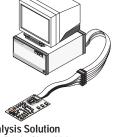
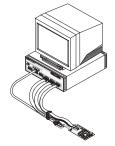


Emulation and Analysis Solutions for Intel Pentium® Processors and Pentium Processors with MMXTM Technology


Product Overview

Emulation Solution


- · Verify Interrupt Routines
- · Debug Assembly Code
- · Optimize Code

Emulation and Analysis Solutions for the Design Team

Logic Analysis Solution

- Perform Basic Signal Measurements
- Profile Hardware Operation
- Verify Signal Integrity
- Verify Conformance to Specifications
- Exercise Microprocessor and Other Hardware
- Debug Boot Code

Emulation Solution with Real-Time Trace

- Debug Hardware/Software Interaction
- Profile Hardware/Software Interaction
- Optimize System Performance
- · Perform System Test

Quickly and accurately determine the root cause of your team's most difficult hardware, software, and system integration problems with Hewlett-Packard's powerful emulation and logic analysis solutions.

HP's emulation and analysis solutions for Intel Pentium processors and Pentium processors with MMX Technology combine the

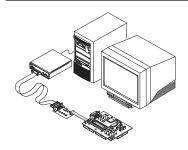
powerful tools of run control, code download, debugger connections, and logic analysis for a complete, scalable system debug environment.

With a scalable solution from HP, design team members can customize HP's product offerings to meet their unique requirements. Solutions range from emulation

Debug and Integrate Real-Time Embedded Systems

probes combined with the industry's leading debuggers to emulation with real-time trace to solve today's most complex Pentium system design problems. HP's solutions are designed to meet your needs today and protect your investment as your needs change in the future.

With logic analysis providing timing and state analysis, you can monitor microprocessor activity in relation to other important system signals such as a PCI bus, other microprocessors, or I/O devices. Traditional emulation systems don't allow you to timecorrelate events across your entire system using timing, analog, and state analysis for your most difficult integration problems.


The logic analyzer is nonintrusive, allowing you to run your target system at full speed. A system trace, up to 2 M deep, can be combined with complex triggering to find the toughest problems. The microprocessor instruction set execution can be correlated to the high-level source code with the HP source correlation tool set.

HP Scalable Solutions

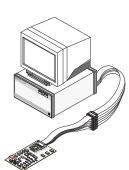
HP emulation and logic analysis solutions are scalable for each member of the digital design team. The following are three typical configurations for firmware/software debug, hardware debug, and system integration.

Components of these solutions include a logic analyzer, emulation probe/module, analysis probe, inverse assembler, source correlation tool set, and system performance analysis tool set.

Information on each of these components is included in this document.

System Features

Emulation Solution


- Microprocessor run control on your target system
- Debugger connection

System Components and Functionality

- Emulation Probe: (see p. 3)
 - Download code, view and modify memory, and view registers on your target system or evaluation board from the debugger interface
- Connection to industry-leading debugger from CAD-UL

- Microprocessors run control on your target system
- Debugger connection
- Real-time logic analysis trace solution:
 - Assembly level trace
 - Source code trace
- · SPGA probing devices
- HP 16600A or 16700A Series Logic Analysis System:
 - Capture and analyze code flow and data flow without halting the target system
 - Time-correlate analog, timing, and state events across your entire system
 - Monitor microprocessor activity in relation to system buses, other microprocessors, or I/O devices
- · Analysis Probe: (see p. 7 & 9)
 - Connect to target using SPGA interposer compatible with 296 pin, Socket 7
 - Disassemble trace listing into Pentium processor mnemonics
- Integrated Emulation Module: (see p. 3)
 - Download code, view and modify memory, and view registers on your target system or evaluation board from the debugger interface
 - Connect to industry-leading debugger from CAD-UL
- HP Source Correlation Tool Set: (see p. 7)
 - Time-correlate acquired logic analysis trace to highlevel source code
 - Step through in assembly or high-level code

