
APRIL 1974

MTS

VOLUME 1

THE SYSTEM

XXXXXXX XXX XXXXXX XXXXXXX XXXXXKXXX

XXX XXXX XXXXXXXXXX XXXXX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXX XXXX XXXX XXXX XX XXX XXXXX XXXXX XXX XXXXX XX

XX XXXX XXXXX XXX XXXX XXX XXXX XXXX XXX XXXXX

XXXX XXXXXX XXX XXXXXX XXX XXXX XXXX XXX XXXXX

XXX! XXX XXXX XXX XXX XXXX XXX XXXX XXXX XXX XXXXXXXXXZXXXX

XXXX XXX XXXX XXX XXX XXXX XXX XXXX XXXX XXX XXXXXXXXXXXXXX

XXXXXXX XXXX XXX XXX XXXX XXX XXXX XXXX XXX XXXXX

XXXXX XXXXXXX XXXX XXX! XXX XXXX XXXX XXX XXXXX

XXXX XXXXX XXXX XXXXX XXX XXX XXXX XXX XXXXX XX

XX XXX XXXXX XX XXXXX XXXXX XXX! XXX XX !XXXXXXXXXXXXX
X X XXFXXXXXX XXX XXX XXXX XXX! XXXXXXXXXX

"X an-an
XX XX

XXXXXXX
~XXXX

XXX

X

XXX
XXX

XXX
XXX manna ttcount n tnttnnn anon:

XXX 0 ¢ 0 1 1 n

XXX scum: 0 n 1: u n-can

I

IO
Q

Q

I

iitlt

Q

I

I'll‘!

.M4d

H T S

The Michigan Terminal System

VOLUME 1: HTS -- THE SYSTEM

Third Edition

April 1973

Revised

Wayne State University
Computing and Data Processing Center

Detroit, Michigan H8202

###1######$#****#**#llI4!##1##***##**##*###**#*#*#*#**
* #
* This obsoletes the April 1971 printing. *
* #
****a#***********####***#***#*#*##*#**###****#*##*****

<

- = M

DI SCLBIHER

This aanual represents an attempt to docuaeut the "current" state of the
uichiqan Terminal Systea (nts) as used at Wayne state University. It is a
revision of gig the Qggfgtigg gggggg (Voluae 1 January 1973) published
by the Gaiters??? oi Hick qan Computing Center at Ana Arbor and §1§ —- ggg
gygggg (volule 1, April 1971) published by the Iayue State University
Computing and Data Processing Center.

ls the systea is deyaloped, some sections of this manual will become
obsolete. The user should refer to the file HnLP:B!iS ané the USU CDPC
newsletter "Overflow" for the latest information about aoditications to HTS.

2

HTS Volume 1: HTS -- The System

April 197B

!l_QZ..!1_2B.EZ.A§§_IQ_E§§_Z1ilB2-E2.L1IlQ!

The software developed by the University of Hichigan Computing Center for
the operation of the 360/67 dual-processor computer can be described as a
multi-processor supervisor which handles a number of resident, re-entrant
programs. Among these is a large subsystem, called HTS (Hichigan Terminal
System), for command interpretation, execution control, file handling and
accounting maintenance. The majority of users interact with the computer's
resources by means of the latter operating subsystem. The various HTS
manuals are concerned principally with describing the use of this subsystem.

This, the Third Edition of the HTS manual, is a major revision and
reorganization of the Second Edition (December 1, 1967). The third edition
will consist of a series of 10 or more separate, self-contained volumes, to
be published over a period of many months. Eight volumes in the third
edition have already appeared.

ggg and the gggpggigg ggntgg, Volume 1, revised January 1973
ggblig gilg Qggggiptiggg, Volume 2, revised April 1971
§!Q£Q!Si2§ 229 E5222 22§§£iB$i2&§. Volume 31 June 197°
Tggmigglg and Tapes, Volume H, September 1972
Sygtgg ggggiggs, Volume 5, December 1971
Sgggggg, Volume 9, Harch 1969 (currently out of print)
§A§;g in Hgg, Volume 10, August 1971
Plot Qggggiptign gygtgg, Volume 11, April 1971

Others Tare in preparation. The numerical order of the volumes is not
necessarily the chronological order; for example, Volumes 2, 3, and 9
appeared before Volume 1. However, in general, the higher the number, the
more specialized the volume is. Volume 1, for example, introduces the user
to HTS and the Computing Center, while Volume 10 deals exclusively with
BASIC. The attempt to make each volume mostly self-contained naturally
results in a certain amount of repetition. Such things as public file
descriptions, for example, may appear in more than one volume. However,
with this arrangement, the user is not forced to buy the entire set of
manuals, but only those that serve his immediate needs. And, hopefully,
each volume will be smaller and of a more manageable size than before.

Lynn R. Leader
Richard A. Salisbury
Hary Ann Wilkes

General Editors

3

<‘<ff‘ 1...:

MTS Volume 1: MTS -- The System

April 1970

!.§..2.B§ZA§E..IQ-!QL!!!.E-1

The April 197M revision of Volume 1 reflects the changes that have been
made to MTS at USU since the first printing of Volume 1 in April 1971. It
also incorporates relevant parts of 515 ‘lg Tgg ggggggggg gggggg (Volume 1)
published by the University Michigan in January 1973. The changes made
include deletion of material specific to the University of Michigan,
alterations necessary to reflect the differences between the two systems,
and additions to reflect the current development at USU. I”

He are extremely grateful to the University of Michigan Computing Center
for permission to publish this revision of their manual. The following
paragraph is quoted from their preface to volume 1 of February 1971:

"While we would like to acknowledge the contributions of many people to
this volume, it is the sad truth that at this point the editors (and others)
have rewritten and restructured each others writeups and other people's
writeups over and over to the extent that it is impossible to assign the
exclusive blame for any part of this manual to anybody."

we would also like to acknowledge that nuch of the raw fodder for this
manual also came from the University of Alberta Computing Center and the
University of British Columbia Computing Center. It is difficult at this
time to even identify from which sources parts of this manual cane. More
people have contributed to this manual then could possibly be identified; to
each me are grateful. .

The writeups in this volume refer occasionally to other volumes that have
not been published. Ihile this is regrettable, we felt that it would be
better to include the reference in the hope that the the volume would be
published before the next printing. »

The last page of this manual is an Update Request Form Vwhich must be
returned to the USU Documentation Librarian to insure that future updates
are received. It can also be used for suggestions or corrections.

This publication obsoletes ISU Technical Memos 1 and 12 (TMOO1—00O and
TM012-000).

Richard L. Wiersna
Russell H. Pratt
Barbara B. Iolfe

Revision Editors

B

April 197a

HTS Volume 1: HTS -- The System

gontentg

U of H Preface to the Third List- and
Edition 3 String-Processing

I O O I O O I ILanguages
USU Preface to Volume 1 . . . U Simulation Languages .

Documentation 9 Packages S0
O I

Statistical Program

Reference Centers 10 Information Retrieval
WSU HTS Documentation . . . 10 Service Files 51
USU Introductory Information about a
Publications 11 Particular ID Number . . . 51
Other Documentation Information about
Relevant to HTS 11 Activities of the
IBH Hanuals 13 Computing and Data

I I O C

Introduction to HTS 15 Documentation Aids 52
15Introducing Yourself to HTS

Now That HTS Knows Iho You Introduction to the Editor
Are

The Hystery of Files
Unveiled

Creating a File -
Revising a File .
Copying a File . .

But Here's Hore About

Terminals vs. Batch 32 Terminals 75

A Brief Overview of HTS
Access to the System
Data Input and Output
General Concepts . .

Logical I/O Units
Prefix Characters
Virtual Hemory . .

HTS Command Language
The Line File Editor Device Commands

I

l"'O

0-‘
Q0

III

F

I
O

O

I

I
O

O

I

. 20

. 21
I
O

Processing Center ‘

O Q U O O O I I O I I O

And Now Another word About Introduction to Debug Hode
the HTS Command Language . . 20 for FORTRAN 63

Conversational Usage of HTS

I I

I Q

. 73
Functional Characteristics
of Teletypes and ASCII
Code Terminals 7
Functional Characteristics

A Last Word Concerning of Selectric Typewriter

General Outline for Use of
Prefix Characters
Conversational Operation
Control Characters 79
Input Restrictions . . .
Attention Interrupts .
Error Conditions . . .
Device Support Routines

Command Language B2 Processing of Input and
Debug Command Language . . . RR Output Lines 87
Language Translators 47 Batch Jobs from a '

Procedure-Oriented Terminal
Languages 47 Terminating a Session
Assemblers H8 Using a Teletype orInteractive Languages . . 48 Westinghouse 1600 92

0 I I I I U 0Initiation .
Control Characters 93

35 a Terminal 76
35 78

O

O

I O 0 I O I O O 0

. . 92

. 78

HTS volume 1: HTS -- The System

Attention Interrupts . . . 90 Haking Changes to a File

April 1970

Using a Westinghouse 1600 95 Changes Using HTS
Using a Selectric Commands4.131
Typewriter Terminal 95 Changes Using the

I Q O I I I O I I I I I O I
Control Characters 96 Restoring the Contents
Special Input of a File134
Restrictions 96 Discovering the Changes to

. .131

Attention Interrupts . . . 96 a File135
Shared Files138

Batch Usage of HTS 97' Appendix A: I/0 Hodifiers .140
Introduction 97 Appendix B: Sequential
Advantages and Files and Note and Point . .153
Disadvantages of Batch Appendix C: Internal File
Usage 97 Structure and the Size of
Differences Between Batch Files155
Usage and Conversational Line Files155
Usage 98 Sequential Files156
Structure of Batch Input Appendix D: I/O Routines
Jobs 99 Return Codes158
Explanation of Printed Appendix E: Updating Files
Output101 Defensively in HTS162
Explanation of Punched
Output101 System Command Language . . .165
Local and Remote Batch . . .102 Prefix Characters165

0 n 0 0 0 0 0 0 0 0 0 Ill1'.el'I8Cti0l1 Of HOGGS 0 n n

HTS Command and
Files and Devices107 Execution Hode166

Files107 HTS Command and Debug
The Availability of Piles 107 Command Hode167
Simple_ri1e Names108 Debug Command and

Devices~. .109 Execution Hode167
.1Simple Device Hames

Pseudo-Device Names
Simple File Names .
Hodifiers
Line lumber Ranges .
Concatenation . . .

In licit Concatenati
Explicit Concatenat

FDDEIIIGS aopooam
Error Processing . . .
Usage of FDnames . .

Logical I/O Units

0
OO

ao

000

i

.109

.11
. .112
. .113
. .110 Loading.

p .114 Prompting
.115

09 HTS Command and Edit

Command Hode
Copying

Commands and Delimiters
.116
.117 HTS Command Hode171
.11 8 Command Lines and Data
I I I I O C I I I

Default Values for Continuation Lines .
Logical I/O Units119 Global and Local Limits .17U
FDUB-pointers120 Global and Local

Types of rile Organization .121 Relocation Factors175
Line Tiles122 HTS Commands175
Sequential Files125 Summary of HTS Command

Ctéatillq Pilés 0 0 0 0 0 0 PL‘0tOt]peS 0 0 0 0 0 0 0

Putting Information into a ALTER
1 I O O I O I O O O O Q I

‘I
I

0

I
O

O

O

O

O

0

I
O

O

I
O

0

OO

I I I C I1
I I I Q U1

.168

.1

Command Hode167
2 HTS Command and Network

67
68
68

68

117“

80
83

April 1974

CANCEL .
couunum
cournor
cop! . .
cnzamn .
nnaus .
nnsmnov
DISPLAY
nun? . .
aanonnuup
car . .
nzxann .
nzxsua .
INQUIRE
LIST . .
LOAD . .

‘uonxrx .
uouum .
unm . .
nuusnn .
PERMIT .
nzrnasz
RESTART
nun . .
sns . .
snm . .
sxcnorr
szsuou .
sxux . .
souncn .
srnnm .
UNLOAD .
uununsnn

Edit node
Basic Con
Command Names
Command U

Command P
Edit Command Definitio

Summary
Prototypes

ALTER
BLANK
CHANGE .
CHECKPOIN
COLUMN .
COPY . .
DELETE .
DOCUMENT
EDIT . .
EXPLAIN
GOTO . .

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

cepts

I
I

I
I

I
I

I
I

I
I

I
I

odifiers
arameters

I
I

I
I

UI
I3

I-gm.

Q1 IIQ

of Edit Comma

I
I

I
I

I

0-Q0

0I
08

0m

00

Q0

Q0

I0
I0

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

.201

.2

.211

.212

.213

.215 STOP

.227 +n,

.231

.2

.2

.241

.261

I I2
.2

.2

.2

.2

.2

HTS Volume 1: HTS —- The System

.185 INSERT .

.1 87 LINE . .

.188 HATCH .

.1 93 HTS . .

.196 OVERLAY
198 PRINT .

REGION .
02 RENUHBER

206 REPLACE
RESTORE
SCAN
SET

214 SHIFT

225 XEC

I
u

mI0

230 Sname
/name

35

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
O

I

286
287
288
289
290
291
293
294
295

.296
297

.298
300

.301
302
303
304
305

236 Debug Mode307

243 Keyword
247 Predefined Symbols
248 Indirection
255 Input Conversion . 1
256 Output Conversion322

38 Display and Modify
240 Processing

SDS Parameters

I
I

I
I

I
I

I
I

Modifiers

309
.309
314

.317
317
3 8

259 Current Symbol Character .323
260 Program Returns, Dynamic

Loading, and Interrupt
262 Processing
263 Breakpoint Processing

Global Breakpoints
65 Local Breakpoints
65 At-points .32

268 The SDS Simulator326
270 Control Section Processing .327

.271

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

.323
325
325
325

6

Miscellaneous Concepts . . .329
272 Terse node329

Automatic Error Dumping
74 in Batch330
75 Using SDS Without a

276 Loaded Program331
277 Initializing, Resetting,
278 and Terminating SDS

Summary of Debug Command

79 Processing331
80 Debug Command Definitions .332

.281

.2 82 Prototypes333
283 ALTER334
284 AT
285 ATTRIBUTE

I
I

I
I

I
I

I
I

335
337

HTS Volume 1: HTS -- The System

BRBLK
CLEAN
COHHENT
CONTINU
CSECT
DISPLAY
DROP .
DUHP .
sun . Iauv

.3soro .
HEXDISP
Icnonn
LIST . .
HKP . .
HODIPY
HTS . .
QUALIFY
RESET
RESTORE
RUE .
SCLNLO
SDS .
SET Q

swan .
STOP .
SYHBOL
USING

Abnormal Conditions
Program
Attenti
Tiler I

I
I

I
I

I
I

I
I

I
I

I
I

I
0

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

Z

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I
-c

I
I

I
I

I
I

I
I

I
I

0e

W
0go

.0I
0Co

0Io

000

olu

o00

Q0I
.on

I
I

I
I

I
I

I
I

I

I
I

0

0

I
I

I
I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

0

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

Interrupts
on Interrupts
nterrnpts .

I
I

I
I

I
I

I

.33

.3

.3

.3

.360

.361

.366
. .3

. .3

.3

.371 Abbreviations

.370 PROJECTACCOURT

April 197D

8 HODIP!ing Honey for a
300 Signon ID385

.31 EQUALIZing Money for a
302 Signon ID385

43 EXPIRing Honey £0

05 Obtaining the STA

r a

T05 of
Q0 Signon ID385

3&6 a Signon ID . . .'. . . .386
CONtIHUing with a

B8 Different Signon ID . . .386
.3Q9 Determining Lost

350 PASSHOBDs
Other Signon Ranges.351

I I I I I
I I I I I

. .356 PROJECT

. .3 57 Keywords .

. .358 Changing 5.515.} CHARGE I390
.359

I
I

I
I

Changing Haxilnl DISK

Changing Haxinun

.388

.3

387
388

88
389
390

I I I I I I I I I

362 TERHINLL Tine390
.363 Changing Haxinun

PLOTting Tile392
67 Changing EXPIRation Tine .392

368 Changing NOCHANGE39k

Producing a HEADI
71 Miscellaneous

373 Summary of Input fo

Input and Output Errors .370 Input Lines . .

Using Brrordunps and Load Keywords
Colnands .

0

I
I

I

aps’. 0 0 0 0 0 0 0 0 0 o 0 0377 TerlinIti°n 0 0 0 0 0 0

Logical I/0 Unit Names . .000
Projectaccount383 Batch Input to Produce

Introduction383 Examples in this Section .01
Commands384

ADDing money to a Signon Glossary of Computing Terms .R03
In I I I I I I I I I I I O3 BR

I I I I
I I I I

HG

0

0

I

I
I

I

I
I

I
I

69 Producing NOLISIing . . .396
396

.396

.397

398
.398

399
R00
B00

Jsusrnacrinq Honey from a Indexus3
t$ignon ID360

HTS Volume 1: HTS -- The System

April 1974

DOCUHENTQ§lQ§

Information on computer utilization at ISO is obtained primarily from
documentation. The documentation sources may be many: USU Computing and
Data Processing Center (CDPC) publications, O of H Computing Center
publications, IBH, and manuals and texts from other sources. This chapter
describes the publications necessary for utilization of the operating system
HTS (Hichigan Terminal System) at USU and references other documents for
some of the more commonly used computer applications.

The Academic Services Department of the Computing and Data Processing
Center attempts to compile and disseminate complete, accurate, detailed, and
up-to-date information about the Center's equipment, operating systems, and
administrative policies for a wide spectrum. of users. The principal
publications are the HTS manuals which often rely heavily on U of H's HTS
manuals. U of H's series of HTS manuals when completed will consist of
about a dozen 300-page volumes describing HTS in detail. The HSU CDPC will
make completed U of H manuals available on campus when they likewise apply
to HTS at W50. when necessary, they will be revised and republished here toreflect changes made to HTS at USU. Currently volumes 1 through." and 12
have been revised and republished for use at WSU while volumes 5, 10, and 11
are U of H publications.

Other introductory publications besides HTS manuals are also recommended
at HSU. These publications are more specific, less costly to produce, and
can thus be made available to students and other users at a lower cost than
the more voluminous HTS manuals. An informal newsletter called OVERFLOH is
published as needed (at least once per month) to inform users of changes
taking place at the USU CDPC. Other documents called Technical Hemos are
published by the Academic Services staff to provide detailed accounts of
changes and additions to HTS or to provide tutorial information in some
aspect of a computer application. some of‘ the Technical Hemos are
subsequently incorporated into HTS volumes. U of H Computing Center also
produces CCHemos much for the same purpose. Often these CCHemos are equally
applicable at USU and those which apply are made available to users here.
Other HSO application program writeups exist which are in the same category
as Technical Hemos but were not labeled as Technical Hemos when they werepublished.

The USU CDPC tries to recover the printing costs of some documents it
produces. These are sold through the main branch of the USU bookstore.
Other documents are freely given to users. Documents which the CDPC must
purchase elsewhere are sold to users at our cost: these are usually either
low quantity items or from lesser known publishers. Still others which come
from large volume publishers and are high volume items are best purchased
through the USO bookstore.

Documentation 9

HTS Volume 1: HTS -- The System

April 197M

Sources for documentation are indeed complicated. However, the Academic
Services Documentation Librarian can be consulted for details. General
guidelines are as follows. HTS manuals are purchased from the USU bookstore
(both those published by USU and U of HI. Updates to HTS manuals are sent
free of charge to any user who returns the Update Request Form (the last
page of the nanual). OYBRPLOU is mailed free of charge to any user on the
mailing list; contact the editor to be added to this list. Project
directors are autoaatically included on the OVBRFLOW mailing list. Some USU
Technical Hemos are distributed free of charge upon request to the
Doculentation Librarian; other high volume Technical Hemos are sold at the
USU bookstore. Application program vriteups are generally distributed free
of charge for a single copy by the Documentation Librarian. U of H CCHemos
are sent to users by the Documentation Librarian free of charqe upon
request. IBH manuals must be paid for by the user. The USU bookstore can
place orders for IBH manuals. If the user is a USU faculty or staff member
and if he wants IBH's updating service for IBH manuals, he may request IBH
annuals from the Documentation Librarian. The CDBC will then bill him for
the cost of the IBH manuals and any subsequent replacement manuals issued by
IBH. Users external to the University who do not have access to the USU
bookstore can request any doculents from the Documentation Librarian and be
billed for these items by the CDPC.

B§I§BE!§E.§§E2EE§

Two locations on campus are maintained by the Academic Services Documen-
tation Librarian as reference centers for documentation on computer utiliza-
tion. These centers contain all commonly used documentation at USU and also
major manuals for use of the University of Hichigan Computing Center and the
Hichigan State University Computing Center through the HERIT Computer
Hetwork. (See HTS Volume H, "The HERIT User's Guide".) These locations are
the main circulation desk of the USU Science Library and room 333
Administrative Services Building 2, 5950 Cass avenue. Documentation may be
perused at these locations which may be helpful in determining if purchase
is necessary.

!§§-!I§-2Q§!!l!ILIIQ!

The following list describes the ISU applicable volumes of the third
edition of the HTS manuals: 7

Vol. 1, §1§ -- The Sygtgg, revised April 1974, H80 pp.
Introduces HTS and describes the command language, files and

V. devices, general batch and terminal use.

"1-H 2- rnhlisz tile naasriuiens revised August 1911- 316 pp-
Describes each of the public files available in HTS.

10 Documentation
1

April 197a

HTS Volume 1: HTS -- The System

vol. 3, gggrggtigg and Hgcro Degggiptiggg, revised January 1972, DBH
PP-

Describes the subroutines and subroutine libraries, and macros and
macro libraries that are available in HTS.

Vol. Q, Tegmigalg and Tapes, revised September 1973, 102 pp.
Contains sections on conversational use of HTS, the HERIT network,
and magnetic tapes.

vol. 5, gygtgg Services, December 1971, 232 pp.
Describes the SORT utility program, text processing programs, the
dynamic loader, and IOH/360

Vol. 10, QASIQ in HIS, August 1971, 336 pp.
Describes the BASIC language as implemented for HTS.

Vol. 11, glgt Desggiptign Systgg, April 1971, 164 pp.
Describes the use of the CALCOHP plotter on HTS.

ve1- 12. zit: inrernrerize Laga2age- revised February 197". 110 pp-Describes PIL, an interactive language, on HTS.

!§!_lEI§Q2H§IQB!.2!§LlSA2lQ!§

Easiligies Q Serzises 2; 15! 9212:3129 and Dara Eresessins £2222; £22gcadegig Qgggg, February 1973, H2 pp. -

Describes the facilities and services that are available to users
of the Wayne State University Computing and Data Processing
Center.

lgggodugtigg tg HTS Q I§U, January 197“, 82 pp.
Describes how to use the HTS command language at HSU to those
users who are unfamiliar with the system.

Abssrasss 22 Azailable éefszare. ieeued quarterly. 5" PP-
A listing of abstracts of many programs available at ISU.

QE§§§.2QQ!!§!ILElQ!_BEL§!A!1_IQ_E§

Hgg ggggggggg gagg, USU CDPC, February 1972.
This concise, pocket-size card contains the HTS command language,editor commands, debug commands, CDPC telephone numbers, FORHAT
(*FHT) commands, HTS BASIC, FORTRAN IV and other frequently useditems.

Documentation 11

. Jr» V ; ..e.,.@_<

._ _ . V . 3_~m__._. ______ _

HTS Volume 1: HTS —— The System

April 197B

ggggggg, Richard iiersma, USU CDPC, larch 1973, 50 pp.
CONTOUR, a generalized surface approximation, contouring, and
plotting programs is described.

Igggggggtigg tg SEQQQLQ, ed. E. J. Fronczak, U of H Computing Center,
February 1970, 25 pp.

Ins §!2§9L§ Eresraaains Lansaass. Grisvald. Pvaqe and Polonsky.
Prentice-Hall, rev. ed., 1971.

This programming language, developed at Bell Telephone Labs, is
designed to be used chiefly for manipulation of character strings.

§g;g§g§ Qggggl guide, ed. Ken DeJong, University of Michigan Computing
Center and Richard Iiersma, Iayne State University Computing and Data
Processing Center, USU CDPC, September 1973, 62 pp.

This is a fast version of SNOBOLU developed at the Illinois
Institute of Technology.

QQLZQQQ, An Igtggggtigg Qgpggggh, Gillman and Rose, Wiley, 1970.

ggygggg Regeggggg gggggl, Pakin 5., Science Research Associates, 1972.

niuiial Qeznniins. 12222:! ll. !ll!I!. and QT: (risk £11! and zsaxzzxa.
Carnahan and Iilkes, published by the authors, Chenical Engineering
Department, University of lichigan, 1972.

A §g§§ ggiggg, Schreiber, preliminary printing, published by the
author, School of Business Administration, University of Michigan,
1972.

A Qggpilgg ggngggtgg, Hcxeeman, Hornung, and Iortman, Prentice-Hall,
1970.

Describes the XPL programming language.

lsrit Qeaznisr 12122:; Essrls Qnide. ed- Susan 2- Colman. prelilinary
printing, published by Berit Computer Network, U of H, USU, ISU,
April 1973, 60 pp.

§l!§§£l2I llii zrearanaina LEEQQQQEI Kiviat. Villanueva. and larkowitz.
Consolidated Analysis Centers Inc., 1973.

§1§§§§1g1 ;1&§ ggggggggg ggggpggg, Consolidated Analysis Centers Inc.,
1972.

§l!§§EI2I Ilii Z£2§I§!!££1§ 122221: "5" ¢DP¢v ll! 19721 55 PP-

The above three manuals conprise the complete documentation for
the SIUSCRIPT II programming language at ISU.

laay other books and manuals could be listed in this section. Additional
references are in Qhgtgagtg Q; gygilgblg gggggggg and the HTS file
HBLP:DIRBCTOR!.

12 Documentation

HTS Volume 1: HTS -- The System

April 197R

QB! HA§QL§

The HTS manuals will eventually describe fully the languages that were
developed for use in HTS. They will also contain full descriptions of
languages developed elsewhere and adapted to use in HTS, such as PIL, but
for which descriptions are not readily found in the existing literature.
However, languages developed by IBH and adapted to HTS are described only
briefly in the HTS manuals. For these languages, the user should refer to
the appropriate IBH manuals for a complete description.

The IBH manuals listed below are important to a better understanding of
use of the computer and the specific IBH language processors available in
HTS. These manuals can be purchased from the USU main bookstore, but users
must supply the correct form number when ordering them. The CDPC Academic
Services Documentation Librarian has a complete bibliography of IBH publica-
tions, and will gladly assist users in finding the correct form number.

dardzase Qessriaiian
IBH System/360 Principles of Operation—-form GA22-6821
IBH System/360 Hodel 67 Functional Characteristics--form GA27-2719
IBH System/360 System Summary--form GA22-6810

Assembles
IBH System/360 Assembler Language--form GC28-651“

ggggggnce Data
IBH System/360 Reference Data-—form GX20—1703 (also known as the

"green card")

£93235!
IBH System/360 FORTRAN IV Language--form GC28-6515
IBH System/360 FORTRAN IV Library Subprograms--form GC28-6596
IBH System/360 FORTRAN IV Library: Hathematical and Service

Subprograms——form GC28—6818
IBH System/360 Scientific Subroutine Package--form GH28—0205

ELZI
IBH System/360 PL/I Reference Hanual--form GC28-8201
IBH System/360 PL/I Subroutine Library--form GC28-6590
IBH System/360 PL/I (F) Programmer's Guide--form GC28-659R

(Although IBH system-dependent, this manual also contains
much useful information on writing correct PL/I programs.)

A PL/I Primer--form SC28-6808
A Guide to PL/I for FORTRAN Users-—form SC20-1637

FORTRAN tg PL¢I gogvegtgg
System/360 Conversion Aids: FORTRAN Iv-to—PL/I Language Conver-

V sion Program for IBH System/360 Operating System--360C-CV-
710--form GC33-2002 .

Documentation 13

i

MES Yolnae 1: M15 -- The System

April 1970

lgk ‘Arr/360 Priner--for! sazo-oeas

LLQQL

V £9391

APL/360 User's Manual—-form GH20-0683

\

IBM System/350 Operating System ALGOL Language--torn GC28-6615
IBM Systel/360 Operating system ALGOL Programmers Guide--fora

G¢33-B000

IBM System/360 American Rational Standard COBOL-—form C628-5396
(Although Inrsysten-dependent, this manual also contains
much useful information on Iriting correct programs.)

IBM Systea/360 American national standard COBOL--for! GC28-6399

£552
System/360 CSMP: Application Description--form GH20-0200
Systea/360 CSMP: User's Manual--fora G820-0367
System/360 CSMP: System Manual--fora G120-0111

§2§§
GPSS/360 Introductory User's Manual--fora G820-0300
GPSS/360 User's Manual-form GH20»0326

!£§
Mathenatical Programming System/360: MP5 Application Description-

-for: 6820-0136
Mathematical Programming System/360: MP5 Control Language User's

Manual--form G520-0290
Mathematical Programming system/360: MP5 Linear and separable

Proraaming User's Manual--form G820-0076
Mathematical ?rogramming System/360: MP5 Messages Manual--form

6820-0603

ii Documentation

HTS Volume 1: HTS -— The System

April 197R

l!EBQ2!§IlQ!_EQ.!I§

The IBH 360/67 can serve a large number of users concurrently, offering
each a wide variety of services. The job of keeping track of all the
programs in the machine and of devoting some attention to each of them every
second or two is handled by the HTS operating system (gichiqan germinal
§ystem). In order to request service from the computer, you must first
identify yourself to HTS and then communicate your requests. This communi-
cation is done through the HTS ggmmagg Language. Because the system is both
powerful and complex, the command language of HTS is a rich one. Fortunate-
ly, HTS usually has a default gptigg wherever it offers you a choice; that
is, if you don't state your choice explicitly, a plausible assumption is
made and the job continues. In the following sections, some of the more
important commands are discussed. For a complete listing, see the section
entitled "A Brief Overview of HTS" in this volume.

You may operate within HTS in one of two modes - batgh or ggnygrsgtiggal.
In conversational mode, you sit at a terminal and communicate directly with
HTS through a typewriter-like keyboard. HTS processes each command as it is
received and reports the results. Based on the results, you can decide what
command to give next. Thus, conversational mode of operation is highly
interactive.

Batch mode, on the other hand, is not interactive. You must completely
pre-plan all requests, punch them on cards, and submit them to the Computing
and Data Processing Center (CDPC),» directly or through a distribution
station. Some time later -- minutes or hours, depending on how long your
program is and how busy the computer is -— you may pick up the results.
Feedback is not immediate. Details on submitting a program using a terminal
or in batch are found in the manual Igtgggggtigg to 115 Q !§g (January,
197“) and the sections "Conversational Usage of HTS" and "Batch Usage of
HTS" in this volume.

The command language and its usage are essentially the same for both
batch and conversational modes. The primary difference is that in conversa-
tional mode HTS replies after most commands, confirming what it just did or
prompting you for further information. The descriptions that follow apply
to both modes; any substantial differences between them are noted as they
occur.

L!1§Q2!§lE9=lQQB§§L?eIQi!l§ \

Here, and in later sections, the emphasis is on illustrative examples
accompanied by "rules". This is not the whole HTS story by any means, butit should serve as an introduction to the more detailed descriptions in therest of the manual.

Introduction to HTS 15

-iv

HTS Volume 1: HTS -- The System

April 1974

Example 1 is a trivial job that illustrates four rules about the HTS

command language:

ji

$51630! HYID PU=SESlHE ‘I NAME‘
$SIGROPF

-.4

v

\ Example 1. T

gglg 1; The first character of a command to HTS is a
"S". In batch mode, the "first character" is the
character in column 1 of a card. In conversational
mode, the "first character" refers to the first charac-
ter you type in a line. (A blank is considered to be a
character.) Though there are cases in which the "S"
need not appear, it is always acceptable to include it.
gglg 1; The first card or typed line nust say SSIGNON
and must be immediately followed by one or more blanks
and your user identification code. This first part of
the identification is the four~character ID code (e.g.,
HYID) given to you by the Computing Center. The next
part is the 1-6 character password associated with the
ID. more is given on passwords below.

gglg Q; The last command, $SIGNOPF, tells HTS that you
have finished using its facilities. HTS then gives
statistics on the completed run, e.g., how much it cost,
how long it took, etc. The SSIGNOFF command is not
necessary to terminate a batch job.

' gglg 5; For batch users only, a delivery code and name
should appear within single quotes. The delivery code
indicates where the printed and/or punched output is to
be delivered. The letter "I" indicates that the output
is to be sent to room 73 of the Science Library. A

blank indicates that the output should be retained at
the control desk of the CDPC, 5925 Woodward Avenue. The
name is used for identification and should be separated
from the delivery code by a blank or comma. For a
listing of delivery codes, see Eggilitigs and igggiggg
eiunmmunsudmazrnensiusenurfumuaais
ggggg-or the file HELP:DELIVBR!.

iThe purpose of the password is to keep others from using your signon ID.It is prudent to conceal it. one step toward this goal is to leave the
password off the SSIGHON command and to supply it on the next card or line.
This second card is not printed with your output in batch mode, and it is
recopmended that you turn off the printing on the keypunch or terminal when
you type it. The "three-line" sequence in Example 2 has exactly the sane
effect as Example 1 and is the preferred method of signing on. This method
is used in all subsequent examples.

16 Tntroduction to HTS

April 197a

HTS Volume 1: HTS —- The System

iiiq

SSIGNOR HYID '
SESAME
$SIGNOFF

I NAME‘

?

----4

Example 2.

In conversational mode, if you don't include the password on the first line,
HTS prompts you for it by typing "ENTER USER PASSWORD".

when you get a signon ID from the CDPC, a password is already assigned toit. You probably will want to change it to something more meaningful and
hence more easily remembered. The SSET command is used to change your
password. To change from your current password, OLDPAS, to a new one,
NEHPAS, you can include the SSET command as part of any job:

-111-q

$SIGNON HYID '
OLDPAS
$SET PU=NEHPAS
$SIGNOFF

NAEE

C

B‘-.__.-4,

Example la)”
From this point on, your password is NEWPAS.

when you $SIGNON in batch, HTS allows you a maximum of 30 seconds of
processing time, 50 pages of printed output, and O punched cards. If you
want more or less of any of these items, you can specify the request on the
$SIGNON card as shown in Example 8 below.

§glg_§; To set the time, you write
"T=time" in seconds. This example

¢1:~ s::_~_ 1 S ~~~ | requests 90 seconds. If you prefer
| SSIGNON HYID T=90 P=10 C=50 ' nE'| to use units of minutes, you may
L I write T=1.5H, where H indicates

Example R. minutes. To specify pages and
cards, you write "P=number of pages"
and "C=number of cards". This
example asks for 10 pages and 50
punched cards.

These parameters serve only as a maximum; you may use less but you cannot
use more. For a more detailed description of these and additional options
for the SSIGNON command, see the description of the command language in this
volume. In terminal mode, these options are ignored.

Introduction to HTS 17

TS Yoluae 1: HTS -- The System

lQ!.I§AI=!I§:§!9!§;!BQ:!Q!_hBE

1.

2.

3.

April 191a

low you can get the coaputer to do some real work for you. Let's say
that you have some problen for which you have written a FORTRAN or IATFOR
program. In order to run this program, i.e., to have the coaputer carry out
your instructions, several steps are required: e

The program you write in FORTRAN or IATFOR or any other language is
known as the gggggg pgggggg. A translator must tgggglgtg your source
program to a machine language ghjgg; gggggag. If you wrote the prograa
in FORTRAN, then you use the FORTRAN compiler to translate your FORTRAN
statements. If you used IATIOR statements, the IATTOR compiler must do
the translating. The sane is true for other languages.

The object prograa must he 19;ggg into coaputer nemory.

HTS can then ggggutg your object prograa, that is, it can carry out the
instructions in your prograa. Let's look at some sample WATFOR jobs.

,,
I .51.... urzn ' uAnr'

_¢

Rule Q1 SRUN *IATPOR tells ITS to
execute the progran contained in the
public file *IATFOR. The prograa in
file *HAT!0R is the HATFOR coapiler.

SESAME (A coapiler is one type of
SRUI *UlTFOR
$COHPILE

READ,I
U=SQRT(X)
PRINT, X,U
STOP

translator.)

§g1g___1; The control cards
SCOHPILB, SDATA, SSTOP are conaands
to GATFOR, not to HTS. SCOHPILE

BUD says "here comes a prograa for coa-
$DlTA
21.67035
SSTOP
$SIGNOF?

pilation". $DATA denotes the end of
the source code and calls for execu-
tion of the compiled program; it
must be included whether or not you
have any input data. SSTOP tells

Example 5. IATFOR to turn control back to HTS.

A succession of IATPOR tasks can be run by alternating SCOHPILE and SDATA
commands as shown in Braaple 6.

18 Introduction to HTS

April 197R

',-.@—n¢-111Q

jiiji-—1QnJ

$SIGNON HYID ' NAME‘
SESAME
$BUN *HATFOR

HTS Volume 1: HTS -- The System

Ru1e__§; Alternating SCOHPILE and
SDATA cards is more efficient than
executing the NATPOR program sepa-
rately each time. Note that these

$COMPILE tasks are independent. If you have
(Source cards for Job #1)

$DlTA
(Data cards for Job 81)

a main program and several subrou-
tines which are to be executed
together as a unit, they constitute

$COhPILE one task and thus need only one
(Source cards for Job #2)

$DATA
(Data cards-for Job #2)

$STOP

SCOHPILE and one SDATA card. In
this case, IATFOR distinguishes the
end of one routine from the begin-
ning of the next routine by the END

$SIGNOFF card which must be the last card of

in-m

Example 7 shows a sample FORTRAN job.

77 77 Example 6.

1--1-¢-_-q

J

pi

$SIGNON MYID ' NAME‘
SESAME
$RUN *FTN

(FORTRAN source cards)
SENDFILE
SRUN -LOAD
21.67035

any IATFOR routine.

§glg_§; SRUN *FTN performs a simi-
lar function to SRUN *HATFOR in
Example 5; i.e., it tells HTS to
execute the program in the file
*FTN, which contains the FORTRAN
compiler.

§glg__1Q; SENDFILE is used to sig-
nify the end of the source code and

$ENDFILE again to signify the end of the
$SIGNOFF

Example 7.

data. It is not a command.

3g1g_11; Execution of your com-
piled program is invoked by the card
$RUN -LOAD. This instructs HTS to
run the program stored in a file
called -LOAD. Fortunately, this is
where *FTN has just put your object
program since the first RUN command
did not specify where the object
program was to be stored.

This example points out a major difference between NATPOR and FORTRAN:
namely that FORTRAN requires that the translated program be stored somewhere
before running it, while IATFOR does not

Introduction to MTS 19

HTS Volume 1: HTS -— The System

April 1974

LlLH!lMQIHHJQEL QJH§M§§
So far, we have encountered several "words" of the HTS conmand language.

There are many more, some of which are discussed in the section on files
that follows. In general, the conmand statements have a fairly free format.
A safe rule is:

3glg_11; Don't leave a space between the dollar sign
,and the command word. In general, you should leave a
space between "words" when there is no explicit separa-
tor, such as in SSIGNOR RIID. However, if there is a
separator such as an equal sign (=), you should not
leave any spaces around it. ror example, within the
"phrases" PH=SBSlHE and T=30 there should be no blanks.

. The experts know abbreviations for the command words, but in general, the
first three letters of the conmand are sufficient. Check to be sure.

Several different tasks can be performed between a single SSIGNOR-
SSIGROFF pair. Example 6 showed a sequence of IATFOR tasks: you can have a
sequence of RATPOR and FORTRAN tasks; in general, you can have almost any
sequence of tasks, whether or not they are related. ' QL

HTS is a file oriented system that stores files on disk storage. The
best way to think of a file is as an area of this disk storage in which you
can store information.

Files are composed of ling; of infornation. If information is put in the
file via the card reader, then a line is the contents of one card. If the
information is put in the file by a FORTRAN program, then generally a line
is the infornation contained in one FORTRAN output record. If the
infornation is put in the file via a typewriter terminal, a line is the
information typed before the "return" code is typed. The information
contained in a file could be data, an object program, the FORTRAN compiler,
a source program, a letter to the President, etc. Every file has a name so
that you can colmnnicate with HTS about it.

Some operations that can be done with files are: SCREATE them, and
SDBSTROY thel, SLIST then and $COP! then, SGBT then and SRELEASE them, SRUN
them, and SBUPTI them. How to carry out these operations is the subject of
this section.

Some examples of $RURning files have already been ,seen. SRUN *IATr0R
commands HTS to execute the program stored in the file called *ilTFOR.
Since the RATFOR compiler is the program contained in the file named
*IAT!0R, HTS makes IATPOR‘ start compiling or translating your program.
Similarly, SRUR *?TR begins the execution of the FORTRAN compiler in the

20 Introduction to HTS

April 191a

HTS Volume 1: HTS —- The System

file named *FTN. SRUN —LOAD, in Example 7, requests the execution of the
program in the file -LOAD. Since the object program has just been stored in
-LOAD by *FTN, it is this program that is run.

The most common type of file is one in which every line in the file has a
number associated with it. These are called ling files and for the purposes
of this introduction, when the word "file" is used, we are referring to a
line file. The line file is ordered by its line numbers. Thus, regardless
of the order in which information was entered into the file (even if you
gave line 10 before line 9), the information is effectively stored in thefile with the line numbers in ascending order

There are two ways to specify the line number which is to be associated
with a line. one way is to write the numbers yourself at the beginning of
each card or typed line. However, files are usually filled initially with a
set of sequentially numbered lines, and HTS might as well number them for us
via a SNUMBER command shown below.

E___reati2s_e_1iil2

Example 8 shows a simple batch job that creates a file called FILEFACTS,
puts five lines of information into it, and then lists it. Example 9 is the
same job but run in conversational mode.

—¢

I sszsnounxxn ' n§ur' I
SESAME
SCREATE FILEFACTS
$NUMBER
THIS SAMPLE FILE CONTAINS SOME
INFORMATION ON FILES IN MTS-
1. A FILE IS A SET OF NUMBERED
LINES STORED UNDER SOME UNIQUE
NAME
SUNNUMBER
$LIST FILEFACTS
$SIGNOFF

-—--at-II-at

_,-in

1

511-111-.1111

Erample 8

§glg__1§; A file can be created by SCREATE followed by
the name you wish to attach to it. It is retained for
your later use until you $DESTROY it.
§glg_1; The command $NUMBER instructs HTS to number
the lines that follow. In batch mode, HTS numbers the
lines as they are put in the file. In conversational
mode, HTS types the line number for you and then waitsfor you to type the content of that line. The numbering
starts with 1 and goes up by increments of 1 thus giving
1,2,3,... See the $NUMBBR command description in the
Command Language section of this volume for ways of

Introduction to HTS 21

L

>

ITS Volume 1: HTS —- The System

April 197B

specifying a different starting number or different
increaent. If the SHUBBER connand is not given, lines
to be put into the file lust be numbered explicitly.
§g1g_1§; Once a file has been $CREATEd, you may enter
information into it. HTS must be able to distinguish
coaaands to be executed from text to be stored in a
file. All lines of information which (1) start with a
line number (either explicitly or via $lUHBER) and (2)
do not have a single "$" following the number are put
into the ggggggtlg ggtiyg 111g. The currently activefile is the file whose name lost recently appeared in a
SCRBLTE or SGIT statement. (SGBT is explained below.)
Any line not starting with a line number Q; containing a
single "S" after a line number is assumed to be a
command to be executed immediately. If the coanand is
not legal, HTS gives an error comment.

gg1g_]§; SURRUHBER turns off the automatic line
nunbers _effected by SNUUBEB. HTS still puts any lines
with explicit line numbers into the file unless a single
"$" follows the line nuaber, or the file is $RELBhSBd.

gglg_113 SLIST, followed by a file name, calls for a
listing of the contents of the file starting from line
1. If the file has line numbers less than 1, they are
not listed. The listing includes the line numbers.

The following exanple was done on a terminal.s The statements typed by
the user are in lower case and the output to the user is in upper case.
This example illustrates the concept of a p;g{i;“gh§;gg;g;. In an actual
session, the area for the password would be blacked out by HTS and "sesame"
would not be readable.

22 Introduction to HTS

April 1974

HTS Volume 1: HTS -- The System

titqpn-‘in-n¢1-114-11134

0

1

nTs(L033—003R)
#$signon nyid
#ENTER USER
?sesane

PASSWORD

#**LAST SIGNON HAS: 11:“4.U5 O2-21-73
Q USER "HYID" SIGNED ON AT 12207.00 ON O2'21-73
#$create filefacts
FILE "FILEFACTS" HAS BEEN CREATED
#$nunber
1_ this sample file contains some

VVV#%###%

Q0

(Uh)-J

I

i

a_1

VV

U‘lJ=

2_infornation on files in nts.
. a file is a set of numbered

_lines stored under some unique
5_nane.
6_$unnumberlist filefacts

THIS SAHPLE FILE CONTAINS SCHE
INFORMATION ON FILES IN HTS.

1 A FILE IS A SET OF NUHBERED
LINES STORED UNDER SOHE UNIQUE
NAME.

#END OP FILE
#$signoff
#0FP AT 12
#ELAPSED TI

O8 SR 02 21 73
HE 1.929 HIN. $.09

#CPU TIHE USED 1.366 SEC. $.12
QCPU STOR VHI .116 PAGE-HIN. $.01
#IAIT STOR VHI .187 PlGE—HR.

53#DRUH READS
#APPROX. COST OF THIS RUN IS $.22
#DISK STORA
QAPPROX. RE

GE 13.35 PAGE-HR.
HAINING BALANCE: $526.75

ijjjim

IExamp1e S. “TI” "I SKI

gg1g__1§; The prefix character is typed by the system
and is the first character of every line of output and
the first character on a line expecting input. This
character identifies who is producing the output line or
who is expecting input. Each segment of the systen has
3. distinct character. In this example the "8" appearsin HTS command mode and the ">" appears when a listingis being produced. A complete listing of the systemprefix characters is given in the "System Command
Language" section in this volume.

Introduction to HTS 23

i—

HIS Volume 1: HTS -- The system

ls1i§ins_a_£ils
Suppose that you find after creating a file that you have left out a line

in the riddle and intended to say more in line 5. You can edit your file on
a subsequent run as shown in nxanple 10.

r
1

I
I
1

i
Iits

J

April 191a

£g1g_12; at the start of this run,
there is no currently active file.
SGET is used to notify HTS of the

SSIGKON HYID ' NAME‘ name of the file to be the active
SESAHB
SGBT FILEFLCTS
2.5, IOU SHOULD LEARN THEM.
5,IlHB ASSIGNED B! THE USER
$SIGIOFF

vhjjiji

file. SGET FILEPACTS aakes FILE-
FACTS the active file, regardless of
whether or not another file had
previously been the active file.
SRELBASB releases a file from being
the currently active file, thus

Example 10. returning to the status of no cur-
rently active file.

§glg_3Q; If SRUHBER isn't used, each line must be
numbered explicitly; the nuaber may be separated from
the text by a comma. (Ihen a blank is used as a
separator, it remains part of the text. A comma,
however, used as a separator is stripped off.) If there
is no line number, ans assumes the line is a command to
be executed immediately.

5g1g_111 A line can be inserted between existing lines
by giving it some intermediate number. This nunber can
be fractional, or even negative. (But note that as
stated in Rule 17, SLIST still lists starting from Line
1 (unless you take special precautions) even if your
file has a line numbered .5.)

A line with a number already in use in the file calls for a replacement
of the old line with the new. Thus, in this example, the old line 5 is
replaced by the new one.

After running Example 9 and then 10, PILBFACTS has 6 lines:
1,2,2.5,3,B,5.

§92!i£S-$.Iil§
After a certain amount of editing and insertion or new lines, a file may

get rather messy, i.e., full of interpolated lines. For this or other
reasons, you nay want to copy the infornation into a new file. Example 11
shows how to do this.

QR Introduction to hrs

April 197B

HTS Volume 1: ETS -- The System

Rule 22; The $COP! command copies
the contents of one file into anoth-
er. In this process the lines are$SIGNON UYID ' NAME‘ numbered sequentially from 1 as theySBSAHE

$CRBATE NEWFILE
SCOPY PILEFACTS TO NEIFILE
SSIGNOFF

k111i

enter the new file regardless oftheir line numbers in the old file.
The old file is retained unaltered.
For ways of copying only part of afile or of altering the numbering inExample 11. the new file, see the SCOPY command
description in the "Command Lan-
guage" section of this volume.

ggle 2;; Information that is no longer wanted can bedeleted either by a command of the form
SEHPTY FILEFACTS

which removes the contents of the file but retains itsidentity, or by a command of the form
SDESTROY FILEFLCTS

which deletes the file and returns the space on the diskto the pool of available storage.

Host of the time, you will want to use files for programs or for data.Example 12 shows the compilation and execution of a small IATFOR programwhich is set up in such a way that the source program is left in a file forlater use. One method for putting lines that start with "S" into a file isillustrated. An alternate method is shown in Example 17 below.

in-11¢

11111

SSIGNON HYID ' NAME‘
SESAME
$CRElTE PROG

QQ-A

$NUhBER §glg__2§; To prevent a card likeSSCOHPILE
DIMENSION K(5)
DO 10 I = 1,5

10 K(I) = (I*5)+7

$COHPILE from looking like an HTS
command for immediate execution,lines beginning with a single "S",
whether they are preceded by a line

STOP number or not, are not entered into
END

SSDATL
$$STOP
SUNNUHBER
SRUN *IATFOR SCARDS=PROG
SSIGNOFF

H-._—._—-Q

Example 12.

files but are treated as HTS com-
mands. Lines beginning with a line
number followed by "$$" are enteredinto a file with the first "S"
removed.

Introduction to HTS 25

l HTS Volume 1: HTS -- The System

April 1975

The SRO! card needs some further explanation. IATPOR has to read
input—-your source program. It must know where to find the input. Is it on
a card reader or on a terminal or in a file? And in which of the many card
readers, terminals, or files is it? It is undesirable to have IATFOR always
expect its input to come from a particular input device. Imagine what would
happen if WATFOR insisted that all users input their programs from the third
terminal in Room 58 of the Science Library--there would he an intolerable
line at that particular terminal and the others would probably be idle.
This sane problem arises for any program--be it the FORTRAN or IATFOR
compiler or your own program which wants to read or write data.

To avoid the necessity of specifying a particular input or output device
at the time of writing the program, HTS provides for lggigal 119 (input-
output) ggitg. These are symbolic names and do not refer to actual physical
units. The most commonly used logical I/O units are SCIRDS, SPRINT, SPUNCH,
0,1,2,...,19. The IATPOR compiler is an example of a program which uses the
logical units SCARDS and STRIIT. It reads the source statements 'from
logical unit SCARDS and writes the source listing on logical unit SPRINT.It depends on HTS to tell it at ggggggigg tipg which physical devices are
associated with the logical units. It is up to you to give HTS this
information.

At the time the SRUN command is given, you must specify, for each logical
I/0 unit used by the program to he run, which actual physical unit should be
used. (In many cases, if you do not specify which device should be attached
to the logical I/O unit, HTS makes a plausible assumption. This is
discussed below.) Thus, in Example 12, the specification SCARDS=PROG on the
$RUH command tells HTS to tell IATFOR that the source program is in a file
named PROG. The reason that our earlier examples didn't have to specify
SCARDS and SPRINT is that if HTS is not told explicitly, it assumes that
SCARDS refers to the device from which the SRUR command came and that SPRINT
refers to the device that it has been using to print the command cards.

In the above example, if you wanted your program to read data and had a
statement such as RBAD,X as in Example 5, IATFOR would assume the data could
he found in the file PROG since you said SCARDS=PROG. But if you are likely
to be varying the data, you would not want to put your data in PROG. You
might want to keep your data on cards or in a different file. Example 13
illustrates how to read your data from cards, even when your source program
is in a file. ‘

26 Introduction to HTS

April 1970

9:1

$SIGNON HYID ' NAME‘
snsaum
scamnmn PROG
suuunna
SSCOHPILE

RBAD(5,1) x
1 FORHAT(2F10.S)

U=SQRT(X)
URITE(6,1) x,u
stop
nun

$$DATA
sssmop
suuuuusmn
$RUN *wATroR SCARDS=PROG

5=*SOURCE* 6=*s1ux
21.67035
$SIGNOFF

-II

HTS Volume 1: HTS -— The System

gglg Z5; The statements READ(5,1)
X and WRITE (6,1) X,U tell IATPOR to
use logical unit 5 for input and
logical unit 6 for output. Only the
numbers 1,...19, are acceptable in
these statements. Use of different
numbers or of SCARDS, SPRINT, SPUNCH
is illegal. This is true in FORTRAN
as well as HATFOR.

§glg_;§; In the SRUR command, you
must tell HTS with what to equate
logical units 5 and 6. In example
13, 5=*source* and 6=*sink*, where
SOURCE and *SINK* are known as
pseudo—device names and are
explained in the next two
paragraphs.

Rule 21; If an HTS command line is
Example 13. too long to fit on a single input

line (card or terminal line), a
minus sign may be placed in the last
column to indicate that the next
line is to be considered as a con-
tinuation of the first line. The
last column of a punched card is
column 80; the last column of a
terminal line is the last character
typed before "return" is signaled.

You want HTS to tell IATFOB where the commands are coming from. If you
are in batch mode, logical unit 5 is the card reader. If you are in
conversational mode, logical unit 5 is the terminal you are typing on.
Similarly, you want 6 to be a line printer or a terminal, depending on what
mode you are in. In batch mode, you do not care on which card reader your
deck was placed or which line printer you are using. If a particular line
printer, for example, is broken or is being used by someone else, you would
prefer that HTS gives you a different one instead of waiting for that
particular one. If you are using a terminal, you would prefer not to have
to worry about finding out some identification number for the terminal at
which you are sitting. So you use another gimmick to avoid having to he too
specific, the idea of a pggggggggligg. Pseudo-devices allow you to take
advantage of the fact that, even if ygg don't know, HTS Qggg know what
device your SSIGNON came from and which line printer it can use if you
require one.

Wherever you have to name a file or device, you can use a pseudo—device
name and let HTS assign a real physical device or file to the name.
Pseudo-device names are characterized by the fact that they start with an

Introduction to HTS 27

HTS Volume 1: HTS —- The System

April 1970

asterisk followed by some string of alphabetic characters and end with an
asterisk. The lost important pseudo-device names which are predefined by
HTS are *SOURCE*, *SIRK*, *PUICH*, and *DUHH!*:

gggggggg means that you want the same device from which HTS has been
receiving its commands. Thus, in batch node, vsouacrw is equated
with the particular card reader from which your batch job is being
read. In conversational mode, *SOURCE* is assigned to the terminal
which you are currently using.

§§1§§§ refers to the current output file or device. In batch mode, HTS
assigns *SIRK* to the line printer assigned to your job. In
terminal operations, *SINK# is equated with the terminal you are
using.

ggggggg refers to the card punch in both batch and conversational mode.

*D§gh11 is a name that can he used as an input or output device. If you
read from *DUhh!*. you always get just an end-of-file. Used as an
output device, it acts like an infinite wastebasket -- you may
write as much as you want on it, but it is lost forever.

Example 15 shows how you can put your data into a file called DATA and
then run the program that you put in file PROG using the data in the file
DATA.

iijjil

O

1|
--_____

Pjjiij

$SIGNON HYID ' NAME‘
SESLHE \

$CRBATE DATA
$IUHBBR
2.173
3 576
4.873
$UNRUHBER
$RUN *HlTFOR SCARDS=PROG

SSIGNOFP
5=DlTA 6=*SINK*

Example 13.

gglg ZQ; Now logical unit 5 is set
to DATA since that is where the
program is reading the data from.

Examples 15 and 16 show the corresponding procedure for FORTRAN.

28 Introduction to Hts

April 197%

Q-_—-an-Q.-001:-1-11--11-nan->0‘

1

1

1J

$SIGNON MYID ' NAME‘
SESAME
$CREATE FPROG
$NUMBER

RELD(5,1)X
1 FORMAT(2F10.5)

U=SQRT(X)

HTS Volume 1: HTS -- The System

§g1g_2g; When the source cards are
read from a private file, it is not
necessary to use a SENDPILE card to
signal the end of the input. HTS

IRITE(6,1)X,U automatically supplies an "end of
STOP
END

SUNNUMBER
$CREATE OBFILE
$RUN *FTN PAR=SOURCE=FPROG

file" indicator when the end of thefile is reached.

§glg_§Q3 To tell FORTRAN to put
LOAD=OBFILE the object program into a private

$RUN OBEILE 5=*SOURCE* 6=*SINK
21.67035
$ENDFILE
$SIGNOFF

~I>

file, one specifies "LOAD=filename"
in the "PAR=" field of the $RUN *FTN
card. If a file in which to put the
object program is not specified, the
object program is held temporarily

Example 15. in -LOAD but is then not available

P.-iiiinnq‘

for subsequent jobs. By saving the
object program as in Example 15, you
do not have to recompile the source

1 w ~11 E program in Example 16. Note that
$SIGNON MYID ' NAME‘
SESAME
$RUN OBFILE 5=*SOURCE* 6=*SINK
3.1U16
$ENDFILE
$SIGNOFF

‘I
—1i11j1d

Z Example 16.

this could not be done with *HATPOR
since the HATFOR compiler does not
provide facilities for retaining the
object program.

If you wanted to put the data into a file, you would follow the same
procedure as in Example 10.

In Example 12, there is a IATPOR program in a private file PROG. The
following example shows a way of getting the same information into PROG
without worrying about double dollar signs.

Introduction to HTS 29

are Yolune 1: HTS -- The System

t
I $SIGRON HYID ' NAME‘
I

jxiqllmqpiqptlcn

SBSLHB
ICBBITE PROG
SCOPI *SOURCE* TO PROG
$COHPILB

iixiid

April 1971:

§3lg__11;; i The $COP! command tells
HTS to copy ggggythjgg up to thefirst end-of-file indicator it sees.

DIHENSIOR K(5) Since HTS is just looking for the
DO 10 I=1,5

TD K(I)=(I*5)+7
STOP
END

$DlTL.
$STOP
IIIDPILB
$RUH *WlTPOR SCLRDSIPROG
SSIGNOPP

Qjijiiiiiii

I _ ,, , , ,

Example 17.

LI."§§B3i .EH§

you specify LOAD to be sore other file.

end-of-file mark, lines which
ordinarily would be commands requir-
ing execution are copied blindly
into the file. Ihen $COP!ing from
SOURCB, the $3NDFILB line serves
as the end-of-file indicator;

The examples so far have dealt prilarily with ggjyggg jilgg, i.e., files
created‘ by the user for his personal use an retained from job to job.
There are two other types, ggggggggy (sometimes called ggggtgh) jjlgg and
public, iilgg. A temporary file has a name beginning with a negative sign,
You may create and use temporary files just as you do ordinary private
files. The only difference is that at $51680?! all temporary files you
created are destroyed. ls your eligibility for private files is limited,
you should use temporary files whenever possible. -LOAD is an example of a
temporary file: in this case *FTR automatically creates it for you unless

Host pgblig ilgg have a name beginning, but not ending, with an
asterisk. They may also begin with CClP:, HBLP:, DBh0:, NEH: or 0LD:.
Anyone may use one, but only the elect may create one. Examples so far have
only dealt with public files ewnrron and *rru. For a complete listing of
all the public files available, see volume 2 of the BIS manuals, ggbjig 111;
Qggggiggiggg. Two more useful public files are *StlTS and *ClTALOG.
Example 18 shows a run that combines these.

30 Introduction to BIS

April 197“

MTS volume 1: MTS -— The System

§g1g__§Z: The program in *STATUS
asks HTS to give you a summary of

..~e:W e~. e _ W all your computer usage with the ID.
$SIGNON HYID ' NAME‘
SESAME
SRUN *STATUS
SRUN *CATALOG
$SIGNOFF

F

\

biijmcla

You get information such as how much
money you have used and how much is
left in your account, how much file
space you have left, and so on. -

Example 18. §g1g__§§; The program in *CATALOG
lists all the private (permanent)
files that you have currently occu-
pying space on disks, that is, all
those that you have $CRBATEd at some
time but never $DESTROYed.

Ordinarily, you are the only one who can read or write on a file which
you created. If you want to let other people read your files, you may set a
"permit code" that allows it. If, for example, you feel that NEIFILE
created in Example 11 ought to be made available to others, you can so
specify. Example 19 shows how this is done.

SSIGNON HYID ' NAME‘
SESAME

jib

Rulq,§5i After the SPERHIT, you
then name the file you want to
PERMIT and say what permission is to
be extended. ALL means that file
may he read b all HTS users. NoY

$PERMIT NEHFILE ALL one but the owner of the file may
$SIGNOFF

L-..

change it. You can later reverse
this effect by issuing the $PERHIT

Example 19. command and specifying NONE after
the name of the file instead of ALL.

Now another user can read your file: he can copy it, run it (if it is an
object program), or read it as data. Example 20 shows how user ABCD might
copy navrxrn.

Introduction to HTS .31

HTS Volume 1: HTS —- The System

I‘
I

W

.

i1
.-

.___e~,.‘..

$SIGION LBCD ' NAB!‘
LLIBAB
$CREATE XEROX

Q-4-ad

April 1978

ggle 3§; Reference to files other
than your own requires the owner's
ID code and a colon (:) immediately

SCOPY H!ID:NEHFILB T0 XEROX preceding the file name. This is
SSIGHOFF

Example'20.

necessary since dozens of users may
have files called NEUPILE.

To conclude this section, usually input-output devices and files are
interchangeable under HTS. Ion may either think of a file as a substitute
for an input-output device, or the reverse. Examples of this interchangeag
bility have been presented in such phases as sCARDS=*SOURCn* which refers to
a device and SChRDS=H!rILB which refers to a file.

LLAJ%L§QKH! §J§_IQ
Ill of our examples are applicable to batch or conversational modes. The

main difference between the two is that in conversational mode, you get
immediate feedback from HTS after giving it a command. This can be very
helpful if you have made an error. For example, if you misspell the name of
a file and HTS cannot find it, it asks you to try another name. If you ask
HTS to $DBSTRO! or $EHPTY a file, it asks you to confirm the request. To do
this, you type in either "OK" or "O.K.". If you change your mind, type in
anything except OK.

Another difference in conventions between batch and terminal operations
occurs in the running of *FTI and *iATFOR. Whereas in batch mode you get a
listing of the source program and error comments, on a terminal the source
code is normally pg; listed. only the erroneous lines and their error
messages appear.

3glg__1§; If you want your source program listed when
running *PTR from a typewriter terminal, add the phrase
PnR=SOURCB to your SRUH *PTl line. Note that there are
no asterisks in SOURCE. with *HhT?OR, to get your
source program listed, you must include the parameter
SOURCE on your $COhPILB card or line.

Ihen you are entering text into a file, the text begins after the line
number and any separator symbol that accompanies it. Thus, if you are
entering a FORTRAN or UATIOR program and you vant the text to start in
column 7, you must give six spaces before you type the line. There are two
ways to avoid all the "space-bar hitting". All terminals have tab setting
features vhich may be used. See volume 5 Tgggiggg and Tgggg for the
particular terminal being used. In addition, the FORTRAN compiler in *rrn

32 Introduction to HTS

April 197“

HTS Volume 1: HTS -- The System

accepts programs in free-format and the program in file *RORTEDIT may be
used to convert your statements from free-format to standard FORTRAN format.
(See Volume 2 for descriptions of *FTN and *FORTBDIT.)

If you wish, you can create a batch job from a terminal. If, for example
you have used the terminal to ggggg your program (that is, locate and
correct the errors), but you don't want to run the whole program on the
terminal, you can request a batch run. Or if you want a listing of your
program and would rather use the line printer (which is faster) instead of
the Selectric typewriter or CRT (Cathode Ray Tube), you should create a
batch job. Example 21 illustrates how this can be done.

§glg__§1; To create a temporary

P-11¢-111-ac:cu‘-in-—n-an-_-_-111111‘-Q-:11-Q

-

#$get -temp
#READY.
#$number
1_$$signon nyid ' oscar'
2_sesame

3_$$run *ftn par=source=p
_$$run -load
5_$$signoff
6_$unnumberlist -temp

VV\/Vl

9}

J=LAJl\.)-I

$SIGNON HYID ' OSCAR‘
SESAME
$RUN *FTN PAR=SOURCE=
SRUN -LOAD

> 5 $SIGNOFF
#END OP FILE Q

'0

file, you merely have to mention the
name. Thus, in this example -TBHP
is created implicitly in the $GET
statement.

3glg_1§; To run a batch job from a
terminal, copy a file, in this case
-TEMP, to *BATCH*. -TEHP must con-
tain a complete batch job including
$5IGNON and SSIGNOFF. A six-digit
receipt number is typed which must
be presented at the Production Con-trol Desk to collect the job (unlessit is delivered). If the same sign-
on is used for both the batch job
and the present terminal session,

#$copy -temp *batch* the batch job will be run as soon as
># * 'BATCH ASSIGNED RECEIPT NUMBER
603772
>*BATCH* 603772 RELEASED
#$signoff

possible after the signoff at the
terminal.

#0PF AT 12:34.50 02-21-73 Rule __;g; Note that when you
#ELAPSED TIME 2.632 HIN-
#CPU TIHE USED 1.516 SEC.

SSIGNOFF, file -TEMP is destroyed
since it is only a scratch file.

tCPU STOR VNI .15 PAGE-BIN) This, however, is no problem since
#IAIT STOR VHI .286 PAGE-HR.| *BATCH* already has all the informa-
#DRUM READS 51 | tion it needs from -TEMP. If you
#APPROX. COST OF THIS RUN IS $.37| expect to use this sequence of com-
#DISK STORAGE 15.9 PAGE-HR.) mands again and would like to have
#APPROX. REMAINING BALANCE: $100.(them saved, you should use a per-

__J manent file instead of a scratch
Example 21. file.

Introduction to HTS 33

i

>

l

—— ~,_' V
__-V _~_'- Yv-____.__ ._~_.__.________._._____

H28 Volune 1: nts —- the System

I11 that remains to be said is:

\ I

£0!-

seeon jmcx
$88! T0 COISULTARTS II R00! 333, LS3

and

2¢[
I-1,, _ _ f . :; ,1

31 Intzeéuctian to 515

lpril 1975

HTS Volume 1: HTS -- The System

April 1970

LIQBIIETQVEQZLEEZQEIQTS

A§§§§§_ZQ_2§§_§X§2§!

All access to HTS is controlled by the system itself from information
supplied to it by the CDPC administrative staff. See facilities and

Sesgiees 2; 2;! garnering and Qata Beeeessina Cents; fer lsadsnis Users
(February"1973) for information on how to apply to use HTS.

As its name implies, the Hichigan Terminal System was designed for access
from remote terminals, although the system also has extensive facilities for
processing batch jobs.

Batch and terminal access differ from each other as little as possible.
The command language is identical, and the same translators and utility
programs are available in both modes. Batch, however, is usually inappro-
priate for jobs requiring interaction between the user and the program.

Although some users need only batch access and others only terminal
access, the majority of users use both: terminals for program development
and debugging, and batch for bulk-data input and output, and production
running (for non-interactive programs).

Batch may be either local or remote. Local batch is submitted and
retrieved at the CDPC. The mechanics of this are described in the manuals
titled facilities and asrzisss 2f 15! Ceanntins and na1a_2re2§§§ins Cents;
£2: Asademis Users (February 1973) and lntreinstian to HTS Q !§! (January
1970); internal processing and options of interest to users submitting batch
jobs are described in the section "Batch Usage of HTS". At the remote batch
(often called Remote Job Entry, or BJB) station, batch card decks are read
and printed output is produced from information transmitted via telephone
lines to and from the Computing Center. The operational details of this
remote station are described in "Batch Usage of HTS".

Terminal access depends on the type of terminal being used. The
following terminal types are currently supported by HTS. (This is not an
exhaustive list; see "Conversational Usage of HTS" later in this volume.)

Selectric typewriter terminals
IBH 1050 (and 1056 Card Reader)
Hodel 33 Teletype
Hodel 35 Teletype
Westinghouse 1600 Cathode Ray Terminal

Any terminals compatible with the Selectric typewriter terminals or the
Teletype (such as IBH 2701 and DURA) are also supported. All terminals are
connected by means of the dial-up facilities of the telephone company. The

A Brief Overview of HTS 35

£15 Volume 1: HTS -- The Systel

April 197B

system is accessed through the BEHOREI Transmission Control Unit. Details
may be found in the appropriate sections of the "nEn0REX 1270 Device
Conlands" in Voluae R.

2lI.5..I.112!I_.l.¥12_Q!!1i2£1I

Batch users nay enter input data via punched cards and receive output via
printed paper or punched cards. hagnetic tapes may be used by both batch
and terminal users. Details on prograaming and usage of aagnetic tapes are
found in "the nagnetic Tape User's Guide" in Voluae H. §

User programs, system translators, and utility programs are all treated
identically; they are just programs. The command "SRUN xx" is used to
request execution of the object program contained in the file "xx". Thus,
the conaaud SRUI *rru requests HTS to execute the FORTRAN compiler, and SRUR
033 requests HTS to execute the user's object module in the file OBJ.

Lggigal yo Qgigs

Programs obtain data and produce output by leans of logical I/O units.
For example, a translator typically reads the source prograa from logical
I/O unit SCLRDS, produces listing output on logical unit SPRINT, and writes
the translated object program on SPUUCH. Hhen the user invokes a program
using the SRUN comaand, he specifies a §i1g;g;;Qgy1gg page (Fbnane) to be
attached to each of the logical units the program will use. For example,

SRUI *IlTPOR SCARDS=F!LA

attaches file FILL to SCARDS, so that IATFOR reads from FILL which hopefully
contains a source prograa. If a logical unit is not explicitly assigned, a
default is usually taken. File-or—device names can he:

file names FILL

device names >RDR1

pseudo-device names *50URCE* Specifies the input card deck
for batch, the keyboard for
terminals.

any of the above with PYL1(1O,15) Specifies all lines in FYLA
line nuuber ranges with line uuuhers in the

range 10 through 15.

36 A Brief Overviev of HTS '

HTS volume 1: HTS -- The System

April 1974

any of the above with F!LAD~TRIM Specifies no trimming of
modifiers trailing blanks.

or any combination of FYLA(10,15)+FYLB+C3~TRIH(1,1000)
the above
walled sznllsii
222222222222)

Details of the names that can be specified and their meanings are found in
the section "Files and Devices".

gggfix Charactegg

ihen a user is at a terminal, a special character is printed as the first
character of every line of output and as a first character on the line
before waiting for input. This character is called the pggig ghggactgg and
identifies the system component or program which is writing the output line
or waiting to read an input line. Each component of the system has adistinct character. For example, "#" in front of an input line means that
the user is in HTS command mode. when a program is running, the prefix
character is normally a blank. (The user may change this by calling the
subroutine SETPPX. See the subroutine description in Volume 3.) A completelist of system prefix characters is given later in the section "System
Command Language".

liggual Memory

One of the primary constraints facing programmers has been the amount of
addressable memory or main storage available. Addressable memory (sometimes
called core» storage, for historical reasons), as opposed to auxiliary
storage, refers to storage that can be addressed directly. In the past,
when a program required more than the maximum main storage available, the
"ping-pong" or "overlay" method was often used. Using this technique, the
programmer divided his program into self-contained sections, each small
enough to fit into main storage. Each section was loaded and executed
separately, and it was up to the programmer to control the order, loading,
and linking of the sections. This was no simple task.

The concept of virtual memory, implemented in the IBM 360/67, allows the
user more addressable memory than is physically available. In effect, the
system is doing the "ping-ponging" for the programmer and he does not haveto worry about any of the details. The system breaks the program into
sections called pages, "paging" in sections when they are needed and
"paging" them out when they are no longer needed.

Virtual memory is many times larger than actual physical memory and is
divided into segments. A segment is 256 pages and a page is H096 bytes

A Brief Overview of HTS 37

HTS Volume 1: HTS —— The System

April 1978

(characters). There are 1,048,576 bytes in one segment. Bach user may use
several (currently up to four) segments, besides the three segments which
are shared by all users. These three segments contain the re-entrant
routines that are commonly used, such as the resident system, HTS, and the
I/0 routines. Great economy is achieved by keeping only one copy of each of
these routines in memory instead of one for each user.

The primary advantage of the virtual memory concept is apparente-each
user has access to a very large address space. The system insures that when
a page is needed, it is brought into main storage if it is not already
present. In order to utilize the system efficiently, it is desirable to
minilize the number of different pages needed in rapid succession. The
following programming suggestions can reduce the amount of paging required.

In FORTRAN, when indexing a large multi-dimensional array which requires
more than one page, it is advisable to vary the left—most subscript most
rapidly.‘ This causes the array elements to be accessed in the order that
YORTRAH stores them.

when searching a table, a linear search through one page is more
efficient than a random search through several pages. when a table is
larger than a page and has many pointers, it is better to use an index table
to get directly to the proper page rather than to follow all the pointers in
succession.

BILQQQEAEDJAEEQLEE

In order to use the computer, one must first get the attention of HTS and
identify himself through the SSIGNOH command. Once he has done this and HTS

has agreed that he is a legitimate user, the IBM 360/67 is at his disposal.

In this section, the commands are listed in their most common form
followed by a brief explanation of their function. Not every possible
option and parameter is mentioned. A detailed explanation of the commands
may be found in the section "System Command Language".

As stated earlier, command lines start with a "8" followed immediately by
the command name or the command abbreviation. The "8" is required for batch
runs but not necessarily for conversational runs. In a conversational
interaction with HTS, the "S" for a command is not needed if (1) there is no
line number at the front of the input line, and (2) automatic line numbering
is off or there is no currently active file in which to place data lines,
Under these conditions, the command line may start with the command name or
the command abbreviation. If these conditions do not hold, then the leading
"S" is required on all HTS commands. Note that these restrictions
essentially say that HTS attempts to interpret an.input line as a command
line, even without a leading "S", if it is not prepared to accept a data
line from the user and if the user is in conversational mode.

38 1 Brief Overviev of HTS

April 197“

A- §l22al_§22ir2l

$SIGNON yyyy

$SIGNOFF

$SET

SSINK xx

$SOURCE xx

B- 2r2sra2_§2n2r2l

$RUN xx

$LOAD xx

$START

$RESTART

$UNLOAD

HTS Volume 1: HTS -- The System

tells HTS that the user with ID "yyyy" wants to use
the machine. The password associated with the ID
must be entered either with the $SIGNON command or
on the following line.

signs the user off the machine and gives him a
summary of the cost of the run.

is used to set various switches and variables in
the system. These control such functions as set-
ting the user's password, automatic errordumping,
the line number separator character, upper- and
lower-case conversion, implicit concatenation, plus
a few more esoteric switches.

makes the pseudo-device *SINK* refer to the file or
device "xx" instead of the printer (in batch mode)
or the terminal on which the user is typing (in
conversational mode).

makes the pseudo-device *SOURCE* refer to the file
or device "xx" instead of the card reader (in batch
mode) or the terminal on which the user is typing
(in conversational mode).

tells HTS to load and execute the program in thefile "xx". These files can be public, such as *FTN
or *STATUS, or private, such as HYPROGR or -LOAD.

tells HTS to load but not execute the program in
the file "xx". The program can then be displayed
and/or altered. Execution can be started by the
SSTART command.

starts the execution of a program which has already
been loaded by a SLOAD command.

restarts the program at the point of the lastinterrupt or at a specified location. SSTART and
SRESTART are synonymous and may be used
interchangeably.

releases storage and devices from the previous
SLOAD or $RUN. It is useful when the execution of
a program did not terminate normally.

A Brief Overview of HTS 39

i

515 Volume 1: HIS -- The system

np=11 191a

¢v l2r.nehnssins

SDEBUG xx tells HTS to put the Symbolic Debugging system
_ (SDS) in control. SDS has its own set of commands

which allovs- the user to interactively debug his
program. A listing of the important debug commands
is given below.

SSDS returns control to SD5 from HTS.

SKLTER xx yy . allots the user to change the contents of a general
register, a floating point register, or a specified
location in virtual memory. "yy" becomes the
contents of "xx".

IHODIPY is a synonym for SALTER.

$DISPLA! xx displays the contents of "xx", where "xx" may be a
general register, floating-point register, or a
specitied region of virtual memory.

SHBXADD xxn yy prints out the hexadecimal sun of the hexadecimal
numbers "xx" and "yy".

SHEISUB xx yy prints out the hexadecimal ditference between the
hexadecimal numbers "xx" and "yy".

$00!? prints out the contents of the general registers,
floating-point registers, and all the virtual
memory locations associated with the current job.

SERRORDUBP provides a dunp of all the registers and storage if
the exeution of a program terminates abnormally.
This command is effective in batch mode only.
(This is the same as SSBT ERRORDUHP=ON.)

9» !il£.E££iIil&

SCRBAQB xx creates a file named "xx". If it is not a
telporary file (that is, if its name does not begin
with a minus sign), it is retained until the
create: destroys_ it. "xx" becomes the currently
active~file.

IHISTROI rx destroys the file named "xx" and returns the space
on disk to the pool of available storage.

1

KG I Heist Gservieu of BTS '

n

HTS Volume 1: HTS -- The System

April 197"

$BMPTY xx empties the contents of the file "xx" but retains
its identity. Thus the file can be reused later.

SCOPY xx T0 yy copies the contents of the file "xx" into the file
"yy". Unless specified otherwise, the lines are
numbered sequentially from 1 as they are entered in
the new file regardless of their numbers in the old
file. The old file is retained unaltered.

$LIST xx lists (with line numbers) the contents of file "xx"
on the line printer (batch mode) or the terminal
(conversational mode).

SGET xx makes "xx" the currently active file. If "xx" is a
private file, it must have been created previously.If "xx" is a temporary file and does not already
exist, it will be implicitly created by this
statement.

SRELBASE xx releases the currently active file, dismounts a
magnetic tape "xx", or releases a HASP pseudo-
device "xx".

$NUMBER tells HTS to automatically number the lines that
follow as they are put in the currently activefile. Unless otherwise specified, numbering starts
with 1 and increments by 1.

SUNNUMBER tells HTS to stop the automatic numbering which one
presumably requested earlier by a SNUHBER command.

$EDIT xx tells HTS to put the EDITOR in charge. Like SDS,
the EDITOR has its own set of commands which allow
the editing of the file "xx". A listing of the
EDITOR commands is given below.

SPERHIT xx changes the access code of file "xx" to either
allow or not allow other users access to file "xx".

3- !i§Q§ll§£2Q!§

SCOMHENT allows insertion of comments on output to the
terminal or printer.

$CALC exp evaluates the arithmetic expression "exp" and
prints the result.

SCORTROL xx yy sends the control command "yy" to the pseudo-device
"xx".

A Brief Overview of HTS 01

HTS Volume 1: HTS —— The Systea

April 197“

SINQUIRE xx displays the current status of the batch job, an
execution queue, a print queue, a punch queue,
plotting jobs, OS batch jobs, UHUPS jobs, or other
system activity.

SHOUIT xx mounts the magnetic tape or MERIT network connec-
tion "xx".

SRET xx enters into the UERIT communications network system
for the connection "xx".

IE3.LI!£.IILI.£2lIQ£_§Q§L!2.Ll!§!L§!

After the user has entered the command SEDIT xx, HTS turns control over
to the HTS line file editor which is ready to accept commands concerning the
editing of the file named "xx".

A user editing a file may edit either by line number or by context.

The editor maintains a current line pointer which is initially set to the
first line of the file. Commands that require line number specification may
refer to the line pointer or may explicitly mention the appropriate lines.

This section gives a brief description of the command language understood
by the file editor. For the complete description of the line file editor,
see the "Edit node" description in the "System Command Language" section.

A - §szu"ndn..1hish=h2!e theeemsekeintsrs

LII! n causes line "n" to become the current line.
SCAR scans a specified area of the file for a particular

string and sets the line pointer to the line
containing the string.

+n or n moves the line pointer forward "n" lines.
-n ' moves the line pointer backward "n" lines.

B- muma!hm_Qa maLm
ALTER allows the user to replace one string of characters

with another in a specified line.

H2 I Brief overview of nrs

April 191a

BLANK

HTS Volume 1: HTS -- The Systel

allows the user to blank out parts of a line
selectively.

OVERLAY allows the user to replace selected characters in

i SHIFT

the old line.

shifts characters right or left within a line and
inserts blanks into vacated positions.

¢- sennsndelih;§h_gh;nssf§n;ire_Liee§

COPY copies specified lines (without deleting -then) to
another region of the sane file.

DELETE deletes specified lines from the file.
INSERT allows the user to insert new lines into the file.
REPLACE causes the lines in the specified range to be

replaced by the given string.

9- §Q!!2Q§§:§Q:§§L=Q!§WQ§=§QlZ H°Q§

HTS

STOP

returns control to HTS. To return to the editor,
use the EDIT command.

causes the file editor to return control to HTS.

B- §2n!enQ§_!hish_A;§egi.§ditasecentre;

EDIT xx tells the editor that a new file named "xx" is now

SET

to be edited.

is used to change the values of a number of
switches which govern the editing process.

REGION /nane allows the user to nane subsections of a file with
a region nane "/name", for subsequent reference.

XEC Snane allows the user to store a sequence of editor
conlands as a program naned "$nane".

A Brief Overview of HTS B3

\

i

i

I

i

HTS Volume 1: HTS -- The System

April 1978

F- u
CHECKPOINT tells the editor to keep a copy of the file as itis at the tine of this call so that it nay berestored later, if necessary.

RESTORE is used in conjunction with CHBCKPOINT and tellsthe editor to restore the specified lines (or the
whole file) to their condition at the time of thelast CHBCKPOINT command.

EXPLAIN asks the editor to explain its entire operation, aparticular comnand, or an error connent.
PRINT requests the editor to print out certain parts ofthe file.
RBNUHBER conaands the editor to renumber the file, where the

user can specify the starting number and increment.
COLUMN specifies the column range that can be referenced

by the colmands ALTER, HATCH, SCAN, and SHIFT.Initially the range is fro: 1 to 255.

D§EE§-§Ql1A!2..LA!l§!L§§

The Symbolic Debugging System (SDS) is a conversational program checkoutfacility which aids in the process of debugging programs from a remoteterminal. The HTS connand SDBBUG xx has the' sale format as the SRUNconland. It tells HTS to load the program in file "xx" and then givecontrol to SDS. Using the SDS command language, the programmer initiatesexecution of his program and monitors its flow by specifying breakpoints
where instructions and data may be modified and displayed.

The progranmer nay refer to locations in his program synbolically, byrelative address, or by absolute (virtual or loaded) address. Symbolicreferencing can be used only with those language processors which generate asymbol table with the object programs they produce. (Currently, thisincludes the G—1evel 360 asselbler and FORTRAN-G.) If the user hasrequested that SDS display the contents of a particular location-—using anyof the above three ways to nale the location--SDS consults the symbol table,if there is one, to get the proper type and length ofl the location. Ifthere is no symbol table, the contents are printed in hexadecinal in unitsof I bytes.
'

This section gives a brief description of the more comnon conlandsavailable. For a complete description of all the debug commands, see the"Debug node" description in the "System Command Language" section.

H0 A Brief Overview of HTS

April 197B

HTS volume 1: HTS -- The System

M §2.ttins.sn.<.1 .Cls§1);ins.E£s.;h22i.n;§

AT xx

END

BREAK XX

CLEAN

RESTORE xx

B. gggtrol ggmmggdg

RUN

CONTINUE

GOTO XX

STEP n

HTS

SDS

STOP

inserts a breakpoint in location "xx" of the
program being debugged. Ihen execution reaches
location "xx", the SDS commands following the AT
command are executed.

marks the end of a sequence of commands started by
an AT command.

inserts a breakpoint at location "xx". when the
program being debugged attempts to execute the
instruction at location "xx", control is given to
SDS which then requests further commands from the
user.

deletes all breakpoints set by the AT and/or BREAK
commands.

deletes the breakpoint "xx" or the most recently
created breakpoint if "xx" is not specified.

transfers control to the entry point of the program
being debugged, thus starting execution.

causes the program being debugged to continue
execution after a breakpoint or an interrupt has
occurred.

transfers control to location "xx" of the program
being debugged.

allows the user to step through the next n
instructions.
returns control to HTS. To return to SDS, use the
HTS SSDS command.

transfers control to SDS which then requests more
commands. This command is used with the AT
command.

stops SDS processing, unloads the user's program,
and returns control to HTS.

A Brief Overview of HTS H5

Volume 1: HTS -- The Systea

April 197R

1hs-Ls:nsl.Rshnssins.s;2unns1§

MODIFY xx yy changes the contents of location "xx" to containI IY! -

ATTRIBUTB yy prints out the attributes, such as length and
address, of the symbol "yy".

DISPLAY xx prints the contents of location "xx".

BBIDISPLA! xx prints the contents of location "xx" in
hexadecimal.

SCAD xx yy scans through the region "xx" for the value "yy".If the search is successful, the location where it
was found is printed.

SYMBOL xx prints the symbolic naae of location "xx".

DUMP prints a symbolic dunp of the user's prograa.

§§$£iBS_§2§..2!Ié£§$§£§

SET allows the user to set various control paraaeters
in SDS. These include the default length, scale
and type attributes, the processing of program and
attention interrupts and the processing of dynam-
ically loaded sections.

RESET allows the user to reset the SDS control
parameters.

CSECT xx lakes control section "xx" the current section.

USING is used when the program being debugged eaploys
DSBCTB. The command provides addressability for
DS BCTS .

niasellsnssns

HIP produces a nap of all the sections in the prograa
which were processed by SDS.

I Brief Overview of HTS

~

HTS Volume 1: HTS -- The System

April 197R

é§!§Qé§§_!BA!§éé12Q§

HTS provides a wide variety of translators for assorted programming
languages. This section gives a brief description of the languages
available and mentions which public files contain the appropriate transla-
tor. Volume 2 describes all public files containing the language transla-
tors. These descriptions should be checked before actual usage is
attempted.

£resedn;§:2rien§§d_Lansuasss

ALGOL is a procedure-oriented language useful for numerical calculations.
The processor is located in the public file *ALGOL.

ALGOLN is a revised version of ALGOL. This is a revision of Stanford
University's ALGOL H which was done by the University of Newcastle.
This processor is in the file *ALGOLH.

COBOL (ggmmon gusiness griented Language) is a programming language
suitable for commercial data processing work. The file *COBOL
contains a version of the IBM ANS COBOL compiler.

FORTRAN Iv (gggmula Translator) is a language used for solving problems
which can be stated in mathematical terms. The IBH G-level FORTRAN
compiler is available in the public file *FTN. The IBB H-level
FORTRAN compiler--which is slower and more expensive than the
G-level compiler, but produces shorter object programs and better
error comments--can be found in the file *FORTRANH.

PL/I (grogramming Language 1) is a programming language which is suitable
for both scientific and business computations. The compiler is
available in the file *PL1.

SPL (gtudent grogramming Language) is primarily a subset of PL/I and is
useful for students in introductory courses. The compiler is
available in the file *SPL.

NATFOR (gggerloo ZQRTRAN) is a load-and-go (compile-and-execute) FORTRAN
compiler useful for running short debugging jobs in the FORTRAN
language. The compiler has excellent compile-time and run-time
diagnostics, but programs run under IATFOR execute more slowly than
those run from object decks produced by the FORTRAN compiler. If
the user intends to execute the program often, he is advised to
debug the program using NATFOR and, after it is debugged, to obtain
an object deck from *FTN. The IATFOR compiler is available in the
files *HATFOR and *SIAT. (The version in *SIAT is for shorter
programs.)

A Brief Overview of HTS 47

—— ———————-.pw—i— *—— —— ~————————~ —— -7 _

HTS Volume 1: HTS -- The System

April 1978

IPL is a language useful for writing compilers and can be found in thefile *XPL.

L§§2lDl2£§ .

IBM 360 Assembler Language sis a low-level (one step removed from machine
language) symbolic language. The IBM G—level Assembler is available
in the file *AShG.

IBM 1130 and 1800 Assembler Language programs may be assembled by the
assembler located in the file *1130ASH.

PDP-x Assembler Language facilities are available for those programmers
desiring object decks for use with Digital Equipment corporation
PDP-1, PDP-5, PD?-7, PDP-8, or PDP—9 machines. The file *1ASR has
the assembler for PDP—1 machines; file *8ASR has the assembler for
PDP-5 and PDP-8 machines: the file *9ASR has the assembler for PDP-7
and PDP-9 machines.

PL360 is an ALGOL-like translator which gives the source language pro-
grammer much of the power and flexibility of writing assembly code.
The translator is available in the file *PL360.

STASS 360 (§tudent Qggembler QQQ) is an assembler especially tailored for
student use. It provides fast batch assembly and execution of small
jobs with extensive error-checking at both assembly and execution
time. This assembler can be found in the file *STASS360.

ln;.era§ri!.s..Lansmass§

APL (A Erogramming Language) is a conversational programming language
which is best suited for problems requiring extensive nmanipulation
of a small amount of data. It can be run from Selectric typewriter
terminals and requires a special type ball for the terminal. APL is
available in the file *APL.

BASIC is an easy-to-use interactive language which operates in its own
subsystem. Iithin BASIC one can do numerical calculations as well
as simple HTS-like functions such as file manipulations. The BASIC
system is located in the file *BASIC. A full description of BASIC
is given in Volume 10.

PIL (gittsburgh lnterpretive Language) is an interactive, procedure-
oriented language particularly designed for terminal use. The
interpreter is available in the file *PIL. A newer version of PIL
is documented in HTS Volume 12 and is located in the file CCAP:PIL2.

B8 A Brief Overview of HTS

MTS Volume 1: HTS -- The System

April 1973

REDUCE is designed for general algebraic computations of interest to
physicists and engineers. Its capabilities include: expansion and
ordering of rational functions of polynomials, symbolic differentia-
tion, reduction of quotients of polynomials by cancellation of
common factors, calculation of symbolic determinants, and calcula-
tions of interest to high-energy physicists, including spin 1/2 and
spin 1 algebra. The program is written in LISP and may be accessed
by SSOURCE *REDUCE2.

LisizrendrétrinazQceeessingriansuasss

LISP is a list—processing language available in the file *LISP.

SLIP (éylmetric List grocessor) provides list—processing capabilities.
HTS has provided these capabilities in the form of a library of
FORTRAN—callable subroutines. The library is in *SLIP and must be
concatenated to the object modules which contain the subroutine
calls.

SNAP is an English-like language designed for those persons who perform
text-processing tasks but desire minimal computer knowledge. The
processor for SNAP is available in the file *SNAP.

SNOBOLR (gtrigg Qriented Symgglic Languages) is a symbol- (string-) manipu-
lation language which is useful in language translation, program
compilation, and combinatorial problems. A compiler for SNOBOLH is
available in the file *SNOBOL. The blocks version of SNOBOLH has
additional features, making it especially good for text layouts.
This version may be found in the file *SNOBOLBB. A faster version
of SNOBOLB may be found in *SPITBOL.

UHIST (gniversity of gichigan lnterpretive §tring Translator) is an
interactive text-processing language. It interprets strings of
characters accepted one-at-a—time from the input device and prints
the value of each string after processing. The translator can be
found in the file *UHIST.

*1 is an L-6 type language for processing list structures at the
assembly language level. It is implemented in the form of macros
callable from the 360 Assembler Language found in *ASHG. The macros
are in the file *1. For details on the usage of this library, see
the *1 public file description in Volume 2.

§ianlati2n_Lan2uas2§

CSMP (gontinuous §ystem godeling grogram) is a simulation language
specially designed for those simulation models which are expressed

A Brief Overview of HTS H9

:>~$%1

HTS Voluae 1: HTS -- The System

April 191a

as differential equations or as equivalent analog block diagrams.
The translator is in the file CClP:CSUPTRAN, the executor is in the
file CC1P:CsnPEXBC, and the library to be concatenated at run time
is in the file CCAP:CSHPLIB.

GPSS (general gurpose §imulation §ystem) is a program for conducting
discrete event evaluations of systems, methods, processes, and
designs. The main feature of GPSS is a simple flow chart language
for describing the problem or system to be simulated. Once this
description is read into GPSS, the program automatically performs
the simulation including the gathering of statistics. The results
may be printed out automatically or under control of the user, who
may wish to present then in a graphical format. The program is
available in the file CCAP:GPSS.

SIHSCRIPT-II is a general eprograaming language that has features of
particular interest for discrete event simulation problems; however,
the language is rich enough to be used also in non-simulation
problems. The compiler is available in the file CCAP:SIH2. The
library to be concatenated at run time is in the file CCAP:SIHLIB.

5aii§ii2al_£r2§raa.£asLassa

SPSS (gtatistical gackage for the §ocial gciences) is an integrated set
of programs for the description and statistical analysis of social
science data. SPSS contains routines for the preparation and
editing of data, for the calculation and display of frequency and
joint frequency distributions, as well as a large nuaber of
parametric and non-parametric statistical procedures often used by
social scientists. The program is available in the file ¢CAP:sPSS.
Manuals describing its use are available at the USU Bookstore.

