
Efficient Dynamic Programming
Using Quadrangle Inequalities

By F. Frances Yao

Efficient Dynamic Programming Using
Quadrangle Inequalities

F. Frances Yao

CSL-80-4 MARCH 1980

Abstract: See next page.

A version of this paper will appear in Proceedings of the 1980 ACM Symposium on Theory of

Computing, April 1980.

CR Categories: 5.3, 8.3.

Key words and phrases: Binary search tree, convex polygon, dynamic programming,

quadrangle inequality, triangle inequality.

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road I Palo Alto I California 94304

Efficient Dynamic Programming Using Quadrangle Inequalities 1

ABSTRACT

Dynamic programming is one of several widely used problem-solving techniques in

computer science and operation research. In applying this technique, one always seeks to

find speed-up by taking advantage of special properties of the problem at hand. However,

in the current state of art, ad hoc approaches for speeding up seem to be characteristic;

few general criteria are known. In this paper we give a quadrangle inequality condition for

rendering speed-up. This condition is easily checked, and can be applied to several apparently

difTerent problems. For example, it follows immediately from our general condition that the

construction of optimal binary search trees may be· speeded up from O(n3) steps to O(n2), a

result that was first obtained by Knuth using a different and more complicated argument.

2 Efficient .Dynamic Programming Using Quadrangle Inequalities

1. INTRODUCTION.

In the application of a general technique, it is often possible to improve the solution

by taking advantage of special properties of the problem at hand. Dynamic programming

is one of several widely used problem-solving techniques in.computer science and operation

research (see, e.g.[2]). It finds applications in context-free language parsing [8], construct­

ing optimal binary trees [7], finding shortest paths [4), and in solving various "intractible"

combinatorial problem~ (see the r~ferences in [2]}. In tbe construction of optimal binary

search trees, for example, Knuth[5)[7) showed th~t an O(n2) algorithm may be. obtained by

improving upon the straightforward dynamic programming solution which demanded time

O(n3)~ Knuth's proof is, quite compHcated and involves detailed properties of the optimal

binary trees. In general, ad hoc approaches for speeding up seem to be characteristic in

dynamic programming; few general criteria are known.

In the present paper we will discuss a quadrangle inequality condition for the purpose

of achieving speed-up in dynamic programming. This condition is easily checked and will be

applied to several apparently different problems. In particular, it is used to give a simple proof

of Knuth's construction of optimal trees, and applied to optimization problems involving

multiway partitions.

2. DYNAMIC PROGRAMMING AND QUADRANGLE INEQUALITIES.

We consider a simple dynamic programming problem for the purpose of illustration.

Example 1. Let L1 1 Li, ... , Ln be n finite, nonempty sets of strings. We wish to compute

their product (concatenation} L1 · Li · ··Ln by using L · L', the product of two sets, as the

primitive. To simplify matters, we assume that the product operation is charged a cost of

ILi · IL'I, and results in ILi · IL'I strings stored in L · L' (i.e., duplicate strings will not be

detected).

Let !Lil = ni and w(i,j) = nini+l···nj, then the optimal cost c(i,j) for computing

Li· Li+l · ··Lj satisfies the following recurrence relations:

c(i, i) = O;

c(i, j) = w(i, j) + min {c(i, k- 1) + c(k, j))
i<k<j

for i < j. (1)

Efficient Dynamic Programming Using Quadrangle Inequalities 3

We will refer to the function w in the above relations as the increment function for

c; it determines the cost function c completely. To evaluate c using the obvious procedure

suggested by these equations will require total time O(n3). However, as we will see, the

increment function w in Example 1 satisfies the quadrangle inequalities (QI)

w(i,j) + w(i',j') < w(i',j) + w(i,j') for i < i' < j < j'. (2)

This property allows the dynamic programming to be speeded up because of the following

general theorem.

Theorem 1. If the increment function w satisfiesQI and furthermore is monotone on the

lattice of intervals (ordered by inclusion), i.e.,

w(i, j) < w(i', j') if [i, j] c [i', i1,

then the function c defined by (1) can be computed in time O(n2).*

We now verify these conditions for the w in Example 1. The monotonicity is obvious.

ab + be < b + abc.

This is true since

0 < b(a - l)(c -1).

