjust the output amplitude by ±10%. Two additional 2.5V rms outputs are also available; one has a 90° phase advance with respect to the other output. The oscillators are housed in a 2.6 x 3.1 x 0.82-in. module, which has an integral metal top surface that provides all required heat sinking. From $495. Delivery, stock to 10 weeks ARO.

Control Sciences Inc, 9509 Vassar Ave, Chatsworth, CA 91311. Phone (818) 709-5510. FAX (818) 709-8546. Circle No. 358

FDDI Data Link
- Operates at 125M bps
- Has a 21-dB power margin

The ODL 125 Series II lightwave data link will transfer data in accordance with the FDDI standard. For NRZ (nonreturn to zero) signals, it can operate at data rates ranging from 20M to 125M bps at a typical distance of 3 km. The link has typical beginning-of-life power margin of 21 dB. The devices employ complementary bipolar IC technology and are housed in 16-pin DIPs that include ST-style optical connectors. The link is optimized for 62.5/125-µm fiber, but it can function with 50/125-, 85/125-, and 100/140-µm fibers as well. The transmitter consists of a long-wavelength LED and a silicon IC. It operates from a single supply of 4.5 to 5.46V. The receiver is equipped with a PIN photodetector and operates at the same supply levels as the transmitter. $175/pair (1000).

AT&T Microelectronics, Dept 52AL040420, 555 Union Blvd, Allentown, PA 18103. Phone (800) 372-2447; in Canada, (800) 553-2448; in PA, (201) 771-2826. Circle No. 359

illuminaton breakthrough in decades.

source for LCD backlighting, panel illumination, membrane switch and graphics backlighting, to name a few applications.

Greater design flexibility and cost-efficiency.
Aurora's spectacular life/brightness advantages, as shown in the chart, offer the designer more opportunities than ever before. Combining these benefits with our advanced fabrication techniques, we can produce solid-state, flexible Aurora lamps in almost any size and shape, even complex forms with multiple holes and cutouts. With no glass bulbs or fragile filaments to break, lamp maintenance is minimal with few, if any, replacement costs. And able to withstand shock and vibration as well as temperature and humidity extremes without catastrophic failure, lamp life is phenomenal. In fact, with three times the life of any other EL, Aurora lamps can be expected to last the life of the products in which they are used.

Get the most from the Aurora breakthrough with our performance matched EL systems.
By creating perfectly matched combinations of LLS dc-to-ac inverters and Aurora lamps, our engineers can design an EL system to precisely meet your lighting requirements. With our broad product range, and over 20 years of EL experience, we welcome your questions, especially challenging ones concerning unique applications. Call or Fax the LLS Marketing Department.

Only Aurora ELs offer this extensive life-to-brightness range. Now you can have lamps customized to your life/brightness requirements. This wide range includes lamps with initial brightness of 25fL and typical useful life in excess of 27,000 hours, to lamps with initial brightness exceeding 70fL and with typical life of 5,250 hours.

©1990 Loctite Luminescent Systems, Inc.

CIRCLE NO. 16
DIP Sockets
- Include decoupling capacitor
- Accommodate 6- to 48-pin devices
Series 451 DIP sockets come complete with a surface-mount decoupling capacitor and are available in sizes of 6 to 48 pins. The units incorporate a large-area ground plane across the entire surface of the socket. This plane helps eliminate the effects of noise before it reaches the chip. The ground plane surface is insulated with a masking material to protect nearby components from any electrical interference. The sockets are stackable end to end or side by side and are available in versions with 0.3- and 0.6-in. center spacings. A variety of terminal styles, contact pressures, plating configurations, and capacitor values is available. From $0.47 (100).

Andon Electronics Corp, 4 Court Dr, Lincoln, RI 02865. Phone (401) 333-0388. FAX (401) 333-0287. Circle No. 360

Quad LED Assemblies
- Have a light shield to minimize false indications
- Available in three colors
Series 5644H right-angle quad LED assemblies feature a light shield that eliminates false indications caused by light bleeding from adjacent LEDs. The units have a 0.75-in. mounted height and feature press-in pins, which provide consistent alignment with front panels. The units are available in red (5644H1), green (5644H5), and yellow (5644H7). They have a 120-mcd brightness level at a drive of 2V and 20 mA. The assemblies are housed in a 94V-0 UL-rated black housing. The housing features built-in standoffs that prevent flux entrapment, thereby simplifying the board-cleaning process after the soldering operation. From $0.89 (OEM qty).

Industrial Devices Inc, 260 Railroad Ave, Hackensack, NJ 07601. Phone (201) 489-8989. FAX (201) 489-6911. Circle No. 362
VM SERIES
BUS SWITCHERS—
VME, VXI, FUTUREBUS
10 Watts/Cu.In. @ 50°C!
Unique Deltron MODUFLEX Design

• Modular High Density Construction
• FINTEGRA – Distributed Thermal Management with Cooling Fins Integral to Each Module

• 1 to 7 outputs
• 400 to 1500 watts
• 120 kHz. MOSFET design
• Current mode control
• All outputs regulated and floating

Call Toll Free 1-800-523-2332
In PA: 215/699-9261

Deltron, Inc.
POWER PRODUCTS
SPECIFICATIONS

INPUT
90-132 VAC or 180-264 VAC, 47-440 Hz. Strappable.

INPUT SURGE
Less than 68 Amps peak from cold start. For 1000W and 1500W units less than 136 Amps peak.

HOLDUP TIME
20 milliseconds from loss of nominal AC power.

OUTPUTS
See model selection table.

ADJUSTABILITY
±5% trim adjustment. All 5VDC outputs are adjustable up to 5.2VDC @ full output.

OUTPUT POLARITY
All outputs are floating from chassis and each other and can be referenced to each other or ground as required.

LINE REGULATION
Less than ±0.1% or ±5mV for input changes from nominal to min. or max. rated values.

LOAD REGULATION
±0.2% or ±10mV for load changes from 50% to 0% or 100% of max. rated values.

MINIMUM LOAD
Main output requires a 10% minimum load for full output from auxiliaries.

REMOTE SENSING
On all outputs except those less than 100 watts and less than 20 Amps.

RIPPLE & NOISE
1% or 100mV pk-pk, 20 MHz bandwidth.

OPERATING TEMPERATURE
0-70°C. Derate 2.5%/°C above 50°C.

COOLING
A min. of 10 LFS cooling air directed over the units for full rating. Two test locations on chassis rated for max. temperature of 90°C. 1000 and 1500 watt units have built-in fan.

TEMPERATURE COEFFICIENT
±0.02%/°C.

EFFICIENCY
80% typical.

SAFETY
Units meet UL 1950, CSA 22.2 No. 220, CSA bulletin 1402C, EN 60 950, DIN VDE 0805/05.90. Certifications in process.

DIELECTRIC WITHSTAND
3750 VRMS input to ground. 3750 VRMS input to output. 700 VDC output to ground.

SPACING
8 mm primary to secondary. 4 mm to grounded circuits.

LEAKAGE CURRENT
0.75 mA at 115 VAC 60Hz. input. 1.5 mA for 1000 watt and 1500 watt models.

EMISSIONS
Units meet FCC 20780 Part 15 Class A and VDE 0871/6.78 Class A for conducted emissions. Compliance with Class B limits by use of additional external filter. 1000 watt and 1500 watt models require optional filter for Class A.

DYNAMIC RESPONSE
Peak transient less than ±2% or ±200mV for step load change from 75% to 50% or 100% max. ratings.

RECOVERY TIME
Recovery within 1%. Main output – 200 microseconds. Auxiliary outputs – 500 microseconds.

AC UNDERSURGE
Protects against damage for undervoltage operation.

OVERVOLTAGE PROTECTION
Standard on main output.

REVERSE VOLTAGE PROTECTION
All outputs are protected up to load ratings.

OVERLOAD & SHORT CIRCUIT
Outputs protected by duty cycle current foldback circuit with automatic recovery. Auxiliaries have additional backup fuse protection.

THERMAL SHUTDOWN
Circuit cuts off supply in case of local over temperature. Units reset automatically when temperature returns to normal.

SOFT START
Units have soft start feature to protect critical components.

LOAD REGULATION
±0.2% or ±10mV for load changes from 50% to 0% or 100% of max. rated values.

FAN OUTPUT
Nominal 12 VDC @ 12 watts maximum.

INHIBIT
TTL compatible system inhibit provided.

SHOCK
MIL-STD 810-D Method 516.3, Procedure III.

VIBRATION
MIL-STD 810-D Method 514.3, Category 1, Procedure I.

MECHANICAL

<table>
<thead>
<tr>
<th>CASE</th>
<th>WATTS</th>
<th>H</th>
<th>x</th>
<th>W</th>
<th>x</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400 W/500 W</td>
<td>2.5"</td>
<td>x</td>
<td>5.05"</td>
<td>x</td>
<td>9.0"</td>
</tr>
<tr>
<td>2</td>
<td>750 W</td>
<td>2.5"</td>
<td>x</td>
<td>5.20"</td>
<td>x</td>
<td>9.63"</td>
</tr>
<tr>
<td>3</td>
<td>1000 W</td>
<td>5.0"</td>
<td>x</td>
<td>5.05"</td>
<td>x</td>
<td>10.4"</td>
</tr>
<tr>
<td>4</td>
<td>1500 W</td>
<td>5.0"</td>
<td>x</td>
<td>5.20"</td>
<td>x</td>
<td>11.0"</td>
</tr>
<tr>
<td>5</td>
<td>860W</td>
<td>2.5"</td>
<td>x</td>
<td>5.0"</td>
<td>x</td>
<td>6.85"</td>
</tr>
</tbody>
</table>

POWER FAIL MONITOR
Optional circuit provides isolated TTL and VME compatible power fail signal providing 4 milliseconds warning before main output drops by 5% after an input failure. Available on units with a high current 5 volt output.

AUTO RANGER
Optional circuit provides automatic operation at specified input ranges without strapping. Not available on single output units.

PILOT BIAS
Optional circuit provides SELV output of 5 volts at 1 Amp independent of the main power converter. Output isolation compliant to safety specifications referenced above. Not available on single output units.

EMI FILTER
For Class A on 1000 and 1500 watt units.

COVER
Optional flat cover recommended when customer supplied fan cooling is directed through the length of the unit.

FAN COVER
Optional cover with brushless DC fan which provides the required air flow for full rating of VM power supplies.

POWER FACTOR CORRECTION
Refer to Bulletin FM-101 for FM Series units with 0.99 power factor and harmonic currents compliant to IEC 555-2.
DESCRIPTION

VM Series switchers comprise a line of open frame power supplies with output combinations that are required for a large variety of bus systems such as VME, VXI, and FUTUREBUS. Units in this fully modular family offer power density up to 10 watts per cubic inch. The small size and high power available permits more system hardware to be packaged in a given enclosure. The extended function without additional cabinet overhead will give your product a competitive edge in the marketplace.

VM Series feature outstanding quality, insuring full compliance to specifications, reliable field operation and long service life. This exceptional quality is a result of three major efforts.

- Meticulous innovative engineering design.
- Total modular mechanical design.
- Excellent thermal management.

VM Series are available in power ratings from 400 to 1500 watts and with 1 to 7 outputs in a single package.

FEATURES

- TUV, UL, CSA.
- 10 watts per cubic inch.
- 120 kilohertz MOSFET design.
- Current mode control.
- System inhibit.
- Load proportional DC fan output.
- Options include: Auto ranger for continuous input operation. Power fail monitor. Pilot bias. EMI filter for 1000 and 1500 watt units. Cover. Fan cover – 1000 and 1500 watt units have fan built in.

SINGLE OUTPUT MODELS

<table>
<thead>
<tr>
<th>Model</th>
<th>VDC</th>
<th>Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM12D0-YY</td>
<td>2VDC</td>
<td>150A</td>
</tr>
<tr>
<td>VM12D1-YY</td>
<td>3.3VDC</td>
<td>150A</td>
</tr>
<tr>
<td>VM12D2-YY</td>
<td>5VDC</td>
<td>150A</td>
</tr>
<tr>
<td>VM12D3-YY</td>
<td>12VDC</td>
<td>72A</td>
</tr>
<tr>
<td>VM12D4-YY</td>
<td>15VDC</td>
<td>57A</td>
</tr>
<tr>
<td>VM12D6-YY</td>
<td>24VDC</td>
<td>36A</td>
</tr>
<tr>
<td>VM12D9-YY</td>
<td>48VDC</td>
<td>18A</td>
</tr>
</tbody>
</table>

MULTIPLE OUTPUT MODELS

<table>
<thead>
<tr>
<th>Model</th>
<th>Total Power</th>
<th>Case</th>
<th>Ratings:</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM1A-YY</td>
<td>400 Watts</td>
<td>1</td>
<td>5VDC @ 50A, 12VDC @ 12A, 24VDC @ 6A</td>
</tr>
<tr>
<td>VM2A-YY</td>
<td>400 Watts</td>
<td>1</td>
<td>5VDC @ 50A, 12VDC @ 12A, 24VDC @ 6A</td>
</tr>
<tr>
<td>VM1B-YY</td>
<td>500 Watts</td>
<td>1</td>
<td>5VDC @ 80A, 12VDC @ 12A, 24VDC @ 6A</td>
</tr>
<tr>
<td>VM2B-YY</td>
<td>500 Watts</td>
<td>1</td>
<td>5VDC @ 80A, 12VDC @ 12A, 24VDC @ 6A</td>
</tr>
<tr>
<td>VM3B-YY</td>
<td>500 Watts</td>
<td>1</td>
<td>5VDC @ 80A, 12VDC @ 12A, 24VDC @ 6A</td>
</tr>
<tr>
<td>VM1D-YY</td>
<td>750 Watts</td>
<td>2</td>
<td>5VDC @ 120A, 12VDC @ 12A, 24VDC @ 4A</td>
</tr>
<tr>
<td>VM2D-YY</td>
<td>750 Watts</td>
<td>2</td>
<td>5VDC @ 120A, 12VDC @ 12A, 24VDC @ 4A</td>
</tr>
<tr>
<td>VX1B-YY</td>
<td>1000 Watts</td>
<td>3</td>
<td>5VDC @ 30A, 12VDC @ 12A, 24VDC @ 5A</td>
</tr>
<tr>
<td>VX1D-YY</td>
<td>1500 Watts</td>
<td>4</td>
<td>5VDC @ 120A, 12VDC @ 15A, 24VDC @ 8A</td>
</tr>
<tr>
<td>VX1E-YY</td>
<td>1000 Watts</td>
<td>3</td>
<td>5VDC @ 30A, 12VDC @ 12A, 24VDC @ 5A</td>
</tr>
<tr>
<td>VX1F-YY</td>
<td>1500 Watts</td>
<td>4</td>
<td>5VDC @ 120A, 12VDC @ 15A, 24VDC @ 8A</td>
</tr>
</tbody>
</table>

OPTIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>None</td>
</tr>
<tr>
<td>01</td>
<td>Power Fail</td>
</tr>
<tr>
<td>02</td>
<td>Auto Ranger</td>
</tr>
<tr>
<td>04</td>
<td>EMI Filter</td>
</tr>
<tr>
<td>32</td>
<td>Cover</td>
</tr>
<tr>
<td>64</td>
<td>Fan Cover</td>
</tr>
</tbody>
</table>

Notes:
1. All 5VDC outputs adjustable to 5.2VDC. Others trim adjustable ±5%.
2. On models VX1E-YY and VX1F-YY the max. total power for the sum of outputs #1 to #3 must not exceed 500 watts and 750 watts respectively.
3. Models VX1E-YY and VX1F-YY include built-in fan.
4. Models VX1E and VX1F require EMI Filter option to meet FCC and VDE Class A for conducted emissions.

