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ABSTRACT 

Dynamic programming is one of several widely used problem-solving techniques in 

computer science and operation research. In applying this technique, one always seeks to 

find speed-up by taking advantage of special properties of the problem at hand. However, 

in the current state of art, ad hoc approaches for speeding up seem to be characteristic; 

few general criteria are known. In this paper we give a quadrangle inequality condition for 

rendering speed-up. This condition is easily checked, and can be applied to several apparently 

difTerent problems. For example, it follows immediately from our general condition that the 

construction of optimal binary search trees may be· speeded up from O(n3) steps to O(n2), a 

result that was first obtained by Knuth using a different and more complicated argument. 
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1. INTRODUCTION. 

In the application of a general technique, it is often possible to improve the solution 

by taking advantage of special properties of the problem at hand. Dynamic programming 

is one of several widely used problem-solving techniques in.computer science and operation 

research (see, e.g.[2]). It finds applications in context-free language parsing [8], construct­

ing optimal binary trees [7], finding shortest paths [4), and in solving various "intractible" 

combinatorial problem~ (see the r~ferences in [2]}. In tbe construction of optimal binary 

search trees, for example, Knuth[5)[7) showed th~t an O(n2) algorithm may be. obtained by 

improving upon the straightforward dynamic programming solution which demanded time 

O(n3)~ Knuth's proof is, quite compHcated and involves detailed properties of the optimal 

binary trees. In general, ad hoc approaches for speeding up seem to be characteristic in 

dynamic programming; few general criteria are known. 

In the present paper we will discuss a quadrangle inequality condition for the purpose 

of achieving speed-up in dynamic programming. This condition is easily checked and will be 

applied to several apparently different problems. In particular, it is used to give a simple proof 

of Knuth's construction of optimal trees, and applied to optimization problems involving 

multiway partitions. 

2. DYNAMIC PROGRAMMING AND QUADRANGLE INEQUALITIES. 

We consider a simple dynamic programming problem for the purpose of illustration. 

Example 1. Let L1 1 Li, ... , Ln be n finite, nonempty sets of strings. We wish to compute 

their product (concatenation} L1 · Li · ··Ln by using L · L', the product of two sets, as the 

primitive. To simplify matters, we assume that the product operation is charged a cost of 

ILi · IL'I, and results in ILi · IL'I strings stored in L · L' (i.e., duplicate strings will not be 

detected). 

Let !Lil = ni and w(i,j) = nini+l···nj, then the optimal cost c(i,j) for computing 

Li· Li+l · ··Lj satisfies the following recurrence relations: 

c(i, i) = O; 

c(i, j) = w(i, j) + min {c(i, k- 1) + c(k, j)) 
i<k<j 

for i < j. (1) 
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We will refer to the function w in the above relations as the increment function for 

c; it determines the cost function c completely. To evaluate c using the obvious procedure 

suggested by these equations will require total time O(n3). However, as we will see, the 

increment function w in Example 1 satisfies the quadrangle inequalities (QI) 

w(i,j) + w(i',j') < w(i',j) + w(i,j') for i < i' < j < j'. (2) 

This property allows the dynamic programming to be speeded up because of the following 

general theorem. 

Theorem 1. If the increment function w satisfiesQI and furthermore is monotone on the 

lattice of intervals (ordered by inclusion), i.e., 

w( i, j) < w( i', j') if [i, j] c [i', i1, 

then the function c defined by (1) can be computed in time O(n2).* 

We now verify these conditions for the w in Example 1. The monotonicity is obvious. 

ab + be < b + abc. 

This is true since 

0 < b(a - l)(c -1). 

Theorem 1 is proved by establishing the following two lemmas. 

Lemma 2.1. If w satisfies QI and is monotone on the lattice of intervals, then the function 

c defined by (1) also satisfiesQI. 

Proof. The proof is by induction on the length l = Ii' -ii of the "long side" of the quadrangle 

inequality 

c(i, j) + c( i', i') < c( i', j) + c(i, j') for i < i1 < j < J°'. (3) 

*We assume that w(i,j) is given; in all our examples, w(i,j) is computable in O(n2) time 
from the input arguments of the problem. 
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z: 
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Figure 1. Proof of Lemma 2.1 

First note that (3) is trivial when i = i' or j = j'. Therefore (3) is true when l < 1. 

Inductively, consider two cases: A)i < i' = j < j', and B)i < i' < j < j'. (See Figure 1). 

Case A). i < i' = j < j'. 