COISTAT (gglsole §1}1istics) is a console—oriented (user prompting) statist-
ical computing program. It sets up a data structure which is common
to many statistical problems and provides a set of of subroutines to
perfora statistical analyses on the data. The program is available
in the file CCAP:COIST1T. Documentation is available at the USU
Bookstore.

OSIRIS (Qrganized §et of Integrated goutines for Investigation with §tatis-
tics) is a set of programs for the analysis of social science
(especially survey) data. Data management includes generation of
specially formatted files, and corrections and transformations of
these files. The statistical part includes multivariate and non-
paranetric analysis programs. Manuals describing its use are
available in the bookstore. -

SO A Brief Overview of urs

HTS Volume 1: HTS -- The System

April 1970

ln£g;!asign_§e;§is;sl

BIRS (gasic lnformation getrieval gystem) is a set of programs for the
creation of data bases and for the retrieval and reporting of
information extracted according to the user's specification. These
reports may take the form of printed indexes and catalogs. A search
language permits file queries using standard logical operators. The
program is available in the file CCAP:BIRS. Documentation is
available at the HSU Bookstore.

§§E!l§§-E£L§§

HTS provides a number of public files which can best be described as
service or information files. The most useful of these are described in
this section.

T

lnierusii2n_a22ui-2_2sr&isn l2_!2n22slar

$PUN *STATUS prints out all the statistics of the user SIGNON ID given
on the $SIGNON command. The statistics include such items as the
amount of money spent and remaining, the disk storage currently
used and remaining, the number of terminal and batch jobs run, and
so on.

SRUN *CATALOG gives a listing of all the user's files currently defined.

SRUN *FILESNIFF allows the user to get detailed information about the
status of a particular private file.

lnfernaii2n;a2gni:Asii;i£ie§_22:;hs:£2222ti29-and-2aia_££2s§§§ins_§en&ss

$COPY HELP:DELIVERI lists a file of all the CDPC delivery codes.

$COPY HELP:DIRECTORY lists a file of references to other information
sources organized by subject.

$COPY HELP:HELP lists a file of names of people who are willing and able
to provide help in the use of some (or 'all) aspects of the
computing facilities.

$COPY HELP:RATES lists a file of charges for various CDPC services.

A Brief overview of HTS 51

\

\

\

ss~34’? . >

EQS Volume 1: HTS - the systel

April 197$

$60?! KBLP:HOUn5 1ists- a file sontaining the-schedule of various CDPC
services.

$80?! HEL2:lES lists a tile of current news from the GPC. Entries are
listed in reverse ckronuloqical order.

Two programs exist which are wsaml in fornattinq and eéitiug documents.
Th0 pragralzin the tile *P@ is good for short doctnnnts. T!XT360, good tor
Iowgar documents, has savarsl conpononts, sack residing in the separate
files *PRE‘SCllI, *I"l!AIlI~'!', *BLB&IlI, *PLEOU'1', *POS'£PR and; *PRIN~'1’. '

Imtorlatian an these proqrals is found in Volume 51

52 1 ltit cwusview at 515

April 191a

HTS Volume 1: HTS -- The System

LEEBQQQQEEQE ,_!2_2§§-§2l'!9§

The context editor is a useful tool for either changing the contents of afile or searching a file for certain items. Entire lines can be inserted,
deleted, or replaced, or changes can be made to only part of a line.

In the following discussion, assume that the file PROG is a line file
which contains a rather botched program. The examples are given exactly as
they would appear on a terminal. Input from the user is in lower case;
output from the editor is in upper case.

To enter edit mode from HTS command mode, use the EDIT command specifying
the file to be edited as the parameter:

tedit prog
0
0

Note the change in prefix characters above. Before entering the EDIT
command, the prefix character was "#" indicating that we were in HTS command
mode. Now the prefix character is ":" indicating that we are now in edit
mode and communicating with the editor.

Editor commands begin with an edit command name. For example, to print
the first line of the file:

print
1 DIMENSION DATA(50)

The "1" at the front of the line is the line number of that line in thefile.
Modifiers may be appended to the command name to change the behavior of

the command. For example, to print the first line without the line number,
append the "BNL" modifier (all modifiers start with an "D"):

printmnl
DIMENSION DATA(5O)

Command names can be abbreviated. In all cases, the first three letters
are enough. Sometimes only one or two letters is enough. For example:

‘U

-1

DIMENSION DATA(50)

Introduction to the Editor 53

HIS Volume 1: HTS -— The System

April 197i

Unless one is certain that a given abbreviation represents the command
wanted, rather than another command, it is vise to use the full name. All
further examples use the full command name.

The first parameter on any edit command that refers to the file specifies
what line or lines of the file the command is to work on. If this parameter
is omitted, only the current line is used (except for two commands which
search the file: SCAN and HATCH). Thus, in the above PRINT example, the
current line (which was initially set to be the first line of the file) was
used. To specify a different line, include the line number, for example:

:print 3
: 3 REAL BEAN

One nuaber, as above, means a single line. To specify a range of lines,
give the beginning and ending line numbers of the range:

Three special symbols can be used in place of a line number:

print 3 5

U1-FUD

BELL HEAR
IRITE (6,100)

100 FOBHlT(' ENTER NUMBER OF DAT! POINTS‘

*L represents the number of the last line in the file
*F represents the number of the first line in the file
* represents the number of the current line

For example to print the last line specify:

IIOIO.

'5

To perform an operation on all lines of the file, the symbol */FILE" nay be

rint *1
28 END

used to represent the line number range that covers the entire file.

In order to develop eramples of editor usage, a copy of the original file
is needed:

5B Introduction to the Editor

April 1974

print /file
. 1

m\lO\gn4=hJN

: 9 102
10

101

HTS Volume 1: HTS -- The System

DIHENSION DLTA(50)
COHHON DlTA,N
REAL BEAN
WRITE (6,100)

00 FORHAT(' ENTER NUMBER OF DATA POINTS‘)
READ (5,101) N

FORHAT(13
WRITE (6,102)
FOR.HLT(' ENTER DATA POINTS‘)
READ (5,103)(DlTA(I),I=1,N)

11 103 FORHAT(6F3.2)
12
13

. 10
. 15 10" FORlAT(' HElN=',F8.B,' STD='F8.B)

16
17
18

. 19
20
21
22
23 10

. 24
' 25

26
27
28

CALL ClLC(HElN,STD)
WRITE (6,103) NEA
WRITE (6,100) HEAN,S

END
SUBROUTINE CLLC(HELN,STD)
DIMENSION DATA(50)
COHHON DATA,N
REAL lElN,HEAN2
DO 10 I=1,NI = X+DlTA(I)
Y = Y+DlTA(I)*2
BEAN = I/N
HEAN2 = Y/N-HEAN**2
STD = $QRT(HEAN2)
RETURN
END

The remainder of this section is an explanation of how to fix up the file
(or at least improve its condition).

There are two basic methods by which one can use the editor. One methodis by line number. In this method one needs a listing of the file with theline numbers, and then the editing is done by explicitly specifying the line
number. Since we have the listing of the file, this is the method we usedin this introduction. The other method is by context. In that method one
uses the SCAN and MATCH commands which search the file for the lines to be
changed. That method is often used, for example, when one discovers that he
has used both the name BEAN and the name AVER for the same thing, and he
wants to go through the file change all occurrences of AVER to BEAN.

DELETE, INSERT and REPLACE are commands that work on an entire line as
opposed to altering part of a line.

The DELETE command deletes either a single line or a range of lines. Itis used in the same manner as the PRINT command. In the file FROG, notethat line 13 is extraneous and should be deleted. '

delete 13

Introduction to the Editor 55

HTS Volume 1: HTS -~ The Systea

April 1974

However, it is very easy to think "13" while actually typing "23", and
consequently, the wrong line is deleted. A safer procedure would be to set
the value of the current line to the line nunber of the line to be deleted.
The editor then prints the current line. After checking that it is correct,
the DELETE comnand is given without a parameter to delete the current line.

:line 13

asclno

DI

ml

(Al

wRITB (6,100) NEA
elete

The INSERT command is used to insert a line or group of lines in between
existing lines of the file. INSERT never replaces or moves existing lines.If there is no "line number room" to insert another line, because the two
existing line numbers differ by only .001, the comment "N0 ROON FOR FURTHER
IISERTION" is given and it is up to the user to renumber the file or aove
lines around to open up space.

There are two forms for the INSERT command. To insert only one line,
specify it as a string on the conaand. To specify a string, give a
delimiter, followed by the characters of the string, and terminate with the
same delimiter. The delimiter cannot be a letter or a digit and cannot
appear in the characters of the string itself. For purposes of this
introduction "z", ":", and "Q" are used because they are legal, because they
do not usually appear in FORTRAN programs, and because at least one of then
is a convenient lower-case character on most terminals. (On Teletypes, ":"
and ";" are lower case; on Selectric typewriter terminals, "Q" is lower
case.) Other characters are legal; see the "Edit Mode" description for
details.

The line nunber specified in the INSERT connand specifies the line after
which the new line or lines are to he inserted. If no number is specified,
the new line or lines are inserted between the current line (as specified by
the last LINE command) and the following line. Thus, to insert a "G0 T0 1"
statement before the END statement of the lain program, specify:

:insert 15 go to 1:
: 15.25 G0 TO 1

or use the safer procedure and set the current line to 15, check to see thatit is the the right line, and then insert after line 15:

:line 15

onS.no

Fa

J
LB

104 PORHhT(' HEAN=',F8.l%,' STD=',F8.ll)
nsert Q go to 10

15.25 G0 T0 1

Note that in both cases the insertion is verified by printing the new line
contents. Although this verification can be suppressed, it is strongly
suggested that it be left on ggg the line be inspected to verify that the
correct insertion was made.

56 Introduction to the Editor

April 1970

HTS Volume 1: HTS -- The System

To insert more than one line use the second form of the INSERT command.
By leaving off the string parameter when specifying an INSERT command, the
editor enters "fast-insert" mode in which the editor reads lines from the
terminal to be inserted into the file. To leave "fast-insert" mode, enter a
null line or an end—of-file condition. Thus, to initialize the variables X
and Y in the subroutine CALC in our file, specify:

on0°4QQ‘)no

Or else specify

Q“

insert 20X:Y:

line 20
20

nsertX:

Ha

CO IO
OO

»w-0

w

cao

OI
cc:

REAL HEAN,MEAN2

Note that the editor switches the prefix character to a "?" to indicate
that all lines entered are going into the file. It is a common mistake to
enter "fast—insert" mode, enter the lines wanted, forget about leaving
"fast-insert" mode, and then to enter an edit command which is promptly
inserted into the file. Iatch the prefix character!

The REPLACE command replaces one line with a new line which is supplied
in one of two forms. The first is exactly like the first form of the INSERT
command, where the new line is specified as a string. Thus, line 7 is fixed
by replacing the whole line. (This is pg; the recommended way to fix it --later a better method is demonstrated.)

replace 7 # 101 format (i3)#
7

Or else:
O
0 line 7
: 7

101 FORHAT(I3)

101 FORHAT(I3
replace , 101 format(i3);

. 7 101 FORHAT(I3)

For the second form of the REPLACE command, if the new line is not specified
as a string on the command, the editor prints the old contents of the line
and then prompts for the new contents:

U

?

replace 7
101 FORHAT(I3
101 format(i3)

Introduction to the Editor 57

his Volume 1: HTS -- The System

April 197R

1 101 ronnnr(13)

Now consider the commands that change parts of lines. The most important
is the CHARGE command. The CHANGE command takes two strings as parameters.It searches the line (or range of lines) specified for the first string and
changes the first occurrence found to the second string. The two strings
are specified using three deliniters as follows:

delimiter string1 delimiter string2 delimiter
Thus, in the file PROG, to change the incorrect variable specified in line
16 from S to STD, specify:

omnomu

0

i
5

hange 14 tststdt
WRITE (6,10B) !EAN,STD

Or else:

:line 1R '

: 14 WRITE (6,10) nEhN,S
zchange fststdt
: 10 WRITE (6,104) HEAN,STD

By making the second string a null string (no characters in it), it is
possible to delete the characters specified by the first string. Thus, to
delete the extraneous period in line 9, specify:

:line 9
: 9 102 FOR.HAT(' ENTER DATA POINTS‘)
:change 1.##
: 9 103 FOBHlT(' ENTER DATA POINTS‘)

Since the second string can be of different length than the first,
missing characters can be added to the line by specifying in the first
string enough characters to identify where the missing characters are to go,
and then make the second string the sane as the first plus the missing
characters. Thus, going back to line 7, to add a right parenthesis after
the 3, specify:

:line 7
: 7 101 FORuAT(i3
zchange l383)0
: 7 101 FORHhT(I3)

watch carefully to lake sure the change made was the change intended. It is
very easy to not specify enough characters so that the first occurrence of
the characters is not those actually changed. Consider line 11:

line 11
11 103 FORHLT(6F3.2)

58 Introduction to the Editor

April 1974

HTS Volume 1: HTS -— The System

The format field width should be 5, not 3. If the change command is:
change #3#5#

. 11 105 FORHAT(6F3.2)

The statement label is changed instead. The following command puts it back.

zchange #5#3#
: 11 103 FORHAT(6F3.2)

Nov if one more character (either the one to the left or the right of the
"3") is specified, there are enough characters to identify the correct "3".

change l3.#5.#
11 103 FORMAT(6F5.2)

Another way to solve this problem is to restrict the part of the line
which the CHANGE command searches. The CHANGE command only searches between
two column pointers which are normally set to column 1 and 255. We could
use the COLUMN command to set the left column pointer to column 16, make the
change, and then set it back:

column 16
:change #3#5#
: 11
column

103 FORHAT(6F5.2)

Other commands are also affected by the column pointer; see the "Edit Mode"
description for details.

If all occurrences of the first string are to be changed to the second
string throughout the line or lines specified, the "DA" modifier can be
used. Thus, to change the iteration variable I to J in the READ statement
of line 10, specify:

line 10
: 10
zchangeaa :i:j;
: 10
: 10

Note that every replacement is verified.

READ (5,103)(DATA(I),I=1,N)

READ (5,103)(DATA(J),I=1,N)
READ (5,103)(DATA(J),J=1,N)

If the same change is to be made several times, the strings need not bespecified for the second and succeeding times. If the strings are notspecified on a CHANGE command, the last specified strings are /used. Thus,after changing I to J in the above example, to change I to J.in the D0 loopof the CALC subroutine, simply specify the command and the line number
range

Introduction to the Editor 59

HTS Volume 1: HTS -- The System

changeda 21 23
21
22
23 10

DO 10 J=1,N
X = X+DlTl(J)
Y = Y+DlTl(J)*2

April 1975

The OVERLAY command is often used to add missing itens such as statement
labels to a line. The OVERLAY comnand is specified exactly like the REPLACE
command, but instead of replacing the line with the string given, it instead
overlays the line with the non-blank characters of the string. Thus, to
enter the nissing statement label "1" on line M, specify:

llIIIOll

Gr else use the second form and be prompted for the overlay:

anqjmoan

i

I:

-I

line Q

H

verlay # 1 Q

' B 1

O

overlay B

warms (6,100)

WRITE (6,100)

IRITE (6,100)

WRITE (6,100)

The editor is often used to search for items in a file, as well as to
change the file. Two commands, SCAN and HATCH, are used for searching.
Both take a string to search as a parameter.

The SCAR command searches for the first occurrence of the specified
string anywhere in the line range specified. If no line or line range is
specified, it starts at the current line and searches to the end of the
file. If it finds the string, it sets the current line to the line where it
found the string:

caeaam

LN

scan /file Omeant
REAL BEAN

To find all occurrences of a string, append the "Bl" modifier to the command
nane:

:scania /file imean2t
' 20

25
26

REAL HBAN,HElN2
HBRNZ = I/N-HBlI**2
STD = SQRT(HELN2I

The BATCH command is the same as the SCAN command except that instead of
searching for the string anywhere in the line, it requires the first
character to match at the left column pointer position, the second character
at the next column position, and so on. In other words, the searching

60 Introduction to the Editor l

April 197“

HTS Volume 1: HTS -- The System

process is anchored by the left column pointer. Thus, to find all REAL
declarations in the file, specify:

column 7
matchda /file #real#

3 REAL HEAN
20 REAL HEAN,NEAN2

Another difference between the HATCH and SCAN commands is that in the
comparison process by HATCH, any blank characters in the string specified
are considered as "arbitrary" and match any character in the file. Thus,
the string " O H" matches both the COHHON and FORHAT statements:

0
0

I
0

llmaom00

\lU'l\)

0000nomm

In

0|

column 7
matchda /file # o mt

COMMON DATA,H
100 FORHAT(' ENTER NUMBER OF DATA POINTS‘)
101 FORHAT(I3)

9 102 FORHAT(' ENTER DATA POINTS‘)
11 103 FORHAT(6F5.21
15 10“ FORHAT(' MEAN=',F8.U,' STD=',F8.u)
19 COMMON DATA,N

setting the current line in a file in all of the above examples, the
LINE command sets the current line to a specific line number in the file.It is also possible to move relative to the current line by means of a
command whose "name" is an integer representing the number of lines to move.
Thus, the command "1" moves to the next line, "2" moves to the second line
past the current line, and so on. By making the number negative we can move
backward; "-1" moves to the preceding line. For example:

line

-II
M

15
15 10" FORHAT(' HEAN=',P8.",' STD=',F8.Q)

15.25 GO T0 1

1“ WRITE (6,104) HEAN,STD

Finally, to return from the editor to HTS command mode, use the HTS
command: -

Z:

mts

At this point, we have covered the basic commands for using the editor,
and these should be enough for most simple editing. However, only about a
dozen of the more than thirty commands available and only two of themodifiers available have been discussed, not to mention the many otherfeatures. The "Edit Hode" description should be consulted for the completedescription of the editor.

Introduction to the Editor 61

HTS Volume 1: HTS -- The System

62 xut:o6uctt¢n to the Editor

April 1974

HTS Volume 1: HTS -- The System

April 1970

IEELQ222!L9!_IQr2§§Q§e!9QE:§QB:EQ§E§A!

The Symbolic Debugging System (SDS) is a conversational facility for
testing and debugging programs. This facility was originally provided for
assembly language programs, but it has now been extended to include FORTRAN
programs. Using SDS, the user may initiate the execution of a program and
monitor its performance by displaying or modifying variables at strategic
points in the program. This section provides a brief introduction to the
debug mode command language for FORTRAN users. A small sample FORTRAN
program is given to illustrate the use of SDS. The complete description of
SDS is given in the "Debug Mode" section of this volume.

Figure 1 is a sample program to compute the mean and standard deviation
of an array of real numbers. The program consists of three sections: the
main program MAIN which reads in the data values and prints the final
results, the subroutine CALC which computes the desired quantities, and a
blank-named COHMON section which contains the data array. In FORTRAN, the
main program always has the name MAIN unless it is explicitly specified
otherwise during the compilation.

This program is compiled by the FORTRAN G compiler in *FTN using the HTS
command

$RUN *FTN PAR=SOURCE=HEANPROG,LOAD=HEAN,TEST

The source for the program is read from the file NEANPROG and the compiled
object module is written into the file BEAN. The TEST parameter must be
specified when use of SDS is expected in order to have the FORTRAN compiler
produce symbol table records in the object module. These symbol table
records are used by SDS and are necessary to enable the user to debug his
program symbolically. -

The most common method of invoking SDS for debugging this sample programis with the HTS command

$DEBUG HEAR

The DEBUG command is the same as the HTS RUN command in the manner in whichlogical I/0 units and the parameter field are specified. Here it is assumedthat the program uses logical I/0 unit 5 for reading the input data andlogical I/0 unit 6 for printing the output results. For the present purpose
of debugging this program interactively, all input test data is entered from
the terminal (*SOURCE*) and all output results are printed on the terminal
(*SINK*). If the user wishes to assign these units to files, he may specify
them on the DEBUG command, for example,

$DEBUG MEAN 5=INPUTFILE 6=OUTPUTFILE

Introduction to Debug Node in FORTRAN 63

4-» — — —

HTS Volume 1: HTS -- The System

April 1970

80$ signals its readiness to accept a conland by printing the prefix
character "+" in column one. This prefix character precedes all SDS
nessages and diagnostics.

when the program has been successfully loaded, the message

+READY
+

is printed, at which point SDS is ready to accept its first debug connand.

0001 nlunusrou DATA(50)
0002 counou niri,n
0003 Rain nniu
0000 1 wn1rn(s,100)
0005 100 ronuir(' nurzn nnunzn or DATA POINTS‘)

1 0006 a3in(5,101) u
0007 101 FORhAT(I3)
0008 IRITB(6,102)
0009 102 FORHAT(' ENTER DATA POINTS‘)
0010 RBAD(5,103) (DATA(I),I=1,N)
0011 103 ronnir(6r5.2)
0012 CALL ClLC(HBAR,STD)
0013 HRITE(6,10) HElN,STD
0010 100 ronuaT(' nniu=',re.u,' sTn='.r0.u)
0015 some 1

0016 sun

0001 SUBROUTINE CLLC(HBAN,STD)
0002 DIMENSION DlTl(50)
0003 COBHON DATA,N
0000 REAL HBlN,HEAI2
0005 X = 0.0
0006 ! = 0.0
0007 D0 10 I=1,N
0008 X = X+DlTA(I)
0009 10 Y = !+DlTA(I)*2
0010 HERB = X/N
0011 HBLI2 = Y/N—HELN**2
0012 STD = SQRT(HEAH2)
0013 RETURN
0013 END

Figure 1. Sample Program

Figure 2 gives the sample output from a sequence of connands used to
debug the progren. Input iron the user is given in the lower case and
output fron SDS and the progran is given in the upper case.

60 Introduction to Debug node in FORTRAN

April 197

tdebug mean
+READ!
+run

HTS Volume 1: HTS -- The System

ENTER NUMBER OF DATA POINTS
2

ENTER DATA POINTS
0.0 0.0

SQRT ARGUMENT NEGATIVE
+CALL T0 "HTS"
+READY
+csect calc
+break is#5 is#12
+DONE.
+run

ENTER NUMBER OF DA
2

ENTER DATA POINTS
0.0 3.0

TA POINTS

+ "IS#5" *** BREAKPOINT
+READY
+disp1ay n
+ "N" IS NOT DEFINED IN THIS SECTION.
+csect *
+DONE.
+disp1ay n data(1) d
+ N 'F' +2
+ DATA(1) '3' .00
+ DATA(2) 'E' “.00
+continue
+ "IS#12" *** BREAKP
+READY
+display mean mean2
+ "MEAN" IS MULTIPLY
+ MEAN ‘E’ 0.25000
+ MEAN2 'E' -8.000
+csect calc
+DONE.
+disp1ay mean
+ MEAN 'E' 4.00000
+nodify nean2 '0.0'
+ MEAN2 'E' WAS -
+continue

MEAN= ".0000 STD=
ENTER NUMBER OF DA

$endfi1e
+USER PROGRAM RETURN
+READY
+stop
#

\

ata(2)

00000
00000

OINT

-DEFINED. DEFINITION USED FROM SECTION MAIN
000E+00
0000

00

8.0000000 NOR 0.0E+00

0.0
TA POINTS

Figure 2. Salple Output

Introduction to Debug Mode in FORTRAN 65

nTs Volume 1: nrs ~- The System

April 1§7h

Since most users are incurable optimists when it comes to running a
program for the first time, the RUN debug command is given to determine what
the program does on the first try. The comments "ENTER NUMBER or DATA
POINTS" and "ENTER DATA PQIRTS" are produced by the program, and therefore
these two lines in the sample output do not start with the "+" prefix
character. The program requires as a response an integer N of format I3
giving the number of data points to be used in the program. The input
points are read into the array DATA which is of format 635.2.

A very simple set of test data is chosen for the first run. The size of
the data set is 2 and consists of the points .0 and 5.0. This data set,
using a simple mental calculation, yields the results of 5.0 for the mean
and 0.0 for the standard deviation. In choosing a test data set, it is wise
to choose data which give an obvious and simple answer so that most errors
in the program are readily apparent.

After the program is run, the comment "SQRT ARGUMENT NEGATIVE" appears,
indicating that an erroneous call to the SQRT library subroutine was made in
the CALC subroutine. The FORTRAN library has produced the message indicat-
ing that the value of the variable UEANZ was negative. SDS intercepted the
FORTRAN library's return to HTS and returned control to debug mode.
Whenever any type of abnormal condition occurs during the execution of the
program, such as a program interrupt or attention interrupt, SDS steps in
and returns control to debug command mode. This also happens when a user's
program calls the resident system subroutines SYSTEM, HTS, or ERROR.

At this point, if the user has a serially-reusable program, he may rerun
his program and monitor its performance more closely. For a program to be
serially reusable, it must be capable of being rerun several times without
being reloaded. All locations which contain constant values which are
changed by the program must be initialized by the program during gggggtign.
For example, a program containing the statements

DATA I/3/
K = I

H

“I
O\

would not be reusable, since I would not be re-initialized to a value of 3;
but a program containing

NH

N

Hi!»

-u

O

I
O

I = 6

would be reusable, since I is set to 3 each time the program is used. In
general, serial1y~reusab1e programs are easier to debug with sns than are
uén*seria11y*reusab1e programs, since they can be rerun several times

as Introduction to Debug Bode in roman:

April 1970

HTS Volume 1: HTS -- The System

without being reloaded. If the program were not serially-reusable, then the
user would have to reload the program again using the SDEBUG command.

As an aid to monitoring the execution of the program, SDS provides the
capability of setting breakpoints. Ihen a breakpoint is encountered during
execution of the program, execution is stopped, and control is returned to
debug mode. The instruction at which the breakpoint is set has not yet been
executed when execution is stopped.

The BREAK command may be used to set breakpoints by specifying the
statement numbers at which execution is to be stopped. To refer to
statement numbers in FORTRAN programs, a prefix must be used to distinguish
the type of statement number being given. A "#" must prefix the statement
number if it is an external (user-defined) statement number; for example,

BREAK #10 '

sets a breakpoint at the user-defined statement number 10. An "IS#" must
prefix the statement number if it is an internal (source-listing) statement
number; for example,

BREAK IS#1O

sets a breakpoint at the source-listing statement 10. Only those statement
numbers which define executable FORTRAN statements may be used. An
executable statement is defined as a statement which is from one of the
following categories:

(1) Assignment statements
(2) Control statements
(3) I/O statements

All others, such as DIMENSION, REAL, INTEGER, DATA, COMMON, SUBROUTINE,
FUNCTION, ENTRY, and FORMAT statements are not executable. Both internal
and external statement numbers must be specified githggt leading zero§.

Since a program may consist of a main program and several subroutines and
common sections, there must be a method for determining to which section
statement numbers and other symbols refer. This may be done in two ways.

The CSECT command may be used to globally restrict all statement numbers
and symbols to a specified section. In the sample output, the command
sequence

CSECT CALC
BREAK ISQS IS#12

is used to set breakpoints at statements 5 and 12 of the subroutine CALC.If CSECT CALC had not been given, then the first occurrence of IS#5 and
IS#12 would be used. In this case, IS#12 would be in the section MAIN and
I535 would be in the subroutine CALC since IS#5 is a FORMAT statement in
MAIN. The command

Introduction to Debug Bode in FORTRAN 67

are Volume 1: HTS -'he system

lpril 197$

CSECT *

may be used to restore the searching of all sections. If the CSBCT command
hasi not been given, SDS searches all sections for statement numbers or
variable names and uses the first definition encountered.

The BC keyword modifier lay be used to locally restrict a symbol to a
specified section. The it modiier applies only to the symbol to which it
is appended and overrides any global restrictions set by the CSECT command.
In the sample run, the command < '

BRELK IS#5 IS#123C=ClLC

also could have been used to set the breakpoints. The modifier iC=chLC
restricts ISt12 to the subroutine CALC. 3C=CALC is not needed for I585
since the only valid derinition of IS#5 is in CALC.

The _settinq of breakpoints at the internal statements S and 12 of CALC
was chosen so as to allow a closer inspection of the proqraa near the area
where the error was indicated. At statement 5, the input data may be
examined before any actual calculations are made. At statement 12, the
argument to the SORT call may be examined.

After the breakpoints are set, the program is rerun. When the breakpoint
at IS#S is reached, execution is stopped and the message

"IS¢5" *** BREAKPOINT

is printed. At this point, the user may enter another debug command.

The DISPLAY command may be used to display variable locations in the
program. scalar variables are displayed by giving the variable name: for
emalple,

DISPLAY HEAR

displays thee contents of the variable BEAN converted according to its type
and length. In this case, HELN is a fullword real variable and its value is
printed as

BEA! 'E' 0.25000O0+E00

the code B indicates that the variable is real. The codes for FORTRAN
variables are:

HN:I‘E"-"I811

Real (exponential or floating-point)
Integer (firedepointy
Logical
Complex
hexadecimal
Instruction

$6 Introduction to nebao Bode in PORTRKI

April 197R

Array variables are displayed by
in the same manner as in the FORTRA

DISPL

displays the contents of the first
To display a variable which i

modifier (or CSECT command) may be
section. In the sample program, th
section.

DISPLAY D

could have been used. Simply using

DISPL

would not have worked if the
Instead, an error message would be
undefined.

If all sections are open for s
than one section (or subroutine), t
that symbol and issues a warning me

DISPLAY

produced a warning message for
sections MAIN and CALC.

After the breakpoint at IS#5 has
display some of the input data va
or not everything seems to be in re
and 0.0 for DATA(1) and DATA(2) i
entered.

A CONTINUE command may then be g
After the breakpoint at IS#12
progress of the program. Displayin

HTS Volume 1: HTS -- The System

giving the array name and its subscripts
N program; for example,

LY DATA(1)

element in the array DATA.

s in a blank-named common section, the 6C
used with the name BLANK to specify the
e array DATA is in the blank-named common

ATA(1)@C=BLANK

AY DATA(1) A

CSECT * command had not been given first.
printed indicating that the symbol was

earching, and if a symbol is used in more
hen SDS displays the first occurrence of
ssage. In the example,

MEAN HEAN2

MEAN since MEAN is defined in both the

been reached, the next step is to
lues for the program to determine whether
asonable order. The values of 2 for N
ndicate that the input data was correctly

iven to resume execution of the program.
is reached, the user can again check the
g MEAN and NEAN2, it is discovered that

the values are .0 and -8.0, respectively. A quick arithmetic check using
the appropriate formulas

MEAN = (DATA(1)+DATA(2))/N

and

HEANZ = (DATA(1)3+DATA(2)z)/N-MEAN:

yields the values 0.0 and 0.0, respectively. Hence, the value -8.0 is in
811110!‘

Introduction to Debug node in FORTRAN 69

UTS Volume 1: HTS -- The System

April 1978

Looking back over the sample program, the user can see that this error
was introduced in statement 9 of CALC. That statement should read

O 10 Y = !+DATL(I)**2

Since it is not possible to recompile the program in SDS, the best that
can be done at this point is to modify HBAN2 to contain the correct value.
The HODIFY command may be used to do this. The first parameter for this
couland gives the name of the variable to be modified. The second parameter
gives the value to be used in the modification; the value must be enclosed
in prises, for example,

HODIFY HEAR2 '0.0'
The value for BEANZ is now nodified to 0.0, and execution of the progran

may be resumed to determine if the remainder of the program seems to be
correct. This time, the correct values for the test data are printed by the
program.

Instead of entering a second set of test data, the user probably wants to
recompile the program to correct the error in CALC. To terminate the
program, the user enters a SBNDPILE (or its equivalent). SDS intercepts the
teruination of the program and returns control to debug mode. The STOP
command may be then used to return control to HTS.

The user may use the RESTORE and CLEAN commands to remove breakpoints
from the program that were set by the BREAK command. The RESTORE command
removes a specified breakpoint. For example,

RESTORE IS#12

removes the breakpoint set at statement 12 in CALC. The CLEAN command
reuoves all breakpoints that are set in the program.

hulti-dimensioned arrays are specified in the sane manner as linear
arrays. For example, the third element in the array specified by the
FORTRAN source statement

DIMENSION ALPHA(10,10)

may be displayed by

DISPLAY ALPHA(3,1)

A sequence of elements of an array may be displayed using the block
notation format. For example, to display the first ten elements of ALPHA,
the user may specify

DISPLAY ALPHA(1,1)...(10,1)

The user should note that in FORTRAN programs, arrays are stored in
ascending locations with the first subscript increasing the most rapidly and
the last subscript the least rapidly.

70 Introduction to Debug node in FORTRAN

April 1970

HTS Volume 1: HTS -- The System

Arrays may also be displayed using symbolic subscripts. If, in the
FORTRAN program, the variables I and J have the values 2 and 3, respective-
ly, then

DISPLAY ALPHA(I,J)

displays the element ALPHA(2,3).

Arguments to FORTRAN subroutines may be one of two types:

(1) reference by value, or
(2) reference by location.

when an argument is passed as a reference by value, the actual value of
the variable is passed by the calling program to the subroutine. Therefore,
a copy of that variable is in both the calling program and the subroutine.
Scalar arguments are normally passed in this manner. The subroutine uses
its copy of the argument for any calculations done. Upon the return of the
subroutine to the calling program, the argument is passed back to the
calling program and its copy is updated. Therefore, when displaying an
argument of this type with SDS, it
variable is located and when it is

is important to keep in mind where the
displayed.

Ihen an argument is passed as a reference by location, only the location
of the argument is passed by the calling program to the subroutine.
Therefore, only one copy -of the argument exists and it is located in the
calling program. Array arguments are always passed in this manner. The
subroutine uses the array locations in the calling program for its
calculations. when displaying an argument of this type, either the variable
name from the calling program or the variable name from the subroutine may
be used. Both refer to the same argument.

Most debug commands may be given in an abbreviated format. The minimum
abbreviations that may be used are underlined.

gnzax
ggnau
QONTINUE
ggmcr
gzsvnav

gonxrv
nnsronz
ggu
.$.I9.P

An automatic error-dumping facility similar to that provided by the HTS
$ERRORDUHP command is provided for batch users. In the event of an error
condition occurring during the execution of the program, a symbolic dump of
the program which includes all variable locations is produced. Thisfacility may be activated for the sample program by the command sequence

$SET DEBUG=ON
$SDS SET ERRORDUHP=ON
$RUN MEAN

2
0.0 .O

$BNDFILE

Introduction to Debug lode in FORTRAN 71

HTS volume 1: nrs -- The system

April 197k

Iota that the HTS RUN command has been given instead of the DEBUG command.
The errorrdump facility may he deactivated by the command

$SET D!BOG=OP!

The symbolic dump produces the variable storage for the sample program in
a format similar to the following:

DUMP OF SECTION Vl=500F0

RA SYHBOL TYPE VALUE HEX VALUE

oooooo 0311(1) '2' n.ooooooo u1nooooo
ooooon 0121(2) ~s~ n.ooooooo a1uooooo
oooooa DlTA(3) '3' o.on+oo a1s1a1s1

o566cu nai§}so) '2' o.5§loo e1a1a1e1
ooooce u 'r' +2 oooooooz

DUHP OF SECTION HAIR Vl=5002l8

RA SYHBOL TYPE VALUE HEX VALUE

ooooao 1 -r~ +2 oooooooz
ooooau nznn '2' o.on+oo a1a1a1e1
ooooss srn '2' o.0s+oo a1e1s1a1

DUHP OF SECTION CILC YA=5005C0i

RA SYHBOL TYPE VLLUE HEX VALUE

0000A0 X '2' 8.0000000 01800000
000010 Y '2' 16.000000 02100000
000018 I 'P' +2 00000002
0000lC MEAN '8' 0.0000000 #1000000
000030 H3182 '2' -8.0000000 C1800000
000080 STD '3' 0.0E+00 81818181

72 Introduction to Debug lode in IORTRIR

HTS Volume 1: HTS -- The System

April 197a

§QE!§B§lTlQ!AL-H§A§§_Q£_!l§

Terminal devices enable the user to interact with a program, monitor its
execution, and make decisions at any point of the execution. Terminal
devices may be used advantageously to debug a new program. In batch mode, a
single error generally terminates a run, while in conversational mode, the
user may intervene when an error becomes apparent and immediately correct
the error and try again. Thus only one terminal session may be needed to
debug the entire program. HTS is historically a terminal—oriented system
and therefore many system programs are available to the conversational user
which are awkward or impossible to use in batch mode. Communication to HTS
in conversational mode, like in batch jobs, is through the HTS command
language.

Users may gain access to HTS from a wide range of remote terminals which
may be as complex as a remote computer.

The most commonly available terminals at USU are:

The éelegggig112e!§;§e£:Qg§!lg§l‘ is very much like an ordinary electric
typewriter. Its character set includes all commonly used text and program-
ming symbols and it can be connected to the computer over great distances
via telephone lines. Its output speed is about 14 characters per second and
its carriage width is 130 characters.

The Hodel 33 Telegype is a commercial telecommunications unit which can
be connected to the computer via telephone lines. Its output speed is 10
characters per second and its carriage width is 72 characters. It does not
provide lower-case alphabetics. It is, however, the most common and the
most inexpensive terminal available.

The Hegel 35 Teletype is functionally almost identical to the Hodel 33
but is more ruggedly built.

The Qesiiegheuse 1292 £ethede:ra1 Tereinel is funetienelly equivalent to
a teletype terminal. It is noiseless and can be faster. Its main
disadvantage is that no "hard copy" of the output is retained because of
display on the screen.

The Pergegom is functionally equivalent to a Teletype terminal. It's
main advantage is its portability. It can be carried like an attache case.

The following two sections describe the physical characteristics of the
most commonly used terminal devices, the Teletypes, the Westinghouse 1600,

lvarious companies manufacture this type of terminal. They all, however,
have a standard Selectric typewriter keyboard and carriage.

Conversational Usage of HTS 73

— ..- — V _ _

1

HTS Volume 1: HTS -- The System
,4;-.

April 191a

and the Selectric typeuriter. If the user is already familiar with
terminals, he may skip these sections.

>
F 3¢" T ¢§£A§E LE§H£QMl§MHH§

The hodel 33 and 35 Teletypes and the Portacom have a transnission rate
of 10 characters per secondhand have a carriage width of 72 positions.
These models do not provide louer—case characters nor several of the special
symbols. used in programming. Sole models have paper tape reading and
punching equipment built into then.

The~Eestinghouse 1666 Cathode-ray Terminal has a transmission rate (on
W50 HTS) of 30 characters per second and a screen width of 80 positions.
This model behaves exactly like a Model 33 Teletype except tor the keys on
the extreme left side which manipulate the display and the cursor.

host keys and controls are connon to all Teletypes. The positions and
shapes vary considerably, but their functions are identical.

Host Teletypes are capable of both half-duplex and full-duplex modes of
operation. In half-duplex mode, the keyboard is connected to the printer so

' that whenever a hey is pressed it is innediately printed, as well as sent to
the colputer. In fulledeplex node, the keyboard and printer are not
connected. A character is printed only when sent from the computer. The
stitch for nnx—rnx operation is located on the acoustic coupler attached to
the hack of the Teletype. Although Teletypes area capable of hoth half
duplex and full duplex, RSO only supports half-duplex node.

The~ switch labeled "LIKE", "OFF", and "LOCKL" on the front of the
Teletype turns.it and the acoustic coupler on ("LIKE") or just the Teletype
CTLOQLL") so that it may be used as a typewriter (or paper tape punchi. The
Westinghouse terminals have two rocker switches —- ON-OFF and LCL-BUT on the
far right side to serve the same function.

The ordinary character keys on the keyboard act much like typewriter keys
except that as their symbol is printed (if operating in half-duplex node),
the code for that symbol is sent to the computer. The SHIFT key selects the
upper character on dual character keys. Note that some keys do not have. an
upper-shift function and nay not be pressed in combination uith the SHIFT.

A special key labelled CTRL for 'control' is similar to the SHIFT key in
that it selects an alternate function for a key. The code sent ton the
COI?&t6I" by a key pressed in combination with the CTRL key usually does not
represent a printable character and thus no symbol is printed. Sone CTRL
coahinationse are used for editing purposes by the device support routines
(for exanple, backspace and ‘end-of~line'¥. These combinations have been
designated in this. guide~ by '€0wTROL-1' where pg is the character key
operated in conjunction with the CTRL hey. Note that the labels’ on the
upper part of alphabetic keys generally refer to the control function, no
to the shift function. SeI~ Teletypes have color~codede labels: white
label§'for shift functions and red labels tor control functions.

7l Conversational Usage of HS

HTS Volume 1: HTS -- The System

April 197B

The LINE FEED key causes the paper to move up one line without changing
the lateral position of the typing element. It also sends a LINE FEED
character to the computer. This key is not used for any special purpose»

The RETURN key causes the typing element to return to the beginning of
the line without spacing the paper. It sends a RETURN character to the
computer and informs the computer that the user has completed a line.

The RUBOUT key sends a character which is never received by HTS.

The REPT key, when pressed in conjunction with any character key, causes
that character to be repeated until the key is released. This is useful for
spacing forward or for multiple 'backspaces'.

The BREAK key causes an attention signal to be sent to the computer to
interrupt the current operation. This key is located on the right side of
the keyboard on the Hodel 33 Teletypes and to the left on the Hodel 35. Any
input or output in progress will be terminated. Some Teletypes (ones with a
built-in telephone dial) have a BRK RLS key, located at the left of the
keyboard, which must be pressed after the BREAK key has been pressed, if it
lights up.

E!!§!l.Q!AL_§.I‘lABL§EE13l§EIC§=Q1’:§§LEQ£1iL§=2!EE!BlE.E=ll..$E§l!U§AL§

when the Selectric typewriter terminal is not connected to HTS it may be
used as an ordinary typewriter. Power to the terminal is controlled by an
0N—OFF rocker switch on the right side of the keyboard. This switch should
be turned OFF when the terminal is not in use.

Host of the normal typewriter controls exist on a Selectric terminal.
There is a lever on the right rear of the typewriter cover which reduces the
pressure on the paper and allows paper adjustment. A lever on the left
adjusts the typing-head angle to compensate for varying thicknesses of
paper. The red-topped lever on the carriage may be adjusted to increase the
striking force of the typing head for darker copies. The "golf ball" typing
elements may be changed to provide a variety of character sets.

Left and right margin stops limit the travel of the typing element. The
HAR REL key temporarily releases these stops. The margins may be used in
conjunction with the margin editing facility of the device support routines
to position the printing on the paper. A small pointer rides in a slot
between the margin stops and indicates the current printing element
position.

Physical tab stops may be set using the CLR-SET rocker switch on the left
side of the keyboard. These may be used in conjunction with the input
tabulation editing facility of the device support routines.

The Selectric terminal keyboard is very similar to that of an ordinary
electric typewriter. when a character key is pressed, the symbol is printed

Conversational Usage of HTS 75

‘V-

HTS Volume 1: HTS -- The System

April 191a

on the paper and at the same time the internal code for that character is
transmitted to the computer. The shift key allows upper and lower-case
alphabetic characters to be produced and selects the upper or lower symbol
on dual-character keys.

The TAB key causes the typing element to move to the next tab stop while
sending the tab character code to the system. The BACKSPACE key moves the
typing element back one position while sending a backspace character code to
the system.

The RETURN key causes the typing element to return to the left margin and
spaces the paper up one line. It also sends a return character to the
system and locks the keyboard. The RETURN code informs the computer that
the user has completed a line. The keyboard remains locked until the system
again requests input. while locked, all keys except ATTU are inoperative.

The ATTN key is located on the upper right keyboard. When this key is
pressed, an attention interrupt is signaled to HTS.

Te the left of the keyboard are three lights labeled READ! (blue),
PROCEED (green), and CHECK (red). The READY light is on when the terminal
is connected to the Transmission Control Unit. Ihen this light goes out the
terminal has been disconnected from the system. The PROCEED light is on
when the system expects input. The keyboard is unlocked until the RETURN
(or ATTR) key is pushed. The CHECK light goes on when a character has been
incorrectly sent to (or received from) HTS. If the CHECK light is on when
the PROCEED light goes on, the CD key must be pressed before the keyboard
unlocks. If the CHECK light goes on, it is a good idea to check the line
just transmitted to (or received from) HTS for errors.

§H&£§H§ §.ElHL
To initiate a conversation with HTS on a terminal device, it generally is

first necessary to dial into the system'via the telephone lines. There are
two types of connections available to HTS through the phone lines. The
first, called the ten minute line, is a connection which only allows an
elapsed terminal time of ten minutes per signon.j If at the end of ten
ninutes the user has not signed off the ten minute line, HTS will sign the
user off automatically. ‘The second line called an unlimited line, does not
have a specific elapsed time limit set on the line. The telephone numbers
are:

577-0230 for a ten minute line
577-0210 for an unlimited line

Each telephone number listed is the first of an automatic trunk—hunting
group. If the first number is busy, the telephone equipment automatically
searches through the group of lines until a free line is found. If dialing
from a phone which is part of the Wayne State University Centre: System,
only the last five digits must be dialed. If there is no answer, dial

16 Conversational Usage of HTS

April 197a

HTS Volume 1: HTS -- The System

(57)7-4799 for a recorded message on the status of HTS. If the line is
busy, try again in a few minutes.

Once the connection has been made, type the word "GO" and press RETURN.
The system then causes an introductory line to be printed out which
identifies HTS and contains the following information:

(L°X!'YYYY)

where "L021" is the code for the system device answering the call. Each
port is considered a separate device by the system. "L0" identifies the
HEHOREX transmission unit, "xx" identifies a particular line of the
transmission unit, and "yyyy" is the task number assigned to this session.
This information is useful if difficulties arise in the operation of the
terminal device. These numbers will aid the Computing Center personnel in
tracking down the problem.

If the terminal device is a Teletype, it must identify itself. Some
Teletypes are equipped to automatically respond with a unique answerback
identification. code. If the answerback is automatic, the device prints its
identification code, and is then ready to begin the session. Otherwise, the
user must manually enter an answerback. See the terminal guides below for
details on how to sign on with each type of terminal.

After all the initialization has been taken care of, HTS types the prefix
character "Q", and is ready to receive the first input line. The first
command that should be entered is

SSIGNON ccid

where "ccid" is the user's HTS signon ID. The system then prompts him for
his password by typing

#ENTER USER PASSWORD.
?

The "?" is the prefix character used by HTS to prompt for a response from
the user. For each device there is a method to mask the printing of your
password. (See the individual terminal guides below.) If the signon ID
"ccid" is currently active and is allowed terminal time, and if the passwordis correct for the given ID, HTS will type out further information for the
user on the terminal. This information takes the form:

#**LAST SIGRON HAS: time date
USER "ccid" SIGNED ON AT time ON date

This information gives the time and date for the last time "ccid" was signed
on and the time and date for this sign—on. This information may be useful
in detecting illegal use of the ID. After the above information has been
typed, HTS again types a "4" on the terminal device indicating that the useris now signed on and that HTS is waiting for his next command. The user may
now start his "conversation" with HTS, requesting the services he needs and
providing the information HTS needs.

Conversational Usage of HTS 77

\

>

HTS Volume 1: HTS -— The System

April 1974

2re£ix.§harasi2rs

The first character of each line identifies who is "writing" or who is
"reading". on output lines, the prefix character is typed ahead of the
message. when input is requested, the prefix character is typed at the
beginning of the line and then the system waits for a response. If
automatic line numbering is enabled, the prefix is followed by the line
number. The prefix character for HTS command mode is the "1". For a
complete list of prefix characters, see the "System Command Language"
section in this volume. -

§2nzs:§sti2nal_Q2sraii2n

During operation, the terminal device is in one of three modes: ggggigg
mode, tgggggit mode, or idle mode. Since Teletypes provide no special
indication of when input is allowed, it is the user's responsibility to he
aware of the current mode and act accordingly. On a Selectric terminal, the
keyboard is locked whenever input is not allowed, so there is no possibility
of typing at the wrong time. A description of each mode and the action to
be taken by the user follows. V

RECEIVE HODE: The terminal device is in receive node whenever a
message is being transmitted from the system to the device. The first
character of the output line is a prefix character that identifies which
component of the system produced the output line. The terminal user should
not type on the keyboard while the terminal device is in receive mode.
However, output from the system may be interrupted at any time. (See
"Attention Interrupts" below.)

TRANSHIT HODE: The terminal device is in transmit mode whenever the
system is waiting for the terminal user to type a line of input. A prefix
character is printed at the first position of the line to show that input is
expected and to indicate which component of the system is calling for input.

IDLE MODE: The terminal device is in idle mode when there is no
current input or output activity. This situation may occur when a program
is being loaded for execution, or when a considerable amount of computing
must he done before another input record is required, or before another
output line is transmitted. If the terminal device is in idle mode a signal
is sent to it once every 28 seconds. This signal does not cause any
printing to take place, hut it does cause the terminal device to go through
some internal antics that produce a little bit of noise. This occasional
noise can be taken as a signal that the system is still operating. The user
should not type on the keyboard while the terminal device is in idle mode.
Entering characters during this time on a Teletype will cause an attention
interrupt. (See "Attention Interrupts" below.) On a Selectric terminal the
keyboard is locked in idle mode.

78 Conversational usage of HTS

HTS Volume 1: HTS -- The System

April 197B

§Q£E£Ql_§h2£QE$§£§

Control characters are provided to enable line editing from the terminal
device. Each terminal device has its own special characters or combinations
of characters defined to act as its control characters. There are five main
functions which are provided:

(1) To delete all the ‘characters of‘ the input stream up to the
"line-delete" character.

(2) To delete the last character of the input stream. On some
terminal devices the carriage actually backspaces and types over
the deleted characters when the user corrects errors: on others,
such as Model 33 and 35 Teletypes, the carriage does not
backspace. On a Westinghouse 1600 the cursor lay be backspaced
either by the controls on the left of the keyboard or by entering
the CONTROL-H combination.

(3) To end an input line and to transmit the entered line to HTS.
(H) To signal an end-of-file.
(5) To signal that the next character should not bet interpreted to

have any special meaning, but should he transmitted literally.

Conversational Usage of HTS 79

BIS Volune 1: HTS -— The Systel

Table of Control Characters

Teletype

inna-

an1*

_l

Selectric

'*

i?

-as

-r--

.1.

End-of-line
Character

RETURN OI
COHTROL'S

RETURN

i

Delete-line CONTROL N

Character (underscore)
I
I
I
I

@-

Delete-previous
Character

_s—-qu-

1

¢—c-‘P

--@-at

CONTROL-H BACKSPACB

Literal—next
Character

in

CONTROL-Z

T’

4-no-nan

1514.5

at

la-1i

i

Attention BREAK INT Ot
Interrupt ATTH

an1*-

‘__“4

i-it-_--4|-

R

M-n1;1

nd—of-file

M

in

CONTROL-C

_] __

IB2!¥_B§§§£i£Li2¥§

April 1974

Sole terminal devices are able to produce lowercase as well as uppercase
characters. Normally alphabetic characters in an input line are converted
to uppercase characters before the line is translitted to HTS. Thus
"$SIGNON" and "isignon" produce the sane effect. If this conversion is not
desired, a device conland is available which enables lowercase letters to be
transaitted. .

Bach terminal device has a laximua input line length, but for records
read in HTS coaland node (pretix character "8"), input nay be continued from
one line to the next. It the last character of a line is a minus sign "-",
then the next line is assured to be a continuation of the input line. The
first character of the next line replaces the "-" of the previous line.
There is a restriction on all terlinal devices that the total length of an
input line nay not exceed 120 characters. Up to 255 characters in an input
line lay be sent to HTS by sending continued lines (lines terminated with a
linus sign).

80 Conversational Usage of HTS

HTS Volume 1: HTS -— The System

April 1970

The maximum output line length defaults to the carriage width of the
terminal device. However this may be extended up to 255 characters by the
"length" device command. Extended output lines are continued as multiple
carriage lines until the entire line is printed.

....._ltte.1.!£iQ£_I..!11=.§£__BF\1$.§

Normally an attention interrupt is a signal to HTS to interrupt whateverit is doing, and to return for another command or data line. An attention
interrupt can be used, for instance, to interrupt a LIST command if all the
pertinent information has been typed out, or to interrupt a program in
execution, if an error is spotted. A program initiated by a SRUN command
that has been interrupted (after execution begins) may be restarted at the
point of the interruption by using the RESTART command. There are a few
occasions when an attention interrupt from the terminal device is ignored.
These are:

(1) during the sign-cn procedure,
(2) during the sign—off procedure,
(3) when an attention interrupt has already been received, but

not yet processed,
(H) when the executing program refuses to honor the interrupt.

Otherwise, the user may interrupt either during input or output operations.
Since each device has its own method for generating an attention interrupt,
see the individual terminal device guides below for the procedure. What
happens next depends on many things, but generally the comment

ATTENTION INTERRUPT AT xxxxxxxx

or the comment

ATTR!

is typed out. The first comment occurs only if a program was in execution
at the time of the interruption. In this case, "xxxxxxxx" is the
hexadecimal address at which execution was interrupted. The second commentis given if no program was in execution when the attention was received.
After one of the above comments has been printed, HTS will type the prefix
character "t" to indicate that once again HTS is ready for an input command.
At this time the user may enter a new input line. (Note: some system
components or user's programs may intercept the attention interrupts, rather
than allowing HTS to service the interrupt. For such components, the prefix
character printed after the attention has been recognized is the prefix used
by that component.)

Conversational Usage of HTS 81

+

5T5 volume 1: nTS -- The system

April 197B

H£.§ §
E number of error conditions may result during the transmission from the

terminal device to HTS. when this happens, an error message is printed out
on the terminal device. one of the most common error conditions is the data
check which indicates that the characters transmitted by the terminal were
not received correctly by HTS. In this case the message printed is:

LINE DELETED: DATA CHECK

and a new prefix character is printed out so the user can re-enter the line.
All the error messages take this form, giving the "line deleted" message and
the reason for the deletion. It a line greater than 120 characters long
(including control characters) is sent, the message:

LII! DELETED: LOST DATA

appears.’ The line must he re-entered (continued with a "—" if necessary) in
lines of less than 120 characters.

22. §
The HTS system contains a set of subroutines for each type of terminal

which interfaces that terminal with the system. These subroutines are
called Device Support Routines or Dsns. The DSR for each terminal is
responsible for doing the actual I/0 with the device, performing error
recovery if necessary, recognizing attention interrupts, helping HTS with
the sign-on/sign~off procedures, and so on. The Dsks also provide the
conversational users with several typographical services which are discussed
below. .

IZ§!iQ.2..$i9!!s!1Q§

The terminal user may issue commands to the Device Support Routines.
These are not to be confused with HTS commands or data lines. Since the
nsas inspect the input from the terminal first, they can intercept commands
intended for them. such commands are called "device commands" because they
deal with device~oriented functions and not system operations. Basically,
device commands enable the user to control the formatting of input and
output at his terminal. Device commands fall into sir groups as follows:

(1) commands that allow the user to describe the carriage format for
his terminal; these include left and right aargin settings and tab
$t0PQo

(21 coamands that allow the user to specify upper~case conversion
and/or hexadecimal input.

82 Conversational usage of hrs

HTS Volume 1: HTS -- The System

April 1974

(3) Commands that allow the user to redefine the characters having
special significance on input (literal—next character, etc.).

(Q) The length command which allows the user to establish the
truncation length for output lines.

(5) The reset command which reinitializes everything that can be
changed by a device ccmmand.

(6) Commands which control special system functions.
The following lists contain only the more commonly used device commands.

For a complete list, see HTS Volume H Tggmlgals and ggpgg. -

Device commands may be issued whenever the system is requesting input.
The device command is intercepted by the DSR, and, after it is processed,
the DSR again prompts the user for the input line expected by HTS. A
correctly specified device command is acknowledged while an invalid command
is discarded and produces an error message. Device commands must be
prefixed with the "device-command character", initially a percent sign
("S"). This is analogous to the "$" for HTS commands although it may not be
omitted. This character may itself be redefined by a device command. Note
that all lines beginning with the device-command character (initially K) are
treated as device commands. If a data line begins with the device—command
character it must be preceeded by the literal-next character (!) or the
device—command character must be changed with the DCC device command.

Device commands may also be issued by using the SCONTROL command. The
format of the device command is the same as that described below, except the
command must not be preceded by the device-command character (Z). For
example:

$CONTROL *SINK* LEN=255

A short description of device commands follows. Braces indicate that a
choice must be made between two parameters, brackets indicate optionalfields, and the elipsis (...) indicates repetition of the previous field.

Commands in Group 1:

ZLHAR
ZRHAR -

The "left margin" and "right margin" commands determine the logical
carriage length -- the maximum number of printed characters in an outputline. Input lines are unaffected by this command.

Form: %LHAR=nl
$RHAR=nr

where nl and nr are non-negative integers (less than the physical carriage
length) representing the positions of the left and right logical margin
stops respectively. The difference nr-nl determines the number of charac-
ters printed in each output line. The line begins at the left margin on thetypewriter and is truncated after nr-nl characters have been transmitted.

Conversational Usage of HTS 83

HTS Volume 1: HTS -- The System

April 197R

(The prefix character is not counted as part of the line.) Note that nr
must be greater than nl.

iTABI (for input)
STABO (for output)

The tab comnands turn logical tab mode on or off, redefine the logical
tab character, and set the logical tab stops.

FORH: $TAB[I|O)=0l:[char,]dd,...
$ThB{I|O}=0PF

The single character "char" is used as the logical tab character. The
default for this character is the "TAB" key on a Selectric terminal and a
CONTROL-I on a Teletype or Westinghouse. The quantity "dd,..." is replaced
by a sequence of up to nine integers setting the tab positions. ggtg that
the nhzsisalsihsiensenihsisrainnltiienzvhazenerslaiienieihsiah
ggggggd; The "ON" or “OPP” specifies whether logical tab stops are to he
enabledi or disabled respectively. The "I" or "0" specifies whether editing
is to be done to input or output lines. If editing is enabled, each tine
the logical tab character is encountered in the line beinq processed, the
tab character is replaced by enough blanks to move the column pointer to the
next tab position specified in the TAB command. If the current column is
already beyond the last tab position, the tab character is left unchanged.

QGOLF

This conuand sets the internal tables to correspond to different typing
elements ("golf-halls"). It is valid only for Selectric typewriter
terminals.

?Orl: lGOLF={963|988}

The nunbers 963 and §88 are the numbers stamped on the typing elenent.
The default is 963. All Selectric typewriter terminals on HSU's campus have
this typing element.

Commands in Group 2:

5K

The case conversion comland specifies the type of alphabetic conversion
for input lines from the keyboard. This command is defined only for
Selectric typewriter terminals.

Torn: $K=[LClUC]

led causes all alphabetic input from the terminal to he translated into
upper case (this is the de£ault}.. lK=LC causes alphabetic input to he
transmitted in the same case as typed.

80 conversational Usage of HTS

HTS Volume 1: HTS -- The System

April 1970

SHBX

The hex command controls the hexadecimal input editing mode and defines
the hexadecimal input delimiter.
Form: IHEX={ON|0FF}[:char]

where ON and OFF enable and disable this mode, and char is any character.
The character "char", if supplied, becomes the hexadecimal delimiter.
Default mode is OFF, with "char" set to a prime (').

Hexadecimal editing (when ON) occurs after the usual editing for delete
line, and so on. when the delimiter is encountered in an input line, the
characters following are interpreted as hexadecimal input, two characters
per byte, until the delimiter is again encountered. Commas may be used at
byte boundaries and are ignored. Hexadecimal input may be used any number
of times in a line but the line must end with a normal character. when
invalid hexadecimal characters (other than the digits 1-9 and the letters
A-F) are encountered, the message LINE DELETED: INVALID HEX INPUT is given.

Commands in Group 3:

The third group of commands are all of the form:

$com=char

where "com" is a three letter command code describing the function to be
assigned a new special character and "char" is the character (any character
on the keyboard may be used) to be assigned to that function. The default
special characters, their names and the three letter command codes are given
in the following table.
Name Default for Default for Command

Selectric Teletype Code

delete previous character bs(backspace) CONTROL-8 DPC
delete line character (underscore) CONTROL-R DLC
end of file character ¢ CONTROL-C EFCliteral next character ! CONTROL-Z LHC
device command character K Z DCC

when a special function is assigned a new character by means of the
appropriate command, the previously assigned character loses its special
status and may be used as text. For example:

$DPC=+
V

$DLC="

make the backspace and underscore ordinary text characters. The sequence
AB+C gives AC, and the line 1AB"2CD results in line 2 becoming CD. Care
should be taken when special characters are' redefined, as one tends to
forget and tries to use the old special characters out of habit.

Conversational Usage of HTS 85

N

HTS Volume 1: HTS -- The System

April 1974

While it is possible in a few cases to have the same character assigned
to two different functions at the same time, it is not recommended.

Commands in Group lb:

SLEN

The LBW command defines the physical length of output lines.

Form: $LER={ddd|OFF}

where ddd is in integer between 1 and 255. If ddd is less than the logical
carriage length (see the SLBAB and %RhAR commands), the output line is
stopped after column ddd and continued on as many lines as necessary to
either complete the line or fulfill the logical carriage length. Continua-
tion lines are identified by an asterisk in column 1, and prefix characters
do not count in this process. $LBB=OPr causes a return to the default mode
where the physical line length is the same as the logical carriage length.

Commands in Group 5:

$RESBT

Form: $RESBT

The RESET command resets everything that was changed by a device command
to its default value. a

Commands in Group 6:

SBDCST

Form: xsncsr=(on|orr1

This command enables or disables the operator broadcast messages. If
$BDCST=0Pr is specified, no messages sent by the operator are printed at the
terminal. This command is useful for producing uninterrupted output at a
terminal. The colmand should be used with caution, since the user will not
receive any messages from the operator (including notices of shutdown). The
default is GI.

$8138

Form: snnu=Q{o1uorr1

This comnand is only defined for ten minute lines (577-0236). If BARR is
OI, the message TIO uIIUT3$ L!!! is typed on the terminal when two of the
ten minutes remain. This gives time to finish and sign-off. The default is

86 conversational Usage of hTS

April 191a

HTS Volume 1: HTS -- The System

gggcessing of_;gpgt_§nQ Qgtput Lines

For the user sitting at a terminal, there are several levels of
processing that an input or output line must pass through. Each of these
levels analyzes the line, looking for a particular set of control characters
or commands and performs the appropriate conversions. This process may be
best explained by using a picture and an example.

Consider the case of a user sitting at a terminal and attempting to enter
a line into a file. If he is at a terminal which supports both upper and
lowercase letters, he will be concerned about if, and when, lowercase
letters are converted to uppercase letters. This conversion nay occur at
any one of several levels depending on which device commands, global
switches, or I/O modifiers have been specified.

I
I
I

Terminal Device

¢-d

_ __}

I
I
J

1;

nii

Transmission
Control Unit

‘ , .
I
I

7 _ 1:
Terminal Device
Support Routines

la }__
I

I
L———-—----4 HTS

I
r--—-—-————-4 Interface |

P111

File Routines
rm I
I I
L {~_ I

I
I

}'s_f 1
I File |
o J

I I I

DSR }-———1 HTS I

I I _
After a line has been terlinated and transmitted, an interpretation must

be made _of what has been typed. Line editing is performed either by the
transmission control unit or the terminal device support routines, depending
on which transmission path is used.

Conversational Usage of HTS 87

HTS Volume 1: HTS —— The-Systel

April 197

First, the transmission control unit processes an input line by removing
rubouts (for a teletype). .

Second, the device support routine (DSR) for the HEHOREX unit processes
the line editing functions in the following order:

(1) Line termination characters (RETURN)
(2) Literal-next characters
(3) Delete-previous characters
(B) Delete-line characters

If an end-of-file symbol remains as the first character in the input line, a
logical end-of-file is returned to HTS: otherwise, the edited line is
returned, unless the line is a device command. After a device command is
processed by the DSR, a new line is requested from the terminal.

Upper and lowercase conversion may be performed at this level by a DSR.If the device command $K=UC is in effect (the default case), all lowercase
letters are converted to upper case. If the device command %K=LC is in
effect, all lowercase letters remain as lowercase letters (no conversion
takes place).

The third part of the system to process the input line is the DSR
interface to HTS. This part processes the I/0 modifiers connon to all I/0
devices. If the user had entered a line using the command

SCOPY *SOURCB*3UC FILE

all lowercase letters coning from *s0URCE* would be converted to upper case.If this uppercase conversion had already been performed earlier, then this
modifier would have no effect. Uppercase conversion may also be specified
for input lines by giving the HTS command

$SET ClSE=UC

The uppercase conversion specified by the SET command affects only input
lines read by the HTS command monitor, that is, those lines entered as HTS
commands or data lines when in comnand mode (with a "Q" prefix). Lines
entered in all other modes are not affected. Hence, lines entered via the
COP! command are not converted by specification of this SET command.

If the user had entered the line using the coumand

SCOPY *SOURCE* FILEOUC

all lowercase letters coming from *SOURCE* would be converted to upper case
by the interface to HTS when the line is being sent to the file routines for
processing. Hence the interface to HTS has two chances to process the input
line and perform uppercase conversion.

The file support routines are the last part of the system to process the
input line. The file support routines perform such functions as indexing

88 Conversational Usage of HTS

HTS Volume 1: HTS -- The System

April 197a

(the GI modifier). After all the line processing is completed, the input
line is finally written into the file.

Batgh_ggbs §rom_g_Terminal

'It is possible for the user to submit a job via batch from the terminal
by using one of the pseudo-device names *BATCH*, *PRINT*, or *PUNCH*. These
three pseudo-device names can be used anywhere that an output file or device
name (PDname) can appear. (Refer to the section Files and Devices for
details.) Thus, for example, one can SGET one of these names, SCOPY to it,
assign it to SPRINT on a SRUN command, and so on. In the following
paragraphs, the term *...* refers to any of the three pseudo-device names.

The actions of these pseudo-device names differ somewhat between batch
mode and conversational mode. The following table summarizes the
differences.

Pseudo-Device Action in Action in
_.__!ane_.__ §2n1er§ati2nal_n2ds &eish_n2ds

BATCH A receipt number is printed A receipt number is
and the output written to printed and the outputit is used as a batch job. written to it is used

as a batch job.

PRINT A receipt number is printed The output written to
and the output written to it is written to theit is printed on the line line printer.
printer.

PUNCH A receipt number is printed The output written to
and the output written to it is punched on cardsit is punched on cards. only if the "CARDS="

parameter is specified
on the signon card.

The data written to *BATCH* must contain the SSIGNON command and
password, and must contain all the necessary HTS commands to control the
job. The data written to *PRINT* are lines which are to be printed on the
line printer. No commands are necessary (they would just be printed). The
data written to *PUNCH* are lines which are to be punched on cards. No
commands are necessary.

In conversational mode (and in batch mode for *BATCH*), when an *...* is
opened (that is, when the first line is written on it), a receipt number is
printed. when it is closed (when the last reference to it is released), it
is released to HASP, and an appropriate message is printed. The next
reference to an *...* produces a new receipt number. For example, if a user
types:

Conversational Usage of ATS 89

HTS Volnne 1: urs -- The system

April 197$

SLIST F *PRIIT*
W‘

the systen responds with:

PRINT ASSIGNED RECEIPT NUMBER 60273

soon followed by:

PRIRT 602703 RELEASED

Whenever an *...* is opened, certain HASP resources are allocated to
process the output, and they rennin allocated as long as *...* renains open.
However, since the nuaber of HASP resources is fixed, it nay happen that all
of then are already allocated, in which case the user is told:
... IS NOT AVAILABLE

If this happens, he should wait a few nonents and try again.

There are a nuaber of options the user can specify regarding the
disposition of an *...*. These any be specified either on the SCONTROL
conaand or by the CONTROL subroutine. Except for HOLD, RELEASE, and CANCEL,
these options are the sane as the options available on the SSIGNON counand
for batch jobs. (See the SSIGNON coaaand description for a description of
these options.) The following table lists the options and gives the
psendo—device nanes for which each option is valid. More than one option
nay appear on a single $CONTROL connand. The abbreviation (if any) is
underlined.

Option Pseudo-Device lanes

PRINT=TN or PRIIT=QN *PRINT*
§0UTE=xxxx *PRIHT*, *PURCH*
PROUTE=xxxx *PRINT*
CROUT3=xxxx *PUNCH*
COPIES=x *PRINT*
QOLD *BhTCH*, *PRIIT*, *PUHCH*
ggnnnsn *BhTCH*, *PRINT*, *Puncu*
§AdB='d nale' *PRINT*, *PUICH* _

QQQCBL *BhTCB*, *PRIRT*, *PUNCH*

note that any option not allowed on *BATCH*, nay be used on the $sIG0N
counand of the batch job.

The BOLD option Q35; be used if any other options are desired. For
exanple, sinply stating SCONTROL *PRInT* PnIlT=TR will Q9; produce the
desired result. ror any option to take effect, *...* aust be open.
specification oft then HOLD option for an ¥...*, opens it and keeps it open
until the RELBAS3 (or CANCEL) option is used. For exaaple, to copy the file
naned F to the TI printer, the following coanands could be used:

90 Conversational Usage of HTS

April 197a

$CONT
$COPY
$RELE

The HOLD o
copying se

If the
the data w

command:

SCONTRO

If the *..
ATTN or
automatica
then conti

In the
program, t
printer,
jobs go im
executed
lower case

#get -
CREADY
tnumbe
t
#

HTS Volume 1: HTS -- The System

ROL *PRINT* HOLD PRINT=TN
F *PRINT*

ASE *PRINT*

ption, since it keeps an *...* open, may also be used to allow
veral files to an *...* and producing a single batch job.

... is still open, and it is found that an error has been made,
ritten to the *...* may be deleted, and the *...* released, by the

L *...* CANCEL

.* is already released, the $CANCEL command must be used. If the
BREAK key is pressed while an *...* is opened, the *...* is
lly held and a message to that effect is printed. The user may
nue, cancel it, or release it.

following example, a batch job is set up to compile a FORTRAN
no documents produced by *FnT are printed as one job on the TN
and the output from a IATFOR job is sent to the QN printer. The
mediately into the respective queues (batch and print) and are
(printed) as soon as possible. The lines typed by the user are in
; lines from the system are in upper case. -

file
r
1_$$signon myid t=2m p=150 ' batch demo‘
2_passvord
3;$$create obj size=6p
B_$$run *ftn par=source=myfy1e 1oad=obj
5_$$siqnoff
6_$unnumber#

tcopy —file *batch*
>*BATC
#*BATC

H* ASSIGNED RECEIPT NUMBER 600005
H* 600005 RELEASED

tcontrol *print* hold
#*PRINT* ASSIGNED RECEIPT NUMBER 600007
tcontr
#run *

ol *print* print=tn name='w smith‘
fmt scards=doc1 sprint=*print*

#EXECUTION BEGINS
#EXECU
#run *
#EXECU
#EXECU
trelea
t*PRIN
trun *
#EXECU

TION TERHINATED
fmt scards=doc2 sprint=*print*
TION BEGINS
TION TERHINATED
se *print*
T* 600007 RELEASED
watfor scards=prog sprint=*print*
TION BEGINS '

#*PRINT* ASSIGNED RECEIPT NUMBER 600011
#EXECUTION TERHINATED

Conversational Usage of HTS 91

HTS volume 1: HTS -- The System

April 1975

#*PRIIT* 600011 RELEASED
I

Since *BATCH* is, in reality, a separate job entry in the execution
queue, *BLTCH* is not executable if you are still signed on the terminal
under the same signon id that you sent to *BATCH*. *PRIIT* and *PUHCH* do
not operate in the execution queue. Consequently, this rule does not apply
to either of these pseudo-devices.

Tsnimiiassiessiea

Ihen the terminal device is in transmit mode, the user should type in a
SSIGHOTF comnand. After the command line is scanned, HTS closes all files
and types out a number of statistics gathered about the use of the computer
during the session. These statistics include:

The tine of sign-off
The elapsed tine in seconds
The CPU time used in seconds
The CPU storage virtual aemory integral in page—minutes
The wait-state virtual memory integral in page-hours
The number of tape nounts
The tape drive usage in minutes
The nunber of drul reads
The approximate total cost of the job
The charge for permanent file storage since the last signoff
The remaining balance of funds for the ID

If the user does not want to wait for the statistics to be typed out, he
may enter the command

SSIGNOPF SHORT

with the result that the sign-off statistics are abbreviated.

If the user only wants to know the approximate cost of his session and
his relaining balance, he lay enter

$SIGNOPF 3

After the statistics have been written, the telephone line to HTS is
automatically disconnected.

 LQBJ§HMlJ§
Since alnost all Teletypes on campus are nodel 33 Teletypes, the

following description is limited to that model. It your Teletype is

92 Conversational Usage of HTS

April 197

HTS Volume 1: HTS -- The System

different, such as a Hodel 35 or either of the ASR models, see the person
who is leasing it or call Academic Services (577-H778) if you need
assistance.

Initiation

Host Teletypes and the Westinghouse 1600's are capable of both half-
duplex and full-duplex mode of operation. For use with HTS, a Teletype must
be capable of half-duplex operation, and must be put into this mode.

Turn the main switch on the Teletype to "LINE", or press the "ON" and
"LINE" switches on the Westinghouse. If necessary, also turn on the
acoustic coupler. Allow the Westinghouse about 20 seconds for warm-up.
Place the telephone receiver in the acoustic coupler in the appropriate
position (the position is marked) and dial the HTS number (577-0210 or
577-0230). If, after a few seconds, the light on the coupler fails to come
on, lift the receiver and listen. If the line is busy, try again in a few
minutes. If there is no answer, call S77-H799 for a recorded message on the
status of HTS. when the light on the coupler comes on, type the word "GO"
and press the return key. The Teletype then prints the introductory lines:

HTS(L0xx—yyyy)
WHO ARE YOU?

asking the Teletype to identify itself. Host Teletypes on campus do not
have automatic answerhack mechanism and require a manual answerback. Since
HTS does not make use of the answerback, it is sufficient to press "RETURN".

The initial word "G0" tells the HEHOREX transmission controller that the
terminal is a Teletype (or Westinghouse) and automatically sets the speed.
On a Teletype, the speed is fixed at 10 characters per second. On a
Westinghouse, the speed is set at installation time for 30 characters per
second.

Once all the initialization has been taken care of and the "t" prefix
character appears, the user may enter his sign-on and password. To protect
the password, the Teletype may be temporarily put into full-duplex mode by
using the switch on the acoustic coupler. The password will not be typed asit is entered.

Control Characters

The control characters for the Teletypes default to the values listed in
the table below. The first four entries may be changed by using the device
commands given in the‘ table. The remainder of the entries are not
changeable. For the entries such as CONTROL-H, the key labeled CTRL and the
specified letter must both be pressed simultaneously. The name in paren-

Conversational Usage of HTS 93

3T5 Volume 1: HTS -- The System

theses below the code for the character may appear on the top part of the
corresponding key (possibly in red).

April 191a

I Default
I Character

-P-I-—q#

_ _— _ , ,__, _ - ‘_, aw;I
Heaning I How to I

I Change I

I CONTROL-H he previous character is deleted

I-I

nPc=

-uni

(son)

0

i

T'

1'

.1.

.;

iii

O

ORTROL-C I A logical end-of-file is presented
(BTXI I to the program. Any other contents

I of the line are not returned. V

I

EFC=

"1

' Y

.;

ORTROL H I The current input line is deleted.
I The Teletype returns to transmit mode
I for the line to be retyped.

,: ,, ‘_ ._ ._.,a,_ ,

8
E"

O

-I-5

*iiiiji

O

ONTROL-Z I The next character typed is treated
I as an ordinary character, even
I if it is a CONTROL-H, CONTROL-C,
I CONTROL-I or a CONTROL-Z.
I This has no effect on characters
I below.

, -_,,_,,,, ,, _ I .»._ W,

LNC=

iihiji

af

$11

BU

UBOUT I This character is completely ignored
| by the nzuonnx.

1icI

iii

quasa-

CONTROL-Q I This character terminates a transmit
(I-OR) I operation in a normal manner.
- he .| n _ 1 ~__a”l

R.ETURR or I This character terminates a transmit
CONTROL-S I operation in a normal manner.

-n-n

iidb

fl-

4-an

1

V

jm

M

in--q--ab

J-qiau-1

CONTROL-E I This character terminates a transmit
(IRU) I operation in a normal manner, unless

I it is the only character sent, when
I it causes HTS to see an invalid command.I

7 1 ,. 7 __ _ s, , *_':t_” s or »Ae

Regardless of the other characters (including other control characters)
in it, the line must he ended by a return, X—0!, X-QFF, or HRH before HTS
receives it. There is no indication that the CONTROL-H has been entered on
the Teletype. The replacement-character is typed directly next to the one
deleted

l£$££Si2.1£&££§B2$§

To issue an attention interrupt tron the Teletype, the BREAK key is used.If the Teletype is a Bodel 35, the BRK RLS key must he pressed after the

94 Conversational Usage of HTS

HTS volume 1: HTS —- The System

April 197B

BREAK. Then the attention interrupt will be recognized and a new command
may be entered.

2§;ns_a_!s§finsbQu§e;12QQ

Except for a few minor differences, a Westinghouse 1600 Cathode—Ray
terminal acts exactly like a Teletype. These differences are discussed
here. It is assumed that the reader is familiar with the rest of the
Teletype section.

The Westinghouse 1600 has two white switches to the right of the keyboard
which should be turned to "ON" and "LINE" respectively. The acoustic
coupler has a separate ON-OFF switch to turn on. Also the HALF DUPLEX-PULL
DUPLEX switch should be in the half duplex position.

Both sets of number keys transmit the same characters. To the left are
the buttons that control the display. These buttons currently send signals
to HTS. The four arrow buttons move the cursor (the "underscore" that
indicates the next position to be "typed") in the direction of the arrows.If held down, the motion continues until the button is released. The left
arrow button may be used to backspace over characters that have been deleted
by sending a CONTROL—H to HTS. The CLR PAGE button erases the display and
moves the cursor to the first character position on the top row of the
display. The HOHE button shifts the cursor to the first column of the top
line.

It is possible to suppress the password by changing the coupler switch to
FULL DUPLEX, typing the password, and then moving it back. However, it is
easier to hold one's hand over the screen, enter the password, press RETURN
and then press the CLR PAGE button (thus erasing the screen).

The screen can hold a maximum of 20 lines. When the bottom line has beenfilled, the display is automatically shifted up one line to make room for
the next. The top line is lost in this process.

25IEQlL_§§L§£2§IQlEl2£!§;l§§:!§BHIEAL

gnitiation

For use as an HTS terminal, the LCL-COH switch, located on the rear panel
of the terminal (if there is one), must be switched to COH, the power switch
on the acoustic coupler, and the main power switch on the right side of the
keyboard must be "ON" Qgfggg dialing the telephone number to connect the
terminal to HTS. Next, place the receiver on the acoustic coupler and dial
the HTS numbers (577-0210 or 577-0230). The blue (ready) and the green
(proceed) lights should come on. If they don't, pick up the receiver and
listen. If there is no answer, call 577-0799 for a recorded message of the
status of HTS. If it is busy, try again in a few minutes. when the lights

Conversational Usage of HTS 95

H15 Volume 1: HTS -- The Systen

April 197%

on the terminal cone on, type the word "go" and press the return button.
HTS will then type the introductory heading "HTS (L021-yyyy)" and return
control so that the user nay sign on. To protect the password, the sign-on
and password should be entered on two separate lines. hTS prompts the user
tor the password and then types over the area where the password will he
entered. “As long as the password and sign-on are correct, the session with
HTS can begin.

§2!I£2l.§L2I!£$§I§ ’

The control characters for the Selectric terlinals are given in the
follouing table. The first four control characters may be changed by the
device commands given.

r-1__ __,_. : 6 _ ’

1

amanq

\

i

it

L

I Default leaning Q How to |

I I I

F

Character Change

I

Q

BLCKSPLCE

snob

.a %»\ _ . .r”ae, ¢~e ._li .e.W*a ,". ~

H

he previous character is deleted. I $DPC=

_~;

I

(underscore)

-4

W , .1 1. he f . . tW_lr,rNV '1 g _ W f
Everything typed before the underscore | $DLC=
is deleted-

a

can-1

at

-ca

R

A logical end-oiefilewreturn is
presented to the program.

11::-ash

$.

Q

i

EFC=

nun;

qnnnnnn-Q)

at

The next character typed is treated
literally.

—~+

LNC=

Di

ii

%

F
ETURR | This indicates the line is terminated.

<—J ,. » ;. _,A., r .__._ Y7 _ 1-‘

i

§2£§iil.I!2!§_B!§££i££i9R§ '

The Selectric terminal is capable of transmitting both upper and
lowercase letters. Nornally, everything is converted to upper case beforeit is sent to HTS. If this conversion is not desired, lowercase letters nay
be enabled by using the device command lK=LC.

A physical input line nay only contain up to 120 characters, but through
continuations, a line of input lay be extended up to 255 characters.

Aiisniiaminiarrsate

Ln attention interrupt nay be generated iron the selectric terminal by
using the A1?! or INT key located at the upper right side of the keyboard.

96 Conversationl Usage of HIS,

HTS Volume 1: HTS -- The System

April 197B

aarcg gsggg or nus

ZEEEQQEEEZQE

HTS batch jobs are turned in to the CDPC Production Control desk
directly, through a distribution center, or through the remote batch station
for processing. In batch mode, the user prepares a card deck which contains
all the HTS commands, translator source statements or object decks, and data
lines which are needed to accomplish the desired task (or tasks). Once the
user has checked his deck for accuracy, he may submit the deck for
processing. A receipt is given to the user, the deck is read into the
computer and saved in a special file for later execution. The cards are
usually returned to the user immediately if submitted to one of the
Production Control Desks but may be saved for pick up by (or delivery to)
the user. The job is then processed by HTS, together with many other batch
jobs. Later, the results of the processing (the job output) may be
retrieved at the Production Control desk, at a distribution station, or at a
remote batch station, by the user with his receipt. The specific details of
submitting and retrieving batch jobs and their output are given in the
Zasilisiss ans asrzisaa 2; !§£ 922222222 ans Qaia zrasassins Qantas £2:
Asadsnis Esara (February 1973) and the manual lntrnéusiiea in H15 Q !§
(January 197B).

A2!AHEA§§§_é!Q_Dl§A2!A!lé§§§_QZ:§A$Q! U§A§§

Although many users need to have the interactive capability of conversa-
tional mode, batch mode is satisfactory and even advantageous in certain
situations. There will be few if any terminal users who will not make at
least occasional use of batch mode.

Since there are restrictions on the use of line printers, card readers,
and card punches in conversational mode, those users wishing_to make use of
these facilities generally should use batch mode. This can be done by
submitting a batch job, creating a batch job from a terminal (see the
description of *BATCH* in "Conversational Usage of HTS" in this volume), or
by using *PRINT* or *PUNCH* from a terminal.

Batch mode may sometimes be more economical than conversational usage of
HTS. Since the charge for a terminal session is based, in part, upon the
elapsed rea1—time, the terminal user will find that he is being charged
$3.00 an hour for just sitting and thinking. when running in batch mode,
there is no charge for elapsed real-time, but there are charges for card
reading, card punching, and line printing (which may approximate the
real-time charges for a similar terminal session).

Batch Usage of HTS 97

HTS Volume 1: HTS —- The System

April 197R

The major disadvantage of batch mode is that the user has no interactive
capability with his job. This limits his opportunities for error recovery
and making decisions depending on earlier results or conditions. Since
there is currently no way for making HTS commands conditional, every coamand
is executed regardless of earlier results. For example, a disadvantage may
arise in batch mode when the user wishes to compile and execute in the same
job. If an error has occurred during compilation, the object deck may still
he executed even though it is erroneous. This effect may or may not be
desirable, but the user has little control over it.

DHH JE§L !§BH9L1
The dollar sign conmand flag "3" is required before all HTS commands in

batch mode. This is necessary to avoid interpreting data as command lines
and causing irreversible damage to files.

In hatch node, HTS recognizes the following global parameters from the
SIGUOR command:

21£.i!.9.l2£ detains Qsianli
TIlB=t CPU time limit 30 seconds
PAGBS=p Printed page limit 50 pages
CARDS=c Punched card limit O cards V

COPIBS=n Number of copies of printed output 1 copy
PRIIT=[QN|TR} Printer character set any character set
ROUTE=station Output station for printed Input station

and punched output
PROUTE=station Output station for printed output Input station
CROUTE=station Output station for punched output Input station

(Default is CHTR if
the input station has
no punch unit.)

If the user does not supply the parameters above for the SSIGIOI command;
the default values are supplied automatically and his job is held to them.
The above global parameters are ignored in conversational mode.

The $DBSTRO! and $EHPT! commands do not require confirnation in batch
node. Confirmation is required only in conversational mode.

The $!RRORDUhP and 852T BRRORDUhP=0N commands are effective in batch mode
allowing the user to produce error dumps for his job. These commands are
not effective in conversational mode.

The HTS pseudo-device naues have the following defaults in' batch and
conversational mode:

98 hatch Usage of nTs

HTS Volume 1: HTS -- The System

April 197“

..._Bat<=h H222 senzsrsaiisnal Haas

SOURCE Card reader Terminal
SINK Line printer Terminal
PUNCH Card punch Card punch
AFD Active file Active file
HSOURCE Card reader Terminal
HSINK Line printer Terminal
PRINT Line printer Line print
BATCH HASP batch queue HASP batch

Prefix characters are not printed on the user's out

An input line in batch mode is one full card (80 c
wishes to continue an HTS command line or a line bei
currently active file, a minus sign "-" can be p
indicate that the next card is a continuation of the f
input lines are continued by typing a minus sign in
line. The maximum length for any line entered in HTS
characters.

The standard IBH 1403 Printer has 132 print po
Since the leading character of an output line to the
treated as a logical carriage control character, colum

er
queue

put in batch mode.

olumns)1. If the user
ng entered into the
unched in gglggg QQ toirst card. Terminal
the last column of the
command mode is 255

sitions for each line.
printer is normally

ns 2-133 of the outputline are printed columns 1-132 of the printed output. (See the "Carriage
Control" section in Volume 3 for a description of carr
lines longer than 133 characters are truncated.

The maximum length of-an output line to the card pu
Output lines longer than this are truncated.

§l§Q§'!!131_!_° E ALT?2:13.221‘ '_ Q2215.

The first card in any HTS batch input deck m

command with a "$" in column 1 and the letters SIG inletters SIGHON in columns 2-7. The SIGNON command
the system and supplies certain pieces of information
batch processor which coordinates the execution of ba
system.

The pieces of information supplied to HTS are th
the global limits for CPU time, pages printed and car
global limits are not specified, the default values,
are imposed. The information supplied to HASP concernof the user's output to be printed and the character
printing the output, and the designations of anlocations for sending printed and/or punched output.

I Lines submitted via *BATCH* may be up to 255 charact

iage control.) Output

nch is 80 characters.

ust contain the SIGNON
columns 2-H or the

identifies the user to
to HTS and to the HASP
tch jobs within the

e user's signon ID and
ds punched. If the
which are given above,
s the number of copies
set to be used for

y remote batch station

ers long.

Batch Usage of HTS 99

HTS Volune 1: HTS -- The System

19:11 1914

The user's password may be specified on the $516108 comnand, but it is
reconnended that the password be entered left-justified in columns 1-6 of
the second card in the input deck. In this lanner, the user's password is
not printed on his output, thus providing added protection for the security
of his password. The password nay he changed by the conaand

’ 853T PI=xrxx:x

where "zxxrrx" is the new password. To prevent the printing of the new
password when the $SET comland is echoed, it is desirable to use the
following sequence of HTS commands:

. GSET zcno-orr
SSBT PI=rrxxxx ECHO=0N

This turns off the echoing of HTS connands on the user's output, changes his
password, and turns echoing hack on. In this manner, the second $SET
cosnand is not printed on the user's output.

Normally the last card in the input deck is the SSIGNOPF coanand. This
terninates the user's job and causes a sunnary of joh statistics to be
printed for the user's job. Omission of the sszsuorr connand is equivalent
to placing =

$ERD?ILE
SSIGNOFF

at the end of the deck. The job is still terminated and the statistics are
printed,, T

The following is an example of a short batch input deck for colpiling and
executing a FORTRAN progran.

$SIGION X007 T=6O P=100 ' SLHPLE PROGRlH'
JAHBS
$SET BCHO=OPY
‘SET PI=BOID BCHO=OH
$RUN ‘PT! PlR=L0lD='OBJBCT

FORTRAN source program

SEHDFILE.
$RUN -OBJECT

data

$BID!ILB.
SSIGIOPP

100 Batch Usage of HTS

HTS Volume 1: HTS -- The System

April 197R

The user with ID X007 and password JAMES is signed on. The global time
limit is 60 seconds and the global page limit is 100 pages. A default
punched card limit of 0 cards is imposed. The pair of $SET commands changes
the password to BOND. The following cards compile and execute his program.
The last card terminates his job.

§§2LQ!AZlQ!”22:§E;!IE2r99T2!l

Associated with each batch job's printed output is a header-sheet and a
tail-sheet. These sheets are for ease of identifying the end of one user's
printed output and the beginning of another user's printed output when
separating them off of the printer. Both the header and tail sheets have
the user's job receipt number printed on them. In the center of the
header-sheet is a block WAYNE STATE monogram. The header-sheet also gives
the date and time that the job was processed by HTS, an echo of the user's
SSIGNON command, and the user's signon ID, receipt number, and delivery code(if any) in block letters.

The tail-sheet gives a statistical summary of the user's job and the date
and time that the job was processed. In the center of the tail-sheet, the
non—zero entries from the following list of job statistics are printed.

The user SIGNON ID
The project number
The time of sign-on
The time of sign-off
The elapsed time in minutes
The CPU time used in seconds
The CPU storage virtual memory integral in page-minutes
The wait-state virtual memory integral in page-hours
The number of cards read
The number of lines printed
The number of pages printed
The number of cards punched
The number of tape mounts
The tape drive time used in minutes
The number of drum reads
The approximate total cost of the job
The charge for plotting time
The charge for disk space used since last sign-off
The remaining balance of funds for the ID
The time of the previous sign-on

§§£LA!é!l0B:2£=EU!§§§Q-QE!£H1

Associated with each hatch job's punched card output are three identical
leading and three trailing separator cards to identify the beginning of the

Batch Usage of HTS 101

HTS Voluae 1: HTS -- The Systen

April 1975

user's punched output. Coluans 1-6 and 75-80 each contain a hexadecilal PP.
Between columns 7 and 78 are the user's receipt number and distribution code
(if any). These separator cards should be removed before using the deck. ‘

LQQLMLH
Batch jobs submitted and returned at the CDPC or a distribution center

are local batch jobs. Those submitted or retrieved elsewhere are remote
batch jobs. Batch jobs submitted via *BATCH*, *PRINT*, or *PUNCH* are
treated as local batch jobs unless routed to a remote station.

The CDPC has a reaote batch station in the basement of the Science
Library for processing batch jobs. This station is connected by telephone
line to the 360/67 at the CDPC. Batch input from the remote station is sent
via telephone to the 360/67 for processing by HTS, and the output is
normally returned via telephone to that station for printing. This remote
station has card reading facilities and a line printer for producing printed
output. Card punching is not available at this station and the number of
pages of output nay be restricted since only one printer is available. The
process of submitting a batch job and retrieving the output at this station
is identical to that at the CDPC. The user nay also use *BATCH* from a
terminal or at this remote batch center to have his job run (or cards
punched) at the CDPC. He nay then pick up his output at the CDPC Control
Desk or have it delivered. The output station code for the basement of the
Science Library is SCIL. ~

EH2

The following inforaation is not necessary for the running of batch jobs.It is presented only for those users wishing to iknow aore about the
operation of HASP.

The HTS batch processing is controlled by a program known as HASP
(gouston Automatic gpooling griority Systea). HASP was originally developed
for the IBH Operating Systea, but has been revised to interface with the HTS
systea and accept HTS batch jobs.

1 batch job in HASP is processed in five phases:

(1) input phase
(2) execution phase
(3) print phase
(R) punch phase
(5) purge phase

Lt any one instant, several batch jobs are noraally in each phase coapeting
for the use of the various hardware and software facilities. During the

102 Batch Usage of HTS

April 197

HTS Volume 1: HTS -- The System

input phase, HASP reads in the job deck from the card reader and stores it
on a special disk area to await execution. After the job deck has been read
in its entirety, an entry is made on a HASP execution queue which indicates
the job is now ready for execution in HTS. At the beginning of the
execution phase, HASP creates an HTS task specifying the input disk area
containing the job deck and specifying the output disk areas (for printed
and punched output); a print disk area is always needed by a batch job, but
a punch disk area is set up only if the batch job indicates that punched
card output is to be produced. Ihen the job execution is terminated, HASP
is so informed, the HTS task is destroyed, and the disk area containing the
job input deck is released. At this point execution is over but the job
output (print and punch) is still on the output disks. After the execution
phase, the job is placed in the print queue to initiate the print phase.
During the print phase, the job's printed output is produced on a printer
under HASP control. After the print phase, the job is placed on a punch
queue if it produced punched output. In this case the job enters the punch
phase during which its punched output is produced on a card punch. After
the punch phase, or after the print phase, if the job produced no punch
output, the job enters the purge phase. Here the job is placed on the purge
queue and finally purged from the system. During the purge phase, all disk
areas used by HASP for the job are released, if they have not already been
released. At this time some information about the job is saved so that a
user inquiring about his job can be told it is finished. This information
is saved for 96 hours after the purge phase is completed.