7 output unit with fan cover
DIMENSIONS

CASE 1 & 2

NOTES:
(1) WITH COVER (#6-32), W/O COVER (.150 DIA.)
(2) W/FAN COVER UNIT HEIGHT (4.100)
(3) TERMINAL BLOCKS (#6-32)
(4) STUDS (1/4-20)

CASE 3 & 4

CASE 5

DELTRON, inc.
290 WISSAHICKON AVENUE, P.O. BOX 1369, NORTH WALES, PA 19454

Printed in U.S.A.
NEW PRODUCTS

CAE & SOFTWARE DEVELOPMENT TOOLS

Enhanced Real-Time OS For 68000 Family

- Provides SCSI support for hard-and floppy-disk drives
- Lets you install boot files on magnetic tape

OS-9 version 2.4 is an enhanced version of the real-time operating system for Motorola's 68000 family of µPs. You can perform all software-development tasks either on a PC or Unix host computer, or on the target 680X0 system; the compilers (C, Fortran, Pascal, or Basic) produce position-independent, re-entrant, ROMable code. New communications facilities support the 68332 communications controller, as well as evaluation boards that use this chip. Other new features include the SCSI common-command set, as well as SCSI connect/disconnect and device-installation commands. A random block-file manager supports write-through caching; you can set the cache size and enable or disable the cache, and you can get a report on usage statistics. The random block-file manager also supports variable sector sizes, which can be any integral power of 2—from 256 to 32,768 bytes. The file manager supports noncontiguous boot files whose size is limited only by the hardware device. Professional OS-9 includes the OS, a compiler, a screen editor, a debugger, file managers, and utility programs. 32-bit 680X0 CPUs, $1150; 16-bit CPUs, $800; industrial OS-9, including OS, a sequential-character file manager, and interprocess-communications manager, 32-bit CPUs, $425; 16-bit CPUs, $275.

Microware Systems Corp, 1900 NW 114th St, Des Moines, IA 50325. Phone (515) 224-1929. FAX (515) 224-1352. Circle No. 351

Spice Postprocessor

- Provides custom windowing interface
- Lets you view and compare waveforms from several output files

Intuscope version 3.1 is a major up...

More Pease, Please!

Because so many of you have asked for Pease, we’ve put all 12 parts of the Troubleshooting Analog Circuits series published in EDN into one handy reference source.

This 101-page collection of articles was developed by Bob Pease, senior scientist in industrial linear-IC design at National Semiconductor Corp. and world-renowned analog-circuit designer.

Don’t miss this exclusive reprint. Learn about troubleshooting analog circuits as only Bob Pease can tell it. This reprint is yours for only $26.70 (U.S.A.) or $29.96 (non-U.S.A.).

PLEASE PRINT CLEARLY _ Payment enclosed _ Bill me _ Visa _ Mastercard
Credit Card Number______ Signature______ Exp. date______
Name______ Title______ Company______
Address______ City______ State______ Zip______

Mail coupon to: Cahners Reprint Services, 1350 E. Touhy Ave., Des Plaines, IL 60018 U.S.A. or call 708/390-2240 or FAX your order: 708/390-2779.

USA CURRENCY ONLY

EDN April 25, 1991

CIRCLE NO. 17
grade of postprocessor and graphical data-analysis package. Version 3.1 provides a custom windowing interface that allows you to select, view, and compare waveforms from several Spice output files simultaneously. Special program options let you display data from ac, de, transient, and distortion analyses without having to manipulate the net list. The waveform calculator lets you perform cursor-based measurement, waveform arithmetic, and engineering functions, such as waveform construction, polynomial regression, smoothing, convolution, or filtering. You can direct report-quality graphics to laser or dot-matrix printers, or to pen plotters. The program works with data produced by any Berkeley Spice-compatible simulator, including the vendor's IssSpice. The program runs on IBM PCs that have at least 640k bytes of RAM, a math coprocessor, an EGA, VGA, or Super VGA monitor, and a DOS 3.1 or later version. Version 3.1, $325. Current users can upgrade for $100.

Intusoft, Box 710, San Pedro, CA 90733. Phone (213) 833-0710. FAX (213) 833-9658.

Circle No. 352

Process-Control Library Of PID Functions
- Routines keep track of a loop's setpoints and coefficients
- Triggers alarms when outputs exceed a specified threshold

The PID Blok library contains routines for creating, tuning, and executing feedback control loops that use PID (proportional, integral, derivative) algorithms. These routines calculate the difference (error) between the current value of a process variable and the desired setpoint, as well as the values that control hardware should receive in order to bring the variable back to the setpoint. Using the PID routines in combination with the vendor's multitasking library, Divvy, you can update as many as 16 PID loops in real time. The PID routines can set alarms whenever control outputs fall outside a preset range applicable to the controlled device; they can also set independent high

SPOTLIGHT: DESIGN & DEVELOPMENT

Finally, attendees determined the most impressive product of the show was CAD Software's PADS.

Each vendor provided its latest bench mark.
Maybe it's time to re-evaluate your software maintenance tools.

It's the biggest job you have. And probably one of the most important. So why does it have to be so difficult?

Too often, the burden of software maintenance falls onto people who weren't around when the code was written. People who need a long time to get up to speed on it, especially when the documentation is poor or when lines of code run into the millions. The risk is high for errors, frustration, lost time — even staff turnover.

Wouldn't it make sense to give your staff a tool that lets them analyze the high-level structure of your existing code — before they're overwhelmed by the details?

Cadre has just what you need. Our reverse engineering tools — for both C and Ada — let you view your source code from an architectural level, shedding light on its structure and purpose.

Your people have an easier time maintaining, upgrading, or reworking the code to achieve your maintenance or reuse objectives.

The benefits are obvious. Virtually at a glance, you know what you have and what you can do with it. You know whether it needs just a little rework or a major rewrite. And you don't waste time, because you can see up front how any work you do will affect other parts of the program.

On top of that, those brave souls who tackle your software maintenance suddenly become more efficient, less likely to be frustrated, able to work faster and give you more real value for the time they put in. And they feel better about themselves.

Reverse engineering is just one of the Teamwork® life cycle solutions made possible by Cadre's Unified CASE® strategy. Cadre eases your development process with an open architecture that integrates the best tools — yours, ours, or anybody's — into your unique environment. The philosophy is simple: to minimize the distance between what you promise and what you deliver.

Speaking of delivering, what we're talking about is here today. We can give you a quick demo on 100K lines of your code right now. So call 1-401-351-CASE or 1-800-743-CASE and we'll pencil you in for a big increase in productivity.
A full spectrum of choices.

<table>
<thead>
<tr>
<th>Device</th>
<th>Organization</th>
<th>Speed (ns)</th>
<th>Package</th>
<th>Micron Part #</th>
<th>Availability</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Meg DRAM</td>
<td>x4*</td>
<td>70 – 100</td>
<td>DIP, ZIP, SOJ</td>
<td>MT4C4256</td>
<td>Now</td>
<td>VGA, 8514, 340*, XGA, MAC*, Workstation, Multimedia</td>
</tr>
<tr>
<td></td>
<td>x16*</td>
<td>80 – 100</td>
<td>ZIP, SOJ</td>
<td>MT4C1666/65/70</td>
<td>Now</td>
<td></td>
</tr>
<tr>
<td>4 Meg DRAM</td>
<td>x16*</td>
<td>60 – 100</td>
<td>SOJ, TSOP</td>
<td>MT4C16256/7</td>
<td>Samp. Q4 '91; Prod. 1H '92</td>
<td></td>
</tr>
<tr>
<td>256K VRAM</td>
<td>x4</td>
<td>100 – 120</td>
<td>DIP, ZIP</td>
<td>MT42C4064</td>
<td>Now</td>
<td></td>
</tr>
<tr>
<td>1 Meg VRAM</td>
<td>x4</td>
<td>80 – 120</td>
<td>ZIP, SOJ</td>
<td>MT42C4255/6</td>
<td>4255 Now; 4256 Q4 '91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x8</td>
<td>80 – 120</td>
<td>ZIP, SOJ</td>
<td>MT42C8127/8</td>
<td>8127 Now; 8128 Q4 '91</td>
<td></td>
</tr>
<tr>
<td>2 Meg VRAM</td>
<td>x8</td>
<td>70 – 100</td>
<td>SOJ</td>
<td>MT42C8256</td>
<td>Samp. Q4 '91; Prod. 1H '92</td>
<td></td>
</tr>
<tr>
<td>1 Meg Triple-Port DRAM</td>
<td>x4</td>
<td>80 – 120</td>
<td>SOJ</td>
<td>MT43C4257/8</td>
<td>Now</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x8</td>
<td>80 – 120</td>
<td>PLCC</td>
<td>MT43C8128/9</td>
<td>Now</td>
<td></td>
</tr>
</tbody>
</table>

*Also in low power versions.

© Micron Technology, Inc. 1991
and low alarms. The PID Blok library is supplied in C source code that you can compile with Microsoft C or Turbo C compilers. PID Blok, $149; Divvy, $229.

Drumlin, 1011 Grand Central Ave, Glendale, CA 91201. Phone (818) 244-4600. FAX (818) 244-4246.

Circle No. 353

Reverse Engineering Tool For VMS Languages
• Analyzes source code to generate program structure charts
• Works with any of the languages supported by VAX/VMS
Teamwork/C Rev is available to VAX/VMS users and extends the tool's reverse-engineering capabilities to programs written in Fortran, Pascal, Basic, PL/1, Macro, and Bliss, as well as C. The program interfaces to the VAX source-code analyzer (SCA), which creates libraries that include structural information about programs. Teamwork/C Rev extracts this structural information and produces structure charts within the Teamwork project environment. If you need to modify a module, the software lets you use your preferred editor or the appropriate VAX language sensitive editor from the VAX tool set. You need the VAX/VMS operating-system version 5.2 or later, and VAX SCA version 3.1 or later. Teamwork/C Rev processor, $7500; browsing capability, $100/seat.

Cadre Technologies Inc, 222 Richmond St, Providence, RI 02903. Phone (401) 351-5950.

Circle No. 354

File-Transfer And Flash-EPROM Programming Tool
• Lets you remotely update solid-state disk emulators
• Hosted on half-sized PC expansion board
Flashlink, a high-speed file-transfer and flash-EPROM programming software package works with the vendor's PROMdisk III disk-emu­lator board. The disk emulator can emulate either a 1M-byte floppy-disk drive or as many as three floppy-disk drives, using both flash-EPROM and RAM solid-state memory. A common arrangement is to put the operating system in standard EPROM that emulates a bootable drive (A); the application program (which may change) in flash-EPROM that emulates drive B; and read/write files in nonvolatile static RAM that emulates drive C. The program lets the host send new application files to remote em­bedded systems via modem or di­rect connection between RS-232C ports, at data rates as high as 115k bits/sec; automatic error detection maintains the integrity of the data. PROMdisk III disk emulator board, including Flashlink software and 1M byte of flash-EPROM memory, $495.

Circle No. 355

Upgraded Schematic-Capture Software
• Provides improved user interface
• Net-highlighting feature includes pads and connections
Version 4 of Schema-PCB provides an improved user interface and user-defined keyboard macros. A new net-highlighting feature indicates both the pads and the connections that you're currently routing interactively. Version 4 comes with printer drivers for both HP Laserjet and Postscript printers as well as facilities for generating editable CAM output. Options include auto-routing, autoplacement, AutoCAD DXF interface, and CAM output. $975.

Omation Inc, 801 Presidential Dr, Richardson, TX 75081. Phone (800) 553-9119; in TX, (214) 231-5167.

Circle No. 356

RUGGED PC-BUS SOLUTIONS for Rack, Bench, or Embedded Use

12 or 20-slot Computers
Up to 6 Drives, 375 Watts of Power

All-in-One Systems
7-slot VGA with Touchscreen

Compact Computers/Cards
Embedded PC/AT Designs, CPUs, EPROM and RAM Cards
Over 30 different models to choose from. Custom designs are available.

SMT™
Systems Manufacturing Technology, Inc.
1080 Linda Vista Drive
P.O.Box 1320
San Marcos, CA 92079
(619) 744-3590 • FAX: (619) 744-9256
(800) 648-6262

Circle No. 29
If you had this...
and we gave you this...
think what you could do!

Introducing the Logic Switch™
Imagine! Noise-free, logic-level switching from an electromechanical package! We're calling it the Logic Switch because this alternative to mechanical contact switches gives you discrete, noise-free signal through optoelectronics. Solid-state and designed for long life and reliability. Think of the possibilities!

