
Formalizing the Analysis
of Algorithms

By Lyle Harold Ramshaw

Formalizing the Analysis of Algorithms

by Lyle Harold Ramshaw

CSL-79-5 June 1979

© Copyright 1979 by Lyle Harold Ramshaw.

Abstract: See page iii.

This report reproduces a dissertation submitted to the Department of Computer Science and

the Committee on Graduate Studies of Stanford University in partial fulfillment of the

requirements for the degree of Doctor of Philosophy. It is also available as Stanford

University Computer Science Department technical report STAN-CS-79-741.

This research and printing was supported in part by National Science Foundation grant MCS-

77-23738, by Office of Naval Research contract N00014-76-C-0330, by IBM Corporation, and

by Xerox Corporation. Reproduction in whole or in part is permitted for any purpose of the

United States government.

CR Categories: 5.21, 5.24, 5.25.

Key words and phrases: analysis of algorithms, formal systems, measure theory,

probabilistic semantics, program verification, recurrence relations.

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road I Palo Alto I California 94304

ii

Abstract

Consider the average case analyses of particular deterministic algorithms. Typical arguments in

this area can be divided into two phases. First, by using knowledge about what it means to execute

a program, an analyst characterizes the probability distribution of the performance parameter of inter·

est by means of some mathematical construct, often a recurrence relation. In the second phase, the

solution of this recurrence is studied by purely mathematical techniques. Our goal is to build a formal

system in which the first phases of these arguments can be reduced to symbol manipulation.

Formal systems currently exist in which one can reason about the correctness of programs by

manipulating predicates that describe the state of the executing process. The construction and use of

such systems belongs to the field of program verification. We want to extend the ideas of program

verification, in particular, the partial correctness techniques of Floyd and· Hoare, to allow assertions

that describe the probabilisitic state of the executing process to be written and manipulated. Ben

Wegbreit proposed a system that extended Floyd-Hoare techniques to handle performance analyses,

and we shall take Wegbreit's system as our starting point. Our efforts at formal system construction

will also lead us to a framework for program semantics in which programs are interpreted as linear

functions between vector spaces of measures. This framework was recently developed by Dexter

Kozen, and we shall draw upon his results as well.

We shall call our formal system the .frequency system. The atomic assertions in this system specify

the frequencies with which Floyd-Hoare predicates hold. These atomic assertions are combined with

logical and arithmetic connectives to build assertions, and the rules of the frequency system describe

how these assertions change as the result of executing program statements. The rules of the frequency

system are sound, but not complete.

We then discuss the use of the frequency system in several average case analyses. In our ex­

amples, symbol manipulation in the frequency system leads directly to the recurrence relation that

describes the distribution of the chosen performance parameter. The last of these examples is the

algorithm that performs a straight insertion sort.

iii

Preface

There is one nontechnical problem in the area of formalizing the analysis of algorithms that

deserves some discussion: a problem of nomenclature. Instead of dealing with probability, it turns

out to be better to deal with a quantity that is the same as probability in every way except that it

does not necessarily sum to unity. I chose to call this quantity frequency, and to write it "Fr" by

analogy with the "Pr" notation for probability. But now the problem: What word is to "frequency"

as the word "probabilistic" is to "probability"? For example, if I am thinking of the state of a process

as characterized by the probabilities of various events, I am considering a probabilistic state; I can

describe that state by probabilistic assertions. If frequencies instead of probabilities are underneath it

all, what should the corresponding terms be?

By quizzing my friends and associates, I came up with four possible solutions to this problem.

(i) Invent the new word "frequentistic".

(ii) Invent the new word "frequencistic".

(iii) Use the word "frequency" as if it were an adjective.

(iv) Use a hyphenated term such as "frequency-based".

The amount of controversy that surrounded my survey indicates that none of these solutions is

completely satisfactory. Of the new words, most people seemed to think that "frequentistic"

was more euphonious, but that "frequencistic" was a more logical choice. Option (iii) has the

difficulty that using the terms frequency state and frequency assertion seems to demand that we also

adopt the terms probability state and probability assertion instead of those given above, in order to

preserve the frequency-probability parallelism. It seems a shame to abandon the perfectly good word

"probabilistic" just because it has no exact frequency parallel. In Option (iv), the frequency parallel

of the word "probabilistic" is the word "frequency-based"; this hyphenated term is not as exact a

parallel as either of the new words, but it has the distinct advantage of being English.

At least one person voted for each of the options, although people generally agreed that they

were picking the best of a bad lot I chose to adopt Option (i). Those readers who find themselves

unable to adjust to "frequentistic" might be encouraged by the fact that their taste on this issue agrees

with Don Knuth's; Don argued in favor of a combination of Options (iii) and (iv). If the term

"frequentistic" catches on, at least this problem will be solved for future authors in the field. If not,

they will have to reopen the nomenclatural negotiations.

My use of the term "vanilla" with a technical meaning also raised some storms of protest. I agree

that "vanilla" is both nonspecific and undignified, but I heard no better suggestions. In addition, I

plead that the concept to which it refers probably demands as much improvement as the term. Basic

terminology should receive careful consideration, but one shouldn't waste time searching for the per­

fect name for a peripheral idea. In a class that I took, Mike Spivak used the single adjective "yellow"

for each new concept that he introduced; only after that concept had been developed somewhat

would he replace "yellow" with a more suggestive term.

iv

I would like to thank my adviser, Don Knuth, for countless exhortations and consistently excel­

lent guidance. He provides a formidable personal and professional example to his students. It has

been a joy to work with someone as dedicated as Don; I have the feeling that he would lose sleep ifhe

thought that he had done something that lowered the position of Computer Science in the academic

community. Leo Guibas and Andy Yao, my other readers, earned my gratitude for their technical

camaraderie, and especially for their expeditious perusal of my tardy draft

This thesis was produced with the 'JEX system for technical text [21]. I thank Don Knuth,

who courageously built this system; Leo Guibas, who gallantly transported it to the Xerox Palo Alto

Research Center (PARC); PARC itself, where most of the production took place; and Xerox ASD,

whose magnificent hardware printed the originals of these pages.

Thanks also go to Dana Scott, for introducing me to Dexter Kozen's work; and to Bob

Sedgewick, for coming up with the terms "in-branch" and "out-branch", and for suggesting that I

include the nomenclatural discussion above. Finally, I express my miscellaneous gratitude to Al Aho,

Sam Bent, Jim Boyce, Mark Brown, Ole-Johan Dahl, John Gilbert, Daniel Greene, David Gries,

David Jefferson, Bill Laaser, Brian McCune, Greg Nelson, Terry Roberts, and Bill van Melle.

v

Table of Contents

Chapter 1. Introduction . 1

The Analysis of Algorithms . 1 ·

Formalization . 3

Program Verification . ~ 4

Scope of the Proposed System 6

Value of the Proposed System . 8

Computers and Formal Systems ... 10

Prior Work on Formalizing Algorithmic Analysis 10

Looking Ahead ... 12

Chapter 2. Probabilistic Assertions for Loop-Free Programs 14

The Search for an Assertion Language 14

Chromatic Plumbing ... 15

Probabilistic Chromatic Plumbing . 16

Probabilistic Assertions . 17

The Leapfrog Program 18

Frequencies instead of Probabilities 20

The Arithmetic of Frequentistic States 22

Kozen's Semantics for Probabilistic Programs 24

The Arithmetic Connectives .. 27

Chapter 3. Living with Loops .. 29

Loops in Plumbing Networks .. 29

Probabilistic Assertions and Loops ... 29

Summary Assertions ... 34

Fictitious Mass .. 37

Time Bombs 39

The Characteristic Sets of Assertions 41

Chapter 4. The Frequency System . 43

The Meaning of Theorems 43

Certainty versus Truth with Probability One 45

Weak versus Strong Systems 47

The Extremal Assertions . 48

Programs in the Frequency System . 49

The Assertions of the Frequency System50

Derivations in the Assertion Calculus . 52

Working with Vanilla Assertions .. 54

Checking Feasibility . 55

vi

----·---------------

The Rules of the Frequency System 57

The Rules of Consequence .. 57

The Axiom Schema of the Empty Statement 58

The Assignment Axiom Schema 58

The Axiom Schema of Random Choice . 62

The Composition Rule . 64

The Conditional Rule . 65

The Loop Rules 67

Chapter 5. Using the Frequency System 75

Getting Answers Out 75

Continuous Models . 79

FindMax with Arbitrary Distributions . 87

Analyzing a Trivial Algorithm 89

Chapter 6. Beyond the Frequency System 99

Restricted and Arbitrary Goto's 99

InsertionSort . 100

Comparative Systems 107

Procedures . 107

What Next? 111

References . 113

vii

viii

Chapter 1. Introduction

The Analysis of Algorithms.

The analysis of algorithms, or "algorithmic analysis" for short, is mathematical reasoning

about the properties of algorithms that solve a particular abstract problem [19]. Algorithmic

analysis strives for precise theoretical understandings; hence, there is usually no hope of significant

progress when the problem under consideration is as large and as arbitrary as is common in

the real world. Instead, the algorithmic analyst concentrates on the cleaner problems that can

be found in more abstract, well-behaved disciplines. One catalogue of these areas appears as

the table of contents of the book The Design and Analysis of Computer Algorithms by Aho,

Hopcroft, and Ullman [l]. When expertly carried out, this restriction to more tractable domains

does not vitiate the relevance of the results. The large and complex problems that the real world

presents are usually best solved by adroit combinations of the techniques that arise in simpler

contexts. In adition, many large and complex programs spend most of their time executing in

the small regions known as inner loops; these inner loops are more likely to be analytically tractable.

Suppose that we have a suitably clean problem in mind, such as sorting an array of numbers,

computing the transitive closure of a directed graph, or searching for a pattern in a text string.

There are two different types of analyses that we can attempt to perform. First, we can take a

particular algorithm that solves the problem, and analyze some facet of the performance of that

algorithm. We might determine the amount of some computational resource that it demands

in the worst case. Or, choosing some probability distribution for the space of inputs, we could

attempt the often more difficult task of computing that algorithm's behavior on the average. In

analyses of this first type, then, we apply our mathematics to a particular algorithm that solves

the abstract problem.

In the second type of analysis, on the other hand, we consider instead a class of algorithms

that solve the problem, and attempt to derive information about this class as a whole. The

class under consideration usually consists of all algorithms that have a certain form, such as all

decision trees, or all programs for a certain specified variety of abstract automaton. Given such

a class, we can attempt to discover the properties of the optimal algorithm in the class, the one

that is the most efficient in some measure. In analyses of this second kind, we are applying

mathematics to the questions generated by the combination of the abstract problem and the

particular class of algorithms that we have chosen.

Both of these types of analyses are important. We are going to focus our attention on

the first type. An elementary but paradigmatic example of such an analysis is provided by

the algorithm that finds the largest element in an array of N numbers by sequential search.

This appears as the first example of an algorithmic analysis in Knuth's The Art of Computer

Programming [Section 1.2.10 of 18}; we shall call this program Find.Max.

To set the stage for our discussion, it will be helpful to look at some of the main features

of the analysis of FindMax, emphasizing how this analysis is typical of many others. Let there

be N numbers stored in the array elements X[l]. X[2], ... , X[N]. The program FindMax sets

1

2 FORMALIZING IBE ANALYSIS OF ALGORITHMS

the variable M to the maximum of the X[i]'s by a left-to-right sequential scan:

M +- X(l);

for J from 2 to N do

if X[J] > M then M +- X(J] fi od.

We have now fixed the problem and algorithm to be studied; our next task is to choose a

performance parameter of interest. The storage requirements of the program above are too simple

to be interesting. Furthermore, the only subtle factor in its running time is the number of times

the if-test comes out each way. Control will follow the TRUE branch of the if-test if and only

if the element X(J] for 2 < J < N breaks the record for the largest element seen so far.

Such a record-breaking element is called a left-to-right maximum; for our purposes, it will be

convenient to make the convention that the leftmost element is not a left-to-right maximum. We

shall focus our analysis on counting the number A of left-to-right maxima.

Having chosen the performance parameter of interest, we have to decide what characteristic

of that parameter's behavior to study. The usual choices are to analyze its value either in the

worst case or in the average case. For the parameter A, the worst case analysis is no challenge.

First, since the if-test is only performed once per execution of the for-loop body, the value of

A can never exceed N -1. Secondly, if the input array X is in increasing order, then every

execution of the if-test will in fact come out TRUE; hence, the worst case value of A is exactly N -1.
This worst case argument was too easy to reveal much structure, other than a tendency for

exact worst case arguments to be composed of separate upper and lower bound proofs. But in

general, analyses of worst case behavior often have a combinatorial flavor. The analyst's effort

is directed at exploring a certain small and highly constrained collection of possible inputs, to

discover which of them actually displays the worst performance.

For average case analyses, on the other hand, rather different kinds of arguments come

up. Before we can talk about an average case, we must choose some probability distribution for

the inputs to the algorithm; this defines what we mean by a random input. For sorting and

searching problems, a convenient and not too unrealistic choice is the model in which the input

is equally likely to be each of the N! permutations of the set {1, 2, ... , N}; such an input is

called a random permutation. Other input distributions are sometimes used in special situations,

such as studying an algorithm's behavior on inputs with many repeated elements, but we shall

be content with the random permutation model here.

The probabilistic distribution of the parameter A is given by the two-parameter family of

numbers Wa,n}. where Pa,n is the probability that A will take on the value a given that the

size N of the input permutation takes on the value n. We can get some information about the·

numbers Pa,n by the following argument. The final element X(N] of the input array will be a

left-to-right maximum if and only if it is the maximum of all the elements, that is, if and only if

X[N] = N. This event happens with probability 1/n. Whether or not this happens, the elements

X[l], X[2], ... , X[N - 1] form a random permutation of the set {1, 2, ... , N} - {X[N]}.
Furthermore, such a random permutation has just as many left-to-right maxima as a random

INTRODUCTION 3

permutation of the set {l, 2, ... , N - l}. This inductive insight determines the probabilities

Pa,n as the solutions of the recurrence relation

1 n-1
Pa,n = -Pa-1,n-1 + --Pa,n-1 n n

under appropriate initial conditions.

So far, we have expressed the probabilistic structure of A by means of a recurrence relation;

we are left with the purely mathematical problem of studying the recurrence. This particular

recurrence can be attacked with generating functions, which allow us to compute that the mean

and variance of A are

mean(A) = Hn -1

var(A) = Hn -H~).

The details of this argument are given in Section 1.2.10 of Knuth (18].

The basic structure of the preceding argument is typical of many average case analyses of

particular algorithms. Given an algorithm, a performance parameter of that algorithm, and a

model of randomness for the input domain, we wanted to determine as precisely as possible the

probabilistic structure of that performance parameter. By examining the program text and invoking

our understanding of the underlying mathematical domain, we first interpreted the performance

parameter A in terms of the underlying domain. This insight allowed us ·to find a recurrence

relation that determined the distribution of A. Finally, we used standard mathematical methods to

study the solution of that recurrence. In general, we shall call the first phase of such an analysis

the dynamic phase; during the dynamic phase, we use our knowledge about such programming

concepts as conditionals, loops, and recursion and our insight into the mathematical structure

of the data domain to determine the distribution of the performance parameter under study in

terms of a recurrence relation, integral equation, or other purely mathematical construct. In the

second phase, which we shall call the static phase, we use whatever mathematical techniques are

appropriate to investigate the solution of the recurrence that came out of the dynamic phase,

either exactly or asymptotically.

Formalization.

What does it mean to formalize a mathematical proof? In one view, a mathematical proof is

simply a convincing argument. Unfortunately, this simple viewpoint leads to various paradoxes.

Partially in an attempt to eliminate these paradoxes, the field of mathematical logic has attempted

to make the assumptions of arguments more explicit, and to restrict the reasoning steps permitted

in arguments to a few elementary forms. These efforts culminated in the late nineteenth and

early twentieth centuries with the development of the modern framework for mathematical logic

(29]. In this framework, the statements that appear in mathematical proofs are encoded as strings

of symbols over an alphabet, and the reasoning steps in proofs are modeled as transformations

of these symbol strings. The small number of legitimate transformations can be studied very

carefully, more carefully than could each of the many instances where those transformations are

4 FORMALIZING nrn ANALYSIS OF ALGORITHMS

embedded in arguments. As a result, we can have greater confidence in those arguments that

have been successfully encoded in terms of such a string manipulation. The rules that describe

the legal strings of symbols and the rules for correctly manipulating those symbols together make

up a Jonna/ system. The field of mathematical logic builds formal systems in which proofs can

be encoded, and also studies these formal systems as mathematical objects in their own right.

Since set theory serves as the underlying basis for most of mathematics, formal systems

for set theory have received particular attention. Currently, the von Neumann-GOdel-Bemays

formalization of set theory is perhaps the most popular [29). In principle, the proofs of classical

mathematics could all be reduced to symbolic manipulations in this system, perhaps extended by

suitable extra axioms, such as the Axiom of Choice. Furthermore, the Incompleteness Theorem

of Godel shows that it is impossible to do away with the occasional need for extra axioms. In

particular, the Incompleteness Theorem shows that no formal system can be built whose theorems

are precisely the true first-order statements about the integers under addition and multiplication.

Thus, the formalization of mathematical proofs is fairly well understood in principle. On

the other hand, it is very rare in practice for anyone to actually attempt to carry out the
..

formalization of non-trivial portions of classical mathematics. The details are complex and tedious

enough to make such a formalization quite a formidable undertaking. With machine assistance

now available, research is currently proceeding on this question. For example, a group at the

Technological University of Eindhoven has constructed a formal system called AlITOMATH into

which the classical book Grundlagen der Analysis by Landau has been completely translated [6, 32].

From one point of view, the analysis of algorithms is simply a part of classical mathematics.

That is, it is straightforward in principle to construct a set theoretic model of an ALGOL machine,

and hence to develop a rigorous mathematical definition of what it means to execute a program.

Therefore, still in principle, the arguments that arise in the analysis of algorithms are really just

disguised versions· of complex symbol manipulations in a formal system for set theory. However,

the translation of algorithmic analyses into set theory is sufficiently abstruse as to be of little

practical value to the analyst. The sequence of actions dictated by a program often affects the

state of the executing process in a rather subtle way. Although these effects can be encoded in

set theory, there is something to be said for building a special purpose formal system instead, a

system whose design incorporates the correspondence between program steps and process state.

In fact, there is already in existence a large body of research concerning formal systems for

reasoning about the properties of programs: the fertile area called program verification. It is high

time that we give this area some consideration in our deliberations.

Program Verification.

The portion of program verification research that is most relevant to our current quest is

the construction of formal systems that explicate the relationship between executable code and

the static properties of process state. The word process here refers to an abstract entity that

executes a program on particular input data. The state of a process is merely a vector containing

the current values of the program variables; in particular, we will make the convention that the

INTRODUCTION 5

value of the program counter and the contents of the stack (if any) are not accessible parts of the

process state. A typical program verification system is built on two formal languages. First, there

is the executable code of the subject program, written in a programming language of some sort.

Augmenting this, there is an assertion language, often closely resembling the first-order predicate

calculus, in which certain properties of the state of a process can be described. The verification

system then chooses some method for associating assertions about the process state with points

in the program's flow of control. The most common choice is the method of inductive assertions,

where the assertions are associated with textual locations in the program with the understanding

that they are to hold whenever control passes that location. However programs and assertions are

associated, we shall call the resulting structure of program and assertions together an augmented

program; augmented programs are the well-formed formulas of a program verification system.

Besides these two formal languages, the other important component of a program verification

system is a collection of syntactic mechanisms that allow one to derive certain well-formed

formulas, that is, certain augmented programs, as theorems. If the formal system is sound, any

augmented program that can be derived will in fact be correct. In systems based on the method

of inductive assertions, correctness simply means that, for every possible path of control through

the program from one assertion to another, the truth of the assertion at the beginning of the

path implies the truth of the assertion at the end of the path. In systems that don't follow the

inductive assertion paradigm, there is some other natural notion of correctness for an augmented

program. When an augmented program has been shown to be a theorem of a sound system,

this verifies a certain behavioral property of the program. Sometimes that property corresponds

to a useful real-life characteristic: for example, the programs that solve certain simple tasks can

be characterized by two assertions, the first of which may be assumed to hold upon input to

the program, and the second of which is hoped to describe the corresponding output state. If

a fortnal system can derive a theorem that contains a given program with these two assertions

at its entry and exit, and possibly with other assertions in the middle, then that program has

been shown to have the correct input-output behavior by formal manipulation.

The mechanisms of program verification systems vary over a fairly wide range, but many

of them are based more or less closely on the ideas of Floyd and Hoare. Indeed, the F1oyd­

Hoare collection of techniques is so standard that they are normative for the field of program

verification: each new idea is first compared with this standard, which we shall refer to as the

Floyd-Hoare system for the verification of partial correctness. Floyd developed the ideas in the

context of flowcharts [8], while Hoare concentrated instead on programs in a structured ALGOL­

like language [13]. Since the latter techniques have proved more popular, we shall usually follow

Hoare's lead rather than Floyd's.

We shall write the augmented programs of Hoare's system in the form {P}S{Q}. Here

P, called the precondition, and Q, called the postassertion, are assertions about the process state,

and S is an ALGOL-like program with a single entry and a single exit. The formula {P}S{Q}
is the formal system's encoding of the following concept: if a process begins to execute S in a

state that satisfies P, and if this execution terminates normally, then the state of the process on

6 FORMALIZING TIIE ANALYSIS OF ALGORITHMS

exit from S will satisfy Q. The formula {P}S{Q} does not imply that S will halt, and this is

what is meant by the world "partial" in the phrase "partial correctness". A program · S is called

totally correct with respect to the assertions P and Q if it is partially correct with respect to

them-that is, the formula {P}S{Q} holds-and if it is also guaranteed to tenninate normally

whenever the input satisfies P. When a Floyd-Hoare system is supplemented by formal methods

for verifying termination, it becomes a system for the verification of total correctness.

The symbol manipulations of a Floyd-Hoare system are designed to distinguish the correct

augmented programs-formulas of the form {P}S{Q}-from the incorrect ones, or at least to

allow most of the correct ones to be verified. Basically, these manipulations involve specifying

how assertions move over program text The legitimate manipulations in the system are described

by axiom schemata and roles, and there will be at least one of these for each syntactic construct

of the programming language. A formula in the system that has been justified from axioms by

means of the rules is written 1-{P}S{Q} and called a theorem, in accordance with standard

logical practice. The Rule of Composition is a simple example of a rule:

1-{P}S{Q}, 1-{Q}T{R}

1-{P}S; T{R}

The formulas above the horizontal line are called premises, and the formula below the line is

the conclusion. If formulas matching the . premises have been derived in the system, this rule

allows the derivation of the conclusion. Such a rule provides one form of definition of the

associated programming language construct; in fact, several programming languages have been

formally specified in terms of the associated proof rules [14, 23].

The techniques of program verification have advanced to the point where many interesting

properties of non-trivial programs can be demonstrated within such systems [27]. Indeed, a large

part of the motivation for our effort to formalize algorithmic analysis comes from the success

of program verification.

Scope of the Proposed System.

Program verification addresses the question of building formal systems in which the correctness

properties of programs can be studied directly, without a clumsy translation back into set theory.

The basic quest of this thesis is the construction of a formal system that addresses in a similar

direct way some of the issues in the performance analysis of particular algorithms. Our immediate

goal is to define more exactly what parts of algorithmic analysis we propose to formalize.

Recall that the analyses of particular algorithms basically fall into two classes: studies of

the worst case, and studies of the average case. Considering the worst case analyses first, let

us take the worst case analysis of FindMax as a motivating example. The upper bound portion

of this analysis can be formalized in Floyd-Hoare correctness systems by the use of a counter

variable; this approach wa5 introduced by Knuth [exercise 1.2.1-13 in 18}. We can add to the

program a new ·variable C, set initially· to zero, and incremented exactly once each time that a

----~---- ----~~-

INTRODUCTION

new left-to-right maximum is found. The resulting program is

C +- O; M +- X[l];

for J from 2 to N do

if X[J] > M then M +- X[J]; C +- C + 1 fi od.

7

In a Floyd-Hoare system, we can then verify that the assertion C < J - 2 will hold at the

beginning of the body of the for-loop. In particular, this demonstrates that the value of C will

never exceed N - 1 on exit from the program, and hence gives us an upper bound on the

worst case number of left-to-right maxima.

To show that N - 1 is actually a lower bound on the worst case as well, we must find an

input that causes FindMax to run this slowly. As we mentioned earlier, an array in increasing

order actually displays such worst case behavior. We could use Floyd-Hoare techniques to

advantage for part of the lower bound argument as well. If we add to the input assumptions

the assertion that the input array is in increasing order, then Floyd-Hoare techniques will allow

us to show that the value of C upon exit from the program is exactly N - 1. In general,

that is, Floyd-Hoare techniques address the question of tracing the program's behavior on the

particular input that displays worst case performance. But that is not all of the lower bound

proof; the other half is that we must demonstrate the existence of this input Although it is

clear that there exist arrays whose elements are in increasing order, we must check in general

that the assertions that we are now assuming about the input are actually satisfiable. This part

of the argument seems to belong to combinatorics more than anything else. At least, formal

reasoning techniques that relate assertions and programs aren't really relevant, since the program

no longer enters the picture. Summarizing, it seems that the portions of worst case arguments

that deal with the program directly can be handled by standard program verification techniques.

Therefore, we tum the attention of our quest to average case analyses.

Recall that a typical average case analysis can be divided into two phases, which we are calling

dynamic and static. In the dynamic phase, the analyst uses information about what programs

mean and how they behave to derive some form of recurrence that defines the probabilistic

distribution of the performance parameter of interest. The static phase is then devoted to the

solution of that recurrence. The static phase arguments are really independent of the algorithm;

the recurrence is studied by purely mathematical means. Thus, formalizing the static phases

of analyses will probably demand the same kinds of ideas and methods that are needed in

formalizing the bulk of classical mathematics. Special purpose formal systems that know about

programs would not be helpful.

But the dynamic phase of analyses is quite a different story, and it is here that our quest

will be concentrated. The dynamic phase attempts to deduce a recurrence relation by applying

knowledge about both mathematics and programming. For example, consider the dynamic phase

of the average case analysis of FindMax. The final result of that effort is a recurrence that

relates the number of left-to-right maxima in an n-element permutation to the number in an

(n-1)-element permutation. In some sense, this recurrence could be thought of as unwrapping

8 FORMALIZING THE ANALYSIS OF ALGORITHMS

the probabilistic effects of one execution of the body of the for-loop in the program, since

that loop goes from a (J - !)-element permutations to an J-element one. There is thus some

correspondence between the dynamic structure of the executing program and the static structure

of the· recurrence; this is one indication that an appropriate formal system might allow us to

deduce that the program and recurrence really do correspond by means of relatively simple

symbol manipulations. And the traditional derivation could use some formalization, . since it

throws around potent phrases such as "relative order of the remaining elements" fairly freely.

These phrases are intuitively convincing, but certainly not completely formal.

This then we shall take as our quest: by suitably extending the concepts of Floyd-Hoare

program verification, to build a formal system in which the dynamic phases of the average case

analyses of at least some interesting algorithms can be encoded.

Value of the Proposed System.

It is worthwhile pausing for a moment to attempt to assess the benefits that such a formal

system might have. One obvious candidate for such a benefit is the analog of the claimed benefits

of program verification. The most frequently touted reward of a formal system for reasoning

about the correctness of programs is the ability to produce software that is certifiably correct in

some sense. That is, an argument has been presented in a certain very restricted way that justifies

the correspondence between the executable code and certain assertion language specifications.

Furthermore, if these specifications correspond to the real-life demands on the program, the

program is then substantially more likely to perform its real-life job adequately. Since correct

programs have tremendous real-life advantages over incorrect ones, any ability of the field of

program verification to contribute to increased correctness is a powerful selling point

Note, however, that the corresponding claim does not have quite the same appeal in the

case of algorithmic analysis. Not that many algorithms have been analyzed even informally. And,

although incorrect analyses have been published, the proliferation of incorrect analyses has not

been a substantial problem to date. A program's efficiency is important in real-life situations, but,

over a certain range, not nearly as critical as its correctness. Therefore, the fact that algorithmic

analyses encoded in a formal system would be less likely to contain errors is only a weak

inducement to build such a system.

Comparatively speaking, then, the fact that a formal system serves as an extra assurance of

argument validity is a less compelling reason to formalize performance analyses than correctness

arguments. The same factors that underlie this observation, however, also tend to insulate our

current effort from some of the attacks that have been levelled at program verification [4}.

People with the goal of large, verifiably correct software systems have been dismayed by the

tendency of program verification efforts over the years to keep working on the same small

and clean types of programs. Although the subtlety of the arguments that can be handled has

increased, there is some question concerning the amount of progress in the direction of being

able to handle the more elementary but very large, complex, and arbitrary programs that people

are actually called upon to write. Some people view the progress of program verification in

INTRODUCTION 9

this direction of practicable applicability as disappointingly slow (Dijkstra is an exception [7]).

·Although certain restricted classes of arguments such as type checking are used thmughout long

programs, the formal systems seem to be better in general at short, subtle arguments than at long,

straightforward, but complicated ones. The analysis of algorithms, on the other hand, restricted

itself at the outset to dealing only with the cleaner problems and programs that arise in simple

and well-behaved disciplines. Therefore, even if the critics of program verification research are

right, building formal systems for algorithmic analysis might still make sense.

But if verifying the accuracy of analyses is not a compelling reason, why should we try

to fonnalize the analysis of algorithms? One major benefit of such a formalization is a better

understanding of the structure of the analyses as arguments. For example, consider the notion

of random subfiles. Some sorting programs determine chunks of the input array on which to

call themselves recursively; if these chunks of the input constitute random arrays at the time

of the recursive call, then the sorting program is said to have random sub.files. Many sorting

algorithms with random subfiles have been analyzed on the averge, but no substantial progress

has yet been made on the average case analysis of any sorting program with non-random subfiles.

Thus, the notion of random subfiles has important intuitive content to the algorithmic analyst. A

formal system for algorithmic analysis could have impact on this notion in several ways. First, it

might be possible to demonstrate by a metatheorem about the system that any sorting program

with random subfiles will be analyzable by a certain technique, that is, to characterize what

classes of sorts with random subfiles succumb to what analytic techniques. Secondly, the question

of whether or not a sort has random subfiles essentially boils down to a question about the

symbols of the program, the if-tests, the assignments, and the recursive calls. In the context of

a formal system for algorithmic analysis, it might be possible to state interesting formal criteria

that determine when a sorting program will or will not have random subfiles. A hope for this

general kind of insight is perhaps the best motivating factor for our quest. Unfortunately, the

system that we shall construct cannot handle recursive procedures, so formal insights into the

notion of random subfiles must await a more powerful system.

A somewhat parallel situation currently pertains in mathematics itself. The field of mathe­

matical logic contributed much to mathematics even before any efforts were begun to use formal

systems to encode classical mathematics on a large scale. The primary contributions were clearer

insights into the nature of mathematical proof, and a better sense for the basic assumptions

upon which various fields depend. Godel's Incompleteness Theorem and Cohen's proof of the

independence of the Axiom of Choice are outstanding examples of logic's contributions. There

is a good chance that similar insights into the structure of the arguments in the analysis of

algorithms can also be achieved by studying appropriate formal systems. Recently, methods that

grew out of mathematical logic and model theory, such as Non-Standard Analysis, are actually

contributing to the development of classical mathematics. Perhaps it is too much to hope for, but

there might be some computer science analog to Non-Standard Analysis somewhere out there

waiting to be turned up.

10 FORMALIZING nrn ANALYSIS OF AWORITHMS

Computers and Formal Systems.

Computer science has a rather special relationship to formal systems that we haven't yet

given its due consideration: computer scientists work with and know about computers, which are

symbol manipulators of historically unparalleled speed and accuracy. Any attempt to encode large

or complex things in a formal system often leads to a situation where the details of performing

the symbol manipulations, while elementary in principle, are too tedious to be carried out by

people in practice. This is one situation where computers can be employed with good effect.

Those subproblems in the formal system that lie in decidable subdomains can be programmed

up on a computer, and the machine can spare us those tedious details. In particular, this is

probably a major reason why efforts to formalize large bodies of classical mathematics awaited

the advent of modem computers. We must keep in mind, of course, that computers cannot do

all the work, since, for example, there is no algorithm that determines all and only the correct

statements of elementary number theory.

This special relationship between computer science and formal systems is one of the factors

contributing to the growth of program verification. Not only can we design formal systems

for correctness· verification, we can also put them onto a machine. In an unfortunate clash of

nomenclature, the set of programs that implement the formal system on the machine are also

called a system, specifically, a program verification system. We shall call these systems programming

systems to avoid confusing them with formal systems. Current programming systems for program

verification use symbol manipulation algorithms in combination with input from the user in an

attempt to facilitate the details of program verification in the formal system.

This same development should be possible in the field of the analysis of algorithms. Once

we have developed a formal system for the field, we could put that system onto a machine,

and attempt to have the machine do as many of the straightforward details of the symbol

manipulations as possible. This area of research might be called automating the analysis of

algorithms, to distinguish it from our current quest, which is formalization rather than automation.

One valuable result of the automation style of research might be a programming system with

the mathematical knowledge of MACSYMA [28), augmented by some understanding of how the

probability distributions of program variables are affected by executable code, such as comes out

of the formal system that we are going to build. The resulting programming system might be just

what the doctor ordered for the algorithmic analyst who is attempting to decide, for example, just

how small the subfiles should be before a properly tuned implementation of Quickson resorts

to an insertion sort rather than a partitioning phase.

Prior Work on Formalizing Algorithmic Analysis.