As mentioned earlier, at any one tine there are normally batch jobs in
each of the five phases competing for the hardware and software facilities.
Hence, at any given instant, HASP must select the next job to be given
processing time via some selection criteria. ‘ To do this, HASP uses a
priority basis to select jobs for processing. This means that jobs are not
necessarily processed in the order in which they were read into the system.

Each job is assigned an gxgggtign pgiggigy when it is entered on the
execute queue and a pgigt pgiggity when it is entered on the print queue.
These priorities are numbers between 0 and 15 with the higher numbers being
the higher priorities.

The execution priority assigned to each job for execution is based on the
CPU tine limit specified on the SSIGHON command. Currently the priorities
from 10 to 15 and O and 1 are unassigned. To compute the priorities, the
following tables are used:

Batch Usage of HTS 103

ITS Volume 1: HTS -- The System

Z£2§!$i2LIlhl2 2£i££..I5hl§

April 1970

Tine Estimate Priority Printed Pages Priority
(seconds)

S S

6-10
11-30
31-180

181-300
301-600
601-1800

> 1800

!~)(.0l=UIU\~l@\O

5 20
21—50
51-300

301-1000
> 1000

U‘lG\~l®\O

Note that these priorities are subject to change without notice. The
command "SIIQUIRE PRIORITY" prints the current table.

To compute the execution priority, the priority number is taken directly
from the execution table based on the time estinate on the $516808 card.
For example, if a job estimates a time limit of 200 seconds, the execution
priority is 5. within a group of jobs which have the same priority, jobs
are executed in the order in which they are submitted.

To compute the print priority, the priority is taken directly from the
print table based on the number of pages ggggglly to be printed (not the
page estimate). If 100 pages are to be printed, the print priority would be
7. when a printer is free, the job with the current highest priority is
chosen to be printed next. Iithin a group of jobs with the same priority,
the jobs are printed in the order in which they completed execution.

The punched output from a job, which is written on the punch disk while
the job is executing, is always produced ggtgg the job has been printed. No
priorities are associated with punched output. Jobs are punched in the sane
order in which they finish printing.

Note that HASP is only one of several programs running on the 360/67
concurrently. The time-sharing aspects of the machine apply to HASP as well
as to HTS and user programs in nTS. To control the competition between
batch jobs and terminal jobs for hardware facilities, there is a maximum
number of jobs which H15? allows in each of the processing phases (other
than the input phase). These maxima vary during the day and over the month
depending on the character of the HTS load level. ht all times, the CDPC
attempts to maintain a reasonable balance between batch processing and
terminal usage in order to provide acceptable service to both user groups.

The maximum number of batch jobs that HASP schedules for execution at
once currently depends on a number of factors related to the load on the
system. This "system load" is a quantity computed regularly by HTS, and is
based on a nuaber of factors, including:

1. The utilization of the central processor. S

2. The number or virtual pages in use.

100 Batch Usage of HTS

HTS Volume 1: HTS —- The System

April 197G

3. The hardware configuration (number of drums and amount of primary
storage).

Various "weights" are assigned to the usage of each of the above factors,
and a total system load (a number between 0 and a few thousand) is computed.
The weights are chosen so that a value of 100 indicates a fairly heavy load
(or the system is operating at about 100% of its capacity). Values greater
than 100 indicate that the system is being overloaded, hence service will
become increasingly degraded.

All numbers in the above tables are subject to change. Such changes are
made to ensure satisfactory service to terminal users while running as many
batch jobs as possible. In addition, changes may be made to these
algorithms to take advantage of more information than is currently used.

Now for the key question: "When will my batch job be done?" It's like
this: with the present hardware, HASP can have batch jobs being read in
locally, three being printed and ten in execution all at once. Also the
remote batch station can be reading in jobs and adding them to the execution
queue. Just when any particular job is done depends on how accurate the
other users‘ time and page estimates are, how many terminal users are signed
on and what they are doing, how many tape drives are in use, how much the
jobs interfere with each other (using the same disk drive, etc.) and about
twenty other factors (all interelated in complex ways).

The $INQUIRB command, giving a job receipt number as the parameter,
prints the location of the job in the batch process and the number of jobs
queued ahead of it. This command gives the same information available to
the operators about the status of a job.

Batch Usage of HTS 105

i

\

\

l

HTS Volume 1: uts -- The System

106 Batch usage of Ms

April 197“

HTS Volume 1: HTS —- The System

April 197B

1;;§;_;gn nzvxcng

Data for a user's commands and programs is accessed from either files or
devices. A file is a logical entity —- a set of lines of information. A
device is a physical entity such as a magnetic tape unit, a card reader, or
a port for a user's terminal to call. The general specification of a file
or device is called a Iilg Q; Degice ggg in the HTS manuals, and is
abbreviated as ggnggg. The purpose of this section of the manual is to
describe the kinds of files and devices available, to give rules for
constructing File or Device Names, and to show hov they are used.

ElL§§

A file is an ordered set of zero or more lines. A ling is a string of
one or more characters (bytes). Both the maximum number of characters in a
line and the maximum number of lines in a file depend on the type of file
organization, which is discussed below. In the most restrictive case (linefiles), the maximum line length is 255 characters, and the maximum number of
lines is about 10000 for an average file (depending on the length of the
lines). '
O

Long-term storage in HTS is organized on the basis of files and hence is
referred to as file storage. These files may contain source decks, object
decks, data sets, output listings, writeups, etc.

There are two bases of classification of a file:
(1) The availability of the file.
(2) The type of organization.

These tvo characteristics are fixed at the time the file is created. Thefirst is determined by the form of the file name; the other is specified by
a keyvord on the SCREATB command.

Ths_l;a;le2;;iizee;_§ilss

Pgblig files are files containing components of the system, such as
language translators and utility programs. Public files may he accessed by
anyone, but are protected against modification. Volume 2 of the HTS manual,
ggblig file Qggggipgiggg, contains descriptions of the public files avail-
able to the user. Public files are also called system files or library

Files and Devices 107

urs Volume 1: HTS -- The System

April 1970

files. At ISU CDPC the concept of a public file has been broadened to
include all files maintained at the Computing Center. Consequently, file
names prefixed by "CCAP:", "DBHO:", "HBLP:", "urw:", and "0LD:" are
considered public files and have entries in Volume 2.

ggiygtg files are files belonging to a specific user and may be accessed
only by him, unless he gives permission to others for accessing them. There
are two types of private files, pgggggggt and gggpggggy. Permanent private
files must be explicitly created by the user with the SCREATE comaand (or by
calling the subroutine CREATE). Once created, they exist until the user
explicitly destroys them with the SDBSTRQY command (or by calling the
subroutine DESTROY). For the descriptions of these subroutines, see Volume
3. iuhreufins and nesre neaszriaiiens

Temporary files, also called ggggtgh files, are created when their nanes
are first encountered by HTS, and are automatically destroyed when the user
signs off. They may be explicitly created (or explicitly destroyed), but
must be explicitly created if other than the default characteristics are
wanted. The default characteristics are discussed below and are also given
in the $CREATE command description in this volume.

§i!2l§-Iil§.!§!§§

Permanent private file names consist of one to twelve characters. If
more than twelve characters are specified, only the first twelve are used.
The name can consist of letters (1ower—case letters are automatically
translated to upper-case), digits, and some special characters. It cannot
contain blanks, commas, semi-colons, left-parentheses, at-signs, or plus-
signs. It cannot begin with an asterisk.

Examples: FILE V '

A_LOIG_IlHE
321
STATP6.S

Internally, the name of the file consists of the user's four character
signon ID followed by the external twelve character name. In this way, the
names of one user's files are always different frou those of other users.

If a user wants access to a file belonging to someone else, he must
prefix the file name with the owner's signon ID, separating them with a
colon "z". Thus if user AAA! wants to read the file NEWS of user BBBB, he
must refer to it as

BBBB:NBIS

This, however, works only if the owner BBBB of the file has permitted it to
be read. See the section "Shared Piles" below for details.

108 Piles and Devices

HTS Volume 1: HTS -- The System

April 1978

Temporary (or scratch) file names consist of one to eight characters
prefixed by a minus sign "—". This prefix is called the scratch file
character (SCRPCHAR), its initial value is a minus sign, and it can be
changed by the HTS SSET command or the subroutine CUIRFO. The legal
characters for a temporary file name are identical to those for a permanent
file name.

Examples: —T
—0BJECT
-1

Public file names either
1)_ begin with an asterisk "*", cannot end with an asterisk, and

contain a maximum of sixteen characters including the asterisk, or
2) begin with "CC1P:", "DBHO:", 'HELP:", "RBI:", or "OLD:" and

contain a maximum of twelve characters excluding the "CCAP:",
"DEHO:", "HELP:", "NBI:", and "OLD:" prefixes.

Examples: *FTN
*1
*PROJBCTACCOUNT
HELP:DIRECTORY

nzvxcng

A Qggigg is a specific discrete item of hardware, such as a card reader,
a magnetic tape unit, or a port into the system that a user's terminal can
call.

§im2ls_2sziss_!ams§

Each device has a four-character page and a three or four-character gggg.
Each physical unit has a unique name, and all similar units have the same
type. Since the user generally does not know and should not care which
specific devices are being used for his job, he uses pseudo-device names.
Device names are generally used only by the operators and the system
programmers. Since the user occasionally sees device names, a brief mention
is made here.

g§egQo—Qevice games

In HTS, execution of a program is normally initiated by a SRUN command.
This command requests execution of the program and provides HTS with the
name of the file or device where the program is located. This procedure is

Files and Devices 109

HTS volume 1: nTS -- The System

April 1973

followed both for system programs (such as translators) and for user
programs.) The SRUN command must specify the object program to be run and
the file or device names to be used by. the program. Thus, to run the
FORTRAN IV translator, the SRO! command must specify where the source deck
is located and where the object deck is to be placed, along with other
information.

These specifications in the SRUN command create immediate problems for
the batch user in HTS. Since in a hatch job, the input batch deck has been
read and placed on a special file (unknown to the user) before the job is
started, the hatch user has no way of providing in_ the SRUR command a
specific name for the file containing the source deck and/or data cards.
This problem is circumvented by the specification of ggggdggdgyigg gages.

Pseudo-device names are synonyms for the actual files or devices used.
They begin with an asterisk, end with an asterisk, and have from one to
fourteen characters in between. The same characters legal for simple file
names are legal here. There are nine pseudo-device names which are
automatically predefined for the user. In addition, others may he defined
with names of the user's own choosing when mounting removable volumes such
as magnetic tape on devices. (See the description of the SHOUNT in this
volume, and the "magnetic Tape User's Guide" in volume B for details.)

The predefined pseudo—device names are as follows:

SOURCB is defined by HTS as the current input (or source) file or
device. Initially, the system defines *5OURCE* to be the
same as *HSOURCE*. Thus, for batch runs, *SOURCE* is
initially defined as the location of the user's input deck,
while for terminal usage, *SOURCE* is initially defined as
the terminal at which the user is signed on. Therefore, any
reference by a batch user to *SOURCE* is equivalent to a
reference to the batch input deck. The batch user may thus
use the name *SOURCE* in place of the (unknown) name of the
input stream.

The user can redefine *SOURCE* by using the HTS SSOURCE

command. If *SOURCE* has been redefined, by a user, an
attention interrupt at a terminal, or an end-of-file on
SOURCB when attempting to read a command, causes *SOURCE*
to be redefined back to *nSOURCE*.

SIIK is defined as the current output (or sink) file or device.
Initially, the system defines *SINK* to be the same as

- *uSIRK*. Thus, for a batch job, HTS initially defines *SINK*
as the printed output stream for that job, while for terminal
usage, *SINK* is defined as the user's terminal. (Thus the
batch user need not know the specific name of the place being
used to collect his printed output, since he may refer to it
by the pseudo-device name *SIHK*.)

The user can redefine *SIK* using the HTS SSINK conmand. If
SIhK has been ‘redefined by a user at a terminal, an

110 Piles and Devices

HTS Volume 1: HTS -- The System

April 197“

attention interrupt causes *SINK* to be redefined back to
HSINK.

HSOURCE is defined as the master input (or source) file or device,
which is the terminal in conversational operation and the
file or device from which the batch job is being read in
batch operation. *HSOURCE* may not be redefined by the user.

HSINK is defined as the master output (or sink) file or device
which is the terminal in conversational operation and the
printed output for batch operation. *HSINK* may not be
redefined by the user.

APD is defined as the current active file or device (if any).
The active file or device is established by the HTS $GET or
$CREATE commands. See the section "Putting Information into
Files" below for details.

DUHHY is defined as an infinite wastebasket for output (lines are
accepted and they disappear) and an empty file for input
(every time a line is requested, an end-of-file condition is
returned). *DUHH!* is particularly convenient for specifying
that output is to be ignored.

PUNCH is defined slightly differently for batch and terminal usage.
For batch jobs, it represents the punched output for the job.
Anything written to *PUNCH* is punched on cards, if the user
has specified a big enough punch limit for his job. For
terminal usage, writing information to *PUNCH* causes a new
batch queue entry to be created to punch the output. A
receipt number for use in picking up the punched output is
printed at the terminal.

PRINT is the same as *HSINK* in batch. From a terminal, writing
information to *PRINT* causes a new batch queue entry to be
created to print the output. A receipt number for picking up
the printed output is printed at the terninal.

BATCH is defined for both batch and terminal usage. Writing
information to_*BATCH* causes a new batch job to be created
to run the input. A receipt number for picking up the batch
job's output is printed on *HSINK*.

For a complete description of *PUNCH*, *PRINT*, and *BATCH*, see the section
"Batch Jobs from a Terminal" in this volume.

Files and Devices 111

Ii

H25 Ieiune 1: H18 - The Bystea

hptii 1910

ilillilii
A giggle gggggg is one of the folloving:

(1) Simple file name
(2) simple device nane
(31 Simple pseudo-device name

111 simple rbnamec that are not pseudo-device names are normally interpreted
as file DIIQB; even if they are identical to device names, thus avoiding
centurion between a file and a device with the same nale.

to specify that an rbname is a device name, it must he prefixed with a
">'.l for example,

R681 refers to file RDR1
>RDR1 refers to card reader 1

This prefix is called the device name character (DBVCHARI, its initial value
is a greater-thnn—siqn *>*, and it can be changed by the SSE? command or the
subroutine curnro.

!o specify that an rbname is only a file name, it must he prefixed vith a
"Q". acontinning the ezmaple above,

#2081 alco refers to file RDR1 .

Ehis is generally necessary only when the first character of the file name
is a flag character. ror example,

-1 refers to a temporary file with name T
4-? refers to a permanent file with name —T

This prefix is called the file name character (rxrzcannr. its initial value
is a pound-sign "OI, and it can be changed by the $52! connand or the
subroutine CUINIO.

Ehe action of a file or device may be changed by appenéinq to the simple
rnaae one or more I/0 modifiers. zach modiiier consists or an at-sign "O"
(mnemonic for 'attribnteI;, tclloved by the modifier name. 1 modifier name
may be grmceded by a not-sign '~' or a minus-sign‘"-" to reverse its
meaning. fer example,

11 user any net erdinariiq refer to a device directly, Psenno-device nanes
mast be need instaa.

1&2 211;; £35 nevicem

HTS Volume 1: HTS -- The System

April 197“

$COPY A *SINK*B~CC

in a batch job causes file A to be copied to *SINK* (that is, printed) with
the modifier specifying no carriage control. A detailed description of the
modifiers and their meanings is given in Appendix A and in Volume 3.

Ll!§_!§.!E§E..§A!§E§

The usage of a file or device may be augmented or restricted by appending
a line number ggggg specification to the FDname. The form of this
specification is

(hue: 1’

where Q, g, and i are each ling numbers. The Q, g, and i are, respectively,
the beginning line number, the ending line number, and the line number
increment. Any combination of these three items may be omitted. Trailing
commas resulting from the omission of items may also be omitted, but leading
and internal commas are required. For omitted items, the defaults are

b ' 1

e 99999.999i 1

Note that in the case of a sequential read operation from a line file, the
default value of 1 is not used. If i is omitted, the next line in the file
is read; if 1 is specified as 1, then an increment of 1 is used. If the g
is omitted, an end-of-file indication is returned when the end of the file
is reached.

The line number range specifies a range of line numbers to be used for
input or output. If it is used with a line file, the line numbers are taken
from the file. For sequential files or devices, they are generated by the
system using the values given for Q, g, and 1. Thus for line file A,

3. A(1O,15)

represents all lines in the file with line numbers between 10 and 15
inclusive, and for tape *T*,

T(1,322)

represents 322 records read from or written to *T*, using line numbers 1, 2,
..., 322. Note that on input the record following the one given by g is
also read and moved to the user program buffer. Therefore in the above
example, the tape would be positioned after the 323ed record not the 322nd.
Details on how the line number range affects the usage of an FDname is given
below in the section "Types of File Organization".

Files and Devices 113

—~ I -—~lr 1

HTS Volume 1: HTS -— The System

April 197B

 E..‘ON

Although the maximum size of any single file is limited (depending on the
type of organization of the file), the amount of data that may be referred
to by a given FDname is effectively unlimited, because several files or
devices may be automatically chained together (concatenated) either gggliggit}; or igpligigll. Explicit concatenation means the user explicitly
indicates by the Fnname how the files or devices are to be chained.
Implicitzconcatenation means that the contents of the file or device
indicatefhow they are to be chained together. ‘

;n2lisii__§ensa&snsti2n

Implicit concatenation is indicated as follows:

$CONTIHUEmIITH Pnname
or

$COHTINUBmHITH Fbname RETURN

(where m represents exactly one blank). Whenever such a line is read from
any file or device, reading continues with the file or device Egpggg and the
"SCOHTINUE WITH" line is not passed as data to the program issuing the read
operation. The "SCONTINUE WITH" line is, however, moved to the user program
buffer before the new data line is moved in. This may cause problems in
some programs if the "$COHTINUE IITH" line is longer than the next data
line.

In the first case (without the RETURN), reading continues with the
specified Fnname, and the lines following the "SCOHTINUE WITH" line in the
original file or device are ignored. This is analagous to a transfer
statement in programming languages. The second case (with the RETURN) is
analagous to a subroutine call in programming languages —— after reaching
the end of whatever it 'continded with", reading resumes with the line
following the "SCONTIRUE WITH" in the original file or device.

This implicit concatenation action can be disabled. (Otherwise, there
would be no way to inspect a file to see if a "SCONTINUB IITH" line is
there.) The IC global switch, which has initial value ON, can he set with
the SSBT command or the subroutine CUIRFO. The HTS command

$SBT IC=OFF A

turns off implicit concatenation. In addition, the I/0 modifier IC
overrides the setting of the IC global switch for all references to the
Pbname to which the modifier is attached. Thus, '

SLIST PH!LB8~IC(LAST)

11¢ Files and Devices

HTS Volume 1: HTS -- The System

April 191a

allows the user to see if the last line of PHILE contains a "$CONTINUE WITH"
line.

§;2l;ei;=§22ea;ene£;92

Several files and/or devices may be chained together by using explicit
gggcatenation. This is done by giving the names of the files or devices
(with optional modifiers and/or line number ranges) in the order desired,
connected by plus signs. For example,

-T(1,100)+HYFILE

specifies the contents of lines 1 through 100 of -T followed by the contents
of HYFILE. Note that line 101 of file -T (if there is one) is also moved to
the user program buffer, and is then replaced by the first line in HYFILE.
In some programs (never in HTS commands like $COPY) this may cause problemsif the first line in HYFILE is shorter than line 101 in -T.

If two or more consecutive simple Pbnames in an explicit concatenation
are identical, all but the first may be omitted. For example,

A(1,1)+(LAST)

is identical to

A(1,1)+A(LAST)

If a member of an explicit concatenation uses implicit concatenation
(that is, contains a "SCONTINUB WITH" line), the entire implicit concatena-
tion is used as ggly that ggmbeg of the explicit concatenation. The
following members of the explicit concatenation are pg; ignored. Note that
the PDname in the "$CONTINUE WITH" line may itself be an explicit
concatenation.

The processing of the next member of an explicit concatentaion is started
whenever a return code of 4 (end—of-file or device) is received for a read
or write operation (which occurs whenever the physical end is reached or the
ending line number is exceeded). Care should be exercised when using
indexed operations on explicitly concatenated files. For a sequential write
operation, the line number range specifications may be used to control the
flow of data into several files or devices. For example,

$COP! A B(1,1O)+*SINK*(1,10)+B(11)

copies from file A, starting at line 1, 10 lines into file B, followed by 10
lines to *SINK*, followed by the remainder of file A into file B, starting
at line 11. The ending line number specified in the line number range for a
simple Fnname (or the last member of an explicit concatenation) is ignored
when performing a sequential write operation. Thus, the command

Files and Devices 115

HTS Volume 1: HTS -- The System

April 1975

SCOPY l(1) B

is identical to

SCOP! A(1) B(1,10)

To copy only the first 10 lines from file A into file B, the user may give
the command

SCOPY A(1) B(1,1O)+*DUMHY*

Rote that this is not the same as

$COP! A(1,10) B

since the line number range (1,10) can contain 0 to 10001 lines.

Some examples of explicit concatenation are:

HLIN+SUBR
DlTA(1,1)+(3,1O)3UC
SOURCE+DlTA+lLLOC(1,10)
TAPB(1,10000)+*TlPE2*

Note that an explicit concatenation of a file or device name effectively
specifies a new file name for the duration of the read or write operation.
That is, the explicit concatenation

HYSOURCE+-DATL+*SOURCE* '

is effectively the name of a file consisting of the contents of the
permanent file HYSOURCE, followed by the contents of the temporary file
-DATA, followed by the information on the pseudo-device *SOURCE*.

rpngggg

The term Zggggg is defined as either

(1) a simple FDname with optional modifiers and/or a line number
range, or

(2) an explicit concatenation of two or more simple Fnnames, each
with optional modifiers and/or line number ranges.

In either case, the files or devices specified by the Fbuames may contain
"SCOHTIIUE WITH" lines. In the cases where a restriction lust be made to
refer to a single file or device, the term tnname is not used.

116 Piles and Devices

April 191a

III
'11

50
O

RI

PROCESSING

HTS Volume 1: HTS —- The System

If the FDname for a file or device is incorrect (such as containing an
illegal modifier), an error comment is issued when the Fnname is entered.
If, however, the Pnname is correct but the intended usage is not (such as
trying to read from a file that does not exist), then the error condition
does not occur until the first time an attempt is made to use the file or
device.

In either case, when the error condition is noted, error comments are
printed as described below, and then

(1) for batch jobs, a return is made to HTS command or debug mode, and
cards in the user's deck are skipped until an HTS command (S in
column 1) is found, or

(2) for terminal usage, the line
ENTER REPLACEMENT OR "CANCEL".

is typed. At this point, the user may either enter a replacement
FDname (including the modifiers and/or line number ranges), or
else enter the six letters CANCEL, in which case HTS returns to
HTS command mode.\

Error comments concerning simple Fbnames are reported using the same form
of the FDname that was entered when the Fbname was specified, including any
modifiers or line number ranges. If the Fbnane was specified as part of an
explicit concatenation, it is preceded by "...+" (if it was not the first
member) or followed by "+..." (if it was not the last member). Thus, the
comment

"...+A+..." DOES NOT EXIST

means that the file "A" does not exist, that it was specified as part of an
explicit concatenation, but it was neither the first nor the last member.If a replacement PDname is entered in response to one of these comments, it
replaces the ggggg FDname typed out in the comment, in the same relative
position in any explicit concatenation. Note that a full FDname must be
entered, including all line number ranges and modifiers desired. '

The three error messages that occur at "first usage" time are as follows:

"Fbname" DOES NOT EXIST. means that gpgggg was interpreted as a file
name and no file by that name exists.

"FDname" IS NOT AVAILABLE. means that Zpgggg is an existing file, but it
cannot be accessed at the present time (pro-

lhote that if the replacement is a file named CANCEL, then the user must
enter it as "QCANCEL" -— i.e., prefixing it with the "t" file name
character.

Files and Devices 117

4-W e~ i

HTS Volune 1: HTS -— The System

April 191a

bably because it is on a volume that is not
available).

"PDname" IS INVALID. is produced in all other cases. This message
is preceded by an earlier message giving the
exact error.

As an example, consider the following piece of a terminal session. Input
from the user is in lower—case letters; output from the computer is in
upper-case. The numbers in brackets at the right are for reference only.

tcopy *source* -aisnark
SILLBGAL FDNAHE HODIFIBR
>line one
>"-ABSNARK" IS INVALID.

|—\F_I|‘-ll—l

4:umto-I
5-AL-J!-ll-I

>ENTER REPLACEMENT OR "CANCEL".
?cancel
8

I-1l'H|-5

~110\U‘!

\..n-n.-0

In [1], the user enters a copy command with an illegal modifier. The error
message is printed immediately [2]. However, the error occurred in the
second rbname of the COP! command, which was not referred to until after the
first line is read from *SOURCE* in [3]. ht that point, the illegal name is
first used, and the "first usage" error message is printed [H], and then the
user is prompted for replacement [5]. In [6], the user enters CANCEL, which
causes return to HTS command mode ("#" prefix character) in [7].

!§L§§-Q._..FF.12§.A!E.§

There are two types of input/output that a program can do. In the more
common case, the program may read or write information, without caring where
it's coming from or going to. This case is handled with logical I/0 units.
In the other case, the program reads or writes on a specific file or device,
whose name is either built into the program or is obtained as data from the
user. This case is handled with FDUB pointers.

L2si2al_ILQ_2ni:§

when a program is coded, the file or device name to be used for the
program's data may be unknown, so that it is impossible to specify it when
the program is translated. Even if this information were known, it would be
inconvenient to specify it during translation, since this would require
retranslation every time the file or device name was changed. Thus, it is
desirable to specify the location of the data at execution time rather than
at translation time. To do this. a lggigal 119 unit is used. A logical I/0
unit is a symbolic name which is used in a program to specify the source of
data for input or the destination of output information. A logical I/0 unit

118 Files and Devices

HTS Volume 1: HTS -- The System

April 197B

does not name a specific file or device; it simply serves as a reference.
when a program is executed, it is necessary to first specify, for each
logical I/0 unit used by the program, the actual file or device to be used.
For example, in FORTRAN, the statement

READ (5,100) P

requests input from logical I/O unit 5. Before this statement can be
executed, the user must specify a file or device name to be used whenever
logical I/0 unit 5 is referenced. Thus, in the SRUN command to execute this
program, the user must specify the keyword "5=FDname" to indicate that when
"5" is referenced, "FDname" should be used. For example, if the translated
program is in the file OBJECT, then when the command

$RUN OBJECT 5=INFYLE

causes the program to be executed, the program reads from unit 5 which
specifies the file INFYLE.

The names of the logical I/0 units are:

0 through 19 (integers)
SCARDS
SPRINT
SPUNCH
SERCOH
GUSER

For each of these, except 0 through 19 , there is a subroutine of the same
name (described in Volume 3) to do input and/or output on this unit. For 0
through 19 , the subroutines READ and HRITE are provided. These subroutines
can be called from both assembly language programs and FORTRAN programs.
For example, calling the subroutine SCARDS from a program causes a record to
be read from the logical I/0 unit SCARDS.

2?iill_!Ql!Q§:§Q£_¥9§i§2¥:I£Q=Q£i§§

Since it is convenient to reduce the amount of typing necessary to
specify the information required on a SRUR command, some of the logical I/O
units have default specifications. These are assignments of pseudo-device
names to the logical I/O units if no assignments are provided on the SRUN
command.

Files and Devices 119

\

>

\

1

I

i

HTS Volume 1: HTS -- The System

¢—q

F

-I4‘

Unit Default

‘J

‘m‘“Q

-do

H

-L

SCARDS
SPRINT
SPUNCH

SOURCE
SINK
PUNCH

SBRCOH *HSINK*
GUSER
0-19

HSOURCE
DOUG

April 197M

*1

For example, if on a SRUH conaand, the logical I/O unit SCARDS is not
specified as a particular file or device, then it is by default assigned to
the current input #souncr¢. Since most of the translators in urs use SCARDS

for source program input and SPRINT for compilation listing output, it is
often unnecessary to specify these logical I/O units when running the
translators, especially in batch node. For both batch and terminal use, it
is usually necessary to specify the logical I/O unit for the translator
output of the resulting object deck. Logical I/0 units 0 through 19 have no
default specifications in HTS. There are, however, default specifications
for the equivalent data-set reference numbers within the FORTRAN IV I/0

1
routines during program execution (see the Portran User's Guide in Volume

‘ 6,0

ZQ§§222i2§§£§

It is occasionally necessary for a program to read or write on a specific
file or device. The rnnaae nay be built into the program (as for example a

fixed file of error aessages) or nay be input data to the program. The
program uses a fullword quantity called a §Q§;pg1ggg; to refer to this
Pbnaae when doing input or output on the file or device. A FDUB-pointer is
the location of a file or Qevice gsage glock, aaintained by HTS to control
the usage of that file or device.

A PDUB-pointer is obtained by calling the subroutine GETPD (see Volume 3)
giving it the Pnnaae for the file or device. The PDUB-pointer returned by
GETPD can then be used in calls to READ or WRITE to do input or output. It
can also be used in calls on a nunber of other subroutines (see table
below). when the program is finished with the FDUB-pointer, the FDUB can be
released by calling the subroutine FRBEFD.

120 Files and Devices

April 1974

HTS Volume 1: HTS -- The System

—

A

id

Subroutine Purpose

WP

GETFD

F_n

inn--an

1

To get a FDUB-pointer for a given Pnname

READ

in-mi

1-___

ii

To perform an input operation
WRITE To perform an output operation

CHKFDUB
CONTROL

EMPTY
GDINF

GFINF
NOTE

POINT
REWIND
SETAFD
SKIP

To check an FDUB pointer for validity
To issue control commands to certain types of
files and devices
To empty a file
To get information about a file or device

GDINFO To get information about a file or device
To get information about a file
To return position information for a sequen-
tial file
To position a sequential file

To 'rewind a file or device
To make a file active
To position magnetic tape files and devices

""""""T

an1*-

-1»--.-n

-1ch

FREEFD

l;-, ,< __

Eb

To release a FDUB-pointer

Subroutines using rDDD—pointers

Detailed information about the above subroutines is given in Volume 3.
There are several other subroutines (such as CREATE and DESTROY) which take
the name as a parameter. These are also described in Volume 3.

2l23§-QI_ElLB.QB§AELZAELQE

The three types of file organization are

Files and Devices 121

Y ._e ——~— ———7—————-+——~~ — —

HTS Volume 1: ITS -- The Syetea

April 197R

P‘-n—-.1;-4

‘\

_-1:111-11

\

h-4--_¢i1a‘

LIIE Line file (default)

SEQ Sequential file
SEQIL Seguential-with-line-numbers file

The file organization can be specified as the value of the TYPE keyword on
the $CRBATB comnand when the file is created. For example,

SCREATB SP T!PE=S!Q

creates "SF" as a sequential file. Note that since the default is LINE, all
temorary files that are implicitly created (by the first usage of the file)
are line files. If a different type is wanted, the temporary file must be
explicitly created using the SCRBATE command. .

The SEQRL type is really a variation of the SEQ type; hence in the
following discussion of line files versus sequential files, what is said for
sequential files also applies to sequential-with-line-nunber files.

Li.u£_!il2§
The basic HTS file type is LINE. A line file is an ordered set of zero

or more lines. Each line consists of 1 to 255 characters (bytes). Each
line has associated with it a unique line nunber (for that file) which is
not part of the line. the lines in the file are numerically ordered. an
exact definition of line numbers is given below: for the discussion here, it
is a number from -99999.999 to 99999.999 inclusive. Note that while the
line number for each line must he stored in the file, the line number is not
part of the content of the line.

By using its line number, any line in the file may be directly accessed,
either for reading or writing. in input or output operation on a file which
explicitly indicates a specific line to be read or written is called an
igdgggd operation. The more conmon input/output operations on a file
specify a line nunber at which to begin reading or writing, and continue
with the "next" line for successive records read or written. These are
called gggggngigl operations. These two methods may be intermixed, for
example, using an indexed read operation to get to a given position in a

file and then reading sequentially from there.

the type of operation used depends on the sequential/indexed modifier
bits supplied for each tnnaee or input/output subroutine call. If, in the
call on a subroutine, the modifier word supplied has the indexed bit set, orif 31 was appended to the Ybnaee when it was given, then an indexed
input/output operation is performed. The default operation is sequential.
(See lppendix A for the description of the eodifier amalgaaation process.)

122 tiles and Devices

HTS Volume 1: MTS -- The System

April 197B

Indexed Operations

when an indexed read or write operation is done, the line number
given in the I/0 subroutine call is used to specify the line to be
accessed. A return code of R (end—of—file) occurs if there is no line
in the file with that line number, or if the line number is outside the
line number range given with the Fbname. (The beginning and ending
line numbers, if not specified explicitly in a line number range,
default to 1 and 99999.999, respectively.)

Implicit and explicit concatentation with an indexed operation are
handled in the following manner:

For an indexed read operation, if the line selected is a
"$CONTINUE WITH" line and implicit concatenation is enabled (the
default case), then concatenation occurs and the same line number
is selected for the new file or device specified by the Fnname in
the "SCONTINUB WITH" line.
If the file is part of an explicit concatenation (and not the last
member) and a condition that would normally produce a return code
of H occurs, a transfer to the next member in the concatenation
occurs instead. Thus, a return code of 4 on an indexed read to a
concatenation indicates that none of the members of the concatena-
tion had a line of that number; a successful indexed read on a
concatenation selects the specified line from the first member of
the concatenation (starting with the current member) with that
line number.

Sequential Operations

when a line file is written or read with an indexed operation, the
line number is explicitly given. However, for sequential operations on
a line file, the question of the beginning and ending line numbers
arises. These are specified via the line number range (discussed
earlier) which has the form

(bveri)
where Q, g, and i are each line numbers as described below.

For a read opgggtigg, the beginning line number is Q (which defaults
to 1, if not given) and the ending line number is g (which defaults to
99999.999, if not given). If the increment i is not explicitly given,it is not used. Thus o

A

is identical to

A(1,99999.999)

Files and Devices 123

HTS Yoluae 1: HTS -— The Systea

April 191m

and specifies all lines with nuabers between 1 and 99999.999 inclusive.If, however, the .increment i is explicitly given, then it is used to
select the next line. Thus

is identical to
l(av1)

1(1,99999.999,1)

and specifies only the lines with integer line numbers from 1 through
99999 inclusive.

For a gripe gggggtigg, the beginning line nuaber is Q (which
defaults to 1, if not given) and the increxent is 1 (which defaults to
1, if not given). The first line written has line number b, the second
b+i, and so on.

Note that Q lay be greater than g, and that 1 may be negative.
Thus, reading from

reads the integer—nuabered lines of A in reverse order (if LAST is
integer-valued).

Bixed operations

The following discussion applies to nixed sequential and indexed
operations on the sane logical I/0 unit or PDUB-pointer. Accesses to
the sane file via other logical I/0 units or other FDUB-pointers are
independent.

An indexed read or write operation operates on the line specified by
the line nuaber paraaeter in the I/0 subroutine call, regardless of the
previous I/0 operation.

If the first operation on a file is sequential, the behavior is as
decribed above: the line is specified by the beginning line nuaber Q.

For a sequential operation that is not the first operation, the
"next" line is chosen. For a read without an explicit increaent,
"next" is the next line in the file after the last one read or written.
For a read operation with an explicit increment, the "next" line has
the line number of the last line read plus the first multiple of the
increaent for which there is a line. For a write operation with an
explicit increnent, the "next" line has the line number of the last
line written plus the increment.

Line Inabers

128 !iles and Devices

HTS Volume 1: HTS -- The System

April 197B

Externally, a line number is one of three forms:

(1) tnnnnn.nnn

where "n" is a decimal digit (0 through 9). The minimum and
maximum line numbers are therefore —99999.999 and 99999.999.
when writing a line number, leading plus signs and leading
zeros, trailing decimal points, and trailing zeros after
decimal points may be omitted. Examples of line numbers of
this form are:

5 5.1 5.13 5.137 32505.137 -32505.13?

(2) LAST

which has the value of the last (algebraically greatest) line
number in the file. If the file is empty, the value is zero.

(3) LASTtm

where "tn" is a number of the form "¢nnnnn.nnn" as described
above. The value of this is the algebraic sum or difference of
the two components; thus LAST-1 does not necessarily specify
the line number of the next-to-last line, but merely a line
number 1 less than that of the last line.

The internal form of a line number is a fullword binary integer
whose value is 1000 times the external form. Thus, a line number whose
external form is 1 is stored internally as 1000 (decimal) or 000003E8
(hex). The internal form of a line number must be supplied to the
input/output subroutines when requesting an indexed operation, and the
internal form of the line number of the line that was read is returned
after a sequential read (or a sequential write in the case that the
RETURNLINE# modifier was specified -- see the Appendix A modifier
description).

§esmen2ial..§ils§

A sequential file is an ordered set of zero or more lines. Each line
consists of 1 to 32767 characters (bytes). The lines of a sequential file
do not have line numbers and cannot be directly referred to by line number
from a program or command.

As the name implies, sequential files can only be read or written
sequentially. A read operation always gets the next line, starting with thefirst line (only), while a write operation always adds the new line at the
end of the sequential file.

Line number ranges may generally ggg be specified for a sequential file.
For reading, Q and g may be specified, but the Q must be 1, for example,
A(1,99). For writing, line number ranges may not be specified since a
sequential write always adds to the end of the file.

Piles and'Devices 125

HTS Volume 1: HTS —- The System

April 1974

Sequential files generally may only be modified by adding lines at the
end of the file, and by emptying or destroying the file. By the use of the
NOTE and POINT subroutines, it is possible to "remember" positions when
reading or writing a sequential file, and then later reposition to begin
reading (or writing) at one of these positions. Positioning to a particular
record in a sequential file and then issuing a write causes the file to be
truncated at the point afterqthe record was written. However, positioning
to a particular record in a sequential file and then using a write with the
QSP modifier replaces that lrecord with one the same size, and does not
otherwise affect the file. Details on the use of the subroutines NOTE and
POINT and the ESP modifier on write operations to sequential files are found
in Appendix B.

Usage of Sequential Files

Sequential files may be used whenever the file is read or written
sequentially. Sequential files, line files, and devices can be
intermixed by implicit and explicit concatenation.

An attempt to do an indexed operation on a sequential file, or an
attempt to do a sequential operation starting at other than line 1

causes an error message to be generated. This message is controlled by
the SEQFCHK global switch. Issuing the comnmand

$SET SEQFCHK=OFF ‘

disables this check, and the input or output operations are done as
though they had been sequential operations starting at line 1. See the
section "Putting Information in a File" below.

Sequential files, although more restrictive in usage than line
files, can be larger than line files and are more efficient to access.
They are, therefore, preferred where only sequential operations are
planned.

Magnetic tape users should realize that sequential files are very
similar to tape files, and thus most applications which use tapes could
use sequential files with slight modifications. Such operations as
forward spacing files and the writing of end—of-file marks do not have
meaning with sequential files. Files cannot be rewound by writing the
three character record "REE" into the file using the DCC modifier. The
subroutine BEHIND should always be called to rewind a file (it also
rewinds tapes). Finally, it should be noted that blocking of records
(i.e., packing of short records into fewer; longer records) is not
nearly as space—saving on a sequential file as on a tape file since
there are no "gaps" between logical records in a sequential file.
However, blocking does improve the efficiency ~of using sequential
files, since the input/output overhead is reduced.

126 Piles and Devices

HTS Volume 1: HTS -- The System

April 197“

Sequential-with-line-numbers Files

The sequential-with—line-numbers file (SEQIL) variant of a sequen-
tial file is designed to save a line file together with its line
numbers. This file then can be restored later to a line file with the
same line numbers as the original file. The line numbers are only
retained as part of the file so that the information in the file can be
transferred later to a line file. The line numbers gagggg be referred
to while they are "frozen" in the sequential file.

If LNF is a line file and swr is a sequential-with-line-numbers
file, then (assuming SIP is empty and LNF has no lines with line
numbers less than 1)

SCOPY LNF SIFDI

saves the line file with its line numbers in SIP, and

$EHPTY LRF
$COPY SIP LHFDI

restores that information into LNF, with exactly the sane line numbersit had originally. Note that the indexed modifier is necessary on the
second ?Dname of both COP! commands to prevent new line numbers from
being generated.

The lines in a sequential-with—line—numbers file must have line
numbers that are in increasing order. when adding new lines to a file
of this type, it is necessary to insure that each line added has a line
number greater than the last one saved in that file. If BI is not
specified, causing new line numbers to he generated rather than the
original ones being used, then LAST+1 can be specified on the file.
Thus for example if SHF (as above) is not empty, then

$COPY A SIF(LA5T+1)

adds the lines from A to the end of SIT.

QQEQQLHG FILES

The availability, organization, and size of a file are all established at
the time the file is created. Files are created by using the SCREATE
command or by calling the CREATE subroutine from a program. The syntax of
the SCRBATE command is given in the command description. The CREATE
subroutine is described in Volume 3. The following discussion covers the
specification of the file characteristics when using the SCREATE command.

The SCREATE command has the basic form:

Piles and Devices 127

ans Volume 1: ans -- The System

April 197R

SCREATE filename

vhich causes a file of this name to be created (unless there already exists
a file of the same name, or the user has exceeded his file space allotment).
There are several options which can be specified in the form of keyword
expressions.

Slzlsn n is number of average (40 byte) lines
SIZE=uP n is number of pages (1 page = R096 bytes)
SIzE=nT n is number of 231R tracks (one 231G track = 7294 bytes)

ror uost files, this parameter is not needed. The default size for
permanent line files is the smallest possible (one 231“ track) which is
enough for about 90 average lines. since files expand automatically when
possible up to 16 times, most data sets can fit into a file of default size.
(ls a matter of interest, about 40$ of all user files in the system are
one-track files, and about 20$ are two-track files.) The following table
gives the default sizes:

7

1

;

Permanent

4

1:

Temporary

Line | Sequential
1

Line | Sequentia

wt

_“L

“hch_c, . shin éi >_:n.n,H _,

| Amount
| of Space
| Allocated

1;

231R
track

231“
track

-I-F

-I

:::i

~s‘I

_Q.

ml

_..‘-.

231R
racks

231k
tracks

| Pages
| Chargedl. _

.tN y

1J
liy

N

“

m

"

m

III
#-

1L

":1: in-:4

ror larger files, it is necessary to specify an estimated size. when
estimating size in terms of pages (or tracks), it should be noted that there
is a certain minimum overhead for each line or logical record in the file.
These overheads are as follows: ‘

—m

I-i

+

YP9 in. Overhead

d

tic»;

1

4-

44‘}i

‘,. inar

LII! 8 bytes/line
SEQ | 6 bytes/line
SBQIL I 10 bytes/line

‘nu-sd"_" ‘_

Information on the internal structure of files and approximate formulas for
the size required for a file is found in Appendix c.,

files are extended automatically uhen possible by the system. The
conditions for automatic expansion are:

128 Piles and Devices '

HTS Volume 1: HTS -— The System

April 1978

(1) The user has not exceeded his disk space allocation.
(2) Space is available on the direct-access volume on which the file

was originally created.
(3) The file consists of no more than 16 distinct allocations (called

"extents").

If any of the above three conditions is not met, the error comment

FILE "filename": SIZE EXCBBDED

is printed. A line file expands each time by the amount of the initial
request or 7 tracks, whichever is less, up to an absolute maximum size of
109 tracks. A sequential file expands each time by an amount equal to theinitial request (unless there is not a large enough extent available on that
volume, in which case a smaller extent is taken) up to an absolute maximum
size which is one disk pack (H000 tracks: 729% bytes/track).

TYPE=LINE Line File (default)
T!PE=SEQ Sequential File
T!PE=SEQiL Sequential-with—line-numbers File

This specifies the organization of the file being created.

1i2III!§:lEEQ§L&I;9!:l3!IQ A FILE

There are basically two different methods to initially put a set of lines
from *SOURCB* into a file. The following descriptions are equally applic-
able to batch and terminal usage.

The first method to put lines into a file is to establish the file as the
active file, either with the SGET command (if it already exists) or with the
$CREATE command (if it does not exist), and then turn on automatic line
numbering. In the examples below, P is a line file or a sequential-with-
line-numbers file.

$GET P
$NUHBERI

¢ lines to be put in fileI
$UNNUHBER
$PELElSE \

If F is a sequential file, then the SEQPCHK global switch must be disabled.

$GBT F
$SBT'SEQFCHK=OFF
$NUHBER

O

Piles and Devices 129

HTS Volume 1: HTS —- The System

April 197k

0 lines to be put in file
O t

$URRRUHBER
SRELEASE

The other method is to use a SCOPY command, copying from the source
stream *SOURCE* into the file, as for example:

SCOPY *SOURCE* P
Q

e lines to be put in fileI
‘ {end-of-file signal}

where the end-of-file signal in batch must be a "SBRDPILE" delimiter (or the
physical end of the card deck), or from a terminal, it can be either an
end-of-file control character for that terminal or a "$ENDPILE".

These two methods are not quite equivalent in behavior. The differences
are that in the first case, lines are being read in HTS command mode, and in
the second case are being read in copy mode. (See the "system Command
Language" section of this manual for a description of the various modes.)

In the copy mode method (the second case), all lines are transmitted into
the file as typed except the first line consisting of "SENDFILE", which is
recognized as an end—of-file delimiter and terminates the copy operation.
In order to get "$ENDPILE" lines into the file, the command

SSET ENDFILE=NEVER

should be issued before the SCOPY command is issued, causing the "SEHDPILE"
lines to be treated only as data lines. This means however, that "$ENDFILE"
cannot be used to terminate the copy. If this is being done from a
terminal, an end-of-file control character must be used to terminate the
copy. But if this is being done in batch, then the COP! command must be the
last command in the deck, because all the remaining cards of the deck are
copied into the file.

note that implicit concatenation is normally enabled. If a
"$COR!INUE HITS" line is to be copied rather than taking effect, implicit
concatenation must be disabled for the coPY- as for example:

$COPY *SOURCE*3~IC P

On the other hand, if implicit concatenation is enabled, a line consisting
of

.
$CONIINUE WITH *DUHH!*

produces an end—of-file condition in both batch and terminal usage and can
be used to terminate the copy.

130 Files and Devices

HTS Volume 1: BTS -- The System

April 1973

In the HTS command mode method (the first case), there are two
differences:

(1) If the last character of an input line (column 80 of the card, if
in batch) contains a continuation character (default is "-"), then
the following line is appended to the end of the current line
(after removing the continuation character). The value of the
continuation character (CONTCHAR) can be changed by the SSBT
command or the subroutine CUINFO.

(2) If -a line beginning with a dollar sign is to be put into the file,it must be typed beginning with two dollar signs. The first is
removed before it is transmitted to the file. (Lines with one "$"
are treated as immediate commands or delimiters.)

!A§l!§_.§§é!§§§__'£Q:eA_!lL§

There are two basic methods of making changes to a file: using the HTS
commands to make changes to the file on a line-by-line basis, or using the
context editor to make changes either on a line basis or on a context basis.

ghaeqe§:!§iua=!T$izenmanés

HTS commands can be used to change one line of a line file, a group of
lines of a line file, or to empty or destroy an entire file. Sequential
files can be changed only by adding to the end of the file, or by emptying
or destroying the file. Single lines or groups of lines in a line file can
be changed using the same basic two methods that were used to put
information in a file. Entering a SGBT command for the file makes it the
active file. Then entering a line prefixed by the line number causes that
line to be entered into the file with that line number. If there already
was a line with that number in the file, it is replaced by the new line.
Thus,

SGET A
121.3112

puts XYZ in as line 121.3 of file A. If there already was a line numbered
121.3, it is replaced. Entering a null line (line number immediately
followed by an end-of-line character) deletes the line with that number in
the file.

when the user is entering lines into the active file in HTS command mode,
he enters a line number immediately followed by the contents of the line
(assuming automatic line numbering is off). The first character following
the line number is the first character of the line. The end of the line
number is determined as follows:

Piles and Devices 131

‘ (2)

HTS Volume 1: HTS —— The System

April 197R

(1) An alphabetic character terminates the number.
The second occurrence of "." terminates the number. (The first
occurrence is the decimal point.)

(3) A "+" or "-" which is not the first input character terminates the
number.

(0) A blank terminates the line number.
(5) Any other special character terminates the line number.

If the character terminating the line number is the 11ng;ggg§g;;§gpg;gtg;
character (initially a comma), then this character is used only as a
separator and is not part of the line number or the line. For example, to
put the three characters "123" in as line 6 of a file,

6,123

would be typed. The line—number—separator character (LNS) may be changed by
the SSBT command or the subroutine CUINPO.

The SCOPI command can be used to copy lines or groups of lines from a
file to itself or another file. Thus

$COPY A+B C

puts the contents of A, followed by the contents of B, into file C (or if C

is sequential, adds to the end of C). If either A or B are line files, then
the "contents" are only the lines with numbers between 1 and 99999.999,
which is not necessarily the entire contents of the file. If C is a line
file, lines that are not replaced by the copy operation are not affected.

SCOPY L(1,5)+(99,99)+(1000) B

copies from A lines 1 through 5, 99, and 1000 through the end of A into B,
starting at line 1 in B, if B is a line file, or adding to the end of B, if
B is sequential. File A must be a line file in this example. Note that if
the example were

$COP! A(1,5) B

then A could be either a line file or a sequential file.
$COP! L(1O,15) l(100) <

makes a copy in A of the lines in the range of 10 through 15, starting at
line 100. Remember that the range of 10 through 15 is the same as 10.000
through 15.000 and can contain anywhere from 0 to 5001 lines. The increment
between the copied lines starting at line 100 is 1 (the default).

A copy operation from a file to itself specifying overlapping line number
ranges can be done, but should be used with care.

SCOPY A(1,9) A(2)

132 Piles and Devices

HTS Volume 1: HTS -- The System

April 1970

results in line 1 being repeated in lines 2 through 10, since line 1 is
copied into line 2, and then line 2 (which is now a copy of line 1) is
copied into line 3, and so forth.

Once a file has been created, it may be emptied or destroyed at any time.
This applies both to permanent files and to temporary files, Permanent
files exist until the user destroys them; temporary files exist until the
user destroys them or until he issues a SSIGNOFF command (or its equiva-
lent), whichever comes first.

To empty a file, the command

$EHPTY filename

should be issued. This causes the contents of the file to be discarded, butall storage space allocations for the file are preserved. Future references
to the file reuse the file space. If the command is issued from a terminal,
the user is asked to confirm that he really wants to get rid of the contents
of the file. The message is

4 FILE "filename" IS T0 BE EHPTIED. PLEASE CONFIRM.

The user should respond with "OK", "0.K.", or "I" to empty the file. Any
other response cancels the command. Confirmation is not requested for
temporary files, nor for any files in batch runs.

It should be noted that the $EHPTY command empties the whole file; parts
of a file cannot be emptied by attaching a line number range to the file
name in the command. Thus

$EnPT! A(10,50)

is identical to

SEMPTY A

and empties all of file A. To partially empty a file, the parts to he saved
should be copied to another file, the file should be emptied, and the saved
parts should be copied back to the original file.

To destroy a file, the command

$DESTRO! filename

should be issued. This causes all space allocated for this file to be
released. If this command is issued from a terminal, confirmation is
requested:

FILE "filename" IS TO BE DESTROIED. PLEASE CONFIRM.

The user should respond with "OK", "O.K.", or "I" to destroy the file; any
other response cancels the command. Confirmation= is not requested for
temporary files, nor for any files in batch runs. *-*

Files and Devices 133

s

ats Volnne 1: HTS -- The System

April 197B

In conversational node, no confirnation request is issued when a file is
to be emptied or destroyed if the confirmation is provided on the connand
line. For example, the sequence issued in conversational node:

SBHPT! filenane1 OK
SDESTROY filename2 OK A

empties "filenane1" and destroys "filenane2" without requesting
confirlation.

§haess§.!l§ins..ths_§2n&szt.£iii2:
The context editor can be used to edit ling files , by lines or groups of

lines. It can also he used on a context basis, scanning for lines with
certain character strings in then, replacing characters in a line with other
characters, and so on. For exanple, on a line-number basis, the following
replaces line 2, deletes line 7, and inserts two lines after line 8 of the
file being edited (the first character is the prefix character; input fron
the user is in lower—case, editor output is in upper-case):

zreplace 2 ‘new second line'
: 2 RBI SECOND LINE
:delete 7
:insert 8
?eighth and a quarter
?eighth and a half

null line input-> ?

On a context basis, the following exanple scans through the file looking for
the characters "ABC#D":

:scan /file 'abc#d'

and then the following comaand changes "CQD" to "XYZ":

zchange 'cQd'xyz'

The editor is invoked in HTS connand node with the $BDIT connand, and has
its own set of sub-connands. Pull details on using the context editor are
given in the "Edit node" section of the "systen Connand Language" section in
this volune.

The context editor can only be used on line files at present.

R9iS-!h££
Often a user lakes changes to a file and then wishes he hadn't. The user

should realize that the context editor makes changes to a file as the
connands are entered: it does not nake changes to a working copy. Thus, it
is prudent to either make a copy of the file as a backup before starting to

135 Files and Devices

HTS Volume 1: HTS -- The System

April 197B

edit it, or else to use the editor's checkpoint/restore facility. The
CHECKPOINT edit command tells the editor to remember the contents of thefile at the time the command was entered. The RESTORE command then allows
the user to restore all or parts of the file to the state it was when
checkpointed. See the "Edit node" section of the "System Command Language"
for details.

Recovery of a file that has been accidentally changed on a large scale
(including its accidental emptying or destruction) can often be rectified by
having the file restored to the condition it was in when files were saved on
the previous night. The CDPC does a "file-save" at about three to five
a.m. on Monday thru Thursday and on Saturday. A file can be restored to its
state as of the file-save for any night of the preceding week, or its state
as of the Saturday file—save for any of the preceding three weeks. There is
a five dollar charge for restoring a file. Details on how to have a file
restored are given in the "File—Restoring Service" section of Zggilitigg QQQ

§er!i2e§ Q; 1;! 2252221129. and am Breseseina §.__§entr for is§d_...eIis "..sr_.s$-

2l§C°!§Bl!§eZ§§:§§A!§§§.lQ:é:ElL§

Often a user, after extensively working on a file, ends up with a
"current" copy and an "original" copy, and would like to know how they
differ. In particular, he would like a list of changes that must he applied
to the original copy to make it into a current copy.

There are three programs available in HTS public files that produce
"changes" in this manner: *DOINDATE, *UNEDIT, and *AHENDS. All three
differ on either the basis for deciding if something is changed, or the
method of presenting the changes, or both. The rest of this section
presents examples showing how they differ. Details on use are found in
Volume 2. '

The program in *D0wRDATE produces *UPDATE control cards as output. The
current and original copies are read sequentially, and may be magnetic tapefiles, sequential direct-access files, or line files. All line numbers are
ignored. The two copies are assumed to contain 80 character logical
records. only the first 72 columns of each record are compared; columns 73
through 80 are assumed to contain sequence-ID's. For example, if the
original and current copies are as follows (assuming the sequence-ID begins
in column 73):

original: FIRST SEQID001
SECOND SEQIDO02
THIRD SEQIDOO3
rouwrn szqnoou
FIFTH SEQIDOOS
SIXTH SBQID006
SEVENTH SBQIDO07
mama snqnooa
NINTH SBQIDO09
TENTH SEQID010

Files and Devices 135

P

\

\

>

\

i

1

l

}

\

HTS Volume 1: HTS -- The System

April 197“

CUIIGDTZ - FIRST
HEW SECOND
THIRD
FOURTH
FIFTH
SIXTH
EIGHTH
EIGHTH AND A QUARTER
EIGHTH LID I HELP
NINTH ‘

TENTH

Then
SRUR *DOUNDATE SPURCH=CHARGBS

and" specifying "original" than it asks for "old source" and "current" whenit asks for "new source" yields as content of CHARGES:

QBEPORE 'SEQIDUU2'
HRH SECOND
IDELETE 'SEQIDOU2'
IBEFORE 'SEQIDOO7'
EIGHTH
EIGHTH AND A QUARTER
EIGHTH AND A HALF
SDELETE 'SEQIDOU7' 'SEQID008'
KBEFORE FILEHIRK

which is correct, although not a minimum set of UPDATE commands.
Specifying:

SRUN *UPDlTE"
SINPUT original
{OUTPUT new
SCONTINUE WITH CHARGES

makes new into a "current" copy.

The program in *UREDIr uses the sane comparison algorithm as DOGNDATE but
puts out context editor control cards. Both the current and the original
copies must be in line files. The entire contents of the lines are
compared. The line numbers are used for the edit control card output, but
are ignored in the comparing process. Thus, the effect of applying the
output of UIEDIT as commands to the context editor working on the original
produces, as a result, a file.with lines that have the same content as the
"current" copy and in the same order, but not necessarily with the same line
numbers. Given the following example, with "original" and "current" similar
as before:

linensnlvsr ssznisnie

original: 1 FIRST
2 SECORD

136" Piles and Devices

April 1974

current:

Then

-I
O\.O(n~l0\U'IJ=w

-I
O\O(D®(DO\U'l¥=JNJ II

U'\l\)

Ul

.-

THIRD
FOURTH
FIFTH
SIXTH
SEVENTH
EIGHTH
NINTH
TENTH

FIRST
NEH SECOND
THIRD
FOURTH
FIFTH
SIXTH
EIGHTH
EIGHTH AND A QUARTER
EIGHTH AND A HALF
NINTH
TENTH

HTS Volume 1: HTS -- The System

$RUN *UNEDIT 0=origina1 1=current SPUNCH=CHANGES

yields as contents of CHANGES:

so that

DELETE
INSERT
NEH SECOND
$ENDFILE
DELETE
INSERT
EIGTHTH

2
1

7
6

EIGHTH AND A HALF
SENDFILE

$SET ENDFILE=ON
SEDIT original
$CONTINUE HITH CHANGES

produces a "current" copy.

The program in *AnERDS considers the line nunbers as well as the contentin comparing lines. Its output consists of HTS command lode line insertions
and deletions. Thus, using the sale "original" and "current" files as inthe UNEDIT example above,

SRUN *AMENDS 0=origina1 1=cnrrent SPUNCH=CHANGES

Files and Devices 137

T_

— - 4—— -Rpm.

HTS Volume 1: HTS -— The System

April 197R

results in the following content of CHANGES:

SNUHBBR 2 1

NEW SECOND
$UNNUHBER
7
SNUHBER 8.25 .25
EIGHTH AND A QUARTER
EIGHTH AND A HALF

so that

SGET original
$SOURCE CHANGES

results in "original" being converted into "current"

§§A£§2-2;!.LE.5.

[The current facilities for sharing files between users are a minimal
interim version. This section will be replaced when the full sharing
capability is installed in the system.]

Ihen a file is first created, the owner (the signon id under which the
file was created) has unlimited access to it and all other users have no
access to it. However, if the owner wishes, he can share the file, making
various levels of access available to various categories of users. Shared
files are referenced by prefixing the file nane with the owner's signon id
and a colon. For example, ABCD:XYZ is the file XYZ belonging to user ABCD.
Sharing a file requires the use of the SPERHIT command. In order to specify
a "permission", a valid access type nust be stated. The access type tells
who is allowed access to the file and what type of access is allowed.

The six possible parameters of the SPEBHIT colnand are "ALL", "CNH",
"NONE", "PRJRO", "R0", and "RUN". The "ALL" access type allows other users
to read the file in any way. It nay be listed, copied, run, loaded, and so
on. To specify the "ALL" access, the connand

$PERHIT filenane ALL

should be used. The user is still allowed to alter the file when the access
code is "ALL". Problems may arise when another user is reading the owner's
file at the sale tile the owner enpties the file. "cannot write" access
("CHI") prevents the owner frcl writing into the file. (Under no circuns-
tances can one user write into another user's file.) To specify the "cannot
write" access, the comnand

‘$PBRHIT filenlle CHI '

138 Files ***'Devices

HTS Volume 1: HTS -- The System

April 197B

should be used. "CNN" access is useful in that it prevents the owner from
accidentally altering_ or emptying a file (although it may still be
destroyed). Other users are not allowed to read the file by this access
type alone. This is the only access allowed for temporary files. "PRJNO"
like "ALL" specifies which users are allowed access to the file. Ihen afile is given "PRJNO" ("project") access, only those users with the same
project number are allowed access. To specify "project" access, the command

$PERHIT filename PRJNO

should be used. In order for another user with the same project number to
access the file, that user must first copy the file using the *COPY program.
(See HTS VOLUHE 2, ggglig gilg Qggggiptiggg for details.) user XIXX ownsfile HISFILE with PFJNO access type and another user with an identical
project number wants to copy the file to -HYFILECOPY, the appropriate
command would be:

$RUN *COPY SPUNCH=-HYFILECOPY PAR=XXXX:HISFILE

To allow a file to be run, or loaded, but not copied, listed, or read by
any program other than the dynamic loader, the command

$PERHIT filename RUN

should be used.

The last two parameters are "RO" (read-only) and "NONE". Specifying "R0"
has the same effect as CNI and ALL together, that is, it allows all users to
read the file and allows no one, including the owner, to write into it.
Specifying "NONE" removes all access information allowing unlimited access
by the owner and no access by anyone else (the same as when the file was
created). If no access type is given on the $PERHIT command, "NONE" is
assumed.

If no parameters are given on the SPERHIT command, the user is prompted
for filenames and access types, one set per line, until a null line or
end—of-file is given. For example:

$PERHIT
ENTER FILE NAME AND ACCESS HETHOD

HYFILEB ALL
HYFILEB NONE
$ENDPILE

Files and Devices 139

,_. . --_-_- _.____.__,____i_}___ __'__ W _ __

MTS Volume 1: MTS -- The Systen

April 197R

 ;l&._lQHH§E

INTRODUCTION

Modifiers are used to modify the action of a specific I/0 call or a
general I/O usage. Modifiers may be used in I/0 subroutine calls (SCARDS,
SPRINT, READ, and so on), in macro calls setting up the corresponding I/0
subroutine calls, in calls to GBTFD, or as parts of Fbnames given in MTS
comnands. Modifiers control such functions as upper or lower-case conver-
sion, logical carriage control, machine carriage control, record trimming,
.and so on.

In general, there are three levels of precedence in the usage of
modifiers. In the first level of precedence are the modifiers specified on
a call to one of the I/O subroutines. If the modifier is not specified by
the subroutine call, or if a user generated subroutine call is not relevant
(e.g., when a $COP! command is issued), the second level of precedence,
which consists of the modifier nane as part of the Fnname, applies. Note
that the group of modifiers which can only control the action of a gpggifig
I/O call (for example BRBRTR and MOTIF!) are not valid at this level of
precedence. If the action of the modifier is not specified by the second
level, the third level of precedence, which consists of the default
specifications, applies. The default specification depends upon the type of
Pbname referenced in the I/O call and the settings of global switches.
These defaults are given in the explanation of modifier bits below.
Modifier specifications given hat the first level of precedence override
specifications given at the second and third levels. Modifier specifica-
tions given at the second level override specifications given at the third
level. This precedence process is illustrated in the diagram below. Bach
modifier pair is treated independently in the above precedence process.

Level 1: Suhroutine Call Modifiers ————~—————w

VV
-_._...._,-.,_,_.

Level 2: Fbname Usage Modifiers

Level 3: Defaults — — :

I
Effective
Modifiers

150 Files and Devices: Appendix A

HTS Volume 1: HTS -— The System

April 197B

The example below illustrates the three levels for controlling the TRIH
modifier.

CALL SCARDS(REG,LEN,1638Q,LNUH) ————1

(16380 specifies ~TRIH) I
I

SCARDS=FYLE3TRIH on SRUN command ...|
I

Default is TRIM for file|
I
I

QTRIH

CALL SCARDS(REG,LEN,0,LNUM)
(0 makes no specification) .

SCARDS=FYLEO~TRIH ———-—————————————1

I
Default is TRIM for file(

I

I
"TRIM

CALL SCARDS(REG,LBN,0,LNUH)
(0 makes no specification) .

OIOOIOOOIOOIOIOIOIIIOIIII

Default is TRIM for file --—-————1
I

I
TRIM

The action of the modifiers specified on a subroutine call is controlled
by a fullvord of modifier bits given as one of the parameters to the
subroutine. The action of the modifiers on the subroutine call applies only
to that specific call. There are two classes of modifiers.

(1) Bits O-7 are referenced individually, and specify the options for a
spggifig I/O call. If ’the bit is set, the modifier's action is
enabled. If the bit is not set, the default specification is used
(which normally means the modifier action is disabled).

(2) Bits 8-31 are referenced in pairs and specify options for general I/0
usage. For each option, one bit is used as an "ON" bit and the other
as an "OFF" bit. If either of the bits, but not both, is set, the
modifier action is as specified. If neither or both of the bits is
set, indicating a "don't care" condition at this level of precedence,
the modifier name appended to the PDname is used. If there is no

Files and Devices: Appendix A 1B1

HTS Volume 1: HTS -- The System

April 197“

modifier name appended to the Fbname, the default specification for the
Fbname type is used. The normal programming practice is to leave the
modifier bits zero on the subroutine call and apply the modifier names
to the FDname referenced unless the program depends upon the modifier
bits being set for a specific subroutine call. Here is an example done
first in assembly language and then in FORTRAN:

CALL SCARDS,(REG,LEN,HOD,LNUH)

REG DS 20?
LEN DS H

HOD DC X'0OO00O0' Specifies no trimming of input lines
LNUH DS F

\ 1

Note that if the subroutine call is set up by a macro call, the
modifier names rather than the bits are used in the macro parameter
list. Thus the above example would become

SCARDS REG,LEN,3~TRIH,LNUH

Here is the FOPTRAN version that specifies no trimming:

INTBGER*2 LEN
DATA HOD/ZOOOOQO00/
CALL SCARDS(REG,LEN,HOD,LNUH)

The action of modifiers applied to the Fbnames is controlled by the
modifier name (preceded by "d") appended to the PDname. The action of the
modifiers appended to the Fbname applies to all I/O calls referring to that
ggggg of the file or device. If the modifier name is preceded with "~" or
"-", the other bit of the bit pair is set, which negates the action of the
modifier name. (The modifier applies only to the PDname to which it is
attached.) If implicit or explicit concatentation to another Fbname occurs,
the modifiers must be applied to both PDnames even if the rnnames are the
same. If the user at a terminal is prompted for an Fnname, the full Fbname
including the modifiers and line number range must be given with each
request. The order of modifier names appended to an FDname is unimportant.
Some examples are

FILE13IBUC Specifies indexed and upper case
FILE23~TRIu Specifies no trimming
*SIRK*3NOCC Specifies no logical carriage control
*SINK*8~CC Specifies no logical carriage control
RDR13BIN Specifies no EBCD conversion
PILB38hCC(1,10) Specifies machine carriage control
FILE3inCC(1,10)+(2O,30)BHCC Specifies machine carriage control

for lines 1 to 10 and 20 to 30

If the modifier action is also specified on a subroutine call, the modifier
action applied to the Fbname is overridden.

132 tiles and Devices: Appendix A

April 1970

EXPLANATION OF HODIFIERS

 _
HTS Volume 1: HTS -— The System

The device types discussed in the exceptions to the default modifier bit
specifications are:

PTR Printers
TTY Teletype or ASCII code terminals

2701 Selectic typewriter based terminals
2260 IBM 2260 Display Unit

9TP 9-track magnetic tape drive
SDA Synchronous data adapter (Remote batch via NEHOREX Controller)

HPTR Printed output under HASP

The values indicated below with each bit specification are the values _that
the modifier word for a subroutine call would have if only that modifier
option was specified.

Bit 31 SEQUENTIAL, S Value: 1 (dec) 00000001 (hex)
30 INDEXED, I

Default: SEQUENTIAL
Exceptions: None

2 00000002

In general, the INDEXED modifier is applied only to line
files (or sequential-with-line-number-files), while the
SEQUENTIAL modifier is applied to line files, sequential
files, and all types of devices. Note that the SEQUENTIAL
modifier and the sequential file are not directly related.
The paragraphs below describe the action of this modifier
pair and the results that occur when these modifiers are not
used in the normal manner.

With each logical unit (or PDUB—pointer), there is a current
line pointer which contains the line number of the last
record read or written. when an I/O operation is performed,
the current line pointer is first set to the line number of
the record to be read or written before the actual read or
write occurs. After the read or write operation has
occurred, the current line pointer contains the line number
of the record last read or written.

I/0 operations involving line files (or senneniilzgiinzlinei
number files) may be done with either SEQUENTIAL or INDEXED
specified. A SEQUENTIAL I/O operation occurs when the user
specifies that the "next" record is to be read or written.
For a read operation, "next" means the record that is next in
ascending line number order from the current value of the
line pointer (last line read or written) of the same logicalI/0 _unit’ (or FDUB-pointer). If, however, an increment wasexplicitly given with the Fbname, the line number read is the
current value of the line pointer plus the first multiple of

Files and Devices: Appendix A 103

_ _

NT5 Volume 1: HTS —— The System

April 197“

the specified increment for which’ there is a line in the
file. For a write operation, "next" means the current value
of the line pointer (last line read or written) plus the
increment specified with the Fnname (defaults to 1) of the
same logical I/0 unit (or FDUB-pointer). An INDEXED I/O
operation occurs when the user specifies the line number of
the record to be read or written. As an example, consider
the following EORTRAN program segment.

INT3GEB*2 LEN
nara non/2/

1 CALL READ(REG,LEN,0,LNR,2,82)
CALL IRITE(REG,LEN,HOD,LNR,3)
so TO 1

2 sron

This program performs a SEQUENTIAL read and an INDEXED write
using the line number from the read operation as the line
number specification for the write operation. The command

(assuming compilation of the above into -LOAD)

$RUN "LOAD 2=A 3=B

is equivalent to

$COPY I B31 -

and copies file A into file B preserving the line numbers of
file A as the line numbers for file B (assuming B is
initially empty). If a series of I/0 Operations involving a

given usage of a line file are intermixed with INDEXED and
SEQUENTIAL operations, the SEQUENTIAL operation begins
sequentially with the line following the last line specified
in the INDEXED operation. INDEXED operations following
SEQUENTIAL operations use the line number given in that
INDEXED specification.-

I/0 operations involving sgggggtigl ilgg must be done
sequentially. If the user specifies INDEXED on a sequential
file operation, an error message is generated unless the
global switch SEQECNK is OFF, in which case the operation. is
performed as if SEQUENTIAL was specified. Attempting a

sequential operation with a starting line number other than 1

(for example, $60?! r!LE(2)) also gives an error comment if
SEQPCHK is ON.

I/0 operations involving sequential devices, such as card
readers, printers, card punches, magnetic tape units, and

iterminals, are inherently sequential and are normally done
sequentially. If the SEQUENTIAL modifier is specified, the
line number attached to the line is the current value of the
line pointer plus the increment specified on the Fbname. If
the INDEIED modifier is specified, the line number attached

1G Piles and Devices: Appendix A

April 1978

HTS Volume 1: HTS -- The System

to the line is the line number specified in the calling
sequence. The INDEXED modifier is used primarily in conjunc-
tion with the PREFIX modifier. Note that the device treats
the I/O operation as if SEQUENTIAL were specified.

Bit 29 EBCD Value: B (dec) 0000000“ (hex)
28 BINARY, BIN 8 00000008

Default: EBCD
Exceptions: None

The EBCD/BINARY modifier pair is device dependent as to the
action specified. For card readers and punches, the EBCD
modifier specifies EBCDIC translation of the card image which
means that each card column represents one of the 256 8-bit
EBCDIC character codes. The BINARY modifier specifies that
the card images are in column binary format which means that
each card column represents two 8-bit bytes of information.
The top six and bottom six punch positions of each column
correspond to the first and second bytes respectively with
the high order two bits of each byte taken as zero. Printers
and files ignore the presence of this modifier pair. The
MEMOREX Transmission Control routines (that is, terminal
DSR's) recognize this modifier pair. Note that card input
through HASP (normal batch jobs) gggggt be read in column
binary.

For information on the usage of this modifier pair in
specifications involving the devices listed above, see the
respective User's Guides in Volume 4 of the HTS Manual. Thelist of device support routines recognizing this modifier is
volatile and subject to change without notice. Users who
wish to keep their programs device-independent should not
specify this modifier.

Bit 27 LOIERCASE, LC Value: 16 (dec) 00000010 (hex)
26 CASECONV, UC 32 00000020

Default: LOHEFCLSE
Exceptions: None

The LOIERCASE/CASICONV modifier pair is not device-dependent.If the LOHERCASE modifier is specified, the characters are
transmitted unchanged. If the CASECONV modifier is speci-fied, lower-case letters are changed to upper-case letters.
This translation is performed in the ggggls gggg gggigg. Oninput operations, the characters are read into the user'sbuffer area and then translated. On output operations, the
characters are translated in the user's buffer area and thenwritten out. Only the alphabetic characters (a-z) areaffected by this modifier. Unlike IBH programming systems,

Files and Devices: Appendix A 105

ir?

HTS Volume 1: HTS —- The System

April 197R

\ HTS considers the characters t, ", and I as special

?

characters rather than "alphabetic extenders" and thus the UC
modifier does pg; convert ¢, ", and ! into 3, I, and S,
respectively. '

Bit 25 HOCARCNTRL, NOCC Value: 60 (dec) 00O0000 (hex)
2“ CC, STACKERSELBCT, SS 128 00000080

Default: NOCARCNTRL
Exceptions: CC for PTR, TTY, 271, 2260, SDA, and HPTR

The ROCC/CC modifier pair is device-dependent. This modifier
pair controls the presence or absence of logical carriage
control (or stacker-selection) on output records. For print-
er and terminal devices, the first character of each record
is taken as logical carriage control if this character is a
valid carriage control character and if the CC modifier is
specified. If the first character is not valid as a carriage
control character, the record is written as if NOCC were
specified. For further information on logical carriage
control, see the "Carriage Control" section in Volume 3. For
card punches, the first character of each card image is taken
as the stacker-select character if it is a valid logical
stacker-select character (0, 1, or 2) and if the SS modifier
is specified. If the first character is not valid as a
stacker-select character, the card image is punched as if
ROCC were specified. The SS modifier is intended only for
those users who are communicating directly with a physical
punch (normally system programmers) and is not implemented
for normal batch usage under HASP. Note that the SS and CC
modifiers reference the same modifier bit and thus may be
used interchangeably.

The magnetic tape routines also recognize the presence of
this modifier pair. For this description, see the "Magnetic
Tape User's Guide" in Volume B of the HTS manual. Files
ignore the presence of this modifier pair.

Bit 23 Value: 256 (dec) 00000100 (hex)
22 PREFIX, PF! 512 00000200

Default: ~PREFIX
Exceptions: Home

The PREFIX modifier pair, controls the prefixing of the
current input or output line with the current line number.
0n terminal input, the current input line number is printed
before each input line is requested. The line number used is
determined as specified in the description of the SEQUENTIAL
and INDBXED modifiers. An example for terminal input is

106 Files and Devices: Appendix A-

April 197R

HTS Volume 1: HTS -- The System

$COPY *SOURC3*(6,,2)3PFX A(6,,2)
6; first input line
8_ second input line

end-of-file indicator

Note that this would have the same effect with respect to
line numbering as

$GET A

$NUH 6,2
6_ first input line
8_ second input

xx_$UNN

line

The current (prefix) line number is not equivalent to the
file line number. In the
the file line numbers were

example above, the prefix line and
explicitly made to correspond by

also specifying a line number range on the output Fnname (thefile A). On input from card readers and files, the PREFIX
modifier has no effect. On terminal output, the current line
number is printed before each output line is written. The
line number used is determined as specified in the descrip-
tion of the SEQUENTIAL and
terminal output is

IRDEXED modifiers. An example for

$COPY A(1,10) *SINK*(100,,2)0PFX
100_ first output line
102_ second output line

Note again that the current line number is not equivalent to
the file line number. On output to the printer or to a file,
the PREFIX modifier has no effect. -

If the INDEXED and PREFIX modifiers are given together for
terminal output, the line numbers referenced by the INDEXED
modifier are the same as those produced by the PREFIX
modifier. As an example,
program segment:

INTEGER*2 LEN

consider the following FORTRAN

DATA MOD/ZOO0OO202/ Turns On INDEXED and PREFIX
1 CALL READ(REG,LEN,O,LNR,2,82)
' CALL IRITE(RBG,LEN,HOD,LNR,3)

GO TO 1

2 STOP

Files and Devices: Appendix A 1H7

>

""r'

HTS Volume 1: HTS - The System

April 197k

This program pperforms a read SEQUENTIAL and a write INDEXED
and PREFIX. The command (assuming compilation of the above
into -LOAD)

snuu -Load " 2=A 3=*SINK*

is equivalent to

scar! A »#sIux*a1aPrx

which is also similar to

srxsr A f

i

with a slightly different formatting of the line numbers.

Bit 21 § Value: 102a (dec) ooooouoo (hex)
20 PEEL, snrnzunsg zona oooooeoo

nnruanrxune ;

Default: ~$EEL
Exceptions: Hgne

whether it is pecified on input or on output. 0n input, if
the PEEL (GB LINE#) modifier is specified, a line number is
extracted fromithe front of the current input line. The line
nunber is contorted to internal form (external value times
1000) and re urned in the line number parameter during the
read operation+ See the subroutine description of SCARDS and
READ. The remtinder of the line is mowedl into the input
region specif ed. As an example, consider the following
FORTRAN progra‘ segment:

The PEEL modéfier pair has two functions depending upon

INT GBR*2 LEN
DlTi HOD/208/

1 CAL SCARDS(BBG,LEN,hOD,LNR,82) Read with PEEL
can SPRIHT(RBG,LBN,0,LRR)
GO 0 1

2.STO

The program retds an input line, extracts the line number,
and writes o t the line without its line number. The
following segu nce (assuming compilation of the above into
-LOAD) §

$80! -LOl£ SClRDS=*SOURCB* SPRIBT=ABC
10kt; j
12883 §

is equivalent kc

1&8 Piles and evices: Appendix A

April 197B

HTS Volume 1: HTS -— The System

$COPY *SOURCE*DGETLINE# ABC
101B!
12BBB

Listing the file ABC produces

$LIST ABC
1 AAA
2 BBB

If the PEEL modifier is specified on input in conjunction
with the INDEXED modifier on output, the line number of the
input line can be used to control the destination of the line
during output. For example:

INTEGER*2 LEN
DATA HOD1/2038/, HOD2/Z/

1 CALL SCARDS(REG,LEN,HOD1,LNR,82) Read with PEEL
CALL SPRINT(REG,LEN,HOD2,LNR) Write INDEXED
GO TO 1

2 STOP

This program reads an input line, extracts the line number,
and writes out the line with the extracted line number as the
line number specification for an indexed write operation.
The following sequence (assuming compilation of the above
into -LOAD)

$RUN -LOAD SCARDS=*SOURCE* SPRINT=ABC
10LAA
12BBB

is equivalent to

$COPY‘*SOURCE*6GETLINE#. ABCBI
1OAAA 1

12BBB

which is also equivalent to

$GET ABC
10LAA
12BBB

Listing the file ABC produces

$LIST ABC
10 AAA
12 BBB

On output; if the PEEL (RETURNLINE#) modifier is specified,
the line number of the current output line is returned in the
line number parameter of the subroutine call during the write

Files and Devices: Appendix A 149

arm»

HTS Volume 1: HTS -— The System

April 1970

operation. See the subroutine descriptions of SPRINT,
SPUNCH, SBRCOH, and WRITE. The line itself is written out
and is unaffected by _the presence or absence of this
modifier. The modifier is used on output to aid the
programmer in recording the line number of the current line
written out.

Bit 19 ' Value: H096 (dec) 00001000 (hex)
18 HACHCARCITRL, HCC B192 00002000

Default: ~HCC
Exceptions: None

The machine carriage control modifier pair is device-
dependent. The UCC modifier is used for printing output (via
printers or terminals) from programs- producing output in
vhich the first byte of each line is to be used as the
command code in the Channel Command Bord (CCU) used for
output to a 1003 printer. If the BCC modifier is specified
and the first byte of the output line is a valid 1403 CCI
command code, the line is spaced accordingly and printing
starts with the next byte as column 1. If the first byte is
not a valid 1003 CCI command code, the entire line is printed
using single-spacing. Spacing operations performed by
machine carriage control occur gggg the line is printed (as
opposed to logical carriage control in which the spacing is
performed ggjggg each line is printed). Host programs do not
produce output using machine carriage control. The few
programs that do (such as *ASuG and the TEXT360 programs)
internally specify HCC for their output assuming that it is
bound for a printer. Hence HCC need not be specified. If
the user directs the output to a file, HCC must be specified
when the file is printed. For example:

SRUN *lSHG SClRDS=l SPRINT=B SPONCH=C
SCOP! B T0 *SINK*3HCC

The UCC modifier pair is ignored for files and all devices
other than printers or terminals connected through the
HBHOREX Transmission Controller. For further information on
machine carriage control, see the "Carriage Control" section
in Volume 3.

Bit 17 Value: 16383 (dec) 00005000 (hex)
16 TRIH 32768 00008000

efault: ~TRIh
Exceptions: TRIH for line files, sequential files, and HPTR

The TRIH modifier pair is used to control the trimming of
trailing blanks from input or output lines. If the TRIM

1:50 'H*~= and Devices: Appendix A

April 197a

HTS Volume 1: HTS -- The System

modifier is specified, all trailing blanks exgept ggg are
trimmed from the line. If ~TRIn is specified, the line is
not changed. A trimming operation does ggt physically delete
the trailing blanks from the line, but only changes the line
length count.

Bit 15 Value: 65536 (dec) 00010000 (hex)
1B SPECIAL, SP 131072 00020000

Default: ~SP
Exceptions: None

The SPECIAL modifier pair is reserved for device-dependent
uses. Its meaning depends upon the particular device type
with which it is used. The only device support routines
recognizing this modifier pair are the sequential file
routines.

For information on the usage of this modifier pair see
Appendix B of this volume. The list of device support
routines recognizing this modifier is volatile and subject to
change without notice. Users who wish to keep their programs
device-independent should not specify this modifier.

Bit 13 Value: 262104 (dec) 00030000 (hex)
12 IC 524288 00080000

Default: The setting of the IC global switch (usually ON)
Exceptions: None

The IC modifier pair controls implicit concatenation. If the
IC modifer is specified, implicit concatenation occurs via
the "$CONTIRUE WITH" line. If ~IC is specified, implicit
concatenation does not occur. For example, $LIST PROGRAHd~IC
lists the file PROGRAM and prints "SCONTINUE WITH" lines
instead of interpreting them as implicit concatenation. The
use of the IC modifier in I/0 subroutine calls or as applied
to Fbnames overrides the setting of the implicit concatena-
tion global switch (SET IC=OR or SET IC=0FF) for the I/O
operations for which it is specified.

Bit 1 ERRRTN Value: 107370182B (dec) #0000000 (hex)

Default: ~ERRRTN
Exceptions: None

If the ERRRTN modifier is specified (bit 1 in the modifier
word is ‘1) when an I/0 call is made, and if an I/0 error
occurs when no SETIOERR/SIOEER interception has been estab-
lished, the error return code is passed back to the calling

Files and Devices: Appendix A 151

ATS Volune 1: urs -- The System

April 191a

program instead of causing an error conaent to be printed.
This modifier may be used only with an I/0 subroutine call.
It lay not be used as an attribute on an Fbnane.

Bit 0 NOTIFY ' Value: -2137383638 (dec) 80000000 (he!)

Default: ~IOTI?! -

Exceptions: Hone

If the NOTIFY modifier is specified (bit 0 in the modifier
word is 1) when an I/0 subroutine call is made, on return GRO

is set to a value indicating what has happened:

0 = no unusual occurrence
1 = new FDUB opened and no I/0 done
2 and above, reserved for future expansion

A new F003 is opened if implicit concatenation occurs if a
change to the next aeaber of an explicit concatenation is
effected, or if a replacement Fnnale is requested. This
aodifier nay be used only with an I/0 subroutine call. It
any not he used as an attribute on an Fnnane.

152 wiles and Devices: Appendix 1

April 197%

HTS Volume 1: HTS —- The System

5222121l_§3.-..§.§Q!E§ll§L.:lZ;LE §_A!"2:!!9QLAQQZEQLEI

Associated with every sequential file are at lgggt three logical pointers
which determine where the next read or write operation starts. Every
sequential file has one Read Pointer, one write Pointer, and one Last
Pointer for each usage of the file.‘ These logical pointers are automatical-
ly updated after every read or write operation by the file routines as
outlined below. In addition, two subroutines, NOTE and POINT, callable from
assembly language and FORTRAN, "remember" the current values of these
logical pointers, and, at some later time, "alter" the values of these
pointers. In so doing, a user is able to start reading and/or writing a
sequential file from points other than the beginning and/or end of the file.

These three logical pointers are manipulated by the file routines as
follows:

The Read Pointer is always initially set to point to the beginning of the
file when the file is created or first referenced. The Read Pointer~ is
updated gfter every read operation to point to the next line to be read. A

particular Read Pointer affected by a rewind operation (that is, the Read
Pointer associated with the FDUB on which the rewind was given) is reset to
point to the beginning of the file. Finally, all Read Pointers are reset to
point to the beginning of the file whenever the file is emptied.

The Write Pointer is initially set to point to the beginning of the file
when the file is created, and is updated gfte; every write operation to
point to the neg; line to be written. The Write Pointer is reset to point
to the beginning of the file when the file is emptied or rewound. In
addition, if after any read operation, the Read Pointer is greater than the
Write Pointer, the Write Pointer is updated to coincide with the Read
Pointer. This allows a user to rewind a sequential file, begin reading,
stop at some intermediate point and begin writing at that point. This is
similar to what would happen if the same operations were performed on a
magnetic tape. The difference is that, if after writing a few lines, the
user again began to read the file, he would begin reading from the
intermediate point at which he previously stopped reading and started
writing (that is, the Read Pointer is not updated after a write operation).
Finally, whenever the file is opened, the Write Pointer is set equal to the
Last Pointer.

The Last Pointer is initially set to point to the beginning of the file
when the file is created, and is updated aftgg every write operation to

liken a user has more than one logical I/O unit attached to the same file,
or has called the subroutine GETFD more than once for the same file, HTS
creates a FDUB (File or Device Usage Block) for each of these usages, and
each PDUB points to the one File Control Block (PCB) for the file. (This is
not the case when two separate users each have a single usage attached to
the same (shared) file. In this case each user has a FDUB pointing to his
own PCB for the given file.) The ramifications of more than one Read
Pointer are discussed later.

Files and Devices: hppendix B 153

— v _.._

‘ HTS Volume 1: HTS —— The System

April 197E

coincide with the pg; gpggtgg write Pointer. The Last Pointer is also
considered the logical end of file, so that writing a file beginning from
some intermediate point implies that any information from that point on is
to be discarded. However, if the ‘write operation had the ESP modifier
specified, the Last Pointer is not set to the write Pointer after the
operation, and the rest of the information is still there. In this case,
the record being written into the file must have the sane length as the one
that was there before. If it is not the same length, it is truncated or
padded with blanks as necessary, it is written into the file, and then an
error message (interceptable as usual with the BBRBRTQ modifier or the
SETIOERR subroutine) is issued. Finally, the Last Pointer is reset to point
to the beginning of the file whenever the file is emptied.

The NOTE subroutine can be called to obtain the values of these pointers
when reading and/or writing a sequential file, and then the POINT subroutine
can be called to "reposition" these pointers. (See the subroutine descrip-
tions in Volume 3 for calling sequences.) A call to‘ NOTE obtains four
fullwords of information to be used later. These four fullwords are
respectively, the Read, write, and Last Pointers, as well as the last line
number (useful only for seguentia1-with-line-number files)1 associated with
the file corresponding to the rDUB—pointer given. These pointers always
correspond to the peg; lipg about to be read or written. At some later
point in time, the caller is able to indicate which of these pointers he
wishes to alter for the next read or write operation and, using the
information returned by NOTE, can call the POINT subroutine appropriately.

The logical pointers are valid from one copy of a sequential file to
another as long as both copies are located on the sane kind of storage.
Thus, the pointers returned by NOTE for a file on the disk can be used to
point into an identical copy of the file elsewhere OH:di$k storage.

The user should be aware of the consequences of reading and/or writing
multiple logical I/0 units or other usages attached to the same file. Since
there is one Read Pointer associated with each FDUB-pointer and with each
logical I/O unit, the usery is able to read alternately from a number of
different points in the file, overlapping or not as the application
dictates. However, since there is only one write Pointer and one Last
Pointer associated with the file, writing to multiple usages attached to the
same file amounts to simply appending to the end of the file in the order
that the write requests are received.

=The rationale for wanting to remember the last line nunber in a sequential
file with line numbers is that when writing this type of file, the caller
must insure that line nuabers are in numerically increasing order.

154 Piles and Devices: appendix B
I

HTS Volume 1: HTS -- The System

April 197“

AB¥lBFP.ll;§3.-=L!'!§§!éLel£3LLE :5.$§!§'£UR§_é112J£1'IE;§lZ§:Q.!:ZlL§§

In order to attempt some explanation of how big a file must be to hold a
specified amount of data, a certain amount of detail about the internal
structure of a file is needed.

The basic unit of a file is a physical record. Files (both line and
sequential) on the 2314 disks are written two records per physical track:
each record is 3520 bytes long. Since disk space is allocated to files in
tracks, each disk file contains an even number of records.

At this point, the explanation must be split into two categories —— line
files and sequential files, since the allocations of records in these two
types of organization differs considerably.

pine Filgg

A line file contains three logical components: the track index, the line
directory, and the data section.

The track index is used to associate a physical disk address (disk pack
volume name, cylinder, track, and record address) with a logical record
number (integer between 1 and 218). In the line directory, all references
are to a logical record number. This saves space and makes the addressing
relative.

The line directory is fixed-length entries, one for each line in the
file, and ordered by line number. There are also entries for each available
"hole" in the data section. These entries contain the line number, the
length of the line, and indicate where that line is, in terms of logical
record number and offset within the record. The line directory only points
to the lines themselves, which are in the data section.

The data section contains the actual lines, unordered and unpacked (that
is, holes that result because of line replacements stay there until a piece
that length or less is needed).

If the file is small enough, the track index and line directory may_ be
contained in one physical record. when the file gets larger than this
limit, then it is called "extended", and the track index occupies one record
and the line directory occupies one or more records.

Row to get some approximate numbers for sizes of line files.
If Q is the number of lines in the file,

5 is the average length of a line, ‘

then the number of records needed:

Files and Devices: Appendix C 155

l>~

HTS Volnne 1: HTS -— The Systen

npmi 1-9'11»

R = data section + line directory + track index

awhich is approxilately

r---0

i—\

2:

u.__....a

4-

R = x + 1
3520/r]

where x = 0 if the.£ile is not extended
(line directory is with track index)

and x = [n/3§j if extended (439 8~hyte.entries in a 3520
, byte record less 8-byte header) and if not

an integer, the next larger integer.

The criterion for extension is
track index bytes + line directory bytes > 3520 - B-byte header

nor 16*R + 8*n > 3512

or n > 39—2*R

so that if n > 435, the file is definitely extended.

The nnaher of tracks needed is T = [R/2]

The number of pages charged is P = T*729/0096

‘The above figures are approninate, and closest only wuhen the file is
first lfilled. In particular, the parameter Q above really is the nnlber of
lines plus the nunber of holes, and, after the file has undergone -much
editing, it nay he considerably greater than the nnlber of lines. Copying a
~file into another file, emptying the original fle, and then conying it hack
condenses the ffile. This ‘procedure is recoinended after a file has been
extensively edited.

The organization of sequential files (with or without line numbers) is
quite simple oconpared to line files. iIn general, the first Q bytes
{currently n=215) of the “first record are used as a header in uhich
pertinent infornation about the sequential file is retained.

Illediately following lthis header inforaation are the lines of interla-
tion stored in the sequence in nhich they were received. isince these lines
nay »be np ’to 32767-bytes long, and since the physical records on the disk
are 3520 bytes, it is quite possible that a line has to the broken up and
stord on none than one physical record. Since the lines are pacted~end to
end using-up all of one physical record before going on to the next physical

\.

1§§> Idle: and Devices: hnnendin C

April 197a

HTS Volume 1: HTS -- The System

record, this is quite likely, even if only "short" lines are written into a
sequential file. Thus it _turns out that even short lines may be broken
across physical record boundaries.