In this case, (3) becomes the (inverse) triangle inequality: 

c(i, j) + c(i, ji < c(i, j') for i <i < j'. (4) 

Suppose c(i,j') is minimized at k = Zi that is, c(i,j') = cz(i,j') where we use ck(i,j) to denote 

w(i,j) + c(i, k-1) + c(~1 j). There are two symmetric subcases. 

Case Al). z < j. 

We h;we c(i,j) < Cz(i,j) = w(i,j) + c{i,z-1) + c(z,j). Therefore, 

c(i, j) + c(i,.i') < w(i, j) + c(i,z -1) + c(z,.i) + c(.i, .i') 

< w(i,.i') + c(i,z-1) + c(z,j') 

= c{i,ji, 

where we used the monotonicity of w, and the induction hypothesis (4) at z < j < j'. 

Case A2). z > j. This is symmetric with Al), with all the intervals reversed, 
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Case B). i < i' < j < j'. 

Assume the two terms on the right hand side of (3) achieve their values at k = y and 

k = z respectively. That is, 

( ., ') ( ., ') ci,J =cyi,J, d ( . '') (. '') an c i, J = Cz i, J . 

We again look at two symmetric subcases. 

Case Bl}. z < y. 

We have 

c( i 1, j') < Cy( i 1, j') 

and 

c(i,j) < cz(i,j). 

Adding them up, we obtain 

c(i, j) + c(i', j') < Cz(i, j) + cy(i', j') 

= w(i,j) + w(i',j') + c(i,z-1) + c(z,j) + c(i', y-1) + c(y,j') 

(5) 

Applying the QI of w, and the induction hypothesis (3) at the points z < y < j < j', Equ(5) 

becomes 

c(i, j) + c(i', j') < w(i', j) + w(i, j') + c(i, z -1) + c(i', y -1) + c(y, j) + c(z, i1 
= Cy(i',j) + Cz(i,j1 

= c(i',j) + c(i,j') 

Case B2}. z > y. This is again symmetric with Bl) .1 

Let us use Kc(i, j) to denote max{klck(i, j) = c(i, j)}; so Kc(i, j) is the largest index k 

where the minimum is achieved in (1). (We define Kc(i, i) = i.) 

Lemma 2.2. If the function c defined in (1) satisfies QI, then we have 

Kc(i, j) < Kc(i, j + 1) < Kc(i + 1, j + 1) for i < j. (6) 

Proof. It is trivially true when i = j, therefore assume i < j. To prove the first inequality 

Kc(i, j) < Kc(i, j + 1), we show that for i < k < k' < j, 

(7) 
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Take the quadrangle inequality of c at k < W < j < j + 1 

c(k, j) + c(W, j + 1) < c(k', j) + c(k,j + 1). 

Adding w(i,j) + w(i,j + l} + c(i,k-1) + c(i,W-1) to both sides, we get 

from which (7) follows. Similarly, the second inequality Kc(i, j + 1) < Kc(i + 1, j + 1) follows 

from the QI of cat i < i + 1 < k < W.1 

Lemma 2.2 says that the matrix Kc(i, j) is nondecreasing along each row and column. 

As a consequence, when we compute c(i,j) for c = j - i = O, l, 2, ... , n - 1, only Kc(i + 
1, j + 1) - Kc( i, j) minimization operations need to be carried out for c( i, j + 1). Hence for 

a fixed c, the total amount of work is O(n) since 

I:; (Kc(i + l,j + 1) -Kc(i,j)) < Kc(n - c + 1, n)-Kc(l,c) 
j-i=6-l 
I<i,j<n 

<n. 

The overall computation time is therefore O(n2). This proves Theorem 1.1 

We remark that the monotonicity assumption on win Lemma 2.1 is necessary for the 

QI of c. For example, if we let (i, i',j,j') = (1, 2, 2, 3), then the QI of c becomes 

c(l, 2) + c(2, 3) < c(l, 3), 

which is equivalent to 

w(l, 2) + w(2, 3) < w(l, 3) + min(w(l, 2), w(2, 3))1 

or 

max(w(l, 2), w(2, 3)) < w(l, 3). 

3. OPTIMAL BINARY SEARCH TREES. 

The construction of optimal binary search trees is a well known example of dynamic 

programming. The statement of the problem is as follows[5][7]. 
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Example 2. We are given 2n + 1 probabilities P1, P21 ···, Pn and qo, qi, · · ·, Qn where 

Pi =probability that Keyi is the search argument; 

Qi =probability that the search argument 

lies between Keyi and Keyi+I· 
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We wish to find a binary tree which minimizes the expected number of comparisons in the 

search, namely, 

'E Pj(l +level of jth internal node in symmetric order)+ 
I<j<n 

. 'E qk(level of the (k+l)st external node) 
O<k<n 

where the root has level zero. 

