~¥

’ (..{_",':lé re | /\]C' f;’/cf’\) / :L7 .

A P
a4 g

o # IR o8
B e e

DESCRIPTION OF
THE ASC SYSTEM HARDWARE
October 1970

TEXAS INSTRUMENTS' PROPRIETARY RIGHTS NOTICE

This document is the property of Texas Instiuments
Incorporated, is supplied to you fer informational
purposes only, and shall be roturndd t4 Texae In-
struments upon rejurst, oF wher' You have no further
use for thd document.

The .information and/or drawings set forth in this
document and-alil +ights in and to inventions dis-
closed hereir’, ind “atents which might be grarted
thereon disciosiag, employing, or covering the ma-
terials, methods, techniques, or apparatus described
herein are the exclusive property of Texas Instru-
ments Incorporated.

No reproduction shall be made of this document and
no disclosure can be made to any other person, or
if disclosea to an organization, to anyone outside
of the organilatior, without the prior consent in
writing of Texds Instruments Incorporated.

Copyright @ 1970, by Texas .Instruvrents Incorporated

TEXAS INSTRUMENTS

INCORPORATED




PREFACE

This document describes the ASC System hardware as required by
the system programming staff. It is also directed to all personnel
associated with designing and configuring ASC Systems to be used

as a primary reference source.

- Section A describes the Memory System of the ASC including the
Memory Control Unit, the Memory Modules, and the expansion

features being incorporated into the system. Section B describes the
Central Processor including the Mermory Buffer Unit, the Instruction
Processing Unit, and the Arithmetic Unit. This section also provides
the CP instruction set, the timing analysis, and examples of vector
instruction applications. Section C describes the Peripheral Processor
including the Peripheral FProcessing Unit, the communication registers,
the timing analysis, and the PP instruction set. Section D describes
the Data Channel Units. Section E describes the ASC System operating
panels, and the associated procedures. Section F describes the periph-
eral devices used with the system. Section G describes the maintenance
provisions being designed into the system.

This document is designed to allow each part to be used alone. The
overall list of effective pages following the Preface provides the effec-
tive date of the A page of each section. Changes, modifications, or
additions will be issued as changed or added pages with the date of the
change in the upper right hand corner of the changed page.

ii



SECTION A

SECTION B

SECTION C

SECTION D

SECTION E
SECTION F

SECTION G

CONTENTS

INTRODUCTION

MEMORY SYSTEM

CENTRAL PROCESSOR

SECTION B1
SECTION B2
SECTION B3
SECTION B4

CENTRAL PROCESSOR DESCRIPTION

CENTRAL PROCESSOR TIMING ANALYSIS

CENTRAL PROCESSOR INSTRUCTION SET

EXAMPLES OF VECTOR INSTRUCTION APPLICATIONS

PERIPHERAL PROCESSOR

SECTION C1.

SECTION C2
SECTION C3
SECTION C4

PERIPHERAL PROCESSOR DESCRIPTION

COMMUNICATION REGISTERS DESCRIPTIONS
PERIPHERAL PROCESSOR TIMING ANALYSIS
PERIPHERAL PROCESSOR INSTRUCTION SET

DATA CHANNELS

OPERATING PANEL

PERIPHERAL DEVICES

MAINTENANCE

iii



INTRODUCTION

iv



TABLE OF CONTENTS

Title

General Organization of ASC
Use of Pipeline Concept

System Configuration and Hardware Features

Page

12



GENERAL ORGANIZATION OF ASC

The ASC is an advanced computer designed especially for high-
volume processing of Well—ordefed data in a multiprogramming environment.
To achieve its extremely high processing speed, the computer utilizes a pipe-

line arithmetic section and a pipeline instruction section,

Organization of the ASC is illustrated in Figure 1. A Peripheral
Processor links input/output equipment to a Central Processor and a Central
Memory. The input/output equipment available for the system includes CRT
keyboard/display units, magnetic tapes, magnetic discs, card equipment, and

line printers.

The Peripheral Processor contains eight independent computers

which control input/output devices and schedule work for the Central Processor.

The Central Processor provides the major execution facility
of the system. The interface between Central Processor (CP) and Peripheral
Processor (PP) consists of control communication links whereby the CP éig-
nals completion of jobs or its availability for other jobs and the PP initiates
new jobs. All data and instruction for the CP are obtained through the Central

Memory.

The Central Memory consists of high-speed semiconductor
memory modules which have full cycle times of 160 nsec for 256-bit words.
Since the ASC computer is a 32-bit/word computer, each memory cycle has
access to eight computer words. The Central Memoi‘y interfaces with the .

CP and the Peripheral Processor.

One ASC configuration is shown in Figure 2. This diagram

indicates four memory units, each containing 16K words of storage; thus, the



CENTRAL

PROCESSING
CENTRAL
MEMORY
PERIPHERAL /
PROCESSING
UNIT

DISPLAYS TAPES DISC CARDS PRINTER

Figure 1. ASC Organization



DISC
MOLULE

DISC
MODULE

DISC
MODULE

DISC
MODULE

A
{

OPERATING
CONSOLE

MAINTENANCE
CONSOLE

cm&g\# '
MEM ;
MEMOR DISC INTERFACE UNIT
t ' t
DATA CHANNEL UNIT - -
CENTRAL J}. |
MEMORY |= |
UNIT 1 |
MEMORY '
CONTROL I
UNIT !
CENTRAL .
MEMORY -
MEMOR CENTl.zAL ;:Rocr_ssor:z !
(SYSTEM 1 CONTROL) '
bt = - - O = - - - — - - -
! {
1
CENTRAL
MEMORY | »| PERIPHERAL PROCESSING UNIT
UNIT 3 :
A
CARD ‘
POWER READER X [
CONTROL PERIPHERAL INTERFACE UNIT
o CARD — N
A 4 Y \ y Y Y
| '160[0 bl' Ky ! /
" * 1600-bpi KEYBOARD
1" TAPES 112" TAPES DYSPLAY
: UNITS
1
A Y
LINE 800-bpi
PRINTER TAPE
Figure 2. ASC System (Prototype)




basic memory size is 65K words. These four modules are controlled by a
memory control unit which multiplexes the memory units to the Central Pro-
cessor, Peripherél Processor, or dats channel unit which is a special high-
speed device capable of sustaining the high data transfer rates required by

the disc system. A significant feature of the ASC system is its utilization of

& large disc file with word transfer rates of 106/sec between it and the Central
Memory. The disc file consists of four modules containing 25, 000, 000 ‘words

each,

USE OF PIPELINE CONCEPT

The pipeline concept being exploited in the Central Processor
is illustrated by the example in Figure 3, This example shows a '"pipe' which

performs an operation consisting of three separate and distinct steps. This

ENTER
s
| I
bystee | | onae.o) 3
A
| A ] <]
| i n
] | g
| | a
STEP
V | B | miME- tp > o
| . §
! [ .
/v 5]
PIPE | | ~
STEP w
| c | TME=t | o+
] | J a
| IS R |

EXIT AFTER STEPS
A, B, AND C &RE
COMPLETED

Figure 3. Pipecline Concept



operation can be performed on an operand by entering it in the pipe and col-
lecting the result at the exit after transit time T has elapsed. Thus, the time
required to perform an operation is the sum of the individual step times tA’
t

and t If the steps are separate and distinct as stated, then the average

oierationctime can be decreased by entering operands into the pipe so that
different operands are at steps A, B, and C simultaneously. If a long series
of operands are routed through thé pipe so that the "fill-up'" and "emi)'ty” times
are negligible, the average time required for an operation will be

t, +t_ +t

A B C
3

The ASC arithmetic unit is constructed from a number of
"sections" (Figure 4), each of which'can perform a separate arithmetic or
logical operation in the same manner as the steps in the pipe of the previous
example. Thesé sections are connected in ''pipe'" fashion to .generate a pipe
for performing each instruction in the CP. | Each section can be connected to
any of the other sections, as required, to construct a pipe for executing any
particular instruction. Figure 4 fhows sections 1, 2, and 8 connected in a
pipe by the solid line which may be the configuration required to perform an
instruction.. The dotted line connecting sections 1, 4, 6, and 8 illustrateé a
configuration which may be required to execute another instruction. In this
fashion, the sections of the arithmetic unit are configured as required to
execute the ASC instructions. The proper configuration of the arithmetic unit
is established when the instruction and its operand are at the entry to the pipe-

line,

This pipeline concept is used in the desigﬁ of the ASC because
of its inherent ability to achieve high-speed operations on large volumes of )
well-ordered data. If the data are arranged so that a large number of iden-
tical operations are required in sequence, the pipeline can be filled, achieving
an average operation speed equal to the time required for only one section of
the pipe. This well-ordered type of data is represented by vector or array

processing., For example, consider the vectors



|

b o o -

SECTION 1

| i
' | S

|

SECTION 2

B E
|

|

SECTION 3

SECTION 4

_]
1
|
L
——
|
i

SECTION 5

W |

r—-
!

SECTION 6
\

SECTION 7

[—o——————f—a_——-————_—.-

— 1

SECTION 8 -

— - p—
-oer mm o - o

Figure 4. Sections of Arithmetic Unit Connected in ""Pipe'" Fashion

6



A=a1+a2+a3+.... ai

B=bl+b2-{~b3+....bi

A vector addition of A + B would result in the vector C where

c1=a1+b1
C =

252,17 P,
c3:a3+b3

cC,=a. + b.
i~ i i

The ASC instxuction set contains vector and matrix instructions
to perform such operations so that oniy one instruction is required to accomplish
this operation on any length of vector. A conventionél computer would require
a series of instructions to achieve this same operation. This is illustrated in

the following example:

e Conditions
— array A is stored in consecutive locations beginning at
— array B is stored in consecutive locations beginning at B
— array C is to be stored in consecutive locations beginning at ¥

— each array consists of L elements

e The subroutine required for a conventional machine is



Enter

Load I with 0

Load R from o+ (I)

Add to R contents g + (I)
Store R into v+ (I)
Increment I

Branchif I # L

|

Exit

The time required to accomplish the function of each section
in the ASC pipeline is 60 nsec; thus, for processing vector or array instruc-
tions, the average time per element is only 60 nsec. The CP interface with
the Central Memory is designed to sustain this rate of data processing so that

the pipeline can be utilized to its fullest extent.

The CP interface with the Central Memory is shown schemat-
ically in Figure 5. There is one 256-bit data transfer bus between the CP
and CM, which is shared by four CP storage buffers. Instructions are buf-
fered in two storage files (IB and I), each containing eight computer wo‘rds.
One operand vector is buffered in two storage files (XB and X), each con-
taining eight computer words, and the other operand vector is buffered in
another set of storage files (YB and B). \_'I"he resultant vector from the arith-

metic unit is buffered in storage files ZB and Z in the same manner.

In addition to the pipeline construction of the arithmetic unit,
the ASC employs a pipeline at the instruction processing level. Up to 12
instructions are in this pipeline at any time, so streams of instructions ready
for execution are supplied at the exit of the instruction processing pipe in
somewhat the same manner as streams of vector elements enter and exit

from the arithmetic-unit pipe.



The Peripheral Processor provides communication with I/0
devices, functions as system monitor, and fulfills job requests which do not
require high arithmetic capability. Elements of the PP, shown in Figure 6,
include one arithmetic unit which is shared by eight virtual processors, one
of wiﬁch is designated as the system monitor. Functions of the system moni-
tor include assignment of system-control parameters, assignment of programs
to each of the seven slave virtual processors, assignment of CP prbgrams, and

monitoring of the progress of all programs including the CP program.

The virtual processors communicate with I/O devices, Central
Processor, data channel, and other system components via 64 Communication
Registers (CR) which are 32 bits in length and can be set or read by the virtual

processor or an external device.

Associated with the virtual processor is a Read-Only Memory
(ROM) containing fixed programs which are executed by the virtual processors.
These programs are stored in the ROM because they are frequently used and

require fast access.

Each virtual proéessor has a single-word buffer which acts as
memory address register and memory data register for that processor. Cen-
tral Memory access requests from these single-word buffers are granted on a

priority basis.

The virtual processors are operative and share the arithmetic
unit as programmed by the system monitor. This sharing is accomplished by
dividing the time into 16 time slots represented by the segments shown on
the wheel in Figure 7. Time slots are assigned to the virtual processors

according to their needs.

SYSTEM CONFIGURATION AND HARDWARE FEATURES |

The recommendcd physical configuration of the ASC reguives
Approximately 4000 sq. ft. Four airconditioning units, furnished as part of

the ASC, supply cooling air to system components requiring special cooling.



INSTRUCTIONS

— e e wmn

OPERANDS

CONTROL.
UNIT

ol — -

- - - 1B
O
4 = XB
o
<
)
w
5
0
S
o
S
[ ¥ YB
=

OPERANDS

TO
MEMORY
e N
< ¥
<z >
Figure 5.

OPERANDS

ol
T

ARITHMETIC
UNIT

Interfacing of Central Processor and Central Memory

10




11

M
|- au
¢INGLE WORD - » VPO B
BUFFER . J
<t » VP
1 SWB0 - Lot S 1 <
]
o SWB - | I \
! |
CENTRAL : ! VP ‘ !
MEMOR Y | ! > SEQUENCE |— !
| | CONTROL | )
! I : ! |
l ! - - vP —
SWB < "
7
BUFFER
CONTROL ' |
ROM
COMMUNICATION
REGISTERS
< > CR, L
< > CR, |t
, ' | 1/0 DEVICES
. : DATA CHANNELS
|
1 |
' '
- > CRe, ||
J

Figure 6. ASC Peripheral Processor



"NAME" OF VP
TO RECEIVE AU
DURING THIS
TIME SLOT

8 VIRTUAL
PROCESSORS
(0-7)

TIME WHEEL

1 ARITHMETIC UNIT

8 "VIRTUAL'" PROCESSORS WHICH SHARE AU

Figure 7. Time Slots Permitting Virtual Processors
To Share Arithmetic Unit

12



Normal airconditioning is also required to maintain a comfortable working

area.

The extremely high speed of ASC operation is possible because
of the advanced logic components which implement the system. These logic
circuits are emitter~coupled integrated circuits having gate speeds of approx-

imately 2 nsec.

ASC hardware features: a high-speed semiconductor memory; a
direct-access fixed-head disc auxiliary storage system; Peripheral Processor
which provides system control and external-internal communications; a rapid
Central Processor for data manipulation, with the feature of hardware logic
for vector-matrix operations; automatic, rapid, context switching for efficient
multiprogramming; high-speed peripheral input/output devices; and remote on-

line graphic terminals,

13



MEMORY SYSTEM

SECTION A



MEMORY SYSTEM
SECTION A
CONTENTS

INTRODUCTICHN
MEMORY CONTROL UNIT
EXPANDER/MULTIPLEXER UNTT
MEMORY UNITS

Y O e ed



INTRODUCTION

The Central Memory (CM) of the ASC system is configured from three basic
units: the Memory Control Unit (MCU), the memory port Expander/Multiplexer (LX)
and the selected Memory Units. Figure 1 illustrates a typical CM configuration.

THE MEMORY CONTROL UNIT
The MCU is organized as a two-way 256-bit/channel parallel access traffic

net between eight independent processor ports and nine memory buses, with each
processor having full accessibility to all memories.

The nine memory buses are organized to provide eight-way interleaving for
the first eight buses with the ninth buses reserved for bulk storage. However,
a patchboard is provided within the MCU to facilitate addressing patterns from
no interleaving to eight-way interleaving.

The MCU provides the facilities for controlling access from the eight
processor ports to a CM having a 24-bit address space_(]G million words). In
addition, each port contains the necessary hardware for performing the MAP and
PROTECT address processing functions (described subsequently). Conflicts at
the memory buses are resolved on either a fixed priority bases (i.e., each
processor port is assigned a relative priority) or a distributed priority basis
(i.e., all processor ports are assigned equal priority).

The unit is asynchronously designed to operate independently of cable
delays, processor clock rates, and memory unit access and cycle times; however,
these times can affect the memory bandwidth. For comparative purposes, the total
bandwidth of CM is computed as BWCM = No. of words/cycle X No. of Independent
memories/Memory Cycle Time, and the bandwidth provided each processor port is
Bwp = No. of Words/Cycle /2 X Processor Clock Period.

INTRODUCTION 1
SECTION A



HIGH SPEED
MEMORY

EXAMPLE -

I e N e




The Memory MAP provides for dynamic address relocaticon of Central Memory of
the block (i.e., page) level. Contiguous virtual page addresses from the processors
are transformed into discontiguous actual page addresses for more efficient use
of CM resources. The MAP is physically a set of up to 64 eight-bit (page address)
registers accessed via the virtual page address of an individual request. The
contents of the register addressed replaces the most significant bits of the virtual
address to form the actual page address. Figure 2 illustrates the Mapping pro-
cedure. The size of each "page" is a function of the size of CM being mapped.
The minimum page size is 4K words with the maximum being 256K for full 24 bit
addressing. *

The PROTECT facilities consist of three 24-bit bounds register-pairs for
defining the upper and Tower bound of a protected CM segment. The MCU compares
the address of each processor request to the contents of one of the bounds register-
pairs selected via a two-bit code developed by the processor. For example, the
three central processor categories are READ, WRITE, and EXECUTE. A request pointed
toward a protected CM area is denied access to that ilocation and the processor is
notified of the attempted violation.

The bounds register-pairs can be used to define a variety of CM protection
functions. Figure 3 illustrates a typical CM arrangement for the central pro-
cessor port. Note that segments as small as 16 word groups may be defined.

The MAP provides an additional protection feature. If a processor utiliz-
ing the MAP feature accesses a MAP register coentaining actual page O, the re-
guest is denied access to CM and the processor is notified. Thus, the "0" code
signifies that the requested page is rot resident in the physical central memory.

VIRTUAL ADDRESS ACTUAL ADDRESS

SPACE MAP SPACE
0 .
PAGE 0 2
1 1 2
i
v > 0
A

FIGURE 2: MEMORY MAPPING

MEMORY CONTROL UNIT 3
SECTION A



LOWER UPPER PROTECT/
, Code BOUND BOUND PERMIT
0 01 WRITE | £ [ r 0
EXECUTE —
oMLY
q ’ £
10 READ t
READ d 0
ONLY
v
READ/WRITE 11 EXECUTE [ S J L_ q l 0
ONLY et L I |
S .
q,r,S, and t represent 16 word
ANY addresses.
T

FIGURE 3: IMPLEMENTATION OF MEMORY PRUTECTION

The MAP and PROTECT information for a particular processor is constructed
in CM under control of the Operating System. The information is transferred to
the MCU 1in response to a command from the PPU via the Common Command Register,
or automatically via one of two "Context Switch" commands provided to the MCU
from the automatic context switch logic in the central processor.

Command Command Register (CCR) operations cause the register addressed to
be loaded with the contents of the location specified by the pointer in absolute
CM Tocation 38y¢, whereas the Context Switch command causes a set of predefined
MAP and PROTEC% registers to be loaded from the location specified by the pointer
at CM location 28,.. Figure 4 reflects the CM image of the MAP and PROTECT
registers for use with the Context Switch command. A Tist of MCU CCR commands
is presented in the maintenance section. CCR commands are also available to
provide access to MCU control and address registers for maintenance and diagnos-
tic purposes.



Address n n+1 n+2 n+3 n+4 n+5 n+6 n+7

!
n Lw Uw Ly Ur Le Ue f Lw Uw Lr % ur Le
n+8 AO A] {\2 . . . ';-b:”“..“m. . . . i . . r\15§A3aA33 . . i |:
n16 Paghatg |-l [ L P IREE

Lw - Lower Write Protect bound

Uw - Upper Write Protect bound

Lr - Lower Read Protect bound

Ur - Upper Read Protect bound

Le - Lcwer Execute Protect bound

Ue - Upper Execute Protect bound

An - Value of Actual Page Number corresponding to Virtual Page n of MAP

FIGURE 4: CM IMAGE OF "CONTEXT SWITCH" MAP AND PROTECT REGISTERS

G LINN TT04LNOD AHOW3W

Y NOILJ3S



THE EXPANDER/MULTIPLEXER (EX)

The EX adds the memory bus and the processor port expansion capabilities for
configuring very large ASC Systems. The unit can be operated in any one of three
distinct moqes:

1) Up to four "Processors" can be multiplexed cnto one MCU processor port.
In this sense, a "processor" can be a data channel or a processor bus.
0f course, the basic bandwidth Timitations must be observed.
2) One MCU memory bus can be expanded tc accommodate up to four Memory Units.
3) A single processor's memory bus can be fanned out to allow the processor
to access up to four different memory systems.

‘The EX's can be interfaced with each other (i.e., by "treeing") to provide
expansions to 16 or up to 64. :

Conflicts at the single port interface are also resolved on either a fixed or
a distributed priority basis, in a similar manner to the MCU. These modes are
selected by patch card wiring in the expander hardware.

THE MEMORY UNITS

The Memory Control Unit is designed to operate with Memory Units configured
as eight-word {octet) storage devices. The TRANSLATOR PC board (patchboard?

*used to define the size of the unit on each memory port as well as the inter-
teaving mode.

For the most effective use of ASC -resources, the high speed storage devices
should have access times in the range of 100-250 nanoseconds. However, the sys-
tem will operate with slower memories and, due to the interleaving capability,
the degradat1on of performance is not linear with respect to memory speed. Fig-

ure 5 illustrates the pipeline nature of memory requests w1th an assumed module
access and cycle time of 140 nanoseconds.

The MCU also has the capability of report1ng and testing the Parity logic
normally provided with Memory Units.

The active element fast memory modules which are the standard ASC memory
units have raw access and cycle times of 140 and 160 nanoseconds.



CM WRITE CYCLE

100ns PROCESSOR |
INITIATE CYCLE

' 80ns DATA

TRANSFER CYCLE

60 ns MEMORY
INITIATE CYCLE

l 180ns MEMORY WRITE CYCLE

PIPELINED READ CYCLES

80ns PROCESSOR | [ PIPELINE

INITIATE CYCLE | | RATE
60ns MEMORY 108 wps
INITIATE CYCLE

220ns MEMORY #0 CYCLE TIME I

60ns DATA ’
_TRANSFER CYCLE

|
s

i
i MEMORY #2 CYCLE TIME

i

i MEMORY #3 CYCLE TIME

FIGURE 5: MEMORY CYCLE TIMING
140nsec MEMORY MODULE | MEMORY UNITS 7

SECTION A



CENTRAL PROCESSOR DESCRIPTION

Section Bl



TABLE OF CONTENTS
TITLE
GENERAL

INSTRUCTION PROCESSING UNIT

INSTRUCTION FETCH

INSTRUCTICN DECODE

REGISTER OPERAND SELECTION

EFFECTIVE ADDRESS DEVELOPMENT

IMMEDIATE CPERAND DEVELOPMENT

BRANCH ADDRESS DEVELOPMENT

.DETERMINATION OF BRANCH CONDITION

STORAGE OF AU RESULTS INTO THE REGISTER FILE

SCALAR HAZARD AND REGISTER CONFLICT RESOLUTION

GENERATION OF VECTOR STARTING ADDRESS

TRANSMITTAL OF VECTOR PARAMETERS TO THE MBU DURING VECTOR
INITIALIZATION

MEMORY BUFFER UNIT

DATA PATHS

SCALAR OPERATION

VECTOR PROCESSING

CENTRAL MEMORY REQUESTS
MEMORY BUFFER UNIT SUMMARY

ARITHMETIC UNIT

GENERAL

FLOATING POINT OPERANDS
STRUCTURE

14
20
21
24
25

26



GENERAL

The Central Processor (CP) is comprised of the Instruction Processing Unit
(IPU) to process the CP comnands, the Memory Buffer Unit (MBU) to provide inter-
facing with the CM, and the Arithmetic Unit (AU) to perform the specified arith-
metic operations. The interaction of these units is shown below:

INSTRUCTION
CM BUS PROCESSING
UNIT

g

MEMORY 5
CMBUS  {  BUFFER ————-— Data

.VL" UINIT wn as we Control

L4

ARITHMETIC
UNIT

4

INSTRUCTION PROCESSING UNIT

The primary function of the IPU is to supply a continuous stream of in-
structions to the MBU. The IPU'biock diagram is shown in Figure T; it performs
the following functions:

1. Instruction fetch

2. Instruction decode

3. Register operand selection

4, Effective address development through indexing and/or indirect addressing
5. Immediate operand development

(=)

Branch: address development

General 1
Section Bl



LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

1PU

- - e - e

MBU

o————— e e e e e e o e
INST : % %
S FILE
b . AM
KA T INSTRUCTION PROCR
NTE
l i SELECTION COUNTER
INST ——-———L-——m-s | G Y PC REGISTER
¢ FILE H INSTRUCTION REGISTES
i
MEM  wd{e>d 1ST 1PU
b REGISTER CONTHOL ] v
T INDEX AND BASE INSTRUCTION
A ! Lw REGISTER SELECT DECODE ROM
[ S .
tls X R I (M) | (M,i N CONTROL!AU ROM ADDR
B8 t
[ %% t
1
) y b
- { ¥ ?
e € L— ) -
INDEX AND BASE INSTRUCTION
ADDITION s DECODE ROM
o (R) | « CONTROL] AU ROM ADDR
I é ! é
. " ] y %
= ! & @ REGISTER -
QRECISTES e —] ROM ADDRESS DELAY
Ro | Ap CONTROL | AU ROM ADDR
> v ;
lj
T _._.{ REG | IMM CMA CONTROL} AU ROM_ADDR
wrgt 0 KB XH Vx>
MBU SELECTION |fg MBU j
—:q AND ALIGNMENT coN— AU CONTROL ROM
TROL
MAB | MCD AU CONTROL
REG (x)
- OR )
-+ vB YH Y = =
ot
PRI K SEAIUSN USRI PSR .
1 ]
| AB ] <,
. — : | AU CoNTROL
z8 6- Z ( ARITHR STIC UMUT s
) .
s ! . .
berned : . oL PUT HEG <
| !
‘ ?
< ! MULTILEVEL AU
| —————— DEPENDING ON
| INSTRUCTION
MBU; AU TYPE
102239 |
Figure 1. CP Block Diagram



7. Determination of branch condition

8. Storage of AU results into the register file

9. Scalar hazard and register conflict resclution
10. Generation of vector starting addresses
11. Transmittal of vector parameters to the MBU during vector initialization

MEMORY BUFFER UNIT

: .

The primary function of the MBU is to supply the AU with a continuous stream
of operands for vector processing and provide for the storing of results of the
vector operations. The MBU performs the following functions:

1. Accept the initial vector starting addresses and parameter information
from the IPU.

2. Fetch the memory operands requested by scalar instructions.

3. Retention of 16 words in temporary X and Y buffer registers for pos-

sible "scratch pad".operations involving data contained in the two
most recently referenced memory octets. This temporary storage ca-
pability increases by a factor of 1, 2 or 4 depending upon whether
a times 1, times 2, or times 4 ASC configuration is installed.

4. Storage of register operands into central memory as a result of scalar
store instructions.

5. Temporary retention of 8-words in the Z-buffer register for data des-
tined for one central memory octet address. Data stored by this means
is released to central memory when the octet address of write data
at the Arithmetic Unit output is different than the octet address
of the data contained in the Z-buffer registers. This temporary
storage capability increases by a factor of 1, 2 or 4 depending
upon whether a times 1, times 2, or times 4 ASC configuration is
installed.

6. Update capability from the Z-buffer registers to the X or Y buffer
registers for keeping the X and Y registers current when they are
being used for “scratch pad" operations.

~ ARITHMETIC UNIT

The primary function of the Arithmetic Unit is to perform the arithmetic
operations specified by the operation code of the instruction currently at the
AU level. The Arithmetic Unit is basically a sixty-four bit parallel operating
unit which is split into two halves of thirty-two bits each. Double length op-
erations are carried out using both thirty-two bit halves in parallel. Single
length operations use the left half AU, while half length

General 3
Section Bl



opevations use only one half of the capability of the left half AU. The same AU
is used for both fixed and floating point instructions. Fixed point numbers are
represented as signed integers with negative numbers in 2's complement notation.

Floating point numbers are in sign and magnitude with a base 16 exponent rep-
resented by an excess 64 binary number.



INSTRUCTION PROCESSING UNIT

The Instruction Processing Unit functional areas with four pipeline levels are
shown in Figure 2.

INSTRUCTION FETCH

The instruction fetch function of the IPU is concerned with instruction look-
ahead into the next octet and instruction look-ahead along the branch path when
the loop look-ahead control is active. The principal registers involtved in the
process of instruction fetching are the present address register (PA), the look-
ahead register (LA), and two e1ght -word instruction register files, The present
address register contains the address of the instruction presently being selected
from one of two eight-word instruction files. The look-ahead address register
ordinarily contains the next instruction octet address ahead of the octet refer-
enced by the present address register. Two eight-word instruction files ordinarily
hold the present instruction octet and the next instruction octet,

An initial addrass is cntered into the LA register for transmission to Central
Memory via the address bus from the IPU. LA is then transferred to PA as the
present address. When the address bus is released by CM, the Took-ahead incre-
menting hardware advances the LA register by eight, equivalent to one octet look-
ahead. The LA register sends this second address to CM immediately after the
instructions has returned form CM.

The first octet of instructions recieved from CM is synchronized with the Central
Processor clock at KCM. The octet is then transferred to file KA on the next
clock. The second request for the look-ahead octet is synchronized at KCM when
it arrives form CM, and then it is transferred to KB on the following clock.

One clock after the first octet is entered into file KA , the Instruction Register
(IR) is loaded with the instruction word selected by the 3 1east 51gn1f1cant bits
of PA. The PA register is incremented by one as each instruction is entered into
the instruction register. When the 3 LSB's of PA are 111, the last word in file KA
is entered into IR and the instruction lock-zhead octet KB is selected. As this
transfer occurs the contents of LA is transferred to PA and the LA register is
advanced by elght to the address of the next look-ahead octet. This new look-
ahead octet is requested from CM while instructions in the KB file are being
executed. This process of overlapping instruction requests with instruction execu-
tion continues until a branch without look- ahead or an out-of-line indirect address
request occurs,

In the case of a branch without look-ahead, the computed branch address replaces
the contents of both the PA and LA registers. LA is requested from CM, then
advanced by eight for the next look-ahead request and then the process described
above is repeated.

Instruction Processing Unit 5
Section Bl



CM

INDIRECT
THROUGH
REGISTER — BA
KCM L
PA ,AR AR a%a ]
KA |
Y +8
KB %
AR TS
T Y
PA +1
X A B — L
' IR PC 1
XR BR NR
PC 2
¥ ¢ l
ADD ,
 a——— Y
A
PC 3
AR TO
IR AR
B % 8
. i —
‘& SEL SEL
& ¢ ‘
il
O g
INSTRUCTION
D [—9 HAZARD
[ > DETECTION
©———fmd
N S ¢
REGISTER
HAZARD
DETECTION
AO RO
v
é .OPERAND
TO TO
FROM HAZARD
IMM REG STORE
Av IN MBU IN MBU ADDRESS DETECTION
STACK
102240
Figure 2. Instruction Processing Unit




A branch with look-ahead is set up by placing the branch instruction at the
target location of a Load Look-Ahead (LLA) instruction. This branch does not
cause a delay in instruction fetching if both the branch instruction and LLA
instruction are properly located with respect to octet boundaries. The LLA
should be at the top of an octet and the target branch instruction should be
at the bottom of an octet for optimum timing. A penalty of one clock time
is paid for execution of the LLA instruction for each pass through the program
loop if the LLA is located in this manner.

A Load Look-Ahead instruction enters a count into a look-ahead counter
register ( LC) in the IPU and enters the program address value of the LLA
instruction presently being executed into a branch address register (BA).

The count from the M-field of the LLA instruction corresponds to the differ-
ence of the instruction locations of the LLA and its target branch instruction.
The counter is decremented for each instruction executed following the LLA.

When the look-ahead counter is lowered to a value which would indicate that

the target branch instruction has been requested by the instruction lcok-ahead
and the look-ahead is now ready to be incremented by eight to the octet beyond
the instruction octet which contains the branch instruction, then the look-ahead
control will override the normal next octet increment of eight and place the
contents of the branch address register (BA) into the look-ahead address register
(LA ). This causes fetching of the octet which contains the LLA instruction and
the loop control is re-initialized when the LLA instruction is executed again
after the branch instruction returns the program to the LLA instruction. Loop
control by use of an LLA instruction only applies to singular instruction loops
up to 256 instructions including the LLA and the BRANCH.

A non-targeted branch instruction located between the LLA and the target
branch instruction will inactivate the branch look-ahead control if the non-
targeted branch instruction takes the branch path. If a non-targeted branch
instruction does not branch, then an active branch look ahead remains active.

INSTRUCTION DECODE

Instruction decode in the IPU is accomplished by the first of two Ready-only
Memories (ROM). The ROM size is 256 words by 32-bits.. The first ROM output
is at level 2 of the pipeline and is used for IPU control. The second ROM is
also used for control but in addition generates a field for use in driving the
address inputs to a third ROM contained in the MBU. The third ROM is used to
control the Arithmetic Unit. Outputs from both IPU ROM's contain preliminary
instruction decoding information needed for the IPU and MBU. Such things as
operand word size needed for register operand selection and effective address
development are supplied by the ROM's.

REGISTER OPERAND SELECTION

The register operand selection takes place in level 3. Register addresses
within a group of registers are specified by the R-field of the instruction
word. Register groups are specified by the instruction type as determined by

Instruction Processing Unit 7
Section B1



the operation code. The operation code is used as an address for the first RO
which in turn supplies the two additional bits needed for register group selection.
These two bits augment the four R-field bits to form a six bit register address
“for single length instructions. This six bit register address is applied to

the input of a register selection network which can select any one of 48 single
word registers in the register file.

The program addressable registers in the Central Processor make up the
register file. Each register is 32-bits in length. A1l registers in the file
can be-loaded or stored individually or in groups of eight registers at a time
with a single instruction. There are six groups of eight registers:

¢

Register Group Group

Locations Function _Designated
00-07 Base address registers A
08-0F Base address registers B
10-17 General registers C
18-1F General registers D
20-27 . Index registers I
28-2F Vector parameter registers v

If the instruction word specifies a half length register operand, then the
first ROM supplies an additional bit indicating which halfword is to be selected
from the 6-bit singleleword address. If a doubleword register is specified,
then one bit is dropped from the 6-bit register address and 64-bits are selected
into the RP. register at level 4. Doubleword register operands are always
selected from an even-odd singleword address pair.

Occasionally the effective address (a) is in the range a<2F and the M-field is
equal to zero, in which case the o addressed operand is selected from the regis-
ter file. Operands of this nature are selected by the IPU after the effective
address is developed. The register is selected using the 7 least significant
bits of the AR register. These 7-bits include 6-bits of singleword address
information plus one-bit for halfword selection if specified by the instruction
type. _

The output of the o selection network enters up to 64-bits of datd into the
AP register if doublewords are specified. AP is transmitted directly to the
MBU input register (IMM) for entry into the MBU output register (MCD ) and
then to the Arithmetic Unit. The AP register is at level 4 of the IPU. The
register operand for each instruction is carried along and held in the RP register
in parallel with and .in the same time relationship as the operand in AQ.



EFFECTIVE ADDRESS DEVELOPMENT

Effective address development through indexing and/or indirect addressing
incorporates a major portion of the hardware in the IPU. The T, M, and N-fields
of the instruction format specify the index register, base register, and address
displacement, respectively. The MSB of the T-field is dsed to specify indirect
addressing. An index register selected from an address by the 3 LSB's of the
T-field is entered into the 25-bit XR register at level 2 in the IPU.

A base register selected from an address given by the M-field is entered into
the 24-bit BR register at the same.level. The N-field displacement is copied
into the NR register. XR, BR, and NR form the three inputs to the index
adder in level 3.

The XR register is shifted one bit position to the right, left, or not at all
depending upon whether halfword, doubleword, or singleword addressing, respectively,
is specified by the instruction code. The shifting takes place prior to addition
in level 3.

The output of the index adder is entered into a 25-bit register, AR, which
holds the effective address of the instruction presently at level 3. The LSB of AR
is the halfword address selection'bit. The LSB is forced to zero for singleword
addresses and the two LSB's are forced to zero for doubleword addresses.

The 21 most significant bits of the 25-bit effective address register (AR)
is sent to the Central Memory Address Requestor in the Memory Buffer Unit (MBU)
if the addressed data is not presently residing in either the X or Y data reg-
isters of the MBU. If the addressed data is present in the X or Y registers,
then the 4 LSB's of AR are sent to the MBU to perform the selection of the
appropriate doubleword, singleword, or haltword from X or Y using 2, 3, or 4 of
the four bits, respectively. :

Indirect address requests cause triﬁsfer of the effective address register to
the look-ahead address register (LA )¢ The indirect address is requested from
central memory by LA . The octet containing the indirect address is read from
memory and entered into instruction file KCM. The indirect address is selected
from KCM by AR. At this point, the instruction register contains the indirect
address which is interpreted according to.the indirect address format.

Bit positions 5 thfough 7 of the "indirect format specify the index register
to be selected into pre-index register, XR. Bit positions 8 through 31 of this
format specify the indirect address, designated ADR.

Instruction Processing Unit 9
Section Bl



The four most significant bits of the indirect address format (bit positions

0 through 3) must be zero to indicate a "no-operation" for the Arithmetic Unit.
The 24-bits of ADR and XR are added in the indéx addition section of the IPU.
The result appears in register AR.

If the indirect bit (bit position 4) of the indirect format is a one, then
the contents of AR is a singleword central memory address which points to the
next level of indirection. The next level indirect address is requested from
central memory via the LA register path. The process described in the preced-
ing paragraph is repeated for each level of indirect addressing. “

If the indirect bit of the indirect format is zero, then the terminal indir-
ect address has been reached and the index addition hardware of the IPU develops
the address of the operand using displacement indexing according to the word
size of the instruction being executed. The terminal indirect address is sent
o0 the central memory address requestor in the MBU if the addressed data is not
presently residing in either the X or Y data registers of the MBU. The 4 LSB's
of the terminal indirect address are sent to the MBU word selection logic if
the addressed data is present in either the X or Y data registers.

Subsequent scalar instructions from pne of the .instruction files' follow the
terminal indirect address into the IPU and normal instruction processing contin-
ues until another indirect, execute, or branch instruction is detected.

An exception to the above-description on indirect addressing occurs for the
case of a first level indirect address with @« < 2F and an M - field of zero.
The first level indirect address is the address of the instruction word (the
wor? with four non-zero most significant op code bits and indirect bit equal to
one).

In this case, the value of the next level indirect address is selected from
the register file and placed in the instruction register. After this, all
subsequent levels of indirection are through central memory. Indirect ref-
erences through the register file can occur only once for a given instruction.

IMMEDIATE OPERAND DEVELOPMENT

Immediate operand instructions use the index adder for modifying immediate
values. The M and N-fields of the instruction word combine to form a 16-bit
value which is added to a nonshifted index register selected from the T-field.
Sign extension into the left halfword occurs prior to addition using the MSB
of the M register for singleword arithmetic immediate operand instructions.
Zeros replace sign extension for singleword logical immediate operand instruc-

_tions. Halfword immediate instructions use only the right halfword of the
result from the index adder.

10



BRANCH ADDRESS DEVELOPMENT

Branch address development takes place in the index adder of level 3 using
inputs from the index selection register, XR, and.base selection register, BR,
of level 2. When the M-field of the branch intruction is zero, the program counter
value replaces the base register value in BR. The branch address is taken rel-
ative to the program counter plus index (if specified by T).

Indirect branch addresses are developed similar to indirect operand ,
addresses with the exception that indirect branch instructionswith g < 2F and
1 = 0 reference central memory and not the register file.

DETERMIMATION OF BRANCH CONDITION

Instructions of the type "Branch on Register Greater than" use a.specia]
adder unit in the IPU to determine the outcome of the branch test without
having to wait for the Arithmetic Unit to perform the operation of adding to
a register and testing the result with respect to the contents of another
register. This special adder is incorporated in the IPU hardware and receives
its inputs from the AP and RP registers at Tevel 4.

For the branch instruction under discussion, the operation involves taking
the singleword contents of the arithmetic register specified by the R-field and
adding to it the contents of the arithmetic register specified by T. The result
is compared with the contents of the arithmetic register specified by T plus one.
In the IPU, this operation is accomplished in the branch test level by taking the
register operand specified by R from the left half of 64-bit register RA. The
left half of 64-bit register AP supplies the register addressed by T. The
right ‘half of register AP supplies the register addressed by T plus one.
These three singleword reyister values are added in the 3-input "branch test
adder™. The input from register T plus one is complemented (one's complement)
before addition so that the addition which takes place is the evaluation of
(G)g *+ (G)7 - (G)74y using one's complement addition. The result of this addition
wi]? appear to be one less than the 2's complement addition of the same number.
If one desires the sum to be greater than.zero in 2's complement addition, then
the sum must be greater than minus one in one's complement addition. Therefore,
the outcome of the branch test for this instruction is true if the output of the
one's complement addition is zero or positive. This can easily be determined
from the sign position alone. '

Many other branch and test instructions fall into the class that can take
advantage of the branch test level. More specifically, all of the increment or
decrement test and branch instructions can use this means for determihing the
outcome of the branch test without waiting for the increment or decrement oper-
ation to take place in the arithmetic unit.

Instruction Processing Unit 11
' Section Bl



12

Conditional Branch instructions which compare the R-field value with the Con-
dition Code or Result Code are of a different nature than the branch instructions
just mentioned.  The cutcome of Conditional Branch instructions are known only
if all previous instructions which set the Condition Code or Result Code have
passed through the Arithmetic Unit. If the proper code has not been set, then
the Branch on Comparison or Branch on Results instruction must wait in level 3
of the IPU until the code has been set by the AU. The branch address is held
in the AR register of the index adder until the branch decision is made. Then,
if the branch is taken, the branch address is transferred to the PA and LA
registers and then central memory instructions along the branch path are requested.

STORAGE OF AU RESULTS INTO THE REGISTE? FILE

The IPU has the function of retaining the destination register address of
all scalar instructions (vector instructions cannot store into the register
file). These register addresses are held in a chain of 7-bit registers. Seven
bits address all 48 singleword registers down to the halfword level. The chain
of register addresses is as long as there are sections to the Central Processor
pipeline. Additional bits are carried along for control.

The IPU providas the proper aTignmené from the AU to the register file for
single, half, and double length register operand results. It also performs
the selfection enabling to the gate inputs of the register file.

SCALAR MAZARD AND REGISTER CONFLICT RESOLUTION

These functions are described in Section B2. Scalar hazards occur when the
effective operand address developed by an instruction is the same as the address
of a siore instruction which preceeds the read instruction and wnich has not yet
passed completely through the Central Processor pipeline structure. The hazard
condition will clear when the store instruction performs its write operation into
central memory.

Register Conflicts exist when an instruction requires a register operand
vhich is presently in the process of modification or is going to be modified by
the Arithmetic Unit and which has not yet emerged from the AU output. The
register conflict will resolve itself when the needed register is loaded with
the result from the Arithmetic Unit and no other modification will occur to the
contents of that register as a result of other instructionsbetween the AU out-
put and the instruction which requires that register.

GENERATION OF VECTOR STARTING ADDRESSES

The index and base selection level and the indéx addition level develop
the effective starting addresses for vector instructions from the vector starting
addresses plus index values as specified by the vector parameter file. The
generation of continuous addresses for sustaining vector operations is carried on
by the Memory Buffer Unit. Section B2 and B3, vector timing and the vector
parameter file descriptions in the instructions describe the.operations to be
performed for generaiing vector starting addresses.



TRANSMITTAL OF VECTOR PARAMETERS TO THE MBU DURING VECTOR INITIALIZATION

The vector starting addresses contained in 29, 2A, & 2B and other vector
paramelters contained in register file addresses 28, 2C, 2D, 2E, 2F, and the 4 MSB's
of 2A and 2B must be transmitted to the Memory Buffer Unit (MBU) prior to starting
the first arguments of the vector operation through the Arithmetic Unit. Vector
starting addresses are sent to central memory immediately after being received

at the MBU and while the remaining vector parameters are still being transmitted
from the IPU.

The parameters are selected via the A register operand sclection network and
gated into the AD register of the IPU one word at a time. The output of AQ
goes to the IMM register at the MBU input and from there the parameters are dis-
tributed to the operational registers (working registers) of the MBU. These
operational registers control the vector address generating hardware in the MBU
which sustains the vector operation.

When vector initialization is completed the IPU brings the next three scalar
instructions, if such exist, down through levels 1, 2, and 3 of the IPU hardware.
These instructions reside in the top of the IPU pipeline until the last element
resuit of the vector operation has been sent to central memory.

Some vectors, namely Vector Order, Dot Product, Search, Compare, and Peak
Pick, require special consideration. These vectors must be restarted at their
beginning addresses when reinstated following a context switch operation if
the switching occurred during their vector processing interval. For these
vectors the IPU retains the vector instruction in level 3 and reserves level 2
for recomputing that vectors starting addresses. The following instruction
after the vector resides in 1PU level 1.

Instruction Processing Unit 13
Section Bl



MEMORY BUFFER UNIT

The memory buffer unit (MBU) provides an interface between central memory and
the arithmetic unit (AU). The communication with central memory is via a private
port of the memory control unit (MCU). During scalar operations,.data specified
by efféctive addresses developed in the instruction processing unit (IPU) are
fetched or stored as required. For most vector opcrations, two operand data o
strings are fetched while a result data string is stored. Addresses for systaining
the vector operation are computed in the MBU using parameters initially specified
by the vector parameter file in the IPU. ‘Details for the one times ASC are
described below. An overall block diagram of the Central Processor is depicted in

Figure 1.