For this reason it is convenient to refer to a segment of a line as that
part of the line which resides on a physical record. A line can therefore
consist of one segment, two segments, or more, depending on the size of the
line, the size of the physical records, and how the line "fell" with respect
to physical record boundaries. Each segment of a line in a sequential file
has either 10 or 6 bytes of overhead associated with it depending on whetherit is in a sequential file with or without line numbers.

This gives the following lower bound for the number of records:

R:

-"I
IO

-I

where k=6 if SEQ
=10 if SEQHL

15 + n*(r+k

3520

P1

 _r
B111

The number of tracks needed: T = [R/2]

The number of pages charged: P = T*729/H096

This is a lower bound because it does not consider that when a line is
spanned across record boundaries, each of the segments has the 5 bytes of
overhead information attached to it, and on the average, probably every
record boundary has a line spanned across it.

All of the numbers in this appendix are subject to change without notice.

Piles and Devices: Appendix C 157

I

i

Hi
\

-_, 7 ———--—--*—--—_-_ W ~ 7 _ _ I ___~__,7_________ __

HTS Volume 1: HTS -- The System

April 197%

A22§!211.21..llQ.EQ!2l!E§.E2I!2!.§Q2§§

The return codes that may result from a call on an input or output
subroutine depend on the type of» the file or the device used in the
operation. In general, a return code of zero ueans successful completion of
the input or output operation, and a return code of H neans end-of-file for
an input operation and end-of-file-or-device for an output operation. If
the file or device 'being used Awas specified as ;part of an explicit
concatenation (and is not the last nenber of that concatenation), a return
code of H causes progression to the next element of the concatenation, and
that return code is not passed back to the caller. For exaaple, if

SCARDS=A+B

then when the call is made to the SCARDS subroutine after the last line in A

has been read, the file routines signal an end-ofwfile, but this is
intercepted, and the first line in B is read.

Return codes greater than Q are normally not passed back to the caller
but instead cause an error comment to be printed and control to be returned
to conuand mode. There are two ways to suppress this action and gain
control in this situation. First, the subroutines SETIOERR and SIOBRR (see
descriptions in Volume 3) are provided to permit a global intercept of all
input/output errors. Secondly, specifying the ERRRTN modifier on an I/O
subroutine call causes all return codes to be passed back.

A description of the return codes that nay occur with a particular file
or device is found in the appropriate User's Guide. In addition, a suuuary
is provided below. Non-zero return codes uarked with an asterisk are fatal
error returns; the others are considered errors by HTS, but are not
necessarily fatal.

; Files:
Input 0 Successful return

ll End-of—-file (sequential read)
Line not in file (indexed read)

8* Error

Output 0 Successful return
Size of file exceeded .

Line numbers not in sequence (SEQUL)
12* For future expansion, should not occur

‘
16* For future expansion, should not occur
20* Sequential file written with indexed modifier, or

written with starting line number other than 1

28* Systel error
28* Hardware or systea error
32 Line truncated (OSP on sequential file)

36 Line padded (35? on sequential file)

1§§#“§iles and Devices: Appendix D

April 1974

Magnetic tape:
Input 0

B

8
12

16

20
2“

28
32

36

Output 0
H

8
12

16

20
2“

28
32

36

Card input under HASP
Input 0

R
8*

HTS Volume 1: HTS -- The System

Successful return
Tape—mark (end-of-file) sensed on read, BSR, or FSR
operation
Load point reached on BSR or BSF control command
Logical end of labeled tape reached on read, PSR,
or PS? operation

* Non-recoverable hardware I/0 error or invalid con-
trol command parameter

* Should not occur
* Fatal error (may be due to hardware malfunction,

label error in which the position of the tape is
uncertain, or pulling the tape off the end of the
reel during a read, PSR, or PSF operation): follow-
ing a fatal error, the tape must be rewound before
any other I/0 operation is allowed

* Volume or data set in error
* Sequence error caused by issuing a control command

when the tape is not positioned properly; or a
read, FSR, or FSF operation following a write
operation

* Deblocking error caused by improper blocking para-
meters, for example, attempting to deblock a format
FB file using a format VB specification
Successful return
End-of-tape marker sensed during write or IT!
operation
Load point reached on BSR or BSF control command

* Attempt to write more than 5 additional records
after end-of-tape marker sensed

* Non-recoverable hardware I/O error, invalid control
command, or invalid control command parameter

* Attempt to write on file-protected tape
* Fatal error (may be due to hardware malfunction,

label error in which the position of the tape is
uncertain, or pulling the tape off the end of the
reel during a read, PSR, or FSF operation); follow-
ing a fatal error, the tape must be rewound before
any other I/0 operation is allowed

* volume or data set in error
* Sequence error caused by issuing a control command

when the tape is not positioned properly: or a
read, FSR, or FSF operation following a write
operation

* blocking error caused by improper blocking parame-
ters which are inconsistent with the labels of, thefile being written

Successful return
End-of-file
Attempt to read in column binary mode

. Files and Devices: Appendix D 159

l

r

\

~lIIr- .T__

HIS Yolune 1: HTS -- the System

April 197R

Output 8* Attempt to write on card reader

Printed Output:
Input 8* Attempt to read from printer

Output O Successful return
8* Local‘ page linit exceeded (User ggggg gets control

back for global limit exceeded.)

L Punched Output:
Input 8* Attempt to read from punch

Output 0 Successful return
8* Local card limit exceeded (user 9915; gets control

back for global limit exceeded.)

MERIT Betwork:
Input: 0 Successful return

H Bud-of-tile read from network. This does not
necessarily mean that there is no aore data to he
read from the network, only that the remote host
has sent an end-of-file.

8* Read not allowed: lust write._ This means that the
remote host is requesting input from the network
and, to avoid a deadlock, the local program rust
not read from the network. The pronpting charac-
ters sent by the remote host Uhen it did the read
are returned to the user.

12* Should not occur
16* Connection is closed: no I/O may be done.

Output 0 Successful return
* Should not occur

\
8* Irite not allowed: lust read. This means that the

remote host has issued a write on the network and,
to avoid a deadlock, the local program lust not
write on the network.

12* should not occur
16* Connection is closed; no I/0 may be done.

Control 0 Successful return
R* ‘Error in control comnand for local host
8* Control coauand not allowed -- the reuote host has

not done a read.
12* Should not occur
16* Incorrect control coanand syntax for remote host
20* Invalid syntax or context for control comland

host other devices:
Input 0 Successful return

Q End-of—£ile
8* Error

159_ files and Devices: Appendix D

I

April 197R

Output 0 Successful return

HES Volume 1: HTS -— The System

H End-of—f11e-or-device [if applicable]
8* Error

Piles and Devices: Appendix D 161

L

F

F

L

4

HTS Volume 1: HTS -- The System

April 1974

LE2IE2IZ.li__!£2LIIE§_II§l§_R§!El§I!lLI.I!.!2§

One of the hazards of using a time-sharing ~system like HTS is the
unfortunate fact that when machine problems or power failures cause the
system to go down abruptly, terminal users are left holding the phone with
no recourse for recovery of work currently in progress. This is particular-
ly frustrating if the terminal user happens to be in the process of updating
a file when the system goes down. Due to the structure of files in HTS, it
is quite possible that a random portion of the most recent changes he
initiates may not be made. In addition, if the terminal user is particular-
ly unfortunate, his partially updated file may possibly be left in an
inconsistent, unusable state by the abrupt halting of his terminal session.

Two questions often asked are: Ihy are some changes made before a system
crash and not in the users file after the system comes up? what can‘ the
terminal user (or even an interactive program) do to minimize the man-hours
lost when the updating process is terminated prematurely due to machine or
power failures?

To understand the answer to the first question (why changes are not
really made), some background about the file system in HTS is necessary.

when a file is first referenced, the first few physical blocks (physical
units of information, in general containing many lines) of the file are read
from disk and placed into buffers (blocks of storage in main memory). This
is done because transferring information to and from the user via these
buffer images of the physical blocks is much more efficient than actually
reading and writing physical blocks of secondary storage at every request.
This process of reading the first few physical blocks into buffers when the
file is first referenced has historically been called "opening the file."
when HTS is requested to read a line (logical record) from the file and pass
it to the user, if that line happens to be in a buffer, the information is
immediately passed to the requester. If the line is not in the buffer, an
existing buffer must be "emptied" and the physical block on secondary
storage containing the requested line must then be read from disk into the
now empty main memory buffer and then, as before, the line requested is
passed to the user.

Similarly, when HTS is requested to take a line from the user and writeit into a file, if that line "happens to fit" (both physically and
logically) into a buffer in main memory, it is put directly into the
appropriate place in the buffer. If it doesn't happen to fit into any
buffers, an existing buffer must be "enptied" and the physical block from
secondary storage into which the line properly goes is read into the empty
buffer and the line "fitted" into the appropriate place. In either case,
once the line is "written", the buffer into which it was placed is flagged
as changed. This means that the buffer in main memory is no longer
identical to the corresponding physical block on secondary storage and, more
importantly, the buffer image in main storage is henceforth the one and only
valid representation of that block of the file.

T62 Files and Devices: lppendir B

April 191a

HTS Volume 1: HTS -- The System

The problem is that while a file is open, its true and valid state is
reflected not only in its physical blocks on secondary storage but also by
its "quite possibly changed" buffer images in main memory. when the system
goes down abruptly, all buffer images in main memory are lost.

Thus the big question appears to be: Ihen are buffer images in main
memory written out in updated form on secondary storage? The answer is that
while the file is open the buffers are written out to secondary storage only
when necessary. whenever a new physical block is needed in main memory and
a buffer is not available, an existing buffer must be emptied. Before that
buffer is emptied and reused, however, a check is made to see if the buffer
has been changed, and, if it has, the buffer is written back on secondary
storage in updated form. There is no direct relationship between the time
changes are made to a buffer and the time the buffer is written in updated
form on secondary storage.

when the user has finally finished updating the file, HTS writes all main
memory buffers that have been changed in updated form onto secondary
storage. Only at this point is the file safely on secondary storage in a
consistent and up-to—date state. This process of writing changed buffers
onto secondary storage historically has been called "closing the file".

Turning to the second question, it becomes evident that the one thing a
terminal user (or interactive program) can do to minimize loses when the
system goes down during the updating process is to request HTS to close a
file more often than it otherwise might. This brings up the question, when
does HTS normally close a file? To minimize loses, HTS closes all open
files before the execution of every command. To answer the second question,
if a terminal user is adding information to a file over long periods of time
using automatic numbering, it would be expedient to occasionally do a
SCOHHENT command. This would at least guarantee that lines entered up to
the point of the SCOHHEHT command were properly written on secondary
storage. '

If a file is being updated from a terminal using the context editor
(SEDIT), the editor command "HTS SEDIT" returns to HTS command mode and then
returns to the editor. This ensures that the file being edited is properly
written to the point of the SBDIT command. (Hote that the commands
"CHECKPOINT" and "RESTORE" are of no help in the event of system crashes,
since they are meant to be used only if the user changes his mind and wishes
to backtrack.)

The HTS subroutine FREEPD (the counterpart of GBTFD) also closes the
indicated file. Thus, interactive user programs which write large amounts
of information into a file over long periods of time should occasionally
call FREEFD (and GETFD again) to ensure that changes made up to that point
in time are actually accomplished. In particular, programs which complete
the updating process but continue to execute for long periods of time should
always call FRBBFD as soon as updating is complete, since HTS does not close
the file until execution has terminated.

These procedures allow a user or program to force HTS to close a file
more often than it otherwise might, and in that way do much to minimize the

Files and Devices: Appendix E 163

V
e _

HTS Voluae 1: HTS -- The System

April 191a

man-hours of work lost if the systea goes down before the updating process
is completed. there is not much that can be done to salvage the changes

that were made between the tine the tile was last closed and the time the
systea went down. Generally the only lose is that of checking and redoing
those changes (not necessarily the lost recent) entered but not accomplished
during the last opn period. If one is unlucky, his file (open when the
system crashed) will show signs of inconsistency which are not correctable
through normal means. These inconsistencies are evidenced by, for example,

two lines with the sase line nusber, or lines which refuse to be deleted or
altered, Sole inconsistencies, however, lake a file totally unreadable. In
cases of this nature, lcadesic Services should be consulted, and if the
daaage is beyond huaan repair, the file will have to be restored from a

save-tape to its status of the day before. In cases where many and

time—consuming updates are being aade over long periods of the day and the
restoring of a file to its status or the day before cannot be tolerated, the
user should probably sake changes to a copy of the file and periodically
update the original by SCOP!ing the copy.

Soae general comments can he aade in closing. rirst, upon reflection, it
should be evident that if a tile is only being read, no problems can result
from a systea crash since none of the main memory buffers are changed and

thus the file on secondary storage is always valid. Second, due to their
internal structure, line tiles are much more susceptible than sequential
files to inconsistencies caused by system crashes during an updating
process. Thus one should use sequential tiles if at all possible. Finally,
update defensively. The work you save is your own.

168 Piles and Devices: appendix B

HTS Volume 1: HTS —- The System

April 197“

_§l§!§éJ;Q!!.A!1LLA1lG ULQE

The sequence of operations of a job run in HTS is controlled by the
commands of the system command language. A command is a request for the
system to perform a function such as running a program, creating or
destroying a file, or setting a global switch.

The system command language provides several modes of operation. The
basic mode is HTS command mode. Several other modes also exist which are
logically separate modes within the system command language. This means
that each mode may be entered or left at any time without affecting the
status of any other mode. The other modes currently available are:

(1) execution mode which is running a user program,
(2) edit mode which is supported by the context editor,
(3) debug mode which is supported by the symbolic debugging system, and
(R) network mode which interfaces the HBRIT computer network.

The interpretation of a line entered by the user at a terminal or of a
card read from a batch job depends on which mode is in control and reading
the input line. If the HTS monitor is in control, the system is in HTS
command node. This is the normal mode of operation for the system. In HTS
command mode, the system is waiting for the next HTS command to process or
the next line to enter into the currently—active file. If the context
editor is in control, the system is in edit node; if the symbolic debugging
system is in control, the system is in debug mode. If the user is running a
program, then his program is in control and he is in execution mode. The
interaction of these modes is discussed below.

£B.§.Zll.§.!A.A..I§RC Bi

In order that the user can determine the mode of the system, a gggig
ghggagtgg is printed at the front of all input or output lines at the
terminal to indicate "who is speaking" or "who is listening". On output
lines, this prefix character is typed ahead of the message. When input is
requested, either the prefix character (if automatic line numbering is off)
or the prefix character followed by the line number (in HTS command mode if
automatic line numbering due to the RUHBBR command is on) is typed at the
front of the line. Each mode of the system has a distinct prefix character.
For exanple, HTS command mode uses the pound sign "8". Thus, whenever the
HTS monitor is expecting a command line- or data line to place in the
currently—active file, it types a "Q" in the first character position of the
terminal line and waits for input. The system prefix characters are:

System Command Language 165

__,|____

HTS Volume 1: HTS -— The System

jam‘

1

node

F‘
Prefix

Characte

H
....-N.

Q1j1iiIi*

74

;_______-_____-__l

_'+NI"'0'V‘‘

as-ba-n¢n—I¢-q-=1---@¢_—dh

HTS command mode
Copying
Loading
Proapting

Edit command mode
Fast insertion

Debug command mode
ht-insertion

Network command mode

Execution mode blank

In addition, nany of the programs available in public files use prefix

April 197R

characters. For example, PIL.uses "=". The execution mode prefix character
can be changed by the subroutine SBTPFX which is described in Voluae 3. The
printing of prefix characters can be suppressed by the command

$SET PFX=OFF

HHWHEJ&JQm§

The following is a description of the interaction of the various modes.
The normal mode is HTS command mode (sometimes called just "command mode").
The user always starts in this mode, and reverts to it in case of trouble.

m§A&mmuLu&JuwnMm4mu
The user nay enter execution mode via the RUI, START, or RBSTART

comaands. Ihen gthe user is in execution mode, the executing program is in
control. The return to HTS command mode is normally accomplished by:

(1) the program returning to HTS (or calling the subroutines SYSTEM,
HTS, HTSCHD, or ERROR):

(2) the program exceeding a local time, page, or card limit;
(3) in batch use, the program exceeding the global time, page, or card

limit;
(I) in conversational use, the user issuing an attention interrupt,

gglggg the program. being executed has called the appropriate
subroutines to intercept attention interrupts: or

166 System coamand Language

April 1975

HTS Volume 1: HTS -- The System

(5) some abnormal condition (such as a program interrupt) occurring and
the program has not called the appropriate subroutines to intercept
the condition.

!I§:§Q!!52§_§2Q_D§9!S:§2!!§£QsQ95?

The user may enter debug command mode via the DEBUG or SDS commands.
when the user is in debug mode, the symbolic debugging system is in control.If a "one—shot" debug command is specified with the SDS command, that debug
command is executed in debug mode and then an immediate return is made to
HTS command mode. The user may return to HTS command node via the HTS or
STOP debug commands. If STOP is used, the storage used by the symbolic
debugging system is released.

Penna-Qenasné.22§_E£2s2Li22_H2§2

The user may enter execution mode from SDS via the RUN, CONTINUE, SOTO,
or STEP debug commands. A return is made from execution mode to debug
command mode in the same manner as from execution mode to HTS command mode
(see above). Also, a return is made to debug mode when any of the following
conditions occur:

(1) encountering a breakpoint or at-point in the program:
(2) completion of the step count for the STEP command:
(3) calling the subroutines LINK, LOAD, or XCTL when the XPR debug

option is OR.

If the SET DEBOG=OR option has been specified, the user may enter execution
mode indirectly through debug mode from HTS command mode via the RUN, START,
or RBSTART commands. The return from execution mode is made through debug
mode to HTS command mode.

!T§_£225anQ_an§_§9is.§2a2an§.!2d2

The user may enter edit command mode via the EDIT command. when the user
is in edit command mode, the context editor is in control. If a "one-shot"
edit command is specified with the EDIT command, that edit command is
executed in edit mode and then an immediate return is made to HTS command
mode. The user may return to HTS command mode via the HTS or‘ STOP edit
commands. If STOP is used, the file being edited is released by the editor.

nzaseuaniemisuubiauansneae
The user may enter into network command mode via the NET command. when

the user is in network command lode, the user is interfaced with the HBRIT
computer network. The user may return to HTS command mode via the HTS or
STOP network commands. If STOP is used, the storage used by the network
interface is released.

System Command Language 167

HTS Voluae 1: HTS -- The System

April 197$

- 2221112

Copying is an extension of HTS command mode. Copying is in effect when a
COP! or LIST command has been given in HTS command node. Ihen copying, the
user is reading lines fron one file or device and writing then on another
file or device. when an end-of-file condition is received from the file or
device being read froa, copying stops. In conversational use, copying also
stops if the user issues an attention interrupt.

In order to copy a SBHDYILB line froa *SOURCH* or *HSOURCE*, a SSBT
ENDFILB=lBVBR coamand aust be issued first. In this case, the terminal user
must use an end-of-file terninal control character to terminate the copying.
The batch user lust normally lake this COP! or LIST command the last coaaand
in the card deck, since in this situation, the copying proceeds until the
end of his deck or until the line SCOHTIHEE WITH *DUHH!* is encountered.

lending '

Loading is an extension of HTS coamand mode. ihen a RUH, LOAD, or DEBUG

command is given, the dynaaic loader takes control to load the specified
program. This is a teaporary condition. After the program is loaded, the
user is then in execution node (for a BUR colmand), HTS command node (for a
LOAD connand), or debug mode (for a DEBUG comland). All error messages from
the loader and the load nap, if requested, are printed by the dynamic
loader.

229323129 '

This is an extension of HTS comaand node for conversational use. when
the prefix character "7" appears at the front of an input line, the user
must enter the information that was requested on the previous output line.
This usually occurs because of an erroneous or incolplete command or when
confirmation is requested for a DBSTRO! or BHPT! command.

§9§lll2§.1l2_RlL1l1I§B§ ,

Comlands are interpreted as such by HTS only if HTS is in HTS command
node. Thus a line

- scor! A n

is treated as a copy coaaand if the HTS monitor reads the line, but is
treated as a data line if the user's program reads it during execution node.

Deliaiters are constructs which are recognised in a broader context than
coaeands. Because these delieiters start with a dollar sign "S", they are
often erroneously considered to be comlands. Since they are not coamands,
the dollar sign is pg; optional, and there are no abbreviations for then.

. 1§§__r§!.I!e9_!,.¢_<.>II=r'\ 1-nuns»

April 197R

uTS Volume 1: HTS -— The System

There are currently two delimiters: the end—of-file delimiter and the
implicit concatenation delimiter.

The form of the endfile delimiter is
$ENDFILE

Sensing this delimiter causes an end—of-file condition to be signalled. The
scope of this delimiter depends on the setting of the global BNDFILE switch
which can he set by the HTS SET command or by the CUIRFO subroutine. (See
the GUINFO, CUIRFO subroutine description in Volume 3.) In the default
case, ENDFILE=0FP, a line consisting of "SENDFILE" is recognized as a
delimiter only if it is read from *SOURCE* or *hSOURCE*. If the SET command
specifies ENDPILE=0N, a line consisting of "SBNDFILE" is always treated as
an end-of-file delimiter. If BNDFILE=NEVER is specified, a line consisting
of "SENDFILE" is never treated as a delimiter, but is always treated as a

data line.
The form of the implicit concatenation delimiter is

$C0NTINUBIHITH Fbname [RETURN]

where u means exactly one blank. A line with this construct, if recognized
ash a delimiter, causes implicit concatenation to occur. For a description
of implicit concatenation, see the "Piles and Devices" description in this
volume. Recognition of a delimiter is controlled by both a global switch
and a pair of I/0 modifier bits. The global switch is IC and its setting is
specified by the SET command. Its values are either ON or OFF. The default
case is IC=0N which means that this construct is recognized as a delimiter.
The I/0 modifiers are IC and ~IC (see "Files and Devices") and when applied
to an Fnname, they override the setting of the global IC switch for those
usages of the FDname.

System Command Language 169

HS Volale 1: MP5 -- The System

1'70 system €0'lI%I~ Language

April 1973

April 197a

!I§_QQ!!AE2.!Q2§

HTS Volume 1: HTS -- The System

HTS command mode is the default mode for the system. In HTS command
mode, the HTS monitor is looking for the next command to process or the next
data line to enter into the currently active file. It is in HTS command
mode that the user initially begins his job and issues the various commands
for running his programs. It is to HTS command mode that the user returns
after his programs have terminated execution (either normally or
abnormally).

In HTS command mode, input lines are read from *SOURCE*. *SOURCB* refers
initially to the user's terminal or to the card reader for batch jobs
submitted. This initial assignment may be changed by using the SSOURCE

command.

QQEHAE2-Ll!§§_A!2_2AEA_Ll!§§

All lines read in HTS command mode are either

(1) interpreted as commands,-or
(2) written into the currently active file.

The currently active file is established with either a SGET command (ifit already exists) or a $CREATE command (if it does not exist). Another
SGET or SCREATE establishes a different active file; the SRELEASB or
SDESTROY command removes it.

A single dollar sign "$", occurring as the first character in the input
line from *SOURCE*, is used to indicate that the line is a command line. If
an input line does not begin with a single "S", it may be interpreted by HTS
as a data line. Data lines are put into the currently active file. Every
data line must have a line number associated with-it. This is accomplished
in HTS in two ways: either HTS supplies the line number (automatic line
numbering on), or the user supplies the line number himself (automatic line
numbering off).

In the first method (automatic line numbering on), HTS automatically
assigns a line number to each input line. Automatic numbering is enabled by
the SHUHBER command. Any line which is entered is interpreted as a data
line unless the first character is a single "S" in which case HTS interprets
the line as a command. For example:

$COHHENT

HTS Command Hode 171

ETS Volume 1: HTS -- The System

April 197%

is interpreted as a $C0hHERT command and the line is not placed into the
active file. On the other hand the line:

COHHENT

is treated as a data line. It is given the line number which appeared as
the terminal prefix number and placed in the active file. To actually place
the line "scounnur" into the active file, the line:

SSCOHHERT

must be specified. The first dollar sign is removed from the line before it
is given a line number and placed into the active file.

In the second method (automatic line numbering off), the user must supply
a line number with each line entered. This line number is specified by
placing a legal HTS line number starting at the first character position on
the line. A legal HTS line number is a decimal or integer number between
-99999.999 and +99999.999 inclusive. HTS scans the line for a line number
and if present, strips it from the line, and places the characters following
the line number into the active file at the indicated line position. For
example:

15HI THERE

places the characters "HI THERE" into the active file as line 15. The line
number separator character "," may optionally be used to- separate the the
line number from the rest of the line when the line number and the line
might be confused. For exanple:

21.6,1D312 CONTINUE

would place the line "10312 CONTINUE" at line position 21.6 of the active
file. If the user wishes to enter a line into the active file beginning
with a ",", he must either specify two commas or change the line number
separator character with the SET command. For example, either

25,,ABCDE

or

SSBT LlS=|
25I,lBCDE

enters the line ",LBCDE" into line position 25 of the active file.
Users are cautioned that a line is still treated as a command if the

first character after the line number (ignoring a line number separator) is
a single "$" and the second character is something else. For example:

10,$COHlEIT

123 ITS_§ommand lode

April 191a

is treated as a COHHERT command and

must be specified if the line "SCOHHENT" is to be placed at line 10 of the
active file

The following table summarizes the effects of entering a line with zero,
one or two dollar signs.

10,$$COHHENT

HTS Volume 1: HTS -- The System

M

i

-4|

4-

i

5

No S One $ Two S

? \

\

an

\

an

iii

L

?¢—1

Line numbering on
(terminal or batch)

Data
line

Comman
line

d Data
line

Line numbering off
with no active file
(terminal) I

Q4

-5

Command I Comman
line | line

Data
line

Q

\

--—1q—

1 \

1qn

41-an

M

1t

Line numbering off
with an active file
(terminal)

Command | Command
line | line

Data
line

P-r

Line numbering off

iqp

f Data

-<+

_ j,_
COIIQH

OI

—-P

Data
(batch) line line line

Fi

+-

P1

biii

A line that starts with a single "S" is always treated as a command. A line
that starts with two dollar signs "$$" is always treated as a data line. If
no "S" is present the line is treated as a command for a terminal user if
and only if

(1) there is no line number at the beginning of the line and automatic
line numbering is off, or

(2) there is no active file.
In these cases the dollar sign is still optional but is completely ignored.If there is an active file and automatic numbering is on, then a dollar sign
is required to distinguish command lines from data lines for the active
file; if a line number is typed at the front of the line, a dollar sign is
required for the same reason. The dollar sign is required in batch mode to
avoid interpreting data as commands and causing irreversible damage to
files.

If there is no currently active file and the line cannot be interpreted
as a command, it is ignored and the comment "INVALID COMMAND" is given.

HTS Command lode 173

_ I

HTS Volume 1: HTS —- the System

April 1970

§9!II!!l.'2IQLLIl§§

If the last character of an input line from *SOURC!* being read by the
HTS monitor is a minus sign "—", then the next input line is assumed to he a
continuation of the current line. Continuation begins with the first
character of the next line, which may he assumed to replace the "-I
continuation character in the previous line. as many continuation lines as
desired may be used with the restriction that their total length may not
exceed 255 characters. In batch, the last character position is column 80
on the card. For a terninal input line, the "-" must be the last character
typed before the termination of the line. m

In order to prevent run-away jobs in batch mode, it is necessary to
provide some means for the user to limit the CPU time a job may use and the
amount of output (paper and cards) it produces. It is often desirable for
users at a terminal to he able to limit the execution time and output of a
single program. To provide this facility, global and local limits are
provided.

Global limits apply for the entire job from sign-on to sign—off. They
are valid for batch jobs only and may he specified on the SIGROI command.
Default values are assumed for any omitted limit specifications. There are
no global limits imposed for terminal jobs.

Local» linits apply for the execution of a single program. they may be
specified on the S308, SLOAD, SRESTIBT, or SSTART commands. If a SRBSTART
or $5138! command specifies no limits, then what is remaining of the limits
specified by the original SRO! or SLOAD command is used. If no limits are
imposed for the execution or output of a program, then the program is not
limited in terminal mode and limited only by the global limits in batch
mode.

The first limit to be exceeded, whether global or local, causes an error
comment to be printed and the job terminated (if a global limit), or a
return to command mode (if a local limit).

A progran storage dump is given if a limit has been exceeded in batch
node while executing a program and if the dump has been requested by the
SBRRORDUHP command, the BBRORDUUP keyword parameter on the SS3! command, or
a call to the CUIIIO subroutine. the CPU time and pages used in producing
the dump are not included in the global limit specifications but are still
charged to the user's account.

174 HTS Consand lode

April 197R

GLOQAL Ago Log;;_3§LQc;T;ou rgggggg

A global relocation factor is maintained

HTS Volume 1: HTS -- The System

for referencing locations in
virtual memory. Initially the global relocation factor is set to zero. The
global relocation factor can be changed by the SSET command.

A local relocation factor, which overrides the global relocation factor,
can be given in the $ALTER, SDISPLAY, SHODIFY, SRESTART and $START commands,
and remains in effect for the duration of the command, unless changed by a
subsequent local relocation factor in the sane command. A displacement
given in the same command is added to the current value of the relocation
factor to provide an absolute virtual memory address. This computed
absolute virtual memory address is used by the command to reference the
storage location or block of locations desired.

§l§_§QHH§NDS

The following notation conventions are used in the prototypes of the
commands:

lower case — represents a generic type which is to be replaced by an
item supplied by the user.

upper case — indicates material to be repeated verbatim in the command.
brackets [] - indicates that material within the brackets is optional.
braces [} — indicates that the material within the braces represents

choices, from which exactly one must be selected. The
choices are separated by vertical bars.

dots ... - indicates that the preceding syntactic unit(s) may be
repeated.

underlining — indicates the minimum abbreviated form of the command or
parameter. Longer abbreviations are accepted.

The following pages give a complete summary of the commands in the HTS
command language.

§Q;!Q£!:2§_!I§:QQ§!§UQr££2§2£1B2§

SQLTER location value
location GR:

FR:
[RF=[hhhhhh|GRx}] xxxxxx

value [hhhh|X'hhhh'}
C'xxxx'
F'YYYY'
H'YYYY'

HTS Command node 175

HTS Volume 1: HTS -- The System

April 197“

SQQLC {expression[decimal-aunberlhexadecimal-number}

SQQQCBL [[*...*] [JOB] nnnnnn] [[CCID|In]=xxzx]PI=yyyyyy]]

sggguzuw [text]
$§Q§TROL Fnnane contro1—connand

$COPY [[PROH] PDna:e1] [[T0] PDnale2]

$§§EATE filenale [SIZE={n|nP|nT}] [T!PE=[LINE|SEQ|SEQIL}]

$Q§§UG [objectrbname] [lAP[=lapFDnane]] [IOHLP] [XRBF] [I/OFDnanes]
[lilits] [PAR=paraleters]

sggsmnoz filenane [ox|o.x.||] .

SQISPLAY [ON Fbname] [format] location ...
format [HEX|IOHB!}

{nnEu|uouusu}
{BCDIEBCDIROBCDINOBBCD}
[SP1ISSPCISGLSlSP2|DSPC|DBLS}
[ORL=S|ORL=L]

location GR:
PR:
[RP={hhhhhh|GRx}] xxxxxx[...xxxxxx]
PSH
VHSIZE
{$lC05T}
SIGFILB
{APDNAHBILFD}

$Q§HP [ON Pbnale] [format] ...
format [HEXINOHEX]

{lIE!|NOHHEH}
[BCD|BBCD|IOBCD|ROBBCD]
{SP1|SSPC|SGLS|SP2|DSPC|DBLS}
[0RL=S|0RL=L}
[LIB|NOLIB}

SIQIT [{fi1enaae|:edit-conland}]

$§HPTY filenale [0K§O.K.|!]

sggaonnunr

$§ET Fbuane

SQBXADD operand operand ...
operand [hhhh|GRx|BP}

176 BTS Conland Bode

April 197a

SQEXSUB operand operand ...
operand {hhhh|GRx|RF}

SLNQUIRE parameter [/parameter] ...
parameter A device-type

ACTIVE
ALL
B

HTS Volume 1: HTS -- The System

C [signon—id|task—nunber]
CNTR
CONFIG
D device-name
EXEC [LOCAL|RHTS|remote-station—id]
H

HELDIHOLD ~

JOB receipt-number
L [SIHZ]
LOCAL ‘

H

HE
HTS
N

' 0
OS [signon—id|receipt-number|ALL]
PAGES
PLOT [signon-idlreceipt-number|ALL]
PRINT [LOCAL|RHTS|remote-station-id]
PRIORITY
PUNCH [LOCAL|RHTSlrenote-station-id]
QUE [CNTR|EXEC|PRINT|PUNCH|Hlremote-station-idl

signon-id]
receipt-nulber
remote-station-id
REHOTESIRMTS
S [L]
SAME
SIGHSG
STATUS
STRANDS
T device-type
TAPES
task-number
U signon-id
signon-id
USERS
*[receipt-number] [nE|signon—id]

$LIST [FDname1] [[ON] FDnane2]

SLQAD [objectrnnane] [uAP[=lapFDname]] [NOMAD] [XREF] [I/Orbnanes]

/

[limits] [PAR=paraneters]

HTS command Mode 177

>

\

~nn-

HTS Volume 1: HTS -— The System

lptil 1974

limits g1nn={t|ts|tu1
gAczs=p
§ARDS=c

SQODIPY location value
Sgggum [request [; request] ...]

S1]! [*PDR*] [network-command ...]

$§UlBER [[starting-number] [[,]increment]|[§Q11IRU!]

sggnnrr [filenane [ALL|ann|Paauo|uoun|cuw|no]]

$§§LB1SE [*pdn*]

8g§StART [[AT] location] [AP[=mapPDname]] [BOBLP] [XRBP] [I/Orbnames]
[limits]

limits 1IlE=[t|tS|t}
glGBS=p
§ARDS=c

$308 [objectrbname] [BAP[=maprDname]] [NOHLP] [XREY] [I/Ofbnanes]
[limits] [PAR=parametets]

limits 1IlB=[t|tS|tH}
gmszs=p
§ARDS=c

$§QS [debug-command]

8§BT keyword ...
keyword’ AFDBCHO=[08|0PP}

CAS3=[UC|LC|BX|nIXBD}
CnDSKP=[0I|0r!}
CORTCHli=character
COST={OI|0IP]
cnnArn={ou|orr}
nnnue={on|orr}
DBVCHlR=character
ncao={oI|orr}
BDITlrD*(OI|OF?]
zunrrin-(on|orr|nnvza}
naaoanuuv={ou|orr|rnLL}
PILECH1R=charactet
1c=[on|orr}
LIBR={OI|0rr]
LIBSRCH={OIP|PDname}
LRS=character
PP1={0I|0P!]
PI=characters

178 HTS Command lode

April 197B

RF={hhhhhh|GRx}
SCRFCHAR=character
SEQFCHK={0N|0FF}
SHFSEP=character
SIGFILE={0FF|FDnane}
SIGFILEATTN={0N|0FP}
SYHTAB={0N|OFF}
TDR=[0N|0PP}
TERSE=[0N|0FF}
TRIM=[0N|0FP}
UNLOAD=[0N|OFF}
*LIBRARY=(0N|0FP}
$=[0N|0FF}

$§l§NOFF [§HORT|$]

$§;§NON ccid [keywords] ['d name']

keywords PH=passvord
gIHE=[t|tS|tM}
gAGES=p
§ARDS=c
COPIES=n
PRINT={QN|TN}
§OUTE=station
CROUTE=station
PROUTE=station

$§1NK [FDname|PPEVIOUS}

sgguncn [FDname|PREVIOUS}

HTS Volume 1: HTS -- The System

$§1ART [LAT] location] [MAP[=uapFDnane]] [NOMAP] [XREF] [I/0FDnames][llmits]
(see $RESTART command)

$§§§OAD [CLS=xxx]

sgnuunsna

HTS Command node 179

BIS Volume 1: HTS -- The System

April 197a

LL13!

COHHARD DESCRIPTION

Purpose: To alter the contents of a general register, floating-point
register, or specified virtual memory location(s).

Prototype: $§LTER location value
Bach alteration requires a pair of the following parameters,
the first specifying what is to be altered and the second
specifying the nev contents. Any number of items may be
altered vith a single ALTER command. A

location

180 JLTIR Command

"location
register,
altered.
ing forms

GR:

Fax

[RP=

" is the general register, floating-point
nor virtual memory location(s) that is to be
"location" may be given in one of the follow-

GRx specifies the general register "x", where
"x" is a decimal integer from 0 to 15 or a
hexadecimal integer from 0 to 9, A to F.

PR1 specifies the floating-point register "x",
where "x" is one of the integers 0,2,3, or 6.

{hhhhhh|GRx}] xxxxxx

This specifies a virtual memory location given
by an ggtigggl local relocation factor and a
displacement. "hhhhhh" is the hexadecimal
value of a local relocation factor or GR:
indicates the general register whose contents
are to be used as a local relocation factor.
"rxxxxx" is the hexadecilal value of a displa-
cement. The displacement is added to the
current value of the relocation factor to
provide an absolute Zebit virtual memory
address. If a local relocation factor is not
specified, the global relocation factor is
used. The global relocation factor is ini-
tially zero, but may be changed by the $SET
command. when a local relocation factor ~is
specified in the command, it remains in effect

MTS Volume 1: HTS -- The system

April 1970

for the remainder of the command unless subse-
quently overridden by a second local reloca-

, tion factor specification.

value

The new contents are specified by any one of the
following constant expressions:

hhhh or X'hhhh'

Any hexadecimal constant expression of any
length may be given.

C'xxxx'

Any EBCDIC character expression of any length
may be given between the delimiting primes; a
prime in the character string must be repre-
sented by two consecutive primes.

P'YYYY' °I H'YYYY'

A fullword (F) or halfword (H) decimal con-
stant expression may be given consisting of a
sign followed by decimal digits all enclosed
in primes. The "+" sign is optional: the "—"
sign is required. Decimal constants may not
be specified for floating-point registers.

Description: The new constant given by the parameter "value" replaces the
contents of the register or virtual memory location specified
by "location". Register numbers and virtual memory addresses
are checked for validity and a complaint is made if an
illegal value is specified. At all times, a virtual memory
address less than 500000 (hexadecimal) is illegal. If a
privileged program is currently loaded, all locations are
illegal. The parameter pairs in the command are processed
from left to right.
General registers are altered as follows:

A character constant is truncated or padded with trail-
ing blanks to four bytes (characters) and placed,left—justified, into the register.
The integer value of a hexadecimal constant (consisting
of one to eight hexadecimal digits including leading
zeros) is loaded, right-justified, into the register.
The integer value of a decimal constant is loaded into
the register.

ALTER Command 181

' — ~*—' —' 7- ——

HTS Volume 1: HTS -- The System

April 1976

Floating—point registers are altered as follows:

A character constant is truncated or padded with trail-
ing blanks to eight bytes (characters) and placed,
left-justified, into the register.
A hexadecimal constant is truncated or padded with
trailing zeros to eight bytes and placed, left-justified
with leading zeros retained, into the register.

Virtual nenory is altered as follows:

A character constant is placed, one character per byte
into consecutive virtual memory locations.

A hexadecimal constant is placed, tvo hexadecimal digits
per byte with leading zeros retained, in consecutive
menory locations. If an odd number of hexadecimal
digits is given, the last byte of memory altered has
bits H-7 set to zero.

The integer value of a decimal constant is loaded,
githggt regard to boundary alignment, into either four
or two bytes (for fullword or halfword constants)
starting with the byte specified by "location".

Examples: $lLTER GR3 11320 PR6 X'U110'

The hexadecimal constant 0001A3E0 is placed in GR3 and
the hexadecimal constant 4110400000000000 is placed in
PR6.

‘ALTER RP=5188E2 200 X'D502CC7E6000' R00 X'O5EP' GRA O

The hexadecimal constant D502CC7E6000 is placed in
virtual memory location 518AE2, the hexadecimal constant
052? is placed in location 518682, and the constant zero
is placed in GR10.

$3 RF=51l8OO ABC F‘-1000' RF=519600 2B6 C'DON"T DO IT‘

182 ALTER Conmand

The deciaal constant -1000 is placed in virtual memory
location 518236, and the character constant DON'T D0 IT
is placed in location 519886.

HTS Volume 1: HTS -- The System

April 1976

SALE

COMMAND DESCRIPTION

Purpose: To perform arithmetic as a desk calculator in double preci-
sion, to evaluate arithmetic expressions containing decimal
and/or hexadecimal numbers, and to convert decimal integers
to hexadecimal numbers and vice versa.

Prototype: $CALC [{expression|number}] ~

where the parameter is an arithmetic expression when calcula-
tion is to be performed, or a single hexadecimal number or
decimal integer when conversion is to be performed. Blanks
may occur anywhere within the expression or numbers. If the
$ operand is used in the expression, the result from the
previous CALC command is used in its place.

Description: A decimal number may be signed and contain an explicit
exponent; for example,

127 -2.2 +3 1e2 3.276-8 .2,e+2

A hexadecimal number is a string of 1 to 8 hexadecimal digits
(0-F) enclosed in single quote marks and optionally preceded
by the letter X; for example,

X'503000' X'FF' 'FF' X'PFFFFFFF' '1B0'

when an arithmetic expression is the parameter, the expres-
sion is evaluated. The order of precedence is left to right,
exponentiation first, followed by multiplication and divi-
sion, then followed by addition and substraction. Both
decimal and hexadecimal numbers may be used in the expres-
sion. The permissible operators are:

+ (addition)

- (subtraction)

* (multiplication)

/ (division)
Parentheses may also be used to define the order of prece-
dence. A single hexadecimal number may be enclosed in
parentheses to define it as an expression.

If the parameter is a single hexadecimal number, it is
converted to a decimal integer. If the parameter is a single
decimal integer (no decimal point or exponent), it is
converted to a hexadecimal integer.

CALC command 183

HTS volume 1: HTS -- The System

April 197“

Note that it is possible to interrupt an executing program,
perform calculations, and then resume execution of the
program via the SRESTART command.

Bxalples: SCALC 22/7
SCALC 1'16‘/7
SCALC (2**(.5)1*(1+1)
$CALC $*3.5

The above examples evaluate arithmetic expressions.

$CiLC 255
SCILC -1

The above examples perform hexadecimal conversions.

$ClLC 'FY??P?!P'
$CLLC 1'?!‘

The above examples perform decimal conversions.

SCALC S ‘

18% cars comaand

The above example converts the result from the previous
CLLC command: if the result was in decimal, the conver-
sion is in hexadecimal, and vice versa.

HTS Volume 1: HTS -- The System

April 1974

QAEQEL

counnun nzscnxvrxou

Purpose: To cancel *PRINT*, *PUNCH*, OR *BATCH* jobs submitted from a
terminal, or regular batch jobs that the user has previously
submitted.

Prototype: SQAECEL [*...*] [[JOB]nnnnnn] [[ID|CCID}=xxxx [PI=yyyyyy]]

where the parameters may be given in any order.

... nnnnnn

"*...*" is either *PRINT*, *PUNCH*, or *BATCH*, and
"nnnnnn" is the 6-digit job receipt number. If the
appropriate "*...*" has not been released, then the
associated job is cancelled. If the "*...*" has been
released to HASP, then the job receipt must also be
specified. If both the "*...*" name and the receipt
number are given, and the receipt number does not match
the currently-opened "*...*" job, then it is assumed the
user is referring to an earlier "*...*" job and the
cancel information is passed to HASP. If both the
"*...*" name and the job receipt number are given but
the receipt number is that belonging to a different
"*...*", an error comment is printed.

{ID|CCID}=xxxx [PI=yyyyyy]

"xxxx" is the signon—id associated with the job to be
cancelled. This is required only if it is different
from the ccid that the user is signed on under when he
issues the CANCEL command. The password "yyyyyy" asso-
ciated with the ccid must also he supplied. If it is
not supplied the user is prompted for it.

Restrictions: An "*...*" job cannot be cancelled once processing has begun
by HASP. Thus, *PRIRT* can be cancelled only if it is
awaiting printing, *PUHCH* if it is awaiting punching, and
BATCH if it is awaiting execution. To find out where a job
is in processing, issue the HTS SINQUIRE command.

Cancelling an *PRINT* or *PURCH* job while it is still open
causes wthe page-line or punch charges for the job to be
rebated automatically. Once the job has been released to
HASP, it can be cancelled (subject to the constraints listed
earlier), but the charges are not rebated automatically.

CANCEL Command 185

HTS Volume 1: HTS -- The System

April 197a

Examples: SCAICEL *PRINT*

The current *PRINT* job is cancelled.

$CAICEL 610399

The job with receipt number 610399 is cancelled.

SCRICBL *PUICH* 603321

186 CQHCBL Command

The *PUICH* job with receipt number 603321 is cancelled.

HTS Volume 1: HTS -- The System

April 197R

goguznm

COHHAND DESCRIPTION

Purpose: To allow insertion of comments on output to the terminal or
the printer.

Prototype: SQQQHENT [text]
Description: This command is ignored by the system. As with all commands,it is echoed on *SINK* and *MSINK* unless the command SSET

ECHO=0FF has been given.

Example: SCOH THIS IS A CCHHENT COMMAND

COUHENT Command 187

HTS Volume 1: HTS -- The System

QONTROL

lptil 1975

COHHLND DESCRIPTION

Purpose: To allow the execution of control operations on certain types
of files and devices.

Prototype: SQQQTROL Pbname control-command
-

Description: The "Fbnane" parameter specifies the file or device on which
the control operation specified by the "control-command"
parameter is to be perforned. The "control-command" paramet-
er begins with the first non-blank character after the
"FDnane" parameter and continues for the remainder of the

" conland.

Control commands may also be specified from user programs via
the CONTROL subroutine which is described in Volume 3.

Only certain types of files and devices currently allow
control operations to be performed. A list of the acceptable
devices and their control commands follows. The codes in
parentheses refer to the device type returned by the subrou-
tine GDINFO (see HTS Volume 3).

nasneiig lanes IEEEL

£22229; 2222299 zaraueier

Positioning:

RBI
F5R[n]
BSR[n]
PSF[n]
BSF[n]
POSH{*n*|*EOT*|name}

Blocking:

Z2£2SiQR

Rewind
Forward space "n" records
Backspace "n" records
Forward space "n" files
Backspace "n" files
Position to nth file, end-
of-tape, or data set name,
respectively

{PORHAT|FHT|RECFH) fmt[(size][,lrecl])]
where "fut" is [U|F|FB|FBS|V|VB|VS|VBS}

{SIZE|BLKSIZB] n

188 CORIROL Command

Specify blocking format
and, optionally, block
size and/or logical record
length
Specify block size
(18n32767)

April 197R

LRECL n

HTS volume 1: HTS -- The System

Specify logical record
length (1n32767)

BLK[ON|0FF] Enable or disable blocking

Label Processing:

DSN [name]

LP {on |OFF}

EIIOI RGCOVQI Y 2

RETRY n

Miscellaneous:

HTH[n]

Specify data set name for
next new file written
Enable or disable label
processing

Specify read error retry
count (0n15)

Write "n" tape-marks
MODE {800|1600} Specify tape mode
PUSH

POP

Push current tape parame-
ters into stack
Pop tape parameters from
stack

Note that in the FSR, BSR, FSP, BSF, and IT! parameters, "n"
must be in the range from 0 to 32767. If omitted, "n"
defaults to 1. For a complete description of these parame-
ters, see the "Magnetic Tape Users Guide" in HTS volume H.

!§£sin§l§:l;;li=22&1L
Q22§§2l:§2!!QQQ:§§§2!§£Q£ 22222122

BDCST[={0N|OFF}] Enable or disable printing
of messages from the
operator

CC[={0N|0PF}] Enable or disable carriage
control A

COL=[0N|OFP][:lm,rm] Print only a specified
column range in output
lines '

DCC[=[x|OH|OFF}] Redefine the device com-
mand character; enable or
disable recognition of
device commands

DLC[={x|OR|OFF}] Redefine the delete-line
character; enable or dis-
able delete line function

DPC[=[x|OR|OFF}] Redefine the delete-
previous character: enable
or disable delete previous
function

CONTROL Command 189

~ J

BIS Volume 1: HTS -- The System

April 1970

BFC[=[x|0I|0FF}] Redefine the end-of-file
character; enable or dis-
able end-of-file function

GOLF=ddd ~ Substitute typing elements
for Selectric terminals

HEX[={x|OR|OFP}] Enable or disable hexade-
cimal input editing: rede-
fine the hexadecimal input
delimiter

JOB Retrieve line adapter and
task numbers

K[={UC|LC}] Specify alphabetic conver-
sion mode for input lines

LEN=[n|OF!} Redefine the truncation
length for output lines

[LBAR|RuhR}=n Define position of left
» and right margin stops

L8C[={x|0N|0PF}] Redefine the literal-next
character; enable or dis-
able literal next function

HOTE[={ON|0FP]] Enable or disable "twitch-
ing" of type element

RESET Reset all device command
parameters

R!V[=(ON|0PF}] Enable or disable byte-
reversal function

{TlBIlTABO}[=[0N|0FF}[;x{t][,t...]]
Enable or disable logical
tab stops; define logical
tab character; establish
positions of logical tab
stops

TERSB[=[ON|0FP}] Enable or disable terse
messages from the terminal
device support routine

UCI[=0N|O?F]] Enable or disable lower-
case conversion for input
lines

UCO{=[0N|OFF}] Enable or disable lover-
case conversion for output
lines

IARI=(ON{OFF} Enable or disable two
minute warning on ten
minute line

The default values for the above parameters vary depending on
the type of terminal being used. In cases Ihere the equal
sign is optional, if it is omitted, the switch setting is
reversed. Po: a complete description of these paraaeters,
see the section "Bemorex 1270 Device Support Commands" in HTS
volume 4.

190 coarse; cemand

April 197“

HTS Volume 1: HTS —- The System

Héll Estvnrh LEEETL

§2¥$£2l QQQEQQQ Zé£i!§E%£ ZQQQSLQE

ATTN Send an attention inter-
rupt to the remote host

BIN={0N|PFF} Enable or disable binary
translation for output

CC=[ON|OFF|CHECKS} Enable or disable logical
carriage control

[CLEAR|RESET} Resets all control
parameters

DON'T Prevent a connection from
being released at signoff
time

EOF Send an end-of-file to the
remote host

HEX=[0N|OFF} ["1"] Enable or disable hexade-
J cinal translation

LEN=n Specify length of received
records

PFx={0N|OFF} Enable or disable prefix
processing

TAB={0N|0FF}["x"][t1 t2 ...]
Control processing of tab
characters on input

UC=[0N|0FP} Enable or disable lower-
case conversion

For a complete description of these parameters, see the
section "MERIT Network Users Guide" in HTS Volume R.

EEBLEEE l§£IBL| EBQEEBZ l§2E§l- IEAZQHE llll
£92322; §Q!@a£§ Z§£é"Q§e£ lilli

Z§§!QQZQ§!iS2 !é!§§
HOLD *PRINT*, *PUNCH*, *BATCH*
RELEASE *PRINT*, *PUNCH*, *BATCH*
CANCEL *PRINT*, *PUNCH*, *BATCH*
ROUTE=station *PRINT*, *PUNCH*
NAHE='d name‘ *PRINT*, *PUNCH*
PRINT={QN|TN} *PRINT*
COPIES=n *PRINT*
PROUTE=station *PRIRT*
CROUTE=station *PUNCH*

For a description of these parameters, see the section "Batch
Jobs From a Terminal" in this volume.

CONTROL Command 191

A

r

HTS Volale 1: HTS - The System

April 1974

Examples: $C0iTROL *TAPB* RBI

A RBI control command is given the pseudo-device *TAPE*
which is a 9-track magnetic tape.

$C0?! *SOURCE* CNTRLFILE
‘CONTROL *SIIK* LEN=100
3U! PROGRII SClRDS=INPUTDATA 5PRINT=*SIIK*
50iTROL *SIUK* LEN=72
5lIDFILB

The file CITRLFILE is established which can be used as a
source file of commands for running a program on a
Teletype. The CONTROL commands set the terminal output
length to 100 characters for the duration of the program
and then set the terminal output length to the default
72 characters. This sequence of commands can be started
with the command SSOURCE CHTRLPILE.

WQZ <c6$!n011Ceauamd

HTS Volume 1: HTS -— The System

April 1970

£92!
couunun nzscnrpmxon

Purpose: To copy from a file or device to another file or device.

Prototype: $§0PY [[FROH] FDname1] [[TO] FDname2] "

Two FDnames may be given as parameters:

PDname1

FDname1 specifies the file or device that contains the
lines to be copied (the input). FDname1 may be an
explicit concatenation of files and devices with line
number ranges. If FDname1 is omitted, the input lines
are read from the currently active file (*AFD*).

FDname2

FDname2 specifies the file or device that is to receive
the copied lines (the output). PDname2 may be an
explicit concatenation of files and devices with line
number ranges. If FDname2 is omitted, the output lines
are written on *SINK*.

FROM, TO

FROM and TO are optional "directive" words. If a FROM
or T0 is present, it specifies that the following
parameter is FDname1 or FDname2, respectively. If
FDuame1 is omitted or follows FDname2, T0 must precede
FDname2 or FROM must precede PDname1 (or both). If FROM
or TO are used in an ambiguous or unusual manner, the
command is not executed and an error comment is
produced.

Description: The SCOPY command is a series of read and write operations.It causes lines to be read sequentially from FDname1 and
written on FDname2 until the end of the file or the end of a
line number range is encountered on FDname1.

For line files, the read operation uses the line numbers of
FDname1. For sequential files and devices, the read opera-
tion simulates line numbers, although a beginning line number
and increment may be specified for a device. For line files
and devices, the write operation generates line numbers
starting at 1 with an increment of 1 unless a beginning line
number and increment is specified on FDname2. For sequentialfiles, the write operation ignores line numbers and writes

COPY Command 193

r

HTS Volume 1: HTS -— The System

April 1976

the lines at the end of the file. If the DI modifier is used
on FDname2, the write operation uses the line numbers from
the read operation for generating line numbers for the write
operation. Hence, if an exact copy of a line file is wanted
(each line number in FDname2 having the same line number as
in FDname1), the COP! command must be given in the form:

SCOPY FDname1 FDname26I

For line files (or sequential—with-line-numbers-files), lines
may be written on FDname2 sequentially or indexed. If a line
file is written sequentially, renumbering of lines occurs:
however, the user can specify the beginning line number and
increment for FDname2. For sequential files and devices,
lines are written on FDname2 sequentially. If a line file is
copied to a sequential file, the line numbers are lost. See
the section "I/0 lodifers" in the appendix to "Files and
Devices" for a further description of the use of modifiers
with read and write operations.

A complaint is made if either FDname1 or PDname2 does not
exist, is not available, or is the wrong type (output or
input, respectively).

Examples: SCOPY A T0 B

File A is copied to file B. If B is a line file, new
line numbers are generated for B starting at 1 and
incrementing by 1. The line numbers from file A are not
carried over to file B.

SCOPY A B31

File A is copied to file B. The line numbers from A are
retained in B. If A is a sequential file, these line
numbers start from 1 and increment by 1. Pile B aust be
a line file (or a sequential-with-line-number file).

5C0?! L+B(5,20) C(1O,,1O)

File 1 and lines 5 through 20 of file B are copied to
file C. The line numbers of C start at 10 and are
incremented by 10.

$C A

File A is copied to *SINK* (default).

Comment: The following list of Aexamples illustrates how the COPY
comland behaves. "x" and "y" stand for any parameter; "a"
and "b" stand for any parameter that is not PROM or TO.

19% COP! Command

April 191a

HTS Volume 1: HTS -- The System

$COP! a "a" is copied to *SINK*.
SCOPY FROM I "I" is copied to *SIRK*.
$COP! TO y *APD* is copied to "Y".
$COPY a b "a" is copied to "h".
$COPY x TO y "x" is copied to "Y".
SCOPI a FROM x "x" is copied to "a".
$COPY FROM x a "x" is copied to "a".
$COPY TO x a "a" is copied to "X".
$COP! FRO! x TO y "x" is copied to "y".
$COPY T0 x FROM y "y" is copied to "X".

All other combinations of parameters are considered erroneous
or ambiguous and cause an error comment to be produced. For
example,

$COPY T0

$COP! FILE FROM

Note that if the current file name character (initially t) is
prefixed to PRO! or T0, they lose their special
interpretation.

COP! Command 195

_ _

HTS Volume 1: HTS -- The System

April 1974

SEEAIE

counnunnzscnxvrxon

Purpose: To create either a permanent or temporary file.
Prototype: $§§EATE filename [keywords]

Only the "filename" parameter giving the name of the file to
' he created is required. The other legal keyword parameters

that may be given are:

SIzB={n|nP|nT}
\

The SIZE keyword specifies the ggtiggtgg size of the
file to be created. The size may be given in one of
three forms:

n — the number of R0 byte lines, Y

nP - the number of R096 byte pages, or
nT - the number of 729B byte tracks.

If the SIZE parameter is omitted, the default size of a
permanent file is two pages or approximately 90 lines
and the default size of a temporary file is 9 pages or
approximately 700 lines, depending upon the format of
the data. If this size is exceeded when the file is
used, an attempt is made by the system to extend the
file.

TYPE=[LINElSBQ|SEQWL]

Description: The

The TYPE keyword specifies the type of file to be
created. The type may be given in one of three forms:

LINE - a line file is created,
SEQ - a sequential file is created, or
SBQIL - a sequential file with line numbers is

created.

If the TYPE keyword is omitted, the default type is
LINE. T

SCREATB command can be used to create either a permanent
or temporary file. The parameter "filename" gives the name
of the file to be created.

Ihem the command has been given, HTS checks to make sure that
a file of the given name does not already exist. A complaint
is made if the file already exists. Then HTS checks the

196 t¢IllT2 Command

HTS Volume 1: HTS -- The System

April 197B

user's file space allocation to determine if he has enough
space remaining to allow creation of the file. Lastly, HTS
attempts to acquire the space for him. If all three steps
are successful, HTS informs the user of the successful
creation of the file. The file is empty when created and
becomes the currently active file in the system (unless the
command SSBT CREAFD=0PF has previously been issued). The
pseudo—device *APD* is associated with the file.
The SIZE parameter gives an gppgggiggtigg to the number of
bytes that can actually be stored in the file. The actual
capacity of the file is affected by the type of the file, the
location of the file, and the length of the lines stored in
the file.
Since temporary files are created automatically when first
used as an Fbname in a command or subroutine call, explicit
creation of temporary files is necessary only when something
other than the default specifications are needed.

Examples: SCRBATE A

The file A is created. Since there are no keyword
parameters given, the file is a line file of default
size, located on a disk.

SCR -B SIZE=1OP TYPE=SEQHL

The temporary file -B is created. The file is sequen-tial with line numbers and with a size of 10 pages.

CREATE Command 197

i

\

ITS Volume 1: HTS -- The System

April 191m

QEBEQ

counaun nnscnrvrzon

Purpose: To load a program and enter into debug command node.

Prototype: Q§§UG [objectrnname] [nAP]=mapFDname]] [IOHAP] [XREF]
[I/Orbnames] [limits] [PAR=parameters]

The following parameters may be given:

objectrbname V

"objectrbname" specifies the file(s) or device(s) con-
taining the program to be loaded and debugged. If
omitted the program is loaded from *SOURCE*.

hAP[=naprDname] [NOHAP] [XBEF]

The BAP and IRE! parameters are used to obtain a load
nap and cross reference listing from the dynamic loader.
These are not normally needed when in debug mode. See
the RUN command description for further details.

I/Orbnames

The keyword parameters "I/0FDuames" are the assignments
of logical I/O units to files or devices for use by the
loaded program during execution. The logical I/0 unit
assignments establish the I/O subroutines which will be
used by the loaded program for input and output of data.
where no specifications are stated, the following
default assignments occur:

SCARDS=*SOURCE*
SPRIRT=*SINK*
SPOICH=*PURCH* (batch mode if global card est. > 0)
SBRC0l=*HSINK*
GUSER=*HSOURCE* f

The logical I/O units 0 through 19 have no default
specifications. see the section "Piles and Devices" in
this volume and subroutine descriptions for SCARDS,
SPRINT, SPEECH, SERCOH, GUSBR, READ, and WRITE in Volume
3 for further details on the use of these subroutines.

The logical I/0 unit assignments may be initially
assigned or reassigned in debug node via the SET debug
command.

198 Dii Comaandv

HTS Volume 1: HTS —- The System

April 197“

FORTRAN users are reminded that HTS logical I/0 units 0
through 19 are not necessarily the same as the FORTRAN
logical I/0 units O through 19. The FORTRAN I/0 unit
routines may default the FORTRAN logical I/O units
independently of HTS. Moreover, if this has happened,
the meaning of the units cannot be reassigned in debug
mode.

limits
The keyword parameters "limits" specify local limits for
time, pages printed, and cards punched. See the RUN
command description for further details.

PAR=parameters -

The PAR keyword specifies an arbitrary string of charac-
ters to be passed to the loaded program. This is
usually a parameter list for the program and its
interpretation depends on the loaded program. PAR
keywords must be the last parameter field specified in
the command. The parameter list is terminated by the
end of the command line. Note that the parameter field
always has a blank added after the last character and
the count is incremented by one.

The parameter list may be initially assigned or reas-
signed in debug mode via the SET debug command.

Description: The DEBUG command calls upon the dynamic loader to load the
object program into virtual memory. If there are unresolved
external symbol references after loading from "objectPDname",
loading continues from *LIBRAR! (the system library). Only
those parts of *LIBRAR! required to resolve the references
are loaded. If there are still unresolved external
references, a fatal loading error exists. In conversational
mode, the loader prompts for more loader input; in batch mode
an error comment is produced and the loading terminates
immediately. The search of the system library may be
suppressed by the SSBT LIBR=OFF command. SDS processes any
symbol table information associated with the program.

If there were no fatal errors, control is transferred to
debug command mode. In debug mode the user may use thefacilities of SDS to display or modify parts of the loaded
program and to initiate execution. SDS monitors the perfor-
mance of the program. See the section "Debug node" for
further details on the use of SDS.

The parameter string (specified by the PAR keyword) is passed
as follows: GR1 contains the location of a fullword address
constant which points to a region containing a halfword count
(halfword aligned) followed by an EBCDIC character region (of

DEBUG Command 199

HTS Volume 1: HTS -- The Systen

— April 197a

byte-length specified by the count) containing the parameter
string. The left nost bit of the address constant is 1.

If files or devices specified. by "I/ornnanes" are non-
existent or not available, the logical I/0 unit referring to
the unavailable file or device is set up in such a way that
the first tile the program being executed refers to the
logical I/0 unit, either the user is given the opportunity to
respecify the Inhale (in conversational mode) or execution is
terminated (in batch node).

BIQIPIQS $DBBUG OBJPBOG 5=IlIPUT 6=0UTPU'1'

200 DIBHG contend

This loads the proqral OBJPROG and transfers control to
debug lode‘ Logical I/O units 5 and 6 are assigned to
the files INPUT and OUTPUT respectively.

HTS Volume 1: HTS -- The System

April 1974

2§§IBQl

couunun nzscnrprxou

Purpose: To destroy a private file or a temporary file.
Prototype: QESTROY filename [[OK|O.K.|!}]
Description: The "filename" parameter specifies the name of the file to be

destroyed. A complaint is made if the parameter is missing,
or if the file specified does not exist, or if it is a publicfile.
The destroyed file is deleted from the user's file catalog
and the space occupied by the file is returned to the public
domain. The user is informed when
destroyed successfully.

the file has been

If the user is at a terminal, confirmation is requested
before a permanent file is destroyed. Confirmation is not
requested for temporary files. The command may he confirmed
by the response "OK", "0.K." or "!". Any other response
causes the command to be cancelled. The confirmation may be
given as the second parameter of the command.

Examples: $DESTRO! A

This causes file "A" to be destroyed. The user is
prompted for confirmation in conversational mode.

$DESTROY B OK

DESTROY Command 201

HTS ?olume 1: HTS --

Purpose: To d
regis
size,
speci

Prototype: ’$QISP

"loca
tion"
only
line
I11 0

eters

The’5ystem

lpril 197k

.lll§£LA!

comunnn nnscnzvmron

isplay the contents of general registers, floating-point
ters, the program status word, the user's virtual memory

the accumulated "cost of the current job, and/or
fied virtual memory location(s).
Ll! [Oi Fbname] [format] location ...
tion" is the only required parameter. As many "loca-

and "format" parameters may be given as desired. The
restriction on the order of parameters in the command

is that "ON Fbname" must appear first if it appears at
"format" parameters affect only the "location" parame-

vhich £9119! it.
ON Yvname

iforma

’2B2 EP11’C0iImnd

"FDname" is the file or device to which the output from
the $DI5PLA! command is written. If "Fbname" is
omitted, the output is written on ¥SINK*. A complaint
is made if "FDname" specifies a non-existent or unavail-
able file or device.

t
The format of the display may be specified by any
combination of the following option switches:

HEX hexadecimal conversion
NOHE hexadecimal conversion off
HRBH mnemonic and hexadecimal conversion
NOHNEH mnemonic and hexadecimal conversion off
BCD EBCDIC conversion
BBCD EBCDIC conversion
NOBCD BBCDIC conversion off
NOBBCD EBCDIC conversion off
SP1 single—spacing
SSPC "single-spacing
SGLS single—spacing
SP2 double-spacing
DSPC "double-spacing
DBL5 double-spacing

April 191a

If no
aPP1Y

If t
simul
with

"form
that
virtu
locat

location

"loca
be an

HTS Volume 1: HTS -- The System

0RL=S short output record (70 characters)
0RL=L long output record (130 characters)

t specified, the following default option settings

NOHEX
NOHNEH
NOEBCD
SP1.
0RL=L

he NOHEX, NOHNEH and NOEBCD are all specified
taneously (explicitly or by default), the output is
hexadecimal conversion.

at" parameters affect only "location" parameters
follow the "format" parameters and are blocks of

al memory. They do not affect single memory
ions or other items.

tion" specifies what is to be displayed. This may
y of the following:

GRx.

GR: specifies the general register "x", where
"x" is a decimal integer from 0 to 15 or a
hexadecimal integer from 0 to 9, A to F, or
"S" if all general registers are to be
displayed.

FR!

FR! specifies the floating-point register "x",
where "x" is one of the integers 0,2,“, or 6,
or "S" if all floatingepoint registers are to
be displayed.

[RF=[hhhhhh|GRx}] xxxxxx[...xxxxxx]

This specifies a virtual memory location- or
range of locations given by an ggtigngl local
relocation factor and a displacement or range
of displacements. "hhhhhh" is the hexadecimal
value of a local relocation factor or GR:
indicates the general register whose contents
are to be used as a local relocation factor.
"xxxxxx" is the hexadecimal value of a displa-
cement. A range of displacements can be given
by "xxxxxx...xxxxxx". The displacement is

DISPLAY Command 203

Hts Volume 1: HTS -- The System

April 197M

added to the current value of the relocation
factor to provide an absolute 2H-bit virtual
memory address. If a local relocation factor
is not specified, the global relocation factor
is used. The global relocation factor is
initially zero, but may be changed by the $SET
command. when a relocation factor is speci-
fied in the command, it remains in effect for
the remainder of the command unless subse-
quently overridden by a second local reloca-
tion factor specification.

PS9

Psi specifies the program status vord at the
time the last loaded program terminated.

VHSIZE

VHSIZE specifies the current size of the
user's virtual memory in a decimal number of
pages.

$ or COST

Either $ or COST specifies the accumulated
cost of the current job. This includes all
charges up to the current time ggggpt per-
manent file storage charges and charges for
tapes still mounted.

SIGPILE

SIGFILE displays the current and new (if any)
SIGNON files.

AFDNAHI OI AFD

APDNAHE or LPD displays the name of the
currently-active file or device.

Description: The SDISPLAY command displays general registers, floating-
point registers, the program status word, the user's virtual

.~ memory size, the accumulated cost of the current job, and/or
specified virtual memory locations.

The ~general vregisters, floating-point registers and the PSH
are displayed in labeled hexadecimal format.

Blocks of virtual memory are displayed in hexadecimal,
immemonic and hexadecimal, and/or EBCDIC format.

Zi DI8?¥%Y blliad

HTS Volume 1: HTS -- The System

April 197%

Whenever a "location" parameter is encountered in a $DISPLA!
command line, it is processed immediately using the "format"
parameters and relocation factor in effect at that time.
"format and "location" parameters are processed from left to
right in the command line.
One ambiguity may occur. EBCD can represent either the EBCD
option setting or a hexadecimal address displacement. It is
interpreted as the EBCD option setting. To display the
single location EBCD, OEBCD must be specified.

Examples: SDISPLAY GR3 PR5 EBCD 518E08...518FA6

This displays GR3 and all the floating-point registers
on *SINK* in single-spaced hexadecimal format, and
displays virtual memory locations S18E08 through 518FA6
(assuming a global relocation factor of zero) in single-
spaced EBCDIC format.

SD ON DISPLAYFILE ORL=L GRS PSW VHSIZE

This displays on the file DISPLAYFILE all the general
registers, the program status word, and the size of the
user's virtual memory in long record hexadecimal format.

$D HNEH EBCD SP2 RF=518000 200...8O NOHNEH NOEBCD 800.-.A8O

This displays virtual memory locations 518200 through
518080 on *SINK* in double-spaced mnenonic, hexadecimal,
and EBCDIC conversion format; and displays locations
518800 through 518A80 in double-spaced hexadecimal
format.

DISPLAY Command 205

HTS Volume 1: urs -- The System

April 197m

RS112

connann nnscnrrrzou

Purpose: To display the contents of general registers, floating-point
registers, the program status word, and the virtual memory
locations associated with the user's current loaded program.

Prototype: spgnv [ON Pbname] [format] ...
As many "format" parameters may be given as desired. The
only restriction on the order of parameters in the command
line is that "OI Fnname" must appear first if it appears at
all.
OH Fbname

"FDname" is the file or device to which the output from
the DUMP command is written. If "Fnname" is omitted,
the output is written on *SIIK*. A complaint is made if
"FDname" specifies a non-existent or unavailable file or
device.

format

The format of the display may be specified by any
combination of the following option switches:

HEX hexadecimal conversion
NOHEX hexadecimal conversion off
HIE! mnemonic and hexadecimal conversion
NOHNEH mnemonic and hexadecimal conversion off
BCD EBCDIC conversion
BBCD BBCDIC conversion
NOBCD EBCDIC conversion off
NOBBCD EBCDIC conversion off
SP1 single-spacing
SSPC single-spacing
SGLS single-spacing
SP2 double—spacing
DSPC double-spacing
DBLS double-spacing

ORL=S short output record (70 characters) .

ORL=L long output record (130 characters)

206 nus? Cossand

April 197B

HTS Volume 1: HTS -- The System

LIB dump all storage including library space
NOLIB dump only non-library space

If not specified, the following default option settings
apply:

NOHEX
NCHNEH
NOEBCD
SP1
ORL=L
LIB

If the NOHEX, NOHNEM and NOBBCD are all specified
simultaneously (explicitly or by default), the output is
with hexadecimal conversion. If 0RL=L is specified or
defaulted, then both hexadecimal and EBCD conversion is
given side by side.

Description: The snuup command displays the general registers, floating-
point registers, the program status word, and the virtual
memory locations associated with the user's current loaded
program.

The general registers and floating-point registers are dis-
played in labeled hexadecimal format.

Blocks of virtual memory are displayed in hexadecimal,
mnemonic and hexadecimal, and/or EBCDIC format.

Note that the NOLIB parameter does not work correctly unless
the command "SSET SYHTAB=ON" is used before loading the
progr

Examples: $DUMP

$DU H

am.

The general registers, floating-point registers, the
program status word, and the virtual memory locations
are displayed in single-spaced hexadecimal format on
SINK.

EX BBCD SP2

The general registers, floating-point registers, the
program status word, and the virtual memory locations
are displayed in double-spaced hexadecimal and EBCDIC
format. M

DUMP Command 207

l

HTS Volume 1: HTS -- The System

hpril 197

£1212

couuaun DESCRIPTION

Purpose: To enter edit mode, invoking the context editor for making
changes to a file.

Prototype: $331? [{filename|:edit-command}]

‘ The legal parameters are:

filenane

"filename" is the name of a Ling file to be edited. The
editor cannot be used on sequential files. See the
"Edit node" section for a description of the context
editor and the editor command language.

edit—conmand

Description:‘ If

"edit-command" is any single edit mode command. It mgst
be preceded by a colon ":".

"filename" is specified, and if EDITAPD is OR (see the
SSBT command), "filenane" becomes the currently active file
(*AFD*). If "filenane" is onitted, or if ":edit—command" is
specified, the following procedure is used to determine the
file to be edited.

1)

2!

If

If the editor has not previously been used, or if the
editor was last terminated by the edit mode command
"STOP", the user is prompted for the file name.

If the editor was last terminated by the edit mode command
"HTS", and

a) nDITA!D is orr, the file last specified on a SBDIT
command is used. If this file is no longer available,
an error message is produced.

b) EDITLFD is ON, the currently active file (*AFD*) is
used. If there is no currently active file, the user
is prompted for the file name. If no parameter is
given, the user is prompted to enter parameters until
the parameter "HTS" is given.

any of the above error conditions exist, the user is
prompted to enter a file name.

Example: SEDIT DATAFILB

2&8 33¢! renamed

April 197B

\

HTS Yolule 1: HTS -- The Systel

The context editor is invoked to edit the line file
DATAFI1e.

$EDIT :CHANGE 10 'A'B'

This conuand changes the first occurrence of the charac-
ter A in line 10 of the currently active file to the
character B and then returns to HTS command mode. It
gggt be preceded by a ":"

EDIT Colland 209

V

i

HTS Volume 1: HTS -- The system

2521;

couunun nnscnrpwron

April few

Purpose: To empty the contents of a file without destroying the file.
\ 0Prototype. $§HPT! filenane [{0K|0.K.1!}]

Description: The "filename" parameter specifies the name of the file to be
emptied. A complaint is made if the parameter is missing, if
the file specified does not exist, if the file is a public
file, or if the tile is a read~only file.
The current contents of the file "filename" are discarded.
The user is informed when the file has been enptied success-
fully. The space occupied by the file is not released, a
catalog entry still exists for the file, and the user
continues to be charged for it.
If the user is at a terminal, confirmation is requested
before a permanent file is emptied. Confirmation. is not
requested for scratch files. the command may he confirmed by
the response "OK", "O.K.", or "!". Any other response causes
the command to he cancelled. The confirmation may be given
as the second parameter of the command.

Examples: $EnPTY A

SEHPTY B OK

ZTQ' Hff Coili

HTS Volume 1: HTS —- The System

April 197%

ERRQDQ§P

COMMAND DESCRIPTION

Purpose: To allow automatic program dumps in batch mode in case of an
abnormal program termination.

Prototype: $§§RORDUHP

Description: If an executing program terminates abnormally, a dump of the
registers and program storage region is given. Common
abnormal terminations are a program interrupt, a call to the
subroutine ERROR, and exceeding global or local time, page,
or card estimates. This command is equivalent to the command
$SET ERRORDUHP=ON.

This command has no effect in terminal mode since dumps are
never automatically produced. Terminal users may use the
DUMP, DISPLAY, or debug mode DISPLAY commands to inspect all
or parts of virtual memory. A gygbglig program dulp may be
obtained via the symbolic debugging system facilities in a
similar manner. For details, see the "Debug node" section in
this volume.

Example: SER

ERRORDUBP Command 211

k

HTS Volnle 1: HTS -- The System

April 197m

ll
connnnn nzscazrmxou

' Purpose: To establish a file or device as the currently active file.
Prototype: $521 Pnnnne

Description: The "rvnane" parameter specifies the nane of the tile or
device to becoue the currently active file. The file or
device is opened and the pseudo-device *A!D* is associated
with that ~ti1e or device. A complaint is made it the
paraneter is omitted, if the file or device does not exist,if the tile is a teed—on1y file, 0: if the device is an input
device. The previously active file is released even if one
of these error situations exists. The line nunber for the
SRUHBBB CONTINUE connend is reset to one.

Exalple: $631 A

212 Gzwiconesnd

HTS Volume 1: HTS -— The System

April 197“

HEXAQQ

COHHAND DESCRIPTION

Purpose: To perform hexadecimal addition in command node.

Prototype: $§EXADD operand operand ...
One or more operands separated with intervening blanks are
given with the command. Each operand may be given in one of
the three following forms:

hhhh A hexadecimal number to he used as an operand.

GR: A general register whose contents is to be used as
an operand.

RF The current global relocation factor.
Description: The hexadecimal numbers or the contents of the registers

specified by the operands are added. Overflows are ignored.

The results of the HEXADD command appear in the form:

SUM = xxxxxxxx

Example: thexadd 1a2 2e81d
#SUM = 2E9BF

In this terminal mode example, the hexadecimal numbers
1A2 and 2E81D are added together to produce the sun
ZEQBP.

HEXADD Command 213

r

\

>

\

HTS Volume 1: HTS -- The System

19:11 191a

535%
couaaun’nnscn1PrIon

Purpose: To perform hexadecimal subtraction in command mode.

Prototype: $§§§§UB operand operand ...
One or more operands separated with intervening blanks are
given with the conland. Bach operand may be given in one of
the three following forms:

bhhh

GR!

RP

A hexadecieal number to be used as an operand.

A general register whose contents is to be used as
an operand.

The current global relocation factor.

Description: The second and all following operands are subtracted from the
first operand. Negative results are given with a ninus sign
preceding the absolute value of the difference.

The results of the HBXSUB command appear in the form:

DIP? = xxxxxxxx

Examples: thexs 2e9bf 1a2
ODIFF = 23810

In this terminal example, the hexadecimal number 1A2 is
subtracted fron 2398! to produce the difference 2E81D.

Ohexs 1e57e 1a2 Sbc
ODIPP = 19321

21h E8130! Consand

In this example, 1a2 is subtracted from 1e57e, and Sbc
is subtracted from this result.

April 197%

HTS Volume 1: HTS -- The System

INQUIQE

COMMAND DESCRIPTION

Purpose: To display the current status of a batch job, an execution
queue, a print queue, a punch queue, plotting jobs, OS batch
jobs, UMMPS jobs, or other system activity.

Prototype: $;NQUIRE parameter [/parameter] ...

Bate

The output for this command falls into five categories
discussed after the list of parameters. One of the following
parameters must be given.- The minimum abbreviation (if any)
of each parameter is underlined.

h Jobs

ggrrvn .

Information about all the active batch jobs is printed
in Output Type 1 format.

B

Information about all HTS batch tasks is printed in
Output Type B format.

EEELDIEQLD}
Information about all batch jobs that are held is
printed in Output Type 1 format.

Q08 receipt-number
Information on the job with the specified receipt number
is printed in Output Type 1 format. This form should be
used if the receipt number is less than S digits in
length.

HE
Information about all jobs submitted by the signon id
signed on is printed in Output Type 1 format. All jobs
not yet completed or completed in the last 96 hours are
listed.

OS [signon—id|six-digit—receipt-number|ALL]
Information about the OS batch queue is printed in
Output Type 1 format. If any batch job is found thatfits the search criterion, it is displayed. Position in
the queue gives the initiator class for the job. Thelast line of output prints the total number of jobs and
records currently in the OS batch queue.

INQUIRE Command 215

HTS Volume 1: ars -- The System

grow

April 1974

Search criterion can be

1) a particular signon id
2) a particular receipt number
3) all jobs
R) no jobs (no second operand); just gives summary.

[ALL|receipt-number)signon-id]
Information about the PLOT queue is printed in Output
Type 1 format. If a plot job is found that fits the
search criterion, it is displayed. The last line of
output gives the total number of jobs and time to _plot
the jobs queued.

Search criterion can be:

1) a particular signon id
2) a particular receipt number (does not include

destination code)
3) all jobs
R) no jobs (no second operand); just gives summary.

receipt-number

§g_a_1=:

Information about the job with the specified receipt
number is printed in Output Type 1 format.

Information about the job last asked about via the
receipt number is printed in output Type 1 format.

signon-id
Information about all jobs submitted under the specified
signon id is printed in Output Type 1 format. Both
unfinished jobs and jobs finished within the last 96
hours are included.

*[receipt-number] [llsignon-id]

215 IEQQKRI command

This parameter prints information about all jobs not yet
completed by the signon id who is making the request (if
the second operand is omitted or H2 was specified), or
information about jobs submitted by the signon id
specified. In addition, all completed jobs belonging to
the user that have completed whose receipt number is
greater than or equal to the receipt number specified
are indicated. If a receipt number is not specified,
the starting point is 600000 which is the lowest
BlTCH, *PRINT* or *PUNCH* receipt number.

April 197a

Queugg

§LL

cumn

gxzc

Lgcar

HTS Volume 1: HTS -- The System

A summary is printed in Output Type 3 format of each
queue for all jobs in the batch queue.

A summary of each queue counting only jobs with output
routed to the Computing Center is printed in Output Type
3 format.

[LOCALIRHTSlremote-station-id]
The execution queue summary is printed in Output Type 3
format for the following second operands:

1) jobs routed to the center if CNTR or LOCAL is
specified

2) jobs routed to remote stations if RHTS is
specified

3) jobs routed to the specified remote station
Q) all jobs if no second operand is specified.

A summary of each queue counting only jobs with output
routed to the Computing Center is printed in Output Type
3 format.

QQINT [LOCAL)RHTS|remote-station-id]
The print queue summary is printed in Output Type 3
format for the following second operands:

1) jobs to be printed at the center if CNTR or
LOCAL is specified

2) jobs routed to remote stations if RHTS is
specified

3) jobs routed to the specified remote station
4) all jobs if no second operand is specified.

QQNCH [LOCAL|RhTS|remote-station-id]

QUE

The punch queue summary is printed in Output Type 3
format for the following second operands:

1) jobs to be printed at the center if CNTR or
LOCAL is specified

2) jobs routed to remote stations if RHTS is
specified

3) jobs routed to the specified remote station
H) all jobs if no second operand is specified.

The QUE parameter prints information in Output Type 2
and 3 formats for the following second operands:

INQUIRE Command 217

_ _ _ _- _ _ _____

HTS Volume 1: HTS -- The Systel

April 1973

null Gives limited information about all jobs
not yet completed in the batch queue and
a queue summary. The information printed
by the USERS parameter is first printed.

PRINT Gives limited information about all jobs
not yet completed in the PRINT queue and
a queue summary. .

PUNCH Gives limited information about all jobs
not yet completed in the punch queue and
a queue summary.

EXEC Gives limited information about all jobs
not yet completed in the execute queue
and a queue summary.

CITR Gives limited information about all jobs
not yet completed whose output is routed
to the Computing. Center and a queue
summary.

remote—station—id
Gives limited information about all jobs
not yet completed whose output is routed
to the specific remote station and a

\ queue summary.
signon-id Gives limited information about all jobs

not yet completed that were submitted by
~ the specified signon id and does not give

a queue summary.
HE Gives limited information about all jobs

submitted by the signon id that is making
the inquiry and have not yet been
completed.

Note: 1) Any combination of PRINT, PUNCH and EXEC is
valid for a single QUE command.

2) Only one (the last found) remote station id is
valid for a single QUE colmand.

3) Only one (the last found) signon id is valid
for a single QUE command.

R) Type of queue, location and signon id may
appear in any combination in a single QUE
command.

remote-station-id

{QBHO

218 IIQQTRB Cosnand

A summary of each queue counting only jobs routed to
that remote station is printed in Output Type 3 format.

was lgnsy
A summary of each queue counting only jobs routed to
remote stations is printed in Output Type 3 format.

April 197R

HTS Volume 1: HTS -— The System

Deviggg

A device-type
This parameter prints a list of available devices of the
type specified.

QQNFIG
The number of storage modules (SSO), channel controllers
(CCU), central processors (CPU), readers, printers, tape
drives, and punches attached to the system is printed.

D device-name
Information about the task that owns the device speci-
fied is printed in Output Type B format.

L[S|HZ]
This parameter produces a list of started phone lines in
one of three ways:

1) If second operand is null, a list of all phone
lines started.

2) If second operand is S, a list of all phone
lines started and the signon id of each user on
each line.

3) If second operand is HZ, a list of only mez-
zanine phone lines.

T device—type
This parameter indicates what units are available for
usage by tasks. All units offline are indicated and
information about all tasks owning a device of the
specified type is given. "

ggpns
This is an alternate form of the command A 9TP.

E2§£§

C [task-number|signon-id]
The task number, signon id, and CPU tine used by the
current user is printed for HTS tasks selected by one of
the following second operands:

1) task number
2) signon id
3) batch jobs (if no second operand).

H

Information about all HASP and HASPLING tasks is printed
in Output Type B format.

INQUIRE Command 219

HTS Volune 1: HTS --

H

N

O

The System

Rpril 197$

Information about all active HTS tasks is printed in
Output Type B format.

Inforaation about all active non-HTS tasks is printed in
Output Type R format.

Information about all operator console tasks is printed
in Output Type 4 format.

5 [1-]

task-

U sig

§1§E£!

glans

23.193

§;eus

zzn Iranian cauaaau

This parameter prints a list of all users currently
signed on.

number
Information about the task whose number is specified is
printed in Output Type 4 fornat. This number can only
be between the numbers 1 and 9999. If the number
specified has more than H digits it is taken to be a
receipt number.

non-id
This parameter prints information about the task owned
by the specified signon id.

This parameter lists the signon ids of all users
currently connected to the system and the current nuuber
of pages of virtual memory the user has acquired. If
the signon id and the number of pages is separated by a
dash (-), the task is conversational: if separated by a
colon (:), the task is batch.

IT!
This parameter prints the table used to determine the
priority for executing and printing batch jobs. For
execution of jobs, only the estimated execution time is
used to determine the priority. Tor printing of jobs,
the actual number of pages to print is used. For a
given priority, the laximum execution time and number of
printed pages are given. The table produced by this
command supersedes all tables published in any Computing
Center documentation.
G n

This causes the current signon message to be printed,
along with the mesage's length. This is useful uhen the
signon aessage exceeds the teruinal's default length and

April 1970

HTS Volume 1: HTS —- The System

the user would like to know what the entire message is.
A SLBN command should be issued before issuing the
INQUIRE command.

STATUS
Information about the status of the system is printed.
This includes the mode that the system is in (attended
or unattended, all batch execution held or released),
the number of users signed on (see the USERS parameter
below), and the batch backlog (see the ALL command).

SIRANDS

ggzns

Information about batch processors is printed. The
output contains two types of entries. The form:

JJ-PP-SS

is common to both types of entries.
JJ is the maximum number of active HTS jobs that
allow this processor to execute a batch job.

PP is the lowest priority job that this processor
executes.

SS is the first priority level to be searched for
an available batch job.

Processors not only execute a job, but also act as a
transport system between HTS and HASP for batch input
and printed and punched output.

JJ—PP—SS:TT — receipt-number signon-id
This form is used when a processor is active. It
contains the information mentioned above along with the
job number and the user being serviced. The type offunction being accomplished by the processor is

TT = EX if a batch job is being executed;

BA if a batch job is being read in via
BATCH;

PR if a listing is being queued for printingvia *PRINT*:

PU if a deck of cards is being queued for
punching via *PUNCH*.

This parameter prints the number of HTS tasks, conversa-tional users, batch users, idle lines, pages of virtual

INQUIRE Command 221

HTS Velule 1: HTS --

Qihsr
ggs

Description: Five
Your
here;
with

I125

222’ IIQUIRE Command

9

The System .

npril 1&7

menory, and the number of pages of real memory being
used. Also the percent of used HASP secondary storage
is given. when this percentage is very high (over 85$),
users should refrain from using the *PRINT*, *BATCH*,
and *PUNCH* facilities.

This parameter returns to command mode.

types of output are available from the SIRQUIRB command.
types apply to several parameters, and are discussed
the last type is parameter specific and is discussed

the specific parameter.

1. Gives detailed information about a batch job's
status, as it currently appears in one of the three
batch queues (execute, print or punch), or as it appears
in a file of finished jobs. The output takes one of the
following forms:

1) JOB receipt-number signon-id (location) IS HELD IN
function QUBUE, BECAUSE reason

This message indicates the job was held for the reason
given.

2) JOB receipt-number signon-id (priority) IS function
(location)

This job is currently being printed or punched at the
location specified.

3) JOB receipt-number signon-id (priority) EXECUTION
TASK number USED number SEC.

This job is currently executing as the task number
given, and has used the indicated number of seconds.

B) JOB receipt-number signon-id HAS number PAGES AT
LOC. location (delivery-code) date-finished
time-finished

This job has finished all its scheduled functions on the
date and‘ tine specified. The number of pages printed
and punched output (if the word CARDS occurs after the
tine finished) is uaiting for the user at the remote
station or the delivery location indicated.

Please note, the time finished indicates when the
computer has finished processing the job. This does not

April 1974

HTS Volume 1: HTS -- The System

reflect in any way the time it takes to separate,
deliver, or distribute output, which must be done by
humans. Also, jobs with large volumes of output routed
to remote stations (as well as shorter jobs when large
remote printing backlogs exist) are printed at the
Computing Center and delivered to the remote stations.
Thus the remote station and delivery code only indicate
where the output eventually comes to rest. Production
Control should be contacted about any confusion over
remote stations and delivery codes.

5) JOB receipt-number signon-id (priority) IS IN POSI-
TION number ON THE function QUEUE location

WAITING FOR:(priority)...]
number (priority) [number

The job is waiting for the service indicated. Its
number in line is given. If there are jobs scheduled
ahead of it, the number of jobs at each priority level
ahead of the specified job are listed on a second line.

Type Q. Gives abbreviated information about several jobs on
a single print line. The number of jobs per line
depends upon the device's line length.

signon-id receipt-number priority location-
indicator type position

C

The signon id, receipt number, priority, and position of
every job still requiring processing is listed.
‘The codes for type are:

EXEC - actively executing
EX — queued for execution
PRINT - actively printing
PR — queued for printing
PUNCH - actively punching
PU — queued for punching
HELD - currently held for some reason

The location indicator code is blank for local and '>'
for remote jobs.

Type g. Gives a summary of all jobs currently in a particu-lar queue.

type QUBUE (location:amount) number ACTIVE number
QUEUED: number (priority) number (priority)...
number (HELD)

INQUIRE Command 223

~D>——

are volume 1: nus -- the systei

I122

Examples:

22¢ Iill Coiaad

april 1§7n

"type" is nxrcurr, Pntnr or PUNCH.

"location" indicates what locations within the queue are
included.

"amount"
1) is null or indicates EXECUTION IS HELD in the

EXECUTE QUEUE.
2) indicates the total nulber of cards to be

punched for all queued jobs in the PUNCH QUEUE.
3) is the nulber of QR and TN print train pages to

be printed for all queued jobs in the PRINT
QUEUE.

The number of active and queued jobs are indicated. For
each non-empty priority level, the number of jobs at
that priority are given. The number of jobs that are
held are indicated.

Q. Gives information about a particular task.

task-number number-of-virtual-pages receipt-number
jobetable-address parameters devices-owned

The number of virtual pages allocated by the task is
present only for virtual tasks. The paraleters for hrs
include signon id, project number, and receipt number if
a batch job.

$1 HE

This prints out information about all the user's
finished and unfinished jobs occurring in the last
96 hours.

SI
609839 .

SLHB

INQUIRE stores the receipt nunber of the last asked
about job for the current signon session. This
sequence is useful if it becomes inportant for a
user to deterline when a particular job is
finished.

SI USERS

This prints out information concerning the present
systei load. u

April 197B

Llii
couunun DESCRIPTI

Purpose: To list a file or device 0
line numbers.

Prototype: SQIST [FDname1] [[08] FDname2]

Two FDnames may be given as pa

FDname1

FDname1 specifies the fil
lines to be listed (t
explicit concatenation of
number ranges. If FDna
are read from the current

PDname2

FDname2 specifies the fil
the listed lines (the
explicit concatenation of
number ranges. If FDnam
are written on *SINK*.

ON

ON is an optional "dire
omitted or follows Fbname

Description: The LIST command is a serieIt causes lines to be read s
written on FDname2 until the
line number range is encounter

HTS Volume 1: HTS -- The System

ON

nto another file or device with

rane t8IS3

e or device that contains the
he input). PDname1 may be an
files and devices with line

me1 is onitted, the input lines
ly active file (*AFD*).

e or device that is to receive
output). FDname2 may be an
files and devices with line

e2 is omitted, the output lines

ctive" word. If FDname1 is
2, ON must precede PDnane2.

s of read and write operations.
equentially from PDname1 and
end of the file or the end of a
ed on PDname1. The line number

returned from the read operation on rDname1 is converted to a
12 character EBCDIC number and
line. This extended line is w

The LIST command uses line num
and write operations" in th
command.

A complaint is made if either
exist, is not available, o
input, respectively).

appended on the front of each
ritten on FDname2.

bers and modifiers for the read
e same manner as in the COP!