Let c(i1 .i) be the cost of an optimal subtree with weights (Pi+Ii ... , Pii Qi,···, <Ji). Since all 

subtrees of an optimal tree are optimal, it follows that c(i, .i) satisfies the same recurrences 

as given by Equ.(l) with w now defined by 

(8) 

This increment function is monotone, and it satisfies the quadrangle inequalities in fact as 

equalities. It therefore follows from Theorem 1 that we can have an O(n2) time construction 

of an optimal tree by dynamic programming. In [5] 1 the monotone property (6) is derived 

by a more complex argument. 

Note that the question asked in Knuth [7, Section 6.2.2 ex.30] is whether the cost function 

c satisfies a special case of the quadrangle inequalities, namely 

c(i,.i) + c(i + 1,j + 1) < c(i + l 1 j) + c(i,.i + 1)1 (9) 

and is therefore answered in the affirmative by Lemma 2.1. In fact, (9) is equivalent to the 

general QI since (3) can be derived from (9) by induction on Ii' - ii and l.i' - ii· 

4. MAXIMIZATION PROBLEMS IN A CONVEX POLYGON . 

We look at an example where the quadrangle inequalities have a most intuitive inter­

pretation, and where binary partitions generalize easily to multiway partitions. 
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Example 3. Suppose v1 vi· "Vn is a convex polygon in E 2 • Let d( i, j) = the Euclidean distance 

between Vi and v3 if i < j, and d(i,j) = 0 if i > j. We notice that d satisfies the inverse 

quadrangle inequalities, i.e., 

d( i, j) + d(i', j') > d(i', j) + d( i, j') for i < i' < j < j'. (10) 

(Inverse QI's are what we need in considering maximization problem& such as the present 

one.) We use A ® B to denote the (max,+) - multiplication of upper triangular matrices 

A and B. That is, if A= (a(i,j)) and B = (b(i,j)), then A @B = (c(i,j)) where c(i,j) = 

maxi:::;k<J(a(i,k} + b(k,j}). We define D(1) = D = (d(i,j}), D(t) = D(t-I) @D, and write 

D(t) as (d(t)(i,j)). For example, d(2)(i,j) is the length of the longest trajectory from Vi to Vj 

that allows one bounce off the wall vivi+l'"Vj· We are interested in efficiently computingD(t), 

and thereby finding a perimeter maximizing t-gon inscribed in the given convex polygon. 

By associativity D(t) = D(r) ® D(s) for t = r + s. This multiplication is a special case 

of a relation of the following form. 

c(i,j)=w(i,j)+ max (a(i,k)+b(k,j)) 
i:=;k<i 

for i < j. (11) 

It follows from Lemma 4.1 below that d(r)(i,j) satisfies the inverse QI for any r > 1 by 

induction on r. Lemma 4.2 then tells us that the multiplication D(r) ®D(s) can be done in 

O(n2) time for any r > 1ands>1. 

Lemma 4.1. If w, a and ball satisfy the inverse QI, then the function c defined by (11) also 

satisfies the inverse QI. 

Proof. Similar to the proof of Lemma 2.1, except that we need not consider Case A} 

seperately from Case B ). 

Lemma 4.2. If both a and b satisfy the inverse QI, then for the function c defined by (11) 

we have 

Kc(i,j) < Kc(i,j + 1) < Kc(i + 1,j + 1) for i < j. 

Proof. Similar to the proof of Lemma 2.2. 

Theorem 2. For any t > 1, D(t) can be computed in time O((log t)n2). 

,. 
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Proof. Apply a standard binary algorithm for computing powers. (Also cf. proof of Theorem 

3).1 

Corollary. For any t > 1, we can find a perimeter maximizing (t + 1)-gon inscribed in the 

given convex polygon in tirrie O((log t)n2). 

Proof. It is easy to see that the largest entry in the matrix D(t) + D gives the maximum 

perimeter that we want. I 

Example 3 is reminiscent of the problem studied in [3], where monotonicity properties 

similar to Lemma 4. 2 are utilized to find an area maximizing triangle inscribed in a convex 

polygon efficiently. 

5. OPTIMAL MULTIWAY TREES. 

In view of Theorem 2, what can we say when Equ(l) is generalized to allow c(i, j) to 

be partitioned into up to t subproblems? The recurrence becomes 

c(i,j) = w(i,j) + min (c(i,k1 -1) + c(ki,~ -1) + ···+c(kt-Iii)) 
i<k1 <k2$.··'5.kt-1<i 

if i < j, (12) 

c(i,j) = 0 if i > j. 

