CHIPS 82C574
MICROCHANNEL INTERFACE CHIP

- Compatible with IBM Microchannel specifications
- Provides highly integrated Microchannel interface solution
- Flexible Card ID assignment
- Supports POS registers
- Resource relocation capability to avoid address conflict
- Flexible Interrupt level selection

The 82C574 is a highly integrated Microchannel interface chip for IBM PS/2 personal computer application. It can be configured to operate in either of two modes; "mode 0" for 82C570 CHIPSLINK 3270 coaxial protocol controller or "mode 1" for the 8 bit general purpose I/O slave peripherals.

When mode 0 is selected, the chip decodes the I/O address of 02DXH and 022XH for IBM & IRMA registers and generates the IORD, IOWR signals for 82C570. It also decodes the memory space of 0CE000 to 0CFFFF for the display buffer and external micro code access by activating the MEMRD, MEMWR signals.

In mode 1 operation, the 82C574 supports the microchannel bus interface to most 8 bit I/O slave devices. The adapter I/O address can be programmable during the setup procedure. This resource relocation capability avoids conflicts with the adapter's address. The interrupt level can also be selected via software. The 82C574 greatly simplifies the circuitry to interface to the microchannel bus.

The 82C574 is fabricated using advanced CMOS technology and is packaged in a 68 pin PLCC.

Figure 1. 82C574 Functional Block Diagram
82C574 Pin Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Type</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61–68</td>
<td>I</td>
<td>ID15–8</td>
<td>Adapter Identification bits 15 to 0. ID15 is the most significant bit (MSB) and ID0 is the least significant bit (LSB). The user can select each bit to be 0 or 1 by tying the pin to VCC or VSS. The value of these pins are returned by executing READ ID command during adapter setup operation.</td>
</tr>
<tr>
<td>2–9</td>
<td>I</td>
<td>ID7–0</td>
<td></td>
</tr>
<tr>
<td>12–15</td>
<td>B</td>
<td>A23–20</td>
<td>Mode 0: A23–20 Address Input. These bits are used for the address decoding of the memory slave device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/A03–0</td>
<td>Mode 1: AO3–0 Latched Address Output. These bits are latched by ADL and are used by the peripheral device to address the registers.</td>
</tr>
<tr>
<td>16–17</td>
<td>I</td>
<td>A19–18</td>
<td>Mode 0: A19–16 Address Input. They are used for the address decoding of the memory slave device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/MASK3–2</td>
<td></td>
</tr>
<tr>
<td>19–20</td>
<td>I</td>
<td>A17–16</td>
<td>Mode 1: MASK3–0. Active low mask bits for the comparator of the resource relocator. When the mask bit is on (low), the comparison of the corresponding address input (A3–0) with the card address bits (ADR3–0) is bypassed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/MASK1–0</td>
<td></td>
</tr>
<tr>
<td>21–34</td>
<td>I</td>
<td>A15–2</td>
<td>System Address bits 15 to 0. These bits are used for the address decoding of the slave IO or memory device. They are also used to address the POS registers.</td>
</tr>
<tr>
<td>36–37</td>
<td>I</td>
<td>A1–0</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>I</td>
<td>S0</td>
<td>Status bits 0 and 1. These signals indicate the start and the type of channel cycle. It is used with M/IO to generate the memory or IO read and write commands.</td>
</tr>
<tr>
<td>39</td>
<td>I</td>
<td>S1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S0</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>M/IO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>I</td>
<td>M/IO</td>
<td>Memory/Input Output. When M/IO is high, it indicates a memory cycle. If it is low, it indicates an IO cycle.</td>
</tr>
<tr>
<td>41</td>
<td>I</td>
<td>CMD</td>
<td>Active low Command signal to define when data is valid on the data bus. It is used to generate the IO/memory read and write commands and is also used to latch the status signals.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M/IO</th>
<th>S0</th>
<th>S1</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>IO Write</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>IO Read</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Memory Write</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Memory Read</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