DATA PATHS TN MBU

Octets from central memory are received and synchronized in the register
designated SC. A direct path is provided for transfer to either the X or Y
registers from SC. The XH and XY registers provide a second level of buffering so
t§a§ vector processing can be sustained at a high rate with a minimum of memory
Timiting. The SC register is always transmitted to its destination on the next
clock after it is received from CM. The XB and YB registers provide a third level
of buffering and are used to equalize the processing rate between the two operand
paths. Both X and Y can also be stored in central memory for maintenance purposes.

Resulits from the AU which are to be stored in central memory are aligned and
placed in the Z register. The Z register can be transferred to either X or Y
so that memory references are not necessary for scalar memory opeands which
reside in Z.

If the result of the output of the AU is in a different octet than the octet
currently represented in-Z, then Z must be transferred to the ZB register which
in turn must be transferred to central memory. The transfer-of Z to ZB must be
held up until the previous write request no longer requires ZB. If ZB contains
half words, it is possible to have incompletely specified single words. A path
from SC to ZB is provided to permit half word fill-in from central memory.

The register pai.s designated MAB and MCD present two operands to the AU

receiver registers. Each pair can contain half words, single words or doublewords.
Their positioning is shown in Figure 3. -

14



each is shown beiow:

wae |1 !
or § thalfy ;
MCD Y lwordi E
I R i
1 1 |
i t !
] I :
- {single id% |
E word ! 1
| double word !
e —

Figure 3. MBU Output Registers

Selection networks are provided for both X and Y and are capable of selecting
half words,; single words, or double words. The outputs are therefore 64 bits wide.
Single words are placed in the most significant bit positions. Half words are aligned
and signs extended so that they appear as single words. The X register file selec-
tion can be transferred to either MAB or MCD. The transfer to MCD is for scalar
requests of the X register file. The Y register file is transferred only to MCD.

Register and immediate operands from the IPU are received in the REG and

I™ registers respectively. They can then be transferred to the MAB and MCD
registers as required.

The MBU receives vector initialization data from the vector parameter file

in the IPU via the IMM register. A path from IMM to MAB is required for vector
immediates.

SCALAR OPERATION

During scalar operation the MAB register presents the IPU's register data
to the AU while the MCD register presents the "memory" data. The "memory" !duta

can be selected either from X or from Y or can be an immediate operand from the
IPU.

The IPU sends two types of addresses, octet and element. The octet addresses
are required when an octet is to be read or written and is not currently rep-
resented in the MBU. The four bit element addresses specify which elements are
to be read or written. Operand addresses are accompanied by destination (X or Y)
tag. Both operand and result addresses are accompanied by word size information.

Scalar operations utiiize part of the structure required for vector vperations.
Details.are discussed with vector operations.

Memory Buffer Unit 15
Section Bl



VECTOR PROCESSING

; During vector cperation, the X and Y registers present elements of vectors
R and B to the AU. The addresses for these operand data strings are computed in
the A ADDRESS GENERATOR and the B ADDRESS GENERATOR. A detailed diagram is shown

in Figure 4 for the A ADDRESS GENERATOR.

Successive addresses are the outputs of a 25 bit adder with the format shown
below. This output is the sum of the last address and one of the increments cor-
responding to the self, inner, or outer Toops. The increments associated with
a self loop are one element increments and will be x1/2, 1 or 2 depending on
word size. The inner loop increment is designated DAI. The outer loop increment
is designated DA@. Both DAI and DAP are initially 16 bit signed 2's complement
numbers in the vector parameter file. They are adjusted according to word size,
sign extended, and then placed in 25 bit registers in the MBU.

i _ Binary Point

8 31132

Address Format

\ The initial address (IA) is transferred to the NAA register from the IMM

- recister. The generation process is capable of providing addrasses for continuous
processing of single word vector elements since a new address can be computed at
the rate of one address per clock.

In order to minimize and frequently eliminate memory delay, a "three level"
look ahead scheme is provided. The octet address being processed references data
which is to replace the contents of the XB register. The address of an element
must in some cases be formed 16 clocks prior to its use in the selection network.
The XBA register receives a 21 bit octet address while a bit is set which initiates
a memory request when appropriate. Octet comparisons are made between NAA and XBA.
Memory requests are made only when a new octet is required..

The four bit element selection is stored *n a file designated the circular
address file (CAF). Since an additional 15 elements could be generated during the
interval between the generation and use of a particular address, the CAF has
space for 16 four bit entries. An additional three bit "TAG" must be stored for
each entry. The first of these three bits indicates the presence of an address.
The second bit indicates the end of a self loop. The third bit indicates the first
address of a new octet.

{3



IMM

ADD NAA i
|
. DAS s d L $» TO CAF
DAl ——o ] FROM AO_REG OF IPU
DAO 3 é
XBA

TO CENTRAL MEMORY REQUESTOR <5

102242
. -
Figure 4. A Address Generator
IMM
i
NCA |
1
TO ZEA AND
ZONE MODIFI—
L——g= CATION BITS
ocs .
: ZP FROM IPU
oct r
‘ zZA
pco
T IPU FOR VECTOR HAZARD DETECTION &
ZBA

102241

—
Figure 5. C Address Generator

Memory Buffer Unit 17
Section Bl



The operand address register XBA is also used for scalar operation. Appropriate
nortieme of the 25 bit addresses from the AR register in the IPU are transferred to
e XBA register and the XA register. The IPU indicates whether or notl the cctet
_#5 currently in the X register. The XBA register is sent to the @A register only
if @ new octet is required. The XA register is used to enable the X selection net-
work.

During vector operation, the Z reg1sLer accepts eiements of vector T from the
AU. The addresses for the output data string are computed in a section designated the
¢ ADDRESS GENERATOR. Addresses are generated one clock prior to their use (at the
alignment network). Successive addresses are the outputs of a 25 bit adder in an
arrangement similar to that for operand address generai:on The initial (IC) is
transferred to the NCA register where successive addresses are also placed. New
octets are detected between NCA ana ZA. If ZBA is avaiiable ZA can be transferred
to ZBA and the write request can be processed. Sixteen bits are required to record
modification (down to half words) for both Z and ZB. Half word fill-in can then
be accomplished when required. The ZB modification bits are combined in pairs to
specify zone control bits for all ZB write operations. The ZA register is pre-
sented to the IPU during vector operation so that hazards can be detected in the
IPU.

During scalar operation, addresses from ZP in the IPU are sent to ZA and
ZEA. Since the IPU indicates octet -changes, the MBU contqnua11y transmits the
availability status of ZBA for write operations. When ZBA is not “busy", ZA can
be transferred to ZBA and the write operation processed.

. Operation of the MBU is under control-of the section designated the SEQUENCE
LONTROL. Inputs to this section are status of the memory requestor, status of each
,ddress generator, and status of the Toop counters. Three sets of loop counters
}are provided, two from operands and one for results. The inputs combined with the
present state of the SEQUENCE CONTROL determine gate enables as well as the next
state.

The AU control ROM is Tocated in the MBU. Instruction codes are received
from the IPU and used as addresses for the ROM which generates an array of signals
which control the AU.

CENTRAL MEMORY REQUESTS

A1l central memory requests are made through a controller designated the
CENTRAL MEMORY REQUESTER. The CENTRAL MEMORY REQUESTER establishes priority -
for the three address generators and makes the appropriate requests toc the MCU.
It also provides for the distribution of read data upon arrival in the MBU. A
maximum of four requests may be in some state of development during vector op-
eration. Requests can also be processed for the hard core controller during
maintenance operations.

18



MEMORY BUFFER UNIT SUMMARY

Effective addresses developed by the index unit in the IPU are routed to the
memory buffer unit. For most scalar instructions the memory buffer unit obtains
one operand from the central menory location specified by the effective address
and one operand from a register as presented from register selection. The memory
buffer presents these operands to the arithmetic unit for processing. The arith-
metic unit results replaces the register operands to the register file of the IPU.
When results are to be stored into central memory, the memory buffer unit receives
the effective address into which the data is to be stored and after AU processing
provides for the storing operation.

For vector operations, the memory buffer unit supplies the consecutive op-
erands to be processed and stores the results in central memory.

The memory buffer unit is comprised of two triple buffered eight-word
register groups for reading and one double buffered eight-word register group for
writing in the one times ASC system. Triple buffering is provided so that vector
processing can be sustained at a high rate with a minimum of memory limiting.

For scalar operations, buffers X and Y are alternated for memory read
operations. Buffer Z is used for memory write operations. In either case, the
strategy is to invoke a memory cycle only when one is needed. For example, a
read request for data within an octet currently residing in a buffer is terminated
at the buffer. A write operation into a previously defined write octet is likewise
terminated at the buffer. An actual read cycle occurs only when the required data

is not within a current octet. An actual write operation occurs only when a new
write octet is defined.

For vector operations, buffers X and Y supply strings of numbers to be
processed and buffer Z accepts the resultant string of numbers.

Memory Buffer Unit 19
Section Bl



ARITHMETIC UNIT

EHERAL

The ASC Arithmetic Unit is basically a sixty-four bit oriented unit. The
unit is used for both fixed and ficating point instructions. Floating point numbers
are in sign and magnitude along with an exponent represented by an excess 64 number.

& distinguishing feature of the ASC AU is the pipeline structure which allows
efficient processing of vector instructions. There are seven exclusive partitions
of pipetiine involved, each of which is designed to provide an output every sixty
nanoseconds.  The seven sections are referved 1o as (1) Exponent Subtract, (2) Atlign,
(3) Add, (4) Normalize, (5) Multiply, (6) Accumulate, and (7) Output.

The first four sections mentioned above are the basic structure of a floating
point add instruction. Each of the sections perform parts of other instructions;
however, they are primarily partitioned in this way to increase the floating
point add time. Each of these sections is capable of operating on double length
operands so that vector double length instructions can proceed at the clock rate.
The align section is used to perform right shifts in addition to the floating point
alignment for add. The ncrmalize section is used for all normalization requirements
- and will also perform left shifts for fixed point operands. The add section employs
second level look-ahead techniques to perform both fixed and floating point additions.
This section is also used to add the pseudo sum and carry which is an output of the
multiply section.

~ The multiply unit is able to perform a 32 by 32 bit multiplication in one
;Eock time. The multiplier is also the basic operator for the divide instruction
and doubrie Tengtn operations for both of these instructions require several iterat-
ions through the multiply unit to obtain the result. Fixed point multiplications
and single length floating point multiplications are available after only one pass
through the multiplier. The output of the multiply unit is two words of 64 bits
each, i.e., the pseudo-sum and pseudo-carry which must be added to the add
section to obtain the proper solution. A double length multiplication will be
performad by pipelining the three following sections: multiply, add, and accumulate.
The accumulate section is similar to the add unit and is used for special cases
such as VDP or any instruction which needs to form a running total. Double Tength
multiptication is such a case, as three separate 32 x 32 bit multiplications will
be performed and then added together in the accumulator in the proper bit positions.
A double length multiplication would therefore require six clock times to yield
an output while singre length would require only four. A double length multiplica-
tion implies that two sixty-four bit floating point numbers (56 bits of fraction)
are multiplied to yield a sixty-four bit result with the low order bits truncated
after postnormalization. This multiplication ignores a possible round-off which
is obtained by making a fourth pass with the two least significant halves of the
operands. A fixed point multiplication will perform a 32 x 32 bit multiplication
and yield a sixty-four bit result.

20



As would be expectced, division is the most complex operation to be performed
by the AU in the ASC. The method used takes advantzge of the fast multiplication
capabilities and employs an iteraticn technique which upon a specified number of
multiplications will form the quotient to the desired accuracy. This method does
-not form a remainder. Howeveirr, a remainder can be obtained under program control.
Assuming X/Y = @ was the solution, the remainder can be formed by muitiplying Y « Q
and subracting from X; R= X - Y - Q. The remainder will be accuracte to as many
bits as the dividend X. For floating point operations, each of the operands, along
with the result, are equal in length. For fixed point single length division,
the divisor and result are 32 bits while the dividend is 64 bits in length.

The output section is used to gather outputs from all other sections and also
to do simple transfers, Booleans, etc. which will require only one clock time for
execution in the AU.

FLOATING POINT OPERANDS

A guard digit consisiting of four least significant bits is provided to
avoid loss of one hexadecimal digit of accuracy which would result from truncation
_prior double length additional and subtraction. The addition of these bits is suf-

ficient since the only times normalization will be reguived with a possibility

of Toss of accuracy, the normalization will require a shift of only one hexadecimal
digit. Normalized operands are required for the guard digit to be of maximum use.
For example, in multiplication, given two operands which are normalized, the frac-
tions will be 2-% < f<1. The result will be 2-8 < f<1. Thus, the result will al-
ways require at the most one four-bit shift to normalize. The addition case is
more involved but can be explained by discussing three possibilities. If the
exponents are equal, no alignment is required therefore the guard digit is not
necessary. If the exponents differ by one, the guard digit will retain significant
information. Finally, if the exponents differ by more than one, it can be shown
that the result to be normalized will require at most a shift of one hexadecimal
digit. Thus, the guard digit contains information that can be retrieved.

The results of floating point operations treat overflow and underflow as
suggested by the Share XXVII conference. Any overflow or underflow results in the
correct mantissa and the exponent correct modulo 128. An output from the AU in-

dicates overflow or underflow. The output can then be employed by taking proper
action.

STRUCTURE

Exponent Subtract - The exponent subtract section is primarily responsible
for determining the proper inputs to the add section for use in floating and. in-
structions. It is used for both scalar and vector operations and is also re-
sponsible for supplying proper input to the accumulator section for floating vector-
dot product instructions.

Arithmetic Unit 21
Section Bl



This section determines the difference in the exponents of floating point
operands or in the case of equal exponents, which mantissa is larger. Upon de-
te:m1n1nq the larger number, the true or complement of the operands are gated
into registers according to the operation to be performed such as Add, Subtract,
Add Magnitude, etc. Also, at this time a seven bit subtracter determines the
exponent difference which is used in the align section to properly align the
floating point operands.

Since logic is required in this section to determine relative magnitudes of
the mentissa, the test instructions for greater than, less than, or equal to are
also performed in this section to avoid repetition of hardware.

Align - The align section is in operation for all floating add instructions
or for any right shift instruction. Floating point instructions are performed
after one pass through the a11an section while fixed point shifts require two
cycles.

The shift logic has provisions to allow any shift length which is a multiple
of four to be performed in one cycle. Since floating point numbers are rep-
resented in hexadecimal digits, this will facilitate the very fast floating point
additions. The Tength of right shift can be obtained from the instruction word
for a shift instruction or from the exponent difference information as supplied
by the exponent subtract section.

Fixed point right shifts are performed by first shifting in one cycle the
largest multiple of four-bits contained within the shift value. Then, the residue
of 0, 1, 2, or 3 bits is shifted on the next cycle. This results in a minimum
of shift paths into each latch since the four bit paths aiready exist.

Add - The add section is shared for many instructions depending only upon
which paths are selected into the section. Floating add instructions are entered
by way of the align section. Fixed point add operands enter the arithmetic unit
at the add section. The adder is also used to add the pseudo sum and carry from
the multiply section to obtain any multiplication result. )

The adder is 64 bits in 1ength and contains second level look-ahead logic.
The floating point numbers are in the proper format when entering the add section,
however, the fixed point operands are modified to reflect either add, subtract,
or add magnltude type instructions.

Normalize - The normalize section is employed for both floating add in-

structions and fixed point left shift instructions. Divisors are routed through
this section to guarantee bit normalized inputs for divide instructions.

22



This section closely resembles the align section in that floating point
eperations require only cne cycle while fixed point shifts require two. The major
@ifference in the two sections is that the align section is given the information
zoncerning length of shift Tor hexadecimal digiis in floating point. The normalize
section has to compute the length of shift required to normalize a floating point
number by examining to determine which four bit group contains the most significant
1ogical one. An adder is also required to update the exponent when a normalization
takes place.

Fixed point left shift instructions are supplied with the length of left
shift from the instruction word.

Multiply - The multiply section is required to operate on both floating and
fixed point opergnds The f?oating point numbers are represented in sign and mag-
witude where the fixed point numbers are in two's complement from. The method of
multiplying is keyed to two's complement operands with the flcating point mul-
tiplication performed by arbitrarily assigning positive signs during the multi-
plication and then applying the proper sign when multiplication is complete.

The multiplier is capable of multiplying any two numbers up to 32 bits in
{ength in only one pass through the multiply section. The result is in the form of
@ pseudo sum and carry which must be added together to obtain the result. The sum
@#nd carry are added together in the add section which has been discussed separately.

The multiply section is also used to pérform division by a sequence of multi-
plication operations. ;

Accumulator - The accumulator is a special purpose section which is employed
wien an vector operation is being perTormed requiving an accumulated total. A prime
example of this is the Vector-Dot-Product instruction.

Like the add section which was previously described, the accumulator per-
forms a second-level look-ahead to facilitate a fast addition.

Qutput - A1l results to be sent to the CP must be gated through the output
section. Information could have originated in any one of the other sections of the
AU with the exception of the multiply section.

Simple dinstructions such as Booleans, transfers, masks, etc. are performed
in this section and gated out in one pass through the section.

Aritametic Unit 23
Section BI



CENTRAL PROCESSOR TIMING ANALYSIS

Section B2



TABLE OF CONTENTS

TITLE

SCALAR TINSTRUCTION TIMING

ARITHMETIC UNIT

OPERAND FETCHING TIME

REGISTER CONFLICT DELAY

MULTIPLE STORE INSTRUCTION DELAY
READ AFTER WRITE DELAY

INDIRECT ADDRESS GENERATION TIME
EXECUTE INSTRUCTION FETCHING
INSTRUCTION FETCHING AFTER BRANCHING
INSTRUCTION HAZARD COMDITION

VECTOR INSTRUCTION TIMING

VECTOR PARAMETER FILE FETCH
MBU INITIALIZATION

MEMORY OPERAND FETCH .

AU FILL

AU EWMPTY



SCALAR INSTRUCTION TIMING

Scalar instruction processing time in the Central Processor (CP) can be
predicted with a fair degree of accuracy by considering the following
factors:

Arithmetic Unit clock time

Operand fetching time

Register conflict delay

Multiple store instruction delay

Read after write delay

Indirect address generation time

Execute instruction fetching time

Igst§uction fetching time after a branch instruction withecut look
ahea

Instruction hazard refetch time

w NN —

ARITHMETIC UNIT CLOCK TIMES

Arithmetic Unit clock times (Table 1) are defined as the number of
cliocks required to propagate input arguments through the AU, to the AU
output registers. Certain instructions can be executed in sequence by
the Arithmetic Unit without creating periods of inactivity or delays in
pipeline flow. The instructions listed in Table 2 are divided into fourteen
groups. Any single instruction in groups 2 through 11 may follow-any
instruction in groups la and 1b without creating a delay due to different AU types.

OPERAND FETCHING TIME -

Operand fetching time refers to Central Memory access time for obtain-
ing memory operands. This time is measured from the clock at which the
effective address of the operand is gt the address output register (A@) of the
Instruction Processing Unit (IPU) to the clock at which the requested operand resides
in the-output register of the Memory Buffer Unit (MBU). This time is normally ten
clocks™if there are no memory conflicts at the MCU or priority delays at the
MBU memory controller as illustrated below:

;;; Effective address present in register AQ of the IPU (level 4)

o
::/ Effective address present in XBA register of the MBU -

;f:;;j Octet addréss request éﬁ CM address . bus
Py .
;2;%2;%2%2;; Memory stack time
/)
Y,

Memory data on data bus

'/ .
;;/ Data synchronized at MBU
a

222 Data transferred to X-buffer
/

2%2 Data presenf at MBU output register

ffo [t Jt2 t3{t4 t5 t6 t7 F8 [t9 ft1o

Central Processor Clock Time Scalar Instruction Timing 1
Section B2



TABLE I. ARITHMETIC UAIT TIME REQUIREMENTS
FOR SCALAR INSTRUCTIGHS

Clock Times Clock Times
LPAD L 1 ARTTHMETIC A 2
LI ] Al 2
LH 1 AH 2
LIH 1 AIH 2
LR 1 AF 5
LL 1 AFD 5
LD 1
AM 2
LM 2 AMH 2
LMH 2 AMF 5
LMF ] AMFD 5
LMD ]
S 2
LN 2 SI 2
LNH 2 SH 2
LNF 1 SIH 2
LND ] SF 5
SFD 5
LNM 2
LNMH 2 SM 2
LNMF ] SIH 2
LNMD 1 SMF 5
: SMFD 5
LF 1
LFM * M 3
XCH 2 MI 3
MH 3
LAN ] MIH 3
LAE 1 MF 4
LLA 1 MFD 6
LO - ] R-even R-odd
D 29 18
ST 1 DI 29 18
STH 1 DH .18 18
STR 1 DIH 18 18
STL ] DF 15 15
STD 1 DFD 25 25
SPS 1
STZ 1
STZH 1
STZD 1
STN 2
STNH 2
STNF ]
STND 1
sTO . -
STOH 1
STF 1
- STFM N

*Determined by memory access time. An LF instruction requires six memory
read cycles and an SF instruction requires six memory write cycles.



TABLE 1 (CONTINUED)

Clock Times. Clock Times
LPGICAL AND 1 TEST & BCC -
- ANDI 1 BRANCH BRC -
OR 1 BEC -
ORI 1 BAE -
XOR 1 REG. MOD 1BZ 2
XORI 1 & TESTING IBNZ 2
EQC 1 DBZ 2
EQCI 1 DBNZ 2
ANDD 1 ISE 3
ORD 1 ISNE 3
XORD 1 DSE 3
EQCD 1 DSNE 3
SHIFT SA . 3 BCLE 2
SAH 3 BCG 2
SAD 3
STACK PSH 3*
SL 3 PUL 3*
SLH 3 MOD 3*
SLD 3
SUB-ROUTINE BLB 1
SC .3 BLX 1
SCH 3
SCD 3 ANALYZE LEA
INT
RVS 6 XEC -
ARITH. C 2 CONVERSION  FLFX 5
COMPARE CI 2 FLFH 5
CH 2 - FDFX 5
CIH 2
FXFL 4
CF 2 FXFD 4
CFD 2 FHFL 4
FHFD 4
LOGICAL CAND 1
COMPARE CANDI 1 NORMALIZE NFX 3
) COR 1 NFH 3
CORI 1
CALL MCP 1
CANDD 1 MCW 1
CORD 1
VECTOR VECT (See Vector Timing)

* Stack Instructions take multiple passes through CP pipeline.

Scalar Instruction Timing 3
Section B2



Table 2. CP Instructions groupaed according to those which may follow one
another without delay in the Arithmetic Unit.

GROUP 1a GROUP 1b
L. AND CAND ST
LI ANDI CANDI STH
LH OR COR STR
LIH ORI CORI - STL
LR XOR ' STD
LL XORI STZ
LD EQC STZH
LMF EQCI STZD
LMD ANDD CANDD STNF
LNF ORD CORD STND
LND XORD STO
LNMF EQCD STOH
LNMD BLB MCP
LO BLX - SPS
LAM . LEA

LAC INT - NOTE: Multiple store instruction delay occurs
.- when sequential store instructions write
into different central memory octets for
instructions in group 1b.

GROUP 2

LM A ' S C 1BZ

LMH Al SI CI IBNZ

LN AH SH CH DBZ

LNH AIH ' SIH CIH DBNZ

LNM AM SM CF STN

LNMH AMH SMH CD STNH

GROUP 3 GROUP 4 GROUP 5 GROUP 6

M MH MF - MFD

MI : MIH :

GROUP 7 GROUP 8 GROUP 9 GROUP 10 GROUP 11
AF SF D DH DF DED )
AFD  SFD DI DIH

AMF  SMF

AMFD SMFD



Table 2 {Continued)

Instruction which cannot follow one another immediately on toe next clock
in the AU pipeline are listed below in groups 12 and 13. Instructions wnich
do not use the Aritlmztic Unit are licted dn apayn 14,

GROUP 12
FXFL  FLFX NEX SA SL sC RVS
FXFD  FLFH NEH ‘
Pk LR SAH SLH SCH BCLE
FHFD SAD SLD scD BCG
GROUP 13
PSH XCH ISE
PUL MCH ISNE
MOD . DSE
DSNE
GROUP 14
LF STF LLA BCC
LFM STFM XEC BRC
. BAE
BEC

NOTE: Instructions in groups 3 through 11 require long micro-op sequences in
the Arithmetic Unit. The read-only-memory (ROM) in the Memory Buffer Unit
generates these micro-sequences using a feedback arrangement from the ROM
output register to the ROM address register. Due to the requirement of keeping
the data and control of a given instruction in the same level of the CP pipe-
1ine at the same time, it is necessary to hold the next instruction (the one
following the one with a long micro-sequence) in the input level of the MBU
while the first instruction completes its micro-sequence in the ROM.

A s2ennd instruction's :ntr. inte tie Aritim:@tic unit w111 21low a First instrus
tion into the AU on the clock in which the first instruction®s result is placed
in the AU output register.

Scalar Instruction Timing 5
Section B2



The X and Y buffer registers, used for streaming vector operands into
the Arithmetic Unit, can be used during scalar operations to retain the most
recently used operand octets from CM. If a request for a word in CM is not
contained in either the X or Y buffers, the octet of words containing the
requested word replaces the contents of the X-buffer if Y was last used or
replaces the contents of the Y-buffer if X was last used. An effective
address request for a word in an octet which is presently contained in
either the X or Y buffers is terminated at the buffer (the address is not
sent to Central Memory) and the intended operand is read from the buffer
in which it is resident. There is no pipe delay when the reguired operand
is resident in either the X or Y buffer registers.

The algorithm for operating the X and Y buffers during scalar instruc-
tions is es follows:

If o = X, then set LUF = 0
If a =Y, then set LUF =1
'If o« # Xand o« # Y and LUF = 1, then load X with («) and set LUF = 0
Ifa# Xand o # Y and LUF = 0, then load Y with (o) and set LUF = 1.

Example

This example is for a series of instructions which require operangs
from octets in the order a, a, b, b, a, b, ¢, d, b, d, d, ¢, d. (LUF)'
represQ?ts the state of the last used file indicator at time n and set
(LUF)"™T represents the next setting for the last used file indicator
at time n+l.

Request for n ntl
CM octet (LUF) X-buffer Y-buffer Set (LUF)

1

I A0 OANTOANT D TTY N
O O OO O
OOTTTOO N DN
anaaaacvw&u:k

| ol O et ed D et O et (O voed =ed O O



If two successive instructions request CM operands from different
octets and neither one is resident in the X or Y buffers, then it is
possible for both requests to be issued to CM before the IPU needs to
be stopped to wait for CM access. This provides overlap of CM requests,
rather than having to wait the entire memory cycle time for each memory
octet fetch. The second octet request can be placed on the CM address
bus two clocks after the first octet request. The second octet data
will be available in the second buffer two clocks after the first arrives
providing that no memory conflicts occurred and that the second read was
from an alternate memory module than the first. If the two read rgquests
were to the same stack, then an additional two clocks will elapse hefore
the second read data is available at the buffer register due to memory
stack conflict.

A third read request in a string of sequential instructions, for
which the first two octet addresses were different, will be held in
level 3 of the IPY while the second read instruction
waits in level 4 for the data to return from the first instruction's
read request. Tne 7Tirsl instruction was advanced to the MBU input level
whnile the CM request was being processed. It cannot proceed past this
level because the selection of the particular operand word from the X or
Y buffer is accomplished at the MBU input level and the selection cannot
be performed until the data is available.

An instruction can proceed to_the AU without memory delay if the
required operand is presently residing in either the X or Y buffer
registers.

REGISTER CONFLICT DELAY

A register conflict delay occurs whenever an instruction requires the
contents of a register (base, index, general arithmetic, or vector para-
meter) and that register is presently in the process of being modified by
a previous instruction which has not yet passed through the AU output level.
Register conflicts occur because of the pipeline nature of the Central .
Processor. A register conflict delay (RCD? can occur at any of the first
three levels of the IPU; the Instruction Register (IR) level 1, the Pre-
index (XR) level 2, or the Index (AR) level 3.

An RCD at the Instruction Register level is created when an instruction
attempts to select a base or index register to develop an effective address
and finds that the base register specified by the M-field or the index
register specified by the X-field is presently in the process of being
modified by a previous instruction somewhere downstream in the CP pipe.

The IR level conflict is relieved only after all instructions which specify
either of these two registers as a target register address have entered
their results into the register file. The time required to relieve this
conflict depends upon a consideration of scalar timing factors 1., 2, 3, 4.

5, and 9 for a1l instructions below and including the conflict register
modifying instruction which exists downstream in the pipeline, if an analysis
is to be made to determine the time required to relieve the register con-
flicts. :

Scalar Instruction Timing 7
Section B2



‘ An RCD at Index level 3 is created when an instruction specifies
the use of a register operand which is presently in the process of being
modified by & previous instruction. Such a conflict is relieved when the
instruction specifying the conflicting register, as a target register
address, has entered its result into the register file. Scalar timing
factors 1, 2, 3, 4, 5, and 9 must again be considered for all instructions
below and including the conflict register modifying instruction if an analy-
sis is to be made to determine the register conflict delay.

An RCD at the Index level 3 is also created when an instruction is'encountered
for which the effective address specifies a register operand and another
instruction downstream is in the process of modifying that register location.

The effective address specifies a register cperand whenever an instruction
is encountered for which the M-field ecuals zero, the indirect bit equals
zero, and the effective address o is less than or equal to 2F hex. The
conflict is relieved when the instruction specifying the conflicting regis-
ter, as a target register address, has entered its result into the register
file. Scalar timing factors 1, 2, 4, 5, and 9 must be considered in order
to make an analysis of the time required to relieve the register conflict.

Example

This is an example of an instruction which requires a general arithmetic
register operand which is presently in the process of being modified by
a floating point add instruction which is currently at the MBU output
register level. Thare are no delays in the pipeline below the MBU output
level winich would cause the pipe to halt momentarily and no Operand Fetch-
ing delay for the register modifying instruction since it has already
fetched its operand from the X or Y buffer and has entered the operand into
the MBU output register.

For the timing analysis with all the other poss1b1e delays assumed
non-existent: Count the number of pipe sections from the register modi-
fying instruction to the vegister file. The floating point add instruc-
tion must pass through the foliowing registers:

AU Receiver

Exponent Subtract section
. Align section

Add section

. Normalize section

. AU output section

AN WN
- Ll .

On the seventh clock the conflicting general arithmetic register is loaded
with the result of the floating point add instruction. Pipeline flow can
now continue on the 8th clock when the required register operand is entered
into the RP register of level 4 of the IP If the

confiict had not existed, then Rp would have been loaded on clock 1
Therefore, this register conflict delay caused a loss of seven clock times.



MULTIPLE STORE INSTRUCTION DELAY

A multiple Store instruction delay is caused when two or more Store
instructions, all with different octet addresses, occur consecutively or
with only one instructicen separation in an instruction stream. The MBU
and AU pipe sections are provided with one address register to retain the
octet address of one store instruction. A second store instruction occurring
in a rapid sequence will be delayed at level 3 of the IPU until the first
store instruction of the sequence has passed to the AU output level.

A delay due to Central Memory write conflicts may also occur [for any
two or more Store Instructions which are too closely spaced, but that is
a different type of delay than the Multiple $tore instruction delay being
considered here. The multiple store delay has a tendency to ease the memory
write conflict preblem, since the pipeline operates at a reduced speed when
the multiple stores are detected.

There is no such multiple store delay for a series of two or more
consecutive store instructions which all address the same octet or which
write consecutively into monotone increasing or decreasing address locations,

Scalar Instruction Timing 9
Section B2



10

READ AFTER HRITE DELAY (Sama Octet)

This delay is caused by attempting to read from a Central Memory
location while a previous write instruction is still "in the process"
of writing into the same location or into the same memory octet. A
write instruction is "in the process"” of writing into memory if it is
anywhere below the IPU, but not yet into central memory.

It is possible to acquire a modified cperand over the Z to X
update path providing that there are no other stores into different
maemory octets which exist betwsan the store instruction whose octet
address agrees with the operand read octet address of the instruction
sresently at level 3 of the IPU. The update from Z to X occurs after
all stores into the agreeing octet (which are in either the MBU or
AU) have been entered into the Z-buffer. The update may occur simul-
taneously with the arrival of the read data from CM. In which case,

“the read data must be merged with the update information from Z.

A wait for CM writing occyrs if theye is agreement as above, but
another store into a different octet exists between the agreeing store
and the operand read instruction at AR of the IPU., A read from the
octet address of AR is made even though the address in ZBA agrees
with AR, since the write from ZBA will arrive in memory before the
read request is received.



The memory timing for a write then read in the same memory module is

Write e Address bus

Stack cycle time
v Data bus active

I e Address bus
Read .

! ! v bttt S{ack cycle
o ' ot —— Data bus

! [ ' f ' ' ! =Sync

] ] i t 1] ] 1 é

wax—buffer

o
—
N
W
)
(32}
[e)]
~
co

Clock times 9 10 N

INDIRECT ADDRESS GENERATION TIME

Each level of indirect addressing requires 10 clock t1mes assuming
no memory conflicts.

EXECUTE INSTRUCTON FETCHING

Each Execute instruction fetch requires 10 clock times assuming
no memory conflicts. The only difference between Executes and indirects
is that an Execute instruction is-fetching an instruction to be executed
whereas an indirect reference is Tetching tie address of an operand or
the address of. the address of an operand, etc.

Scalar Instruction Timing 11
Section B2



INSTRUCTION FETCHING AFTER BRANCHING

A delay equivalent to that of indirect or Execute occurs when
fetching instructions following & branch without look-ahead.

INSTRUCTION HAZARD CONDITICN

An instruction hazard condition exists when a Store instruction
is in the process of modifying a werd in a central memory octet from
which instructions previously read are currently residing in the
Instruction Processing Unit (IPU). These instructions are then the
"01d" commands and hernice the Central Processor must prevent their being
executed. .

Prevention of execution is accomplished simply by cancelling the
instructions above the point in the IPU where instruction addresses
agree with store addresses. In order to restart the program, the CP
must wait until the culprit Store instruction has completed writing
into CH, then the IPU must recall the instructions which were cancelled.

Detection of an instruction hazard condition is accomplished by
“comparing the three store address registers (ZP, ZA, and BA) with
the program counter value at level 3 in the IPU and comparing the ZB
address with the instruction look-ahead and present address registers.
These five compariscns detect all instruction hazards. When an octet
address agreement occurs in any of the five comparators, an instruction
hazard condition exists. The comparisons are diagrammed below:

Store
Address

Indirect address chains are sent through PC3 for checking to be
sure that no stores are presently writing into a location which is
currently being used for indirect addressing.

12



An indirect addressing instruction must wait for an immediately
preceding Vector cperation to terminate before the indirect addressing
operation can proceed. This prevents an indirect operation from taking
an "01d" indirect linkage when the preceding Vector operation is modi-
fying the indirect address file in Central Memory.

SHORT CIRCUIT PATH

A short‘path
exists from the AU output register to the AU receiver register. This path is
used whenever an instruction occurs in an instruction stream for which the
immediately preceeding instruction has made reference to the same register of
the CP register file. In this instance the preceeding instruction must be
one which will store:into the same register that the succeeding instruction
reguires as its register operand. When this condition arises, the succeeding
instruction will not wait for the normal register conflict delay, but instead
will proceed down the Central Processor pipeline without its regisier operand
and will acquire the operand via the AU short circuit path upon the succeeding
instructions arrival at the Arithmetic Unit.

Short circuit (SC) condititions can only occur for adjacent pairs of in-
structions of the same word size (double with double, single with single, etc.)
SC conditions can occur for an unlimited number of instructions in a chain as long as
they all use the same register and have the same word size. Any single in-
struction which does not use the same register will break the chain. Also,
wo successive branch instruclions which use the branchi test level to deter-
mine the outcome of the branch condition cannot use the SC path to achieve a-
faster branch decision for the second of the two branches because the branch
test level does not have a path equivalent to the AU short circuit path. The
branch test level does not solve for the value of the argument in an Iacre-
ment Test and Branch instruction, but rather determines only whether the
branch test passes or fails.

The timing for the SC path can be detérmined by following the first of
the pair of instructions down the pipeline to the AU output level. The time
at which the result of the first instruction arrives at the AU output can be de-
termined, The second instruction will advance to the AU receiver level and
wait there if it has arrived before the first instruction's result is uvai-
lable from the AU output. One clock is used to route the AU result back to
the AU receiver level. The second instruction advances through the AY when
all of its required arguments are supplied at the AU input.

Scalar Instruction Timing 13
Section B2



VECTOR INSTRUCTION TIMING

Vector priming is divided into four distinct processes, which are:
1. Vector parameter file fetch

2. MBU initialization

3. Memory operand fetch

4, AU fill

When a vector instruction terminates, a process of AU emtying occurs. This
process involves only the depletion of operend arguments from the Arithmetic
Unit.

VECTOR PARAMETER FILE FETCH

Vector parameter file fetching cccurs as a result of specifying a
vector instruction for which a new VPF is requested from central memory.
The new VPF is requested when the effective address of the vector instruc-
tion has been developed by the normal IPU indexing hardware. This hardware
does the pre-indexing and index addition required for generating the effec-
tive address.

~ VPF fetching (1) begins after the vector instruction has reached the
index addition level (level 3) and the VPF address has been developed.
VPF fetching requires 8 clock periods. However, this CM request is over-
lapped in time with the previous scalar instructions presently being pro-
cessed downstream by the Arithmetic Unit. Loading of a new VPF appears
no differend to the Instruction Processing Unit (IPU) than if the IPU had
encountered a scalar Load Register File instruction (LF). The fetching
of data for these files is carried out entirely by the IPU and the MBU
has not been involved up until now with the vector instruction. Also,
the memory fetching time for the VPF will be seen to be less than the
time required for memory operand fetching (2) because the register files
have a simpler interface with memory than the interface which exists at
the Memory Buffer Unit.

Overlapping memory cycles between the IPU and MBU during VPF fetch will
exist if the scalar instruction immediately prior to the vector instruction
requests a central memory operand from a new octet and all previous scalar
memory requests have been granted (data received from memory). For if this
condition exists, the scalar instruction requesting the new octet is allowed
to advance beyond level 3 (index addition level), providing that "path ahead"
is clear, and level 3 is filled with the deve]oped address for the VPR re-
qacst of the vector instruction. Thus, the time required to fetch the VP
is completely overlapped by the time required for fetching an operand of a
prior scalar instruction. The VPF fetching is essentially free in this
case.

Vector Instruction Timing 15
Section B2 '



16

VPF_FETCH HOT REQUESTED

The vector instruction could be one which specifies the use of the
vector parameter data currently residing in the VPF registers. In this
case, there is no vector parameter file fetch cycle required and the
vector priming operation proceeds immediately to the MBU initialization
process (2).

MBU initialization begins upon detection of a vector instruction at level
4 of the IPU. This MBU initialization is then overlapped with previous
scalar instruction processing going on downstream in the Arithmetic Unit.

MBU INITIALIZATION

Initialization of the Memory Buffer Unit (MBU) involves the transferring
of vector parameter data from the VPF registers in the IPU to the vector
working registers of the MBU. This process begins immediately after new
data has been entered into the VPF registers, if a VPF fetch is specified;
or immediately upon detection of a vector instruction in level 4 of the IPU
if a request for the current VPF data is specified.

MBU initialization requires.10 clock periods. This time begins with

the starting address development in the IPU for vectors A, B, and C, (in

that order). Development utiiizes the pre-index and index addition levels
(levels 2 and 3) of the IPU. Then the remaining five words of the vector
parameter data is transmitted a singleword at a time to the MBU for distri-
bution to its working registers that control the vector operation.

There would be no advantage gained by transmitting the remaining inner
and outer loop increment information to the MBU at a faster rate, since the
memory operand fetch operation (3) is overlapped with the transmission of
the remaining data. The transmission of VPF eata is completed seven clocks
before the first operand arguments are available as inputs to the AU receiver
register, even though the VPF data is sent only one word at a time.

MEMORY OPERAND FETCH

This cycle begins five clocks after MBU initialization began. It is
considered to start at the time when the first address reaches the central
memory address requestor in the MBU. Although by this time the A address
generator has produced the first three element addresses of vector A.

Memory operand fetching of the first octet of data for vector A and B
is compieted when che first two operand arguments are placed in the MBU
output registers and are available as inputs to the Arithmetic Unit. The
process of first operand octet fetch requires 12 clock periods. Subsequent
octet fetches are requested at 8 clock intervals during the self loop and
the pipeline flow of operands to the AU is maintained throughout the vector
operation. The initial operand fetch is an overhead penalty which occurs
only once during the vector priming procedure.



AU FILL

The Arithmetic Unit can proceed to fill its internal pipe sections as
soon as the operand stream is presented to its input registers from the
MBU. An AU receiver register accepts the operands from the MBU, which have
been transmitted between physical cabinets containing the MBU and the AU.
The receiver register therefore adds one ciock time to the AU operation
times given for scalar instructions in the timing section for scalars.
This figure (scalar AU time plus one) gives the number of clock intervals
before the first result appears at the Arithmetic Unit output. Scalar AU
times vary from instruction to instruction, but once the AU has been filled
in a vector mode, AU results are produced at one clock intervals for most
single length vector instructions. The exceptions to this rule appear in
Table II which lists the vector flow rates for all vector instructions.

AU EMPTY

At the termination of a vector instruction the AU will exhaust the
final results into the Z-buffer registers and a Z-write operation is forced
to purge the output buffers of the vector results, so that scalar hazard
detection can begin fresh:

However, when a scalar instruction follows a vector, overlapping occurs
again. Two general constraints need to be listed here, though: (a) If
the subsequent scalar instruction uses indirect addressing, it will wait
in level 1 until the vector operation is completely terminated. This pre-
vents an errcneous indirect addressing linkage through an area of central
memory which is being modified-by a vector instruction. (b) If the vector -
instruction is of the class requiring the storage of an item count at the
completion of each self loop, then a subsequent scalar instruction must
wait at level 1. Vectors which store item counts use the 2nd and 3rd levels
of the IPU tn rastart the vectnr in case a cantaxt switch operatien
prematurely terminated the vector,

Overlapping of the subsequent scalar begins after the MBU has deter=
mined that all self, inner, and outer loops are completed and that the ZB
register has initiated its last write cycle for the vector instruction.

At this time the subsequent scalar may use the facilities of the MBU to
request a memory operand required for scalar instruction execution. Thus,
the requesting of a next scalar octet is overlapped with the termination
(AU empty) of the present vector instruction in the AU.

Vector Instruction Timing 17
Section B2



18

In conclusion, vector timing can be computed approximately from the
formula T=P + R+ L « NI - NZ. If either NI or Ng equal zero, replace
appropriate term with value 1.

where P = Vector prime
R = Vector Rate (clocks/element) from Table 3
L = Vector dimension
NI = Inner loop count
Nfg = Outer loop count

T = Time in clock periods
P is broken up into the following approximate times (in clocks):
VPF fetch = 8
MBU Initialization = 5 (overlap adjusted)
Operana vetch = 12
AU fi1l = 1 + Scalar AU time

If the vector instruction uses the current vector parameter file, then do
not add in the time for the VPF fetch.



TABLE 3. VECTOR INSTRUCTION TIMING

Rate is defined as the number of clock times required to obtain each
element of the result, if a vector result exists. For scalar results, the
rate is defined as the average number of clock times required to perform
each instruction.

Timing for some of the vector instructions is based on input rate
rather than output rate from AU. These vector instructions are the ones
which produce infrequent results at the AU output. They include:

Vector Dot Products
Vector Peak Picking
Vector Searches
Vector Comparisons

"The rates given in-the table for these instructions correspond to the rate
at which the inputs change.

Vector Instruction ~ Rate Vector Instruction Rate
ADD VA 1 DOT ;
gﬁ? } o PRODUCT VDP 1
D i
VDPD 4
ADD SV=0 SV=1
MAGNITUDE VAM ] -DIVIDE VD 18 8
VAMH 1 VDH 9 9
VAMF 1 VDF 8 8
VAMFD 1.75% "VDFD 18 18
SUBTRACT VS ' 1 LOGICAL VAND 1
VSH 1 VOR 1
VSF 1 VXOR 1
VSFD 1.75% VEQC 1
SUBTRACT ‘ VANDD 1.75%
MAGNITUDE VSM 1 VORD 1.75*%
VSMH 1 VSORD 1.75%
VSMF 1 VEQCD 1.75%
VSMFD 1.75%
’ SHIFT VSA 2
MULTIPLY VM 1 VSAH 2
VMH 1 VSAD 2
VMF 1
VMFD 3
* See doubleword timing in Table 4. Vector Instruction Timing 19

Section B2



20

Vector Instruction

SHIFT
CON'D Vst
VSLH
VSLD
VsC
VSCH
VSCD
MERGE VMGH
(INPUT RATE) VMG
VMGD
ORDER VO
{OUTPUT VoD
RATE) VOF
VOFD
ARITHMETIC
COMPARISON Ve
VCH
(Input Rate) VCF
VCFD
LOGICAL
COMPARISON VCAND
VCANDD
(Input Rate) VCOR
VCORD
SEARCH VL
VLH
(Input Rate) VLF
VLFD

* See doubleword timing in Table 4.

Rate

[ASEACE LR AV N NN [ASE AN V] NN

wnd e

1.75%

1.75*
1.75%

wwned e wnaed

1.75%

Vector Instruction

SEARCH
CON'D

PEAK
PICKING

(Input Rate)

CONVERSION

NORMALIZE

VLM
VLMH
VLMF
VLMFD

VS
VSH
VSF
VSFD

VSM
VSMH
VSMF
VSMFD

VPP
VPPH
VPPF
VPPFD

VFLFX
VFLFH
VFDFX

VFXFL
VFXFD
VFHFL
VFHFD

VNFX
VNFH

Rate

—

1.75%

——d

1.75%

ot ek

1.75%

— —

1.75%

n NN

oo N



ASC VECTOR TIMING FOR SINGLE-~VALUED VECTORS

This table shows memory limitations for the different cases using single-
valued vectors. The vector instructions that refer to this table are
the ones which would require only one AU clock per element if they
were not restricted by memory speed.

