
• ~ •
\ ~

\ \
\
\

A SPACE-ECONOMICAL
SUFFIX TREE CONSTRUCTION
ALGORITHM
BY EDWARD M. McCREIGHT

CSL- 75 - 3 APRIL 1975

The first section presents a new algorithm for constructing auxiliary digital

search trees to aid in exact-match substring searching. This algorithm has the

same asymptotic running-time bound as previously published algorithms, but is

more economical in space. The second section discusses some implementation

considerations. The third section presents new work dealing with how to

modify these search trees in response to incremental changes in the strings

they index (the update problem).

Key Words and Phrases:

pattern matching algorithms, searching, search trees, context search, substring

search, analysis of algorithms

CR Categories:

3.74, 4.34, 5.32

XEROX
PALO ALTO RESEARCH CENTER
3333 COYOTE Hill ROAD/PAlOAl TO/CALIFORNIA94304

2

INTRODUCTION

A number of computer applications need a basic function which locates a spedfic

substring of characters within a longer main string. The most obvious such

application is context searching within a text editor. Other applications include

automatic command completion by the keyboard-handling executive of an

operating system, and limited pattern-matching used in speech recognition <Kim

74>. This basic function is also useful as a building block in the construction of

more sophisticated pattern matches.

The naive algorithm to implement this function simply attempts to match the

substring against the main string in all possible positions. It is straightforward

but can be slow, since for example the program might reverify the fact that

position. 17 in the main string is the character 'a' almost as often as the number

of characters in the substring (consider the substring 'aaaaaaab'). An

asymptotically more efficient algorithm was discovered by Knuth, Pratt, and

Morris in 1970 <Knu 74>. It involves preprocessing the substring into a search

automaton and then feeding the main string into the search automaton, one

character at a time. In both of these algorithms the average search time is at

least linear in the length of the main string.

If one were expecting to do many substring searches in the same main string, it

would be worthwhile to build an auxiliary index to that main string to aid in

the searches. A useful index structure which can be constructed in time linear in

the length of the main string, and yet which enables substring searches to be

completed in time linear in the length of the substring was first discovered by

Weiner <Wei 73>.

3

In addition, his auxiliary index structure permits one easily to answer several

new questions about the main string itself. For example, what is the longest

substring of the main string which occurs in two places? in k places? One can

also transmit (or store) a message with excerpts from the main string in

minimum time (or space) by a dynamic-programming process which for each

position of the message finds the longest excerpt of the message which begins

there and is a substring of the main string. This latter application motivated

Weiner's original discovery.

Section 2 presents Algorithm M, an algorithm for constructing an index structure

functionally equivalent to Weiner's, but requiring about 25% less data space.

Section 3 discusses several implementation alternatives and includes a detailed

space analysis. Section 4 shows that minor changes to the main string usually

result in minor changes to the auxiliary index to the main string, and that

incrementally updating the index is usually more efficient than recomputing it.

This result is particularly relevant to the context of a dynamically changing

data base, as with a text editor.

4

ALGORITHM M

This section is an exposition of a new algorithm, called Algorithm M, for

mapping a finite string S of characters into an auxiliary index to S in the form

of a digital search tree T whose paths are the suffixes of S, and whose terminal

nodes correspond uniquely to positions within S. The algorithm requires that:

SI. The final character of S may not appear elsewhere in

s.

If a string does not satisfy Sl, it can be extended to a string which does by

padding it with a new character. For example, the string abab is not acceptable,

but it can be padded to the acceptable string ababc. If a string S satisfies Sl,

then no suffix of S is a prefix of a different suffix of S. This results in the

existence of a terminal node in T for each suffix of S, since any two suffixes of

S eventually go their separate ways in T.

Let n represent the length of the string S. To enable Algorithm M to operate in

time and space linear in n, three constraints are placed on the form of T.

Together their effect is that a tree T representing S is a multiway Patricia tree

<Knu 73) and thus contains at most n nonterminal nodes.