So when i < j, the problem of computing c(i, j) is divided into 2 to t subproblems whose 

sizes are strictly smaller than that of the original problem. (We say a subproblem c(k, l) is 

empty if k > l.) This problem is similar to Example 3; it requires a little more care since 

it involves recurrences. 

The main result we have here is the following Theorem. We say that a function w 

satisfies the triangle inequalities {TI} if 

w(i, j) + w(j, j') < w(i, j') for i < j < j'. 

In this section, we shall assum~ that w(i, j) is nonnegative; then w satisfies Tlimplies that 

w is monotone. 

Theorem 3. If the increment function w satisfies QI and TI, then the function c defined by 

(12) can be computed in time O((log t)n2). 
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Example 4. Consider the construction of optimal search trees as in Example 2, but allowing 

each node to have degree at most t. In the special case that all the q's are zero, we have 

w( i, j) = Pi+I + ... +Pi, which satisfies the condition of Theorem 3, and such optimal t­

way trees can be constructed in time O((log t)n2). 

Let us denote the 'min' term in Equ(12) by j<t)(i,j). Thus, (12) can be rewritten as 

where 

c(i,j) = w(i,j) + j<t)(i,j) 

c(i,j) = 0 

if i < j, 
if i > j, 

ft)(i,j) = min (c(i,k1 -1) + c(k1,~ -1) + ... +c(kt-i,j)) 
i<k1<k2<··<kt-1'5.i 

(12a) 

if i < j, (13) 

j<t)(i,j)=O if i>j. 

Furthermore, define f 1)( i, j) = c( i, j); and for 2 < q < t - 1, define f q)( i, j) to be the 

optimal sum of < q subproblems: 

fq)(i, J') = min (c(i, k1 - 1) + c(ki, ~ -1) + ···+c(kq-1' j)) 
i<k1<~<··<kq-1<i 

if i < j, (14) 

if i > j. 

Note that, in a partition for fq)(i, j), only one subproblem is required to be nonempty. 

Fact A. f 1)(i,j) > f 2)(i,j) > ... > j<t)(i,j). 

Proof. All except the last inequality follows immediately from the definition of f q). If 

f t-l)( i, j) is obtained by a decomposition into two or more subproblems, then we have 

ft-l)(i,j) > j<t)(i,j); otherwise ft-I)(i,j) = c(i,j) > ft)(i,j) by Equ(12a) since w(i,j) is 

nonnegative. I 

Fact B. 

fq)(i, j) = min (fr)(i, k-1) + f 8 )(k, j)) for q = r + s, 2 < q < t -1 
i<k<j (15) 

and r > 1, s > 1. 

Proof.We will show that lefthandside>righthand side since the other direction is obvious. If 

in Equ(14) the minimum value off q)( i, j) is achieved with division points k1, ···, kr, ... , kq-1 1 

we can achieve the same value on the righthand side of (15) by choosing k = kr·I 
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Fact C. ft)(i, j) = min (fr)(i, k - 1) + fs)(k, j)) for t = r + s, 
i<k<j . (16) 

and r > 1, s > 1. 

Proof. Similar to the proof of Fact B. Again choose k on the righthand side to be the kr of 

the lefthand side. I 

Lemma 5.1. In (15), if fr)(i, j) and f 8 )(i, j) satisfy QI for j - i < 8, then fq)(i, j) satisfies 

Qlfor j-i <8. 

Proof. Similar to the proof of Lemma 2.1.In the case corresponding to Case Al), we need 

the TI 

which follows from the QI of f 8 ), and the fact fq) < fs). Similarly, Case A2) follows from 

the QI of fr), Case Bl) from the QI offs), and B2) from the QI of fr). (See Figure 2).1 

Lemma 5.2. In (15), if fr)(i,j) and f 8 )(i, j) satisfy QI for j- i < 8, then ft)(i, j) satifies 

QI for j - i < 8 + 1. 

Proof. Analogous to the proof of Lemma 5.1; here the problem sizes are strictly reduced 

in the inductive step. I 

Lemma 5.3. In (12), if w satisfies QI and Tl, then f 1)(= c), ···, fq), ···,ft) all satisfy QI. 

Proof. It follows from the preceding two Lemmas by induction on 8 = j - i and induction 

on q. Note that the facts that w satisfies QI, TI, and ft) satisfies QI together imply that c 

satisfies QI. I 

Proof of Theorem !J. For the f's on the lefthand side of (15) and (16), we use K1(i, j) as 

before to denote the largest k on the righthand side which allows the minimum value of 

f( i, j) to be achieved. By the same argument which led to Lemma 2. 2 and 4. 2, we have 

for i < j, 
and f = f q), 1 < q < t. 