Theorem 1 is proved by establishing the following two lemmas.

Lemma 2.1. If w satisfies QI and is monotone on the lattice of intervals, then the function

c defined by (1) also satisfiesQI.

Proof. The proof is by induction on the length l = Ii' -ii of the "long side" of the quadrangle

inequality

c(i, j) + c(i', i') < c(i', j) + c(i, j') for i < i1 < j < J°'. (3)

*We assume that w(i,j) is given; in all our examples, w(i,j) is computable in O(n2) time
from the input arguments of the problem.

4 Efficient Dynamic Programming Using Quadrangle Inequalities

z:

l::j y

Case A1) Case 81)

Figure 1. Proof of Lemma 2.1

First note that (3) is trivial when i = i' or j = j'. Therefore (3) is true when l < 1.

Inductively, consider two cases: A)i < i' = j < j', and B)i < i' < j < j'. (See Figure 1).

Case A). i < i' = j < j'.

In this case, (3) becomes the (inverse) triangle inequality:

c(i, j) + c(i, ji < c(i, j') for i <i < j'. (4)

Suppose c(i,j') is minimized at k = Zi that is, c(i,j') = cz(i,j') where we use ck(i,j) to denote

w(i,j) + c(i, k-1) + c(~1 j). There are two symmetric subcases.

Case Al). z < j.

We h;we c(i,j) < Cz(i,j) = w(i,j) + c{i,z-1) + c(z,j). Therefore,

c(i, j) + c(i,.i') < w(i, j) + c(i,z -1) + c(z,.i) + c(.i, .i')

< w(i,.i') + c(i,z-1) + c(z,j')

= c{i,ji,

where we used the monotonicity of w, and the induction hypothesis (4) at z < j < j'.

Case A2). z > j. This is symmetric with Al), with all the intervals reversed,

/>

Efficient Dynamic Programming Using Quadrangle Inequalities 5

Case B). i < i' < j < j'.

Assume the two terms on the right hand side of (3) achieve their values at k = y and

k = z respectively. That is,

(., ') (., ') ci,J =cyi,J, d (. '') (. '') an c i, J = Cz i, J .

We again look at two symmetric subcases.

Case Bl}. z < y.

We have

c(i 1, j') < Cy(i 1, j')

and

c(i,j) < cz(i,j).

Adding them up, we obtain

c(i, j) + c(i', j') < Cz(i, j) + cy(i', j')

= w(i,j) + w(i',j') + c(i,z-1) + c(z,j) + c(i', y-1) + c(y,j')

(5)

Applying the QI of w, and the induction hypothesis (3) at the points z < y < j < j', Equ(5)

becomes

c(i, j) + c(i', j') < w(i', j) + w(i, j') + c(i, z -1) + c(i', y -1) + c(y, j) + c(z, i1
= Cy(i',j) + Cz(i,j1

= c(i',j) + c(i,j')

Case B2}. z > y. This is again symmetric with Bl) .1

Let us use Kc(i, j) to denote max{klck(i, j) = c(i, j)}; so Kc(i, j) is the largest index k

where the minimum is achieved in (1). (We define Kc(i, i) = i.)

Lemma 2.2. If the function c defined in (1) satisfies QI, then we have

Kc(i, j) < Kc(i, j + 1) < Kc(i + 1, j + 1) for i < j. (6)

Proof. It is trivially true when i = j, therefore assume i < j. To prove the first inequality

Kc(i, j) < Kc(i, j + 1), we show that for i < k < k' < j,

(7)

6 Efficient Dynamic Programming Using Quadrangle Inequalities

Take the quadrangle inequality of c at k < W < j < j + 1

c(k, j) + c(W, j + 1) < c(k', j) + c(k,j + 1).

Adding w(i,j) + w(i,j + l} + c(i,k-1) + c(i,W-1) to both sides, we get

from which (7) follows. Similarly, the second inequality Kc(i, j + 1) < Kc(i + 1, j + 1) follows

from the QI of cat i < i + 1 < k < W.1

Lemma 2.2 says that the matrix Kc(i, j) is nondecreasing along each row and column.