Tl. An arc of T may represent any nonempty substring of

s.

T2. Each nonterminal node of T, except the root, must have

at least two son arcs.

T3. The string represented by an arc a of T must differ in

its first character from the string represented by any

brother arc or a.

5

As an example, Algorithm ?ti would map the string ababc (hereafter called S)

into the tree

Figure 1

Because of constraints T2 and T3, this mapping is unique up to order among

siblings. A few definitions and conventions are appropriate here.

Let ~ be the alphabet of characters used in S. Roman letters will be used to

denote single characters of ~. while Greek letters will denote (possibly empty)

finite sequences or strings of characters from ~- In our depictions of trees a

straight line will denote a single arc and a wavy line will denote a nonempty

sequence of arcs whose detail is being suppressed as irrelevant.

A R_artial path is defined as a (downward) connected sequence of tree arcs

which begins at the root of the tree.

A path is defined as a partial path which terminates at a terminal node.

Constraints 81, T2, and T3 guarantee that a partial path may be named

unambiguously by concatenating the strings on its arcs.

6

The locus or a string is the node at the end of the partial path (if any)

named by the string.

An extension or a string a is any string of which a is a prefix.

The extended locus of a string a is the locus of the shortest extension of a

whose locus is defined.

The contracted locus or a string a is the locus of the longest prefix of a

whose locus is defined.

Algorithm M begins with an empty tree To and enters paths corresponding to

the suffixes of S one at a time, from longest to shortest. The tree T

corresponding to our example string S (ababc) would be constructed by the

algorithm in the following steps, one step per suffix of S:

To: \ 0
\
\

st~p 1

\
\
1
Ti:

\
\
\
\

a babe

' \
\
\
~ step 2

\
\
~
T2:

\
\
\
\
\
\
\

~ step 3
\

' -¥
Ta:

7

\
\
\
~

step 4
\

~
T4:

\
\
\
\
\
\
\
~

step 5
\
\

"' T5:

Figure 2

8

We define ~i to be the suffix of S beginning at character position i. (Position

I is defined to be the leftmost character of S, so suf 1 is S.} During step i, the

algorithm inserts a path corresponding to the string suf i into the tree Ti-l to

produce the tree Ti. We define headi as the longest prefix of suf i which is also

a prefix of sufj· for some j < i. Equivalently, headi is the longest prefix of suf i

whose extended locus exists within the tree Ti-l· We define taili as suf i - headi.

In our example, suf 3 = abc, head3 = ab and 'tail3 = c. Constraint Sl assures us

that taili is not empty. To insert suf i into the tree Ti-I• the extended locus of

headi in Ti·l is found, a new nonterminal node is constructed to split the

9

incoming arc and become the locus of headi if necessary, and finally a new arc

labelled taili is constructed from that nonterminal node to a new terminal node.

For example, consider step 3 which transforms T2 to T3 in Figure 2. The

algorithm must insert suf 3. By tracing this string within T2, it sees that head3

is ab, that the extended locus of ab is the leftmost terminal node, and that its

incoming arc (labelled ababc) must be split. The algorithm splits the arc into

two parts, labelled ab and abe, by inserting a new nonterminal node. A new arc

labelled c, or tail3, is then added from that nonterminal node to a new terminal

node.

If the algorithm is to be efficient, an efficient data structure for the

representation or trees must be used. Since the arcs of a tree T represent

substrings of S (by constraint Tl), we can represent the character string

associated with an arc of T by a pair of integers denoting its starting and

ending positions in S. Thus, the actual internal form of the tree in Figure 1

might be:

10

1 2 3 4 5
S: I a I la I b I c· 1 sori pointer b

=]l brother pointer

T: (*,*) ab (1,2) abc (3,5)

(5,5) abc (3,5)

Figure 3

Given this representation, it should be clear from the example that at each step

i, after the algorithm has somehow found the extended locus in Ti-l of headi•

the introduction of a new nonterminal and a new arc corresponding to taili

takes at most constant time. If the algorithm could find the extended locus of

headi in at most constant time (averaged over all steps), then it would run in

time linear in n, the length of S.