TIME IN CLOCKS PER ELEMENT

ABC HALF-WORD OR SINGLE-WORD DOUBLEWORD
o 1 1.75

vsv } 1 1.25

SVV

WS 1 1

VSS } : :

VS

~Note: V representé directly addressed vectors.

S represents directly addressed single-valued vectors or immediate
single-valued vectors.

TABLE 4.

Vector Instruction Timing 21
Section B2



CENTRAL PROCESSOR
INSTRUCTION SET

Secticen B3



TABLE OF CONTENTS
TITLE PAGE
SCALAR INSTRUCTIONS 1

INSTRUCTION FORMAT 1
ALPHA ADDRESS DEVELOPMENT 2
DISPLACEMENT INDEXING - J
BRANCH ADDRESSIRNG ' 8
IMMEDIATE OPERANDS 8

DATA FORMATS 11
REGISTER FILES 12
DATA FORMS 13
PROGRAM STATUS DOUBLEWORD 16
ASSEMBLER MNEMONICS 23
LOAD INSTRUCTIONS 26
STORE INSTRUCTIONS 52
ARITHMETIC INSTRUCTIONS 65
LOGICAL INSTRUCTIONS 88
SHIFT INSTRUCTIONS - 95
COMPARE INSTRUCTIONS : 108
CONDITIONAL BRANCH INSTRUCTIORS : 115
INCREMENT AND TEST INSTRUCTIONS 124
TEST AND BRANCH INSTRUCTIONS 132
-MISCELLANEQUS INSTRUCTIONS 134
CONVERSION INSTRUCTIONS 141

VECTOR INSTRUCTIONS

INSTRUCTION FORMAT 157
PARAMETER FILE FORMAT 159
INSTRUCTION CHARACTERISTICS ‘ 167
VECTOR ' 173
ARITHMETIC INSTRUCTIONS 174
LOGICAL INSTRUCTIONS 178
SHIFT INSTRUCTIONS 179
MERGE INSTRUCTIONS 180
ORDER INSTRUCTIONS 181
COMPARE INSTRUCTIONS 183
LOGICAL "AND" COMPARE INSTRUCTIONS - 185
SEARCH INSTRUCTIONS 187
PEAK PICKING IMNSTRUCTIONS : 188
CONVERSION INSTRUCTIONS 190
NORMALIZE INSTRUCTIONS 195
SELECT 1958
REPLACE : 195¢
L.SIXES
LIST OF UNASSIGNED OP CODES 196
SEQUENTAL INDEX OF INSTRUCTIONS 199
ALPHABETICAL INDEX OF INSTRUCTIONS : 203
OP CODE INDEX OF INSTRUCTIONS | 207
VECTOR SEQUENTAL INDEX OF INSTRUCTIONS 211
VECTOR ALPHABETICAL I{DEX OF INSTRUCTIONS 213

VECTOR OP CODE INDEX. OF INSTRUCTIONS 215

.i



SCALAR INSTRUCTIONS

INSTRUCTION FORMAT

The instruction word of the Central Processor contains 32 bits and
is divided into five fields:

Bit Field
Field Name Positions Size Function
GP 0-7 8 Operation Code
R 8-11 4 Register address
T 12-15 4 Address modifier tag
M 16-19 4 Base address designator
N - 20-31 12 Displacement address
o 4 8. 1z 16 20 24 28 3}
' oP R T M N !
i i - L. | S
‘hexadecimal characte:
¢ OP-Field

The OP-Field specifies the machine instruction to be executed.

® R-Field

The R-field addresses one of 16 registers from the arithmetic,
base, or index register group.

* T-Field
The T-Field is an address modifier tag that has the following
interpretation:
Virtual Address,a,
T Addressing Type ~ of Memory Operand
0 ; Direct address 1 N +(M)
1-7 . Indexed address : N+ (M) + (T)
8 Indirect (N + (M)
9-F : Indexed indirect (N + (M) +(T-8))
address

L

A symbol or expression enclosed by parentheses () represents
"the contents of".

Instruction Foymat 1
Section B3



The T-field may be dccomposed into an I- bit and an X-
field, where the most significant I-bit des1gnaues indirect
addressing and the 3-bit X-field specifies one of seven
index registers used in the indexing operation. The index
registers are physically assigned to register file address
locations 21 through 27 (hexadecimal). A special set of
index instructions is used to load, store, modify, and test
the index registers.

! ! [
I N
I X
Bit Field

Displacement indexing is provided such that the indexing
operation is compatible with word size; i.e., the index regis-
ters are automatwca]]y aliagned according to word size. If an
index register contains the value K, the Kth element of an
array is accessed, whether it is a halfvord word, or double-
word.

@ M-Field

The M-field is a base register designator. It is used to
extend the addressing range capability of the ASC to a
potential 16.7 million words. The M-field selects one of
fifteen 24-bit base registers to be added to the N-field
displacement before indexing or indirect addressing. No
base addressing is used when M equals O.

e N-Field

The N-field is the address d1sp]acement relative to the base
address contained in M.

The M- and N-fields also may be interpreted as immediate operands
when immediate instructions are specified by the operation code.

ALPHA ADDRESS DEVELOPMENT

There are two basic methods of developing an address in the Central Processor.
The two methods are referred to as o addressing and B addressing. Central Memory
operand reguests use address development. Instruction branching uses g addrass
development. Both of these methods may use base and index modification. The
table of addressing types on page 1 has reference to addressing and represnets
the addition of base and index registers for singleword addressing as follows:



Ne base addressing
No indexing

0 0 O H5 H6

Vo V3 Vy Vg Vg

No base address.ing

M

Indexing
0 0 O H5 H6
thy I3 Iy Iy g
Vo V3 Vg V5 Vg
Base addressing
No indexing
0 0 O H5 H6
+B2 83 84 85 86
V2 V3 V4 V5 V6
Base addressing -
Indexing
0 0 O H5 'H6
+82 83 84 B5 86
+12 13 14 15 I6
Vo V3 Vg Vg Vg

Centrai Memory locations O through 2F.

M=20
X =0
N-field (12 bits)

virtual address (24 bits)

it

0
X =k for k = 11,2,3,...7)
N-field (12-bits)

"

index register k (24-bits)

virtual address (24-bits)

M=b Ter b= {1,2.3,..

X=20
N-field (12-bits)
base register b (24-bits)

virtual address (24-bits)

it

b for b
k for k

(1,2,3,...,15)
(1,2,3,...,7)

i

X

]

N-field (12-bits)

base register b (24-bits)

index register k (24-bits)

virtual address (24-bits)

For the cases when M = 0, a virtual address in the range 00 throﬁgh

2F(hex) is interpreted as an absolute register address.

If M=5b, .

where (b) = 0, the corresponding virtual address range refers to

Alpha Address Development 3
Sectipn B3



When the indirect bit (I-bit of hex. character H3) of an instruction (not an

immediate instruction) is a "one", then the « address developed by the in-

struction references a location either in central memory or in the register

file depending on the M-field and the range of «. A register from the re-

gister file is referenced if « < 2F and M = 0.

The location addressed by an instruction using indirect addressing is interpreted

according to the format:

Indirectly 7 f J ! Indirect

Addressed - {Zero | I | X ADR Address

Location e e Format
HO H] H2 H3 H4 H5 H6 H7

ZERO is the no-op code (4-bits)
I is the indirect flag (1-bit)

X is the index tag (3-bits)

ADR is a full 24-bit address

The base registers are not used after the original indirectly addressed instruc-

tion is interpreted. Multilevel indirect addressing is provided with independent in-

dexed and/or indirect addressing at each level.

Indirect addresses, using the above format, always reference Central Memory singie

ords.

The terminal indirect address (I=0) is indexed by displacement indexing accord-

ing to instruction word size wnen X # 0, but the operand acquired is always from Central

Memory.

An indirect address memory request is tagged as an execute request when transmitted

to central memory.

An illegal operation code program interruption occurs if the 4 most significant
bits are not all zeros at the Tocation specified by an instruction with an indirect
flag equal to one or at the location specified by a multilevel indirect addressing
chain where the address is specified to be another indirect address.



DISPLACEMENT INDEXING OF ALPHA ADDRESSES

SINGLEWORD ADDRESSTING, o

For singleword addressing, the index value is a signed two's comple-
ment number where the sign is in bit position 8 of the index register. The
fraction is in the remaining 23 least significant bits of the index register
(bit positions 9 through 31?. The N-field and base registers are interpreted
as positive 12- and 24- bit numbers, respectively.

j«—12 Bits—>

Displacement
{ N | Address,N-field
20 31  (Positive)
j¢<————24-Bits T
. Base 24-bit
%////////418 () 3% Positive Number

|———24-Bits—r—]|

. Index (Signed)
%/”/////é 1819 (X) 31] 2's Complement

- jle—————24-Bits——— | Virtual Address
[ v | for Singleword
g 3] Addressing, as

The addition of a positive ind2x to a large base may result in "wrap
around” to a low virtual address. Also, addition of a negative index to a
small base plus displacement may result in a "negative wrap around” to a high
virtual address

Wrap around as just described will occur only if the maximum size memory
to contain the full 24-bit address range is connected to the system. Any
central memory address outside the address Timit of the physical memory will
result in a memory protection violation. The wrap around and address limit
are normally thought of in terms of singleword addresses, but apply equally
well to halfword and doubleword addressing.

HALFWORD ADDRESSING, a

Displacement indexing is used for halfword addressing. When a halfword
address is not indexed, the left halfword of a Central Memory singleword is
selected. An odd index value addresses halfwords in the least significant
half (right half) of a Central Memory word. An even index value addresses
the left halfword of a Central Memory singleword. This is true for all
halfword inctructions, except for four special halfword lcad and steore
instructions (LR, LL, STR, and STL).

The LR, LL, STR, and STL instructions address the right half of a
Central Memory singleword when not indexed. If indexed, an even index value
selects words from the right half of a Central Memory singleword. An odd
index value addresses the left halfword. When an array is addressed conse-
cutively by indexing with one of the four special halfword load/store

Disp. Indexing 5
Section B3



instructions, an even index value addresses the right half of a Central
Memory singleword, as just mentioned; but it shculd be noted that when this
even index value s incremented by one (forming an odd index value), the
memory operand acquired by this instruction is from the left half of the
next consecutive Central Memory singleword.

The index unit in the CP hardware accomplishes displacement indexing
of halfwords by shifting the index register one bit position to the right
before the base (M) and displacement N-field are added. The least significant
bit of the index value effectively detevinines whether the left or right half
word of a Central Memory singleword is addressed. A 25-bit virtual address
is generated for halfword instructions. The index value is interpreted as
a signed two's complement number. For halfword addressing, the sign of the
index value is in bit position 7, and the fraction is in the remaining 24
least significant bits of the index register (bit positions 8 through 31).
The N-field is interpreted as a positive 12-bit number. The base (M) is
interpreted as a positive 24-bit number.

The addition of a positive index to a large base may result in "wrap
around" to a Tow virtual address. Also, addition of a negative index to a
small base plus displacement may resu?t in a "negative wrap around" to a high
virtual address.

Frf~*-12 Bits——>| Displacement
Address, N-Field

N ] (Positive)
20 31
3 24 Bits ‘ ‘%
] (M) Base 24-bit Posi-
; tive Number
‘0 78 31
- X i“ . \l
- 25 Bits A
Index (Signed)
V////////////g! 1 W 1 gt Gigred),
H 25 Bits >
/ v ' Virtual Address
8 31 32 Halfword

Rddressing, o



DOUBLEWORD ADDRESSING , oy

The index register is displaced one bit position to the_left rg!atlve
to the base (M) and displacement address N before being added in the index
unit. The least significant bit of the sum is forced to 0, and the remaining
23 bits of the sum address a doubleword in Central Memory. If both the
base and displacement address are odd, a carry will be generated in the
least significant bit position of the sum and will produce a doubleword
address one greater than the address obtained when either the base or dis-
placement address (or both) has a value diminished by 1.

k——12 Bits —

Displacement
L N J Rddress. NoField
20 31 (Positive)
K 24 Bits =

Base 24-bit Positive
v/ ) (M) 3]1 Number
0 78

| ! - 23 Bits 3
Eava I de S . ' d
giﬁa;i{;;az/é + (X) : | 2?5 éoép;ggzn%

9 10 : 3
k 23 Sitg ——— Virtual Address
i v LQJ for Doubleword

- ddressing, a

8 30 31 acdressing, od

The index value is interoreted as a single tus™s com~lement nunher.
For doubleword addressing, tne sign bit is in bit position 9..and the
fraction is in the remaining 22 least significant bits of the index register
(bit positions 10 tnrough 31). The N-field is interpreted as a positive
12-bit number. The base (M) is interpreted as a positive 24.bit number.
Displacement indexing allows one to address the Kth doubleword in a data
array by an index value equal to K.

Doublewords are always selected from and stored into even-odd singleword
memory address pairs and registers address pairs.

Displacement Indexina 7
Section B3



BRAKCH ADDRESSING

%2 branch address, 8, for Branch instructions are a
wnction of the T, M, and N-fields of the instruction word as follows:

T M Branch Address, 8 (Singleword Addressing)
0 0 N*+(PC) Relative to program counter
1-7 0 N*+(PC)+(T) Relative to program counter plus index
0 1-F N+ (M) Base plus displacement
1-7  1-F N+(M)+(T) Base plus displacement plus index
8 0 (N*+(PC))  Indirect relative to program counter
g-F 0 i (N*+(PC)+(T7-8)) Indirect relative to program counter plus index
8 1-F '3 (N+(M)) Indirect relative to base p]us.displacement

9-F 1-F ‘ (N+{M)+(T-8)) Indirect relative to base plus displacement
i ) plus index

where N + (M) is Base address plus displacement (N is positive, 12-bit
number) and N* = Signed N-field, 11-bits plus sign bit, 2's complement.

+his branch address definition is used for all test and branch instructions.

These include:

BE, BG, BGE, BL, BLE, BNE, B

BCZ, BCO, BCNM, BCM, BCNO, BCNZ

BZ, BPL. BZP, BMI, BZM, RNZ

BRZ, BRO, BRNM, BRM, BRNO, BRNZ

BU, BO, BUO, BX, BXU, BXO, BXUO, BD
BDU, BDO, BDUO, BDX, BDXU, BDXO, BDXUO
BXEC, BLB, BLX |
1BZ, 1BNZ, DBZ, DBNZ

When an indirsct branch address is s;ecified (T > 8), the indirect addr.ss
format is the same as that usod by 1nu1rect o addressing, except that addresses less

than 2F reference central memory regardless of M.
If a branch address is less than or equal to 2F (B < 2F), then the program branches

to central memory location B regardless of the M and T-field specifications. Branches
cannot reference the register file.

IMMEDIATE OPERANDS o
Immediate operands have the following characteristics:
a) Halfword Immediate Operand Instructions

The combined M and N-fields form the immediate operand for ha]fyord )
instructions. The MSB of the right half of the instruction word is the sign bit.
Negative numbers are represented in two's complement form.



This immediate operand can be modified by the right half of index register X.

If X # 0, the index register specified by X is added to the
For this case, the 16tﬁ bit pog.t1on of Xndex r°g1q%er X is M gan!bﬁ%.]ds

If X =0, no modification occurs.

g MO 203
4§3§ﬁ/ ;f*wimﬂiﬂ».A”ﬂ_,ﬂ-mQ IMMED
+
0 16 31
s T '”'” .
e - . A._/ .'.,L{._Zi-: e e e ()()
0 . 16 3]
A S IO n = IMMED + (X)

b)  Singleword Arithmetic Immediate Operands

Single word length immediate operands for arithmetic instructions
are formed from the combined M and N-fields of the instruction word with
extended sign (two's complement representation for negative numbers). The
left half of IMMED consists of the extended sign of the most significant
bit of the right half of IMMED. This immediate operand can be modified by
an index register when X # 0. For this case, the contents of index register X
are interpreted as a signed number (two's complement representation for negative
numbers) within the range -223 < (X) <223 _ 71, If X = 0, no modification occurs.

0 S 200 3L
| Extended Sign it M ] N Im
0 789 .31
[N Enggged {55_. 23 Bits W
o . 789 _ 3
[ Eg?ggéed jsg 23Bits . no=IMGED + (X)

In effect, the sign bit in the 8th bit position of the contents
of index register X is extended into the most significant eight bits (bit
positions 0 through 7) before being added to IMMED. The true 32-bit value
contained in index register X remains unchanged; the sign extension occurs
in the index unit hardware and not in the reg1ste§ f1]e The modified
immediate operand n is restricted to the range - - 1, since the
paralltel adder in the index unit is only 24 bits w1de. The sign bit in the
8th bit position of n is extended into the most significant eight bits of n
before being used as a modified immediate operand by the Arithmetic Unit.

Immediate Operands 9
Section B3



The Arithmetic Unit interprets this singleword immediate
operand as though the sign bit were in the most significant bit position
as shown below:

01 .. 89 3

i Extended | o _
!‘éj Sign | ?iw%liimj n = IMMED + (X)

c)  Singleword Logical Immediate Operand

A singleword immediate operand for logical instructions is
formed from the combined M and N-fields of the instruction, except tnat the
left half of IMMED consists of 0's instead of the extended <ign. When X # O,
the 24 least signisiicant bits of index register X are added to IMMED. If
X = 0, no modification occurs.

0. ... 1516 . __ 1 :
l_zero M | _N_ ] ImMED
+ 0 N 31
| zZero | 24 Bits B (X)
.8 3]
Zerol .1 n = IMMED + (X)

10



DATA FORMATS

1. Fixed point,'single length, 32-bit word.

Sign \ MSB ¢~—>LSB
+ INTEGER
01 2 ... 31

2's compliement representation for negative numbers.

2. Fixed point, half length, 16-bit word (two haif length words

shown) S1on
<L
SIGN -
_—— MSB LSB— —— MSB LSB
N " S
t INTEGER t INTEGER

01 2 ... 16 17 18 31

2's complement representation for negative numbers.

3. Floating point, single lenath, 32-bit word.

Sign \ M /—Ls
+| BIASED
-\ EXPONENT FRACTION
01...789. . . ‘ 31

sign and magnitude representation for
fractional portion.

4. Floating point, double Tength, 64-bit word.

Sign———-~x 158
+| BIASED .
“| EXPONENT FRACTION
06012..7896 ... 31 158
- FRACTION a
3233 . .. 63

sign and magnitude representation for fractional portion

Figure 1. Data Formats

Data Formats
Section B3

1



REGISTER FILES

12

HEXADECIMAL
ARDORESS

10

1F
20

27
28

2F
30

XXFFFF

P

b 32-bits e

16-bits kw«

Zero

}

et B I T I S S
.

B I

BASE
ADDRESS
REGISTERS

HALFWORD
OPERATIONS
16-BITS

(Left Half only)

GENERAL
ARITHMETIC
REGISTERS

INDEX
REGISTERS

VECTOR
PARAMETER
REGISTERS

CENTRAL
MEMORY



DATA FORMS

INFINITE FORMS AND INDEFINITE FORMS:

FLOATING ADD “ A.U. OUTPUT
(t o)+ (+=) t
(b o)t (=) 1D
(- w )+ (+ . ) IND,
(= )+ (-=) -
(+ =)+ (£N) toe
(- =)+ (£N) -
(IND) + (+ N ) IND
(D) + (& =) | .

FLOATING POINT SINGLE LENGTH FORMS ARE:

+ o JFFF FFFF
-« . FFFF  FFFF
IND 7F00 0000

FLOATING POINT DOUBLE LENGTH FORMS ARE:

e 7FFF FFFF FFFF  FFFF
- FFFF FFFF FFFF  FFFF
IND 7F00 0000 0000 0000

FLOATING
POINT
OVERFLOY

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Positive infinite form.
Negative infinite form.

Indefinite form.

The indefinite form, 7FC0 " °00, is generated by the Arithmetic Unit when
an indefinite form or a "dirty zero" appears at either input to the Arith-
metic Unit during a floating point arithmetic operation.

A "dirty zero" is a floating point form consisting of a zero mantissa and
a non-zero exponent. It has the form XX00"*"00, where at least one X is not

equal to zero.

Data Forms 13
Section B3



FLOATING

POINT
FLOATING ADD MAGNITUDE A. U. OUTPUT OVERFLOY.
(+o )+ [(x=]] + e Yes
(-= )+ [(+ =) IND Yes
(+w )+ [(£N)] + e Yes
(- )+ |[(xN)] - Yes
(xN)+ [(£e)] + o Yes
(IND ) + (= N ) IND Yes
(I )+ [(£=)] IND Yes
(£ N )+ [(InD )] IND Vec
(= )+ [(ID )] IND . Yes

" - - FLOATING POINT
FLOATING SUBTRACT | A. U. -QUTPUT OVERFLOW
C(t e} - (+) - 'IND Yes
re) - (- =) 4 Yes
(o) -(+e) - o Yes
(o) -(-=) IND Yes
(+=)-(£N) + Yes
(-=)-(£N) , - e Yes
(£N) - (+=) o - e Yes
(£N) = (- =) + o Yes
(IND ) - (+ N ) IND Yes
C(IND ) - (+ =) “IND Yes
(+ N ) - (IND ) IND Yes
(t=) - (D) IND Yes

14



FLOATING POINT

FLOATING SUBTRACT MAGHITUDE A. U. GUTPUT OVERFLOW
(+ @) - [(+ = )] IND Yes
(j @) = [(+ = )| - Yes
(+ =) = [(£ N )] + o Yes
(- =) = [(& N)] - o . Yeg
(£ N) - [{+=)] - Yes
(IND) - |(+ N )] FND Yes
(IND) - [(+ = )| IND Yes
(+ N) - [(IND )| IND Yes
(+ =) - [(IND )| IND Yes

FLOATING MULTIPLY - ’

OR FLOATING VECTOR ] FLOATING POINT
DOT PRODUCT AL U. ouTpuT OVERFLOW
(+9) - (+ =) s o Yes
(=) - (-=) - Yes
(- =) - (+=) - Yes
(- =) = (- =) t o Yes
(+=) * (£ 1) te Yes
(- =) " (£N) F o Yes
(+) - (0 ) IND Yes
(+N) - (0 ) 0 No
(0)-(0) 0 No
(IND) - (+ =) - IND ‘ Yes
(IND) * (+ N ) ‘ IND Yes
(IND) - (0 ) “ IND ' Yes

Data Forms 15
Section B3



© FLOATING POINT DIVIDE

FLOATING DIVIDE 21} QUTPUT OVERFLOW CHECK
(+ @ )t (+ ) IvD ' Yes No
(+ )+ (N )‘ - w ‘ Yes No
(+ « ): (N ) - = Yes No
(- =) (W) - - | Yes No
(- « )+ (-N) + o Yes No
(+=): (0) . + = Yes Yes
(X N )+ (& =) G No No
(0 )s (+ =) G No No
(0 ): (+N) C No , No
(0 ):(0) IND Yes Yes
(N .)i (0) ‘ + o Yes ~ Yes

(-N )= (0) - Yes Yes
(IND ): (+ =) ~IND | Yes S T
(IND )& (N ) IND Yes No
(IND )+ ( O) | IND Yes Yes
(+ = )+ (IND) IND Yes ‘No
(+ N ): (IND) IND ' Yes No

(0 ): (IND) IND Yes No

PROGRAM STATUS DOUBLEWORD

Control conditions within the CP which are critical to a CP program are:

1. Program counter or instruction address.
2. Arithmetic exception mask.
3. Arithmetic exception code.
4, Condition code.
5. Memory protection controls and memory map controls.

PROGRAM STATUS LOCATIONS
The CP status information exists in the CP as a collection of separate

registers and flip-flops. The designations assigned to the control registers
and flip-flops along with their function are as follows:

AR



PC - Preogram Counter. A 24-bit counter which contains the current instruction
address at the index addition level of the Instruction Processing Unit.

AE - Arithmetic Exception Mask. Consists of flip-flops designated MD, MF,
MP, and MU. When the AE MASK flip-flops are "one" (masked ON) a signal from
the CP to the PP is activated upon detection of a maskable condition within
the CP for which a PP interrupt is desired. The maskable conditions and
their respective mask flip-flops (ff) are:

AE Mask ff Maskable Conditions
MD Divide check - Divisor is equal to zero (Fixed
point).
MF Fixed point overflow.
M@ Floating point exponent overflow.
MU Floating point exponent underflow.

When one of the AE MASK flip-flops (MD, MF, M@, and MU) is "“zero"
(masked OFF), that condition corresponding to the zero flip-flop will not
activate the interrupt signal from the CP to the PP. The interrupt signal
is either inhibited or allowed to occur depending on the setting of the AE
MASK bits (1 ~~* masked ON, Oe=masked OFF). For example, if MD = 1, MF = 0,
Mg = 0, and MU = 0, the only maskable arithmetic exception condition which
can cause an interrupt signal from the CP to the PP is a divide check.

The AE MASK bits can be changed by a Load Arithmetic Mask (LAM) in-
struction executed by the CP. :

The PP interrupt conditiomswithin the CP which are not maskable
include an undefined operation code, CM protection bounds, CM parity error
on read, and Breakpoint  &-d S=acificaticn error.
AE, COND - Arithmetic Exception Condition. An arithmetic exception indicator
bit (D, F, @, or U) is set to "one" whenever one of the following maskable
arithmetic exception conditions is detected. -Table 1 presents the arithmetic
exception condition for each scalar instruction. :

D - Divide Check - A divide check interrupt condition is recognized
when the divisor is zero in fixed or floating point operations. The
interrupt is enabled if a one has been loaded into the MD bit of the .
AE mask.

F - Fixed Point Qverflow - When a high-order carry occurs or high-
order significant bits are lost in fixed-point add, subtract or Teft
arithmetic shift operations, etc., a fixed point overflow condition

is recognized. The operations is completed by ignoring the information
placed outside the register but a one will be placed in the X bit of
the AE condition register. The interruption is enabled if a one has
heen placed in the MX bit of the AL mask register.

Program Status Doubleword 1
-Section B3



8l

Table 1. Arithmetic Exception Conditi Table for Scalar Instructions

, Floating Point | Floating Point . Arithmetic
" Divide Fixed Point Exponent Exponent Unassigned Exception
Check Overflow Overflow Underflow Operation Condition
(D) (F) () (U) Code Not Paossible
D LM,LMH AF,AFD, AF ,AFD, 10,11 L,LI,LH,LHI SL.SLH,SLD,
DI LN,LNH,SN,SNH AMF ,AMFD, AMF,AMFD, 26 LR,LL,LD, . SC,SCH,SCD,
DH A,AI,AH,AIH, SF,SFD, SF,SFD, 53,57,5A,58 LM, LMH, LMF,LMD, RYS,
DIH AM, AMH SMF,SMFD, SMF,SMFD, 5D,5E,5F, LN,LNH,LNF,LND, €,CI,CH,CIH,
DF S,SI,SH,SIH, MF,MFD, MF,MFD 61,63,62,6B, LNM,LNMH, LAMF, LNMD, cF,CFD
DFD SM,SMH, DF,DFD, DF,DFD, 71,73,76,77,79,1 LF,LFM,XCH, CAND,CANDI ,CANDD
M(arith,R-odd) FXFL,FXFD, 78,7E,7F, LAM,LLA, LD, COR,CORI,CORD,
M(base,index) FHFL,FHFD, 9A,9B,9E, 1 ST,STH,STR,STL, IBZ,IBNZ,DBZ,DBNZ,
MI{arith,R-odd) A3,A4,A5,A6, SPS,STD, ISE,ISNE,DSE,DSNE,
MI(base,index) A7 ,AE,AF, STZ,ST7H,STZD, BCLE,BCG,
D(R-even) B1,82,B3,84, STF,STFM, BC,BL,
DI(R-even) 85,B6,87,B8, M(arith,R-even), BR,BRL,
DH,DIH, B9,B8A,BB,BC, MI(arith,R-even), BAE,BXEC,
SA,SAH.SAD, BD,BE,BF, MH,MIH, PSH,PUL,MOD,
FLFX,FLFH,FDFX cz.bo,b1,D2, - D(R-odd) BLB,BLX,
D3,04,05,D6, DI{R~-odd) LEA,INT,XEC,
D7.DA,DB,DC, AND,ANDI,ANDD, NFX,NFH,
DD,DF, OR,0RI,0ORD, MCP ,MCW,
EA,EB,EE,EF, XOR, XCRI, XCRD,
F1,F3,F5,F7, EQC,EQCI,EQCD,
F9,FA,FB,
FD,FE,FF,
i




@ - Floating Point Exponent Overflow - When the result characteristic
exceeds 127 1in floating-point addition, subtraction, multiplication,
or division, an exponenil overflow is recognized. The AE condition
register is set with a one in bit @. The interrupt will occur if

a one has been placed in the M@ bit of the arithmetic exception

mask register. The result will be set to +~ for positive overflow
and -« for negative overflow.

U - Floating Point Exponent Underflow - When the characteristic is
less than zero in fioating-point addition, subtraction, multiplica-
tion, or division, an exponent underflow is recognized. The operation
is completed by making the result a true zero. A one is set in bit U
of the AE condition register. Interrupt will occur if a one has been
placed in the MU bit of the arithmetic exception mask register. When
the result of a floating-point addition or subtraction has an all

zero fraction, the operation is completed by making the result a true
zero.

The bits (D, F, @, U) so set will remain set until interrogated
by a Test Arithmetic Exception Code and Branch (AE) instruction.
The R-field of an AE instruction is "“ANDed" with the arithmetic
exception register and if any of the resulting four bits are "one",
then the branch will be taken. Only the AE register bits corresponding
to "ones" in the R-field are reset to zero during execution of an
AE--instruction.

D F @ U. AE condition register

- L 1 [N T—
r r .r r R-field of AE instruction
. 0 . 1 i Z,J,j.i

The Test Arithmetic Exception Code and Branch instruction
allows a program to sensea divide check or overflow condition
(without CP interrupt) and perform corrective action if necessary.
A CP to PP Interrupt signal will not occur for the maskable arithmetic
conditions if the corresponding MASK bits (MD, MX, M2, and MU) are
zero.

Unassigned Operation Code - If an unassigned operation code is encountered
the operation is not executed and tne interrupt signal is sent from the

CP to the PFU. Also, if an indirect addressing chain detects an indirect
address for which tne four most significant bits are not all zeros, then the
indirect addressing instruction is not executed and the unassigned operation
code interrupt-signal is sent from the CP to the PPU.

Program Status DoubYeword 19
Section B3 .



BSC - Execute instruction branch or skip condition. This is a four bit register
Y3SRY of which oniy the iwo ieast significant Dits are used as indicators.

The BSC-bit of the BSR register is set to "one" whenever an Execute Instruc-
tion {XEC) executes a branch or skip type instruction and the condition for branching
or skipping is satisfied. The BSC-bit is reset to "zero" whencver the condition
for branching or skipping is not satisfied. No branch will occur when the BSC-bit
in the BSR indicator is set. Instead, the instruction following the XEC instruction
is executed.

Spare
- A ’
!
[ - - MCC | BSC BSR register
! ’"oi ‘”':‘ vy, | org R-field of BEC
B 5 T B - T instruction

& Branch on Execute Condition (BEC) instruction can determine whether the
condition for branching or skipping was satisfied for the case of an Execute
instruction executing any conditional branch or skip type instruction. If a BEC
instruction (one for which R = 0007) branches, then the condition for branching
cas satisfied.

The MCC-bit of the BSR register is set to "one" whenever an Execute 1in-
struction executes a Monitor Call and Proceed (MCP) or a Monitor Call and Wait
(MCW). The monitor call does not write into central memory nor is the PPU
signadted of a monitor call when an MCP or MCW is executed by an Execute in-
struction.

If a Branch on the Execute Condition instruction (one for which R=0010)
branches, then an Execute instruction has executed an MCP or MCW instruction.

The indicator bits of the BSR register which correspond to the position of
“ones™ in the R-field of the BEC instruction are reset to "zero" by the BEC in-
struction. Bit positions of BSR which are not tested by "ones" in R are not reset
by the BEC instruction. Only the two LSB's of the BSR register are used by the
Branch on Execute Condition instruction. The remaining two unused bits of BSR
will be tied to "zero", The 2 MSB's of the R-field of the BEC instruction are
"don't cares" as a result of the 2 MSB's of BSR being forced to "zero".

CC - Compare Code. One of the flip-flops CL, CG, or CE is set by an arithmetic
or logical compare instruction and the bit so set will remain set until another
compare instruction modifies the setting. Thus, the compare code indicators
always reflect the outcume of the last compare instruction executed before being
tested by a Comparison Code Branch instruction. The compare code indicators are
not affected by a Comparison Code Branch instruction.

20



- CL CG CE !  CC register

rg 7 Yoo o1y ’ R-field of Comparison
Code Branch instruction

The arithmetic and logical properties with their corresponding compari-
son code are listed below for the general case of one operand (x) compared
with another operand (y). The definitions of x and y are given with the
instructions defining the various comparison operations.

Arithmetic compare CC, compare code Logical compare

(x)  +  (y) CL CG CE [(X)j Boolean (y)j]
(x) < (y) 1 0 0 Mixed "1's" and "0Q's"
{x) > (y) .0 ] 0 A1l bits are "1"
(x) = - (y) | 0 0 1 v A11 bits are “O"

RC - Result Code - One of the flip flops RL, RG, or RE is set according to

the properties of the arithmetic or logical result emerging from the arithmetic
unit and the bit sc set will remain set until another result From the AU modifies
the setting. Thus, the result code indicators reflect the current status of -

the most recently referenced register. The result code indicators are not
affected by a Result Code Branch instruction.

CTTTITT T T
- RL RG |RE | RC register

[ —

leprr;M74_w '
ro . M ro o rs 5 R-field of Result
N | Code Branch instruction

The arithmetic and logical properties of the AU result with their
corresponding result code are listed below.

Program Status Doublewc-d 21
Section B3



© Arithmetic result RC, Result code Logical result
from AU ~ RL RG RE from AU
(x) < 0 1 0 0 Mixed “1's" and "0's"
(x) > 0 0 1 0 A1l bits are “1"
(x) = 0 0 0 1 A11 bits are "0"

NOTE: Load and Store instructions cause the result code to be set as if
the operand were an arithmetic result from the AU.

£D MEMORY LISAGF RYTS

Bits 16 through 19 (labeled CP MEM USAGE) of the second word of the
Program Status Doubleword are reserved for Central Processor memory usage
information. The CP MEM USAGE bits indicate that the Central Processor has
been placed under the following usage mode by the Peripheral Processing Unit.

. 0 &~ Mapped
bit 16, M 1 ~ Not Mapped

bit 17, P 0 ~ Memory Protection
, 1 &~ No Memory Protection

bit 18, B 0 ~ No Breakpoint
1 ~» Breakpoint Active

bit 19,V 0 «» Actual Breakpoint
1 e Virtual Breakpoint

Three CCR signals from the PPU to the CP store, load, or exchange the
program status doubleword as follows. "

Store program status doubleword - Tne CP permits all instructions which
are currently in process to go to compleiton. No new instructions

are fetched by the instruction fetch unit after receiving this signal.
After all instructions have been completed, the program status doubleword
and all register files are stored at the location specified by the
contents of memory location 14.

Load program status doubleword - The CP immeidately loads the program
status doubleword and all register files beginning at the location

~specified by the contents of memory location 15 and then proceeds
with execution.

Exchange program status - The CP first perforus the Store operation,
then it performs the Load ogeration. .
The program status doubleword has the following format:

22



C 16 20 24 28 31

Singleword Not CP MEM |,
Location Used (Zero) - |usage [BSR| €C | RC
0 4 8 3]
AE AE pC
loc a + 1 COND MASK

It should be clear from the preceding descriptions that the CP status information
exists as a collection of separate registers and flip-flops and that the fields
designated here only indicate how the respective CP status information is formatted
in central memory. The designation names of these registers have been retained
in this memory format.

A separate CP instruction is provided to store the first word of the program
status doubleword into central memory singleword location «. The Store Program
Status Word, SPS, instruction stores the CP MEM USAGE, BSR, CC and RC status informa-
“tion according to the format.

loc a 0 16 20 24 28 31
Not CP MEM
Used (zero) |USAGE BSR ¢ RC

The load, store, or éxchangé status memory map appears as follows:

WORD ——=

0o 1 2 3 4 5 6 7
OCTET PSDH NOT USED

REGISTER FILE A
REGISTER FILE B
REGISTER FILE C
REGISTER FILE D
I
v

REGISTER FILE
REGISTER FILE

D O W N - O

Program Status Doubleword 22A
Section B3



228

Ocret

Ps*
oCTET 2.
WOoRD §

Freaure

p $ W N = 0O

™

mm Y ©O® > 9 % N

(6)

Worp
o J 2 3 4 5 6 7
Reo | Rgt | BA [Relr3l XA | PI | cemtrOL
ado [act | LA [peles) va | pz | L h
_;R—_'/}IR | pa |reln7 2P § F3 f’s*‘;_
mﬁﬁm '}%ﬁm Lc |#8 R9L ZA | MA i |
NR | RM3 | seerniRA|FB| ZB } }_
BR |73 'j RC [LD| =g l, R
| ka0l KkaL| Kaz| ka3 | Kt | kas | xes | w4z
| Keel Kmi | Kez| Kes | kB4 | KBS | kBé | K27
Ao | mL | Az |As | a4 | as | A | A7
po | BL | Bz | B2 | B+ |85 | B& | B»
co |e)l | CR2 |3 | e+ lcr | e |7
po|pL | b2 | D3 | D+ | pe | DC | D7
Io (711 | %22 I3 T4+ |15 16 |17
Vo vl | V2 | V3 | V4 | V& | VE | V7
MA |MB | REG Me | mD IMM
Lpg FLP ql‘f’ 51,, NAA : XA : ’ : Pay : DBL ol 48 c,qj(
g R o e e A P
i
Zu Pl [ R
& EL e
2L R AGEE -
ot 1B 2kl
4% B L)s|7|8F L
LA P o L”g’;’f BsR | cc | Re

L.

IntermepiaTe  lever CP Mar



When it is intended that the CP start a new assignment through the use of
Loading or Exchanging at the Intermediate ievel, and there is no prior CP inter-
mediate level map available to load the internal registers of the CP, then the
starting address of the instructions to be executed by the CP must be entered
into the P3 word of an intermediate map. This is octet 2, word 5 (numbers begin
with 0) of the intermediate map. The AE Condition, At Mask, CP Memory Usage,
BSR, CC, and RC bits must also be Toaded. They are in octet 2, word 6 of the
intermediate map. A1l other words of the map should be zero, initially. En-
tering of data into these locations must, of course, be done prior to an Exchange
Intermediate (either by CCR code or automatic context switching) or a Load Inter-
mediate (by CCR code). See Figure 1 for Intermediate Level CR Map pade 22B

ASSEMBLER MNEMONICS

The Central Processor {CP) instructions are described using their
assembler mnemonics for each instruction. Instructions which have the same
mnemonics but different operation codes are distinguished from each other
by the register designaticn. For example, the assembler will recognize L
as the mnemonic for an instruction which Toads an index register even though
the same mnemonic is also used to load base registers and arithmetic registers.
A1l three instructions have different operation codes and the one selected can
be determined from the register designation. Thus, the volume of instruction
mnemonics to learn is reduced.

Assembler Mnemonics
Section B3

23



The special characters @ and = are used in certain ASC instruction
procedures. Whenever both of these symbols are used with the same expression,
the order of their appearance is irrelevant. However, their appearance will
be flagged in error by the assembler if they are used incorrectly. Their use
anywhere but immediately preceding an expression is illegal.

The CP instructions are written in the form:

“Label Command Operand Remarks

In all instructions, Label is optional. When used, it will be assigned
the value of the location counter of that instruction.

The operand format is dictated by the command and is described for
each instruction on the following pages. In general, the following characters
are used to represent special information in the operand formats:

R is the name of the register involved in the operation.

N is the central memory reference in the operand and may be
represented by using a symbol which is the label of a memory
location or by using base and displacement if N is replaced
by (D,B) where,

D is the displacement value and,

B is the base register.

X is the index register name and is optional. It is used to modify
the N field.

Examples: R, N, X or R,(D,B), X

When the N field is used for immediate referencing (to the instruction
itself), the symbol I will be used.

"@" means an "@" can be used to indicate indirect addressing.

= means an "=" can be used to cause the Assembler to create a literal
‘to be generated from N and replace N in this instruction with the
literal's location.

For Branch instructions, “=" may be used only in pair with a "@".
Using the "@" does not require the "=%,

24



CP Operand Format Types:

YD WM —
e

@D D

v XX =Z

> « =

<

>

-

1 o v

W Z @ —h O X e

-1
—_—

1l

> IZ 0
-
S

.

-
>

il
-

1
><

-

HIEX O XD @00

— O 00

0.

| where the first R is for the R-field, the second for the

A1l values of registers must be represented by using symbolic
constants which are familiar to the assembler via automatic initialization.
For example, the CP registers are represented as

Location

- E

F
10
11

1F
20
21

27
28
29

2F =

0
1.
2
3

ononon

nononn

i n

nounon

B14
B15

Al.
A15

X0
X1

X7
Vo
Vi

V7

If the register is not represented symbolically (i.e., X7 is specified
by using a 27), an error is indicated by the Assembler unless it is in the
second list item of the operand field (the Address Parameter). In this parameter,

a number will be assumed to be an absolute address.

may not be assigned as labcls by the user.

The above reserved symbols

Assembler Mneumonics 25
Section B3



In the following lists, for * scalar Central Processor
instructions, the columns contain the following informaticn: MNEMONIC
CODE heads -the column listing the mnemonics recognized and interpreted in
the command field of the Assembler Language statement; INSTRUCTION heads
the column containing a brief description of the operation initiated by the
command; OPERATION CODE heads the column listing the machine (CP) code .
produced by the Assembler from information in the command and operand fields
of the Assembler Language stzatement; TYPE FORMAT heads the column which
gives the format type showing the maximum complexity permitted for the
particular command; OPERAND FORMAT heads the column which contains the
symbolic representation of an operand of maximum complexity for the particular
command; and ASSEMBLER SUPPLIED R FIELD, for those commands where it is
applicabie, heads the column which contains the value the Assembler supplies

to the R field of the resultant machine code.