3
82C574 Pin Description (Continued)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Type</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>I</td>
<td>CDSETUP</td>
<td>Active low Card Setup enable signal. During configuration and error recovery procedures, CDSETUP becomes active along with IO Read/Write commands to access the POS registers.</td>
</tr>
<tr>
<td>11</td>
<td>I</td>
<td>MADE24 /ADL</td>
<td>Mode 0: MADE24. Active low Memory Address Enable 24. It goes active when a memory cycle is in progress with the memory address less than 16 M. It is used in the memory address decoding. Mode 1: ADL. Active low Address Decode Latch. It is used to latch the A0-3 address lines.</td>
</tr>
<tr>
<td>42</td>
<td>O</td>
<td>CDSFBK</td>
<td>Active low Card Select Feedback. This signal goes active when a memory or IO slave device is addressed by the host. It stays inactive during setup cycle.</td>
</tr>
<tr>
<td>43</td>
<td>O</td>
<td>CDCHRDY</td>
<td>Card Channel Ready. This signal is used by the slow IO or memory slave device to extend the channel cycle. During setup operation, CDCHRDY always stays active and no bus cycle is extended. The maximum time CDCHRDY can stay inactive is 3 μs.</td>
</tr>
<tr>
<td>60</td>
<td>I</td>
<td>RDYIN</td>
<td>Active high Ready Input from IO or memory slave device. For asynchronous extended channel cycle operation, CDCHRDY goes inactive at the beginning of the cycle and stays inactive until a low to high transition is detected on RDYIN pin.</td>
</tr>
<tr>
<td>44-51</td>
<td>B</td>
<td>D0-7</td>
<td>System data bit 0 to 7. These bits are used to transfer the data to and from the CPU data bus during the configuration cycle. They are 3 state bidirectional lines.</td>
</tr>
<tr>
<td>53</td>
<td>O</td>
<td>BCTL</td>
<td>Active low external 74LS245 buffer transfer direction control signal. It becomes active during IO/memory READ operation if POS registers or external IO/memory slave device is addressed.</td>
</tr>
<tr>
<td>54</td>
<td>O</td>
<td>BCS</td>
<td>Active low 74LS245 buffer chip enable. It goes active if internal POS registers or external IO/memory slave device is addressed. (Either read or write operation.)</td>
</tr>
<tr>
<td>55</td>
<td>I</td>
<td>RESET</td>
<td>Active high hardware reset signal to initialize the chip. It should stay high for a minimum period of 500 ns.</td>
</tr>
<tr>
<td>56</td>
<td>O</td>
<td>IORD</td>
<td>Active low IO read strobe. It is the decoded command from CPU to read the device registers. It goes active only when the external IO slave is addressed.</td>
</tr>
</tbody>
</table>
82C574 Pin Description (Continued)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Type</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>O</td>
<td>IOWR</td>
<td>Active low IO write strobe. It is the decoded command from CPU to load the information into the registers of the external addressed IO slave device.</td>
</tr>
<tr>
<td>59</td>
<td>O</td>
<td>MEMWR</td>
<td>Mode 0: MEMWR. Active low memory write strobe. When active, the 82C570 display buffer is written or the external microcode is downloaded.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/IRQSL1</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>O</td>
<td>MEMRD</td>
<td>Mode 0: MEMRD. Active low memory read strobe. When active, the 82C570 display buffer is read.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/IRZSL0</td>
<td>Mode 1: IRQSL0. This pin is the content of bit 1 of POS register 102H and is used with IRQSL1 for the interrupt level selection.</td>
</tr>
<tr>
<td>18, 52</td>
<td>I</td>
<td>VCC</td>
<td>5V Power supply.</td>
</tr>
<tr>
<td>1, 35</td>
<td>I</td>
<td>VSS</td>
<td>Power Supply Ground.</td>
</tr>
</tbody>
</table>

Note:
I = Input
O = Output
B = Bidirectional
82C574 Functional Description

The 82C574 block diagram is illustrated in Fig 1. The chip consists of the following functional blocks:

- POS Registers
- Peripheral Commands and Card Select Feedback Generator
- Resource Relocation Logic
- Card Channel Ready Signal Generator

POS REGISTERS

A total of 6 POS registers are supported by 82C574. These registers can be accessed only during configuration cycle by activating CDSETUP, M/IO to low. The description of each register are as follows:

1. 100H: Low Byte ID Register.

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID7</td>
<td>ID6</td>
<td>ID5</td>
<td>ID4</td>
<td>ID3</td>
<td>ID2</td>
<td>ID1</td>
<td>ID0</td>
<td></td>
</tr>
</tbody>
</table>

This register is read only. The reading of this register returns the content of pins ID7-ID0.

2. 101H: High Byte ID Register.

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID15</td>
<td>ID14</td>
<td>ID13</td>
<td>ID12</td>
<td>ID11</td>
<td>ID10</td>
<td>ID9</td>
<td>ID8</td>
<td></td>
</tr>
</tbody>
</table>

Read only register. The content of pins ID15-ID8 is returned when reading this register.

3. 102H: Miscellaneous Register.