Logic Analysis Solution

- Real-time logic analysis trace solution:
 - Assembly level trace
 - Optional source code trace
- SPGA probing solution
- HP 16600A or 16700A Series Logic Analysis System:
 - Capture and analyze code flow and data flow without halting the target system
 - Time-correlate analog, timing, and state events across your entire system
 - Monitor microprocessor activity in relation to system buses, other microprocessors, or I/O devices
- Analysis Probe: (see p. 7 & 9)
 - Connect to target using SPGA interposer compatible with 296 pin, Socket 7
 - Disassemble trace listing into Pentium processor mnemonics

Microprocessor	Package Type	Microprocessor Clock Speed	Emulation Solution	Emulation Solution with Real-Time Trace	Logic Analysis Solution
Pentium Processor	296 SPGA	Up to 200 MHz	Х	x	X
Pentium Processor with MMX Technology	296 SPGA	Up to 233 MHz	X	X	X

Table 1: Emulation and Analysis Solutions for Intel Pentium Processors and Pentium Processors with MMX Technology

Emulation Probe and Module

The emulation probe and module provide the same functionality. The emulation probe is a standalone product, as shown in figure 1. The emulation module is an integrated plug-in for the HP 16600A and 16700A Series logic analysis systems.

Both solutions help you debug your code by providing run control, code download, and memory/register display and modification. You can control program execution through single stepping, start/stop, run/break, and set/modify breakpoints. You can also run code at full speed in the target.

The emulation probe can be controlled by an industry-leading debugger. The emulation module can be controlled by either a debugger or the emulation control interface provided with the logic analyzer. These interfaces are described on page 4.

The HP emulation probe and emulation module can be controlled over your local area network (LAN) and connect to your target through the 20- and 30-pin Pentium processor debug port connectors.

Unlike traditional emulators, the emulation probes and modules provide more stable operation by accessing only the debug pins of the microprocessor and they do not affect other signals. You don't need a serial port on your target system to download code. Unlike ROM monitors, they don't require user memory.

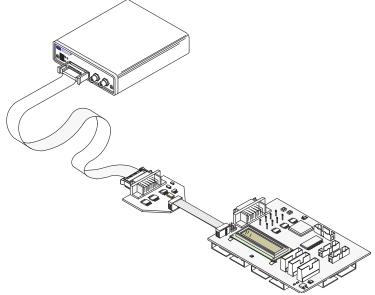


Figure 1: Standalone HP Emulation Probe

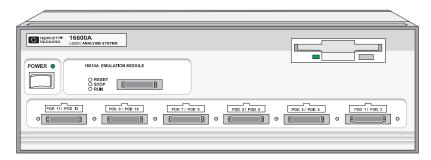
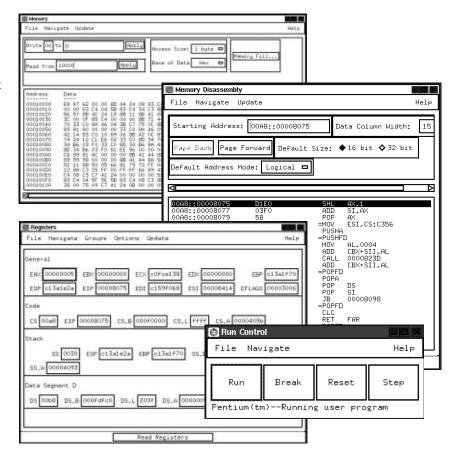


Figure 2: HP 16600A Logic Analysis System with Integrated Emulation Module

Debugger Interface

Industry-leading debuggers can control the HP emulation probe and emulation module. You can set breakpoints, single-step through code, examine variables, and modify source code variables from the high-level source code debugger interface.

Debugger interfaces must be ordered directly from the debugger vendor.


Debugger Connections

CAD-UL, Inc. 6330-1 E. Thomas Rd., Suite 100 Scottsdale, AZ 85251-7056 Phone: (602) 945-8188 http://www.cadul.com

Please check with your local HP Test and Measurement sales office or visit our web site at http://www.hp.com/go/las-data for the current list of debugger connections.