Several programming systems directed at automating the analysis of algorithms have been

built, and any such system inherently has some kind of a formal system for reasoning about

the probabilistic behavior of programs buried within it. At one extreme are those systems that

are willing to approximate the true behavior ·of the executing process by a Markov chain [2,

30). With each conditional branch in the program, such a system associates a fixed probability,

-----------~------~ ------------~

INTRODUCTION 11

independent of the current state of the process, that the test will come out each way. This is

often only a crude approximation to the truth, but the approximate results that come out of

such an analysis might provide useful data for such clients as optimizing compilers. Since we

are attempting to formalize exact theoretical analyses, we cannot afford to make the simplifying

assumptions of constant and independent branching probabilities.

With a somewhat different approach, Jacques Cohen and Carl Zuckennan [3] built an

interactive system for assisting an analyst in estimating the efficiency of a program. This system

helped the analyst with the mechanical details of the algorithmic analysis, but left the difficult

question of determining the branching probabilities to the user. In fact, Cohen and Zuckerman

end their paper on this system by commenting that further research should be directed at relieving

the user of this task, but that this would require the system to possess deductive capabilities

similar to those required of programs that verify program correctness. Our quest can be viewed

as a first step in response to this challenge, in that we are attempting to build the formal system

in which this deductive reasoning could take place.

A third related effort in the direction of automating the analysis of algorithms was undertaken

in the development of the PSI automatic programming system, by Cordell Green and his students

[9]. This system is a knowledge-based approach to the automatic programming problem. One of

the experts that contributes to the construction of the output program is an efficiency expert,

written by Elaine Kant [17); this algorithm uses task-specific knowledge about the problem domain

to advise the PSI system about the relative efficiencies of various low-level data and control

structures into which its very-high-level programs could be refined.

But none of the above three types of efforts addresss directly the formalization of algorithmic

analysis as we currently understand it. The specific issue of the formal system seems to have

been first considered by Ben Wegbreit, who worked from the same basic insight that we are

using as our base. In fact, the abstract of his paper VerifYing Program Perfonnance [33], describes

our quest in different words:

It is shown that specifications of program performance can be formally verified. Formal
verification techniques, in particular, the method of inductive assertions, can be adapted to

show that a program's maximum or mean execution time is correctly described by specifications

supplied with the program. To formally establish the mean execution time, branching
probabilities are expressed using inductive assertions which involve probability distributions.
Verification conditions are formed and proved which establish that if the input distribution is
correctly described by the input specification, then the inductive assenions correctly describe
the probability distributions of the data during execution. Once the inductive assertions are
shown to be correct, branching probabilities are obtained and mean computation time is
computed.

In that paper, Wegbreit gives an analysis of the sorting program InsertionSort in his formal

system. His sytem will serve as the starting point for our own formal system construction effort,

which begins in the next chapter.

Recently, Dexter Kozen published a paper called Semantics of Probabilistic Programs [22)

that addresses some of the same issues that we shall be considering, but from a somewhat

12 FOR.M:ALIZING THE ANALYSIS OF ALGORITHMS

different angle. Kozen's paper addresses the question of providing a formal denotational semantics

for a class of probabilistic programs, that is, programs that are allowed to make random choices

during the course of their execution. As it turns out, the framework that we shall develop for

formalizing the probabilistic analyses of detenninistic algorithms is also a natural framework in

which to consider probabilistic algorithms. Kozen independently arrived at essentially the same

framework that we shall propose. He then demonstrated a formal semantics for probabilistic while­

programs in this framework, and related this semantics to an established field of mathematics,

linear operators on Banach spaces, that has been explored for its own sake. We shall draw on

Kozen's work as on Wegbreit's in what follows.

Before our literature survey can be called complete, we should also give credit to Arne T.

Jonassen and Donald E. Knuth for their work in the paper A Trivial Algorithm whose Analysis

Isn't [16]. They considered the folowing problem: Take a random binary search tree containing

two keys; choose a new key at random, and insert it into the tree; then, choose one of the three

keys currently in the tree at random, and delete it; finally, repeat this insertion-deletion process

indefinitely. Inserting into a binary search tree is a straightforward process, but deleting from one

is trickier. In particular, deleting a non-leaf from a tree demands some reshuffling of the nodes.

The probabilistic structure of the search trees resulting from this insertion-deletion regimen turns

out to be quite subtle. In the dynamic phase of their analysis, the first seven pages of the paper,

Jonassen and Knuth reduce the problem to a set of integral equations, the continuous analog of

recurrence relations. The solution of these integral equations in the following static phase fills

the remaining fifteen pages with fairly hairy mathematics: the solution involves Bessel functions.

The interesting thing about this paper from our current perspective is the level of reasoning

used in the dynamic phase. The problem was sufficiently subtle that Jonassen and Knuth were

forced to derive the recurrences in an almost mechanical fashion, working line by line from the

associated program. Because this dynamic phase is carried out at such a low level, it serves as

an excellent motivating example for those, like ourselves, who are attempting to formalize the

dynamic phase of algorithmic analysis.

Looking Ahead.

In Chapter 2, we shall begin constructing a formal system by considering several alternative

ways in which to phrase assertions that describe the probabilistic state of an executing process. To

keep things simple, we restrict ourselves in Chapter 2 to loop-free programs. The complications

introduced by allowing loops back into our programs are the subject of Chapter 3.

In Chapter 4, we shall cover in some detail the structure of one formal system, called the

frequency system, for the dynamic phase of average case algorithmic analysis. After describing

the assertion language of the frequency system, we shall discuss its axiom schemata and rules,

and demonstrate their soundness in terms of Kozen's semantics. Chapter 5 then presents several

examples of the use of the frequency system. The two major examples are the dynamic phases

of the analyses of Find.Max, which we discussed above, and of InsertDelete, which implements

the repeated insertions and deletions in small binary search trees studied by Jonassen and Knuth.

INTRODUCTION 13

Finally, in Chapter 6, we shall discuss ways in which the frequency system could be extended

to handle other control structures. After extending the frequency system to handle the goto·

statement, we shall pause to consider the dynamic phase of ihe analysis of lnsertionSort, which

allows us to compare Wegbreit's system and the frequency system in action. Chapter 6 closes

by outlining several directions in which future research on formalizing the analysis of algorithms

should proceed.

Chapter 2. Probabilistic Assertions for Loop·Free Programs

The Search for an Assertion Language.

We shall begin the construction of our formal system by thinking about what an assertion

language that can describe the probabilistic structure of a process state might be like. We shall

be forced to choose our assertion language from among several possibilitites, and, in the process

of exploring these choices, we shall develop a model of programs and their executions called the

chromatic plumbing metaphor that will serve as a helpful framework for our assertion language

design. The chromatic plumbing metaphor also suggests a novel view of program semantics,

which is exactly the view suggested by Kozen.

As our starting position, we begin with the insight that program variables should be considered

to have distributions, just like the random variables of probability theory; they inherit these

distributions from our chosen probability distribution on the input. Our job is to trace how

these distributions are affected by the execution of code. We also start off with the sense that

a. probabilisitic assertion should give us some kind of information about these distributions. The

current distributions of the program variables and their interrelationships can be thought of as

forming the probabilistic state of the process; this notion makes sense only when the executions of

the program on all possible inputs are considered simultaneously, with their associated probabilities.

When the program is considered as acting on a single input, the program variables will have a

unique value at each moment. These values make up what we used to call simply the state of

the process, and shall now call its deterministic state.

It is helpful to keep in mind the analogy with the F1oyd-Hoare situation. A F1oyd-Hoare

system deals with only cine execution of the program at a time, and hence deals only with

questions about the deterministic state. An assertion in such a system gives some information

about the deterministic state of the executing process, although it need not characterize that state

completely. In fact, with each assertion in a Floyd-Hoare system we can associate a certain set

of deterministic states called the characteristic set of the assertion. The characteristic set of the

assertion P is simply the set of all deterministic process states for which that assertion holds.

Of course, a F1oyd-Hoare assertion is also a string of symbols, and it has a rather different

structure when viewed from this perspective. First, there is a class of atomic assertions that

describe an elementary characteristic of the process state, such as the formula K = 1. These

atomic assertions are then combined with the logical connectives "and", "or", and "not", written

/\, V, and ., respectively, and the quantifiers "for all" and "there exists'', written 'rt and 3. Note

that each connective corresponds to an operation of elementary set theory on the associated

characteristic sets. Taking the "and" of two assertions corresponds to taking the intersection

of their characteristic sets; the "or" corresponds to the union; and "not" corresponds to set

complement. Furthermore, the quantifier "for all" is a generalized, indexed version of "and" from

a set theoretic point of view, allowing the. specification of a more general form of intersection;

similarly, "there exists" is a generalized, indexed form of "or". Thus, the connectives and

quantifiers of a F1oyd-Hoare system correspond to the elementary operations of set theory on

the characteristic sets.

14

PROBABILISTIC ASSERTIONS FOR LOOP-FREE PROGRAMS 15

By analogy with the Floyd-Hoare situation, we shall attempt to construct our assertions about

probabilistic state by combining certain atomic probabilistic assenions with cenain connectives.

Before we tie these ideas down any further, it will be helpful to introduce the chromatic plumbing

metaphor for programs and their executions.

Chromatic Plumbing.

For Iiow, we shall take as our programming language an ALGOL-like language without

procedures, but we shall think of these programs in terms of their flowcharts. Take the flowchan

of the subject program, and turn it into a plumbing network. The lines of the flowchan are the

pipes of the network, which serve to guide the executing process from instruction to instruction.

The process itself is modeled as a pellet that travels through the pipes; thus, the current position

of the pellet in the plumbing network corresponds to the current location of control in the

program, the current value of the program counter if you will. At if-tests in the program, the

piping forks. A pellet coming down the in-branch of a fork takes either the left or the right out­

branch of the fork depending upon whether the state of that process does or does not satisfy

the if-test. The state of a process is simply the vector of values of the program variables. We

shall model such a state by considering the control pellet to be colored, one color corresponding

to each possible state that the process might be in.

Besides forks that come from if-tests, the plumbing network will contain three other types

of features. Where different paths of control come together in the program, as at the end of

an if-statement, there will be a join in the network. If the ·control pellet comes down either of

the two in-branches of the join, it will continue down the single out-branch. The program also

contains assignment statements. Since an assignment statement is the mechanism that changes

the process state, we shall model assignment statements in the plumbing network by structures

that might be called repainting boxes. When the control pellet reaches such a box, it is given a

new coat of paint, whose color reflects the new state of the process. The new color is chosen

as some function of the old color just as the new state after an assignment statement is some

function of the old state of the process. Finally, the start and halt instructions in the flowchan

tum into an input funnel and one or more output chutes in the plumbing network. We shall

assume that one of the output chutes is distinguished as the nonnal output chute, since our

flowchans are modeling programs with a single entry and single exit.

Suppose that we have built the plumbing network corresponding to our program of interest.

Executing the program on any particular input can then be modeled as follows: take a pellet

and color it whatever color corresponds to the chosen input state. Then, drop this pellet into the

input funnel of the plumbing network, and watch what happens. It will travel around the pipes,

getting repainted by assignment boxes, and getting sent the appropriate direction by if-tests. If

the program has loops, the pellet might very well pass one point in the plumbing network more

than once. Eventually, the pellet may come dropping out of some output chute, corresponding

to the termination of the program; the color of the pellet when it emerges will correspond to

·the state of the process upon termination. Or, if the program does not halt for this particular

input, the pellet will continue to meander through the plumbing network forever.

16 FORMALIZING IBE ANALYSIS OF ALGORITHMS

We can use the chromatic plumbing metaphor to describe the kinds of results that the

standard formal systems for program verification can handle. F1oyd-Hoare logics provide results

about a program's partial correctness. These are theorems of the form, "If a green pellet is

dropped into the input funnel, and if that pellet ever comes out the normal output chute, then

it will be blue when it does come out," or, "A pellet of a primary color dropped into the input

funnel will be black if and when it ever comes out of the normal output chute." In particular, a

partial correctness result does not guarantee the termination of the program; verification systems

that deal with partial correctness are said to be using a weak logic. By contrast, total correctness

theorems do make guarantees about termination; such systems are said to be using a strong

logic. In our chromatic plumbing metaphor, a typical total correctness result would be, "If an

orange pellet is dropped into the input funnel, it will eventually emerge from the normal output

chute colored pink."

Probabilistic Chromatic Plumbing.

In the average case analysis of algorithms, we have to study more than just one execution

of the program. In fact, we have to worry about the behavior of the program on all possible

inputs, and about the probabilities of the various behaviors. This demands some modification

of the chromatic plumbing metaphor. To keep things simple at the outset, let us first restrict

ourselves to considering only loop-free programs, that is, programs whose flowcharts are directed

acyclic graphs. This assumption simplifies things considerably, because each control pellet in

loop-free programs can pass each point in the plumbing network at most once.

Now, in the domain of loop-free programs, our task is to modify the chromatic plumbing

metaphor so that it can describe all possible executions of the program at once, with their

associated probabilities. One natural way to achieve this modification is to allow more than one

pellet to exist, where each pellet will model one possible execution of the program. In addition

to its color, which corresponds to the state of the process as before, each pellet will also have

an associated weight, which will be proportional to how likely this particular execution is, in

comparison with other executions. That is, the events described by heavy pellets are more likely,

or happen more frequently, than those described by light pellets.

Given this idea of weighted . pellets, we can imagine constructing a bag of pellets that will

model any chosen input distribution to an algorithm. An input distribution is really a collection of

possible process states with their associated probabilities. Such a structure incorporates distributions

for all of the program variables, and shows how those distributions are interrelated; thus, we

hereby clarify the term probabilistic state by redefining it to mean a set of possible deterministic

process states with associated probabilities. To construct a bag of pellets that models a chosen

probabilistic state, we simply take one pellet for each possible. deterministic state, and color

it whatever color corresponds to that state; then we also adjust its weight to be proportional

to the probability of that deterministic state. On the other hand, any bag of weighted pellets

corresponds to a certain probabilistic state in a natural way, as well.

The chromatic plumbing metaphor with multiple weighted pellets can model the execution

of an algorithm on all possible inputs at once. We begin by constructing a bag of pellets to

PROBABILISTIC ASSERTIO~S FOR LOOP-FREE PROGRAMS 17

model the chosen probabilistic input state. Then, we empty this bag of pellets into the input

funnel of the plumbing network, and let each pellet independently travel through the network

according to the old rules. Each pellet gets steered by if-tests, repainted by assignments, and

(since our programs are currently assumed to be loop-free) eventually emerges from an output

chute. But the actions of the various pellets are completely independent, and the weights of the

pellets don't change during their trip through the network.

If we concentrate at any particular point in the plumbing network, and consider all of the

pellets that ever pass that point, the colors and weights of those pellets describe the probabilistic

structure of what happens at that point in the program. For example, if we normalize the

weights of the pellets so that the total weight of the input bag is 1, then the total weight of

all the pellets that pass any point in the network is just the probability that control will pass

that point during a random execution of the program. Instead of focusing at that point in the

network ourselves, we might as well postulate a little demon who sits on the pipe at the chosen

point, and keeps track of the weights and colors of the pellets that go by. Since we are only

interested in the weight totals rather than in how these totals are made up, we shall specify that

the demon in fact just reports to us, for each possible color, the total weight of all of the pellets

of that color that pass by. A complete set of reports from demons located at every possible

spot on the plumbing network gives one kind of probabilistic description of the behavior of the

algorithm executing on a random input. Therefore, thinking about these demon reports gives us

one possible concrete sense for what an assertion about probabilistic state should do: it should

partially specify a demon's report.

The report of a demon located somewhere in a program can be useful from a practical

as well as a theoretical point of view. Monitoring devices conceptually similar to demons are

provided by some programming language systems [15, 31].

Probabilistic Assertions.

An assertion in a Floyd-Hoare system is a partial description of deterministic process state.

To prevent nomenclatural confusion, we shall reserve the word assertion in the future to refer to

the probabilistic version; the term predicate will be used to denote an assertion of a Floyd-Hoare

system. Our next task is to decide what an assertion should be, in our brave new probabilistic

world. We shall continue to restrict ourselves to loop-free programs for a while, and to employ

the chromatic plumbing metaphor with multiple weighted pellets.

Predicates in a Floyd-Hoare system are built up by combining certain atomic predicates

with logical connectives. Guided by this analogy, we shall decide on certain elementary atomic

assertions, and then allow ourselves to glue atomic assertions together with connectives. The

obvious candidates for connectives in the probabilistic world are the same connectives that

show up in Floyd-Hoare predicates: the connectives "and" and "or", along with their indexed

generalizations "for all" and "there exists", and the connective "not". Those connectives will

satisfy us for a while; but what is an atomic assertion to be?

For this question, the analogy with Floyd-Hoare systems isn't much help. But our general

intuition is that an assertion is supposed to give us some information about how the program

18 FORMALIZING THE ANALYSIS OF ALGORITHMS

variables are behaving as if they were really random variables in the sense of probability theory.

Therefore, one obvious candidate for an atomic assertion is a formula for the probability of an

event, such as Pr(K = 1) = !· This assertion describes the set of all probabilistic states in

which the program variable K takes on the value 1 with probability precisely ! . To be more

precise, remember that o~r assertions are supposed to be partial desciptions of demon reports.

Thus, this formula really I asserts that half of all of the pellets by weight should correspond to

deterministic states in which the predicate K = 1 holds.

We shall use this example as a guide for our first cut at what an atomic assertion should

be: An atomic assertion is a formula of the form Pr(P) = e, where P denotes an arbitrary

predicate, and e denotes some kind of recipe for a real number, a real-valued expression in some

language. The predicate P describes a particular set of deterministic states, and thus, it also

determines the corresponding set of colors. The formula Pr(P) = e will be deemed to hold of

a demon's report if and only if the total weight of all of the pellets of colors satisfying P, when

divided by the total weight of all of the pellets of all colors, gives the quotient e. Let Mass(Q)
for an arbitrary predicate Q denote the total weight of all the pellets of colors satisfying Q in

the demon's report; we then have the relation

Pr(P) = Mass(P)
1

Mass(TRUE)

. since Mass(TRUE) will give the total reported weight of all of the pellets of all colors.

The Leapfrog Program.

To decide whether or not our current first cut at a definition for the concept of atomic

assertion is any good, we shall now consider an example, the Leapfrog program:

Leapfrog: if K = 0 then K +- K + 2 fi.

Suppose that a process begins to execute the Leapfrog program in a probabilistic state in which

the variable K takes on the values 0 and 1 with equal probability. Note first that we can

describe this initial state by an assertion that is a conjunction of two atomic assertions:

[Pr(K = 0) =!)A [Pr(K = 1) = !).

If K is the only component of the process state, then this assertion completely defines the

probabilistic state, since the two events it describes are mutually exclusive, and their associated

probabilities sum to one. On the other hand, if there are other program variables floating around

as well, then this assertion gives only partial information about the probabilisitic process state.

Assuming that K is the only program variable for simplicity, we could make up this input state

as a bag of pellets by taking two pellets of equal mass, and coloring one of them the K = 0

color, and the other the K = 1 color.

Intuitively, the net result of the execution of the Leapfrog program will be to take the

probabilistic mass associated with the condition K = 0, and move it over to the condition

PROBABILISTIC ASSERTIONS FOR LOOP-FREE PROGRAMS 19

K = 2; this explains our choice of the name "Leapfrog". We can trace Leapfrog's execution

on our chosen probabilistic input by thinking about the associated plumbing network. The two

pellets of equal mass will arrive first at the if-test. The K = 0 pellet will continue down the

TRUE out-branch of this test, while the K = 1 pellet will continue down the FALSE out-branch.

The K = 1 pellet emerges unchanged from the output chute of the whole program; the K = 0

pellet passes through the assignment box corresponding to K +- K + 2, which repaints it the

K = 2 color, and then emerges from the output chute.

With our current definition of "assertion", what can we assert about this program's execution?

We already characterized the input state by an assertion above. Consider next the two out­

branches of the if-test. On the TRUE out-branch, the predicate K = 0 will hold with certainty,

so the appropriate assertion is Pr(K = 0) = l; similarly, on the FALSE out-branch, the natural

assertion is Pr(K = 1) = 1. After the assignment box on the TRUE branch, we have the

condition Pr(K = 2) = 1. And finally, the output is described by an assertion very similar to

the input assertion:

[Pr(K = 1) = ~] /\ [Pr(K = 2) = H
All of these assertions are valid statements about the corresponding demon reports; each right­

hand side gives the percentage of pellet mass that satisfies the left-hand side predicate.

Next, let us consider each feature in the flowchart locally, and think about the assertions

in the neighborhood of that flowchart feature. Consider first the if-test; coming into a test on

the predicate K = 0, we have some probabilistic state that satisfies the assertion

[Pr(K = 0) = ~] /\ [Pr(K = 1) = H

Note that we can deduce the appropriate assertions for the out-branches of the fork purely

by local formal reasoning; they must be Pr(K = 0) = 1 and Pr(K = 1) = 1 on the TRUE

and FALSE out-branches respectively. In fact, the job of going from the probabilities before the

fork to the probabilities after the fork simply corresponds to taking conditional probabilities.

Similarly, we could imagine adjusting the TRUE branch assertion to be Pr(K = 2) = 1 after

the assignment by purely local reasoning.

But the final join is quite a different story. Coming into the join from the TRUE branch, we

have some probabilistic mass in which the program variable K has the value 2 with certainty;

the FALSE branch contributes some mass in which K has the value 1 with certainty. That is all

that we can deduce from the local assertions, and it is not enough to determine the probabilistic

structure of K after the join. Indeed, the local information about the input to the join only

allows us to conclude that the assertion

Pr([K = l] V [K = 2]) = 1

holds, and this is a substantially less informative statement than the output assertion given above.

In fact, this output assertion corresponds to drawing the F1oyd-Hoare ·style conclusion that, if

20 FORMALIZING THE ANALYSIS OF ALGORITHMS

K is 1 on one in-branch of a join and K is 2 on the other, then K is either 1 or 2 on the

out~branch; there is nothing probabilistic about this reasoning at all.

The problem is that the assertions on the in-branches of the final join don't describe the

relative probabilities of entering the join from each of the two in-branches. In our example,

control is equally likely to enter the final join from either of the two in-branches, since the

two pellets of the original input were equally heavy. But this fact is based on information that

is not reflected in the local assertions; in fact, we explicitly threw this information away when

we computed the conditional probabilities at the if-test. We shall immortalize this difficulty by .

naming it the Leapfrog problem.

People who are used to F1oyd·Hoare program verification might be tempted to claim that,

since the assertions Pr(K = 2) = 1 and Pr(K = 1) = 1 hold respectively on the TRUE and

FALSE in-branches of the final join, the assertion

(Pr(K = 2) = l] V (Pr(K = 1) =I]

should hold on the out-branch of the final join. Wrong! A probabilistic assertion, remember, is

a partial description of a demon's report. This assertion specifies that the demon either reports

that "All the mass that went by was colored the K = 2 color," or that "All the mass that went

by was colored the K = 1 color." In fact, the output demon of the Leapfrog program does

not give either of these reports, but rather gives a report that is halfway between the two. In

the F1oyd·Hoare world, it is legitimate to describe the out-branch of a join by the "or" of the

predicates that describe the in-branches; but this technique doesn't work in the probabilistic world.

The assertions in Ben Wegbreit's formal system [33] are a combination of F1oyd·Hoare

predicates with the Pr(P) = e style of atomic probabilistic assertions that we are currently

considering. Therefore, Wegbreit's system would have difficulty with the Leapfrog problem. The

fact that Wegbreit's system is powerful enough to handle InsertionSort is some manner shows

that even systems with no cure for the Leapfrog problem can be quite powerful. We shall strive

for a solution of the Leapfrog problem, however.

Frequencies instead of Probabilities.

One way to avoid the Leapfrog problem is to avoid the rescalings that are associated

with taking conditional probabilities. In this scheme, assertions measure a quantity that is like

probability in every way except that it does not always have to add up to 1. We shall call this

quantity frequency, and our next job is to adjust the chromatic plumbing metaphor to deal with

frequencies.

Suppose that the pellets of the chromatic plumbing metaphor have weights that are expressed

in an explicit unit of measure, say grams. We shall usually normalize this unit so that the total

weight of all of the pellets in the input bag· is exactly 1 gram. With this normalization, the

weight of any pellet is a measure of the frequency of the event that the pellet describes, in

the following sense. Suppose that we repeatedly perform random and independent executions

of the program. And suppose, for example, that our chosen probabilistic input state contains a

PROBABILISTIC ASSERTIONS FOR LOOP-FREE PROGRAMS 21

yellow pellet of mass 1/k grams, for some integer k > 2. On the average, once out of every k

times that we execute the program, the actual deterministic input that occurs will be the input

state that corresponds to the color yellow. All along the path that the originally yellow pellet

travels in the network, the demons will report a mass of 1 / k grams for whatever color the pellet

has been repainted. The fact that the pellet weighs 1/k grams means that it represents, on the

average, one out of every k executions of the program. In some sense, the weight of any pellet

measured in, grams is equal to the execution frequency of the corresponding event measured in

"expected times per execution of the whole program". The weights that the demons report back

will now be expressed in grams, and we hereby rename the Mass function defined earlier to

be the "Fr" function, where "Fr" stands for "frequency" just as "Pr" stands for "probability".

We can turn this idea of measuring weights in grams into a solution of the Leapfrog

problem by changing our definition of atomic assertions so that they also measure grams. Define

an atomic assertion to be a statement of the form Fr(P) = e, where P is a predicate and e is a

real-valued expression. This type of atomic assertion correctly describes a demon's report if and

only if the total weight of all of the pellets reported, of colors that satisfy P, is precisely e; there

is no rescaling, no dividing by the total weight of all of the pellets. We shall call these formulas

frequentistic atomic assertions, to contrast them with our earlier probabilistic atomic assertions.

We should also clarify our terminology for states. Recall that a probabilistic state is a

collection of deterministic states with associated probabilitites. We can model a probabilistic state

by a bag of pellets of arbitrary total weight, since it is only the ratios of the weights of the

various pellets that are critical. Thus, a probabilistic state really corresponds to an equivalence

class of bags of pellets, where two bags are equivalent if they are rescalings of each other.

By contrast, we now define a frequentistic state to be a collection of deterministic states with

their associated frequencies. Note that a demon's report is simply a complete description of a

frequentistic state: it associates a definite weight in grams with every possible deterministic state.

We can put our frequentistic atomic assertions together with connectives to form frequentistic

assertions, and each of these will have an associated characteristic set that is precisely the set of

all frequentistic states in which it holds.

We can now go through and see how the Leapfrog program looks in this new format. The

input assertion is the same as before,

(Fr(K = 0) = !) /\ (Fr(K = 1) = !).

At the if-test on the predicate K = 0, this total of 1 gram of execution mass splits, with half

of it continuing down the TRUE out-branch, and the other half continuing down the FALSE out­

branch. On the TRUE out-branch, we have the assertion

(Fr(K = 0) = !] /\ (Fr(K :F 0) = O].

The second atomic assertion here is rather a surprise, but note that we can't get by without

it. The assertion Fr(K = 0) = ! tells us that one half of a gram of execution mass goes by

22 FORMALIZING THE ANALYSIS OF ALGORITHMS

in which K has the value 0, but it doesn't eliminate the possibility that other execution mass

goes by in which K is not 0. We can eliminate that possibility either by, as above, adding the

condition Fr(K ¥= 0) = 0, or by adding the condition Fr(TRlJE) = ! ; the former course seems

the more natural. In fact, to be cautious, it would probably be a good idea to add a similar

extra condition to the input assertion, and replace our earlier version by

[Fr(K = 0) = ~] /\ [Fr(K = 1) = !] /\ [Fr([K :I= O] /\ [K :I= 1]) = 0).

We stated that it would be our convention to normalize the gram so that the total mass of the

original input bag of pellets was exactly one gram, but it is safer not to build that convention ·

too deeply into our reasoning.

The FALSE out-branch of the if-test gets the symmetric assertion

[Fr(K = 1) = !] /\ [Fr(K :I= 1) = 0),

and the TRUE out-branch after the assignment is described by

[Fr(K = 2) = !) /\ [Fr(K :I= 2) = 0).

Finally, reasoning from these two assertions alone, we can deduce the appropriate assertion to

put on the out-branch of the final join. In particular, we add together the frequencies of events

contributed by each of the two in-branches, and get

[Fr(K = 1) = !] /\ [Fr(K = 2) = !] /\ [Fr([K :I= 1] /\ [K :I= 2]) = 0).

The success of this last step shows that measuring frequencies rather than probabilities is indeed

one way of avoiding the Leapfrog problem.

For a while, we won't take a definitive position on the question of frequencies versus

probabilities. Instead, we shall change our focus of concentration somewhat, and worry about

the connectives with which atomic assertions are put together.

The Arithmetic of Frequentistic States.

So far in our development of a probabilistic assertion language, we have been satisfied

with borrowing the logical connectives that are used. in Floyd-Hoare systems, which are really

the connectives of the predicate calculus. But consider the final join of the Leapfrog program

once again. When we combined the two frequentistic assertions on the in-branches into a single

frequentistic assertion for the out-branch, we were doing something that was much more like

addition than like any of the logical connectives. This suggests that there is sc:ime arithmetic

structure to the set of all frequentistic states that it would be profitable to explore.

To get a handle on this structure, it is helpful to think in terms of the chromatic plumbing

metaphor: recall that a demon's report is simply a description of a frequentistic state. Suppose

that c and d represent the reports of demons on the two in-branches of a join in the network.

PROBABILISTIC ASSERTIONS FOR LOOP·FREE PROGRAMS 23

From c and d, we can compute what a demon located on the out-branch of that join must

report. In particular, the out-branch demon should report for each possible deterministic state

a weight that is the sum of the weights ascribed to that state by c and d. It is natural to call

this frequentistic state c + d. The set of all possible frequentistic states is closed under this

addition operation; it is also closed under multiplication by nonnegative scalars. Thus, it has a

lot of the structure of a vector space. But it has other structure as well; note that there is also

a natural partial order. The relation c < d holds between two frequentistic states if and only if

the frequency that c assigns to each event does not exceed the frequency assigned by d.

If joins in the plumbing network correspond to a natural operation on the frequentistic

states, we should next think about forks. Suppose that a frequentistic state c is reported by

the demon on the in-branch of a fork. Let P denote the test associated with this fork. In

programming terms, P is a side-effect free boolean expression; but for our current purposes, we

shall consider P to be merely some predicate. Thus, P corresponds to some division of the set of

all deterministic states into two classes, those where P does and does not hold. Now, what will a

demon on the TRUE out-branch of this fork report? We shall denote this report by c IP, which

might be read "c restricted to the truth of P". If a deterministic state statisfies the predicate

P, then c I P ascribes the same mass to that state that c ascribed; if a deterministic state does

not satisfy P, then c IP ascribes it a mass of zero. Symmetrically, a demon on the FALSE out­

branch of the fork will report the frequentistic state c I ., P, which is c restricted to the falsity

of P. The restriction and addition operations are related by the identity c = (c IP)+ (c I., P),
which essentially states that the program

if P then nothing else nothing fi

really is a no-op.

The restriction and addition operations allow us to record the effects upon frequentistic

states of forks and joins in the plumbing network. In our current domain of loop-free programs,

we will have handled all of the constructs of a program if we can determine the effect that an

assignment has upon frequentistic state. An assignment is simply a function from the deterministic

input state to a deterministic output state. Given a frequentistic input state, we can find the

resulting frequentistic output state by applying this function to each possible deterministic input

state, multiplying by the corresponding frequency, and summing. To put this another way, an

assignment can be thought of as a linear function from the set of all frequentistic states to itself.

In fact, there are more linear functions floating around as well. Consider what a program

really is from our current point of view. Through the chromatic plumbing metaphor, a program

corresponds to a plumbing network that maps input bags of pellets into output bags of pellets,

or, to put it another way, input frequentistic states into output ones. And this mapping will

have to be linear. Standing back a little, we get the somewhat surprising sense that there just

might be some real linear algebra going on. In particular, it might be possible to . adjust our

definitions so that the set of all frequentistic states really would be a vector space, and so that

the meaning of a program could be defined to be some (continuous?) linear transformation of

this space. This vague idea is given solid substance in Dexter Kozen's paper.

24 FORMALIZING THE ANALYSIS OF ALGORITHMS

Kozen's Semantics for Probabilistic Programs.

Dexter Kozen has attacked the problem of providing a semantics for probabilistic programs,

that is, for programs that are allowed to make random choices. The semantics that he developed

turns out to be based precisely on the concepts that we arrived at in the last section, in our

consideration of the probabilistic analyses of deterministic programs. This coincidence is not as

surprising as it might seem at first glance. Suppose that a program makes random choices. We

can modify the program slightly to eliminate the random choices by extending the program's

input to include a file . of random variables. Whenever the original program would have made a

random choice, the modified program can merely examine the next random input variable, and

act accordingly. This transformation shows that there is only a fine dividing line between those

programs that make random choices and those that take random inputs.

We are going to adopt Kozen's semantics as the basis for our further efforts at formal

system construction, so we shall proceed to sketch the main results here; the construction is given

in more detail in Kozen's paper [22]. There is a real need for a more precise development of a

probabilistic semantics. So far, our arguments have been based on our intuitions about program

behavior, and that is a fine start. It is roughly true that a frequentistic state is a collection of

deterministic states, together with associated frequencies. This level of definition would suffice

if, for example, there were only a finite set of possible deterministic states. For most programs,

however, there are at least an infinite and often an uncountable number of possible deterministic

states. And this demands a more careful definition. We now summarize Kozen's definitions and

results.

Each program variable will have an associated data type D; we will use the same symbol D

to denote the set of all values of that type. Kozen begins by assuming that . with each basic data

type D, there is an associated o-algebra [10]; for the integers, the natural o-algebra is the power

set of the integers, while, for the real numbers, it is the o-algebra of all Lebesgue measurable

sets. The choice of a o-algebra makes each data type D into a measurable space, which we shall

also denote D.

The deterministic state of a process is the vector of values of the program variables. If

there are n program variables Xi, X2, ••• , Xn of types Di. Di , Dn respectively, then the

set of allpossible-deterministic states ~ is the Cartesian product of the basic types

We shall associate with ~ the smallest o-algebra that contains all rectangles. This makes ~ into

a measurable space.