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>RDYCTL</td>
<td>IRQSL1</td>
<td>IRQSL0</td>
<td>CDEN</td>
<td></td>
</tr>
</tbody>
</table>

Bits 7-4 are unused. The reading of these bits are “1”. Bit 3 RDYCTL is used in mode 1 to control the CDCHRDY signal generation. A “0” selects the synchronous extended channel cycle. A “1” selects the asynchronous extended cycle.

Bit 2-1 IRQSL1 and IRQSL0. They are used in mode 1 with the external 72LS156 demultiplexer to select the interrupt level.

Bit 0 Card Enable control bit. When this bit is “0”, the adapter is disabled. 82C574 responds only to setup IO read and write operations. It does not respond to the access of peripheral IO registers or memory.

Register 102H is readable and writable. All the bits are reset to “0” by RESET signal.

4. 103H: Low Byte Card Address Register.

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADR7</td>
<td>ADR6</td>
<td>ADR5</td>
<td>ADR4</td>
<td>ADR3</td>
<td>ADR2</td>
<td>ADR1</td>
<td>ADR0</td>
<td></td>
</tr>
</tbody>
</table>

The Card Address registers are read/write registers. They are used for resource relocation to avoid the adapter conflict. In case of the same adapter address, the host can reassign the board address. These two registers are used in mode 1 operation. To generate the IO read/write commands for the peripheral or to activate the CDSFBK or inactivate the CDCHRDY signals, the address from host A15 to A4 have to match ADR15 to ADR4, A3 to A0 may bypass the comparison with ADR3 to ADR0 if the individual mask bit is activated by forcing MASK3-0 pins to VSS. ADR15 is the most significant bit (MSB) and ADR0 is the least significant bit (LSB).

5. 104H: High Byte Card Address Register.

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADR15</td>
<td>ADR14</td>
<td>ADR13</td>
<td>ADR12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADR11</td>
<td>ADR10</td>
<td>ADR9</td>
<td>ADR8</td>
<td></td>
</tr>
</tbody>
</table>

6. 105H: Mode Select Register.

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>MODSL3</td>
<td>MODSL2</td>
<td>MODSL1</td>
<td>MODSL0</td>
<td></td>
</tr>
</tbody>
</table>

Bits 4-7 are unused. The reading of these bits are “1”. Bits 3-0 are used to select operation modes. Pattern 1010 is for mode 1: General Purpose 8 Bit I/O Slave Peripheral application. All other combinations of bit pattern are for mode 0 operation: 82C570 CHIPS LINK application. RESET signal resets all the bits to “0” which is mode 0 operation.

Register 105H is a read/write register.
PERIPHERAL COMMANDS AND CARD SELECT FEEDBACK GENERATOR

The peripheral read/write command is generated by decoding the IO or memory address, M/IO, S0, S1 status and gating with CMD signal.

Mode 0:

In this mode, both IO and memory operations are supported. For IO operation, the decoding of IO address 02DXH or 022XH will activate the IORD if S0 = 1 and S1 = 0 or IOWR if S0 = 0 and S1 = 1. For memory operation, the decoding of memory space of 0CE000 to 0CFFFF will generate MEMRD or MEMWR commands.

Mode 1:

The IO operation is supported in this mode. To generate the IO read/write commands, the address from host needs to match the relocation card address programmed in POS registers. (A0–A3 comparison can be bypassed by activating MASK3 to MASK0 individually.)

The Card Select Feedback (CDSFBK) is used to inform the host that the adapter is selected. It stays inactive during setup cycle. It is generated by decoding the IO address space and S0, S1 status. It should go active within 50 ns after Address, M/IO, MADE24 become valid and within 25 ns from the time status becomes active.

RESOURCE RELOCATION LOGIC

The resource relocation capability is supported in mode 1. The operation of this block was described in the POS REGISTERS section.

CARD CHANNEL READY GENERATOR

The basic channel cycle time in IBM PS/2 system is 200 ns. It can be extended by using CDCHRDY signal. There are two ways to extend the cycle: Synchronously or Asynchronously.

Mode 0:

When the host addresses the IO space of 02DXH or 022XH, the CDCHRDY will go low within 55 ns from the time M/IO, Address become valid (25 ns from the time status S0, S1 becomes valid) and then return to high within 25 ns after CMD becomes active. The bus cycle is extended from 200 ns to 300 ns, this is called synchronously extended.

If the host accesses the memory space of 0CE000 to 0CFFFF, CDCHRDY will go inactive just like IO access but it will stay low until a low to high transition on pin RDYIN is detected. This is called asynchronously extended bus cycle.