Here's How It Works.
The Logic Switch uses an infrared emitter and phototransistor sensor combination. An internal "flag" interrupts a beam of infrared light from emitter to sensor, thus changing the switch's output when activated.

The infrared light transmission reduces dust problems associated with visible light transmission, and the solid-state life-span is estimated at 50 million cycles.

What Can You Do With It?
The Logic Switch is so new, we wouldn't presume to guess at all its uses. Instead, we invite you to examine it firsthand and try it out on your ideas. Call Cherry at 708-360-3500, and we'll send qualified engineers a free Logic Switch and a specifications sheet.

The Logic Switch is ideal for any application in which logic-level switching is necessary and traditional snap-action switches are problematic.

But perhaps you have some different ideas.

Why not call us today and put those ideas to the test right in your own laboratory—for FREE. All you've got to lose is signal noise.

The Logic Switch: an electronic device in an electrical package.
NEW PRODUCTS
INTEGRATED CIRCUITS

High-Performance Voice-Coil Drivers
- For 5 or 12V disk drives
- Provide 0.5 to 1.0A drive
The ML4406, ML4407, and ML4408 provide a voice-coil drive for either a 5 or a 12V hard-disk servo drive. The devices integrate power amplifiers, head-retract circuitry, gain switching, and power-fail detection on a single chip. The ML4406 and ML4407 can drive coils requiring 0.5A of peak current in 12V systems. The ML4408, which is targeted for smaller disk drives such as those used in laptop computers, can provide 1.0A of peak current in either 5 or 12V systems. The ML4406 and ML4407, which include on-chip power transistors, have a voltage drop of <1.5V at rated current. The ML4408 uses external pnp transistors to reduce the voltage drop to <0.8V. ML4406 and ML4407 in a 20-pin plastic leaded chip carrier, $3.50 (1000); ML4408 in a 24-pin SOIC, $3.65 (100).
Micro Linear Corp, 2092 Concourse Dr, San Jose, CA 95131. Phone (408) 433-5200.
Circle No. 363

Low-Voltage Quad Op Amp
- Operates down to 1.8V
- Needs only 700-µA/amplifier
The NE/SA5234 matched quad op amp operates as low as 1.8V and features rail-to-rail operation for both its input and output. The device can accept common-mode inputs as much as 250 mV greater than the supply rails, optimizing the dynamic range and helping to prevent distortion of input signals. The output swings to within 50 mV of the supply rails. The op amp has a unity-gain bandwidth of 2.5 MHz and consumes only 700 µA/amplifier, an important feature in battery-powered applications. The op amp is available in 14-pin DIPs and SOICs. From $1.56 (100).
Signetics Co, Box 3409, Sunnyvale, CA 94088. Phone (408) 991-2000.
Circle No. 365

BiCMOS Quad 12-Bit DAC
- Has four 12-bit voltage outputs
- Settling time is 15 µsec
The BiCMOS SP9345 integrates four low-power CMOS DACs with bipolar output stages to provide four 12-bit, voltage-output DACs on a single monolithic chip. The device accepts input data in either 8-bit- or 12-bit-wide words, and you can use the separately addressable double latches in front of each DAC in either conventional, semitransparent, or fully transparent modes. The DACs provide a ±10V output range with offset binary coding. Other key specifications include full-scale settling time of 15 µsec, integral and differential non-linearity of ±½ LSB, and 12-bit monotonicity. The quad DAC, which operates from ±15V supplies, is available in 28-pin ceramic packages and 44-pin plastic leaded chip carriers. From $65 (100).
SiPex Corp, 6 Fortune Dr, Billerica, MA 01821. Phone (508) 663-9691. FAX (508) 670-9001.
Circle No. 364

Modem IC
- Has 2400-bps speed
- Compliant with CCITT standards
The SSI 73K324L 2400-bps modem conforms to CCITT V.21, V.22, V.23, and V.22 bis standards. The quad-mode IC interfaces with standard microprocessors for control of modem functions through its 8-bit multiplexed bus. An optional serial controller bus is also available. In addition to the basic FSK modulation and demodulation sections, the modem includes synchronous/asyn-
chronous buffering, DTMF, guard, and calling-tone generator capabilities. Handshake pattern detectors simplify control of connect sequences, and tone detectors allow accurate detection of call-progress, answer-back, and calling tones. The modem also provides diagnostic test modes. Samples of the 73K324L, which comes in DIPs and plastic leaded chip carriers, will be available in the second quarter of 1991. Approximately $20 to $25 (10,000).

Silicon Systems, 14351 Myford Rd, Tustin, CA 92680. Phone (800) 624-8999; in CA, (714) 731-7110. FAX (714) 669-8814. Circle No. 366

High-CURRENT Op Amp
- **200-mA output capability**
- **700-MHz bandwidth**

Offering a combination of high output current and high speed, the OPA654 op amp can deliver 200 mA into a 50Ω load (±10V), and can slew to 750 V/µsec. The op amp also features a gain-bandwidth product to 700 MHz, a maximum settling time of 150 nsec to 0.1%, and an input bias current of 50 pA. The device, which operates from ±5 to ±18V supplies, uses external compensation. This feature lets the user optimize the device’s open-loop gain and phase characteristics to the desired closed-loop gain, load, and dynamic characteristics. OPA654, in 8-pin metal TO-3 package, $22.95; in 11-pin plastic SIP, $14.30 (100).

Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Phone (800) 548-6132; in AZ, (602) 746-1111. BBS (602) 741-3978 (300/1200/2400 8,N,1). Circle No. 367

Caller-Identification IC
- **Identifies incoming phone numbers**
- **Decodes FSK modem signals**

The SC11210 caller-identification IC supports the caller-number-delivery feature in the switched telephone network. The chip receives and decodes FSK modem signals sent through telephone lines between the first and second rings. These signals transmit the caller’s number to a user’s premises while the phone is on hook. The CMOS device integrates a differential-input buffer, a 4-pole bandpass fil-
For almost half a century Sorensen has consistently established new benchmarks for innovation and quality performance in power supply manufacturing. Today, with facilities in both the U.S.A. and Scotland, we are competing among the best as a World Class Manufacturer.

And at Sorensen every customer is a world class customer. In all our efforts, no matter how big or small, we are committed to producing and delivering power supply products that meet or exceed your expectations.

Regardless of your power supply needs, you'll find that Sorensen is ready to deliver total quality and satisfaction.

For more information and our new catalog detailing our complete line of power supply products call:

TOLL-FREE 1-800-525-2024

Sorensen
A Raytheon Company
5555 N. Elston Ave.
Chicago, IL 60630
(312) 775-0843/Fax: (312) 775-7432

Sorensen
World Class
Customer Satisfaction
From A
World Class
Company

Thousands of models available with 1 to 5 outputs and power levels of 500, 750, 1000, 1250, 1500 & 2000W. High Power and reliability in high packaging density achieved through power MOSFET design resulting in high switching speeds, low noise and ease of filtering. Fast load response, even at low input voltages, absolute current sharing and 2-stage limiting.

featuring:
• 1 through 5 outputs: 2V, 5V, 12V, 15V, 18V, 24V, 28V, 36V, & 48V.
• Dual inputs (selectable) 90-130 Vac or 180-260 Vac (500W to 1250W); 180-264Vac (1500W & 2kW). Optional inputs available.
• Dc inputs (-42 to -56 Vdc) on 500W, 750W & 1000W models.
• Switching Speeds to 144kHz.

The DCS 3kW Series power supplies designed to provide highly stable, continuously variable output voltage and current for a broad range of development, system and burn-in applications. The series currently is comprised of 3 models with voltage ranges from 0-40Vdc to 0-80Vdc and current outputs from 0-37A to 0.75A.

featuring:
• 200-250 Vac input voltage, 47-63 Hz single or three phase.
• Ten turn voltage and current controls permit high resolution setting of the output voltage and current from zero to the rated output.
• Optional internal PFC available.
• Flexible output configuration: Multiple units can be connected in parallel or series to provide increased current or voltage.

Plus many more features! FOR COMPLETE SPECIFICATIONS AND INFORMATION PLEASE FILL-IN REVERSE SIDE.

Sorensen
KSA400 Series
5 Output/400W Switching Power Supply

Incorporates features for stable, heavy duty operation, including parallel MOSFETs in a forward converter technology and overrated electrolytic capacitors. The KSA400 is designed for demanding service in computer and data processing equipment, as well as others needing multiple, adjustable outputs. Built to meet UL, CSA and TUV requirements, and provides EMI protection to FCC and VDE 0871, level 1.

featuring:
• 5 voltage ranges: Main output V1, 5V outputs V2, V3 & V4, 5-15V; output feedback capability. It begins with Total Quality Management which involves everyone, at every level. And it includes the use of Statistical Process Control methods of data collection and analysis, state-of-the-art Automatic Testing Equipment to assure exacting levels of performance. And Just In Time production lets us respond to your needs even on the shortest of notice.

FOR COMPLETE SPECIFICATIONS AND INFORMATION PLEASE FILL-IN REVERSE SIDE.
The Lean, Mean Power Machines...

the DCS and 3kW DCS Series!

Now, you can say good-bye to the unwanted pounds of oversized conventional power supplies. Sorensen's 1kW DCS and new 3kW DCS models offer a lean profile with heavy-weight features.

5-YEAR WARRANTY

The DCS series 1kW Programmable Switch-mode power supplies are a lightweight, low cost solution to many DC requirements. New design provides excellent performance for a wide variety of applications and complies with FCC Part 15, subpart J, Class A, which clearly defines the limitations of conducted and radiated noise. Choose from 9 models: 0-8 to 0-600 Vdc. Standard features include remote programming, 10-turn V&I pots, indicator lamps (V, I, OVP, remote shutdown & remote/local), On/Off switch (with resettable circuit breaker), 3.5 digit voltmeter on sense line, 3.5 digit ammeter (green LED type). Optional IEEE 488 plug-in programming PC card. Line & load regulation: 0.1%; Ripple: 10-100 mV rms. Dual selectable input: 100-132/200-264 Vac, 47-63 Hz, 1 phase.

FREE Sorensen Power Supply Catalog and Product Ordering Information.

Receive our latest Power Specifier Catalog featuring:
- Over 40,000 Model Selections
- Detailed Dimensional Drawings
- 8 New Product Lines
- Complete Specification Tables
- Plus much more...

Complete Engineering Assistance:

In addition to offering a comprehensive line of standard "off-the-shelf" power sources, Sorensen's engineering department is always pleased to discuss special power supply problems, fully integrated power systems or modifications to standard units to meet your requirements.

For More Information Call:
TOLL-FREE 1-800-525-2024
or Fax: (312) 775-7432

Sorensen
A Raytheon Company
5555 N. Elston Ave.
Chicago, IL 60630
(312) 775-0843/Fax: (312) 775-7432
term, an FSK demodulator, a user-selectable energy-detect circuit, and a clock generator. Depending on the setting of the energy-detect circuit, the IC will either pass or block the data from the FSK modem. The IC accepts a 3.57-MHz clock and uses it to generate the internal timing. The IC comes in an 8-pin package. The 14-pin device provides support for power-down and call-progress detect functions and has four energy-detect levels. Approximately $2 (10,000).

Sierra Semiconductor, 2075 N Capitol Ave, San Jose, CA 95132. Phone (408) 263-9300. FAX (408) 263-3337. Circle No. 368

Pro-Logic Dolby Surround-Sound Decoder

• Features autobalance function
• Includes center-mode control
The SSM-2125 combines all the core functions of a complete Dolby Pro-Logic surround-sound decoder on a single chip. The first to integrate an autobalance function, the device also includes an active decoding matrix, center-mode control, and a noise generator. Autobalance provides dynamic correction of left-right input signal-level imbalance, eliminating the need for manual adjustments. According to the company, the on-chip autobalance function replaces as many as 24 active and passive components. In all, the decoder integrates 30 op amps, 10 voltage-controlled amplifiers, a converter amplifier, two dual-output rectifiers, two log-difference amplifiers, comparators, random logic, and a digital noise source. A user-selectable bypass mode provides a 2-channel signal path without the need for external relays. Thin-film resistors and laser trimming eliminate the need for external gain and offset trimming. The decoder's 100-dB dynamic range and 0.015% THD provide an 18-bit equivalent performance. The decoder comes in a 48-pin plastic DIP. From $15 (100).

Analog Devices Inc, Precision Monolithics Div, 1500 Space Park Dr, Santa Clara, CA 95052. Phone (408) 562-7513. Circle No. 369

WITH SYNCHRONOUS OPTICAL DETECTION.
Hamamatsu's new S3599 Modulated Photo IC rejects background light up to 10,000 lux (5,000 minimum) without even squinting. That makes it ideal for component environments found in office equipment, industrial control equipment or anywhere photo switches are used.

You'll see the light with Hamamatsu's famous quality. For quantity pricing, call 908-231-0960 or FAX 908-231-1539 today.
NEW PRODUCTS

TEST & MEASUREMENT INSTRUMENTS

Analog I/O Subsystem For Workstations
- Records, replays, and allows graphical editing of data
- Handles two 14-bit inputs and 14-bit output at once

Desklab, a 14-bit analog input/output subsystem (two inputs, one output) connects to Unix- and VMS-based workstations via a SCSI interface. To the workstation, the subsystem appears to be a disk drive. The system records, replays, and permits editing and analysis of real-time data. You can access application-development tools from the command line, from shell scripts, or via program calls to a C-language function library. Application programs (for example those for speech recognition) can also access the subsystem. The system includes a microphone input, 16 digital I/O lines, and two RS-232C ports that operate to 38.4k bps. The system can include an optional 1.44M-byte MS-DOS-compatible floppy-disk drive and 45M-byte hard disk. $5500.