Emulation Control Interface

The emulation module integrated into the logic analysis system can be controlled directly by the emulation control interface. You can easily display and modify contents of microprocessor registers, system memory, and I/O. You can also view memory code segments disassembled into familiar Intel Pentium processor and Pentium Processor with MMX Technology assembly instructions.

Figure 3: Emulation Control Interface

From the run control window you can instruct the microprocessor to run, break, reset, or single-step. You can also choose whether the memory, I/O, and register displays are updated for breaks and single steps.

Writing command files that set up registers, memory, and I/O in your system is easy with the command language. Once the command file is written, save it on the logic analyzer hard disk. When you want to initialize your hardware system to a particular state, simply recall and execute the command file. Unlike the debugger interface, the emulation control interface does not reference back to the high-level source code.

Emulation Module Triggering Integration with Logic Analyzer

With the emulation module, you can use the powerful triggering of the HP 16600A and 16700A Series logic analysis systems to halt on events such as microprocessor activity, system buses, or other external events. The emulation module also can trigger the logic analyzer when a breakpoint is hit. This provides powerful correlation between the debugger interface environment and the logic analyzer.

Emulation Probe and Module Target Connection Information

Simply connect the control port of the emulation probe or module to the Pentium processor debug port on your board or the HP E9592A analysis probe for the Pentium processor. The emulation probe or module supports both the 20- pin and 30-pin Pentium processor debug port connectors. For more details regarding the Pentium processor debug port, refer to the *Intel Pentium Family User's Manual; Data Book.*

Specifications	Description
Supported Processors	Pentium processors and/or Pentium processors
	with MMX technology
RS-232-C	1200 - 115200 baud
LAN	10base2 or 10baseT
	Ethernet connections
	TCP/IP protocol
	Compatible with Pentium processor debug port 1
	20 pin or 30 pin connectors
Physical	155 mm width \times 161 mm depth \times 65 mm height
Environmental	
Temperature	Operating: 0 to +55 °C (+32 °F to 131 °F)
•	Nonoperating: - 40 °C to 70 °C (- 40 °F to + 158 °F)
Altitude	Operating: 4,600m (15,000 ft.)
	Nonoperating: 15,300m (50,000 ft.)
Humidity	15% to 95% relative
Supplied with HP 5900A #500	Pentium emulation probe
• •	• 20 pin cable
	• 30 pin cable
	 Power supply module

Table 2: HP Emulation Probe and Module Specifications

Real-Time Trace Analysis

Real-time trace analysis consists of a physical connection to signals on the Intel Pentium processor, acquisition of relevant data, and analysis of the captured bus information. Physical connection to the Pentium processor bus is made through an HP E9592A analysis probe.

The real-time trace solutions available for the Intel Pentium processor include inverse assembly, source correlation, and system performance analysis.

For information on the data acquisition modules for the HP 16600A and 16700A Series logic analysis systems, please refer to related HP literature on page 12.

Pentium Processor	Supported Speeds	Probing Solution	Real-Time Trace Solutions
Pentium Processor	Up to 200 MHz	SPGA Interposer Compatible with 296 pin, Socket 7	Inverse Assembler: • Disassembly of bus information into Pentium Processor mnemonics • Pentium Processor configuration files for logic analyzer Source Correlation:
			Time-correlate acquired trace to high-level source code Trigger and search through trace in high-level source code
Pentium Processor with MMX Technology	Up to 233 MHz		System Performance Analysis: • Statistical performance measurements on trace data • State overview, state interval, time interval, and time overview measurements

Table 3: Real-Time Trace and Probing Alternatives

Inverse Assembler

The inverse assembler quickly configures the logic analyzer by labeling address, data, and status signals for the Pentium processor. The inverse assembler also provides Pentium processor mnemonics in the trace listing for easy correlation between captured data and target code. The inverse assembler works with the HP B4620B source correlation tool set to provide time correlations between the assembly-level trace and the high-level source code.