MNEMONIC INSTRUCTION OPERATION TYPE OPERAND

CODE ’ . CODE FORMAT FORMAT
ST Store arithmetic register, single length 24 2 R,@N,X
ST Store base register, single length 28 2 R,eN,X
ST Stbre index register‘or vector parameter 2C 2 R,@N,X

register, single length
STH Store half length, arithmetic register 25 2. R,eN,X
~ STR Store register right half into memory right = 2D 2 R,@N,X
) half, arithmetic register
STL Store register left half into memory right | 29 2 R,@N,X

half, arithmetic register

SPS Store program status word : 2? 3 @N,X

STD Store arithmetic register, double length‘ 27 2 R,@N,X
STN Store negative, single length ‘ 34 7 R,@=N,X
STRH Store negative, half length 35 7  R,e=N,X
STNF Store negative, floating point ! 36 7 R,@=N,X
STND Store negative, double length : 37 7. R,@=N,X
8T0 Store ones complement . 2E 7 R,@=N,X
STOH  Store ones complement, half length ’ 2A 7 R,@=N,X

25A



MNEMONIC
CODE

STZ
STZH
STZb
STF
STF
STF
STF
STF

STF

STFM

LI

LI

LIH
LR
LL

Lb

INSTRUCTION OPERATION

Store ieré, single length
Store zero, half length
Store zero, double lcngth
Store base register file, registers 1u7H,
M=0

Store base register file, registers 8-F

M=1

H’

Store arithmetic register file, registers
10-17H, M=2

Store arithmetic register file, registers
18—1FH, M=3

Store index register file, registers 20-27
M=4

Store vector parameter register file,

H’

registers 28-2FH, M=5

Store all register files, registers 1-2F,
Load arithmetic register single length word
Load base register single length

Load index register or vector parameter

register single length

Load immediate into arithmetic register
single length "

Load -immediate into index register, or vector
ﬁarameter register single 1engthﬁ

Load arithmetic register half length word
Load immediate into arithmetic register
half length ‘

Load mermory right halfword into arithmetic
register right halfword

Load memory right halfword into arithmetic
register left halfword

Load arithmetic register double length word

TYPE OPERAND
CODE FORMAT FORMAT
20 3 &N, X
21 3 eN,X
23 3 eN,X
2B 9 M,EN,X
2B 9 M,eN,X
2B 9 M,EN,X
2B 9 M,EN,X
2B 9 M, eN,X
2B 9 M, AN, X
2F 3 @N, X
14 1 R,@=N,X
18 1 R,2=N,X
C 1 R,2=N,X
54 4 R,I,X
5C 4 R,I,X
15 R,@=N,X
55 4 R,I,X
1D 1 R,@=N,X
19 1 R,t=N,X
17 1 R,@=N,X

Assembler Mremonics 25B

Section B3



- MNEMON1C

CODE

LM

LMH

LMF

LMD

LN

LNH

LNF

LND

M

LNMH

LNMF

LNMD

LF

LF

LF

" LF

' 25C

" Load base register file, registers 1-7

INSTRUCTION OPERATION TYPE OPERAND

Load magnitude fixed point single length -
arithmetic reygister

and magnitude fixed point half length -
arithmetic register

Load magnitude floating point single length -
arithmetic register

Load magnitude floating point double length -
arithmetic register

Load negative fixed point single length

(load twos complement) arithmetic register
Load negative fixed'point half length -
arithmetic register

Load negative floating point single length -
arithmetic register

Load negative floating point double length -

arithmetic register

Load negative magnitude fixed point single
length - arithmetic register :

Load negative magnitude fixed point half
iength - arithmetic register

Load negative magnitude floating point single
length - arithmetic register

Load negative magnitude floating point double

“length - arithmetic register

H?
M=0

Load base regiéter file, registers 8—%1,
M=1

Load arithmetic register file, registers
10-17H, M=2 '

Load arithmetic register file, registers

18~1FH, M=3

CCDE

3C
3D
3E
3F
30
31
32

33

3B
1B
1B
1B

1B

FORMAT FORMAT

1 R,e=N,X
1 R,e=N,X
1 R,e=N,X
y

1 R,e=N,X
1 R,e=N,X
1 R,e=N,X
1 R,e=N,X
1 R,e=N,X
1 R,e=N,X
1 R,e=N,X-
1 R,e=N,X
1  R,e=N,X
9 M,eN,X
9 M,@N,x
9  M,eN,X
9 M,@N,k



MNEMONIC
CODE

LF

LF

LFM

XCH

LAM

LAC

LLA
LO

Al

Al

Al

AH

AIH

AF

AFD

AM

AMH

INSTRUCTION

Load index register file, registers 20-27
M=4

H)

Load vector parameter register file,
registers 28-2F
Load all register files

ter
Exchange - arithmetic register
Load arithmetic mask
Load arithmetic exception condition
Load look ahead |
Load arithmetic register with ones

complement, single length

Add to arithmetic register, fixed point,
single length

Add to base register, fixed point, single-
length

Add to index or vector parameter register,
fixed point, single length

Add immediate to arithmetic register,

fixed point, single length

Add immediate to base register, fixed point,
single length ’

Add immediate to-index or vector parameter
register, fixed point, single length

Add fixed point, half length - arithmetic
register

Add immediate fixed point, half length -
arithmetic register

Add floating point, single length -
arithmetic register
Add floating point, length -
arithmetic register
Add magﬁitude fixed point, single length -
arithmetic register
Add magnitude fixed

point, half length -

arithmetic register

OPERATION

CODE

1B

1B

1F

1A

12

13

16
1E

40
§O
62
50
70
72
41
51

42

44

45

Assembler Mnemonics

TYPE
FORMAT

9

—

Section B3

OPERAND
FORMAT
M,8N,X

M, 2N, X

R,I,X
R,I,X

R,2=N,X
R,I,X

R,@=N,X
R,0=N,X
R,@=N,X

R,@=N,X

25D



MNEMONIC INSTRUCTION ' OPERATION TYPE OPERAND

CODE CODE  FORMAT FORMAT
RMF Add magnitude floating point, single length - 46 1 R,@=N,X
arithmetic register | -
AMFD Add magnitude floating point, double length - 47 1 R,@=N,X
" arithmetic register ‘ i
S Subtract fixed point, single length - 48 1 R,@=N,X
arithmetic register
SI Subtract immediate fixed point, single 58 4 R,I,X
length - arithmetic register ‘
SH Subtract fixed point, half length - 49 1 R,@=N,X
arithmetic register
SIH : Subtract immediate fixed point, half 59 4 R,I,X

length - arithmetic register

SF Subtract floating point, single length - 4A : 1 R,@=N,X

arithmetic register A

SFD Subtract floating point, double length - 4B 1 R,@=N,X
‘ arithmetic register o

M " Subtract magnitude fixed point, single 4C 1 R,@=N,X
length - arithmetic register

" SMH Subtract magnitude fixed point, half 4D 1 R,@=N,X

length - arithmetic register

SMF Subtract magnitude floating point, single 4E 1 R,@éN,X
length - arithmetic register

SMFD Subtract magnitude floating point, double 4F 1 R,e=N,X
length - arithmetic register \ _

M Multiply fixed point, single length - - 6C 1 R,@=N,X
arithmetic register

M Multiply base register 68 1 R,@=N,X

M Multiply index or vector parameter rpgisfer 6A 1 R,@=N,X

MI Multibly immediate fixed point, singie 7C 4 R,I,X

‘ length - arithmetic register i

MI Multiply immediate to base register 78 4 R,I,X

MI Multiply immediate to index or vector 7A 4 R,I,X
parameter register \

MH Multiply fixed point, half length - 6D 1 R,@=N,X

arithmetic register

25E



MNEMONIC INSTRUCTION OPERATION TYPE OPERAND
CODE CODE FORMAT FORMAT

MIH Multiply immediate fixed point, half length - 7D 4 R,I,X

arithmetic register

MF Multiply floating point, single length - 6E 1 R,@=N,X
arithmetic register

MED Multiply floating point, double length - 6F 1, R,E=N,X
arithmetic register

D Divide fixed point, single length - 64 1 R,@=N,X
arithmetic register

D1 Divide immediate fixed point, single 74 4 R,I,X
length - arithmetic register

DH Divide fixed point, half length - 65 1 R,%=N,X
arithmetic register

DIH - Divide immediate fixed point, half length - 75 4 R,I,X
arithmétic register

DF Divide floating point, single length - 66 1 R,@=N,X
arithmetic register

DFD Divide flcating point, double length - 67 1 R,E=N,X
arithmetic register - .

AND AND - arithmetic register EO 1 R,E=N,X

ANDI Immediate AND - arithmetic register - FO 4 R,I,X

OR OR - arithmetic register E4 1 R,2=N,X

ORI Immediate OR - arithmetic register F4 4 R,I,X

XOR Exclusive OR - arithmetic rezister E8 1 R,E=N,X

XORI Immediate Exclusive OR - arithmetic register F8 4 R,I,X

EQC Equivalence - arithmetic register i EC 1 R,@=N,X

EQCI Immediate equivalence - arithmetic register FC 4 R,I,X

ANDD AND - arithmetic register (double length) El 1 R,&=N,X

ORD OR - arithmetic register (double length) ES 1 R,@=N,X

XORD Exclusive OR - arithmetic register (double E9 1 R,@=N,X
length)

EQCD Equivalence - arithmetic register (double ED 1 R,@=N,X
length)

SA Arithmetic shift, fixed point, single co 4 R,I,X

length - arithmetic register

Assembler Mnemonics 25F
Section B3



MNEMONIC INSTRUCTION ‘ OPERATION TYPE OPERAND

CODE CODE FORMAT FORMAT

SAH Arithmetic shift, fixed point, half length - Cl 4 R,I,X
arithmetic register

SAD Arithmetic shift, fixed point, double C3 4 R,I,X
length - arithmetic register ‘

SL Logical shift, single length - arithmetic c4 4 R,I,X
register . *

SLH Logical shift, half length - arithmetic Cs 4  R,I,X
register '

SLD Logical shift, double length - arithmetic Cc7 4 R,I,X
register | 1

sC Circular shift, single length - arithmetfc cC 4 R,I,X
register

SCH Circular shift, half length - arithmetic cD 4 R,I,X
register A . |

SCD Circular shift, double length - arithmetic CF 4 R,I,X
register A

RVS Bit reversal, single length - arithmetic Ccé 4 - R,I,X

. register ' ) -

C Compare fixed point, single length - = c8 1 R,@=N,X
arithmetic register

c Compare index register, single length CE 1 R,@=N,X

CI Compare immediate, fixed poiné, single : D8 4  R,I,X
length - arithmetic register '

CI Compare immediate, index register, single DE 4. R,I,X

~ length ’ }
CH Compare fixed point, half length - co 1 R,@=N,X

arithmetic register » .

CIH Compare immediate, fixed point, half D9 4 R,I,X
‘length - arithmetic register ' |

CF Compare floating point, single length - CA 1 R,@=N,X
arithmetic register ‘ S

CFD Compare floating point, double léngth - CB 1 R,@=N,X
arithmetic register I | ‘

CAND Compare logical AND - arithmetic register E2 . 1 R,@=N,X

‘ (single léngth) o o

256



MNEMONTIC INSTRUCTION OPERATION TYPE OPERAND
CODE ) CODE FORMAT FORMAT
CANDI Compare immediate logical AND - arithmetic F2 4 R,I,X
’ register (single length)
COR Cempare logical OR, single length - E6 1 R,E=N,X
‘ arithmetic register
CORI Compare immediate logical OR, single F6 4 R,I,X
length - arithmetic register
CANDD Compare logical AND, double length - E3 1 R,2=N,X
arithmetic register
CORD >Compare logical OR, double length - E7 1 R,&=N,X
arithmetic register
~IBZ . - Increment, test and branch on zero - g8 7 R,2=N,X
arithmetic register

IBZ Increment, test index, and branch on zero &C 7 R,2=N,X

IBNZ Increment, test, and branch on non-zero - 89 7 R,@=N,X

arithmetic register

IBNZ Increment, test index, and branch on 8D 7 R,&=N,X
NOoNn-zero
DBZ Decrement, test, and branch on zero - 8A 7 R,2=N,X

arithmetic register
DBZ Decrement, test index, and branch on zero 8E 7 . R,e=N,X
DBNZ Decrement, test, and branch on non-zero - - 8B 7 R,2=N,X
arithmetic register

DBNZ Decrement, test index, and branch on 8F 7 R,@=N,X

non-7zero
ISE Increment, test, and skip on equal - 80 1 R,@=N,X

arithmetic register

ISNE Increment, test, and skip on not equal - 81 1 R,@=N,X
arithmetic register

DSE Decrement, test, and skip on equal - 82 1 R,8=N,X
arithmetic register ‘

DSNE Decrement, test, and skip on not equal - 83 1 R,8=N,X
arithmetic register

BCLE Branch on afithmetic register less than 84 6 R,R,N

or equal to

‘Assembler Mnemonics 25 H
Sectinn B3



MNENMONIC

T at Y™

HE 19
BOLE
BCG

PSsH
PUL

NaD

BLB
BLX

LEA
LEA
INT
XEC
FLEX

o
ez!
o

FDFX

FXFL

FXFD

FHFL

FHFD

NFX

NFH

251

INSTRUCTION

Branch on index less than or equal to
Branch on arithmetic register greater than
Branch on index greater than

Push word - arithmetic register

Pull word - arithmetic register

Modify - arithmetic register

Branch and load register with PC

Branch and load index register or vector
parameter register

Load effective address - index register
Load effective address into base register
Interpret - arithmetic register

Execute ’

Convert floating point single length to
fixed point single length - arithmetic
register -

Convert floating point single length to

OPERATION TYPE
CODE

86
85
87
S3
97
9F

98
99

56
52
92
96
AQ

Al

fixed point half length - aritkmetic register

Convert floating point double length to
fixed point single length

Convert fixed point single length to
floating point single length

Convert fixed point single length to
floating point double length

Convert fixed point half length to
floating point single length

Convert fixed point half length to floating
point double length

Normalize fixed point single length -
arithmetic regigter ‘
Normalize fixed point half iength -

arithmetic register

A2

A8

A9

AB

AC

AD

OPERAND

FORMAT FORMAT

6

6
6
2
2
2

NN

BN 00 =

R,R,N
R,R,N
R,R,N
R,EN,X
R,E@N,X
R,EN, X

R,&=N,X
R,@=N,X

R,@=N,X
R,e=N,X
R,@=N,X

e=N,X
R,EN,X

R,@N,X

R,@N,X

R,E@N,X

R,@N,X

R,@N,X

R,EN,X

R,@N,X



MNEMONIC INSTRUCTION OPERATION ASSEMBLER TYPE OPERAND

CODE CODE SUPPLIES FORMAT ~ FORMAT
R FIELD
MCP. Monitor call and 90 1 5 I,X
proceed
MCW Monitor call and 94 5 I,X
T wait
VECT Vector BO R = 1 3 eN,X
VECTL Vector after loading BO R=0 3 “eN,x

vector file

Compare Code Branch Operation Code = 91
BCC Branch on compare 91 9 M,@=N,X
code

NOP Take next instruction 91 R=20 8 @=N,X

Comment: Execution of data values or indirect address constants will have
the effect of a no-operation if the first four bits of the word (operation

code) are zerocs.

BE (R) = (a) 91 R=1 8 e=N,X
BG (R) > (o) 91 R =2 8 @=N,X
BGE (R) > (o) 91 R=3 8 @=N,X
BL (R) < (o) 91 R =4 8 e=N,X
BLE R) < (o) 91 "R =5 8 e=N,X
BNE (R) # (&) 91 R =6 8 e=N,X
'B Unconditional branch R=7 8 @=N,X
Logical Branch Operation Code = 91
BCZ All bits are zero 91 R=1 8 @=N,X
' BCO " ALl bits are one o1 R =2 8 @=N,X
BCNM Not mixed 91 R=3 8 @=N,X
BCM Mixed zeros and ones 91 R = 4 8 @=N,X
BCNO Not all ones 91 R =25 8 @=N,X
BCNZ Not all zeros 91 R =6 8 @=N,X

Assembler Mnemonics 254
Section B3



MNEMONIC INSTRUCTION OPERATION ASSEMBLER TYPE OPERAND
CODE CODE SUPPLIED FORMAT FORMAT
R FIELD

Result Code Branch‘Operétion Code = 95

BRC . Branch on result 95 9 M,@=N,X
code

BZ (R) = 0 95 R =1 8 e=N,X
BPL ®R) > 0 95 R = 2 g e=N,X
BZP (R) > 0 95 R =3 8 @=N,X
BMI (R) < 0 95 R=4 8 e=N,X
BZM R) <0 95 R =5 8 e=N,X

# 0 95 R =6 8 e=N,X

BNZ (R)

Logical Result Branch Operation Code = 95

BRZ All bits are zero S5

R=1 8 e=N,X
BRO All bits are one 95 "R=2 8 e=N,X
BRNM Not mixed 95 R=3 8 e=N,X
'BRM Mixed zeros and ones 95 R =4 8 e=N,X
BRNO Not all ones 95 R =25 8 @=N,X
BRNZ Not all zeros 95 R =6 8 @=N,X
Arithmetic Exception Branch Operation Cede = 9D
BAE Branch on arithmetic 9D 9 M,e=N,X
* exception
BU Floating point EXP 9D ‘R=1 8 e=N,X
underflow
BO Floating point EXP 9D R =2 8 e=N,X
overflow '
BUO Floating point EXP 9D R=3 8 e=N,X
underflow or overflow
BX Fixed point overflow 9D R =4 8 @=N,X
BXU Fixed point overflow 9D R=5 8 e=N,X

or floating EXP

underflow

25K



MNEMONIC
CODE

Arithretic Excention Branch Operation Code = 90)

INSTRUCTION

OPERATION
CODE

ASSEMBLER TYPE
SUPPLIED FORMAT
R FIELD

(continued)

BXO

BXUO

BD
BDU

BDO

BDUO

BDX

BDXU

BDXO

BDXUO

Fixed point overflow 9D
or floating point

EXP cverflow

Fixed point overflow 9D
or floating point

EXP overflow or
underflow

Divide check 9D
Divide check or 9D
floating point EXP
underflow

Divide check or 9D
floating point EXP

overflow

Divide check or 9D
floating point EXP .
underflow or overflow
Divide check or 9D
fixed point overflow
Divide check or 9D
fixed point overflow

or floating point EXP
underflow

Divide check or fixed 9D
poiﬁt overflow or
floating point EXP
overflow

Divide check or fixed 9D
poi%f overflow or
floating point EXP

overflow or underflow

OPERAND
FORMAT

@=N,X

e=N,X

e=N,X
e=N,X

@=N,X

-

@=N,X

Assembler Mnemonics

Section B3

25L



MHEMONIC . INSTRUCTION OPERATION ASSEMBLER TYPE OPERAND
CODE CODE SUPPLIED FORMAT FORMAT
R FIELD

Branch on Execute Condition Operation Code = 9C

BXEC Branch on Execute 9C , R=1 3 éNn,X
branch condition . or odd
true

25M



LOAD INSTRUCTIONS

LOAD WORD (L) e oo Jh 1 e
Operand Format R, 6 =M, X
Type Addressing a, word Tevel
Syibolic Notation (a) » R

There are three forms of the
load word instruction indicated by
the OP codes. One of these forms has
twe classes distinguished by the R Tield.
In each case, the contents of the address
indicated by the T, M, and N fields is
loaded into the register indicated by the R field. In the case of OP code
1C, an R-field value from O to 7 (hexadecimal) indicates index registers (AR)
and from 8 to F vector registers (VR).

. R-Field
0P Code Destination Register Loaded

14 AR (0 thru F) Arithmetic

18 BR (1 thru F) Base

1C R Range O thru 7 Index
addresses XR O

o thru 7.

1C R Range 8 thru F Vector
addresses YR O
thru 7.

Programming Note: A Load Word instruction which specified base register
zero (BO) will set the Result Code to the value of the « addressed operand,
but otherwise appears as a no operation since base register zero is a

fixed "all zeros" register.

Result Code: The result code register is set according to the arithmetic
value of the operand ‘in the register indicated by the R-field after the
load operation is complete. The three allowable values of the result

- code are as follows:

Contents of R after load *  Result Code (RL, RG, RE)

Negative, (R) < O (1, 0, 0)
Positive, (R) > 0 (0, 1, 0)
Zero, (R) =0 (0, 0, 1)

Program Interruption: None.

26



LOAD WORD IMMEDIATE (LI)
The immediate operand is entered Operation Code 54, 5C
into the register indicated by the Type Format 4
-field. In OP code 54, an R-field Cperand Format R, I, X
" range from O thru F addresses arithmetic Type Addressing Immediate
registers O thru F. In OP code 5C, an Symbolic Notation n > R

R-field range from 0 thru 7 addresses
index registers 0 thru 7 and an R-field range
from 8 thru F addresses vector registers 0 thru 7.

R-Field
OP Code Destination Register Loaded

54 AR (0 thru F) Arithmetic

5C R range 0 thru 7 Index
addresses XR
0 thru 7.

5C R range 8 thru F Vector
- addresses VR
0 thru 7.

Programming Note: Whole word immediate operands for load instructions
are formed from the combined M and N fields of the instruction word

with extended sign (2's complement representaticn for negative numbers)..
The left half of IMMED consists of the extended sign of the most
significant bit of the right half of IMMED. This immediate operand

can be modified by an index register when X # 0. For this case, the
contents of index register X is interpreted as a signed number (2's
complement representation for negative numbers) within the range

—223 = (x) 5—223 -1. In effect, the sign bit in the eighth bit
position of the contents of index register X is extended into the

most significant eight bits (bit position 0 through 7) before being
added to IMMED. The true 32-bit value contained in index register X
remains unchanged; the sign extension occurs in the index unit hardware
and not in the register file. The modified immediate operand, n, is
restricted to the range -223 = %23 _7 py virtue of the fact that

the parallel adder in the index unit is only 24-bits wide. The sign

bit in the eighth bit position of n is extended into the most significant
eight bits of n before being used as a modified immediate operand by
“the arithmetic unit.

0 16 20 31
- | Extended Sign | M | N | IMMED
+ 0 8 31
Extended Sign 23 bits : (X)
0 8
! Extended Sign; n (23 bits) . n = IMMED + (X)

1 i

Load instructions 27
Section B3



28

Result code for load immediate instructions: The result code register
is set according to the arithmetic value of the operand in the register
indicated by the R-field after the load cperation is complete. The
three allowable values of the result code are as follows:

Contents of R after load

Result code (RL, RG, RE)

Negative (1, 0, 0)
Positive (0, 1, 0)
Zero . (0, 0, 1)

Program Interruption: None.




LOAD HALFHORD (LH)

The halfword (16 bits) from Operation Code 15
location ¢, is entered into the Type Format 1
left half of arithmetic register AR.| Operand Format R, @ =N, X
The right half of register AR re- Type Addressing G s halfword level
mains unchanged. Note that «, re- Symbolic Notation (ah) > ARih
presents an address for which dis- |
placement indexing is used and as ; where AR h
such denotes a halfword address. An: indicatel the
odd index value selects halfwords ; left half of
from the least significant half ' register AR.

(right half) of a central memory or
register whole word. An even INdeX o o e e e
value addresses the left halfword

of a central memory or register whole word. The Teft halfword is selected
when not indexed.

Programming Note: . Halfword memory operand selection for normal (not reversed)
halfword address uses the LSB of the index register as shown below:

} Contents of Halfword is
i Index Register! selected from Central Memory
T-field ' selected by T .

0 : None . Left half

1-7 © Even Value | Left half

1-7 Odd Value { ‘Right half

8-F - : Depends on LSB of index register

contents specified by terminal
indirect address

Result code for load halfword instruction: The result code register is

set according to the arithmelic vaiue of the operand in the left half of
the arithmetic register indicated by the R-field after the load operation
is complete. The three allowable values of the result code are as follows:

Contents of ARgh after loa o Result code (RL, RG, RE)
Negative (1,0,0)
Positive | (0,1,0)
Zero ( Os 05 ‘l)

Program Interruption: None

Load Instructions 29
Section B3



LOAD THMMEDIZTE HALFWORD (LIH)

The least significant 16-bits Operation Code 55
of the immeziate operand is loaded Type Format 4,
into the 1eft half of arithmetic , Operand Format R, I, X
register AR, The right half of Type Addressing lmmediate
register A2 remains unchanged. Symbolic Notation "6 3 AR}i;
- 1

Programming llote: The combined M and N fields form the immediate op
for halfword instructions. The MSB of the right half of the instruc
word is the sign bit. Negative numbers are represented in 2's compl
form. This immediate operand can be modified by the right half of i
register X. If X # 0, the index register specified by X is added to
the halfword immediate operand. For this case, the 16th bit positio
of index register X is a sign bit. If X = 0, no modification occurs

0 16 20 31

777777774 F ] W1

0 16 - 31

W L |

erand
tion
ement
ndex

n

MMED

(X)

16 ° 31

L "

Result code for load immediate halfword instructions: The result
code register is set according to the arithmetic value of the
operand in the left half of the arithmetic register indicated by
the R-field after the load operation is complete. The three
allowable values of the result code are as follows:

Contents of AR]h after load Result Code (RL, RG, RE)
Negative . (1, 0, 0)
Positive : (0, 1, 0)
Zero (0, 0, 1)

Program Interruption: None.

30

n = IMMED + (X)



LOAD MEMORY RIGHT HALFWORD INTO
ARITHMETIC REGISTER RIGHT HALFWORD (LR)

i

For this instruction, the right i Opcration Code 1D
half of a central memory or register " Type Format 1
whole word is selected when not indexed. - Operand Format R, @ =N, X
If indexed, an even index value selects . Type Addressing LT halfword

words from the right half of a central level reversed
memory or register whole word. An odd C . )
index value addresses the left halfword Symbolic Notation (uhr)—4'ARrh
of the next consecutive singleword. This *

convention is just cpposite to that of the
LH instruction previously described. The
operand selected is entered into the right
half of arithmetic register AR. The left half of register AR remains unchanged.

Programming Note: When an array is addressed consecutively by indexing with
this instruction (or with LL), an even index value addresses the right half
of a memory or register whole word as ir the preceding paragraph. But, it
shouid be noted that when this even index value is incremented by unity {form-
ing an odd index value), the operand acquired by this instruction is from the
left haif of the next consecutive central memory or register whole word.

T-field  Contents of  Halfword is
. Index Register selected from (Reversed halfword
selected by T ' addressing)
0 None . Right half
1-7 . Even Value © Right half
1-7 0dd Value ~ Left half of next consecutive singleword
8-F - . Depends on index register contents specified by

terminal indirect address

Result code for load right halfword instruction: The result code register is
set according to the arithmetic value of the operand in the right half of the
arithmetic register indicated by the R-field after the load operation is com-
plete. The three allowable values of the result code are as follows:

Contents of ARrhafter load Result Code (RL, RG, RE)
Negative (1, 0, 0)
Positive (0, 1, 0)
Zero ) - (0, 0, 1)

- Program Inferruption: None.

Load Instructions 31
Section B3



LOAD MEMORY RIGHT HALFWORD
INTO ARITHMETIC REGISTER

~TFT HALFWORD (LL)
The memory operand or register Operation Code 19
operand is selected as in an LR in- Type Format 1
struction. The operand selected is Operand Format Rs @ = N, X
entered into the left half of arith- Type Addressing U halfword
metic register AR. level reversed
' Symbolic notation (“hr)'"bAR]h

Programming Note: See programming note under LR instruction.

Result code for load left halfword instructicn: The result code register is
set according te the arithmetic value of the operand in the left half of the
arithmetic register indicated by the R-field after the load operation is com-
plete. The three allowable values of the result code are as follows:

Contents of AR1h after load Result Code (RL, RG, RE)
Négative (1, 0, 0)
Positive (0, 1, 0)
Zero : ‘ (0, 0, 1)

Procram Interruption: None.

32



LOAD DOUBLEWORD (L.D)

The doubleword from Tocation od | Operation Code 17
is entered into the doubleword Type Format 1
register designated by the R-field. Operand Format R, @ =N, X
Type Addressing od, doubleword level
Symbolic notation {(ad) -~ ARD
where ARD denotes an arithmetic
doubieword register from an even-
odd address pair.

Programming notes: Doublewords are restricted to even-odd memory
address pairs and register address pairs. The index register is
displaced one bit position to the left when addressing doublewords
so that the KM doubleword in a data array is addressed by an index
value equal to K. '

Result code for doubleword Toad: The result code register is set
according to the arithmetic value of the doubleword operand in
register ARD (composed of whole word registers AR and AR + 1). The
three allowable values of the result code are as follows:

Contents of ARD after load Result Code (RL, RG, RE)
Negative . (1, 0, 0)
Positive (0, 1, 0)
Zero (0, 0, 1)

Program Interruption: Specification error if R-field is odd.

Load Instructions 33
Section B3



34

1OAD MAGNITUDE FIXED POINT (LM)

Load register AR with the magnitude Operation Code 3
of the contents of address a. Type Format 1
Operand Format R, @ = N,X
a
(

s1ng]e§ord level

Type Addressing :
o) | ~ AR

Symbolic Notation |

: (o) gy AR 4

0 31 0 31

AR is loaded with the 2's complement of (o) 1f (a) is negative.

Result code: Set according to the arithmetic value of the register
operand after the operation is complete. The three allowable indicators
are as follows:

Contents of AR after load instruction Result code (RL, RG, RE)

Negative (1, 0, 0)
Positive (0, 1, 0)
Zero (0, 0, 1)

Program Interruption: Overflow is possible with this instruction.
When the operand is the largest negative number, i.e., 8000 0000

Hex
overflow will result from complementing. The result in register

AR will be 8000 OOOOHeX.



LOAD MAGHITUDE FIXED POINT
HALFWORD — (LMH)

Load register AR]h with the
magnitude of the halfword contained

in location o -

Operation Code 3D

Type Format 1

Operand Format R,@= N, X

Type Addressing ah halfword leve
Symbolic Notationl(ah)3+AR]h

AR]h is loaded with the 2's

complement of (&) if (a) is
negative.

Programming Note: The right halfword or left halfword source operand
is selected according to the contents of the index register as in the

LH instruction .

"Result code for load magnitude instruction:
is set according

The result code register
to the arithmetic value of the operand in the left half

of the arithmetic register indicated by the R-field after the load operation
is complete. The three allowable values of the result code are as follows:

Contents of AR]h after load

Negative
Positive
Zevro

Program Interruption:

overflow will result from complementing.

AR]h will be 8OOOH.

Result Code (RL, RG, RE)

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

Overflow is possible with this instruction.
When the operand is the largest negative number, i.e., 8000H

The result in register

Load Instructions 35
Section B3



LOAD MAGNITUDE FLOATING POINT (LMF)

Operation Code 3E

Type Format 1

Operand Format R, @ = N,X

Type Addressing a, Singleword level
Symbolic Notation|(a)|> AR

Load register AR with the magnitude
of the contents of address a.

a §- jExp FRACTION e——gn AR} JExp Fraction

Result code for load magnitude instructions: The result code register

is set according to the arithmetic value of the operand in the register
indicated by the R-field after the load operation is complete. The two
allowable values of the result code are as follows:

Contents of AR after load Result Code

: Negative Not possible
Positive 0 1 0
Zero 0 0 1

Program Interruption: None.

36



LOAD MAGNITUDE FLOATING POINT
DOUBLEWORD  (LMD)
Operation Code 3F

Load register ARD with the Type Format 1
magnitude of the contents of Operand Format R, @ =N, X
doubleword address od. Type Addressing ad, doubleword level

Symbolic Notation \(ad)i > &RD

Programming Note: Doublewords are restricted to even-odd memory address
pairs and register address pairs.

Result code for deubleword load: The result code register is set
according to the arithmetic value of the doubleword operand in
register ARD (composed of whole word registers AR and AR + 1). The
two allowable values of the result code are as follows:

Contents of ARD after load Result Code (RL, RG, RE)
Negative Not possible
Positive (0, 1, 0)

Zero : ‘ (0, 0, 1)

Program Interruption: Specification error if R-field is odd.

Load Instructions 37
Section B3



_GAD HEGATIVE WORD

C150D POINT (LM)
Cperation Code 30

Load register AR with the Type Format 1
peqative of the contents of Operand Format R,@ = N,X
address .a. Type Addressing a, singleword level

Symbolic Notatione(a) - AR

Programming Note: Two's complement representation is used for
neqative numbers in fixed point instructions.

Result code for load negative instructions: The result code register

is set according to the arithmetic value of the operand in the register
indicated by the R-field after the load operation is complete. The
three allowable values of the result code are as follows:

‘Contents of AR after load Result code (KL, RG, RE)
Negative V (1, 0, 0)
Positive (0, 1, 0)

Zero (0, 0, 1)

-rogram Interruption: Overflow possible on LN. When the operand is
the largest negative number, i.e., 8000 OOOOH overflow will result

from complementing. The result in register R will be 8000 0000

He

38



LOAD NEGATIVE HALFWORD
FIXED POINT (LHH)

Operation Code 31
! . i Type Format 1
Load the left half of register AR ) o=
. With the negative of the contents of Gperand Format o = X

Type Addressing «,, halfword leve!

address o, - : oy
h Symbolic Nntation
=) ARy

&

Programming Note: Two's complement representation is used for negative
numbers in fixed point instructions. The right halfword or left halfword
source operand is selected according to the contents of the index register
as in the LH instruction.

Result code for load negative instructions: The result code register is

set according to the arithmetic value of the operand in theleft half of the

arithmetic register indicated by the R-field after the load operation is com-
plete. The three allowable values of the result code are as follows:

Contents of ARy after Load Result code (RL, RG, RE)
Negative - (1,0,0)
Positive : (0, 1, 0)
Zevo (O: O, ])

Program Interruption: Over%]ow possible. When the operand {s the
Targest negative number, i.e., 8000H overflow will result from

complementing. The result in register R will be 8OOOH.

Load Instructions 39
Section B3



LOAD NEGATIVE FLOATING
POINT WORD (LNF)
Operation Code 32

Type Format 1

Operand Format R,@ = N,X

Type Addressing «, singleword level
Symbolic Notation=(a) - AR

Load register AR with the
negative of the contents of
address «a.

Programming Note: The negative form of floating point numbers involves

a change of sign only.

Result code for load negative instructions: The result code register

1s set according to the arithmetic value of the operand in the register
indicated by the R-field after the Toad operation is complete. The
three allowabie values of the result code are as follows:

Contents of AR after load Result code (RL, RG, RE)
Negative (1, 0, 0)
Positive (0, 1, 0)

Zero - (0, 0, 1)

Program Interruption: None.

LOAD NEGATIVE FLOATING
POINT DOUBLEWORD (LND) Operation Code 33
Type Format 1
_ Load doubleword register Operand Format R,@= N, X
ARD with the negative of the Type Addressing @ doubTeword level
contents of address od. Symbolic Notation -(ad)“+ ARD

Programming Note: The negative form of floating point numbers involves
a change of sign only. Also, the R-field must be even, specifying an
even-odd singleword register address pair.

Result Code for Load Negative Doubleword: The result code register is
‘'set according to the arithmetic value of the doubleword operand in
register ARD (composedof whole word registers AR and AR + 1). The three
allowable values of the result code are as follows:

Contents of ARD after load Result code (RL, RG, RE)
Negative {i, 0, 0)
Positive (0, 1, 0)
Zero (0, 0, 1)

Program Interruption: Specification error if R-field is odd.

40



LOAD NEGATIVE MAGNITUDE
FIXED PGINT SINGLEWORD (LKM)
' Operation code 38
Type Format 1
Load register AR with the Operand Format R,@= N, X
negative of the magnitude of (o). Type Addressing o, singleword level
Symbolic Notation -[(e)] > AR

Programming Note: Two's complement representation is used for negative
numbers in fixed point instructions.

Result code for Toad negative magnitude instructions: The result code
register is set according to the arithmelic value of the operand in
the register indicated by the R-field after the lcad operation is
complete. The two allowable values of the result code are as follows:

Contents of AR after load Result code (RL, RG, RE)

Negative (1, 0, 0)
Positive . Not possible
Zero (0, 0, 1)

Progfam Interruption: None.

Load Instructions 41
Section B3



.0AD NEGATIVE MAGNITUDE
- {ALFWORD FIXED POINT  (LKMH)
Operation Code 39
Type Format 1 C)
‘ s ) Operand Format R,(a)= N, X
with the negative of the magnitudl | LYpe Addressing e, halfiord Tevel
of (C‘h)' YOO yagrtati -“',;“‘ Q‘h

Programming Hotes: Right halfword or left halfword from central memory
or register fife is selected accerding to tha LSB of the index register
specified by the T-field as in the LH instruction. Negative numbers are
represented in two's complement notation.

Result code for Touad negative magnitude instructions: The result code
register 1s set according to the aritnmetic value of the operand in the
left half of the register indicated by the R-field after the load operation
is compiete. The. two allowable values of the result code are as follows:

Contents of ARah after load Result code (RL, RG, RE)
Negative (1, 0, 0)
Positive Not possible
Zero (09 Oa ])

Program Interruption: None.

42



LOAD NEGATIVE MAGNITUDE

FLOATING POINT SINGLEWORD (LNMF)
Operation Code 3A
. ) c s Type Format 1
Load singleword register AR . -

. i oF N Operand Format R,(@= N, X
g;t?aghe negative of the magnitude Type Addressing a, Singleword level
: Symbolic Notation - (&)~ AR

Programming Note: The negative form of floating point numbers involves

a change of sign only.

Result Code for Load Negative Magnitude Instructions: The result code
register is set according to the arithmetic value of the operand

in the register indicated by the R-field after the load operation

is complete. The two allowable values of the result code are as
follows:

Contents of AR after load Result code (RL, RG, RE)
Negative (1, 0, 0)
Positive . Not Possible
Zero (0, 0, 1)

Program Interruption: WNone.

Load Instructions 43
Section B3



44

LOAD NEGATIVE MAGNITUDE '
DOUBLEWORD  (LNMD) ' Operation Code 33
Type Format 1

Load doubleword register ARD Operand Format Ry @& = ¢, X
with the negative of the magnitude Type Addressing ad, o aword Jevel
of (ad). Symbolic Notation "Kﬁ{w -~ ARD
Programming Notes: The negative form of floating point numbers ir.: wz3 ™
a change of sign only. Also, the R-field must be even, specifying
an even-odd singleword register address pair.
Result Code for Load Negative Magnitude Instruction: The result ccuw ragister

is set according to the arithmetic value of the doubleword operanc

ARD (ccmposed of whole word registers AR and AR + 1). The two all=.::3e

values of the result code are as follows:

~a2gister

i

Contents of ARD after load Result code (RL, R 1D)
Negative (]s 03 O)
Positive . : Not possible
Zero (0, 0, 1)

Program interruption: Specification evrvor if R-field is odd.




LOAD FILE (LF) : Operation Code 1B

Type Format 9
The contents of central Operand Format M, @y N, X
memory octet o are entered into Type Addressing a , octet level
the eight word register file Symbolic Notation (a)oct. » RF

designated by the R-field.

There are six forms of the LF

instruction having OP code 18B.

The distinction is made according to the contents of the R-fields
OP code 1B may be brcken dowin as follows:

Designation register file

R-field designated by R-field Hexadecimal locations
X000 Base register file A 0-7

X001 Base register file B 8-F

X010 General arithmetic reg. file C 10-17

X011 General arithmetic reg. file D 18-1F

X100 B Index register file X 20-27

X101 Vector register file V 28-2F

X11X. No operation, no registers loaded

Programming Notes: The three low order bits of o are ignored so that

octet @ means the octet in which word o 1is located. Also, if o £2F
and M = 0, then o references the register file which contains o .

An R-field bit of X indicates that the bit is ignored (a don't care).

Result code: Not affected.

Program Interruption: None.

Load Instructions 45
Section B3



LOAD FILE MULTIPLE (LFM)

The contents of six con-
secutive memory octets starting
with location a are entered into

all six eight-word register Tiles
in physical
Jocations 1 through 2F (hexadecimal).

. Ay
(A, B, C, D, X, and V

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Hotation

1F

3
@N,X

a , octet level
(«)oct. > all RF

Proararming Note: The three low order bits of o are ignored so that

Tecation @ is on a full octet boundary.

(@) ~—» no entry]
(a4 1) wram BRT

(¢ + F) = BR

————

eed

[ 4

(ot 1F) -+ AR

_F ]
(a+20) == XRy |
. L]

(at 27)=> XR7
( o+ 28) == XRg
( «+2F) - XRe

D

Result Code: Not affected.

>

:> 4&\\Index Register File, X

é/)Base Register Files A and B

Q\\~Genera] Register Files C and D

:>€L\_,Vector Register File, V

Program Tnterruption: Specification error if a Z2F and M = 0.

46



EXCHANGE WORDS (XCH)
N : +_ *

An exchange instruction stores ?pegagggga%ode ;A

the contents of arithmetic register YP \
: : ) Operand Format R, N, X

AR into location o and stores the ; IS )

. . Type Addressing o, singleword level
previous contents of location o Svmbolic Notation (AR) > o
into register AR. It exchanges Y ’ ' (a)> AR
the contents of AR and o, '

Only a single length exchange <
instruction exists in the ASC.

Programming Note: Ifa = 2F and M = 0, then two registers are
exchanged. One is always an arithmetic registier and the other may
be selected from any register of the register file.

Result Code: Not affected.

Program Interruption: None.

Load Instructions 47
Section B3 -



LOAD ARITHMETIC
£XCEPTION MASK (LAM)
Operation Code 12
' Type Format 8
Load bits 4 through 7 of Operand Format @ =N, X
the contents of location o into Type Addressing a , singleword level
the four bit arithmetic excep- . | Symbolic Notation (GA S AE Mask
tion mask register. - -

MASKABLE AE CONDITIONS:

Floating point underflow
Floating point overflow

Fixed point overflow

Divide check \\\\\“\\“\\4 \\\\\;\m
o [

MASK REGISTER D | MF | MO | MU

An interrupt signal from the CP to the PP will become true if an
arithmetic exception is detected and the mask bit corresponding to
that arithmetic exception has been set to a "one".

1 ~ masked ON ~ interrupt possible

0 ~— masked OFF ~ no interrupt possible

Programming Note: Address o may address the base or index registers

which may contain a mask stored from a previous BLB or BLX instruction.
The R-field is not used.

Result Code: MNot affected.

AE Condition Code: Not affected.

Program Interruption: Alteration of the AE mask register will cause an
arithmetic exception program interruption if the corresponding bits of the AE

condition register and AE mask register are beth "cne" after the LAM instruc- .
tign is completed.

48



LOAD ARITHMETIC
EXCEPTION CONDITION (LAC)

Operation Code 13
Type Format 8
Operand Format

Load bits 0 through 3 of
the contents of location o

into the four bit arithmetic =N, X

. P Type Addressing o , singleword level
exception condition code E o Ti e N 3 \ 5
register. Syimbolic Notation (%.,0“3 » AE Cond.
AE CONDITICHN REGISTER
F Y U
0 1 2

Divide check

Fixed point overflow
Floating point overflow

c e Mmoo
t

Floating point underflow

- Bit (D,F,0,U) zero, indicates no arithmetic
exception condition.

Bit (D,F,® or U) equal one, indicates an active
AE condition.

Programning Note: Address o may address the base or index registers
which may contain an arithmetic exception condition code stored from
a previous BLB or BLX instruction. The R-field is not used.

Result Code: Not affected.

5,

AE Condition Code: Changed to the state of (o )0_3.

Program Interruption: Alteration of the AE condition register will cause

an arithmetic exception program interruption if the corresponding bits of the
AE condition register and. AE mask register are both "one" after the LAC
instruction is completed.

Load Instructions 49
Section B3 ‘



LOAD LOOK AHEAD (LLA) ]
. Operation Code 16

This dinstruction provides Type Format 10
the instruction look-ahead unit Cperand Format 1
in the CP control hardware with Type Addressing immediate
advance address information re- Symbolic Notation NZ&»ST + BC
lating to a subsequent Branch (pC) > BR
instruction for which it is known

that the branch path will normally

ne taken. The LLA instruction does not influence the decision that is
made by a Branch instruction, it only increases the execution speed of
a closad instruction loop.

The LLA instruction loads the 8 least significant bits (bit positions
24 through 31) of the N-field of this instruction into the branch counter
(EC) internal to the CP control. Also, the program counter (PC) is entered
into the branch address vegister (BR) internal to the CP control. These
internal registers (BC and BR) are not addressable by CP program.

Programming Notes: The value, N, which is entered into the branch counter
should be equal to the difference of instruction iccations between this
Load Look-Ahead instruction and tne Branch instruction for which the LLA

is intended. For example, if the LLA dinstruction is stored in location 401
and the Branch instruction is stored in location 429, then the value of N
should be equal to 28. If any other Branch instructions cccur between
these locations and if one of the branch paths is taken, then the informa-
tion in the branch lcok-ahead hardware will be dicarded. Such intermediate
Branch instructions proceed normally when the branch paths are not taken
and the look-ahead information remains current while the branch ccunter
continues its count down. Regardless of whether or not an intermediate
Skip instruction results in the skip being taken, the computation to
determine the value for N should include both the skip instruction and

the instruction following the Skip instruction.

The maximum applicable loop size is 255 instructions including the LLA
instruction. The LLA instruction must be included at the top of the

program lcop so that the branch counter and branch address register can
be re-initialized each time the program returns to the top of the loop.

The R~fie}d is not used.

Result Code: Not affected.

Program Interruption: None.

50



LOAD ONE'S COMPLEMENT (LO)
Operation Code 1E
The one's complement of Type Format 1
1o§aﬁion_a is gntered intu' Opérand Format R,(@ = N, X
gg;?g?eglc ?ig‘??e”igRi ?’t Type Addressing o, singleword Tevel
sitions wil s a Symbolic Notation =),
are loaded as 0's in AR and, Y (a XJ*+ ARJ
vice versa. ' where j ranges from
0 through 31

Result Code for Load One's Complement Instruction: The result code
register is set according to the arithmetic value of the operand in
the register indicated by the AR field after the Toad operation

is complete. The three allowable values of the result code are

as follows:

Contents of AR after load Result Code

(RL, RG, RE)
Negative . (1, 0, 0)
Positive (0, 1, 0)
Zero (0, 0, 1)

Program Interruption: None.

Load Instructions 5]
Section B3



Duplicate of pg 51



STORE HALFWORD (STH)

The contents of the lef
half of arithmetic register AR
is stored into halfword Tocation e,

Operation Code
Type Format
Operand Format

Type Addressing
Symbolic Notation

25

2
R, @ N
ah, hal
(AR]h)

, X
fword level
—)—ah

Programming Note:

ah represents an address for which displacement
indexing is used and as such denotes the proper halfwerd

address.

In particular, an odd index value selects the least significant half
An even index value addresses

(right half) of a singleword location.

the left halfword of a singleword location.
selected when not indexed.
No indéx or ARy, ignorad | e loC o
even index
value. 0 15 16 31
0dd index ‘AR ignored === 10C o
value. Th
0 15 16 31

Result Code for Store Halfword Instruction:

The left half word is

entered_ here
a

unchanged

0 15

16 31

unchanged

entered here
(ch)

0 15

16 31

The result code register is

set according to the arithmetic value of the operand in halfword location ah
The three allowable values

after the store operation is complete.
of the result code are as follows:

Contents of address &h after store

Negative
Positive
Zero

Program Interruption: None.

=

Resuff code
(RL, RG, RE)
(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

Store Instructions 53
Section B3



STORE ARITHMETIC REGISTER

JALFWORD INTO RIGHT HALFWORD (STR)

Operation Code
Type Format
Operand Format

+
locet

the next consecutive singleword.

The right half of arithmetic
register AR is stored into the
right half of a singleword
location when not indexed.

If indexed, an even index value selects

ion fer-storage.

addressing.

No index or
even index
value.

0dd index
value

Type Addressing

Symbolic Notation

2D

2

R, @ N, X

e halfword
reversed

(ARrh) ” Chy

the right half of a singleword
An odd index value addresses the left halfword of

ignored AR

This convention is reversed from normal «

rh P& Tloc runchanged enteFed here
- ah)
0 15 16 3] s 0 1576 3
ignored AR entered here | unchanged
1 rh 4*;]2$ (%h)
Q 15 16 31 s 0 15 16 31

Progremming Note: When an arkay is addressed consecutively by indexing

with this instruction (or with STL), an even index value addresses the
right half of a singleword location as in the preceding paragraph, but
when this even index value is incremented by unity (forming an odd index
value}, the register operand is entered into the left half of the next
consecutive singleword location.

Also, when o
stored into Q

as is used for memory.