FDname1 or FDname2 does not
r is the wrong type (output or

LIST Command 225

ans Viil 1: HTS —- The System

April 1978

Examples: SLIST A

File A is listed on *SINK* (default). If A is a line
file, the line nulbers from file A are appended to
output lines before they are written on *SIHK*. If file
A is a sequential file, line numbers starting at 1 and
increnenting by 1 are appended to the output lines.

SLIST A(5,2O) B

Lines 5 through 20 of file A are listed on file B. The
line numbers from A are appended as above.

SL

The currently active file or device *AID* (default) is
listed on *SIIK* (default) with line nnabers appended as
above.

Comments: The following list of examples illustrates hon the LIST
coanand behaves. "X" and "y" stand tor any paraaeter: "a"

* and "b" stand for any parameter that is not ON.

$LIST a "a" is listed on *SINK*.

SLIST ON x *APD* is listed on "2".

$LIST a ON b "a" is listed on "b".

SLIST a b "a" is listed on "b".

SLIST ON a x "x" is listed on "a".

All other colhinations are considered erroneous or ambiguous
and cause an error coaaent to be produced. Yor example,

SLIST OH

Note that if the current file naae character (initially #1 is
prefixed to OI, it loses its special interpretation.

22$ LI$!»coamad

HTS Volume 1: HTS -- The System

April 1974

LOAD

COMMAND DESCRIPTION

Purpose: To load a program without initiating execution.

Prototype: SQQAD [objectFDname] [nAP[=mapFDname]] [NOHAP] [XREF]
[I/0PDnames] [limits] [PAR=parameters]

The following parameters may be given:

objectrbname
-

"objectrbname" specifies the file(s) or device(s) ‘con-
taining the program(s) to be loaded. If omitted, the
program is loaded from *SOURCE*.

HAP[=mapFDname] [NOHAP] [XREF]

The HAP keyword specifies the file or device "mapFDname"
on which the loader is to write the load map. If the
MAP keyword parameter is omitted, no load map iswritten. If the HAP keyword is given in the form of
HAP, "mapFDname" defaults to *SINK*. The NOHAP paramet-
er suppresses the printing of the load map. NOHAP need
be given only if a previous HAP specification was made.

The XREF parameter specifies that a cross referencelisting of external symbols occurring in the loaded
programs is to be produced in addition to the load map.If XREF is given without the HAP keyword, HAP=*SINK* is

-assumed. If XREF is given with NOMAP, only the cross
reference is produced.

I/0FDnames

The keyword parameters "I/OFDnames" are the assignmentsof logical I/O units to files or devices for use by theloaded program during execution. The logical I/O unit
assignments establish the I/O subroutines which are used
by the loaded program for the input and output of data.
where no specifications are stated, the followingdefault assignments occur:

SCARDS=*SOURCE*
SPRINT=*SINK*
sPUNCH=*PUNCH* (batch mode if global card est. >0)
SBRCOH=*HSINK*
GUSER=*HSOURCB*

LOAD command 227

BT5 Volume 1: HTS ~— The System

April 197R

The logical I/O units O through 19 have no default
specifications. See the section "Piles and Devices" in
this volume and the subroutine descriptions for SCARDS,
SPRINT, SPDNCH, SBRCOH, GDSER, READ and WRITE in Volume
3 for further details on the use of these subroutines.

FORTRAN users are reminded that HTS logical I/O units 0
through 19 are not necessarily the same as the FORTRAN
logical I/O units 0 through 19. The FORTRAN HI/O
routines may default the FORTRAN logical I/O units
independently of HTS. Moreover, if this has happened,
the meaning of these units cannot be reassigned by a
RESTART command.

limits
The keyword parameters "limits" specify local limits for
CPU time, pages printed and cards punched. These can be
given in the form:

11nE={t|ts|tn}
§AGES=p
ganns=¢

These local limits can be used in both batch and
terminal mode and are effective only for the execution
of the program loaded by the LOAD command. See the
description of the similar global limits in the SSIGNON
command description for further details of limit
specifications.

PAR=parameters

The PAR keyword specifies an arbitrary string of charac-
ters to be passed to the loaded program on initiation of
execution. This is usually a parameter list for the
program and its interpretation depends on the loaded
program. The PAR keyword must be the last parameter
field specified in the command. The parameter list is

~ terminated by the end of the command line.
Description: The LOAD command calls upon the dynamic loader to load the

object program into virtual memory. If there are unresolved
external symbol references after loading from "ohjectrnname",
loading continues from *LIBRARY (the system library). Only
those parts of *LIBRAR! required to resolve the references
are loaded. If there are still unresolved external
references, a fatal loading error erists. In terminal mode,
the loader prompts for more loader input; in hatch mode, an
error comment is produced and the loading terminates immedi-
ately. The search of the system library may be suppressed by
the $SET LIBR=OFF command. If $SET DEBDG=ON has been

12$ rein comend

I

HTS Volume 1: HTS -— The System

April 1970

specified, SDS processes only symbol table information asso-
ciated with the loaded program.

After the program is loaded, control is returned to the user
in command mode. The user can then use SDS or the commands
SDISPLAY and SALTER to display and modify parts of the loaded
program. Execution of the program can be initiated by the
SSTART command or by the debug mode RUN command.

The parameter string (specified by the PAR keyword) is passed
as follows: GR1 contains the location of a fullword address
constant which points to a region containing a halfword count
(halfword aligned) followed by an EBCDIC character region (of
byte—length specified by the count) containing the parameter
string. The leftmost bit of the address constant is 1.

If files or devices specifed by "I/0FDnames" are non-existent
or not available, the logical I/0 unit referring to the
unavailable file or device is set up such that the first time
the program being executed refers to that logical I/O unit,
either the user is given an opportunity to respecify the
FDname (in terminal mode) or execution is terminated (in
batch mode).

Example: SLO OBJPROG+PROGLIB HAP 5=INPUT 6=OUTPUT

This loads the program and a private library in CBJPROG+
PROGLIB. A load map is printed on *SINK*. Logical I/0
units 5 and 6 are specified for the input and output of
data during a later execution of the program which can
be initiated by the START command or by the debug mode
RUN command.

LOAD Command 229

HTS Volume 1: nrs -- The Syston

59.12111

ccnnnun nrscnxvrzon

Purpose: To alter th

April 1978

e contents of a general register floatin ', q-poxnt
register, or specified virtual lenory location(s).

Prototype: £§ODIP! location value
This conlan is identical to the SALTER command.

230 50»!!! Cllnd

April 197G

Purpose:

MTS Volume 1: MTS —- The System

-E92!!!

COMMAND DESCRIPTION

To mount magnetic tapes or MERIT network connections.

Prototype: $MQgNT [request [; request] ...]
request

"request" is the mount request for the item to be
mounted. One or more requests separated by semicolons
may be entered directly on the $MOUNT command. If the
requests are omitted from the command line, they must be
entered as separate input lines following the command
(read from *SOURCE*) until terminated by an end-of—file.

The form of the request for mounting magnetic tapes is:
racknumber [ON] 9TP [PNAME=]*pdn* [keywords] 'external id‘
The form of the request for mounting a MERIT network
connection is:
MNET [PNAME=]*pdn* [keywords]

Description: For mounting magnetic tapes, the user must specify a rack
number and an external identification. The rack number is
the location number of the tape reel in the Computing Center
tape library. The ‘external id‘ is the name associated with
the external label. This label is typed on a gummed sticker
and is attached to the reel when it is initially assigned to
a user or submitted to the Computing Center. If the
information between the single quotes cannot be judged by the
computer operator as reasonably corresponding to the external
identification on the tape, the operator informs the user
that the tape is unavailable. If a scratch tape is to be
mounted, the word POOL must be used in place of the rack
number and no external identification is required.

The user must specify a device type which indicates on which
type of device the item is to be mounted. The device types
available are:

9TP - 9-track magnetic tape
MNET — MERIT network connection

The user must specify a psuedo-device name "pdn“ for each
item to be mounted. After the item is mounted, all command
and program references to the item are made using its "pdn",

MOUNT Command 231

Bf

HTS volume 1: HTS -- The system

April 197“

rather than the name of the actual device on which the item
is mounted. ‘The "pdn" is used in the same context as a file
or device name (rnname). A "pdn" begins with an asterisk,
ends with an asterisk, has from one to fourteen characters in
between, and must not conflict with pre~defined HTS "pdns"
such as *SOURCE*, *SINK*, and so on. (See the section on
pseudo—device names in "Files and Devices" in this volume.)

The user may specify many different keyword parameters as
part of the mount request. Successive keyword parameters may
be entered in any order and must be separated by blanks or
commas. For a complete description of the effect of each of
the keyword parameters, see the "Magnetic Tape User's Guide"
"in Volume A. "The tables on the follouing pages summarize the
keyword parameters currently available. The default values
are underlined where appropriate.

Items mounted by the $HOHNT command may he dismounted by "the
$RELEASE command.

Examples: suouur
1234 QTP *TAPE* VOL=00123 RING=IN 'TE5T TAPE #1‘
POOL 9'22 *PO0L*
$ENDFILE

The labeled magnetic tape 123“ is mounted on a 9-track
magnetic tape unit: the volume label of the tape is
001230 and the external identification is TAPE TEST #1:
the tape is mounted with the file protect ring in: the
tape is assigned a pseudo-device name *TAPE*. A pool
tape is also mounted on a 9-track tape unit; it is
assigned the pseudo-device name *PO0L*.

SHOUNT HHET *W* DEST=HS

232 HOQIT Command

A HERIT network connection to Michigan State University
is mounted and assigned the pseudo-device name *W*.

HTS Volume 1: HTS -- The Systel

April 197“

Keyword Parameter Summary '

F0; magnetic tapes;

{BLOCKING|BLK]={Q§|OFF} Enables or disables blocking

{DSNAHE|DSN}=nane Data set name to be used forfirst new file written
[FORhAT|PnT|RECFH}=fnt[([size][,lrecl])] Specifies blocking format and,

optionally, block size and/or
logical record length

LP={0N|OFF} Enables or disables label
processing

LRECL=n Specifies logical record length
(13 n 5 32767)

MODE={800|1§QQ} Specifies tape mode

NEWEXP={yymmdd|NON§} Initializes, changes or deletes
the expiration date for writing

NEWRPi={psswrd|§Q§§} Initializes, changes or deletes
the read password

NEHWPW=[psswrd|NONE} Initializes, changes or deletes
the write password

0VRIDE=OK Overrides existing expiration
date for writing

POSN=[*n*|*EOT*|name} Positions tape to the nth file,
end-of-tape or data set name

QUIT={!§§|N0} Controls termination of batch
job if mount fails

RERUN={YES|EQ} Specifies rerunning of a batch
job if no drives are available

RETRY=n Specifies retry count for read
errors (0 s n 5 15)

RING=[IRlQHE} Specifies placement of file
protect ring

RPY=PS$Vrd Protects reading tapes with
RING=0UT

MOUNT Command 233

HTS Vorula 1: HTS - The Systel»

tpril 197B

[SIZE|BLKSIZE}=n Specifies maximal block size
(185 n S 32757)

{VOLUHB|YOL|LABBL|VOLSER}=naIe Volule nane of labeled tape

IPI=pssvrd Protects writing tapes with
RING=IR

IRITE=[!!S|§g} Specifies placement of file

£2:-nn1:_ns&s.sz:1s_saans:si-ens;

protect ring

{nnsr|n}=[us|uu|g§} Specify connection destination

QUI!={1§§|RO} Control termination of batch

2% n8I§*G§Inuwl

job if mount fails.

April 197R

HTS Volume 1: HTS -— The System

NET

COMMAND DESCRIPTION

Purpose: To enter network mode.

Prototype: SEQT [*pdn*] [network-command...]

pdn

"*pdn*" is the pseudo-device name of a previously
acquired MERIT network connection. If the pseudo-device
name is omitted or invalid, the user is prompted for it.If the user previously left network command mode via the
.HTS network command, the previously used connection is
maintained unless a new pseudo-device name is specified.
Network connections are acquired via the $MOUNT command.

network-command

"network—command" is an optional network command line to
be passed to network command mode upon entry.

Description: See "The MERIT Network User's Guide" in Volume R for a
complete description of how to use network mode with the
MERIT computer network.

Examples: $NET *i*

$NET

Network mode is entered for the pseudo-device *H*.

Network mode is entered for the last pseudo-device used
on a SNET command.

NET Command 235

HTS Volume 1: HTS -— The System

April 197B

Hll
conuaun nnscnxrrxon

Purpose: To start automatic numbering of input lines being read from
SOURCE and being written on the currently active file
(*AFD*).

Prototype: SNUNBER [par]
One of the two following parameter sequences may be given:

[starting-number] [[,]increment]
The starting line number for automatic line numbering is
given by "starting number". If this is omitted, line
numbering begins with 1. The starting line number can
take any one of the three forms:

line number
LAST
LASTtnumber

where LAST is the line number of the last line in the
currently active file. If the file is empty, the value
of LAST is zero.

The line number increment is given by "increment". It
may be specified in the same manner as the "starting
number". If "increment" is omitted, line numbers are
incremented by 1. The parameter "increment" must be
separated from "starting number" by a blank or a comma.If only "increment" is given, it must be preceded by a
comma.

QOETINUE

The parameter CONTINUE resumes automatic numbering from
the point where automatic numbering was when last
terminated by the $UNNUhBER command. The release or
change of the currently active file affects automatic
numbering by causing the numbering to start at line
number 1 when CONTINUE is specified. If CONTINUE is
specified and automatic numbering has not been previous-
ly turned on, the starting line number and the increment
defaults to 1.

Description: Provided there is a currently active file, any input line not
recognized as a command line has a line number automatically
assigned to it before it is written on the currently active

236 uunnnn Command

HTS Volume 1: HTS -- The System

April 1976

file. In the absence of automatic numbering, this line
number is taken from the first characters of the input lineif they are valid as a line number. If they are not valid,
the line is treated as an invalid command. The NUMBER
command turns on automatic numbering of the input lines being
read from *SOURCE*. In terminal mode, this number is printed
at the front of the input line in the form:

tnumber
1_
2_

(This printing of the "#" may be turned off by the SSET
PFX=OFP command.) The line numbers provided by the automatic
numbering sequence are taken as the line number for the input
line: the first characters of the line are treated as an
integral part of the line. The line number assigned to the
input line is used for an indexed write operation to the
currently active file. Therefore, the currently active file
should be a line file or a device. If the currently activefile is a sequential file, the command $SET SEQFCHK=0FF must
be issued first; however, the line number assigned to the
input line is ignored and the line is written sequentially at
the end of the file.
In terminal mode, when automatic numbering is turned on and
there is an active file, all command lines must begin with a
S. Consequently the UNNUHBER command must always be preceded

- by a $.

Examples: $NUMBER

This turns on automatic numbering with a starting line
number of 1 and an increment of 1.

_suun 10,5

This turns on automatic numbering with a starting line
number of 10 and an increment of 5.

$NUH -100

This turns on automatic numbering with a starting line
number of -100 and an increment of 1.

NUHBER Command 237

ITS Volune 1: HTS -~ The Systea

April wsva

£33112

commwn nnscannou

Purpose: To allow users to access other user's files.
Prototype: $2}RHIT [filenale] [access type]

filenaae

"filenaae" is the name of the file to be permitted. If
"filenane" is oaitted, the user is prompted to enter a
filenane and access-type. Pilenales and access-types
should be listed, one set per line, terainated by a null
line or an end—o£-file.

access-type

"access type"" is one (or lore) of the following:

ALL lll other users are allowed to read the file.
BUN The file nay only be run or loaded. It may not

be copied or listed.
PROJNO The file nay be read (using *COP!) by all other

users having the sane project nuaber as the
owner.

NONE The owner has unliaited access. All other users
have no access.

CRH The file lay not be written or emptied.

R0 Rb is equivalent to CR8 and ALL.

If no access type is specified, NONE is assuaed.

Description: The above inforaation is for reference only. For a general
description of the various paraaeters, see the "Shared Piles"
section of the "Files and Devices" description in this
voluae.

Bxaaples: $PERnIT X ALL

All users are given read access to file X.

SPBRHIT Y CII RBI PRJHO

13$ ‘FUI1@'€Ind

All users with the sane project nulber as the owner are
allowed run only access to file Y. The owner can no

April 191a

HTS Volume 1: HTS -- The System

longer change the file (although he can still destroyit).
$PERHIT X

All permit access is removed from file X.

PERMIT Command 239

HTS Volume 1: HTS -- The Systen

April 197B

Kllhi
conuaun nnscnrerzon

Purpose: To release the currently active file or device.

Prototype: $§§LEASE [*pdn*]
ilpdnlk

"*pdn*" is either *AFD*, the pseudo-device name from a
mount request to SHOUNT, *PRIIT*, *PUNCH* , or *BATCH*.

Description: If the parameter is omitted or is *AFD*, the currently active
file or device is closed and the pseudo-device *APD* is
disassociated from the file or device and becomes undefined.

The RELEASE command is used in this case after all changes to
a file have been made. It protects the user rom accidental-
ly entering data into the file through the misspelling of a
command, or in batch mode, through having a program terminate
abnormally and leaving as yet unread data cards which could
be mistakenly entered into the active file.
If the parameter specifies a pseudo-device name for a mounted
device, that device is dismounted.

If the paraneter specifies *PRINT*, *PUNCH*, or *BATCH*, the
associated job is released to HASP. This is the same as if
the command

SCORTROL *...* RELEASE

was given.

Example: SRBL

Zl FBISESB coeuand

E

HTS Volume 1: HTS -- The System

April 197"

ggsmang

couuann nnscaxpmrou

Purpose: To restart (or initiate) execution of a program following
either initial loading, an interrupt, or a subroutine call to
ERROF, HTS or HTSCMD.

Prototype: $g§START [[AT] location] [MAP[=mapFDname]] [NOMAP] [XREF]
[I/OFDnames] [limits]

The following parameters may be given:

[AT] location

The address at which execution is to begin is specified
by "location". "location" is a virtual memory location
given by an Qptigggl local relocation factor and a
displacement in the form

[RF=(hhhhhh|GRx}] xxxxxx

where "hhhhhh" is the hexadecimal value of a local
relocation factor or GR: indicates the general register
whose contents are to be used as a local relocation
factor, and "xxxxxx" is the hexadecimal value of a
displacement. The displacement is added to the current
value of the relocation factor to provide an absolute
virtual memory address. If a local relocation factor is
not specified, the global relocation factor is used.
The global relocation factor is initially zero, but may
be changed by the SSET command. Since this value
replaces the right-hand 32 bits of the PSW, "location"
specifies the instruction length code, the condition
code, and the program mask as well as the displacement.

MAP[=mapFDname] [uounp] [xnnr]
The user can redesignate the destination of future load
maps with the MAP keyword. This is only useful if- the
program is loading other modules dynamically by calling
the subroutines LOAD, LINK, or XCTL. The NOMAP keyword
can be used to suppress the printing of all future load
maps. See the RUN command description.

I/0FDnames

The user can reassign the logical I/0 units. See the
RUN command description.

RESTART Command 201

mTS Wolume 1: HTS -- The system

April 1973

FORTRAN users are reminded that HTS logical I/O units 0
through 1§ are not“necessarily the same as the FORTRAN
logical I/O units 0 through 19. The FORTRAN I/0
routines may default the FORTRAN logical I/O units
independently of HTS. Moreover, if this has happened,
the meaning of these units cannot be reassigned by a
RESTART command. -

limits

Description: The

The user can specify local limits for CPU time, pages
printed, and cards punched. See the RUN command
description. If no limits are specified, no limits are
enforced. Any limits specified -on previous RUN or
RESTART commands are ignored.

RESTART command restarts (or initiates) execution of the
currently loaded program. This may be a program loaded by
the LOAD command, a program that was interrupted during
execution by a program or attention interrupt, or a program
that terminated by a subroutine call to ERROR, HTS or MTSCND.

A 32-bit value is computed from the "location" specification
rand replaces the right-hand 32 bits of the PSH. If "location"
is omitted, the PSI remains unaltered, and execution begins
at the entry point for a program loaded by the LOAD command,
or the point of interruption for a program that is inter-
rupted by a program or attention interrupt: for a program
rthat is interrupted by a call to ERROR, HTS or HTSCND,
execution restarts at the point following the subroutine call
as if the subroutine returned to the program.

If logical I/O units have been reassigned, the files and
devices originally assigned are closed, and the newly
assigned files and devices are opened.

Examples: SRESTART SPRINT=A

This restarts the currently loaded program with SPRINT
output reassigned to the file A.

$RE AT RF=520800 28000258

2%: ‘R$5TIRT Cdilmnd

The program is restarted at location 52OAS8 with the
condition code set to 2, fixed point overflow interrup-
tion enabled, and 'the other program mask interrupts
disabled.

J)

April 197R

Purpose:

Prototype:

HTS Volume 1: HTS -- The System

BE!

counnun nnscaxprxou

To load and initiate execution of a program.

$§UN [objectFDname] [MAP[=mapFDname]] [NOHAP] [XREF]
[I/0PDnames] [limits] [PAR=parameters]

The following parameters may be given:

objectFDname

"objectFDname" specifies the file(s) or device(s) con-
taining the program(s) to be loaded. If omitted, the
program is loaded from *SOURCE*.

AP[=mapFDname] [NOMAP] [XREP]

The MAP keyword specifies the file or device "mapFDname"
on which the loader is to write the load map. If the
MAP keyword parameter is omitted, no load map is
written. If the HAP keyword is given in the form of
MAP, "mapFDname" defaults to *SINK*. The NOMAP paramet-
er suppresses the printing of the load map. NOMAP need
be given only if a previous HAP specification was made.

The XREF parameter» specifies that a cross reference
listing of external symbols occurring in the loaded
programs is to be produced in addition to the load map.If XREF is given without the HAP keyword, HAP=*SINK* is

~ assumed. If XRBF is given with-NOHAP, only the cross
reference is produced.

I/0FDnames

The keyword parameters "I/OFDnames" are the assignments
of logical I/0 units to files or devices for use by the
loaded program during execution. The logical I/0 unit
assignments establish the I/0 subroutines which are used
by the loaded program for the input and output of data.
Where no specifications are stated, the following
default assignments occur:

SCARDS=*SOURCE*
SPRINT=*SINK* ’

SPUNCH=*PUNCH* (batch mode if global card est. >0)
SERCCH=*HSINK* ‘

GUSER=*HSOURCE*

RUN Command 2&3

HTS Volume 1: hTs -- The System

April 1974

The logical I/0 units O through 19 -have no default
specifications. See the section "Files and Devices" in
this volume and the subroutine descriptions for SCARDS,
SPRINT, SPUNCH, SERCOH, GUSER, READ and WRITE in Volume
3 for further details on the use of these subroutines.

FORTRAN users are reminded that HTS logical I/O units 0
through 19 are not necessarily the same as the FORTRAN
logical I/O units 0 through 19. The FORTRAN I/0
routines may default the FORTRAN logical I/O units
independently of HTS. Moreover, if.this has happened,
the meaning of these units cannot be reassigned by a
RESTART command.

limits
The keyword parameters "limits" speeify local limits for
CPU time, pages printed and cards punched. These can be
given in the form:

TIhE={t|tS|tH}
§hGBS=p
ghRDS=c

These local limits can be used in both batch and
terminal mode and are effective only for the execution
of the program loaded by the SRUN command. See the
description of the similar global limits in the $SIGNON
command description for further details of limit
specifications.

PAR=parameters

The PAR keyword specifies an arbitrary string of charac-
ters to be passed to the loaded program on initiation of
execution. This is usually a parameter list for the
program and its interpretation depends on the loaded
program. The PAR keyword must be the last parameter
field specified in the command. The parameter list is
terminated by the end of the command line.

Description: The RUN command calls upon the dynamic loader to load the
object program into virtual memory. If there are unresolved
external symbol references after loading from "objectfnnane",
loading continues from *LIBRhRY (the system library). only
those parts of *LIBRhR! required to resolve the references
are loaded. If there are still unresolved external
references, a fatal loading error exists. In terminal mode,
the loader prompts for more loader input; in batch mode, an
error comment is produced and the loading terminates immedi-
ately. The search of the system library may be suppressed by
the $SET LIBR*OFP command. If $SETe DEBUG=0N has been

2W#~ nu Command

HTS Volume 1: HTS -— The System

April 197R

specified, SDS processes any symbol table information asso-
ciated with the loaded program.

If there were no fatal loading errors, the comment "EXECUTION
BEGINS" is printed and control is transferred to the entry
point of the program by a standard subroutine call (the entry
point address in GR15, the return address in GR1, the save
area location in GR13 and the parameter list location in
GP1).

The parameter string (specified by the PAR keyword) is passed
as follows: GR1 contains the location of a fullword address
constant which points to a region containing a halfword count
(halfword aligned) followed by an EBCDIC character region (of
byte-length specified by the count) containing the parameter
string. The leftmost bit of the address constant is 1.

If files or devices specifed by "I/0FDnames" are non-existent
or are not available, an error comment is produced and thelogical I/0 unit referring to the unavailable file or device
is set up such that the first time the program being executed
refers to that logical I/0 unit, either the user is given an
opportunity to change the FDname (in terminal mode) or
execution is terminated (in batch mode).

If the program terminates execution by restoring the regis-
ters and returning to HTS via GR1 or by calling the SYSTEM
subroutine, the comment "EXECUTION TERMINATED" is printed,
unless SSET DEBUG=ON has been given.

-

All storage, files, and devices used for this RUN command are
automatically released unless the user has issued the $SET
UNLOAD=0FF command or execution has not terminated normally
(for example, the program calls the ERROR subroutine or anattention or program interrupt has occurred).

If storage, files, and devices are not released, the user can
use the commands $DISPLAY, $ALTER, and $RESTART to debug or
continue the program.

Examples: $RUN -LOAD

This loads and initiates execution of the program in the
temporary file —LOAD which could, for example, contain
the object module from a FORTRAN compilation using *FTN.

$R 0BJPROG+*SSP HAP 5=INPUT 6=OUTPUT

This loads and initiates execution of the program in
OBJPROG which presumably contains references to subrou-tines in *SSP. A load map is printed on *SINK*.
Logical I/0 units 5 and 6 are specified for the input
and output of data to the program.

RUN Command 205

‘mus Wuluie 11 HTS ~-"Thu Bystul

lpfi1’197R

$RUN'*VKTFOR‘T*1U

This 1oa$ an initiates executian of the Hatetloo
‘FORTRlN,ptOQr&I. in local time estilate of 10 secunds is
spedified.

$R "'AS!lG SClKRD"S="SOURCE SYUNCHQOBJPQGG -.O='l!S'!SH‘AC 2=‘H=ACROS -

3&5 \RB§KRbIIh

‘P1R§IBIK*WO{T;TX,RD

This ‘loads the 360 asseabler WASHG and initiates execu-
tion of the asseabler with Sbnte input from the file
SOURCE Kun "object vmdule ougput to the file UBJPKOG.
The macro libraries *STSnAC and HaC%0S are attached to
legical 1170 units 0 and 2. 'mte:pmraueter string in‘the
PAR fief is passed to the assembler by the RUN-connand.

HTS Volume 1: HTS -- The System

April 197“

§2§

COMMAND DESCRIPTION

Purpose: To enter or return to debug mode.

Prototype: $§QS [debug-command]

Description: Control is transferred to debug command mode. In debug mode,
the user has the facilities of SDS at his disposal. See the
section "Debug node" for a description of the symbolic

‘ debugging system.

If a debug command is specified with the SDS command, that
debug command is executed, and control is returned immediate-
ly to HTS command mode.

Examples: $SDS

Control is transferred to debug mode.

SSDS SET ERRORDUnP=ON

The automatic errordumping option of SDS is enabled;
control is returned to HTS command mode.

SDS Command 207

HTS Volume 1: HTS -- The System

April'197B

ill
conaaun nnscnxvrrou

Purpose: To set various global switches and parameters.

Prototype: $§BT keyword ...
Any number of the following keyword paraaeters nay be" given
in a single SSET coeaand. The keyword parameters should be
separated by blanks; there must he noL blanks within any
keyword paraaeter. ’

All of the values set by these keywords lay be interrogated
by prograas using the GUIHFO subroutine and may be changed by
prograas using the CUINFO subroutine. see the subroutine
description for GUIIPO and CUINFO in Volume 3 for details.
lID!CHO={OIlOFF] Default: OFF

It the AIDECHO keyword is ON, all lines written to the
active file in coaaand node are echoed to *sINK* and
hsIIK. _ Bach line echoed is preceded by its line
nuaber in the active tile. \

ClSB=[UC|LC|lX|HIXBD] Default: LC

The CASE keyword specifies global uppercase (UC) or
lowercase (LC) conversion. If UC is specified, all data
lines read by the hrs monitor have lowercase letters
converted to uppercase letters. If LC is specified, the
data lines are not converted. ax and MIXED are equiva-
lent to LC.

CHDSKP*(OI|OPF] Default: OPP

Iormally, in printed output from a batch run, a page-
skip is produced automatically following any commands
that nay generate printed output (LIST, COPY, RUN, and
so on). If the CUDSKP keyword is orr, only a triple-
space is produced, if CHDSKP is OR, the page-skip is
produced.

COITCHlR=character Default: -

The COITCHAR keyword specifies a single character to be
used as an indicator for continuing an HTS coaaand line
on another input line. The continuation character must
be the last character of the line to be continued.

2&8 839 Colaand

April 1978

HTS Volume 1: HTS -- The System

COST={ON|0FF} Default: OFF

If the COST keyword is ON, the cost since the last cost
was printed (not necessarily the cost of the last
command) and the total current cost of the session is
printed; these costs then continue to be printed after
every command. These costs are approximate and subject
to roundoff: items which are not immediately charged for
such as tape drive time are not included until the
actual charge is made. If cost is off, these costs are
not printed. This keyword is the same as the $ keyword
described below.

CREAFD={ON|0FF} Default: on

If the CRBAFD keyword is ON, a successful SCREATE
command causes the created file to become the currently
active file. If CREAFD is OFF, the created file is not
made the currently active file.

DEBUG={0N|0FF} Default: OFF

If DEBUG is ON, all programs loaded are processed by SDS
for any symbol table information associated with them.
This allows debug mode commands to refer to symbols in
programs compiled with the TEST option. Also, all
programs run in execution mode are monitored by SDS and
any errors produce debug mode error comments.

DEVCHAR=character Default: >

The DEVCHAR keyword specifies a single character to be
used to indicate that a following FDname is a device,
not a file.

ECHO=(ON|OFF} Default: ON

If the ECHO keyword is ON, HTS command lines are echoed
on the *SINK* or *HSINK* devices (or files) if these
devices (or files) are different from the *SOURCE*
device (or file). If ECHO is QPF, echoing does not
occur.

EDITAFD={0N|OFF} Default: _0FF

If the EDITAFD keyword is ON, the SBDIT command causes
the file to be edited to become the currently activefile. If EDITAPD is OFF, the file to be edited is not
made the currently active file. This keyword may also
have other effects on the $EDIT command. See the $EDIT
command in this volume for details.

SET Command 2&9

‘V q_,, .__,.. _

HTS Volume 1: HTS -- The Systen

April 191a

ERDFI1B=[ON|OFF|NBVBR} Default: OFF

If the BIDTILB keyword is ON, a SENDFILE line is
recognized as-an end-of-file whenever it is read; if
EIDTILB is OPP, a $ERDPILE line is recognized as an
end-of-file only when read from *SOURCE* or *HSOURCE*:if BIDFILE is NEVER, a srunrrrz is never recognized as
end-of-file.

.ERROBDUHP={OI|OFF|PULL} Default: OFF '

If the BRBOFDUUP keyword is ON and execution terminates
abnoraally in batch node, a storage dunp of the user's
loaded program is given; if BRRORDUHP is FULL, the
storage dnnp includes any library subroutines loaded; if
ERRORDUP is OFF, no dump is given. OR is the same as
FULL unless "SSET S!HTAB=OR" was specified before the
program was loaded. The ERRORDUUP keyword has no effect
in terminal node.

rILECHnR=character Default: #

The FILECHlR~keyword specifies a single character to be
used to indicate that a following Ibnane is a file, not
a device.

Ic={on|orr} efaultz on

If the IC keyword is ON, the line "SCONTIHUE WITH"
specifies implicit concatenation; if IC is OFF, this
line is treated as a data line. The IC keyword can be
overridden by the DIC modifier on I/O operations. (See
the appendix "I/O lodifiers" to the section "Piles and
Devices" in this volume.)

'LIBR=[OI|OFP] Default: ON

If the LIBR keyword is ON, the file *LIBRAR! and
LCSIKBOL (the low-core symbol directory) are searched
for unresolved external symbols after a program is
loaded; if LIBR is OYF, this search is not nade.

LIBSRCH=[O?P|FDnane} Default: OFF

’25D SET Ctl

The LIBSRCH keyword indicates what (if any) public or
private libraries are to obe searched if there are
unresolved 'symbolsi in a loaded program. This keyword
interacts with the LIBR keynord.{ It LIBR is orr, then
the 'LIB5RC keyword is ignored. If LIBR is ON, but
'LIBSRCH is OPP, then only *LIBRAR! (the systea library)
and LCSIIBOL (the low-core symbol directory) is searched
(if the *LIBB1R! keyword is '08). It LIBR is ON and
LIBSRCH is not OFF, then LIBSRCH specifies a library or

April 197a

HTS Volume 1: HTS -- The System

concatenation of libraries to be searched. Thelibraries are searched in the order specified in the
keyword. After these libraries are searched, *LIBRAR!
and LCSYHBOL are searched if there are still any
unresolved symbols (if the *LIBRAB! keyword is ON).

LNS=character Default: , '

The LNS keyword specifies a single character to be used
as a line number separator. The line number separatoris used to terminate the line number for the input line
read in HTS command mode and indicates that the remain-
ing characters are a part of the data line itself. This
is used to distinguish a line beginning with numeric
information from the line number (for example, 17“,
1122335566 has a line number of 170 and a data line of
1122335S66).

PFX=[0N|OPF} Default: ON

If the PFX keyword is ON, the terminal prefix characteris printed at the front of each input or output line at
the user's terminal, or if automatic numbering is on
(due to the NUMBER command) and there is an active file,
the line number that is assigned is printed at the front
of each input line at the user's terminal: if PFX is
OFF, the printing of the prefix character or line numberis suppressed. The terminal prefix character is used to
determine which programs are communicating with the
user. The prefix character is not printed in batch
mode.

Pw=characters

The PH keyword specifies a sequence of one to six
characters (none of which are blank) to be used as the
user's password. The user's password must be correctly
given before the user is allowed to sign on.

RF=[hhhhhh|GRx] Default: RF=0O0000

The RP keyword sets a global relocation factor which is
used in the SDISPLAY and SRBSTART commands. "hhhhhh" is
a hexadecimal constant to be used as the global reloca-tion factor or GR: specifies a register whose contents
are to be used as the relocation factor. The relocationfactor is set to zero initially. If GR! is specified,
the current contents of that register at the time of the
SET command is used as the relocation factor.

SET Command 251

HTS Voluae 1: HTS -— The system

April 197%

SCRFCHAR=character- Default: -
The SCRFCHhR.keyword specifies a single character to be
used to indicate that a following Fbname is a temporary
file, not a pernanent file.

SEQPCHK=[0N|OFF] Default: ON

Normally an attempt to do an indexed operation on a
sequential file or an attempt to do a sequential
operation starting at other than line 1 on a sequential
file causes -an error condition and an error message to
be generated. 'If SEQFCHK is OFF, the message is not
issued and the operation is performed as if not indexed.

SHYSEP=character Default: :

The SHFSEP keyword specifies a single character to
separate the signon ID from the file name when referring
to a shared file (for example, 1AGh:DAThFILE).

SIGFILE={0FF[FDnane} Default: OFF

The SIGFILE keyword indicates which file (if any) is the
special'SIG8OH file used as an implicit SSOURCE file
after the user signs on. If SIGFIDE is set to OFF, the
file or device still exists, but isimot used as a SIGNON
file. The setting of SIGFILE affects subsequent
signons. j -

SIGFILElTTN=[ON|OFF} Default: ON

If the SIGPILEATTN keyword is ON, an attention interrupt
during the "last sign-on" message or while the SIGNON
file is being processed, interrupts the processing and
resets ’SOURCE to HSOURCE. If SIGPILEATTN is OFF,
attention interrupts are stacked, but are not taken
during the SIGRON file processing (except if the SIGNON
file runs a program which calls the subroutine ATTNTRP,
the attention is taken at that point and given to the
program). The setting of SIGFILEATTN affects subsequent
signons.

SYHTLB={OR|OPP] Default: ON

If the SIHTQB keyword is ON, the loader symbol table is
retained yhenever a program dhas been loaded. This
allows external symbols used in a program to be used by
HTS and other user prograhs. If SYHTAB is OFF, the
loader symbol table is not retained.

!DR={0hlTr} Default: OPP

252 nS2Tetoimand

April 197“

HTS Volume 1: HTS -- The System

If the TDR keyword is ON, the CPU time (in seconds) and
the number of drum reads which have occurred since the
last HTS command was terminated, is printed on *SINK*.
This allows a user to easily obtain a
for the execution of a program.

TERSE=[ON|OFF} Default: OFF

timing estimate

If the TERSE keyword is ON, many informational and error
messages from HTS are suppressed or a bbreviated. If
TERSE is OFT, all messages are given in full.

TRIH=[ON|0FP} Default: ON

If the TRIH keyword is ON, lines read or written tofiles are trimmed (trailing blanks are removed). If
TRIM is OFF, the lines are not trimmed. The TRIM
keyword can be overridden by the dTRIH modifier on I/0
operations. (See the appendix "I/0 Modifiers" to the
section "Files and Devices" in this volume.)

UNLOLD=[ON|OFP} Default: ON

If the UNLOAD keyword is ON, all storage, files and
devices from a previous LOAD or RUN command are automat-
ically released at the end of normal execution; if
URLOAD is OFF, they must be released using the UNLOAD
command. ‘

*LIBRARY=[ON|OFF] Default: ON

If the *LIBRARY keyword is ON, *LIBRARY
any unresolved external symbols after
loaded (if the LIBR keyword is ON). If
(or if LIBR is OFF), this search is not

$=[ON|0FF] Default: OFF

is searched for
a program is

*LIBRARY is OFF
made.

If the $ keyword is ON, the cost since the last cost was
printed (not necessarily the cost of the last command)
and the total current cost of the session is printed:
these costs then continue to be printed after every
command. These costs are approximate and subject to
roundoff; items which are not immediately charged for
such as tape drive time are not included until theactual charge is made. If S is OFF, these costs are notprinted. This keyword is the same as the COST keyword
described above.

SET Command 253

HTS Volune 1: aws -- The Systan

April 197a

Bxanples: SSE? IC=0PP_BIDFILE=i!Y!R

This forcas tha liaes ~:coar1uuz QITH" and "SENDFILE" to
be inturftuted as data lines, net as inplicit concatena-
tion ind cators or as end*o£~£i1e.

$53? ECHO*O!I
$53? PI=lJlI ECHO=OR

This batch example sets the uaor's password to AJAX. \
The echoing cf BIS couaand lines is turntd OFF so that
the password is not echoed on the user's output.

3C!ElT! <SI6FILB>
‘GET (SIG?ILI>
13332! CO$T*0I BRRORDUHP=0N
$55? SIGPILB=<SIGYILE>

25a SET Cuanana

This example creates a file <sIGFIL:> to be used as a
SIGIOI file. this srcnoa £119 contains a SET colaand to
set the COST and BRRORDUHP options ta ON. Each time the
user signs on, this tile is invuked causing the speci-
fied uptious to be set.

HTS Volume

April 1976

§l§!Q£Z

counann nrscnrvmxou

1: NTS -— The System

Purpose: To notify the system of a user's departure.

Prototype: $§1§NOFF [§HORT|$]

The only legal parameters are: §HORT or

An abbreviated form of the sign
produced when the SHORT keyword is
specified, only the time and date of

$

off statistics is
given. If $ is

the user's signoff,
the approximate cost of the session, and the user's
remaining balance of funds is printed.

Description: The user is signed off the system. All storage acquired and
devices attached are released, and all files are closed
(temporary files are destroyed). A summary of the job
statistics is printed. These statistics include all of the
non-zero entries from the following items

User SIGNON ID (batch only)
Project number (batch only)
Time of sign-on (batch only)
Time of sigh-off
Elapsed time in minutes
CPU time used in seconds
CPU storage virtual memory integral in page-minutes
Wait-state virtual memory integral in page—hours
Number of cards read
Number of lines printed
Number of pages printed
Number of cards punched
Number of tape mounts
Tape drive time used in minutes
MERIT network time
Number of drum reads
Approximate total cost of the job
Charge for plotting time
Charge for disk space used since last sign-off
Remaining balance of funds for the ID
Time of the previous sign-on (batch

If the abbreviation SSIG is used, its meaning is taken in
context: if the user is not signed on,

only)

SSIG means SSIGNON:if the user is signed on, $sIG means SSIGNOFP.

Examples: $SIGNOFF
SSIG S
SSIG S

SIGNOFF Command 255

are »

nrs Volume 1: nms -- The siste-

April 197a

grsugg

counnun nrscaxvmxon

Purpose: To identify a user to the system.

Prototype: $§1§NON ccid [keywords] ['d name']

Only the "ccid" parameter giving the user's signon identifi-
cation number is required. The other legal keyword parame-
ters that may be given are:

PW=password 1

The PI keyword specifies the user's password. This
keyword may be used in both batch and terminal mode:
however, it is recommended that batch users do not use
this keyword, but supply the password (without PI=) on
the card following the SSIGNON command.‘ In this way,
the password does not appear on the user's printed
output.

The following keywords are relevant in batch mode only. They
are useful for placing global constraints on the user's job.

§IHE=[t|tS|th} Default: 30S

The TIME keyword gives a number "t" specifying the
global QPU time limit for the job. If given in the form
of the number "t" or "ts", the time limit is in seconds;if given in the form "tn", the time limit is in minutes.If the TIME keyword is not specified, a default timelimit of 30 seconds is enforced.

gAGES=p ‘ Default: 50

The PAGES keyword gives a number "p" specifying the
global printed page limit for a single copy of the job.If the PAGES keyword is not specified, a default page
limit of 50 pages is enforced. The maximum value that
can be specified is 99999 pages.

;ARDS=c Default: 0

256 SIG0i Command

The CARDS keyword gives a number "c" specifying the
global punched card limit for the job. If the CARDS
keyword is not specified, a default card limit of O is
enforced. The maximum value that can be specified is
99999 cards.

HTS volume 1: HTS -- The System

April 197“

COPIES=n Default: 1

The COPIES keyword gives a number "n" specifying the
number of printed copies of the output to be produced.If the COPIES keyword is not specified, one copy of the
output is printed.

PRINT={QN|TN} Default: any standard train
The PRINT keyword specifies the type of character set to
be used for printing the job. This may be either the QR
or TN character set. The normal character set is QR.
The TN character set contains a larger set of characters
(including lower-case alphabetics) and is corresponding-
ly slower in printing output. For a description of the
character sets, see the "Print Character Sets" section
in Volume 5 of the HTS manuals.

§OUTE=locn Default: location where job
PROUTE=locn was submitted.
CROUTE=locn

These three keywords specify the destination for printed
and punched output. "locn" is a four character code
specifying the location at which the job's output is to
be printed and/or punched. The ROUTE keyword sends all
output to "locn", while the PROUTE and CROUTE keywords
send the printed and punched output, respectively.
Currently, CNTR is the code for the Computing and Data
Processing Center and SCIL is the code for the Science
Library basement. If any station specified does not
have a card punch, the punched output is re-routed to
CNTR. The default for all *BATCH*, *PRINT*, and *PUNCH*
jobs is CNTR.

'd name'

This comment field should,contain a delivery code "d"
(see Appendix B of the facilities and .§srz_i.ss§ 22 HQ
Qgnnuiies and Data P.r2<=<-=§§ins1. Q2222; for a list of validdelivery codes), and user identification "name" which
may actually be the user's name, course and section
number, etc. If the output is to be retained at the
CDPC Control Desk rather than delivered, the first
character of the comment field must be a blank. The
comment must be the last item of the $SIGNON command and
must be enclosed in single quote marks.

Description: The $SIGNON command identifies the user to the system (thatis, signs him on), and in the case of batch jobs, establishes
certain constraints for the job. The $SIGNON command must be
the first command of the user's job.

SIGNON Command 257

HTS Volume 1: HTS -- The System

lptil 191a

If the user has not specified a password on the SSIGNON
comland, the system prompts him for the password at a
terminal. Ror a hatch job, the system expects to find the
password starting in column 1 on the next card following the
SSIGIOI card.

A user may not be signed on more than once at any one time
for any given "ccid".
If 'the abbreviation SSIG is used, its leaning is taken in
context: if the user is not signed on, SSIG means SSIGRON;if the user is signed on, SSIG means SSIGNOFP. -

Examples: $SIGION ZAGA ' JOHN Q. DOE‘

The user with ID ZAGA is signed on to the system. All
global limits and output specifications have default
values.

$SIG ZLGL T=1H P=10O C=5O ‘P JOHN Q.' DOB‘

$SIG

SSIG

258 SIGIOI Command

The user with ID 2LGA is signed on to the system. The
global limits are 1 minute of CPU tile, 100 pages of
printed output, and 50 punched cards. The deck and
output is delivered to the Physics Department distribu-
tion center.

ZLGA T#20 COPIES=2 PRINT=TN ' JOHN Q. DOE‘

The global time limit specifed is 20 seconds. Two
copies of the printed output are produced using the TN
character set.

ZLGL C=1000 PROUTE=SCIL ‘W JOHN Q. DOE‘

A batch job submitted elsewhere is printed at SCIL
(Science Library). The punched output is punched at
CRTR and is delivered to location I (Science Library)
along with the input deck.

HTS Volume 1: HTS -- The System

April 1970

§.l!§
counnun nnscarpmzou

Purpose: To change the destination or "sink" for normal output lines.
Prototype: $§;NK [FDname|PREVIOUS}

One of the two following parameters must be given:

FDname

The name of the file or device that is to become the
current sink of output lines.

PREVIOUS

The PREVIOUS parameter specifies that the previous sink
is to be restored as the current sink. To output to afile by the name PREVIOUS, the file character # must
precede the file name.

Description: when the SSINK command is given, the pseudo—device *SINK* is
reassigned to the file or device specified. This causes
output which defaults to *SINK* to be sent to that file or
device. The master sink *HSINK* remains as the terminal in
terminal mode or the printer in batch mode. Initially *SINK*
is assigned to the same device as *uSINK*.

Error messages requiring user interaction are directed to
HSINK (terminal lode only).
hn attention interrupt causes *SINK* to revert to *HSINK*.

A one level pushdovn list of sink devices is maintained. The
PREVIOUS parameter uses this pushdovn list to restore the
previous sink device.

Examples: $SINK A

The file A becomes the current sink for output lines.
$SINK PREVIOUS

The previous file or device used as the sink becomes the
current sink for output lines.

SINK Command 259

HTS Volume 1: BIS —- The System

April 191a

§Q!B§§

couunun DESCRIPTION

Purpose: To change the source of input lines.
Prototype: $§QURCE {PDname|PREYIOUS}

One of the tuo following parameters must be given:

!Dname

The name of the file or device that is to become the
current source of input lines.

PREVIOUS

The PREVIOUS parameter specifies that the previous
source is to be restored as the current source. To
source to a file by the name PREVIOUS, the file
character Q must precede the file name.

Description: when the SSOURCE command is given, the pseudo—device *5OURCE*
is reassigned to the file or device specified. This causes

- the next input line to be taken from that file or device.
Input that‘ defaults to *SOURCB* is read from that file or
device. The master source *nSOURCE* remains as the terminal
in conversational mode or the card reader in batch mode.

. Initially *SOURCE* is assigned to the same device as
nSOURCB.

Responses to error messages requiring user interaction are
read from *£SOURCE*.

An attention interrupt, or an end-of-file condition on
SOUBC! when trying to read an HTS comuand, causes *SOURCE*
to revert to *HSOURCE*.

A one level pushdown list of source devices is maintained.
The PREVIOUS parameter uses this pushdovn list to restore the
previous source device.

Example: SSOURCE A

The file A becomes the current source for input lines.

260 SDURCE Comnand

HTS Volume 1: HTS -- The System

April 197“

.5112!

connnun nnscsrrmrou

Purpose: To restart (or initiate) execution of a progran following
either initial loading, an interrupt, or a subroutine call to
ERROR, HTS, or HTSCHD.

Prototype: sggnaw [[AT] LOCK] [HAP[=napPDnale]] [NOHAP [XREP]
[I/OFDnanes] [limits]
This command is identical to the SBESTART command.

START Colnand 261

?

l *_ __ V ___ _

HTS Volune 1: HTS -- The System

April 197M

!lLS2.l2

counnnn nrscaxrrxou

Purpose: To unload the currently loaded program in virtual memory.

Prototype: SUQQOAD [CLS=x:x]

Description: The SUHLOAB command unloads the current program which had
previously been loaded by a SLOAD command or a $RUN commandif execution did not terminate normally. (Normal termination
is by the program returning to the system with a return code
of zero or a subroutine call to SYSTEH.) All storage
allocated to the program is released, and all files and
devices opened at execution time are closed.

The parameter 'CLS=xxx" releases all space associated with
the command language subsystem "xxx". This should be used
only if the CLS is not working properly.

Example: SUILOAD

262 UILOAD Command

April 1970

QQNQHBER

HIS Volume 1: HTS -- The System

COHIAND DESCRIPTION

Purpose: To turn off automatic numbering of input lines from *SOURCE*.

Prototype: sguuunsrn

Description: Automatic number of input lines being read from *SOURCE* is
turned off. Any input line, not recognized as a command line
or a data line (starts with a valid line number), is treated
as an invalid command.

Example: tnumber
1_this
8 2_is data
G 3_$unnumber

Automatic line numbering was started with beginning line
number of 1 and an increment of 1. Three lines later
automatic numbering was suspended with the $UNNUHBER
command. Automatic numbering may be resumed with a
starting line number of 3 and an increment of 1 by
issuing the NUMBER CONTINUE command.

UNNUMBER Command 263

i
8'28. Iorlmae” 1: H135 -- The-1 Szxystul

26¢‘ miIu$B£k*C0unnd

lri.-1 1974

April

HTS volume 1: HTS -- The System

1974

gglr non:

§A§l§.§Q!E§£2§

Th
The e

where
HTS
edito
diagnfile
which

Files

e HTS context editor program is used for the editing of HTS line files.
ditor is invoked by the command

SEDIT filename e

"filename" is the name of the HTS line file to be edited. (See the
SEDIT command description in this volume for details.) Commands to the
r are read from the pseudo-device *SOURCB* and editor output messages,
ostics, and verification comments are written on *SINK*. After the
"filename" has been obtained, the editor responds with a colon ":" at
point it is ready to accept edit commands.

References to line numbers within a file by the edit commands and
references to line numbers within a file by HTS file naming conventions
are the same. Hence limits of line numbers and file sizes applicable
to HTS conventions apply to the editor as well._ The specification of
line number ranges and explicit concatenation for the file are ignored
by the editor. The file is read with the I/0 modifiers implicit
concatenation off and trimming off (~IC and ~TRIH). The file is
written with trimming off.

The edits: nresraa xerhe Qnlx siih nT§ line £ils§- Text editinq ofsequential files and sequential files with line numbers is not
supported by this program.

Column Ranges

Various edit commands which perform some action on lines of thefiles being edited act only within a specified "column range", aninterval of each line. Two column pointers are associated with the
column range which is defined as extending from the character pointed
to by the first column pointer through that pointed to by the second
column pointer.

The COLUHN command is provided to allow the user to specify the
values of both the first and second column pointers. Because of therestriction on line sizes in HTS files (255 characters), the columnpointers are restricted to a range of values from 1 to 255. The first
column pointer must be less than or equal to the value of the second

Edit Hode 265

—-iv-~' ._

HTS Volume 1: HTS -- The System

April 197“

pointer. The values assigned to the column range pointers place no
additional restriction on the size of the individual lines within the
files.

Regions

Some of the edit commands nay perform their function on more than a
V single line of the file. when this is the case, the range of file

lines upon which they operate may be specified by a name rather than
always by the first and last line numbers. This nane is specified by

/XXIX!

where "xxxxx" is from 0 to 7 non—blank characters, and is known as a
line region name.

Edit comlands for which a line region specification is valid require
the name of the region as a parameter. Unlike the colunn range for
which there is only one specification, several line region names may be
defined. The REGION command is provided for defining and establishing
the values of line regions. The interval over which the line region
applies is defined as the line pointed to by the first value through

s the line pointed to by the second value. The values of the line
pointers in a line region specification are any yalid HTS line numbers,
that is, any "n" where ‘

-99999-999 S n 5 99999.999

The restriction that the numerical value of the first pointer uust
be less than or equal to that of the second pointer applies. The value
assigned to a region name places no additional restriction on the
extent of nTS line numbers.

The editor has one predefined region name "/FILE" which is used to
refer to the entire file.

Switches

Two general classes of switches are defined:

(1)

(2)

266 Edit node

Global switches which are set by default or by the user with
the SET command and which govern the action taken by commands
and error conditions which occur during execution. These are
defined and explained under the SET edit couuand description
below.

Xec switches which are set as a result of some action
occurring during execution. These are explained under the
xec procedure section below.

HTS Volume 1: HTS -- The System

April 197

Checkpoint/Restore Facility

This facility allows the user to preserve the state of his file at
any time. This is done by using the CHECKPOINT command to initiate a
checkpoint buffer; then any commands which are executed that cause
changes to the text of the file are recorded in the checkpoint buffer
along with sufficient information to restore the changed lines to their
state before the CHECKPOINT command was issued. The checkpointing
feature may be suppressed for the duration of a command by the ENCH
modifier.

m

The user may restore at any time all or portions of his file to the
state it was in at the time he used the CHECKPOINT command by using the
RESTORE command. The RESTORE command may be used any number of times,
but it always restores the file to the state in which it was last
checkpointed.

The state in which the file is to be checkpointed can only be
changed by the use of the CHECKPOINT command which reinitiates the
checkpoint buffer.

After initiating checkpointing with the CHECKPOINT command, an
alternate mode of operation is to set the checkpoint switch off using
the SET command; then, only those commands appended with a QCH modifier
are checkpointed.

The editor works with only one copy of the file being edited and
changes are made as they are entered. This is in contrast with editors
run on other systems which work with two copies of the file and only
replace the original with the edited version when requested.

Attention Interrupts
Issuing one attention interrupt causes the current command to be

terminated immediately and the editor to return to edit command mode.
A second attention interrupt without an intervening command causes the
editor to return to HTS by calling the subroutine HTS. The editor may
then be reentered by issuing the EDIT command.

Xec Procedures

An Xec is a sequence of commands stored as a named program which may
be executed under the control of a count parameter (specifying how many
times the sequence of commands is to be executed), the GOTO command, or
a combination of these.

The XEC command is used to name a new Xec and to enter the commandsto be stored. If the user already has an Xec named Sname, the message

ALREADY DEFINED - ENTER "Y" TO REPLACE, "N" TO RETAIN

Edit node 267

-as

ITS Volume 1: HTS -~ The System

April 1974

is typed and appropriate action is taken depending upon the reply.
Otherwise, the user is prompted with a "?" to enter the command lines
to comprise the Xec. Command lines consist of an optional label field
followed by a command. The label field consists of 1 through 8
non—blank characters immediately followed by a colon (":"). Because of
the format of the label field,

REP: PRI /A:

is a labelled command to print the region named /3:, while

REP :PRI /A:

is an unlabelled REPLACE command. Each command is checked for
syntactic correctness as it is entered. If a command is found to
contain a syntactic error, the appropriate error message is printed
followed by V

ENTER HEW COHHARD OR "3" TO RETAIN

and the command is either discarded or retained accordingly. The
ability to retain commands found to contain syntactic errors is
provided so that one can, for example, refer to a region name in
defining an Iec before defining the region name. In any case, if there
remain syntactic err rs when the Xec is executed, they are caught then.
Entering of commanzs is terminated by entering either the pseudo-
command END, a null line, or an end-of-file.

Three Xec switch values are defined. Two of these are SUCCESS,
abbreviated S, and FAILURE, abbreviated F. They are complementary.
They refer to the success or failure of a conmand which does some
operation involving a form of search. Success implies that the command
was successful at least once within its specified line region. Failure
implies that it exceeded its line region or encountered an end-of-file
before fulfilling its function. The third form of Xec switch is
ENDOIFILB, abbreviated BOP or E. This value is either OR or OFF. It
is ON if an end-of-file occurs during a read or write operation. It is
OF? if the read or write operation was completed without an end-of-file. The Xec switch value may be tested by the GOTO command.

§.Q!lll2.!L.lE§

ls in the BTS command language, each command is recognized by its minimum
distinguishable abbreviation, usually one or two letters. A few commands
begin with non~alphabetic characters and are recognized by the presence of
these characters. The command names and their abbreviations are as follows:

268 Edit node

April 197u

ALTER
BLLNK
CHANGE -

CHECKPOINT CHE
COLUMN COL
COPY
DELETE
DOCUMENT
EDIT
EXPLAIN
GOTO
INSERT
LINE
HATCH
HTS
OVERLAY
PRINT
REGION REG
RENUHBER REN
REPLACE
RESTORE RES
SCAN
SET
SHIFT
STOP
XEC

$5

C

CO
D
DO
ED
E
G

'UO23l3k"H

I-I

R

S

SE
SH
ST
X

#11 ll

Shame Sname
/name /name

HTS Volume 1: HTS -- The System

where "n" is an integer and "name" is a sequence of O through 7 non-blank
characters.

There are four general classes of commands

(1) those starting with an alphabetic keyword,
(2) two-commands which are a signed integer,
(3) those prefixed by a "S", and
(Q) those prefixed by a "/".

All commands starting with an alphabetic keyword require parameters. In
many cases if the command is issued without parameters, one or more of
several default values are assigned to the missing parameters. Many of
these commands may have modifiers appended to the keyword portion. These
modifiers are fully described below along with all forms of parameters.

The two commands consisting of signed integers are used to control the
value of the current line number.

The commands which are names prefixed by a "S" are lists of Xec_commands
prepared by the user. They are executed upon the use of their name, which

Edit Mode 269

ci.

HTS Volume 1: HTS -- The system

April 197M

has been previously assigned to them. The name is defined by the user along
with the list

The prefix
line region re

of commands to be used in conjunction with it.

"/" followed by a name causes the line number values of the
presented by that name to be printed provided that such a name

has been previously defined by the user.

 HH§
Command nod ifiers are composed of an at-sign "3" followed by one to three

characters. Each modifier must be appended to the command which it modifies
without intervening blanks. More than one such modifier may be appended to
a command name. For example,

PRINTDNLB

causes lines 1

X 100 200

O0 thru 200 to be printed in hexadecimal without line numbers.

Two classes of modifiers are defined:

(1) Modifiers which override permanent switch assignments for the
duration of the command to which they are appended. See the SET
edit command for an explanation of these switch settings.

ECH Turn the checkpoint switch on for this command.
INCH Turn the checkpoint switch off for this command.

BL Turn line-number prefixing on for this command.
OIL Turn line—number prefixing off for this command.

CV Turn verification on for this command.
DIV Turn verification off for this command.

OX Turn hexadecimal conversion on for this command.
3!! Turn hexadecimal conversion off for this command.

(2) Modifiers which control the action performed by the command.

270 Edit node

in Apply the given command throughout the given line
range, rather than only once.

BPC Ihen using the SCAN and ALTER (CHANGE) commands,
the column number of the column where the string

V found or altered begins is printed.

HTS Volume 1: HTS -— The System

April 1974

§.Q!.A._2.!4F 2A§_...IM‘lEE§§

Strings

A string is a sequence of characters delimited at either end by a
current delimiter character which may be any one of the following
characters:

' " ¢ < > () , ? : : S 8 | ~ I Q 6 =

The first character from this set encountered when scanning for a
string is taken as the current delimiter character for that string. If
a command requires a pair of strings, they must be presented as the
delimiter, followed by the first sequence of characters, followed by
the delimiter, followed by the second sequence of characters, followed
by a third delimiter. If hexadecimal conversion is on, the character
string is inspected, and, if it is found to contain only legal
hexadecimal characters, it is converted to internal character form.

Examples:

The character string: 'STBING'
The null string: ""
The hexadecimal string: #E1E2D9C9D5C7#
A pair of strings: 'ABC'DBF'

If the final delimiter is onitted when entering a string or pair of
strings, the editor types

: FINAL DBLIHITER? 2

and waits for an answer to be typed after the second colon. If the
correct final delimiter is typed followed by ending the line, the
string or strings are accepted: otherwise, the command is cancelled.

Line Numbers

A file editor line number may be any legal HTS line number or one of

* The current line
*F The first line of the file
*L The last line of the file

The file editor maintains a current line pointer which is initially
set to the first line of the file and is modified by the LIKE, HATCH,
SCAR, n, +n, and -n commands.

Edit node 271

>

r

£

i

i

.

.

l

F

»

K

V

I

I

1

L

I

i

1

I

T

IIS YO

COIIINZS

Q

Region

C
1
n

lume 1: HTS -— The system

April 197R

A count parameter is an integer or (in sole commands) a keyword
xpression of the form

COURT=integer

‘ OI
4

C=integer

Names

I region name is a slash "/' followed by 0 through 7 non-blank
haracters. Region names are defined by the REGION conmand and denote
ine number ranges in a file. There is one predefined region, namely
/FILE" which is equated to the range —99999.999 through 99999.999,

that is, all of the HTS file.

XGC Rd

C
O

Keywor

1
8.

An Xec name is a dollar sign "S" followed by 0 through. 7 non-blank
haracters. Iec names are defined by the XEC command and denote series
f stored commands which nay be executed as stored programs.

d Parameters

A keyword parameter is either a literal series of characters or a
iteral series of characters followed by an equal sign "=" followed by
value field. »

Examples:

COLUHKS
REGIONS
ECHOIOR

lRII.£QlAE2.2l£Il1IlQE§

In
denote

/n

li

the following command descriptions, the symbol "lpar" is used to
any of the following combinations of parameters:

ame - the line range assigned to the region name

nenumber the given line number

272 Edit node

April 1974

HTS Volume 1: HTS -- The System

1inenumber1 1inenumber2 the given range of line numbers

linenumber COUNT=integer "integer" lines beginning with the given line
number.(COUNT may be abbreviated by C)

COUNT=integer "integer" lines beginning with the current

(nothing)

The following
commands:

lower case -
upper case -
brackets [1 —

braces [} -

underlining -

line
the current line, except in the SCAN and HATCH
ccmmands, for which the default line number
range is the current line through the last
line of the file

notation conventions are used in the prototypes of the

represents a generic type which is to be replaced by an
item supplied by the user.
indicates material to be repeated verbatim in the command.
indicate that material within the brackets is optional.
indicate that the material within the braces represents
choices, from which exactly one must" be selected., The
choices are separated by vertical bars. '

indicates the minimum abbreviated form of the command or
parameter. Longer abbreviations are acceptable.

The following pages give a complete summary of the commands in the edit
command language.

Edit node 273

HTS Volume 1: HTS -— The System

§!ll!£1.2.I11t.§2!£§lQ_££2!2!122§
1

April 1914

Commands Parameters Hodifiers and Xec Switches

ALTER lpar ['str1'ctr2']
§LAIK lpar ['str']
QIAIGB lpar ['str1'mtt2']
QEQCKPOINT [OYF]
992"!" -[I [I11]
Q9?! lpat [T0 [1inenumber]]
QBLSTB lpmt
QQCUHBIT lpar
]QIT filename
QIPLAIN [[command|!RROR}]
QOTO label [[08] condition]
INSERT [1inennmber]['str']
LII! linenumber
QITCH lpar ['str']
13$ [command]
QVBRLAY lpar ['str']
RRIIT {Ipar [check]1kagmord|$nnme]
§}§IOl /name [linoj [1ine2]]
§]1U!BBR [linenumber [lnctementj]

X X X
X X

X X X X

X X X X

X X X X X X X

I CH L PC Y X S F EOF

X X X X X X X X X
X X X X

X X X X X X X X X

X X X X

X X

QBPLACB lpar ['str') ~ x x x x x
x x x§]§TORE lpar

§CAN lpat ['str']
§§T keyuord=va1ne
§§IPT lpmt (LEPT|1IGHT} count
gov
QBC inane

X X X X X X X X

X X X X X

+£ x x x x
3; x x x x
£1112am:

275 Edit node

HTS Volume 1: HTS —- The System

April 197R

QLTER

EDIT COHHAND DESCRIPTION

Prototype: i) ALTER lpar 'string1'string2'
ii) ALTER lpar -

Action: This command causes the first occurrence (or all occurrencesif the GA modifier appears) of "string1" in the given line
number and column range to be replaced by "string2". If no
strings are supplied, the pair of strings given in the
preceding ALTER with strings specified is used.

Modifiers: DA, DCH, ENCH, DPC, EV, ORV, BX, BN1, 3L,'3NL

Xec Settings: ALTER succeeds if "string1" is found at least once and fails
otherwise. The end-of-file switch is turned on if the
end-of-file is encountered.

Examples: ALTER 'IT'IS'
causes the first occurrence of IT in the given column
range of the current line to be altered to IS.

A3132 /FILE 'C1'E2'

causes all occurrences of the hexadecimal string C1 (the
character A) in the given column range of the entirefile to be altered to hexadecimal E2 (character S).

ALTER Edit Command 275

T8 Volune 1: HTS -- The system

April 1970

£53.85

norm connnnn nnscnxvrrou

Prototype: i) QLRHK lpar 'string'
ii) QLARK Ipar

Action: r If a string is given, this command causes the given line
number range to be blanked according to that string, that is,
positions in the line corresponding to blanks in the string
are replaced with blanks: positions corresponding to non-
blank characters are not changed. Its no string is given,
each line of the given range is typed on the user's terminal
ans he is then prompted (with a *7") to enter a line to be
used as the blanking pattern for the line typed.

Modifiers: UCH, GNCH, UV, DRY, EL, OIL

Xec Settings: The end-of-file switch is turned on if the end—of-file is
encountered.

Example: B # ‘ALA '
causes the fourth through sixth characters of the
current line to be replaces by blanks,

216 manna Edit Golmand

HTS Volume 1: HTS -— The System

April 1970

QHQQGE

EDIT COHHLID DESCRIPTION

Prototype: i) QHANGE lpar 'string1'string2'
ii) QHANGE lpar

Action: The CHANGE colland is a synonym for the ALTER command. See
the ALTER command description above.

CHAGE Edit command 277

HTS Volume 1: hrs —— The systen

QHEQIIQIII

nun ccuuun nnscurnou

Prototype: i) §§CKPOIRT

ii) §§CKPOIIT OFF

April 1975

Action: The checkpoint/restore feature provides the capability to
establish a base or checkpoint in editing to which all or any
part of the tile lay be restored (see the RESTORE connand).

CBBCKPOIRT Iith no paraleter causes the current checkpoint
buffer to be reinitialized or, if it is the first instance of
the CHECKPOIUT conaand, causes a one page buffer to be
obtained and initialized (additional buffers are obtained as
needed). CHBCKPOIRT OPP causes the current buffer to be
released and the checkpoint feature to be disabled.

Modifiers: Hone.

Xec Settings: lone.

278 CBICKPOIIT‘ldit Connand

April 197R

SQLHEH

HTS Volume 1: HTS -- The System

EDIT COHHLRD DESCRIPTION

Prototype: i) QOLUHN m

ii) ggguuu m

iii) §QLOnu

where "m" and "n" are positive integers.

Action: The first form of this command sets the column pointers to
the "m" and "n"th columns, respectively. The second form
sets the pointers to "m" and 255, and the third resets them
to their initial values, 1 and 255. The column pointers are
used by the ALTER, BLANK, HATCH, OVERLAY, SCAN, and SHIFT
commands as limits for editing in any given line. The column
range is defined as extending from the character pointed to
by the first column pointer through that pointed to by the
second pointer.

Modifiers: None.

Xec Settings: None.

COLUMN Edit Command 279

Htstfolnne 1: ts -— The Systea

April 197R

£921

more ccuuaun nascarpwzou

Prototype: i) QQP! lper [T0]‘linenuaher

ii) QQPY lpar [TO]

Action: This coenand causes the specified line nunber range to be
copied (without being deleted) into the file innediately
between the line whose line nunher is given in the T0 field
and the following line; the second fora defaults the T0 field
to the current line. note that if lowercase conversion is
enabled, the word "to" (if used) egg; be in upper case.

Note that the ambiguous coanand

COP! 1inenuaher1 1inennaber2

is interpreted as meaning

COP! linenuaher1 linenneber2 TO *

not

COP! linenueher1 TO linenunber2

modifiers: ICE, DICK, CV, ORV, CL, BEL

Iec Settings: Hone.

280 COP! Edit Colnand

April 191a

DELEIE

urs Volume 1: urs -- The system

EDIT COHHARD DESCRIPTION

Prototype: QELETE lpar

Action: This command causes the lines of the given line number range
to be deleted from the file.
If the user intends to delete a large set of contiguous lines
from his file, he should use the HTS COP! comnand to copy the
retained portions of the file to a temporary file. The
original file can then be emptied and the temporary version
can be copied back. This method is more efficient.

Modifiers: ECH, ENCH

Xec Settings: The end-of—fi1e switch is turned on if the end-of-file is
encountered.

DELETE Edit Command 281

,

\

HTS Volume 1: HTS -- The System

April 197d

QQQEIIEI

norm couunun nzscntpmzon

Prototype: QQCUHEIT lpar

Action: The DOCUBENT command is intended to be used in adding
comments to assembly language programs. It causes each line
of the given line number range to be typed out, followed by
the editor's issuing a "1" to prompt the user to enter a
comment to be appended to the line typed out. The comment is
placed at the location marked by the first column pointer, orif the text already extends beyond the first column pointer,
after the text with one intervening blank. If the comment
extends the line beyond colunn 70, the comment is broken at a
blank (or if it contains no blanks, at column 70) and
continued on a line inserted after the line typed out.

Hodifiers: None.

Iec Settings: The end-of-file switch is turned on if the end-of-file is
encountered during the documenting operation.

Example: COL 28
DOC 4'

LABELA AH 2,3
L ‘IRON ADD B TO COHPUTB IIEII INCREBEIIT FOR LINE RUBBER POINTER

PFIIHL
LABEL1 AH 2,8 NOR ADD B TOLCOHPUTE RBI INCREUENT
+13!"
PRIGRL
* FOR LIKE RUBBER POINTER

282 DOCUHEIT Edit Comnand

HTS Volume 1: HTS -- The System

April 197B

20;;

EDIT couuaun DESCRIPTION

Prototype: EQIT filenane

Action: This command causes the editor to release the file currently
being edited and to obtain the specified file for editing.
Line number ranges have no effect. Explicit concatenation
may not be specified. The file editor operates with implicit
concatenation off.
If checkpointing is enabled, it renains enabled, but the
checkpoint status is reset to one empty buffer, that is, the
effect is the same as if

CHECKPOINT OFF
EDIT filename
CHECKPOINT

had been specified.

If EDITAFD is ON, "filename" becomes the currently active
file (*AFD*).

Modifiers None.

Xec Settings: The end-of-file switch is turned on if the new file is empty.

EDIT Edit Command 283

HTS Volune 1: HTS -- the systen

April 191a

HEEL!!!

EDIT COHHIID DESCRIPTION

Prototype: i) EXPLAII

ii) §XPLLIN comnand

iii) §XPLAIN ERROR

Action: The BXPLAII coaannd provides information about the syntax and
operation of tile editor connands. The first fora provides
general information. The second torn provides information
about the speified command. The third torn is used vhen the
BRIEF snitch is enabled (see the SET command) to explain the
last preceding error consent.

Modifiers: Hone.

Iec Settings: None.

28¢ EXPLAIN Edit Command

HTS Volume 1: HTS —- The System

April 1978

QOIO

EDIT CCHHAND DESCRIPTION

Prototype: i) §OT0 label

ii) §0T0 label [OR] condition _

where "condition" is any of succnss, s, rnxrunn, r,
runorrxrn, nor, or 2.

Action: The GOTO command is used inside Xecs to alter the sequential
interpretation of commands. The first form specifies an
unconditional transfer to the command with the given label:
the second form specifies a transfer if the specified
condition is met. The label may be one to eight non-blank
characters. There are two predefined labels, namely COUNT
and END. COUNT causes the interpretation count to be
decremented by one and interpretation to be continued from
the beginning of the Xec. END causes the Xec to be
terminated immediately.

Modifiers: None.

Xec Settings: None.

Examples: See the XEC command for examples.

GOTO Edit Command 285

HTS Volnae 1: HTS -- The SYItQI

April 191m

H5331

znrr connann nrscnxvrxon

Prototye: i) QRSBRT linennnher 'string'
ii) ;RSBRT 'string'
iii) IISBRT linennnher

iv) gnszxr

Action: The INSERT collnnd with a string specified canses that string
to be inserted as n line into the file hetleen the line with
the given line nnnher (which defaults to the current line if
no line nnnher is specified) and the succeeding line. If no
string is specified, the editor enters fast insertion node.
In this node of operation, all lines entered up to a null
line or an end-of-file are inserted between the specified (or
defaulted) line and the following line. The line nnnbers are
calculated by an algorithn which varies the increnent depend-
ing on the difference between the line nnnber of the last
line inserted and the following line. -

If the given line nnnher does not correspond to any line in
the file, the first line is inserted there.

Bodifiers: SCH, MUCH, DY, DIV, 3!, DIX, 3L, BIL I

Xec Settings: lone.

Examples: IR ‘REE LINE‘

. causes the line
FBI LINE

to be inserted after the current line.

:i 320
?1ine 1

?1ine 2
?1ine 3
?$BHDPI1.E

inserts the given three lines after line 320.

286 IISBRT Edit Connnnd

HTS Volume 1: HTS -- The Systen

April 197“

LEE
EDIT counaun nzscnrvmxon

Prototype: LINE linenunber

Action: The LINE colland causes the given line number to becele‘ the
current line number.

uodifiers: 3V, DNV, EX, 3111, 31., BN1.

Xec Settings: The LINE conland turns the end-of-file switch on if no line
with the given line number is found in the file. '

LINE Edit Command 287

HTS Volume 1: HTS -- The eysteh

April 191R

nhié

rnxr COHHAND nnscnxpmxou

Prototype: 1) §ATCH lpar 'string'
ii) ghrtn lpar

Action: HATCH causes the editor to search the given line nuuber range
or the file for a line that matches the given string starting
at the left coluln position. Positions in which the current
£111 ’oheracter (see the SET command) occur in the string

snatch any character in the corresponding position in the
column range. If no string is given, the string given in the
previous HATCH with a string is used.

modifiers: Oh, 3V, DRY, BX, BN1, CL, ONL

Xec Settings: BATCH succeeds if the given string is found at least once,
and fails otherwise. The end-of-file stitch is turned on if
the end-of-tile is encountered during natching.

Example: COL 10 15
HLTCHOA /FILE 'BAL '

This example of the nnrca colnand can be used to match
all occurrences of the BAL or BALE instruction in an
assenbly language progral.

288 since Edit Connend

HTS Volume 1: HTS —- The System

April 1975

!2§
EDIT ccnuaun nsscnxrrzou

Prototype: i) QTS

ii) 515 command

Action: The first form of this command returns control to the HTS
command level. The second form returns control to HTS and
issues the HTS command given in the parameter field. In
either case, the editor may be reentered by issuing the SBDIT
command.

All Xecs and line number regions remain defined. All switch
values changed with the SET edit command remain in effect.
The name of the file being edited is saved for use with a
future SBDIT command. See the SEDIT HTS command description
for details.

Modifiers: None.

Xec Settings: None.

Example: HTS $lIST FILEA

causes control to be returned to MTS and the file FILEA
to be listed.

HTS Edit Command 289

I

P

\

\

i

I

i

HTS Voluae 1: HTS -— The Systel

April 1970

Q1333!
rnxr conuaun DESCRIPTION

Prototype: i) QVERLA! lpar 'string'
ii) QVBRLAY lpar

Action: The first fora causes the specified line nulber range to he
overlaid with the given string. The second form causes the
given column range of each line to he printed followed by the
editor issuing a "?" as the prompting character and awaiting
a line entered by the user to he used to overlay the line
typed. OVERLAY causes characters in the string or line
entered to replace the characters in the corresponding
positions in the colunn range. ihere the fill character
occurs in the string or the line entered, the coresponding
character in the line overlaid is left unchanged. The
initial fill character is the blank. It lay be changed with
the SET conland.

Modifiers: OCH, GNCH, EV, DNV, QL, OHL

Xec Settings: The end-o£—file switch is turned on if the end-of-file is
encountered during the overlaying operation.

Example: If the coluln pointers are set to 1 and 255 and the current
line is

THEN LID THERE

then the coaland

OVERLAY ‘NOW '

causes the current line to become

HORN AND THERE

while

SET PILL=$
OVERLAY ‘HOG '

causes it to beccne

NOE Alb THERE

290 OVERLAY Edit Connand

April 1978

PRINT

HTS Volune 1: HTS -- The Systel

EDIT COMMAND DESCRIPTION

Prototype: i) PRINT lpar

ii) QRINT lpar check

iii) PRINT keyword

iv) PRINT $nane

where "check" is one of CHECKPOINTED, CHECKPOINT, CHECK, or
CH and "keyword" is one of COLUMNS, C, FILE, F, REGIONS, R,
XECS, or X.

Action: "PRINT lpar" causes the lines of the given line number range
to be printed.

"PRINT lpar check" causes the lines in the given line nulber
range which have been changed since the last CHECKPOINT
command to be printed in their checkpointed forms.

"PRINT COLUMNS" or "PRINT C" causes the values of the current
column pointers to be printed.

"PRINT FILE" or "PRINT R" causes the nane of the file being
edited to be printed.

"PRINT REGIONS" or "PRINT R" causes the names of the current-
ly defined regions to be printed.

"PRINT XECS" or "PRINT X" causes the names of the currently
defined Xecs to be printed.
"PRINT Snane" causes the commands in the Xec named Snane to
be printed.

Modifiers: "PRINT lpar" and "PRINT lpar check": EL, ENL, BX, dNX
Other forms: None.

Xec Settings: None.

Examples: Paxai YFILE

causes the entire file to be printed in hexadecilal with
line nunber prefixing.

PRINT Edit Colnand 291

HTS Volume 1: HTS -— The Syatea

P SA

v

April 197%

causes the contents of the lac named SA to be printed.

292 2811! Edit Connnnd

HTS Volume 1: HTS -- The Systel

April 1970

EEEIQE

EDIT COHHLRD DESCRIPTION

Prototype: i) gggrou /nane 1inenulber1 1inenulber2

ii) §}§ION /nane linenulber

iii) §§§ION /nale

where "/name" is a region nane.

Action: The REGION connand defines the line nulber range to he
associated with a region nane, either "1inenulber1" through
"1inenulber2", "linenulber" alone, or the current line nun-
ber, respectively.

Modifiers: None.

Xec Settings: None.

Example: REG /A

causes the current linenunber to be associated with the
region nale /A.

REGION Edit Colland 293

ITS volume 1: HTS -- The system

April 1974

Ellllll
nnxn couunun nnscnxrrrou

Prototype: gggunnnn linenumber increment

Action: The REIUUBBR comsand causes the entire tile to be renumbered
beginning vith "linenumber" and increasing by "increment".
The "linennmber" and "increment" parameters both default to 1if not specified and both may assume positive, negative, and
zero values.

The tolloving system or user actions may cause either the
entire contents or part of the contents oi the file to be
lost:

1) any action which results in the user being signed
oft, such as systes failure or time linit exceeded,

2) any cosbination of "linenumber" and "increment" which
causes a line nunber greater than 99999.999 or less
than -99999.999, or

3) an attention interrupt issued during execution of
this command. -

These problems are created by the method used to renumber the
file. The editor copies the entire contents of the file to a

tile named ~-nnqosvv, empties the tile being edited, and
copies the contents back. If the file has been copied to
-BDQQSV and any of the above three conditions occur, a part
or all of the file contents nay be lost.

Hodifiers: OCH, INCH

Xec Settings: lone.

293 REIUBBIR 8dit'Comnand

HTS Volume 1: HTS -- The System

April 197“

EEBLAQE

EDIT counnnn DESCRIPTION

Prototype: i) QEPLACE lpar 'string'
ii) QEPLACB lpar '

Action: REPLACE causes the lines in the line number range to be
replaced by the given string. If no string is given, each
line is typed and the user is pronpted with a "?" to enter a
replacement line.

Modifiers: ECH, BNCH, EV, 31W, EX, MIX, EL, ONL

Xec Settings: The end—of-file switch is turned on if the end-of—file is
encountered during the replacing of lines.

O

REPLACE Edit Command 295

HTS Yolnne 1: ITS -— The Systen

April 1978

- B25191!

non ccna no ~nzsca1r'rxon

Prototype: §§§TORE lpar

Action: RESTORE causes the lines in the given line nunber range to be
restored to their condition at the tine of the last CHECK-
POII! conland if the checkpoint/restore feature is enabled.

Note that

RESTORE

is the sane as

RESTORE F

and only restores the current line. If the entire file is to
be restored to the condition before the last CHECKPOINT
connand,

RESTORE /PILE

should be specified.

Hodifiets: BY, CRY, 3!, 081, EL, DEL

Xec Settings: Hone.

296 RESTORE Edit tonnand

HTS Volume 1: HTS -- The System

April 1978

§SA!

EDIT ccuuaun DESCRIPTION

Prototype: i) §CAN lpar 'string'
ii) gcau lpar ‘

Action: SCAN causes the editor to search the current column range of
the given line number range for the first occurrence (or, if
the EA modifier appears, all occurrences) of the given
string. If no string is given, the string given in the

' previous SCAN command with a string is used. The last line
found containing the string becomes the current line, and, if
the DPC modifier appears in the command, the column at which
the first character of each occurrence of the string begins
is printed.

Modifiers: GA, EPC, BY, GUY, BX, BNX, EL, DNL

Xec Settings: SCAN succeeds if the given string is found at least once and
fails otherwise. The end-of-file switch is turned on if the
end-of—tile is encountered during scanning.

Example: COL 10 15
SCANQABPC /FILE 'BlLR'

finds all occurrences of the BALR instruction in a
standard-format 360 assembler program.

SCAN Edit Command 297

I

»

!

nrs Volume 1: hrs -- The System

April 197k

EH
EDIT CCHBIRD DESCRIPTION

Prototype:, 51? keywordrwalue

Action: the SET command is used to alter the values of a number of
switches which gcvern the editing process and to change thefill character.

The switch keywords may take the values ON or OFF. The
» keywords, their abbreviations, and their meanings are as

follows:

BRIEF B

CC

CHBCKPOIH! CHECK
C

ECHO B.

BRRORIIIT ERROR
ERR
ER

FILL F

298 S31 Bdit Coanand

when BRIEF is ON, errors are signaled by
the message "ERROR" and the complete
message may be obtained by issuing the
command "EXPLAIN ERROR".
Default: OPP.

when cc is OH, lines from the file are
printed with carriage control.
Default: OFF.

If a checkpoint buffer has been allocated
and the CHECKPOIRT switch is OR, changes
to the file are recorded by the
checkpoint/restore feature (see the
CHEOKPOINT and RESTORE commands).
Default: ON.

Ihen ECHO is OR, cqamands entered from
the source stream and those read from
Xecs are echoed on SPRINT.
Default: OR (batch), orr (terminal).

Ihen BRROREXIT is ON and an error occurs,
the editor terminates execution by
calling ERROR after printing the appro-
priate error message.
Default: OR (batch), orr (terminal).

The fill character is set to the single
character following the equal sign of the
keyword expression. The fill character
is used in the HATCH and OVERLAY
commands. V

Default: blank

April 197R

Modifiers:

HTS Volume 1: HTS —- The System

HEX H Ihen HEX is OR, input strings are con-
X overted from hexadecimal t internal

character form on input, and output lines
are printed in hexadecimal format.
Default: OFF.

LINENUHBER LNR when LINENUHBER is ON, the line number of
L each output line is printed before the

line.
Default: ON.

TRIM T when TRIM is ON, lines written into and
read from the file are trimmed of trail-
ing blanks.
Default: OFF.

VERIFY V when VERIFY is ON, edited lines are

R0119 0

Xec Settings: None.

Examples: SET VERIPY=0N

SET FILL=$

printed following the execution of the
ALTER, BLANK, CHANGE, COPY, INSERT (only
the fora with a string), LINE, EATCH,
OVERLAY, REPLACE, RESTORE, SCAN, SHIFT,
-n, and +n commands.
Default: ON.

I

SET Edit Command 299

nrs Voinne 1: HTS -- The Sfsten

April 197A

§§II1
nnxr connnun nnscaxrmzon

Prototype: §§IPT lpar direction count

shore "direction" is LEFT or L, RIGHT or R and "count" is an
integer satisfying 1 5 "count" s 255.

Action: SHIFT causes the contents of the given colnnn range of the
given line anchor range to be shifted in the given direction
by "count" characters. Blanks are shifted into the positions
vacated.

Bodifiers: OCH, DICE; IV, DIV, OX, ill, EL, GIL

Xec Settings: The end-or-file switch in turned on if the end-of-file is
encountered curing shitting.

Bsanple: -COL 10 15
SHIFT * LEFT 2

would change

to

300 SHIFT BGit'Connnnd

IBCDBPGBIJKLHHOPQRSTUVIIIZ

BBCDBPGHILHNO PQRSTUVIXIZ

April 191a

5122

HTS Volume 1: HTS -- The System

EDIT COHHLID DESCRIPTION

Prototype: §10P

Action STOP causes the file editor to return to HTS and to release
its control storage. Thus, the next EDIT colland enters the
editor with, the default switch settings, coluln range, and
regions (/FILE, only), and with no XBCs defined. This is the
sale as if the editor had not been used before. See the
SBDIT HTS coanand for details

Hodifiers: None.

Xec Settings: None.

STOP Edit Colnand 301

ifs fezuieei: his -~ the system

xpril 191%

X15

sure couannn nzscnzrrzow

Prototype: 12¢ $nane

* where "indie" is an lec naie.

Action: I new Iec dale is created. All the coliands entered until
the next null line, end—o£~£i1e, or BID command becoie the
text of the lee. See the discussion of Iec procedures above
tor the details of using tee detieitous.

odifiesz fore. O

rec Settings: lot applicable.

Example: The following Xec could he used to print the first BSD line
and the BID line of each object nodule in a tile:

xnc $1
LII! *r
n=uar * *L ' nsn'
some nun on nor
nut * *L ' nun'
soro n
nun

The following Iec could be used to locate all lines that have
either an "8" or a "." in column 1 (or whichever is selected
by the column range).

XBC $3
LOOP: H * * '8'
H * * '.'
'1IIY
SOTO HID OI BOP
GOTO LOOP
EID

302 18¢ Edit Coluand

.
I

L

HTS Volume 1: HTS -- The System

April 197

‘H1; -ll
EDIT CCHHAID DESCRIPTION

Prototype: i) n

ii) +n

iii) -n ,

where "n" is an unsigned integer.
Action: This command causes the current line pointer to be mowed

forward or backward by "n" lines. The sign of the numberindicates the direction to move.

Thus, if the current line is B, the command

1

moves to the next line (which is not necessarily 5) and
subsequently

-2

moves to the line preceding line number 4 (which is not
necessarily 3).

Modifiers: OV, ONV, OX, BRX, 3L, DNL

Xec Settings: The end-of-file switch is turned on if the end-of-file is
encountered in either direction.

+n, -n Edit Command 303

E25 Yolnne 1: H15 —- The Syatel

April 197%

inns
EDIT ¢ClUAND DESCRIPTION

Prototype: 1) ggggg count

, - 11) issue
where "inane" is an xec nane and "count" is a positive
integer. ’“

Action: This colnend initiates the exeoution of the Xec named
"inane". If no count is given, it is assumed to be one; If
the Xec does not contain SOTO commands, the sequence of
oounands is executed "count" tines. If ~the xec contains
GOTOs, the sequence of control and the number of times each
oounand is executed is determined by the interaction of the
count and the G010 commands.

Bodifiersz Hone. ,

Xec Settings: None.

300 inane Belt Celnand

April 1970

£B§!§

HTS Volume 1: HTS -- The Systel

EDIT CCHHARD DESCRIPTION

Prototype: ggggg

where "/name" is the name of a region.

Action: This colland causes the line numbers which are the bounds of
the given region to he printed.

Modifiers: None.

Xec Settings: None.

Example: /FILE

causes the line numbers

-99999.999 99999.999

to he printed.

/name Edit Command 305

HTS Volule 1: HTS —- The Syste:

306 /bane B6it’¢o§Iand.

April 197R

HTS Volume 1: HTS -- The System

April 1978

QEBQG HODE

The Symbolic Debugging System (SDS) is a conversational facility for
testing and debugging programs. This facility was originally provided only
for 360-assembler language programs, but it has now been extended to include
FORTRAN programs. SDS enables the user to initiate the execution of a
program and monitor its performance by displaying or modifying instructions
and data at strategic points in the program.

SDS may be invoked in an active manner with the HTS command

SDEBUG FDname

where FDname is the file(s) containing the program to be debugged. The
parameters to the SDEBUG command are the same as those for the SRUN command:
hence, if the program refers to logical I/O units or has a system parameter
field, these also may be included on the SDEBUG command. For example,

$DEBUG PROGRLH SCBRD5=INPUT SPRINT=OUTPUT PAR=EXEC

The user communicates with SDS by entering ggbgg gggmgggg from his
terminal. SDS signals its readiness to accept a command by printing the
prefix character "+" in column one. This prefix character precedes all SDS
messages and diagnostics. Initially, commands to SDS are read from the
pseudo-device *SOURCE* and SDS output messages and error diagnostics are
written on *SINK*. Commands may be entered in either the upper or lower
case.

when the program has been successfully loaded, SDS prints
+READY
+

at which point SDS is ready to accept its first debug command. A command is
a request that SDS do something with the program being debugged. For
instance, the RUN command initiates execution of the program, and the HAP
command lists relevant information about each loaded section. The BREAK
command is provided to insert breakpoints at strategic locations in the
program. If a program interrupt occurs during execution, or if a breakpointis encountered, control is returned to SDS which explains why the program
has stopped running and requests another command. The DISPLAY command may
then be used to selectively examine specific locations in memory or the
contents of the general and floating-point registers. Changes to data and
to instructions may be made with the HODIFI command. The program may be
restarted with the CONTINUE command. In this manner, the user may "step"
through the program and monitor its performance. A complete description of
the debug command language appears at the end of this section.

Debug Hode 307

V ‘V e — W77 ———— 7" 7 7 __e 7

HTS Volume 1: HTS —- The System

i April 197G

Logical I/O unit assignments and the value of the system parameter list
may be specified on the $DEBUG command in the same format as the SRUN
comnand.

If the user has omitted these assignments from the SDEBUG command, or
desires to change or reset any of the assignments, he may do so with the SET
debug command. For example, after issuing the HTS command

SDEBUG -LOAD

the debug command l

SET 5=DATl 6=RESULTS PAR=LIST

assigns the files DATA Vand RESULTS to logical I/0 units 5 and 6,
respectively, and sets the system parameter list to the character string
LIST. This is the same as if the HTS command

$DEBUG -LOAD 5=DATl 6=RESULTS PAR=LIST

had been issued originally.
Assigning logical I/0 units with the SET command may be used to

reposition files ‘but does not affect the status of other types of
pseudo-devices (such as *SOURCB* and the position of tapes). The PAR option
must be the last parameter specified since the remainder of the input line
is taken as the system parameter list.

An alternative method for invoking SDS is with the HTS command

$SBT DEBOG=0N

This method uses SDS in a passive manner. All programs loaded after this
point are processed by SDS. The HTS commands of $80! and SSTART/SRESTART do
not start execution of the program directly, but transfer control to SDS
with an implicit debug comtand of RUN or CONTINUE (respectively). SDS
intercepts any error that occurs, prints an error comment, and returns to
HTS command mode. At this point the user, if he desires, may explicitly
enter debug command mode with the HTS command

$SDS

to determine what ment wrong with his program. This mode of operation may
be disabled by the HTS command A

QSET DEBUG=0FP

The default for the DEBUG option is OFF. when the DEBUG option is ON,
all user programs, language translators, and other publicly available
programs are processed by SDS; hence, the user should be aware of which
programs he does and does not want sns to process. Normally, when the user
is not running one of his own programs, the DEBUG option should be OFF.

308 Debug node

HTS Volume 1: HTS —— The System

April 197%

2;§£LA¥_1_§!2:!2Q;Ii!_.E§Q§§§§;!§

§Q§.§2£é!§$2£§

The most useful facility of SDS is the ability to selectively refer to
locations in the program being debugged. This may be done symbolically, by
relative address, or by absolute (virtual) address. In the symbolic mode, a
location is referred to by the symbol assigned to that location at program
translation time.