Gradient Technology Inc, 95B Connecticut Dr, Burlington, NJ 08016. Phone (609) 387-8688. FAX (609) 387-5001. Circle No. 374

Development-Tool Set For Am29000
- Has debugger interface, compiler, and downloader
- Execution board can include 32M bytes of memory

The Nice-29K is a set of software and hardware development and debugging tools for code written to run on Advanced Micro Devices' AM29000 RISC µP. The tools work with IBM PC/ATs and compatible machines. Included in the tool set are a native compiler, an interface to Microtec Research's Xray29K debugger, and a high-speed download facility. The hardware portion of the tool set is a 33-MHz execution board that can contain as much as 32M bytes of RAM. With these tools, the typical duration of a compile/download cycle for a moderately large C program is 21/2 minutes. Tool set, $11,600; evaluation board, $4995.

Step Engineering, Box 3166, Sunnyvale, CA 94088. Phone (800) 538-1750; in CA, (408) 733-7837. FAX (408) 773-1073. Circle No. 375

Custom Thick Film Networks

Fast turnaround on U.S. made DIPs and coated/molded SIPs. Unlimited schematics combining resistors, inductors, capacitors and diodes. Complete capabilities from design through production. Lead lengths up to 0.290". Special performance ranges, plus production and testing to M83401 levels.

Call or Fax your requirements to:
DALE ELECTRONICS, INC.
Techno Division
7803 Lemona Avenue
Van Nuys, CA 91405-1139

Phone (818) 781-1642 • FAX (818) 781-8647

C-Size VXIbus I/O Modules
- 16-bit ADC takes 200k samples/sec
- Simultaneous S/H circuit has 16 channels

The DBS 8700 is an 8-channel, 16-bit A/D conversion module that takes 200,000 samples/sec. The DBS 8710 is a 16-channel simultane-
ous sample/hold board compatible with the ADC. It maintains time correlation between channels to ±200 psec. The DBS 8720 is a 32-channel multiplexer also compatible with the ADC. Each of the three modules is a C-size plug-in for the VXI bus. The ADC board includes an instrumentation amplifier whose software-programmable gain can be changed on a channel-by-channel basis. The board also incorporates a sequence controller that permits continuous data acquisition without host intervention. Onboard RAM stores scan sequences that include gain and sample rate for each channel. DBS 8700, $4000; DBS 8710, $3900; DBS 8720, $1295. Delivery, six to eight weeks ARO.

Analogic Corp, 8 Centennial Dr, Peabody, MA 01961. Phone (508) 977-3000. FAX (508) 532-6097. TLX 6817144. Circle No. 376

Icon-Based Test-Development Software
- Provides graphical prompts to operators
- Includes Dispatch and Execute icons

Wavetest, an icon-based software package, facilitates development of programs for control of data acquisition and testing. Version 3.0 offers these features: The Dispatch icon performs case selection for control of program flow, and the Execute icon lets you run other programs from within Wavetest. You can create graphical prompts to aid test operators in connecting to the unit under test or to guide them through fault diagnosis. Possible graphical prompts are schematics, block diagrams, and pictures. Version 3.0 runs under MS Windows 3.0. Wavetest 3.0, $1495; Version 2.6 users' upgrade, $495.

Wavetek San Diego Inc, 9045 Balboa Ave, San Diego, CA 92123. Phone (800) 874-4835; in CA, (619) 279-2200. Circle No. 377

EDN April 25, 1991

TEST & MEASUREMENT INSTRUMENTS

Evaluation Board For DSP Analog I/O Components
- Includes ADC, DAC, clock, and trigger generators
- Connects to the vendor's DSP boards
The DEM-DSP102/202 evaluation board helps you evaluate and test the vendor's DSP-processor-compatible I/O components. It contains a socketed, 2-channel, 18-bit, 200k-sample/sec A/D converter (the vendor's DSP102JP); a socketed, 2-channel, 18-bit, 500k-sample/sec D/A converter (the DSP202JP); sample-rate and bit-clock generators;
digital I/O interfaces; removable 20-kHz, 6-pole, lowpass filters; and a prototyping area. The board is compatible with the vendor's ZPB34 and ZPB3212 DSP boards. $375.

Burr-Brown Corp, Box 11400, Tucson, AZ 85784. Phone (800) 548-6132; in AZ, (602) 746-1111. FAX (602) 889-1510. Circle No. 378

16-Bit Analog I/O Card
- Includes eight analog inputs and two analog outputs
- Has three timers and four digital I/O lines

The DAQ-16 1-card, 16-bit data-acquisition system runs on IBM PC/ATs and compatible computers. The board includes eight overvoltage-protected analog-input channels, two analog outputs, four digital I/O lines, and three 16-bit interval-counter/timers to control sampling of data. The ADC's maximum sampling rate is 100k samples/sec. $1395; 50k sample/sec unit, $1295.

Quatech Inc, 662 Wolf Ledges, Akron OH 44311. Phone (216) 434-3154. FAX (216) 434-1409. Circle No. 379

Logic-Analyzer Support Package For i486
- Displays disassembly in standard mnemonics
- Allows replacement of addresses with symbols

The 80486 Map (µP-analysis package) adapts the vendor's Clas 4000 logic-analysis system to work with Intel's i486 32-bit µP. The adapter will support µP operation to 50 MHz. Among the package's functions are a display of disassemblies in Intel standard mnemonics and replacement of addresses with symbols. Included in the package is a probe board that measures 1.75 x 5.3 x 0.75 in. The board fits between the µP's 179-pin package and the chip's socket in the target system. To permit use of the board where components are close to the µP socket, the package includes a zero-insertion-force socket. $2950.

Biomation Inc, 19050 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 538-9320; in CA, (408) 988-6800. FAX (408) 988-1647. Circle No. 380
THIS MAN WAS unhappy. THEN HE BOUGHT AN EMULATOR AND NOW HE'S miserable. Funnily ENOUGH WE CAN SEE WHY.

IF THIS MAN HAD CHOSEN ORION'S UniLab 8620, HE WOULD HAVE GOTTEN AN EASY-TO-USE, AFFORDABLE DEBUGGING TOOL THAT WORKS WONDERS ON OVER 170 DIFFERENT PROCESSORS.

INSTEAD HE CHOSE ANOTHER COMPANY'S EMULATOR, A MORE EXPENSIVE ONE. AN EMULATOR WITH EVEN MORE BUGS THAN HIS OWN DESIGN.

THE WHOLE SITUATION MAKES HIM WISH HE'D LISTENED TO HIS MOTHER AND GONE TO LAW SCHOOL.

BUT MORE THAN ANYTHING ELSE, IT MAKES HIM WISH THERE WAS SOME WAY, SOMEHOW, TO GET OUT OF THIS JAM WITHOUT SPENDING A FORTUNE OR WORKING ENOUGH OVERTIME TO RUIN HIS MARRIAGE.

THIS IS WHERE THE UniLab 8620 ANALYZER-EMULATOR SHOULD HAVE ENTERED THE PICTURE. IT'S A POWERFUL DEVELOPMENT SYSTEM THAT WOULD HAVE TAKEN HIM FROM START TO FINISH IN NO TIME. THANKS IN PART TO THE MANY FEATURES WE OFFER.

INSTEAD OF PHONING THE OTHER EMULATOR COMPANY TO GIVE THEM A PIECE OF HIS MIND, THIS MAN WOULD HAVE PEACE OF MIND.

BECAUSE THE UniLab 8620 IS BACKED BY 11 YEARS OF ORION EMULATION EXPERIENCE. AND COMPLETE SERVICE AND SUPPORT.

SO DON'T MAKE THE SAME MISTAKE THIS MAN DID. CALL ORION NOW AND ASK ABOUT OUR RISK-FREE EVALUATION PROGRAM. WITH MORE EMULATION FOR LESS, YOU'RE CERTAIN TO FIND HAPPY HUNTING WHILE SEARCHING FOR THOSE MISERABLE BUGS.

1-800-729-7700

For the name of your nearest distributor outside of the U.S. call Orion at +1-415-327-8800 or FAX us at +1-415-327-9881.
As technology advances, ICs are running faster and printed circuit boards are becoming more densely populated and complex. Signal integrity is at question. Packaging must be considered to get an accurate assessment of the design feasibility. The combination of Meta-Software’s HSPICE optimizing circuit simulator and its advanced modeling capabilities provide consistent, accurate and reliable results.

Meta-Software’s transmission line model is fully functional for transient, DC, AC, optimization and Monte Carlo analysis. HSPICE transmission lines exhibit resistive loss, time delays and reflections. A compact model allows thousands of transmission lines in a single circuit simulation.

The HSPICE transmission line model includes:

- 1, 2 and 3 conductor coupled micro-strip/strip line for PCB use
- coaxial cable
- twin-lead

Models are calculated using advanced look-up table techniques for board/hybrid and LSI applications. Accuracy is maintained over frequency or time by dynamically synthesizing equivalent circuits as a function of transient timestep or maximum frequency.

Key applications include high frequency backplane design, silicon and GaAs substrate transmission line effects, IC packaging and printed circuit board signal analysis.

Contact Meta-Software today for more information on HSPICE—The Circuit Design Advantage!
NEW PRODUCTS

COMPUTERS & PERIPHERALS

SCSI Controller Board

- Has an option for adding a disk cache
- Supports the enhanced AT-attachment protocol

The Smartcache Plus is a SCSI disk-drive controller board for ISA bus computers. It has an emulation mode for controlling one SCSI-2 or two SCSI-1 disk drives or two floppy-disk drives without the need for special-device drivers or BIOS ROMs. An optional cache module converts the board to a caching controller. The module provides from 512k to 16M bytes of cache RAM. Access time using the cache RAM is <0.5 msec. Using its enhanced AT attachment protocol, the board becomes a bus master, allowing it to overlap commands, scatter and gather data, and queue commands. Features include a 68000 µP, a 16-bit SCSI controller chip, and several ASICs. Controller board, $595; cache module with 512k bytes of RAM, $555.

Distributed Processing Technology, 140 Candace Dr, Maitland, FL 32751. Phone (407) 830-5522. FAX (407) 260-5366. Circle No. 370

EISA Bus Computer

- Has 33-MHz 80486 µP and eight 32-bit slots
- Options include SCSI-2 bus master adapter board

The Vectra 486/33T PC, an enhanced version of the company's Vectra 486 PC, is an EISA bus computer. It has a 33-MHz 80486 µP and eight 32-bit expansion slots. The computer supports more than 200 LAN users or 100 terminals on a Unix system. The unit's custom memory controller handles burst mode and a 128k-byte external-cache memory. Its 4M bytes of zero-wait-state memory is expandable to 64M bytes. Other features include a Weitek 4167 coprocessor socket; two serial ports; one parallel port; and hard- and floppy-disk controllers. Options include a 440M-, 670M-, or a 1G-byte SCSI-2 disk drive. A bus-master SCSI-2 adapter board is optional. The computer has certification to run Novell's Netware and Banyan's network software. It runs on SCO Unix, MS-DOS, and MS-OS/2 operating systems. Vectra 485/33T with 4M bytes of RAM and no hard-disk drive, $9499.

Hewlett-Packard Co, 300 Hanover St, Palo Alto, CA 94304. Phone local office. Circle No. 371

3-D Graphics Controllers

- Feature 1280 x 1024-bit resolution and a 16-bit Z buffer
- Incorporate VCAD 3-D graphics engine

The Animator and the Shader 3-D graphics controllers for IBM PCs and compatible computers have 1280 x 1024-bit resolution. They also feature the company's VCAD 3-D graphics engine, a TI graphics processor, a 25M-flops Mathbooster, and a 16-bit Z-buffer for real-time display of 3-D images. In <6 sec, the Shader draws the rotated crank, a common 3-D test file. The boards can draw more than 22,000 3-D shaded triangles/sec and can display as many as 16.7M simultaneous colors. The Animator has dual-frame buffers, allowing the board to construct an image in one buffer while displaying a completed image in the other frame. Both boards provide realistic images with color gradation and without banding. Shader, X/Series Model 3D-S, $5995; Animator, X/Series 3D-A, $6995.

Vermont Microsystems Inc, 11 Tigan St, Winooski, VT 05404. Phone (800) 354-0055; in VT, (802) 655-2860. Circle No. 372

Data-Compression Module

- Compresses data for SCSI tape drives
- Achieves compression ratios from 2:1 to 5:1

The MSB-8400 Squeezebox stand-alone data-compression module compresses data from a host computer to a SCSI tape-backup drive. It features Centronics D-type input and output connectors. A high-speed VLSI chip implements a proprietary compression algorithm. Because hardware accomplishes the data compression, the unit doesn't require any modifications to the operating system, utilities, or disk drives. The module achieves compression ratios from 2:1 to 5:1 on 8- and 4-mm tape drives. The 8-mm tape drive attains a capacity of 10G bytes. The same drive also achieves a data-transfer rate as fast as 1230k bytes/sec, which is equivalent to a throughput of 73M bytes/minute. The unit measures 8.1 x 2.5 x 6.3 in. and requires a 110 or 220V ac power source. $1750.

Megatape Corp, Box 317, Duarte, CA 91010. Phone (818) 357-9921. FAX (818) 357-2369. Circle No. 373
Brochure Features EMC Systems

The brochure, Total Solution to Your EMC Problems, discusses the R2500 Series EMC evaluation/measurement systems. It presents an evaluation of various EMC countermeasures and measurement levels. After examining various testing situations for a particular application, including counter measures, noise terminal voltage measurement, and shield-material evaluation, the publication recommends the optimal R2500 system from the company's 11 configurations. Charts and graphs complete the booklet.

Advantest America Inc, 300 Knightsbridge Pkwy, Lincolnshire, IL 60069. Circle No. 381

Catalog Presents VXI Products

Catalog 5091-0223EUS, HP 75000 Family of VXI Products, contains the manufacturer's entire line of VXI products, including the latest digitizing oscilloscope and universal counter. The text presents the system approach to VXIbus instrumentation. It also provides product descriptions, specifications, illustrations, and ordering information. The book focuses on three categories: software, an interactive test generator; firmware, standard commands for programmable instrumentation; and hardware, main-frame series B and C, DMMs, oscilloscopes, power meters, counters, sources, switches, interfaces, computers, and development tools.