< 5F (halfword address) and M = 0, then the operand is

halfword register using the same addressing convention

Result code for store instructions: The result code register is set.

according to the arithmetic value of the operand in halfword location

o

Contents of address ey after store

after the store operation is complete.
the result code are as follows:

Negative
Positive

Zero

Program Interruption: None

54

‘Result code

(RL, RG, RE)

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

The three allowable values




STORE ARITHMETIC

REGISTER LEFT HALFWORD Operation Code 29
INTO RIGHT HALFWORD (STL) Tyoe Format ?
Operand Format R,@ N, X
The left half of Type Addressing Oy s halfword

reversed

arithmetic register AR is

stored into the right half
of a singleword location o

Symbolic Notation

when not indexed. If indexed, .

an even index value selects the right half of a singleword location for
storage. An odd index value addresses the left halfword of the next con-
secutive singleword. This convention is reversed from normal addressing.

Cxmenfime

s
23 ;Cgix ARy ignored | 1oc g unchanged entez;?)here
ind lue.
index value 0 15 16 31 0 15 16 31
. B
0dd index “AR ignored Loc entered here] unchanged
value. Th
as+1 (ah)
-0 15 16 31 0 15 16 31

Programming Note: See programming note under STR instruction,

Result code for Store Instructions: The result code register is set
according to the arithmetic value of the operand in the central memory
address, ., after the store operation is complete. The three allowable
values of Qhe result code are as follows:

Result code

(RL, RG, RE)

Contents of address a, .ftay ctaopre

Negative (1, 0, 0)
Positive (0’ ], 0)
Zero (09 Oa ])

Program Interruption: None.

Store Instructions 55
Section B3



STORE DOUBLEWORD (STD)

Operation Code 27
Type Format 2
The contents of the Operand Format R, @ N, X
doubleword register ARD is Type Addressing a,, doubleword level
stored inte the doubleword Symbolic Notation (gRD)+ a

location specified by « d

d-

Programming Note: Doubleword registers and doubleword locations are
resiricted to even-odd singleword address pairs.

Result code for store instructions: The result code register is set
accoraing to the arithnmetic value of the operand in location o, after
the store operation is complete. The three allowable values of the
result code are as follows:

Contents of address od after store Result code
(RL, RG, RE)

Negative (1, 0, 0)
Positive ' (0, 1, 0)
Zero (03 O’ ])

Program Interruption: Possible specification error if R is odd.




STORE PROGRAM STATUS WORD (SPS)

Operation Code 22
The full program status Type Format 3
doubleword (64 bits) is stored Operand Format @N, X
in central memory only on special Type Addressing a , Singleword level
signal from the PPU. This instruc- Symbolic Notation PSH - o

tion (SPS) stores only the first

half (32 bits) of the doubleword.

The last half of the program status

doubleword is stored into singleword locaticna. This instruction stores
the MEM USAGE, BSR, CC and RC status information into memory according to
the  format:

0 16 20 24 28 31
Not Used cP
Loc. a - (Zero) MEM, BSR ce RC
USAGE

where  MEM USAGE refers to Central Memory Usage information.
BSR refers to the Branch or Skip condition register.
CC refers to the Condition Code.
RC refers to the Result Code.

See Program Status Doubleword for more detailed information
on the meaning of these bit designations.

Programming Note: The R-field is not used.

Result Code: Unaffected.

Program Interruption: None.

STORE ZERO IN WORD (STZ)

Operation Code 20
Zero is stored into , Type Format 3
" location a.  The R-field Operand Format @N, X
is not used. Type Addressing o , singleword level

Symbolic Notation 0 »a

Result Code Setting for Store Zero Instructions: The result code is
set only to the value: (RL, RG, RE) = (0, 0, 1).

Program Interruption: None.

Store Instructions 57
Section B3



STORE ZERO 1IN
HALFWORD (STZH)

Operation Code 21
Zero is stored into Type Formatl 3
location a,. The R-field is not Operand Format @N, X
used. Displacement indexing Type Addressing %ra halfword level
selects normal halfword - | Symbolic Notation > o i

addresses,i.e., ieft halfwords
are selected when the index
value is even.

Result Code Setting for Store Zero Instructions: The result code is
set only to the value: (RL, FG, RE) = (0, 0, 1).

Program Interruption: None.

STORE ZERO IN
DOUBLEWORD (STZD)

Operation Code 23
Zero is stored into - Type Format 3
location a,. The R-field Operand Format @N, X
is not used. " Type Addressing % doubleword level
Symbolic notation 0 *'qd )

Result Code Setting for Store Zero Instructions: The result code is set
only to the value: (RL, RG, RE) = (0, O, 1).

Program Interruption: None.

58



STORE NEGATIVE FIXED
PQINT SINGLEWORD (STN)

Operation Code 34
Store the negative of Type Format 2
the contents of singleword Operand Format R, (;)
arithmetic register AR into Type Addressing o , St Jleword level
location a.  The 2's complement Symbolic Notation - ( R) »

of the value in AR is stored.

Result Code Setting for Store Negative Instructions: The result code
is set according to the arithmetic value in Tocation @ after the store
is complete. The three possible values of the result code are:

Contents of ¢ after store Result Code (RL, RG, RE)
Zero (0, 0, 1)
Positive (0, 1, 0)
Negative (1, 0, 0)

Program Interruption: Fixed point overflow will occur if the
arithmetic register contains the largest negative value (8000 OOOO)h

‘The result stored into location a is (8000 OOOO)h if the largest
negative value is stored.

ex’

Store Instructions 59
Section B3



STORY NEGATIVE : :
F1XtD POINT HALFWORD (STNH)

Operation Code 35
Store the negative of the Type Format 2
contents of the left half of Operand Format R,@ N, X
arithmetic register AR into Type Addressing an. s halfword level
halfword location «,. The 2's Symbolic Notation - (AR]h) > ap
complement of the halfword value .
is stored.

Rosult Code Setting for Store Negative Instructions: The result code is
sct according to the arithmetic value in halfword Tocation oy after the
store is complete. The three possible values of the result code are:

~Contents of o after store Result code (RL, RG, RE)
Zero (0, 0, 1)
_Positive (0, 1, 0)
Negative (1, 0, 0)

Program Interruption: Fixed point overflow will occur if the arithmetic
register contains the largest negative value (8000) The result stored
in locationao 1is (8000)hex if the largest negative value is stored.

hex*

STORE NEGATIVE FLOATING
POINT SINGLEWORD (STNF)

Operation Code 36
: Type Format 2
contegigrgft2$nn$gaglgeagitﬁggtic Operand Format R, @ N, X .
S Type Addressing « , Singleword le

register AR into locationa.
This involves a change of sign
in floating point :epresentation.

Symbolic Notation —~(AR) >«

Result Code Setting for Store Negative Ilustructions: The result code.is
set according to the arithmetic value in location o after the store 1s
complete. The three possible values of the result code are:

Contents of @ after store Result Code (RL, RG, RE)
Zzro (0, ¢, 1)
Positive (0, 1, 0)
Negative (1, 0, 0)

Program Interruption: None.




STORE NEGATIVE FLOATING
POINT DOUBLEWORD (STND)

Store the negative of the
contents of doubleword arithmetic
register ARD into location oj.
This involves a change of sign
in floating point representation.

Result Code Setting for Store Negative Instructions.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

37

2

R, N, X

o4, Doubleword level
<= (ARD) > ag

The result code is

set according to the arithmetic value in doubleword location o, after the
store is complete. The three possible values of the result cote are:

Contents of of after store

Zero
Positive
Negative

Program Interruption: Specification error if R-field is odd.

STORE ONE'S COMPLEMENT
SINGLEWORD (STO)

Store the one's complement of
the contents of singleword arithmetic
register AR into location o. Zero
bits in AR are stored as ones in o
and vice versa.

Result Code (RL, RG, RE)

(0, 0, 1)
(0, 1, 0)

(‘l’ O’

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

0)

2E

2

R,@ N, X

e , singleword level
->

(AR)j o 3

for J range 0 thru 3

Result Code Setting for Store One's Complement: The result code is set..

according to the arithmetic value in singleword Tocation o after the
store is complete. The three possible values of the result.code are:

Contents of o after store

Result Code

Zero
Positive
Negative

Program Interruption: None.

(RL, RG, RE)

(0, 0, 1)
(0, 1, 0)
(1, 0, 0)

Store Instructions 61
Section B3



STORE ONE'S COMPLEMENT
HALFWORD ($TOH)

Store the one's complement
of the contents of the left half
of arithmetic register AR into
halfword location oy. Zero bits
in AR,,. are stored as ocnes in a
and v*ce versa.-

Operation Code
Type Format

‘Operand Format

Type Addressing
Symbolic Notation

2A

2

R,@ N, X

oh. halfword level
(AR]h)j > Cthj

for j range Q0 thru 15

Result Code Setting for Store One's Complement: The resuit code is set

according to the arithmetic value in halfword location ap after the
store is complete. The three possible values of the result code are:

Contents of gp after store

Zero
Positive
Negative

Program Interruption: None.

62

Result Code

(RL, RE, RE)

(0, 0,
(09 ]9
(1, 0,

)
)

0)



STORE REGISTER FILE (STF)
Operation Code 2B
. Type Format 9

Thg_contenps of E1gqt Operand Format M, @N,X

consecutive registers, from T i
;o : ’ ype Addressing o, octet Tevel
the register file designated Symbolic Notation RF > o octet
by the R-field, are stored -
into central memory octeta . ry
Source Register File Hexadecimal Location in

R-field Designated by the R-Field Register File
X000 Base register File A 0-7
X001 Base register File B 8-F
X010 Arithmetic register File C 10-17
X011 Arithmetic register File D 18-1F
X100 Index Register File X 20-27
X101 Vector File V , 28-2F

X11X 0ctet'of Zeros

Programming Notes: The three least significant bits of singleword address a
are ignored when an octet referenced is the one which contains singleword
address a.

Also, ifa <2F and M = 0, thena references an octet of the register
file. Register files may be moved or loaded with an octet of zeros

by using such an address with an R-field value of 6 or 7.
Result Code: Not affected.

Program Interruption: None.

Store Instructions 63
Section B3



STORE REGISTER FILES,
WLTIPLE  (STFM)

Operation Code 2F
. Type Format 3
The contents of six con-
P . - Operand Format ay N, X
secutive register octets (reg- T;pe Add5222?nq €;>5 Jetet Tevel

ister files A, B, C, D, X, and

V) are stored into six consecutive Symbolic Notation A11 RF> a6 octets)

memory octets starting with lo-

cation ao.
Zevo > o -
(B4) » o +1
STORE
(By) » @ +25 - pre
. . REGISTER
. ¢ FILES A & B
(BF)+ o +f.‘
-
(AO) +> a 4+ 10
) (A)) > o +11 STORE
. . >n . ARITHMETIC
. * REGISTER
() + @ +1F FILES C & D
-3
(X)) > o +20 STORE
. . INDEX
. * Y- - REGISTER
* . FILE,X
(X)) > o +27
(V) = o + 28] STORE
. "o VECTOR REGISTER
. s FILE, V
(V) > o +2F

Programming Note: Ifa<2F and M = 0, then an illegal operation is specified.
* This results in progcam interruption. '

Result Code: Not affected.

Program Interruption: Specifitaf%cn error if a £2F and M = 0.

64



ETIC STRUCTTION
ARITHMETIC TINSTRUCTIONS Operation Code 40, 60, 62
Type Format 1
ADD WORD (A) Operand Format R, @= N, X
Type Addressing o, singleword level
The four forms of the add word Symbolic Notation (R) + (¢)—+R
instruction indicated by 0P codes
are listed as follows: ‘
QP Code R-Field Register Involved
40 AR Arithmetic
60 BR Base
62 Range O thru 7 Index
addresses XR
0 thru 7.
62 Range 8 thru F Vector
addresses VR
0 thru 7.

0P Code 40 - The whole word fixed point value in location a is added

to arithmetic register AR specified by the R-field. Location @
may be in central memory or in one of the registers of the regis
file. The result is stored into arithmetic register AR.

0P Code 60: Add the whole word contents of location @ to the co
of base register BR, specified by the R-field, and store the res
base register BR.

0P Code 62 - Add the whalc word contents of location @ to the co
of index or vectoer register XR or VR, specified by the R-field a
the result into index or vector register XR or VR.

Index register if 0 £€R £7

Vector register if 8 £ R £F.

ter

ntents
ult into

ntents
nd store

Result Code Setting: The result code is set according to the result of

the operation as follows:

Arithmetic Operation Result Result Code (RL, RG, RE)
(R) < 0 (1, 0, 0)
(R) =0 | (0, 1,0
(R) = 0 (0, 0, 1)

Program Interruption: Fixed point overflow fs possible.

Arithmetic Instructions 65

Section B3



50 VORD IMMEDIATE (AI)

The four forms of the Operation Code 50, 70, 72
add word immediate instruction Type Format 4
indicated by OP codes are listed Operand Format R, I, X
as follows: Type Addressing Immediate
. Symbolic Notation (R) + n=+R
0P Code R-Field Register Involved
50 AR Arithmetic
70 BR Base
72 Range 0 thru 7 Index
addresses XR
.0 thru 7.
72 Range 8 thru F Vector
addresses VR
0 thru 7.

0P Code 50 - Add the singleword arithmetic immediate operand to the contents
of arithmetic register AR, specified by the R-field, and store the result
into arithmetic register AR.

Q?;dee 70 - Add the singlevord arithmetic immediate operand to base register
BR, specitied by the R-field, and store the resuit into base register BR.

0P Code 72 - Add the singleword arithmetic immediate operand to the index
or vector register specified by the R-field, and store the result into
index or vector register XR or VR.

Result Code Setting: The result code is set according to the result of
the operation as follows:

Arithmetic Operation Result ~ Result Code (RL, RG, RE)
(R) < 0 (1, 0,00
(R} > 0 (0, 1, 0)
(R) = 0 (0, 0, 1)

Program Interruption: Fixed point overflow is possible.

66



ADD HALFWORD  (AH)

Operation Code 41
. . Type Format 1
The halfword fixed point ~
: . e < A Operand Format R,@= N, X
value in location op is added to the Type Addressing oh, halfrord level

left half of singleword arithmetic

register AR specified by the R-Ficld, | Symbolic otation — (ARy,) + (xh)=ARy,

The result is stored into the left
half of arithmetic register AR.

Programming Notes: Halfword fixed point arithmetic operations acquire

the register operand from the left half of arithmetic register AR. The

second operand is a halfword from location apwhere ap specifies a halfword
address by normal displacement indexing. The result of a halfword arithmetic
operation is stored into the left half of arithmetic register AR.

Location o, may be in central memory or in the register file. Ifap < 5F
and M = 0, then o, addresses one of the 96 (decimal) halfword registers
of the register file. -

Result Code Setting: The result code is set according to the result of
the operation as follows:

Arithmetic Operation Result Result Code (RL, RG, RE)
(AR]h)fi 0 (1, 0, 0)
(ARyy) =0 (0, 0, 1)

Program Interruption: Fixed point overflow is possible.

Arithmetic Instructions 67
Section B3



ADD HALFWORD IMMEDIATE (AIH) -

Operation Code 51
The halfword immediate operand Type Format 4
is added to the left half eof single- Operand Format R, I, X
word arithmetic register AR specified Type Addressing Immediate

by the R-field. The result is stored Symbolic Notation (AR]h) +n =¥ AR

into the left half of register AR. 1h

Programming Notes: The combined M&N fields form the immediate (IMMED)
operand for halfword instructions. The MSB of the M-field is the sign
bit. This immediate operand can still employ the indexing option to
effect an operand modification, of the form IMMED + (X), where IMMED is
defined above.

Result Code Setting: The result code is set according to the result of
the operation as follows:

Arithmetic Operation Result Result Code (RL, RG, RE)
“(R) <0 (1, 0, 0)
(R) =0 . . (Os 1, 0)

Program Interruption: Fixed point overflow is possible.

ADD FLOATING POINT WORD (AF)

Operation Code 42
The singleword floating point Type Format 1
operand in location «-is added to Operand Format R,@= N, X
arithmetic register AR specified “. | Type Addressing a singleword level
by the R-field. The result is Symbolic Notation (AR) + (a)—+AR

stored into register AR.
Programming Note: Floating point inputs must be hexadecimally normalized.

Result Code Setting: The result code is set according to the result of the
operation as follows: ’

Arithmetic Operation Result Result Code (RL, RG, RE)
(Ry< 0 (1, 0,0)
(R) > 0 - (0, 1, 0)
(R) =0 . (Os 0, ])

Program Interruption: Floating point overflow and underflow are possible.

68



ADD FLOATING POINT DOUBLEWORD (AFD)
' Operation Code 43

Type Format 1

Operand Format R,(@= N, X X

Type Addressing od» doubTeword level

Symbolic Notation (ARD) + (og) =ARD

The doubleword floating point
operand in location of is added to
arithmetic register ARD specified
by the even R-field value. The
result is stored into doubleword
register ARD.

Programming Notes: Doubleword floating point arithmetic operations involve
two doubleword operands. One operand is from registers AR and AR + 1,
considered as a 64-bit floating point number, where AR + 1 contains the
low order bits of the number. The other operand (memory operand) is a
doubleword from singleword memory locations ¢ and o + 1. The result is
stored into registers AR and AR + 1, where the R-field ranges from O
through E (hexadecimal). Only even-odd register address pairs and memory
“address pairs are permissible for doubleword operations,

Floating point inputs must be hexadecimally normalized.

Result Code Setting: The result code is set according to the result
of the operation as follows:

Arithmetic Operation Result Result Code (RL, RG, RE)
(Ry< 0 (1, 0, 0)
(R) >0 (0, 1, 0)
(R) = 0 (O: 03 ])

Program Interruption: Floating point overflow and underflow are possible.
Program specification error if R-field is odd.

Arithmetic Instructions A9
Section B3



ADD MAGNITUDE FIXED POINT WORD (AM)

The magnitude of the singleword
fixed point value in locaticn a
is added to the arithmetic register
specified by the R-field. The result
is stored into arithmetic register
AR designated by the R-field.

Result Code Setting: The result code (RL,
the result of the operation as follows:

(AR) < © (1, 0, 0)
(AR) > 0 (Os ]s 0)
(AR) = 0

Program Interruption: Overflow 1is possible.

Value Value Résuit of

of (AR) of (o) (AR) + ()]
zerc 8000 0000 (AR) + 8000- 00600
Positive 8000 0000 (AR) + 8000 0000
Negative 8000 0000 (AR) + 8000 0000

70

Operation Code 4
Type Format 1
R

Operand Format »@= N, X
Type Addressing o , singleword
Symbolic Notation  (AR) + |(o)| —»AR

(0, 0, 1)

RG, RE) is set according to

[ ' Special cases are shown below
when the operand from Central Memory is the largest negative value. Fixed

poipi.overflow is possible-when (o) is not the largest negative value and (AR) is
positive. '

Result Code Fixed Point

__Setting __Overflow
Negative Yes
Negative Yes
Positive No



ADD MAGNITUDE FIXED

POINT HALFWORD (AMH)
Operation Code 45
The magnitude of the fixed Type Format 1
point value in halfword location o Operand Format R,(@®= N, X
is added to the left half of Type Addressing ah, halfword
singleword arithmetic register Symboiic Netation (AR1h) +|(uh)/—& AR
AR specified by the R-field. The

result is stored into the left
half of whole word arithmetic
register AR designated by the
R-field.

Result Code Setting: The result code (RL, RG, RE) is set according to the
halfword result of the operation as follows:

(ARy,) < 0 (1, 0, 0)
(AR;p,) > 0 (0, 1, 0)
(ARy,) = 0 (0, 0, 1)

Program Interruption: Overflow is possibie. Special cases are s}
: . nown bel
when ihe operand frém Central Memory is the largest negative vaﬂue.’S Fixegw

?z;nt)oggr;lg?tgiepossib]e when (a) is not the Targest negative value and
1h ’

Value Value " Result of Result Code  Fixed Point
of (ARy,) of (oh) (AR ) +{( o)l Setting Overflow
Zero 8000 (AR]h) + 8000 Negative Yes
Positive 8000 (AR1h) + 8000 Negative Yes
Negative 8000 (ARy,) + 8000 Positive No

Arithmetic Imstructions 71
Section B3



“0D MAGNITUDE FLOATING

POINT WORD {AMF) .
A Operation Code 46
. . . Type Format 1
The magnitude of the singleword i _
#1gating point value in location a gpegazgdigig?ﬁ 3‘<§2; $eword
is added to arithmetic register AR Sygbo1ic Notat?on (AR) +9( AR
specified by the R-field. The Y

vesult is stored into arithmetic
register AR.

“mﬁqramnxng Note: Floating point inputs must be hexadecimally normalized.
czsult Code Setting: The result code (RL, RG, RE) 1is set according to
?he result of the operation as follows:

(AR)< O (1, 0, 0)
SRy =0 " (0,0,1)

Program Interruption: Floating point overflow is possible.

ADD MAGNITUDE FLOATING
POINT DOUBLEWORD (AMFD)

Operation Code 47
The magnitude of the doubleword Type Format 1
flecating point value in location of is Operand Format R,@= N, X
added to doubleword arithmetic register Type Addressing od, doubleword

#RD specified by the even R-field value. | Symbolic Notation (ARD) + (%?*@%ARD
The result is stored into doubleword

arithmetic register ARD. Only even-

odd register and memory address pairs

may be used.

? .
rogramming Note: F1o?ﬁ;ngegg%gt gu%ﬁLmu§é bﬁEyexadec ggé . gggazlzed

ing: 1S se
the result of the operation as follows:
(ARDY £ 0 (1, 0, 0}
(ARD) =0 (0: 1, 0)
(ARD) =0 (0, 0, 1)

Program Interruption: Floating point overflow is possible. Specification
error if R-field is odd.

72



SUBTRACT WORD (S)
Operation Code 48
The singleword fixed point value Type Format 1
in location s subtracted from arith- Operand Format R,@= N
metic register AR specified by the K- Type Addressing , singleword
field. The result is stored into Symbolic Notation (AR) - (¢) ¥ AR

arithmetic register AR.

Resuit Code Setting: The re%ulu code (RL, RG, RE) is set according to
the result of the coperation as follows:

(AR) < 0 (1, 0, 0)
(AR) > 0 (0, 1, 0)
(AR) = 0 (0, 0, 1)

Program Interruption: Fixed point overflow is possible.

SUBTRACT WORD IMMEDIATE (SI)

Subtract the singleword arithmetic gpegaéggga%ode 458
immediate operand from the contents Oygrand Format R.I.X
of arithmetic register AR specified Tp Add p Trmediat
by the R-field. The result is stored ype 13 aressing Jmediate o
into register AR. symbolic hotation (AR) - n -=AR

Programming Note: For arithmetic singleword immediate operand instructions,
the sign bit is extended into the most significant half of the word.

~ This immediate operand can still employ the indexing option to effect an
operand modification of the form IMMED % (X).

Result Code Setting: Fixed point arithmetic instructions set the result
code (RL, RG, RE) according to the result of the operation as follows:

(AR) £ 0 (1, 0, 0)
(AR) > 0 (0, 1, 0)
(AR) = 0 (0, 0, 1)

Program Interruption: Fixed point overflow is possible.

Arithmetic Instructions 73
Section B3



SUBTRACT HALFHORD (SH)
Operation Code 49

Type Format i

Operand Format R,@= N, X
Type Addressing ohs ha]fword

The halfword fixed point value !
Symbolic Notation (ARTh) - &h)~%FAR]h

in location ap is subtracted from the
1eft half of arithmetic register AR
SP’C]thd by the R-field. The result
is stored into the 1eft half of

register AR.

pesult Code Setting: The result code (RL, RG, RE) is set according to the
vesult of Lhe operation as follows:

(ARyp) < 0 (1, 0, 0)
(ARy) = 0 (0, 1, 0)
(ARyp) = 0 (0, 0, 1)

Program Interruption: Fixed point overflow is possible.

SUBTRACT HALFWORD IMMEDIATE (SIH)

Operation Code 59
Subtract the halfword immediate Type Format
operand from the contents of the left Operand Format R, T, X
half of arithmetic register AR specified | Type Addressing Immediate
by the R-field. The result is stored Symbolic Notation (AR]h) - nPARy
into the Teft half of register AR.

Programming Note: The combined M&N fields form the immediate operand for
halfword instructions. The MSB of the M-field is the sign bit. This
irmediate operand can still employ the indexing option to effect an
operand modification of the form IMMED + (X).

Result Code Setting: The result code (RL, RG, RE) is set according to
the result of the operation as follows:

(ARy,) < 0 (1, 0, 0)
(ARy) > 0 (0,1, 0)
(ARy) = 0 (0, 0, 1)

Program Interruption: Fixed point overflow is possible.

74



SUBTRACT FLOATING POINT WORD (SF)
' Oneration Code aA
The singleword floating point Type Format 1
value in location o is subtracted Operand Format R,@= N, X
from arithmetic register AR specified Type Addressing a , Ssingleword
by the R-field. The result is stored Symbolic Notation (AR) - {a) —¥AR

into arithmetic register AR.
Programming Note: Flcating point inputs must be hexadecimally normalized.

Result Code Setting: The result code (RL, RG, RE) is set according to the
result of the operation as follows:

AR £ 0 (1, 0, 0)
AR > 0 (0, 1, 0)
AR - 0 (0, 0, 1)

Program Interruption: Floating point overflow and underflow are possible.

SUBTRACT FLOATING POINT DOUBLEWCRD (SFD)

Operation Code 4B
The doubleword floating point Type Format 1
value in location oy is subtracted Operand Format R,(@= N,
from arithmetic register ARD specified Type Addressing od , doubleword
by the even R-field value. The result Symbolic Notation (ARD) - (ud)-»ARD

is stored into register ARD.

Programming Notes: Double floating point arithmetic operations involve two
doubleword operands. One operand is from register AR and AR + 1, considered
as a 64-bit floating point number, where AR + 1 contains the low order bits
of the number. The other operand is a doubleword from singleword locations. o

and o + 1. The result is stored into registers AR and AR + ], where AR ranges fr
0 through E (hexadecimal). Onily even-odd register address -pairs and memory
address pairs are permissible for doubleword operations.

Fioat1ng point inputs must be hexadec1ma]1y normalized

Result Code Setting: The result code (RL, RG, RE) is set according to the
- result of the operation as follows:

ARD < 0 (1, 0, 0)
ARD > 0 (0, 1, 0)
ARD = 0 (0, 0, 1)

Program Interruption: Floating point overflow and underflow are possible.
Specification error if R-field is odd.

Arithmetic Instructions 75
Section B3



[

CJBTRACT MAGNITUDE FIXED
POINT WORD  (SM)
Operation Code 4c
The magnitude of the singleword Type Format 1
fixed point value in location o is Operand Format R,@= N, X
subtracted from arithmetic register AR Type addressing o , singleword
cpecified by the R-field. The result Symbolic Notation  (AR) - J& )~ AR

is stored into arithmetic register AR.

ProwraWﬂ1nq Note: Fixed point magnitude involves taking the 2's complement
17 the number 1s negative.

Pesult Code Setting: The result code (RL, RG, RE) is set according to
tite result of the operation as follows:

(AR) £ 0 (1, 0, 0)
(AR} > 0 (6, 1, 0)
(AR) = (0, 0, 1)

Program Interruption: Overflowis poss1bie Special cases are shown below
when Lheoperand from central memory is the largest negative value.

,alue of Result of Result Fixed Point
__(AR) (AR) - Mu)} - Code Setting Overflow
levo (AR) - 8000 0000 Negative No
Positive (AR) - 8000 0000 Negative No
Negative (AR) - 8000 0000 Positive ‘ Yes

Also, fixed point overflow is possible when (x) is not the largest negative
value and (AR) is negative.

76



SUBSTRACT MAGNITUDE FIXED
POINT HALFWORD (StH)

The magnitude of the halfword | Operation Code 4D
fixed point value in location ah Type Format 1
is subtracted from the left half Operand Format R, @ =N, X
of singleword arithmetic register Type Addressing ah, halfword
AR. The result is stored into Symbolic Notation _
the left half of register AR. (AR]h) l(ah»+ ARTh

Programming Note: See progremming note under SH instruction,

Result Code Setting: The result cede (RL, RG, RE) is set according to
the result of the opceration as follows:

(AR]h)<: 0 (1, 0, 0)
(AR]h):?O (0, 1, 0)
(AR]h) -0 (0, 0, 1)

Program Interruption: Overflow is possible. Special cases are shown
below when the operand from central memory is the largest negative
value. ‘

Value of Result of Result Code Fixed Point
(AR, ) (AR, ) - |(an)l Setting Overflow

O ) Ih ! AR i} e

Zero (Arlh) - 8000 Negative No

Positive . (AR]h) - 8000 Negative NO

Negative (Ath) - 8000 Positive YES

Also, fixed point overflow is possible when (ap) is not the largest
negative value and (AR) is negative. .

Arithmetic Instructions
Section Bl

77



SUBTRACT MAGNITUDE FLOATING

POINT WORD (SMF) Operation Code aE

The magnitude of the single- gygiaigtggzﬁat ; ® - N, X
word floating point value in locationa =P o Addre;;{n P cinaleword
is subtracted from arithmetic register éyﬁto}’~ Not tg ?AR) gr |-+ AR
IR specified by the R-field. The ymboiic fotation -
resutt is stored into register AR. -

Programming Notes: Floating point magnitude involves changing the sign of
the fraction 11 the number is negative. Floating point inputs must be hexa-
decimally normalized.

result Code Setting: The result code (RL, RG, RE) is set according to

the result of the operation as follows:

(AR) < 0 (1, 0, 0)
(AR) > 0 (0, 1, 0)
(AR) = 0 (0, 0, 1)

Program Interruption: Floating point underflow is possible.

SUBTRACT MAGNITUDE FLOATING

POINT DOUBLEWORD (SMFD) ' Operation Code 4F
Type Format 1
The magnitude of the double- Operand Format R,@= N, X
word floating point value in location odj Type Addressing adq, doubleword
is subtracted from doubleword arith- Symbolic Notation (ARD) - Kag)| —>"ARD

metic register ARD specified by the
even R-field value. The result is
stored into doubleword register ARD.

Programming Note: Floating point magnitude involves changing the sign of the
fraction if the number is negative. AFloqting point inputs must be hexadecimally
normatized, B

Result Code Setting: The result code (RL, RG, RE) is set according to the
result of the operation as follows:

(ARD) = 0 (1, 0, 0)
{ARD) > 0 (0, 1, 0)
{(ARD) = 0 (0, 0, 1)

Program Interruption: Floating point underflow is possible.
Specification error if R-field is odd.

78



MULTIPLY WORD
FIXED POINT WORD (M)
Operation Code 6C, 68, 6A
The three forms of the M Type Format 1
instruction, indicated by OP Operand Format R,(:)= N, X
codes are listed in the following Type Addressing o, Singleword
table: Symbolic Notation (R) * () -®»R

0P Code R-Field Register Addressed
6C AR Arithmetic
68 BR Base
6A Range O thru 7 Index
address R Q0 thru 7
6A Range 8 thru F Vector

address VR 0 thru 7

0P Code 6C: Multiple the contents of singleword arithmetic register AR

by the contents of singleword location o If the singleword register
operand (AR) 1is selected from an even register address, the full 64-bit
signed integer product is stored into an even-odd address pair (registers
AR and AR+1). If the singleword register operand is selected from an

odd register address (R-field is odd), then the Teast significant 32-bits
of the 64-bit signed integer-product is stored into the odd register ’
address specified by R.

(AR) * (as) —¥ ARD
(AR) * (a9 —» AR

if R is even
if R is odd.

0P Code 68: Multiply the singleword contents of base register BR by the
singleword contents of location o . The 32 least significant bits of the
64-bit signed integer product are stored into base register BR. There is
no product length option -

(BR) * (as) —* BR for R even or odd.

0P Code 6A: "Multiply the singleword contents of index register XR or vector

register VR by the singleword contents of location . The 32 least signifi-
cant bits of the 64-bit signed integer product are stored into index register
XR or vector register VR. There is no product length option.

(XR) * (as) —+XR for R range O thru 7.
(VR) * (as) -#VR  for R range 8 thru F.

Arithmetic Instructions 79
Section B3



80

Result Code Setting: The result code (RL, RG, RE) is set according to
the results of the operation as follows:

(R) < 0 (1, 0, 0)
(R) > 0 (0, 1, 0)
(R) = 0 (0, 0, 1)

Program Interruption: Fixed point overflow is possible for OP code 6C

when the R-field is odd and the product cannot be expressed in 32-bits.
Fixed point overfiow is possible for OP codes 68 and 6A if the product
cannot be expressed in 32-bits. Fixed point overflow is indicated if the
33 most significant bits of the 64-bit product are not all zeros or not
all ones.



MULTIPLY FIXED POINT
WORD IMMEDIATE (MI)
Operation Code 7C, 78, 7A
The three forms of the MI lyp? Forma? 4
instruction, indicated by QP ?pclaggdioymgt ?’ Ia.X
codes are as follows: ype nddressing mmediate
Symbolic Notation (R) *n —R
0P Code R-Field Register Addressed
7C AR Arithmetic
78 : BR Base
7A _— Range O thru 7 Index
addresses XR 0 thru 7
7A Range 8 thru F Vector

addresses VR O thru 7

0P Code 7C: Multiply the contents of singleword arithmetic register AR

by the singleword arithmetic immediate operand. If the singleword register
operand (AR) is selected from an even register address, then the full 64-bit
signed integer product is stored into an even-odd register address pair
(registers AR and AR+1). If the singleword register operand is selected

from an odd register address (R-field is odd), then the least significant
32-bits of the 64-bit signed integer product is stored into the odd register
address specified by R.

(AR) * n —» ARD if R is even

(AR) * n -—* AR is R is odd.
OP Code 78: Multiply the singleword contents of base register BR by the
singleword arithmetic immediate operand. The 32 least significant bits

of the 64 bit signed integer product are stored into base register BR.
There is no product length option

(BR) * n —»BR  for R even or odd
0P Code 7A: Multiply the singleword contents of index register XR or vector
register VR by the singleword arithmetic immediate operand. The 32 least

significant bits of the 64-bit signed integer product are stored into index
register XR or vector register VR. There is no product length option.

(XR) *n —» XR for R range O thru 7
(VR) * n -+ VR for R range 8 thru F.

Arithmetic Instructions 8]
Section B3



82

Result Code Setting: The result code {RL, RG, RE) is set according to

the results of the operation as follows:

(R) < 0 (1, 0, 0)
(R) > 0 (0, 1, 0)
(R) = 0 (0, 0, 1)

Prcgram Interruption: Fixed point overflow is possible for OP Code 7C

when the R-field is odd and the product cannot be expressed in 32-bits.
Fixed point overflow is possible for OP codes 78 and 7A if the product
cannot be expressed in 32-bits.



FIXED POINT MULTIPLY
HALFWORD (MH)
Operation Code 6D
Multiply the contents of Type Format 1

the left half of singleword Operand Format R,®=
arithmetic register AR by the Type Addressing ha]fword
operand from halfword location @h. Symbolic Notation RR ) =% AR
The full 32-bit signed integer
product is stored into singleword
arithmetic register AR. There is no
product Tength option.
Result Code Setting: The result code (RL, RG, RE) is set according to the
singleword result of the operation as follows:

(AR) < O (1, 0, 0)

(AR) > 0 (0, 1, 0)

(AR) = 0 (0, 0, 1)
Program Interruption: None.
MULTIPLY FIXED POINT
HALFWORD IMMEDIATE (MIH)

Operation Code 7D
Multiply the contents of Type Format 4

the left half of singleword Operand Format R, I, X
arithmetic register AR by the Type Addressing Immediate
halfword immediate operand. The Symbolic Notation (AR1h) * n -» AR
full 32-bit signed integer

product is stored into singleword
arithmetic register AR. There is no
product length option.

Result Code Setting: The result code (RL, RG, RE) is set according to the
singleword result of the operation as follows:

(AR) 2 0 (1, 0, 0)

(AR) > 0O (0, 1, 0)

(AR) = 0 (0, 0, 1)

Prégram Interruption: None.

Ar1thmet1c Instructions 83
Section B3



MULTTPLY FLOATING
POINT WORD (#F)

Multipiy the floating point
contents of singleword arithmetic
register AR by the contents of
singleword location as. The
singleword floating point product
is stored into arithmetic register AR.

Result Code Setting:
result of the operation as follows:

(ARR) £ 0 (1, 0, 0)
(AR) > O (0, 1
(ARR) = 0 (0, 0, 1

Program Interruption:

MULTIPLY FLOATING POINT
DOUBLEWORD (MFD) )

Multiply the floating point
contents of doubleword arithmetic = |
register ARD by the contents of
doubleword location ad. The
doubleword floating point product

is stored into arithmetic register ARD.

Result Code Setting:
result of the operation as follows:

Operation Code 6E

Type Format 1

Operand Format R,(®= N, X
as, Ssingleword

Type Addressing
Symbolic Notation (AR) * (as) —PAR

The result code (RL, RG, RE) is set according to the

Floating point overflow and underflow are possible.

Operation Code 6F

Type Format 1

Operand Format R,@= N, X

Type Addressing doubleword
Synbolic Notation (RRD * (ad)-¥ARD

The result code (RL, RG, RE) is set according to the

(ARD) £ 0 (1, 0, 0)
(ARD) > 0 (0,1, 0)
(ARD) = 0 (0, 0, 1)

Program Interruplion:
Specification error if R-field is odd.

Floating point overflow and underflow are possible.



DIVIDE FIXED POINT WORD (D)
Operation Code 64
This division is of the form: Type Format 1
arithmetic register operand divided Operand Format R,(@= N, X
by location « The fixed point dividend Type Addressing a5, singleword
is from the register operand and the Symbolic Notation (ARD/ {x s) AR

divison is a singleword from locationas.
If the dividend is selected from an

even register address, then the dividend (a 64-bit signad integerd is
acquired from the even-odd register address pair AR and AR+1. The 32-bit
signed integer quotient is stored into the even register, AR. The odd
register address, AR + 1, retains the low order 32-bits of the double
length dividend. T

If the dividend is selected from an odd register address, then the
dividend (a 32-bit signed integer) is acquired from the odd register AR
specified by R. The 32-bit signed integer quotient is stored into register AR.

(ARD)/(as) —» AR if R is even

(AR)/(as) —» AR if R is odd.
Result Code Setting: The result code (RL, RG, RE) is set according to the
result of tine operation as follows:

(ARR) £ 0 - (1,0, 0)

(AR) > 0 (0, 1, 0)

(AR) =0 (0, 0, 1)

Program Interruption: Fixed point overflow is indicated if the quotient
cannot be expressed in 32-bits of register AR when the R-field is even..
Also, a fixed point Divide Check is indicated if the divisor is equal to
zero. In either case, an AU result is stored into register AR.

Arithmetic Instructions$85
Section B3



DIVIDE FIXED POINT

IMMEDIATE WORD (DI)

This division is of the gpegaggon %Ode 24
form: arithmetic register Oygrandrgngﬂt R.I.X
operand divided by the imsediate TEpe Addres:?nq Immediate
gperand. The fixed point dividend Symbolic Notation (ARD)/n —b AR
is from the register coperand and ¢

the divisor is a singleword arith-

metic immediate operand. If the

dividend is selected from an even register address, then the dividend (a 64-
bit signed integer) is acquired from the even-odd register address pair AR and
AR + 1. The 3Z-bit signed integer quotient is stored into the even register
address, AR. The odd register address, AR + 1, retains the low order 32-bits
of the double Tength dividend. If the dividend is selected from an odd
register address, then the dividend (a 32-bit signed integer) is acquired

from the odd register AR specified by R. The 32-bit signed integer quotient
is stored into register AR.

(ARD)/n - AR if R is even
(AR)/n -+ AR if R is odd

Result Code Setting: The result code (RL, RG, RE) is set according to the
result of the operation as follows:
| (AR) £ 0 (1, 0, 0)
(AR) > 0 (0, 1, 0)
(AR) = 0 (0, 0, 1)

Program Interruption: Fixed point overflow is indicated if the quotient
cannot be expressed in 32-bits of register AR when the R-field is even.
Also, a fixed point divide check is indicated if the divisor is equal to
zero. In either case, an AU result is stored into register AR.

86



DIVIDE FIXED POINT
HALFWORD (DH) Operation Code 65
Type Format 1 @
. C o . , S Operand Format R,(@= N, X
it s dlvisfon fe of the form | e aoreszing ep, eeiord
. [t 08 . : ! b . . 2 -’i.“ R
by location «h. The fixed point Symbolic Notation (AR)/{ah)=A 1h

dividend is a 32-bit signed integer
from register AR and the division
is a 16-bit signed integer from
halfword location oh. A 16-bit signed integer quotient is formed in the
left half of register AR. The right half of register AR retains the 16 low
order bits of the dividend.

Result Code Setting: The result code (RL, RG, RE) is set according to the
result of the operation as follows:

(AR;p,) £ 0O (1, 0, 0)
(AR]h) >0 (0, 1, 0)
(ARy) =0 (0, 0, 1)

Program Interruption: A fixed point overflow is indicated if the quotient
cannot be expressed in 16 bits. A fixed point divide check is indicated if
the divisor equals zero. In either case, an AU result is stored into the left
nalt of register AR.

DIVIDE FIXED POINT
HALFWORD IMMEDIATE (DIH) _
Operation Code 75
Type Format 4
This division is of the form: Operand Format R, I, X
arithmetic register operand divided Type Addressing Immediate
by the halfword immediate operand. Symbolic Notation (AR)/n —» AR
The fixed point dividend is a 3Z-bit ' 1h

signed integer from register AR and
the divisor is a 16-bit signed integer
from the halfword immediate operand. A 16-bit signed integer quotient is
formed in the left half of register AR. The right half of register AR
retains the 16 Tow order bits of the dividend.

Result Code Setting: The result code (RL, RG, RE) is set according to
the result of the operation as follows:

(ARy,) € 0 (1, 0, 0)
(ARy) > 0 (0, 1, 0)A
(ARyp) =0 (0, 0, 1)

Program Interruption: A fixed point overflow is indicated if the quotient
cannot be expressed in 16 bits. A fixed point divide check is indicated

if the divisor equals zero. In either case, an AU result is stored into the
left half of register AR.

Arithmetic Instructions 87
Section B3



DIVIDE FLOATIRG
POINT WORD (LF)

This division is of the form: Operation Code 66
“arithmetic rexwister operand divided Type Format 1
by Tocation «t . The floating point Operand Format Ry, @ =N, X
dividend is from the singleword Type Addressing as, singleword
arithmetic register AR and the Symbolic Notation (AR) / (as) = AR
division is & singleword from S

Tocation as. The floating point quotient is
stored into singleword register AR.

. 3 - 3 -. 3 - - « @
Progremming Hote: Floating point division results in a quotient which is the
same tength &s the dividend and divisor from which lhe quotient was cbtained.

Result Code S=tting: The result code (RL, RG, RE) is set according to the result
of the operation as follows:

(AR)<<O A (1, 0, 0)

Program Interruption: Floating point exponent overflow or underflow is possible.
Divide check and exponent overflow is indicated if the divisor equals zero. See
the table of infinite and indefinite forms (pages 13-16) for definiticns of the
register result following these program interruption conditions.

‘DIVIDE FLOATI#G POINT
JOUBLEWGRD (D)

This division is of the form Operation Code 67
arithmetic register operand divided Type Format 1
by locationctdd. The floating point Operand Format R, @ =N, X .
dividend is frem the doubleword Type addressing ad, doubleword
arithmetic register ARD and the Symbolic Notation (ARD) / (ad) + ARD

divisor is a doubleword from location od.
The floating point quotient is stored into doubleword register ARD.

Programming Hote: Floating point division results in a quotient which is the
same length as the dividend and divisor from which the quotient was obtained.

Result Code Setting: The result code (RL, RG, RE) is set according to the result
of the operation as follows. : ‘

(ARD) < 0 (1, 0, 0)
(ARD) > 0 (0, 1, 0)
(ARD) = 0 (0, 0, 1)

Program Interruption: Fioating point expunent overilow or underflow is possible.
Divide check and exponent overflow is indicated if the divisor equals zero. Spec-
ification errer if R-field is odd. See the table of infinite and indefinite forms
for definitions of the register result following these program interruption con-
ditions.

88



LOGICAL INSTRUCTIONS

AND WORD (AND) .
. i Operation Code EO

A 1oglca1 AND 0p§ﬁ?§1on 13 Type Format 1
applied at each bit position (3) Operand Format R, @= N, X
of two operand singlevords. One Type Addressing o, singleword
operand is from arithmetic register Symbolic Notation (AR) . A (o) > AR
AR and the other cperand is from ‘ J Jn 3
location «. The result is stored for j range 0 thru 3

“into register AR.

Result Code Setting: The result code (RL, RG, RE).is set after each
Togical operation according to the logical properties of the result
- as shown below.

A1l bits are "zero" (0, 0, 1)
A1l bits are "one" (0, 1, 0)
Mixed "“ones" and "zeros" (1, 0, 0)

Program Interruption: None.

AND WORD IMMEDIATE (ANDI)

. Operation Code FO
| The ogical D operation | Beeermt 4
is applied at each bit position (3) Type Addressing Immediate Logical
of two operand singlewords. One Symbolic Notation  (AR). n n. —»AR
operand is from arithmetic register Y J J
AR and the other operand is the for j range O thru 31

singleword logical immediate
operand. The result is stored into
register AR.

Programming Note: Singleword logical immediate operands are formed from
the combined M and N fields of the instruction word. Zeros are located
in the left halfword and the M and N fields make up the right halfword.
This immediate operand may be modified (prior to the logical operation)
by adding to it, the 24 LSB's of an index register designated by the
X-field. If X = 0, no modification occurs.

Result Code Setting: The result code (R, RG, RE) is set after cach
logical operation according to the logical properties of the result
as shown below.

A1l bits are "zero" (0, 0, 1)
A1l bits are."one" (o, 1, 0)
Mixed "ones" and "zeros" (1, 0, 0)
Program Interruption: None. Logfca] Instructions 89

Section B3



OR WORD {CR)

& Togical OR operation is
applied at each bit position (j)
of two operand singlewords. One
operand is from avithmetic regis-
ter AR and the other operand
from location . The result
is stored into register AR.