A measure is a countably additive, real-valued set function · on a measurable space; in

particular, we assume at this point that all of the values of a measure are finite. A measure is

called positive if its values are all nonnegative. We can define a .frequentistic state more precisely

as a positive measure on ~. The set GJ of all measures on ~· forms a real vector space.

PROBABILISTIC ASSERTIONS FOR LOOP-FREE PROGRAMS 25

Furthermore, there is a natural nonn for this vector space; we define the norm llcll of a

measure c to be the mass that the absolute value of c ascribes to the entire space ~. For positive

measures, this norm is simply given by the formula Hell = c('l). The vector space '1 forms a

Banach space under this norm. The set of all positive measures, which we shall write g+, is the

positive cone of '1. Furthermore, this positive cone defines a partial order on '1, under which it

becomes a conditionally complete vector lattice, and even an (L)-space.

Note that a frequentistic state is merely a point in g+, The arithmetic operations on

frequentistic states that we considered above can now be made more precise. If c and d are

frequentistic states, then c + d represents their sum in g+. If P is a predicate, let x(P) denote

its characteristic subset of Cl. The restriction of c to P, written c IP, denotes the measure that

assigns to each measurable subset M of 'l the mass

(c IP) (M) = c(M n x(P)).

We must guarantee that the set x(P) is measurable, but this is not a severe restriction. Note

that the subset of '1 consisting of those measures all of whose mass lies in x(P) ·is a subspace

of '1, and the operation of restriction can be viewed as projection onto this subspace.

A program should be interpreted as a mapping from g+ to g+. that is, from input

frequentistic state to output frequentistic state. It turns out that the mappings that interpret

programs extend uniquely to continuous linear mappings from '1 to '1. Since the notion of a

continuous linear map between vector spaces is so familiar, it is better to let these extensions

define the actual meanings of programs. 'Pius, we shall follow Kozen and adopt the convention

that the formal interpretation of a program is a continuous linear map from '1 to '1, where '1 is

the space of all measures on ~. Kozen proves that these maps will have two properties. First,

they will take positive measures into positive measures, as we would expect. Secondly, the total

amount of mass that comes out of any program will never exceed the total amount of mass that

went in. We can state this formally by the inequality

llJ(c)ll < llcll (2.1)

where f: '1 -+ '1 denotes the interpretation of a program, and c is any frequentistic state.

To complete our blitz through Kozen's results, we need to describe the manner in which

the linear mappings that interpret programs are built up. These rules are the essence of Kozen's

semantics, since they give a formal meaning to each of the constructs out of which probabilistic

while-programs are built. We will consider these language constructs in tum.

The empty statement is interpreted as the identity map from '1 to '1.

Next, consider the assignment statement X - e, where X =Xi is the ith program variable

and e = e(X1, ..• , Xn) is an expression in the program variables. The deterministic effect of

this statement is described by the function v from ~ to Cl that takes the deterministic state

26 FORMALIZING THE ANALYSIS OF ALGORITHMS

to the state

Kozen then interprets the frequentistic effect of the statement X +- e as the linear mapping

/: g -+ GJ that takes the input measure c to the output measure co v-1• The symbol "o" denotes

functional composition, and we define the set mapping v-1 by the usual rule,

v-1(M) = {m I v(m) EM}.

The statement that performs a random choice is written rather like an assignment If F

denotes a probability distribution (positive measure of norm 1) on the data type Di of Xi. then

we can choose a value for Xi at random from the distribution F by executing the statement

xi +- Randomp. This statement is interpreted as the linear mapping f: GJ -+ g that satisfies the

identity

here, each Mi is an arbitrary measurable subset of the corresponding data type Dj. and c is any

measure in g. Since our o·algebra for ~ is generated by the rectangles, this identity is enough

to define the measure f(c).

The interpretations of larger programs are constructed recursively as follows. If programs S

and T have interpretations f and g respectively, then the program "S; T" has as interpretation

the composed function g of. The conditional statement

if P then S else T fi

is interpreted as the function h: GJ -+ GJ defined by

h:c H f(c IP)+ g(c 1-iP).

Kozen also allows loops in his programs; even though we haven't progressed that far

ourselves, we shall discuss his coverage here. Consider the looping construct

while P do S od.

The semantic interpretation of this while-loop has to be some continuous linear mapping from

GJ to GJ; call the space of all such mappings L. We want the semantics of the while-loop to be

identical to the semantics of the composite construct

if P then S; while P do S od else nothing fi.

This means that the linear map associated with the while-loop must be a fixed point of the

affine transformation r: L -+ L that maps a linear transformation h: g -+ g in L to the linear

PROBABILISTIC ASSERTIONS FOR LOOP-FREE PROGRAMS 27

transfonnation -r(h) defined by

r(h): c t-t h(/(c IP))+ (c I ., P);

the function f once again represents the interpretation of the program S. Furthermore, if we

want our semantics to agree with the normal model of computation, we want to choose the least

fixed point of r. The affine mapping .,. will have multiple fixed points when a process can get

stuck in the loop forever with nonzero probability; the non-least fixed points assign some result

value to the program in these nonterminating cases.

That is enough of an introduction to Kozen's semantics for the time being. In Chapter

4, we will present the rules of the frequency system, and prove their soundness with repsect

to Kozen's semantics. At that point, we will have to recall the above rules once again. For

now, it is enough to know that there is a reasonable semantics for while-programs that interprets

each program as a linear mapping between vector spaces of measures, and hence backs up the

intuitive chromatic plumbing metaphor. Kozen also shows that this linear mapping semantics is

equivalent to a more straightforward semantics based upon functions from random variables to

random variables.

The Arithmetic Connectives.

We return to the question of writing probabilistic assertions that describe the behavior of

loop-free programs. The function of these a.Ssertions is essentially to determine a certain subset

of <!f+, the set of all frequentistic states, or equivalently, of all demon reports. Our current

position is that an assertion should be built out of atomic assertions of the form

Pr(P) = e or Fr(P) = e.

The probabilistic atomic assertion Pr(P) = e holds for precisely those measures c in c:F+ that

satisfy the relation

c(x(P))
c(~) = e,

where x(P) denotes P's characteristic subset of~; in words, the real value e between 0 and

1 gives the percentage of the mass of c that satisfies P. The frequentistic atomic assertion

Fr(P) = e is a little simpler; it holds for precisely those measures c in c:F+ that satisfy the relation

c(x(P)) = e,

that is, for those measures which ascribe mass e to the characteristic set of P.
These atomic assertions will be combined with connectives. One possible family of connec·

tives is the logical connectives "and'', "or", and "not" and the quantifiers "for all" and "there

exists". These connectives correspond to performing the elementary set-theoretic operations on

the associated characteristic sets. We now have enough understanding to define a new collection

of connectives, which correspond to the arithmetic operations on the characteristic sets.

28 FORMALIZING 1HE ANALYSIS OF ALGORITHMS

Let A and B denote assertions, and hence also subsets of ca=+. The first arithmetic connective

is addition; the assertion A + B denotes the set of all positive measures that can be expressed as

the sum of a measure in A and a measure in B. Similarly, we can define a restriction operation

on assertions, which is a generalization to sets of the restriction operation on frequentistic states;

in particular, if P denotes a predicate, the assertion A I P denotes the set of all measures of the

form a IP for some a in A.

The importance of these arithmetic connectives can be seen by a comparison with the Floyd­

Hoare situation. In Floyd-Hoare verification, a predicate describes a ~ertain subset of~. the set

of all deterministic states. And in a Floyd-Hoare system, the connectives that are needed to

describe the actions of forks and joins are the logical ones. If the predicates P and Q describe

the two in-branches of a join, then the predicate P V Q describes the out-branch of the join.

If the predicate P describes the in-branch of a test of B, then P /\ B describes the TRUE out­

branch and P /\ -.B describes the FALSE out-branch. In our probabilistic world, however, an

assertion describes a certain subset of <lf+, the set of all positive measures, and the arithmetic

connectives are the ones that describe the actions of forks and joins. If the assertions A and B

describe the two in-branches of a join, then the assertion A+ B describes the out-branch. If

the assertion A describes the in-branch of a test of P, then A IP describes the TRUE out-branch

and A 1-. P describes the FALSE out-branch.

With this understanding of the probabilistic world, we can begin to get some sense of what

the rules of a formal system for algorithmic analysis will be like. In particular, the rules that

deal with control structure can be found by using the above guidelines to reflect the flowchart

structure that lies behind each of the syntactic _control structures of the language. For example,

if we use square brackets rather than braces to distinguish an assertion from a predicate, the

Rule for the Conditional Statement will be:

~[AIP]S[B], ~[Al-.P]T[C]

~[A] if P then S else T fi [B +CJ'

This rule is sound because it corresponds to Kozen's semantics for conditionals. But before we

follow these ideas further, it is high time that we allowed loops in our programs once again.

Chapter 3. Living with Loops

Loops in Plumbing Networks.

Loops in a chromatic plumbing network aren't much of a problem. In fact, when we first

considered the deterministic version of the chromatic plumbing metaphor, we allowed loops. In

a network with loops, the control pellet might pass the same point on the network several times,

in the same or in different ·states. If the modeled computation does not halt, then the control

pellet will spend eternity going around and around the loops, changing color as appropriate to

model the non-terminating computation. We can extend the probabilistic version of the chromatic

plumbing metaphor to include loops by the same technique. Each weighted pellet travels around

the network independently, possibly passing the same point many times. A particular pellet will

emerge from an output chute if and only if the computation that it is modeling halts.

A demon on the network still reports the total masses of pellets of each color that have

gone by. In particular, the demon has no sense of time passing, and does not distinguish between

pellets that go by early in the computation from those that go by later on; the demon only

reports total weights. Recall that in loop-free programs, if we normalized the input mass to have

a total weight of 1 gram, then the weight reported by a demon for the color yellow was exactly

the probability that control would pass that point in the flowchart in the yellow state during

a random execution of the program. Now that we are allowing loops, the weight reported by

. a demon for yellow is simply the expected total weight of yellow pellets that pass that point

during a random execution.

The presence of loops does change the character of a demon's report somewhat, h_owever:

the demon may report an infinite amount of mass. In fact, there may be an infinite amount of

mass of a particular color, or there may merely be an infinite amount of mass all told, although

each color's total remains finite. Thus, in the looping world, a demon's report is no longer

guaranteed to be an element of c:F+. the set of all positive measures on deterministic states.

Instead, the report is a possibly infinite measure.

Let R denote the real numbers, and let R* denote the nonnegative real numbers with the

special element "oo".representing infinity added. We can do arithmetic in R*, although we have

to be careful about such indeterminate expressions as oo - oo. It is possible to define measures

that have R* as their range rather than R; in fact, R* has some advantages over R in measure

theoretic contexts, since every increasing sequence has a least upper bound in R*, either finite

or infinite. We shall define ~· to be the set of all countably additive R*-valued set functions

on the measurable space Cl of all deterministic states; that is, an element of ~· is a positive,

possibly infinite measure on '!». Note that neither c:F nor ~· contains the other, although they

both contain c:F+. A demon's report in the domain of programs with loops is simply an element of~*.

Probabilistic Assertions and Loops.

Our next task is to determine the effects of loops upon the structure of our assertions about

probabilistic state. We shall consider as our motivating example the algorithm FindMax for

29

30 FORMAUZING IBE ANALYSIS OF ALGORITHMS

finding the maximum of a random permutation by a left-to-right scan. The analysis of FmdMax

served as our paradigmatic example in Chapter 1 of the average case analysis of a deterministic

algorithm. Recall that the program is

M +- X[l];

for J from 2 to N do

if X[J] > M then M +- X[J} fi od.

We shall be guided in designing assertions to go on loops by the way that we have handled

loops in the chromatic plumbing metaphor. On a loop, we shall make an assertion-something

like a loop invariant in Floyd-Hoare verification-that describes all at once everything that

happens around the loop. In particular, the probabilistic assertions that we put on the loop will

describe the demon reports that come back from the loop in the plumbing network. We shall

indicate points on the network with Greek letters in the program; enclosed in double brackets.

In Find.Max, we might associate a loop-descriptive assertion either with the beginning of the

loop body at the point {3, or with the end at the point 1:

M +- X[l] llaD;
for J from 2 to N do

llfJD if X[J] > M then M +- X[J] fi ll"YD od.

The analysis of the Find.Max program will have to include a description of the probabilistic

distribution of the current maximum M. This kind of information will presumably come either

from atomic assertions of the form Pr(M = m) =Cm or of the form Fr(M = m) = Cm.

For example, just after the assignment M +- X[l], at control point a, we could describe the

distribution of M either by the probabilistic assertion

Pr(M = X[l]) = 1

or by the frequentistic assertion

(Fr(M = X[l]) = 1) A [Fr(M :/: X[l]) = O].

But now consider what an assertion on the loop might be like. From a mathematical point

of view, we would like to consider M to be a different random variable each time through the

loop; in particular, at 1. the end of the loop body, M will be equal to the maximum of the

first J elements of the input array, and will have the distribution of that maximum. Therefore,

we want to describe the distribution of M as a function of J. If we are using frequentistic

atomic assertions, this isn't difficult All we have to do is assert the conjunction of ·a class of

atomic assertions of the form

Fr(fM = m] A [J = j]) = Cm,j·

---·-·----------

UVI:'\G WITH LOOPS 31

This type of assertion can describe the distribution of M for each possible value of J completely

independently. In fact, these assertions really give the joint frequency distribution of M and J,

and hence treat M and J symmetrically.

On the other hand, suppose that our atomic assertions were of the probabilistic variety, that

is, of the form Pr(P) = e. In the loop-free case, we could define what this type of statement

meant in terms of the reports of demons in the chromatic plumbing metaphor; in particular,

we defined the expression Pr(P) to denote the fraction by weight of all of the pellets reported

that satisfied the predicate P, or equivalently,

Pr{P) = Fr(P} .
Fr{ TRUE)

In the presence of loops, it is much harder to decide upon an appropriate denominator for

this ratio. There are several decisions we could make on this question, but none of them are

completely satisfactory. We want to determine some partition of the set of all pellets that pass

by a demon, and then do our probability calculations on each class of this partition separately.

Dividing by the total weight of the class will scale things so that each class looks like a probability

space by itself.

The first option is to put all of the pellets into one big class, which means that we continue

to divide by the total weight of all of the pellets that pass the demon. In our example, however,

note that this total weight is larger than one gram. In fact, the total weight of all pellets passing

points f3 and "'I in the network will be precisely N - 1 grams, since the body of the loop

is always executed precisely N - 1 times. Therefore, if we choose this option, probabilistic

assertions at either f3 or I will behave like frequency assertions that have been rescaled by a

factor of N - 1. That might be helpful if the same thing were happenmg each time around

the loop; dividing by the total mass would then just remove the multiplicative factor of N - 1

from the frequencies. But we just agreed that we would like to describe the distribution of M

independently for each possible value of J. Thus, the rescaling would just be a nuisance. We

don't want to treat all of the pellets at once when we assert our probabilities, but rather only

those pellets that correspond to "this time around the loop."

This suggests a second alternative, which is the option that Ben Wegbreit adopted in the

construction of his formal system [33]. Note that, in this example program at least, we intuitively

want to consider M as a random variable but J as a non-random variable. The behavior of J

can be analyzed by Floyd-Hoare techniques, since there is nothing random about it. The random

behavior is centered in the input array X and the variable M. When such a clear distinction

exists between random and non-random components of the process state, we can choose to treat

those components differently; in particular, we can partition the set of all pellets on the basis

of the values of the non-random variables. In FindMax, we would then make atomic assertions

of the form

Pr(M = m} = Cm,J1

32 FORMALIZING THE ANALYSIS OF ALGORITHMS

where this would be interpreted in terms of the demon reports as

A [Fr([M = m] A [J = j]) = ·]·
1.\ Fr(J = j) Cm,,

3

That is to say, non-random variables would be treated as in Floyd-Hoare systems, and could

hence appear on the right-hand side of probabilistic atomic assertions. Such an assertion is

interpreted as describing the proportion by weight of those pellets corresponding to a particular

combination of values of the non-random variables that also satisfy the stated predicate. Note

that, in the case of FindMax, this idea of partitioning the process state into random and non·

random coponents works very well, and allows us to give the distribution of M as a function

of J just as we desire.

The program InsertionSort, which is the major example in Ben Wegbreit's paper, also has

the property that the process state can be cleanly partitioned into random and non-random

components; the array being sorted is random, while the pointers into that array are non-random.

Despite the success of these two examples, however, it is by no means clear that this partitioning

of the process state will be easy or even feasible in general. It might be the case that all of the

program variables display random behavior of one sort or another. Even if a partition is possible,

it is a little unpleasant to have to treat non-random variables differently from random ones; it

would be simpler if a non-random variable were simply a random variable whose distributions

all had their mass concentrated at a single point

There is a third possibility that is worth mentioning just to demonstrate its problems. We

could partition the set of all pellets into subsets by considering the execution history of each

pellet. Those pellets that had taken precisely the same path through the plumbing network

from the input funnel to their current location would be deemed to be in the same class, and

the quantity Pr(P) would denote the percentage by weight of the pellets in such a class that

satisfied predicate P. It is best to think about this scheme in terms of the chromatic plumbing

network. Suppose that instead of dumping a bag of separate pellets into the input funnel, we

instead dropped a pie-chart, whose slices were sized and colored to model the input distribution.

At a fork in the network, a pie-chart would break into two smaller pies, describing the TRUE

and FALSE slices of the input pie respectively. At an assignment box, the pie slices would be

recolored as dictated by the assignment, and, at a join, any pie coming in either in-branch would

proceed independently down the out-branch. Then, if we view a probabilistic atomic assertion

as describing the sizes of pie slices, say as fractions of 211' radians, we have a model for this

execution history scheme.

At first blush, such a pie-slicing scheme looks pretty good. Without any partitioning of the

process state into random and non-random components, it manages to partition the set of all

pellets in a reasonable way. In a simple for-loop, for example, we would expect this scheme to

put into one class all those pellets that had gone around the loop the same number of times.

But think about our FindMax example. The body of the loop is itself an if-statement, and every

LIVING WITH l.DOPS 33

time that the pies pass through this if-statement. they will be further divided. Thus, we shall

be left computing probabilities over too fine a partition; two pellets will be equivalent only if

(i) they have gone around the for-loop the same number of times, and (ii) they have followed

the same branch of the if-test each time around.

The problem of overly fine partitions shows up in other funny ways as well. For example,

in a formal system based on a pie-slicing scheme, the program

if K = 0 then nothing else nothing fi

is not a no-op. Suppose that a pie with two slices of equal size, one colored K = 0 and the

other colored K = 1 enters the input funnel; that would correspond to the input assertion

(Pr(K = 0) =!]A (Pr(K = 1) = !].

Then, there will emerge from the output chute two distinct pies, one colored K = 0 and the

other colored K = 1. The input assertion would not correctly describe this output state; instead,

we would have to make the output assertion

(Pr(K = 0) = l] V (Pr(K = 1) = l],

where each atomic assertion describes one of the pies. And it is very unfortunate to have a

program that does nothing, but still affects the assertions that move through it. Thus, although

partitioning on execution history tends to divide up the set of all pellets in something like the

right way, it isn't right enough in general to build into a formal system. If we had some way to

specify which characteristics of the execution history should cause pies to split and which should

not. a scheme based on pie-slicing might work very nicely.

The net result of all this is that there doesn't seem to be any good way to partition up the

pellets for scaling purposes. The unpleasant characteristics of any of the above schemes seem to

outweigh the relatively minor hassles of using frequencies throughout. And in addition, the use

of frequencies solves the Leapfrog problem. The only way in which frequencies are less pleasant

to work with than probabilities is that frequencies don't necessarily sum to 1. But the only way

to guarantee that the right-hand sides continue to sum to 1 is to perform some sort of rescaling,

and all choices for these rescalings run into difficulties of one sort or another.

Therefore, we shall hereby give up on probabilities entirely. In the future, we shall stick

to atomic assertions that talk about frequencies instead.

The presence of loops does present one challenge even to those who have been converted

to a frequentistic way of thinking, however: what about infinite mass? As we pointed out earlier,

the presence of loops implies that the reports of demons will not necessarily lie in ~+, although

they will lie in ~·. So far, we have been considering the characteristic set of an assertion to be

a certain subset of~+. Unless we were to change that definition, and to think instead of an

assertion as describing a subset of ~·, there is no chance that the assertions we make on loops

can really describe the reports that demons on those loops will send back. We shall see shortly

that there are other reasons why the assertions we put on loops won't necessarily describe the

reports of demons on those loops accurately. Therefore, we shall postpone the resolution of the

~+ versus ~· question until after we have explored the issues further.

34 FORM:ALIZING THE ANALYSIS OF ALGORITHMS

E

Figure 3.1. The Flowchart of CountDown.

Summary Assertions.

To further develop our knowledge and intuition about programs with loops, it is important

that we do an example in some detail. In order to tackle FindMax, we have to face the thorny

question of how to describe the distribution of a random permutation formally, since the input

to FindMax is one of them, and random permutations are tricky. So we shall postpone a detailed

treatment of FindMax for now, and consider instead a simpler example program:

CountDown: while K > 0 do K +- K - 1 od.

Let n represent a fixed, nonnegative integer. We shall start off the CountDown program with

one gram of execution mass in which K = n with certainty; that is, we shall assume the input

assertion

[Fr(K = n > 0) = l] /\ [Fr(K-:/= n) =OJ.

This assertion is associated with the control point a, where the control points a through E are

shown in Figure 3.1 and indicated textually below:

ffa] while [,B] K > 0 do [I] K +- K - 1 [c5] od [t].

A glance at the flowchart already shows us some things about what demons will report; for

example, the report from point ,B will be exactly the sum of the reports from points a and c5.
What assertions shall we make at the various control points? First, we shall let ourselves

be guided by our intuition of what really happens, and attempt to characterize that truth with

our assertions. This approach leads us to the assertions

a: [Fr(K-:/= n) = 0) /\ [Fr(K = n > 0) = l]

,B: (Fr([K < O] V [K > n]) = 0) /\ f\ (Fr(K = k) = 1)
O<k~n

"'{: (Fr([K <OJ V [K > n]) =OJ/\ f\ [Fr(K = k) = 1)
O<k<n

(3.1)

8: (Fr([K < O] V [K > n]) = 0) /\ f\ (Fr(K = k} = 1)
O~k<n

E: [Fr(K-:/= O} = o] /\ [Fr(K = 0) = l].

LIVING WITH WOPS 35

If K is the only program variable, the assertions (3.1) all specify a frequentistic state exactly;

that is, they each have a characteristic set that contains precisely one point of g+. If there are

other program variables besides K, and hence other components in the process state, then each

of these assertions describes some larger subset of g+. The important thing to note, however, is

that in either case these assertions look everywhere locally correct. That is, an individual looking

at the input and output assertions of any single flowchart feature by itself would agree that the

output assertions follow from the input assertions. In some cases, this consistency just reflects

an arithmetic fact about the subsets of g+ that these assertions describe; we have

,B=a+c
')' = ,8 I (K > 0)
€ = ,8 I (K < 0)

where each Greek letter in these equations stands for the corresponding assertion in (3.1). There

should be one more equation relating our five assertions, since we expect the input assertion to

determine the rest. This remaining relation concerns the affect of the assignment statement, and

this is something that we haven't yet considered in detail. But, when we do, it seems clear that

we shall agree that the truth of 1 before the assignment K +- K -1 implies the truth of 8 thereafter.

Our hope is to build a formal system in which the correctness of an augmented program

can be verified by just checking that the program is everywhere locally correct in the above

sense. In particular, the CountDown program augmented with the assertions of (3.1) should be

a theorem of the system. This suggestion is the probabilistic analog of what happens in Floyd·

Hoare verification.

In Floyd· Hoare systems, the difficult characteristic of a loop is the fact that execution mass

keeps corning back to the top of the loop and joining the input arbitrarily often. When the mass

corning around the loop joins the input stream, the logical operation performed in Floyd-Hoare

is an "or". Therefore, a predicate on the loop must be the "or" over all n of the predicates that

would describe the mass going around the loop for the nth time. A loop-cutting predicate in a

Floyd· Hoare system, then, is an invariant, the result of an infinite disjunction in some sense. In

our probabilistic world, it is still mass corning back to the top of the loop arbitrarily often that

is the problem, but the connective that occurs at that join is "plus" rather than "or". Therefore,

the loop cutting assertions in our system are the limits of infinite summations; we shall call them

summary assertions to contrast them with the invariants of Floyd-Hoare. The summary assertion

of a loop describes all of the mass that will ever go around the loop.

It is convenient to associate with each looping construct in the language a particular point

in the corresponding flowchart at which to make the summary assertion for that construct. This

choice is basically arbitrary, but it is good to establish an explicit convention at the outset,

and stick to it. For example, consider the while-loop of the CountDown program; we might

conceivably pick any of the three control points ,8, /, or 8, and distinguish the corresponding

assertion as the summary assertion for the loop. Point f3 would correspond to the convention,

"Describe all of the mass about to enter the control condition"; point 1 would be, "Describe

36 F'ORi\fALIZING THE ANALYSIS OF ALGORITHMS

the mass about to begin execution of the loop body"; and point 6 would be, "Describe the

mass emerging from the loop body". It would be hard to choose between "1 and 6, so we shall

adopt the ,8 alternative as our convention: a summary assertion describes the execution ftow at

the point where it enters the control test, the test that will determine whether or no~ the 109p

exits. Note that this alternative makes our summary assertions just a little more "summary" than

either of the others; every pellet goes past the point f3 one more time than it goes through the

loop body itself. This convention also generalizes nicely to handle the more general looping construct

loop S while ff~D P: T repeat;

we shall stipulate that the summary assertion describes the ftow through the point ~.

A further convention needs to be established for for-loops, dealing with the loop index.

Consider the for-loop

for J from l to u do S od.

To be consistent with our convention for while-loops, we presumably want the summary assertion

of the for-loop to describe all of the flow entering the test of the loop index J against the

upper bound u. But we must decide whether the assertion will use the incremented or non­

incremented value of J. For example, suppose that the explicit for-loop

for J from 1 to n do nothing od

is entered with one gram of mass, so that Fr(TRUE) = 1 on input A convention employing the

incremented value of J would dictate the summary assertion

[Fr((J < l] V (J > n + 1]) = OJ A f\ [Fr(J = j) = l],

but a convention employing the non-incremented value of J would give

[Fr([J < O] V (J > n]) =OJ A f\ [Fr(J = j) = l]
O<j<n

as the summary assertion. The difficulty stems from the fact that, while the body of the loop

is execute~ exactly n times, corresponding to the n integers between 1 and n, the summary

assertion must describe n + 1 grams of mass. These two conventions describe this extra mass

as the J = n + 1 mass and the J = 0 mass respectively.

The latter convention actually works out more neatly from a notational point of view. But

unfortunately, it is hard to convince a programmer that a for-loop from 1 to n actually starts

at 0. The standard implementation of the for-loop in terms of a while-loop is

J +-l;

while J < u do S; J +- J + 1 od.

---------------·------ ----------·---· ----

LIVING WITH LOOPS 37

To allow us to think in terms of this standard implementation, we shall adopt the former

convention, in which the summary assertion of a for-loop is just the summary assertion of the

while-loop in its standard implementation. We shall live with the notational inconvenience that

this convention generates.

It is also convenient to choose some point in the program text where the summary assertion

can be said to hold. When a for-loop is expanded out as a while-loop, this is no problem; the

control point of the summary assertion is just before the J < u test. But when we write the

loop as a for-loop, there really isn't any good place. We shall somewhat arbitrarily choose to

put it right before the do, at the point labelled a in

for J from l to u [a] do S od.

Parenthetically, note that our example assertions only make sense if n is nonnegative, so that

the loop is executed at least zero times. It is generally the case that for-loops with u < l - 1

cause more trouble to verification efforts than they are worth; we hereby forbid them.

Fictitious Mass.

In the last section, we saw that the assertions (3.1) that describe the actual behavior of

the CountDown program have the property that they look everywhere locally correct. Reasoning

in that direction is the easy part. The more interesting question is the converse: if a group of

assertions look everywhere locally correct, does this mean that they do in fact describe reality?

As one might expect, funny things can happen when one attempts to reason in this direction.

For a first example, consider the completely trivial looping program

ErnptyLoop: while K > 0 do nothing od;

and assume that this program is started in a frequentistic state satisfying the assertion

(Fr(K = 0) = 1) /\ (Fr(K =/: 0) = 0). (3.2)

From our knowledge of programming reality, we can see that the body of the loop in Empty Loop

will never be executed; the one gram of mass that enters the input funnel will fail the K > 0

test, and will fall out after zero iterations of the loop body. We can describe this reality by

using the input assertion as the summary assertion for the loop. On the other hand, consider

the following assertion as a candidate for a summary assertion:

(Fr(K = 0) = 1) /\ [Fr(K = 4) = 7) /\ (Fr([K =/: O] /\ [K =/: 4]) = 0). (3.3)

This summary assertion not only describes the one gram of mass with K = 0 that we discussed

above, it also claims the existence of seven grams of mass in which K has the value 4. Of

course, these seven grams don't correspond to anything that happens in the real world. But

let us consider how this summary assertion looks from an everywhere local point of view. The

38 FORMALIZING THE ANALYSIS OF ALGORITHMS

summary assertion, of course, describes all of the mass entering the control test Note that the

one gram with K = 0 will be rejected by this test, and will leave. the loop as expected; the

seven grams with K = 4, however, pass the test, and enter the body of the _loop. Since the

body of the loop is empty, these seven grams emerge unscathed at the end of the loop body,

and now they can combine with the one gram of input mass to support all of the mass described

by the summary assertion.

What is going on here? The loop of our trivial program has the property that pellets of

some colors will travel around the loop completely unchanged. If we choose a summary assertion

that ascribes nonzero mass to any such color of pellet, the assertion will look everywhere locally

correct, even though it is global nonsense. We shall call this phenomenon fictitious mass; that

is, our example assertion describes seven fictitious grams of execution mass going around the

loop, the seven in which K = 4.

There is no obvious way to eliminate the possibility of fictitious mass. In any particular

case, we can prove that the fictitious mass doesn't really happen. In the EmptyLoop case, for

example, we can argue by induction that, since K is never 4 on entry to the loop, and since

the loop can't produce K = 4 mass out of other mass, there won't ever be any K = 4 mass

going around the loop. In fact, we noted earlier that the input assertion (3.2) is an acceptable

summary assertion for the loop, and this proves that the K = 4 mass must be fictitious. But

that doesn't eliminate the problem that the summary assertion (3.3) also looks everywhere locally

correct

Note that the fictitious mass described by summary assertion (3.3) is caught entirely inside

the loop, however. If we perform an anlysis of EmptyLoop with assertion (3.3) as the summary

for the loop, we would deduce that the output assertion should be

[Fr(K = 0) = l] /\ [Fr(K ~ 0) = 0),

the same as the input assertion and in fact, the correct result. Although the summary assertion

is describing more than what really happens, the extra stuff, the fictitious mass, is confined to

the loop, and has no effects that are visible from outside the loop.

In Kozen's semantics, a loop is interpreted as the least fixed point of an affine transformation.

It might appear at first glance that this definition eliminates the problem of fictitious mass, but

in fact there is really no connection between fictitious mass and the non-least fixed points of the

affine transformation. A non-least fixed point assigns a value to the program in the cases where

it would "really" run forever; and the effect of this is visible from outside the loop. Fictitious

mass, on the other hand, is not visible from outside the loop; in fact, it only makes sense to

talk about fictitious mass if you are describing what goes on inside the loop.

Fictitious mass comes in more interesting flavors as well. First, suppose that a loop has

the property that one gram of red mass is transformed into one gram of green mass by going

around the loop once, and vice versa. Then, a summary assertion for such a loop can assert

the presence of an arbitrary amount of red and green mass, as long as the amounts are equal:

----- -- ------~----------------- ---

LIVING WITH LOOPS 39

the red will support the green and the green will support the red. Similarly, fictitious mass can

involve a cycle of states of any length. We can also get fictitious mass from an infinite sequence

of states in a chain, instead of from a finite sequence of states in a cycle. If the program

while K > 0 do J +- J + 1 od

is executed by a process starting with one gram of mass in which K is 0, the summary assertion

that reflects reality is

(Fr(K = 0) = 1) /\ (Fr(K =;f 0) = 0).

But the summary assertion

(Fr(K = 0) = 1) /\ (Fr([K =;f OJ/\ [K =;f 3)) = 0) /\ /\(Fr([K = 3) /\ [J = j]) = 5)
;"

also looks everywhere locally correct, even though it describes in some sense five fictitious

executions of the loop in which K is 3 and J counts through all the integers.

No matter what the flavor of fictitious mass, it is still the case that all of the effects of that

mass are confined to the inside of the loop around which the mass is circulating. Unfortunately,

this confinement is not the case with time bombs.

Time Bombs.

Consider again the CountDown example program

while K > 0 do K +- K - 1 od,

starting it off this time with a frequentistic state satisfying

(Fr(K = 0) = 1) /\ (Fr(K =;f 0) = 0). (3.4)

What will really happen is precisely nothing; the one gram of input mass will fail the control

test K > 0 and exit immediately. But suppose that we decide instead to try out the summary

assertion

(Fr(K < 0) = 0) /\ (Fr(K = 0) = 8) /\ /\ (Fr(K = k) = 7). (3.5)
k~l

This assertion turns out to support itself around the loop. First, the mass it describes hits the

control condition; the eight grams in which K = 0 are steered out of the loop, while all of

the rest of the mass, seven grams with K = k for all positive k, is steered around the loop

again. The net effect of the loop body is to tum this mass into seven grams with K = k for all

nonnegative k; and this mass, when added to the one gram of input mass, gives us just what

we need to support the summary assertion again.