Mode 1:

The bus extention can be done in either way by programming the RDYCTL bit in POS register. If this bit is “0”, the bus cycle is extended synchronously to 300 ns. A “1” in this bit will extend the cycle asynchronously.
APPLICATION

Figure 2 shows the application diagram for 82C570 CHIPSLink 3270 protocol controller. The Card ID is selected by tying ID0 to ID15 pins to VCC or VSS. This provides a flexible choice. RDYIN from 82C570 is used to control the bus cycle for dual port RAM access. D0-7 are used during setup cycle. The 82C574 also provides the 74LS245 buffer chip select and direction control signals. Due to the high integration of both 82C574 and 82C570, only a few components are required to implement the solution for micro to mainframe communication in microchannel environment.

Figure 3 shows the application diagram for the 8 bit IO slave peripherals. In this mode, the resource relocation capability is provided. The interrupt level can be selected by software during setup cycle. The address 0 to 3 are also latched by the 82C574 for the peripherals.

Figure 2. 82C574 Application Diagram for 82C570 CHIPSLink
Figure 3. 82C574 Application Diagram for 8 Bit I/O Slave Peripherals
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{CC}</td>
<td></td>
<td>7.0</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>V_I</td>
<td>-0.5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>V_O</td>
<td>-0.5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{OP}</td>
<td>-25</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{STG}</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTE: Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions described under Operating Conditions.

82C574 Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{CC}</td>
<td>4.75</td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>T_A</td>
<td>0</td>
<td>70</td>
<td>°C</td>
</tr>
</tbody>
</table>

82C574 DC Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Current</td>
<td>I_{CC}</td>
<td></td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>Input Low Voltage</td>
<td>V_{IL}</td>
<td>-0.5</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>Input High Voltage</td>
<td>V_{IH}</td>
<td>2.0</td>
<td>$V_{CC}+0.5$</td>
<td>V</td>
</tr>
<tr>
<td>Output Low Voltage (Note 1)</td>
<td>V_{OL}</td>
<td></td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Output High Voltage (Note 1)</td>
<td>V_{OH}</td>
<td>2.4</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>Input Leakage Current</td>
<td>I_{IL}</td>
<td>-10</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>For $V_{IN} = 0$ to V_{CC}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Tri-State Leakage Current</td>
<td>I_{IL}</td>
<td>-10</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>For $V_O = 0$ to V_{CC}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: $I_{OL} = 6$ mA $I_{OH} = -2$ mA for pins CDCHRDY, CDSFBK. $I_{OL} = 2.4$ mA $I_{OH} = -400$ µA for all other pins.
Capacitance \((T_A = 25^\circ C, V_{CC} = 0)\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Capacitance For (F_C = 1) MHz</td>
<td>(C_{IN})</td>
<td>—</td>
<td>10</td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>(C_{OUT})</td>
<td>—</td>
<td>20</td>
<td>pF</td>
</tr>
<tr>
<td>I/O Capacitance</td>
<td>(C_{I/O})</td>
<td>—</td>
<td>20</td>
<td>pF</td>
</tr>
</tbody>
</table>

82C574 AC Characteristics
\((T_A = 0^\circ C to 70^\circ C, V_{CC} = 5V \pm 5\%, CL = 60\) pF for all the output pins)

<table>
<thead>
<tr>
<th>Sym</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>RESET Active Pulse Width</td>
<td>500</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t2</td>
<td>S0, S1, Set-up to CMD Active</td>
<td>50</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t3</td>
<td>A0–23, M/IO, MADE24 Set-up to CMD Active</td>
<td>80</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t4</td>
<td>CDSETUP Set-up to CMD Active</td>
<td>50</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t5</td>
<td>S0, S1, A0–23, M/IO, CDSETUP, MADE24 Hold time from CMD Active</td>
<td>25</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t6</td>
<td>Write Data Set-up to CMD Inactive</td>
<td>30</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t7</td>
<td>Write Data Hold time from CMD Inactive</td>
<td>15</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t8</td>
<td>Read Data Delay from CMD Inactive</td>
<td>40</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t9</td>
<td>Read Data Hold time from CMD Inactive</td>
<td>5</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t10</td>
<td>BCS, BCTL Assert Delay from CMD Active</td>
<td>28</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t11</td>
<td>BCS, BCTL Deassert Delay from CMD Inactive</td>
<td>5</td>
<td>36</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t12</td>
<td>CMD Active Pulse Width in SETUP Cycle</td>
<td>90</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t21</td>
<td>ADL Active to CMD Active</td>
<td>40</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t22</td>
<td>AO0–3 Delay from ADL Active</td>
<td>0</td>
<td>30</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t23</td>
<td>CDSFBK Active Delay from Address, M/IO, MADE24 Valid</td>
<td>50</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t24</td>
<td>CDSFBK Active Delay from Status Active</td>
<td>25</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t25</td>
<td>CDCHRDY Inactive Delay from Status Active</td>
<td>25</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t26</td>
<td>CDCHRDY Inactive Delay from Address, M/IO, MADE24 Valid</td>
<td>55</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t27</td>
<td>CDCHRDY Release Delay from CMD Active in Synchronous Extended Cycle</td>
<td>25</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
82C574 AC Characteristics (Continued)
(T_A = 0°C to 70°C, V_{CC} = 5V ± 5%, CL = 60 pF for all the output pins)