The inverse assembler provides filters and color coding to show and/or suppress different types of instructions such as data reads, data writes, I/O reads and I/O writes.

The inverse assembler has several modes of operation, depending on your processor configuration. The inverse assembler provides Pentium processor mnemonics when the cache is disabled and branch trace messages (BTM) are enabled.

HP B4620B Source Correlation Tool Set

The inverse assembler can be used with the HP B4620B source correlation tool set for the HP 16600A and 16700A logic analysis systems. This allows you to time-correlate an acquired trace to source code. The source correlation tool set uses the information provided in your object file to build a database of source files, line numbers and symbol information.

Once the logic analyzer acquires the real-time trace, you can step through the trace at assemblycode level or source-code level. You also can easily locate the cause of a problem by stepping

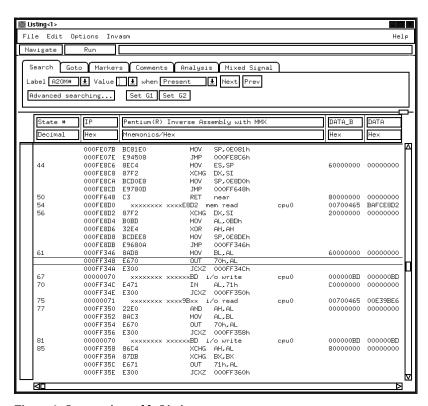


Figure 4: Inverse Assembly Listing

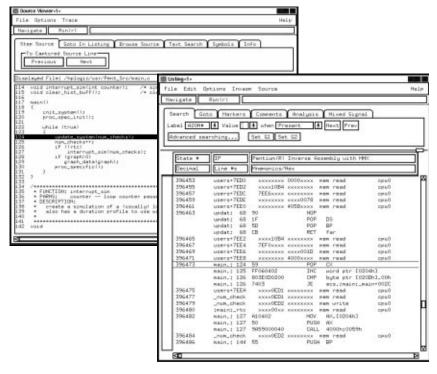


Figure 5: Inverse Assembled Trace Time-Correlated to Source Code using the HP Source Correlation Tool Set

backward to the root cause. With time-correlated analysis in both the digital and analog domains, HP provides powerful insight into your most difficult hardware/software integration problems.

OMF 386 symbol files are supported.

System Correlation

With the HP logic analysis systems, you can time-correlate bus information from other microprocessors or bus interfaces in your target system, such as a PCI bus, with the Pentium processor. Analysis probes are available for additional microprocessors. (Contact your local HP Test and Measurement sales office or visit our web site at http://www.hp.com/go/las-data for more information).

HP B4600B System Performance Analysis Tool Set

The system performance analyzer (SPA) tool set is an optional software package for the HP 16600A and 16700A Series logic analysis systems. The SPA tool set provides such statistical performance measurements as state overview, state interval, time interval, and time overview. The same symbol file used with the source correlation tool set provides symbolic support for the system performance analysis tool set, as shown in figure 7.

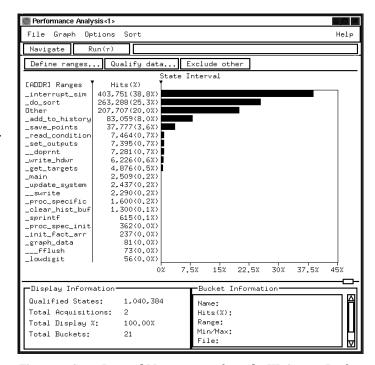


Figure 6: State Interval Measurement from the HP System Performance Analysis Tool Set

Analysis Probe

The analysis probe allows easy connection of an HP logic analyzer to your Pentium system for real-time analysis. With the analysis probe solution, you don't need to design special debug connectors into your target system.

Mechanical dimensions are included in figure 7.

Modes of Operation

State Modes

State-per-transfer mode; in stateper-transfer mode, the logic analyzer is clocked upon completing data transfer cycles. In this mode, the analysis probe keeps track of the address pipeline and aligns data with its parent address.