Symbolic referencing is possible only with those language processors
which generate a symbol table with the object programs they produce.
Currently, this is done by the 360 Level G Assembler (*hSBG) and the FORTRAN
G compiler (*FTN). with *ASHG and *FTN, the TEST parameter must be
specified for the processor to produce symbol table information. The
formats are:

$RUN *ASHG SCARDS=source SPUNCH=object PAR=TEST

$RUN *FTN PAR=SOURCE=source,LOAD=object,TEST

when referencing by relative or virtual addresses, SDS processes all
loaded programs which were produced by a language translator that generates
an object module. This excludes interpretive translators such as HATFOR and
SNOBOLB.

The general format for an SDS parameter is
S(i)1j

"S" may be

(1) a symbolic location appearing in a source language program,

(2) a relative address assigned at assembly or compilation time, or

(3) an absolute (virtual) address corresponding to a location within
the loaded program.

"i", the igggg, may be a signed or unsigned gggiggl integer which
represents the ith translated element (that is, an instruction, or data
item) starting with or preceding S. 5(0) and 5(1) are identical to S.
Recursively, "i" may also be an entire SDS parameter of the form S(i)tj.
For FORTRAN arrays, "i" may be a series of indices, separated by commas.

"j", the Qigplgggpggt, may he an unsigned hggggggiggl integer which
represents the number of bytes following or preceding the location specified
by S(i).

An SDS parameter is terminated by a blank or by a zero-level comma (a
comma which is not contained in a parenthesized expression).

Debug Mode 309

i

r

b

ufS’Voluae 1: HTS -- The Systea

April 197R

The SDS indexing nechanisn ignores zero duplication factors and assembler
generated spaces. In the 360 assembler example belov, HH(2) refers to the
same location as CH; HI(3) and CH(2) both refer to the sane location as PH.

\

000020 0009 HI DC H'9' 0

000028 DS 00
000028 C1C2C3CUC5Q0 CH DC C'lBCDB '
000030 00000005 PI DC F'5'

Illegal operation codes do not terminate SDS indexing operations. The
instruction is assured to be 2 bytes in ,length (RR type) and indexing
proceeds.

Both the index and the displaceaent are optional. Ixaaples of legal SDS
mnummam:

arena
lLPHl(2)
ALEHA(~3)
BETl+20
B!rA(6)+u
B!TA(8)-C

Recursively, "i" may be an entire SDS parameter of the fora S(i):j. The
index "i" is assured to be a decimal integer unless it is a symbol or a
relative or absolute address (vith the QR or DA modifiers appended). When
the index is a symbol or an address, the contents of the location specified
is used as the index for "the indexing operation. As many levels of
recursion as desired may be specified, for example,

5(1)
B(l(I))
¢(B(l(3)))
D(203R)

_ For FORTRAN arrays, "i" may be a series of indices separated by conaas.
Up to seven indices nay be specified, corresponding to the number of
diaensions in the array. Alternatively, any PDRTRAY array nay be referred
to linearly (with one index). For example, V

l(6)
B("'3) y

C(1,2,3,H,5,6,7)

Symbolic indices may also be used, for exaaple,

1(1)
B(J¢K)

yTo refer to stateaent numbers in FORTRAN prograas, a prefix must be used
to distinguish the statement number froa a relative address. The "t" lust
prefix the statement nuaber if it is an external (user-defined) statement
number. For exaapie,

310 Debug lode

HTS Volume 1: HTS -- The System

April 1970

#10

is the user-defined statement number 10. "IS!" must prefix the statement
number if it is an internal (source-listing) statement number. For example,

IS#1O

is the source-listing statement number 10. Only those statement numbers
which define gggggtgble FORTRAN statements may be used. An executable
statement is defined as a statement which is from one of the following
categories:

(1) Assignment statements
(2) Control statements
(3) I/0 statements

All others, such as those defining DIMENSION, REAL, INTEGER, DATA, COHHON,
SUBROUTINE, FUNCTION, ENTRY, EQUIVALENCE, and FORMAT statements are non-
executable and therefore undefined. Both internal and external statement
numbers must be specified withggg legging ggggg.

It is frequently necessary to distinguish explicitly between a symbolic,
a relative, or an absolute address. For example, "A10" could be interpreted
as the symbol "A10", or the relative or absolute address A10 (hex). To
indicate a relative or absolute address, the GR or 8A modifiers may be
appended to any parameter: hence, "A1N3R" becomes the relative address A10
(hex). If the parameter name begins with a letter, it is assumed to be a
symbol. Thus, "A10" is treated as a symbol, and to specify the relative
location A10 either "0A1" or "A18R" must be specified.

If the parameter is greater than or equal to 100000 (hex), the address is
assumed to be absolute and the DA modifier need not appear. If the
parameter is less than 100000, the address is assumed to be relative.

The EQ modifier forces any string of characters to be treated as a
symbol.

SDS assumes all indices are decimal and all displacements are hexadecimalunless overridden by the EX or in modifiers. The EX modifier specifies
hexadecimal conversion of an integer constant, while the OD specifies
decimal conversion of an integer constant. The D! and GD modifiers affectonly the immediate numbers to which they are appended.

Debug Mode 31l

HTS Volume 1: HTS ~- The S1805!

April 1970

The following 360 asselbler language program illustrates the use of SDS
parameters.

000000
000000
000000 5810 F014 L 1,lLPHl

PROG CSECT
USING *;15

00000“ 5A10 F018 AD A 1,C
000008 5010 F01“ ST 1,ALPHl
00000C 58A0 P01C L 10,1515
000010 07?! BR 10
000010 0000000; ALPHA DC F'10'
000018 00000014 C DC F'20'
00001C 00000000 VSYS DC _V(S!STBH)
000020
000070 1C022C333C1C022C DELTA DC 2P'1,22,333'

Gllll DS 20!

END

The following is a list of SDS parameters and the corresponding relative
addresses.

312 qbebuq node

Z§£ll!$!£ l§§§§§§

2000 000000
Pa00+0 000000
0800(1) 000018
an 000000
AD(—1) 000000
AD+ 000008
c 000018
c(0) 000018
c(1) 000018
c+c 000020
vsts 000010
vszs-100x 00000c
vsxs-10 00000c
vsrs-1000 000012
vszs-A 000012
GLHHA 000020
cAaun(20) 00006c
sanuaxcy 00006c
nnLmA(3) 000073
DBLTl(—22) 000018
can 00000c
c0n(2) 000010
can-0 000008
c0a+c 000018
010(2) 00001“
20+l 0000ZA
70 000070
70(2) 000071
70(3) 000073
70(0) 000075
70(5) 000076

HTS Volume 1: HTS -— The System

April 197“

To display the current value of a location, the DISPLAY command may be
used. For example,

DISPLAY ALPHA

converts the location ALPHA according to its type and length and prints the
result. The type refers to the format in which it is displayed (that is,
fixed-point, floating—point, character, hexadecimal, etc.) and the length
refers to the number of bytes printed. The ALPHA from the above program is
displayed as

ALPHA '2" +10

Locations may also be referred to by the relative addresses assigned at
translation time. To display the contents of the relative location C, the
command

DISPLAY CDR

may be used. This displays the instruction in the form

AD(3) 'I' L AOFO1C

The dR modifier is used to indicate a relative address. If no symbol table
is provided at translation time, the location is printed in hexadecimal
format as

OOOOOC 'X' 58AOF01C

The user may specify a relocation factor with the SET debug command.
This relocation factor is added to every relative address specification that
is not overridden by the EC modifier. For example, the command sequence

SET RF=517000
DISPLAY 2A0

displays the contents of location 5172A0.

The user may display any legal location in his virtual memory by
specifying an absolute (virtual) address. To display the contents of the
absolute location 516A28, the command is

DISPLAY 516A28

If possible, the contents of 516A28 are converted according to type and
length and printed on the user's terminal. If the address given specifies
an illegal, an unreferenced, or a protected page, an error message is
printed.

A special form of the SDS parameter, the 919;; pgggggggg, is provided to
specify a range of locations. For example, to display the linear array XVAL
of dimension 10, the command

Debug node 313

HTS Volume 1: HTS -- The Systqg

April 19TH

‘ DISPLLI XVAL(1).-.XVhL(1O)

is used. If the symbol used for the upper—bound address is identical to
that of the lower-bound address, it may be omitted, for example,

DISPLAY XVAL(1)..-(10)

Block parameters may be used to specify any range of addresses as shown in
the following examples:

DISPLAY ALPHA...GlHHA(2)
DISPLIY 9co...A2aan
DISPLA! 51600o...516a2a

The upper-bound address must be greater than the lower-bound address.

§§1!2£§_§9§i§i§I§

It is often useful to override the implied or assumed type, length, or
scale attributes of an SDS parameter. SDS provides a set of keyword
modifiers which temporarily override the attributes of a parameter by
explicitly specifying new attributes. A keyword modifier consists of the
modifier character "6" followed by a keyword describing the modifier. For
instance, the user may yish to display a symbol in its hexadecimal
representation. In the ifollowing example, the TYPE keyword modifier is
applied to the symbol ALPHA. The one character code following the "=" is
the type code for hexadecimal formatting, as defined below. The command

DISPLAY ALPHA3T!PE=X

displays the contents of ALPHA as

ALPHA '1' OOOOOOOA

If a length attribute of B is also applied, the command is
DISPLAY lLPHAiTYPE=XBLBRGTH=8

and the symbol is displayed as

ALPHA *1‘ OOOOOOOA 0000001

Only the first letter of any keyword modifier need be entered. Hence,
the preceding example could be given as

DISPLIY ALPHA3T=X3L=8

is many keyword modifiers as needed may be appended to a parameter. For
block parameters, the TYPE, LEKGTH, and SCALE modifiers may be appended to
githg; the upper bound or lower bound address, for example,

31! Debug Bode

HTS Volume 1: HTS -- The System

April 197B

DISPLAY 5161003T=F3L=4...516120

O1‘

DISPLAY 516100...5161203T=F3L=

It is often desirable to restrict the use of an SDS parameter to a single
control section by the use of the CSECT keyword modifier. This is normally
done when a symbol or relative address is defined in more than one control
section. For example,

DISPLAY BETAOC=SUBR

displays the contents of location BETA in the section SUBR.

The symbol BLANK may be used for referring to blank named common
sections. For example, the variable A in a blank named common section of a
FORTRAN program may be displayed by

DISPLAY ABC=BLANK

If the program already has a control section or common section by the name
of BLANK, the SET command may be used to alter the blank named common
symbol. The use of BLANK as a blank named common symbol does not interfere
with the use of BLANK for other symbols in the program.

If a control section of a given name appears more than once in the
program, the GEN keyword modifier can be used to specify the desired
occurrence of that section. The first time a control section of a given
name is loaded, it is assigned the generation number 1, the second time itis loaded, it is assigned the generation number 2, and so on. The command

DISPLAY BETA@C=SUBR3G=2

displays the contents of location BETA in the second occurrence of section
SUBR.

The DSECT keyword modifier can be used to restrict an SDS parameter to aparticular dummy control section or dsect. If a dsect of a given name
appears in more than one assembly, the desired dsect can be specified by
appending the CSECT modifier immediately after the DSECT modifier. For
example,

DISPLAY LOC1BD=DAREA6C=SUBR

displays the contents of location LOC1 in the dsect DAREA from the assembly
containing the section SUBR. Dynamic or static addressability for the dsect
must be provided by the USING command. For example,

USING DARBAOC=SUBR GR1

causes SD5 to use the current contents of GR1 as the base address for DAREA.

Debug Mode 315

HTS Volume 1: HTS -- The Syst§j

For block parameters, the CSECT, GER, and DSECT parameters apply only to

April 191a

the address (upper bound or lover bound) to which they are appended.

SDS recognizes the following keyword modifiers:

8§!PE=code sets the type attribute to gggg, where ggdg is any of the
single-character type-codes defined below. The default is
X.

Code

Nl'4NI<(.n'UiIl'*H'iMUD'

I129

I-type address constant
binary
character (EBCDIC)
floating-point (long or short)
fixed-point integer
machine instruction
logical (FORTRAN)
complex (FORTRAN)
packed decimal
S-type address constant
V-type address constant
channel command word
hexadecimal
Istype address constant
toned decimal
assenbler—generated space (output only)

B§BHGTH=i sets the length attribute to i, where i is an unsigned
decimal integer. The default is R.

i§ChLE=i sets the binary scale factor to i, where i is a signed or
unsigned decimal integer. The default is 0. Binary scale
factors follou -the conventions used by the 360 assembler
language.

l§SECT=cs restricts the parameter to the control section gs.

D§EH=i restricts the parameter to the ith generation of the current
control section.

DgSBCT=ds restricts the parameter to the dsect Qg.

The following modifiers may he used to modify any constituent or keyvord
modifier in an SDS parameter:

an Treat as a symbolic location.

ik Treat as a hexadecimal relative address.

II Treat as a hexadecimal absolute (virtual) address.

316 Debug node

HTS Volume 1: HTS -- The System

April 197R

ax Cause hexadecimal conversion.

GD M Cause decimal conversion.

The modifier character may be changed by the SET command, so that symbols
containing an "6" character can be referred to in SDS parameters.

2£§é2§i£§Q_§1!.129l§

SDS predefines a small number of "useful" symbols. For instance, to
display the contents of all of the general registers, the predefined symbol
"GRS" is used, thus,

DISPLAY GRS

causes the contents of the general registers (0-15) to be displayed. To
refer to the 1;; general register, the symbol "GRi" is used, where "i" is a
register number, ranging from 0 - 15, or O - 9 and A — F (hex).

Similarly, to refer to the floating—point registers, the symbol "FRS" is
used. To refer to the jgh floating—point register, the symbol "PR1" is
used, where "j" is 0, 2, Q, or 6.

To refer to the current program status word (PSI), the symbol "PSI" is
used.

To refer to a program defined location with the same name as an SD5
predefined symbol, the 6Q modifier must be appended to the symbol. Thus, to
display the program defined symbol GR7, the command

DISPLAY GR7DQ

must be given, whereas, to display general register seven, the command

DISPLAY GR7

should be used.

Lgdirectiog

A level of indirection through any SDS parameter may be achieved by
placing the indirection character "8" at the front of the parameter. The
parameter is assumed to contain a fullword, byte aligned value which is used
by SDS as the effective address. For example, to display the contents of
the location whose address is contained in general register six, the command

Debug Mode 317

\

L

5

i!__,7___

<

ITS Volume 1: HTS -- The Systqp

April 197R

DISPLAY SGRG

is used; whereas, to display the contents of generali register six, the
command

DISPLAY GR6

is sufficient. As many levels of indirection as needed may be achieved by
placing the appropriate number of indirection characters at the front of the
parameter. For example, to display the location whose address is contained
in the location pointed to by general register two, the command

DISPLAY $$GR2

islgiven.
SDS stops at the first illegal address encountered and reports the

indirection level. Ln illegal address is an address which specifies a
protected page, an unreferenced page, or a non-existent page. The chain of
indirection need not be contained in SDS processed control sections.

The indirection operator has higher precedence than "1" used to add a
displacement. For example, the expression $ADDR+ refers to the location
which is 4 bytes past the address which is giygg in location ADDR. It does
pg; use the contents of ADDR+M as the location ($).

The indirection character may be changed by the SET command, so that
symbols beginning with a "8" can be referred to in SDS parameters.

Il2!$.§9!!§£§i9l

Input conversion is used with the MODIFY and SCAN commands. The MODIFY
command requires two parameters:

"(1) an SDS parameter specifying what locations are to be modified, and
(2) a list of one or more constants delimited with blanks or commas:

the entire list is enclosed in primes. The constants are converted
according to the type and length attributes of the first parameter.

The SCAR command also requires two parameters initially:
(1) a section name or block parameter specifying a region to be

scanned, and
(2) a single constant enclosed in primes. The constant is converted

according to the type and length attributes applied to the first
parameter.

no modifiers may be appended to the constants themselves. Type, length,
andascale modifiers may be eappended to the first parameter specified.
Conventions for the representation of the different types of SDS constants

318 ‘Debug lode

HTS Volume 1: HTS -- The System

April 197R

are presented below. The TYPE keyword modifier must be applied to the first
parameter if the constant type does not agree with the parameter's default
type. The term parameter refers to the operand which is being modified or
scanned. An error comment is produced if an unsupported type is specified.
A—type adcon - If the length of the parameter is three or four bytes,

the constant may be any legal virtual address, relative
< address or program defined symbol. If the length of the

parameter is one or two bytes, the constant is treated
as a fixed-point decimal integer of length one or two,
respectively. The example below modifies the location
ADDR to contain the address of the symbol LOOP.

MODIFY ADDR 'LOOP'

Binary - Not supported.

Character - Any of the valid 256 punch combinations may be desig-
nated in a character constant. Only one character
constant may be specified in the second operand of the
MODIFY command. since multiple constants within the

» second operand are separated by blanks or commas, an
attempt to specify two character constants results in
interpreting the comma or blank as a character. Special
attention must be given to representing primes as
characters. Each single prime as a character in the
constant must be represented as a pair of primes. The
maximum length of a character constant is 256 bytes.
Double primes are counted as one character. For the
HODIP! command, if the number of characters is less than
the length of the parameter, the excess rightmost bytes
are filled with blanks. If the number of characters in
the constant exceeds the length of the parameter, an
error message is given. For the SCAN command, the
length of the constant is taken as the actual number of
characters specified. In the example below, the loca-tion CHLR is modified to contain the character string
ABCDE.

MODIFY CHAR 'ABCDE'

CCH - Not supported.

Complex - A complex constant consists of a pair of floating—point
constants, separated by a comma or a blank. The first
constant is the real part and the second constant is the
imaginary part. If only one constant is specified, only
the real part is modified. The length of the entire
complex constant is 8 or 16 bytes. Complex constants
are used primarily in FORTRAN programs. In the examples
below, the location COHP1 is modified to contain 3.0 and
.O for the real and imaginary parts of a complex
number, respectively, and the location COHP2 is modified

Debug Mode 319

HTS Volume 1: HTS -- The Systgg

April 1970

to contain 5.0 as the real part with the imaginary part
being unchanged.

HODIFY COHP1 '3.0,U.O'
HODIF! COHP2 '5.0'

Fixed-point — A fixed-point constant is formed according to the rules
for writing floating—point constants. However, unless a
binary scale factor is supplied by the parameter being
modified, the fractional part is -lost. Binary scale
factors follow the conventions used by the 360 assembler
language, that is, the scale factor multiplies the
constant by the specified power of two. A fixed-point
parameter may vary in length froa one to four bytes.
Fixed-point constants are right—justified and padded
with leading zeros. In the examples below, the location
FIX is modified to the constant 2, and the location PIIZ
is modified to the constant 32.

HODIFY FIX '2'
HODIFY FIX2DS=3 ''

Floating-point - A floating-point constant is written as a decimal

320 ,Debng lode

number. ls an option, a decimal »exponent nay follow.
The number may be an integer, a fraction or a nixed
number. If the length of the parameter is B bytes or
less, the constant is trea ed as a single-precision
constant: otherwise, it is treated as a doub1e—precision
constant. The format of the constant is as follows:

\ (1) The number is written as a signed or unsigned
decimal value. The decimal point can be placed
before, within, or after the number. If it is
omitted, the number is assumed to be an integer. A
positive number is assumed if an unsigned constant
is specified.

(2) The exponent is optional. If specified, it is
written immediately after the number as En, where
"n" is an optionally signed decimal value specifying
the exponent of the factor 10. The value of the
constant may be in the range cf .723700515B+76 to
.539760535E-78. If an unsigned exponent is speci-
fied, a plus sign is assumed. No binary scale
factor may be applied.

In the following examples, the parameter X! is modified
t0

HODIF! XI 'R5.415'
"HODIP! X! 'U6Q15B-3'
HODIFY X! '+.Q6415EZ'

.
HTS Volume 1: HTS -- The System

April 197%

Hexadecimal - A hexadecimal constant consists of one or more of the
hexadecimal digits O-9 and A-F. Only one hexadecimal
constant may be specified in the second operand. The
maximum length of a hexadecimal constant is 256 bytes.
Constants that contain an even number. of digits are
translated as one byte per pair of digits. If an odd
number of digits is specified, the leftmost byte has its
leftmost four bits filled with zeros, while the right-
most four bits contain the first digit. Hexadecimal
constants are left-justified. There is no padding. In
the examples below, the locations HEX1 and CHAR are
modified to the hexadecimal constant C1C2C3C4C5.

HODIFY HEX1 'C1C2C3C4C5'
HODIPY CHAR@T=X 'C1C2C3CHC5'

Instruction - An "instruction" constant consists of a 360 assembler
mnemonic and a hexadecimal operand of the appropriate
length. The operand is separated from the mnemonic by
one or more blanks. No extended mnemonics (such as BN5)
may be used. The length of the instruction constant
need not agree with the length of the instruction being
modified. From the sample program above, the location
AD is modified to the instruction "S 1,C".

MODIFY AD ‘S 10FO14'

Logical - Logical constants are ".TRUB." and ".FALSE.", which are
converted internally to the fixed-point numbers 1 and 0,
respectively. If neither ".TRUE." nor ".FALSB." is
specified, the constant is treated as a character
string. Logical constants are used primarily in FORTRAN
programs. In the examples below, the location LOG1 is
modified to the constant ".TRUE." and the location LOG2
is modified to the character A.

HODIFY LOG1 '.TRUB.'
MODIFY LOG2 'A'

Packed 6 zoned - A packed or zoned decimal constant is written as a
signed or unsigned decimal value. If the sign is
omitted, a plus sign is assumed. The existence of a
decimal point in no way affects the conversion of a
decimal constant. In effect, the decimal point is
ignored. Scaling and exponent modifiers may not be used
with decimal constants. The maximum length of a decimal
constant is 16 bytes. If zoned decimal conversion is
being performed, each decimal digit is translated into
one byte. The rightmost byte contains the sign as well
as the rightmost digit. For packed decimal conversion,
each pair of decimal digits is packed into one byte.
The rightmost digit and the sign are translated into the
rightmost byte. If an even number of packed decimal

Debug node 321

.;; \

4

urs Volume 1: ms -- The syst

April 197

digits is specified, the leftmost four bits in the
leftmost byte are vset to zero and the rightmost four
bits contain the first digit. If the constant requires
fewer bytes than the length of the parameter, the bits
of each added byte are set to zero for packed decimal
conversion. For zoned conversion, the decimal digit
zero is placed in each added byte. If the -constant
requires more bytes than the parameter specifies, no
modification occurs.

HODIFY PACK1 '23‘
MODIFY ZONE1 '-BR‘

S-type adcon - Not supported.

V—type adcon - V-type adcons are treated the same as A—type adcons. In
the example below, the location VCON is modified to the
virtual address 512600.

MODIFY VCON '512600'

!~type adcon - Y-type adcons are treated as fixed-point decimal con-
stants whose length depends on the length of the
parameter being modified. In the example below, the
location ICON is modified to the integer constant 2.

MODIFY ICON '2'

Qgtpgt Cgnvggsign

All of the conversion types listed with the description of the TYPE
keyword modifier are supported by the SDS output conversion routines.

The following conventions are used when SDS attempts to display illegal
data:

Character - If a hexadecimal code is encountered which has no
_ ' character equivalent, a question mark is substituted.

Floating-point - If the length of the number exceeds 8 bytes, the number
is printed in hexadecimal format.

Fixed-point — If the length of the number exceeds 16 bytes, the number
is printed in hexadecimal format.

Instruction - ‘If the opcode field of an instruction does not corres-
pond to a machine operation, the instruction is printed
as two hex digits surrounded by asterisks. The instruc-
tion is assumed to be 2 bytes in length (RR type).

322 :Debug Bode

HTS Volume 1: HTS —— The System

April 197R

Packed 8 zoned — If the length of the nunber exceeds 16 bytes, the number
is printed in hexadecimal format.

§urrs§§s§ra2Ql_§harae§sr

The current synbol character "*" can be used to represent the last SDS
parameter specified in a debug command. This is most useful in SDS command
sequences such as

nxsrraz ABC i

MODIFY * '1'
which displays the contents of location ABC and then modifies that location
to the constant '1'.

The current symbol character may have a displacement and/or modifiers
appended to it, but not an index. For example,

DISPLAY ABC *3T=X8L=8 f

displays the contents of location ABC according to its type and length, and
then displays ABC in hexadecimal format with a length of 8 bytes.

DISPLAY ABC(1O) *+u "

displays the locations ABC(10) and ABC(10)+R.

For the case of block parameters, the current symbol is the lQgg;;gg§g§
symbol. For example,

DISPLAY ALPHA...BETA *3T=X

causes the range from ALPHA to BETA, to be displayed, after which the
contents of ALPHA in hexadecimimal format, are also displayed.

Note that many debug commands refer to SDS parameters and, therefore,
change the value of the current symbol character. Hence, the user should be
aware of the value that the current symbol character is representing.

H §L2HLlEJM2l!&_LlDJ!I£HML2§MHE§
whenever the user's program returns to the system by calling subroutines

SYSTEH, HTS, HTSCUD, or ERROR, SDS intercepts the return and returns control
to debug command mode. tor a return to the system or a call to SISTBH, the
program may not be continued with the CONTINUE command; for the other
subroutine calls, the program may be continued. ror a call to HTSCAD, the
command specified will have been executed.

Debug node 323

HTS Volume 1: HTS -- The Systea

April 197R

Ihenever the user's program dynamically loads another section via a call
to the subroutines LINK, LOAD, or ICTL, SDS intercepts the call and returns
control to debug command mode. The sections specified in the subroutinecall have been loaded at this point, but not entered. The user may then set
breakpoints, if he desires, before continuing the program. The interception
of calls to LINK, LOAD, or XCTL may be enabled by the debug command

SET XPR=ON

whenever a program interrupt, an attention interrupt, a timer interrupt,
or an I/O error occurs during the execution of the program, SDS normally
intercepts the error condition and returns control to debug commmand mode.

In the case of a program interrupt, the location of the instruction
causing the interrupt is printed. Por an imprecise interrupt (protection
exception), an indication that the interrupt was imprecise is also printed.
The user's program may be restarted by the CONTINUE command, unless the
interrupt was imprecise, in which case, the GOT0 or RUN command must be
used.

In the case of an attention interrupt, the location at which the
interrupt occurred is printed. The user's program may be restarted by the
CONTINUE command.

In the event that the user's program has called the system subroutines
PGNTTRP or ATTNTRP, SDS may or may not regain control depending on what the
user's interrupt routines do. However, the user may disable his own
interrupt routines by entering the debug command

SET PGNT=0FF ATTN=OFF

when the interrupt is taken, control is returned immediately to SDS. If the
user restarts his program with the CONTINUE command, execution is restarted
at the instruction at which the interrupt was taken. The user's interrupt
routines are not called. Normal interrupt processing may be resumed by
setting the PGNT or ATTN options ON. Note that all FORTRAN programs
automatically call PGNTTRP to allow the FORTRAN library to process program
interrupts. For SDS to process program interrupts in a FORTRAN program,
PGNT must be set orr.

In the case of a timer interrupt, the location at which the interrupt
occurred is printed. The exceeding of a local time limit is the only type
of timer interrupt which causes control to be returned to debug mode unless
the exit routine returns to the system.

In the case of an I/O interrupt, a system error message (if any) is
printed. If the user has suppressed the intercept of the I/O error either
by calling the subroutines SBTIOERR or SIORRR or by specifying the ERRRTN
I/O modifier on the I/O call, control is not returned to debug mode.

If the user's program causes an HTS program interrupt (often caused by
passing an illegal parameter to an I/0 subroutine), control is returned to
debug mode with the message that execution has been prematurely interrupted.

32¢ Debug lode

' HTS Volume 1: HTS -- The system

April 1970

Ihenever a program interrupt, an attention interrupt, an I/0 interrupt, a
timer interrupt, or an intercepted call to LINK, LOAD, or XCTL occurs, SDS
changes its input source to read from *usouacn* and its output sink to write
on *us1ux*.

ggggxgoxng gnocggggyg

SDS provides the user with the facility of setting several different
types of breakpoints in strategic locations in his program. when encoun-
tered during program execution, these breakpoints cause SDS to assume
control of the program and take a certain course of action. Each breakpoint
inserted in the user's program is a halfword code which replaces the
contents of the location at which it is inserted and which causes a special
program interrupt and returns control to SDS. The halfword portion of the
instruction that is replaced by the breakpoint code is saved for later
execution when the program resumes execution. The different types of
breakpoints that are currently available are described below.

Global Bgggkpointg

A global breakpoint is used to return control to debug command mode. The
user may then enter any debug command. Global breakpoints are set by the
BREAK command. For example,

BREAK AD

sets a simple breakpoint at location AD. For further details of global
breakpoint processing, see the description of the BREAK command below.

L2sel_Br2a£22ini§

A local breakpoint is used to return control to debug command mode.
Local breakpoints are set by the parameters to the RUN and CONTINUE
commands, or the second and successive parameters to the GOT0 command. For
example,

RUN AD

sets a local breakpoint at location AD and then initiates execution of the
user's program at the entry point. If more than one local breakpoint is
set, the first one encountered returns control to debug command mode. Local
breakpoints are in effect ggly for the duration of the current command that
set them; they are automatically erased before the user enters his next
command.

Debug Node 325

HTS Volume 1: NTS -- The Systeg ‘

April 197!

liznszinss
An at-point is used to cause SDS to process a list of prestored commands.

This list of prestored commands is set up by the KT command. (See the
description of the AT command.)

Breakpoints may not be set at an instruction which is the object of an
execute instruction, at an instruction which is modified by the program, or
at an instruction preceding a BPI instruction. For execute instructions,
the breakpoint should be set at the execute instruction itself. If the
location specified is not halfword-aligned, the breakpoint is not set. A

warning is issued if the user sets a breakpoint in a data item.

H§iD§
A program simulator is provided by SDS to allow the user to step through

his program one or more instructions at a time. All instructions that are
stepped through are simulated by SDS instead of executing normally.

The simulator is invoked by the STEP command specifying the number of
instructions to be stepped, for example,

STEP 3 ‘

causes the next three instructions to be stepped. If no step count is
given, a step of 1 is assumed. Stepping starts with the current address
contained in the PS8. Upon completion of the stepping, control is returned
to debug command mode.

If an abnormal condition occurs during stepping, the stepping is
terminated at the current instruction and control returns to debug command
mode. If the program branches to a legal low-core symbol such as SCARDS or
SPRINT, the routine is executed instead of being simulated and stepping
resumes upon the return from that routine. The execution of the routine
does not count as a step. If the program branches to an address less than
300000 which does not correspond to a legal loi-core symbol, stepping is
terminated and a warning message is printed. The user may restart the
program with either a CONTINUE or a GOTO command.

If a program interrupt or an attention interrupt occurs and the user has
specified an exit routine via the PGNTTRP or ATTNTHP subroutines, these
routines are also simulated until the specified stepping count is exhausted.
This may be overridden by the PGNT and ATTN options of the SET command.

FORTRAN users ishould note that the STEP command specifies ggghigg
lagggggg instructions in the count. To step a specified number of FORTRAN
instructions, the CONTINUE command should be used specifying temporary
breakpoints.

326 Debug Bode

April 1974

§2!!§QL_§§SElQE:2£Q§§ééllé

HTS volume 1: HTS -- The System

when a program of one or more modules! is initially loaded by SDS, thecontrol sections, common sections, and dummy control sections of the modulesare entered into the SDS map_in the order in which they appear in the loadmodule(s). These modules comprise a single map control block within the SDS
map. If, during execution, the program calls the loader to load moremodules, these also are processed by SDS and entered into the SDS map in a
new map control block.

A separate map control block is created for each call to the loader.
Hence, the sections that comprise each
storage index number.

map control block have a unique

The first time a control section name appears in the SDS map, it isassigned a generation number of 1. If a control section is loaded which hasthe same name as a previously processed control section in an earlier mapcontrol block, that section is assigned a new generation number one greaterthan the last previous generation number used for a section by that name;hence, for each subsequent occurrence of a control section for a given name,there is assigned to it a unique generation number. This generation number
can be used via the GEN keyword modifier to distinguish between thedifferent occurrences of control sections with the same name. Dummy controlsections (dsects) do not have generation numbers assigned to them.

Initially, the first module in the SDS map becomes the current module andthe remaining modules are globally opened for referencing. If SDS cannotlocate a given symbol in the current module, the remaining modules aresearched. If the symbol is located, SDS searches through all remainingmodules for a match to determine whether or not the symbol is multiplydefined. A warning message is printed for a multiply defined symbol and thefirst definition is used. If a relative address can be located in thecurrent module, no further searching occurs.
The order of searching through the SDS map for a symbol is as follows:
(1) If the symbol is a predefined symbol, the search terminatesimmediately.
(2) If only one module of the nap is open (see below), only that moduleis searched. The search covers all control sections and defineddsects of that module.
(3) If the entire map is open, the most recent generation of the firstsection is searched. If the symbol is not found, the next oldestgeneration is searched. If the generation string does not containthe symbol, the most recent generation of the next section issearched. If no match is found in any generations of sectionsloaded in the first map control block, the sections in the next map

IA module is defined as a sequence of load records up to and including panEND record. For FORTRAN programs, each main program and subroutineproduces a separate object module.

Debug Hode 327

HTS Volume 1: HTS -— The System

lpril 197G

control block are searched according to the sane algorithm. No
section is searched more than once. elf a match is found in any
section, the remainder of the sap is searched for a duplicate
symbol. If none is found, the search terminates: otherwise a
warning is printed and the first match is used. If a match is found
in an undefined dsect, the search continues looking for a natch in a
defined section. If such a match is found, and no futher duplica-
tion exists, the search is terminated with no warning message. .

The "CSECT command provides a means of specifying a new current module.
The module containing the section named by the command becomes the new
current module and the remaining modules are closed; that is, checking for
multiply defined symbols is suppressed and, if a symbol cannot be located in
the current module, no further searching takes place. If the section
specified is a control section or dsect, all control sections and dsects in
that module are open for searching; if the section specified is a common
section, only that common section is open for searching. For example, the
command

' CSBCT SUBR

specifies the module containing the section SUBR as the current module. If
the CSBCT command specifies a coamon section, only that common section is
taken as the current module: all other symbols that may be in the same
module are ignored. If the command

CSBCT i *

is entered, where 1 is an unsigned decimal integer, the module containing
the ith blank-named control section in the SDS nap becomes the current
module. This is the only way to refer to blank-named (private) control
sections in the map. A blank-named common section may be referred to by the
blank-name common symbol BLASK.

If the command

CSECT *

is entered, the first nodule in the SDS map again becomes the current module
and the remaining modules are opened. The open-map character "*" lay be
changed by the SET command.

Object vmodules composed of multiple assemblies may have naae conflicts
between control sections, common sections and dsects. SDS observes the
following conventions when such conflicts occur within a giggle gag gggtggl
hls2§h=

513112122 lstism_Iahsn
A CSECT has the same name The original CSBCT is retained
as a previously defined and the duplicate CSZCT is
CSBCT. ignored, unless it is a blank-

named CSECT.

328 »Debug node

April 191a

MTS Volume 1: MTS -- The System

A CSECT has the same name The symbols of the CSECT are
as a previously defined merged with the symbols of the
COMMON section. COMMON section.

A CSECT has the same name Both the CSECT and the DSECT are
as a previously defined retained.
DSECT.

A COMMON section has the The CSECT is marked as a COMMON
same name as a previously section in the SDS map, and the
defined CSECT. symbols in the COMMON section are

merged mith the symbols of the
CSECT.

A COMMON section has the The original COMMON section is
same name as a previously retained and the symbols of each
defined COMMON section. are merged

A COMMON section has the Both the DSBCT and the COMMON
same name as a previously section are retained.
defined DSECT.

A DSECT has the same name Both the DSECT and the CSECT are
as a previously defined retained.
CSECT.

A DSECT has the same name Both the DSECT and the COMMON
as a previously defined section are retained.
COMMON section.

A DSECT has the same name The original DSECT is retained
as a previously defined and the symbols of each are
DSECT in the same module. merged.

A DSECT has the same name Both DSECTs are retained.
as a previously defined
DSECT in a different
module.

ggggggggugoug congnprg

1er§2_M2Qe

SDS provides a terse mode of operation which eliminates or shortens many
of the confirmation and diagnostic messages printed by SDS. This mode isactivated by the command

SET TERSE=ON

Debug Mode 329

i

>

z

\

¢ \

nTs volume 1: HTS ~- The system g

April 197k

and is deactivated by the commend

SET TBRSE=01'F

The following messages are eliminated in terse mode:

(1) READY. This message is often printed when SDS is ready to accept a
"command.

(2) DONB.~ This message is often printed after sns has taken some action
such as setting or restoring a breakpoint.

(3) Verification by the B091?! command. The uonxrt command normally
verifies the modification by printing both the old and new values of
the location being modified.

The following messages are shortened in terse mode:

(1) The breakpoint and at~point interrupt messages give only the address
of interruption and do not identify the type of interruption.

(2) The call to SYSTEB, ERROR, HTS, and HTSCHD messages do not give the
G313 return address.

1nteuiis_Err2r.nnn2ins_in.§.assh

an automatic error dumping facility similar to that provided by the HTS
$ERRORDUP command is provided for batch users. In the event of an error
condition occurring during the execution of the program, a symbolic dump of
the program is given. This dump includes the Psi, the general and
floating-point registers, and all of the data storage locations in the
program. Instructions and other areas not covered by the symbol table are
excluded. This facility may be activated by the command sequence

SSET D!BUG=0N
SSDS 5!T’ERRORDUlP=ON
SRUN rnname

where‘ Pbname is the file containing the user program to be executed. Note
that the HTS $80! command has been given instead of the SDBBUG command. The
error-dump facility may be deactivated by the command .

$53! D!BUG=OPP

OI

V
353$ SET ERROBDUHPIOP?

Terminal users may obtain a symbolic dump by the DUMP debug command. A

sample of the symbolic dump format is given in the section "Introduction to
Debug Bede for IORTIII".

330 Debug Bode '

April 191a

!§ins_§2§_!ith22t-s:l2aQ2QY2;gssan

HTS Volume 1: HTS -- The System

Several of the debug commands may be used successfully even if SDS has
not processed the loaded program or if there is no currently loaded program.
For example, the user may use the output conversion facilities of SDS to
display selected locations of virtual memory, for example, the debug command

DISPLAY 51626O@T=C3L=32

displays in character format the 32 bytes starting at location 516260, if it
is a valid virtual address. The input conversion facilities may be used to
modify selected storage. For example, the debug command

HODIFY 5152EO3T=C@L=8 'ABCDABCD'

causes the 8 bytes starting at location 516260 to be modified to the
character string ABCDABCD.

The above command may be given from HTS command mode in the form of a
"one-shot" SSDS command:

$SDS MODIFY 51626OT=C@L=8 'ABCDABCD'

After the one-shot command is executed, control is returned to HTS command
mode.

lniiializinsl_E2§s;i;ns.oan9.22;2ina§ins:§2§:£r2es§§isq

when SDS is initialized, an area of system storage is assigned to SDS andall of the default SDS options are set. SDS is initialized under any of the
following conditions:

(1) If DEBUG=OFF is specified, (the default), SDS is initialized with thefirst $DEBUG or SSDS ccmmand in the job or after SDS has been
terminated (see below).

(2) If $SET DEBUG=ON is specified, SDS is initialized with the first
$DEBUG, SRUN, SLOAD, SRESTART, $START, or SSDS command in the job or
after SDS has been terminated.

when SDS is reset, all of the loaded program symbol table information (if
any) is released and certain SDS tables are released. The basic SDS work
storage remains and the SDS SET options remain in effect (except for the
INPUT, OUTPUT, ENTRY, PAR, and logical I/O unit assignments). Input
commands are read from *SOURCE* and output is written on *SINK*. SDS is
reset under any of the following conditions:

(1) During initialization (see above).
(2) With each- $DEBUG, $RUN, and $LOAD command if SSET DEBUG=0N is

specified.
(3) with each $DEBUG command if $SET DEBUG=OFF is specified.

Debug Mode 331

\

HTS Volume 1: HTS -- The Systeg

April 197

when SDS is terminated, all of the loaded program symbol table, informa-
tion (if any) is released and the basic SDS work storage is released. sns
is terminated under any of the following conditions:

(1) The STOP debug command is given.
(2) The SSET DEBUG=OPP command is given.
(3) The 8UNLOAD CLS=SDS command is given.
(H) A SRUR or SLOAD command is given (if SSET DEBUG=0FF is specified).

If a program interrupt occurs in SDS and SDS is not in the process of
modifying any of its symbol table information storage areas, SDS returns to
debug command mode and prompts the user for permission to continue. If the
user replies affirmatively, another debug command may be given; otherwise,
SDS error returns to HTS command mode. If SDS is in the process of
mdifying the symbol table, an SDS error return to HTS occurs immediately.

 EHEIH
On the following page is a list of the debug commands available for SDS.

Parameters for each command may be separated by commas or blanks. Some of
the parameter terms used are:

(1) simple parameters —- these are parameters of the form S(i):j.
— (2) parameters - these are either simple parameters or parameters of

. the for. '

The following notation conventions are used in the prototypes of the
commands:

lower case - represents a generic type which is to be replaced by an
n item supplied by the user.

upper case» - indicates material to be repeated verbatim in the command.
brackets [1 — indicate that material within the brackets is optional.
braces {} - indicate that the material within the braces represents

' choices, from which exactly one must be selected. The
choices arm separated by vertical bars.

dots ... - indicate that the preceding syntactic unit(s) may be
repeated.

underlining — indicates the minimum abbreviated form of the command or
parameter. Longer abbreviations are accepted.

Note that for descriptions of the LTTNTRP, INPUT, LENGTH, OUTPUT, PGNTTRP,
PREFIX, RP, SCALE, TERSB, and TIP! commands, see the appropriate SET command
options. These commands are implemented as individual commands, but are not
individually documented. T f .»m

332 Debug Bode

April 197

§2!!§£!:Q§:2§Q2Q;§2!£éQQeE£2£9§lP9§

Collgggg Paggmetegs

HTS Volume 1: HTS -- The System

ALTER simp1e—parameter {'va1ue ...'|silple-parameter]
AT simple-parameter ...
ggrnrav {ou|orr}
QQQRIBUTE simple-parameter ...
QREAK simple-parameter ...
ggsnu [§RzAxPo1nTs][gT-Points]
QQQHENT [text]
QONTINUE [simple-parameter ...]
§§ECT [section|i|*}
QISPLAY parameter ...
Q30? [dsect-nalelsimple-parametar} ...
QQHP [{PSU|GRS|FRS|section} ..
§ND
QOTO simple-parameter [simple-parameter ...]
QEXDISPLAY parameter ...
;GNORE breakpoint-label [ilsilple-parameter}
LQPUT FDnane
L§NGTH i
LIST [§REAKPOINTS][gT-POINTS]
Q5? [[PULL|DSBCT]]
QODIFY simple-parameter ['va1ue ...'|sinp1e-parameter}
Q15 [command]
QUTPUT FDnane
ggurrnp {ON|0FF]
ggnrxx character
QUALIFY simple-parameter ...
££§§T
QESTORE [simple-parameter ...]
3; hexadecimal-constant
ggn [simple-parameter ...]
§§ALE i
§§AN [{sectionladdress1...address2|*] 'va1ue']
§2$
§§T keyword—paraneter ...
§IEP [i]
§EQP
§!MBOL sinp1e—parameter ...
QERSE {ON|0FF} V

119E code
QSING dsect-name address

Debug node 333

HTS Yclule 1: its -- The Sg8tg;-

April 1975

£1231

nnnus conunnn nsscnxpwxou

Prototype: QQEER sinp1e—pataneter {'va1ue ...'|siup1e—para|eter}

Action: The ;Lt£? cnlland is identical to the u0DIF! command. See
the description of the HODIFY connand.

33$ lL&!R'w€buq1Gonland

HTS Volume 1: HTS -- The System

April 1970

AI
DEBUG COMMAND DESCRIPTION

Prototype: QT simple-parameter ...
Action: (1) An at-point is inserted at each location specified in the

parameter list. The at-point code is an X'00O2' which
replaces the instruction at the location specified; the
instruction replaced is saved for later execution when
execution of the program is resumed.

(2) SDS enters into at—insertion mode (indicated by the
at-prefix character "%"). All the commands entered
during at-insertion mode are saved in a command list for
later processing. If the user enters a null command line
during at-insertion mode, the previously-entered command
is deleted from the list of saved commands. When an
end-of-file or END command is entered, SDS resumes normal
command processing. If another AT command is entered
during at-insertion mode, the first command list is
terminated and a second command list is started.

When an at—point is encountered during the execution of the
user's program, each of the commands in the command list for
that at-point is executed in sequence. when the last
deferred command has been executed, control returns to the
user's program which resumes normal execution. If control is
to be returned to debug command mode rather than to the
program, the SDS command should appear immediately before the

. END command since the SDS command terminates the processing
of the command list. An abnormal condition also terminates
command list processing.

Comments: At-points are automatically announced if the command list
causes an output message to be generated (for example, the
output from the DISPLAY command), or if there is no commandlist for the at-point. The COMMENT commmand may be used to
cause comments or announcements of at-points when no output
messages would otherwise be generated.

An at-point may not be set at an instruction which is the
object of an execute instruction, at an instruction which is
modified by the program, or at an instruction preceding a BPI
instruction. For an execute instruction, the at-point should
be set at the execute instruction itself. If the location
specified is not halfword-aligned, the at-point is not set.
2 warning is issued if the user sets an at-point in a data
tem.

AT Debug Command 335

»ars1va1u|e 1: ms -- The syatef;

April 1975

At-points may be removed by either the RESTORE or the CLEAN
commands.

Examples: AT L00?
DISPLAY XVAL YVLL N

DISPLA! GR1 FRO
END

In the first example, each time location LOOP is reached, the
current values of XVAL, IVAL, N, general register 1 and
floating-point register 0 are displayed.

AT BOOIR 50056
DISPLAY GRS
AT LOC2
HODIY! Fl 'OOOO'
DISPLAY !(1)...(6)
SDS
END

In the second example, each time the relative location 300 or
the absolute location 50056 is reached, the general regis-
ters are displayed. Each time location LOC2 is reached,
location FZ is zeroed and the first six elements of the Y

.array are displayed; control then returns to debug command
mode rather than to the program.

AT IS#5
DISPLAY A(1,1)...(1,1O)
CONTINUE I508
DISPLAY l(1,1)...(1,1O)
END

In the third exasple, the first ten elements of the FORTRAN
array_ A are displayed at location IS¢5 and execution is
resumed by the CQNTINUE command specifying a local breakpoint
at I508. when the local breakpoint is encountered at I548,
the array is displayed again; execution is then resumed since
the at-point command list processing is concluded.

336 .lT Debug Command

April 191a

AQIR;§UT§

HTS Volume 1: HTS -- The Systen

DEBUG COHHAND DESCRIPTION

Prototype: AQTRIBUTE simp1e—paraneter ...
Action: The attributes for each parameter in the list are displayed:

these include:

the loaded absolute address,
the relative address,
the section name,
the section generation number (if different from one),
the type,
the length,
the duplication factor (if different from one),
the scale factor (if different from zero), and
the dimension number (if a FORTRAN array).

The one-character codes for the type are defined with the
description of the TYPE keyword modifier.

Example: ATTRIBUTE GAMMA

The attributes of GAMMA are displayed as

GAMMA:
LA=51O2O RA=O0OO20 SECTION=PROG TYPE=F LEN= DUP=2O

ATTRIBUTE Debug Command 337

I»

HTS Volume 1: MTS -- The Spots; r

lptil 1914

HEEL!

nznuc coau1nn‘nnscR1PrIou

Prototype: QREAK simple-parameter ...
Action: .1 global breakpoint is inserted at each location specified in

» the parameter list. The breakpoint code is an x'0001' which
replaces the instruction at the location specified: the
instruction replaced is saved for later execution when
execution of the program is resumed.

Iben the program being debugged attempts to execute the
instruction at the breakpeint, control is returned to SOS
which announces the location of the hreakpoint and prompts
for its next command. The instruction at the breakpoint has
pg; get pggp gggggtgd. The status. of the program is
preserved and may be examined and modified with the appropri-
ate colmands. “The program may be restarted with the CONTINUE
or STEP commands iwhich execute the instruction at the
breakpoint and resume normal sequencing.. To restart at some
other point, the GOTO connand may be used.

Breakpoints may be removed with either the RESTORE or the
CLEAN commands.

A breakpoint may not be set at an instruction which is the
object of an execute instruction, at an instruction which is
modified by the program, or at an instruction preceding a BPI
instruction. For an execute instruction, the breakpoint
should be set at the execute instruction itself. If the
location specified is not halfuord-aligned, the breakpoint is
not set. A warning is issued if the user sets a breakpoint
in a data item.

For FORTRI! programs, the user may set breakpoints by
specifying the external (user-defined) or internal (source
listing) statement numbers. The "O" must be used to prefix
the external statement number, for example,

BREAK #10

vand "IS!" must be used to prefix the internal statement
number, for example,

BREAK IS#1O

note that only those statement numbers which define gggggtg
gglg FORTRAN statements may be used. All others, such as
DIHBISIOR, DATA, COHHON, SUBROUTIHE, FUNCTION, ENTRY, EQUIVA-
LERCE, or FORMAT statements are undefined.

338 BR!!! Debug Comnand

April 1975

Example: BREAK LOOP 206 513100

HTS Volume 1: HTS —— The System

Global breakpoints are set at the synbolic location LOOP, the
relative location 206, and the absolute location 503100.

BREAK Debug Command 339

i

s

ass Volume 1: nos -- The Syatgm

£11112

DEBUG COHHLRD DESCRIPTION

Prototype: ggnnu [gnz1xPo1urs][;r-Poxurs]

April 1974

Action: If no parameter is specified, all breakpoints set by the
BREAK command and all at-points set by the AT command are
deleted. It a parameter is given, then only the specified
type is deleted.

Example: CLEAN A

All at-points are removed from the program

360 CLBAI Debug Command

MTS Volume 1: MTS —— The System

April 197k

§QQ§H§NT

DEBUG COMMAND DESCRIPTION

Prototype: COMMENT [text]
Action: If the user has entered the command in at-insertion mode, the

comment is printed when the at-point command list is
processed.

If the user is in debug command mode, no action is taken.

Example: AT LOOP
COMMENT SKIP 2 INSTRUCTIONS AT LOOP
GOT0 LOOP(3}
END

At the location LOOP, the comment "SKIP 2 INSTRUCTIONS AT
LOOP" is printed; then, execution resumes at location
LO0P(3).

COMMENT Debug Command 341

$1

his Volume 1: HTS -- The S1lte5~

nzauo comm-an rrsscsxruoa

Prototype: QORTINUB [simple-parameter ...]

April 197$

Action: Execution of the proqraa (is resnaed tron the point of the
last interrupt. If a hreakpoint was encountered, execution

V
begins with the instruction at the breakpoint. If an
attention interrupt or progral interrupt had been taken,
execution begins at the location specified by the Psi. In
the event of an iaprecise program interrupt, a GOTO or a RUN
coaaand aust be used to restart the user's program.

If a simple paraaeter is specified, a local breakpoint is set
at the location specified. This breakpoint code is an
X‘000' which replaces the instruction. When the program

l encounters a alocal breakpoint, control is returned to debug
conaand node. Local breakpoints are in effect only for the
duration of the conaand, and are automatically erased before
the user enters his next connand.

The CONTINUE conland lay be used to initiate execution of the
progral if the initial values of the registers and/or PSH
have been modified.

Example: CONTINUE LOC2

A local breakpoint is set at location LOC2 and execution of
the proqraa is resumed.

342 COITIIBE Debug COIIIBG

HTS Volume 1: HTS -- The System

April 197R

§§ECT

DEBUG COMMAND DESCRIPTION

Prototype: g§ECT {section|i|*}
Action: If gggtion is given, the module containing the section named

becomes the new current module and the remaining modules are
closed: that is, checking for multiply defined symbols is
suppressed, and, if a symbol cannot be located in the current
module no further searching takes place. If section speci-
fies a control section or dsect, all control sections and
defined dsects in that module are open for searching; if
ggggigg specifies a common section, only that common section
is open for searching.

If 1 is given, the module containing the ith blank-named
control section loaded becomes the current module and the
remaining modules are closed (see "Control Section Proces-
sing" above). i

If the open-map character "*" is given, the first module
loaded again becomes the current module and the remaining
modules are opened.

Comment: To specify a module containing a dsect as the current module,
sectigg must be specified as

dsectmC=csect

where "csect" is the name of the control section with which
the dsect was assembled. The dsect must be previously
defined with a USING command.

Examples: CSECT PROG

The module containing the section PROG becomes the current
module.

CSECT DBREA3C=SUBR

The module containing the dsect DAREA in the section SUBR
becomes the current nodule.

CSECT Debug Command 3&3

HTS Volume 1: HTS -- The SystQ§

9.15.2111

DBBUG'COHHlID DESCRIPTION

Prototype: QISPLAY parameter ...

April 1974

action: Each simple or block parameter (or element in the range of a
block paraleter). is converted according to its type and
length and printed along with a one character code which
indicates ethe »paraneter's type. The type codes are defined
with the description of the TYPE keyword modier.

If the type and length attributes of a paraeeter are unknown,
or it a paraleter specifies an address which is incorrectly
aligned with respect to its type, the contents of the byte
specified by the parameter, and the contents of the next
three bytes, are printed in hexadecimal format.

To display. a large block »of storage, ruse the DUMP or
HEXDISPLAY commands if possible for economy.

Example: DISPLAY ALPHA

The location ALPHA is displayed according to its type and
length attributes.

34G ,DIS§Ll! Debug Comiand

April 1973

2.392

HTS Volume 1: HTS -- The System

DEBUG COHHAND DESCRIPTION

Prototype: QQOP [dsect—nanelsilple-parameter} ...
Action: If Qgggt-game is specified, that dsect loses its addressabi-

lity. (See the description of the USING command.)

If §igglg;gg;ggg;g; specifies a general register, all dsects
covered by that register are no longer addressable by SDS
(that is, symbols and relative addresses within that dsect
cannot be accessed). If §1;g1g;gggglgter specifies a loca-
tion, all dsects based at the virtual address corresponding
to that location lose their addressability.

If the parameter may be interpreted both as a dsect name and
as a symbol, it is assumed to be a dsect name.

Example: DROP GR1

The dsects covered by GR1 are released and are no longer
addressable.

DROP Debug Command 335

HTS Volume 1: mes -- The syste;

April 1974

M
DEBUG COHHIID DESCRIPTION

Prototype: QQHP [[PSI|GRS|YRS|section} ...]
lction: I symbolic deep of the sections specified is given. The dunp

includes only the variable storage of the section; instruc-
tions and areas not covered by the symbol table are excluded.

For each iten dumped, the relative address, the symbolic
name, the data type, the converted value, and the hex value
(if the data type is not 2) is dumped.

If PSI is specified, the hex and symbolic address forms are
given.

If G35 is specified, the general registers are dumped in hex,
fixed-point decimal, and symbolic address format.

If PR5 is specified, the floating-point registers are dumped
in hex and floating-point decimal format.

If no parameter is specified, the PSI, the registers, and all
sections are dumped.

Comment: Since the output from this command may be extensive, terminal
users should set the output device to a file or *PRINT* via
the SET OUTPUT=2Dnale command.

A sample of the symbolic dump format is given in the section
"Introduction to Debug node for FORTRAN".

For batch users, an automatic symbolic dump may be obtained
in the event of an abnormal program termination via the SET
BRRORDU!?=0I debug command. This facility is similar to the
SERRORDUBP command in HTS command mode which produces a
hexadecimal dump of a program in the event of an abnormal
program termination.

Example: SET OUTPUT=*PRII!*
DUMP

A symbolic dump of the PSI, the registers, and all loaded
sections are produced on *PRINT*.

346 DUHP Debug Coimand

April 197a

' — QQ»

HTS Volume 1: HTS —- The System

END

DEBUG COMMAND DESCRIPTION

Prototype: END

Action: If the user is in at-insertion mode, the current sequence of
commands being entered into command list associated with the
at-point is terminated, and control is returned to debug

Example:

command mode.

If the user is in debug command mode, no action is taken.

AT LOOP
DISPLAY GR1
END

The command list for the at-point at location LOOP is
terminated by the END command and control is returned to
debug command mode.

END Debug Command 347

\

r

r

HTS Volume 1: HTS —— The Systeg

April 197M

GOTO

V DEBUG COMMAND DESCRIPTION

Prototype: §0TO simple-parameter [simple-parameter ...]
Action: Execution of the program is resumed at the location specified

by §i££l§:2§£§!§t€§. The parameter must specify a halfword-
aligned address.

If a second simple-parameter is specified, a local breakpoint
is set at the location specified. This breakpoint code is an
X°000' which replaces the instruction. Ihen the program
encounters a local breakpoint, control is returned to debug
command mode. Local breakpoints are in effect only for the
duration of the command, and are automatically erased before
the user enters his next command.

The SOTO command may be used to initiate the execution of the
program if a different entry point is desired.

Example: GOTO LOC1 LCC2 ‘

A local breakpoint is set at location LOC2 and execution of
the program is resumed at location LOC1.

308 GOTO Debug Command

HTS Volume 1: HTS -- The System

April 191u'

ngxgggrrgg

nnsuc connnun nzscnxvwxou

Prototype: QEXDISPLAY parameter ...
Action: Each simple or block parameter in the list is dumped in the

hexadecimal format used by the SDUHP subroutine. (See the
description of the SDUMP subroutine in Volume 3.)

Example: HEXDISPLAY 5002A0...5002EC

The 96 bytes starting at location 500250 are dumped in
hexadecimal format.

HEIDISPLAY Debug Command 309

HTS Volume 1: HTS -— The Systgn

April 197a

I§!9.B§‘»

nzauc counaun nrscnzrrron

Prototype: LGNORE hreakpoint—label {ilsinple-parameter}

Action: Ordinarily, when control reaches a global breakpoint or an
at-point in the program, execution is interrupted and control
returns to SDS. The IGNORE command provides a means of
suppressing this interruption each time control reaches the
breakpoint, for a total of i tines, where 1 is either a
decimal integer or the contents of the location specified by
a simple parameter. The i+1st time control reaches the
breakpoint, the interruption is taken as usual.

If a simple parameter is specified, the paraneter's type may
be fixed-point (fullvord or halflord), floating-point (long
or short), or hexadecimal (H bytes or less). A simple
parameter that is in the form of a relative address must have
the DR modifier appended.

The ignore count may not be greater than 65535.

Example: IGNORE LOOP 10

The breakpoint at the location LOOP is ignored 10 times.

350 IGNORE Debug Command .

HTS Volule 1: HTS -- The System

April 1978

LLST

DEBUG COMMAND DESCRIPTION

Prototype: ;._1sT [gRzAxPo1:rrs][yr-Perms]

Action: If BREAKPOIRTS is specified, a list of the currently set
breakpoints created by the BREAK command is produced. If
AT-POINTS is specified, a list of the currently set at-points
created by the AT command is produced. If neither BREAK-
POINTS nor AT-POINTS is specified, all currently set break-
points and at—points are listed. In all cases, the lost
recently set breakpoints or at—points are listed first.

Example: LIST A

A listinq of all the currently set at-points is produced.

LIST Debug €onaand 351

ans Volume 1: HTS -- rhe~systQQ*

April 1970

Lil! r

DEBUG COMMAND DESCRIPTION

l Prototype: 5;? [{FOLL|DSECT]]

Action: A loader~like map is produced, listing each control section
and common section in the user's program.s The map includes
the section name, section .type, the section length, the
loaded address, the relocation factor, and the storage index
number, If the storage index number is omitted, then it is
the same as the storage index number of the previous section.

Blank-named (private) control sections are specified by
unsigned decimal integers assigned according to their order
in the SDS map. This integer is the only way to refer to a
blank-named control section. A blank-named common section is
specified in the map as a blank symbol. The blank-name
common symbol (initially BLANK) is used to refer to a
blank-named common section.

If the FULL parameter is specified, the map includes all
dsects and library loaded sections. If the dsect is unde-
fined, the address field is blank; if the dsect is defined,
the address field contains the current address definition for
that dsect.s Addresses 000001 through 00000? are used to
indicate that the dsect is defined by the current contents of
GR1 through GRF (GR15), respectively.

If the DSECT parameter is specified, the map only includes
the currently defined dsects; control sections, common sec—
tions, and undefined dsects are omitted.

The symbols used for the map type are:

SD control section definition
Ch common section definition
D5 dsect definition
LSD library control section definition
LCM library common section defintion
LDS library dsect definition

Example: HAP FULL

A full map is printed as follows:

NLHB TYPE LENGTH ADDRESS RELOC SIQ
MAIN SD 000268 503C8 503C8 0080
COH1 CH 000070 503730 503730
DSEC1 D5 0000P

C

352 HIP Debug Conmand

April 197R

HTS Volume 1: HTS -- The System

COM2 CH 000020 5037A0 5037A0
SUBR SD 000228 5037C0 5037C0
DSEC2 BS 00002C 000009
SQRT LSD 000032 5039F0 5039P0

HAP Debug Command 353

HTS Volume 1: nTS~-- The Sysipl

April 197R

!_.l°DZ!
nznuc connamn nnscnxpwzon

~

Prototype: QODIFY simple-parameter {'value ...'| simple—parameter}

Action: The first parameter specifies the locations that are to be
modified and the second parameter specifies the values to be
used for the modification.

gglge ,&& specifies a list of one or more constants
delimited by blanks or commas. The entire list is enclosed
in primes. The constant or list of constants is placed in
the location specified by the parameter. The constants are
converted according to the type and length attributes of the
first parameter. No modifiers may be appended to the
constants themselves.

If the second parameter specifies a location, then the
hexadecimal contents of that location is used for the
modification. The length used is the length attribute of the
first parameter.

Comments: The use of type, length and scale affects only the first
operand in cases where a list is used.

when the modifier is a hexadecimal constant, the length of
the constant, rather than the length of the parameter being
modified, is used when SDS makes the modification.

If type, length or-scale qualifiers are used, each modifier
is converted according to the resulting type, length and
scale attributes of the parameter being modified. (Since
instructions define their own length, the length of type I
parameters is ignored.)

Verification of the modification is given by printing both
the old value and the new value of the location modified.
Verification may be suppressed by entering terse mode (see
the THESE option in the SET command description).

Examples: MODIFY BETA(3) '87 96 8“ 2'

The first four locations starting vith BETA(3) are modified
eto the constants 87, 96, BU, and 2, respectively.

MODIFY DELTh0T=X 'O0O0003E'

DELTA is modified in hexadecimal format to the constant
00000032.

35H »n0DIFY Debug Command

April 197a

HTS volume 1: HTS -- The System

MODIFY GR1 GR3 "

The contents of general register 3 are copied to general
register 1. GR3 retains its original contents.

MODIFY Debug Command 355

4

HTS Volnle 1: HTS -- The Systogv

April 1975

. §.2§

DEBUG COHHLND DESCRIPTION

Prototype: HTS [optional-command]

Action: Control returns to HTS command node. The HTS command SDS
returns control to debug command node, from which the user
can then resume debugging his program. An optional HTS
connand nay be specified, which is executed in HTS command
node before control is given to the user.

Exalple: In the following example, the SDS user displays the general
registers, returns to HTS, dumps his storage into a scratchfile, and returns to SDS, which solicits for its next
colland. The status of the progral being checked out has not
changed and is restarted with the CONTINUE command.

DISPLAY GRS
HTS
$DUHP ON -TEMP
SSDS
CONTINUE

356 HTS Debug Coilnnd

April 191a

QEALLZZ

HTS Volume 1: HTS -- The System

DEBUG COMMAND DESCPIPTION

Prototype: QUALIFY simple-parameter ..
Action: The type and scale attributes of a symbol are changed

according to the type and scale modifiers appended to that
symbol. The length attribute of a symbol may not be changed.
The attributes of an instruction may not be changed.

Example: QUALIFY ABC3T=X

The type attribute of ABC is changed to X (hexadecimal).

QUALIFY Debug Command 357

?

\

l

M

HTS Volule 1: HTS —- The S1st§p

DEBUG COMMAND DESCRIPTION

Prototype: §§§§T

El§E$

April 197"

action: All SDS operational parameters are reset to their default
values. A list of these defaults, and the corresponding
couaands to change their values, is presented below.

zarsnstsr Qeiauli sennsné

SDS command source *usonnc2*1 SET or INPUT
SDS output sink *HSINK*1 SET or OUTPUT
Attention interrupt switch ON SET or ATTNTRP
Progral interrupt switch ON SET or PGNTTRP
SDS prefix character + SET or PREFIX
Default type X (hex) SET or TYPE
Default length
Default scale factor
Default relocation f
Terse node switch
At-node prefix chara
Indirection characte
Modifier character

actor

cter
r

EIMBIOOOF

'11

'11

SET or LENGTH
SET OI SCALE
SET Ot RF
SET or TERSE
SET
SET
SET

0pen—nap character * SET
Blank—naned conaon symbol BLANK SET
LINK/LOAD/XCTL switch OFF SET
Error-dump facility OFF SET

llnitially, the command source and output sink are *SOURCE* and *SINK*,
respectively.

358 RESET Debug Command

April 191a

ggsmogg

HTS Volume 1: HTS -- The System

DEBUG COMMAND DESCRIPTION

Prototype: QESTORE [simple-parameter ...]
Action: If no parameter is specified, the lost recently entered

global breakpoint or at—point set by the BREAK or AT command
is removed from the user's program and the original instruc-
tion is restored. If one or more simple parameters are
specified, the breakpoint or at-point at each location is
removed and the original instruction is restored.

Example: RESTORE LOC2

The breakpoint or at-point at location LOC2 is removed from
the program.

RESTORE Debug Command 359

HTS Volume 1: hrs -- The Systeg

April 197R

BR!

DEBUG COUHAUD DESCRIPTION

Prototype: gg [simp1e—parameter ...]
Action: Control is transferred to the entry point of the program and

execution is started. General registers 1, 13, 1“, and 15
are set to the following values:

GR1 points to the system parameter list.
GR13 points to a system save area.
GR1 contains the return address.
GR15 contains the entry point address.

The other registers and the floating-point registers are set
to zero. The entry point and the system parameter list may
be changed by the ENTRY and PAR options of the SET command.

If a simple-parameter is specified, a local breakpoint is set
at the location specified. This breakpoint code is an
X'000' which replaces the instruction. When the program
encounters a lccal breakpoint, control returns to debug
command mode. Local breakpoints are in effect only for the
duration oi the command, and are automatically erased before
the user enters his next command.

For programs that are serially-reusable, that is, they are
capable of being rerun several times without being reloaded,
the RUN command may be used to restart the program at its
entry point. Programs that are serially—reusable are either
re-entrant or they do not modify their constant areas.

Example: RUN LOC2

A local breakpoint is set at location LOC2 and execution of
the user's program is initiated.

360 RUN Debug Conaand

HTS volume 1: HTS -- The System

April 197R

§§Al!

DEBUG COHHAND DESCRIPTION

Prototype: §§AN [[section|address1...address2|*} 'value']
Action: If ggction is specified, SDS" searches through the named

section in an attempt to find the value specified. The type
and length attributes (and/or modifiers) of the gggtigg
parameter determine how the galgg is Aconverted for the
search. The value given must be enclosed in primes.

If ggggggglgzgaddrgggg is specified, then gggggggl and
address; are the lover and upper bounds of the area to be
searched. gglgg is converted according to the type and
length attributes of gdgggggl.

If 1 is specified, SDS searches through all loaded sections
and defined dsects. gglgg is converted according to the type
and length attributes of j.
If the type specified is hexadecimal, character, or packed or
zoned decimal, the length of the constant specified is taken
as the length of the value to scan for; otherwise, the
default type and length attributes are used for the scan if
no TYPE and LENGTH modifiers are specified on the first
parameter.

If no parameter is specified, the search resumes starting at
the first location beyond the previous match from the
previous SCAN command.

The search for the specified value is performed with respect
to the appropriate boundary alignment of the value specified,
that is, instructions are scanned for on halfword boundaries,
character constants on byte boundaries, and so on.

Examples: SCAN MAINdT=E&L=8 '3.33762'

The section HAIN is scanned for the double—precision
floating-point constant 3.33762.

SCAN 516100-..5162DB3T=C '0UTPUT'
SCAN

The region 516100...5162DB is scanned for the character
constant OUTPUT. The remainder of the same region is scanned
for a second occurrence of OUTPUT.

SCAN Debug Command 361

i

i
\

HTS Volume 1: HTS -- The Systgl

. April 1970

£25

nzauc connaun DESCRIPTION

Prototype: §QS

Action: If an atspoint conmand list is being processed, the connand
list processing is terminated and control is returned to
debug command node. The SDS connand should be given as the
command preceding the END command in the at-point command

list.
If the user is in debug command node, no action is taken.

This comland is not the sane as the HTS $SDS command which is
used to enter debug conmand node from HTS command mode.

Example: AT LOC5
DISPLAY A(1)...(9)
DISPLAY PR5
SDS
nun

After the connand list for the at-point at location LOCS is
processed, control is returned to debug command node.

362; SD5 Debug Counand

HTS Volume 1: HTS -— The System

April 197B

§§I
DEBUG COMMAND DESCRIPTION

Prototype: §§T keyword-parameter ...
Action: The SET command is used to alter the status of a number of

SDS options, default attributes, or default characters. The
valid keyword parameters are as follows:

ATPREFIX=char The at-insertion node prefix character
becomes the character specified by ghgg.
The default is the "N" character.

ATTN=[ON|OFF] If the option is OFF, user attention
interrupt exit routines set up by calls
to the subroutine ATTNTRP are disabled.
Consequently, SDS processes all attention
interrupts. The option may be set to OFF
before or after the user's program has
called the subroutine ATTNTRP. The
option may be set to ON to restore normal
interrupt processing. The default is ON.

BLANK=chars The blank-named common symbol used to
refer to blank-named common sections
becomes the character string specified by
ghggg. The symbol may not begin with the
indirection character ($), and may not
contain any of the following characters:
()+-,.=' or the modifier character (O).
The default value is BLANK.

ENTRY=loc The entry point to the user's program is
set to the location specified by lgg.
lgg may be a symbolic, relative, or
virtual address.

ERRORDUMP={ON|OPF] If the option is ON and the user is
running in batch mode, a symbolic dump is
automatically given for abnormal program
termination. The default is OFF.

INDCH=char The indirection character becomes the
character specified by ghar. The default
is "$".

INPUT=FDname SDS reads subsequent commands from thefile or device specified by ggnagg. If
an end-of—file is detected from the new

SET Debug Command 363

HTS Volume 1: HTS -- The syatep

LEN=i

e

April 197a

command stream, or if an attention inter-
rupt, a program interrupt, or a break-
point (pg; an at-point) is encountered,
SDS returns to *HSOURCE* for its com-
mands. The default is *SOURCE*.

The default length attribute is set to 1,
where i is an unsigned decimal integer
between 1 and 256. Initially, the
default length attribute is H.

Logical I/0 Units Logical I/0 unit assignments for the

HODCH=char

0MAPCH=char

0UTPUT=FDname

PAR=text

PslT=[0N|0FF}

36% SET Debug Command

user's program may be given for both
input and output units. This may be used
to reposition files but does not affect
the status of other types of pseudo-
devices (such as *SOURCE* and the posi-
tion of tapes).

The modifier character becomes the
character specified by ghgg. The default
is the "0" character.

The "open-map" character becomes the
character specified by char. The default
is the "*" character.

SDS writes subsequent output lines to the
file or device specified by ggggmg. If
an attention interrupt, a program inter-
rupt, or a breakpoint (pg; an at-point)
is encountered, SDS switches its output
to *HSINK*. The default is *SINK*.

The system parameter list becomes the
character string specified by text.
Since tggt includes the remainder of the
input line, the PAR option must be the
last option specified on the SET command.
A blank character is always added at the
end of tg;§.
If the option is OPP, user program inter-
rupt exit routines set up by calls to the
subroutine PGNTTRP are disabled, SDS pro-
cesses all program interrupts.’ The
option may be set to OFF before or after
the user's program has called the subrou-
tine PGNTTRP. The option may be set to
ON to restore normal interrupt proces-
sing. The default for this option is ggp

HTS Volume 1: HTS -- The System

April 197

PREFIX=char The SDS prefix character becomes the
character specified by ghgg. The default
is the "+" character.

RF=constant The unsigned hexadecimal gggsgagt defines
the default relocation factor. This con-
stant is added to every relative address
which is not qualified by the iC= modifi-
er. The default value for the relocation
factor is O.

SCALE=i The default binary scale factor is set toi, where i is a signed or an unsigned
decimal integer. Initially, the default
scale factor is O.

TERSE=[0N|OFP} If the option is ON, SDS enters terse
mode and eliminates many confirmation and
diagnostic messages. If the option is
OFF, normal message processing occurs.
The default is OFF.

TYPE=code The default type attribute is set to
ggdg, where ggdg is any of the single
character SDS type codes described with
the description of the TYPE keyword modi-
fier. Initially, the default type attri-
bute is X (hexadecimal).

XFR=[ON|OFF} If the option is ON, SDS intercepts all
calls to the subroutines LINK, LOAD, and
XCTL and returns to debug command mode.
The modules specified in the subroutine
call are loaded and the registers are set
up for the execution of the loaded
modules (in the case of LINK and XCTL).
For XCTL, the calling program is unloaded
and its symbols are purged from the SDS
map. If the option is OFF, SDS does not
intercept the subroutine calls. The
default is OFF.

Examples: SET LEN=8 TYPE=C TERSE=0N

This command sets the default length attribute to 8 bytes,
the default type attribute to C (character), and sets terse
mode ON.

SET SCARDS=INPUT SPRINT=0UTPUT PAR=EXEC

This command sets SCARDS and SPRINT to the files INPUT and
OUTPUT, respectively, and sets the system parameter list to
the character string EXEC.

SET Debug Command 365

HTS Volume 1: HTS -— The Systgm

April 1974

5232

nnsns couunun nnscnxpmzou

Prototype: §1BP [i]
Action: The next 1 gagging lggggggg instructions in the user's

program are simulated before control returns to SDS. If 1 is
not specified, only the next instruction is simulated.

Comments: V If the user attempts to STEP past a branch instruction, the
branch is taken as usual unless the program is transferring
to a legal loI—core symbol such as SCARDS or SPRINT. In this
case, the routine is executed, not 'simulated, and stepping
resumes at the return address. The instructions executed in
the routine are not counted in the stepping count.

- If the branch address is less than 300000, and does not
correspond to the entry point of a legal low-core symbol,
simulation is terminated and a warning message is printed.
iThe user must restart his program with either a CONTINUE or
GOT0 command.

If STEP is used instead of RUN to initiate program execution,
registers 1, 13, 1B and 15 are loaded with the appropriate
values. (See the RUN command description.)

FORTRAN users should note that the STEP command specifies
ggghigg lggggggg instructions in the count. To step a
specified number of FORTRAN instructions, the CONTINUE con- s

mmnd should be used specifying temporary breakpoints.

Example: STEP 10

The "next 10 machine instructions in the program are
simulated.

366 STEP Debug Command

April 197%

$92

HTS Volume 1: HTS -- The System

DEBUG COHHAND DESCRIPTION

Prototype: SEOP

Action: SDS processing is terminated and control is returned to HTS
command mode.

All loaded sections are unloaded: all loaded program symbol
table information and the basic SDS work storage is released.

STOP Debug Command 367

HTS Volume 1: HTS -- The SystQ@

April 1970

§1§9L

nrnuo couuaun nnscnxprxox

Prototype: §YnBOL simple-parameter ...
Action: The location specified by each simple parameter is printed in

symbolic format. If no symbol table is present, the relative
address and section nane are printed. If this cannot be
done, the corresponding virtual address is printed.

Exalple: SYMBOL ALPHA ALPHA+ $GR1 516020

This exanple displays the above locations in the following
fora:

ALPHA = ALPHA IN SECTION PROG
ALPHL+Q = VSYS IN SECTION PROG
$GR1§ = LINK(8)+2 IN SECTION HLIN2
516020 = BETA IN SECTION SUBR

368 SYMBOL Debuq.Conland

HTS Volume 1: HTS -— The System

April 197R

USING

DEBUG COMMAND DESCRIPTION

Prototype: QSING dsect-name address 1

Action: The dsect named by Qggct-name may be assigned an address in
two ways:

(1) address is a simple parameter which is used as a
static base address for the dsect.

(2) address is a general register, the contents of which
are used as a dynamic base address for the dsect
(that is, the base address varies with the contents
of the register).

A dsect may be redefined by subsequent USING commands.

If the dsect name occurs in more than one assembly, the EC
modifier may be used to specify the desired dsect.

The DROP command may be used to undefine a dsect.

Examples: USING DSECT1 GR1

The dsect DSECT1 becomes dynamically addressable by the
contents of general register 1.

USING DSECT2 516200

The dsect DSECT2 becomes statically addressable by the base
address 516200.

USING HORKABEAbC=SUBA $WADDR

The dsect HORKABEA from the assembly which contains the
section SUBA becomes statically addressable by the current
contents of the location WADDR.

USING Debug Command 369

HTS Vbiuie 1": l'f'!“§ ~'* ‘flit Sfil

:-W0 tr=§I~:1w Goinid

April 1974

HTS Volume 1: HTS —— The System

April 197R

ggnggggg cggggmxons

The following paragraphs describe various abnormal conditions that may
occur during the execution of a program, how the resulting interrupts are
usually handled, and how the user may prepare to intercept them if they
should occur.

There are several categories of interrupts, depending on what the program
is doing. In this section, four categories are discussed.

BBQ.‘-.?..R1A!..I.!1F.§§E§2I§

Fifteen different conditions cause a program interrupt (exception).
These are the following:

Z£QS£2!_l2L§££22§_§§Q§§ l2§§££!2$i2Q_§QQ§_1Q§§L -

Operation
Privileged operation
Execute
Protection
Addressing
Specification
Data '

Fixed-point overflow
Pixed—point divide
Decimal overflow
Decimal divide
Exponent overflow
Exponent underflow
Significance
Floating-point divide

"CU(1CP\Om~lG\L#l.ul\.I-I

For a complete description of the meaning of these program interrupt
conditions. see the lad §1§t§!z;§9 Rrineinles 2: Qnsratiea. IBM form
A22—6821. Normally, when one of these conditions occurs, the message

USER PROGRAM INTERRUPT. PSw=xxxxyyyy cxzzzzzz

is printed. The digits "yyyy" give the interruption code, and the digits
"zzzzzz" give the location causing the interrupt. The first two bits of "c"
give the instruction length code and the last two bits give the condition
code. Program interrupt conditions B and 5 (protection and addressing
exceptions) are caused by the user's program specifying an invalid address.
An addressing exception is caused by an address specified outside the range

Abnormal Conditions 371

\

HTS Volume 1: HTS -- The Systgm

April 1976

of virtual memory. A protection exception is caused by specifying an
address in virtual memory which is not legal for the user's program to
specify (usually an address reserved for the system supervisor). A

protection exception may be an "imprecise" interrupt. (This occurs because
the interrupt condition is discovered and flagged by the storage unit, not
by the CPU, and hence the position of the CPU's location counter is
imprecise.) An "imprecise" protection exception is indicated by the
instruction length code (ILC) in the PS8 being set to zero. After a program
interrupt has occurred, the following happens:i

(1) The general and floating~point registers are saved.
(2) A storage dump is given only in batch mode, if previously requested

by one of the following HTS commands:

SERRORDUHP
$SET ERRORDUHP=ON
$SET ERRORDUHP=FULL

(3) Control is returned to HTS command mode.

When a return is made to HTS command mode, the user can give any
legitimate HTS command, including SRESTART, which causes the program to
continue execution at the instruction following the one causing the program
interrupt (assuming that the interrupt was not "imprecise").

A programmer can alter the normal processing of a program interrupt in
several ways.

The BPI (pranch on program interrupt) macro may be used in 360-assembler
programs to specify a branch address to be taken when a specified type or
class of interrupt type occurs. See the BPI macro description in volume 3

for the complete description, calling sequences, and examples of usage.

The subroutine PGNTTFP (program ipgerrupt tgap) allows the user to
specify his own exit routine which is transferred to upon the occurrence of
a program interrupt. when the interrupt occurs and the exit is taken, the
intercept is cleared so that another call to PGNTTRP is necessary to
intercept the next program interrupt. PGRTTRP can be called directly from a
360-assembler program and indirectly through the subroutine RCALL in
FORTRAN. See the PGNTTRP subroutine description in Volume 3 for the
complete description, calling sequences, and examples of usage.

The subroutine SPIB (gpecify program interrupt gxit), which is callable
from a 36O—assembler program, not only allows the user to specify an exit
routine to be taken, but also provides the facility to specify the class of
program interrupts for which this exit should be used. For any of the
fifteen program interrupts not specified, the normal program interrupt
procedure is followed. The specifications set up by a call to SPIE remain
in effect until a subsequent call overrides them. This subroutine is
normally called by using the SPIE macro. See the SPIE subroutine and macro
descriptions in Volume 3 for the complete descriptions, calling sequences,
and examples of usage. " -

372 Abnormal Conditions

HTS Volume 1: MTS -- The System

April 197R

when a program interrupt occurs, a check is first made to determine if
any of the immediately following instructions are BPI macro instructions.If there is one, the type of program interrupt that occurred is compared
with the type specified by the BPI macro. If there is a match, the
condition code is set to reflect the interrupt that occurred and the branch
is taken. If there is no BPI transfer made (either because there was no BPI
instruction or because the program interrupt type did not match the BPI
type), then a check is made to determine if a PGNTTRP (or SPIE) exit is
active. If there is one, the exit is taken; otherwise, the program
interrupt message is printed and a return is made to HTS command mode.

In PL/I, many asynchronous conditions are predefined as ON-conditions.
Therefore, the user can determine by means of the ON statement what
processing should occur upon the occurrence of one of these conditions. The
following program interrupts are among these predefined conditions:

2r2aran_lnt§rrs2£ Q!:22aiifi2n_§2Q2
Fixed—point overflow FIXEDOVERFLOH
Fixed-point divide ZERODIVIDE
Exponent overflow OVBRPLOH
Exponent underflow UNDERFLOW
Floating-point divide ZERODIVIDE

Those asynchronous conditions that are not predefined cannot be intercepted.
Those that cannot be intercepted and those that the user chooses not to
intercept are handled by the PL/I library. See the ;§g §y§tgg¢§§Q gplg
ggfgggngg gggggl, IBM form C28-8201.

£IEEEElQ!_lEEEBB!2I§

Attention interrupts usually occur when a user is executing from a
terminal and presses the ATTN or BREAK key. The system responds with

ATTN!

or, if a program was in execution

ATTENTION INTERRUPT AT xxxxxxxx

where "xxxxxxxx" is the hexadecimal address of the point of interruption.
The system returns to HTS command mode. Once in command mode, the user may
give any legal HTS command. In particular, if the interrupt occurred during
execution of a program, the program can be restarted from the location at
which it was interrupted by issuing a SRESTLRT command.

The subroutine ATTNTRP (gggentiog interrupt trap) allows the user to
specify his own exit routine which is transferred to upon the occurrence of
an attention interrupt. when the interrupt occurs and the exit is taken,
the intercept is cleared so that another call to ATTNTRP is necessary to

Abnormal Conditions 373

HTS Volume 1: HTS -- The Systum

April 1974

intercept the next attention interrupt. ATTNTRP can be called directly from
a 360-assembler program and indirectly through the subroutine RCALL in
FORTRAN. See the ATTNTRP subroutine description in Volume 3 for the
complete description, calling sequences, and examples of usage.

lI§!l-lE2§B§!2!§

Three different types of timer interrupts may occur while a program is
executing. They are:

(1) Global time limit exceeded, which can happen only in batch mode, and
is determined by the TIME parameter in the SSIGNON command.

(2) Local time limit exceeded, which can happen either in batch or
conversational mode, and is determined by the TIME parameter in the
SDEBUG, SLOAD, $EESTART, $RUN, and SSTART commands.

(3) Program specified timer interrupts, which are established by calls
on certain system subroutines.

The first two types result in the system message

***GLOBAL TIHE LIMIT EXCEEDED AT xxxxxxxx

‘ or

***LOCAL TIME LIMIT EXCEEDED AT XXXXXXXX

where "xxxxxxxx" is the hexadecimal address of the point of interruption.
These conditions cause a dump in batch mode if the EERORDUMP option is
specified. Neither of these interrupts can be intercepted by a program, butit is possible to determine the times at which they occur (via the GUINFO
subroutine) and set up a program specified timer interrupt to occur before
the global or local limit occurs. Thus, a program can arrange to print more
useful diagnostic information in cases of infinite loops, and so on.

Program specified timer interrupts are set up by calls to the subroutines
TIMNTRP, SETIMB, GETIMB, RSTIHE, TUAIT, and TICALL which are described in
Volume 3. These subroutines provide for the enabling and disabling of timer
interrupts, and the specification of time intervals in several forms,
including real time or task time, relative or absolute time, and in units of
microseconds, timer units, or character string time of day.

ILEQSLL‘2..9!ZI£§l.E£_...§.-R 0 R

The input and output of data by programs is handled by I/Q subroutines
called from the program. The I/O subroutines always provide a return code,
the exact meaning depending on the file or device used in the operation. A

description of the return codes that may occur with a particular file or

37“ Abnormal Conditions

MTS Volume 1: HTS -- The System

April 197R

device is given in the appendix "I/O Routines‘ Return Codes" in the section
"Files and Devices" in this volume.

In general, a return code of zero means successful completion of the
input or output operation, and a return code of Q means end-of-file-or-
device for an input operation. Return codes greater than H normally signify
an error condition and are not passed back to the caller, but instead cause
an error comment to be printed and control to be returned to HTS command
mode. The error comment usually describes the error condition and its
location. when a return is made to command mode, any legal HTS command may
be given.

There are two ways to suppress this error handling procedure and to make
the calling program regain control. The subroutines SETIOERR and SIOERR
allow the user to specify the location of a user supplied subroutine to be
called upon the occurrence of an I/0 error. Thus, when an I/O error occurs,
the user supplied subroutine is called. This subroutine performs its tasks
and returns to the I/0 routine. The I/0 routine then returns to the
original calling program as if no error had occurred, except that the error
code indicates which type of error happened. The error exit set up by
SETIOERR or SIOERR remains in effect until overridden by a new call or until
the program terminates normally. SETIOERR is for 360-assembler language
users and SIOERR is for FORTRAN users. See the SETIOERR and SIOERR
subroutine descriptions in Volume 3 for the complete description, calling
sequences, and examples of usage.

The second way to suppress the error comment and return the error code to
the calling routine is through the I/0 modifier ERRRTN. If this modifier is
specified in an I/O subroutine call and no SETIOERR-SIOERR interception has
been established, then when an error occurs, the return code is passed back
to the calling routine and no error comment is printed.

PL/I has predefined many of the I/O errors as ON-conditions. Thus,
processing of these interrupts can be determined by ON statements.

Abnormal Conditions 375

M5 Voisuie "1: 1l‘1."S ~-- "'1'-rhe ?57‘§I,I

*3"7i6 Llahummal ‘c0u%~d.:'t‘i:a~ns

April 191a

April 191a

HTS Volume 1: HTS -- The System

Q§l!§£233.QBD!§2§:A!LLLQA2:!A2§

when running a program in batch mode, a hexadecimal dump and a load map
may be useful tools in debugging a program. If the program ends abnormally
and a dump has not been requested, only the program status word (PSI) and
the general and floating-point registers may be obtained. This may not be
enough information to find out where and why the program produced the error.

The user may use the HTS $ERRORDUMP command to obtain the contents of his
virtual memory, as well as other information, if the program is terminated
abnormally. If the program terminates normally, no dump is" generated.
Before running the program, the HTS command SERRORDUMP or the command $SET
ERROFDUhP=ON should be given. The MAP parameter to the $RUN command may be
given to obtain a load map. The map is produced regardless of how the
program is terminated.

In the example described below, the assembly language subroutine in the
file TEST contains an intentional error for illustrative purposes. This
subroutine is assembled into the file QUAD. The program in the file
TESTCALL is a simple calling program to test the subroutine. This program
is assembled into the file QUADCALL. The commands to assemble and run the
sample program described below are

$RUN *ASMG SCARDS=TESTCALL SPUNCH=QUADCALL O=*SYSHAC
SRUN *ASMG SCARDS=TEST SPUNCH=QUAD O=*SYSHAC
$ERRORDUHP
$RUN QUADCALL+QUAD HAP

The map is printed immediately after the program has been loaded, and
before execution of the program begins (see below). All the numbers in the
map are hexadecimal. The "ENTRY=xxxxxx" is the address of the first
instruction to be executed. "SIZE=xxxxxx" is the sum of the lengths of all
the loaded control sections. The NAME is the name of the external symbol:
its VALUE is the actual address assigned to the external symbol. If the
value is six dashes, the external symbol is undefined. "T" gives a type
indication for the symbol. This column may contain "*" for system symbols,
"C" for program common sections, "D" for symbols defined with a DEF control
record, "P" for pseudo register storage, or blank, for all others. Every
symbol which is the name of a control section also has a relocation factor
printed in its entry. This is the number which must be added to the given
address in the assembly listing to get the virtual memory address.

The first line of the dump contains the date and time of the dump
initiation. The second line is the program status word (PSW). This
contains information _about the program; a full description may be found in
the section titled "Status Switching" in Lg; §;§;g;4;§g ggiggiplgg gf
QB2£§£iQ2- A $“mlaIY 15 qiVe in the IE! §1§£§!£l§Q EQSQEQEQQ Qéii Card(usually referred to as "the green card"). Only those parts of the PSH most

Using Errordumps and Load Maps 377

I

>

i

I

F

nus Volume 1: nus -- The systgp

April 197m

commonly used for debugging are explained here. The last three bytes (last
six hexadecimal digits) are the address in virtual memory of the instruction
following the one being executed at the time of termination. In the case of
a program interrupt, the second and third bytes (last four hexadecimal
digits of the first word) contain the interruption code. (It is sufficient
to look only at the third byte.) The interruption code explains the reason
why the program interrupt occurred. It may be that an instruction
referenced an address that is outside the user's virtual memory space
(interrupt code 5) or that an illegal operation code was encountered
(interrupt code 1). The interrupt codes are summarized in the section
"Abnormal Conditions" in this volume, and the causes of various types of
interrupts are listed in the section titled "Interruptions" in lgg gystggg
§§Q ggiggiplgg 9; Qpggatigg. Another item which is occasionally useful is
the condition code. This is set by comparisons and a number of other
instructions. It occupies bits 2 and 3 of the fourth byte! of the Psi (last
two bits of the first hexadecilal digit in the second word). Its values are
0, 1, 2, and 3 and these correspond to values of 8, Q, 2, and 1 respectively
in the mask of the branch-on-condition instruction.

Program Status Word

s * 1* ~ 1 * ii" e es * 0

V I I Interruption Code I
_ l 7|. " —~ J

@-_-

“4
a>TI

11 12 1s 16 I j if 31

r i 1 ei1— -+ e — —*—~~ — —e ~1
I I CC I I Instruction Address I

1 Wee; ti -,.| _ 1 ~l e 1

32 33 33 35 36 39 BO " 63

See the £ging;p1g§ 9; gpgrgtigg for the complete
description of the Program Status Word.

Following the PSI is a one line heading and two lines displaying the
contents of the general registers. The first line shows general registers 0

to 7, and the second line shows general registers 8 to 15. Information
which may be verified from the contents of the general registers includes
the correct value of the base register, the last location from which a

subroutine call was made (usually in general register 1R), the location of
the current save area (general register 13), the return code from the last
called subroutine (usually in general register» 15), and the values of
computations involving general registers.

After the general registers, the four floating-point registers (0, 2, B,
and 6) are displayed. These may be used to check on values produced using
the floating—point instructions.

lBytes of the PSI are numbered 0~7, and bits within a byte are numbered 0-7
(from the left).