<table>
<thead>
<tr>
<th>Sym</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>CMD Active Pulse Width in both Sync and Asyn Extended Cycles</td>
<td>190</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>29</td>
<td>IORD, IOWR, MEMRD, MEMWR Active Delay from CMD Active</td>
<td>18</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>30</td>
<td>IORD, IOWR, MEMRD, MEMWR Inactive Delay from CMD Inactive</td>
<td>18</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>31</td>
<td>READ DATA Valid from CMD Active in Sync Extended Cycle</td>
<td>140</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>32</td>
<td>CDCHRDY Release Delay from RDYIN Active</td>
<td>25</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>33</td>
<td>READ DATA Valid from CDCHRDY Active in Asyn Extended Cycle</td>
<td>40</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
82C574 Timing Diagram

NOTE 1 FOR MODE 1 ONLY
NOTE 2: FOR MODE 0 ONLY

RESET

S0, S1

A0-15, M/I/O

CD SETUP

CMD

CDCHRDY

'C'

CDSFBK

'1'

WRITE DATA
D0-D7

READ DATA
D0-D7

BCS

BCTL

VALID

POSIT Register Setup Cycle Timing
82C574 Timing Diagram (Continued)

MODE: MEMORY READ/WRITE
MODE: IO READ/WRITE WITH RDYCTL = 1

Asynchronous Extended Cycle Timing
82C574 Timing Diagram (Continued)

MODE: IO READ/WRITE
MODE1: IO READ/WRITE WITH RDYCTL = 0

S0, S1

A0-15, M/IO

ADI (NOTE 1)

A00-3 (NOTE 1)

CMD

CDSFBK

CDCHRDY

IORD, IOWR

BCS

BCTL

READ DATA

WRITE DATA

NOTE 1: FOR MODE 1 ONLY

Synchronous Extended Cycle Timing
Ordering Information

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Package Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>P82C574</td>
<td>PLCC-68</td>
</tr>
</tbody>
</table>

Note:

1. PLCC = Plastic Leaded Chip Carrier
CANADA DISTRIBUTORS

Electro Source Inc.
39 Robertson Rd., Ste. 233
The Bell Mews Mall
Nepean, Ontario
Canada K2H 8R2
Phone: 613-726-1452
Fax: 613-726-8834

Electro Source, Inc.
230 Galaxy Blvd.
Rexdale, Ontario
Canada M9W 5R8
Phone: 416-675-4490
Telex: 6-989271

Electro Source Inc.
6600 TransCanada Hwy. Suite 510
Pointe Claire, Quebec
Canada H9R 4S2
Phone: 514-694-0404
Fax: 514-694-8501

U.S. DISTRIBUTORS

ALABAMA

Quality Components
4900 University Square Suite 20
Huntsville, AL 35816
Phone: 205-830-1881

Hall-Mark
4900 Bradford Drive
Huntsville, AL 35816
Phone: 205-837-8700

ARIZONA

Anthem
1727 East Webber Drive
Tempe, AZ 85281
Phone: 602-966-6600

Hall-Mark
4040 E. Raymond
Phoenix, AZ 85040
Phone: 602-437-1200

CALIFORNIA

Anthem
20640 Bahama Street
Chatsworth, CA 91311
Phone: 818-700-1000

Anthem
One Oldfield Drive
Irvine, CA 92718-2809
Phone: 714-768-4444

Anthem
4700 Northgate Boulevard
Sacramento, CA 95834
Phone: 916-922-6800

Anthem
9369 Carroll Park Drive
San Diego, CA 92121
Phone: 619-453-9005

Anthem
10400 East Brokaw
San Jose, CA 95131
Phone: 408-295-4200

Hall-Mark
8130 Remmet Avenue
Canoga Park, CA 91304
Phone: 818-716-7300

Hall-Mark
6341 Auburn Blvd., Suite D
Citrus Heights, CA 95610
Phone: 916-722-8600