Hewlett-Packard Co, Box 10301, Palo Alto, CA 94303. Circle No. 382

Study Focuses On Pick/Unix Impact

This publication is an "executive summary" of the 1991 IDBMA (International Database Management Association) Pick Industry-Impact Study. It contains information for the Pick and Unix markets and discusses the merge of the Pick business-applications software market with the Unix mainstream. The 100-pg document discusses how the mainstream has chosen Pick, and it elaborates on promises and realities of the market.

IDBMA Inc World Headquarters, 10675 Treena St, Suite 103, San Diego, CA 92131. Circle No. 383

Troubleshooting Approach To Test Sensors

This 4-color poster, Troubleshooting Electronic Components, provides a well-illustrated, troubleshooting approach for testing automotive engine sensors and actuators, using a digital multimeter. The chart presents testing of oxygen sensors, manifold absolute-pressure sensors, mass-air-flow sensors, cam and crankshaft position sensors, fuel-injection systems, the feedback carburetor, idle air-control motors, temperature sensors, and throttle-position sensors. Also included is a step-by-step diagnosis of a real-life automobile electrical problem. The poster features the 88 automotive meter as the diagnostic tool used in the examples.

John Fluke Mfg Co Inc, Box 9090, Everett, WA 98206. Circle No. 384

Publication Discusses PC Instrumentation

The 72-pg catalog, PC Instrumentation for the 90s, describes the vendor's line of PC-based data-acquisition boards, software, ADCs, DACs, and solid-state relay controllers. It provides specifications, photographs, and schematics. A selection guide and an appendix complete the publication.

United Electronics Industries, 10 Dexter Ave, Watertown, MA 02172. Circle No. 386
End the connector compromise...

1. 100,000 CYCLE RELIABILITY

2. LESS THAN 5 MILLIOHMS CONTACT RESISTANCE

3. LOW INSERTION FORCE CONTACTS

...in disk drive connectors

Only Hypertronics ends the compromise in multi-pin connectors for disk drive, plug in memory, and other high cycle life applications...by combining low insertion force contacts with high cycle life reliability...and electrical characteristics that improve with use.

Our KA Series family provides 17 to 490 LIF contacts with optional terminals for flow solder, crimp, solder cup, wire wrap and surface mount use. The contact system is rated at 3 amperes per line at less than 5 milliohms over a mechanical life in excess of 100,000 cycles.

The inherent wiping action of each Hypertronics contact maintains electrical continuity under corrosive conditions and extremes of shock and vibration. Some models are QPL'd to D55302.

Now you can have it all...in signal connectors for equipment requiring up to 490 contacts. End the connector compromise by calling 1-800-225-9228, toll free.

HYPERTAC®: Inserting pin into hyperboloid sleeve.

HYPERTRONICS CORPORATION

"New Horizons in Connectors"

16 Brent Drive, Hudson, MA 01749 (508) 568-0451 FAX (508) 568-0680

EDN April 25, 1991
EDN is written for professionals in the worldwide electronics industry who design, or manage the design of, products ranging from circuits to systems.

EDN provides accurate, detailed, and useful information about new technologies, products, design techniques, and careers.

EDN covers new and developing technologies to inform its readers of practical design matters that will be of concern to them at once or in the near future.

EDN covers new products • that are immediately or imminently available for purchase • that have technical data specified in enough detail to permit practical application • for which accurate price information is available.

EDN's Magazine Edition also provides specific "how to" design information that its readers can use immediately. From time to time, EDN's technical editors undertake special "hands on" engineering projects that demonstrate EDN's commitment to readers' needs for useful design information.

EDN's News Edition also provides comprehensive analysis and news of technology, products, careers, and distribution.

EDN's CHARTER

EDN is written for professionals in the worldwide electronics industry who design, or manage the design of, products ranging from circuits to systems.

EDN provides accurate, detailed, and useful information about new technologies, products, design techniques, and careers.

EDN covers new and developing technologies to inform its readers of practical design matters that will be of concern to them at once or in the near future.

EDN covers new products • that are immediately or imminently available for purchase • that have technical data specified in enough detail to permit practical application • for which accurate price information is available.

EDN's Magazine Edition also provides specific "how to" design information that its readers can use immediately. From time to time, EDN's technical editors undertake special "hands on" engineering projects that demonstrate EDN's commitment to readers' needs for useful design information.

EDN's News Edition also provides comprehensive analysis and news of technology, products, careers, and distribution.
Here's where the barricades start to come down in the mixed signal revolution.

North American Locations & Dates

Cedar Rapids, IA Saddlebrook, NJ Woodland Hills, CA Toronto, Canada Bloomington, MN
March 18 April 2 April 11 May 13 May 22
Cleveland, OH Westchester, NY San Diego, CA Santa Clara, CA Houston, TX
March 19 April 3 April 12 May 14 May 23
Pittsburgh, PA Smithtown, NY McLean, VA Pleasanton, CA Dallas, TX
March 20 April 4 May 6 May 15 May 24
Atlanta, GA Cromwell, CT Baltimore, MD Bellevue, WA Phoenix, AZ
March 25 April 5 May 7 May 16 May 28
Clearwater, FL Santa Clara, CA Cherry Hill, NJ Beaverton, OR Denver, CO
March 26 April 8 May 8 May 17 May 29
Orlando, FL Costa Mesa, CA Fort Washington, PA Woburn, MA Arlington Heights, IL
March 27 April 9 May 9 May 20 May 30
Huntsville, AL Los Angeles, CA Raleigh, NC Montreal, Canada Rochester, NY
March 28 April 10 May 10 May 21 May 31

Also at 24 locations in Europe and the Far East.

With the revolution in mixed signal technology, digital designers now need to know about analog. And the analog guys can no longer turn their backs on digital.

Mixed signal technology is the only way to smash the barriers to higher levels of system integration, better performance, and faster time to market. And it accomplishes these difficult tasks by combining both signals on a single chip.

Which is why designers from both camps should attend our Mixed Signal Design Seminar. A comprehensive full-day tutorial that covers everything from digital signal processing and sampled data systems to sigma delta converters, techniques for building a better board, and much more.

The mixed signal revolution has started, so make sure nothing stops you from attending this seminar. To reserve your space, return the coupon. For more information or to charge your ticket, call (617) 937-1430 or (800) 262-5643.

EDN April 25, 1991
Brushless DC motors from Lamb have arrived

The performance and endurance of Lamb® motors will take you just about anywhere.

Lamb motors utilize electronic commutation to give you a motor that "flies" a lot further in a more compact housing.

These brushless DC motors have a high torque to inertia ratio for the superior stop/start capability required in today’s high tech applications. They also minimize the problems of ripple torque, cogging effects, or demagnetization by high currents by utilizing cost-effective rare earth magnets.

Only 2" or 3.2" in diameter, these motors have stall torque ratings up to 84 oz-in for applications including tape cartridge drives, medical instruments, robots, pumps, compressors, or machine tools.

AMETEK, Lamb Electric Division, 627 Lake Street, Kent, OH 44240. Tel: 216-673-3451. Fax: 216-673-8994. In Europe, Friedrichstrasse 24, 6200 Wiesbaden, Germany. Tel: 611-370031. Fax: 611-370033.
This advertising is for new and current products.

Please circle Reader Service number for additional information from manufacturers.
VHDL for PCs

V-System/PC $495

Ideal for education & design. Requires IBM comp. PC/XT/AT with 640K mem., hard disk, Hercules/CGA/EGA/VGA, mouse, DOS 3.0 or later, floppy drive.

V-System/Windows $1495

To handle larger designs. Requires M-S Windows 3.0, IBM comp. ATs & 386 PCs with 2M memory (min), hard disk, mouse, DOS 3.0 or later, floppy drive.

Model Technology Inc.
15455 N.W. Greenbrier Parkway
Suite 210, Beaverton, OR 97006
Tel (503) 690-6838
Fax (503) 690-2093

CLOCK, TIMERS, an Intel 80Cl 86/88CGA/EVTROLLER, and BATTERY BACK-UP, WATCH

technical assistance please call Robert Coomer.

Numeric Corporation

Computers offer 80C187/8087 Single Board V-System/Windows $1495

V-System/PC $1495

BO-DEBUGGER. For more information and board functions bus speeds up to 16 MHz. On-

16-MHz 80C186/C187

R.L.C.’s large se-

CIRCLE NO. 335

QUAD FLATPAK

PROTOTYPING

IRONWOOD offers a complete line of prototyping adapters for QUAD FLATPAK devices for all sizes of EIAJ and JEDEC CFP’s. The line includes surface mount adapters for highest reliability or socketed adapters for convenience. Parts sizes go from 60 to 208 pins and include all EIAJ pin spacings. Parts are constructed with gold plated solder tail or wirewrap pins and high quality sockets for highest reliability. Most wirewrap and PGA patterns available.

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121
(612) 431-7025; FAX (612) 432-8616

20 MHz 286 CPU CARD — $595

• 2 Serial/1 Parallel Ports
• Up to 4 Meg DRAM 0/1 WS
• Low Power 6-Layer PCB
• Award BIOS — Norton Sl 21.1
• Optional 287 Co-Processor
• Small Size (XT-Form Factor)
• User Replaceable Battery
• Made in USA
• $595 qty 100 w/OK

295 Airport Road
Naples, FL 33942
1-800-634-0701

20 MHz 286 CPU CARD — $595

20 MHz 286 CPU CARD — $595

CIRCLE NO. 336

MacAC II

Professional Analog Circuit Simulation $595.00

MacAC II integrates a full featured schematic editor, parts library, powerful data manipulation and plotting, and SPICE circuit simulation.

MacAC II was written on and for the Macintosh computer. It takes full advantage of it’s powerful graphical user interface.

Call (206) 367-4188

San Juan Software Company
P.O. Box 27620
Seattle, WA 98125-2620

Multi-Tasking EXECs

US Software offers hi-performance software tools for embedded applications.

Get the details by calling:

800-356-7097
503-641-8446
503-644-2413 (FAX)

United States Software Corporation
14215 NW Science Park Drive
Portland, Oregon 97229

Design, Program, Test

TURPRO II Universal Pins Driven L.C. Programmer Current and Future Devices Supported

• PALs, GALs, PEELs, PLDs, FPGAs, E/PROMs, PROMs, MPUs, etc.
• 8-40 Pins DIP and 20-188 Pins PLCC Packages.
• PC Remote Control via RS232C or Parallel Port.
• L.C. MFR. Approved • Self-Contained Power Supply + 2 CPlus.

State-of-the-Art Performance

State-of-the-Art Performance

CIRCLE NO. 338

4 MEG VIDEO Model 10

Flexible Image Processor and Application Accelerator For The PC/AT

• 8 to 8000 Pixels per Line
• 2 to 19 MHz sampling/display rate
• 10 Mbps Programmable Accelerator
• 4 Megabytes of Reconfigurable Image Memory
• RS-170, RS-330, and CGR input/output
• Variable timing for nonstandard formats
• Genlock to external timing sources
• Analog or digital inputs
• Software programmable timing/resolution

CIRCLE NO. 339

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

EDN April 25, 1991
OUR LOWEST COST MODEM!

CH1776 @ $39.95 - 1000 pieces
- A Complete Modem
- 212A - 1200 bps/300 bps
- FCC Part 68 Approved
- AT Command Driven
- 5 Volts, Low Power
- 2" x 1.18" x 1.25"

Your Source for Modem Components

Tel: 408-752-5000
Fax: 408-752-5004

Cermek Electronics, Inc.
1308 Borregas Ave. • Sunnyvale, CA 94089

Pads-PCB® Schema
P-cad®
TRAINING VIDEOS

CUT YOUR
TRAINING COSTS!
FREE DEMO
CALL - FAX - MAIL

HIGH TECH VIDEO PRODUCTIONS™
4810 SUSSEX DRIVE • SAN DIEGO • USA • 92116-2915 • PHONE 619-280-1900
TOLLFREE 800-876-8273 • FAX 619-281-1300

FREE
PCB or Schematic Symbol Library
with purchase of Generic CADD® 5.0 — the best-selling low-cost CAD software in the world!

Bay Generic CADD (sugg.
retail $495) and we’ll throw in one of these libraries-FREE:
- PCB
- IEED
- CMOS
- ECL
- TTL
- Micro Proc.

CALL 1-800-228-3601
Refer to offer #490
Good through 8/30/91
Generic Software, Inc.

CIRCLE NO. 347

FREE TELEPHONE LINE SIMULATOR

TLS-3 lets you demonstrate and test fax machines, phone systems, modems, and other telecom equipment.
- Portable units simulate two telephone lines.
- Provides typical telephone line conditions with dial tone, ringing, busy tone, and ringing voltage for originating and answering equipment.
- Selectable loop start or ground start lines.

1-800-426-3926

CIRCLE NO. 348

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
HAND HELD TERMINAL *$199.

- 80 character display
- 30 or 45 keys
- RS-232 or Rs-422
- Low power
- ST-32 Compatible
- Standard or custom overlay
- Single 5V or 8-12V supply
- 15 Programmable function keys
- Simple menu set-up
- 300-9600 baud
- Even, odd, mark, space
- 1/2 x 4 x 9"
- 8 ounces

Internal Batteries and Built in Charger — Optional

TWO TECHNOLOGIES, INC.
419 Sargon Way, Horscham, PA 19044
215-641-5305

* SINGLE PIECE OEM OR VAR PRICE

IEEE-488

IEEE-488, (GP-IB, HP-IB) CABLES

- Reliable gold plated contacts.
- Durable metal connectors.
- High strength strain reliefs.
- Two shields for high noise immunity.
- Custom lengths at low prices.

Cables

PC/AT™ COMPATIBILITY ON MULTIBUS

In 1989 our MAT286™ SBC brought PC-DOS to Multibus I. Since then no competitor has come close in terms of features, price, or technical support. We've added capabilities, such as 8 megabytes of onboard EPROM capacity, MATXSDO Solid-State Disk software, EMS 4.0, and low power CMOS components. Now we are announcing our new MAT386S/SDG daughter-card with 16-bit VGA and LCD flat panel interfaces, 1-1 interface MAN/LL. ST500 hard-disk/floppy disk controller, and a PC AT Plus short-card adapter. And yes, we are working on MAT386, the 386-based Multibus AT that will be compatible with the 286-based standard. MAT286.