As a consequence, when we compute c(i,j) for c = j - i = O, l, 2, ... , n - 1, only Kc(i +
1, j + 1) - Kc(i, j) minimization operations need to be carried out for c(i, j + 1). Hence for

a fixed c, the total amount of work is O(n) since

I:; (Kc(i + l,j + 1) -Kc(i,j)) < Kc(n - c + 1, n)-Kc(l,c)
j-i=6-l
I<i,j<n

<n.

The overall computation time is therefore O(n2). This proves Theorem 1.1

We remark that the monotonicity assumption on win Lemma 2.1 is necessary for the

QI of c. For example, if we let (i, i',j,j') = (1, 2, 2, 3), then the QI of c becomes

c(l, 2) + c(2, 3) < c(l, 3),

which is equivalent to

w(l, 2) + w(2, 3) < w(l, 3) + min(w(l, 2), w(2, 3))1

or

max(w(l, 2), w(2, 3)) < w(l, 3).

3. OPTIMAL BINARY SEARCH TREES.

The construction of optimal binary search trees is a well known example of dynamic

programming. The statement of the problem is as follows[5][7].

•

Efficient Dynamic Programming Using Quadrangle Inequalities

Example 2. We are given 2n + 1 probabilities P1, P21 ···, Pn and qo, qi, · · ·, Qn where

Pi =probability that Keyi is the search argument;

Qi =probability that the search argument

lies between Keyi and Keyi+I·

7

We wish to find a binary tree which minimizes the expected number of comparisons in the

search, namely,

'E Pj(l +level of jth internal node in symmetric order)+
I<j<n

. 'E qk(level of the (k+l)st external node)
O<k<n

where the root has level zero.

Let c(i1 .i) be the cost of an optimal subtree with weights (Pi+Ii ... , Pii Qi,···, <Ji). Since all

subtrees of an optimal tree are optimal, it follows that c(i, .i) satisfies the same recurrences

as given by Equ.(l) with w now defined by

(8)

This increment function is monotone, and it satisfies the quadrangle inequalities in fact as

equalities. It therefore follows from Theorem 1 that we can have an O(n2) time construction

of an optimal tree by dynamic programming. In [5] 1 the monotone property (6) is derived

by a more complex argument.

Note that the question asked in Knuth [7, Section 6.2.2 ex.30] is whether the cost function

c satisfies a special case of the quadrangle inequalities, namely

c(i,.i) + c(i + 1,j + 1) < c(i + l 1 j) + c(i,.i + 1)1 (9)

and is therefore answered in the affirmative by Lemma 2.1. In fact, (9) is equivalent to the

general QI since (3) can be derived from (9) by induction on Ii' - ii and l.i' - ii·

4. MAXIMIZATION PROBLEMS IN A CONVEX POLYGON .

We look at an example where the quadrangle inequalities have a most intuitive inter­

pretation, and where binary partitions generalize easily to multiway partitions.

8 Efficient Dynamic Programming Using Quadrangle Inequalities

Example 3. Suppose v1 vi· "Vn is a convex polygon in E 2 • Let d(i, j) = the Euclidean distance

between Vi and v3 if i < j, and d(i,j) = 0 if i > j. We notice that d satisfies the inverse

quadrangle inequalities, i.e.,

d(i, j) + d(i', j') > d(i', j) + d(i, j') for i < i' < j < j'. (10)

(Inverse QI's are what we need in considering maximization problem& such as the present

one.) We use A ® B to denote the (max,+) - multiplication of upper triangular matrices

A and B. That is, if A= (a(i,j)) and B = (b(i,j)), then A @B = (c(i,j)) where c(i,j) =

maxi:::;k<J(a(i,k} + b(k,j}). We define D(1) = D = (d(i,j}), D(t) = D(t-I) @D, and write

D(t) as (d(t)(i,j)). For example, d(2)(i,j) is the length of the longest trajectory from Vi to Vj

that allows one bounce off the wall vivi+l'"Vj· We are interested in efficiently computingD(t),

and thereby finding a perimeter maximizing t-gon inscribed in the given convex polygon.

By associativity D(t) = D(r) ® D(s) for t = r + s. This multiplication is a special case

of a relation of the following form.

c(i,j)=w(i,j)+ max (a(i,k)+b(k,j))
i:=;k<i

for i < j. (11)

It follows from Lemma 4.1 below that d(r)(i,j) satisfies the inverse QI for any r > 1 by

induction on r. Lemma 4.2 then tells us that the multiplication D(r) ®D(s) can be done in

O(n2) time for any r > 1ands>1.