40 FORMALIZING THE ANALYSIS OF ALGORITHMS

This is ·quite a serious matter, since our analysis suggests that there is a program which

control exits eight times as often as it enters! In fact, by similar reasoning, we could use the

input assertion Fr(TRUE) - 0 and the summary assenion

(Fr(K < 0) =OJ/\ f\ [Fr(K = k) = 7},
k>O.

to show that the program CountDown can also be exited seven times on the average even when

it is not entered at all. This general phenomenon might be called a time bomb; there is an

infinite amount of mass circulating around the loop, ticking all the while, and when some of

it gets down to the K = 0 state it exits from the loop. Note that, while fictitious mass is

merely unpleasant, the presence of time bombs is fatal to a formal system. Once a system allows

the deduction of one false result, then (for most logical systems at least) every formula can be

deduced, and one loses interest in the system.

We can learn to tolerate fictitious mass, but we have to get rid of time bombs somehow.

Basically, to get rid of them, we shall outlaw summary assertions that describe an infinite amount

of mass. It will take us a while, however, before we can flesh out this insight, and show that

such a restriction really does restore the soundness of our system.

It is too bad that assenions describing an infinite amount of mass have to go. From another

point of view, they would be very helpful. Consider the program

CountUp: while K > 0 do K +- K + 1 od.

If a process begins to execute this program in a state where K is 1 with certainty, the one gram

of mass that enters the loop will be caught inside the loop forever. We can describe what really

happens during the execution of this program by the input assertion

(Fr(K = 1) = l] /\ (Fr(K-:/:- 1) = 0) (3.6)

and the summary assertion

(Fr(K < 0) =OJ A f\ [Fr(K = k) = l]. (3.7)
k>I

This summary assertion does describe an infinite amount of mass, but for the excellent reason

that there really is an infinite amount of mass flowing through the loop. Unfortunately, it is

difficult to distinguish between legitmate situations like this one and time bombs. The question

is whether the mass being described represents a realistic computation, one that started at the

input funnel of the network, and has followed some finite path through the network to get to its

current position. Fictitious mass represents computations that never started and will never stop,

but just loop around; and time bombs represent in some sense computations that have been

going around the loop since before time began, but that are just waiting to come out when the

LIVING WITH LOOPS 41

time is right. In order to distinguish between real mass, fictitious mass, and time bombs, we

would have to add some notion of either time or of execution history to the chromatic plumbing

metaphor. But the fact that chromatic plumbing deals only with the time-integrated flow of

control through the program is one of its strong points. Instead of trying to add a notion of

time, we shall concentrate on seeing how far we can get without such a notion. And, without

such a notion, any dealings with infinite mass raise the specter of time bombs.

Even if we are forced to outlaw any assertions that describe an infinite amount of mass,

note that we can still detect when infinite loops are occurring. The trick is to avoid describing

the computations that don't terminate, and to deduce their presence from the external description

of the loop, in particular, from the fact that more mass enters the loop than leaves it. For

example, consider the program CountUp once again, started in a state described by assertion

(3.6). We can substitute for (3. 7) the less informative but still accurate summary assertion

[Fr(K < 0) =OJ; (3.8)

this assertion supports itself around the loop, and also supports the realistic output assertion

Fr(TRUE) = 0. Now, it could be argued that assertion (3.8) itself describes an infinite amount

of mass; after all, the real behavior of the program, which is a point in <5* but not in <5+,

is an infinite measure and it satisfies (3.8). On the other hand, assertion (3.8) also describes

many frequentistic states with only finite total mass including, in fact, the state with no mass

at all. It will tum out that such summary assertions are legal. We can more accurately describe

the assertions that must be outlawed as those that are satisfied only by frequentistic states with

infinite total mass.

Thus, without breaking our rule about infinite mass, we can verify that no part of the one

gram that enters the CountUp loop ever gets out. This demonstrates that all the parts of that

gram must reflect non-terminating computations; we can deduce the presence of infinite loops

even when the assertions do not explicitly describe what goes on during them. One might call

this the technique of tacit divergence. Some of the execution mass that enters the loop may go

around it infinitely often, but the summary assertion of the loop doesn't describe this mass, and

its presence is instead deduced by study of the loop's input-output behavior.

The Characteristic Sets of Assertions.

Now that we have a better sense of what happens with assertions and loops, it is time to

return to an issue that we left open some time ago: is the characteristic set of an assertion a

subset of <5* or of <5+? If we wanted the characteristic set of the summary assertion of a loop

always to contain the demon's report for that loop, we would have to choose <5*. We would

also have to find some way of guaranteeing that our summary assertions did not describe any

fictitious mass, and such a way does not seem to be easy to find. This suggests that there is less

motivation than one might initially suspect for choosing <5*. In addition, choosing <5* causes

a severe difficulty in another area. If we choose <5*, then all assertions, not just the summary

assertions of loops, would describe certain subsets of <5*. Consider what that would mean. If

42 FORMALIZING IBE ANALYSIS OF ALGORITHMS

the input assertion of a program can describe infinite measures, then we have to define what it

means to execute a program beginning with an infinite frequentistic state. This would demand

a non-trivial extension of Kozen's semantics, since that semantics currently interprets a program

as a linear map from GJ to GJ, and hence only defines the meaning of the program for finite

input measures.

This last argument is powerful enough to decide the issue. It would be pleasant if the

assertion on a loop really described all of the mass that goes around that loop. And this is an

excellent principle to use when devising summary assertions, as long as the technique of tacit

divergence is also applied. But, from a formal point of view, we shall make the convention that

an assertion describes a subset of g+ rather than a subset of GJ*. As a consequence, inside a

loop, the report of a demon and the corresponding assertion are only tenuously related. The

assertion is forbidden to describe more than a finite amount of what the demon will report, and

the assertion may choose to describe some extra ficitious mass, which the demon won't report.

Chapter 4. The Frequency System

The Meaning of Theorems.

In the preceeding two chapters, we have developed some intuition for what the issues and

choices are in the construction of formal systems for algorithmic analysis. In this chapter, we

shall present a more precise description of a sound formal system called the frequency system

based on these intuitions. Then, we shall tum to the study of examples of the system's use, and

extensions of its power.

First, it is worthwhile to get a general sense of what the theorems in the frequency system

will look like, and what they will signify about the real world. A formula in the frequency

system will have the general form [A]S[B], where A and B are frequentistic assertions and S is

a single-entry single-exit program in a simple ALGOL-like programming language. We shall use

square brackets instead of braces around our assertions to distinguish them from the predicates

of a Floyd-Hoare system. The formula [A]S[B] is true in a semantic sense if and only if the

following statement correctly describes the chromatic plumbing metaphor: If a process begins to

execute S in a (finite) frequentistic state that satisfies assertion A, then all of the execution mass

that ever emerges from the normal exit of S will form a (finite) frequentistic state that satisfies

assertion B. More formally, the assertions A and B describe certain subsets of <!f+, which we

shall denote x(A) and x(B) respectively, and the program S is interpreted as a linear map f

from ~ to ~. The formula [A]S[B] is true if and only if f(x(A)) C x(B).

Note that, unlike the Floyd-Hoare partial correctness situation, there is no assumption of

termination here; if A describes all of the input mass, then B will describe all of the output

mass, no matter how likely or unlikely it is for S to terminate normally. Thus, the frequency

system might be said to be dealing in a strong performance logic instead of a weak performance

logic, or to be analyzing total performance instead of partial performance.

Despite the "strength" of its logic, the frequency system still contains Floyd-Hoare verification

as a special case. Suppose that we wanted to do something in the frequency system that was

equivalent to asserting in a Floyd-Hoare sense the truth of the predicate P at a certain point in

a program. Floyd-Hoare systems use the method of inductive assertions; to assert predicate P at

a point is to claim that, whenever control passes that point, P will hold. Or, to put it another

way, P is true for all of the mass that ever passes that point. We can make precisely the same

stipulation in the frequency system by asserting that Fr(.., P) = 0. This says that no mass ever

passes the demon in which P is false, implying that P is true of whatever mass, if any, does

pass the demon. Note that the atomic assertion Fr(P) = 1 just doesn't say the correct thing at

all; it specifies the total mass in which P is true, which we don't want to do, and it doesn't

forbid the existence of mass in which P is false, which is the whole point Asserting P in a

Floyd-Hoare system correponds to asserting Fr(.., P) = 0 in the frequency system.

This one insight in fact shows us how to do Floyd-Hoare style analyses inside the frequency

system. In particular, compare the Floyd-Hoare formula {P}S{Q} with the formula of the

43

44 FORMALIZING THE ANALYSIS OF ALGORITHMS

frequency system that corresponds to it under the insight above~

(Fr(-iP) = 0) S (Fr(-iQ) = 0).

The Floyd-Hoare version states that, if the predicate P is true upon entry to S, and if S

terminates normally, then the predicate Q will be true upon exit from S. The frequency system

version states that, if the predicate P is never false upon entry to S, then the predicate Q will

never be false upon exit from S. These two statements are completely equivalent, despite the

fact that the first mentions termination and the second doesn't. The two negatives in the second

version do not cancel each other out; they instead manage to sweep the issue of termination

adroitly under the rug. This phenomenon in which a double negative finesses the assumption

of termination appears also in Pratt's dynamic logic (11, 12].

There is thus a correspondence between Floyd-Hoare predicates and frequentistic atomic

assertions with a zero right-hand side. We have just used this correspondence to show how to

translate a Floyd-Hoare analysis into the frequency system. We can also use the correspondence

in the reverse direction to help explain the structure of those frequency system analyses that we

have already studied. For example, our analysis of the true performance of the CountDown program

ffa] while ff,8] K > 0 do h] K - K - 1 ff6] od fft]

when started with one gram of K = n mass was given by the assertions of (3.1),

a: [Fr(K ~ n) = O] /\ [Fr(K = n > O} = l]

(3: [Fr([K < 0) v (K > n]) = o] /\ A [Fr(K = k) = 1]
<>::;;kSn

"1= (Fr((K < 0) v (K > n]) = o] /\ A· [Fr(K = k) = 1]
O<kSn

6: [Fr((K < O] v IK > n]) = o] /\ A (Fr(K = k) = 1]
O<k<n

E: (Fr(K ~ 0) = o] /\ [Fr(K = 0) = !).

If we consider just the atomic assertions with zero right-hand sides, we can see that they

correspond exactly to a Floyd-Hoare partial correctness analysis of the behavior of CountDown.

The corresponding predicates are, after stripping off the double negatives,

a: K=n
(3: O<K<n

"1= O<K<n
6: O<K<n
E: K=O.

This correspondence between Floyd-Hoare analysis and zero right-hand side atomic assertions is

so close that we shall occasionally use it as a license to be a trifle sloppy. When we are doing

TI:IE FREQUENCY SYSIB\.i 45

a frequency system analysis of a program for which the Floyd-Hoare analysis is straightforward,

we shall sometimes leave off the atomic assertions that mimic the corresponding F,loyd-Hoare

analysis. This convention saves a significant amount of space when writing down the analyses

of more complex programs, and focuses our attention on the other atomic assertions, the ones

that say something new.

Certainty versus Truth with Probability One.

This is as good a place as any to state a general caveat about the frequency system,

concerning the delicate distinction between certainty and truth with probability one. When the

universe that one is dealing with has an infinite amount of randomness, events might exist

that are not fundamentally impossible, but that occur only with probability zero. For example,

suppose that a program is given as input the results of an infinite string of independent tosses

of a fair coin. The program begins to examine these tosses, looking for one that came out H, for

"heads". As soon as a single H is found, the program will terminate, but as long as it continues

to see only T, for "tails", it will keep looking. This program will examine precisely k of the

tosses with probability 2-k; the expected number of tosses examined is just 2. Yet, this program

does not constitute an algorithm by the standard definition, since there is no finite bound on

how long the program can run. In particular, the program will run forever with probability zero,

exactly when the input happens to consist entirely of T's.

Let (X[i])i>O represent the input to this program, an infinite sequence of independent

random variables, where each X[i] is equally likely to be H or T. In order to handle this

program in the frequency system, we would need to characterize in our assertions the probabilistic

structure of this input. Since the sequence (X[i]) will be independent if all of its finite initial

segments are, we would want to give an assertion something like

/\ [Fr(('v'i)(l < i < n:::} X[i] =xi))= 2-n].
n>O

(:ri.z:z, ... ,zn)E{H, T}n

We can keep things simpler, however, if we allow the program to flip coins when it needs

the results. Then, instead of giving the program all the randomness it will ever need in the

initial input, the program can generate that randomness on the fly. For convenience in handling

examples like the coin flipping program, we shall therefore allow our programs to make random

choices. This is not as large a change to the framework as one might guess; remember that it

was the consideration of exactly these sorts of programs that led Dexter Kozen to develop his

semantics. We shall write a random assignment

X +- Randomp,

where F denotes a probability distribution for values of X's data type. This assignment means

that the current value of X should be replaced by a value chosen at random from the distribution

F, independently of everything else that has happened. With the ability to make random choices,

46 FORMALIZING lHE ANALYSIS OF ALGORITHMS

we can code the program CoinFlip quite neatly as a repeat-loop,

CoinFlip: loop X +- RandomHr; while X = T repeat;

here the subscript HT represents the distribution of a fair coin, which ascribes probability ! to

each of H and T. We shall assume that the program variable X is of data type Coin, which has

only the two values H and T. With this convention, we won't have to bother carrying around

the assertion

Fr([X =/: H] A [X =;if T]) = 0

all the time; that information is built into the Coin data type.

Consider analyzing this program in the frequency system. If we put one gram of mass into

the input funnel, we shall get out 2-k grams after k coin flips for each positive k. All told,

we shall get one gram back out again. But even though we get out one gram, we don't get out

everything that we put in; mass constituting a set of measure zero is caught in the loop forever.

Thus, the frequency system can deal only with total correctness from an "almost everywhere"

point of view. If the same amount of mass comes out of a loop as goes in, we can conclude

only that the loop terminates almost always; the user of the frequency system must be content

with that assurance. In fact, this "almost everywhere" qualification occurs almost everywhere in

the frequency system. We earlier described those states that satisfy the input assertion

[Fr(K = 1) = 1) A [Fr(K =/: 1) = O]

as states in which I(has the value 1 with certainty; to be more accurate, we only know that K
has the value 1 with probability one. Also, consider our embedding of Floyd-Hoare arguments

into the frequency system. We claimed that the frequency system assertion Fr(., P) = 0 was the

equivalent of the Floyd-Hoare predicate P; strictly speaking, that isn't true either. The Floyd­

Hoare predicate P claims that P always holds, but the assertion Fr(., P) = 0 claims only that

P is false with probability zero, not necessarily that it is always false.

In general, then, every claim that an assertion makes about the frequentistic state or behavior

of a program should be qualified by a clause indicating that sets of measure zero are ignored.

But now that we have discussed the situation, we shall feel free to elide this qualification most

of the time.

Going back to the, CoinFlip program, it is interesting to note that the summary assertion

for the repeat-loop does not need to talk about the powers of 2 at all. Instead, we can merely

assert right before the control test that

(Fr(X = H) = 1) A (Fr(X = T) = !].

At the control test, the one gram of H mass will exit the loop, and the one gram of T mass will

remain to join the one gram of input mass. These two grams will then be evenly distributed

between H and T by the ·random assignment, ready to support the summary assertion again.

TIIE FREQUENCY SYSTEM 47

Weak versus Strong Systems.

When we use atomic frequentistic assertions with nonzero right-hand sides, the discussion

at the beginning of this Chapter indicated that we are working in a strong logic of some sort,

one that has the power to talk about termination. For example, the frequency system formula

([Fr(P) = l] A [Fr(-iP) = 01) S ([Fr(Q) = l] A [Fr(-iQ) = 01]

claims that the program S is totally correct with respect to the assertions P and Q (if we ignore

sets of measure zero). It is helpful to compare the reasoning about termination that occurs

in the frequency system with the methods that are normally used in total correctness program

verification systems.

There are two primary methods for giving proofs of termination: counter variables, and well­

founded sets. We have already discussed the method of counter variables as a way of formalizing

the upper bound part of worst case analyses [exercise 1.2.1-13 in 18, 24]. In this method, a new

variable is added to the program, initialized to zero, and incremented once each time control

goes through the loop. Then, using standard partial correctness techniques, the value of this

counter is bounded by some function of the program's input The existence of such a bound

guarantees the termination of the loop. The method of counter variables is somewhat limited for

proving termination, because it requires the existence of suitable bounds on the running time of

the program; it is often possible to prove the termination of a program without knowing such

explicit bounds, using the method of well-founded sets [8]. In this method, a loop is shown to

terminate by demonstrating that a certain expression in the program variables has values that lie

in a well-founded set, and that every execution of the loop causes the value of this expression

actually to decrease. Since there are no infinite decreasing sequences in well-founded sets, this

proves that the loop must terminate. This method has greater applicability; that is to say, it

allows proofs of termination with less explicit knowledge about the behavior of the program

than the method of counter variables.

Implicit in the previous paragraph is the sense that a method for proving termination is

powerful in as much as it allows proofs of correctness while specifying as little as possible about

the structure of the terminating computation. In this hierarchy, the frequency system ranks as a

weakling, since it can only demonstrate termination of a program (with probability one) when we

are willing to describe in detail everything that ever happens during that terminating computation.

As an example, consider the CountDown program once again,

while K > 0 do K - K - 1 od.

Note that, regardless of the characteristics of the input distribution, this program always halts.

Proving this would be a triviality for a total correctness verification system; since every execution

of the loop body reduces K by 1, that body cannot be executed more times than the value of

K on input. If we work from the input assertion [Fr(K = n) = l] A [Fr(K =j:. n) = O] where

48 FORMALIZING THE ANALYSIS OF ALGORITH.\.1S

n is some nonnegative integer, then we can perform an analysis in the frequency system that

shows termination as well; the summary assertion for the loop is

(Fr([K <OJ V [K > n]) =OJ/\ /\ (Fr(K = k) = l],
0:5k:5n

as we have seen before. But now suppose that we work in the frequency system with the input

assertion Fr(TRUE) = 1, which doesn't explicitly describe the probabilistic distribution of K.

There really isn't anything that we can do; it is hopeless to try to construct an informative

summary assertion unless we can talk about the distribution of K on input. It would be enough

to know K's input distribution in symbolic form, say from an input assertion of the form

/\[Fr(K = k) = ak]
k

for an unspecified sequence (ak). but we have to know something more than Fr(TRUE) = 1. The

frequency system has many sterling characteristics, but power in proving termination. is not one

of them. In building the frequency system, we aren't focusing on demonstrating the termination

of a program about whose computations we know relatively little; rather, we want to devise a

formal language to describe all the intricate probabilisitic characteristics of those few programs

about whose computations we know almost everything.

The Extremal Assertions.

There is one other issue where a small discussion will perhaps help to clarify the distinction

between Floyd-Hoare systems and the frequency system. In a Floyd-Hoare system, if one wants

to describe the execution of a process about which one knows nothing, one asserts the predicate

TRUE. Since TRUE is always true, this predicate doesn't claim anything. We can find the

corresponding null assertion in the frequency system by employing our standard translation, which

results in the atomic assertion Fr(., TRUE) = 0, that is, Fr(FALSE) = 0. This atomic assertion

clearly holds for every frequentistic state, because every measure ascribes zero mass to the null

set. In fact, the atomic assertion Fr(FALSE) = 0 is equivalent to the assertion TRUE: they both

have all of t!f+ as their characteristic sets.

The other extremal predicate in a Floyd-Hoare system is the predicate FALSE. If one asserts

the truth of this predicate, since FALSE can never be true, one is claiming that control never

passes the corresponding point in the flowchart. The characteristic set of FALSE is the empty

set, viewed as a subset of ~. Our standard translation shows that the frequentistic assertion

corresponding to the predicate FALSE is Fr(TRUE) = 0. This assertion claims that a total of zero

grams of execution mass go by, so that, if control ever does pass that point, it does so only

with probability zero. Note, however, that the characteristic set of the assertion Fr(TRUE) = 0 is

not. the null set, but is rather the singleton set containing the zero frequentistic state. Therefore,

the atomic assertion Fr(TRUE) = 0 is not equivalent to the assertion FALSE.

THE FREQUENCY SYSTEM 49

On the other hand, there are atomic assertions that are equivalent to the assertion FALSE.

One example is the atomic assertion Fr(FALSE)= l; since the null subset of~ has zero mass in

any measure, this assertion cannot possibly hold for any frequentistic state. Thus, the characteristic

set of the assertiom Fr(FALSE) = 1, like the characteristic set of the assertion FALSE, is the

empty set. These assertions in the frequency system are more false than any predicate, and their

existence has certain consequences for the frequency system. In a Floyd-Hoare system, no matter

what precondition and postassertion we choose, we can find some program that displays that

behavior. After all, the weakest precondition of all is TRUE, and the strongest postassertion is

FALSE, but the formula {TRUE}S{FALSE} correctly describes any program S that never terminates.

In the frequency system, however, there are precondition and postassertion pairs that could not

correctly describe any program. The easiest example is the pair [TRUE]S[FALSE], or equivalently

(Fr(FALSE) = 0) S (Fr(FALSE) = 1).

More generally, any assertion pair whose postassertion demands more total mass than the

precondition allows will also be an impossible pair, since no program can generate executions

out of thin air.

Programs in the Frequency System.

In the next few sections, we shall get down to brass tacks, and begin to discuss the details

of the frequency system. First, we shall sketch out the kind of programs with which it deals.

We commented earlier that the S in the formula [P]S[Q] refers to a program in an AWOL-like

programming language; in fact, now that we are. allowing our programs to make random choices,

we are working exactly with the programs that Kozen called probabilistic while-programs. Our

program variables, which will be written with upper case italic letters, are assumed either to be

of a basic data type, or to represent an array of basic values. The variables can be combined

into arithmetic and logical expressions by means of the standard operators and relations, but the

evaluation of any expression is assumed to terminate normally. There are statements of various

flavors: the empty statement, written

nothing ;

the deterministic assignment of the expression e to the variable X, written

X +- e ;

the random choice of a value for X from the probability distribution F, written

X +-Randomp

the composition of the statements S and T, written

S;T ;

50 FOR.l\1ALIZING nm ANALYSIS OF ALGORITHMS

the conditional statement, written

if P then S else T fi

and finally various sorts of single-exit loops, written

while P do S od ;

loop S while P: T repeat

for J from I, to u do S od

And that is all. Extending the frequency system to handle other control structures such as goto­

statements will be discussed in Chapter 6.

The Assertions of the Frequency System.

The language in which assertions of the frequency system are phrased contains two major

layers. The lower layer is basically the predicate calculus, and its job is to describe and analyze

the deterministic properties of process state. The upper layer then handles the extension to the

probabilistic world.

To be more precise, the lower layer is a first order theory with equality, whose non-logical

axioms describe the essential properties of the basic data types. To build such a theory, we start

with five different classes of symbols, representing respectively constants, mathematical variables,

program variables, functions, and relations. In our text, we shall distinguish the two different

flavors of variables by using upper case italic letters for the program variables and lower case

italic letters for the mathematical variables. Constants, variables, and function applications are

terms, and a relation among terms is an atomic predicate. The formulas of the lower layer

are called predicates, and they are built up out of atomic predicates by means of the logical

connectives -., /\, V, =. and ~ and the quantifiers 'V and 3. Only a mathematical variable

may be bound by a quantifier; program variables must appear freely.

The purpose of a predicate is to specify some of the properties of the deterministic state

of a process. The deterministic state of a process, from our current point of view, is merely an

assignment of values of the appropriate data types to each of the program variables; as before,

let ~ denote the set of all deterministic states. To determine the truth value of a predicate, we

need to fix a deterministic state together with an interpretation in the normal predicate calculus

sense for the constants, mathematical variables, functions, and relations. Of course, we shall only

be interested in those interpretations that satisfy the non-logical axioms of our theory; these

axioms will determine almost everything about the interpretation, and hence we can afford to

ignore the interpretation in what follows. With each predicate, we can then associate a certain

subset of ~ called its characteristic set, the set of all states in which the predicate holds. We

shall restrict ourselves to working with those predicates whose characteristic sets are measurable.

When doing calculations at higher levels in the frequency system, it will often be important

to know what the logical relationships are between various predicates, such as when one predicate

implies another, or when two predicates are mutually exclusive. To be able to establish these facts

1HE FREQUENCY SYSTE.\1 51

formally when necessary, we need a formal system for reasoning about the truth of predicates,

that is, for proving theorems. Such systems have been extensively studied, and formal systems

of various types have been built to do the job; some common systems are based on natural

deduction, or on resolution [25).

On top of this predicate layer, we want to build the language in which probabilistic assertions

are to be phrased. This language, and the formal rules for manipulating strings in it, will be

called the assertion calculus, by analogy with the term "predicate calculus". The main decision

to be made when designing the language of the assertion calculus is what level of generality is

appropriate. The purpose of an assertion is to specify some of the properties of the frequentistic

state of a process, that is, some of the properties of a measure on ~. One way to do this is

to specify exactly the value of that measure on particular subsets of~. This is what an atomic

assertion of the form Fr(P) = e does; it claims that the measure of the characteristic set of the

predicate P is given by the expression e. On the other hand, one could also assert more complex

relations between the measures of different sets. We have already run across one example of

this; recall that in the loop-free world, we discussed the use of probabilistic atomic assertions

of the form Pr(P) = e, where this was interpreted to mean

Fr(P)
-----,... = e.
Fr(TRUE)

And much more complex atomic assertions are imaginable; consider, for example, the formula

2 Fr(P) < Fr(Q)2 + 7. At this point, we shall sketch out a collection of definitions that take a

quite permissive view, and allow even this third· example as an atomic assertion. But later, when

we begin actually to manipulate assertions formally, we shall restrict ourselves to a special class

called the vanilla assertions.

Define a term of the assertion calculus to be either a constant, or a mathematical variable,

or the special real-valued expression Fr(P) for an arbitrary predicate P, or the result of applying

a function to smaller terms. That is, a term in our assertion calculus .is just like a term in our

predicate calculus, except for two factors: the assertion calculus version allows the new Fr(P)

formulas, and it requires that program variables only appear in the predicates P of such formulas.

An atomic assertion is then defined to be a relation among terms of the assertion calculus. An

atomic assertion may include mathematical variables that appear freely; if we choose a value

for each of the free mathematical variables, if any, we can associate with an atomic assertion a

characteristic set, which will be that subset of '!f+ for which the relation holds. Recall that we

are defining the characteristic set of an assertion to be a subset of i:F+ rather than '!F*; that is

why the expression Fr(P) has a value in R rather than R*.

An assertion is built up out of atomic assertions with connectives. First, we can use the

logical connectives ..,, /\., V, ==>, and = of the predicate calculus. We can also allow indexed

versions of /\. and V, which correspond to the predicate calculus quantifiers V and 3 respectively.

All of these logical connectives are defined in terms of the elementary set theoretic operations on

52 FORMALIZING THE ANALYSIS OF ALGORITHMS

characteristic sets. For example, the characteristic set x(A AB) is defined to be the intersection

of the characteristic sets x(A} and x(B).

Furthennore, we can combine atomic assertions with the arithmetic connectives + and I·
Two frequentistic states c and d in c:F+ can be added together with the addition operator of the

vector space c:f. The addition operation on assertions is simply set addition in c:F+; that is, the

characteristic set x(A + B) contains precisely all measures that can be expressed as the sum of

one measure in x(A) and one in x(B). Similarly, the assertion A IP denotes the result of a set

restriction. Recall that, for any measure c in c:r+, the restricted measure c I P ascribes to each

measurable subset M of ~ the weight

(c IP) (M) = c(M n x(P)).

'The characteristic set x(A I P) contains exactly those measures in c:F+ that can be expressed as

the restriction to P of a measure in x(A). We build assertions by combining atomic assertions

with these logical and arithmetic connectives. An assertion, like an atomic assertion, is allowed

to contain free mathematical variables. If these free variables are given values, the assertion then

determines its characteristic set, a subset of c:r+.

Derivations in the Assertion Calculus.

In the last section, we were very liberal in our definitions, and allowed quite a wide class of

assertions. But there is more to the assertion calculus than just the language in which assertions

are written. In doing fonnal derivations in the frequency system, we shall want to verify several

different classes of facts about assertions. First and most obvious, we shall want to check on

occasion whether an assertion has all of c:r+ as its characteristic set, that is, whether it is equivalent

to TRUE. Suppose, for example, that we are at a point in a program where the assertion A is

known to hold, and we want. to know if it is also legitimate to claim the truth of assertion B.

This inherited claim will be '·legitimate if and only if the characteristic set of A is a subset of

the characteristic set of B, that is, if and only if the assertion A = B simplifies to the assertion

TRUE. In order to check out this kind of fact, we have to develop a set of fonnal manipulation

rules for the assertion calculus, like those for the predicate calculus, in order to distinguish the

TRUE assertions. This task might be called .frequency theorem proving.

Notice, by the way, that some cases of frequency theorem proving are not at all elementary.

First, since we have chosen to have an assertion describe a subset of c:F+ rather than of c:F*,
note that the assertion

/\(Fr(K = k) = 1]
k

is actually equivalent to the assertion FALSE; ~t is, its characteristic set is empty. Secondly,

consider the assertion

[~(Fr(J == j) = P;J] A [~(Fr(K = k) = Ilk]].

-----------~-~-~-- --

THE FREQUENCY SYSTE.c\.1 53

where the Pj and qk are some constants. Essentially, this assertion specifies the marginal frequency

distributions of both J and K. It will have a non-null characteristic set if and only if there

exists some joint distribution for J and K that generates the specified marginals, and this is not

an easy thing to determine.

In addition to frequency theorem proving, it will turn out that we shall need to determine

whether some of the assertions that arise in our arguments have a certain closure property. When

we get around to specifying the rule that handles while-loops, we shall have to demand that the

output assertion of the loop has this closure property, in order to guarantee the soundness of

the While Rule. In particular, we shall have to demand that the characteristic set of the output

assertion be closed in the usual sense. Any Cauchy sequence in GJ converges to a limit, because

GJ is a Banach space. A subset of GJ is closed if and only if it contains the limit points of every

Cauchy sequence that it contains. We shall call an assertion closed exactly when its characteristic

set is closed.

Working in the frequency system will present us with a dual challenge in the domain of

reasoning about assertions; we must be able to do some frequency theorem proving, and we

also must be able to check that some assertions are closed. Furthermore, we have to be able to

do this reasoning by formal symbol manipulation, of course. Building symbol manipulation rules

that could tackle these jobs in general seems like a formidable job, and we shall not undertake

it here. Instead, we shall take advantage of the fact that all of the assertions that will arise in

our examples have a certain very special form, and this will allow us to get by with a relatively

simple assertion manipulation capability. In particular, we shall restrict ourselves to describing the

behavior of programs with vanilla assertions. A vanilla atomic assertion, or clause, is an atomic

assertion of the special form Fr(P) = e that we worked with earlier; here P is an arbitrary

predicate, and e is a real-valued expression, and the clause has as its characteristic set exactly

those measures in GJ+ that ascribe mass e to the set x(P). An assertion is vanilla if it consists

of a conjunction of clauses. This conjunction can involve the use of explicit /\'s, unbounded

universal quantification, or even bounded universal quantification, which means formulas of the

form /\.i:R A where A is a vanilla assertion in which i appears freely, and R is a predicate in

which i appears freely but no program variable appears. A vanilla assertion is a recipe for a

finite or infinite collection of clauses, and the recipe is concrete enough that only a theorem

prover for the predicate calculus is needed to decipher it.

Note that the conditions that make an assertion vanilla only discuss the structure of that

assertion at the assertion calculus level. There is no restriction on the type of predicates P that

can appear in clauses Fr(P) = e, for example; arbitrary predicates are permissible. This has

the pleasant consequence that our restriction to vanilla assertions doesn't affect the embedding

of Floyd-Hoare analyses into the frequency system. Recall that the analog of the Floyd-Hoard

predicate P is the atomic assertion Fr(-i P) = 0. This is a single clause, and thus also a vanilla

assertion, no matter what the structure of P might be.

54 FOR.\1ALIZING THE ANALYSIS- OF ALGORITHMS

Working with Vanilla Assertions.

If we limit ourselves to making only vanilla assertions about the behavior of a program,

then only very special cases of frequency theorem proving and of checking for closure will ever

arise. In fact, we can eliminate the latter problem at once, by noting that every vanilla assertion

is closed. Consider first a clause Fr(P) = e. Let x(P) denote P's characteristic subset of ~. let

(en} denote a Cauchy sequence in GJ, let c00 denote its limit, and suppose that en satisfies the

clause Fr(P) = e for all n. Then, for all n, we must have cn(x(P)) = e, which implies that

c00(x(p)) = e as well. Therefore the limiting measure c00 will also satisfy the clause. This same

reasoning applies to most forms of atomic assertions that describe equalities or weak inequalities

between expressions involving Fr(P) terms. But strict inequalitites in atomic assertions, such as

Fr(P) < e, in general destroy closure.

Since a vanilla assertion is simply a conjunction of clauses, its characteristic set is simply the

intersection of the characteristic sets of the clauses. Since arbitrary (even uncountable) intersections

of closed sets are closed, we can deduce that every vanilla assertion is closed. The ease of this

proof is one of the great benefits of restricting ourselves to vanilla assertions. Note that infinite

unions, or even a single complementation, can destroy closure.

The restriction to vanilla assertions also eases the job of frequency theorem proving. Basically

four kinds of challenges will arise in the course of our program analyses in the frequency system.