Operation Code
Tlype Format
Operand Format
Type Addressing
Symbolic Notation

E4

1
R:@= N, X
as Singleword

for j range 0 thru 31

Result Code Setting: The result code (RL, RG, RE) is set after each
logical operation according to the logical properties of the result

as shown below.
A1l bits are "zero"
A1l bits are "one"

il

Mixed "ones" and "z

Program Interruption: None.

OR WORD IMMEDIATE (ORI)

A logical OR operation is
applied at each bit position (j)
of two operand singlewords. One
operand is from arithmetic regis-
ter AR and the other operand is
the singleword logical immediate
operand. The result is stored
into register AR.

(0, 0, 1)
(0, 1, 0)

eros" (1, 0, 0)

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

Fa4

4

R, I, X
Immediate logical

(AR)j\/nj-—>ARj

for j range O thru 31

Result Code Setting: The result code (RL, RG, RE) is set after each
logical cperation according to the logical. properties of the result

as shown below.
A1l bits are "“zero"
A1l bits are "one"

(0, 0, 1)
(0, 1, 0)

Mixed "ones" and "zeros" (1, 0, 0)

Program Interruption: None.

90



EXCLUSIVE OR WORD (XOR)

A logical EXCLUSIVE OR
operation is applied at each
bit position (j) of two
operand singlewords. Cne
operand is from arithmetic
register AR and the other
operand is from location a.
The result is stored into
register AR.

Result Code Setting:

Operation Code E
Type Format 1
Operand Format R
Type Addressing a
Symbolic Notation (

for j range 0 thru 31

The result code (RL, RG, RE) is set after each logical

operation according to the logical properties of the result as shown below.

Al11 bits are "zero"
A1l bits are "one"

Mixed "ones" and "zeros"

Program Interruption: None

EXCLUSIVE OR WORD IMMEDIATE (XORI)

A Togical EXCLUSIVE OR .
operation is applied at each
bit position (j) of two
operand singlewords. One
operand is from arithmetic
register AR and the other
operand is the singleword
logical immediate operand.
The result is stored into register AR.

Result Code Setting:

(0, 0, 1)
(0, 1, 0)
(1, 0, 0)

Operation Code F8

Type Format 4

Operand Format Ry I, X

Type Addressing Immediate logical
Symbolic Notation (AR)jOnj -aARj

for j range O thru 31

The result code (RL, RG, RE) is set after each logical

operation according to the logical properties of the result as shown below.

A1l bits are "zero"
A1l bits are "one"

Mixed "ones" and “zeros"

Program Interruption: None.

(0, 0, 1)
(0, 1, 0)
(1, 0, 0)

Logical Instructions 91
Section B3



FQUIVALENCE WORD (EQC)
Operation Code EC

A logical EQUIVALENCE opera- Type Format 1
tion is applied at each bit posi- Operand Forviuat R, @= N, X
tion (j) of two operand single- Type Addressing os Singleword
words. One operand is from Symbolic Notation (AR)jC9(a)j*ﬁ'ARj
arithmetic register AR and the . .
other operandgis from loca- for j range O thru 31

tion o. The result is stored
into register AR.

Result Cede Setting: The result code (RL, RG, RE) is set after each logical
operation according to the logical properties of the result as shown below.

A1l bits are “zero" (0, 0, 1)
A1l bits are "one" (0, 1, 0)
Mixed "ones" and "zeros" (1, 0, 0)

Program Interruption: None.

EQUIVALENCE WORD IMMEDIATE (EQCI)

Operation Code FC
A locgical EQUIVALENCE Type Format 4
operation is applied at each Operand Format R, I, X .
bit position (j) of two operand Type Addressing Immediate/logical
singlewords. One operand is Symbolic Notation (AR)jCDKB'u—wARj
from arithmetic register AR ' .
and the other operand is the for j range 0 thru 31

singleword logical immediate operand.

The result is stored into register AR. )

Result Code Setting: The result code (RL, RG, RE) is set after each logical
operation according to the logical properties of the result as shown below.

A1l bits are "zero" (0, 0, 1)
A1l bits are "one" (9, 1, 0)
Mixed "ones" and "zeros" (1, 0, 0)

Program Interruption: None.

92



AND DOUBLEWORD (ANDD)

A logical AND operation
is applied at each bit position
(3) of two operand doublewords.
One operand is from arithmetic
register ARD and the other
operand is from location ad.
The result is stored into
register ARD.

Operation Code 1

Type Format

E

1
Operand Format R, @= N, X
Type Addressing ad, doubleword
Symbolic Notation (ARD)jA(ad)j—%ARDj

for j range O thru 63

Result Code Setting: The result code (RL, RG, RE) is set after each logical
operation according to the logical properties of the result as shown below.

A1l bits are "zero"
A11 bits are "“ones"
Mixed "ones" and "zeros"

(0, 0, 1)
(0, 1, 0)
(1, 0, 0)

Program Interruption: Specification error if R-field is odd.

OR DCUBLEWORD (ORD)

A logical OR operation
is applied at each bit position
(j) of two operand doublewords.
One operand is from arithmetic
register ARD and the other
operand is from location od.
The result is stored into
register ARD. '

Operation Code E5

Type Format 1

Operand Format R,@= N, X
ad, doublewgrd

Type Addressing
Symbolic Notation (AﬁD)j\/(ad j*’ARDj
. for j range O thru 63

Result Code Setting: The result code (RL, RG, RE) is set after each Togical
operation according to the logical properties of the result as shown below.

A11 bits are "zero"
A1l bits are "one"
Mixed "ones" and "zeros"

(0, 0, 1)
(0, 1, 0)
(1, 0, 0)

Program Interruption: Specification error if R-field is odd.

Logical Instructions 23
Section B3



»XCLUSIVE OR DOUBLEWORD {XORD)

A logical EXCLUSIVE OR
operation is applied at each
bit position (j) of two operand
doublewords. One operand is
from arithmetic register ARD
and the other operand is from

E9

o

Ry(a)= N, X

o, doubleword
(ARD)j(:)(ad)iﬂbARDj

for j range 0 thru 63

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

lTocation od. The result is
stored into register ARD.

Result Code Setting: The result code (

RL, RG, RE) is set after each logical

operaticn according to the logical properties of the result as shown below.

A11 bits are "zero"
A11 bits are "ones"

Mixed "ones" and “zeros"

(G, 0, 1)
(0, 1, 0)
(1, 0, 0)

Program Interruption: Specification.error if R-field is odd.

EQUIVALENCE DOUSLEWORD (EQCD)

) M Togical EQUIVALENCE
operaticn is applied at each
bit position (j) of two
operand doublewords. One
operand is from arithmetic
register ARD and the other

Operation Code ED

Type Format 1 -

Operand Format R,@= N, X

Type Addressing ad, doubleword
Symbolic Notation (ARD)fg){ad)jﬁpARDj

for j range O thru 63

operand is from location od.
The result is steored into register ARD.

Result Code Setting:

The result code (RL, RG, RE) is set after each logical

operation according to the logical properties of the result as shown below.

A1l bits are "zero"
A1l bits are "ones"

Mixed "ones" and "zeros"

(0, 0, 1)
(0, 1, 0)
(1, 0, 0)

Program Interruption: specification error if R-field is odd.

94



SHIFT INSTRUCTIONS

ARITHMETIC SHIFT WORD (SA)
Operation Code co
The contents of the single- Type Format 4
word arithmetic register AR, Operand Format R, I, X
designated by the R-field, is Type Addressing Immediate
shifted arithmetically either Symbolic Notation  (AR).—# AR. (Arith.)
right or left and the result J J-sc

is entered into register AR.

The direction and the amount of shift is determined by the shift count (SC)
information in the 7 LSB's of the N-field of the instruction word. The
direction and amount of shift may be modified by the index register specified
by the X-field when X # 0. When modification occurs, MN and (X) are added
the same as for halfword immediate operands. The least significant 7 bits
of the result are interpreted as a twos complement number to determine the
direction and amount of shift. This is equivalent to 7 bit addition.
Overflow of the 7 bit shift count is not detected. For example, a minus

60 indexed by a minus 7 gives a plus 61; plus 60 indexed by plus 6 gives

a minus 62. Bit position 25 of the N-field and of the contents of X is
interpreted as the sign position for shift instructions only. A positive
sign of the resulting shift count causes a left shift of SC bit positions.
A negative sign of the resulting shift count causes a right shift of SC bit
positions. The value of SC is within the range: -64<SC £+463. '

Arithmetic right shift (negative shift count)

bits shifted out of

S [-»sign extension Tow-order bit position

k . are lost
Sign bit remains unchanged
Arithmetic left shift (positive shift count)
bits shifted
Egg?i?gnségz €« S — o 0 zeros are entered
lost . into low-order bit

position

Programming Notes: The 7-bit shift count is used for all word sizes. If the
resulting shift count should exceed the word size of 32-bits for singleword
shift instructions, then the register result would appear as follows: .

Shift Instructions 95
© Section B3



Arithmetic Left Shift - A register result of zero with overflow detection.
Triere would be no overflow detection if the original value of the register
before shifting was zero.

Avithmetic Right Shift - Either zero or minus one (fixed point, 2's
comp tement) depending on whether the original rezister value was positive
or negative, respectively. The M-field is not used but must be zero.

Kisc, the most significant bit of the T-field is not used, i.e., indirect
stift counts are not possible. The M-field is not used, but must be zero.

Result Code Setting: The result code (Ri, RG, RE) is set according to the
arithmetic vaiue of the result as follows:

(AR) < © (1, 0, 0)
(RR) > © (6, 1, 0)
(AR) =0 (Os Os ])

Program Interruption: Fixed point overflow is detected, for arithmetic
Teft shifts only, if the sign bit changes during the shift. The entire
shift operation designated by the shift count is completed regardiess
of overfliow conditions.




ARITHMETIC SHIFT HALFWORD (SAH)

The contents of the left Operation Code Cl
half of singleword arithmetic Type Format 4
register AR, designated by the Operand Format R, I, X
R-field, is shifted arithmetically Type Addressing Immediate
either right or left and the Symbolic Notation (ARTh) . —+AR1h.
result is entered into the left ‘ J (A .tf"ic
half of register AR. rith.

The direction and the amount of shift
is determined in exactly the same manner as described in the SA instruction.

Programming Notes: The 7-bit shift count is used for all word sizes. If
the resuiting shift count should exceed the word size of 16-bits for half-
words, then the register result would appear as described under programming
notes of the SA instruction.

Also, the most significant bit of the T-field is not used, i.e., 1nd1rect
sh1ft counts are not possible. The M-field must be zero.

Result Code Setting: The result code (RL, RG, RE) is set according to
the arithmetic value of the result as follows:

(AR]h) £ 0 {(t, ¢, 0)

(AR]h) >0 (0, 1, 0)

(ARp,) = 0 (0,0, 1)
Program Interruption: Fixed point overflow is detected, for arithmetic
left shifts only, if the sign bit changes during the shifi. The entire

shift operation designated by the shift count is completed regardless :
of overflow conditions.

Shift Instructions g7
Section B3



ARITHMETIC SHIFT DOUBLEWORD (SAD)

The contents of the double- gpfgagéggagode 23
word arithmetic register ARD, Ogérand %ormat R. 1. X
de?1gna?ed ?Y{%hg evgg}R»i!el?] Type Addressing Iémeéiate
value, is shifted arithmeticall- ARSI ; i _
either right or left and the Symbolic Notation (ARD)j kARDj sc
result is entered into double- (Qrith.)

word register ARD.

The direction and the amount of shift is
detevymined in the same manner as described in the SA instruction.

Programming Notes: The shift count (SC) cannot exceed the doubleword
size of o4-bits. Also, the most significant bit of the T-field is not
used, i.e., indirect shift counts are not possible. The M-field must be zero.

Result Code Settina: The result code (RL, RG, RE) is set according to
the arithmetic value of the doubleword result as follows:

(ARD) < 0 (1, 0, 0)
(ARD) > 0 (0, 1, 0)
(ARD) = 0 (0, 0, 1)

Program Interruption: Fixed point overflow is detected, for arithmetic
left shifts only, if the sign bit changes during the shift. The entire
shift operation designated by the shift count is completed regardless
of overflow conditions. Specification error if R-field is odd.

98



LOGICAL SHIFT WORD {SL)
‘ Operation Code ca
The contents of the single- éygiaigrgzip"t g I. X
word arithmetic register AR, desig- Tp . Addreggin Immediate
nated by the R-field, is shifted b Tie Notatl (AR) AR
logically and the result is entered ymboliic Rotation i My-sc
into arithmetic register AR. (1ogical)

The direction and the amount of shift is determined by the shift count (SC)
information in the 7 LSB's of the N-field of the instruction word. The
direction and amount of shift may be modified by the index register specified
by ‘the X-field when X # 0. When modification occurs, MN and (X) are added
the same as for halfword immediate operands. The least significant 7 bits
of the result are interpreted as a twos complement number to determine the
direction and amount of shift. This is equivalent to 7 bit addition. Over-
~ flow of the 7 bit shift count is not detected. For example, a minus 60
indexed by a minus 7 gives a plus 61; plus 60 indexed by plus 6 gives a
minus 62. Bit position 25 of the N-field and of the contents of X is
interpreted as the sign position for shift instructions only. A positive
sign of the resulting shift count causes a left shift of SC bit positions.
A negative sign of the resulting shift count causes a right shift of SC
bit positions. The value of SC is within the range: -64 < SC £ +63.

Logical right shift (negative shift count)

 ovtad bits shifted
. . 0 ———e= —_— ——+ out of low-order
into high-order bit position are
bit position ]ostp on

Logical left shift (positive shift count)

bits shifted

out of bit = zeros are inserted
o1 O PU—— - A -
position O are ) 0 into low-order bit

Tost : positions

Logical left shifts are the same as arithmetic left shifts, except that
overflows are not detected.

Programming Notes: The 7-bit shift count is used for all word sizes.
If the resulting shift count should exceed the word size of 32-bits for
singleword shift instructions, then the register result would appear as.
follows:

Shift Instructions 99
Section B3



Logical left shift -~ all zeros and no overflow detection.
Logical right shift - all zeros.

Also, the most significant bit of the T-field is not used, i.e.,
indirect shift counts are not possible. The M-field must be zero.

Result Code Setting: The result code (RL, RG, RE) is set according to
the logical propercies of the singieword result as Tollows:

Mixed “"ones" and "zeros™ (1, 0, 0)
A1l bits are "one" (0, 1, 0)
A11 bits are "zero" (0, 0, 1)

Program Interruption: None.

100



LOGICAL SHIFT HALFWORD (SLH)
Operation Code C5
. - o Type Format 4

The:contents of:the 1gft Operand Format R,I,X

half of singleword arithmetic o .
. . . X Type Addressing Immediate

register AR, designated by the Symbolic Notation  (ARTR),—»ARIh
R-field, is shifted logicaliy Y ‘ j “Hyase
and the result is entered into (logical)

the left haif of register AR.

The direction and the amount of
shift is determined in the same
manner as described in the SL
instruction.

Programming Notes: The 7-bit shift count is used for all word sizes. If
the resulting shift count should exceed the word size of 16-bits for half-
words, then the register result would appear as follows:

Logical left shift - all zeros and no overflow detection.
Logical right shift - all zeros.

Also, the most significant bit of the T-field is not used, i.e., indirect
shift counts are not possible. The M-field must be zerc.

Result Code Setting: The result code (RL, RG, RE) is set according to
the logical properties of the halfword result as follows:

Mixed "ones" and “zeros" (1, 0, 0)
A1l bits are "one" (0, 1, 0)

A1l bits are "zero" (0, 0, 1)

g

Program Interruption: None.

Shift.Instructions 101
Section B3



LOGICAL SHIFT DOUBLEWORD (SLD) ‘
- Operation Code C7
Tyve Format 4
The contents of the Operand Format R, I, X

doubleword arithmetic register Type Addressing Immediate

ARD, cesignated by the even Symbolic Notation (ARD) .—» ARD,
R-fie¥d value, is shifted %] . %Ssc
“logically and the result ] 0gica

is cntered into doubleword
register ARD. The direction

and the amount of shift is
determined in the same menner

as described in the SL instruction.

Programming Notes: The shift count (SC) cannot exceed the doubleword size
of 64-bits, elthough SC may be set to minus 64 to get an all zeros resuit.
Also, the most significant bit of the T-field is not used, i.e., indirect
shifi counts are not possible. The M-field must be zero.

Result Code Setting: Tha result code (RL, RG, RE) is set according to
the logical properties of the doubleword result as follows:

Mixed "ones" and "zeros" (1, 0, 0)
A11 bits are "one" (0, 1, 0)
A11 bits are "zero" (0, 0, 1)

Program Interruption: Specification error if R-field is odd.

102



CIRCULAR SHIFT WORD (SC)
Operation Code cc
The contents of single- Type Format 4
word arithmetic register /R, Operand Format R, I, X
designated by the R-field, Type Addressing Immediate
is shifted circularly and Symbolic Notation — (AR) ™ AR s oy
the result is entered into Mod 32

register AR.

The direction and the amount of shift is determined by the shift
count (SC) information in the 7 LSB's of the N-fieid of the instruction
word. The direction and amount of snift mey be modified by the index
register specified by the X-field when X # 0. When modification occurs,
MN and (X) are added the same as for halfword immediate operands. The
least significant 7 bits of the result are interpreted as a twos complement
number to determine the direction and amount of shift. This is equivalent
to 7 bit addition. Overflow of the 7 bit shift count is not detected.

For example, a minus 60 indexed by a minus 7 gives a plus 61; plus 60
indexed by plus 6 gives a minus 62. Bit position 25 of the N-field and

of the contents of X is interpreted as the sign position for shift in-
structions only. A positive sign of the resulting shift count causes

a left shift of SC bit positions. A negative sign of the resulting shift
count causes a right shift of SC bit positions. The value of SC is within
the range: -64 =SC = +63.

Circular right shift (negative shift count)

C. )

Bits shifted out of low-order bit position are entered into high-order
bit position.

"y
el

Circular left shift (positive shift count)

g - -

/
L@—-—.——-—
Bits shifted out of high-order bif position are entered into the Tow-
order bit position. Overflows are not detected.

Shift Instructions 103
Section B3



Progromming Notes: The 7-bit shift count is used for all word sizes.
I1 the resulting shift count should exceed the word size of 32-bits
for singleword shift instructions, then the register result would
appear as follows:

Circular right shift - Actual right shift equals shift count
pius 32. (SC is modulo 32).

Circular left shift - Actual Teft shift equals shift count
: minus 32. (SC is modulo 32).

Also, the most significant bit of the T-field is not used, i.e., indirect
shift counts are not possible. The M-field must be zero.

Result Code Setting: The result code (RL, RG, RL) is set according to
the logical properties of the singleword result as follows:

Mixed "ones" and "zeros" (1, 0, 0)
A1l bits are “one" (0, 1, 0)
A1l bits are "zero" (0, 0, 1)

Program Interruption: None.

104



CIRCULAR SHIFT HALFUORD (SCH)

The contents of the jeft Operation Code CD
half of singleword avrithmatic ) Type Format 4
register /AR, designated by the Operand Format R, I, X
R-field, is shifted circulariy Type Addressing Immediate
and the result is entered Symbolic Notation (ARTh) —— AR1h
into the left half of register J (j-sc)
AR. The direction and ithe amount
of shift is determined in the same

manner as dascribed in the SC insiruction.

Programming Notes: The 7-bit shift count is used for all word sizes.
If the resuiting shift count should exgeed the word size of lé-bits
for halfwords, then the register result would appear as follows:

Circular right shift - Actval right shift equals
shift count plus nearest
smaller multiple of 16 which
brings SC into the range
-16 <= SC < 0 (SC is modulo  16).

Circular left shift - Actual left shift equals
- shift count minus nearest
smaller multiple of 16 which
brings SC into the range
0= SC <15 (SC is modulo 16)
Also, the most significant bit of the T-field ic net used, i.e., in-

Loy

direct shift counts are not possible. The M-field must be zero.

Result Code Setting: The result code (RL, RG, RE) is set according to
the Togical properties of the halfword result as follows:

Mixed "ones" and "zeros" (1, 0, 0)
A1l bits are "one" (0, 1, 0)
A1l bits are "zero" (0, 0, 1)

Program Interruption: None.

Shif@ Instructions 105
Section B3



CIRCULAR SHIFT DOUBLEWORD (SCB)
Gperation Code CF
o . Type Format 4
S ole) i
The contenls of %h?., Operand Format R, I, X
doubleword arithmetic regis- O .q
ter ARD, designated by the Type Addressing Immediate
- A} s M v R - e A T 1 Not 1
even R-field value, is shifted Symbolic Notation (ARD)j*é'ARD(j-SC)
circularly and the result is - Mod 64

entered into doubleword regis-

ter ARD. The direction and the
amount of shift is determined in
the same manner as described in the
SC instruction.

Programming Notes: The shift count (SC) cannot exceed the doubleword
size of 04-bits. The original value results if SC is zero or minus 64.
Also, the most significant bit of the T-field is not used, i.e.,
indirect shift counts are not possible. The M-field must be zero.

Result Code Setting: The result code (RL, RG, RE) is set according
to the logical properties of the doubleword result as follows:

Mixed "ones" and "zeros" ~ (1, 0, 0)
A1l bits are "one" ’ (0, 1, 0)
A1l bits are "zero" (0, 0, 1)

Program Interruption: Specification error if R-field is odd.

106



BIT REVERSAL WORD (RVS)
Operation Code Co
ouay ; . Type Format 4
. vae{se the.rwght most Operand Format R, I, X
n bits of the contents of . it
arithmetic reygister AR. The Type Addressing Imnediate
' ’ : Symbolic Notation  See Below

other bits of (AR) remain

unchanged. n is equal to

IMMED + (X) and is restricted

to the range 0 < n < =32, where n is a 2's complement number.
Let m = -n

For m = (2,3 /4,...32)

(R)5431-m " R3o_j for j = (1,2,3,...n)
(R)k for k = (0,1,2,...31-m) remain unchanged.

For m = 0 or 1, the contents of R remain unchanged.

For example, suppose n = -7
Before REV :
Reg. R 1234567
After REV
Reg. R unchanged 7654321

Result Code Setting: The result code (RL, RG, RE) is set according to
the Togical properties of the singleword result as follows:

Mixed "ones" and "zeros" (1, 0, 0)
A11 bits are "one" (0, 1, 0)
A11 bits are "zero" (0, 0, 1)

Program Interruption: None.

Shift Instructions 107
Section B3



CONPARE INSTRUCTIONS

CAHPARE WORD (C)

: Operation Code C8, CE
GP Code C8 o Type Format 1
Operand Forimat R, @ = N, X
This compare instruction tests tha Type Addressing o, singleword
contents of singlword arithmetic register Symbolic Notation (R) : (o)
AR relative to the contents of location o

and praserves the result of the comparison
in the compare coce bits (CL, CG, CE) as specified below. The contents of AR
and o remain unchznged.

CaMPARE Code Setting: (CL, CG, CE)

(AR) < (m) (1’ 0, 0)
(AR) > (a) (0, 1, 0)
(AR) = (a) (0, 0, 1)

This instruction compares the contents of the index register XR or vector
register VR, designated by R relative to the contents of the fixed point single
length operand in location o and preserves the result of the comparison in the
compare code bits shown below. The contents of XR or VR and o remain unchanged.

¥R for R-field range 0 thru 7
VR for R-field range 8 thru F

Compare. Code_Settinas (CL, CG, CE)

(R) < (ag (1, 0, 0)
(R) > (a (Os 13 0)
(R) = () (0, 0, 1) .

Result Code: Not Affected

Program Interruption: None

COMPARE WORD IMMEDIATE (CI)

0P CODE D8
This compare immediate Operation Code D8, DE
singleword instruction tests Type Format 4
the contents of arithmetic re- Operand Format R, I, X
gister AR relative to a single Type Addressing Imrpedlat;a\,1 .
length arithmetic immediate ) ) , artfh. whole wor
operand and preserves the result | Symbolic Notation (R):n
of the comparison in the compare
code bits. The contents of AR

remain unchanged.

108



Compare Code Seiting: (CL, CG, CE)

(AR) ¢ TiED (1, 0, 0)

(AR) » IMMED (0, 1, 0)

(AR) = IFMED (0, 0, 1)
0P CODE DE

This compare immediate singleword instruction tests the contents of
index register XR or vector register VR, designated by R, relative to a
single length arithmetic immediate operand and preserves the result of the
comparison in the compare code bits. The contents of XR and VR remain un-
changed.

XR for R-field range O thru 7
VR for R-field range 8 thru F

Compare Code Setting: (CL, CG, CE)

(R) £ IFMED ‘ (1, 0, 0)
(R) > IMMED (0, 1, 0)
(R) = IMMED (0,0, 1)

Result Code: Not Affected

Program Interruption: None -

COMPARE HALFWORD (CH)
Operation Code C9

The compare halfword instruction tests Type Format 1
the contents of the 16 most significant bits Operand Format R, @ =N, X
of arithmetic register AR relative to the Type Addressing ah, halfword

contents of halfword location oh, and pre- Symbolic Notation (ARTh):(ah)
serves the result of the comparison in com- .
pare code bits as specified below. The
contents of AR and « remain unchanged.

Compare Code Setting: (CL, CG, CE)

(AR1h) < (ch) (1, 0, 0)
(AR1h) > (ah) (0,1, 0)
(AR1h) = (ah) (0, 0, 1)

Result Code: MNot Affected

Program Interruption: None

Compare Instructions 109
Section B3 .



COMPARE HALFWORD IMMEDIATE (CIR)

A compare immediatc halfword
instruction tests the most signi-
ficant 16 bits of arithmetic
register AR relative to a halfword
imnmediate operand and preserves the

Operation Code D9

Type Format 4
Operand roymat R, I, X
Type Addressing
Symbolic Notation (AR1h):nrh

Immediate halfword

result of the comparison in the
compare code bits. The contents of
registey AR remains unchanged.

Compare Code Setting: (CL, CG, CE)

(AR1h) < nrh (1, ¢, 0)
(AR.”'I) > nrh (Os ]s O)
(ARTh) = nrh (0, 0, 1)

Result Code: Not Affected

Program Interruption: None

COMPARE FLOATING POINT WORD (CF)

The compare floating point instruction
tests the contents of the singleword arith-
metic register AR relative to the contents
of location a and preserves the result of
the comparison in the compare code bits as
specified below. The contents of AR and a
remain unchanged.

Operation Code A
Type Format

C
1
Operand Format R,
G,
(A

@ =N, X
Type Addressing s1ngTew0rd
Symbolic Notation . R) (a)

PROGRAMMING &OTE FIoatlng point input arguments must be hexadecimally normalized
prior to use in a floating po1nt compare instruction.

Compare Code Setting: (CL, CG,’
(AR} < (a) (1, 0, 0)
gAR) > éa) (0, 1, 0)
AR) = Ot) (0$ Os ])

Result Code: Not Affected

Program Interrvuption: None

110



COMPARE FLOATING POINT DOUBLEWORD (CFD)

The compare instructicn tesis the con-
tents of the doubleword arithmetic register
ARDrelative to the contents of location ad
and preserves the result of the comparison
in the compare code bits as specified below.
The cowtents of ARD and od remain unchanged.

PROGRAMMING NOTE Floating point input arg«mnq

Operation Code CB
Type Format 1
Operand Format R, @ =N, X

Type Addressing ad, doubleword
Symbolic Notation (ARD):(ad)

nust be hexedecimally normaiized

priorv tO USE il 2 fl oating po:nt cempare instruc t.on

Compare Code Setting: (CL, CG, CE)

(ARD) € (ad) (1, 0, 0)
(ARD) > (ad) (0, 1, 0)
(ARD) == (od) (0, 0, 1)

Result Code: Not Affected

Program Interruption: Specification error if R-field is odd.

COMPARE LOGICAL AND (CAND)

This whole word logical compare instruc-
tion first performs a logical "AND" operation
on the contents of register AR and the con-
tents of location «. The compare code bits
are set according to the logical p:c;crties
of the 32-bit result, but the result is not
stored.

Compare Code Setting: (CL, CG, CE)

.Mixed "ones" and "zeros" (1, 0,
A1l bits are “"one" (0, 1,
A1l bits are "zero" (o, 0,

Result Code: Not Affected

Program Interruption: None

Operation Code E2

Type Format 1

Operand Format R, 8 = N, X
Type Addressing o, Singleword
Symbolic Notation (AR)j/\(a)j

for j range
0 thru 31

Compare Instructions 111
Section B3



(OSPARE LOGICAL “MAND" IMMEDIATE (CANDI)

Operation Code F2
This logical immedicte instruction | Type Format 4
first performe a legical "ANDY opevation | Operand Format R, I, X
on the singleword contents of register | Type Addressing Imﬂediate logical SW
59 and the singleword Togical immediate | Symbolic Notation (;‘-‘\,{),z ]

hg rand. Thn compare code is set ac-

;uwlih + the logical properties of

for j range O thru 31

the 372- bTL re<u11, but the rtJuXL is
mot storod.

Conpare Code Setting: (CL, CG, CE)

Mixed "1's" and "0's" (1, 0, 0)
A1l bits are “i" (0, 1, 0)
A1 bits are "0" (0, 0, 1)

fesult Code: Not Affected

_Pregram Interruption:- None

COMPARE LOGICAL OR (COR)

This logical compare instruction first
performs a logical “"OR" operation on the
contents of register AR and the contents of
location o. The compare code bits are set
according to the logical properties of the
32-bit result, but the result is not stored.

The Togical properties and the respec-
tive compare codes are listed below.

Compare Code Setting: (CL, CG, CE)

Mixed “"ones" and “zeros" (1,
A1l bits are "one" (0,
A1l bits are "zero" (0,

Result Code: Not Affected

Program Interruption: None

112

s

The contents of register AR remain unchanged by this instruction.

Operation Code E6
Type Format 1
Operand Format R, @ =N, X
Type Addressing oy Si ng1eword
Symbolic Notation (A ) \/(a)
for 3 range
0 thru 31




COMPARE LOGICAL "OR" IMMEDIATLC (CORI)
Operation Code Fo

This Tlogical immediate instruc- Type Format b
tion first performs & logical "OR" Operand Format R, I, X
operation on the contents of single- Type Addressing Immediate, logical SW
word register AR and the singleword Symbolic Hotation (AR)j v/nj
logical immadiate operand. The com- N "
pare code is set according to the for j range 0 thru 31

logical properties of the 32-bit
result, but the result is not stored.
The contents of register AR

remain unchanged by logical compare instructions.

Compare‘Code Setting: (CL, CG, CE)

Mixed "1's" and "0's" (1, 0, 0)
A1l bits are "1" (0, 1, 0)
A1l bits are "O" (0, 0, 1)

Result Code: Not Affected

Program Interruption: None

COMPARE LOGICAL "AND" DOUBLEWORD (CANDD)

Doubleword logical compare instructions
first perform the specified logical operation
on the contents of doubleword register ARD
and the contents of doubleword lccation ad.
The compare code bits are set according to
the logical preperties of the 64-bit result,
but the result is not stored. The logical
properties and the respective compare codes
are listed below.

Compare Code Setting: (CL, CG, CE)

Mixed "1's" and "O's" (1, 0, 0)
A1l bits are "1" (0, 1, 0)
A11 bits are "O" (0, 0, 1)

Result Code: Not Affected

Operation Code E3

Type Format 1

Operand Format R, @ = N, X
Type Addressing o> doubleword
Symbolic Notation (ARD)j,A (ad)j

for j range
0 thru 63

Program Interruption: Specification error if R-field is odd.

Compare Instructions 113
Section B3



COMPARE LOGICAL "OR" DOUBLE WorRD (CORD)

Doublevord legical compare instructions
first perforim the specified logical operation
on the contents of doubleword register ARD
ennd the contents of doubleword location od.
The compare coce bits are set according to
{42 Jogical properties of the 64-bit result,
but the result is not stored. The logical
propeviies and the respective compare codes
ave listed below.

Compare Code Setting: (CL, CG, CE)

Mixed "1's" and "0's" (1, 0, 0)
A1l bits are "1" . (0, 1, 0)
A]l bits are "O" (0, 0, 1)

Fesult Code: Not Affected

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

E7

1

R, € =N, X
ad_ -doubleword
(AQD)j\V (ad)j

for j range
0 thru 63

Program Interruplion: gpecification error if R-field is odd.

114



CONDITIONAL BRANCH INSTRUCTIONS
BRANCH ON COMPARISON TRUE (Bce)

Operation Code 91
The R-field of the instruction word is Type Format g
matched with the compare code indicators Operand Format M,@ = N, X
and a branch is taken to Tocation B if the Typs Addressing 8, branch

logical equation, COND = r@fCLérz'CG+r3-CE, Synibnlic Notation B - PC if COND

is true, otherwise the next instruction in
sequence is taken. Terms CL, CG; & CE in
the logicel equation are the compare code indicators, while ry, ro, &4 are the
3 LSB's of the R-field. The most significant bit of the R-field Js ignored.

The instruction mnemonic, R-field value, and branch condition are shown below

for the case of & Branch on Comparison True instruction operating on the compare

Code setting of a previcus Arithmetic Comparison instruction. These instructions
include C, (T, «H, <CIH,. CF, CFD.

Mnemonic R-field Branch on Comparison Condition

NOP X000 : take next instruction

BE X001 (R) = (o)

BG . X010 (R) > (a)

BGE X011 (R) 2 (a)

BL X100 (R) < (a)

BLE X101 (R) = (a)

BNE X110 (R) # ()

B X111 unconditional branch

Compare Code: Not Affected

Result Code: Not Affected

Program Interruption: None

Conditional Branch Instructdéons 115
Section B3



The branch address, 8, for a Branch on Condition True instruction is a
function of the T, M, and N-fields of the instruction word as follows:

T M Svranch Address, 8

0 0 - N*+(PC) Relative to program counter

1-7 0 W+ (PC)+(T) Relative to program counter plus indax

0 1-F N+{M) Base plus displacement

1-7  1-F N+(M)+(T) Base plus displacement plus index

8 0 (N*+(PC)) Indirect relative to program counter

9-F 0 (N*=+(PC)+(T-8)) Indirect relative to program counter plus index
8 1-F (N+(M)) Indirect relative to base plus displacement
9-F 1-F (N+(M)+(T-8)) Indirect relative to base plus displacement

plus index
where "N + (M) is Base address plus displacement (N is positive, 12-bit

number) and N* = Signed N-field, 11-bits plus sign bit, 2's compiement.
This branch address definition is used for all test and braench instructions.

These include:

BE, BG, BGE, BL, BLE, BNE, B

BCZ, BCO, BCNM, BCM, BCNO, BCNZ

BZ, BPL, BZP, BMI, BZM, BNZ

BRZ, BRO, BRNM, BRM, BRNQ, BRNZ

BYU, BO, BUG, BX, BXU, BXO, BXUQ, BD
BBU BDO, BDUO, BDX, BDXU, BDXO, BDXUO

BXEC, DLB, .BLX -
18Z, IBNZ, DBZ, DBNZ

When an indirect branch address is specified (T '8), the indirect address
format is the same as that used by indirect addressing. except that addresses
42F reference central memory regardless of M.

If a branch address is less than or equal to 2F (B - 2F), then the program
branches to central memory location - -regardiess of the M and T-field speci-
fications. Branches cannnt reference the rer~ister file.

116



Relative branch addresses are generated as follows:

For M = 0 8 20 31
N-field [ Extended sign IS N
12 12-bits SR TT-bits ———2
+
8 31
Program [ PCY,[22-Lits) ]
counter

Branch address, g

L N* + (PC) H

Conditionai Branch Instructions 117
Section B3



BRANCH OM COMPARISON AFTER LOGICAL
COMPARISON INSTRUCTIONS (BCC)®
Operation Code 91

The Branch on Comparison instruction Type Format 9
described on the previcus page also func- Operand Format M, 6= N, X
tions as & logical test to determine the Type Addressing B, branch
outcome of a previcus Logical Comparison Symbolic Notation g - PC it COND

instruction. These instructions include:

AND, COR, CANDD, CCGRD, CANDI, CORI.

Mnemonic R-field Branch condition
NOP X000 Do not branch
BCZ X001 A1l bits are zero
BCO X010 A11 bits are one
BCNM X011 Not mixed
BCM X100 Mixed zeros & ones
BCHO X101 ' Not all ones
BCNZ X110 Not all zeros
B ‘ X1 Unconditional branch

Compare Code: Not Affected

Result Code: Not Affected

Program Interruption: None

118



BRANCH OM RESULT CODE TRUE {Bre)

The R-field of the instruction word is
matched with the result code indicators and
a branch is taken to location g if the 1091"
RG+r.*RE, s
true, ofher”1se the next |n>{ructn inoin se-

cal equaticn, COND = r

RL4r, .

quence is taken. Terms RL, RG, & RE in the

logical equation are
3 LSB's of the R-field.

Operation Code 95
Type Format 9
Operand Fermat M, @ =N, X

Type Addressing 8, branch
Symboiic Notation

g - PC if R COND

the result code indicators, while s , e, & ra axe the

The most signhificant bit of tnL é@ld 13 ignored.
The instruction mnemonic, R-field value, and branch cowd1t10n are shown beliow
for the case of a Branch on Result Code True instruction operating on the
result code setting of a previous Load, Store, or Arithmetic instructlion.

Mnemonic R-field Branch on REsult Code Condition
NOP X000 take next instruction
BZ X001 (R) =0
BPL X010 (R) >0
BZP X011 (R) = 0
- BMI X100 (R) <0
BZM X101 (R) S0
BNZ X110 (R) # 0
B X111 unconditional branch

Compare Code: Not Affected

Result Code: Not Affected

Program Interruption:

None

Conditional Branch Instructions
Section B3

119



HBRAMCH ON RESULT CODL INSTRUCTION
FTER A LOGICAL INSTRUCTION (BLR)

Oneration Code 95
The branch on Result Code instruction | Type Format 9
described on the previous page also func- Operand Format M, @ =N, X
ticns as a legical test to determine the Type Addressing B, branch

outcome of a previous logical instruction. | Symbolic Notation 8 - PC if R COND
The result code setting is determined by

the current logical properties of the B
mest recently referenced register, providing that register was referenced by
a Tegical instruction.

Mnemonic R-field Branch condition
NOP X000 Do not branch
_BRZ X001 A1l bits are zero
'BRO X010 A11 bits are one
BRNM X011 Not mixed
BRM - X100 Mixed zeros & ones
BRNO X101 Not all ones
BRNZ X110 .. Not all zeros
B X111 Unconditional branch

Compare Code: The indicator code settings are not affected by any of the
branch instructions just described.

Result Code: Not Affected

Program Interruption: None

120



BRANCH OGN ARITHMETIC EXCEPTION (BAE)

The R-field of the instruction word
is compared with the arithmetic exception
code &nd a branch is taken to location g
when the legical equation,

\A;‘\ C = ~' "f" * '+ ¢ ’A'%'Y' » J

BRANCH ro'D ry X ) 5 3 ¢

is true; otherwise the next instruction in seaguence is taken.

Operation Code 9D

Type Format 0

Operand Format M, 8 = N, X
Type Addressing p, branch

Synbolic Notation g - PC if AL COND

Terms ﬁ, X, &,

and U in the logical equation wre the arithmetic exceplion code bits, while

s rl, r,, and r, represent the bits of the R-field.
tRe Y instruction.

brancii conditYons for a 873 ~ ~

The table beiow shows
The branch address, g, for

& BAE - - instruction is defined identical to that of a Branch on comparison

True instruction.

The arithmetic exception bits are set when the condition occurs and the
bit so set will remain set until it is tested by aBAE - - instruction.
Only the tested bit/s as indicated by "ones" in the R-field are reset upon

execution of the AE test instruction.

Bits not tested are not resect.

Thus

the AE bits (D, X, §, and U) are cumulative in indicating arithmetic exceptions.

Mnemonic R-field Branch on Condition

BU 0001 Floating point exp. underflow

BO 0010 Floating point exp. overflow

BUO 0011 Floating point exp. underfiow or
overflow

BX 0100 Fixed point overflow

BXU 0101 Fixed point overflow or floating point
exp. underflow

BXO 0110 Fixed point overflow or floating point
exp. overflow

BXUO o Fixed point overflow or floating point
exp. underflow or overflow :

BD 1000 Divide check

BDU 1001 Divide check or floating point exp.
underflow

BDO - 1010 Diviae check or floating point exp.
overflow

BDUO 1011 Divide check or floating point exp.

underflow or overfiow

Conditional Branch Instructions 7j2
Section B3



BDX
BOXU

BDX0

BDXUO

1100
1101

1110

1111

Compare Code: Not Affected

Result Code: HNot Affected

Program Interruption:

122

Nohe

Divide check or fixed point overflow

Divide check or fixed point overflow
or floating point exp. underflow

Divide check or fixed point overflow
or floating point cxp. overflow

Divide check or fixed point overficw
or floating point exponent underflow
or overfiow :



BRANCH ON EXECUTE CONDITION ({BXEC)
' Operation Code 9C
Type Format 3
The R-field of the instruction Operand Format @ N, X
word is compared with the Branch or Type Addressing g, branch
Skip register (BSR) and a branch is Symbolic Notation B + PC if
taken to location B when the logical BRANCH true

equation, l

&

BRANCH = To ° BSRO +r BSRy + r,.MCC + ra BSC,

I B
is true; otherwise the next instruction in sequence is taken.

The BSC term in the logical equation is the Branch or Skip Condition bit.
The MCC term is the Monitor Call Condition bit. Terms Fos T1s Tos and ry re-
present the four bits of the R-field.

The BSC bit is set to a "one" when an Execute instruction executes any
conditional branch or skip type instruction and the condition for branching
or skipping is satisfied. The MCC bit is set to a "one" when an Execute
instruction executes an MCP or MCW instruction. The branch or skip is not’
taken when BSC is set nor is a monitor call made to central memory and the
PPU when the MCC bit is set.

If a BXEC instruction (one for which R=0001) branches, then the condition
{for branching was satisfied. If a BXEC instruction (one for which R=0010)
branches, then an Execute instruction has executed an MCP or MCW instruction.
Both conditions are tested by a BXEC instruction with an R-field of 0011.

The indicator bits of the BSR register which correspond to the position
of "ones" in the R-field of the BXEC instruction are reset to "zero" by the
BXEC instruction. Bit positions of BSR which are not tested by "ones" in R
are not reset by the BXEC instruction. Only the two LSB's of the BSR register
are used by the BXEC instruction. Thc iwc MSB bits of the 4-bit BSR register
are spare indicator bits which are presently tied to "zero" and are unassigned.

COMPARE CODE: Not affected

. RESULT CODE: Not affected
PROGRAM INTERRUPTION: None

Conditional Branch Instructions 123
Section B3



THCREMENT AND TEST INSTRUCTIONS
INCREMENT, TEST AND BRANCH ON ZERO (IBZ)

Operation Code 88, 8C

0P Code €8 Type Format 7

Oparand Format R, @ =N, X
The contents of the arithmetic register Type Addressing B, branch

specified by the R-field is incremented by Symbolic Notation B - PC if =

unity and tested for zero. If the contents

0

of register AR equal zero afler modification,
then 2 branch is taken to the branch addvess, 8. If (AR) is non-zero the next
instruction in sequence is taken.

Test Conaition after modificaticn

Y, S
' N\
Modification ' (AR) = 0 { (AR) # 0
(AR) + 1 + AR | g +PC | (PC) + 1 PC

0P Code 8C

The contents of the index register or vector register (XVR) specified by
the R-field is incremented by unity and tested for zero. If the contents of
register XVR equal zero after modification, then a branch is taken to the

branch address, 8. If XVR is non-zero, the next instruction in sequence is
taken.

XVR is an index register, XR, ﬁf the R-field value is O thru 7.
XVR is a vector register, VR, if the R-field value is 8 thru F.

Test Condition after modification

Modification ’ (XVR) = 0 ] (XVR) # 0

(XWVR) + 1 > XVR | 8 =>PC |(PC) + 1~ PC
Result Code: (RL, RG, RE) is set according to the arithmetic value of the
register after mod1f1cat1on as follows:
Negative (1, 0, 0)
Positive (o, 1, 0;
Zero (03 0: 1

Program Interruntion: None

124



INCREMENT, TEST AND BRANCH ON NON-ZERO (IBNZ)
Operation Code 89, 8D

0P Code 89 Type Fouymal 7
Operand Format R, @ = N, X
The contents of arithmetic register AR Type Addressing B, branch
is incremented by unity end tested for non- Symbolic Notation 8 » PC if # 0

Zeyro. f (AR) is non-zero after modifica-
tion, a branch is taken to g. Jf (AR) is
zevo, the next instruction is taken.

Test Condition after modification

: T
Modification ‘ (AR) = 0 ’ (AR) # 0
(AR) +1>AR | (PC) +1-+PC| 8- pC
0P Code 8D

The contents of the index register or vector register specified by the
R-field is incremented by unity and tested for non-zero. If (XVR) is non-
zero after modification, a branch is taken to 8. If (XVR) is zero, the next
instruction is taken. :

Test Condition after modification

A

\

' '
Modification ' (XVR) = 0 (XVR) # O

(XVR) + 1> XVR | (PC) +1>PC | 8= PC
Result Code: (RL, RG, RE) is set according to the arithmetic value of
the register after modification as follows:
Negative (1, 0, 0)
Positive (0, 1, 0)
Zero (0, 0, 1)

Program Interruption: None

Increment and Test Instructions 125
Section B3



DECREMENT, TEST AND BRANCH ON ZERO (DBZ)
Cperation Code 8A, 8E

OF Code S8A ‘ Type Format 7

T Operand Format R, @ =N, X
The contents of the arithmetic register Type Pddressing g, branch

specified by the R-field is decremented by Symbolic Notation g » PC if =

unity and Lested Tor zero. I the contents

0

of vregister AR cqual zero after modification,
thon a branch is taken to the branch address, g. If (AR) is non-zero the next
instruction in sequence is taken.