The algorithm does this by exploiting the following relationship between the

strings headi-l and headi.

Lemma 1: If headi-l can be written as xc5 for some character x

and some (possibly empty) string c5, then c5 is a prefix of

headi.

Proof: By induction on i. Suppose headi- l = xc5. This means that

there is a j, j < i-1, such that xc5 is a prefix both of

sufi-l and of sufj-l· Thus c5 is a prefix both of sufj and of

suf i· Therefore by the definition of head, c5 is a prefix of

headi.

11

To exploit this relationship, auxiliary links arc added to our tree structure.

From each nonterminal node which is the locus of xc5, where x is a character

and c5 is a string, a suffix link is introduced pointing to the locus of c5. (Note

that the locus of c5 is never within the subtree rooted at the locus of xc5.).

Depicting suffix links by dashed lines, the new representation of the tree in

Figure 1 is:

T: (*,*) ,.

I

L

L

1 2 3 4 5
S: lalblalblcl

ab

son pointer
brother pointer

12

--'---'a=b=c__.. (3,S)
i-;..__;~~ ~..... ~.;........;..~~~i--t--1
(1,2)

r - - - - .J

(2,2)

- - - - - - - - - - .J

suffix link
abc, (3,S)

Figure 4

These links enable the algorithm in step i to do a short-cut search for the locus

of headi beginning at the locus of headi-l• which it has visited in the previous

step.

The following semi-formal presentation of the algorithm will prove by induction

on i that

Pl: in tree Ti only the locus of headi could fail to have a valid

suffix link, and that

P2: in step the algorithm visits the contracted locus of headi

in Ti-I·

13

Properties Pl and P2 clearly obtain if i .. 1. Now suppose i>l. In step i the

algorithm does the following:

Substep A: First the algorithm identifies three strings x. a, and /J, with the

following properties:

(1) headi-l can be represented as xaf3.

(2) The locus of xa · is the contracted locus of headi- l in Ti_2.

(3) X is a string of at most one character which is empty only if a

is empty.

Lemma 1 guarantees that headi may be represented as a{Jy for some

(possibly empty) string y. The algorithm now chooses the appropriate case

of the following two:

a empty: The algorithm calls the root node c and goes to substep B. Note

that c is defined as the locus or a.

a nonempty: By definition, the locus of xa must have existed in the tree

Ti_2. By Pl the suffix link of that (nonterminal) locus node must be

defined in tree Ti-l• since the node itself must have been constructed

before step i-1. By P2 the algorithm visited that node in step i-1.

The algorithm follows its suffix link to a nonterminal node called c

and goes to substep B. Note that c is defined as the locus of a.

Substep B: This is called "rescanning", and is the key idea of Algorithm M. Since

a{Jy is defined as headi, by the definition of head we know that the

extended locus of a{J exists in the tree Ti-I· This means that there is a

14

sequence of arcs downward from node c (the locus of a) which spells out

some extension of fl. To rescan fl the algorithm finds the child arc p of c

which begins with the first character of fl and leads to a node which we

shall call f. It compares the lengt~ of P and p. If /1 is longer, then a

recursive rescan of fl-p is b~gun from node f. If P is the same length or

shorter, then /1 is a prefix or p, the algorithm has found the extended

locus of afl, and the rescan is complete. It has been accomplished in time

linear in the number of nodes encountered. A new nonterminal node is

constructed to be the locus of a/1 if one does not already exist. The

algorithm calls d the locus of ap and goes to substep C. (Note that substep

B constructs a new node to be the locus of al1 only if y is empty.)