First, as we mentioned before, we shall sometimes want to know when one assertion implies

another. With our restriction to vanilla assertions, this means that we are interested in the truth

of some formulas of the form A = B for vanilla assertions A and B. In general, this problem

even with the vanilla restriction is quite subtle. For example, one way of demonstrating the

implication is to show that A is actually equivalent to FALSE; we discussed several cases of

assertions that were false for quite subtle reasons, and those hard examples were in fact vanilla

assertions. However, in many cases, including those that will arise in our example programs, the

implication A= B can be demonstrated by fairly elementary reasoning. Certainly, the operation

of removing some of the clauses from A will only make it weaker, so the implication holds

if every clause in B also appears in A. In addition, the additivity of measures allows us to

draw some conclusions. For example, if A contains the clauses Fr(P) = e and Fr(Q) == f,
and if the predicates P and Q can be shown to be mutually exclusive by a derivation in the

predicate calculus, then B is justified in containing the clause Fr(P V Q) = e + f. Clauses with

a zero right-hand side allow another form of deduction. If A contains the clause Fr(P) = 0,

then B can contain not only this clause, but also the clause Fr(Q) = 0 for any predicate Q

such that Q = P is a theorem of the predicate calculus; subsets of measure zero sets must

have measure zero. We shall assume without more detailed specification a collection of formal

rules for verifying implications between vanilla assertions that has the ability to perform these

elementary types of reasoning.

The next two kinds of theorems that we shall meet arise at the forks and joins of the

plumbing network. At forks, we are presented with formulas of the form A I P = B, while at

------··-------

THE FREQUENCY SYSTEM 55

joins, we find A+ B = C; here, A, B, and C denote vanilla assertions, and P denotes an

arbitrary predicate. Once again, there are subtle theorems of these forms, but at least some such

theorems succumb to elementary reasoning. Let us consider the join case first; what clauses can

we justify having in C if we want the formula A + B = C to hold? Or, in programming terms,

what clauses describe the out-branch of a join of which A and B describe the in-branches? The

basic fact at work is the following: if A contains the cluase Fr(P) = e and B contains the clause

Fr(P) = f, then C may contain the clause Fr(P) = e + j. This derivation just asserts the

conservation of mass for P-colored pellets at the join. Sometimes, other sorts of reasoning must

be performed before this basic insight can be applied. For example, suppose that A contains

the clause Fr(P) = e and B the clause Fr(Q) = f; if the predicates P and Q can be proved

equivalent by reasoning in the predicate calculus, we can add the clause Fr(P) = f to B, and

then apply the previous insight to deduce that Fr(P) = e + f belongs in C. Or it might happen

that A describes the mass of an event while B describes the mass of each of the subsets of

a partition of that event. Then, we can replace B by an assertion B' that describes the mass

of the whole event at once, and such that B = B'; after this replacement, our basic addition

insight will apply.

It can happen that a clause in one of the summands does not affect the result at all.

For example, if A contains the clause Fr(P) = e but B does not specify the measure of the

characteristic set of P, there is nothing we can do in the realm of vanilla assertions. We could

assen that Fr(P) > e in C, since B will only increase the amount of P-colored mass, but this

leaves the realm of vanilla assertions.

Similar issues come up when we consider. a fork in the network. If A describes the in­

branch of a fork that tests the predicate Q, then A IQ and A I., Q describe the TRUE and FALSE

out-branches respectively. Consider a clause Fr(P) = e in A. If P implies Q in the predicate

calculus, then all of the P-colored mass that A describes will follow the TRUE out-branch; thus,

we can add the clause Fr(P) = e to A IQ, and the clause Fr(P) = 0 to A I ., Q. On the other

hand, if P implies .,Q, we can do the reverse, adding Fr(P) = e to A I .,Q and Fr(P) = 0

to A IQ. In fact, independent of what clauses are in P, we can add the clause Fr(., Q) = 0

to A IQ, and the clause Fr(Q) = 0 to A I .,Q; these just assert the accuracy of the test on Q.

Again, this basic splitting insight can be decorated with extra deduction steps that involve the

elementary properties of measures and of the real numbers.

As long as we restrict ourselves to vanilla assertions, we never need to worry about closure,

and the three types of frequency theorems that we have discussed so far can be handled, at

least in many cases, by elementary formal reasoning. We shall have a little bit more trouble

handling the fourth kind of frequency theorem that will arise during our use of the frequency

system. The fourth type of theorem involves showing that an assertion is not equivalent to FALSE.

Checking Feasibility.

The fourth kind of frequency theorem that will come up in our use of the frequency system

is another facet of the problems engendered by loops. In order to avoid time bombs, we shall

56 FOR.M:ALIZING THE ANALYSIS OF ALGORITHMS

have to guarantee that the summary assertions that describe loops have the property that their

characteristic sets are not empty. Call an assertion feasible when there is a finite measure that

satisfies it. With this terminology, we shall demand that all candidates for summary assertions

be feasible. The problem of checking feasibility corresponds to the assertion calculus problem

of determining whether or not the assertion A is equivalent to FALSE. As some of our previous

examples demonstrated, this can be quite a subtle problem.

Once again we shall only attempt to solve certain special cases. Suppose that A is a vanilla

assertion; what properties of A will guarantee the existence of a finite measure that satisfies all

of the clauses of A? If the clauses of A describe mutually exclusive events, and if the sum of

all of the right-hand sides of the clauses of A is finite, then the assertion A is not equivalent

to FALSE. For example, consider the assertion

A = /\ (Fr([J = j) /\ [K = k]) = Pi,k]
j,k

where the coefficients PJ,k are nonnegative and have a finite sum. We can build an explicit

finite frequentistic state that satisfies the assertion A by the following process: For each j and

k, choose a deterministic state in which J = j and K = k, and in which the other components

of the process state, if any, are chosen arbitrarily. Ascribe to each of these deterministic states

the corresponding mass PJ,k• and ascribe zero mass to every other state. The result is a finite

measure that satisfies the assertion A.

When we are working with discrete problems, the reasoning behind this example will often

be enough. We shall call an assertion A disjoint vanilla if it is vanilla, and also satisfies the

following three conditions: (i) any two distinct clauses in A describe mutually exclusive events,

(ii) the sum of all of the right-hand sides of the clauses in A is finite, and (iii) no clause in A

ascribes nonzero mass to a predicate whose characteristic subset of Cl is the empty set. (The third

condition is a technicality that was omitted in the previous paragraph.) These three conditions

can often be checked by formal reasoning, and the argument above shows that every disjoint

vanilla assertion is feasible.

When we deal with variables whose distributions are nondiscrete, however, we cannot afford

to limit ourselves to disjoint vanilla assertions. For example, suppose that we want to describe

a frequentistic state with a total of 1 gram of mass, in which the real-valued program variable

X is uniformly distributed on the interval [O, 1). Since X is a continuous variable, the correct

right-hand side for any frequentistic assertion of the form Fr(X = x) = e would have to be

0. Instead of describing the exact value of X, we must instead give the frequencies with which

X lies in certain subsets of the real line. For example, one assertion that does the job would be

(Fr([X < O] V [X > l]) =OJ/\ /\ (Fr(O < X < x) = x].
O<x<l

THE FREQCENCY SYSTEM 57

We could, at our option, extend the conjunction to include one atomic assertion for every

measurable subset M of the reals, which stated that

Fr(X EM)= µ(Mn [0, l)),

where µ here denotes Lesbegue measure. The difficulty is that, in any of these schemes, the

atomic assertions must describe the masses of sets that are not disjoint; hence, the resulting

assertions, while vanilla, are not disjoint vanilla.

The problem of checking the feasibility of an assertion about nondiscrete variables is hard to

solve in any general way. We shall take advantage of the fact that the specific cases that arise in

our examples have a special form. In particular, we shall only deal with real-valued nondiscrete

variables, and we shall describe their distributions in terms of the associated cumulative distribution

functions or densities. Every cumulative distribution function determines a corresponding measure

on the Borel sets [10], and we shall appeal to the existence of these measures to establish the

feasibility of assertions. We postpone the details for now.

The Rules of the Frequency System.

We have settled on the structure of predicates and of assertions, and discussed the issues

connected with formally deriving the results that we shall need in the predicate and assertion

calculi. We have thus finally arrived at the stage where we can give the rules of the frequency

system. It is the purpose of these rules and axiom schemata to distinguish a certain collection

of formulas [A]S[B] of the frequency system as theorems, written 1-[A]S[B]. Furthermore, we

want to show that every theorem will be a semantically true statement. We shall continue to

denote the characteristic set of an assertion A by x(A). With this notation, a formula [A]S[B] is

semantically true if and only if the relation f(x(A)) C x(B) holds, where f is the continuous

linear map from GJ to GJ that formally defines the meaning of the program S in Kozen's semantics

[22]. Each syntactic construct of our programming language will need to be handled somehow in

the frequency system, and we shall consider them in tum. Most of the hard work will concern

the While Rule, as one might expect. (Some aspects of the following presentation are taken

from a dicussion of the Floyd-Hoare rules by Ole-Johan Dahl [5].)

The Rules of Consequence.

First, we have the rules of consequence,

1-A = B, 1-[B]S[C]
1-[A]S[C]

and
1-[A]S[B], 1-B = C

1-[A]S[C]

which allow us to weaken our postassertions and strengthen our preconditions if we so desire.

These rules are the same as in Floyd-Hoare systems. As we mentioned in Chapter 1, the formulas

above the line indicate the premises of the deduction step, and the formula below the line

indicates the corresponding conclusion. Notice that these rules have premises of two different

types. In the first rule, for example, the premise I-A = B indicates that the assertion A = B

58 FOR.\iALIZING THE ANALYSIS OF ALGORITHMS

should be a theorem of the assertion calculus in order for this rule to apply, while the premise
f-[B]S[C] indicates that the augmented program [B]S[C] should be a theorem of the frequency
system.

The soundness of the Rules of Consequence follows immediately from the definition of

semantic truth. Again, let us take the first rule as an example. The truth of the first premise implies

the relation x(A) C x(B); the truth of the second premise implies the relation f(x(B)) C x(C),
where f denotes the semantic interpretation of the program S. Putting these together, we deduce

that f(x(A)) C x(C), which demonstrates the semantic truth of the conclusion.

The Axiom Schema of the Empty Statement.

The empty statement has, instead of a rule, a family of axioms associated with it In
particular, we are allowed to conclude without any premises

f-[A] nothing [A],

where A represents any assertion. Th.is is also no change from the Floyd-Hoare situation.
Kozen's semantics interprets the empty statement as the identity function from G.f to G.f;

therefore, the Axiom Schema of the Empty Statement is trivially sound.

The Assignment Axiom Schema.

Like the empty statement, the assignment statement has an associated axiom schema instead
of a rule. Recall that in a Floyd· Hoare system, there are axioms that define the behavior of

an assignment statement either by going forward or by going backward. The backward, that is,

from right to left, axioms are the simplest, stating that

f-{P;} X +- e {P}.

Here, the assignment statement is setting the program variable X to the current value of the

expression e, while P represents an arbitrary predicate and P; represents the results of textually
substituting e for X everywhere that X appears in P. When thinking about axioms for the

assignment statement, it is best to work with an example where the expression e does depend on

X, but not· in a one-to-one manner; we shall take the assignment X +- X2 +1 as our example.
One possible instance of the above axiom schema in this case is the Floyd· Hoare theorem

1-{(x2 +1) = 10} x +- x 2 +1{x=10};

using our knowledge about arithmetic on the integers, we could rephrase the precondition

equivalently as [X = 3] V [X = -3], to arrive at the theorem

f-{[X = 3] V [X = -31} X +-x2+1{X=10}

There is also a somewhat more complex. axiom schema that works forward, from left to right:

f-{P} X +- e {(3y)([X = e;J AP;)} .

.. - -------- -----~----------------

THE FREQUENCY SYSTEM 59

In this schema, the value of y that exists is the value that X had before the assignment. For

example, we could deduce

~{x = 3} x - x 2 +1 {(3y)([x = y2 + l]" [y = 3])}.

Simplifying a little, this is just the Floyd-Hoare theorem

~{ x = 3} x - x2 + 1 { x = 10 };

note that this formula, while a theorem, is less informative than the result of the backward

analysis above, since its precondition is stronger.

The obvious way to produce corresponding axiom schemata for the frequency system is to

use the above techniques on the predicates that are embedded within assertions. Recall that an

assertion is built up out of real-valued terms of the form Fr(P), where P denotes a Floyd-Hoare

predicate; furthermore, program variables in assertions may only appear inside these predicates.

Since only the program variables are affected by an assignment, we might expect that performing

the above manipulations on the embedded predicates would do the job. For the backward rule,

this is indeed the case, and it gives us a corresponding Backward Assignment Axiom Schema

for the frequency system:

~(A;) X +- e (A].

We can merely state that all of the X's in the assertion A should be replaced by e's, since all

of the X's will lie inside predicates. An instance of this axiom schema is the frequency system

theorem

~(Fr([(X2 + 1) = 10]) = 7) X +- X 2 + 1 (Fr(X = 10) = 7].

Rephrasing the precondition, we can write this theorem

~(Fr([X = 3] V [X = -3]) = 7] X +- X2 + 1 (Fr(X = 10) = 7).

Before we show that the Backward Assignment Axiom Schema is sound, let us consider

the Forward Schema that would result from performing the forward Floyd-Hoare predicate

transformation to all embedded predicates. Working with the same example again, a Forward

Schema would suggest that the formula

(Fr(X = 3) = 7] X +- X2 + 1 (Fr((3 y)([X = y2 + l] /\ [y = 3])) = 7)

should be a theorem of the frequency system, and hence also the equivalent formula

(Fr(X = 3) = 7] X +- X2 +1(Fr(X=10) = 7].

But this formula is not necessarily true! The input assertion does not rule out the possibility of

the existence of positive mass in which X = -3, and such mass would cause there to be a

60 FORMALIZING THE ANALYSIS OF ALGORITHMS

total of more than seven grams of output mass in which X = 10. Thus, although the technique

of moving from left to right over an assignment by existentially quantifying over . the old value

of the variable generates a sound rule in the F1oyd-Hoare world, it is not accurate enough for

the frequency system. The intuitive failing of the forward technique is that the preconditions in

its theorems are not the weakest possible. Since the forward schema does not pan out, we shall

drop the adjective "Backward" from the name of the Backward Assignment Axiom Schema.

The Assignment Axiom Schema is sound, and the proof hinges on the fact that the

preconditions generated by the backward F1oyd-Hoare technique are the weakest possible. To see

this in more detail, we must first recall the interpretation given the assignment statement X +- e

by Kozen's semantics. Let v: ~ -+ ~ be the function that describes the effect of the assignment

X +- e on a deterministic input state; that is, v replaces the current X-coordinate of the state

v.ector by the appropriate new value e. According to Kozen's semantics, if the frequentistic state

of a process before the assignment X +- e is the measure c, then the frequentistic state after

the assignment will be the measure co v-1, where v-1 is defined as usual by

v-1(M} = {m I v(m) EM}.

The critical fact for us to observe is the following:

(4.1}

We can restate this insight in words by observing that, for any deterministic state m, the predicate

P holds for v(m) if and only if the predicate P:; holds for m itself, since the effect of v is

precisely to replace the current value of X by e. In fancier terminology, we are just observing

that the preconditions generated by the backward Floyd-Hoare technique are the· weakest possible.

Equation (4.1) is a deterministic fact; but it happens to be just what we need to show the

soundness of our frequentistic Assignment Axiom Schema. Consider one of the axioms of this

schema, say

1-[A:;) X +- e [A).

Inside the postassertion A are various real-valued terms of the form Fr(P) for various predicates

P. The corresponding term in the precondition A:; will be precisely Fr(P:;). Now, consider

any input frequentistic state c for the assignment statement that satisfies the precondition A:;
(if the precondition is not feasible, we are done trivially). Assuming that c satisfies A:; merely

means that, if we substitute for the terms Fr(P:;) the corresponding real numbers

c(x(P:;)), (4.2)

the resulting formula simplifies to TRUE.

According to Kozen's semantics, the output frequentistic state corresponding to the input

state c will be co v-1. Our task is to show that this state satisifes the output assertion A. Of

-~---------~-----~------~

THE FREQUENCY SYSTEM 61

course, the measure co v-1 satisfies A if and only if the formula obtained by substituting the

real numbers

(4.3)

for the terms Fr{P) simplifies to TRUE. But Equation (4.1) shows that the quantities {4.2) and

(4. 3) must be equal. Therefore, c o v-1 will satisfy A whenever c satisfies A;, and we have

shown that the axioms produced by the Assignment Axiom Schema are true.

There are some caveats associated with the use of the Assignment Axiom Schema. First, to

make the argument above correct, we must invoke our assumption that the evaluation of every

expression e in our programming language is guaranteed to terminate normally. In addition,

we must make several qualifications about the program's naming structures. In order for the

schema to be sound, syntactically distinct variables must refer to disjoint storage locations, and

hence be also semantically distinct; in more technical language, there must be no aliasing.

Also, assignments to an array element must be treated as assignments to the entire array. For

example, the assignment X[J] +- e would be handled as if it were actually the array assignment

X +- (XI I I e), where this latter expression, a change triple, denotes X with its Ith component

changed to be e. We shall not pay too much attention to these sorts of problems, since the

issues involved and the possible solutions are the same in the frequency system as they are in

the deterministic world.

Most of the derivations in the frequency system are best thought of as taking place from

left to right, following the direction of the program flow. For example, whenever we apply the

addition and restriction operations, we are modeling the forward flow of control. The Assignment

Axiom Schema thus goes against the grain soqiewhat by moving from right to left S4ppose,

for example, that the state of the world before the assignment J +- J + 1 is described by the assertion

f\[Fr(J = i) =Pi]
i

for some parameters Pi, and suppose that we would like to describe the state of things after the

assignment One good way to proceed is first to massage the precondition a little by replacing

the mathematical variable j throughout by j - 1. This generates the equivalent assertion

which we could also write

f\[Fr(J = j -1) = Pj-1],
i

f\[Fr(J + 1 = j) =Pi-I]·
j

Now we can see how to use the Assignment Axiom Schema; in particular, one instance of that

schema is the axiom

I- [~(Fr(J + 1 = i) = Pi-iJ] J +- J + 1 [/\(Fr{J = j) = Pi-iJ],
3 3

62 FORMALIZING 1HE ANALYSIS OF ALGORITHMS

where J is replaced by J + 1 in the assertions, moving from right to left Therefore, we may
conclude that the assertion

f\JFr(J = j) = P;-1)
j

holds after the -assignment As we do more examples, we shall get more adept at this sort of
manipulation.

It is often necessary to use the Rules of Consequence and some frequency theorem proving
to get a useful result out of the Assignment Axiom Schema. Suppose, for example, that we try

to carry the precondition Fr(TRUE) = 1 through the assignment K +- 0. The best thing to do
is first to replace the precondition with the equivalent assertion

(Fr(O = 0) = 1) A (Fr(O :;i: 0) = 0).

Then, an appropriate instance of the Assignment Schema will allow us to conclude that the assertion

(Fr(K = 0) = l] A (Fr(K :;i: 0) =OJ

holds after the assignment, as we would expect

The Axiom Schema of Random Choice.

Unfortunately, the operators of our current assertion calculus are not powerful enough to .
express in a clean way the legal derivations concerning random choices; thus, the title of this
section is really a lie. Rather than give an axiom schema_ for the random assignment statement,

we shall just discuss a certain collection of elementary axioms about random choices.
Consider the random assignment X +- Randomp, and let D denote the set of all possible

values of the data type of X. The subscript F denotes a probability distribution on D, that is, a

function that ascribes mass F(M) to each measurable subset M of D. By calling F a probability
distribution rather than a frequency distribution, we are assuming that the norm of F is 1; that

is, F is a positive measure on D with F(D) = 1. Furthermore, suppose that we are about to

execute the random assignment, and that our current state is described by the assertion

f\[Fr(J = j) = P;].
j

What postassertion can we make, to describe the state of the program after the random choice?
One might initially consider the assertion

but this candidate has two problems. The first is that the total amount of mass entering the choice,

which is Just E; p;. might not be 1. If it isn't, then we would have to rescale the distribution

-- ---------------------------- ------- - - ----- --~------------------

THE FREQUENCY SYSTEM 63

F appropriately. But a far worse problem also pertains: this suggested postassertion does not

give any information about the joint distribution of J and X. It is part of the specification of

the random assignment statement that the random choice is made independently of everything

that has happened so far in the execution of the program, and it is important that our axioms

for random assignment reflect that. We can cure both of these problems at once by choosing

the postassertion

f\ [Fr(J = J·, XE M) = PiF(M)].
j,M

This postassertion shows that every pellet that comes through the random assignment is broken

up into pieces according to the distribution F, which is what we intended.

By the way, this assertion also introduces a new notation; we would have written this

assertion previously as

f\ [Fr([J = jJ /\[XE Ml)= PiF(M)].
j,M

As our formulas get more and more complex, we shall sometimes use a comma instead of the

symbol /\ to indicate an "and". The advantage is not that the comma is thinner, but that the

use of the comma allows us to get by with fewer parentheses.

We shall be satisfied with the axioms for random assignment statements that follow the

pattern above. We shall arrange that the precondition of the random assignment is a vanilla

assertion that does not mention the variable w~ose value is being randomly chosen. Then, for

each atomic assertion Fr(P) = e in the precondition, we shall allow ourselves to add to the

postassertion the family of atomic assertions

f\[Fr(P, XE M) = eF(M)].
M

The conjunction here is over all measurable subsets M of D. In the common case where the

distribution F is discrete, we can get by with a simpler form of postassertion; rather than

handling every measurable set, it is enough to handle each mass point. For example, suppose

that F ascribes mass fk to each integer k. Then, the clause Fr(P) = e in the precondition will

generate the clauses

/\[Fr(P, X = k) = efk]
k

in the postassertion.

The process given above will allow us to construct an axiom for a random assignment

statement as long as the desired precondition is both a vanilla assertion, and does not mention the

variable whose value is being chosen. It remains to show that the axioms so produced are in fact

true. To see this, we need to refer once again to Kozen's semantics. For notational simplicity, let

64 FORMALIZING THE ANALYSIS OF ALGORITHMS

us assume that the variable whose value is being randomly chosen is actually the first program

variable X1 of data type D1. We are considering the choice statement X1 +- Randomp, where

F denotes a probability distribution on D1. Recall that Kozen interprets this statement as the

linear map f from GJ to GJ that satisfies the identity

(4.4)

for all measures c in GJ and measurable subsets M; of D; for 1 < j < n.
Consider a clause Ft(P) = e in a vanilla precondition for the random assignment If P

does not mention the variable X1, then the characteristic set x(P) can be expressed as a direct product
1",..

x(P) = D1 x Z for Z C DJ x · · · x Dn.

If c is any frequerttistic input state that satisfies the precondition, we must have

c(x(P)) = c(D1 X Z) = e. (4.5)

The precondition clause Fr{P) = e will cause our axiom building process to put into the

postassertion the collection of clauses

J\(Fr(P, X1 E M1) = eF(M1)). (4.6)
M1

The characteristic sets of the predicates in these clauses are quite easy to compute; we have

In order for the clauses (4.6) to hold for the output state /{c), we must show that

(/(c)) (M1 X Z) = eF(M1).

But if Equation (4.4) holds for all M2, Ma, ... , Mn, it must also be the case that

{/(c)}(M1 x· Z) = c(D1 X Z)F(M1).

In light of Equation (4.5), we are done. Therefore, our axiom building process for random

choices is sound.

The Composition Rule.

The Rule of Composition is the same in the frequency system as in the Aoyd-Hoare world:

f-(A) S [B], f--[B] T [C]
f-(A) S; T [C]

The proof of soundness is easy. If f and g represent the interpretations of the programs S and

T respectively, then the first premise shows that f(x(A)} C x(B), while the second premise

shows that g(x(B)) C x(C). These two inclusions imply the result go /(x(A)) C x(C), which

·finishes the job, because Kozen's semantics interprets the statement "S; T" as the composed

function go f.

THE FREQUENCY SYSTEM 65

1 H

Figure 4.1. The space GJ of all measures on '= {H, T}.

The Conditional Rule.

The Conditional Rule in the frequency system differs from the corresponding rule in Floyd­

Hoare, but that difference is simply a reflection of the different operators that the two systems

use to encode the actions of forks and joins. Indeed, we gave the Conditional Rule for the

frequency system way back in Chapter 2; to reiterate, the rule is

1--[A IP] s [B], 1--[A I .,P] T [c]
1--[A] if P then S else T fi (B +CJ'

This rule is easily seen to be sound. If the conditional statement in the conclusion is executed

beginning in a frequentistic state a, Kozen's semantics defines the resulting output state to be

f(a IP)+ g(a I .,P), where f and g are the interpretations of S and T respectively. The premises

of the Conditional Rule show that, for any measure a in x(A), the memberships /(a IP) E x(B)
and g(a I ., P) E x(C) must hold; adding these . together finishes the proof.

Throughout our arguments, we have been concerned with making sure that the formal

system that we are building is sound: a sound frequency system, built on top of sound assertion

and predicate calculi. Another desirable propeny for a formal system is completeness; a formal

system is complete if all semantically mie formulas are actually theorems. It is interesting to note

that our Conditional Rule is not complete.

Consider the program

UselessTest: if X = H then nothing else nothing fi.

The variable X in this program, like the X in the program CoinFlip, stores the state of a coin,

and hence is restricted to the two values H and T standing for heads and tails respectively.

Assuming that X is the only component of the process state, a process executing the UselessTest

program has exactly two possible deterministic states, the states X = H and X = T. Therefore,

a frequentistic state here is just a pair of nonnegative real numbers, each of which gives the

frequency of one of these two deterministic states. The vector space GJ is two-dimensional, and

its positive cone GJ+ is just the first quadrant.

Suppose that we choose as a precondition for the UselessTest program the assertion

A= (Fr(TRUE} = 1). (4.7)

Figure 4.1 shows the characteristic set x(A) of the assertion A; the abscissa gives the frequency

66 FOR.\1ALIZING IBE ANALYSIS OF ALGORITHMS

of X = H, while the ordinate gives the frequency of X = T. If we execute UselessTest with

any frequentistic state a in x(A) as input, we will get the same state a back out as output.

In detail, the test of X = H will split the state a into a I (X = H) and a I (X = T). This

split merely resolves the state a into its H and T components. Both arms of the conditional are

empty, so the two components are recombined at the final join to result in the output state a.

This verifies that UselessTest is a frequentistic no-op, as we would expect.

We would also expect, therefore, to be able to verify the augmented program

[A] if X = H then nothing else nothing fi [A]. (4.8)

Unfortunately, our Conditional Rule cannot demonstrate (4.8). We begin with the assertion

A= [Fr(TRUE) = l]. When we restrict A to the truth of the condition X = H, we get the assertion

[A I (X = H)] = [Fr(X = H) < l] /\ [Fr(X = T) = o]. (4.9)

This is a not a vanilla assertion, but for our current purposes, that is no problem. The characteristic

set of (4.9) is the H-axis from 0 to 1. Similarly, when we restrict A to the falsity of the control

test, we get the assertion

[A I (X = T)] = [Fr(X = T) < 1) /\ [Fr(X = H) = o], (4.10)

which has the T-axis from 0 to 1 as its characteristic set. Since both arms of the conditional

are empty, the assertions (4.9) and (4.10) also play the roles of B and C in the Conditional

Rule. The output assertion that we can give for the UselessTest program is then

B +c = [Fr(X = H) < l] /\ [Fr(X = T) < 1),

which has the entire unit square as its characteristic set. The best that our Conditional Rule can

say about the program UselessTest is the theorem

I- [A] if X = H then nothing else nothing fi [B + C).

This theorem, while true, is much weaker than the true but unproven formula (4.8).

This example demonstrates that our Conditional Rule is incomplete, and any system based

upon it will be incomplete as well. Furthermore, this incompleteness is not a result of some

weakness. in the underlying assertion calculus or predicate calculus. Instead, it is a result of the

clumsiness of set operations. When we project the set x(A) down onto a coordinate axis at the

beginning of one branch of the conditional, we lose track of the correlation between the H and

T components of the points in x(A). The set addition at the final join punishes us for this lost

information by filling the entire unit square. Thus, the incompleteness of our Conditional Rule

has its roots in one of the basic choices behind the frequency system: that assertions should

specify sets of frequentistic states.

THE FREQUENCY SYSTEM 67

s c ==p==•-ye_s __ ,,...., -T-~
no

Figure 4.2. A general repeat-loop.

What shall we do about this incompleteness? One possible action is to patch it by adjusting

the system somewhat. We can handle this particular flavor of incompleteness if we add to

the frequency system a second rule for the if-statement, which might be called the Irrelevant

Conditional Rule:

f--[A] S [B], f--(A] T [B]
f--[A] if P then S else T fi [BJ'

The intuition behind this rule is that, if it doesn't matter which branch of the conditional

statement is executed, then there is no need to compute how the frequentistic program state is

affected by the fork and join. If we added the Irrelevant Conditional Rule to the frequency

system, then formula (4.8) would become a theorem of the system.

On the other hand, there may be many more sources of incompleteness around. In general,

completeness is a trickier property for a system than soundness, because it depends critically

upon the exact definition of the formal language in question. Furthermore, the incompleteness

that we pointed out in our original Conditional Rule is not all that troublesome. Notice that,

if we replace the precondition (4. 7) by the very similar but more specific assertion

[Fr(X = H) = y] A [Fr(X = T) = 1- y], (4.11)

the problem evaporates; by our standard Conditional Rule, we can trace y grams of mass through

the TRUE branch and 1 - y grams through the FALSE branch, and we end up with (4.11) as

the output assertion. Thus, the incompleteness of our original Conditional Rule is unlikely to

be a major problem for someone attempting to perform the dynamic phase of an algorithmic

analysis. Based upon these sorts of experience, we shall generally ignore completeness issues in

what follows.

The Loop Rules.

We are left with the task of handling loops. We can get a first approximation to what these

rules ought to be by considering the flowcharts of the loops. Working from the flowchart for

the repeat-loop in Figure 4.2, we deduce that the Repeat Rule should look something like

f--[A + B] s [c], 1--[c IP] T [B]
(4.12)

f--[A] loop S while P: T repeat [c 1-iP] ·

68 F0~\1ALIZING THE ANALYSIS OF ALGORITHMS

==p==·-ye_s_ j _T___,·~
no

Figure 4.3. A general while"loop.

By our convention, the assertion C would be called the summary assertion for the loop. In
the special case where S is the empty statement, the repeaHoop becomes a while-loop; working
from Figure 4.3, we have the corresponding intuitive While Rule

1-[(A + B) IP] T [B]
(4.13)

1-(A) while P do T od [(A +B) I .,Pf

In this case, our convention dictates that the assertion A + B should be called the summary

a8sertion of the while-loop.
Rather than dealing with for-loops directly, we shall treat the for-loop

forJfromttoudoSod

simply as shorthand for its canonical implementation:

J-t;

while J < u do S; J - J + 1 od.

These rules have great intuitive appeal; unfortunately, as we saw in Chapter 3, too naive

a trust in such intuitions can lead to proofs of false formulas. In particular, we saw that the
summary assertion of a loop can describe execution paths other than those that really occur.
All realistic execution paths begin at the start of the flowchart at some finite time, and either

emerge at a halt after a finite number of steps, or spend the rest of time looping through
the flowchart. But summary assertions, since they have no notion of time or history, can also
describe paths that never start and never stop, but spend all of time looping; we called this

phenomenon fictitious mass. Worse yet, they can describe paths that never start, but do stop,

the so-called time bombs. Our current task is to determine a collection of restrictions that can

be put on the intuitive looping rules to guarantee that the rules are sound. These restrictions
will eliminate time bombs; they will not eliminate fictitious mass, but they will guarantee that

the effects of its presence are not visible in the input-output behavior of the loop, which is all

that the conclusion of a looping rule discusses.
Now that we have a more formal framework in which to operate, we can see that there

are several other problems besides time bombs that cari lead to unsound conclusions from the
intuitive looping rules. First, we must insure that the postassertion of the conclusion of a looping

THE FREQUENCY SYSTEM 69

rule describes a subset of c:F+ that is closed in an appropriate sense, or we are unable to perform

the limiting operation that is inherent in considering all executions of the loop. For example,

consider once again the CoinFlip program

loop X +- RandomHr; while X = T repeat.

We noted earlier that the intuitively correct summary assertion for this loop, assuming one gram

of input, is

(Fr(X = H) = 1) A (Fr(X = T) = 1).

But if we allowed non-vanilla assertions, we could try using the summary assertion

(Fr(X = H) < 1) A (Fr(X = T) < 1).

If we follow this assertion once around the loop, we find that it does support itself. In particular,

suppose that we start out with h grams of X = H mass and t grams of X = T mass, and

go once around the loop. The control test sends the h grams X = H mass out of the loop at

once; the other t grams are joined by the one gram of input mass, and this total mass is evenly

divided between heads and tails, to leave us in a state in which we have (1 + t)/2 grams of

each kind. More formally, the assertions

A= (Fr(TRUE) = 1)
B = (Fr(TRUE) < 1)
C = (Fr(X = H) <I] A (Fr(X = T) < 1)

(4.14)

make the premises of the intuitive Repeat Rule (4.12) true for the CoinFlip program. Unfortunately,

the postassertion of the corresponding conclusion,

Fr(X= H) < 1, (4.15)

is not correct. Thus, when assertions are allowed to describe subsets of c:F+ that are not

appropriately closed, it is possible to get into trouble. This is our motivation for demanding that

the postassertion of the conclusion of a loop rule be closed.

The assertions (4.14) cause us to deduce the incorrect postassertion (4.15} for the program

CoinFlip. One can explain that bad example from an intuitive point of view by saying that the

assertions (4.14) describe everything that happens for any bounded length of time, but, since

they specify strict upper bounds on frequencies, they don't allow us to take the limit inherent

in considering everything that ever happens. This insight might lead one to expect that we

could replace the restriction that assertions be closed with the weaker condition that they contain

the limits of bounded increasing sequences. A sequence (en} in c:F+ is called increasing if the

differences cn+1 - Cn are positive measures, that is, are also in c:f+; it is called bounded if the

sequence of real numbers (llcnll} is bounded above. If we let en describe the mass that exits

70 FORMALIZING THE ANALYSIS OF ALGORITHMS

the loop after performing no more than n iterations of the loop body, we would expect (en} to

be a bounded increas~g, sequence. Every bounded increasing sequence converges in <!J+, and

one might guess that1i would be sufficient merely to demand that the characteristic sets of our

postassertions be closed under bounded increasing sequences.