In state-per-clock mode, address, data, and status are captured on each bus clock. This mode is useful in hardware validation and analysis during system crashes.

Timing Mode

Timing analysis is supported. All processor signals are buffered and passed on to the logic analyzer pods.

Technical Specifications

The analysis probe can be used with the 296-pin SPGA package for the Pentium processor and Pentium processor with MMX technology.

Capabilities

Disassembly of floating point and MMX instructions are supported.

Burst mode addresses are calculated and displayed in the state trace listing.

Timing analysis is supported. All signals go through 6.3 ns maximum buffers. (P/N 74FCT646AT).

The analysis probe can be configured to prequalify the logic analyzer clock on BRDY#, ADS#, EADS#, BOFF#, and HLDA, saving logic analyzer resources.

Pods Required

Eight 16-channel pods are required for inverse assembly. Two additional pods provide monitoring of other status signals.

Maximum Bus Clock Speed 66 MHz CLK external

Probe Loading

- 7 pF in series with 100 Ω on CLK.
- 14 pF in series with 50 Ω on ADS#, BOFF#, BRDY#, BRDYC#, HLDA, KEN#, and W/R#.
- 14 pF on INIT, TDO, SMIACT#, R/S#, RESET, BF0, STPCLK#, and D/P#.
- 10 pF on all other signals.

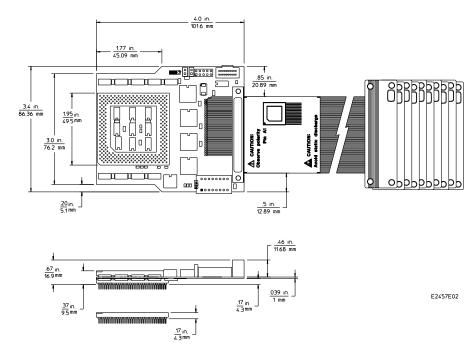
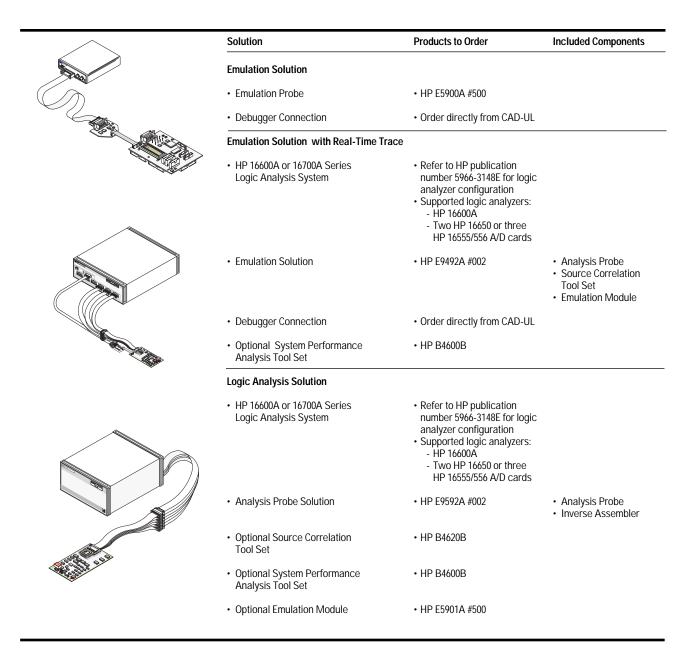



Figure 7: HP Analysis Probe Mechanical Dimensions

System Configuration and Ordering Information

HP makes it easier and more economical and easier to configure and order your emulation or analysis solution by providing solution product numbers. The table below shows the system components you need to order and what is included in each one. The product numbers do not include logic analysis. The HP 16600A and 16700A Series logic analysis systems need to be ordered separately.

If you want to configure or upgrade your system with individual products, see page 12 for individual product number information.