378 Using Errordumps and Load naps

April 1970 -

HTS Volume 1: HTS -- The System

LOC OBJECT CODE ADDR1 ADDR2 STHT LINE 0 SOURCE STATEHEIT

BUB)-I

1.000 PRINT
2.000 START
3.000 ENTER

000010 5890 COA8 000A8 11 0.000
000018 5810 COAC 000AC 12 5.000
00001C 58P0 COBO 00080 13 6.000 L
000020 OSBF 10 7.000 BALR

15 8.000 EXIT

000000

000032 0000
000030 00000008 21 9.000 PARLIST DC
000038 0000000C 22 10.000 DC
00003C 00000050 23 11.000 DC
000000 00000050 20 12.000 DC
000000 00000056 25 13.000 DC

HOGBI

12,SA=SAVE
L 9,=F'-1'
L 1,=A(PARLIST)

15,='(QUAD)
10,15
0

A(A)
A(B)
A(C)
A(AIS1)
A(AIS2)

000008 01200000 26 10.000 A DC B'2.0'
00000C 01500000 27 15.000 B DC E'5.0'
000050 C1C00O00 28 16.000 C DC E‘-12.0‘
000050 29 17.000 ANS1
000058 30 18.000 AHS2
00005C 31 19.000 SAVE

32 20.000 BID
0000A8 PFPPFPFP 33
OO00AC 00000030 30
000080 00000000 35

DS E
D5 E
DS 18F

=y|-1|
=A(PARLIST)
=v(ouan)

LOC OBJECT CODE ADDR1 ADDR2 STHT LIIE I SOURCE STATEHEUT

1 1.000 PRIIT
000000 2 2.000 QUAD START

3 3.000 BITER
000010 9826 1000 00000 11 0.000 LH
000018 7800 3000 00000 12 5.000 LE
00001C 3C00 13 6.000 Q1 HER
000018 7820 C110 00110 10 7.000 LE
000022 7C20 2000 00000 15 8.000 HE
000026 7C20 0000 00000 16 9.000 HE
00002A 3B02 17 10.000 Q2 SER
00002C 0700 C078 00078 18 11.000 BH
000030 7000 COC0 000C0 19 12.000 STE

20 13.000 CALL
00000A 7820 2000 00000 32 10.000 Q3 LE

IOGEI

12,SA=SAVB
2,s,o(1) ADDRESSES or nnsuuzums
°.0(.3) B
0,0 nvs
2,=s~u'
2,0(,2) 0*A
2,0(,u) uwnwc
0,2
coupnnx
o.n1scn
sonr,n1scn $QRT(B**2-0*A*C) In rao
2.°(.2) A

000003 3A22 33 15.000 AER
000050 3300 30 16.000 LCER
000052 7800 3000 00000 35 17.000 SE
000056 3D02 36 18.000 Q0 DER
000058 7000 9000 00000 37 19.000 STE
000O5C 7B00 3000 00000 38 20.000 SE
000060 3D02 39 21.000 DER
000062 7000 5000 00000 00 22.000 Q5 STE

01
07

23.000 EXIT

OQOOE£.B-ki

swu~us‘

OMOOIUOO

4-Avan~

QIn~

U1MIQDU)
~¢-¢~¢wr

,2 n+1
—SQRT(B#*2-0*A*C)
-B-SQRT(B**2-0*A*C)
(-B-SQRT(B¥*2-0*A#C))/(2*A)
sncoun ROOT
-B*SQBT(8**2—0* nvc)
(-B+SQRT(B*¥2—0#A*C))/(2*A)
rzasw ROOT

20.000 COHPLEX SERCOH ' #¥* EQUATION HAS COHPLEX ROOTS‘
025 000 EXIT57 .

0000C0 63 26.000 DISCR DS E
0000C8 60 27.000 SAVE D5 18A

65 28.000 EID
000110 01000000 66 =E'0'
000110 00000000 67 =V(SERCOH)

Figure 1: Sample Assembler Proqral

Using Brrordulps and Load Haps 379

HTS Volume 1: HTS -- The S1010:
0222020020
0002 0010611200010 I12

2022! I 500100 5222 i 000166

I002 11102 2 ll I102 11102 I II I122 11102 I II
520600 221036 9 16512501 222010 0 ' (2Il> 215000 0
3002 210210 0 500100 500100 0010 500200 500230
<5II210> 501000 0501000

...-- -1- -0- ¢.- ‘.1 --

nnrn 01-zo-1: 21:: 1n=zs.:s

rs: - 0115000: !0S02lc

ulIlllL nnaxsrnns o...15 '

21012220 I02If'l20I5IIOI

5100102 20022: 0000
L1 I1

65262: 1002: 500100 12106: 500100 LIIGTI: 000000 5202102 IID21: 0000
L1

500160 90260006 10620120

65262: 0010 1001: 500200 02106: 500250 LIIGII: 000110 $202102 30022: 0000
21 21

65262: <$!If1I> 1002: 501000 ll206: 501000 122012: 002000 5T0l102'lIDI2: 0000ll I0

501010 000010 00002000 00003036 00003600 00211160 00000000 00000000 00003650 00001000
501060 000060 00002000 00000000 00216106 00210350 00213050 00501000 00501232 00002000
50100 000020 00501300 00501236 00501020 00501230 00000015 00501126 00501120 00501320

501120 000120 00501020 00501230 00501310 00000010 00000001 00000020 00003000 00001030
501100 000100 00000000 00202522 00211010 01010101 01010101 00000031 00275120 00501000
501160 000100~ _000010l0 00201522 01010101 61010101 21010101 01010101 00000000 20001621
501100 000100 00000001 00001010 00000000 00501530 60000000 00202206 00202522 00211210
501110 000110 00000000 00210566 00500200 00000000 00000110 01010101 01010101 00502220

501120 000120‘ 00220961 00000000 ,0050!000 00210700 00503262 00000200 00002100 00000001
501200 000200 01000000 00000001 0000000 00000000 00000000 00000166 00000110 00000110

501260 000260 00000000 00000001 00050000 00000000 00000000 00000000 00000000 00000006
501200 000200 00000000 00030000 00000000 00000000 00000000 00000000 00000000 00010000
501210 000210 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00020000
501260 000260 00000000 00000000 100000000 2200002! 00000000 00270210 00000000 00000000

501020 000000 00210210 00000000 00005000 00000000 00000002 00000000 22650063 06000000
501500 000500 00221036 00000000 00005000 00000000 00000003 00000000 06656603 62000000
501520 000520 00275000 00000000 00000000 00200000 00000000 00000000 01010101 01010101
nu---. -¢¢~¢- IIIIIIIO

...... IUIOIO ---¢-.--

rigura 2: saaplq Program Run, lap, uni Dlp

380 usinq zrrornnps ind Load naps

L Ly.

501220 000220 00000000 00001016 00000000 00000010 01010101 00001250 00010000 00100001‘
-501200 000200 01010000 61600000 00000020 61600000 00000000 0000000 00000000 00000000 0110010 0010-

I0I0IQ0O0COOIII

r1znans1 nosoozno ousoozzo oosoozzu oosoozzu oosoozzc oosoozao oooooooo
oooooooo rrrrrrrr oooooooo oooooooo 00500290 oosoosse 6050020: oooooooo

01200000 00000000 01000006 00000000 61000000 00000000 00000000 00000000

501000 00002000 01010101 »00501050 10211002 00001000 00000000 00500170 10211522 0....ll11.0.0...l-..-.-..-6..-.--
501020 000020 50210220 00000000 00500160 00000000 00220561 00211210 00500100 00212566 '6..0. ...!---......--.---6-0....
501000 000000 00210550 00213950 00000001 01010101 01010101 00501000 01010101 00002130 I.-...... ...11111111.6.-1111 ..-
501060 000060 00000000 00000000 00501000 20001210 00501050 00000003 00501020 00501010 0.........6.l.....6.......6.. -

501000 000000 00501000 00501000 00000000 00501530 00003000 00001551 60211102 00003310 ‘.0
<6.

-..0-......0----.-....-...-..0'
0.....0 ..n. ,......

.. gptij, 1970

500000 00000000 00000000 01010101 01010101 01010101 01010101 01010101 01010101 0........1111111111111l1l1111111lI

500100 000100, 00500000 00211650 00500120 01010101 00000000 00500230 00211650 00500100 0.0.......l.01111.....l.......0.QI
500120 000120 00000000 00500100 00000000. 00000000 00000000 00000000 00000000 00000000 ¢....-6.........----.............'
500100 000100 00000000 00000000 00000000 00000000 00000000 01010101 16010101 01010101 0.......-.-..........11l1.111111l'

'.......0'
50010 000000 60565020 00005000 P000120! 50006010 50106016 50006020 05225000 00000026 0.'00..l.0......I.....0........O.'
500200 000020 00060222 00061022 07220000 00500220 00500220 00500220 00500236 00500230 '..l..........6...6-.-0..-0...$..'
500220 000008 01200000 01500000 61600000 00000000 00000000 0000652! 00500106 00500350 F-....l..1...&...6..
500200 000060 00500121 00500200 00000000 00500206 '00000000 00000000 00000000 00000000 0 6-..0.....-.6..................
500260 000000 00000000 00000000 00000000 2222222! 00000000 00000000 00500100 00000000 l.........................l.Q
500200 000010 P2222222 00500206 00500200 22612225 l_,__,g,,,5,,515yt

0Q0

500200 90260006 10620120 60605010 00005000 '.......0.l00..6.'
500210 000010 20001002 00261000 10003000 36007020 61101620 20001620 00003202 01006070 '0.-.0...........1.l...0.
500260 000030 70006060 07206036 00216010 05106000 00500350 50206030 05227020 20003122 '1--0.0-{...-.-.--6-..0....-...-.
5002I0 000050 33007200 30003002 70000000 12003000 30021000 50005000 00000026 0006022! 0. 10.......$.....Q...I.
500300 000010 0006122! 07220700 50206110 05106012 00500312 00500316 00000000 00120056 '.........01-.....6...l..-..... 1'
500320 000000 56560065 05206123 60000500 60612200 63060007 03652700 00060623 2200052! O00 IQ01TIOI I15 600212! l00IS...'
500300 000000 50000000 90260006 32220006 01200000 01026122 02100000 60612300 00500230 0....0...l....0....lS....D11 .6..'
500300 000000 00202322 P2500201 00270210 00000000 10500200 00500220 00000000 50000000 0 IT$.0...........6...l..........
500300 000020 00000000 00006700 00000000 00000000 00000000 00000000 01000001 00000000 ‘......-.........................
500310 000110 01000000 00221036 0.‘

I
I
0

000000

- ... ----1..........0-..0.-...¢
0.0...0..-6.0.0.... ..l..-0.0.0..

501100 000100 00003030 00002000 00001000 00000000 00501050 00000100 00500100 00500200s.......o.q.s..~.0...0...6..--.-...--.---.-.-...‘
---..-5--1-.11111111.-.......5.0'
-0.0-.5.11111l111ll11111..---.--0
-..--~.------0..l.....2O..5--...
..-.--..-0..-.-~----ll111111.0..

501160 000160 00503000 00500250 00500100 00000000 00212112 '00221066 00202206 00202522 0-0-..0...6.Q......7....l..20..5.......-..0.---..-0-1....--.0-...-.---....-.-..-----.---.-----.-.-0-..--.-.111i......-...-.
------------¢¢-»---~-........---
------.--.----1.--.---.--------.------¢-----¢.-.-..-----.------.
......-.....50lTH.

§6§§55 555165 11011151 a1u\|101 nonouonu nnuouauo nououono souocooo nononono oouonono rnnnnnnnn

-..---.-.-I-.--.........S2ICO1
...------.0..-.-..--.---(211)

00000I0000

.5012I0 000220 00000000 00000000 00000000 00500310 00501020 00000016 00501000 P0202520 9-.-.....-.-..l.0.6.0-....0..0050'
501300 000300 P1202020 01010101 0006023 00000000 00000000 00000000 00000000 00000000 11000-111 L02 1

501320 000320 21201125 22002129 00000000 00000061 22006100 27220120 03290000 00212011 ‘10:52-19 ISIG 120019 18:1
501300 000300 22250223 P5000021 00666562 00212300 00000000 20202121 01018101 01010101 025.39 1 Ill 73 0011111111110

501000 000000 00000000 00000000 00000000 00000000 00000000 00000000 06222000 23616262 0 <3Yl2l0>l
501060 000060 00501000 00501000 00000100 00000000 00000000 00000000 03632220 00620603 0.0...l..................L6SIl0OL'
501000 000000 00222210 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0..........l............. 1

501010 000010 00500100 00500100 00170100 00000000 00000000 00000000 00206160 00000000 '.0.0.0.0..-....----.....Q01D
501060 000060 00500200 00500250 00232100 00000000 00000002 00000000 22000923 00000000 '.6...l..................S0l1

0

..6.--.1..l--...........1ll1l111'
502200 001200 01010101 01010101 01010101 01010101 01010101 01010101 01010101 00500310 01110011l1l11l111111111111111.0-0'
502210 001210 00501020 00000016 00500310 00501020 00000016 00500260 00501000 00000016 0.0.0...--0.0-0-0.-...6.l.0-0....°
50260 001260 01010101 01010101 01010101 01010101 01010101 21010101 01010101 01010101 0111111111111111111111111l1111lll'

502220 001220 01010101 01010101 01010101 01010101 01010101 01010101 01010006 00050000 01111111111l10lll1111111111...--.0

MTS Volume 1: HTS -- The System

April 1974

Finally, those parts of virtual storage being used by the program are
displayed. (This does not include the parts of HTS being used by the
program.) The number at the left hand side of each line is the address of
the first byte displayed on the line. (At the beginning of a block of
storage, the first bytes of the line may not be printed.) Each line is
divided into eight four—byte (that is, eight hexadecimal digits) words.

Included here is an example program and the map and dump which it
produced. Figure 1 shows the assembler output; and figure 2 shows the SRUN
command, map, interrupt message, and dump. The program is a subroutine
named QUAD which takes five arguments. The first three arguments are
coefficients A, B, and C of the quadratic equation

A*X**2+B*X+C=O

The fourth and fifth arguments contain the real roots of the quadratic
equation when the subroutine returns. Complex roots are not permitted. The
object deck for QUAD is in the file QUAD, and there is an object deck for a
main program (with a blank name) to test QUAD, in the file QUADCALL. Since
there was a program interrupt, there is obviously an error. The interrupt
code in the PSH is 6, a specification error. This type of interrupt may be
caused by an alignment error, an odd register number when an instruction
requires an even register number, etc. The ggiggiplgg Q; Qpgggtigg
summarizes the reasons why each of the interrupt codes might occur. The
interrupt address in the last three bytes of the PSW is 5002EC. Since
5002EC lies between the values 500290 and 501000, the interrupt occurred in
QUAD. Subtracting the relocation factor for QUAD (which in this case
happens to be the same as the value) from SOOZEC gives 5C. In the assemblerlisting, SC is the address of the SE instruction in statement 38. Since
this is the instruction after the one being executed at the time of the
interrupt, the instruction which caused the trouble is in statement 37
(unless some other instruction branches to statement 38).

All reasons for a specification interrupt except alignment can be quickly
eliminated. To check on alignment, it is necessary to compute the address
from the base, displacement, and index. There is no index and the
displacement is zero; so the entire address is the contents of general
register 9. The general register display in the dump shows that register 9
contains FFFFFFFF. This is certainly not divisible by R; and therefore, it
does not produce the proper alignment for a floating-point short instruc-tion. Either the contents of the register are wrong or the base specifica-
tion is wrong. The program is supposed to be storing the value of the
second root. Looking at statement 11 in the assembler listing, it is seen
that the addresses of the five arguments are in general registers 2 through
6. Therefore, the address of the fifth argument, which is the storage
location of the second root, is in register 6, not register 9. Changing theinstruction in line 37 to

STE 4,0(,6)
should correct the problem.

Using Brrordumps and Load Maps 381

HTS Volune 1: HTS -- The Systij *

April 1970

Before rerunning the program, the user should check that everything is
correct up to that point, to avoid the "toss it in, maybe it'll work"
syndrome. Looking first at register 10, it is seen from the map that 5002DA
is in QUAD. subtracting the relocation factor gives RA. The address HA in
the assembler listing is that of the instruction after the call on SQRT.
Consequently, SQRT was the last subroutine called. SQRT does not produce a

return code; and therefore, register 15 still has the address of SQRT.

It can be verified that register 13 points to the save area in QUAD. The
QUAD save area can be used to find the save area of the calling program.
The convention for the save area is that the second word points to the
previous save area, that is, the save area of the calling program. Looking
at location 500358 (which is the address contained in register 13) in the
dump, it can be seen that the previous save area is at location 500234.
Fro: the map, this is in the program with a blank name, or in other words,
the test calling program.

Having found the previous save area, the user can now determine what the
arguments were for QUAD. Registers 10 through 12 at the time of entry into
QUAD are stored starting with word lof the save area. Therefore, register
1, which points to the list of argument addresses, is in word 7. This list
address is 50020C. Looking at 50020C, it is seen that the five argunent
addresses are 500220, 500220, 500228, 50022C, and 500230. To put it another
way, the value of A is at 500220, the value of B is at 500228, and the value
of C is at 500228. Checking these locations in the dump shows that

AI2.0 B=5.0 C=-12.0

At the time of the interrupt, the value of the second root is in
floating-point register 0. From the quadratic formula, the solutions for
the above values of A, B, and C are 1.5 and -4.0. The contents of
floating-point register H is -3.0: and therefore, the second root is
correct. Likewise, the values of the discriminant and 2A can be verified
from floating-point registers 0 and 2 respectively.

382 Using Brrordumps and head aps

April 1970

ggggrgggcgguug

IQ!

MTS volume 1: HTS -- The System

INTRODUCT

PRDJBCTACCOUNT allows project directors and instructors to distribute
money, permanent disk space, and terminal and plotting time, as they wish,
to various signon ID's belonging to their project or class. Also, the
expiration time for individual signon ID's may be changed. These distribu-
tions are limited by maximums set for the entire project or class rather
than having each signon ID with its own relatively fixed maximums. In
addition, the amounts used and the maximums for any given signon ID may be
displayed, as well as the amounts allocated compared with the maximums for
the project and the totals for the project as a whole.

Before a project can use PROJECTACCOUNT, one of the signon ID's belonging
to the project must be authorized to use the
authorized per project. The authorization
project and this authorized signon ID can be
business office at the Computing Center.

program. Only one signon ID is
and setting of maximums for the
accomplished by contacting the

In the examples which follow, it is assumed that the project number is
G0335006, the signon ID authorized to use PROJECTACCOUNT is S001, and the
other ID's belonging to the project are SO02, S003, and S00". The maximum
amount of money for the project is $550, and
money for each signon ID are as follows:

the maximum and used amounts of

ID MAXIMUM S USED $

S001
S002

100 25
100 10

S003 100 125
0S00" 100

The examples follow each other logically;
example is presumed to be the starting point

that is, the result of each
for the next example. With the

exception of the sections where the complete heading is given, the one line
heading in each example is for convenience only and is not part of the
actual output.

The discussion of the commands, signon ranges, and keywords assumes
operation from a terminal. Batch operation involves only minor differences,
and a batch job to produce the examples in this section appears at the end
of this writeup.

To start the program after signing on to
ID for the project, enter the HTS command

HTS using the authorized signon

Projectaccount 383

,,; ,

nrs Volule 1: HTS -- The syaag '

April 191a

.

$RUN *PROJECTLCCOUNT

after the "t" is printed. After execution begins, the program responds with

HTS ACCOUNTING HAXIHUH MAINTENANCE FOR PROJECT 60335006

and a question mark prefix is printed indicating that the program is ready
for input.

conning;

l§2ies.n2ns1.ie_a.§isn2n.12
If $100 is to be added to the maximal charge for S003, enter

ADD SO03,CHARGE=100

ADD is called the gggggggh A Qgligitgg, which is one or more blanks or
commas, in any order, lust follow the command. 100 is called the galgg of
the keyword. A keyword and its value are always separated by an "=". The
colbination of the keyword "=" and the value is called a gggwogd pgggggtgg.
Keyword parameters are separated from the signon range and from each other
by delimiters.

After the $100 has been added to SO03, the program responds with

SIGNON CHARGE DISK SPICE [TERM TIHE PLOT TIME. EXPIRE
(DOLLARS) (PLGBS) (HRS:IN) (HRS:IN) DATE/TIME

(HAXIHUH AMOUNT IS ABOVE USED OR CURRENT AMOUNT. NC=NO CHANGE ON.)

S003 200.00 10 IGRORED IGNORED 12-31-70
125.00 2 0:00 0:00 23:00

and another question mark prefix. The first line after the three line
heading shows the new naxinuns for SO03, and the second line shows the
amount already used (S125). If this is all that is desired, pggdggigg an
eadzeiziile sendisien 22 £2222 ssxnlnatsa ezesnsien at the 2:22:11-

euezaaslins_n2nez.£:22.a_§isaea.l2
while ADD causes the prograa to add the values of the keyword parameters

to the current maximums, SUBTRACT causes the program to subtract the values
of the keyword parameters from the appropriate current naziluns. To reduce
the naxinua anount of-ioney-for S003 by $10, enter

,

SUBTRACT S003,CARGE=1O

"The~progran responds withe ' O

380 Proiectaooount

April 197R

HTS Volume 1: HTS -- The System

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIME EXPIRE
S003 190.00 10 IGNORED IGNORED 12-31-70

125.00 2 0:00 0:00 20:00

and a question mark prefix. If the result of the subtraction had been
negative, the maximum for the signon ID would have been set to zero.

H92;§ling_n22e1eierraeéiasonzly
MODIFY causes the program to replace the current values of the appropri-

ate maximums with the values of the keyword parameters. To set the maximum
amount of money for SO02 to $15, enter

MODIFY S002,CHARGE=15

The program responds with

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIME EXPIRE
S002 15.00 2 IGNORED IGNORED 12-31-70

10.00 0 2:00 0:00 23:00

EQQALLZins-!2ns1_£2r_a_§isn22.l2

EQUALIZE causes the program to add the values of the keyword parameters
to the appropriate current used amounts (as opposed to the current maximums
for ADD) and replace the corresponding maximums'with the result. Thus, to
give S003 $25 more than has been used, enter

EQUALIZE S003,CHARGE=25

The program responds with

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIME EXPIRE
S003 150.00 10 IGNORED IGNORED 12'31-70

125.00 2 0:00 0:00 24:00

This command is useful for giving all the students in a class the same
amount of money with which to do a new problem.

El£12;ns_!22s1_£2r_a_§isn22_l2

The command EXPIRE, without any keyword parameters, is the same as MODIFY
with the keyword parameters CHARGE=0, DISK=0, TERHINAL=0, PLOT=0, EXPIRB=03-
01-00, and NOCHANGE=ON. (See the "Keywords" section.) That is, all
maximums are set to zero, the signon ID is expired, and "no change" is set
on. Thus

EXPIRE S002

Projectaccount 385

\

x

K

L

§

F,{

HTS Volume 1: nrs -- the Systl

April 1974

produces

SIGNOI CHARGE DISK SPACE TERH TIHB PLOT TIHE EZPIRE
S002 0.00 0 0:00 0:00 07-07-70

NC 10.00 0 " 2:00 0:00 16:25

Any keyword parameters given with the command EXPIRE override the values
of the corresponding implied keyword parameters. Therefore,

EXPIRE $O0,CHlRGE=9S

produces

SIGNON CHARGE DISK SPACE TBRH TIME PLOT TIME EXPIRE
S00" 95.00 0 0:00 0:00 07-07-70

NC 0.00 0 0:00 0:00 16:25

Note that NOCHAIGB=OPI does not override NOCHARGB=OR. (See the section
"Changing NOCHAlGB".)

Q2taiumshsin2£§
The connand STATUS enables one to print the naximul and used amounts for

a signon ID.

' STATUS S001

produces

SIGRON CHARGE DISK SPICE TERH TIME PLOT TIRE EXPIRE
S001 100.00 0 IGIORBD IGRORBD 12'31'70

25.00 0 0:00 0:00 24:00

Note that these are the amounts as of the last signoff of the signon ID.
All keyword parameters except READING are ignored by STATUS. See also the
section "PROJBCE".

§sm1I!!1na_!i&h..a.2i1£sran1.§Lsn2n.1n
The coamand COITIRUE, without any keyword parameters, does the sane thing

as the previous command but uses the new signon range. It does not produce
a new heading unless ~tha keyword HEADIHG (see the section "Producing a
READING") is explicitly used with the COHTIRUZ command. Thus it

1 ADD S002,CH1RG2=5,IOCHLRGE=0!P

which produces

366 Projectaccout

April 1970

HTS Volume 1: HTS -- The System

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIME EXPIRE
S002 5.00 0 0:00 0:00 07-07-70

10.00 0 2:00 0:00 16:25

is followed by

the program responds with

CONTINUE S00"

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIME EXPIRE
S000 100.00 0 0:00 0:00 07-07-70

0.00 0 0:00 0:00 16:25

Any keyword parameters given with CONTINUE override the corresponding
keyword parameters used with the previous command. Thus, after the above
sequence of ADD and CONTINUE

CONTINUE SO02,CHARGE=10

produces

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIME EXPIRE
S002 15.00 0 0:00 0:00 07-07-70

10.00 ~ 0 2:00 0:00 16:25

Note that NOCHANGE=OFF does not override the keyword parameter NOCHANGE=ON.
(See the section "Changing NOCHANGE".)

Qetsrninins-L2§£.£A§§!Q§2§

The command PASSWORD enables project directors to display the current
password for any signon ID belonging to the project. To display the
password for SOOH, enter

to produce

PASSWORD S000

S000 PASSHORD IS X95MPS (E7F9F5DBD7E2)

The characters in parentheses are the hexadecimal representation of the
password.

All keyword parameters are ignored by PASSWORD. Also, unlike other
commands. 2A§§!Q22 muss he szesiiied £2: e single 22- Any attempt to use a
block or ENTIRE as the signon range causes an error message to be printed.

Projectaccount 387

urs Volume 1. urs -- The syatio ‘

April 197

QI§§.§1§!Ql.EL!§§§

Qlaske 0

So far, the signon range has been a single signon ID. It lay, however,
refer to a group of signon ID's. For a specific, contiguous block of siqnon
ID's belonging. to the project, the signon range is the first signon ID
followed byna delimiter, three dots (periods), an optional delimiter, and
the last siqnou ID. For ezuiple,

STLQUS s002,-..,s00u

produces

sxcuon canker nzsx spxcz wean @102 prom mxnn zxpxnz
s002 15.00 0- 0:00 0:00 07-01-10

10.000 02 2:00" 0:00 15:25

5003 150.00 10 xsnonnn xonoazn 12-31-10
125.00 2 0:00 0:00 20:00

S000 100.00’ 00 0:00 0:00 07-07-70
0,00 0 0:00 0:00 16:25

The increuentinq of sig§on:IQ's within a block is defined as the collating
sequence for the IBl’360 computer, that is, alphabetic letters come before
the numbers 0‘through 9. The first signon ID should be less than or equal
to the last siqnon ID.

EEIIBE

If all of the signon ID'a for the project are desired, the word ENTIRE
may be used for the siqnon range. For example,

no01rr=s001;0canucr=ou
suamnncr BRTIR!,CHhRGE=1O

produces .

SIGHOI CBLFGE DISK SPICE. TERM BIKE PLOT TIE! BXPIRB
S002 5.00 0‘ 0:00 0:00 07-07-70

10.00) 0» 2:00 * OYOO 16:25

5003 100.00 10' xcnogzn 5 rcnoarn 12-51-10
125.00 2 0:00‘ 0:00 20:00

S000 90:
0;

388 Projectpccount

00‘ 0‘ 0300
00 ‘U-' 0:00

GO
coco

¢>¢
OQ

07-07~70
16:25

HTS Volume 1: HTS -- The System

April 197

Note that S001 is not listed. The MODIFY command which sets NOCHANGE to
ON is used to prevent money from being subtracted from the master signon.
This is usually desirable as the master signon should only be used for
running *PROJECTACCOUNT.

B39922!

The above signon ranges can be used with any command. PROJECT can he
used only with STATUS. Entering

STATUS PROJECT

produces

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIHE EXPIRE
PRJ 550.00 50 IGNORED ,IGNORED 12-31~70

300.00 10 2:00 0:00 20:00

REM 210.00 B0 IGNORED IGNORED
52.50 10 0:00 0:00

TOT 335.00n 10 0:00 0:00
160.00 2 2:00 0:00

NOCHANGE ON FOR 1 AND OFF FOR 3 OP THE 4 PROJECT ID'S

This listing needs some explanation. The first line, labeled PRJ for
"PROJECT", shows the maximums for the project. Note the $550 under charge.
The second line shows the cumulative amounts for the project. Since HTS
permits a user to finish, once he is signed on, a maximum may be less than
the corresponding used or current amount. This same condition can also be
produced by using PROJECTACCOUNT. Therefore, the cumulative amounts for the
project are computed by summing the "larger of the maximum and used or
current amounts for each signon ID. (See also "Miscellaneous" regarding
disk space.) Referring to the listings in the sections "Changing EXPIRation
Time" and "ENTIRE", the cumulative amount of money is computed as follows:
the larger of the maximum and used amounts for S001 is $100. The larger
amount for S002 is $10, and the larger amounts for S003 and S004 are $100
and $90, respectively. Adding these amounts together produces the sum of
$300.

The third line, labeled REM for "REMAINING", shows the results of
subtracting the cumulative amounts (second line) from the maximums (first
line) for the Pr<>ie¢t- Thess Qiifsrsnsss are the amounts ahish sen still heQigggibgtgg to the signon ID's belonging to the project. In this case,
$550-$3B0=$210 can still be added to individual signon ID's. The fourth
line shows the amounts which should be added to each signon ID with "no
change" currently off (see "Changing NOCHANGE") in order to evenly distri-
bute the remaining amounts. That is, the values in the fourth line are the
results of dividing the values in the third line by the number of ID's with

ativ"no change" off ($210/=$52.50). Note that ggagtigggl Q; ggg
QQBBQE Q2 !§§Q Q§ EQIEQEQ !§lE2§-

2 Q!2!£§§

Projectaccount 389

mrs Volume 1: nrs -- The syatqm “

April 197a

The fifth line, labeled TOT for "TDTILS", shows the sums of the maximums
for the signon ID's. Thus, the sum of the maximums of $100, SS, $10, and
$90 for SO01 through SOOR is S335. The sixth line shows the sums of the
used or current amounts for the signon ID's.

The seventh line states the number of signon ID's with "no change" on,
the number of signom ID's with "no change" off, and the number of signon
ID's belonging to the project (tour in this case).

K§1!Q£D§

§hansiis_haziana_§§l§§§

The keyword CHARGE has been shown to specifiy changes in dollars of the
maximum amount of money permitted to a signon ID. Other keywords are used
to specify other maximums and control functions. All kgygggg pgggggtggg
gggg ggteg the gigggg gang and may be listed in any order. They are
separated from the signon range and from each other by delimiters. All
2252215 ¥£1!2£§ !§l££§ l!§& HQ $522222 i§ !£§iS22Q i!£222£§ !i£h291 decimal
ggig§§, that is, there may be no fractional or negative keyword values.

Qheesinsi!e;i!um_2l§§e§2sss
The keyword DISK (or PILEI is used to specify changes in pages of the

maximum idisk space permitted to a signon ID. To add 5 pages of disk space
to S003, entering -

AID S003,DISK=5

produces ‘

SIGIOR CHARGE DISK SPACE TERM TIME PLOT TIME EXPIRE
S003 $30.00 15 IGRORED IGNORED 1Z'31-70

125.00 2 0:00 0:00 23:00

The second line of the listing under DISK SPACE is the amount of disk
space (2 pages) currently being used by $003.

2hensins.ha;ia2m.I§£!I1iL.1iss
Minutes

The keyword ATERHIIAL is used to specify changes in minutes of
maximum terminal time permitted to a signon ID. To restrict S002 to
two and a half hours of terminal time, entering e

390 Projectacconmt

April

Hours

HTS Volume 1: HTS —- The System

197B

MODIFY S002,TERMIRAL=150

produces

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIME EXPIRE
S002 5.00 0 2:30 0:00 07-07-70

10.00 0 2:00 0:00 16:25

If the project is permitted unlimited terminal time, subject only to
available funds, signon ID's belonging to the project may also be
permitted unlimited terminal time. Unlimited terminal time is indi-
cated in the listing by the word IGNORED in place of the maximum.
Unlimited terminal time may be set by using the word IGNORE as the
value of the keyword TERMINAL. Thus to give S002, unlimited terminal
time, entering

MODIFY S002,TBRMINAL=IGNORE

produces

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIME EXPIRB
S002 5.00 0 IGHORED 0:00 07-07-70

10.00 0 2:00 0:00 16:25

when the value is IGNORE, the behavior is the same for each of the
commands ADD, BQUALIZE, EXPIRE, MODIFY, and SUBTRACT. Also, the
maximum terminal time is set to zero for purposes of the line labeled
TOT produced by STATUS PROJECT and the commands ADD and SUBTRACT.

The keyword TBRMHRS is used to specify changes in hours of maximum
terminal time permitted to a signon ID. To restrict SO02 to 2 hours of
terminal time, entering

MODIFY S002,TERMHRS=2

produces

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIME EXPIRE
S002 5.00 0 2:00 0:00 07-07-70

10.00 0 2:00 0:00 16:25

IGNORE may also be used as a value for the keyword TERMHRS.

Projectaccount 391

a
iv.

HTS Volume 1: HTS -— The System

April 1970

mnnns_mmm
Minutes

The keyword PLOT is used to specify changes in minutes of maximum
plotting tine: pernitted toka signon ID. To give S003 an hour and 45
minutes of plotting time, entering

MODIFY 5003,PLOT=105

produces

SIGNON CHARGE DISK SFLCE TERM TIME PLOT TIRE BXPIRE
S003 140.00 15 ‘ IGRORED 1:45 12-31-70

. 125.00 2 0:00 0:00 20:00

If the project is permitted unlimited plotting time, subject only to
available funds, the word IGNORE may be used as the value of the
keyword PLOT. For example,

MODIFY S003,PLOT=IGRORE

produces

SIGROI CHARGE DISK SPICE TERM TIME PLOT TIHB BXPIRE
S003 100.00 15 IGNORED IGNORED' 12-31-70

125.00 ' 2 0:00 0:00 20:00

See also the analogous discussion of unlimited terminal time above.

Hours

The keyword PLOTBRS is used to specify changes in hours of maximum
plotting time permitted to a signon ID. To give S003 one hour of
plotting time, entering t

HODIF! S003;PLOTHRS=1

produces

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIME EXPIRE
S003 140.00 15 IGIORED 1:00 12'31-70

1 125.00 2 0:00 0:00 20:00

IGNORE nay also be used as a value for the keyword PLOTHRS.

QQ3i£§.l
The keyword BXPIRB is used to specify changes in the expiration time of a

signon ID. The value of BXPIEB may be either of two forms.

392~ Projectaccouat

nrs Volume 1: nus -- The System

April 197a

Dat e

The form MM-DD-Y!
where HM is the two digit month,

DD is the two digit day of the month,
and Y! is the two digit year,

is used to set the expiration time to 12:00 p.m. of the specified
date. For example,

MODIFY S003,EXPIRE=12-07-70

produces

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIHE EXPIRE
S003 140-00 15 IGNORED 1:00 12°07-70

125.00 2 0:00 0:00 24:00

Time

The form nu-DD—Y!/hh:mm
where HM-DD-YY is explained above,

hh is the two digit hour in twenty-four hour
notation,

and mm is the two digit minutes,

is used to set the expiration time to a particular minute of the
specified date. For example,

MODIFY S002,EXPIRE=11—23-70/16:5

produces

SIGNON CHARGE DISK SPACE TERB TIHE PLOT TIHE EXPIRE
S002 5.00 0 2:00 0:00 11-23-70

10.00 0 2:00 0:00 16:N5

and S002 will not be able to sign on after :5 p.m. on November 23,
1970. Note that the expiration date and time may not be set to a value
earlier than the current date and time.

N¢te_that lsadias asses sues he sannlisd £2: the 122 dials issue vhen
there is only one significant digit. Also, the ggggggg gggggg gehaggg as
SBQBSQ 12 !2£§ Q§§Q 11$! £92121: EEQQ !!§Q 152$ liih A221 EQQLILEI 25
§2§E§A§I- That is,

and

ADD S002,CHARGE=5,EXPIRE=11-23-70/16:05

SUBTRACT S002,CHARGE=5,BXPIRE=11-23-70/16:R5

Projectaccount 393

HTS Volume 1: HTS -- The Systgm i

April 197R

have the same effect on the expiration time as the above example but the
effect on the maximum amount of money is quite different in each case.

If an attempt is made to expire a signon ID before both the current time
and the current expiration time, the earlier of these two times is used as
the expiration time. Thus,

MODIFY S00,BXPIRE=09-01-69

produces

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIME EXPIRE
S000 90.00 0 0:00 0:00 07~07-70

0.00 0 0:00 0:00 16:25

when the current time is “:25 p.m. on July 7, 1970.

If a siqrwn ID is expired. ne shame is aede ier file erase helensias 22
thee eisnee In arse: the_ezni:a!.i2e tae- In return. the rishi re desire!
the files releasing. re erased eunen Lille is reseued hr. the seuetiea
.¢.ee$.er- Hovever. ihe file eases is eiill eeneidersd is he rare 2; the
gggglagiyg file gpagg ggg the gggjggg until it is actually destroyed. If
the expiration time of the signon ID is set to~a later time before the file
space is destroyed, the project is charged for all file space used during
the previously expired time.

The fact that a signon ID is expired has no effect on the changing of
maximums by PROJBCTACCOUIT. The expiration date and time may not be changed
for the master signon ID.

§h£2Qi£§.!QEEA!§§

when using a block or BITIBE for the signon range with any command except
STATUS, certain signon ID's within the range may not. be changed. If a

signon ID has i"no change" on, it is ignored by the command and no listing
line is produced for it. The keyword NOCHANGB is used to specify the status
of "no change". The words O or OP! may be used as the value of the
keyword. To-have S003 ignored by commands that produce changes, entering

MODIFY S003,MOCHlMGE=ON

produces _ . I

SIGHON CHARGE DISK SPACE ‘TERM TIME PLOT TIME EXPIRE f

S003 100.00 15 IGMORED 1:00 12~07~70
I RC 125.00 2 0:00 0:00 20:00

Note that the letters IC under the signon ID indicate that "no change" is
on. Now entering ' » V

394 Projectaccouut

April 197%

HTS Volume 1: HTS -— The System

EQUALIZE ENTIRE,DISK=2

produces

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIME EXPIRE
S002 5.00 2 2:00 0:00 11-23-70

10.00 0 2:00 0:00 16:05

S000 90.00 2 0:00
0.00~ 0 0:00

and entering

STATUS S003

which produces

0:00 07-07-70
0:00 16:25

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIME EIPIRE
S003 1"0.00 15 IGNORED 1'00 12-07°70

NC 125.00 2 0:00

verifies that S003 was not changed.

To change S003,

oloo 2u=oo

MODIFY S003,NOCHANGE=OFF

turns off "no change" and produces

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIME EXPIRE
S003 100.00 15 IGNOFED 1:00 12-07-70

125.00 2 0:00 0:00 23:00

To change the maximums for a signon ID which has "no change" on and leave
"no change" on at the end of the operation, the keyword parameters
NOCHANGE=0N and NOCHhNGE=0FF should both appear. For example,

ADD S003, NOCHANGE=ON, NOCHANGE=0FP,DISK=2
produces

SIGNON CHARGE DISK SPACE TERM TIME PLOT TIME EIPIRE
S003 100.00 17 IGNORED

NC 125.00 2 0:00
1:00 12-07-70
0:00 20:00

Note that the order of the keyword parameters lakes no difference.

NOCHANGE behaves the same with any command except STATUS, which ignoresit. It can be used to inhibit the changing of a signon ID which is not
¢urrent1Y being “sed- A rsseaeandsd asihsi 2; szairina a aisnen ID. for
example S000, is to first destroy all files belonging to the signon ID, and
then enter

VProjectaccount 395

i
?

>

>

x

r

1

-

é.
¢

HTS Volune 1: HTS -- The Syqtqg Q

April 197R

MODIFY S000,CHlRGE=0,DISK=0,TBREIIlL=0, EXPIRB=03~01-00,NOCHLNGE=ON

to produce

SIGNON CHARGE DISK SPICE TBRH TIRE PLOT TIRE EXPIRB
S00“ 0.00 0 0:00 0:00 07-07-70

NC 0.00 0 0200 0:00 16:25

Note that this is the sane as entering

EXPIRB SO08

after destroying the files.

£rm§ a
To not print a listing line for each siqnon ID, the inclusion of the

keyword NOLIST suppresses printing Eor that command only. NOLIST does not
require a value. Por exalple,

L00 S002,CHlRGB=15,NOLIST

2sseQ2§i2s_e_§§A_Qli§

To produce a heading at the top of a new page befpre printing the next
listing line, the keyword HEADIRG should be included with the command. For
example,

STATUS S002,HEADInG

produces

SIGRON CHARGE DISK SPKCE TERM TIME PLOT TIIE EXPIRE
(DOLLIFS) (PEGESY (HRS2HIN) (HRS:HIN) DATE/TIME

(HAXIHUH AHGUHT IS EBOVE USED OR CURRENT LHOUHT. NC=N0 CHANGE ON-\

S002 20.00 2 2:00 0:00 11-23-70
10.00 0 2:00 0:00 16:35

READING and NOLIST are the only keywords which do not require a value. E
A signon In cannot be changed while it is signed on to the computer (with

the exception of the ll3t§! signed xny. If an attempt is made to change a
signon ID while it is in use; an appropriate consent dis printed and tme
change lust be made at a later tile.

396 Pro1ectacceumt

April 197a

HTS Volume 1: HTS -- The System

The value of a maximum for a signon ID can always be reduced. However,if an increase in the value of a maximum would cause the cumulative for the
project (second line produced by STATUS PROJECT) to exceed the maximum for
the project, the increase is not permitted. Thus, it may be possible to
subtract a given amount from a signon ID and impossible to add the same
amount back because the cumulative for the project originally exceeded the
project maximum.

If an attempt to change the maximums for a signon ID causes an error, the
maximums are not changed, no listing is produced for the signon ID, and an
appropriate error comment is printed.

An attention interrupt causes a question mark prefix to be printed
indicating that the program is ready for the next input line. If a signon
ID is being processed at the time of the interrupt, the processing is
completed before the interrupt takes effect.

The used amount of money in the listing includes charges for file storage
to the current time.

It is not necessary for a project maximum to be represented completely by
the corresponding signon ID maximums, that is, the project maximum may be
greater than the sum of the corresponding signon ID maximums. If this is
the case, to increase the maximum» for a signon ID, merely enter the
appropriate input line (with the provision that the new maximum does not
cause the cumulative for the project to exceed the project maximum).

The project cumulative for file space is computed as described in the
section "PROJECT" with one exception for compatability with HTS. Before
computing the maximum of the maximum and current space for each signon ID,
the value to be used for current space is reduced by the smaller of 16 pages
and the truncated integer result of dividing the maximum space by 8. For
example, if the maximum is 7 pages, the value of the current space is used;if the maximum is 8 pages, the value to be used for current space is reduced
by 1 page; and if the maximum is greater than or equal to 128 pages, the
value to be used for current space is reduced by 16 pages. ‘

A§§B3.!I.AIlQ!§

Both commands and keywords may be abbreviated. Only the first threeletters of the command are necessary; minimum abbreviations for commands and
keywords are underlined in the summary below.

Thus, the last example in "Changing NOCHANGE" can be expressed more
concisely as

HOD S008,C=0,D=0,T=0,P=0,E=03-O1-O0,NC=0N

Projectaccount 397

___'_ _ 4,. _ _

HMS Volume 13 HTS -- the Systei

§H!!LEI_QE_I§2EI;I!B.££!i££!I£!HHI

l22!&_Li££§
The form of the input line, using standard notation, is

i

April 197R

[b]... 2 . mus ; d 2‘s1qnsn—rauqe ; [d §B&nIIG]'[&11[; connent]EIA
PHOJCT;I I I

L J L I J

OI

I’ T
I ADU[b]... < §Qg§LIZE > d siquon-range keyword... [d] [; comment]

II QQQIFI
| §§TRlCT
L J

OI

-[b]... Z §Q1!IIUE ;~dIsiqnnn-range [keyword]... [d] [; comment]
II §§2IRB

L J

OI ~

[b]... [g5§SIOBD} d signou>[d] [; content]

Where d is [h|,)... I

keywordfis

398 Project&ccnun¢

.?5
P‘U

WIVan-ti

II

Q

-Janinavan-1:113

9!

Iii:A¢¢@

QHARGB
gxsxarrnn
gxrznn
gognnnss
gxor
2101235
gsnagns
IERBINAL

1 gznnrus
I gogxsr
;,gogzAn
L

valu

Lanna:

April 197R

signon-range is < signon d... [d] signo

b
d§

U

I

[1

HTS Volume 1: HTS -- The System

r--"I

D

|._.v-.4

signon

ENTIRE

is a blank or space,
.. is a delimiter followed by three dots

(periods),
indicate a compulsory choice of one

line,
indicates a compulsory choice of one

element,
indicate an optional choice,

. (not d...) indicates an optional (0 or
greater) number of repetitions of the
preceding element,

lower case letters indicate a type of element to be used,
and all other characters are to be used exactly as shown.

Comments may appear at the end of the input line and must be separated
from the last parameter by a semi-colon.

QQ!!QQQ§

Command Function

ADD Adds the values of the keyword parameters to the
current maximums to produce the new maximums.

gg§TINUE Produces the same action as the previously entered
command but uses the new signon range and any new
keyword values explicitly specified.

QQQALIZE Adds the values of the keyword parameters to the
used or current amounts to produce the new
maximums.

§ggIRE Substitutes zero for the current maximums and sets
the expiration time to the -current time unless
other keyword values are explicitly specified, and
sets "no change" on.

QQQIFY Substitutes the values of the keyword parameters
for the current maximums.

g5§SIORD Enables project director to display current pass-
word for any signon ID belonging to the project.

Projectaccount 399

» yen» - i

HTS Volume 1: HTS -- The synten

April 191a

gggrus List! the current values of nnxinun and used or
current amounts.

§§§TRACT subtracts the values of the keyword parnieters fro:
.the current naxinuns to produce the new laxinuns.

Kexmne
Keyword Reference Value Units

QHIRGB Honeyt Dollars

[QISK|FILE1 Disk space Pages

§XPIRE Expiration Tine nu-DD-Y!
M HH~DD-IY/hh:II

QERDIRG Listing Heading none

gogln Listing Heading none

gognnnsuz no Change on
orr

QOQIST Listing’ none

gnon Plotting Tine Minutes
IGNORE

QLOTQRS Plotting Tine ours A

IGNORE

IERHQRS Tetninal Tile Hours
IGBQRE

QBRBIHAL Terminal Tile Hinutes
IGNORE

I££!1H§£i2£

An end—o£~£i1e on input terminates execution.

L2£li£§l..I£Q..!!Bi&.E£!§e

SCIRDS - Input
_SPnII@.~ Listing
523608 * Error Contents

Q00 Projectaccount

April 1978

HTS Volume 1: HTS -- The System

§§§§Q:l§2!§:£9_BLQQQQQ_E;§!2l§§_i2_22i§-§§§§iQ2

SSIGNON SO01 ' PROJECT DIRECTOR'
PASWRD
SRUN *PROJECTACCOUNT
ADD SOO3,CHARGE=1OO
SUBTRACT SOO3,CHARGB=1O
MODIFY SOO2,CHARGE=15
EQUALIZB SOO3,CHARGE=25
BXPIRE SO02
EXPIRE SOOQ,CHARGB=95
STATUS S001
ADD SO02,CHARGE=5,NOCHANGE=OFF
CONTINUE SOOQ
CONTINUE SOO2,CHARGE=1O
PASSWORD SOOU

'0 0 0

MODIFY SOO1,NOCHANGE=ON
SUBTRACT ENTIRE,CHARGE=10
STATUS PROJECT
ADD SOO3,DISK=5
MODIFY SOO2,TEEMINAL=15O
MODIFY SOO2,TERMINAL=IGNOPE
MODIFY SOO2,TEFMHRS=2
MODIFY SOO3,PLOT=105
MODIFY SOO3,PLOT=IGNORE
MODIFY SOO3,PLOTHRS=1
MODIFY S0O3,EXPIRE=12-O7-70
MODIFY S002,EXPIRE=11-23-70/16:05
MODIFY SOOU,EXPIRE=O9-O1'59
MODIFY SOO3,NOCHANGE=ON
EQUALIZE ENTIPE,DISK=2
STATUS SO03
MODIFY SOO3,NOCHANGE=OFF
ADD S003,NOCHANGE=0N,NOCHANGB=OFF,DISK=2
MODIFY s00u,c=0,n=0,T=0,P=0,E=03-01-00,Nc=0
ADD SOO2,CHAFGE=15,NOLIST
STATUS SOO2,HEADING
SBNDFILE

Projectaccount H01

i

K

M8 ‘values 1 : V -1 ‘$1-km

....q,<.

kptil 191a

\

HTS Volume 1: HTS -- The System

April 197"

§..§___._._1-°SARY °I.§Q!2§Il!§..!§B!.§

This glossary is meant to be used as an aid in interpreting the computing
terms that are used in the documentation produced by the Computing Center.
This section attempts to define the normal use of each term and favors the
"everyday" interpretations over the more technical descriptions.

All terms given in the first line of each entry, and separated by commas,
are considered synonyms.

Each entry is given a code which is meant to give some indication of the
scope of the definition. The codes have the following meanings:

GC The term and definition is widely used in the computing field
(GC = General Computing).

360 The term and definition is valid in the context of the IBH 360
(and probably 370) series of computers, but not necessarily
anywhere else.

HTS The term and definition is valid in the context of the HTS
‘ operating system.

HSU The term and definition is applicable only to the Wayne State
University Computing and Data Processing Center.

Abend, Abnormal gng 360

An erroneous or incorrect program termination, indicating programming
or data problems.

Address GC

An identification, as represented by a name, label, or number, for aregister or location in storage.

AFD HTS

A pseudo device name referring to the currently active gile or device.It is the file or device obtained by a GET, CREATE, or EDIT command, to
which HTS writes (or from which it reads) data lines when in HTS
command mode.

Algorithm Gg

A prescibed set of well-defined rules or processes for the solution of
a problem in a finite number of steps: for example, a full statement of
an arithmetic procedure for evaluating "sin x" to a stated precision.

Glossary of Computing Terms Q03

i

r

HTS Volume 1: HTS -- The System

Alphanumeric, Alphameric

1

April 197B

GC

Pertaining to a character set that contains both letters and digits.
American gtandard gode for Information gnterchange, ASCII GC

A character transmission code for use between a terminal device and a
computer. Each character is uniquely represented by a 7-bit number
with an eighth bit generated for parity. The parity bit is used as a
check bit.

APL GC

A grogramming Language; a conversational programming language which is
best suited for problems requiring extensive manipulation of a small
amount of data.

Application Package GC

A set of programs and/or sub-programs designed to aid in the solution
of a specific class of problems; for example, the IBM package SSP
(Scientific Subprogram Package) is designed to provide support for
numerical and statistical programs.

Argument GC

A parameter explicitly passed from a calling program to a called
program (subroutine): for example, in the POATRAN statement CALL
SUB(A,B,C), the variables A, B, and C are arguments to be passed to the
subroutine SUB.

Array GC

An arrangement of elements in one or more dimensions.

ASCII - See American §tandard gode for Lnformation gnterchange. GC

Assemble GC

To prepare a machine language program from a low-level symbolic
language (assembler language) program by substituting absolute opera-
tion codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

Assembler GC

A progral that converts low-level symbolic language programs into
machine code.

360-assembler Language 360

A lou—level symbolic programming language used to write programs for
the I3! 360 series of computers. see also Assenble and Assembler.

H00 Glossary of Computing terms

April 1974

Auxiliary Storage, Secondary Storage

HTS Volume 1: HTS -- The System

GC

Data storage other than main storage; for example, storage on magnetic
tape or direct access devices. In general, any storage that supple-
ments another storage is auxiliary. See also main storage.

Backspace GC

To move backward one or more characters or records: for example, if an
input device (such as magnetic tape) is positioned to read the nth
record, a backspace of one record positions the device to read record
2:1 -

Base Address 360

An address used as a base to compute a storage location. Instructions
which refer to a storage location do so by specifying a register and a
12-bit displacement address. The register contains a 24-bit (or
32-bit) base address. The actual storage location referenced is given
by the sum of the base address and the displacement. See also Base
Register.

Base Register 360

Any general 'register used to hold a base address. See also Base
Address.

Batch Processing GC

A form of computer job processing in which the jobs (usually in the
form of card decks or card images) are submitted to a central location
where they are queued, either manually or automatically, for execution
at a later time. There is no possibility of interacting with a batch
job. See also HASP.

Batch Queue, Batch Stream GC

In batch processing, the queue in which computer jobs await execution.
See also Batch Processing, HASP

Binary GC

(1) Pertaining to the number system with the base of two.
(2) Pertaining to a characteristic or property involving a selection,

choice, or condition in which there are only two possibilities.
Binary Code GC

A code that makes use of exactly two distinct characters, usually 0 and
1.

Glossary of Computing Terms H05

HTS Volume 1: HTS -- The Systma

April 197

Binary goded Qecimal, BCD GC

A character code which represents each character_uniguely in 6. binary
digits. Hence, there are 63 characters possible within the encoding.

ginary Digit, Bit cc

One of the digits (0 or 1) of the binary number system. This term is
usually contracted to "bit" in computer terminology.

Binary Format GC

A term referring to "unformatted" I/O in FORTRAN programs; for example,
the format of the output from the FORTRAN statement WRITE (B) X,Y,Z.
"Unformatted" is the preferred terminology. '

Binary Read Peature< 360

A feature on a card reader that allows the reading of column binary
cards, that is, cards with non-EBCDIC punches within any or all
columns. '

Binary Search GC

An efficient .method of zsearching an ordered table, in which the
midpoint of the table is examined and one half is rejected as not
containing the elements desired. The process is repeated on the half
containing the elements. Successive bisection of the table quickly
isolates the desired elements. This method is also known as the
half-interval search. "

Bit - See Binary Digit. GC

Block - see Physical Record. GC

Blocking GC

' The process of combining two or more logical records into one physical
unit (physical record) so that it can be written to or read from an I/0
device in a single operation. ,

Blocking Factor GC'

The number <of _logical records combined to make one physical record.
See also.B1ocking. » A

BPI (bits per inch) — See magnetic Tape Density. GC

Buffer » A. ‘Y » . -
_GC

A temporary storage region for data being transmitted from one unit to
another: for‘ example, from a central processor to an I/0 unit. The
purpose of the buffer is to compensate for the different speeds at

H06 Glossary of computing Terms

HTS Volume 1: HTS -- The System

April 1978

which the units can handle data. Sometimes a buffer is a permanent
hardware feature of the unit (for example, as in a "buffered printer")
and sometimes internal main storage areas are assigned temporarily to
act as buffers.

Bug GC

A mistake in a program which causes a malfunction.

Byte 360

A sequence of 8 adjacent binary digits (bits) which can be addressed
and operated on as a unit. A byte is the smallest addressable unit of
storage in the IBM 360 series of computers.

CALCOHP Plot GC

A diagram produced by a CALCOHP plotter. See also CALCOMP Plotter,
Digital Incremental Plotter, Plotter.

CALCOMP Plotter GC

A plotter manufactured by California Computer Products, Inc. See also
Digital Incremental Plotter, Plotter.

Called Program GC

The routine to which a calling program transfers control. See also
Calling Program.

Calling Program GC

The routine from which a routine has been called. See also Called
Program.

Calling Sequence GC

A specified arrangement of instructions and data necessary to transfer
information and control to a routine.

Card, Computer Card, Punched Card cc

A card which can be used as a computer input or output medium. There
are various sizes and shapes of cards, the most common having 80
columns and measuring 7 3/8 x 3 1/0 inches.

Card Column gg

The most common computer card has 80 vertical columns numbered from 1
to 80 from left to right. Each column is divided into 12 punchingpositions and can be used to contain the coded representation of an
alphanumeric character. The code is a series of punched holes.

Glossary of Computing Terms H07

"vwv ‘ --- v- 7

HTS Volule 1: HTS —- The Systea

April 197%

Card Deck, Deck GC

A collection of punched cards comprising programs‘ and/or data for a
colputer run. " - ,

Card Hopper , Hopper GC

A holder into which cards are placed, and tron uhich they are fed to
the punching or reading I8ChhiSl of a card punch or reader.

Card Image GC

A one-to—one representation of the contents of a computer, card; for
example, a magnetic tape containing one-to-one copies of the cards in a
card deck is said to contain card images. T

Card Punch GC

A peripheral unit for punching colputer cards. See also Keypunch.

Card Reader GC

A peripheral unit for reading computer cards.

Card Stacker GC

A holder into which colputer cards are accululated into a deck after
they have been either read or punched.

Carriage Control Character GC

A character, noraally the first in an output record, which is used to
control the vertical spacing of printed output and is not itself
printed. See also Logical Carriage Control, machine Carriage Control.

Cathode gay lube, CRT GC

An electronic tube in which a bean of electrons can be controlled and
directed by an electronic lens so as to produce a visible display of
infornation on the surface of the tube. ~The IBM 2260 Display Station
terninal and the Tektronix 0010 Storage Tube terninal use CRT's.

Ccid HTS

A 8-character identification code assigned to each user of the HTS
system. The ccid serves to identify the user's account. It is also
referred to as a "signon id".

Central Processing Unit, CPU, Central Processor GC

The unit in any digital conputer systen which coordinates and controls
the activities of all the other units and perforas all the logical and
arithmetic processes to be applied to data.

H08’ Glossary of Conputing terns

HTS Volume 1: HTS -- The System

April 1970

Character GC

A letter, digit, or other symbol that is used as part of the
representation of data.

Character Code - GC

AA numeric code assigned to characters so that they may be represented
in the memory of digital computers. See also Binary Coded Decimal,
Collating Sequence, Extended Binary Coded Decimal Interchange Code.

Character String GC

A sequence of characters.

Checkpoint GC

A place in a program where a check, or a recording of data for restart
purposes, is made.

Closing a File HTS

The process of causing all main storage buffers containing parts of the
file that were changed to be written to the file, and then causing all
buffers and control blocks associated with the file to be released.

COBOL GC

ggmmon gusiness Qriented Language; a procedural language designed for
commercial data processing.

Code GC

(1) A set of unambiguous rules specifying the way in which data may be
represented.

(2) To write a program.

Collate GC

To compare and merge two or more similarly ordered sets of items into
one ordered set.

Collating Sequence cg

An ordering assigned to a set of characters, the ordering being
determined by a numeric code assigned to each character.i See also
Character Code.

Collator gc

A machine used to merge two independent card decks which have been
sorted into collating sequence.

Glossary of Computing Terms Q09

w» *7—

UTS Voluae 1: HTS -- The System

April 1970

Column - See Card Column» cc

Column Binary sc

Pertaining to the binary representation of data on computer cards in
which adjacent positions liu a column correspond to adjacent binarydigits. Loosely, and more understandably, any nonestandard, that is,
non-EBCDIC, card punch sequences. See also Binary Read Feature.

Coluand Language GC

The set of colsands which interface the computer user with the computer
system, for eraiple, the=HTSiconlands.

Couland Line HTS

An input record containing a command, such as an HTS command, debug
command, edit colaand, etc.

Command node - See HTS COII§n'H0d8¢ HTS

Coluon Storage Area GC

Usually, main storage which can be shared by several routines.

Compilation Tine GC

(1) \The length of tile it takes to translate a program from the source
language into machine language,

(2) The time during which a prograa is being compiled.

Compile GC

To translate a progral»wittnn in a high level language (for example,
FORTRAN, &LGOL, PL/I) into an equivalent machine language program which
may subsequently be executed.

Compiler GC

A program; which converts=a high level language (for example, FORTRAN,
ALGOL, PL/I) into a lover level language, usuallyfuachine language. A
compiler normally generates several low level instructions for each
source language statement. In addition, most colpilers nallow the
programaer to incorporate sub~prograus from a program library.

Coupletion Code GC

A return; codes from a language processor which indicates whether any
serious errors were encountered and, it so, how serious they were. See
also Return Code.

Computer Card - See“Card~ GC

H10‘ Glossary or Computing Teri:

HTS Volume 1: HTS —- The System

April 1970

Computer Graphics, Graphics GC

Any form of drawing, (for example, maps, graphs) produced under
computer control. The term is sometimes generalized to include any
form of visible computer output, thereby including printed output as
well as display on CRT screens. See also Calcomp Plotter, Digital
Incremental Plotter, Plotter.

Computer Word - See Fullword. GC

Concatenate HTS

To connect two or more sets of information, such as strings or files,
in sequence, such that they can be treated as a single unit. See also
Explicit Concatenation, Implicit Concatenation.

Console - See Operator's Console. GC

Console Typewriter GC

A unit of the operator's console through which communication between
the operator and the operating system takes place. Console typewriter
messages include those informing the operator of some required action,
for example, tapes requiring mounting, and those informing the operator
about the status of the programs currently running. See also Opera-
tor's Console.

Continuous Systems Hodeling Program - See CSHP. GC

Control Card GC

A card or statement in a job which contains a command to the operating
system or to a program.

Control Character GC

A character whose occurrence in a particular context initiates,
modifies, or stops a control operation; for example, a character to
control spacing on a printer.

Control Program gc

A program which provides such functions as the handling of I/0operations, error detection and recovery, program loading, and communi-cation between the program and the operator.
Conversational, Interactive gg

Describes the interaction or dialogue which takes place (via a terminaldevice) between a user and a program running under a time-sharing
system (such as HTS).

Glossary of Computing Terms U11

I

>

\ 1

>

>

\

\

\

>

-*- — V __ . ———~~————— W -

HTS Volume 1: HTS -- The Symtem

April 197“

Conversational node, Interactive node sc

A method of computer operation in which the> user is in direct
communication with the operating systemm and is- able to control,
interrogate, modify, and observe the processing of his task.

Conversational Terminal, Interactive Terminal GC

Normally a typewriter-like or CRT display device from which a-user can
communicate with a time-sharing system (such as HIS) on a real-time
basis.

Convertor 9 See Data Converter» GC

CPI (Characters per inch) - See Bagnetic Tape Density. GC

CPU - See Central Processing Unit. GC

CPU Bound GC

Describes» a joh vhich< has a high computation content in relation to
both the number of service requests (for example, I/0 requests) and the
total real time it spends on the computer. See also I/0 Bound.

CPU Time GC

The time taken by the central processing unit to perform the operations
requested..

Cross-reference Listing - GC

An alphabetic list of all symbols used in a program and an ordered list
of the numbers of all statecents which reference e-given symbol. The
symbols can be statement labels, variable names, and so on.

CRT - See Cathode Ray Tube. GC

CSHP GC

gontinuous gystems godeling grogram; a program package which allows the
simulation of continuous processes.

Cycle Time GC

The length of time a_icomputer takes to perform its most primitive
operation. The cycle time is a measure: of the basic speed of a
computer. d

R12 Glossary of Computing rerms

HTS Volume 1: HTS -- The System

April 197R

Data Line HTS

Any line, not beginning with a "$", entered when the system is in HTS
command mode, which cannot be interpreted as a command, and which has a
line number associated with it. Data lines are written to the
currently active file or device, if there is one.

Data Record l GC.

A record, for example a punched card, containing data to be processed
by a program. See also Record.

Data Set GC

(1) A collection of data in one of several arrangements and described
by control information to which the system has access; for
example, in HTS, a file is a data set.

(2) A device which performs the modulation/demodulation and control
functions necessary to provide communication between computers and
related devices via telephone lines.

Debug GC

To detect, locate, and remove mistakes from a program, or malfunctions
from equipment.

Debug Hode HTS

The state in which the Symbolic Debugging System (SDS) is in control
and monitoring a program which is being debugged. See also Symbolic
Debugging System.

Deck - See Card Deck. GC

Default Definition, Default Option GC

i An assumption which is made about the value of a variable or parameterif no explicit choice is given by the user.

Default I/0 Unit Assignments HTS

Assumptions which are made about the assignment of I/O units if no
explicit assignments are given: for example, SCARDS defaults to
SOURCE if it is not explicitly assigned to another file or device.

Default Option - See Default Definition. GC

Delimiter, Separator GC

A special indicator that separates and organizes items of data; for
example, the quote marks (') enclosing literal character data in
FORTRAN, the blanks that separate the elements of an HTS command, a
SENDFILE card at the end of a data deck.

Glossary of Computing Terms H13

\

\

\

- we ' ~ s 7 . _,_.. ., i__i

HTS Volume 1: HTS -— The Systea

April 1970

Delivery Code .
USU

The first character within single quotes on the signon card on a batch
job indicating where the printed and punched output should be manually
delivered by the campus delivery system. ,

Density, Record Density GC

The number of bits in a single linear track measured per unit of length
of the recording medium. See also Magnetic Tape Density.

Device, Unit GC

Input-output peripheral eguipsent; for example, a card reader, magnetic
tape drive, terminal, etc. ‘

Device Command HTS

A command, given in conversational mode, intended for the device
support routine of the terminal at which it is qiven. These usually
invoke (or revoke) special editing capabilities available at the
terminal and should not be confused with HTS comnands. The device
support routines interpret device commands and never pass them on to
nT5.< See also Device Support Routine.e

Device Name ’ HTS

A unique four character name assigned to each device. The device name
is used to refer directly to a particular device. ; For example, the
device name assigned to a particular magnetic tape drive is TOCZ.
Device names do not normally concern the average programmer, since he
is more likely interested in classes of devices, rather than individual
devices. Thus, he most often uses pseudo-device names, instead of
device names. See also Device, Pseudo-device Name. '

Device gupport goutine, DSR HTS

A subroutine (or set of subroutines) which interfaces a particular
device to the HTS operating system. The DSR handles all actual I/0
with the device, perforling error recovery if necessary, recognizing
attention- interrupts, etc. Conversationali terminal device support
routines also provide several editing and typographical. conveniences
which are enabled or disabled via device commands. See also Device,
Device Command.

Diagnostic - See Error Message. GC

Digital Computer -- GC

A machine capable of perforaing arithmetic and logical operations _on

data repreented in nuleric or character form.

n1Q Glossary of Computing Terms

HTS Volume 1: HTS -— The System

April 197R

Digital Incremental Plotter GC

A device that employs digital signals from a central processing unit to
activate a plotting pen and a drum which carries the plotting paper.
The plotting action results from step motions, that is, incremental
motions, of the pen and/or drum. See also Calcomp Plotter, Plotter.

Direct Access, Random Access GC

Pertaining to the process of obtaining data from, or placing data into,
main storage, where the time required for such access is relatively
independent of the location of the data most recently referenced. For
example, HTS line files allow direct access input and output. 4

Direct Access Device GC

A device in which the access time is effectively independent of the
location of the data being accessed, for example, disks are direct
access devices.

Direct Access File GC

A file in which a given record may be accessed directly, without regard
to other records in the file or to the relative location of the record
in the file. HTS line files are direct access files.

Disc - See Disk. GC

Disk, Magnetic Disk GC

A storage device consisting of a number of rotating flat circular
plates, each coated on both surfaces with some magnetizable material.
A number of concentric circular tracks are available on each surface.
Data is read from or written to these tracks by means of read/write
heads that can move radially to access a track. There may be several
heads to each surface, a particular head being allocated a specific
area (or sector) on the disk. In HTS, disks are used for line and
sequential file storage, HASP batch queue storage, and paging.

Dismounting - See Hagnetic Tape Dismounting. GC

Displacement 360

All machine instructions which designate a main storage location
contain a 12-bit number, called the displacement, which provides for
relative addressing of up to B095 bytes beyond the base address. The
base address and displacement are added together to produce the actual
address referenced. A

Glossary of Computing Terms 415

'+Q—_ _~ .7 —+

HTS Volume 1: HTS —- The System

April 197B

Display Unit GC

A device that prowideshahwisual display of data on a CRT screen. IBM
2260 terminals and Westinghouse 1600 terminals are examples of such
devices. . V

Double Precision GC

A number representatin in which two consecutive computer words are
. used to ,hold a single numerical value. On some computers this

effectively doubles the precision of numerical calculations. with the
IBM 360 series, double precision calculations involve approximately 16
decimal digits of precision. See also Single Precision.

Doubleword ‘ 360

A sequence of two fullwords (B bytes) capable of being treated as a
unit. Such a sequence rust have an address that, is divisible by 8.
Double precision floating point values are stored in doublewords.

Drive - See Magnetic Tape Drive. GC

Drum, Magnetic Drum GC

A right circular cylinder with a magnetic surface on which data can be
stored by selective magnetization of circular tracks on the curved
surface. Data access is yby means of stationary read/write heads
positioned over each track of the rotating magnetic surface. In HTS,
drums are used for paging and are not directly accessible to users of
the system. T ‘

DSR - See Device Support Routine. HTS

*DUHH!# HTS

A special system pseudo-device which is always empty. On output, it
represents ’an,infinite xaste basket: lines are accepted and disappear.
On input, *DUHH!* acts like an empty file; every time a line is
requested, an end-of-file condition is given.

Dummy Parameter, Dummy Variable GC

A parameter used in the definition of a sub—progran. These are
effectively replaced by the actual parameters provided in a call to the
sub—program. , M

Dummy Routine ' A i GC

A sub—program that (temporarily) replaces a routine that is missing,
either because it is mo longer necessary, or because it has yet to be
written. Dunmy routines are often provided during the debugging stage
of program development.

H16 Glossary of computing Texas

April 197

Dummy variable - See Dummy Parameter.

Dump

HTS Volume 1: HTS -— The System

GC »

GC

To copy all or part of a storage device (main storage, magnetic tape)
to another device (a printer) for subsequent examination. The term is
also used to refer to the process by which the copy is made, and the
actual results (printed output) of the copy.

Duplex System GC

A system in which two distinct central processing units operate in
tandem to handle the work load. That is, both CPU°s have access to the
same facilities and job queues. A program may be executed by either or
both CPU's. The WSU IBM System/360 Model 67 is a duplex system.

EBCDIC - See gxtended ginary goded gecimal lnterchange gode.

Edit GC

To modify the form or content of data; for example, to insert or delete
characters such as page numbers or decimal points.

Edit Mode HTS

The state in which the context editor is in control for the purpose of
making changes to a file.

Editor GC

V A program which performs editing functions.

Elapsed Time GC

yThe total apparent real time taken by a calculation, as measured by the
time between the apparent beginning and the apparent end of the
calculation. This is normally longer than the CPU time devoted to the
calculation since active processing does not necessarily go on at all
times.

End-of-file, BOP GCA

The indication of the end of a data set. various end-of-file
indicators (depending upon the device on which the data resides) are
used to mark this point. There are hardware end-of—file indicators
which always mark the physical end of data: for example, a magnetic
tape file mark, or the last card read after the "endfile" button is
pushed on a card reader. In addition, there are software end-of-file
indicators which usually mark a logical, rather than physical, end of
data; for example, in HTS, the characters SENDFILE in columns 1 to 8 of

~ a card. See also Magnetic Tape File hark.

Glossary of Computing Terms Q17

HTS Volume 1: HTS -- The Systeup

7,1‘.

April 197M

End-of-file Hark - See nagnetic Tape File Hark. cc

End-of-reel Marker - See End-of-tape Barker. cc f

End-of-tape Marker, End-of-reel Barker GC

A strip of reflective material which signals the end of the usable
portion of a magnetic tape. This strip can be-aetomatically detected
by a tape drive. E

Entry Point GC

In a program, any point to which control can be passed from an external
program. »

EOE - See End-of-file. ' GC

Error Message, Diagnostic GC

An indication, usually a printed message, that an error has been
detected. »

Executable Statement GC

A statement in a programming language vhich, when processed (or
compiled), causes executable object code to be generated.

Execute GC

To carry out an instruction or perform (run) a routine.

Execution Tine, Object Time, Run Tine GC

(1) The length of time it takes to execute a program.
e (2) The tile at which a»progran is being executed. ,

Explicit concatenation h

MTS

I fora of concatenation in which files or devices are chained together
to appear like a single file or device, for example, the explicit
assignment of a single logical I/O unit to chained files or devices.
The files or devices are chained by giving the appropriate file,
device, or pseudo—device names (with line number ranges .or modifiers,if desired) separated by "+"u signs. For example, 5=FILEA(1,23)+*
SOURCE* assigns logical I/O unit 5 to an explicit concatenation of the
lines of P LEA vith nulbers between 1 and 23, and the *SOURCE*
pseudo-device. See alsm Concatenation, Implicit Concatenation.

§xtended.§inary goded Qecilal lnterchange gode, EB¢DIC 360

The character code used by IBH 380 cenputers to represent characters.
Each character is uniquely represented by an B-bit number, thus giving
256 possible characters of which approximately 125 have been assigned

B18 Glossary at computing §l!I8

April

Exten

Exter

FDnam

Fetch

Field

Pile

File

HTS Volume 1: HTS -- The System

197

commonly used graphic and control functions. In addition to the
numeric code, there is also an EBCDIC card punch code, which represents
each character as a pattern of punched holes on a computer card.

t - See File Extent. HTS

nal Symbol Resolution GC

The process of linking together, during the loading process, all
references of one (sub)program to any others.

e HTS

An abbreviation for file or device gage.

Protection GC

A feature which prevents the accessing of data from specified areas of
main storage. See also Memory Protect.

GC

In a record, a specified area used for a particular category of data;
for example; a group of card columns used to represent a wage rate.

GC

In general, a collection of related information, usually organized into
smaller units called records. with HTS, the term is usually used to
refer to files residing on direct access devices, although it is often
used in reference to data on tapes. See also Line File, Private File,
Public File, sequential File, Sequential File With Line Numbers,
Temporary File.
Extent, Extent HTS

A block of contiguous disk tracks allocated to an HTS line or
sequential file. ,

Filemark - See Magnetic Tape File Hark. GC

Pile

File

Protection GC

The prevention of accidental overwriting of data files. File protec-
tion can be by hardware (file protect rings on magnetic tapes) or
software (by causing a program to check file names).

Protect Ring, Ring, Tape Ring, Write Permit Ring GC

A ring of plastic material which must be inserted into the slot
provided on the back of a magnetic tape reel in order to allow writing
of data on the tape. The presence or absence of a ring is detected by
the tape drive hardware. (No ring, no write.) -

Glossary of Computing Terms 419

V —-1,.» — —— -7 ~ ——-—~' W ——

RTS Volume 1: HTS -- The System

April 197M

Fired Point A

GC

Pertaining to a numeration systea in which the position of the decimal
point is fixed with respect to one end of the numerals, according to
some convention. For example, FORTRAN INTEGER constants and variables
are fixed-point numbers with the decimal point assumed to be at the
extreme right of all of the digits. '

Flag T

GC

Anything (for example, a variable in a program) that is used to signal
the occurrence of some condition.

Floating Point GC

Pertaining to a numeration system in which the position of the decimal
point does not remain fixed with respect to one end of the numerals.
This notation usually provides tor some representation of a power of
the base, to act as a scale factor. For example, FORTRAN REAL
constants and variables are floating-point numbers.

Flowchart GC

A graphical representation of the definition, analysis, or solution of
a problem, in which symbols are used to represent operations, data
flow, decisions, equipment, etc.

Format R l

GC

A specific arrangement of data.

FORTRAN ,
cc

An acronym for Fggmula Translator. FORTRAN is a problem oriented high
level programming language generally suited for scientific and mathe-
matical use.

roawnan-callable ' ' cc

Used in reference to at routine which is capable of being invoked
directly by a FORTRAN program.

FORTRAN G Compiler GC

The IBM Level G FORTRAN IV compiler. It is used to compile FORTRAN Iv
source programs and to perform other auxiliary services. see also
FORTRAN H Compiler, IKTFOR.

FORTRAN H Compiler GC

The I8! Level R FORRIR IV compiler. It serves the same purpose as the
FORTRAR G compiler (rarely, the compilation of FORTRRI IV programs) but
is slower and more erpensine to run. However, it produces object decks

420 Glossary or Coaputing Tern: O

April 197a

HTS Volume 1: HTS -- The System

which generally take up less computer storage and execute more quickly.
FORTRAN H should only be used for completely debugged programs. See
also FORTRAN G Compiler, NATFOR.

Fullword 360

A sequence of H bytes (32 bits) that can be treated as a unit in
numeric and character machine operations. The address of the B-byte
sequence must be divisible by 4.

Global Time Limit HTS

The maximum CPU time allowed an HTS batch job from signon to signoff.
The global time limit is given, either directly or by default, with the
SIGNON command. See also Local Time Limit.

GPSS - 360

General Purpose Simulation System; a program package which allows the
simulation of discrete systems.

Graphics - See Computer Graphics.

GUSER

GC

HTS

An acronym for "get from gseg." GUSER is a logical I/O unit and
defaults to *n50URCE*. A user's responses to system and program
queries are normally read from GUSER

Halfword 360

A contiguous sequence of two bytes (16 bits) which comprises half of a
fullword and is capable of being addressed as a unit. A halfword must
have an address divisible by 2.

Halfword Integer A 360

A number between -32768 and 32767 inclusive which may be stored within
a halfword. In FORTRAN, a halfword integer is designated as INTEGER*2.

Hardware GC

Physical equipment, as opposed to a program (software) or a method of
use; for example, card readers, line printers, card punches, magnetic
tape drives, central processing units, input/output channels, etc.

HASP, HASP Batch Monitor, HASP Monitor 360

gouston Automatic gpooling and Priority System; a program which allows
the queueing of batch input or output 'and a priority scheme for
execution of batch jobs. See also Batch Processing, HASP Batch Node,
HASP Priorities.

Glossary of Computing Terms 421

r —-----9?-V V V~-—*<-'—~~~~~——————— —— — —~~——~— —-‘Q-.1-—'—-~ —~—~v _ w

.

HTS Volume 1: HTS -- The Systet

April 1973

Hts» Batch uode- sso

Jobs submitted via HASP are sonetines said to run under HASP batch
node. See also HASP, HASP Priorities, Conversational node, Remote
Batch node.

HASP Batch Monitor - See HASP. 360

HASP Priority 360

A parameter assigned to a HASP hatch job, either by HASP itself or by
the user, which deterlines, in part, the order in which the job is
processed. »

Hexadecimal, He: Y
GC

(1) Pertaining to the nuaber systen with a base of 16.
(2) Pertaining to a characteristic or property involving a selection,

choice, or condition in which there are 16 possibilities.
High-level ’

cc

A tern describing programming languages that require extensive transla-
tion before they can he understood by computers. PL/I, FORTRAN, ALGOL
are examples of such languages.

Hollerith GC

A tern often used as a synonym for "character". See also Hollerith
Code.

Hollerith Code . GC

A punched card character code invented by Dr. "Herman Hollerith in
1888.

Hopper - See Card Hopper. GC

ID — See Ccid. HTS

Image - See Card Inaqe. GC

Immediate Value GC

A symbol which is considered to be a value, rather than a reference to
a value.

Implicit Concatenation HTS

A nethod of linking input -files or devices together, so that they
appear to be a single file or device, through.the use of a "SCONTINUB
IITH" line within each of the files or devices to he linked (except the
last). See also Concateaation, Explicit concatenation.

R22 Glossarv of Coanutinu Terra

April 1978

Indexed V

HTS Volume 1: HTS -- The System

GC

Describes a method of data "organization in which any record can be
accessed directly by means of an index of record numbers. HTS line
files are indexed according to HTS line numbers.

Initial grogram goad, IPL GC

The initialization procedure that loads the operating system into the
computer. The procedure must be carried out when the computer is
started up, and when software or hardware problems necessitate a system
restart.

Input GC

Information or data transferred or to be transferred from an auxiliary
storage medium into the internal main storage of a computer.

Input Device GC

A device from which data can be read into the computer.

Input File
A file from which data is read.

Input/Output, I/0

GC

GC

A term used to describe anything (such as, equipment, data, programs,
and so on) involved in communication with a computer.

Input/Output Device GC

Any part of the computing system hardware which is primarily used for
the transmission of information from one type of storage to another.

Input Record GC

A record read into or to be read into main storage from an auxiliary
storage medium.

Instruction GC

That part of a computer program which tells the computer what function
to perform. An instruction consists of the contents of a storage
location or series of storage locations subdivided into groups which
represent coded commands to the computer. An operation code, such as
the codes for add or subtract, may be specified, along with one or more
addresses which specify the locations of operands to which the command
is to apply.

Glossary of Computing Terms U23

—-A-— s

HTS Volume 1: HTS ---The System

April 1974

Integer Variable GC

A variable which can take only integer values.

Interactive - See Conversational. GC

Interactive Computer Graphics GC

A form of computer processing in which a user can direct, in real time,
the course of action of a program by interacting with a visual display
produced by the program. See also Computer Graphics.

Interactive Terminal - See Conversational Terminal. GC

Interblock Gap - See Record Gap. GC

Internal Representation ' GC

This term refers to the manner in which numbers, characters, and
instructions are stored within the computer's main storage. In most
digital computers, the method of representation is based on the binary
number system in which all elements are combinations of the binary
digits, 0 and 1. The binary system is most widely used because of the
convenience of constructing logic circuits and storage devices' capable
of handling data in this form.

Internal gtatement gumber, ISN 360

Numbers generated by compilers such has FORTRAN G and FORTRAN H and
usually listed to the left of each statement. ' These numbers are
generated so that every statement has a unique number which can he used
in error comments and cross-reference listings to refer to the
statement. These numbers should not be confused with HTS line numbers.

Interpret “
GC

(1) To print on a punched card the readable symbols corresponding to
the punches. ’

(2) To analyze and immediately execute a source language program.

Interpreter ' V GC

(1) A machine used to interpret punched cards.
(2) A program which executes source code as it encounters it, rather

than after it has translated all the source code.

Inter-record Gap - See Record Gap. . GC

Interrupt, Trap V ‘ V
GC

An interrupt is essentially a subroutine call to a specific location in
main storage invoked automatically by the hardware rather than by a
program. It is used to inform the operating system of the occurrence

B20 Glossary of Computing Terms

April 197R

HTS Volume 1: HTS —- The System

of some internal or external event that requires some action on the
part of the operating system. For example, a card reader which has
finished reading a card interrupts the CPU to inform it that the I/O
operation is complete; a program that attempts to divide by zero
interrupts the CPU so that diagnostic action can be taken, and so on.
The operating system deals with interrupts according to a complex
algorithm that depends upon the type of interrupt, the current state of
the system, and so on.

Interrupt Code GC

A numeric code which serves to identify the type of an interrupt. In
IBM 360 machines (except Model 67's in extended Psw mode), the
interrupt code becomes part of the program status word when an
interrupt occurs.

Interrupt Mask GC

A program controllable binary switch which, according to its value,
prevents or allows an interrupt. There is one switch for each type of
interrupt.

I/0 - See Input/Output.

I/O Bound

GC

GC

Describes a job which issues a large number of input/output requests in
relation to both the time required for computation and the total real
time spent on the computer. See also CPU Bound.

I/0 Modifier HTS

A character or set of characters beginning with an "6" appended to afile or device name in order to change the way in which it is treated
or regarded during I/0 processing.

IPL - See Initial Program Load. GC

Irrecoverable I/O Error , GC

A persistent error condition on an input/output device such as a
magnetic tape drive, disk, etc.

ISN - See Internal Statement Number. 360

JCL - See Job Control Language. 360

Job GC

A group of tasks prescribed as a unit of work for a computer. By
extension, a job usually includes all necessary programs, data, and
instructions to the operating system. In HTS, a job is delimited by
the SIGNON-SIGNOPP commands.

Glossary of Computing Terms Q25

war -"*~— s i
HTS volume 1: HTS —- the System

April 197B

Job Control Language, JCL n

360

The language that allows the user to interact with the IBH Operating
System/360 (OS/360) in order to use the computer.

Job Deck 1 ‘ GC

A A collection of punched cards comprising a complete batch job. On HTS

at BSO, a job deck begins with an S-8 card, and‘ is followed by a
$SIGHOH comaand, and some combination of commands, programs, and data,
and terminates (optionally) with a SSIGHOPP command.

Justify V

GC

To align data about a secitied reference. Frequently, the term is
used in reference to data preparation. To "right justify" data is to
move the data as far to the right in the allotted space (field) as
possible. An analogous definition holds for "left justify".

K GC

In computer terminology, the symbol "K" usually represents two to the
tenth power, that is, 1K=2l°=1024. For some decimal coaputers, for
example, the IBH 101 and 110, "K" represents ten to the third power,
or 1K=10==1000.

Key l n
a GC

one or more characters or numbers within an iten of data which serves
to identify or control the data or its use. For example in sorting,
the "sorting key" is that number or string of characters in each data
record according to which the data is sorted. ' i

Keypunch . . H
Q

cc

A keyboard operated eachine used to punch holes into computer cards.
The operator simply depresses keys on a typewriter-like keyboard to
cause holes to be punched column by column into the card.

Keyword Parameter GC

A parameter in a command or programming statement which is of the form
"KB!IOHD=operand", for example, T=60 on the SSIGHOH command, and
HhP=*SI8K* on the SRUH command. The operand is variable, the keyword
name is fixed. In some cases, there is no operand and the form is

H "KEYWORD"; this is sometimes referred to as a degenerate keyword.

Label GC

one or more characters used to identify an itea of data. The tern is
most often encountered in reference to a string of characters which
serves to identify a statement in a program. It is also used in

R26 Glossary of computing Tarps

HTS Volume 1: HTS -- The System

April 197R

reference to identifying information found on magnetic tape. See also
Hagnetic Tape Label. -

Left Justify - See Justify. GC

Library File HTS

A file which contains sub—programs in the form of an HTS sub—program
library. This term also has been loosely used as a synonym for "public
file."

Library Programs GC

A collection of programs and/or sub-programs available to every user of
the computing system. With HTS at USU, library programs, are usually
available in public files and public library files. However, the term
is usually used in reference to any program supplied and supported by
the Computing and Data Processing Center, regardless of the form of
availability.

Light Pen GC

A photo—electric device, about the size and shape of an ordinary pen,
used as an adjunct to a CRT display unit. The user can pass the pen
over the surface of the CRT to select images displayed on the screen.
The light pen selection of an image can he used to initiate some
programming action; for example, modification of the image being
displayed.

Line - See Record. GC

Line File HTS

A direct access file consisting of ordered lines which may be up to 255
characters long and are each identified by a unique line number. See
also Line Number.

,

Line Number HTS

A number.vhich uniquely identifies each line in a line file. External-
ly, line numbers are in the range -99999.999 to +99999.999. Internal-
ly, HTS stores the line numbers as fullvord integers. See also Line
File.

Line Number Range HTS

A qualification put on a file, device, or pseudo—device name to
indicate that only certain records from the file or device are of
interest. The form of the qualification is "FDname(b,e,i)", where "b"
is the number of the beginning record (line) of interest, "e" is the
ending record, and "i" is the increment to determine the numbers of
intermediate records between "h" and "e".

' Glossary of Computing Terms R27

-~uIo- Y.-,-is I

HTS Volume 1: HTS -- The Systen

April 197R

I Line Printer - See Printer. GC

Linkage Editor 360

A program that takes object programs as produced by any of the language
processors and transforns then into a form that loads very efficiently.

Listing GC

A printed copy of a program, a set of data, etc.

Literal GC

A synbol or a quantity in a source program that contains its value as
an explicit part of its none.

Load L
cc

Usually, to read an object progran into the computer's main storage,
and prepare it for subsequent execution by carrying out the necessary
'relocation and resolution of external references. See also Load Bap,
Load Tine, Loader, object Prograa, Relocation, External Symbol Resolu-
tion, Unload.

Load nap ~ GC

Listing of the nemory locations at which programs and sub-programs have
been loaded.

Load nodule - See Object Programs. GC

Load Point GC

that point which is the beginning of the usable portion of a magnetic
tape. "rt is the position of a tape after it has been revound. see
also Load Point Barker.

Load Point Barker GC

A strip of reflective neterial that narks the load point of a magnetic
tape. It is automatically sensed by the_tape drive hardware.

Load Time GC

(1) The LCPU time required for an object program to he loaded into
memory.

(2) 'ThQ*iiI% at which the lead process is taking place.

Loader GC

A program which reads object pnogras into main storage and prepares
then for subsequent execution. See also Load.

R28 Glossary or rrmpnting ierar

HTS Volume 1: HTS -- The System

April 197a

Loading Routine - See Loader.

Local Time Limit HTS

A limit on the amount of CPU time that can be used by one segment of a
-complete computer job. In HTS, local time limits can be specified for
single RUN commands. See also Global Time Limit.

Location — See Storage Location. GC

Logical Address - See Virtual Address. GC

Logical Carriage Control GC

Control of the vertical spacing of printed output as it is normally
encountered at the programming level. Logical carriage control uses a
set of carriage control characters whose action is related to a logical
page which, in HTS, consists of 60 lines centered on each individual
sheet of paper. Each logical carriage control character must be
translated into its equivalent machine carriage control character
before being sent to the the printer. The translation is done within
the operating system and need not concern the programmer. See also
Carriage Control Character, Hachine Carriage Control.

Logical I/O Unit, Logical Unit, Logical Unit Number HTS

A name or number which may be used in a program to refer to an I/0
device. The name is not connected with any particular file or device,
so the program is independent of the actual file or device which is
eventually used. The HTS logical I/O units are SCARDS, SPRINT, SPUNCH,
SERCOH, GUSER, and 0 through 19.

Logical Record GC

A logical unit of data. See also Blocking.

Logical Unit - See Logical I/O Unit. HTS

Logical Unit Number - See Logical I/0 Unit. HTS

Low-level Gc

A term usually used when .describing computer languages. Low-level
languages are those close to machine language in syntax.

Low-order Position GC

The rightmost position in a number or word.

Hachine Carriage Control GC

Control of the vertical spacing of printed ouput. Hachine carriage
control differs from logical carriage control in that it uses a set of

Glossary of Computing Terms 429

i

!

I

I

P

Q" i,

MTS Volume 1: MTS -- The System

April 197R

carriage control characters whose action is related to the actual
hardware that causes the paper movement, rather than to a logical page.
See also Carriage Control Character, Logical Carriage Control.

Machine Language _

GC

Refers to instructions written in the code which can be immediately
executed by a computer without any translation.

Machine word - See Fullword. GC

Macro, Macro Instruction GC

A source language instruction that is replaced, during translation, by
a predetermined sequence of machine instructions, usually with provi-
sions for parameter replacement.

Macro Library GC

A library which contains routines that are written in a macro language.
with 360 computers, these are written in the 360-assembler macro
language.

Magnetic Disk - See Disk. GC

Magnetic Drum - See Drum. GC

Magnetic Tape, Tape V

GC

A storage medium composed of a continuous strip of plastic material
which is coated with a magnetic oxide. Data is recorded on this
surface as a series of magnetized spots. For 360 use, the tape is
recorded in either 7 or 9 parallel tracks along the length of the tape,
and is wound around a plastic reel which normally holds 225, 600, 1200,
or 2600 feet of tape. At ISU, all tapes must be 9 track: tapes
assigned to users by the tape librarian are generally 2000 feet long.
Tapes are useful for the storage of large volumes of fairly static
data, and for shipping them by mail.

Magnetic Tape Density, BPI, or CPI, Tape Density GC

The number of bits per track or characters per inch of magnetic tape.

Magnetic Tape Dismounting, Dismounting, Tape Dismounting GC

Removing a reel of magnetic tape from a tape drive.

Magnetic Tape Drive, Drive, Tape Drive, Tape Unit GC

A device consisting basically of a mechanism capable of moving two tape
reels at a high speed so that tape is wound from one reel onto the
other.n Ls the tape is transported between the two reels, it passes a

read/write head which is used either to read from or write to the tape.

H30 Glossary of Computing Terms

MTS volume 1: MTS -- The System

April 197R

Magnetic Tape File Mark, End-of-file Mark, Pile Mark, Tape Mark GC

The end-of-file indicator on magnetic tape. For 360 use, it consists
of a hardware-generated "tape mark gap" (a length of blank tape), and a
special hardware—generated record which the hardware recognizes when
reading the tape.

Magnetic Tape Label, Label, Tape Label GC

One or more blocks of information recorded at the beginning of a reel
of magnetic tape. The first block contains identifying information
that is_ used to check that the correct tape has been mounted by the
computer operator. Subsequent blocks may contain dating or other
information with reference to the actual identifying information in the
first label block. .

Magnetic Tape Mode, Mode, Tape Mode GC

Describes the physical properties of magnetic tape data; such as,
density, parity, convertor on or off, and so on.

Magnetic Tape Mounting, Mounting, Tape Loading, Tape Mounting GC

The process of placing a reel of magnetic tape onto a tape drive, and
preparing it for reading or writing.

Magnetic Tape Reel, Reel, Tape Reel GC

A plastic spool around which magnetic tape is wound.

Magnetic Tape Rewind, Rewind, Tape Rewind GC

To position a tape at the load point marker after reading from or
writing to the tape. See Load Point Marker.

Magnetic Tape Ring - See File Protect Ring. cc

Magnetic Tape Unit - See Magnetic Tape Drive. GC

Main-line Program, Self-contained Program GC

A program that can be executed directly rather than having to be called
from another routine.

Main Storage, Main Memory GC

The general purpose storage of a computer. Usually, lain storage can
be accessed directly by the operating registers in the central
processor as contrasted to auxiliary storage which cannot. In general,
all program-addressable storage from which instructions lay be executed
and from which data can be loaded directly into registers is called
main storage. See also real memory, virtual memory.

Glossary of Computing Terns H31

" Wan» _ s-I as —~

MTS Volume 1: MTS -— The System

April 1970

Map - See Load Map, Memory Map. GC

Mask ' GC

A pattern of bits or characters that is used to control the selection,
retention, or elimination cf portions of another pattern of bits or
characters.