Substep C: This is called "scanning". If the suffix link of the locus of xafl is

currently undefined, the algorithm first defines that link to point to node

d. This and inductive hypothesis establish the truth of Pl in Ti. Then the

algorithm begins searching from node d deeper into the tree to find the

extended locus of af1y. The major difference between scanning and

rescanning is. that in rescanning the length of P is known beforehand

(because it has already been scanned), while in scanning the length of y is

not known beforehand. Thus the algorithm must travel downward into the

tree in response to the characters of taili-l (of which y is a prefix) one

by one from left to right. When the algorithm "falls out of the tree" (as

constraint SI guarantees that it must), it has found the extended locus of

af1y. 'l'he last node of Ti- I encountered in this downward trek of

rescanning and scanning is the contracted locus of headi in Ti_1; this

establishes the truth of P2. A new nonterminal node is constructed to be

15

the locus of apy if one does not already exist. Finally a new arc labelled

taili is constructed from the locus of a/Jy to a new terminal node. Step i is

now finished.

We now introduce a more involuted example string S which is capable of

illustrating the full complexity of the algorithm. Let S be b5abab3a2b5c, and

consider step 14. Figure 5 depicts T 13 with some detail missing and with node

labels which will be applied in step 14. In step 14 the algorithm must insert

suf 14 {b5c) into T13. First it equates xa to ab, so x is a and a is b. Thus, since

xaf3 is abbb (head 13), fJ must be bb. In substep A the algorithm observes a to

be nonempty and therefore follows the suffix link from the locus of ab {labelled

as node x in figure 5) to the locus of b, calling that node c. In substep B the

algorithm rescans p from node c. This rescanning encounters one intermediate

node f, and stops at the locus of bbb, calling that node d. Substep C then begins

at node d and scans downward in the tree to discover y. In this example, it will

discover that 'Y is bb, and will construct a new nonterminal node as the locus of

head 14, which is a/Jy, or b5.

16

b

13

- I

ba ...

---L--....... ,,
' I ' ' '- I ___ /

new suffix link

Figure 5

The time spent in scanning and rescanning must now be analyzed. At each step,

rescanning and scanning is done on a suffix of S. Let resi be defined as the

shortest suffix of S to which the rescan and scan operations are confined during

step i (/Jy followed by taili)· Observe that for every intermediate node f

encountered during the rescan of {J, there will be a nonempty string (p) which

is contained in resi but not in resi+l· Therefore length(resi+l) is at most

length(resi) - inti, where inti is the number of intermediate nodes encountered

17

n

while rescanning during step i. By repeated substitution we see that i~l inti is

at most n, since length(resn) = 0 and length(res0) = n. Thus the total number of

intermediate nodes encountered while rescanning during the operation of the

algorithm is at most n.

In step i the number of characters which must be scanned to locate headi (the

length of y) is length(headi) - length(headi-l) + 1. Thus the total number of
n

characters scanned during the operation of the algorithm is i~l (length(headi)

- length(heacli-l) + 1), which collapses to n + length(headn) - length(head0), or

n.

Algorithm M executes in n distinct steps, each of which takes constant time

except for rescanning and scanning. We have just seen that rescanning and

scanning each add time at most linear in n to the total running time. Therefore,

Algorithm l\I operates within a time bound linear in the length of its input

string S.

18

HASH CODED IMPLEMENTATION

Given the tree representation in figure 4, the running time of Algorithm 1\1 is

potentially linearly dependent on the size of the alphabet of the input string.

For example, consider the tree resulting from the string

abcdefghijklmnopqrstuvwxyz

The root node of this tree has 26 son arcs, and to establish each new son arc it

is necessary to verify that the root does not already have a son arc starting

with the same character. In general, if the input string consisted of n different

characters, at least (n2-n)/2 atomic search steps would be required. The length

of the string explains one factor of n, but the other factor of n is attributable

only to the size of the alphabet. Perhaps we can find a different tree

representation for which running time degrades more gracefully with alphabet

size.

The tree representation in figure 4 is fairly efficient in space but slow to

search. A different representation might associate with each nonterminal node a

table of pointers, with one pointer for each character of the input alphabet. This

would be fast to search, but slow to initialize and prohibitive in size for a large

alphabet. Alternatively one might use ordered lists or balanced trees <Knu 73).