(17) 

Let qi, <J2, ... , Qh be an addition chain[6] for t; that is, q1 = 1, Qh, = t, and for each i > 11 

Qi = 'lJ + qk for some j < i, k < i. It is well known that any t > 1 has an addition 

chain of length h < 2 log t. The following procedure then employs Equ(12a), (15) and (16) 

to compute c(i, j). 
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81) 82) 

Figure 2. Proof of Lemma 5.1 
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begin 

for 1<i<n,1 < m < h do fqm)(i, i) .-- O; 

for c .-- 1 to n do 

end 

form.-- 1 to h do 

for j-i = c do 

compute fqm)(i,j) 
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Because of Equ(l 7), the innermost loop takes only O(n) steps. Therefore the algorithm 

uses total time O(hn2), which is O{(log t)n2). I 

6. CONCLUDING REMARKS . 

In this paper we have considered a general type of conditions which ensures monotonicity 

of division points in certain dynamic programming processes. This monotonicity property 

makes it possible to achieve speed-up by a factor of n or more over the straightforward 

implementations. We would like to point out some situations where the present results do 

not apply, and which deserve further study. 

The monotonicity property for the division points does not hold for the matrix mul­

tiplication chain problem[!], as shown by the following example. Consider the matrices 

M1, M2, M3 , M4 with dimensions 2 X 3, 3 X 2, 2 X 10, and 10 X 1, respectively. As can be 

easily verified, the proper order to compute M1M2M3 is to parenthesize it as (M1M2)M3, while 

the optimal computation of M1M2M3M4 corresponds to M1(M2(M3M4)). 

Similarly, optimal t-way search trees in general (when the q's are not zero) do not 

satisfy the monotonicity property either.The addition of a new leftmost key may force the 

division points (at the root) to shift rightward! Such an example for ternary trees is shown 

in Figure 3. As the increment function w defined by (8) fails to satisfy TI (for example, 

w{l, 2) + w{2, 3) > w{l, 3)), the function c defined by {12) does not satisfy the QI (Figure 

3a). When Key1 is added, the division points may change from {3, 4} to { 4, 5} if the weights 

are properly chosen.(figure 3b). 
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p2 p3 
better than 

P2 P3 

• • R + R 
q1 q2 q3 q 1 q2 q2 Q3 

Figure 3a. c(l, 3) + c(2, 2) < c(l, 2) + c(2, 3). 

P4 p5 P3 P4 

• • worse than 

JP.- r 
I 

q4 q5 

I 
I I 
lq2 I q4 Q5 

C(2,3) C(2,2) 

P4 PS P4 

better than 

I P3 -,q lr2_,_ 

I 
I . I 4 I 

q3 

I 
I I I I 
I q1 Q2 ~1 -~ 

q4 q5 

C(1,3) C(1,2) 

Figure 3b. For the w defined by (8), Equ(l 7) fails. 
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2 

6 

3 

4 

Figure 4. A function w(i, j) for 1 < i < j < 4 (with w(i, i) = 0), 

which satisfies TI but not QI. 

Finally, we note a few properties of the quadrangle inequalities. 
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1. QI and TI are incomparable: the w given by (8) is an example of a function which satisfies 

QI but not TI;. the example in Figure 4 is a function that satisfies TI but not QI. 

2. It is easy to show that if g:R -+ R is a concave, nondecreasing function, then go w satisfies 

QI if w does. Therefore the conclusions of Examples 1 and 2 still hold if we substitute 

w(i, j)2 for w(i, j). Similarly, a convex, nondecreasing function g preserves the inverse QI; 

thus in Exmaple 3 we may use, say, log d(i, j) as the distance between Vi and v3. 

3. In Lemmas 2.2 and 4.2, a stronger monotone property than that stated in (6) is ac­

tually implied by the QI. If we define R( i, j) to be the set of optimal division points, that 

is, R( i, j) = {k I ck( i, j) = c( i, j)} , then the entire set R( i, j) shifts right as either i or 

j increases. For example, one might have R(i,j) = {1, 3, 4, 7},R(i,j + 1) = {4, 7, 9} and 

R(i + l,j + 1) = {9, 11}. (cf. [7, Section 6.2.2 ex.27]). 

We recently learned from Don Knuth that Zhu Yongjin and Wang Jianfang [9], in 

studying algorithms for constructing alphabetic trees with restricted depth, used an approach 

similar to ours. 
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