Hall-Mark
1110 Ringwood Ct.
San Jose, CA 95131
Phone: 408-946-0900

Hall-Mark
19220 S. Normandie Avenue
Torrance, CA 90502
Phone: 714-669-4700

COLORADO

Anthem
8200 South Akron Street
Englewood, CO 80112
Phone: 303-790-4500

Hall-Mark
6950 S. Tucson Way
Englewood, CO 80112
Phone: 303-790-1662

CONNECTICUT

Lionex
170 Research Parkway
Meriden, CT 06450
Phone: 203-237-2282

Hall-Mark
33 Village Lane
Wallingford, CT 06492
Phone: 203-269-0100

FLORIDA

Hall-Mark
15302 Roosevelt Blvd. Suite 303
Clearwater, FL 33750
Phone: 813-530-4543

Hall-Mark
7648 Southland Blvd. Suite 100
Orlando, FL 32809
Phone: 305-855-4020

Hall-Mark
3161 S.W. 15th Street
Pompano Beach, FL 33069-4806
Phone: 305-971-9280

Quality Components
Florida
Phone: 800-241-0037

GEORGIA

Hall-Mark
6410 Atlantic Blvd. Suite 115
Norcross, GA 30071
Phone: 404-447-8000

Quality Components
6350-F McDonough Drive
Norcross, GA 30093
Phone: 404-449-9508

ILLINOIS

Hall-Mark/N.C. Regional Systems Warehouse
210 Mittel Drive
Wood Dale, IL 60191
Phone: 312-680-3800

INDIANA

Hall-Mark
4275 W. 96th Street
Indianapolis, IN 46268
Phone: 317-872-8875
800-423-6638 (INDIANA)
800-772-0112 (KENTUCKY)
FAR EAST DISTRIBUTORS
American MITAC Corporation
3385 Viso Court
Santa Clara, CA 95054
U.S.A.
Phone: 408-988-0258
Telex: 9103382201 MECTEL
Fax: 408-980-9742

AUSTRALIA
R&D Electronics
4 Florence Street
Burwood, Victoria
Australia 3125
Phone: 61-3-288 8911
Fax: 61-3-2889168

HONG KONG
Wong's Kong King Ltd.
8/F Sime Darby Ind. Bldg.
420 Kwun Tong Road
Kwun Tong, Hong Kong
Phone: 852 3-450121
Telex: 11942 TAIAUTO
Fax: 886-2-5014265

SINGAPORE
Computer Engineering Systems PTE, Ltd.
73 Ayer Rajah Crescent
#02-14/21
Ayer Rajah Industrial Estate
Singapore 0513
Phone: 7797377
Telex: RS25223 CESPL
Fax: 657787142

TAIWAN, R.O.C.
Micro Electronic Inc.
(Head Office)
8th Fl., 585 Ming Sheng E. Rd.
Taipei, Taiwan
R.O.C.
Phone: 886(02)5018231
Telex: 11942 TAIAUTO
Fax: 886-2-5014265

EUROPEAN DISTRIBUTORS
BELGIUM
Auriema Belgium S.A./N.V.
Rue Brogniezstraat 172-A
B-1070 Bruxelles
Brussels
Phone: (02) 523-62-95
Telex: 21646

FINLAND
OY Fintronic AB
Mellkonkatu 24A
SF-00210
Helsinki, Finland
Phone: 358 06926022
Telex: 857124224 FTRON SF
Fax: 358 0 674886

FRANCE
A2M
6. Av. du General de Gaulle
78150 Le Chesnay
France
Phone: 33 39.54.91.13
Telex: 842698376 F
Fax: 331 39.54.30.61

GERMANY
Rein Elektronik GmbH
Loetscher Weg 66
Postfach 5160
D-4054 Nettetal 1
West Germany
Phone: 49 (02153) 733-0
Telex: 841854203B REIN D
Fax: 49 02153-733110

ITALY
Eleedra S.p.A.
Via G. Watt 37
20143 Milano
Viale Elvezia 18
Italy
Phone: 39 (02) 81.82.1
Telex: 843332332
Fax: 39 (02) 81.82.211

NETHERLANDS
Auriema Nederland B.V.
Doornakkersweg 26
5642 MP Eindhoven
Netherlands
Phone: 31 (0) 40-816565
Telex: 84451992
Fax: 31 (0) 40-811815