Encoding the arcs of T as entries in a hash table appears to be the best

representation of all. It is very compact and (in the average case) reasonably

speedy. Although it is unknown ahead of time how many son arcs a given

nonterminal node will have, the total number of arcs in T has an upper bound

of 2n (at most two arcs are added per step of Algorithm M). We now consider

19

the data structure design in some detail in order to obtain precise storage

bounds.

At each step of Algorithm 1\1 at most one nonterminal node and exactly one

terminal node are created. We name those nodes by the number of the step in

which they were created. A nonterminal node created during step k is named

node k. A terminal node created during step k is named node n+k. In this way

we can determine from the number assigned to a node whether it is a terminal

or nonterminal node.

The hash table implements a function f from the set of ordered pairs of the

form (nonterminal node, character) to the set of nodes, with the property that

f(ns, x) = nd if there is an arc in T from the nonterminal node ns to the node

nd which begins with the character x, and f(ns, x) = 0 otherwise. Using a

hashing algorithm of the family proposed by Lampson (<Knu 73), exercise

6.4.13), this table can be represented in 2n(log2n+log21~1+2) bits, where ~ is the

size of the input alphabet.

We must, of course, represent the input string S. This can be done with a vector

of n log21~1 bits. In addition, when traversing an arc in T the algorithm must be

able to deduce its starting and ending position in S. For this we introduce a

table L which maps each nonterminal node into the length of the tree arc

leading into that nonterminal node. Suppose we are about to traverse the arc a

from node ns to nd. We have been keeping track of ds, the number of characters

in the partial path to ns. The arc a begins at position ns+ds in S, and ends at

position ns+ds+L{nd)· We compute da as ds+L{nd)· The table L can be

represented in n log2n bits.

20

Finally we introduce a table S to represent the suffix links of T. The table S

maps each nonterminal node into the number of the node to which its suffix

link points. It can be represented in n log2n bits.

In summary, using this design we can represent T in 4n log2n + 3n log21l:I + 2n

bits.

21

INCREMENT AL EDITING

After the string S has been transformed into the tree T, it may become

necessary to change S. This circumstance would be quite common, for example, if

Algorithm M were underlying a text editor. Any string S may be mapped into

any other string S' by a sequence of incremental changes (replacement of

substrings). Algorithms which minimize the length of such changes have been

recently studied <Wag 74). We shall now see that it is possible to make an

incremental change to T in response to an incremental change in S.

Suppose that S is the string a{Jy, for some (possibly empty) strings a, {J, and y,

and that s is to be changed into the string aoy, where 0 is some (possibly

empty) string which is different from {J.

In order to make it possible to update T incrementally we adopt a string

element position numbering scheme, like the Dewey-Decimal library access code,

in which a position number need never change after it has been assigned, and

such that the sequence of position numbers assigned to the characters of S is

strictly monotonic. In particular, this means that the position numbers assigned

to the characters of y (and, of course, those of a) will not change during the

replacement of fJ by o. It also means that each position number assigned to a

character of y is greater than any position number assigned to a character of a.

Of course, all this implies the availability of a large pool of position numbers,

few of which are simultaneously in use. (This is in contrast to the small pool of

position numbers in the last section; the goals of minimum-space representation

and updateability seem mutually incompatible).

We begin by considering what paths of the tree T corresponding to the string

22

a{Jy are particularly affected by the replacement of fJ by o. We define as fl.­

splitters (with respect to the change af3y -> aoy) those strings (or their paths)

of the form £Y, where £ is a nonempty suffix of a• {3, and where a• is defined as

the longest suffix of a which occurs in at least two different places in a{Jy.

Equivalently, {3-splitters are paths in T which properly contain the suffix y, but

whose terminal arcs do not properly contain {Jy.