Individual Components Ordering Information

Description	Product
Emulation Probe	HP E5900A #500
Emulation Module	HP E5901A #500
Analysis Probe	HP E9592A #002
Source Correlation Tool Set	HP B4620B
System Performance Analysis Tool Set	HP B4600B

Training and Consulting

HP has experienced Digital Systems Consultants who can help you maximize the utilization of your emulation and analysis system through training and consulting. Digital Systems Consultants are peaked in debugging complex digital hardware/software problems and hardware/software integration.

HP training may be delivered through scheduled courses, on-site classes, or one-on-one consulting. HP has courses for the beginner as well as advanced users migrating from the 16500 Series system. Call 1-800-593-6632 in the U.S. for information about training schedules and location or to register. For training offered in other geographies and languages, consult the HP Test and Measurement education web site: http://www.hp.com/go/tmeducation.

For consulting services, contact your local HP Test and Measurement sales office. An HP Digital Systems Consultant can help you solve tough digital debug problems by showing you how to apply HP tools and debug best practices. Topics covered can include:

- System Installation
- Complex Triggering
- Multiple Bus Analysis
- Source-Line Referencing
- System Performance Analysis
- Instrumenting Code to Solve Specific Issues
- Bus Signal Timing Analysis
- Signal Integrity Analysis
- HP 16700A/HP1660XA Networking

Topics related to debug of Pentium processor-based targets can include:

- Triggering Techniques to Handle Transaction Tracking and Cache Related Issues
- Effective Use of Branch Trace Messaging

Related HP Literature

HP 16600A and 16700A Logic Analysis
System Mainframes, Product Overview

5966-3107E

HP Logic Analysis Systems Upgrade,
Product Overview

5966-3059E

System Configuration for the HP 16600A and
16700A Series Logic Analysis Systems,
Configuration Guide

5966-3148E

State and Timing Analyzers for the HP 16500C
Logic Analysis System, Product Overview

5962-7245E

Warranty Information

These Hewlett-Packard products have a warranty against defects in material and workmanship for a period of one year from date of shipment. During this warranty period, Hewlett-Packard Company will, at its option, either repair or replace products that prove to be defective. For more information about the HP 16600A and 16700A Series logic analysis systems visit our web site, http://www.hp.com/go/las-data

For more information about Hewlett-Packard test & measurement products, applications, services, and for a current sales office listing, visit our web site, http://www.hp.com/go/tmdir

You can also contact one of the following centers and ask for a test and measurement sales representative.

United States: Hewlett-Packard Company Test and Measurement Call Center P.O. Box 4026 Englewood, CO 80155-4026 1 800 452 4844

Canada: Hewlett-Packard Canada Ltd. 5150 Spectrum Way Mississauga, Ontario LAW 5G1 (905) 206 4725

Europe: Hewlett-Packard European Marketing Centre P.O. Box 999 1180 AZ Amstelveen The Netherlands (31 20) 547 9900

Japan: Hewlett-Packard Japan Ltd. Measurement Assistance Center 9-1, Takakura-Cho, Hachioji-Shi, Tokyo 192, Japan Tel: (81-426) 56-7832 Fax: (81-426) 56-7840

Latin America:
Hewlett-Packard
Latin American Region Headquarters
5200 Blue Lagoon Drive
9th Floor
Miami, Florida 33126
U.S.A.
Tel: (305) 267 4245/4220
Fax: (305) 267 4288

Australia/New Zealand: Hewlett-Packard Australia Ltd. 31-41 Joseph Street Blackburn, Victoria 3130 Australia Tel: 1 800 629 485 (Australia)

Tel: 0 800 738 378 (New Zealand) Fax: (61 3) 9210 5489

Asia Pacific: Hewlett-Packard Asia Pacific Ltd 17-21/F Shell Tower, Times Square, 1 Matheson Street, Causeway Bay, Hong Kong Tel: (852) 2599 7777 Fax: (852) 2506 9285

Technical information in this document is subject to change without notice

Printed in U.S.A. 03/98 5966-3106E