But that intuition is wrong, and a simple example shows why. Consider the CoinFlip

program again, started off with one gram of input mass, and the non-vanilla assertions

A= (Fr(TRUE) = 1)
B = (Fr(TRUE) > 1) (4.16)

C = [Fr(X = H) > 1) /\ [Fr(X = T) > 1),
which are just the assertions of(4.14) with each "less than" replaced by a "greater than". These

assertions also satisfy the premises of the intuitive Repeat Rule. The corresponding postassertion

for CoinFlip is

Fr(X= H) > 1, (4.17)

which, like (4.15), is incorrect. The characteristic set of (4.17) is not closed, but it is closed under

bounded increasing sequences. This example shows that some condition stronger than "closed

under bounded increasing sequences" is necessary; we shall stick with the standard concept of

closure.

The second failure mode of the intuitive loop rules is a trivial but sweeping point Consider

the intuitive While Rule (4;13), and suppose that the characteristic set of the assertion B is

empty. This means that B is equivalent to the assertion FALSE, or, in other terminology, that

B is infeasible. If the assertion FALSE is conjoined with any other assertion, note that the result

will always be FALSE; and note that any restriction of FALSE is also FALSE. Thus, the premise

of (4.13) reduces to the formula [FALSE] T [FALSE]; this is a trivially true formula, and, with

luck, it will also be a theorem of the frequency system. The intuitive While Rule then allows

us to deduce the theorem

r[A) while p do T od [FALSE],

which is rather a shame because this "theorem" is wrong for any feasible assertion A. A similar

problem exists with the intuitive Repeat Rule (4.12) as well, in the case that both B and C
are infeasible.

Fortunately, it turns out that this second kind of bad behavior is ruled out by the same

restriction that eliminates time bombs. In particular, we shall demand that the summary assertions

of loops be feasible assertions. This certainly is not too much to ask, for if the summary

assertion is not feasible, it is equivalent to FALSE, and we are in the situation above. The

summary assertions that cause time bombs, when viewed from an intuitive point of view, describe

frequentistic states with an infinite amount of mass. According to our definitions, however, the

characteristic set of an assertion is a subset of g+, not of «!F*; thus, if an assertion does not

describe some frequentistic state with finite total mass, it is equivalent to FALSE, regardless of

what subset of «!F* it may seem to describe.

We now have enough background to explain the restrictions that tum the intuitive While

and Repeat Rules into the real things.

THE FREQUENCY SYSTEM

Theorem.

An application of the While Rule

1--[(A +B) IP) T [B], 1--[(A +B) I .,P] = c
1--[A] while P do T od [C)

71

is guaranteed to be sound if the following two regulations are enforced: the assertion B is feasible.

and the assertion C is closed

Proof.

If the precondition A in the conclusion is infeasible, then the conclusion is vacuously true,

and we are done at once. If not, let a denote an arbitrary frequentistic s~te in x(A). The first

step in tackling this theorem is to determine what the while-loop will in fact do on input a. To

determine this, we need to invoke the semantics for the while-loop. Let the linear map /: GJ -+ GJ

denote the semantic interpretation of the body T of the loop. Tracing the execution of the loop,

we note that the measure a I ., P describes the mass rejected immediately by the control test;

mass measured by a IP continues in the loop, by going through T. The mass that comes out

of the other side of T will be f(a IP), by the definition of/. Of this mass, f(a IP) I .,p will

exit the loop now, having made one trip around. The rest, f(a IP) IP, will start through T for

the second time.

Define the function g: GJ -+ GJ by the relation g(s) = f(s IP) for s in GJ. The mass that

exits the loop after going around exactly n times is given by gn(a) I ., P, where the exponent

n denotes the result of composing g with itself n times. We would expect, therefore, that the

output of the while-loop when started in the input frequentistic state a would be the infinite sum

E(gn(a) 1-iP). (4.18)
n>O

This expectation is accurate; we followed Kozen by defining the meaning of the while-loop to be

the least fixed point of an affine transformation, and Kozen shows that the infinite sum above

will converge to that least fixed point [page 16 of 22]. We can thus take the sum of the series

(4.18) as the definition of the output of the while-loop on input a.

Let Cn denote the nth partial sum of the series (4.18):

en= E (gi(a) j -.P).
O<i<n

We can show, in fact, that the sequence {en} forms a bounded increasing sequence in GJ+. Since

the initial state a was assumed to be positive, and since the function g takes positive states to

positive states, all the terms of the series (4.18) are positive; this shows that the sequence {en)
is increasing. It turns out that the norms llenll are all bounded by llall. On positive states, the

norm is a linear functional; hence, for any positive s, we have

lls 1 Pll + lls 1.,Pll = llsll.

72 FORMALIZING THE ANALYSIS OF ALGORITHMS

Kozen shows (our Equation (2.1)) that, if f is the semantic interpretation of a program, we have

llf(s)ll < llsll

for any positive state s; this inequality merely states that control cannot exit a program more

often than it enters it. Together, these facts demonstrate that

llf(s I P)ll + lls I ..,Pl!< llsll,

or equivalently,

If we iterate this relation by applying it with s repaced by g(s), we can deduce that

Continuing to iterate, we can then deduce in general that

llgn(s)ll + I: llgi(s) I -.P11 < llsll.
O<i<n

(4.19)

Applying this result with s replaced by a, we see that all of the quantities llcnll are bounded

by the finite real number llall. Therefore, the sequence (en} is a bounded increasing sequence.

Any bounded increasing sequence in c:.f+ converges to a limit in c:.f+; let c00 denote the

limit of the sequence (en). This limit c00 is the sum of the infinite series (4.18), and is hence

our definition of the output of the while-loop. If we could somehow demonstrate that all of the

measures en actually satisfied the output assertion C, and if we knew .that the set x(C) was

closed under bounded increasing sequences, we would be done: the limit of the partial sums

c00, which defines the output of the while-loop, would satisfy C as well. Unfortunately, life is

not that easy. We can't begin to deduce anything from the premises of the Rule until we have

in our hands some state in x(B). This explains why we must assume that the assertion B is feasible.

Since B is feasible, let b be a finite positive measure in x(B). From the first premise, we

conclude that

f(x((A +B) IP)) c x(B),

or, putting it another way,

g(x(A + B)) c x(B). (4.20)

Starting out with a in x(A) and b in x(B), we can deduce from (4.20) that

g(a + b) = g(a) + g(b) E x(B),

-----~~--·----------- ··~

THE FREQl.JENCY SYSTEM 73

and thus that

g(a) + g(g(a) + g(b)) = g(a) + g2(a) + g2(b) E x(B),

and thus that

g(a) + g(g(a) + g2(a) + g2(b)) = g(a) + g2(a) + g3(a) + g3(b) E x(B).

In general, we have

gn(b) + 2: gi(a) E x(B).
l<i:$n

If we now add in the state a and then restrict to the falsity of P, we may conclude that, for any n,

(gn(b) 1-.P) + 2: (gi(a) 1-.P) E x((A +B) 1-.P)
O<i<n

Finally, applying the second premise, we have

(gn(b) 1-.P) + 2: (gi(a) 1-.P) E x(C). (4.21)
0:$i:=;n

Although we haven't shown that any of the partial sums of (4.18) lie in x(C), we have

shown that, if we add to the nth partial sum en the correction term En given by

we get a state in x(C). Our next goal is to show that these correction terms are small. To see

this, note that we can apply inequality (4.19) with s replaced by b to deduce that the partial

sums of the series

(4.22}

also form a bounded increasing sequence. In particular, this guarantees that the norms of the

terms must converge to zero, that is, that

The combined sequence (en + En} must converge, since it is the sum of a bounded increasing

sequence and a sequence converging to O; furthermore, it must converge to the same limit c00

to which the sequence (en) converges. Since the measure en + En lies in x(C) for all n by

(4.21), and since the set x(C) is assumed closed, the limit point c00 must also lie in x(C). But

that limit point c00 is our definition of the output of the while-loop on the input a. Therefore,

the output of the while-loop on an arbitrary input a satisfying the precondition A is a state that

satisfies the postassertion C, and we are done. I

74 FORMALIZING THE ANALYSIS OF ALGORITHMS

Similar theorems will hold for other looping constructs. The general principle involved is the

following. An application of an intuitive looping rule is guaranteed to be sound if the following

two additional restrictions are enforced: first, the summary assertion of the loop is feasible; and

second, the postassertion of the rule's conclusion is closed. In fact, in the first restriction, it is

enough if any assertion that cuts the loop is feasible, since we can. begin to trace the behavior

of the loop from any point. Our choice of which loop-cutting assertion to distinguish as the

summary assertion was arbitrary.

From a more practical standpoint, it is important to decide how difficult it is to check the

restrictions in this theorem, since they must be formally checked on each invocation of a loop

rule. The closure restriction is no problem for us, since we have agreed to limit ourselves to

vanilla assertions, and we have already noted that every vanilla assertion is closed. The feasibility

restriction is more of a problem. Each time we use a loop rule, we must prove that at least

one of the loop-cutting assertions is feasible, that is, is not equivalent to FALSE. As we disussed

earlier, the necessary arguments can be quite subtle even for vanilla assertions. The simplest

situation pertains in the disjoint vanilla case, when the various predicates in the clauses can be

shown to be mutually exclusive, the total of the masses specified by the clauses can be shown

to be finite, and none of the clauses ascribes nonzero mass to the predicate FALSE. Any disjoint

vanilla assertion is feasible. When dealing with nondiscrete distributions, we shall be unable to

limit ourselves to disjoint vanilla assertions, and hence we shall have to find some other way of

guaranteeing feasibility.

The frequency system contains Floyd-Hoare verification as a special case. Furthermore, it

turns out that the restrictions in this theorem will never present any problem when the derivation

being performed is the image of a· Floyd-Hoare proof. Recall that the Floyd~Hoare predicate

P maps into the assertion Fr(-.P) = 0. This assertion contains only one clause, with a zero

right-hand side. Any such assertion is disjoint vanilla, so that, if we restrict ourselves to making

F1oyd-Hoare style assertions, we never need to worry about feasibility or closure. In fact, not

only are all F1oyd-Hoare assertions feasible, they are all satisfied by a single frequentistic state,

in particular, the zero state.

We have now completed the description of the frequency system, a sound formal system

for reasoning about the probabilistic behavior of programs.

Chapter 5. Using the Frequency System

Getting Answers Out.

We want to perform the dynamic phases of algorithmic analyses inside the frequency system,

and this suggests some new questions. First and foremost is the question of how to get information

about a performance parameter out of the use of the frequency system. Consider, for example,

the program CoinF1ip that we discussed earlier:

loop X +- RandomHr; while X = T repeat.

If we start off this program with one gram of input mass, that is, in a state satisfying Fr(TRUE) = 1,

we can describe the frequentistic behavior of the loop by the summary assertion

(Fr(X = H) = 1) A (Fr(X = T) = 1),

which serves to justify the output assertion

(Fr(X = H) = 1) A (Fr(X = T) = 0).

The output assertion is vanilla, and hence closed; the summary assertion is disjoint vanilla,

and hence feasible. Thus, these assertions reflect a sound application of the Repeat Rule. This

derivation in the frequency system might be called a data analysis of the CoinF1ip program,

since it discusses just the probabilistic structure of the program's variables. Data analyses are all

that we have been considering so far.

An average case algorithmic analysis of the behavior of CoinF1ip will focus on the number

of flips as the relevant performance parameter; it is the only interesting thing around. There are

three possible ways of deducing information about the probability distribution of this performance

parameter.

First, we can reason outside the system. From the data analysis of CoinF1ip, we can

determine the probabilities that the control test will come out each way. In particular, since the

summary assertion ascribes equal mass to the events X = H and X = T, there is probability

precisely ! that control will exit the loop, each time it comes to the control test. This is

enough information to allow us to deduce that the coin will be flipped precisely k times with

probability exactly 2-k for every positive integer k, and this gives the probability distribution of

the performance parameter of interest. From this distribution, we can then compute the average

number of flips of the coin, which is of course 2.

This is the technique that Ben Wegbreit used in his paper, and it works satisfactorily.

On the other hand, the construction of the frequency systerh was an attempt to formalize the

dynamic phases of algorithmic analysis, and, if we get results about our performance parameters

by reasoning outside the frequency system, we are in some sense cheating. Our goal has been

to formalize as much as possible of the reasoning of the dynamic phase.

75

76 FOR..\fALIZING THE ANALYSIS OF ALGORITHMS

The second possibility that. suggests itself allows us to keep more of our reasoning within the

system. This second technique is based on the insight that our assertions actually give the weight

of execution mass in grams. If we follow the convention that the total weight of the input state

should be normalized to be 1 gram, then a mass of g grams indicates that the corresponding

event happens on the average g times during one random execution of the program. In particular,

applying this insight to CoinFlip, we might conclude that the average number of flips is 2

simply because the summary assertion describes a total of 2 grams of execution mass. In general,

to employ this idea, we would attempt to arrange that the assertions in our data analysis all

included a clause of the form Fr(TRUE) = e, either explicitly or implicitly. Then, we would

take the value e as the average number of times that control passed the corresponding point in

the flowchart.

This total mass technique has an appealing simplicity, but it has several problems. First, it

only allows us to determine the average value of our performance parameter, not its distribution

in greater detail. This is a minor annoyance, but not too surprising in retrospect; one could

hardly get information about the distribution of the number of flips out of the data analysis of

CoinFlip, since that analysis doesn't even mention the powers of 2. Fictitious mass, however,

presents a second problem that deals a fatal blow to the total mass technique. We have not found

any way to eliminate fictitious mass from our summary assertions. Although all the implications

of a summary assertion that are visible from outside the loop are in fact correct, the summary

assertion may still describe a finite amount of mass that never entered and will never exit the

loop, but just goes around and around. Although this fictitious mass does not affect the validity

of the theorems that come out of the frequency system analyses, the possibility of its presence

harpoons the total mass technique; the value that we get for the average number of executions

will simply be wrong if the assertions also happen to describe some fictitious mass.

There is a third technique, however, which operates within the system, gives us distribution

information about our parameter beyond its average value, and is also immune to the bad effects

of fictitious mass. This is the method of counter variables. We have mentioned the use of

counter variables several times already: as a method for performing the upper bound parts of

worst case proofs in a Floyd-Hoare system, and as a method for proving termination. They tum

out to be an excellent solution to our current problem as well. Suppose that we add to the

program a new counter variable C, which is inititalized to zero, and incremented every time the

event that we are counting occurs. We shall call the resulting structure a monitored program.

Since, in the CoinFlip program, we are counting flips, the appropriate monitored program is

c +-0;

loop X +- RandomHr; C +- C + l; while X = T repeat.

We can then discuss in our assertions the distribution of the value of C. That is; we can make

assertions about the behavior of the monitored program, and verify these assertions by formal

manipulations in the frequency system. The output assertion for the monitored program will

describe the probability distribution of the performance parameter.

--------------- -- - ----------- -------------- --------

USING THE FREQUENCY SYSTE.\.f 77

In the CoinFlip example, the truth of the input assertion Fr{TRUE) = 1 of the monitored

program implies the truth of the assenion [Fr(C = 0) = 1] A [Fr(C =F 0) = OJ after the

intitialization of C. The summary assenion of the repeat-loop is

(Fr(C < 1) = 0) A f\ [Fr(C = c, X = H) = 2-c, Fr(C = c, X = T) = 2-cJ
c>l

The assertion Fr(C < 1) = 0 with a zero right-hand side simply records the truth of Floyd­

Hoare predicate C > 1. We are assuming that the data type of X allows us to conclude that X

must have one of the two values H and T; if this restriction were not built into the data type,

we could add the Floyd-Hoare clause Fr([X =/: H] A [X =F T]) = 0 to our summary assertion,

and achieve the same effect. Our next task is to follow the mass once around the loop, and we

shall elide the Floyd-Hoare assertions in this process. Thus, we shall begin with the summary

assertion

f\ (Fr(C = c, X = H) = 2-c, Fr(C = c, X = T) = 2-cJ.
c>l

The mass described by this summary assertion enters the control test, which sends all of

the mass with X =F T out of the loop. This supports the output assertion

/\ [Fr{C = c, X = H) = 2-c]
c>l

for the monitored CoinFlip program. The mass. with X = T,

/\ [Fr(C = c,X = T) = 2-c],
c>l

is sent around the loop again. At this point, we are no longer interested in the value of X,

since it is about to be smashed. Therefore, we might as well throw away that portion of our

information. We throw away information by summing; in this case, we sum the frequencies

associated with the events [C = c, X = H] and [C = c, X = T] to get the frequency of the

combined event [C = c]. The first of these events has zero frequency (a Floyd-Hoare fact, and

hence elided). Thus, the combined event has the same frequency as the second event alone, and

we deduce the assertion

/\ [Fr(C = c) = 2-c].
c>l

The next thing that happens is that the one gram of input mass in which C has just been

set to 0 joins the fl.ow; we can reflect this by changing· the lower bound on the index c:

/\ (Fr(C = c) = 2-cJ.
c>O

78 FO.Ri\1ALIZING TIIE ANALYSIS OF ALGORITHMS

Altogether,· we now have two grams of mass. The random assignment to X splits every pellet

exactly in half, so, coming out of that assignment, we have

f\ [Fr(C = c,X = H) = 2-c-1, Fr(C = c,X = T) = 2-c-l].
c>O

To prepare for the deterministic assignment to C, we replace the mathematical variable c by

c - 1, getting

f\ (Fr(C + 1 = c,X = H) = 2-c, Fr(C + 1 = c,X = T) = 2-c].
c>l

With this assertion on the input to the increment of the counter C, an axiom of assignment

will allow us to conclude on output from the increment the assertion

f\ [Fr(C = c, X = H) .:._ 2-c, Fr(C = c, X = T) = 2-c].
c>l

And this, neatly enough, is exactly the summary assertion of the loop once again.

What we have done in this example is to use our frequency system techniques on the

monitored program, instead of on the original program. The resulting analysis might be called

a performance analysis in the frequency system, rather than just a data analysis. The output

assertion of the monitored program, which, in the CoinFlip case; is

[Fr(C < 1) = O] A [Fr(X = T) = O)A f\ (Fr(C = c,X = H) = 2-c],
c>I '

describes completely the distribution of the perfonnance parameter of interest. The only infor­

mation from outside the system that we have to apply is our knowledge that the counter variable

C will in fact count the number of flips, which is what we set out to study. As the example of

CoinFlip demonstrates, the method of counter variables is an excellent way of getting information

about a performan.ce parameter out of the frequency system. We shall adopt it exclusively in

our other examples.

We performed the above analysis by starting with the correct summary assertion for the

loop, and then following it once around the loop to verify its correctness. Because the summary

assertion was fairly easy to invent, this was no problem. But, if we didn't realize that the powers

of two were involved in the performance analysis of CoinFlip, we could actually discover that fact

by reasoning in the frequency system. We could have started our derivation with the summary

assertion

f\ (Fr(C = c,X = H) =Pc, Fr(C = c,X = T) = Qc],
c>l

(5.1)

----- ------·-----· ·-------·-

L'SING THE FREQUENCY SYSTEM 79

where Pc and Qc are unknown parameters whose values we would attempt to discover. As we

start to walk this assertion around the loop, the mass in which X = H exits. The one gram

of input mass then joins our flow, and we hence define <Jo to be 1, to avoid making c = 0 a

special case. The coin flip then splits the flow in half again, and we end up with the assertion

f\ [Fr{C = c, X = H) = !Qc-li Fr(C = c, X = T) = !qc_i]. {5.2)
c>l

We can now determine the parameters Pc and Qc so that the two assertions (5.1) and (5.2) are

the same. In order for this to be the case, the parameters Pc and Qc must satisfy the identities

Pc= hc-1 and Qc = !Qc-li for all c > 1.

These identities constitute recurrence relations that, together with the initial condition qo = 1,

allow us to compute that Pc = Qc = 2-c. Thus, by formal manipulations in the frequency

system, we can deduce the recurrence relations that define the probabilistic behavior of our

performance parameter.

Continuous Models.

Having successfully handled the dynamic phase of the average case analysis of CoinFlip,

it is time to set our sights a little higher. In particular, our next goal is to tackle the program

FindMax, which we considered back in Chapter 1 as a paradigmatic example of the average

case analysis of algorithms.

The input to FindMax is a random permutation, and that is the source of some difficulty.

Suppose that we in fact let the input array take on as value the n! different permutations on the

set { 1, 2, ... , n }, each equally likely. Already, we can see part of the difficulty: we would have

to describe this probability distribution on the space of all possible values of the array by some

sort of frequentistic assertion, and that does not look easy. But even graver problems await

Suppose that the program has examined the first element of the array, and found that it is k.

What is a characterization of the randomness that is left in the rest of the array? The remainder

of the array will be a random permutation of the set {l, 2, ... , n} - {k}. The prospect of

describing this in any assertion language that, like ours, deals at the level of the first order

predicate calculus is a daunting one. In fact, the same phenomenon arises in program verification

research. There are many verification systems that can demonstrate that the output of a sorting

program is sorted; but, of those, only a few can also show that the output is some permutation

of the input

It turns out, however, that we can finesse this problem by using a continuous model for a

random permutation instead of the discrete model discussed above. Suppose that the elements

of the input array are assumed to be independent, identically distributed real random variables.

If the distribution from which they are drawn is continuous, the probability of any two of them

being equal will be zero. In addition, the elements will be equally likely to be in each of

80 FORMALIZING IBE ANALYSIS OF ALGQRITHM:S

the n! possible orders. Thus, if our algorithm operates by doing comparisons on the values,

we can model a random permutation in this continuous manner instead. The advantage of this

technique is the tremendous convenience of independence. Not only is it easier to describe the

input state, but, if the algorithm has examined the first element of the array, this does not affect

in the slightest our state of knowledge about the other elements of the array. They are still

independent, identically distributed random variables.

This technique of modeling a random permutation as a sequence of independent, identically

distributed random variables works only for those programs that operate exclusively by comparing

data values. If an algorithm performs arithmetic on its input, or uses the elements of a permutation

as pointers into some other data structure, the continuous model of random permutations will

not be a valid substitute for the normal, discrete model. There are many programs in the area

of sorting and searching, however, where the continuous model is appropriate, including the

program Find.Max.

In order to use the continuous model of random permutations, we have to decide upon

a continuous probability distribution on the reals. We shall adopt the uniform distribution on

[O, 1) as being the most natural. As we commented earlier; we can describe a program variable

X that has this distribution by a collection of atomic assertions, each of which specifies the

probability that X lies in a particular measurable subset of the real line. The most general such

description would be the assertion

f\[Fr(X EM)= µ(Mn [O, l))), (5.3)
M

where µ represents Lebesgue measure, and the conjunction ranges over all measurable subsets

M of the real numbers.

Rather than working explicitly with conjunctions such as (5.3), it will be convenient to

introduce an abbreviated notation, based upon a differential way of viewing things. From an

intuitive point of view, the probability that X lies in the differential interval [x, x + dx) is

simply dx for x in [O, 1), and 0 elsewhere. We shall adopt the notation X ~ x, which might

be read "X is differentially equal to x," as an abbreviation for x < X < x + dx. Then, we

can describe a random variable that is uniformly distributed on [O, l) by the assertion

(Fr(X < O} = 0) A (Fr(X > 1) = 0) A /\ (Fr(X ~ x) = dx]. (5.4)
O<x<l

We shall often treat this differential type of assertion from an intuitive point of view, and pretend

that the various clauses are really giving the differential probabilities associated with X lying

in certain differential intervals. Formally, however, such a differential assertion is merely an

abbreviation for a conjuntion · over all measurable sets. By giving the frequency distribution of

a variable X in differential form, we really mean that integrating that differential density over

any measurable set M will give the frequency with which X . lies in M.

USING THE FREQUENCY SYSTEM 81

The differential form (5.4) of the assertion (5.3) looks like a vanilla assertion; in fact, we

might as well call it vanilla, say differentially vanilla, since the assertion (5.3) that it stands for

is vanilla. One pleasant property of the differential point of view is that it allows us to invent

an analog of the disjoint vanilla property that will be useful for nondiscrete distributions. We

shall only suggest the essential concept, without giving details. If the clauses of a differentially

vanilla assertion describe the frequencies of events that are mutually exclusive, and if the right­

hand sides of the clauses, when summed over discrete indices and integrated over continuous

indices as appropriate, add up to a finite number, then that assertion will be feasible. We shall

distinguish such assertions by calling them differentially disjoint vanilla.

Recall that FindMax goes through its input array from left to right, searching for the

maximum element:

M +- X[l];

for J from 2 to N do

if X[J] > M then M +- X(J] fi od.

We begin to execute this program in a state satisfying Fr{N-::/= n) = 0 where n denotes a fixed

positive integer. To employ the continuous model of random permutations, we should let the

input array (X[l], X[2], ... , X[n]) consist of n independent random variables, each uniformly

distributed on (0, 1). We can characterize this input state by the assertion

[Fr(N-::/= n) = 0) A f\ [Fr([X[i] <OJ V [X[i] > 1]) = O]
l<i<n

A /\ [Fr(X[l] ~ z1, ... , X[n] F<:d Zn)= dz1 ... dzn]·

In the particular case of FindMax, however, we can simplify the assertions substantially by

using the random assignment feature of our programming language. Since the FindMax program

scans through the input sequentially, we can merely generate each random variate on [O, 1) as we

need it, rather than generating them all at once, before the program begins. With this ·technique,

we shall have to describe at most two of the random variables at any time: the current maximum

and the new challenger.

Our next step, then, is to recode the FindMax program in accord with the increment.al

approach to generating the random input. The resulting code is

M +- Randomu;

for J from 2 to N do

T +- Randomu;

if T > M then M +- T fi od;

where U represents the uniform distribution on [0, 1). We can now begin to get some sense

of what the summary assertion for the for-loop will look like. Some clauses will presumably

describe the distribution of M, the current maximum. The maximum of k independent uniform

82 FOR.c\.fALIZING THE ANALYSIS OF ALGORITHMS

variates on [O, 1) has the density d(xk) = kxk-l dx; therefore, adopting differential format, we

might see clauses of the fonn

/\ [Fr(M ~ m,J = j) = (j- l)mi-2 dm].
O<m<l

2<j<n+l

Recall that the summary assertion of a for-loop discusses all the mass entering the control test

of the loop, in terms of the incremented value of the loop variable. Thus, at the moment that

we make our summary assertion, the current maximum M is the maximum of J - 1 rather

than J values. In particular, this means that the mass entering the for-loop for the first time

is described in the summary assertion as having J equal 2; in this mass, the event M ~ m is

ascribed lm0 dm = dm grams, which is correct.

But we want to do a performance analysis of FindMax, not merely a data analysis. Therefore,

our next step is to add a counter variable C, which will keep track of the number of left-to­

right maxima, the performance parameter of interest. The monitored version of FindMax is

C +- O; M +- Randomu;

for J from 2 to N do

T +- Randomu;

if T > M then M +- T; C +- C + 1 fi od.

We shall now add to our summary assertion some clauses that discuss the probabilistic behavior

of C. Since this probabilistic behavior is what we are trying to determine, we shall simply

describe it by a sequence of unknown parameters. In particular, we can add the following clauses

to our growing summary assertion:

f\ (Fr(C = c, J ~ j) = Pc,j]·
c>O

2$j<n+l

The coefficients Pc,j are intuitively the probabilities that a random permutation on j - 1 elements

has precisely c left-to-right maxima, where the leftmost element is not counted as a maximum.

Even with clauses that describe the distributions both of M and of C, our summary

assertion still is not complete. The problem is that our current clauses only discuss the marginal

distributions of M and C; not a word is said about their joint distribution. The critical fact

about the FindMax program, the thing that makes it pleasant to analyze, is that M and C are

independent. To see this, note that M, the current maximum, depends only upon the set of

values that have been seen so far; while C, the number of left-to-right maxima seen so far,

depends only upon the order in which those values were seen. This independence allows us to

combine the clauses that describe M and C into the true summary assertion

c>O
O<m<l

2<j<n+l

[Fr{M R:3 m, C = c, J = j) = Pc,j(j - l)mi-2 dm]. (5.5)

USING THE FREQUENCY SYSTEM 83

Note that this summary assertion (5.5) is differentially disjoint vanilla, so that it is also

feasible. Our basic job is to carry (5.5) once around the loop; we hope to end up with a

new summary assertion that can be matched against (5.5) by choosing appropriate values for

the coefficients Pc,J· Of course some of the mass described by (5.5) will exit the loop on this

iteration; and some new mass will enter for the first time. We hope that these effects will balance

out. We would expect that the } = 2 portion of (5.5) would be supported not by mass coming

around from the end of the loop body, but rather by the original input mass. We shall first

explore this expectation.

We enter the FindMax program with one gram of mass in which N has the value n. After

the first two assignments, the mass entering the for-loop is

/\ [Fr(M ~ m,C = 0) = dm]. (5.6)
O~m<l

Note that the relations 0 < M < 1 and N = n are Floyd-Hoare facts at this point; they are

specified by assertions with zero right-hand sides that we are choosing to elide. In particular,

we could add the conjunct N = n to the predicate in these atomic assertions without changing

anything.

Just before the input flow (5.6) to the for-loop joins the flow already in the loop, there is

an implicit assignment of 2 to J; thus, the input flow at this join is described by

f\ (Fr(M ~ m,C = O,J = 2) = dm]. (5.7)
O<m<l

In order for this mass to take care of the j = 2 portion of our summary assertion (5.5), we

only need to guarantee that the coefficient Pc,2 is 1 if c = 0 and 0 otherwise. The Kronecker

delta function Cij is 1 if i = i and 0 otherwise; thus, we want the coefficients Pc,j to satisfy

the initial condition Pc,2 = Ceo·
We shall now begin at the summary assertion (5.5), and move once around the loop. We

hope to support the j > 2 portion of the summary assertion with the result of this round trip.

The first thing that we come across is the control test, which compares J and N. This test will

cause all of the mass in which J > N, or equivalently, in which j > n, to exit the loop; the

only mass with j > n is that with j = n + 1, and it generates the output assertion

/\ [Fr(C = c,M ~ m,J = n + 1) = Pc,n+1nmn-1dm].
c>O

O<m<l

This output assertion is differentially vanilla, and hence closed.

The rest of the mass,

/\ [Fr(M ~ m,C = c,J = i) = Pc.J(j- l)mi-2 dm],
c>O

O<m<l
2<j<n

84 FORMALIZING THE ANALYSIS OF ALGORITHMS

stays in the loop. The first action of the loop body is the assignment to T of a uniform random

variate on [O, 1). This is reflected in the state, according to an axiom of random choice, by

changing the assertion to

f\ [Fr(T ~ t,M ~ m,C = c,J = j) = Pc,j(i- I)mi-2 dmdt].
c>O

O<m<l
2$j<n
0$t<l

We can simply multiply the old right-hand side by dt when we add the conjunct T ~ t because

the randomly chosen value for T is assumed to be independent of everything that happened

previously.

This assertion now arrives at the if-test, which compares the values of M and T, or

equivalently, of m and t. We shall follow the FALSE branch of the if-statement first. The mass

that begins this branch is described by the assertion

/\
c>O

2<j<n
O<t$m<l

(Fr(T ~ t, M ~ m, C = c,J = j) = Pc,Ai - I)mi-2 dmdt]. (5.8)

Note that a Floyd-Hoare system could show that T < M on the FALSE branch of the if-test.

With this in mind, we have elided the atomic assertion Fr(T > M) = 0 in assertion (5.8).

(This atomic assertion is written with an inequality, but it is of course vanilla; the inequality is

at the predicate level rather than at the assertion level.)

The FALSE branch of the if-statement has no executable code; thus, we can put aside

assertion (5.8) until we want to recombine the flows at the end of the if-statement. Before we

put it aside, however, it would be a good idea to throw away the information in it about the

value of T. If the latest element was not a left-to-right maximum, we have no further interest

in its value, and we would rather that it didn't hang around and clutter our assertion. We

want to replace our data about the joint distribution of T and M with data about the marginal

distribution of M alone. To do this, we want to sum over all possible values of T; since T

is a continuous variable, this really means to integrate over all t. In assertion (5.8), the only

nonzero mass is associated with those cases where t lies between 0 and m. Thus, the integral

involved is

The resulting assertion for the end of the FALSE branch that does not discuss T is therefore

/\ [Fr(M ~ m, C = c, J = j) = Pc,jU - l)mj-l dm].
c>O

2<j<n
O<m<l

(5.9)

USING THE FREQUENCY SYSTEM 85

We next go back and consider what has been happening on the TRUE branch of the if­

statement Starting off down the TRUE branch, we have mass described by

/\
c>O

2<}'5,n
O<m<t<l

[Fr(T ~ t,M ~ m,C = c,J = j) = Pc,j(j- l)mi-2 dmdt], (5.10)

w)lere we have elided the F1oyd-Hoare assertion Fr(T < M) = 0. The first thing that happens

on the TRUE branch is the assignment M +- T. That is, since T represents a new left-to-right

maximum, we want to record its value in M. In particular, note that the current value of M

is no longer of any use to us. Our first action, then, is to integrate out our information about

M, that is, to integrate over all values of m. The integral involved is

since j > 2. Thus, a coarser description of the mass beginning the TRUE branch is

/\ [Fr(T ~ t,C = c,J = j) = Pc,jti-ldt].
c>O

2<j<n
O<t<l

To prepare for the future, we shall replace the mathematical variable t by m, and the mathematical

variable c by c - 1. The resulting equivalent assertion is

/\ [Fr(T f::::j m, C + 1 = c, J = j) = Pc-1,jmj-l dm].
c>l

2<j<n
O<m<l

From this assertion, appropriate assignment axioms will show that we may assert

/\ [Fr(M ~ m, C = c, J = .'1 = Pc-1,jmj-l dm]
c>l

2<j<n
0:'5,m<l

at the end of the TRUE branch.