Lemma 4.1. If w, a and ball satisfy the inverse QI, then the function c defined by (11) also

satisfies the inverse QI.

Proof. Similar to the proof of Lemma 2.1, except that we need not consider Case A}

seperately from Case B).

Lemma 4.2. If both a and b satisfy the inverse QI, then for the function c defined by (11)

we have

Kc(i,j) < Kc(i,j + 1) < Kc(i + 1,j + 1) for i < j.

Proof. Similar to the proof of Lemma 2.2.

Theorem 2. For any t > 1, D(t) can be computed in time O((log t)n2).

,.

\

I

Efficient Dynamic Programming Using Quadrangle Inequalities 9

Proof. Apply a standard binary algorithm for computing powers. (Also cf. proof of Theorem

3).1

Corollary. For any t > 1, we can find a perimeter maximizing (t + 1)-gon inscribed in the

given convex polygon in tirrie O((log t)n2).

Proof. It is easy to see that the largest entry in the matrix D(t) + D gives the maximum

perimeter that we want. I

Example 3 is reminiscent of the problem studied in [3], where monotonicity properties

similar to Lemma 4. 2 are utilized to find an area maximizing triangle inscribed in a convex

polygon efficiently.

5. OPTIMAL MULTIWAY TREES.

In view of Theorem 2, what can we say when Equ(l) is generalized to allow c(i, j) to

be partitioned into up to t subproblems? The recurrence becomes

c(i,j) = w(i,j) + min (c(i,k1 -1) + c(ki,~ -1) + ···+c(kt-Iii))
i<k1 <k2$.··'5.kt-1<i

if i < j, (12)

c(i,j) = 0 if i > j.

So when i < j, the problem of computing c(i, j) is divided into 2 to t subproblems whose

sizes are strictly smaller than that of the original problem. (We say a subproblem c(k, l) is

empty if k > l.) This problem is similar to Example 3; it requires a little more care since

it involves recurrences.

The main result we have here is the following Theorem. We say that a function w

satisfies the triangle inequalities {TI} if

w(i, j) + w(j, j') < w(i, j') for i < j < j'.

In this section, we shall assum~ that w(i, j) is nonnegative; then w satisfies Tlimplies that

w is monotone.

Theorem 3. If the increment function w satisfies QI and TI, then the function c defined by

(12) can be computed in time O((log t)n2).

10 Efficient Dynamic Programming Using Quadrangle Inequalities

Example 4. Consider the construction of optimal search trees as in Example 2, but allowing

each node to have degree at most t. In the special case that all the q's are zero, we have

w(i, j) = Pi+I + ... +Pi, which satisfies the condition of Theorem 3, and such optimal t­

way trees can be constructed in time O((log t)n2).

Let us denote the 'min' term in Equ(12) by j<t)(i,j). Thus, (12) can be rewritten as

where

c(i,j) = w(i,j) + j<t)(i,j)

c(i,j) = 0

if i < j,
if i > j,

ft)(i,j) = min (c(i,k1 -1) + c(k1,~ -1) + ... +c(kt-i,j))
i<k1<k2<··<kt-1'5.i

(12a)

if i < j, (13)

j<t)(i,j)=O if i>j.

Furthermore, define f 1)(i, j) = c(i, j); and for 2 < q < t - 1, define f q)(i, j) to be the

optimal sum of < q subproblems:

fq)(i, J') = min (c(i, k1 - 1) + c(ki, ~ -1) + ···+c(kq-1' j))
i<k1<~<··<kq-1<i

if i < j, (14)

if i > j.

Note that, in a partition for fq)(i, j), only one subproblem is required to be nonempty.

Fact A. f 1)(i,j) > f 2)(i,j) > ... > j<t)(i,j).