Phone (408) 253-0250 for more information.

Single Board Solutions, Inc.
20045 Stevens Creek Blvd. Cupertino, CA 95014
PCAT™ IBM

Free Catalog

The World’s Largest Collection of Adapters & Accessories for VLSI/Surface Mount Devices

- Emulator Pods & Adapters
- Debug Tools
- Programming Adapters
- Socket Converters

Emulation Technology, Inc.
2344 Walsh Ave. Santa Clara, CA 95051
Phone: 408-982-0660 FAX: 408-982-0664

CIRCLE NO. 349

CIRCLE NO. 350

Design PLDs

Program PLDs

with ABEL-PLD, now just $495.*

Free Catalog

FREE ABEL-PLD start-up kit!

Call for your FREE ABEL-PLD start-up kit!

1-800-247-5700

DATA I/O Corporation

FREE ABEL-PLD start-up kit!

1-800-247-5700

DATA I/O Corporation

FREE ABEL-PLD start-up kit!

1-800-247-5700

DATA I/O Corporation

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

EDN April 25, 1991
Control Cross-C

ANSI C Compiler for the HD64180/Z80

- DOS based cross-compiler for ANSI and K&R C code
- Includes prototypes and argument type checking
- Complete with high-speed assemblers, linker, and librarian
- Allows in-line assembly with access to C variables.
- All code is relocatable and ROMable.
- Fast ANSI/IEEE 744/Intel floating point support.
- Z80 and M68000 cross- compilers coming soon.

AVAILABLE FOR ONLY $699!

SOFTOOLS, INC.
8770 Manahan Drive
Baltimore, MD 21203
(301) 750-3733
FAX/BBS (301) 750-2008

CIRCLE NO. 758

INTEGRATED ELECTRICAL SAFETY TEST STATION

NEW FROM SORESEN ELECTRONICS

- REDUCE TEST TIME BY 90%
- DIGITAL TRMS VOLTS+AMP WATT METERS
- 115V-200V AC OR DC VARIABLE TEST VOLTAGE
- GROUND LEAKAGE & IMPEDANCE TESTING
- ONE SECOND CAPACITIVE DISCHARGE TEST
- INPUT LINE TURN-OFF SURGE AND CURRENT CONTENT TESTING

If you’re serious about quick, convenient and repeatable testing for pre-submission electrical safety screening, then you need the Sorenzen Model 1000 product safety tester.

$3950.00

For product demonstration information contact:
Telephone (408) 336-8000 Fax (408) 336-2016
Marketing Consultants, LTD.
277 Hillside Avenue
Ben Lomond, CA 95005

CIRCLE NO. 759

STD BUS

Control Computer with Disk Interface

- Industrial control, disk interface, operator I/O, and communications on one card.
- Hardware/software support for floppy and RAM/DOS disk in MS-DOS format.
- Built-in industrial control language
- Opro rack interface
- Keypad & display ports
- 2 buffered serial ports
- Real time clock support
- 20 - + 65°C operation

FREE Full Product Line Catalog!
Ph: 303-430-1500, Fx: 303-426-8126

CIRCLE NO. 760

CIRCUIT/CAD

CAD Showdown Results!

HIGHEST DENSITY EXPERTS!

Schematic Capture - PCB Layouts - Autorouting

Top-rated DC/CAD out-routed the competition in the 1990 CAD Showdown. Rounding the challenging benchmark on a double-sided board while competing routers used four to six layers, DC/CAD displayed the power and flexibility needed in a top-notch design package to tackle high density board jobs. This non-copy protected package with surface mount support includes:

- High capacity schematic capture
- Multi-strategy 1-mln parts autoplace
- 1-1mil autorouting with 256Mb of 64K RAM
- Thorough annotating design rule checker
- Full 2-way GERBER and DIF support
- Optional autograting parameters for cross-hatching
- Optional pretest mode version for 386 Users and much more

CALL TODAY. Priced at $945

DESIGN COMPUTATION
W. F. Eaves & Associates
2149 N. 48th St.
Dallas, TX 75204
(214) 398-0601 (214) 398-0565 (FAX)

Smart Software for Tough Board Design.

CIRCLE NO. 764

EDN April 25, 1991
200 MHz Logic Analyzer

- 24 Channels (up to 50 MHz), Timing and State
- 200/100 MHz Max Sampling Rate (6 channel)
- Timing and State Simultaneous on Same Probe
- 16K Samples/Channel (6 channel mode)
- 16 Levels of Sequential Triggering
- Optional Expansion to 72 Channels
- Variable, TTL, or ECL Logic Threshold Levels
- 3 External Clocks and 11 Quality Lines
- FREE Software Updates on 24 Hour BBS

$799 - LA12100 (100 MHz)
$1299 - LA27100 (100 MHz)
$1899 - LA27200 (200 MHz)

Price includes Card, Posts, and Software

UNIVERSAL PROGRAMMER

PAL
GAL
EPROM
EEPROM
PROM
87xxx...
22V10

$475

16Bit EPROMs FLASH EPROMs
5ns PALs 4 Meg EPROMs
FREE software updates on BBS

GANG PROGRAMMER

• 4 32pin Sockets (8 Socket option)
• 2716-272010 EPROMs

$215

Call - (201) 994-6669
Link Computer Graphics, Inc.
4 Sparrow Dr., Livingston, NJ 07039 FAX 994-0730

There is a Difference.
Lifetime Free Updates

EP-1140
$895

A programmer is not just another programmer. That is why BP Microsystems is committed to bringing our customers the highest quality programmers at an affordable price. This commitment is evident in our EP-1140 EPROM programmer supporting thousands of 24, 28, 32 and 44 pin devices. A 5-year warranty, EP-1140 is available also for 860. And, all of our programmers include future chip support at no charge and an unconditional money back guarantee.

BP MICROSYSTEMS
1-800-225-2102
(714) 661-9840

NEW

PC BOARD MOUNT

CHASSIS MOUNT

SERIES PLL and MPL

40 A IN-LINE RECTIFIERS

Space-saving design
Low thermal impedance
Standard, fast, and ultrafast
UL Recognized

American manufacturer of rectifiers since 1951.
Buy from the specialist.

electronic devices
AN AMERICAN ELECTRONIC COMPONENTS COMPANY
10 GRAY OAKS AVE. • YORKVILLE, NY 10989
TEL. 800-670-0928 • FAX 914-965-5533

CIRCLE NO. 767
CIRCLE NO. 768
CIRCLE NO. 769
CIRCLE NO. 770
CIRCLE NO. 771
CIRCLE NO. 772
CIRCLE NO. 773
CIRCLE NO. 774
CIRCLE NO. 775

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
To advertise in Product Mart, call Joanne Dorian, 212/463-6415

EDN April 25, 1991

225
With over 2,700 products, we've got one for you.

A case in point:
When an OEM manufacturer of power distribution systems needed a specialized encapsulant for torroidal coils, they called Emerson & Cuming. Their requirements specified an epoxy-based, single-component product which could eliminate meter/mix/dispense equipment, yet cure at a low temperature and possess exceptional thermal shock characteristics. The solution—one of our STYCAST® series encapsulants.

Emerson & Cuming offers thousands of standard products and the ability to customize for your specific application. We have the encapsulant, adhesive or coating you need to write your own success story.

To get a free selector guide or product sample for evaluation, give us a call.

1-800-832-4929.
Encapsulants • Adhesives • Coatings
QUESTION #1

Would you be willing to join an engineers’ union?

☑ YES ☐ NO

Unions claim they have much to offer, but most engineers remain indifferent to them.

Professionals such as schoolteachers, college professors, and white-collar government workers all have large and long-established unions to represent them. For example, there are approximately 2.2 million elementary and secondary schoolteachers in America today, and more than 1.8 million of them—82%—belong to the NEA.

Very few engineers, on the other hand, are members of unions. The Council of Engineers and Scientists Organizations (CESO) is an umbrella group representing 10 small and widely scattered unions (or professional associations as most of them prefer to be called) that include engineers as members (see box, “The members of CESO”). CESO represents about 70,000 people—less than 3% of the estimated 2.3 million engineers in this country. Although CESO is not a union itself, it lobbies for its member organizations.

Many engineers have legitimate complaints about their salaries, benefits, and working conditions. And those are exactly the sort of concerns that unions or professional associations are supposed to deal with. Yet most engineers are reluctant to join them.

“I think it has to do with the way engineers are educated,” says Edward Olson, president of the Southern California Professional Engineering Association (SCPEA). “College professors teach this idea of professionalism, that you negotiate for yourself. Students also have a tendency to believe that engineers are a part of management. Early on, the thinking is that it’s unprofessional to belong to a labor union.

“As a result, when a young engineer first gets out into the workplace, he feels that he can negotiate his own wages, hours, and benefits. It takes a while before he realizes it’s very difficult to negotiate those things when you’re working for a large company.”

Daniel Mahoney, general counsel for the Seattle Professional Engineering Employees Association (SPEEA), shares Olson’s views. “Perhaps it’s the indoctrination they get in engineering schools that they are professionals,” he says. “They believe that it’s somehow demeaning to be categorized with what they perceive to be the traditional American labor-union member.”

Engineers’ image of themselves

Many engineers see themselves as rugged individualists, working on projects that are almost personal, which makes them unwilling to join any organization. “The analogy I use is they come out of school and they hit a strainer,” says Harold Ammond, executive director of the Association of Scientists and Professional Engineering Personnel (ASPEP). “They go off into computers, physics, all the gradations of electrical engineering, and the result is that there’s nothing that makes them homogeneous.”

Jay Fraser,
Associate Editor
This idea of independence that so many engineers hold dear also leads some of them to change jobs frequently. They don't join unions because they don't expect to stay very long with any firm. Ammond explains, "When he goes to work for a company, the average young person says, 'Well, I'll stay here for two years, then I'll go to another company for two years, then I'll go to a third company for two years, and every time I change jobs I'll pick up a 10% wage increase.' They think of themselves as individual entrepreneurs."

Engineers have other doubts about unions. Some are afraid that if they joined a union and weren't happy with it, they'd find it very difficult to get out and would be obligated to continue paying dues. Union dues can run into hundreds of dollars per year. Some engineers think the dues are too high. And many engineers simply aren't convinced that a union can do anything for them.

In addition, membership in most professional organizations is voluntary. Yet the National Labor Relations Act (NLRA) requires that a union negotiate a contract for all the employees in its collective bargaining unit, whether or not they are members of the union. Some engineers see no reason to join a union when they automatically receive exactly the same benefits as union members.

This law is a constant irritation to union officials. It hinders recruiting efforts and leaves the unions with less support than they might otherwise have. "There's no question that the nonunion people are getting a free ride," says Ammond. "They get the benefits, but they don't help us in getting the maximum. That's a burden, but that's the way the law is written."

Even though the vast majority of engineers don't belong to unions, the 10 professional associations that make up CESO have been successful. Some of them have been in existence for decades and are still growing.

SCPEA was founded more than 40 years ago and currently represents about 6000 engineers and technicians, mostly at McDonnell Douglas facilities in Long Beach and Huntington Beach, CA. SPEEA is the largest member of CESO. Its membership is made up of approximately 28,000 engineers and other professionals who work for the Boeing Co in the Puget Sound area of Washington and in five other states. ASPEP was founded in 1946. It currently represents about 2000 engineers and scientists who work for the General Electric Co in Camden and Moorestown, NJ.

In some ways these professional associations act like typical unions. They negotiate the standard articles of contracts—salaries, benefits, working conditions, vacations, holidays, cost-of-living raises, and overtime compensation—and they try to protect their members' job security.

"Our contract contains the clause that nobody can be disciplined or discharged without just cause," Mahoney explains. "If someone does get disciplined or discharged, we can challenge it in arbitration and get it turned around. We provide a lot of job security for our people that wouldn't necessarily exist in a company that operated under the employment-at-will doctrine."

Professional associations also point to the protection that an established grievance procedure offers employees. "It's a very valuable thing for a professional to have that protection in regards to termination," says Olson. "The company must show just cause before they can terminate you. If you're not protected by a contract, they can let you go any time they want."

Mahoney adds, "From our observation, when they work in a collective bargaining environment, our engineers and scientists are able to act in a more professional manner. They can challenge supervision and say, 'Look, you're doing it wrong. Try it this way.' In other words, they have a forum to articulate their professional analysis of problems without fear of being disciplined. It's a win-win situation."

Different approaches to problems

These professional associations also differ significantly from ordinary unions. "We are a union within the meaning of the NLRA, but we're not a typical trade union," says Ammond. "Our problem-solving approaches aren't standard."

ASPEP developed a complex method for evaluating an employee's performance called the retention credit system. It's based on a formal review where the employee is given a numerical score. It also takes into account factors such as the type of degree an employee has, how long it has been since that degree was earned, and how long the employee has worked for the company. The retention credit system allows for more flexibility than a straight seniority system.

"I'm sure if I submitted that contract to some of the AFL-CIO unions they'd look at me and say,
What are you, crazy? Whoever heard of a solution to a seniority problem being this complex? But that's a reflection of the unique community we represent,” says Ammond.

Some of the large national unions that belong to the AFL-CIO are staffed by full-time, salaried administrators who sometimes have no hands-on experience doing the work the average union member does. The small professional associations, by contrast, are mostly run by and for working engineers. About 85% of the members of ASPEP are electrical engineers, and there's nobody involved in the decision-making process who is not an engineer. In addition, the work that they do is mostly on a volunteer basis.

Officials of professional associations have noticed that as engineers become older and more concerned with job security they are more likely to become members. Economic hard times and the layoffs that come with them also increase interest in unions. The recession in the mid 1970s gave a big boost to union membership. But what spurs most engineers to join professional associations is what they consider to be mistreatment by their employers. “The best union organizer is bad management,” says Ammond.

Of the 10 professional associations, only ASPEP has ever gone out on strike. In 1967 the members went on a 30-day strike for a new layoff policy. Before that, in 1958 and 1960, they walked out for three days each time in order to establish a merit rating system. Ammond points out that a typical trade union might strike to eliminate a merit system because management could use it to discriminate against some employees. The fact that engineers went on strike to establish one, he feels, is more proof of the special quality of their professional organization.