(5.11}

The last action of the if-statement is to combine the masses that emerge· from the TRUE

and FALSE branches; we can trace this by adding assertions (5.9) and (5.11). In order to do

so, however, we must readjust the lower limit on the index c in (5.11) from 1 to 0. This

readjustment will make no difference if we can arrange that the coefficients Pc,j satisfy the

condition Pc,j = 0 for c < 0. With this convention, the sum of (5.9) and (5.11) is

/\ ...{Fr(M f::::j m, C = c,J = j) = ((j - l)Pc,j + Pc-1,j)mi-l dm].
c>O

2<j<n
O<m<l

(5.12)

86 FOR..M:ALIZING THE ANALYSIS OF ALGORITHMS

Since we have now completed the body of the loop, our next task is to deal with the index

variable J. To prepare for the incrementation of J, we can replace j by j -1 in (5.12), getting

/\ [Fr(M ~ m, 0=c,J+1 = j) = ((j- 2)Pc,j-l + Pc-l,j-1)mi-2 dm],
c>O

O<m<l
3<j:::;;;n+l

which the incrementation of J then changes into

/\ [Fr(M ~ m, C = c,J = j) = ((j- 2)Pc,j-l + Pc-l,j-1)mi-2 dm].
c~O

o:s;;m<l
3<j<n+l

(5.13)

Our goal is to make the mass described by (5.13) support all of the j > 2 portion of

summary assertion (5.5); the j = 2 portion has already been handled by the input mass (5. 7).
Comparing assertions (5.13) and (5.5), we find that we can achieve our goal by guaranteeing

that the coefficients Pc,j satisfy the identity

(j - l)Pc,j = (j - 2)Pc,j-l + Pc-1,j-1·

Therefore, we shall define the coefficients Pc,; for c > 0 and j > 2 by the recurrence relation

j-2 1
Pc,j = -.--1Pc,j-1 + -.--1Pc-l,j-l

J- J-

under the initial conditions Pc,2 = 6c0 and Pc,j = 0 for c < 0. They will then specify the

probabilistic behavior of the number of left-to-right maxima in the sense that the assertion

/\ [Fr(O = c, M ~ m, J = n + l) = Pc,n+I nmn-l dm]
c>O

O<m<l

will describe the output of the Find.Max program. If we are only interested in the probabilistic

structure of C, as opposed to. its joint distribution with M, we can integrate m out of this

output assertion. Since

fo1
nmn-Idm = 1,

we deduce that the marginal distribution of C is given by

/\ [Fr(C = c) = Pc,n+1].
c>O

This justifies our earlier intuitive definition of the Pc,j as the probability of c left-to-right maxima

other than the leftmost element, in a permutation of length j - 1.
The FindMax example provides some real evidence that the motivating ideas behind our

project were basically sound. By manipulations in a formal system, we have been able to verify

that the distribution of the chosen performance parameter is specified by a certain recurrence

relation. That is, we have formalized the dynamic phase of the analysis of Find.Max, without

appealing to poorly undertsood "intuition" about the program. The recurrence relation came

naturally out of a flow analysis of the for-loop. With this recurrence relation in hand, we could

then move on to the static phase of the analysis, where the solution to the recurrence is studied

[Section 1.2.10 in 18].

USING THE FREQUENCY SYSTEM 87

FindMax with Arbitrary Distributions.

Our performance analysis of FindMax depended critically for its success upon the fact that

the distribution from which the elements were drawn was assumed continuous. We actually

assumed that the data elements were drawn from the uniform distribution on [O, 1), but that

was not critical; any continuous distribution would have done as well. On the other hand, if

the data elements are drawn from a distribution that contains mass points, then one of the basic

assumptions of the analysis above is violated: the values of C and M are no longer independent.

As an extreme case, consider the distribution that assigns probability ~ to each of 0 and 1.

Suppose that we have drawn a sequence of independent variates from this distribution, and that

the maximum M of that sequence so far is 0. Note that this implies that C must also be

0. But if the maximum of the sequence were 1, then C could be either 0 or 1, depending

upon whether the first element of the sequence was or was not 1. This implies that M and C

are dependent. It is still true that M depends only upon the set of values seen so far, but C

depends not only on the order in which those values were seen, but also upon the duplicate

structure. And the value of the current maximum can give us some indication of the number

of duplicates.

In this section, we shall consider how far we can get in a performance analysis of FindMax

if we drop the continuity assumption on the distribution. Let F: R -+ R be a nondecreasing

function. At a point y of discontinuity of F, the value F(y) of F itself is not as important as

the values that F approaches in the limit as we move towards y from above and below. We

shall denote these limits by

F+(y) = limF{x)
xly

and p-(y) = limF(x).
xTy

There is associated with F a positive measure on the Borel sets that assigns to each open interval

(a, b) the measure F-(b)-F+(a) and to each closed interval [a, b] the measure F+(b)-F-(a)

[10]. The measure associated with F will be a probability measure if the difference

lim F(x) - lim F(x)
X-+ 00 X-+ -OC>

is 1, and it will have finite total mass if this difference is finite. We shall refer to the measure

associated with F by dF, in a Lebesgue-Stieltjes style.

Suppose that the real-valued program variable X has the frequency distribution described

by such a measure dF with finite total mass. We shall describe the variable X by the differential

assertion

/\[Fr(X Rj x) = dF(x)]. (5.14)
x

In the past, we used differential assertions only in cases where the distributions involved were

differentiable, so that the right-hand sides were actually densities. But remember that a differential

88 FOR.\1ALIZING THE ANALYSIS OF ALGORITIL\1S

assertion is only a shorthand for a conjunction over all measurable sets; the differential assertion

(5.14), for example, expands into the conjunction

f\(Fr(X EM) = dF(M)],
M

where the right-hand sides here represent the mass ascribed by the measure dF to the measurable

set M.
Thus, the differential format for assertions makes sense when the associated cumulative

distribution functions are not differentiable, and even when they are not continuous. The

concept of an assertion being differentially disjoint vanilla also makes sense in this more general

environment, since there exist random variables that have an arbitrary nondecreasing function

F as their cumulative distribution function. If we allow arbitrary distributions, however, we

should make one tactical retreat. The measures dF associated with nondecreasing functions F
are defined on the Borel sets, rather then on all Lebesgue measurable sets; therefore, we hereby

change our conventions by adopting the Borel sets as the narural a-algebra for the real numbers.

In our previous analysis of FindMax, the random numbers were chosen with the uniform

distribution U on [O, l}. With our new notation, the old summary assertion (5.5) could be rewritten

/\ (Fr(M R::J m, C = c, J = j) = Pc,1dui-I(m)],
c>O, m

2<j<n+I

since the maximum of J. -1 independent U-distributed random variables will be ui-1-distributed.

Suppose that the random numbers input to FindMax are chosen with an arbitrary probability

distribution F, rather than the uniform distribution U. Since the values of M and C are not

guaranteed to be independent, we shall have to restructure our summary assertion; in particular,

we shall no longer be able to factor the right-hand side into the product of a function of c

and a function of m. One possibility is to define a two parameter family of measures dGc,J•

where the measure dGc,j will describe the frequency distribution of M over all of the mass with

C = c and J = j. Since the total frequency associated with a particular value of C and J will

be less than 1, the measures dGc,J will not be probability measures; instead, we might call them

frequency measures. The analog to the numbers Pc,J in this new version of the problem will be

the norm of the measures dGc,J• the result of integrating dGc,J(m) over all m. In particular,

the expression

l dGc,J(m)

will give the probability of precisely c left-to-right maxima other than the leftmost in a sequence

of j - 1 numbers drawn independently from the distribution F.

This suggests that we choose

/\ [Fr(M ~ m,C = c,J = j) = dGc,J(m)] (5.15}

USING THE FREQUENCY SYSTEM 89

as our new summary assertion for the for-loop (this assertion is differentially disjoint vanilla,

and hence feasible). What do we find when we carry this assertion once around the loop? The

mass with j = n + 1 exits the loop; then, the variable T is assigned a random variate with

distribution F, resulting in the state

/\ [Fr(T ~ t,M ~ m,C = c,J = j) = dF(t)dGc,J(m)].
c>O,m,t
2<f$;n

This mass then splits at the if-test, and the TRUE branch is subjected to various assignments.

Tracing things through, it turns out that we shall get back to summary assertion (5.15) again if

the measures satisfy the identity

dGc,j(m) - dGc,J-1(m) f dF(t) + dF(m) f dGc-l,J-1(t),
lt<m lt<m

or equivalently,

dGc,j(m) = F+(m)dGc,j-1(m) + G~l,j-l(m)dF(m)

for c > 0 and j > 2. Although this relation looks like a differential equation, it should be

considered instead as a recurrence on the associated measures. The appropriate initial conditions

are dGc,2(m) = DcodF(m) and dGc.;(m) = 0 for c < 0.

For any particular distribution function F, we can carry out the above calculations, and

determine the probabilistic structure of the number of left-to-right maxima. Certain aspects of

this computation can be completed even in the very general framework above. For example, we

can compute all of the distributions Go,i quite easily; iterating the recurrence, we find for j > 2 that

dGo,j(m) = (F+(m))i-2 dF(m).

Intuitiveiy, the left-hand side gives the differential frequency with which the maximum of a

sequence of j - 1 variates is m while the sequence has no left-to-right maxima other than its

leftmost element. The right-hand side gives the differential frequency dF(m) with which the

leftmost element will be m, times the probabilities F+(m) that each of the other j-2 elements

will turn out to be no larger than m. Unfortunately, for all but the simplest non-continuous

distributions F, the resulting measures dGc,J do not seem to have a simple general form [exercise

1.2.10-10 in 18).

Analyzing a Trivial Algorithm.

We mentioned in Chapter 1 the paper A Trivial Algorithm whose Analysis Isn't by Jonassen

and Knuth [16). This paper discusses the structure of binary search trees of sizes 2 and 3 under

repeated random insertions and deletions. The analysis is rather subtle, and its dynamic phase

serves as a good example of an analysis at a very low level. Jonassen and Knuth derive integral

90 FORMALIZING THE ANALYSIS OF ALGORITHMS

equations for the relevant performance parameter by reasoning almost directly from the code of

the program. In this section, we shall show how this dynamic phase looks when couched in the

frequency system.

The process to be studied is the following: take an empty binary search tree. Choose one

key at random, and insert it, and then repeat this operation. The tree will now have one of two

possible shapes. Choose yet another key at random, and insert it; the tree will now have one of

five possible shapes, each with an associated probability. Next, choose one of the three keys in

the tree, each key chosen equally likely, and delete it using Hibbard's deletion algorithm. Once

again, choose a new key at random, and insert it; then choose one of the three current keys at

random and delete it. Repeat this insertion-deletion loop indefinitely. The problem is to study

the probability distribution of the shapes of the resulting trees, as a function of the number of

insert-delete steps. This particular regimen of insertions and deletions is interesting because it

constitutes a simple but non-trivial case. The subtlety of the problem comes from the interplay

between the probability distribution of the shape of the tree and the probability distributions of

the various keys in the tree.

There are only two possible shapes that a binary search tree with two nodes can have, and

only five possible shapes for a binary search tree oii three nodes. Jonassen and Knuth distinguish

between these shapes by means of a letter code, and we shall use the same notation. Thus, the

two possible shapes for a tree with two keys are called F and G, while the five possible three­

key trees are called A, B, C, D, and E. We shall use the program variable S to hold the shape

of the tree when it contains two keys, and T to hold the shape of the three~key trees. The keys

of a two-key tree will be stored in the variables V and W in such a way that V < W, while

the keys of a three-key tree will be stored in X, Y, and Z in the order X < Y < Z.

It would be possible to tackle this problem with a discrete model of randomness. For the

first n insert-delete cycles, there would be (n + 3}!3n different equally likely possibilities: (n + 3)!

orders for the n + 3 inserted keys, and 3 choices at each of the n deletions. But Jonassen· and

Knuth warn us that "Such a discrete approach leads to great complications." Instead, this is a

perfect opportunity to employ a continuous model; the description of the process given above is

much closer, in fact, to an approach based upon successive random choices from a continuous

key space. Therefore, we shall choose our keys to be independent random variables from a fixed

distribution on the real numbers; any continuous distribution would do, but again we shall adopt

the uniform distribution U on [O, 1) as being the simplest. The choices of which key to delete

will be effected by choosing independent random variables from another distribution, one that

assigns probability ~ to each of the three outcomes X, Y, and Z. We shall call this distribution XY Z.

We can now write down our first approximation to the lnsertDelete program. If we take

as input to the program the result of the first two random insertions, the program will have the

form

USING THE FREQUENCY SYSTEM

while TRUE do

R +- Randomu;

(T; X, Y, Z) +- Insert(R, S, V, W);

L +- Randomxvz;
(S; V, W) +- Delete(L, T, X, Y, Z);

od.

91

The functions Insert and Delete produce vectors as output, which are assigned component by

component to the vectors on the left of the assignment We shall refine these functions shortly

into case-statements that incorporate in a table the rules for all of the possible insertions and

deletions in our trees. But first we should devote some effort to roughing out the structure of

our frequentistic assertions.

We run into one problem right away: the program InsertDelete as given above never halts,

and thus there is an infinite amount of interesting mass going around the while-loop. The

·frequency system doesn't allow us to discuss an . infinite amount of mass, and the technique of

tacit divergence won't help, since we want to study all of this mass in detail. The best thing

to do is to replace the while-loop by a for-loop that performs n insert-delete cycles for some

mathematical variable n. The loop in this modified program will have only n grams of mass

running around it (or n + 1, depending upon where one counts), and the output assertion will

discuss the probabilistic state after the nth insert-delete cycle. It is interesting to note that,

to be rigorous, we would have had to adopt the for-loop modification even if there were no

infinite mass restriction in the frequency system. Remember that, because of the possibility of

fictitious mass, the frequency system only certifies as accurate the input-output performance of

the analyzed program. It is tempting to think that, as in the inductive assertion method, all of the

assertions throughout the program will correctly describe the mass going by the corresponding

points, but there is no guarantee of this. Of course, if we attempt to analyze the while-loop

version of the InsertDelete program, the output assertion will be Fr(TRUE) = 0. Since only that

output assertion is trustworthy, all that we are able to conclude is that the while-loop version

of InsertDelete never terminates (or at least terminates only with probability zero).

We are trying to determine the distributions of the tree shapes, and we find that, to do so,

we must in fact keep track of the joint distributions of the shapes and the keys. But we don't

have to add any counter variables to the program in this case; a data analysis alone will tell us

what we want to know. By changing to a for-loop with index variable K and refining the Insert

and Delete functions into case-statements, · we arrive at· a version of the program InsertDelete

that is tuned for the frequency system:

92 FORMALIZING THE ANALYSIS OF ALGORITHMS

Ra] for K from 1 to n

Ro] do

RP] R -·Randomu;

b'] case

s = F, o <R < v = Ro]((T;X, Y,Z) - {A;R, v, W})Rt]
S = F, V <R < W = ({T;X, Y,Z) +- {B; V,R, W))
S = F, W < R < 1 = ({T; X, Y, Z) +- {C; V, W, R))

S = G, 0 < R < V = ({T;X, Y,Z} +- {C;R, V, W})
S = G, V <R < W = ({T;X, Y,Z} +- {D; V,R, W})
S = G, W < R < 1 = ((T;X, Y,Z) +- (E; V, W,R})

end case;

R~D L +- Randomxvz:

R7'1] case

T =A, L = x = R8]((S; v, W) +- {F; Y,Z})Rt]
T =A, L = Y = ({S; V, W) +- (F;X,Z))

T = A, L = Z = ({S; V, W} +- {F; X, Y})
... cases for TE {B, C, D} ...

T = E, L = X = ((S;V, W} +-{G; Y,Z})

T = E, L = Y = ((S; V, W} +- (G;X,Z})

T = E, L = Z == ((S; V, W} +- (G;X, Y))

endcase; R11:]
od Rw].

There are several fine points. First, it is mildly illegal to refer to a mathematical variable in

program text (unless perhaps that variable is considered to be a compile-time constant). Thus,

we should really make the for-loop run from 1 to N for some program variable N, and then

agree to enter InsertDelete in a state in which the relation N = n is a F1oyd-Hoare fact We

shall stay with the current, mildly illegal version for simplicity. Secondly, the conditions on the

arms of the first case-statement are not really exhaustive. However, they are exhaustive except

for a set of frequency zero, and that is enough. Thirdly, we shall elide in what follows the

assertions of many F1oyd-Hoare facts, including the relations SE {F, G} and TE {A, B, C, D, E}

among others.

The atomic assertions that we make should give the differential frequency associated with a

particular combination of values of K, S, V, and W when the tree has two keys, and combination

of values of K, T, X, Y, and Z when it has three. We shall use a special purpose nomenclature

for the assertions that we shall be generating. Assertions that describe the values of K, S, V,

and W will be called S-assertions, while those that describe K, T, X, Y, and Z are T-assertions.

The other component of an assertion's name is the control point at which it applies. The twelve

<:ontrol points are labelled in the program above; in particular, note that o is the point where

the summary assertion applies, and that a .and w are the input and output points respectively.

USING THE FREQUENCY SYSTEM 93

We shall start off with a summary assertion that has both an S·assertion part and a T·
assertion part, with appropriate unknown coefficients as the right-hand sides. The S·assertion

part is the assertion (o.S), given by

/\ [Fr(K = k, S = s, V ~ v, W ~ w) = Pk(s; v, w) dv dw], (o.S)
I<k<n+I

sE{F,G}
O<v<w<l

while the T·assertion part is

2<k~n+I
tE{A,B,C,D,E}

O<:z:<y<z<l

[Fr(K = k, T = t, X ~ x, Y ~ y, Z ~ z) = Qk(t; x, y, z) dx dy dz]. (o.T)

The functions Pk and Qk describe the frequentistic structure of the trees of sizes two and three

respectively. We have started the index k in assertion (o.T) at 2 instead of at 1, because, on

input to lnsertDelete, only the variables associated with a tree of size two will have a well-defined

meaning. Since the variables T, X, Y, and Z are not defined when K = 1, we simply won't

describe them. Since our keys are being chosen from a continuous distribution, coincidences in

which two keys happen to be equal or a key happens to be exactly 0 or 1 occur only with

frequency zero; we can ignore them.

Note that our summary assertion is not differentially disjoint vanilla; the S and T halves

have this property when considered separately, but their conjunction does not A different loop·

cutting assertion will be differentially disjoint vanilla, however, and recall that it is enough if we

can show that any loop-cutting assertion is feasible.

There is a straightforward correspondence between the Pk and Qk functions and the differential

probabilities an. bn. . .. , f n that are used by Jonassen and Knuth. The detailed translation is

given by the following table of relations:

Pk+1(F; v, w) = fk(v, w)
Pk+1(G; v, w) = 9k(v, w)

Qk+2(A;x, y,z) = ak(x, y,z)

Qk+2(B; x, y, z) = bk(x, y, z)

Qk+2(C; x, y,z) = ck(x, y,z)

Qk+2(D; x, y, z) = dic(x, y, z)
Qk+2(E; x, y, z) = ek(x, y, z).

By carrying our summary assertion once around the loop, we shall determine recurrences

that define the functions Pk and Qk. The summary assertion first undergoes the control test of

the for-loop, which sends mass out of the loop, described by the conjunction of

/\ [Fr(S = s, V ~ v, W ~ w) = Pn+i(s;v,w)dvdw] (w.S)
se{F,G}

O<v<w<l

94 FORMALIZING TIIE ANALYSIS OF ALGORITHMS

and

/\ [Fr(T = t, X ~ :c, Y ~ y,Z ~ z) = Qn+1(t;z, y,z)dzdydz}. (w.T}
te{A,B,C,D,E}
O<:r<y<z<l

The assertions that describe the remaining mass are just the summary assertions with the k = n+ 1

portion stripped off:

/\ (Fr(K = k,S = s, V ~ v, W ~ w) = Pk(s; v, w)dvdw] (13.S)
l<k<n
11E{F,G}

O<v<w<l

and

/\ [Fr(K = k, T = t,X ~ z, Y ~ y,Z ~z) = Qk(t;z,y,z)d:r:dydz]. (13.T)
2<k<n

te{'A,B,C,D,E}
O<x<y<z<l

We really needn't bother remembering the T portion of the f3 assertion, since the first case­

statement is about to reset the values of the three-key variables from the current values of the

two-key variables. The only reason that our summary assertion has both S and T portions,

in fact, is that we want to be able to support both of the output assertions (w.S) and (w.T).
Therefore, we might as well drop the assertion ({3.T). This has the advantage that the remaining

assertion (/3 .S) cuts the loop, and is differentially disjoint vanilla; hence we can stop worrying

about feasibility.

The mass described by (13.S) then enters the loop body, where the first action is the random

choice of a value for R. This choice affects the atomic assertions by adding the conjunct R ~ r

to the predicate and the factor dr to the right hand side. That is, the proper assertion for just

after this random assignment is

/\ (Fr(K = k,S = s, V ~ v, w~ w,R F:d r) = Pk(s;v,w)dvdwdr). ('Y.S)
l<kSn
11E{F,G}

O<v<w<l
O<r<l

The mass described by ('Y.S) now goes through the case-statement that performs the insertion.

Assertion (; .S) splits into six disjoint and exhaustive pieces, depending upon the value of s and

the rank of r (to be precise, exhaustive except for a set of measure zero). We shall consider

only the first case

/\ · [Fr(K = k, V ~ v, W ~ w,R ~ r) = Pk(F; v, w)dvdwdr], (6.S)
l<k<n

O<r<v<w<l

---------··- ----~-------·-·- ----------~-----

USING THE FREQUENCY SYSTE.\.f 95

since the others are similar; on this first branch, the relations S = F and 0 < R < V < W < 1

are Floyd-Hoare facts. This packet of mass is about to be subjected to the assignments

T - A; X - R; Y - V; Z +- W.

To prepare for them, we can change variables in (6 .S) to get the equivalent assertion

/\ [Fr(K = k, V ~ y, W ~ z,R ~ x) = Pk(F; y,z)dydzdx].
l<k<n

O<x<y<z<l

An axiom of assignment then shows that, after the assignments, the assertion

/\
l<k<n

O<x<y"<:z<l

[Fr(K = k, T =A, Y ~ y,Z ~ z,X ~ x) = Pk(F;y,z)dydzdz]. (t.T)

holds. Note that, through the magic of the assignment statement, the 8-assertion (6.S) has

supported the T-assertion (t.T). This is natural enough, since the structure of the three-key tree

after the insertion is determined by the structure of the two-key tree before.

The other five arms of the case-statement are similar. When these six flows recombine at

the end of the insertion case-statement, the six versions of (t.T) will produce an· assertion (~.T)

that has the same general form as the T-assertion portion (o.T) of the summary assertion. In

particular, if we determine the function Qk+l from the function Pk by the appropriate relations,

the six versions of (t. T) will add up to

/\
l<k<n

tE{A,B,C,D,E}
O<z<y<z<l

[Fr(K = k, T = t,X ~ z, Y ~ y,Z ~z) = Qk+1(t;x,y,z)dxdydz]. (~.T)

In order to make this happen, we need to satisfy for k > 1 and 0 < x < y < z < 1 the relations

Qk+1(A; x, y,z) = Pk(F; y,z)
Qk+1(B; x, y,z) = Pk(f; x,z)

Qk+1(C; x, y,z) = Pk(F; x, y) + Pk(G; y,z) (5.16)
Qk+1(D; x, y, z) = Pk(G; x, z)
Qk+1{E; x, y,z) = Pk(G; :z:, y);

these relations are the exact analogs of Jonassen and Knuth's Equation (2.1).

The insertion phase of the loop body is the portion from f3 to ~ that we have just traced.

The deletion phase coming. up next will take us from ~ to K.. Moving our assertions through

the deletion phase of the loop body is based on the same principles, but is somewhat more

complex. Moving assertion (~.T) through the assignment to L produces the assertion

/\ [Fr(K = k, T = t, L = f, X ~ x, Y ~ y, Z ~ z) = lQk+i(t; x, y,z)dxdydz].
I<k<n

tE{A,B,C,D,E}
O<z<y<z<l

lE{X,Y,Z}

(fl.T)

96 FORMALIZING THE ANALYSIS OF ALGORITHMS

Assertion (77.T) now enters the second case-statement, where it is split into fifteen disjoint

and exhaustive pieces, depending upon the values oft and l. Again, we shall only go through

the first arm of the case-statement in detail; the mass entering it is described by

/\
ISk<n

O<x<y<z<I

[Fr(K = k, X l=::,J x, Y F:::1 y, Z F:::1 z) = !Qk+1{A; x, y,z) dxdydz]. (O.T)

On this first ann, the relations T = A and L = X are Floyd-Hoare facts. The mass described

by (O.T) is about to undergo the assignments

S +- F; V +- Y; W +-Z.

We prepare for these by rewriting (O.T) in the equivalent fonn

/\ [Fr(K = k, X l=::,J x, Y ~ v,Z ~ w) = !Q1c+1(A; x, v, w}dxdvdw].
I<k::;n

O<x<v<w<I

This assertion and an appropriate axiom of assignment allow us to conclude that the assertion

/\ [Fr{K = k,S == F,X ~ x, V ~ v, W F:::1 w) = !Q1c+1(A;z,v,w}dxdvdw]
l<k<n

O<z<v<w<l

(£.S')

holds after the assignment; in this case, a T-assertion has changed into an S-assertion. Now, the

infonnation given by the assertion (1..S') is a little bit too detailed, because its atomic assertions

specify the joint distributions of K, S, V, W, and X; this is why we called it (£.S') instead

of (1..S). Since the variable X is merely storing the value of the deleted key, we would just as

soon throw away that aspect of the joint distribution. We do this, of course, by integrating over

all x; the only nonzero values come for x in the range 0 < x < v, and we deduce that the

following assertion (1..S} also holds at the end of the first arm of the second case-statement:

/\ [Fr(K = k,S = F, V l=::,J v, W l=::,J w) = i({" Q1c+1(A;x, v, w)dx)dvdw]. (1..S)
I<k<n Jo

O<v<w<l

At the end ·of the deletion case-statement, we would expect the fifteen analogs of (£.S)

to combine together to support the S portion of the summary assertion. But recall that the

summary assertion also has a T portion. We have to have assertions that will preserve our

current infonnation about the values of the three-key variables through the rest of the loop

body, just to verify that nothing happens to them. In particular, we need an assertion (£.T).
That is no problem; since the assertion (8.T) does not mention the values of the variables that

are being reset, a trivial instance of the Assignment Axiom Schema shows us that the assertion

USING THE FREQUENCY SYSTEM

(0. T) will remain true at the point "· Therefore, (0. T) deserves the new name (1,. T):

/\
l<k<n

O<x<y""<:z<l

[Fr(K = k,X ~ x, Y ~ y,Z ~z) = !Qk+i(A;x,y,z)dxdydz].

97

(1,.T)

We shall now consider the end of the second case-statement, where the fifteen analogs

of (1,.S) and of (1,. T) combine. The analogs of (i. T) just recombine into (77. T), since nothing

happened to any of the three-key variables during the second case-statement. If we then throw

away the information about L by summing, we find ourselves all the back at the assertion (~.T).

Thus, the assertion (~.T) deserves the new name (K:..T):

/\
l<k<n

te{A,s,C,o,E}
O<x<y<z<l

[Fr(K = k, T = t,X ~ x, Y ~ y,Z ~ z) = Qk+i(t;x, y,z)dxdydz]. (K:..T)

We went through a lot of work in the process of showing that this assertion passes through the

deletion case-statement unchanged. If we extended the frequency system with a case-statement

analog of the Irrelevant Conditional Rule, we might have been able to show in one magnificent

step that, since the assignments in the second case-statement do not affect the variables described

by T-assertions, the assertion (~.T) will hold at K:. if it holds at ~·

The fifteen analogs of (i.S) combine into something that looks quite a bit like the S­

assertion portion (o.S) of the summary assertion. In fact, if we define the function Pk+l from

the function Q11:+1 by the appropriate relations, the analogs of (1,.S) will combine into

/\
l<k<n
sE{F,G}

O<v<w<l

(Fr(K = k,S = s, V ~ v, W ~ w) = Pk+1(s;v,w)dvdw]. (1t.S)

In order to make this happen, we must arrange that the following relations, which are just

Equation (2.2) of Jonassen and Knuth, are satisfied for all k > 1 and 0 < v < w < 1:

Pk+1(F; v, w) = ! Lv ((Qk+i(A; u., v, w) + Qk+1(B; u, v, w))du

+ ! lw((Qk+1(A; v, u., w) + Qk+i(B; v, u, w) + Qk+i(C; v, u, w))du

+ i 1: ((Qk+i(A; v, w, u.) + Qk+i(C; v, w, u.))du.

Pk+1(G;v, w) = i 1v((Qk+1(C;u.1 v, w) +Qk+1(D; u., v, w) +Qk+i(E; u, v, w))du

+ ! lw ((Qk+i(D; v, u, w) + Qk+1(E; v, u, w)) du.

+ i £1
{(Qk+1(B; v, w, u.) + Qk+i(D; v, w, u) + Qk+i(E; v, w, u)) du.

(5.17)

98 FORMALIZING THE ANALYSIS OF ALGORITHi\1S

The next thing that happens is that the loop control variable K is incremented. Coming out

of the body of the loop, we have mass that is described by both (K:.S) and (K:. T). To prepare

for the incrementation of K, we can rewrite these in the equivalent form

/\ [Fr(K + 1 = k,S = s, V ~ v, W ~ w) = Pk(s;v,w)dvdw]
2<k<n+I

sE{F,G}
O<v<w<I

and

/\ [Fr(K + 1 = k, T = t,X ~ z, Y ~ y,Z ~ z) = Qk(t;z, y,z)d:cdydz].
2:Sk<n+l

tE{A,B,C,D,E}
O<z<y<z<I

An assignment axiom then shows that, after K is incremented, we may conclude

/\ (Fr(K = k,S = s, V ~ v, W ~ w) = Pk(s; v, w)dvdw]
2<k<n+I

sE{F,G}
O<v<w<l

and

/\ [Fr(K = k, T = t,X ~ :c, Y ~ y,Z ~ z) = Qk(t;z,y,z)dzdydz].
2<k<n+I

tE{A,B,C,D,E}
O<x<y<z<l

Our final task is to add in the mass that is entering the loop for the first time, and to

check that the resulting assertions match the summary assertions (o .S) and (o. T) with which

we began. Comparing what we currently have with what we want, we find that the T portion

of what we have exactly matches the assertion (o.T), while the S portion matches all of (o.S)
except for the atomic assertions with k = 1. Since the new input mass all has K = 1, we shall

be done as long as that input mass exactly accounts for the k = 1 conjuncts in (o.S). We are

assuming that the program InsertDelete is entered with the variables S, V, and W describing

the tree that results from two successive insertions of a random key into an initially empty tree.

Therefore, we need only add to our constraints on the functions Pk and Qk the initial condition

P1(F; v, w) = P1(G; v, w) = 1 (5.18)

for 0 < v < w < 1; this is Equation (2.4) of Jonassen and Knuth.

Working in the frequency system, we have shown that the functions Pk and Qk that satisfy

Equations (5.16), (5.17) and (5.18) describe the joint distribution of the tree shapes and keys in

the program InsertDelete. This completes the dynamic phase of the data analysis of lnsertDelete.

The static phase is a considerably greater challenge, since the recurrences are rather formidable.

The reader is referred to the paper by Jonassen and Knuth for the interesting tale of their

solution (16].

Chapter 6. Beyond the Frequency System

Restricted and Arbitrary Goto's.

In our development of the frequency system, we limited ourselves to single exit loops. To

what extent can we allow more general control structures? After all, F1oyd-Hoare systems are

able to handle arbitrary goto's and recursive procedures. To investigate what it would take to

extend the frequency system to include these constructs, let us start with a simple one, the exit­

statement If a statement S is labelled with the label L, then a statement of the form "exit L"

occurring within S causes control to jump to the end of S. The rule that handles exit-statements

in a F1oyd-Hoare system is the following:

{Q} exit L {FALSE} I- {P} S {Q}

1-{P} L: S {Q}

The formula occurring before the "I-" in the premise may be used as an axiom during the

derivation of the formula after that "!--". This temporary axiom allows us to deduce inside of

the statement S that any control that enters an exit-statement will never emerge. In order to

apply the temporary axiom, however, we must guarantee that any control that executes an exit­

statement will be in a state that satisfies the predicate Q, so that the postassertion of the labelled

statement will not be violated.

If we consider what the flowchart of a program using exit-statements looks like, we can see

that putting an Exit Rule into the frequency system is somewhat more complex. In particular,

at the end of the labelled statement is a join in the corresponding plumbing network, where

different flows converge. There is the flow that is exiting the statement S in the normal way, and

there are also all of the flows that have jumped to this join from exit-statements throughout the

body of S. In the F1oyd-Hoare world, the logical connective that implements a join is "or'', and

that is reflected in the Exit Rule above. But in the frequency system, the connective for joins

is addition, an arithmetic connective. Therefore, the appropriate postassertion for the labelled

statement is the sum of the normal postassertion for the body S and all of the preconditions of

exit-statements within S. Unfortunately, it is not easy to see how to write a rule that incorporates

this insight. The formulas of F1oyd-Hoare systems, and of the frequency system to date, involve

a precondition, a program with a single entry and single exit, and a postassertion. In order to

describe the correct postassertion of the labelled statement, we must be able to refer to all of

the preconditions of the exit-statements inside S.

One possible solution for this problem is to allow our system to deal with a more general

kind of augmented program, in particular, a program with associated assertions not only at

the beginning and end, but also interspersed throughout. The intermediate assertions would

record the assertions that we employed in analyzing the smaller pieces of the current program.

In this extension of the frequency system, it would be straightforward to write down an Exit

Rule. In fact, even arbitrary goto's would not present too many difficulties. The postassertion

of each goto-statement itself would be Fr(TRUE) = 0, the analog of the F1oyd-Hoare predicate

99

100 FORMALIZING THE ANALYSIS OF AWORITHMS

FALSE, while the postassertion of each label would be the sum of the precondition for that label

and the preconditions of all of the goto's that jump to that label. The correct techniques are

straightforward if one thinks about programs in terms of their flowcharts.