Proof. All except the last inequality follows immediately from the definition of f q). If

f t-l)(i, j) is obtained by a decomposition into two or more subproblems, then we have

ft-l)(i,j) > j<t)(i,j); otherwise ft-I)(i,j) = c(i,j) > ft)(i,j) by Equ(12a) since w(i,j) is

nonnegative. I

Fact B.

fq)(i, j) = min (fr)(i, k-1) + f 8)(k, j)) for q = r + s, 2 < q < t -1
i<k<j (15)

and r > 1, s > 1.

Proof.We will show that lefthandside>righthand side since the other direction is obvious. If

in Equ(14) the minimum value off q)(i, j) is achieved with division points k1, ···, kr, ... , kq-1 1

we can achieve the same value on the righthand side of (15) by choosing k = kr·I

Efficient Dynamic Programming Using Quadrangle Inequalities 11

Fact C. ft)(i, j) = min (fr)(i, k - 1) + fs)(k, j)) for t = r + s,
i<k<j . (16)

and r > 1, s > 1.

Proof. Similar to the proof of Fact B. Again choose k on the righthand side to be the kr of

the lefthand side. I

Lemma 5.1. In (15), if fr)(i, j) and f 8)(i, j) satisfy QI for j - i < 8, then fq)(i, j) satisfies

Qlfor j-i <8.

Proof. Similar to the proof of Lemma 2.1.In the case corresponding to Case Al), we need

the TI

which follows from the QI of f 8), and the fact fq) < fs). Similarly, Case A2) follows from

the QI of fr), Case Bl) from the QI offs), and B2) from the QI of fr). (See Figure 2).1

Lemma 5.2. In (15), if fr)(i,j) and f 8)(i, j) satisfy QI for j- i < 8, then ft)(i, j) satifies

QI for j - i < 8 + 1.

Proof. Analogous to the proof of Lemma 5.1; here the problem sizes are strictly reduced

in the inductive step. I

Lemma 5.3. In (12), if w satisfies QI and Tl, then f 1)(= c), ···, fq), ···,ft) all satisfy QI.

Proof. It follows from the preceding two Lemmas by induction on 8 = j - i and induction

on q. Note that the facts that w satisfies QI, TI, and ft) satisfies QI together imply that c

satisfies QI. I

Proof of Theorem !J. For the f's on the lefthand side of (15) and (16), we use K1(i, j) as

before to denote the largest k on the righthand side which allows the minimum value of

f(i, j) to be achieved. By the same argument which led to Lemma 2. 2 and 4. 2, we have

for i < j,
and f = f q), 1 < q < t.

(17)

Let qi, <J2, ... , Qh be an addition chain[6] for t; that is, q1 = 1, Qh, = t, and for each i > 11

Qi = 'lJ + qk for some j < i, k < i. It is well known that any t > 1 has an addition

chain of length h < 2 log t. The following procedure then employs Equ(12a), (15) and (16)

to compute c(i, j).

12 Efficient Dynamic Programming Using Quadrangle Inequalities

,<s>
I

A1) A2)

z

,<s)

81) 82)

Figure 2. Proof of Lemma 5.1

Efficient Dynamic Programming Using Quadrangle Inequalities

begin

for 1<i<n,1 < m < h do fqm)(i, i) .-- O;

for c .-- 1 to n do

end

form.-- 1 to h do

for j-i = c do

compute fqm)(i,j)

13

Because of Equ(l 7), the innermost loop takes only O(n) steps. Therefore the algorithm

uses total time O(hn2), which is O{(log t)n2). I

6. CONCLUDING REMARKS .

In this paper we have considered a general type of conditions which ensures monotonicity

of division points in certain dynamic programming processes. This monotonicity property

makes it possible to achieve speed-up by a factor of n or more over the straightforward

implementations. We would like to point out some situations where the present results do

not apply, and which deserve further study.

The monotonicity property for the division points does not hold for the matrix mul­

tiplication chain problem[!], as shown by the following example. Consider the matrices

M1, M2, M3 , M4 with dimensions 2 X 3, 3 X 2, 2 X 10, and 10 X 1, respectively. As can be

easily verified, the proper order to compute M1M2M3 is to parenthesize it as (M1M2)M3, while

the optimal computation of M1M2M3M4 corresponds to M1(M2(M3M4)).