Informally, fJ-splitters are the only paths whose structure might be directly

affected by the change from /3 to o. By virtue of our "Dewey-Decimal" positional

notation and our way of representing substrings of S in T, all paths in T except

/3-splitters reflect the change in S by default, either because they are too short

to contain any character of p, or because they are so long that f3 is buried in a

terminal arc and the change from f3 to {j cannot affect the structure of the path.

The structure of these paths will change only as required by interaction with {3-

splitters and their replacements (which we might call {)-splitters). The updating

algorithm will remove all P-splitters from the tree and then insert all &-splitters,

preserving tree properties Tl-T3 and the validity of suffix links.

• The updating algorithm must first find the longest P-splitter, a {J-y. Here the

space-efficiency of Algorithm M works against us. The trees constructed by

Algorithm M do not permit the efficient leftward extension of the P-splitter {3y

one character at a time until it is no longer a {3-splitter. To overcome this

difficulty the algorithm carries out this search in two phases. In the first phase

it examines the paths a(l)py, aC2)py, a(4)py, aCB)py, ... , where aO) is the

suffix of a which has length min(j, length(a)). These paths are examined in

sequence to see whether they are P-splitters. This first phase of the search

terminates when a non-fJ-splitter is discovered or a itself is discovered to be a

23

P-splitter. The reader is invited to convince himself that deciding whether the

path aCDpy is a P-splitter can be done in time at most linear in j.

Suppose a(k)py was the path under consideration by the first phase of the

search when it decided to terminate. The second phase of the search now

examines the paths aCk)py, aCk-l)py, ... ' in sequence until a P-splitter is

• discovered. This is a py, the longest P-splitter. This phase of the search, since lt

encounters suffixes of S in precisely the same sequenc;e as Algorithm M, can take

full advantage of the suffix links and can be done in time linear in k. We know

that length(a*) > k/2 (otherwise the first phase would have stopped earlier), and

we have just seen that the time to find a• py is linear in 1+2+4+ ... +k (for the

first phase) + k (for the second). Thus a*py can be found in time linear in the

length of a•.

The next order of business is to delete all paths of the form Ey, where £ is a

suffix of a• p. These deletions are done in sequence, from longest string to

• shortest. Suppose that for all suffixes a of a P longer than £ the deletion of ay

has been done. We now consider how to delete the path Ey. The general case for

deletion is shown in figure 6:

potential
suffix link

Figure 6

24

p

In figure 6, EY is shown broken up into substrings 11, 'T, and p. If the node t has

more than two sons, then the arc p (along with attached terminal node) is

simply excised. However if node t has exactly two sons, then special action must

be taken to avoid violating constraint T2 that every nonterminal node must have

at least two son arcs. Node t and its son arc p (and attached terminal node) are

deleted, and the arc 'T from node p and the arc tc from node t are joined

together into a new arc 'TIC from nonterminal node p to node k.

The only potential flaw is that some nonterminal node s might be suffix-linked

to node t when t is deleted. We now argue that this is impossible except for the

last nonterminal node in the path xa*6y, where xa• is the shortest suffix of a

215

• • • • • which properly contains a . (If a 1s a, then the path xa fJy does not exist.) The

node having this property may change during the course of the deletions, but at

any given time there will be at most one node with this property. Call it s ~.

Lemma 2: Whenever a node t is deleted, no suffix links except

perhaps that of node s • point to it. Furthermore every path

• in T has a suffix path except perhaps for the path xa 6y.

Proof: The lemma is clearly true before any deletions have been

done. Suppose we are deleting the path £y, shown in figure

6 as 'ITTp. Further suppose that node t will be deleted.

First we prove by contradiction that there is no

nonterminal node s suffix-linked to node t, except perhaps

• s . Suppose there were such a node. In figure 6 we denote

the partial path to s by X'ITT. Because deletions have been

done in order of decreasing string length, 'ITTP is assumed

to be the longest (J-splitter in T. If there were a path X'ITTP

in T, a contradiction would arise because that path would

be a /J-splitter and longer than 'ITTp.