Test Condition after modification

~
Modification I (AR) = 0 ' (AR) # O
(AR) =1 AR | g-PC | (PC)+1 ~pC
OP. Code 8E

The contents of the index register or vector register specified by the
R-Tield is decremented by unity and tested for zero. If the contents of
register XVR equal zero after modification, then a branch is taken to the
branch address, g. If (XVR) is non-zero, the next instruction in sequence
is taken.

Test Conditionvafter modification

—— A N
Modification | (XVR) = 0 i (AR) # 0

(XYR) - 1 »XVR | 8>PC | (PC) 41 -PC
Result Code: The result code (RL, RG, RE) is set according to the arithmetic
value of the regisier after mod1f1cat10n as follows:
‘Negative (1, 0, 0)
Positive (0, 1, 0)
Zero (0, 0, 1)

Program Interruption: None

126



DECREMENT, TEST AKND BRANCH ON HON-ZERQ (DBNZ}
Cperatiun Code 38, 8F

0P Code 8B Type Format 7
Operand Format R, 8 =N, X
The contents of arithmetic register Type Addressing g, branch

AR 1is decremented by unity and tested for Symbolic Notation g-PC if # 0
non-zevs. If (AR) is non-zevo after modi-
fication, a branch is taken to 8. If (AR)
is zero, the next instruction is:taken.

Test Condition after modification

~ R
Modification ‘ (AR) = 0 ‘ (ARR) # 0

(AR) -1 » AR l (PC) + 1 » PC l g ~ PC

0P Code 8F

The contents of the index register or vector register specified by the
R-field is decremented by unity and tested for non-zero. If (XVR) is non-

zero after modification, a branch is taken to g. If (XVR) is zero, the next
instruction is taken.

Test Condition after modification

e e

Modification ] (XVR) =0 ' (XVR) # 0
(XVR) -1 XVR | (PC)+1sPC |8 » PC

Result Code: The result code (RL, RG, RE) is set according to the arithmetic
value of the register after modification as follows:

Negative (1, 0,0)
Positive (0, 1, 0)
Zero 0, 0, 1)

Program Intefruption: None

Increment and Test Instructions 127
Section B3



INCREMENT, TEST AND SKIP ON EQUAL (ISE)

FRA A

Oneration Code

The contents of arithmetic regisier AR Type Format
is incremented by unity and coupared rela- Operand Format
{ive to the contents of location «. 1f Type Aduressing
AR = (o) after (AR) has been wmedified, then SymboTic Notation

the next instruction is skippad. IF (AR) #

80

1

R, 8 = N, X
o, singleword
PC+2-PC if =

(<), then the next instruction is taken.

Test Condition after modification

— A
Modification | (AR) = (o) , (AR) # ()
(AR) + 1 » AR ! (PC) + 2 » PC l (PC) + 1 > PC

Result Code: The result code (RL, RG, RE) is set according to the

value of the register after modification as follows:
Negative (1, 0, 0)

Positive (0, 1, 0)
Zevo (Os 03 })

Proaram Interruption: None

128

arithmetic



INCREMEKRT, TEST AND SKIP ON MOT EQUAL (ISNE)
' Operation Code 81

The contents of arithnetic register AR Type Format 1
is incremented by unity and compared rela- Opcrand Format R, @ = N, X
tive to the contents of location a. If Type Addressing a, singleword
(AR) # (a) after (AR) has been rmodified, Symbolic Notation PC+2+PC if #

then the next instruction is skipped. If
(AR) = (&), then the next instruction is
taken,

Test Condition after modification

. e ,/\__,,,_...m.---«-s\\
Modification I (AR) = (a) I (AR) # (a)

(AR +1-AR | (PC)+1-pC | (PC) + 2~ PC

Result Code: The result code (RL, RG, RE) is set according to the arithmetic
vaiue of the register after modification as follows:

Negative (1, 0, 0)

Positive (0, 1, 0)
Zero (0, 0, 1)

Program Interruption: None

Increment and Test Instructions 129
Section B3



DECREMENT, TEST AND SKIP ON LQUAL (DSE)
Operation Code

The contents of arithmetic registur AR Type Format
is decremented by unity and compared vela- Operand Format
tive to the contents of location o. IF Type Addressing
(AR) = («) after (AR) has been modified, Symbolic Notation

then the next instruction is skipped. If

82

1

R, 8 =N, X
as Singlewecrd
PC+2-PC if =

(AR) # (a), then the next instruction is T
taken. ’

Test Condition after modification

T e N e
Modification l (AR) = {«) 1 (AR) # (o)

(RR) - 1 > AR | (vc) +2 -pc | (PC) + 1 » PC

Result Code: The result code (RL, RG, RE) is set according to the arithmetic

value of the register after modification as follows:
Negative (1, 0, 0)

Positive (0, 1, 0)
Zero (Os Os })

Program Interruption: HNone

130



DECREMENT, TEST AND SKIP ON MON-EQUAL (DSNE)
The contents of arithmetic register AR Op?ratﬁ?ﬁ Coce 83

‘e o - v e v Type Format 1

is decremented by unity and compared rela- Operend Format R.@=HN. X

tive to the contents of lecalion a. If T??QQAéd}Ssé?gq o singloword

(AR) # (o) after (AR) has been modified, Sy#golié ﬁot%t%on Pé+2+PE i% /

then the next instruction is skipped. If " h

(AR) = (a), then the next instruction is

taken.

Test Condition after modification
h f/'“*--~_«_.MM¢/k~_~*»m-*“”’““N\
Modification | (AR) = (a) l (AR) # (o)

(AR) -1 AR | (PC)+1-pC | (PC)+2 - PC

Result Code: The result code (RL, RG, RE) is set according to the arithmetic
value of the register after modification as follows:

Negative (1, 0, 0)
Positive (0, 1, 0)
Zero 0, 0, 1)

Program Interruption: None

»d Test Instructions 131
fncrement an Section B3



TeST AHD BRANCH INSTRUCTIONS
DRANCH ON LESS THAN OR EQUAL TO {BCLE)

0P Code 84 - Arithmetic Register

0P Ceode 86 - Index Register

Oueration Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

84, 86
6

R, R, N
8. branch
See table below

The contents of the arithmetic or
index register specified by the R-Tield
is adoed to the contents of the arithmetic register specified by the T-field.
The sum is stered into the arithmetic or index register specified by the «
R-fiela. This result is then compared relative to the contents of the arith-
metic register specified by the T-ficeld plus one. A branch to Tocation g is
taken if the result is less than or egual to the contents of arithmetic register
T plus one. The T-field must be even. The incremant and Timit must be stored
into an even-odd arithmetic register address pair.

0P Cozade 84
“Modification

(AR) + (AT) ~ARR

(AR) > (AT+1) Test Condition
after

modification

(AR) < (AT+1) !

8 + PC i (PC) + 1 =+ PC

OP Code 86

Modification (XVR) > (AT+1) Test Condition

after
modification

(XVR) < (AT+1) ‘

|
(XVR) + (AT) » XVR g~ PC t (PC) + 1 > PC
The branch address, g, is relative to the program counter or relative

to the base address depending on the M-field selection as shown in the table

below. Indexed branch addressing is not possible. Also, indirect branch
addressing is not possible.
M-field Branch address, g
0 N* + (PC) ‘Relative tovp%ogram counter
1-F N+ (M) Relative to base address

where N is a positive, 12-bit number
and N* is a signed, 2's complement number (11-bits plus sign bit).

Result Code: The result code (RL, RG, RE) is set according to the arithmetic
value of the register after modification as follows:

Negative (1, 0, 0)
Positive (g, 1, 0)
Zero (0, 0, 1)

Proaram Interruption: Specification error if T-field is odd.

132



BRANCH ON GREATER THAN (BCH)

~

Operation Codo ga, 87

0P Code 85 - Arithmetic Register Type Format
0P Code 85 egister Operand Format R, Ry N
0P Code 87 - Index Register ype fiddressing S

Symbolic Notation See table below

The contents of the arithmetic or
index register specified by the R-field
is added to the contents ¢f the arithmetic register specified by the T-field..
The sum is stored inte the arithmelic or index register specified by the R-field.
This result is then compared relative to the contents of the arithmefic regis-
ter specified by the T-field plus one. A brench to Tocation g is taken if the
resuli is grecater than the contents of arilhielic register T plus one. The
T-field must be even. 7The increment and Timit must be stored into an even-odd
arithmetic register address pair.

Op Code 85

Modification ‘ (AR) < (AT+1) ! (AR) > (AT+1) Test Conditicn
after

(AR) + (AT) » AR ! (PC) + 1 » PC ‘ g » PC modification

Op Code 87 ' .

Modification l (XVR) < (AT+1) l (XVR) > (AT+1) | Test Condition
after

(XVR) + (AT) - XVR- l (PC) + 1 > PC } g + PC modification

The branch address, g, is reiative Lu Lhe prograin counter or reiative
to the base address depending on:the M-field selection as shown in the table
below. Indexed branch addressing is not possible. Also, indirect branch
addressing is not possible.

M-field Branch address,g
0 N* + (PC) Relative to program counter
1-F N+ (M) Relative to base address

where N is a positive, 12-bit number
and N* is a signed, 2's complement number (11-bits plus sign bit).

Result Code: The result code (RL, RG, RE) is set according to the arithmetic
value of the register after modification as follows:

Negative (1, 0, 0)
Positive (0, 1, 0)
Zero (0, 0, 1)

Proaram Interruntion: Specificaiion error if T-field is odd.
g P

Test and Branth Instruction 133
Section B3



MISCELLAMEQUS TNSTRUCTIONS

PUSH WORD INTO LIFO STACK (PSH)

The R-field designates the arithmetlic Uncration Code 93
register to be stoved in a push operation. Type Format 2

The effective address, od, specifies a Operand Format R, @ N, X
deubleword location. The first word con- Type Addressing od, doubleword
tains a positive 16-bit word count and a Syrholic Notation (AR) > (P)
positive 16-bit space count in the jeft (P)+1 - P
and right half word, respectively. Word ’

and space counts are in 2's complement re-
presentation. The second werd con-

tains a 24-bit stack pointer as shown in
the figure below.

Locaticn

[ i
a +{  WORD COUNT [} SPACE COUNT
) ]
15 16 31

STACK POINTER
8 31

ot

N-

The doubleword locations shown above
are restricted tc an cven - odd

sing]gwordhaddress pair

In a push word instruction the first word at location o is read from
memory. The space and word counts are tested to see if either would result
in a negative value after one is added to the word count and one is.subtracted
from the space count. If either would become negative, then the operation is
terminated, the word and space counts are not updated, nothing is pushed, and
the next instruction in sequence is executed. If both the space and word
counts are zero or positive after one is added to the word count and one is
subtracted from the space count, then the updated word and space counts are
stored back into location o and the stack pointer word is read from singleword
location atl. The stack pointer is a 24-bit central memory address designating
the location into which the contents of register AR is then stored. The stack
pointer is incremented by one and stored back into location ot+1. The next
instruction is executed from the location specified by the program counter
plus two (skip). No overflow is indicated. Incrementing of the stack pointer
is carried out using full 32-bit addition.

Result Code: Not Affected

Program Interruption: None

134



PULL WORD FROM LIFO STACK {PUL)
: Operation Code 97

The R-field specifies the arithmetic Type Format 2
register to be loazded in a pull operation. Operand Format R, @ N, X

In a pull word instruction the word Type Addressing ad, doubleword
from location o is read. The space and Symbelic Notation (PS-] » P
viord counts are tested to see if either ((P)) » AR
would result in & negative value after
one is subtracted from the word count ¢

and one is added to the space couat. If either would becomz negative, then the
operation is terminated, the word end space counts are not updated, nothing is
pulled, and the next instruction in sequence is executed. If both the space
and word counts are zero or positive after one is subtracted from the word
count and one is added tc the space count, then the updated word and space
counts are stored back into location a and the stack pointer is read from
singleword location atl. The stack pointer is decremented by one before being
used to specify a 24-bit central memory address of an operand which is then
read from memory and lcoaded into register AR. The decremented stack pointer
is then stored back into location otl. The next instruction is executed from
the location specified by the program counter plus two (skip). No overflow

is indicated. Decrementing of the stack pointer is carried out using 32-bits
of the AU adder. : '

Result Code: Not Affected

Program Interruption: None

MODIFY WORD PAIR (MOD)

Operation Code 9F
Modify operates on the word-paiv Type Format 2
described in PUSH. The contents of the Operand Format = R, @ N, X
left half of the arithmetic register - Type Addressing .ed, doubleword
specified by the R-field is added to the Symbolic Notation (P)+(AR]h)+P
word count and subtracted from the space

count. Execution is forbidden if the result in the word or space count goes
negative. In this case, the operation terminates and the next successive
instruction is executed. If both word and space counts result in values which
are non-negative, the modified word and space counts replace the original
values in central memory, the halfword arithmetic register value is added to
the pointer value and the modified pointer is stored in memory and the next
sequential instruction is skipped. No overflow is indicated. Modification
of the stack pointer is carried out using full 32-bit addition.

If the halfword arithmetic register value is negative (2's complement),
the most recent <tack entries are deleted. If the halfword arithmetic reqgis-
ter value is positive, a gap of unused stack locations is created.

Result Code: Not Affected

Program Interruption: None

Miscellaneous Instructions 135
Section B3



DHANCH AND LOAD BASE REGISTLR WITH PC (BLR)
Operation Code 98
The contents of the program counter plus | Type Format 7
ong is stored inte the base register specified | Gpevand Format R, 8 = N,X
by the R-field and then an uncendiiional Type Nddressing 8, branch
branch is taken to the branch address, 8. The | Symbolic Notation (PC)+1 - BR
branch addvess is defined the same as for the g » PC

branch on comparison instructions. Also,
the Arithmelic Excepticn Cvnulukon bits
(D, E, G, U) are stored inio bit positions 0 thru 3 of base xegastcr DR and
the Arithmetic Exception Hask bits (MD, MF, MO, MU) are stored into bit
positions 4 thyu 7 of base register BR.

Programning note: (BR) appears as shown below after the BLB instruction.
0 4 8 31

Base AE COHD | AR MASK (PC) + 1
Register,BR {{D,F, 0. U)IM{D,E,C,U) : ’

Result Code: Not Affected

Proaram Intevruption: None




BRANCH AND LOAD INDEX OR VECTOR
REGISTER {(BLX) Operation Code 99
Type Format 7
The contents of the program counter Operand Format R, @ = N, X
plus one is stored into the index register Type Addressing 8, branch
or vector register specified by the R-field Symbolic Notation (PC)+1 - XVR
and then an unconditional branch is taken g »~ PC

to the branch address, g. The branch ad-
dress is defined the same as for the branch on comparison instructions< Also,
the Arithmetic Exception Condition bits (D, F, 0, U) are stored into bit posi-
tions 0 thru 3 and the Arithmetic Exception Mask bits (MD, gF, M0, MU) are
stored into bit positions 4 thru 7 of index or vector register (XR or VR).

Programning note: (XVR) appears as shown in the diagram for the BLE instruction
on the preceeding page, with the exception of replacing BR with XR or VR depend-
ing upon the value of the R-field.

XVR is XR if the R-field value is 0 thru 7
XVR is VR if the R-field value is 8 thru F

Result Code: Not Affected

Program Interruption: None

Miscellaneous Instructions 137
Section B3



LOAD EFFECTIVE ADDRESS (LEA) .
) Operation Code 56, 52
0P Code 06 ‘ Type Format 1
. : : Operand Format R, 8 =N, X
{ Load the effective address Type Addressing a, Singleword
generated by this instruction intoj Symbolic Notation Op Code 56 o« - XR or VR
‘the intex or vector register Op Code 52 - o » BR

“{¥R or VR}, designated by the :

(R-field. The effective address contains 24-bits and ‘is entered into
bit positions 8 thru 31 of XR or VR. The eight MSB's (0 thru 7) are |
filled with zeros. A i

0P Code 52

Load the effective address of this instruction into base register BR,
designated by the R-field. EA is entered into positions 8 thru 31 of BR.
The eight MSB's (0 thru'7) are filled with zeros.

Programming notes: All effective addresses generated by this instruction are
singleword addresses. When indirect addressing is specified (T-field greater
than or equal to 8), then multi-level indirect addressing is possible and the
terminal indirect address will refer to a singleword address (i.e., there is
no displacement indexing for halfword or doubleword addresses). The indirect
address format follows the normal indirect format. Indirect address requests
are tagged as execute requests when transmitted to central memory.

After an LEA instruction for which o = 2F, there is no way to tell whether
the contents of register R contains a central memory address or a register
address, except by examining the M-field of the LEA instruction which placed
the address into register R.

Result Code: Not Affected

Program Interruption: None

138



INTERPRET (INT)

This instruction loads the operation
code and the R-field of the instruction at
location o into arithmetic regisier AR (even).
It also loads the T, M, & N-ficlds of the
instruction at location o into register
AR + 1 (odd register Tccation).

(“)0m11 0-19

> AR+ 0+ AR + 1

(“)12«31 12-31

Result Code: Not Affected

Program Interruption:

EXECUTE (XEC)

This instruction executes the instruc-
tion at location «. The program counter is
incremented by one following the execut10n

Operation Code
Type Format
Operand Formet
Type Addressing
Symbolic Notation

92

1

R, @ = N, X
n, Singlewerd
(see below)

Specification error if R is

of this instruction.
If the instruction being executed is

0-11

odd.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

96

8

=N, X

o, s1na1aword
(a) = 1R

a branch or skip type instruction and the condition for branching or skipping
is satisfied, the BSC-bit of the BSRregister is set to "one" indicating that
the branch would have cccurred and the instruction following the XEC is exe-

cuted. A program branch will not occur.

The memory protection hardware will interpret the request for the instruc-

tion at location o as an execute request.

Also, any indirect memory requests

are tagged as execute requests (this is true regardless of instruction type).

Compare Code:

Result Code:

Program Interruption:

Programming Note:

Depends on instruction being executed.

Depends on instruction being executed.

Depends on instruction being executed.

If an XEC instruction executes a Branch on Execute Condition

1nstruct1on(BXEC) for which the LSB of the R-field is one, the BSC-bit of the
BSR reagister is reset to zero if BSC was previocusly true (one) and remains a zero

if BSC was previously false (zero).

struction is zero, then the BSC bit remains unchanged.

If the LSB of the R-field of the BXEC in-

Miscellaneous Instructions 139

Section B3



MONITOR CALL AND PROCEED (MCP)

Operation Code 80
Type Format 5
An MCP instruction stores a single Operand Format I, X
Tength Togical immediate operand into Type Addressing Immediate
actual memory Tocation 07. The most Symbolic Notation n 07

significent eight bits of lccation 07

are stored as "zeros" in accord with
the loagical immediate opevand format.
The immediate opevand can be modificd
by the centents of index register X
when X is not equal to zero.

The Central Processor signals the PPU that it has executed an MCP in-
struction via the CP/PPU communications area of the CR-file of the PPU, and
then the CP proceeds to the next instruction.

RESULT CODE: Not Affected
PROGRAM INTERRUPTION: None
MONITOR CALL AND WAIT (MCW) -
Operation Code 94
, Type Format 5
An MCW instruction stores a Operand Format I, X
single length logical immediate Type Addressing Immaciate
operand into actual memory Tocation Symbolic Notation n «07
07. The most significant eight bits :

of lecation 07 are stored as "zeros"

in accord with the logical immediate
operand format. The immediate operand
can be modified by the contents of index
register X when X is not equal to zero.

The Central Processor signals the PPU that it has executed an MCW in-
struction via the CP/PPU communications area of the CR-file of the PPU. If
the PPU is prepared for context switching, then the CP performs an automatic
exchange intermediate operation thereby exchanging the CP program. If the PPU
is not prepared for context switching, then the CP halts until such time that
the PPU initiates a context switch operation.

RESULT CODE: Not Affected
PROGRAM INTERRUPTION: None

140



COMVERSION INSTRUCTIONS

FLOATING TO FIXED POINT COWYERSION INSTRUCTIONS

Floating point wholeword nuinbers can be converted to whole word or
halfword fixed point numbers. Floating point doubleword numbers can
be converted to whole word fixed point numbers.

Scalar conversion instructions acquire the floating point wheole word
operand from arithmetic register AR specified by the R-field of the
instruction format. Doubleword floating point operands are read from
doubleword register ARD specified by the R-field with the LSB ignored.
Register ARD is the even-odd register address pair AR and AR+1.

The scale factor or Q-point is supplicd as one of the arguments for

the conversion process and is obtained from halfword location oh, Dis-
placement indexing is applied in the standard manner when addressing
halfwords. If M= 0 and %y & 2F.1, the scale factor is read from an
absolute halfword register address. The scale factor is a 16-bit signed
integer and is represented in 2's complement notation for negative num-
bers. The scale factor locates the fixed point result relative to the
decimal point to the right of the least significant bit (fixed point
integer format).

A fixed pcint whelewerd signed integer result is stored into general
arithmetic register AR. Register AR+1 remains unchanged. A fixed

point halfword signed integer result is stored into the left half of
arithmetic register AR. The right half of register AR remains unchanged.

The algorithm for converting from floating to fixed point is as follows:
1)  Record the sign of the flvating point fraction.

2)  Subtract 647 (40)pey from the biased hexadecimal exponent
to obtain the unbiased hexadecimal exponent, HE.

3)  Multiply HE by 4 (shift left 2 bit positions) to obtain the
equivalent binary exponent, BE. BE is 9-bits including sign.

4) Consider the floating point fraction to be aligned such that
its MSB (bit position 8) is located in bit position 1 of the
fixed point output register.

5) Insert a zero into the sign position (bit position 0) of the
fixed point output register.

Conversion Instructions 141
Section B3



6) Add 31 to the scale factor and subtract from this sum the
value of BEL obtained in step 3 ghove. This gives the number
of bit positions that the quantity, G, in the fixed point
output register is to be shifted.

If H= 31 + SF ~'BEZ 0, then shift G right H bit positions.
Insert zeros into the vacated positions at the left end

of the fixed point output register. Truncation is possible
in this step when shifting right.

If H= 231+ SF - BE < 0, then shift G Teft H bit positions.
Insert zeros into the vacated positions at the right end
of the fixed point output register. Overflow is possible
on this step when shifting left. :

7) If the sign recorded from step 1 was negative, then take the
2's complement of the number in the fixed point output register.

8) Store the entire 32-bit fixed point output register into the
whole word arithmetic register specified by the AR-field if
the instruction specified a whole word result. Store the
least significant 16-bits of ‘the fixed point output register
into the left half of arithmetic register AR if the instruction
specified a halfword.

Several examples are given in Figure 1 for both whole and half word re-
sults. Half word results are chosen from the sixteen LSB's of the fixed
point integer. In the example, half length conversions would overfiow
for any scale factor from -256 to +3. Figure 2 shows the same examples
for a negative floating point input. The results in Figure 2 are the
two's complement of the results in Figure 1. It should be noted however
in Figure 2, the result of two separate conversions with a scale factor
difference by one does not of necessity yield identical results shifted
one position with respect to each other. This is due to the loss of
some significance past the LSB and is related to a round-off problem.
Scale factors of 000000000 and 000000001 in Figure 2 demonstrate this
fact.

142



STGH. EXPONENT FRACTION
‘ N Y S H T e Bt et ™ g a5 1T AT Ot
Floating Point Operand 0100 | 0101 | otiot 1110 0100 {0101 {1001 {1011
Scale Factor (Input) FIXED POINT INTEGER (Output)
100000000
—to— OVERFLOW
111110011 §

111110100 01101 1110 0100 { 0101 | 1001 ]Q11 Q000 | 0000
111110101 [ 00]1[ 01111 00101} 0010 | 1100 | 1101 | 1000 | 0000
111110110 0001! 10111 1001 | 0001 | 01710 | 0110 { 1100 { COCO

| . | ' I
| | ' |
| ' | . |
600000000 | 0006|0000 |0000 1o1i0_iic | o160 o101l 1001
000000001 . 0000} 00001 00001 020711 01111 00101 001011100
' | |
| : | |
n ! |
000010010 0000|0000 |00Q0 0000 | 0000 | 0000 | 0000 | 0001
000010011
_.to._
011111111 Q000! 0nno OOQO 00001 0000 1 00001 0000 1 00qn

Figure 1

Conversion Instructions 143
Section B3



SIGN -~ EXPONENT FRACTION

N s T e P e
Floating Point Cperand [1100 0101 { 0110 | 1110 { 0100 | 0101 {1001 | 1011
Scaie Factor (Input) FIYED POINT INTEGER (Output)
100000000 }
- to —
1111106011
111110100 1001 | 0007 | 1011 {1010 | U110 10701 | 0000 |0000
111110101 o 1100 | 1000 § 1101 | 1101 {0011 {0010 | 1000 {0000
111110110 1110 { 0700 | 0110 | 1110 {1007 } 1001 {0100 {0000
|
. | |
x - | g ‘
\ | |
"G00C002000 1137 4 1111 11111 11001 {0001 11011 11010 {0111
0000606001 1111 § 1191 {1111 {1100 {1000 {1101 {1101 {0100
] l I
|
‘ |
| l l
000610010 TVIT 11T P11 1191 131y iy 1111 jiiia
000010011 v |
- to - 0000 | 0000 | 0000 {0000 {0000 {0000 {0000 10000

011111111

Figure 2

144



CONVERT FLOATING POINT TO
FIXED POINT WORD

p&Rl

AR

AR

Result Code:

(FLFX)

The floating whole word
operand to bhe converted is
read from arithmetic rcgister
The scale factor used -
in the conversion process is
reaa from halfword address o

32-bits
Floating SL

32-bits
Fixed SL

Operation Code AO
Type Format 2
Operand Format R, @ N, X

Type Addressing

oh, halfword

%

After conversion, the fixed point whole word signed integer is
stored into arithmetic register AR.

16-bits

Scale factor Arguments

Result .

The result code (RL, RG, RE) is set according to the

arithmetic value of the result in register AR as follows:

Negative

Positive

Zero

(1, 0, 0)
- (0, 1, 0)
(0, 0, 1)

Program Interruption: Fixed point overflow.

Conversion Instructions 145
Section B3



CONVERT FLOATING POINT WORD

TO FIXED POINT HALFHORD (FLFH) |
Operation Code Al
: i ‘o Type Format 2
The floating point whole - .
Operand Format R, @ N, X
word operand to be converted b e > ’
is read from register AR. The | Type Addressing ah, halfword

scale factor used in the conversion
process is read from halfword address .

After conversion, the fixed point halfword signed integer result
is stored into the left half of arithmetic register AR.

o 32-bits 16-bits
AR Floating SL ] o Scale factor Arguments
16-bits
AR 1 fixed HL ‘

_______ Result

Result Code: The result code (RL, RG, RE) is set according to the

arithmetic value of the result in the left half of register AR as
foliows:

Negative (1, 0, 0)
. Positive (0, 1, 0)
-Zero (0, 0, 1)

Program Interruption: Fixed point'overf1ow.

146



CONVERT. FLOATING POINT DOUBLEWORD

TO FIXED POINT SINGLE WORD (FDFX)
Operation Code A2
Type Format 2
The floating peint doubleword Operand Format R, @ N, X
operand to be converted is read Type Addressing ch, halfword

from doubleword register ARD. The
scale factor used in the conversion
process is read from halfword address U

After conversion, the fixed point whole word signed integer result
is. stored into arithmetic register AR.

. 64-bits

ARD Floating DL

AR AR+1

Arguments

16-bits
* Scale factor

32-bits
AR Fixed SL Result

Result Code: The result code (RL, RG, RE) is set according to the
arithmetic value of the result in register AR as follows:

Negative (1, 0, 0)
Positive {0, 1, 0)
Zero (0,.0, 1)

Program Interruption: Fixed point overflow. Specification error if
R-field is odd.

Conversion Instructions 147
Section B3



FIXED TO FLOATING POINT CONVERSION INSTRUCTICN

Fixed point whole or haliword numbers can be converted to whole or
doubleword floating point numbers.

Scalar conversion instructions acquire the fixed point whole word’
signed integer operand from arithmetic register AR. Halfword fixed
point signed integer operands are recad from the left half of arithmetic
register AR. '

The scale factor or Q-point is supptied as one of the arguments for

the conversion process and is obtained from halfword location q,. Dis-
placement indexing is applied in the standard manner when addressing
halfwords. The scale factor is a 16-bit signed integer and is repre-
sented in 2's complement notation for negative numbers. The scale
factor for these conversions establish the appropriate exponent for

the floating point number. The unbiased hexadecimal exponent range

is -64 < HEX. EXP. <+63. Floating point exponent overflow and under-
flow will be detected if a scale factor results in a hexadecimal ex-
ponent outside the range following the conversion operation.

A floating point whole word result is stored into arithmetic register
PR. A doubleword floating point result is stored into the doublewerd
register ARD. ARD is the even-cdd register address pair AR and AR + 1.

The algorithm for converting fixed point to floating point number
representation is as follows:

1)  Determine the sign of the fixed point signed integer
to be converted. If the sign is negative, take the
2's complement of the fixed point number. The sign
information is saved. If the fixed point operand is
a halfword, it is entered into the right half of the
whole word register leading to the arithmetic unit
(AU). The sign of this halfword operand is extended
16-bits into the most significant half of the register
leading to the AU. The AU may now operate as though
all fixed point operands are whole word (32-bit) signed
integers.

2) Move the decimal point from its position to the right
of the LSB for integer representation to the left of
the MSB of the 32-bit register containing the operand
from 1 above. The number is now in fractional repre-
sentation. This operation is accomplished simply by
adding 32 to the scale factor.

148



4)

5)

6)

Perform a floating point normalize operation on the
fixed point fraction by shifting the fraction left
by a multiple of four bit positions such that the
most significant four bits contain at least one "1".
Four is subtracted from the scale factor for each
multiple of four bit positions that the fraction is
shifted.

The fraction is shifted left the number of bit posi-
tions specified by the two LSB's of the scale factor

(0 = (00), 1 =(01), 2= (10), 3= (11), providing
that this shift would not cause overflow. If an over-
flow condition exists, then the fraction is shifted
right by an amount equal to zero for (00), one for (11),
two for (10), and three for (0G1) and the scale factor

is incremented by four.

The scale factor is shifted right two bit positions
{equivalent to division by four) and then addition

of the shifted scale factor and +64 = (1,000,000) is
taken modulo 128. The result is placed in the biased
hexadecimal exponent position of the floating point
output.

The fraction is entered into the floating point fraction
position of the output and the sign information saved in

. step 1 is placed in the MSB position. The floating point

number is stored into register AR if a whole word and into
doubleword register ARD if the result is specified to be
a doubleword. '

Pt

Figures 3 and 4 demonstrate the types of result to be obtained
through use of a fixed to floating instruction. Halfword operands
will be inserted into the sixteen LSB's with the sign bit extended
into the sixteen MSB's. If the number to be converted is negative,
a two's complement operation is performed in the AU before proceed-
ing with alignment. This insures that the floating point magnitude
will be the same if two fixed point numbers which are the two's
complement of each other are converted by a fixed to floating in-
struction. Detection of exponent overflow or underflow will set
the corresponding Arithmetic Exception Code.

Conversion Instructions 149
Section B3



FIXED POINT INTEGER

SCALE FACTOR (INPUT)
1311160000

111100501
111100010
.1?1190011
111100100

FIXED POINT INTEGER

SCALE FACTOR (INPUT)

111100000
111100001
111100010
111100011
111100100

150

s i

00101101 000111110 0110

g101

01110100

FLOATING POINT RESULT

EXPONENT

0100|0000 {0010

110710007

1110

011010101

070010C06 (0101

}010}0@11

—
]
(e

=

1{1160{1010 1

01000111

1007

1001 {01C0

10011

G030

0100|0001 0010

1110

011o§0101

. Figure 3

I nm

1001 {0111

0100

100040101

EXPONENT

FLOATING POINT RESULT

1011111010110

100011011

01

10110000

101111101 {1101

0001|0110

FARR!

0110{0000

1011111100001

10100010

1101

1110{11700

10111111010011

010010101

on

11011100

[t

1011111100110

100011011

o

10110000

Figure 4




CONVERT FIXED POINT TO
FLOATING POINT WORD (FXFL)
. Operation Code A8
’ . " Type Format 2
The fixed point whole S . N
word operand to be convertfed gpezdxgiﬁormqt %; %ﬁg},x q
is rcad from register AR. ype Addressing o é vor

The scale factor, used
as an argument in the conversion, is read from halfword address o

After conversion, the normalized floating point whole word result
is stored into register AR.

32-bits _ 16--bits
AR Fixed SL “h Scale factor Arguments
32-bits
AR Floating - SL . : Result

Result Code: The result code (RL, RG, RE) is set according to the
arithnetic value of the floating point result in register AR as
follows:

Negative (1, 0, &
Positive (0, 1, 0)
Zero (0, 0, 1)

Program Interruption: Floating point overflow.

Conversion Instructions 151
Section B3



CONVERT FIXED POINT WORD
TO FLOATING POINT DOUBLEWORD (FXFD)

Operation Code AA
The fixed point whole viord Type Format 2
operand to be converted is read Operand Format R, @ N, X
from register AR, Type Addressing ah, halfword

The scale factor, used as an
argument in the conversion, is read from halfword address Gy -

After conversion, the normalized floating point doubleword result
is stored into doubleword register ARD.

32-bits 16-bits

AR Fixed SL o, Scale factor } Arguments

64 bits
ARD - Floating DL Result

Result Code: The result code (RL, RG, RE) is set according to the
arithmetic value of the floating point result in register ARD as
follows:

Negative (1, 0, 0)
Positive (0, 1, 0)
Zero (0, 0, 1)

Program Interruption: Floating point overfiow.
Specification error if R-field is odd.

152



CONVERT FIXED POTHT HALFUORD
TO FLOATING POINT WORD (FiFL)
Operation Code A9

Type Format 2

Uperand Format R, @ N, X
Type Addressing ah, halfword

The fixed point halfword
operand to be converted is read
from the left half of register
AR.

The scale factor is read from halfword address o -

After conversion, the normalized flcating point whole word result
is stored into register AR.

16-bits 16-bits

AR Fixed HL o Scale Factor Arguments
32-bits

AR Floating SL Result

Result Code: The result code (RL, RG, RE) is set according to the
arithmetic value of the floating point result in register AR as follows:

Negative (1, 0, 0)
Positive (O, ]’ 0)
Zero (0, 0, 1)

Program Interruption: Floating point overflow,

Conversion Instructions 153
Section B3



CONVERT FIXED POINT HALFWORD
TO FLOATING POINT DOUBLEWORD (FHFD) ]
Operation Code AB

The fixed point half Type Format 2
lendgth operand to be con- Operand Format R, @ N, X
verted is read from register AR. Type Addressing ah, halfword

The scale feclor is read from halfword location o .

After conversion, the normalized floating point double length result
is stored into double Tength register ARD.

16-bits 16-bits
AR Fixed HL

ay, Scale factor i Arguments

64-bits

ARD ‘ Floating DL Result

Result Code: The result code (RL, RG, RE) is set according to the

arithmetic value of the floating point result in register ARD as follows:

egalive (1, 0, 0)
Positive (0, 1, 0)
Zero (03 0: ])

Program Interruption: Floating point overflow,
Specification error if R-field is odd.

154



NORMALIZE FIXED POINT
WORD  (NFX)
Operation Code

A
The fixed point whole lype Format g
¢

.« Operand Format @ N, X
word number to be normalized >
is read from loca- Type Addressing , S ng]eword
tion a.

After normalization, the fixed point whole word result is stored
into the left nalf of doubleword register ARD. The scale factor,
equal lo the number of bit positions that the fixed point number
was shifted, is stored into the right quarter of doubleword register
ARD. Zeros are entered intc bit positions 32 through 47 of (ARD).

The fixed point number has been normalized when the two most
significant bit positions differ, (0, 1) or (1, 0). If the fixed
point number was initially zero, it is considered normalized and
the scale factor (or shift count) is zero. The shift count is
stored as a negative number or zero for all normalizations.

0 ‘ 31
a Fixed, SL Operand

ARD Fixed SL Zeros SF Result

Result Code: The result code (RL, RG, RE) is set according to the
arithmetic value of the result in the left half of doubleword reg1ster
ARD as foliows:

Negative (1, 0, 0)
Positive (0, 1, 0)
Zero (09 D, ])

Program interruption: Specificatioﬁ error if R-field is odd.

Conversion Instructions 155
Section B3



ALF i .
HALFHORD  (NFH) Operation Code AD

Type Format 2
Operand Format R, @ N, X
Type Addressing ofy, halfword

MORMALTZE FIXED POINT ‘

The fixed point half
length number to be normalized
is read from halfword location e

After normalization, the fixed point half length result is stored
into the left half of ihe single length register specificd by the ¢
R-field. The scale factor is stored into the right half of register AR.

0 N
o [Fixed RLT 7 J - Operand
0 15 31
AR | Fixed HL SF ] g Result

Result Code: The result code (RL, RG, RE) is set according to the
arithmetic value of the vresult in the left half of register AR as
follows:

Negative (1, 0, 0)
Positive (0, 1, 0)
Zero (0, 0, 1)

Program Interruption: None.

156



VECTOR INSTRUCTIONS

INSTRUCTION FORMAT

A vector instruction eppearing in the instruction fetch unit has the
format shown below.

S AT EIE ' 2 A TN i S TV S B 50

H3 H He Ho H

Gp R'E T g . g
H R R

2 4 5 6 7

~The instruction serves to convey: (1) the fact that this is a vector in-
struction and, (2) the location of an eight word vector parameter list in
central memory. These eight words are loaded into the vector paramcter reg-
isters assigned to locations 28 through 2F (hexadecimal) and are used for
further definition of the vector operation. The vector parameter registers

are loaded as part of the vector instruction.
e gp-field

The operation code field specified that a vector instruction
is to be executed. The exact nature of the vector instruction
is contained in the vector parameter file.

e R-field

The R-field indicates whether information for the vector
parameter file (VPF) is read from central memory as part
of the vector initialization procedure or retained from a
prior setting. .

® R-field
Xxxx0 Load VPF from central memory
X X x 1 Use current parameter file
If R = 1, the current status of the vector parameter file
is retained for the current instruction. A memory cycle to-

access a new parameter list is not executed under this con-
dition.

o T-field

The T-field is an address modifier tag that may be decomposed
intc an indirect addressing bit I, and a 3-bit index register
designator, X. The table below represents the address as a
function of the N-field and the T-field.

Vector Instruction Format 157
Section B3



158

. Virtual
T . Rddress type Address of VPF
0 Direct address ' Nb
1-7 Indexed address Ny + (T)
8 Indirect address ,(Nb)
9-F Indexed indirect ¢ (Nb + (T-8))

where Ny = N + (M)

Note that when an address refers to an octet of central
memory {(as for the case when loading the vector parameter
file) the three least significant bits of the address are
forced to zero after indexing and indirect addressing.

This says that a memory octet cannot cross memory word
(256-bit) boundaries.

The index registers designated by X are those assigned
to register location 21 through 27 (hexadecimal).

e M & N-field

The M-field is a base register designator which selects
one of 15 registers assiaoned to lTocations 1 through F’H‘
The N-field displacement is added to the base address‘"/*
when no indexing is used, also when indexing is used,
provided M # 0. The N-field is added to the base address
and the index register when indexing is used. Base ad-
dressing is not used when M = 0.

The VPF address generated for VECT is standard o addressing
developed from the T, M. and N fields to specify an octet
location of a vector parameter file to be loaded into the
VPF registers prior to the execution of the vector instruc-
tion. The addressing convention of VECT is identical to
that of scalar instructions. Addressing of vectors from
the vector parameter file is different and is described on
the next few pages.



PARAMETER FILE FORMAT

Register 0 My My Mg Hy Mg W Hy

28 fiPR ALCTE SV L

29 - XA SLA

2 H3 xR " SAD

2B VI XC ) SAC .

2C DAT DEI

2D DCI NI

2E DAD LBy

2F 0CH N3

‘Hex '
Reg Character Field Description
28 HqsHy ' gPR Operation code
28 H, ALCT Arith. & Log. Comparison Tests
28 H3 SV Single-vaiued vector
28 H4-H7 L Vector dimension
29 H] XA Initial index A
2R H] XB Initial index B
2B H, XC Initial index C
29 HZ-H7 SAA Starting address A
2h H2-H7 SAB Starting address B
28 HZ-H7 SAC Starting address C
29 HO-H7 (29) Immediate operand A
2A Ho-Hy (2R) Immediate operand B
2A Ho HS Halfword starting addr.
2B H0 VI Vector increment direction
2C Hy-Hy DAI EAAi, inner loop
2C Ha-H3 DBI OB, inner loop
2D H~-H DCI - O C,, inner loop
03 . i

2D H4-H7 : ' NI Inner Toop count
2E Hg-Hy DAQ ;AAO, outer loop
2E H4-H7 DBQ - BO' outer loop
2F Hp-H3 DCP t HCy, outer Toop
2F - H4—H7 ND Quter loop count

Vector Parameter File Format 159
Section B3 )



#FR, OPERATION CGDE
@PR-field - specifies the vecler operaticn to be performed.
SV, INSTRUCTTON VARIATIONS

SV-field - specifies the type of addressing for single-valued vectors.
Register 28 ’

Bit Positions 12,13,14,15 Vector A Vector B
X0 XX DV DV
X100 DSVV DV
X101 DV DSVV
X110 ISVY DV
X111 DV ISvv
where
bV '= Directly addressed vector

1]

Y Directly addressed sing]e-vaTuedAvector

ISW

Immediate single-valued vector

Vector A is said to be directly addressed when the starting address
for that vector is determined by the contents of the 24-bit address field
of register 29. (Bits 8 through 31, labeled SAA). Vector B is directly
addressed by the contents of the 24-bit address field (labeled SAB) of
register 2A. The XA and XB fields of registers 29 and 2A must be zero for
non-indexed direct addressing of vectors-A and B.

Indexed direct addressing is implied for the DV and DSVV cases when
the XA and XB fields of registers 29 and 2A are non-zero. Any one of the
seven index registers in locations 21 through 27 may be used to index the
starting address of vector A or B. The index register selected is specified
by the XA and XB fields similar to the selection used by the T-fieild for
scalar instructions. In the case of vector addresses, the three LSB's
of XA and XB select an index register which is added to the starting
address of vectors A and B, respectively. The most significant bit of
XA and XB is ignored (i.e., indirect vector starting addresses are not
permitted).

X110.
X111.

Immediate operand A is the 32-bit contents of register 29, when SV
Immediate operand B is the 32-bit contents of register 2A, when SV

[{ ]

160



SV-field description:

Bit 12 is used to specify the product length options for vector multiply
and vector dol product operations. It also specifies the dividend length for
vector divide instructions. See Tength option table following the vector divide
instruction.

A "zero" in bit 13 indicates that the addresses of both A and B input
vectors are automatically incremented by the self loop or by the inner and outer
loop operations regaru?ess of the value of the other three bits of SV.

A "one" in bit 13 and a "zero" in bit 14 (x10x) indicates the self loop
does not increment the input variable specified by bit 15. Incrementing vector
address B is disabled when bit 15 = 1. The starting addresses for vectors A
and B is indicated by the contents of register 29 and 2A& in the standard manner.
Inner and outer Toops incrementing cccurs in the normal manner when bit 13 = 1
and bit 14 = 0 (x10x). This means that a new directly addressed single-valued
vector can b@ used as a constant argument during the next self-loop following
an inner or outer loop by specifying a non-zero delta increment for the input
variable specified by bit 15 (designated DSVV in the table on the preceding

page).

A "one" in bit 13 and a "cne" in bit 14 (X11X) disables vector address in-
crementing in all loops (self locp, inner and outer loops) for the input variable
specified by bit 15. For this case, the contents of vector parameter register
29 or 2A is interpreted as the value of the immediate operand. In addition, the
word length of the immediate operand will depend on the word Tength of the vector
instruction as specified by the operation code.

If the vector instruction is a fixed point half length operation, the im-
mediate operand is the contents of bits 16 through 31 of register 29 or 2A
(Register 29 if SV = x110 and register 2A if SV = x111).

If the vector instruction is a fixed or floating point single length
operation, then bits 0 through 31 are interpreted as the immediate operand.
If the vector instruction is a floating point double length operation, the
bits 0 through 31 are interpreted as the Teft half of the double length imme-
diate operand and bits 32 through 63 of the immediate operand are zero. Imme-
diate operands for vector instructions may not be indexed by the contents of
the index register specified by XA or XB

ALCT, ARITHMETIC AND LOGICAL COmPARISON TEST

The ALCT field, located in hexadecimal character H2 of vector parameter
register 28, specified the test criteria which is applied to the results of
the vector comparisons to determine which elements of vector A are stored
in the output vector. See the instruction descriptions for Vector Arithmetic
Comparison and Vector Logical Comparisons for further details on the function
of the ALCT field.

L, VECTOR LENGTH

L-field specifies ¥2e 1ength of the vector operation (self-loop dimension).
The maximum length is 2 = 65, 535 elementary operations.

Vector Parameter File Format 161
Section B3



YA, XB, AND XC-FIELDRS

These fields spacify the index register which way be used to modify
the starting addresses of the A, B, and C vectors. The index registers
specified by the 3 LSB's of the XA, XB, and XC fields are the same as those
used by the scalar instructions (registers 21 through 27).