Although CESO has been successful, its officials see no large-scale expansion of the union movement among engineers in the near future. This is partly due to the reasons—good and bad—many engineers can give for not joining unions, but it is also partly due to the nature of the unions themselves and the limited resources they have to make their case.

“We have no budget to go out and put on a PR campaign to educate people, so what we do is not perceived by many individuals,” says Ammond. “We are very introspective by nature. We work with the problems of our community and ASPEP. We really don't have the capability or the wherewithal of going out and proselytizing, or, to use the trade union term, organizing. We're just not made that way.”

The members of CESO

The Council of Engineers and Scientists Organizations (CESO) is an umbrella organization of 10 unions and professional associations that include engineers. Contact the following for more information on CESO and the 10 member organizations.

Aerospace Professional Staff Association (APSA)
Box 248
Hawthorne, CA 90250
(213) 336-6900
Circle No. 681

Association of Scientists and Professional Engineering Personnel (ASPEP)
101 Kings Hwy E
Haddonfield, NJ 08033
(609) 429-9863
Circle No. 682

CESO Headquarters
14140 Beach Blvd, Suite 114
Westminster, CA 92683
(714) 498-6983
Circle No. 683

Engineers and Architects Association (EAA)
1541 Wilshire Blvd, Suite 407
Los Angeles, CA 90017
(213) 419-2894
Circle No. 684

Engineers and Scientists of California (ESC)
340 Freemont St
San Francisco, CA 94105
(415) 433-7280
Circle No. 685

Engineers and Scientists Guild (ESG)
3214 W Burbank Blvd
Burbank, CA 91505
(213) 849-5017
Circle No. 686

International Federation of Professional and Technical Engineers (IFPTE)
Local 21
Orpheum Theatre Bldg
1152 Market St, Room 425
San Francisco, CA 94102
(415) 864-2100
Circle No. 687

Seattle Professional Engineering Employees Association (SPEEA)
15285 52nd Ave S
Seattle, WA 98188
(206) 433-6991
Circle No. 688

Southern California Professional Engineering Association (SCPEA)
14140 Beach Blvd, Suite 114
Westminster, CA 92683
(714) 858-9903
Circle No. 689

Tennessee Valley Authority Engineers Association (TVAEA)
908 Burwell Bldg
Knoxville, TN 37902
(615) 637-7901
Circle No. 690

Wichita Engineers Association (WEA)
Professional Lodge #2020
390 S Meridian
Wichita, KS 67217
(316) 524-3835
Circle No. 691

EDN April 25, 1991
We Asked Some People Who Didn’t Go To DAC Last Year What They Knew About The Latest In Design Automation:

They Were Speechless.

Don’t make the same mistake.
Because more than ever, you need the most advanced design automation tools to survive. Powerful tools that accelerate productivity, boost product reliability, and shrink time-to-market.

You need the 28th Design Automation Conference.
DAC has everything you need to make the best design automation choices. Because DAC is the world's largest collection of tools, tool vendors, and industry experts.

Design automation from A...Z
Once again, DAC will feature the latest design tools for schematic capture, floor planning, logic synthesis, verification, ATE, and much more.

Plus, you can learn about general industry topics, such as hardware description languages, concurrent engineering, and standards issues. All under one roof!

Hear it from the experts
This year’s DAC has many exciting panel sessions. Including seasoned executives addressing “Global Strategies for Electronic Design.” And leading technologists discussing new group and project management techniques—“Implementing the Vision: Electronic Design in the 1990s.”

Plus, over 135 technical papers, and a full day of tutorials.

Sneak a peek for free!
See what all the shouting is about!
Attend opening day exhibits and demonstrations on FREE MONDAY, June 17.

All day. Absolutely free!
To register for FREE MONDAY (and to get your DAC registration packet), call 1-800-321-4573. Or FAX/mail the above business reply card to (303) 530-4334.

But hurry! FREE MONDAY registration closes May 17.

To attend panel sessions, contact MP Associates at (303) 530-4333.
The 28th Design Automation Conference.
San Francisco.
Powerful People. Powerful Products.

At Intel, we’re constantly challenging ourselves to improve. As the world’s first and foremost leader of the microcomputing industry, Intel can assuredly provide professionals with ongoing challenges and unlimited opportunities.

POWER CHALLENGE

If you are interested in joining a team developing mainstream microprocessor products or a team developing peripheral component products for the PCs and workstations of the future, including I/O, microcommunication and PLD devices, consider the following positions:

- **Microprocessor Peripheral Component Design Engineers**
- **PC Systems Design Engineers**
- **EPROM Component Design Engineers**
- **PC Systems Validation Engineers**
- **Semiconductor Product Test Engineers**
- **Board Test Engineer**
- **Product Marketing Engineers**
- **Applications Engineers**
- **Mask Designers**

Not only will Intel in the Sacramento area provide a challenging career, but our location offers all the personal perks of California’s recreation capital, which just happens to be ranked as one of *Newsweek*’s top urban areas. Plus a career at our facility provides Intel professionals with a relatively lower cost of housing, a lower cost of living and a rush hour that’s not so rushed.

For immediate consideration, please send or FAX your resume to: Intel Staffing, P.O. Box 1141, Dept. F536, Folsom, CA 95630, FAX (916) 351-5522. Intel Corporation is an equal opportunity employer and fully supports affirmative action practices. Intel also supports a drug-free workplace and requires that all offers of employment be contingent on satisfactory pre-employment drug test results.

Brooktree Corporation is the industry leader in the design, test, and marketing of electronic data conversion and signal processing integrated circuits serving the computer graphics, ATE and imaging industries. Our DACs, RAMDACs, ADCs, and related products have received wide recognition in the industry for innovation and quality.

SEMICONDUCTOR/IC OPPORTUNITIES IN SAN DIEGO

We currently have excellent career opportunities in the following areas for semiconductor professionals experienced in CMOS/BiPolar technologies:

TEST ENGINEER
Requires experience with Trillium/LTX, or other mixed signal tester.

PRODUCT ENGINEER
Requires industry experience with development and/or manufacturing in a high-volume production environment with experience in characterization or yield analysis.

IC LAYOUT DESIGNER
Responsible for planning, layout and verification of custom integrated circuits, in BiPolar or CMOS, from engineering schematics. Must have experience in a full custom design environment using CAD layout verification tools.

SENIOR CAD/CAE ENGINEER
Supports the design capture, simulation and layout tools and methodology for the mixed-signal BiPolar IC Design and Development Group.

COMPETITIVE ANALYSIS ENGINEER
Responsible for the analysis of competitive devices for the Graphics and Imaging markets. Must have experience in IC device technology.

SR. FAILURE ANALYSIS ENGINEER
Will support Device and Product Engineering in the analysis and corrective action disposition of out-of-spec devices. Must be familiar with CMOS and BiPolar process technology.

SR. WAFER LEVEL DEVICE ENGINEER
Develops and implements a monitor and resolution program to resolve wafer test results as it relates to yield and reliability. Must have experience in electrical characterization of Silicon yield issues.

MATERIAL HANDLING ENGINEER
Responsible for defining and evaluating methodologies of material handling to signify reduction in product damage. Must have experience in semiconductor industry back-end processing.

The above positions require a BSEE or related degree (MSEE preferred) and three plus years’ directly related experience.

Brooktree offers a highly competitive compensation and benefits package, including stock participation and an Employee Bonus Program. More importantly, we provide a work environment where creativity, individual achievement and teamwork are encouraged and rewarded. And San Diego is one of America’s finest cities, where you’ll enjoy beautiful year-round weather and an abundance of recreational activities.

If you possess the qualifications for any of these positions and want to join a winning team, please FAX your resume and salary history to: BROOKTREE CORPORATION, Professional Staffing, 619/597-0675. Or send to: 9950 Barnes Canyon Road, San Diego, CA 92121-2790. We are an Equal Opportunity Employer. M/F/H/V. Principals only, please.
ENGINEERING CAREER OPPORTUNITIES

Join an expanding high tech R&D/product engineering firm specializing in State-of-the-Art microprocessor based designs. We encourage employee initiative and creativity and offer opportunities for continued development of analytical and technical ability.

ANALOG DESIGN ENGINEER
Requires BS/BSEE and 3+ years experience in analog design.
- Semi Custom Analog Chip Design
- PSPICE Simulation
- DC to 50 MHz Analog Design

DIGITAL DESIGN ENGINEER
Requires BS/BSEE and 1+ years experience in digital design.
- ASIC Chip Design
- Xilinx FPGA Design
- Embedded Controller Application Design

SOFTWARE ENGINEER
Requires BS/BSEE/CS and 2+ years experience.
- OS/2 and Presentation Manager
- Intel Microprocessors
- C, C++ Programming

PCB DESIGNER
Requires 2+ years CAD experience.
- SMT Layout Experience
- Low Level Analog Circuit Design

Qualified applicants should forward a resume and salary history to:
Annapolis Micro Systems, Inc.
190 Admiral Cochrane Drive, Suite 130
Annapolis, Maryland 21401
(301) 841-2514 (301) 970-2672
FAX: (301) 841-2518
- Principals Only -

ENGINNEERING OPPORTUNITIES

At COULTER®, we set standards — in what we do and how we do it. As the internationally acclaimed world leader in the field of biomedical instrumentation and automated hematology, we attribute much of our success to our commitment to quality, reliability and teamwork.

The following Engineering opportunities are currently available:

Software Engineers
Mechanical Engineers
Quality/Reliability Engineers
Manufacturing/Producibility Engineers
Senior CAD Designers

All positions require a minimum of 5 years experience. Only seasoned professionals need apply.

If you are interested in a career with stability and growth potential, consider the Company with a commitment. Consider Coulter.

We offer excellent salaries and benefits including negotiable relocation. Please send your resume to: Employment Manager, Coulter Corporation, Dept. EDN, 650 West 20th Street, Hialeah, FL 33010. Principals only — no agencies please. An Equal Opportunity Employer.

If You're Looking For a Job, You've Come to The Right Place.
DELL IS TO COMPUTER DESIGN AS AUSTIN IS TO LIVING

At Dell, we believe in letting the imagination of our engineers shape the design of our award-winning products.

From the desktop-class power of our sleek 80386SX-based 316LT laptop, to the integrated math coprocessor and built-in UNIX compatibility of our new 80486-based 425E. Dell engineers enjoy a technical environment virtually free from the bureaucratic hassles of most large corporations.

So you get to focus on the things that really matter - designing better computers. And beyond our unique engineering environment we also offer a truly unique living environment in Austin. With scenic foothills, a relaxed culture, lower cost of living and a variety of beautiful neighborhoods, the lifestyle in Austin beautifully complements the engineering lifestyle at Dell.

ENGINEERING

- Personal Computer Motherboard Design
- Laptop Display Systems
- UNIX Development
- Personal Computer Network Development
- Design for Manufacturability
- EISA BUS Logic Design
- Mechanical Engineers
- Failure Analysis Engineers

If you're an engineer with a minimum of 2 years of computer industry experience and a related degree, learn more about the advantages of Dell in Austin.

Please fax or mail your resume with a cover letter to: 512/343-3330, Dell Computer Corporation, Jerry Holt, Human Resources, Professional Employment, Department EDN42591SG, 9505 Arboretum Boulevard, Austin, Texas 78759.

Dell is proud to be an equal opportunity employer.
RESPONSIBILITY • RESULTS • RECOGNITION

SANTA CLARA POSITIONS

SUBSYSTEM ENGINEER
Begin with creative designs & see them through the entire product cycle: BSEE/MSEE & 4+ yrs experience in board & systems design.

SOFTWARE ENGINEER
Develop UNIX OS software, write peripheral drivers for the R3000 32-bit µP. BS/MS in CS & 5+ yrs exp. Req. C familiarity essential.

PRODUCT ENGINEERS
Conduct performance/failure analysis, device characterization, & provide mgmt/customer support.

Sr. Product Engineer—RISC
Requires BSEE/MSEE & 5+ yrs’ µP product design, & process experience.

Sr. Product Engineer/Group Leader
Support development & production release of complex digital products for Memory Support & RISC/Embedded Controller Support. Lead a group of Product Engineers & Technicians. MSEE & 5+ yrs experience in CMOS digital ICs required. Supervisory experience preferred.

TEST ENGINEERS
Design & conduct tests on our new & existing products using the latest techniques & equipment.

Sr. or Staff Test Engineer
Write & debug ECL SRAM tests on Advantest & Sentry memory testers. Requires BS/MS in EE/ME & 5+ yrs experience.

Test Engineer
Generate test programs for memory test systems & design related hardware. Requires BSEE & 2+ yrs testing experience using 5-90.

QUALITY ENGINEERS
Sr. Reliability Engineer/Supervisor
Requires Engineering BS, 2+ yrs reliability experience & 5+ yrs semiconductor electronics experience.

DESIGN ENGINEERS
Design & develop complex digital/mixed-signal products for Graphs/Imaging, Memory Support, RISC/EC Support, & Logic using IDT’s CEMOS®/HICEMOS™ technology.

APPLICATIONS ENGINEERS
Sr. Product Definition / Application Engineers
Requires MSEE/MScS & 5+ yrs experience in the design of embedded controllers & other new products using DISC or RISC µP & peripheral devices.

MARKETING ENGINEERS
Oversee & implement tactical product marketing strategies, incl. forecasts, information support, pricing, & introduction/distribution.

Marketing Manager—SRAM
Requires 1+ yrs semiconductor marketing experience & knowledge of SRAM products & markets.

Marketing Manager—Logic
Requires BSEE, 6+ yrs mkgl & distribution experience & working knowledge of logic design.

For Santa Clara positions, call Jeff Scheels at (408) 944-2129. Or send your resume indicating position of interest to: Integrated Device Technology, Inc.

MONTEREY COUNTY POSITIONS

PRODUCT ENGINEERS
Conduct performance/failure analysis, device characterization, & provide yield improvement & manufacturing/customer support.