SPAIN
Compania Electronica de Tecnicas Aplicadas, S.A.
(Comelta) (Main Branch)
Emilio Munoz, num. 41
nave 1-1-2
28037 Madrid, Spain
Phone: 34 754 30 01
Telex: 83142007 CETA E

Compania Electronica de Tecnicas Aplicadas, S.A.
(Comelta)
Pedro IV, num. 84-5
planta
08005 Barcelona, Spain
Phone: 34 77 12 (8 lineas)
Telex: 83151934 CETA E
SWEDEN (Nordic Countries)
Nordisk Elektronik A.B.
(Main Branch)
Box 1409
S-171 27 Solna
Sweden
Phone: 46 08-734 97 70
Fax: 46 08-27 22 04
Telex: 85410547 NORTRON S

Nordisk Elektronik A/S
P.O. Box 123
Smidsvingen 4
1364 Hvalstad
Norway
Phone: 47 02 84 62 10
Fax: 47 02 84 65 45
Telex: 85677546 NENASN

Nordisk Elektronik A/S
Transformervej 17
DK-2730 Herlev
Denmark
Telex: 85535200 NORDEL DK

SWITZERLAND
DataComp
Silbernstrasse 10
CH-9853 Dietikon
Switzerland
Phone: 41 01 740 51 40
Telex: 827750 DACO
Fax: 41 1-7413423

UNITED KINGDOM
Katakana Limited
Manhattan House
Bridge Road
Maidenhead, Berkshire
SL6 8DB
United Kingdom
Phone: Maidenhead 44
(0628) 75641
Telex: 846775 KATKAN
Fax: 44 (0628) 782812

CANADA SALES REPRESENTATIVES

Electro Source Inc.
39 Robertson Rd., Ste. 233
The Bell Mews Mall
Nepean, Ontario
Canada K2H 8R2
Phone: 613-726-1452
Fax: 613-726-8834

Electro Source Inc.
215 Carlingview Drive
Suite 303
Rexdale, Ontario, Canada
M9W 5X8
Phone: 416-675-4490

Electro Source Inc.
6600 TransCanada Hwy.
Suite 510
Pointe Claire, Quebec
Canada H9R 4S2
Phone: 514-694-0404
Fax: 514-694-8501

REGIONAL SALES OFFICES

NORTHEAST REGION:
SALES OFFICE
Chips & Technologies, Inc.
One Wall Street
Burlington Office Park
Burlington, MA 01803
Phone: 617-273-3500
Fax: 617-273-5394

MID-AMERICA REGION:
SALES OFFICE
Chips & Technologies, Inc.
15415 Katy Freeway
Suite 209
Houston, TX 77094
Phone: 713-579-9633
Fax: 713-579-9557

WESTERN REGION:
SALES OFFICE
Chips & Technologies, Inc.
2055 Gateway Place
Suite 220
San Jose, CA 95110
Phone: 408-437-8877
Fax: 408-437-0959