By inductive hypothesis the only path in T whose suffix

path might not be contained in T is xa • 6y. By constraint

T2, node s must have at least two son arcs. Thus, since

node t has only one son arc which can have a prefix in T,

• node s has exactly two son arcs and the only path (xa fJy)

for which no suffix exists in T must also pass through

node s. Further, that son arc of s must lead to a terminal

node (since otherwise by constraint T2 there would be at

least two paths passing through that arc, one or which

would have a suffix path in T). Therefore node s is in fact

• node s , the exceptional node.

Now we must show that whether or not node t is deleted,

after the path E'Y is deleted, the only path in T which

might not have a suffix path is xa • fJy. At the end or the

previous step, the only path which might not have had a

suffix path was xa * y. The only action in this step was the

removal of the path £'Y. If E'Y is a* py, then its prefix path

* (xa PY) has already been deleted from T (and replaced by

xa*c5y). Ir E'Y is a proper suffix of a*py, then by inductive

hypothesis its prefix path has already been deleted from T.

In either case the deletion or the path E'Y does not deprive

any path in T of a suffix.

26

The final order or business is to insert into T all paths of the form wy, where

cu is a nonempty suffix or a*c5. Inserting these paths is the same as executing a

sub-sequence of steps of Algorithm M on a pre-initialized tree. Suppose

Algorithm M is invoked with S = ac5y on an initial tree T0 which is not empty,

but instead contains paths (and suffix links) for all suffixes of 'Y· We will call

this modification Algorithm M(y). Clearly Algorithm M(y) will get into trouble

as it tries to insert a path for 'Y into the tree, but we won't let things go that

far. Let j = length(a) - length(a*) + 1 and let k ~ length(m5). Algorithm M(y)'s

steps j through k are exactly what the updating algorithm must do to insert the

paths a*c5y, ... ,dy (where d is the last character of ac5). We define head(Y)i,

27

tail(y)i• res(y)i• and T(Y)i in the obvious way. The path-deleting phase of the

updating algorithm arranges things so that the path-inserting phase initially has

pointers to node s* and its father. Observe that node s* is head(Y)j-l• that e'ither

it or its father is the contracted locus in T(Ylj-l of head(Ylj-l• and that node s*

is the only nonterminal node in T(Y)j-l which might fail to have a valid suffix

link. These assumptions are precisely the ones nece~sary to get Algorithm M(Y)

started at step j. We let it run through the rescanning substep of step k+l, and

then stop it. The reader should convince himself that this will result in a tree

which satisfies Tl-T3 and all of whose suffix links are correct.

Now that the updating algorithm has been informally presented, we can analyze

its running time. We have already remarked that finding a• requires time linear

in the length of a•.

Deleting all paths of the form ty, where t is a nonempty suffix of a• p, requires

finding' the terminal arc of each such path, deleting it and its terminal node,

and perhaps deleting the nonterminal node from which it emanated. Each of

these operations except finding the terminal arc can obviously be done in

constant time. Finding the terminal arcs can be done in the manner of Algorithm

1\1, except that pre-existing suffix links eliminate the need for rescanning. Each

character of a• P is scanned exactly once in the course of finding all the

terminal arcs. Therefore deleting all paths of the form ty, where t is a

nonempty suffix of a• p, can be done in time linear in the length of a• p.

How long does it take to run Algorithm l\l(y) from step j through the rescanning

substep of step k+ 17 Everything but scanning and rescanning may be done in

constant time per inserted path. Let d be defined as the last character of ac5,

• and y as the longest prefix of dy which appears in at least two places in ac5y.

28

(Note the near-symmetry between y• and a*.) Generalizing the analysis of

Algorithm M we see that the number of intermediate nodes encountered during

rescanning is i=j int(Y)i , which is at most length(res(y)j) - length(res(y)k+l) +

int('Y)k+ 1 · Clearly length(res(Y)j) is at most length(sufj), which is length(a• t5y).