Product Engineers—Memory
Openings in our Specialty Memory and CMOS SRAM groups. BS & prior experience with MOS memories required. MS preferred.

MARKETING ENGINEERS
Perform pricing & forecasting & develop custom/product strategies. Prior technical marketing or engineering experience in the semiconductor industry required.

PRODUCTION SUPERVISORS
Positions available in both Fab and Test areas. Ensure production schedules & effective operations/ equipment management. Requires BS/BA, manufacturing experience & willingness to work off-shift schedules.

LINES MAINTENANCE TECHNICIANS
Openings available in all shifts in etch, diffusion, thin films, & other photo areas. Positions require technical AS degree.

PROCESS ENGINEERS
Multiple openings in our diffusion, thin films, & plasma etch areas. Work with state-of-the-art equipment. Requires BS & 5+ yrs experience in CMOS processes in a Class 3 clean room. Openings on all shifts, including weekends. BS required, MS preferred.

EDN Databank
Professional Profile

Announcing a new placement service for professional engineers!

To help you advance your career. Placement Services, Ltd. has formed the EDN Databank. What is the Databank? It is a computerized system of matching qualified candidates with positions that meet the applicant's professional needs and desires. What are the advantages of this new service?

• The computer never forgets. When your type of job comes up, it remembers you're qualified.

• Your background and career objective will periodically be reviewed with you by a PSL professional placement person.

We hope you're happy in your current position. At the same time, chances are there is an ideal job you'd prefer if you knew about it. That's why it makes sense for you to register with the EDN Databank. To do so, just mail the completed form below, along with a copy of your resume, to: Placement Services, Ltd., Inc.

EDN Databank
A DIVISION OF PLACEMENT SERVICES LTD., INC.
265 S. Main Street, Akron, OH 44308 216/762-0927

EDN April 25, 1991
The IBM RISC System/6000 family keeps delivering performance that's positively hyperactive.

Talk about precocious. Just a little over one year ago, when we proudly announced the arrival of the RISC System/6000™ POWERstations and POWERservers, they were already way ahead of the other kids in their class, delivering amazingly high performance for their diminutive price range.

<table>
<thead>
<tr>
<th>Hardware</th>
<th>MFLOPS</th>
<th>SPECmarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWERStation 320H</td>
<td>11.7</td>
<td>32.4</td>
</tr>
<tr>
<td>SPARCstation 2</td>
<td>4.2</td>
<td>21.0</td>
</tr>
<tr>
<td>DECstation 5000</td>
<td>3.7</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Now, we're introducing the new RISC System/6000 POWERstation 320H. It runs 11.7 MFLOPS™ and 32.4 SPECmarks.* If you already have the original POWERstation 320, you can upgrade it now to the even more spectacular performance of the 320H.

YET ANOTHER NEW ADDITION TO THE FAMILY.

Our POWERserver 950 is also brand spanking new. It gives you the performance of the POWERserver 550—25.2 MFLOPS and a SPECmark of 56.3—but in a rack-mounted system, to share more disk storage, power and expandability with others. And all the models in the UNIX®-based RISC System/6000 family can now add disk expansion units for up to quadruple their previous maximum fixed disk storage. This yields up to 22.2GB on the POWERserver 950.

A NEW BOX OF CRAYONS.

Then there's the POWERgraphics GTO graphics subsystem. It can attach to any model in the RISC System/6000 family, to deliver super graphics performance previously available only in the POWERstation 730—990,000 3D vectors/second and 120,000 shaded polygons/second.

MEMORY AT PRICES THAT WON'T CAUSE TANTRUMS.

And now you can get more memory for less. The more memory you buy, and the bigger the increments, the less you pay per MB. After all, just because we're a year old doesn't mean we don't know the value of money. Especially yours.

To find out more about the RISC System/6000 family, call 1 800 IBM-6676, ext. 878. And if you think this one-year-old is a handful now, just wait until the terrible twos.

For the Power Seeker.

*SPECmark is a geometric mean of the ten SPECmark tests. MFLOPS are UNPACK double precision where n=100. AIX XL FORTRAN Version 2.1 and AIX XL C Version 11 compilers were used for these tests.

IBM and AIX are registered trademarks and RISC System/6000 is a trademark of International Business Machines Corporation. UNIX is a registered trademark of UNIX Systems Laboratories, Inc. SPECmark is a trademark of Standard Performance Evaluation Corporation. HUGAR THE HORRIBLE Character© 1991 King Features Syndicate, Inc. © 1991 IBM Corp.
The power of dual platforms – more than a promise.
The leading electronics design automation solutions are available today on two industry-leading platforms.

Now DAZIX customers will benefit from products that reside on both Sun and Intergraph workstations. Robust solutions for the entire design process. Plus, an open-system framework that integrates Intergraph, DAZIX, and Sun products – as well as other leading EDA tools – in a simultaneous engineering environment.

Billion-dollar backing.
Intergraph's financial strength gives DAZIX customers an added benefit – confidence. The confidence that comes from a partnership with the only EDA company that is part of a billion-dollar computer graphics corporation. Ranked No. 3 in worldwide EDA sales. With an installed base of 13,000-plus EDA seats and capabilities developed over more than 22 years of providing integrated graphics solutions around the globe.

DAZIX customers are assured of continued product development and excellent support. Not just today and tomorrow, but into the future.

To learn more about our numbers, call us. In the United States, 800-239-4111. In Europe, 33-1-4537-7100. In the Asia-Pacific area, 852-8661966.
EDN's International Advertisers Index

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Page Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCEL Technologies Inc</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>Actel</td>
<td>164-165</td>
<td></td>
</tr>
<tr>
<td>Advanced Micro Devices</td>
<td>10-11</td>
<td></td>
</tr>
<tr>
<td>Advin Systems Inc</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>Airpax Corp</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>Alpha Products</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Altera Corp</td>
<td>68-69</td>
<td></td>
</tr>
<tr>
<td>Ametek</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>Analog Devices Inc</td>
<td>59, 217</td>
<td></td>
</tr>
<tr>
<td>Avocet Systems Inc</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>Ballard Technology</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>B&C Microsystems</td>
<td>221, 225</td>
<td></td>
</tr>
<tr>
<td>Bourns</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>BP Microsystems</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>CAD Software Inc</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>Cadre Technologies</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>Cahners CAPS</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Capilano Computer Systems Inc</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>Capital Equipment Corp</td>
<td>99, 222</td>
<td></td>
</tr>
<tr>
<td>Cebo Ltd</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Cermtek</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Cherry Electrical Products Inc</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>Cirrus Logic</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Cypress Semiconductor</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>DAC/IPC</td>
<td>230-231</td>
<td></td>
</tr>
<tr>
<td>Dale Electronics Inc</td>
<td>1, 208</td>
<td></td>
</tr>
<tr>
<td>Data I/O Corp</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>Dateykey</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Deiker</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Design Inc</td>
<td>193-196</td>
<td></td>
</tr>
<tr>
<td>Design Computation Inc</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>Dialog Corp</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Diversified Technology</td>
<td>96-97</td>
<td></td>
</tr>
<tr>
<td>Dow Plastics</td>
<td>74-75</td>
<td></td>
</tr>
<tr>
<td>Eesof</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>EG&G Wakefield Engineering Inc</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>Electronic Devices</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Electronic Measurements Inc</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>Emerson & Cuming Corp</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>Emulation Technology Corp</td>
<td>222, 225</td>
<td></td>
</tr>
<tr>
<td>Epson America Inc</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>Exabyte Corp</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Fairchild Defense</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>GE Plastics</td>
<td>115-117</td>
<td></td>
</tr>
<tr>
<td>Generic Software</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Genrad</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>Glassman High Voltage Inc</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>Glove Motors</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Grammar Engine Inc</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Hamamatsu Corp</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>Hewlett-Packard Co</td>
<td>70-73</td>
<td></td>
</tr>
<tr>
<td>High Tech Video Productions</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Hypertronics Corp</td>
<td>215, 222</td>
<td></td>
</tr>
<tr>
<td>IBM Corp</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>ILC Data Device Corp</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Incredible Tech</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>Instrument Specialties Co Inc</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Integraph</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>Integrated Device Technology</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Intel</td>
<td>118-119</td>
<td></td>
</tr>
<tr>
<td>Intusoft</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>IOtech Inc</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>Ironwood Electronics Inc</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>John Fluke Manufacturing Co Inc</td>
<td>44, 46-47</td>
<td></td>
</tr>
<tr>
<td>Kepco Inc</td>
<td>100-101</td>
<td></td>
</tr>
<tr>
<td>Lattice Semiconductor Corp</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Laube Technology</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Linear Technology Corp</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>Link Computer Graphics Inc</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Locite Laser Microelectronics Systems Inc</td>
<td>190-191</td>
<td></td>
</tr>
<tr>
<td>Logical Devices Corp</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>Macrolink Inc</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Maxim Integrated Products</td>
<td>86-89</td>
<td></td>
</tr>
<tr>
<td>Maxtor</td>
<td>84-85</td>
<td></td>
</tr>
<tr>
<td>Melfess</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>Mea Software Inc</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>MetLink Corp</td>
<td>223, 225</td>
<td></td>
</tr>
<tr>
<td>Micron Technology</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Microsoft</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Microsys</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Mini-Circuits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratories</td>
<td>3, 4, 24-25, 42-43, 181</td>
<td></td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>173, 175-177</td>
<td></td>
</tr>
<tr>
<td>Model Technology</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Molex Inc</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Mosiac Industries Inc</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>Motorola</td>
<td>12-13</td>
<td></td>
</tr>
<tr>
<td>Multibus Manufacturers Group</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Murrietta Circuits</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>MWS Wire Industries</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>National Instruments</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>National Semiconductor Corp</td>
<td>64-65, 102, 125-127</td>
<td></td>
</tr>
<tr>
<td>NC-1 System</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>NEC Corp</td>
<td>132-133</td>
<td></td>
</tr>
<tr>
<td>NEC Electronics</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>NEC Technologies</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Needham Electronics</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Noble</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>Nohau Corp</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>Nova Tran Corp</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Octagon Systems</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>Ommite Mfg Co</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>OKI Semiconductor*</td>
<td>26-27</td>
<td></td>
</tr>
<tr>
<td>Omron Electronics</td>
<td>8-9</td>
<td></td>
</tr>
<tr>
<td>OrCAD Systems Corp</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Orion Instruments</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>Parker Hannifin</td>
<td>105-108</td>
<td></td>
</tr>
<tr>
<td>P-Cad</td>
<td>214A-B</td>
<td></td>
</tr>
<tr>
<td>Pico</td>
<td>114, 192</td>
<td></td>
</tr>
<tr>
<td>Planar Systems</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>Powerex Inc</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>Precision Interconnect</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Pulizzi Engineering</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>Radstone Technology</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>Raltron</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Raytheon</td>
<td>48-49</td>
<td></td>
</tr>
<tr>
<td>Recortan Inc</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>Rittal Corp</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>RLC Enterprises</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Rockwell</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>Rogers Corp</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>Samsung Semiconductor</td>
<td>14-15</td>
<td></td>
</tr>
<tr>
<td>Santec Inc</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>San Juan Software</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>Sea Level Systems</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>Seagate Technology</td>
<td>30-31</td>
<td></td>
</tr>
<tr>
<td>Siemens*</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Siemens AG</td>
<td>130-131, 143</td>
<td></td>
</tr>
</tbody>
</table>

*Advertiser in US edition
**Advertiser in International edition

This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.
With our SL™ connector system, design flexibility and cost savings are yours.

 Automatically.

You'll find Molex SL connectors in some of the world's leading—and most dependable—makes of electrical and electronic equipment. Of course, reliability is a big reason for this preference.

But the versatility and lower applied cost that SL provides are critical factors, too, especially in systems with several interconnections.

Modular, stackable, and lower in profile, SL connectors give you virtually unlimited flexibility when you're designing wire-to-wire, wire-to-board, and ribbon cable systems.

The single-piece IDT connectors feature, pre-assembled terminals in the housings, and interconnects with locking shrouded headers. In short, they're ideal for high-speed, high-efficiency automated assembly.

Ask your Molex representative about SL connectors, and learn how they can multiply design options and automate assembly.
We build anonymous modems for our famous friends

Some of our best OEM customers don’t want to be identified; we understand. They’re among the world’s leading suppliers of computers, intelligent terminals, graphics and engineering workstations and other equipment that requires built-in data communications capability.

These well-known companies have selected UDS as their modem supplier because we provide front-running technology, superb manufacturing capability, unmatched customer support… and discretion. In a word, UDS modems give their products the kind of reliability they like to claim as their own.

UDS has a broad selection of OEM “standard” designs on file; we also offer industry-leading capability for the development of custom boards. Combined, these two approaches have already placed more than 3,000 modem designs into active field service.

If you’re one of the big boys — or if you want to solve data-comm problems the way the big boys do — find out what UDS recommends as a cost-effective solution for you. Contact UDS at 800/451-2369 (in Alabama, 205/430-8000); FAX 205/430-8926.
NEW TRANSFORMERS FOR CLASS 2 APPLICATIONS.

DUAL BOBBIN DESIGNS FEATURE
4000 VRMS PRIMARY AND SECONDARY ISOLATION.

Signal "The American Original" introduces a new family of transformers for 2.5 to 80 V applications that require low power and a high degree of isolation. These new "Class 2" transformers feature the same dual high-temperature bobbin construction and insulating shroud originally developed for the company's very successful International Series. Available in both PC and chassis mount versions, they offer a choice of inherently limited or non-inherently limited designs and feature 4000 VRMS primary and secondary isolation.

Signal's insulation system results in very high isolation between the primary and the secondary windings, and between either winding and the core. The dual bobbin design reduces capacitance and eliminates the need for an electrostatic shield. The Class 2 dual bobbin series satisfies UL 1585 requirements and CSA safety and performance standards.

Signal transformers are available through Signal's PRONTO 24-Hour Off-the-Shelf shipment program. For additional technical data, contact Signal Transformer, 500 Bayview Avenue, Inwood, N.Y. 11696.

BUY DIRECT
(516) 239-5777
Fax: (516) 239-7208