Of course, arbitrary goto's can implement loops, and so we must carry over to this new

environment the techniques that we have developed for retaining the soundness of the system.

First, remember that fictitious mass is an ever-present possibility. Therefore, even though one is

dealing with augmented programs that have assertions sprinkled throughout, there is no guarantee

that any assertions other than those outside of all loops actually describe the corresponding

demon reports. The other assertions will describe the true behavior, but may also describe some

fictitious mass. In order to prevent time bombs, we must insist that every loop in the flowchart

be cut by at least one feasible assertion, that is, one assertion whose characteristic subset of

g+ is non-empty. And finally, the postassertion of the entire program must be closed. If we

make these restrictions. a straightforward generalization of the while-loop theorem of Chapter 4

will demonstrate that the input-output frequentistic behavior of the entire program is correctly

described by its precondition and postassertion. Since the loop breaking assertions are feasible,

we shall be able to trace any finite path through the flowchart. By tracing longer and longer

paths, we can guarantee that the output assertion covers more and more of what really happens.

Then closure will allow us to take the necessary limit.

InsertionSort.

We shall now consider the algorithm that performs a straight insertion sort We have

postponed this example until now because most codings of a straight insertion sort involve either

an exit or a goto. This example is particularly interesting, because Ben Wegbreit presented

one version of InsertionSort as the primary example of the use of his system. After we do a

performance analysis of InsertionSort in the frequency system, we shall have a good opportunity

to compare the two systems in action.

The following program, which we shall call lnsertionSort, implements the algorithm of the

same name [20]. The Jth element of the input array X of length n > 1 is compared with

(J - l)st, (J - 2}nd, and so on, until its proper final position is found:

for J from 2 to n do

od.

I+- J - l; Y +- X[J};

nextl: if Y > X[J] then goto nextJ fi;

X[J + 1) +- X[J]; I+- I - l;
if I > 0 then goto nextl fi;

nextJ: X[J + 1) +- Y;

As in the InsertDelete example, we should really have a program variable N as the upper limit

of the for-loop, and then start the program in a state in which the Floyd-Hoare fact N = n

holds; but we won't.

BEYOND TI!E FREQUENCY SYSTEM 101

The program InsertionSort has two performance parameters of interest. Adopting Knuth's

notations [20], they are the number A of times that the if-test I> 0 comes out FALSE, and the

number B of times that the assignment X[J + l] +- X[J] is performed. Our first step is to add

two counter variables, called A and B respectively, that will keep track of these quantities. The

resulting monitored program with appropriate control points labelled is:

A+- O; B +- O;

ff aD for J from 2 to n ffuD do

Il.BD I+- J - 1; y +- X[J]; lliD
nextI: [<SD if Y > X[J] then ffeD goto nextJ fi;

kD X[J + 1) +- X[J); B +- B + 1; I +-I - 1;

ll11D if I> 0 then ff OD goto nextl fi;

ffi,D A +- A + 1; ll1eD
nextJ: ll~D X[J + 1) +- Y; ffµD

od ffwD.

Once again, we have named certain control points with Greek letters in alphabetic order, except

that u, a, and w are reserved for the summary, input, and output assertions of the for-loop

respectively.

The input to InsertionSort is a random permutation, and we shall use the continuous model

where the input array consists of n independent random variables chosen from the uniform

distribution U on [O, 1). Our assertions in this analysis will be more complex than those of the

InsertDelete and FindMax analyses because we shall have to keep track of the joint distributions

of a non-bounded number of variables-in particular, of all of the array elements. In our analyses

of InsertDelete and FindMax, we were able to choose new values and integrate out old ones

incrementally, so that we only had to deal with a few values at a time. But for InsertionSort,

we must keep track of everything at once.

In our current model, a random input permutation corresponds to a random point in the

n·dimensional unit hypercube. Any correct sorting program should take us from the input state

/\ [Fr(X[l) f':::;j xi, X[2] ~xi, ... , X[n] ~ Xn) = dx1 dxi ... dxn] (6.1)

to the output state

/\ [Fr(X[l) f':::;j x1, X[2) ~xi, ... , X[nJ f':::;j Xn) = n! dx1 dxi ... dxn]· (6.2)

The job of the sorting program is to fold space so that all n! sub-regions of the hypercube in

which the ordering relationships among the coodinates are constant end up superimposed. We

can ignore the possibility of equal keys throughout, since this event happens only with probability

zero.

102 FORMALIZING THE ANALYSIS OF ALGORITHMS

Assertions (6.1) and (6.2) would be the precondition and postassertion of a data analysis of

InsertionSort. Since we are doing a perfonnance analysis, our postassertion will be more complex.

In order to save space when writing assertions, we shall adopt an array slicing notation; the

expression X[i:j] stands for the portion of the X array from the ith through the jth elements

inclusive, and X[i:JJ is the analogous expression in the subscript form. With this notation, the

predicate in assertions (6.1) and (6.2) could be written X[l:n] ~ X[I:nJ· We shall also make the

convention that an inequality applied to an array slice applies to all of its elements; thus, the index

restrictions in assertion (6.1) could be written 0 < X[I:nJ < 1 instead of {x11 X'.2, ••• , :en) E (0, lr.

As in our treatment of InsertDelete, we shall name the assertions by the control points at

which they apply. This analysis will be presented in somewhat larger steps than the preceding

ones; the appropriate assertions will be accompanied by only a few comments. The input assertion

at a is

/\ [Fr(X[l:n] ~ Z[l:n] 1A = O,B = 0) = d:c1 dX<J. •.• d:cn]· (a)
O<z11:n]<l

With our growing experience in using the frequency system, it doesn't take much thought to

decide upon an appropriate summary assertion for the for-loop. The summary assertion should

describe the joint distributions of the array elements and the variables J, A, and B. The Floyd­

Hoare property that describes the array at the point o is that the first J - 1 positions are in

sorted order. With these things in mind, we can decide upon the summary assertion

/\
2<j<n+I

O<z1<···<z;-1<I
O<zr;,,.1<1

a>O, b>O

[Fr(X[l:n] ~ X[I:nj,J = j,A = a,B = b) = Pa,b,jd:C1 dX2 .•. dZn]

where the coefficients Pa,b,J are new unknowns.

(o)

In order for the input assertion (a) to support the j = 2 portion of the summary assertion

(o), we must arrange that the coefficients Pa,b,J satisfy the initial condition

Pa,b,2 = 6aa6b0· (6.3)

The mass described by the j = n + 1 portion of the summary assertion exits the loop,

and forms the output assertion (w):

[Fr(X[l:n] ~ X[I:n]1 A = a,B = b) = Pa,b,n+I d:t1 dX<J. ••• dZn]· (w)

. The rest of the summary assertion mass enters the loop to support the assertion (,8) at the

beginning of the loop body:

/\
2<j<n

O<z1<···<z;-1<l
O<zr;:nJ<l
a>O, b>O

[Fr(X[l:n] ~ X[I:n],J = j,A = a,B = b) = Pa,b,3d:c1 dX<J. ... dZn]. (,8)

BEYOND TIIE FREQUENCY SYSTEM 103

The assignments to I and Y then put us in the state

/\ [rr(X[l:i] ~ X[l:il•. X[j +. l:n~ ~ X[J+l:n]•)

2< .< . . 1 Y ~ y, I - i, J - J, A - a, B - b
_3_n, i=J- ()
O<x1<···<x;<l "I

O<xti+l:n]<l]
a>O, b~O, O<y<l = Pa,b,j dxi ... dxi dy dx1+1 . .. dXn .

The flow that ("I) describes has to do its share in supporting the assertion at the point o.
Note that the assertion at o cuts a loop generated by a goto-statement, the inner loop in which

I varies. If we wanted to proceed in the most straightforward way, we would now invent a

summary assertion for this inner loop that involved a four-parameter family of coefficients Qa,b,i,J·

We shall save some writing, however, by realizing that the variables I and B are manipulated in

a very simple way in this inner loop. Hence, we can avoid going to four-parameter coefficients

if we are smart enough to invent the following asssertion at the point o:

To avoid a special case, we take the expression xn+i to mean 1. Note that ("I) supports all of

the i = j -1 mass in (8). The assertion (8) cuts both of the program loops, and is differentially

disjoint vanilla; hence, we have satisfied the feasibility restriction.

Of the mass described by (o), the portion where Y > X[J] moves on to the point e:

The rest of (o) then moves on to the point ~:

/\
2<J::5n, O<i<j

O<xi<···<x;
O<y<x;<x;+2<···<x;<l

O<:z:u+1:n1<l
a>O, b>O

[Fr(X[l:i] ~ X[l:iJ.' X[i ~ 2:n] ~ X[i+2:n))

Y ~ y, I = i, J = J, A = a, B = b
(~)

Moving this assertion through the next three assignments is tedious, but not tricky; the result

at control point 11 is:

104 FORMALIZING THE ANALYSIS OF ALGORITHMS

The i > 0 portion of this mass is described by (0):

Comparing (0) with (6), we can see that (0) is ready to support almost all of the i ;':- j -1

portion of the (6) mass; recall that h) already supports the i = j-:- 1 portion. The only

difficulty is that the index b has the lower limit 1 in (0), while it has the lower limit 0 in (6).

We can make sure that this does not cause a difficulty by merely agreeing to demand that the

coefficients Pa,b,j satisfy the boundary condition

Pa,b,j = 0 for b < 0.

The i - 0 portion of the (17) mass falls through to form the assertion (i}:

/\
2$j<n

0<y<Z2< ···<z;<l
O<zli+l:n]<l

a>O, b>O

[Fr(Y ~ y, X[.2:n) ~ X[2:n])

l=O,J=3,A=a,B=b

= Pa,b-j+1,jdydX<]. ... dxn].

(6.4}

(i)

We have replaced the lower limit on b by 0 in this assertion as well, because of Equation {6.4).

Next, the assertion {i} passes through the assignment A+- A+ 1 to become (K):

/\
2<j<n

0<Y<Z2< ... <z;<l
O<zli+l:nJ<l
a>l, b>O

[Fr(Y ~ y, X~2:n] ~ X[2:n))

I= O,J = J,A =a,B =b

= Pa-1,b-j+I,jdydX<]. ... dxn].

The assertions (K) and (€) should add together to produce the assertion (X}. Since (1e)
almost exactly fills in the i = 0 portion of (E), we shall attempt to adjust things so that that

fit is exact. The problems center around the index variable a. In (K), we conjoin over a > 1,

and the first index of the p coefficient is a -1; in (E), however, we conjoin over a> 0, and

that first index is simply a. We can solve these problems if we both demand the boundary condition

Pa,b,j = 0 for a< 0, (6.5)

and define the assertion (>.) to be

BEYOND THE FREQUENCY SYSTEM 105

The assignment X[J + l] - Y allows us to clean up a little bit, as we move from the

assertion (}..) to assertion (µ):

f\ [F (X[l:n] ~ Z[I:n] 1)

2<.<n O<i<" r l=i,J=j,A=a,B=b
J ' - 3
O<z1<···<z;<l

O<zi;+1:n1<l]
a>O, b>O = Pa-6io,b-i+i+I,; dz1 ... dxn .

(µ)

All that is left is for (µ.) to go through the implicit assignment J - J + 1 that increments

the loop index, and then do its part in supporting the summary assertion. Since the summary

assertion does not contain any information about the distribution of I, we shall first sum the

assertion (µ.) on i, getting

/\ [Fr(X[~:n]: Z[I:n~)

2g<n . J-3,A-a,B-b
O<z1<···<z;<l

O<zi;+1:n1<l
a>O, b>O

The incrementation of J just changes this into

f\ [F{ X{~:n] ~ X[I:n~ .)
l<"<n+l J -3,A-a,B-b _J_

O<z1<···<z;-1<l
O<Z[;:nJ<l
a>O, b>O

Recall that the input mass described by (a) is already supporting the j = 2 portion of

the summary assertion (o). Comparing our current assertion with (o), we see that our current

assertion will precisely support the rest if the appropriate identity holds among the coefficients

Pa,b,i· In particular, we need to demand that

Pa,b,j = E Pa-~o,b-i+i+2,j-l;
O<i<i-1

we can rephrase this more conveniently by stating that, for all n > 1, a > 0, and b > 0, we demand

Pa,b,n+I = Pa-1,b-n+l,n + E Pa,b-n+i,n·
2<i<n

(6.6)

This completes the formal performance analysis of Insertion Sort We have shown that, if

the InsertionSort program is started in a state described by (a), then the mass that exits the

program will constitute a state described by the postassertion (w), where the coefficients Pa,b,n+1

106 FORMALIZING THE ANALYSIS OF ALGORITHMS

in (w) are the solutions to the recurrence and side conditions of Equations (6.3) through (6.6).
Without a little bit of study of this recurrence, however, it is not immediately clear even how

likely lnsertionSon is to halt, much less what its. average case performance might be. Rather

than studying the recurrence formally, we shall instead attempt to put some intuition behind the

symbol manipulations that we have performed by interpreting the coefficients Pa,b,n+1 in more

familiar combinatorial terms.

The quantity Pa,b,n+i for n > 1 counts the number of permutations of n distinct numbers

that have precisely a left-to-right minima and precisely b inversions; the leftmost element of

the permutation is not counted as a left-to-right minimum. This combinatorial interpretation is

easily seen to agree with the side conditions (6.3) through (6.5) on the Pa,b,i coefficients. The

recurrence (6.6) can be explained as follows: break up the permutations on n numbers with a

left-to-right minima and b inversions into classes depending upon the position where the largest

number occurs, and consider the permutation tha,t remains when that largest element is deleted.

Note that the largest number will contribute a left-to-right minimum only if it is the leftmost

element; and note that the largest element will be inverted with repect to every element to

its right. If the largest number occurs as the leftmost element, the remaining n - 1 numbers

will form a permutation with a - 1 left-to-right minima, and with b - (n - 1) inversions. On

the other hand, if the largest element occurs in the ith position counting from the left for

2 < i < n, then ·the remaining numbers will form a permutation with a left-to-right minima

and b- (n - i) inversions. This method of counting demonstrates that the quantities Pa,b,n+l

that we have defined combinatorially do indeed satisfy recurrence. (6.6).
The performance of the program InsertionSort depends upon both the number of left-to­

right minima A, and the number of inversions B. Thus, recurrence (6.6) might be justly titled

the performance recu"ence for the lnsertionSort program. We can derive from (6.6) a separate

recurrence for either A or B by summing out the other index. If we use an asterisk in the

index positions that are being summed, we find that summing out a leaves us with the recurrence

P•,b,n+I = 2: P•,b-n+i,ni
l<i<n

which is the recurrence that counts inversions; summing out b gives us the recurrence

Pa,•,n+I = Pa-1,•,n + (n - l)Pa,•,n1

which is just a rescaled version of our old friend, the recurrence for the number of left-to-right

maxima (or minima). Finally, if we sum out both a and b, we are left with the recurrence

which has the solution P•,•,n+1 = n!. That is great news for us! It shows that, if we take the

output assertion (w),

/\ (Fr(X[l:n} F1::$ Z[l:n]1 A = a,B = b) = Pa,b,n+l dz1 dz.i ... dzn], (w)
O<:i:1< .. ·<z..<l .

a>O, b;;:::;O

-·- ---------- ------ ---- -------~-·----·----------------·-----

BEYOND THE FREQUENCY SYSTEM 107

and integrate out all of the distribution infonnation-the array elements as well as A and B­

we shall be left with the assertion Fr(TRUE) = 1. Hence, the program lnsertionSort halts (with

probability one, at least). We shall cease our investigation of InsertionSort with this result. If

we wanted to know more about the perfonnance of lnsertionSort, we would only have to study

its performance recurrence (6.6); but that would take us too far afield.

Comparative Systems.

Now that we have seen a performance analysis of the program lnsertionSort in the frequency

system, we should pause for a moment to compare this with the analysis of the same program

in Wegbreit's system. One major difference is the method used for deriving the performance

information. We first added counter variables to the program, and then discussed the joint

distributions of those counter variables and the program's data. In Wegbreit's analysis, the formal

system only discussed the distribution of the data. This data distribution information was used

to compute the branching probabilities, from which the performance results were then deduced.

It is interesting to note that Wegbreit recommends the use of counter variables for performing

formal worst case analyses. Perhaps he was unable to use counter variables in the probabilistic

world because his system, based upon probabilities rather than frequencies, had no cure for the

Leapfrog problem.

Another major difference concerns the input assumption. We characterized a random per­

mutation as a random point in the n-dimensional hypercube. Wegbreit characterized his input by

assuming essentially that its inversion table was random. In particular, neither system seems able

to handle the input assumption that analysts usually use, that of a discrete random permutation.

Wegbreit's characterization of a random pennutation seems somewhat less perspicuous than our

own. In addition, since inversions are an important concept in the analysis of InsertionSort, it

would be better if possible not to build that concept into the input assumption.

Finally, recall that Wegbreit's system demanded a division of the program variables into a

random class and a non-random class. In the particular case of lnsertionSort, this division could

be made very naturally: the array elements were considered random, while the pointers I and

J into that array were treated as non-random. For other programs, such a division might be

harder to construct. The purpose of this division is to partition the universe of all of the pellets

passing a demon into chunks over which to compute probabilities. Since the frequency system

deals in frequencies instead, all of the program variables played the same formal role in our

analysis, even though we might have been thinking of them differently.

Procedures.

The frequency system seems to handle the dynamic phase of the analysis of InsertionSort

rather neatly. Now that we can handle exit's and goto's, we should devote some energy to

thinking about how procedures, recursive and otherwise, might be dealt with in an extension of

the frequency system. Non-recursive procedures are not difficult, but recursive ones are another

story.

108 FORMALIZING THE ANALYSIS OF ALGORITHMS

Think about a non-recursive procedure first, say one whose body involves no other procedure

calls. Such a procedure could be expanded in line, as if it were ,a macro. The general frequency

system idea of describing everything that ever happens suggests one way to monitor the flow

associated with that procedure: at each spot in the procedure body, we describe all of the mass

that flows through that spot on all calls to the procedure. Call this· the all-calls technique.

Let us consider for a moment adopting the all-calls technique. At each statement that calls

a procedure, the mass coming into the call statement should be viewed as flowing into the body

of the procedure, after appropriate renamings have been performed. We won't worry about the

naming issues associated with procedures-call by value versus call by reference and so on­

since these issues have · been dealt with by the designers of program verification systems, and

the issues in an ex tension of the frequency system would be the same. If we ignore the naming

problems, then the precondition that we put on a procedure body should be the sum of all of

the flows that enter the statements that call that procedure. This is essentially the same kind of

summing operation that went on for goto-statements.

But what happens at the end of the procedure body? At that point, all of the mass

that has made it through the body must be split up again into the pieces that will constitute

the postassertions of the calls on the procedure. Furthermore, it is rather important that the

correspondence between where the mass came from and where it goes back to be preserved.

Unfortunately, the current frequency system has no real mechanism for keeping track of which

pellets going through the procedure body came from which places. One possible solution to this

problem would be to replicate the procedure body, and generate one copy for each call of the

procedure. Then, we can use each copy to trace the procedure's execution on the mass from only

one call, and that will prevent confusion. But this just corresponds to expanding the procedure

in line at each place where it is called; if we are willing to do that, of course procedures are

no problem. In fact, they aren't procedures at all, they really are macros.

A second possible solution is to make the call stack of the process an explicit part of the

process state, one that can be talked about in our assertions. Then, we can make the assertions

everywhere in the program discuss the joint distribution of the program data and the state of

the stack. This will work, but it corresponds to explicitly implementing procedure call and return

by means of a stack, which is also not a pleasant possibility.

We can find a much better solution to the dilemma of keeping track of "who should return

to where" if we get back to basics, and think a little about why a piece of code was encapsulated

into a procedure in the first place. The object of a procedure is to implement a certain abstract

behavior; when we call the procedure, we don't want to worry about how that behavior is

achieved, but only about what affect it has on the current state. In the world of the frequency

system, the formal meaning of "a behavior" is a linear map from GJ to GJ. A procedure should be

thought of as an encapsulated piece of code that performs an abstract task; that is, a procedure

.is a linear map. When we call the procedure, the only things that should be relevant are the

properties of this map, not the actual code of the procedure.

BEYOND THE FREQUENCY SYSTEM 109

This suggests the following scheme: in addition to putting assenions at various places in

and around the body of a procedure, we also characterize the effect of the procedure as a whole

by means of a pair of assertions describing the corresponding inputs and outputs. The natural

place to put these assertions is at the procedure heading. Consider, for example, the procedure

Swap, which interchanges its two integer arguments:

procedure Swap(!, J);
begin

declare T: integer;
T +- I; I +- J; J +- T;

end.

The abstract frequentistic behavior of the Swap procedure is described by the pair of assenions

[Fr(J = i,J = j) = l] A [Fr([J =I: i] V [J =I: j]) = O]

on input and

(Fr(J = i,I = j) = l] A [Fr([J =I: i] V [J =I: j]) = O]

on output For some other piece of code about to call the Swap procedure, this pair of assenions .

has the following meaning: if your current state matches the input assenion for some values of i

and j, then your state immediately after the call to Swap will match the output assenion with the

same values of i and j. In fact, if your current state is a linear combination of frequentistic states

which match the input assenion, then your state· after the call to Swap will be the corresponding

linear combination of the output assenions; this follows because the semantic meaning of every

program is a linear function.

The input and output assertions of a procedure, then, should describe the behavior of that

procedure in a typical case. When that procedure is called, the precondition and postassenion of

the call should be linear combinations of appropriate instances of the input and output assertions

respectively. Once again, we are ignoring all the issues associated with argument passing and

renaming. But what assenions should appear in and around the body of the procedure? Since

we don't want the callers to know about the body of the procedure, the natural choice is to

have the assertions in the procedure body merely discuss the typical execution of the procedure

described by its input and output assenions.

These ideas provide a satisfactory solution to the problem of handling non-recursive pro­

cedures in an extension of the frequency system. Each procedure is described by an pair of

assertions describing its input and output in a general case. A call on the procedure only

examines these input and output assertions, and specializes them by taking an appropriate linear

combination of instances. Inside the body of a procedure, the usual techniques of the frequency

system are used to show that the procedure's input and output assertions correctly describe the

effect of the execution of the procedure body in the general case.

110 FORMALIZING 1HE ANALYSIS OF ALGORITHMS

But this scheme is not sound for recursive procedures. Consider, for example, the procedure

CallMe:
procedure CallMe;

begin

call CallMe;

end.

The above techniques would allow us to associate with CallMe an arbitrary pair of input-output

assertions. Suppose that we claim that the input-output behavior of CallMe is described by the

pair of assertions (A,B); then, we will be able to verify that the body of CallMe achieves this
functional performance by invoking our claim as an assumption. Of course, direct recursions like

this don't terminate.

The same phenomenon arises in a Floyd-Hoare analysis of CallMe; but since Floyd-Hoare
systems only deal with partial correctness, this phenomenon is tolerable in the Floyd-Hoare world.

In the frequency system, we are dealing with strong performance, and hence we cannot allow

this sort of thing. The input assertion Fr(TRUE) = 1 and output assertion Fr(TRUE) = 2, for

example, do not correctly describe the procedure CallMe (or any other program either, for that

matter).

In order to handle recursive procedures in an extension of the frequency system, we would

have to develop a method of tracing at least some mass as it goes through a complete recursion.

By guaranteeing that the assertions that describe this mass are feasible, we would be able to

control the loops that arise from recursive programs with the same techniques that have tamed

while-loops. But this is easier said than done. As soon as we allow our assertions to describe

more than one execution of the procedure, say the top-level execution and one of the recursive

calls, we run right back into the difficulty that we can't keep track of which mass is which.

As an example of the bad things that can happen when different mass flows get confused,

consider the procedure DoNothing whose body is the empty statement

procedure DoNothing;

begin nothing end.

Suppose that we associate with the procedure DoNothing the input assertion

(Fr(K = k) = 1) A (Fr(K :;I: k) = O]

and the corresponding output assertion

(Fr(K = 1-k) = 1] A (Fr(K :;I: 1-k) = O].

According to this pair of assertions, the DoNothing procedure actually achieves the same effect
as the assignment statement K +- 1-K, which is of course nonsense. But, let us suppose that

we are working in an extension of the frequency system in which, say, the all-calls technique is

employed. And also suppose that there are two consecutive calls on the procedure DoNothing:

BEYOND TIIE FREQUENCY SYSTEM 111

on entry to the first call is one gram of mass with K = 0, while on entry to the second is one

gram of mass with K = 1. Coming out of the first call will be one gram with K = 1, and

coming out of the second will be one gram with K = 0, in accordance with the claimed abstract

behavior of DoNothing. The problem is that the empty body of DoNothing also happens to look

correct. In particular, since the all-calls technique involves simply adding up the descriptions of

all of the calls on the procdure, that empty body will have

[Fr(K = 0) = 1) /\ [Fr(K = 1) = 1) /\ [Fr(K i:- O,K :F 1) = 0)

as both its precondition and postassertion. Our inability to keep track of which mass came from

where causes a faulty collection of assertions to look everywhere locally correct.

In summary, it is not easy to see how to combine the encapsulation that is the essence of

a procedure with the global, "describe everything that ever happens" principles of the frequency

system in an appropriate way. We shall leave this issue as one of the important challenges to

be addressed in the future development of formal systems for algorithmic analysis. Leo Guibas

suggests that it might be possible to design a system in which the global, "report everything

that ever happens" demons of the frequency system are replaced by a more local concept. One

might be able to treat demons as objects in the programming language, rather like generalized

counter variables, which the user of the system could explicitly create and manipulate. In such a

system, presumably, recursive procedures could be handled by creating different demon instances

for each level of the recursion.

In the next and final section, we shall discuss some other challenges that future systems

should also address.

What Next?

The chromatic plumbing metaphor, the concept of a frequentistic assertion, and the other

machinery of the frequency system seem to address rather successfully the problem of formalizing

the dynamic phases of algorithmic analyses. Our ability in several examples to demonstrate

by formal manipulation the extremely close coupling between the text of a program and the

recurrence that determines its performance parameters is one of the frequency system's strongest

selling points. But there are many directions in which further research should proceed.

As mentioned in the last section, it would be desirable to integrate recursive procedures

cleanly into the frequency system framework. A good first step in this direction might be to

extend Kozen's semantics to handle recursive procedures; presumably, the interpretation of a

system of recursive procedures would tum out to be the least fixed point of a corresponding

system of transformations.

It would be very desirable to have some completeness results at several levels. First, the

assertion calculus should be specified more precisely, and some information gleaned about how

close to complete it can be made. Actually, one would want to study the question of whether an

assertion calculus was relatively complete, that is, complete if all true formulas in the underlying

predicate calculus are considered as axioms. The relative completeness of an assertion calculus

112 FORMALIZING lHE ANALYSIS OF ALGORITHMS

might turn out to be quite a subtle property, since, after all, a measure is assumed to be

countably additive.

Then, at the next level, one would like to the show the relative completeness of rules of the

frequency system itself, where "relative" here means that all true statements of the underlying

assertion calculus are considered as axioms. This task might also prove tricky. We have noted

that our version of the frequency system is incomplete, essentially because of the clumsiness of

set operations.

Another important goal is a more powerful but still tractable assertion language. In particular,

it would be good to be able to describe a random permutation in the discrete model. For such

applications as the study of random hashing schemes, where the elements of a permutation are

used as pointers into an array, the ability to handle a continuous model of random permutations

does not seem to be any help; only a discrete model will do. If a single system could describe

random permutations under both the discrete and continuous models, it might be possible to

prove a metatheorem that demonstrated the equivalence of the two models. That is, one might

be able to massage a derivation using one model according to certain rules, and turn it into a

derivation using the other model.

There are new and perhaps good ideas emerging in the field of program verification today.

Vaughan Pratt's dynamic logic [11, 12) and Manna and Waldinger's intermittent assertions (26)

are two examples. It might be possible to build a system for average case algorithmic analysis

based upon some of these post Floyd· Hoare ideas.

Finally, it . would be interesting to consider in greater detail the question of formalizing

subtle worst case arguments. The kinds of insights and techniques that we have been studying

do not seem to be relevant, but perhaps some other approach would give a good formal· handle

on the reasoning behind analyses of worst cases.

References

[l] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

[2] Boris Beizer. Analytical techniques for the statistical evaluation of program running time. In
Proc. AF/PS 1970 Fall Joint Computer Conj. 37, Houston TX: 519-524. AFIPS Press,
1970.

[3] Jacques Cohen and Carl Zuckerman. Two languages for estimating program efficiency. Comm.

ACM 17(6): 301-308, 1974.

[4] Richard A. DeMillo, Richard J. Lipton, and Alan J. Perils. Social processes and proofs of
theorems and programs. Comm. ACM 22(5): 271-280, 1979.

[5] Ole-Johan Dahl. Can Program Proving be Made Practical?. Lectures presented at the EEC­

CREST course on Programming Foundations, Toulouse, 1977; revised May 1978. Oslo

University Informatics Institute research report 033, 1978.

[6] N. G. de Bruijn. The mathematical language AUTOMATH, its usage, and some of its extensions.

In Symp. on Automatic Demonstration 1968, Versailles: 29-61. Volume 125 of A. Dold
and B. Eckmann, editors, Lecture Notes in Mathematics, Springer-Verlag, 1970.

[7] Edsger W. Dijkstra Programming: from craft to scientific discipline. In E. Morlet and D.
Ribbens, editors, International Computing Symp. 1977, Liege, Belgium: 23-30. North­
Holland, 1977.

[8] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Proc. Symp.

in Applied Mathematics 19, Providence, RI: 19-32. American Mathematical Society, 1967.

[9] Cordell Green. The design of the PSI program synthesis system. Proc. 2nd International

Conj. Software Engineering,. San Francisco, CA: 4-18, 1976.

[10] Paul R. Halmos. Measure Theory. Van Nostrand, 1950.

[11] David Harel. Logics of Programs: Axiomatics and Descriptive Power. PhD thesis, Massachusetts
Institute of Technology, 1978. Also published as report MIT /LCS/fR-200.

(12] D. Harel, A. R. Meyer, and V. R. Pratt Computability and completeness in logics of
programs (preliminary report). In Proc. 9th ACM Symp. Theory of Computing, Boulder

CO: 261-268, 1977.

(13] C. A. R. Hoare. An axiomatic basis for computer programming. Comm. ACM 12(10): 576-

580 and 583, 1969.

113

114 FORMALIZING THE ANALYSIS OF ALGORITHMS

[14] C. A. R. Hoare and N. Wirth. An axiomatic definition of the programming language PASCAL.

Acta lnfonnatica 2: 335-355, 1973.

[15] Dan Ingalls. The execution time profile as a programming tool. In Randall Rustin, editor,

Design and Optimization of Compilers, Courant Computer Science Symp. 5, 1971: 107-

128. Prentice-Hall, 1972.

[16] Arne T. Jonassen and Donald E. Knuth. A trivial algorithm whose analysis isn't 1 Computer

and System Sciences 16(3): 301-322, 1978.

[17] Elaine Kant. Efficiency Considerations in Program Synthesis: A Knowledge-Based Approach.

PhD thesis, Stanford University, 1979.

[18] Donald E. Knuth. Fundamental Algorithms, Sections 1.2.1 and 1.2.10. Volume 1 of The Art

of Computer Programming. Addison-Wesley, second edition 1973.

[19] Donald E. Knuth. Mathematical analysis of algorithms. In volume 1 of Proc. of 1971 IFIP

Congress, Ljubljana, Yugoslavia: 19-27. North-Holland, 1972.

[20] Donald E. Knuth. Sorting and Searching, Section 5.2.1. Volume 3 of The Art of Computer

Programming. Addison-Wesley, 1973.

[21) Donald E. Knuth. Tau Epsilon Chi: A System for Technical Text. American Mathematical

Society, 1979. An earlier version appeared as Stanford University report STAN-CS-

78-675, 1978.

[22] Dexter Kozen. Semantics of probabilistic programs. IBM Thomas J. Watson Research Center

report, Computer Science, RC 7581 (#32819), 1979.

[23] R. L. London, J. V. Guttag, J. J. Horning, B. W. Lampson, J. G. Mitchell, and G. J.

Popek. Proof Rules for the Programming Language EUCLID. Acta Infonnatica 10(1):

1-26, 1978.

[24) David C. Luckham and Norihisa Suzuki. Proof of termination within a weak logic of

programs. Acta lnfonnatica 8(1): 21-36, 1977.

[25) Zohar Manna. Mathematical Theory of Computation. Mc-Graw Hill, 1974.

[26] Zohar Manna and Richard Waldinger. Is "sometime" sometimes better than "always"?

Intermittent assertions in proving program correctness. Comm. ACM 21(2): 159-172,

1978.

[27] Zohar Manna and Richard Waldinger. The logic of computer programming. IEEE Trans.

Software Engineering SE-4(3): 199-229, 1978.

REFERENCES 115

[28] The Mathlab Group, Laboratory for Computer Science, MIT. MACSYM.A. Reference Manual.

Massachusetts Institute of Technology, version nine, second printing, 1977.

[29] Elliott Mendelson. Introduction to Mathematical Logic. Van Nostrand, 1964.

[30] C. V. Ramamoorthy. Discrete Markov analysis of computer programs. In ACM 20th National

Conj., Cleveland OH: 386-392, 1965.

[31] E. Satterthwaite. Debugging tools for high level languages. Software-Practice and Experience

2: 197-217, 1972.

[32] L. S. van Benthem Jutting. Checking Landau's "Grundlagen" in the AUTOMATH System.

PhD thesis, Technological University Eindhoven, The Netherlands, 1977.

[33] Ben Wegbreit. Verifying program performance. J. ACM 23(4): 691-699, 1976.

[34) Ben Wegbreit. Mechanical program analysis. Comm. ACM 18(9): 528-539, 1975.