Chips & Technologies, Inc.
18201 Von Karman Ave.
Suite 310
Irvine, CA 92715
Phone: 714-852-8721
Fax: 714-852-8912
<table>
<thead>
<tr>
<th>State</th>
<th>Company</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALABAMA</td>
<td>The Novus Group, Inc.</td>
<td>2905 Westcorp Blvd. Suite 120, Huntsville, AL</td>
<td>205-534-0044</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIZONA</td>
<td>Reptronix</td>
<td>1729 E. McLellan Road, Mesa, AZ 85203</td>
<td>602-964-2362</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reptronix</td>
<td>450 W. Cool Dr. #325, Tucson, AZ 85704</td>
<td>602-297-7569</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALIFORNIA</td>
<td>Magna Sales</td>
<td>3333 Bowers Avenue Suite 251, Santa Clara, CA</td>
<td>408-727-8753</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 91360</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17862 17th St. East Building Suite 207, Tustin</td>
<td>714-731-9206</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 92680</td>
<td></td>
</tr>
<tr>
<td>COLORADO</td>
<td>Wescom Marketing, Inc.</td>
<td>4851 Independence Street Suite 159, Wheat Ridge</td>
<td>303-422-8957</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 80033</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dylene-A-Mark Corporation 573 South Duncan Avenue</td>
<td>813-441-4702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clearwater, FL 33516</td>
<td>813-223-7969</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dylene-A-Mark Corporation 1001 Northwest 62nd</td>
<td>305-771-6501</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Street Suite 108, Ft. Lauderdale, FL 33309</td>
<td></td>
</tr>
<tr>
<td>GEORGIA</td>
<td>The Novus Group, Inc.</td>
<td>4556 Canda Drive, Lilburn, GA 30047</td>
<td>404-381-1015</td>
</tr>
<tr>
<td></td>
<td>Micro-Tex, Inc. 2400</td>
<td>Hoffman Estates, IL 60196</td>
<td>312-382-3001</td>
</tr>
<tr>
<td></td>
<td>East Central Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILLINOIS</td>
<td>Giesting & Associates</td>
<td>101 East Carmel Drive Suite 210, Carmel, IN</td>
<td>317-844-5222</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Giesting & Associates</td>
<td>4407 DeRome Drive, Fort Wayne, IN 46815</td>
<td>219-486-1912</td>
</tr>
<tr>
<td>INDIANA</td>
<td>Micro-Comp, Inc. 1421</td>
<td>Baltimore, MD 21227-1082</td>
<td>301-644-5700</td>
</tr>
<tr>
<td></td>
<td>South Caton Ave.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARYLAND</td>
<td>Mill-Bern Associates, Inc.</td>
<td>2 Mack Road, Woburn, MA 01801</td>
<td>617-932-3311</td>
</tr>
<tr>
<td>MASSACHUSETTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINNESOTA</td>
<td>Giesting & Associates</td>
<td>5654 Wendzell Drive, Coloma, MI 49038</td>
<td>616-468-4200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Giesting & Associates</td>
<td>21999 Farmington Road Suite 400, Farmington</td>
<td>313-478-8106</td>
</tr>
<tr>
<td>MICHIGAN</td>
<td></td>
<td>Hills, MI 48024</td>
<td></td>
</tr>
<tr>
<td>NEW JERSEY</td>
<td>T.A.I.</td>
<td>12 South Blackhorse Pike, Bellmawr, New Jersey</td>
<td>609-933-2600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>215-627-6615</td>
</tr>
<tr>
<td>NEW MEXICO</td>
<td>Reptronix</td>
<td>237-C Eubank Blvd. NE, Albuquerque, NM 87123</td>
<td>505-292-1718</td>
</tr>
<tr>
<td>NEW YORK</td>
<td>ERA, Incorporated</td>
<td>351 Veterans Memorial Hwy, Commack, NY 11725</td>
<td>516-543-0510</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORTH CAROLINA</td>
<td>The Novus Group, Inc.</td>
<td>5337 Trestlewood Lane, Raleigh, NC 27610</td>
<td>919-833-7771</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OHIO
Giesting & Associates
2854 Blue Rock Road
P.O. Box 39398
Cincinnati, OH 45239
Phone: 513-385-1105

Giesting & Associates
26250 Euclid Avenue
Suite 525
Cleveland, OH 44132
Phone: 216-261-9705

Giesting & Associates
8843 Washington Colony Drive
Dayton, OH 45459
Phone: 513-433-5832

OREGON
L-Squared Limited
15234 NW Greenbrier Pkwy.
Beaverton, OR 97006
Phone: 503-629-8555

PENNSYLVANIA
Giesting & Associates
471 Walnut Street
Pittsburgh, PA 15238
Phone: 412-963-5832

TEXAS
OM Sales
13915 Burnet Road
Suite 301
Austin, TX 78728
Phone: 512-388-1151

OM Sales
10500 Richmond Ave.
Suite 115
Houston, TX 77042
Phone: 713-789-4426

OM Sales
2323 N. Central Expwy.
Suite 150
Richardson, TX 76080
Phone: 214-690-6746

UTAH
Wescom Marketing, Inc.
3499 S. Main
Salt Lake City, UT 84115
Phone: 801-269-0419

WISCONSIN
Micro-Tex, Inc.
22660 Broadway
Suite 3B
Waukesha, WI 53186
Phone: 414-542-5352
IBM, AT, XT, PS/2, Enhanced Graphics Adapter, Color Graphics Adapter, Monochrome Adapter, IBM Color Display, IBM Monochrome Display are trademarks of International Business Machines. Intel, iAPX 386 are trademarks of Intel Corporation. MOTOROLA is a trademark of Motorola. Hercules Graphics is a trademark of Hercules Computer Technology. Lotus is a trademark of Lotus Corporation. Microsoft is a trademark of Microsoft.

IRMA is a trademark of DCA Corporation.

CHIPSet, CHIPSlink, CHIPSpak, CHIPSport, NEAT, SharpScan EGA are trademarks of Chips and Technologies, Inc.

Chips and Technologies, Inc. makes no warranty for the use of its products and bears no responsibility for any errors which may appear in this document.

Chips and Technologies, Inc. retains the right to make changes to these specifications at any time without notice.