In general, int(Y)i is at most the length of p in step i, which in turn is

contained in head(y)j_1. In particular, int(y)k+l is at most length(head(y)k)·

Also in general, length(res(y)i+l) is at least length(suf(y)i} - length(head(y)j). so

in particular length(res(y)k+l} is at least length(suf(y}k) - length(head('Y)k)·

Hence i=j is at most • • length(a l>y) - length(dy} + 2 length(y), so

rescanning time is linear in length(a* l>) + length(y *).

The same collapsing series used in the analysis of Algorithm M shows that the

number of characters scanned during steps j through k is exactly (k-j+l) +

length(head(y)k) - length(head(Y}j-I)· The time spent in scanning is at most

linear in length(a*l>) + length(y*).

We have thus shown that changing T to reflect a change in S from a{Jy to al>y

can be performed in time at most linear in the sum of the lengths of a•, p, l>,

• and y .

29

CONCLUSION

The first algorithm to generate suffix trees in linear time was discovered by

Weiner <Wei 73). A lucid description of Weiner's algorithm, with additional

insights, appears in unpublished lecture notes by Knuth <Knu 73b). The state of

the art of pattern matching, including Weiner's algorithm, is well presented in a

book by Aho, Hopcroft, and Ullman <Aho 74). Pratt, following Weiner's work,

has devised an unpublished algorithm to solve this problem in a slightly

different way <Pra 73). All of these algorithms solve the problem in time (and

of course space) linear in the length of the input string.

The difference between Algorithm 1\1 and the other algorithms above is that

Algorithm M can use less data space. The number of nodes generated by each

algorithm is approximately the same, although Weiner's original algorithm

generates slightly more than the others. Further, the information content per

node is approximately the same among the algorithms, with one significant

exception. The exception is that by processing left-to-right and never extending

any substring to the left, Algorithm l\l avoids the leftward pointer per node per

alphabet symbol which is required by the other algorithms. This represents a

savings of about 25% in data space between the hash-coded version of Algorithm

l\I and similarly coded versions of the other algorithms. One would expect

roughly similar savings for other tree representations.

ACKNOWLEDGEMENTS

I am indebted to Peter Weiner and Vaughan Pratt for early discussions of these
ideas and to Ben Wegbreit, Ralph Kimball, and Jim .Morris for constructive
criticism of the paper itself.

REFERENCES

<Kim 74> Kimball, R. B. "A Rapid Substring Searching Algorithm in Speech
Recognition", abstracted in Conference Record, IEEE Symposium .Q.!!
Speech Recognition (Pittsburgh, Penna.: April, 1974).

<Knu 73> Knuth, D. E. Sorting and Searching, Vol. 3 of Ih£ Art of Computer
Programming (Reading, Mass.: Addison-Wesley, 1973), chapter 6.3,
pp. 490-49:J.

<Aho 74> Aho, A. V.; Hopcroft, J. E.; and Ullman, J. D. The design and analysis of
computer algorithms (Reading, Mass.: Addison-Wesley, 1974) chapter
9, pp. ~H7-361.

<Knu 74) Knuth, D. E.; Morris, J. H., Jr.; and Pratt, V. R. Fast Pattern !\latching in
Strings (Stanford, Calif: Stanford University Computer Science
Report STAN-CS-74-440, August, 1074).

<Knu 73b) Knuth, D. E. "Pattern !\latching in Strings" (Trondheim, Norway:
unpublished lecture notes, !\lay, 1973).

<Wei 73) Weiner, P. "Linear Pattern !\latching Algorithms" in Conference Record, rn .ll!h Annual Symposium .2.!! Switching and Automata Theory,
pp. 1-11.

<Pra 73) Pratt, V. R. "Applications of the Weiner Repetition Finder" (Cambridge,
Mass.: unpublished paper, l\lay, 1973; revised October, 1973).

<Wag 74) Wagner, R. A. "Order-n Correction for Regular Languages" Comm. ACM,
17 (May, 1974), pp. 265-268.