Similarly, optimal t-way search trees in general (when the q's are not zero) do not

satisfy the monotonicity property either.The addition of a new leftmost key may force the

division points (at the root) to shift rightward! Such an example for ternary trees is shown

in Figure 3. As the increment function w defined by (8) fails to satisfy TI (for example,

w{l, 2) + w{2, 3) > w{l, 3)), the function c defined by {12) does not satisfy the QI (Figure

3a). When Key1 is added, the division points may change from {3, 4} to { 4, 5} if the weights

are properly chosen.(figure 3b).

14 Efficient Dynamic Programming Using Quadrangle Inequalities

p2 p3
better than

P2 P3

• • R + R
q1 q2 q3 q 1 q2 q2 Q3

Figure 3a. c(l, 3) + c(2, 2) < c(l, 2) + c(2, 3).

P4 p5 P3 P4

• • worse than

JP.- r
I

q4 q5

I
I I
lq2 I q4 Q5

C(2,3) C(2,2)

P4 PS P4

better than

I P3 -,q lr2_,_

I
I . I 4 I

q3

I
I I I I
I q1 Q2 ~1 -~

q4 q5

C(1,3) C(1,2)

Figure 3b. For the w defined by (8), Equ(l 7) fails.

Efficient Dynamic Programming Using Quadrangle Inequalities

2

6

3

4

Figure 4. A function w(i, j) for 1 < i < j < 4 (with w(i, i) = 0),

which satisfies TI but not QI.

Finally, we note a few properties of the quadrangle inequalities.

15

1. QI and TI are incomparable: the w given by (8) is an example of a function which satisfies

QI but not TI;. the example in Figure 4 is a function that satisfies TI but not QI.

2. It is easy to show that if g:R -+ R is a concave, nondecreasing function, then go w satisfies

QI if w does. Therefore the conclusions of Examples 1 and 2 still hold if we substitute

w(i, j)2 for w(i, j). Similarly, a convex, nondecreasing function g preserves the inverse QI;

thus in Exmaple 3 we may use, say, log d(i, j) as the distance between Vi and v3.

3. In Lemmas 2.2 and 4.2, a stronger monotone property than that stated in (6) is ac­

tually implied by the QI. If we define R(i, j) to be the set of optimal division points, that

is, R(i, j) = {k I ck(i, j) = c(i, j)} , then the entire set R(i, j) shifts right as either i or

j increases. For example, one might have R(i,j) = {1, 3, 4, 7},R(i,j + 1) = {4, 7, 9} and

R(i + l,j + 1) = {9, 11}. (cf. [7, Section 6.2.2 ex.27]).

We recently learned from Don Knuth that Zhu Yongjin and Wang Jianfang [9], in

studying algorithms for constructing alphabetic trees with restricted depth, used an approach

similar to ours.

16 Efficient Dynamic Programming Using Quadrangle Inequalities

REFERENCFS

[1] A. Aho, J. Hopcroft and J. Ullman, The design and analysis of computer algorithms,

Addison-Wesley, Reading Mass., 1974.

[2] K. Q. Brown, Dynamic programming in computer science, Computer Science Department

Report CMU-CS-79-106, Carnegie-Mellon University, February 1979.

[3] D. P. Dobkin and L. Snyder, On a general method for maximizing and minimizing

among certain geometric problems, Proc. IEEE 20th Annual Symposium on Foundations

of Computer Science, Puerto Rico, 1979, 9-17.

[4] R. W. Floyd, Algorithm 97: shortest path, Comm. ACM5 {1962), 345.

[5] D. E. Knuth, Optimum binary search trees,Acta Informatica 1 (1971), 14-25.

[6] D. E. Knuth, The Art of Computer Programming, Vol 2 :Seminumerical Algorithms,

Addison-Wesley, Reading Mass., 1975.

[7] D. E. Knuth, The Art of Computer Programming, Vol 9 :Searching and Sorting,

Addison-Wesley, Reading Mass., 1973.

[8] D. H. Younger, Recognition of context-free languages in time n3, Information and

Control IO (1967), 189-208.

[9] Y. Zhu and J. Wang, On alphabetic-extended binary trees with restricted path length,Scientia

Sinica 22 (1979), 1362-1371.

,,
0
'£l
"' 3
2.
::::J

<C

c
"' 3·

<C

0 c
~ ...
"' ::::J

<C
Ci)

-< .,
0