Memory Map GC

A listing of all variables, constants, and lstatement labels in a
program, and the storage lccation, usually relative to the start of the
program, assigned to each. A memory map is typically produced by a
compiler. See also Load Map.

Memory Protect GC

A feature that prevents the writing of data into specified areas of
main storage, thus preventing a program from destroying the operating
system or another user's program. In IBM 360 computers, the protected
area is designated by a key in the program status word. Once the key
is set, the program can only write into sections of storage that have
the same key. See also Memory Protection, Protect Key.

Memory Protection, Storage Protection GC

An arrangement for preventing access to storage for either reading or
writing or both. See also Memory Protect, Protect Key.

Michigan Terminal System, MTS MTS

An operating system designed to run on an IBM System 360 Model 67
computer. It is a multi-programming, multi-processor, interactive,
time-sharing system that offers compatible batch and terminal facili-
ties, and makes use of the special hardware features of the Model 67 in
providing these facilities. MTS was developed by the University of
Michigan Computing Center staff.

Mode - See Magnetic Tape Mode. GC

Modes of Operation MTS

(1) The MTS operating system allows computer access in several ways,
for example, conversational terminal access, HASP batch access,
remote batch access. Each of these can be referred to as a "mode
of operation". See also Conversational Mode, HASP Batch Mode,
Remote Batch Mode. -

(2) The MTS command language has several modes of command operation.
they are MTS command mode, edit node, debug mode, or network mode.
See also MTS Command Mode, Edit Mode, Debug Mode, Network Mode.

Modifier - See I/O Modifier. S
MTS

B32 Glossary of=Computing~Eerms

April 197

Module

MTS Volume 1: MTS -- The System

GC

A program unit that is discrete and identifiable with respect to
compiling (the source module) and loading (the object module).

Monitor GC

Software or hardware that observes, supervises, controls, or verifies
the operation of a system.

Mounting - See Magnetic Tape Mounting. GC

HSINK HTS

A pseudo-device used for output. MSINK stands for gaster sigh, which
is always the terminal in conversational mode or the printer in batch
mode.

MSOURCE HTS

A pseudo-device used for input. MSOURCE stands for gaster gggggg,
which is always the terminal in conversational mode or the card reader
in batch mode.

MTS - See Michigan Terminal System.

MTS Command

HTS

HTS

A command to the MTS operating system; an element of the MTS command
language.

MTS Command Mode HTS

The state during which MTS is ready to accept either commands or data
lines for the currently active file or device. At a terminal, MTS

command mode is usually indicated by the presence of the "#" prefix
character.

Multi-level Storage System GC

A system in which the most frequently used information is kept on
higher speed storage devices, while less frequently used data is stored
on slower auxiliary storage devices.

Multi-programming System GC

A system that supports more than one program in a state of activity at
one time. MTS is one such system.

Glossary of Computing Terms N33

HTS Volume 1: HTS -—-The Systel

Q
E

April 197R

Hulti-processing System GC

An operating system vhich runs on a computer that has more than one
central processing unit. HTS is such a system. (The IBM 360 nodel 67
at I50 is a dual-processor, that is, a duplex nachine.)

Nesting GCA

Pertaining to a set of progralling instructions that contains a
structure similar to itself: for example, a loop of instructions that
contains another loop, and so on, possibly down through several levels.

Nine-track Magnetic Tape t
‘ GC

hagnetic tape that has been written on a 9-track drive.

Nine-track Magnetic Tape Drive GC

A magnetic tape drive tat vrites 9 bits accross the tape, 8 data bits
plus a parity bit.

Non—numeric Character GC

A character that is not a numeral
. ' ru» e

Non-printing Graphics , GC

Characters that can be represented within the conputer, but for which
there is no corresponding visible character our the printing device
(such as, printer or Teletype). If one attempts to print such
characters, a blank usually appears.

Object Code V GC

Output from a progranning language processor that is itself executable
-machine code or is suitable for processing to produce executable
machine code. ‘

Object Deck GC

A deck of cards which contain object code.

Object File T

GC

A file containing object code.

Object Language GC

The language in vhich the output from a progranning language processor
is expressed.

?
'B34 Glossary of conputinu‘Terns‘

April 191a

Object Module - See Object Program.

Object Program, Object nodule

HTS Volume 1: HTS -- The System

GC

GC

A program or sub-program in object code form.

Object Time - See Execution Time. GC

Octal GC

(1) Pertaining to the number system with a base of 8.
(2) Pertaining to a characteristic or property involving a selection,

choice, or condition in which there are 8 possibilities.
Off-line ' GC

Descriptive of a system (and its peripheral equipment) in which the
operation of the peripheral devices is not under the control of the
central processing unit of the main computer.

OUR, Optical Mark Reader GC

A device capable of reading cards marked with pencil.

On-demand System GC

A system from which information or service is available immediately at
the time of request.

On-line GC

(1) Describes peripheral devices under direct control of a CPU.
(2)‘ Pertaining to a user's ability to

Opening a File -

interact with a computer.

GC

The process of collecting the information necessary to begin I/0
operations on a file.

Operating System GC

Software which controls the execution of computer programs and which
may provide scheduling, debugging, I/O control, accounting, compila-
tion, storage assignnent, data management, and related services. The
operating system at ISO is the Michigan Terminal System (HTS). See
also Michigan Terminal System, OS, TSS

Operator's Console, Console GC

The operator's console contains all the switches and indicators
necessary for the operation of the central processor. It allows for
such things as turning power on and off, starting and stopping the
system, error status display, main storage and register display, etc.

Glossary of Computing Terms Q35

F

)

l

2&4;

HTS Volume 1: HTS -- The System

April 197R

host consoles incorporate an alphanumeric display device (such as a
typewriter or CRT) for communication between the operating system and
the computer operator.

OS 360

The IBM operating system for IBM System/360 and 370 computers with more
than SBK of main storage.

Output GC

The transferring of data from main storage to auxiliary devices. The
term is also used to describe the devices and the data involved in such
a transfer.

Output Device GC

Peripheral equipment to which output can be directed: for example, a

printer, magnetic tape drive, disk file, etc.

Output Record

A unit of data intended for an output device.

Padding

GC

GC

The act of appending fill characters (usually blanks) to a record to
bring it up to a specific length, for example, padding with trailing
blanks.

Page GC

A unit of storage in a nconputer which is used by the addressing
hardware to allow references to a location to he done as a displacement
from a base address. For the IBH 360 Model 67, a page is H096 bytes.
See Paging.

Paging GC

Paging is a storage management technique which facilitates the moving
of user programs in and out of high speed storage to slower peripheral
storage. The various storage devices are divided into pages, and
information is tranferred from main storage to auxiliary storage in
page-sized blocks. Any subset of the pages assigned to a program can
be in storage at one time. It is possible to allow a program to access
more storage than is physically available in the system, for pages
which are not currently required can reside on the auxiliary storage
devices. iith HTS, drums (and disks if the system is busy) are used
for paging. Each user is provided with 6 million ‘bytes of storage,

» even though the system has a total of only two million bytes of main
storage. See also Virtual Memory.

036 Glossary of Computing Terms

April 197M

Paper Tape

HTS Volume 1: HTS -- The System

GC

A computer I/0 medium which is a strip of paper into which information
can be recorded by means of a pattern of punched holes. Each character
is recorded as a single row of holes across the width of the tape.

Paper Tape Punch GC

A device for punching holes in paper tape in response to signals
transmitted from a computer.

Paper Tape Reader GC

A device that senses and translates the holes in paper tape into
electrical signals for input to a computer.

Paper Tape Transmission Code 360

A character transmission code for use between a terminal device and a
computer. Each character is uniquely represented by a 6-bit number
with a seventh bit generated for parity. The parity bit is used as a
check bit.

Parameter GC

A unit of variable information passed by a user to the operating system
or from one program to another.

Parity Bit GC

A check bit used to assure the validity of stored data (whether the
data is in main storage or tape or wherever). In general, the parity
bit is an extra bit attached to a small part of storage (with IBM 360
computers, usually the byte). when data is stored, the parity bit is
set so that the sum of all the bits set is either even or odd (usually
odd). ’Hhen the data is read back, the associated parity bit is checked
to be sure that the odd or even relationship still holds - if not, the
hardware signals an error condition.

Password HTS

A user controlled character string which must be given (together with
an ID code) with the SIGNON command in order to gain access to the
computing system. The password is part of the security mechanism
preventing people from using ID's, and therefore accounts, that aren't
their own. See also Password Card.

Password Card HTS

In batch mode, the password should always be given on the card follwing
the SIGNON command. This password card is not printed with the rest of
the job's output, and thus the security of the password is maintained.
The password card should be punched with keypunch printing disabled.

Glossary of Computing Terms Q37

_Q- __

L HTS Volume 1: HTS ---The System

if???

April 1973

PDN - See Pseudo—device Hale. GC

Peripheral Unit GC

A machine which can be operated under computer control. Peripheral
equipment includes input devices (such as, card readers, or magnetic
tapes), output devices (line printers, plotters), and storage devices
(disks, drums).

Permanent File HTS

Any file that is created by a user and which does not have the scratch
file character (usually a minus sign "-") as the first character of its
name. Such files are automatically saved until they are explicitly
destroyed with a DESTROY command. See also File, Line File, Sequential
File, Public Pile, Library Pile.

Permit Code HTS

A code attached to a file which controls access to the file.
Physical Record, Block GC

A unit of information as it appears on some storage medium. See also
Logical Record, Record.

PIL, PIL2 GC

Pittsburgh Lnterpretive Language; an interactive, procedure-oriented
language designed for terminal use.

PL/I GC

Programming Language 1: a high-level programming language suitable for
both scientific and business use.

PL/I Library HTS

A file *PL1LIB containing the object decks of subroutines frequently
referenced by PL/I programs.

Plotter GC

An electro-mechanical device used to produce computer generated draw-
ings, graphs, etc.

Positional Parameter GC

A parameter whose identity is determined by its particular position in
a sequence of parameters: for example, in HTS, the ccid code must be
the first parameter given with the SSIGNON command.

K38 Glossary of Computing Terms

April 197B

HTS Volume 1: HTS —- The System

Precision - See Single Precision, Double Precision. GC

Prefix Character ‘ HTS

The first character of each line on conversational terminals is called
the prefix character. The most important prefix characters are printed
by HTS and are: "8" which is issued when the terminal is in HTS
command mode, ">" which is issued with output from the LIST and COPY
commands, and "?" which is issued to prompt for responses to queries.
Output and input lines for user programs are also preceded by prefix
characters, normally the blank.

Preprocessor GC

A term used to refer to a program which transforms data in some way
before it is used by another program.

Printer GC

An output device which converts data into printed form on paper.

Printer Plot

Graphical output produced on a printer.
Priority

GC

GC

A parameter determining, in part, the order in which batch jobs are
processed. See also HASP Priority.

Private File - See Permanent File.
Problem State

HTS

GC

when a computer is executing the instructions of a problem program (as
opposed to the operating system), it operates in what is called the
problem state. In this state, all I/O instructions and a subset of the
control instructions are invalid. This ensures that one user's program
cannot execute an instruction that affects other users‘ programs. See
also Supervisor State.

Procedure-oriented Language GC

A higher-level language suitable for expressing algorithms quite
directly.

Processor — See Central Processing Unit

Program

. GC

GC

(1) A series of instructions in some computer language.
(2) To design, write, and test such a series of instructions.

Glossary of Computing Terms R39

-— -~ P-my

>

HTS Volume 1: HTS ~- The syaten

April 1974

Program Interrupt . 360

A specific category of interrupts ahich is caused by the execution or
attempted execution of an illegal instruction or an illegal use of data
for an instruction. h

Prograa Seguent GC

Usually a set of progralming instructions which have some sort of
logical or physical connection, but which do not fora a complete
program as defined by the particular programming language used.

Program Status lord, PSI 369

A doubleword containing information necessary to describe the status of
the computer.

Project HTS

A designation of a group of MTS ccids with a conmon account to be
billed.

Protect Key sc

A flag in the prograa status_word on the system 360 which designates
the parts of main storage into which a program may write. A program
can write into only those areas which have the sale key. Thus, if
different users are given different protect keys, then one user can in
no way affect another user. See also nemory Protect, neaory
Protection.

Pseudo-device ‘ HTS

Logical device classes ’which are used in place of actual devices so
that prograalers need not concern themselves with the physical devices
their prograas use. The correspondence between the logical device
class and the physical device used is made by the operating system.
see also Pseudo-device Name.

Pseudo-device naae - his

The naae of a pseudoedevice. For example, in HTS batch node, the
pseudo~device name referring to the printer is *dSInK*. In HTS, each
pseudoedevice naae starts and ends with an asterisk (*). some naaes
are predefined by the systea, and others can be defined by the user.

Psw - See Program Status word. 360

PTTC - See Paper Tape Transmission Code. 360

H50 Glossary of Computing Torus

April 197“

HTS Volume 1: HTS -— The System

Public File HTS

A file which has a name starting with an asterisk (*), CCAP:, HELP:, or
DEnO:, which can be read by all users of the computing system.
Computing center staff use public
subprograms of general interest.

files to maintain programs and

Public Library File ' HTS

A public file containing object modules organized as an MTS sub-program
library. The term has been used (loosely) as synonymous with "public
file". In this context, "library" refers to those programs and
sub—programs provided by the Computing Center for general use, rather
than to the actual format of the file.

PUNCH HTS

A pseudo-device name referring to the system card punch.

Punch - See Keypunch, Paper Tape Punch, Reproducing Punch. GC

Punched Card - See Card.

Punched Output

, cc

sc

Computer output produced by some sort of punch device, such as, a card
punch or a paper tape punch.

Queue — See Batch Queue. GC

Rack Number HTS

A number assigned to the physical storage location of each magnetic
tape in the Computing Center's storage racks.

Random Access - See Direct Access.

Raw Data

RC -
Read

GC

GC

Data which has not been transformed or otherwise processed.

See Return Code. GC

GC

To acquire or interpret data from a storage device or any other source.

Reader ' 7 hi cc

A device which converts information in one form of .storage to
information in another form of storage. See also Card Reader, Paper
Tape Reader. ~

Glossary of Computing Terms “R1

Q * -_-I

u

HTS Volume 1: HTS -- The System g

April 1975

Read-only Storage ‘ “ GC

Describes storage froa which data can be read but not changed.

Read-write Head GC

An electronagnetic device used to read data tron or write data onto a

magnetic medium snch as magnetic tape, disk, or drum.

Real Address i
GC

an address that indicates,‘ in the machine code address numbering
system, the exact storage location where the referenced operand can be
found or stored. p

Real lemory GC

A tern reterring strictly to the primary storage pediua (usually rain
storage) of a computer. See also Virtual Heaory.

Real Tile ‘ ' GC

(1) Pertaining to the actual time taken for a phtsical process.
(2) Pertaining to the performance of a coaputa ion during the actual

tine that a related physical process is taking place, often in
order to monitor and guide the process.

Real Variable V
’ ’ GC

A variable whose value is numeric and stored in floating point fora.

Receipt Card - See S-8 Card. ' HTS
1

Record .
GC

A collection of related itels of data, treated as a unit. See also
Logical Record, Physical Record.

Record Density - See Density.

Record Format GC

The organization of a record.

Record Gap, Inter-record Gap, Interhlock Gap GC

A length of blank tape (0.6 inches long for 97track tape, 0.75 inches
for 7-track) used to separate physical records on aagnetic tape.

Record Index cc

A quantity that points to the next record to he processed.

0&2 Glossary at Colputinq terns

April 197B
G

Record Length

HTS Volume 1: HTS —- The System

GC

The number of units (bytes with IBM 360 computer) of data in a record.

Reel GC

The plastic spool about which magnetic tape is wound.

Re-entrant GC

Descriptive of a program that doesn't modify itself in any way. In a
time-sharing computer system, a single copy of a re-entrant program can
be used by many users "at the same time". Since such a program doesn't
modify itself, one person's use of the program cannot affect another
person's use.

Register GC

Part of the central processing unit of the computer which holds
information to be subjected to arithmetic and logical operations. In
IBH 360 computers there are two types of registers: general registers
for logical and integer numeric operations, and floating-point regis-
ters for floating-point numeric operations.

Relative Addressing A
GC

A system of programming in which instructions are written so that they
refer to some base location (usually the start of the program) rather
than to an absolute storage address. when the program is executed, the
base address is added to the address component of each instruction in
order to create absolute addresses.

Remote Batch Mode GC

Refers to the submission of non-interactive jobs to the computer from
card readers not located with the computer. See also HASP, HASP Batch
Mode, HASP Priorities.

Remote Terminal S GC

An I/0 device not located with the computer. The term usually refers
to conversational terminals, but is used to describe batch (non-
interactive card reader/printer) terminals also.

Reproducing Punch GC

A machine which reads a deck of cards and automatically produces a
duplicate copy.

Resident System GC

A term used to denote that part of the operating system which resides
in main storage at all times.

Glossary of Computing Terms R43

~"l— <I~ _---_ . ',_"v* 7 l

HTS Yoluae 1: HTS -- the systen

April 1973

Resolve External Symbol Resolution. GC

Resolve Library References - See External syabol Resolutuion. GC

Response Time GC '

The real tine taken to complete a requested computation. The tern is
usually used in reference to calculations done at conversational
terminals.

Restart GC

To re-establish the execution of a progran.

geturn gode, RC GC

A number returned by sub-prograas that indicates the success or failure
of some part of the task done by the sub—program. In Inn 360
computers, it is usually returned in general register 15 and is a
multiple of R in value. The return code is used by FORTRAN to set up
nultiple returns froa subroutines (that is, RETURN 1, RETURN 2, etc.).

Re—usable GC

The property or attribute of a prograa which lakes it self initializing
so that it can be used lore than once, or by more than one user, but
not necessarily at the sale tile. See also Re-entrant, Serially
Re-usable. '

Rewind - See Magnetic Tape Rewind. GC

Right Justify - See Justify. V
GC

Ring - See ?ile Protect Ring. GC

Round-off Error -
Gc

An error resulting, from the procedure of deleting some of the less
significant digits of nuabers and, possibly, applying some rule of
correction.

Routine A

sc

A prograa or sub—prograa. See also Prograa, Sub-program.

Run Time - See Execution Tine. ~ GC

Save Area 360 ~

The storage area belonging to a calling program and used by the called
prograa to save and later restore general registers and other
information.

#04 Glossarv of coanutinq terns

April 191a

SCARDS

MTS Volume 1: MTS -- The System

MTS

A logical I/O unit which defaults to *SOURCE*. SCARDS stands for
§Y$tem 2é£§§-

Scratch File - See Temporary File.
SDS - See Symbolic Debugging System.

Secondary Storage - See auxiliary storage.

HTS

HTS

GC

Self-contained Program — See Main-line Program. GC

Sense Bytes 360

Coded information, generated by hardware, concerning the status of a
device. For example, sense bytes give information about the cause of
tape reading errors.

Separator - See Delimiter. GC

Sequential File GC

(1) A data file in which the records must be accessed in a fixed
order, one after the other. Magnetic tape files are sequential
files.

(2) A particular type of MTS file organized as in (1).

SERCOH HTS

A logical I/0 unit which defaults to *MSINK*. System and program error
messages are normally directed to SERCOM. SERCOM stands for §ystel
error gggments.

Serially Re-usable GC

Describes a program that can be used again and again from the beginning
without having to be reloaded into main storage, but which only one
user can use at a time. See also Re—entrant, Re-usable.

Seven-track Magnetic Tape GC

Tape that has been written by a 7-track magnetic tape drive. See also
Seven-track Magnetic Tape Drive.

Seven-track Magnetic Tape Drive , GC

A magnetic tape drive that records data in 7 channels running
lengthwise along the tape. Six bits across the tape are used to hold
data and one bit is for parity.

Glossary of Computing Terms HHS

——-l— 1.

HTS Volume 1: 815 -- The System

April 197R

Severity Code GC

An indicator associated with an error message produced by a language
processor and which indicates the seriousness of the error.

Signon id - See Ccid. n HTS

Single Precision GC

The use of a single computer word to hold the results of calculations.
See also Double Precision.

SINK w

HTS

A peudo—device naae referring to an output file or device. It
defaults to the terminal in conversational node and the printer in
batch mode. However, its designation nay be changed with the SINK
command. '

Snark HTS

A condition of multiple progran interrupts in HTS which requires the
system operator to take special action to sign off the affected user.

SHOBOL GC

A symbol nanipulation language which is useful for language transla-
tion, program compilation, and combinatorial problems.

Software '
GC

Programs, as opposed to hardware. See also Hardware.

Sorter GC

A nachine used for sorting punched cards into some desired sequence
according to information punched on the cards.

SOURCE HTS

A pseudo-device nane referring to the input file or device from which
HTS connands and data for the currently active file are taken. It
defaults to the terminal in conversational mode and to the card reader
in batch node. However, the *SOURC!* file or device can ,be changed
with the SOURCE connand.

Source Deck GC

A card deck on which a progral has been punched in a conputer language
other than nachine code.

EH6 Glossary of Computing terns

April 197B

Source Language, Symbolic Language

HTS Volume 1: HTS —- The System

GC

Any programming language which cannot be directly processed by a
computer, but requires translation into an object program consisting of
machine code instructions, for example, PL/I, FORTRAN, ALGOL.

Source Programv - GC

A program as written in a source language.

Special Character GC

A character that is neither alphabetic, numeric, nor a blank.

SPOOLING

(gimultaneous Peripheral gperations

GC

Qn-line) A process whereby the
system reads all cards for a batch job before starting the job, and
saves the printed output until the job is finished before starting to
print it. This is in distinction to having the card reader and printer
attached to the job for the duration, thereby forcing all jobs to
proceed at the rate of the slowest component.

SPRINT HTS

A logical I/O unit which defaults to the pseudo-device *SOURCE*.
SPRINT stands for gystem print unit.

SPUNCH HTS

A logical I/0 unit which defaults to the pseudo-device *PUNCH*. It is
the gystem pgggh unit.

Stacker — See Card Stacker. GC

Station GC

The location of a computer input/output device, as in, for example, a
remote batch station.

Storage GC

Any medium for storing information so that 'it is available to a
computing system when required. See also main storage, auxiliary
storage, Virtual nemory.

Storage Location \ GC

A particular position within the main storage of a computer.

Storage Protection - See Memory Protection. GC

Glossary of Computing Terms 447

—~ ~—- .

HTS Volume 1: HTS -- The Systel

April 1974

Store GC

To enter or retain data in a storage device.

String GC

A sequence of information elenents of a sinilarl type (such as bits,
bytes, characters), treated as a single item of data.

Sub-program, Subroutine GC

A' part of a larger program written in such a way that allows it to be

called frondseveral.places»in*thehmain program.‘ Aisub-program; may be
translatedl into~ machine language and tested independently of the main
program.

Subroutine - See Sub—prograa;~ GC

Supervisor, Supervisor.ProgranA GC

A program (or system of programs) that is< always available in the
computer's» main storage fora controlling the sequencing, setup, and

execution of all jobs entering the computer. A supervisor is usually
one part of an operating system. UBHPS is the supervisor for HTS.

Supervisor Call d

360

A special instruction used by a program to force an interruption of the
job in progress through a transfer of control to the supervisor. This
action is needed for input/output operations and other operations that
place special- denands on the, resources of the computer system. A

supervisor call causes a transfer. from the problem state to the
supervisor; state. See also Problem State,_ Supervisor, Supervisor
Interrupt, Supervisor State.

Supervisor Interrupt 360

A transfer of control to the supervisor, because of sone. exceptional
condition.‘ This nay arise in the program being executed (for example,
through division.by zero), or in" some other process that is being
handled concurrently, (for eranple, input/outputy. See also Problem
State, Supervisor, Supervisor State, Supervisor Call.

Supervisor Program - See Supervisor. GC

Supervisor Stated GC

A special condition of the central processor that permits execution of
all instrnctions= inn the reprtoire of the machine, including control
and input/output instructions not directly available to the user. See

also Problem State»

HA8 Glossary of Computing Terms

‘ HTS Volume 1: HTS —- The System

April 197B

Supervisor Task Number, Task Number HTS

The number which the supervisor (operating system) assigns to each task
currently running in the system. This number provides a means of
uniquely identifying each task.

Symbolic Debugging System HTS

A program (entered via debug mode) which aids in the conversational
debugging of programs. See also Debug Hode.

Symbolic Language — See Source language.

Symbol Table GC

A list of the symbols used in a program, together with information
about their attributes and their use.

System GC

The computer hardware and/or software necessary for the execution of
information processing jobs. See also Operating System, Supervisor.

System Interrupt - See Supervisor Call.

System Library GC

A collection of programs and sub-programs available to all users of a
particular computer system. In HTS, it is the file *LIBRARY which is
normally searched last during the program loading process.

S-8 Card HTS

A special card which must precede all other cards in a batch job. It
signals the beginning of a new job. This card is so named because
column 1 contains an S (0-2 punches) and an 8 (8 punch). This card is
also called a Receipt card since it must be presented (as a receipt) to
pick up output from the job.

Tape — See Hagnetic Tape, Paper Tape. GC

Task Number - See Supervisor Task Number. HTS

Temporary Pile, Scratch File HTS

A disk file created for the duration of, at most, a single computer
job. The names of temporary files begin with the scratch file
character (usually a minus sign "—"). Temporary files need not be
explicitly created with the CREATE command unless they are to be large
or sequential files; HTS creates a temporary file when it is first
referenced, if it does not already exist. Temporary files are
automatically destroyed at sign-off time.

Glossary of Computing Terms 9

l

HTS Volume 1: HTS -- The System

April 197R

Terminal GC

A device attached toga computer system for the input or output of
programs and data. See also Conversational Terminal.

Terminal Job GC

A computer job submitted from a conversational terminal.

Terminal Mode - See Conversational Bode, Remote Batch Mode. GC

Time-Sharing GC

A method of operating a computer system so that the time of the central
processor is shared among a number of users by giving short bursts of
activity to each in turn. In suitable circumstances, each user can
operate as if the whole system were dedicated to him.

Time Slice S

GC

In a time-sharing system such as HTS, the period during which a program
is using the CPU. See also Bait.

Track GC

The portion of a moving storage medium, such as a drum, tape, or disk
that is accessible to a read head.

Translator »

GC

A program which converts statements written in one programming language
to the format of another programming language.

Trap - See Interrupt. GC_

Truncate ' GC

To suppress those digits of a number which are not significant
according to some predetermined requirement. No correction is applied
to the remaining digits. Truncation is also used in HTS to eliminate
any unnecessary space in a file. V

Truncation Error GC

(1) An error arising from inaccuracy in truncating a numeric result.
(2) In some .conterts,_ an error arising from using an approximate

formulation of the original problem.

TSS“ 360

Time gharing §ystem; the IBB operating system designed to offer
time-sharing services on the IBM 360/67 computer.

Q50 Glossary of Computing Terms

April 1970

UMIST

HTS Volume 1: HTS -- The System

HTS

University of gichigan gnterpretive gtring granslator: an interactive
text processing language.

Unit — See Device.

Unload

(1) See Magnetic Tape Dismounting.

GC

GC

(2) To remove a program from main storage.

Update GC

To modify a master data file with current information according to some
specified procedure. The term is also used to refer to the current
information itself, as used in the modification of the file.

User GC

A general designation for anyone who uses the facilities of a computer.

User File - See Permanent File.
Utility Program

HTS

GC

A standard progral used for a frequently occurring task: for example,
sorting, conversion between binary and decimal representation, etc.

variable GC

A quantity that can assume any ofaa given set of values.

Vertical Redundancy Check GC

A parity check on the bits across the width of a byte or word.

Virtual Address, Logical Address GC

An address generated by a program which references virtual memory and
must therefore be translated into a real storage address when it is
used.

Virtual Memory GC

Memory which appears to the user as though it were all main storage,
although it may actually he at any time partly in main storage, partly
on a drum, partly on a disk, and even partly not allocated anywhere (if
defined, but not referenced), depending on the competing demands for
storage by other users. See also main storage, Paging.

Glossary of Computing Terms H51

NTS Volume 1: HTS -~ The System

April 197R

volume GC

A unit of peripheral storage, such as a disk pack or magnetic tape.

Iait GC

The condition of a job in a computer system when it has been started,
but is not currently being worked on by the central processor. A

common reason for this condition is that the job is waiting for the
completion of an action by some other component of the system, for
example, a disk storage unit or other peripheral device. In a

multiprogramning system, the central processor interleaves work on a

number of jobs with the waiting periods of any particular job.

IATFOR ‘ GC

A FORTRAN IV compiler written at the University of Waterloo. It is
characterized by rapid compilation, extensive error checking at both
compile and run times, and slow execution, when compared with other
FORTRAN compilers. RATFOR does not generate an object deck. See also
FORTRAN G Compiler, FORTRAN H Compiler.

RATFOR Library HTS

A set of sub-programs, in the public file *IATLIB, automatically
available to users of the HATFOR compiler.

Word - See Fullword. GC

9-edge GC

The lower edge of a punched card. This is the edge adjacent to the row
of 9-punches on the card.

12-edge GC

The upper edge of a punched card. This is the edge adjacent to the row
of 12-punches on the card.

7-track Magnetic Tape - See seven-track Magnetic Tape. GC

9-track magnetic Tape - see nine-track uagnetic Tape. GC

H52 Glossary of Computing Terms

April 1974

¢, B0,
*1 5“:

HTS Volume 1: HTS -- The System

INDEX

85, 96 *L, S4, 271
166 *LIBRARY, 228, 244, 253

+n edit command, 42, 61, 269, *LIBRAR! parameter, 179, 253
2!' 8°]

S com
1

5 indi
$ or C

71, 274, 303 *LISP, 49
83, 85, 96, 133, 201, 210 *HSINK*, 99, 111, 198, 227, 243,

mand flag, 16, 38, 98, 99, 259, 325, 433
71, 173 *HSOURCE*, 99, 111, 198, 227,
rection operator, 317 243, 260, 325, 433
OST DISPLAY command para— *PIL, 48

meter, 204 *PLAOUT, 52
$ SET

2
S Xec
SCONTI
$ENDFI
$name
$PERMI
*, 54,
***GLO

A
***LOC

A

AFD,
*ALGOL
*ALGOL
*AMEND
*APL,
*ASHG,
*BASIC
*BATCH

1

*BLDLI
*CATAL
*COBOL
*COPY,
*DOWND
*DUHHY
*2, su
*FILES
*FHAIN
*FHT,
*FORTB
*FORTR
*FTN,

command keyword parameter, *PL1, 47
53 *PL360, 48
flag, 269, 272 *POSTPR, 52
NUE WITH, 114, 169, 250 *PRESCAN, 52
LE, 19, 130, 168, 250 *PRINT, 52
edit command, 269, 274, 304 *PRINT*, 89, 99, 111, 185, 191,
T command, 31 240, 257

271, 323 *PROJECTACCOUNT, 384
BAL TIHE LIMIT EXCEEDED *PUNCH*, 28, 89, 99, 111, 185,
Txxxxxxxx, 374 191, 198, 227, 240, 243,
AL TIME LIMIT EXCEEDED 257, 441
Txxxxxxxx, 374 *REDUCE, 49
99, 111, 236, 240, 403 *SINK*, 28, 99, 110, 198, 227,

, 47 243, 259, 446
H, 47 *SLIP, 49
S, 135 *SNAP, 49
48 *SNOBOL4, 49
48, 309 *SOURCE*, 28, 99, 110, 171, 198,

, 48 227, 243, 260, 263, 446
*, 33, 89, 99, 111, 185, *SPITBOL, 49
91, 240, 257 *SPL, 47
N, 52 *STASS360, 48
OG, 31, 51 *STATUS, 31, 51
, 47 *SiAT, 47
139 *UHIST, 49

ATE, 135 *UNEDIT, 135
*, 28, 111, 416 *IATFOR, 20, 47
, 271 *XPL, 48
NIFF, 51 *1, 49
T, 52 *1ASR, 48
52 *1130ASH, 48
DIT, 33 *8ASR, 48
ANH, 47 #9ASR, 48
20, 29, 47, 63, 309) (network command mode), 166

Index 453

HTS Volume 1: HTS -- The System

April 19711

~ Algorithm, Q03
(not sign), 132 ALL INQUIRB command parameter,
on modifier, 112 177, 217 '

- V ALL PERMIT access-type, 138, 238
(minus sign), 80, 99, 130, Alphameric, HOB

178 Alphanumeric , B0“
on modifier, 112 ALREADY DEFINED — ENTER "Y" TO

-n edit command, R2, 61, 269, REPLACE, "N" TO RETAIN, 267
271, 278, 303 ALTER command, 40, 175, 180/ region flag, 270, 272 ALTER debug command, 333, 33H

/FILE, SQ, 266 ALTER edit command, R2, 27“, 275
/name edit command, 269, 270, 305 American Standard Code for Infor-
%, 83, 85, 166 nation Interchange, HOB

(underscore), 80, 85, 96 Ansverback, 77, 93
>, 23, 166 Answering service, 77, 93
7, 77, 166 APL, 48, “OR
:, 53, 166, 208 Application package, 000
#, 23, 37, 77, 78, 80, 166 Argument, 40“
"closing the file", 163 Array, B08
"Fbname" DOES NOT EXIST., 117 ASCII, R0“
"FDname" IS INVALID., 118 Assemble, HOB

"FDname" IS NOT AVAILABLE., 117 Assemblers, B8, "OR
"WHO ARE YOU?", 93 IBM 1130, Q8
A (alter), 180, 269, 274, 275 IBM 1800, B8
A (at), 333, 335 IBM 360 H8
A device-type INQUIRE command PDP-1,118 .

parameter, 177, 219 PDP-5 or 8, H8
A modifier, 59, 270, 310, 317 PDP—7 or 9, 48
A type code, 316 PL360, Q8

Abbreviations, 175, 269, 332, 397 STASS 360, H8
ABEND, R03 Assignment statement, 311
Abnormal conditions, 167, 371, AT, 201
Abnormal end, R03 AT debug com
Absolute address, B4 AT-POINTS p
Abstracts of Available Software, 351

mand, Q5, 333, 335
arameter, 333, 30,

11 ATPREFIX SET debug command para-
Access type, 138 meter, 363
Active file, 22, 99, 129, 171, ATT (attribute), 333, 337

208, 212, 236, 200» Attention interrupt, 80, 81, 90,
ACTIVE INQUIRE command parameter, 96, 111

177, 215 324, 37
, 156, 259, 260, 267,
3, 397

ADD projectaccount command, 386, ATTN (attutrP), 333
398, 399 ATTN CONTROL command parameter,

Address, H03 191
Addressing exception, 371 ATTN key, 76, 373
AFD DISPLAY command parameter, ATTN SET deb

20B 363
AFDECHO parameter, 178, 2R8 ATTN, 80

ug command parameter,

AFDHAHE DISPLAY command paramet— ATTNTRP debug command, 32“, 332,
er, 200 333

AL (alter), 333, 33¢ ATTNTRP subroutine, 252, 373
ALGOL, R7 ATTRIBUTE debug command, B6, 333,
ALGOLW, A7 337

45B Index

April 197“

nms Volume f: urs -- The System

Automatic error dumping in Batch, BLKSIZB HOUNT keyword parameter,
330 23B

Automatic line numbering, 129, Block diagram, 50
171, 236, 263 Block parameter, 313

b, 113 Blocking, Q06
B (blank), 269, 270, 276 Blocking factor, H06
B (break), 333, 338 BLOCKING MOUNT keyword parameter,
B (brief), 298 233 ~

B INQUIRE command parameter, 177, Blocks, 162, 388, H06
215 Bookstores, S0

B type code, 316 BPI (bit per inch), 606
BACKSPACE, 80, 85, 96, Q05 BPI macro, 372
Base address, H05 Braces, 175, 273, 332
Base register, #05 Brackets, 175, 273, 332
BASIC, 48 BREAK, 80
Batch BREAK debug command, R5, 67, 333,

‘job, 89 338
job from a terminal, 89 BREAK key, 75, 373
job retrieval, 97, 102 Breakpoint, 167, 325, 338, 350
job submission, 35, 97, 102 global, 325, 338, 350
mode, 15, 32, 89, 97 local, 325, 360
processing, H05 BREAKPOINTS parameter, 333, 390,
queue, Q05 351
station, 35 BRIEF parameter, 298
stream, ROS BRK RLS key, 75
usage, 97 BS, 85
usage defaults, 98 BSF CONTROL command parameter,

Batch-monitor, 102 188
BCD, 606 BSR CONTROL command parameter,
BCD parameter, 202, 206 188
BDCST CONTROL command parameter, Buffers, 162, H06

189 Bug, R07
BDCST device command, 86 Business office, 383
BIN CONTROL command parameter, Bytes, 107, H07

191 C (cards), 228, 20", 256
BIN modifier, 185 C (change), 269, 27R, 277
Binary, 405

code, H05
digit, H06
format, H06

(TOGO

(checkpoint), 298
(continue), 333, 3H2
(copy), 193
(count), 272

read feature, H06 C INQUIRE command parameter, 177,
search, H06 219

Binary Coded Decimal, B06 C modifier, 68
BIRS, 51 C type code, 316
Bit, H06 CALC command, H1, 176, 183
BLANK edit command, 43, 274, 276 CALCONP Plot, B07
BLANK SET debug command paramet- CALCOMP Plotter, 11, Q07

er, 363 Calculating size of file, 156
BLK CONTROL command parameter, Called program, H07

189 Calling program, B07
BLK MOUNT keyword parameter, 233 Calling sequence, H07
BLKSIZB CONTROL command paramet- CAN (cancel), 90, 185

er, 189 CANCEL command, 176, 185

Index 455

-<5 9

H23 Volume f: HTS -~ The System

April 1974

~.

CKNCBL CONTROL command parameter, CHECK (red! light, 76
191 Checkpoint, 409

CANCEL option, 90' Checkpoint buffer, 267
Cancelling job, 185 CHECKPOINT edit command, 44, 134,
Card, 407 267, 274a 278

column, 407 CHECKPOINT parameter, 298
deck, 408 Checkpoint/Restore edit facility,

,_ hopper, 409 V 267 .

’ image, 409' CHKFDUB subroutine, 121
input return codes, f59 CL (cleany, 333, 340
limit, 98 CLEAN debug command, 45, 70, 333,
punch, 99, 409’ 340
reader, 20, 35, 99, 408‘ Closing a fie, 409
stacker, 4084 CLR PAGE button, 95

Cards parameter, 17,1 98, 178, CIR-SET rocker switch, 75
119, 228, 244, 256 CNDSKP parameter, 178, 248

Carriage control, 99, 298‘ CNTR INQUIREC command parameter,
Carriage-control character, 408 177, 217
Carriage width, 73, 74 CNTR parameter, 177
Case conversion, 84, 248 CNH PERHIT access—type, 138, 238
cnsn parameter, 1'78, 24a co (coPY~h 269, 27:1, 280
Cathode Ray Tube, 408 COBOL, 47, 409
Cathode Ray Tube terminal, 33 Code, 409
CC CONTROL comnand- parameter, COL (column), 269, 274, 279

189, 191 COL CONTROL command parameter,
CC modifier, 142, 146 189
CC parameter, 298~ Collate, 409
CCAP public files, 30, 1087 Collating sequence, 409
CCAP:BIRS, 51 Collator, 409
CCKP:CONSTAT, 50 Column, 410
CCAP:CSHPEXBC, 50 binary, 410
CClP:CSHPLIB§ 50 pointer, 265
CCAPBCSHPTRKN, 50 range, 265
CCAP:GPSS, 50 COLUMN edit command, 44, 59, 265,
CCAP:0SIR'IS, 50 274, 279
CCLPtPfL2, 48i CON (commentf, 187, 333, 341
CCAP:SIHLIB, 50 CON device command, 85
CCAP:SIB2, 50 Command language, 410
CClP:SPSS, 50 Command lines, 38, 171, 410
Ccid, 408 Command mode, 410
CCBemos, 9* Commands, 168, 171
CD key, 76 COMMENT command, 41, 163, 172,
Central Processing Unit, 408" 176, 187
Central Processor, 408 CONHBNT debug command, 333, 341
CH modifier, 267, 270 Common storage area, 410
CHKNGB edit command, 58, 270, Compilation time, 410

274, 277 Compile, 410 '

Change of password» 99 Compilers, 48, 410
Character, 409 Completion code, 410
Character code, 409 Computer card, 410
Character string, 4099 Computer graphics, 411
CHARGE parameter, 384, 398, 400* Computer word, 411
CHE (checkpoint), 269, 274, 278' CON (continue), 398, 399

use ‘Inna;

HTS Volume 1: HTS -— The System

April 197M

CON (control), 188 PSF, 188
Concatenate, H11 FSR, 188
Concatenation, 11“ GOLF, 190

explicit, 37, 115 HEX, 190, 191
implicit, 11¢, 250 HOLD, 191

Concepts, 36 JOB, 190
Condition code, 378 K, 190
CONPIG INQUIRE command parameter, LEN, 190, 191

177, 219 LNAR, 190
Console, #11 LNC, 190
Console typewriter, 011 LP, 189
CONSTAT, 50 LRECL, 189
Consulting, 34, 93 MODE, 189
CONT (continue), 236 NAME, 191
CONTCHAR parameter, 131, 178, 248 NOTE, 190
Context editing, H2 PEI, 191
Context editor, 53, 13B, 163, 265 POP, 189
Continuation character, 130 POSN, 188
Continuation lines, 17B PRINT, 191
CONTINUE debug command, H5, 167, PROUTE, 191

323, 333, 3&2 - PUSH, 189
CONTINUE parameter, 236 RECFN, 188
CONTINUE projectaccount command, RELEASE, 191

386, 398, 399 RESET, 190
Continuous System Modeling Pro- RETRY, 189

gram, H11 REV, 190
Control card, H11 REU, 188
Control characters, 79, 93, 96, REAR, 190

n11 ROUTE, 191 i
CONTROL command, H1, 83, 90, 176, SIZE, 188

188 TAB, 191
CONTROL command parameters TABI, 190

ATTN, 191 TABO, 190
BDCST, 189 TERSE, 190
BIN, 191 UC, 191
BLK, 189 UCI, 190
BLKSIZE, 188 UCO, 190
asr, 188 WARN, 190
BSR, 188 ITH, 189
CANCEL, 191 Control program, 411
CC, 189, 191 Control statement, 311
COPIES, 191 CONTROL subroutine, 121, 188
cor, 189 cournor-c, so, es, 9n
cnourr, 191 cournor-2, 9n
DCC, 189 CONTROL-H, 79, B0, 85, 93
DLC, 189 CONTROL-I, 80
DON'T, 191 CONTROL-N, 80, 85, 9R
DPC, 189 CONTROL-Q, 9“
DSN, 189 CONTROL-S, 80, 90
EFC, 190 CONTROL-Z, 80, 85, 9“
EOE, 191 Conversational, B11
PUT, 188 mode, 15, 32, 73, 89, R12
FORMAT, 188 operation, 78, 98

Index B57

ETS Volume 1: HTS —~ The System

April 1970

terminal, 012 section, 156
usage, 73 set, 013

Converter, 012 DATA CHECK, 82
COPIES CONTROL command parameter, DBLS parameter, 202, 206

191 DCC CONTROL command parameter,
COPIES option, 90 189
COPIES parameter, 98, 179, 257 DCC device command, 83, 85
COPY command, 20, 25, 01, 129, DE (destroy): 201

132, 176, 193 DEB (debu9)' 198
COPY edit command, 03, 270, 280 Debug, 33, 013 ‘

Copying command mode, 168 DEBUG command, 00, 63, 176, 198,
Core storage, 37 307
Cost of job, 101 Debug command definition, 332
COST parameter, 178, 209 Debug command prototypes summary,
Counseling, 30, 93 333
COUNT parameter, 272 Debug commands
CPU, 008 ALTER, 333, 330
CPU bound, 012 AT, 05, 333, 335
CPU time, 012 ATTNTRP, 320, 332, 333
CPU time limit, 98 ATTRIBUTE, 06, 333, 337
CR (create), 196 BREAK, 05, 67, 333, 338
CREAFD parameter, 178, 209 CLEAN, 05, 70, 333, 300
CREATE command, 20, 00, 127, 171, COEMENT, 333, 301

176, 196 CONTINUE, 05, 323, 333, 302
Creating files, 127 CSECT, 06, 67, 329, 333, 303
Cross-reference listing, 012 DISPLAY, 06, 68, 313, 333,
CROUTE CONTROL command parameter, 300

191 DROP, 333, 305
CROUTE option, 90 DSECT, 329
CROUTE parameter, 98, 179, 257 DUMP, 06, 333, 306
CRT, 008 END, 05, 333, 307
CS (csecti, 333, 303 ERROR, 323
CSECT debug command, 06, 67, 315, GOTO, 05, 320, 333, 308

329, 333, 303 HEXDISPLAY, 06, 333, 309
CSEP, 09, 012 IGNORE, 333, 350
CTRL key, 70 INPUT, 332, 333
CUINFO subroutine, 131, 169, 170, LENGTH, 332, 333

208 LINK, 320
Current active file, 22, 171, LIST, 333, 351

208, 212, 236, 200 LOAD, 320
Current line, 271 ' HAP, 06, 333, 352
Current line pointer, 02 NODIEY, 06, 70, 318, 333,
Current symbol character, 323 350
Cycle time, 012 HTS, 05, 323, 333, 356
D (delete), 269, 270, 281 NTSCHD, 323
D (disp1aY1, 202, 333, 300 OUTPUT, 332, 333
D device-name INQUIRE command PGNTTRP, 320, 332, 333

parameter, 177, 219 PREFIX, 332, 333
D modifier, 311, 317 QUALIFY, 333, 357
Data RESET, 06, 333, 358

exception, 371 RESTORE, 05, 70, 333, 359
lines, 171, 013 RF, 332, 333

I record, 013 RUN, 05, 66, 320, 333, 360

058 Index

MTS Volume 1: MTS -— The System

April 1974

SCALE, 332, 333 DCC, 83, 85
SCAN, 46, 318, 333, 361 DLC, 85
SDS, 45, 333, 362 DPC, 85
SET, 46, 308, 333, 363 EFC, 85
STEP, 45, 326, 333, 366 GOLF, 84
STOP, 45, 333, 367 HEX, 85
SYMBOL, 46, 333, 368 K, 84
SYSTEM, 323 LEN, 86
TERSE, 332, 333 LMAR, 83
TYPE, 332, 333 LNC, 85
USING, 46, 333, 369 RESET, 86
XCTL, 324 RMAR, 83

Debug mode, 167, 307, 413 TABI, 84
DEBUG parameter, 178, 249 TABO, 84
Debugging, 307 WARN, 86
Debugging commands, 40, 307, 333 Device name, 36, 414 »

Debugging FORTRAN program, 63 Device Support Routines, 82, 88,
Debugging program, 375 414
Decimal divide exception, 371 Devices, 107, 109, 414
Decimal overflow exception, 371 Diagnostic, 414
Deck, 413 Digital Computer, 414
Default definition, 413 Digital Incremental Plotter, 415
Default I/0 Unit assignments, 413 Direct access, 415
Default option, 413 Direct access device, 415
Defaults Direct access file, 415

batch, 98 Disc, 415
case conversion, 88 Disk, 415
character, 94, 96 DISK parameter, 390, 398, 400
logical I/O units, 120 Disk space, 383
pseudo-device names, 98, 257 Dismounting, 415
SDS parameters, 358 Displacement, 309, 415
signon, 98 Display and Modify processing,

DELETE edit command, 43, 55, 274, 309
281 DISPLAY command, 40, 175, 176,

Delete line character, 79, 80, 202
85, 88, 94, 96 DISPLAY debug command, 46, 68,

Delete previous character, 79, 313, 333, 344
80, 85, 88, 94, 96 Display unit, 416 I

Delimiter character, 271 DLC CONTROL command parameter,
Delimiters, 168, 413 189

end-of-file, 169 DLC device command, 85, 94, 96
implicit concatenation, 169 DO (document), 269, 274, 282

Delivery code, 16, 101, 257 DOCUMENT edit command, 274, 282
DEMO public files, 108 Documentation, 9, 11
Density, 414 Documentation aids, 52
DEST MOUNT keyword parameter, 234 DON'T CONTROL command parameter,
DESTROY command, 20, 40, 98, 133, 191

171, 176, 201 Dots, 175, 273, 332
DEVCHAR parameter, 112, 178, 249 Double precision, 416
Device command character, 83, 85 Double word, 416
Device commands, 82, 414 DPC CONTROL command parameter,

BDCST, 86 189
COM, 85 DPC device command, 85, 94, 96

Index 459

' ~~w>I ~

MTS Volume 1: HTS -- The System

April 1970

DR (drop), 333, 305 COPY, 03, 270, 280
Drive, 016 DELETE, 03, 55, 270, 281
DROP debug command, 333, 305 DOCUMENT, 270, 282
Drum, 016 EDIT, 03, 270, 283
DSECT debug command, 315, 329 EXPLAIN, 00, 270, 280
DSECT parameter, 333, 352 GOTO, 270, 285
DSN CONTROL command parameter, INSERT, 03, 55, 56, 270, 286

189 LINE, 42, 270, 287
DSN MOUNT keyword parameter, 233 MATCH, 50, 60, 270, 288
DSNAME MOUNT keyword parameter, MTS, 03, 270, 289

ll (‘.' 01' ‘)1 “Z; 61)
DSPC parameter, 202, 206 271, 270, 303
DSR, 82, 88, 016 OVERLAY, 03, 60, 270, 290
DU (dumP), 206, 333, 306 PRINT, 00, 270, 291
Dummy parameter, 016 " REGION, 03, 272, 270, 293
Dummy routine, 016 RENUMEER, 00, 270, 290
Dummy variable, 017 REPLACE, 03, 55, 56, 270,
Dump, 250, 017 295
DUMP command, 00, 176, 206 RESTORE, 00, 130, 267, 270,
DUMP debug command, 06, 333, 306 296
Duplex system, 017 SCAN, 02, 50, 60, 270, 270,
Dynamic loading, 323 297
e, 113 SET, 03, 270, 298
E
E

NH

E

(echo), 298 SHIFT, 03, 270, 300
(empty), 210 STOP, 03, 270, 301
(end), 333, 307 XEC, 03, 270, 302
(endoffile), 268 EDIT edit command, 03, 270, 283
(explain), 269, 270, 280 Edit mode, 56, 265, 017
type code, 316 EDITAFD parameter, 178, 208, 209E

EBCD modifier, 105 Editing file, 53
EBCD parameter, 202, 206 Editor, 02, 53, 017
EBCDIC, 017 EEC CONTROL command parameter,
ECHO parameter, 178, 209, 298 190
ED (edit), 208, 269, 270, 283 EEC device command, 85, 90, 96
EDIT command, 01, 53, 176, 208, Elapsed time, 017

265 EMPTY command, 25, 01, 98, 133,
Edit command definitions, 272 176, 210
Edit command keyword parameters, EMPTY subroutine, 121

272 END debug command, 05, 333, 307
Edit command mode, 167 END edit pseudo-command, 268
Edit command names, 269 End-of-file, 268, 017
Edit command prototypes summary, character, 79, 80, 85, 90,

270 96
Edit commands, 53 condition, 169

inane, 270, 300 mark, 018
/name, 270, 305 End-of-line character, 80
ALTER, 02, 270, 275 End-of-reel marker, 018
BLANK, 03, 270, 276 End-of-tape marker, 018
CHANGE, 58, 270, 270, 277 Endtile delimiter, 169
cuncxvozmr, 00, 130, 267, ENDPILE parameter, 178, 250

270, 278 ENDEILE switch, 169, 178
COLUMN, 00, 59, 265, 270, ENDOFFILE, 268

279

060 Idel

HTS Volume 1: HTS -- The System

April 1970

ENTER NEH CONNAND OR ":" TO EXPIRE parameter, 392, 400
RETAIN, 268 EXPIRE projectaccount command,

ENTER REPLACEMENT OR CANCEL, 117 385, 398, 399
ENTIRE parameter, 388, 398 EXPLAIN edit command, 40, 274,
Entry point, Q18 280
ENTRY SET debug command paramet— Explicit concatenation, 37, 115,

er, 363 R18
EOF (endoffile), 268, 418 Exponent overflow exception, 371
EOF CONTROL command parameter, Exponent underflow exception, 371

191 Extended Binary Coded Decimal
EQU (equalize), 398, 399 Interchange Code, Q18
EQUALIZE projectaccount command, Extent, 019

385, 398, 399 External symbol resolution, M19
ER (errordump), 211 P (failure), 268
ER (errorexit), 298 F (fill), 298
ERR (errorexit), 298 P type code, 316
ERROR (errorexit), 298 Facilities and Services (manual),
Error conditions, 82 11, 16
ERROR debug command, 323 FAILURE, 268
Error message, 418 Fast-insert mode, 57
Error processing, 117 FDname, 36, 107, 112, 116, 118,
ERROR subroutine, 166 193, 225, 259, 260, Q19
Error-dumping in batch, 330 FDUB pointer, 118, 120, 15H
ERRORDUNP command, H0, 71, 98, Fetch protection, H19

174, 176, 211, 375 Field, 019
Errordump in batch, 377 FILE "name" IS TO BE DESTROYED.
ERRORDUNP parameter, 98, 170, PLEASE CONFIRN., 133

178, 250 FILE "name" IS TO BE EHPTIED.
ERRORDUNP SET debug command para- PLEASE CONFIRN., 133

meter, 363 FILE "name": SIZE EXCEEDED, 129
ERRORDUHP switch, 175, 178 File Extent, U19
ERROREXIT parameter, 298 File or Device name, 36, 107
ERRRTN-modifier, 151, 150, 375 File or Device Usage Block, 120
ERS, 333 FILE parameter, 398, B00
Estimated size of file, 196 File protect ring, H19
ETX, 90 Files, 20, 107, B19
EXEC INQUIRE command parameter, approximate size, 196

177, 217 copying, 24
EXEC parameter, 177 creating, 21
Executable statement, 418 discovering changes, 135
Execute, 018 handling commands, H0
Execute exception, 371 library, H27
Execution line, 21, 122, 155, 196,

mode, 166 265, R27
phase, 103 making chanes, 131
priority, 103 name, 36, 108
queue, 103 permanent, 33, 108, H38
table, 10H permitting, 138, 238

EXECUTION BEGINS, 2B5 private, 29, 30, 108, 201,
EXECUTION TERNINATED, 235 R39
Execution time, 26, H18 protection, H19
EXP (expire), 398, 399 public, 30, 108, R01
Expiration time, 383

Index Q61

--um-7 ~~~'

HTS Volume 1: HTS -- The System

April 1974

putting information into, Full—duplex mode, 70
129 FULL-DUPLEX switch, 95

restoring, 130 Fullword, B21
revising, 20 G (get), 212
scratch, 30, 108, Q05 G (goto), 269, 27“, 285, 333, 348
sequential, 122, 125, 153, GDINF subroutine, 121

156, 196 ' GDINFO subroutine, 121
sequential with line number, GET command, 22, B1, 129, 171,

122, 196 176, 212
support routine, 88 GETFD subroutine, 121
temporary, 30, 108, 201, NR9 GETIHE subroutine, 375
updating, 53, 162 GETLINEQ modifier, 1H8

FILECHAR parameter, 112, 178, 250 GFINF subroutine, 121
Filemark, 419 Global breakpoint, 325, 338, 350
Fill character, 298 Global limit, 98, 17H
FILL parameter, 298 Global relocation factor, 175,
FINAL DELIHITER?, 271 175, 21¢, 201, 251
First line of the file, 271 Global time limit, 378, N21
Fixed point, 020 GO, 77, 93
Fixed-point divide exception, 371 GOLF CONTROL command parameter,
Fixed-point overflow exception, 190

371 GOLF device command, 80
FIXEDOVERFLOI, 373 Golf—ball, 75
Flag, H20 GOTO debug command, R5, 167, 320,
Floating point, H20 333, 308
Floating-divide exception, 371 GOTO edit command, 267, 27R, 285
Flowchart, G20 GPSS, 50, H21
FHT CONTROL command parameter, Graphics, B21

188 I GRr, 180, 203, 213, 21“
FNT HOUNT keyword parameter, 233 GUINFO subroutine, 169, 2&8, 375
FORHAT CONTROL command parameter, GUSER, 198, B21

188 GUSER subroutine, 228, 2
FORHAT HOUNT keyword parameter, H (her), 299

233 H (hexadd), 213
Format, 020 H (hexdisplay), 333, 3R9
Formula for calculating size, of H (hold), 90

file, 156 H INQUIRE command Parameter, 177,
FORTRAN, 18, H7, 020 219
FORTRAN G compiler, B20 Half-duplex mode, 70
FORTRAN H compiler, R20 HALF-DUPLEX switch, 95
FORTRAN—callable, 020 Halfword, B21
FREEFD subroutine, 121, 163 Halfword integer, B21
FROH, 176, 193 Hardware, H21
FRS, 333 HASP, 102, 185, B21
FR: DISPLA! command parameter, Hasp Batch mode, B22

203 Hasp Batch monitor, B22
FR: parameter, 180 HASP batch queue, 99
FSF CONTROL command parameter, Hasp priority, R22

188 Header-sheet, 101
FSR CONTROL command parameter, HEADING parameter, 396, 398, H00

188 HELD INQUIRE command parameter,
FULL, 250 177, 215
FULL parameter, 333, 352 HELD parameter, 177

R62 Index

HTS Volume 1: HTS -- The System

April 1970

HELP public files, 30, 51, 108 IGNORE, 391, 392
HELP:DELIVER!, 51 IGNORE debug command, 333, 350
HELP:DIRECTOR!, 51 Image, 022
HELP:HELP, S1 Immediate value, 422
HELP:HOURS, 52 Implicit concatenation, 114, 250,
HELP:NEIS, 52 R22
HELP:RATES, 51 Implicit concatenation delimiter,

Hex, Q22 169
HEX CONTROL command- parameter, Imprecise exception, 372

190, 191 IN (input), 333
HEX device command, 85 Increment, 236
HEX parameter, 202, 206, 299 INDCH SET debug command paramet-
HEXADD command, 00, 176, 213 er, 363
Hexadecimal, R22 Index, 309
Hexadecimal conversion modifier, Indexed, 122

270 ‘ Indexed operation, 123
Hexadecimal dump, 375 Indexing operation, 310
HEXDISPLAY debug command, B6, Indirection, 317

333, 349 Information, 51
HEXS (hexsub), 210 I Information files, 51
HEXSUB command, 00, 177, 214 Information retrieval, 51
High-level, H22 Initial program load, H23
HOLD CONTROL command parameter, Input, 423

191 conversion, 318
HOLD INQUIRE command parameter, device, 423

177, 215 file, H23
HOLD option, 90 phase, 103
HOLD parameter, 177 record, 023
Hollerith, R22 restriction, 80

code, R22 station, 98
Hopper, "22 INPUT debug command, 332, 333
Houston Automatic Spoolinq INPUT SET debug command paramet-

Priority System, 102 er, 363
HPTR device type, 103 Input/Output, G32i, 113 Input/Output device, H23
I (ignore), 333, 350 INQUIRE command, H2, 105, 177,
I (inquire), 215 215I (insert), 269, 278, 286 INQUIRE command parameters
I modifier, 103, 190 A device—type, 219
I type code, 316 ACTIVE, 215
I/O, 425 ALL, 217

bound, 425 B, 215
modifier, 100, H25 C, 219
return codes, 158 CNTR, 217
interrupt, 320 CONFIG, 219
errors, 375 D device-name, 219
routines, 375 EXEC, 217

IBH manuals, 13 H, 219
IC modifier, 151, 169, 250, 265 HELD, 215
IC parameter, 178, 250 HOLD, 215
IC switch, 169, 250 JOB, 215
ID, 422 - L, 219 ’

Idle mode, 78 LOCAL, 217

Index 063

HTS Voluae 1: HTS - The Syetea

April 191a

H, 220 attention, 80, 81, 90, 96,
HE, 215 111, 166, 359, 260,
HTS, 222 373, 397
K, 220 progral, 167, 211, 371, 373
O, 220, timer, 324, 378
OS, 215 Invalid address, 371
PAGES, 220 ~ INVALID COHHAKD, 173
PLOT, 216 IPL, B25
PRINT, 217 Irrecoverable I/O error, 025
PRIORITY, 220 ISI, Q25 '

PUICH, 217 JCL, I25
QUE, 217 Job, #25 ‘

receipt-number, 216 JOB CONTROL coiaand parameter,
reaote-station-id, 218 190 1

REUOTES, 218 Job control language, H26
IHTS, 218 Job deck, 426 »

s, 220 Jon IKQUIKE command parameter,
SAME, 216 177, 215
SIGKSG, 220 JOB paraaeter, 177
signon-id, 216 Justify, H26
STATUS, 221 K, B26
STRAIDS, 221 K CONTROL comaand parameter, 190
T device-type, 219 K device comaand, 80
TAPES, 219 Key, H26
task-number, 220 Keyboard, 75, 76
U signon id, 220 Keypunch, #26
USERS, 221 Keyword modifiers, 31%

INSERT edit connand, R3, 55, 56, Keyword parameter, R26
274, 286 L (line), 269, 27R, 287

Instruction, #23 L (linenumber), 299
INT, 80
Integer variable, B28
Inter-record gap, R23 L [s|az] IIQUIRE command paramet-

l"l."'

(list), 225, 333, 351
(long), 203, 206

Interactive, B2B er, 177, 219
Interactive computer graphics, L aodifier, 270

Q2“ L type code, 316
Interactive languages, 48 Label, I26

APL, H8 LABEL UOUKT keyword parameter,
BASIC, R8 230
PIL, 18 Language tranelatore, Q7
REDUCE, B9 LIST, 115, 125, 236

Interactive terminal, R20 Last line of the tile, 271
Interblock gap, B28 LC, 178, 2&8
Internal representation, 02¢ LC modifier, 1l5
Internal statenent number, R25 LCL-CO! switch, 95
Interpret, U29 LCL-RHT rocker switch, 7B
Interpreters, 08, B20 LCSIHBOL, 250
Interrupt code, 371, 378, R25 LE (length), 333
Interrupt mask, 025 Left justify, B27
Interrupt processing, 323 LEI CONTROL coamand parameter,
Interrupts, I20 190, 191

LEI device command, 86

06h Index

HTS Volume 1: HTS -- The System

April 1974

LEN SET debug command parameter, LIST debug command, 333, 351
364 List processing languages, 49

LENGTH debug command, 332, 333 Listing, 428
LIB parameter, 176, 207 Literal, 428
LIBR parameter, 178, 250 Literal next character, 80, 85,
LIBR switch, 178, 250 88, 94, 96
Library file, 427 LEAR CONTROL command parameter,
Library programs, 427 190
Library search, 250 LEAR device command, 83
LIBSRCH parameter, 178, 250 LNC CONTROL command parameter,
Light pen, 427 190
Limit, 98, 227, 242, 244 LNC device command, 85, 94, 96

global card, 98 LNS parameter, 132, 178, 251
global page, 98, 174 L0 (load), 227
global punch, 98, 174 Load, 428
global time, 98, 174, 374 map, 375, 428
local page, 174 module, 428
local punch, 174 point, 428
local time, 174, 374 point marker, 428

Limits, 261 LOAD command, 39, 174, 177, 227
Line, 107, 122, 196, 427 LOAD debug command, 324

directory, 156 LOAD SUBROUTINE, 167, 241file, 122, 155, 196, 427 Load time, 428 'file editor, 42 Loader, 428
number, 172, 236, 271, 427 Loader symbol table, 252
number editing, 42 Loading command mode, 168
number ranges, 113, 427 Loading routine, 429
number separator, 132, 172, Local batch, 35, 102

251 Local breakpoint, 325, 360
printer, 99, 428 LOCAL INQUIRE command parameter,
region, 266 177, 217
termination character, 88 Local limit, 174

LINE edit command, 42, 271, 274, Local relocation factor, 175,
287 203, 241

LINE FEED key, 75 LOCAL switch, 74
LINE switch, 74, 93, 95 Local time limit, 374, 429
LINENUHBER parameter, 299 Location, 429
Linenumber prefixing modifier, Logical address, 429

270 Logical carriage control, 429
LINK debug command, 324 Logical I/O units, 26, 36, 118,
LINK SUBROUTINE, 167, 241 198, 227, 241, 243, 429
Linkage Editor, 428 defaults, 120
LISP, 49 GUSER, 119, 120List and string processing lan- SCARDS, 119, 120

guages, 49 SERCOH, 119, 120
*1, 49 SPRINT, 119, 120
LISP, 49 SPUNCH, 119, 120
SLIP, 49 0-19, 119, 120
SNAP, 49 Logical record, 429
SNOBOL4, 49 Logical unit, 429
U!I5T¢ 49 Logical unit number, 429

LIST command, 20, 22, 41, 177, LOST DATA, 82
225 Low-level, 429

Index 465

L
L
LP CONTROL COlln'p&tlI9fEI, 189- MEMORBX6 Transmission Control
L
1
L

L

IIBEI

H

* * i - ‘F’ an-— we

TS Volume 12 MTS —- The System

Apri1'1974

ow—order position, 429 MBMORBX Transmission Control, 36,
over case, 175, 273, 332. 77 4’

P MOUNT keyword paraneter, 233 unit, 36
par, 272, 274= Memory, 432 =

RBCL CONTROL command paraleter, Memory lap, 432
189 Menory protect, 432

RBCL MOUMLTC keyword. p~ar@al.eter,, H9-lO!=Y protection, 432
233 MERIT computer netvork, 167

>v(natch),,269, 274, 2887 MERIT NETWORK return codes, 160
(ninutesy,,228, 244, 256; Michigan Ter|ina1:Systen,_432

- (modify), 230, 333, 354; MIXED, 178, 248%

*INO8IRB command paraneter, 177; MHEM parameter, 202, 206
220; MNTT'MOUMT'device-type, 231

type code, 316 I MOD (modify), 398,_399
1 (nap), 333, 3525 MOBCB SET dohuq command paranet-

Machine carriage ontro1,.429 er, 364
H

H

H

H

H

achine language, 430* Mode, 166, 167, 168, 432
achine word, 430 ' MODE CONTROL, connand parameter,
acro, 430‘ 189
acro instruction, 430 MODE MOUNT keyuord.paraneter, 233
acro Library, 430 Mode of operation, 432

Magnetic disk, 430 Model 33 Teletype, 35, 73
H

H

H

H

aqnetic~drnn, 430 Model 35 Teletype, 35, 73
agnetic tape, 36, 430 Modifiers, 37, 53, 112, 140, 142,

dens~i;ty, use uaz ‘
disnounting, 430 to reverse sense, 112
drive, 430 — to reverse sense, 112
file mark, 431 A, 59, 270, 310, 317
1abe1,.431 sxuanx (B18), 1ns
node, 431 C, 68
mounting, 431- CASECONV (UC), 142, 145
reel, 461 CC, 142, 146
return codes, 159~ CH, 267, 270
rewind, 431 D, 311, 317
ring, 431 BBCD, 145
unit, 481 ERRRTN, 151, 154, 375

ain storage, 37 GETLIIB#, 148
ain-line program, 431* I, 194

ll‘8hil1S‘,.9 IC, 250'

H

H

H

H

H

H

H

4

AP debug conaand, 46, 333, 352 INDBXBD (1), 143
AP parameter, 177,1 178,. 179,_ L, 270

18,6227, 241, 243, 2611 LOIBRCASE (LC), 145
ap, W32 MICHCIBCNTRL (MCC), 142, 150
and REL ke~y,.'r5~ uca, 267, 270
ar9in~stops, 75 ML, 53, 270
ask, 432. uoTcnc1w~1'aL Mnwcc) ,1 11:-6

LTCH edit colnand, 54, 60, 271, NOTIFY, 152
274, 28811 NV, 270

CC modifier, 142,.150 RX, 270
E IRQUIRT command» paraneter,. PC, 2707

177, 215 PBBL,_148
PRIPIX (pix), 146

66, Idex

April 1974

HTS Volume 1: HTS -- The System

Q, 317 HTS command prototypes summary,
R, 310, 317 175
RETURNLINE#, 1R8 HTS debug command, Q5, 323, 333,
SEQUENTIAL (s), 103 356
SPECIAL (SP), 151 HTS edit command, 43, 167, 270,
STACKERSBLECT (SS), 136 289
TRIH, 102, 150, 253, 265 HTS GLOBAL CONTROL COHHANDS, 39
TYPE, 316, 319 HTS INQUIRE command parameter,
V, 270 177
X, 270, 311, 317 HTS monitor, 171

HODIFY command, 00, 175, 178, 230 HTS network command, 167
HODIFY debug command, H6, 70, HTS notation conventions, 175

318, 333, 350 HTS subroutine, 166
HODIFY projectaccount command, HTSCHD debug command, 323

385, 398, 399 HTSCHD subroutine, 166
Hodule, R33 Hulti-level storage system, R33
Honitor, H33 Hulti-processing system, B34
HOU (mount), 231 Hultivprogramming system, H33
HOUNT command, H2, 178, 231

HX,
178, 248

HOUNT keyword parameters n (+ or -) edit command, H2, 61,
BLK, 233 269, 271, 270, 303
srxsrzn, 23a
BLOCKING,

Z2

(name), 90
(number), 236233

DEST, 230 N INQUIRE command parameter, 177,
FHT, 233 220
FORHAT, 233 N parameter, 177
LABEL, 23“ NAHE CONTROL command parameter,
LP, 233 191
LRECL, 233 NAHE option, 90
HODE, 233 NCH modifier, 267, 270
NEHEXP, 233 NE (net), 235
NBURPH, 233 Nesting, B34
NEIWPI, 233 NET command, Q2, 167, 178, 235
OVRIDE, 233 Network command mode, 167
POSN, 233 NEVER, 178, 250
QUIT, 233, 230 NEWEXP HOUNT keyword parameter,
,RECFH, 233 233
RERUN, 233 NEHRPN HOUNT keyword parameter,
RETRY, 233 233

I RING, 233 NEWS public files, 108
RPN, 233 NEIIPI HOUNT keyword parameter,
SIZE, 23" 233
VOL, 23¢ Nine-track magnetic tape, 030
VOLSER, 238 Nine-track magnetic tape drive,
vorunz, 23a nan
UPI, 230 NL modifier, 53, 270
WRITE, 23B NOECD parameter, 202, 206

Hounting, R33 NOCC modifier, 106
HT (mts), 269, 270, 289, 333, 356 NOCHANGE parameter, 394, 398, B00
HTS, B33 NOEBCD parameter, 202, 206
HTS command, 033 NOHEAD parameter, 398, H00
HTS command mode, S3, 61, 166, NOHEX parameter, 202, 206

171, 433 NOLIB parameter, 206

Index R67

— ~ <7 * V

HTS Volume 1: HTS -- Tbe System

April 1974

NOLIST parameter, 396, 398, N00 Output, Q36
NOMAP parameter, 177, 178, 179, Output conversion, 322

198, 227, 201, 203, 261 OUTPUT debug comaand, 332, 333
NOHREH parameter, 202, 206 Output device, 036
Hon-numeric character, 430 Output record, R36
Non—printing graphics, 030 Output routing, 101
NONE PERMIT access-type, 138, 238 OUTPUT SET debug command paramet-
NOTE CONTROL command parameter, er, 360

190 Output station, 98
NOTE subroutine, 121, 150 OVERFLOI(news1etter), 9
NOTIFY modifier, 152 OVERFLOG, 373
NUHBER command, 21, B1, 171, 178, OVERLAY edit command, 03, 60,

236 270, 290
NV modifier, 270 OVRIDE ROUNT keyword aparameter,
NZ modifier, 270 233
O (output), 333 P (pages), 196, 228, 208, 256
O (overlay), 269, 270, 290 P (print), 269, 370, 291
O INQUIRE command parameter, 177, P type code, 316, 316

220 Padding, H36
O.K., 32, 133, 201, 210 Page, H36
Object code, R30 Page limit, 98
Object deck, 030 PAGES INQUIPE command parameter,
Object file, 03B 177, 220
Object language, H30 Pages parameter, 17, 98, 177,
Object module, H35 178, 179, 228, 200, 256
Object program, 18, 36, B35 Paging, 37, M36
Object time, H35 Paper tape, R37
Octal, Q35 Paper tape punch, Q37
OFF switch, 74 Paper tape reader, 037
Off-line, R35 Paper tape transmission code, H37
OK, 32, 201, 210 PAR parameter, 227, 243
OLD public files, 108 PAR SET debug command parameter,
OHAPCH SET debug command paramet- 36B

er, 360 Parameter, H37
Omission of the SSIGNOPP command, Parity bit, H37

100 PAS (password), 398, 399
OMB, 435 ‘ Password, 16, 99, 251, 256, R37
ON, 176, 202, 206, 225 Password card, Q37
ON Pbname, 202 Password lost, 387
OH switch, 93, 95 PASSWORD projectaccount command,
ON-condition, 373 387, 398, 399
On-demand system, B35 Password retrieval, 387
On-line, R35 PC modifier, 270
OR—OPP rocker switch, 7H PDN, H38
Opening a file, R35 PE (permit), 238
Operating sytem, B35 PEEL modifier, 108
Operation exception, 371 Peripheral unit, H38
Operator's console, 435 Permanent file, 33, 108, B38
ORL parameter, 203, 206 Permit code, H38
OS, B36 PERMIT command, 81, 138, 178, 238
OS INQUIRB command parameter, PPX CONTROL command parameter,

177, 215 191- “V .

OSIRIS, 50 PIX modifier, 186 *

B68 Index

NTS Volume 1: UTS -- The System

April 1970

PPX parameter, 178, 251 Print table, 104
PF! switch, 178, 237, 251 Printed output, 36, 101
PG (pgnttrP), 333 Printed output copies, 98
PGNT SET debug command parameter, Printed output return codes, 160

360 Printer, 439
PGNTTRP debug command, 320, 332, Printer character set, 98

333 Printer plot, B39
PGNTTRP subroutine, 372 Priorities, 100, 039
Phone numbers, 76, 77, 93, 95 PRIORITY INQUIRE command paramet-
Physical blocks, 162 er, 177, 220
Physical record, B38 Private file, 29, 108, 201, 039
PIL, R8, B38 Privileged operation exception,
PL/I, 07, R38 371
PL/I library, 038 PRJNO PERMIT access-type, 138,
PLOT INQUIRE command parameter, 238

177, 216 Problem state, 039
PLOT parameter, 177, 391, 398, Procedure-oriented languages, H7,

H00 Q39
PLOTHRS parameter, 392, 398, 000 ALGOL, Q7
Plotter, 438 ALGOLI, 07
POINT subroutine, 121, 150 COBOL, 07
Pointers, 153 FORTRAN IV, 07
POP CONTROL command parameter, PL/I, R7

189 SPL, B7
Portacom, 73 IATFOR, R7
Positional parameter, 038 XPL, Q8
POSN HOUNT keyword parameter, 233 PROCEED (green) light, 76
POSNCONTROL command parameter, Processor, 439

188 Program, 439
PR (prefix), 333 Program control commands, 39
Precision, B39 Program interrupt, 167, 211, 324,
Predefined symbol, 317 371, 373, 440
Prefix character, 22, 37, 53, 57, Program interrupt code, 371

68, 78, 165, 166, 251, 307, Program mask, 201
H39 Program returns, 323

PREFIX debug command, 332, 333 Program segment, 000
PREFIX SET debug command paramet- Program status word, 000

er, 365 Project, B00
Preprocessor, 039 Projectaccount prototypes sum-
PRRVIOUS parameter, 179, 259, 260 mary, 398
Print column modifier, 270 Project accounting, 383
PRINT CONTROL command parameter, Project key, 040

191 PROJECT parameter, 389
PRINT edit command, QB, 53, 274, Prompting command mode, 168

291 Protection exception, 371
PRINT INQUIRE command parameter, PROUTE CONTROL command parameter,

177' 217 191
PRINT option, 90 PROUTB option, 90
PRINT parameter, 98, 177, 179, PROUTB parameter, 98, 179, 257

257 Pseudo—device, 000
Print phase, 103 Pseudo-device name, 27, 36, 89,
Print priority, 103 109, 200, 440
Print queue, 103 Pseudo-device name defaults, 98

Index 069

7 I1. _p,,—u,

HTS volume 1: HTS —- The System

April 1970

PS8, 2B1, 333, 377, 000 . READ! (blue) light, 76
PS8 DISPLA! command paraeeter, Real address, BB2

200 Real memory, 802
PTR device type, 143 Real time, 082
PTTC, 000 Real variable, 402
Public file, 30, 108, BB1 Relative address, 40
Public file name, 109 Receipt card, BB2
Public library file, 001 Receipt number, 89, 101, 176, 185
Punch, 401 Receive mode, 78
Punch card, 36, R01 REC?! control command parameter,
PUNCH IRQUIRE command parameter, 188

177, 217 REC?! HOUR! keyword parameter,
Punch phase, 103 233
Punch queue, 103 Record, 156, 402
Punched output, 101, R01 density, H02
Punched output return codes, 160 format, 402
Purge phase, 103 gap, I82
PUSH CONTROL command parameter, index, BB2

189 length, “Q3
PI parameter, 17, 178, 179, 251, Red-topped lever, 75

Q

Q

256 REDUCE, 49, 69
(qualify), 333, 357 Reel, 003
modifier, 317 Reference centers, 10

QR, 98 REG (region), 269, 27", 293
QUALIFY debug command, 333, 357 Region, 266
QUE INQUIRE coemand parameter, REGION edit comeand, R3, 272,

177, 217 274, 293
Queue, 103, BB1 Region naees, 272

execution, 103 Register, 483
print, 103 REL (release), 90, 240
punch, 103 Relative address, 309

QUIT BOUNT keyword parameter, Relative addressing, "H3

M51150

R

233, 230 RELEASE command, 20, R1, 171,
(replace), 269, 278, 295 178, 200
(restore), 333, 359 RELEASE CONTROL coemand paramet-
(route), 90 er, 191
(run), 203 RELEASE option, 90
modifier, 310, 317 Relocation factor, 175, 313, 375R

Rack nueber, 001 global, 175, 210, 261, 251
Random access, I01 local, 175, 203, 261
Rav data, I01 Remote batch, 102
RC, 001 Remote batch mode, H03
RCILL subroutine, 372 Remote batch station, 35, 97
RE (restart), 201 Reaote Job Entry, 35
Re-entrant, 043 Remote terminal, B43
Re-usable, B60 REHOTES IRQUIRE coamand paramet-
Read, “N1 er, 177, 218
Read Pointer, 153 RER (renumber), 269, 270, 29¢
READ subroutine, 121, 228, 200 REIUHBER edit command, HR, 278,
Read—only storage, 002 290
Read-only-file, 210, 212 REPLACE edit command, B3, 55, 56,
Read-write head, R02 270, 295
Reader, UB1 Reproducing punch, 403

070 Index

April 197R

MTS Volume 1: MTS -- The System

REPT key, 75 Round—off error, 404
RERUN MOUNT keyword parameter, ROUTE CONTROL command parameter,

233 191
RES (restore), 269, 270, 296 ROUTE option, 90
RESE (reset), 333, 358 ROUTE parameter, 98, 179, 257
RESET CONTROL command parameter, Routine, 400

190 RPN MOUNT keyword parameter, 233
RESET debug command, 46, 333, 358 RSTIME subroutine, 375
RESET device command, 86 RU (RUN), 333, 360
Resident system, UB3 RUBOUT key, 75
Resolve external symbol resolu- RUBOUT, 90

tion, HUN RUN command, 20, 39, 166, 17B,
Resolve library references, RUB 178, 2H3
Response time, UBO RUN debug command, 45, 66, 167,
Restart, R40 32B, 360
RESTART command, 39, 166, 170, RUN PERMIT access-type, 138, 238

175, 178, 201 Run time, 640
RESTORE debug command, R5, 70, S (scan), 269, 276, 297

333, 359 S (seconds), 228, 243, 256
RESTORE edit command, RB, 130,

267, 270, 296
RETR! CONTROL command parameter,

189

UIUIUIUI

(set), 2H8
(short), 179, 203, 206, 255
(success), 268
(symbol), 333, 368

RETRY MOUNT keyword parameter, S INQUIRE command parameter, 177,
233 220

RETURN, 80, 9N, 96 S modifier, 163
Return code, 375, B40 S type code, 316, 316
RETURN key, 75, 76 S-8 card, H89
RETURNLINE8 modifier, 108 SAME INQUIRE command parameter,
REV CONTROL command parameter, 177, 216

190 Save area, nun
REN CONTROL command parameter, SC (SCAN), 333, 361

188 SCA (SCALE), 333
Rewind, HRH TASCALE debug command, 333
RENIND subroutine, 121 SCALE SET debug command paramet-
RE, 213, 213 er, 365
RF debug command, 332, 333, 333 SCAN debug command, 06, 318, 333,
RF DISPLAY command parameter, 203 361
RF parameter, 179, 180, 201 SCAN edit command, R2, 50, 60,
RE SET command keyword parameter, 270, 271, 270, 297

251 SCARDS, 26, 198, BN5
RF SET debug command parameter, SCARDS subroutine, 228, 200

365 Scratch file, 108, HMS

Right justify, R08 SCRFCHAR parameter, 109, 179, 252
Ring, Q44 SD (sds), 257, 333, 362
RING MOUNT keyword parameter, 233 SDA device type, 103
RJE, 35 SDS, B5, 64, 167, 307, UB5
RMAR CONTROL command parameter, SDS command, G0, 178, 207

190 SDS constants, 318
RMAR device command, 83 SDS debug command, R5, 333, 362
RMTS INQUIRE command parameter, SDS parameters, 309

177, 218 SDS simulator, 326
RO PERMIT access-type, 138, 238 SE (set), 269, 274, 298, 333, 363

Index 471

7-Z4

HTS Volume 1: HTS -- the System

April 1975

Segments, 37 SETPFX subroutine, 39
Selectric Typewriter terminal, Setting and clearing Breakpoints,

33, 35, 73, 95 R5
Self-contained program, R45 Seven-track magnetic tape, MR5
Sense bytes, HHS Seven—track magnetic tape drive,
Separator, 345 0&5
SEQ, 122, 196 Severity code, 4&6
SEQFCHK parameter, 126, 129, 18¢, SGLS parameter, 202, 206

179, 252 SH (shift), 269, 27¢, 300
SBQFCHK switch, 179 Share file character, 252
Sequential, 122 Shared files, 138
Sequential file, 122, 125, 153, SHFSEP parameter, 179, 252

156, 196, Q45 SHIFT edit command, H3, 270, 300
Sequential file check, 252 SHIFT key, 7
Sequential file mith line num- SHORT, 255

bers, 127, 196 SI (sink), 259
Sequential operation, 123 SIG (siqnoffi, 255
Sequential with line number file, SIG (siqnon), 256

122, 196 SIGPILB DISPLAY command paramet-
SEQSL, 122, 127, 196 er, 20%
SERCOH, 198, R35 SIGFILE parameter, 179, 252
SERCOM subroutine, 228, 25% SIGFILEATTR parameter, 179, 252
Serially re-usable, QBS SIGHSG INQUIRE command parameter,
Service files, 51 220
SET command, 39, 99, 170, 175, Significance exception, 371

178, 288, 375 SIGNOFF S, 179, 255
SET debug command, R6, 306, 333, SIGROFF command, 16, 39, 179, 255

363 SIGNOFF short, 255
SET debug comaand parameters Signoff statistics, 101, 255

ATPREFII, 363 SIGNOI command, 16, 39, 179, 256
ATTH, 363 Siqnon id, 77, 383
BLANK, 363 SIHSCRIPT'II, 50
ENTRY, 363 Simulation languages, H9
ERRORDUHP, 363 CSHP, Q9 V

IIDCH, 363 GPSS, 50
IFPUT, 363 SIHSCRIPT-II, 50
LE1, 36% Single precision, 446 ‘

HODCH, 36R SINK command, 39, 179, 259
OHAPCH, 363 SIOERR subroutine, 375
OUTPUT, 36H SIZE CREATE command parameter,
P19, 36% 196
PGST, 36! SIZE 50091 keyword parameter, 23H
PRE!I!, 365 SIZE parameter, 128, 176
RP, 365 SIZE CONTROL command parameter,
SCILI, 365 188
T2352, 365 SKIP subroutine, 121
TYPE, 365 SLIP, R9
IFR, 365 S812, 49

SET edit command, 43, 266, 271, Snark, 0&6
298 SNOBOL, 446

SBTAPD subroutine, 121 SIOBOLR, H9
SBTIHB subroutine, 375 SO (source), 260
SETIOBRR subroutine, 155, 375 Software, H46 ‘

1:72 Index '

HTS Volume 1: HTS -— The System

April 197a

SOH, 9H Store, HH8
Sorter, HH6 STRANDS IUQUIBE command paramet-
SOURCE command, 39, 179, 260 er, 177, 221
Source deck, HH6 String processing languages, H9
Source language, HH7 Strings, 271, HH8
Source program, 18, HH7 SUB (subtract), 398, H00
SP modifier, 151 Sub-program, HH8
Special character, HH7 Submitting batch job, 35
Specification exception, 371 Subroutine, HH8
SPIE macro, 372 Subroutine library, 228, 2HH
SPIB subroutine, 372 SUBTRACT projectaccount command,
SPL, H7 38H, 398, H00
SPOOLING, HH7 SUCCESS, 268
SPRINT, 26, 198, HH7 Summary
SPRINT subroutine, 228, 2HH debug command prototypes,
SPSS, 50 333
SPUNCH, 26, 198, HH7 edit command prototypes, 27H
SPUNCH subroutine, 228, 2HH HTS command prototypes, 175
SP1 parameter, 202, 206 PROJECTACCOUNT prototypes,
SP2 parameter, 202, 206 398
SS modifier, 1H6 statistics at the end of
SSPC parameter, 202, 206 job, 101, 255
ST (start), 261 Supervisor, HH8
ST (step), 333, 366 call, HH8
ST (stop), 269, 27H, 301 interrupt, HH8
STA (status), 398, H00 program, HH8
Stacker, HH7 state, HH8
START command, 39, 166, 17H, 175, task number, HH9

179, 261 Switches, 266
Starting line number, 236 SYMBOL debug command, H6, 333,
Station, HH7 368
Statistical Program Packages, 50 Symbol modifier, 317

CONSTAT, 50 Symbol table, 63, 252, HH9
OSIRI5, 50 Symbolic address, 311
SPSS, 50 * Symbolic Debugging System, HH,

Statistics at signoff, 92, 101, 63, 211, 307, HH9
255 Symbolic languange, HH9

STATUS INQUIRE command parameter, Symbolic referencing, 309
177, 221 SYHTAB parameter, 179, 252

STATUS projectaccount command, SYHTAB switch, 179
386, 398, H00 System, HH9

STEP debug command, H5, 167, 326, Command Language, 23, 38,
333, 366 165

STO (stop), 333, 367 interrupt, HH9
STOP debug command, H5, 167, 333, library, HH9

367 load, 10H
STOP edit command, H3, 167, 27H, subroutine library, 228,

301 228, 2HH
STOP network command, 167 SYSTEM debug command, 323
Storage, HH7 SYSTEH subroutine, 166
Storage dump, 250 T (terse), 333
Storage location, HH7 T (time), 228, 2HH, 256
Storage protection, HH7 T (tracks), 196

Index H73

V 7 ‘_.. ,7.

HTS Volume 1: HTS -- The System

April 197B

T (trim), 299 Track, 128, M50
T device-type IIQUIRE command Track index, 156

parameter, 177, 219 Translator, U50
TAB COITROL command parameter, Transmission Control unit, 87

191 Transmission rate, 73, 7U, 93
TAB key, 76 Transmit mode, 78, 92
Tab setting, 32 Trap, 050
Tab stop, 76 TRIH modifier, 141, 150, 253, 265
TABI CONTROL command parameter, TRIM parameter, 179, 253, 299

190 - Truncate, 450
T181 device command, BU

~ Truncation error, H50
TABO CONTROL command parameter, T55, U50

190 TT! device type, 1R3
TABO device command, 8H THAIT subroutine, 375

Tape, B69 Type code, 316
TAPES IEQUIRE command parameter, TYTE CREATE command parameter,

177, 219 196
TAPES parameter, 177 TYPE debug command, 333
Task number, 469 TIPE modifier, 316, 319
TDR parameter, 179, 252 TYPE parameter, 129, 175
Technical demos, 9 - TYPE SET debug command parameter,
Telephone numbers 365

information, 77, 93, 95 U (unnumber), 263
terminal, 76, 93, 95 U (usinq), 333, 369

Teletype, 35, 7H, 92 U signon-id INQUIRE command para-
Hodel 33, 73 meter, 177, 220 .

Hodel 35, 73 UC, 178, 248
Temporary file, 108, 201, H09 UC CONTROL command parameter, 191
TERHHRS parameter, 391, 398, U00 UC modifier, 102, 145
Terminal, 99, R50 UCI CONTROL command parameter,
Terminal job, 450 190
Terminal mode, 15, 98, R50 UCO CONTROL command parameter,
TERMINAL parameter, 390, 398 190
TERSE CONTROL command parameter, UHIST, H9, H51

190 UNDERFLOH, 373
TERSE debug command, 333 Underlining, 175, 273, 332
Terse mode, 329 Unit, R51
TERSE parameter, 179, 253 URL (unload), 262
TERSE SET debug command paramet- Unload, B51

er, 365 " UNLOAD command, 39, 179, 262
TEST parameter, 309 UNLOAD parameter, 179, 253
TEXT360, 52 ' UNLOAD switch, 179, 253
TICALL subroutine, 375 UNNUHBER command, 22, H1, 179,
Time limit, 98, 37B 263
Time paraleter, 17, 98, 178, 179, Update, H51

, 228, 20¢, 256 Updating a file, 53, 162
Time slice, H50 Updating file defensively, 162
Time-sharing, H50, Upper case, 8U, 175, 273, 332
Timer interrupt, 32R, 378 User, B51
TIHNTRP subroutine, 375 1 User file, 451
TN, 90, 98 USERS INQUIEE command parameter,
T0, 176, 193 177, 221

07H Index

April 1

HTS Volume 1: HTS —- The System

978

Users password, 100, 251 ISU Introductory Publications, 11
USING debug command, 86, 315, USU HTS manuals, 10

333, 369 ITH CONTROL command parameter,
Utility program, 851 189
V (veri:1), 299 x (hex), 299
V modifier, 270 X (xec), 269, 278, 302
V type
Variabl

code, 316 X modifier, 270, 311, 317
e, 851 I type code, 316

Verification modifier, 270 X-OH, 98
VERIFY parameter, 299 XCTL debug command, 328
Vertical redundancy table, 851 XCTL SUBROUTINE, 167, 281
Virtual
Virtual
VHSIZE

20
VOL HOU
VOLSER

23
Volume,
VOLUHE

23
V type
wait, 8
WARN C

19
WARN de

address, 309, 851 XBC edit command, 83, 278, 302
memory, 37, 851 Xec names, 272

DISPLAY command parameter, Xec procedure, 267
8 Xec switches, 266, 268
NT keyword parameter, 238 ERDOFPILE, 268

HOUNT keyword parameter, FAILURE, 268
8 SUCCESS, 268

852 IFR SET debug command parameter,
HOUNT keyword parameter, 365
8 XPL, 88
code, 316 XREF parameter, 177, 178, 179,
52 198, 227, 281, 283, 261
ONTROL command parameter, Y type code, 316
0 Z type code, 316
vice command, 86 ZERODIVIDE, 373

Vastebasket, 111 1050 terminal, 35
ULTPOR,
WATFOR

18, 87, 852 12-edge, 852
Library, 852 1803 printer, 99

Westinghouse 1600 Cathode Ray 2318 Disk Drive, 156
Terminal, 35, 73, 92, 95 2781 Communication Terminal, 35

Word, 8
HPH HOU
WRITE

23

52 360-assembler language, 808
NT keyword parameter, 238 7-track magnetic tape, 852
HOUNT keyword parameter, 9-edge, 852
8 9-track magnetic tape, 852

Write Pointer, 153 9TP device type, 183
WRITE subroutine, 121, 228, 288 9TP HOUNT device-type, 231
WRU, 98

Index 875

HTS Volnne 1: HTS -— The System‘

April 197G

USU CDPC

Reader's Collent and Update Request Porn

HTS*'THE SYSTBH
Vol. 1, third edition, revised

. . . L, 4 1 r_i__ _W

If you wish to receive any susequent updates to this volume, please fill
in this fora, told as shown on the reverse side, seal or staple and nail.
Ion: contents, if you desire to lake any will be appreciated. -

_. . . _. n___ ‘ __ __.._‘_ v_

Suggestions and Comments

1-: *‘- 7 ~" V _

Date~~

Ha-Q1 ‘ nu-an *- :4 i ,1 ' '- ~

Department ¢~ ~~

AddressT*:~~~v~*~»~>-- »- ~ ~ e e n

Q76

 U

O

U

HTS Volume 1: HTS —— The System

April 197R

fold here

Documentation Librarian ,

Computing and Data Processing Center
Wayne State University
5950 Cass Avenue
Detroit, Michigan R8202
USA

fold here 7

477

,_.

C

Q

Q