If the vector instruction is a fixed or floating point single length
operation, then the contents of index registers XA, XB, and XC specify a,
singleword dispiacemnent which is added to the singleword starting address
expressced by SAA, SAB, and SAC. Let the indexed starting addresses for
vectors A, B, and C be denoted by IA, IB, and IC. Then, for indexed single-
word veclor cperations:

IA = SKEA + (XA)
IB = SAB + (XB)
IC = SAC + (XC)

If XA, XB, or XC are zero, then the starting addresses SAA, SAB, and SAC
are not indexed. ]

HALF LENGTH ELEMENTS AND HS-FIELD

If the vector instruction is a fixed point half length operation, then
the contents of index register XA, XB, and XC specifies a halfword memory
address increment which is added to the singieword starting address expressed
by SAA, SAB, and SAC. For the cases where it is undesirable to use up to
three additional index registers to supply a halfword vector address dis-
placement but where it is necessary to start a vector operation from an odd
halfword memory address (the right half of a central memory singleword),
the HS-field is provided in the most significant hex character (Hy) of
register 2&. The least significant three bits (bits 1, 2, and 3) of
hex character Hy of register 2A provide a means of displacing the single-
word starting addresses (SAA, SAB, and SAC) by one halfword address. If
an index register is not used, then a "one" 1in bit position 1, 2, and 3
of the HS-field will specify a starting address in the right half of cen-
tral memory singleword address SAA, SAB, and SAC, respectively, providing,
of course, that a half length vector operation is ordered by the OPR-field.

If ‘an index register is not used and a "zero" is in bit position 1,
2, and 3 of the HS-field, then the left half central memory singleword will
be selected as the initial operand for vectors A, B, and C, respectively.

If an index register is used, then the even or oddness of the sum of

(XA) + HSA, (XB) + HSB will determine whether the left or right half of a
central memory word is selected for the initial halfword vector elcment,

162



An odd sum refers to the right half word, whereas an even sum refers to the
left half word. HSA is in bit position 1 of register 2A {the second most
significant bit position), HSB is in bit position 2 and HSC is in bit posi-
tion 3. For halfword vector operations, the indexed halfword starting ad-
dresses of vectors A, B, and C are:

IA = SAA X 2 + (XA) + HSA
IB = SAB X 2 + (XB) + HSB
IC = SAC X 2 + {(XC) + HSC

DOUBLE LENGTH ELEMENTS

If the vector instruction is a floating point double length operation,
then the contents of index registers XA, XB, and XC specify a doublewcrd
displacement which is added to the singleword starting address expressed by
SAA, SAB, and SAC. The least significant bit of SAA, SAB, and SAC is ignored
when generating a doubleword vector starting address. Vector doubleword ele-
ments must be stored in even-odd cernitral memory address pairs. For double-
word vector operations the indexed doubleword starting addresses of vectors
A, B, and C are:

SAA

IA = =t (XA)
18 = 230 + (xp)

IC 5—2.9 + (XC)

The most significant bit of the HS-Field of the vactor parameter file pre-
viously was not used. . -

This bit is used to delete the indices from the output array for the eight
Vector Compare (VC) instructions and the four Vector Peak Pick (VPP) instructions.

When the MSB of both the HS-field and che VI-field are "zero", the output
array for these vector instructions is as described on page 171 of Section B3
of this Hardware Manual.

When the MSB of the HS-field is "one", only the item counts after each self
loop completion are stored. All of the indices are deleted. Delta increments
for the inner or outer loop are applied to the three vector addresses after each
self loop completion. The delta C increment is applied to the address of the
jtem count, and not to the location of the last index value as it would have
been had the indices been stored.

Vector Parameter File Format 1£
Section B3



¥i, VECTOR SELF-LOOP INDEXING DIRECTION

The VI-field provides additional informetion for the vector index units.
A "one" din bit position 1 (2,3) of register 28 specifiod that vector ad-
dress A (B,C) is decremenicd by unity after each clementary operation of
a vector instruction (useful for convolution, etc.). A "zero" causes the
norinal forward incrementing of vector addresses by unity.

s
The most significant bit of the VI-field of the vector parameter file is
used to delete the item counts (evcept for the First item count) from the C
cutput vector of Vector Compare (VC) and Vector Peak Pick (VPP) instructions.
This applies to all four word size formats of the Vector Arithmetic Comparison
and Vector Peak Pick instructions, and to the four Vector Logical Comparison
instructions. :

_ ¥hen the most significant bit of both the VI-field and the HS-field are
"zerg®, the output array for these vector instructions is as described on
page 171 of Section B3 of this Hardware Manual.

¥hen the MSB of the VI-field is "one", the item count stored at the begin-
ning of the output array is the total item count for the complete vector and
is ecual to the sum of all the item counts for each inner and outer loop that
would have been stored had the MSB of the VI-field been"zero". A1l other item
-counts, except the one at the beginning of the output arry, are deleted. A1l
that remains, following the beginning total item count, is a list of indices
for each element where a comparison true is detected for Vector Compare
instructions or where a peak or valley is found for Vector Peak Picking instruc-
tions. If inner or inner and outer loops are invoked, then the indices are
not reset at the beginning of each new self loop, but continue to increment
throughout the entire vector.

If the delta C increment for both inncr and outer Toops is unity, then
a continuous output of indices is stored in consecutive halfword locations
for VC and VPP instructions. In the case of VPP instructions, the normal
peak isolation which occurs between two succesive self Toops when the MSB
of the VI-field is "zero" does not exist when this bit is "one". This allows
one to set the self loop length te one (L=1) and find peak in a vector by
" sampling every nth data point, i.e. delta A for the inner loop is equal to n.

In addition to the deletion of indices for Vector Compare and Vector
Peak Picking instructions, setting the MSB of the VI-field to "one" in a
Vector Dot Product or Vector Search instruction reduces these instructions
to one which produces a singular output regardless of the number of inner
or outer loops specified. That is, a Vector Dot Product (VDP) produces one
scalar output which has as its value the summation of all c., elements which
would have been prnduced from each self loop of the VDP with innev or inner

163A



and outer Toops had the most significant bit of the VI-{ield been "zero.'

The delta increments for the A and B input vector are ap pplied at each turn
of the loop, but the arithmetic unit does not receive the "end of self foop"
signal and consequently does not rescet its internal accumulator that is
summing the individual products.

For the Vector Search instructions, a single index value results which
represents the lccation of the element meeting the search criteria reqard]ess
of the number of inner or cuter loops emo?ovaﬂ For examzlce, an entire matrix
array could be searched for its lergest cri\n tic element, even in ceses
where address increments are regquired to move to the next row or column at
inner or ocuter loop turning points. The index value of the result is a measure
of the total number of elements tested up to the one meecting the search criteria.

The index value may overflow its maxim m range if the product of the num-
ber of seif lcops times the number ?¢ innev loops times the number of outer
loops is greater than or equal to 2'® for the Vector Saarcb, Compare, and Peak
Pick instructions when the MSB of the VI-field is "one." Also, for the Vector
Compare and Peak Pick instructions the total item count will overf]ow if the
total number of true comparisons exceeds 216 _ 7,

Consider an example of the VI and HS-field MSB usage with a Vector Compare
instruction. Given matrix A which is a 4 by 3 array of elements and B which is
a row vector of length 3. Vector B is to be compared with the rows of A for
arithmetic equals. The inner loop count is setl to 4. Four cases are presented,
one for each of the four settings of the VI and HS most significant bits. Item
count values are enclosed by a square.

1 2 3]
11 2 0
(A} =1y o 3
0 2 3

m] =112 3

Vector Parameter File

opP Vector Arithmetic Compare for Equal
ALCT = 1

SV 0

L
DAL
DBI =
DCI
NI
DAO
DBO =
pco0 =
NO

i

fnou

[aN]

]

i
cocOR—I —Ww

Vector Parameter File Format 163B
Scction B3



163C

HS o, VI oh C Vector Output (Each e]emgnt represents
a halfword)

0 0 @012@01@02@12

0 R 901234681011

1 0 ERHR

1 ] 9]

NI AND N@, LOOP COUNT

Ni-field specifes the inner Toop count or the number of times that a
given vector instruction is to be executed in an inner lcop. Loop counting
is done internally in the index unit, only the initial inner loop count is
supplied by the NI-field. If NI is zero, the self loop routine is executed
once, there is no inner loup, aund tie outer loop count {N@) is nol examined.
If NI is one, the self loop routine is executed once, there is no inner loop
address modifications, and the outer loop is executed N@ times. If NI is
any value other than 0 or 1, the specified vector operation is executed NI
times and then the outer loop is executed, this process is repeated until
the outer loop counter equals zero.



Np-field specifies the outer Toop count or the number of times that
the inner loop routine is to be executed. Here again the loop counting
is accomplished by hardware in the index unit and only the initial outer
lToop count is supplied by the N@-field. A branch to the outer Toop is
taken each time the inner Toop counter (LPCI) in the index unit reaches
zevo. The LPCI is reloaded with the value in the NI-field and ihe outer
Toop counter {LPCY) is decremented by one each time the outer loop is
taken. The compound vector instruction is completed when the outer loop
count in LPCH reaches zero. If N§ is zero oy one, the specified vector
operation is executed NI times and then the cperation is terminated. If
Ng is any value other than zero or one, the specified vector cperation
is executed NI times and then the outer loop address modifications occur,
the inner nested loop is repreated. This process continues until the outer
loop counter equals zero. Refer to the flow chart for an illustration of
the vector loop procedure.

DAI AND DBI-FIELDS

These fields specify the address increments for vectors A and B
following each vector operation during an inner Toop. The increments
are not added to the addresses SAA and SAB contained in registers 29 and
2K, but instead are added to the address registers IA and IB contained
with the MBU. The addition is accomplished using the addition hardware
of the MBU. Increments may be positive or negative 2's complement 16-bit
fumuers.

IA <« (IA) + AA,i —
inner loop
IB «— (IB) + ABi

For single length vector operations, the IA and IB addresses are
initially equal to SAA + (XA) and SAB + (XB), respectively. In-this
case, DAI and DA@ are singleword address increments. Inner and outer
loop increments are applied to the terminal address of each self Toop.
This terminal address is equal to the self loop initial address plus L-1.

Inner and outer loop increments for half length vector instructions
represent halfword address increments. Inner and outer loop increments

for double length vector instructions re?resent double Tength address
increments. This is similar to the displacement indexing applied to

scalar addressing, the increments are shifted right one bit for halfword
operations and left one bit for doubleword operations before being added
to the terminal self loop address in the index unit.

when the SV-field equals X100, the elewerts of Vector A vemain con-
stant during the self loop (i.e., L times). The constant value K is ac-
quired from the contents of central memory location SAA + (XA) initially.

Vector Parameter File Format 163
Section B3



Then if the inner locp count NI is greater than one, the address IA = SAA + {XA)

is incremented by DAI ov possibly SAG (if N2 » V). The self loop is again ex-
exuted L times with the new value of K. The number of different values of K
which may be acquired using both inner and cuter loop features is equal to NI
times RNP.

When the SV-field equals X101, the elements of vector B remain constant
during the self Toop. The constani vaiue K is acquived from the contents of
CH Tocation SAB + (XB) initially. If-inner and cuter loops are specified,
then this address is incremented by UBI or [EH. The self loop is again ex<
ecuted L times with the new value of K. The number of dif{ferent values of
K which may be acquired using both inner and culer loop features is equal to
HI time Ng.

‘Note that the addresses SAA + (XA) and SAB + (¥B) represent singleword
addresses. See the starting addresses listed under the description of the
*, XB, and XC field for halfword and doubleword starting address definitions.

When the SV-field equals X110 or X111, the elements of vector A or B
(respectively) remain constant during the self loop, inner loop, and cuter
Toop. The imnediate operand from register 29 or 2A is used throughout the
entire vector operation, including all inner and outer lcop.

DAQ AND DBO-FIELDS

These fields specify the address increments for vectors A and B following
the vector operation for which the inner Toop count has reachied zeco. The
increments are added to the address registers IA and IB contained within the
iBU. The same statements for half and doubie Tength vector operations apply
here as they did for the DAI and DBI fields.

IA - (IA) + bR,
outer Toop
1B « (IB) + 6By (singleword incrementing shown)

DCI AND DCG-FIELDS

DCI-field specifies the address increment, AC., for the output vector
address following each vector operation duing an inner loop.

When a vector dot product operation is specified by the @PR-field, the
C address in the index unit is not modified, since only a scalar result is
stored. Therefore, if looping is desired the DCI field must indicate an
increment for the C address.

DCO-field specifies the address increment, AC,, for the output vector
address after each inner loop routine has been com81eted. DCI and DCO are
shifted right or left one bit position prior to addition in the index unit
for halfword or doubleword vector instructions.

An increment K will index a vector address by K halfwords, single-
word, or doublewords depending on the word size of the vector operation
which is specified. The flow chart below illustrates the procedure for
a vector instruction with inner and outer loops.

164



VECTDL TRSTRALTION

|

LF = (1)
[.éf’,[ “T(WE)
.L'D() &~ C/, ‘/‘ [0

OFPELRTION
Y ELEZ T
OF VECT DR

i,

R IH  &——(Ca) 47

LFP = 1 244 i T & (]E)—fj R
, YES5 LP A 1 P) ]

IR <—(ZA+IAT
ZB &— (ZB)+pBT
ZC < (zC+ICL
Y PI t— (LPD)~ 2

LPT & (o)

Y
A GLD)
¢ 7 IR < (TA)DAY
(- T ey
/ I & (+ey

‘ ¥ ' : LAY &~ (pp) -7
NEXT TASTRUCTION

9

Vector Inner and Quter

Loop Flow Chart
Vector Parameter File Format 165

Section B3



INSTRUCTION CHARACTERISTICS

The vector instructions are described with the understanding that
four different data formats apply to each instruction (except for logical

and shift instructions).

DATA FORMATS

00 O
e e et

Fixed point, single length, 32-bit word
Fixed point, half length, 16-bit word

Floating point, singlec lengtih,
Floating point, double length, G4-bit word

32-bit word

Vector instructions have the following general characteristics:

VECTOR LENGTH

The dimension of the argument vectors ﬂ and B and the result vector E
is specified by the L-field of the vector parameter registers (H

of register 28). If the L-field equals zero, the vector instruc%ioz
becomes a no operation. If the L-field equals one, the vector in-
struction is equivalent to a scalar operation, although the inner
and outer loop features may still be incorporated if desired. If

the L-field is any value other than zero or one, the vector opera-
tion specified by the @PR-field is executed as described in the

vector instruction descriptions.

ADDRESSES

The maximum length is 216-7,

The elements of vectors A and B are read from consecutive memory
Tocations. The result vector C is stored into consecutive loca-
tions. The addresses for the initial vector elements (a], b], and
c,) are determined from the vector address parameters contained in

29, 2R, and 2B. Vectors A, B, and C cannot address the register file.
An address 2 2F references central memory.

SINGLE VALUE VECTORS

An instruction with an SV-field which specifigs a single valued
vector operation, has as its result a vector c,

where C = (c], Cps Cguvnennnn

with ¢; = k operation bi

for SV = X100 or X110
and C; = 2y operation k

for SV = X101 or X111

Vector Instruction Characteristics 167
Section B3



168

SV k value

X100 Contents of Tocaticn IA
X101 Contents of location IB
X110 Contents cf register 29

X111 Contents of register 2A

The most significant bit of the SV-field is ignored except when it
is used to specify the product length for wmultiply or dividend length
for diviae operations.

For SV = X100, K is the contents of location IA initially, where IA
is equal to:

IA = SAA + (XA) single length operations
IA = SAA x 2 + (XA) + HSA half length operations
IA = §§é_+ (xay double Tength operations

- When the inner and outer loop feature is used, tne subseguent

single-valued operands for the seif loops are acquired from
central memory locations IA, where IA is modified by the loop
increments.

IA <« (IA) + DAI If inner Toop
IA « (IA) + DAD If outer lcop

For SV = X101, K is the conteﬁts of location IB initially, where
IB is defined similarly.

For SV = X110 or X111, K is the operand contained in register 29
or 2A, respectively. K remains unchanged during all self, inner,
and outer loops. For halfword vector instructions, the value K
is obtained from bits 16 through 31 of register 29 or 2A. For
singleword vector instructions, K is obtained from bits O through
31 of register 29 or 2A. For doubleword vector instructions,

the most significant half of K is obtained from bits 0 through 31
of register 29 or 2A and the least significant half (bits 32
through 63 of K) is zero.

INNER AND OUTER LOOPS

This instruction write-up only describes the self lcop operation.
The user can form multiple loops which change the starting address
of each pass of the self loop. A1l vector instructions can use
both the inner and outer loops as well as the self loop, except
for vector order instructions. Scme apnlications of the inner and
outer loop feature are described in Section B4. '

DOUBLE LENGTH

Vector double Tngth operations require that the double length
operands be stored into even-odd memory or register singleword
address pairs.



ARITHMETIC EXCEPTION

When mask bits in the arithmetic exception {AE) register are off,
the vector operation will run to normal completion. \hen masked on, the
vector operation terminates when the arithmetic exception condition occurs,
such that an "exchange intermedizte® can be effected by the PPU.

ARTTHMETIC EXCEPTIONS FOR SCALAR OR VECTOR OPERATIONS

MASKED OFF MASKED ON
FLOATING POINT FIXED POINT FIXED OR FLOATING POINT
\ \ . FLOATING UNDERFLOW
UNDERFLOW OVERFLOW OVERFLOW FLOATING OVERFLOW
FIXED OVERFLOW
DIVIDE CHECK -
Data Set to 0 Set to ¥ » | Modulo word Freeze CP and
size Exchange intermediate.
AE Set AE Cond Set AE Cond | Set AE Cond Handled by software
register .
DEFINITIONS

+ «, floating point
Single length 7FFF FFFF
Double length 7FFF FFFF FFFF FFFF

- =, floating point
Single length FFFF FFFF
Double length FFFF FFFF FFFF FFFF

Zero, fixed or floating point

Half length 0000

Single length 0000 0000

Double length 0000 0000 0000 0000

Vector Instruction:Characteristics 169
Section B3



Lnen an arithmetic exception conditien occurs, the result code will be set
csenrding to the table below.

frithyetic Result Code

Fxception AU

Concdition RL RG RE Result

Fived point overflow
{pasitive cverflow) 1 0 0 minus, modulo vord size
(negative underflow) 0 1 0 positive, modulo word

size

Floating point exponent overflow
(positive fraction) 0 1 0 pos. o
(regative fraction) 1 0 0 neg. «

fToating point exponent underfiow

(pos. or neg, frection) 0 0 1 zero
~ Divide check (fixed point) Unpredictable | Unpredictabie
Divide check (floating point)
(positive dividend) 0 1 0 pos.
(negative dividend) 1 0 0 neg. «

VECTOR HAZARD RULE

Consider the array of octets from which the X and B vectors are formed
for input to the Arithmetic Unit (AU) and the array of octets into which the
results are stored from the output of the AU. Define the "present octet address
of input vectors A or B" to be the octet addresses of the vector elements a, and
bi which are presently being processed as inputs to a vector computation. The
“present octet address of output vector € is defined to be the octet address
of result ¢, corresponding to the computation involving arguments a; and b..
The Vector Razard Rule is stated as follows: ! !

A "Hazard Condition™ occurs whenever the present octet
addresses of input vector & or;% or the next four octet
addresses for each of vectors A or'ﬁ’js the same as the
present result octet address or_the eight past result

octet address of output vector C.

If the Hazard Rule is violated the "old" rather than the "new (updated) in-
formation is used as the operand. For example, a vector operation will use the

"old" values for one of the cperands if the element address of c, is one greater
thqn tﬁe element address of eijther a; or b. and all vectors are dssigned a pos-
itive increment direction during the self 1oop.

170



NORMALIZED INPUTS

Floating point inputs must be hexadecimally normalized prior to their use

in the following vector instructions:

VAF Vector Add Fleating Poing Single Length

VAFD Vector Add Floating Point Double Length

VAMF Vector Magnitude Floating Point Single Length

VAMFD _ Vector Magnitude Fioating Point Double Length

VSF Vector Subtract Floating Point Single Length

VSFD Vector Subtract Floating Point Double Length

VSMF Vector Subtract Magnitude Floating Point Single Length

VSMFD Vector Subtract Magnitude

VCF Vector Arithmetic Compare

VCFD Vector Arithmetic Compare

Floating Point Double Length

Fleating Point Single Length
Floating Point Double Length

Vector Instruction Characteristics 1.
Section B3



INDEX VALUE STORAGE

Format for storage of index values duvring

(¢4

Vector Arithmetic Comparison,

Vector Logical Comparison, or Vector Peak Picking instruction.

Halfword

Address

HSAC

HSAC.

HSAC

HSAC

HSAC

HSAC

item count

index i

index j

index k

index 1

index m

etc,

16-bits

where HSAC= 2°SAC + (XC)+HSC = Halfword starting address of vector'E?

and HSC = Halfword starting address even-odd selection.

(0~even, 1~ndd).

HALFWORD ADDRESS INCREMENTS FOR STORAGE OF INDEX VALUES

Increments forAvector E*(during inner and outer loops) are referenced from
the last index stored as a result of the previous self loop operation. For '
example, if index m is the last index stored in a self loop (See diagram above)

and the delta increments for the inner or outer loop are one (DCI =1, DCP = 1),

then the entry point for the item count of the next self loop is stored into
halfword location HSAC + 6.

The unit of measure for DCI and DCO for these vectors
is one halfworu for a delta value of one.

Vector Instruction Characteristics
Section B3



ASSEMBLER MNE /':OMICS

The Assembler furnishes built-in procedures to aid in the building
of Vector Parameter Files. These procedures generate data in the seguence
of code from which the procedure calls are made. Each of the eight words
which make up the Vector Parameter File for each Vector instruction may be
gersrated by a separate procedure call. The user may wish to definz an en-
tire vector file by 1u"ud*n a procedure which contains eight separate talls,
but one will not br finis hLu in the Assembler 25 a single procedure because
of the volume of parameters which would be asscciated with the call.

Vector deta generated by the above method mey then be placed in
the vector parameter registers by the use of instructions such as VECTL,
which Toads the file and executes the vector instruction; LF, which loads
the vector file; or L which replaces individual vector parameters.

The first word (vector operation word) of the _eight is built by
calling tho procedure whose name is one of the mnemonics defined on the

following pages, depending upon the operation. In all cases, the format
of the call resembles the scalar instruction format:

(1abel) command  ALCT, L, SV

where ALCT s used only in certain test instructions and should be zevro

e

for the other instructions

L 15 the vector length
Sy is the single valued vector address1ng type
(1abel) is optional

Words 2, 3, and 4 are built by caliing the procedure VCTRA whosehformat is:
(1abel) VCTRA SA, X, Q
where

SA is the starting address of a vector
X is the index used to find the starting address of the vector

Q is the value of the HS or VI field used in words 3 or 4 of a
vector instruction

label is optional
If X or § is left blank, a zero value is assumed.

_Words 5-8 are built using the DATAH pseudo-directive.

172



VECTOR (VECTL)

A vector instrugtion Operation code BO R=20
appearing in the instruction Type Format 3
fetch unit has the format Operand Format @ N,X
common to most scalar instruc- Type Addressing a, octet
tions. The instruction serves Symbolic Notation op. B=»C
to convey: (1) the fact that (General) )
this is a vector instruction, )

and (2) the location of an

eight vord vector parameter 1ist
in central menory. These eight words

are loaded into the vector perameter registers assigned to locations 28 through
2F (hexadecimal) and are used for further definition of the. vector operation.
The vector registers are loaded as part of the vector initialization procedure
prior to the execution of tnhe vecter instruction.

The format of VECT appeared under INSTRUCTION FORMAT on page 151.
Result Code: Not useful after vector operation.

Program Interruption: Depends upon vector instruction being executed.

VECTOR (VECT)

A vector instructilion Operation code B0 R =1
appearing in the instruction Type Format 3
fetch unit has the format Operand Format
common to most scalar instruc- Type Addressing
tions. The instruction defines | Symbolic Notation TA’op. B—T
the vector operation. (General)

-
.

The Vector registers are not loaded 2s part nf this instructicn. The current
vector registers are used.

The format of VECT appeared under INSTRUCTION FORMAT on page 151.
Result Code: Not useful after vector operation.

Program Interruption: Depends upon vector instruction being executed.

Vécton 173
Section B3



174

AiMETIC INSTRUCTIONS

ADD

- -3
A vectog'add instruction with argument vector A and B,

wh = 5 -
ere ﬁ (27 2,5 ag. . ap)
and B = (b?, b2, b3, v bL)
-

has as its result a sum vector C, with Cis = @y + bi‘

0P Code MNEM Code Instruction

40 VA - Vector add fixed point, single length

41 VAH - Vector add fixed point, half length

42 VAF - Vector add floating point, single length
43 VAFD -~ Vector add floating point, double Tength

ADD MAGNITUDE

- e -
A vector add magnitude instruction with argument vectors A and B
generates a result vector (¢,
-3

*  where C = (01, Coy €35 =nvs CL)

with c, = ay + }bil’

OP_Code MNEM Code Instruction
44 VAM - Vector add magnitude fixed point, single length
45 VAMH - Vector add magnitude fixed pcint, half length
46 VAMF - Vector add magnitude floating point, single length
47 VAMFD - Vector add magnitude floating point, double length
SUBTRACT '

. > -
A vector subtracg instruction with argument vectors A and B generates
a result vector C,

-
where C = (c], Chy Cgs wvns cL)
with c; = a; - bi’
0P Code MNEM Code Instruction
48 VS - Vector subtract fixed point, single length
49 VSH - Vector subtract fixed point, half length
4A VSF - Vector subtract floating point, single length
4B VSID - Vector subtract flzating point, doublic length



SUBTRACT MAGNITUDE

> >
A vector subtract magnitude instruction with argument vectors A and B
generatgs a result vector C,

where C = (c], Cos Cgs vens CL)
.y - o
with c; a, ‘biL
OP_Code MNEM Code Instruction
4c VSM ~ Vector subtract magnitude fixed point, single Tength

4D . VSMH - Vector subtract magnitude fixed point, half length

4E VSMF - Vector subtract magnitude floating point, single length
4F VSMFD - Vector subtract magnitude floating point,double length
MULTIPLY

> -
A vector mu1tiply instruction with argument vectors A and B generates a

result vector (.
>
where C = (c], Cos €35 vy CL)

i . = .ob..
with c; a] j

See product length options table.

0P Code MNEM Code instruction
6C VM - Vector multiply fixed point, single length
6D ~ VMH - Vector multiply fixed point, half length
6E VMF - Vector multiply floating point, single length

6F VMFD Vector multiply floating point, double length

DOT PRODUCT | 5
The vector dot product instruction forms a sum of products of the type:

a. s b. (scalar result)

5% _:3

where the a; are elements of a row vector A = (a], 35, 835 +ee aL)
-.).
and the bi are elements of a column vector B = (b]? b2’ b3, "'bL)

The scalar result, c,, is stored in central memory at the location
specified by SAC + (XC). See product length options table.

0P Code MNEM Code Instruction
68 VDP - Vector dot product, fixed point, single length
69 VDPH - Vector dot product, fixed point, half length
6A VDOPF - Vector dot product, floating point, single length
6B VDPFD - Vector dot product, floating point, double length

Vector Arithmetic Instructions 175
Section B3



DIVIDE

> -
A vector divide instruction with argument vectors A and B, foris a
e ~ . . O
~2sult vector C such that each 2lement <5 of- the result equals 2 divided

by bi'

i

= a./b.
a1/)1

See length options table.

The four cases for single-vaiued vectors ave:

SV-field Gperation Value K
x1060 k/bi = (SAA + (XA))
101 ai/k = (SAB + (XB))
=
110 k/Di k= (29) | immediate
»x 111 ai/k k = (ZAZJ) operand
0P Code MHEM Code Instructions
64 VD - Vector divide fixed point, single length
65 VDH - Vector divide fixed point? ha!f.iength
66 VDF . - Vector divide floating point, single length
67 VDFD - Vector divide floating point, double length

LENGTH OPTIONS

.The dividend length options for vector
options for vector multiply and vector dot
MSB of the SV-field (single value field) as

follows:

divide and the product length
product are specified by the

", A TguUment Fixed Floati
‘{""‘vaxw;, ’“ ze & BTN T R, P s
L TR singie “single
SY-field lennth )engfh length
"0 x x x 64-bit 32-bit 32-bit 64-bit
T x xx 32-bit 16-bit 32-bit 64-bit
TEEBNRAOIT
NOTES: Vector dot products accumulate a 64-bit sum in the arithmetic

multiply and vector dot product instructions.
signed integer dividends and quotients are used
in vector divide instructions.

176

unit.

Whether the 16, 32, or 64 LSB's are read will depend
on the type of VDP and the SV-field as shown above.

Fixed point signed integer products are formed from vector

Fixed point
and produced



The product length for Vector Multiply, fixed point, single Tengtn, is 64-bits.
When SV = 0 xxx, all 64-~bifts are stored. When SY = 1 xxx, the least significant
32-bits of the product are stored. Overflow cannot occure when SV = 0 »xxx. Over-
flow is detected during the vector operation when SV = 1 xxx if the most signifi-
cant portion of the product exceeds 32-bits.

Overflow 1is detected in the Arithmetic Unit for the above case if the 33 MSB's of
the 64-bit product are not all "ones" or not all "zeros".

The product Tength for Veclor Multipiy, fixed point, half length is 32-bits. UWnen
SV = Oxxx, all 32 bits are stored and overflows cannot occur. When SV =:1xxx, the
least significent 16-bits of the product are stored and overficws are detected

during the vector operation if the significant portion of the product exceeds 16-bits.

Fixed point, single length, Vector Dot Product operations generate 64-bit products
and accumliate a 64-bit sum in the Arithmetic Unit. When SV = Oxxx, the entire
64-bit sum is stored and overflow is detected during the vector operation if the
sum exceeds the 64-bit accumlator word size.

When SV = Txxx, the 32 least significant bits of the sum are stored. Overflow is
detected during the vector operation if the significant portion of the 64-bit sum
exceeds 32-bits. :

Fixed point, half length, Vector Dot Product oaerations generate 32-bit products
and accumulate a 32-bit sum in the Arithmetic Unit. When SV = Oxxx, a 32-bit sum
is stored and overflow is detected during the vector operation if the sum exceeds
32-bits.

When SV = 1xxx, the 16 least significant bits of the 32-bit sum are stored. Over-,
flow is detected during the vector dperation if the significant portion of the
32-bit sum exceeds 16-bits.

During Vector Divide, fixed point, single length, when SV = Oxxx, the dividends are
64-bit signed integers. When SV = Ixxx, the dividends are 32-bit signed integers.
The divisors are 32-bit signed integers. When the relative magnitude of dividend

and divisor is such that the quotient cannot be expressed by a 32-bit signed integer,
an overflow occurs and the central memory location corresponding to that output
element is loaded with an unpredictable number.

During Yector Divide, fixed point, half length, when SV = Oxxx, the dividends are
32-bit signed integers. When SV = 1xxx, the dividends are 16-bit signed integers.
The divisors are 16~bit bit signed integers. When the relative magnitude of
dividend and divisor is such that the quotient cannot be expressed by a 16-bit

signed integer, an overflow occurs and the central m?mory-]ocation corresponding
to that output eiement 15 loaaed with an unpredictable rumber. :

In cases where a given length vector input argument is_ specified by the vector .
op code, but where the SV-field or other vector specifiers indicate a different:
word size result, the delta increments Tor the inner and outer loops wiil be
adjusted automatically by hardware such that an increment of K results in an
address advancement of K-words of whatever word size is appropriate. For example,

a singlelength, fixed point, vector multiply may be specified with an SV-field of
Oxxx which indicates that a double length product is to be generated. In this case,
a delta C increment (DCI or DCP) which is equal to the value K will advance the C
vector address by K doublewords.

Vector Arithmetic Instructions 177
Section B3



178

LOGICAL INSTRUCTIONS

_3.

A vector ,ogvcal instruction with argument vectors R and B , forms
a result vector ¢ C, where

c, =
i

Boolean operation bi

The Boolean operations are defined for bits of the s1nu1eworu or doub1e

word elenients of a1

QP Code

EO
. E4
E8
£C
El
ES
E9
ED

Boolean operation

and b

Logical Equation

AND Xy
OR X+y
Exclusive OR Xy +Xxy
Equivalence Xy+ Xy
where x = bit j of element a, for j range 0
and . y = bit j of element bi through 31 if single length
' 7 and 0-63 if double length.
MNEM Code Instruction

VAND
VOR -
VXOR
VEQC
VANDD
VORD
VXORD
VEQCD

Vector
Vector
Vector
Vector
Vector
Vector
Vector
Vector

togical AND, single length

logical OR, single length

logical Exclusive OR, single length
logical Equivalence, single length
logical AND, double Tlength

logical OR, double Tength

Exclusive OR, double length
Equivalence, double length



SHIFT TNSTRUCTIONS.

B 4 -2 .
A vector shift insiruction wilh argument vectors A and B result in
vector C, where
C; =y shifted SC bit positions.
The shift count, SC, is a 7-bit signed integer contained in bit positions
25 through 31 of the elements of vector B. HNegative shift counts are re-

presented in 2's complement form. A nregative sign represents a right shift
and a positive sign a left shift of SC positions.

OP Code  MNEM Code Instruction
CO VSA -~ Vector arithmetic shift, fixed point, single length
Cl VSAH - Vector arithmetic shift, fixed point, hailf length

C3 VSAD - Vector arithmetic shift, fixed point, double word
Ca VSL - Vector logical shift, single length

C5 VSLH - Vector Togical shift, half length

c7 VSLD - Vector Togical shift, double Tength

cC VSC - Vector circular shift, single length

CD VSCH - _Vector circular shift, half length

CF VSCD - Vector circular shift, double length

PROGRAM INTERRUPTION: Fixed point overflow is detected, for arithmetic
Teft shifts only, if the sign bit changes dur1ng the shift. The entire
shift operation designated by the shift count is completed regawd]ess
of overflow conditions.

Vector Shift Instructions 179
Section B3



MERGE INSTRUCTIONS

"o

A vector merge singleword instruction with argumen:. s A and B,
where fh = (a], az, 335+ - ey aL)
and B = (b s bos boy oL bL)ﬂ . ,

generates an outpuL vector C, where
C = (a"s b1: azs b2, a3; bB, « e ey aL, bl-)
OF Coh: , = Q. :
217 T e (=1, 2,3, L)
Ch: = b. v
21 i o
The elemants a; and bi above represent single length, 32-bit words.

The L-field in the vector parameter fFile specifies the input vector length
for veclor merge instructions. The output vector will be twice the length
of the input vector.

A vector merge halfword instruction generates an output vector T as in
VMG, except that for this instruction thg elements a; and b represent
ha1f Tength, 16-bit words.

A vector merye doubleword instruction generates an output vector C as in
VMG, except that for this instruction the elements ay and b represent
double length, 64-bit words.

0P Code  MNEM Code Instruction

D8 VMG - Vector merge single words
D9 VMGH - Vector merge half words
DB VMGD - Vector merge double words

180



ORDER TNSTRUCTTONS

A vector order instruction performs an arithmelic comparison of the elements
of vectors K or B, such that the smalier element, whclher from A or B, is
the next elenent to be stored in forming the output vector C.

Programing MNotes:

1)

2)

4)

The Vector Order instruction only applies to the vector self loep.
There is no inner nol outer loop feature for this instruction. If
inner (NI) or outer (NZ) loop counts are specified in the vector
parameter file, tney are disregared by the havdware and only the
self loop (vector operation of lengih L) will be executed.

. g = '—9‘ 0 . - -
Floating point vectors A and B must be normalized prior to use in
a vector order instruction.

A boundary limit equal to the lergest positive number must be placed
in the data location following the last entry in the files to be
ordered. These boundary values for the different data formats are:

Boundary limit ‘ Data Format
JEFF FFFF SingTe Tength, fixed point
- TFFF ‘ Half length, fixed point
7FFF FFFF Single length, floating point
/FFF FFFF  FFFF  FFFF Doubie lenglh, ficating point

The output vector may not be written over either input vector.

Programming Example: V@D instruction

A=2,4,5,7,1,3,4,6,8,5,6, 12, (7FFF)*
"B =3,6,8,09, 2,3, (7FFF)
c=2,3,4,5,6,7,1,3,4,6,8,5,6,8, 9, 2,3, 12, (7FFF)

where L = 1A + 1B+1 =12+6+1=19

The length specification, L, in the vector paraweter file should be set
to the sum of the lengths of the two vectors R &B plus 1 to include at
least one boundary 1imit so that the result vector C can be used in a
subsequent vector order instruction if desired.

- -
L = length A + length B + 1

Vector Order Instructions 181
Section B3



If, during the processing of a Vector Order instruction, two equal values
are simultaneously presented to the arithmetic unit from veclors A and ¥,
the value presented from vector A is the element which is delivered to the
aritimatic unit output; the value from vector B is retained at the arith-
metic unit input for comparison with the next elenent of vector A.

0P Code MHEM Code Instruction

D4 Vo - Vector order singlewords, fixed point

1) VaD - Vector order halfwords, fixed point

D5 VOF - Vector order singlewords, flcating point
Y VOFD - Vector orcer doublewords, floating point

182



COMPARE INSTRUCTIGNS

ARITHMETIC

Element a. of input vector K is arithmetically compared with
element bi of input vector B. The result of this comparison will set
one of the three comparison code bits and reset (zero) the other two
depending on whether the comparison is: 1) a; less than by, 2) aj
greater than bi, 3) 2 equal to bj. The comparison code bits CL, CG,
and CE are then matched with the 3 LSB's of the ALCT field (hexadecimal
character Hy of register 28; bits denoted by ry, 7o, and r3). If the
logical equation COND = r1« CL + Y2 = CG + r3 - CE, is true for element
aj and by, then the index value, i, corresponding to the position of
element @ and bi in the vector input stream, is stored as a halfword
value in result vector C. The first index value is stored into half-
word location 2 « SAC +(XC)+HSC+1. Successive index values are stored
into consecutive halfword locations. If COND is false, nothing is stored.

The next operand elements of the input vectors (aiyy and bigy)

are then acquired and the operation is repeated until the length (L) of
the vector has been exhausted. Just before this vector instruction is
terminated, a count of the number of items for which COND was true is
stored into halfword memory location 2 « SAC + (XC) + HSC.

The ALCT-field (Arithmetic and Logical Comparison Test) of the
vector parameter file is used to specify one of the following comparison
options for a Vector Arithmetic Comparison instruction.

ALCT-field " Vector arithmetic
bits " 2 3 Comparison options, aj:bj
X 0 0 0 do nothing
X 0 0 1 a; = bi
X 0 1 0 a; > bi
X 0 1 1 a, Z.bi

- X 1 0 0 a; 4“bi
X 1 0 1 a; 5;b1
X 1 1 0 a; 7 b1
X 1 1 1 store index i for all i from O
through L-1

When the 000 option is specified, the AU compares all aj and bj
elements, but since COND never becomes true, no index values are ever
stored. Although, before this jnstruction is terminated, a count of
the number of items for which COND was true (for this case, item count
equals zero) is stored into halfword memory lncation 2 + SAC + (XC) + HSC.

There are four types of Vector Arithmetic Comparison instructions,
one for each of the four data formats.

0P Code MNEM Code Instruction

DO VC - Vector arithmetic comparison, fixed point, single length

D1 VCH - Vector arithmetic comparison, fixed point, half length

D2 . VCF - Vector arithmetic comparison, floating point, single length
- Vector arithmetic comparison, floating point, double length

D3 VCFD

Vector Compare Instructions 183
Section B3



Programming Notes:

1)

The address of a singleword veclor element aj is equal to SAA + (XA) + 1,
where SAA is the starting address of the vector A, ({¥A) is the static
index value during a given vector operation, and i is the dynamic index
vatue. The vaiue of 1 runs from 0 to L-1 during a vector operation.

The maximum range of 1 is equal to the maximum range of the length
specification (L) of & vector coeration. L is limited to 16-bits
corresponding to a maximum vector length of 216 - 1 or 65,535 elements.

The most significant bit of the ALCT-field in the vector parameter file
is used to specify wiether the vector comparison is to continue the full
tength of the vector operation or termi-
nate after the first cemparison true has been detected.

It the MSB of the ALCT-field is "zero", then the Vector Arithmetic
or Logical Comparison operation {whichever is specified) will continue
until the length . - of the vector has been exhausted. However, if
the MSB of the ALCT-field is "one", then the Vector Arithmetic or
Logical Comparison operation will be terminated after the first
comparison true condition has been detected. Just before the in-
struction is terminated the index value,i, corresponding to the
position of elements aj and bi for which COND 1is true will be stored
into halfword Tocation 2 *SAC + ‘XC) + HSC + 1 and a count of the
number of items for which COND was true will be stored into halfword
memory location 2 « SAC + (XC) + HSC. 1In ihis case, the item count
will be equal to cne, if COND ever becomes true during the vector
comparison operation. The itein count will be equal to zero and no
index value will be stored if COND never becomes true during the
vactor compariseon operation.

For example, if .inner and outer lcops are used and the first comparison true

is detected during the third inner loop, then two zero item counts are stored into
locations 2-SAC+{XC)+HSC and 2-SAC+({XC)+HSC+1. The item count for the third self
loop, which has a value of one, is stored into Tocation 2.SAC+(XC)+HSC+ (Toop
number minus one) which equals 2-SAC+(XC)+HSC+2. The index value of the first
element which compared is stored into Tocation 2-SAC+(XC)+HSC+ (loop number)

which equals 2-SAC+{XC)+HSC+3. The index value, i, stored here is referenced to
the particular self loop being processed at the time that the first comparison
true is detected. For example, if the first element of a new self loop is the
first one which has a comparison true, then the index value, i, is equal to zero.

3)

4)

If it is desirable to use an odd halfword starting address for result
vector C and a single or double length immediate operand is used
(immediate single-valued vector), the immediate operand K must be
stored in register 29. If K were stored in register 2A, the (HS)
halfword starting address information would be covered by K. An
SV-field equal to X110 will specify an immediate single-valued
opcrand K, wherc K is obtained from register 29. Ancther instruction
which stores half length results, but which may use single or double
length input arguments is the Vector Logical Comparison instruction.

Floating point vector K and B must be normalized prior to use in a
vector arithmetic comparison instruction.

184



LOGICAL "AND" COMPARE INSTRUCTIONS

Element a; of input vector £ s Togically "ANDed" with element b; of

input vector B. 'Cne of the three comparison code bits (CL, CG, or CE)

. Will be set depending upon the logical properties of c:, where C: = a:Ab..
T . y e F i P9

For logical operations the conditions code is set as follows: (cL) ¢y

contains mixed "ones" and "zeros", (CG) all bit positions of cij are "one",

or (CE) 211 bit positions of ¢y are "zero". ;

The comparison code bits CL, CG, and CE are then matched with the 3 LSB's
of the ALCT field (bits that we shall label as ry, P2, and r3). If the
logical equation, COND = ry .« CL + "2+CG + '3+ CE, is true, then the
index value, 1, of input vector _. element a; and b; is stored as a
halfword value in result vector C. The first index value is stored into
halfword Tocation 2 « SAC + (XC) + HSC +1. Successive index values are

_ stored into consecutive halfword locations. If COND 1is false, nothing
is stored.

The next operand elements of the input vectors (ajyq and by,1) are then
acquired and the operation is repeated until the 1ength (L} of the vector
has been exhausted. Just before this vector operation is terminated, a

count of the number of items for which COND was true is stored into halfword
memory Tlocation 2 « SAC + (XC) + HSC.

The ALCT-field of the vector parameter file is used to specify one of
the following cemparison options for a Vector Logical Comparison
instruction.

. ALCT-field Vector Logical
bits ry T r

Comparison options

(8]

Do nothing

A1l zeros .

A1l ones

A11 ones or all zeros= (not mixed)
Mixed ones and zeros

Not all ones= (mixed or all zeros)
Not all zeros= (mixed or all ones)

Store index i for all i from O
through L-1

> > > X X X >X X
—r —— - - OO O O
—_ O = D .- O - O

The comparisons in this table refer to thg logical
properties of a A bj for a VCAND instruction and to
a;Vv b, for a VCOR imstruction.

Logical "AND'Compare Instructions 185
Section B3



There are four types of Vector Logical Comparison instructions, two for
ecach of two data lengths.

0P Code MNEM Cod= Instructien
£2 © VCAND

K VCANDD - Vector logical comparison using AND, double Tength
£6 VCOR - Vector Togical comparison using OR, single length
£7 VCORD - Vector logical comparison using CR, double length

Vector Logical Compurisons using fR functions are described identical to

The a'giﬁh‘ AND comparison 1nstrucf10ns, except that element aj of input
vector K is 1091ca11y “ORed" with element bi of input vector B.

The vector terminating feature described for arithmetic compares are

effective on all of the Vector Logical Comparison instructions listed
above winen the MSB of the ALCT-field in the vector parameter file is

i 1]

che

If it is desirable to use an odd halfword starting address for resuit
vector C and a singie or double length immediate operand is used
(1mmbuiabe single- -valued vector), the immediate operand K must be
stored in teglster £29. If K were stored in register 28, the (HS)
halfword starting address information would be covered by K. An
SV-field equal to X110 will specify an immediate single-valued operand
K, where K is obtained from register 29.

186

Vector logical comparison using AND, single length



SEARCH INSTRUCTIONS

There are sixteen search instructions. Four types of each of the following:

Search for largest arithmetic element
Search for largest magnitude

Search for smallest arithmetic element
Search for smallest magnitude

The four types of each of the above refer to word size data representa-,
tion: (1) fixed point, single Tength; (2) fixed point, half length;
(3) floating point, . single length; and (4) floating point, double length.

The search instruction tests every element, aj, of Vector R relative to
all other elements of A and stores the index value, i, of the largest
or smallest element (depending on the operation code) into the halfword
memory location specified by address 2 . SAC + (XC) + HSC. The value
of i is within the range 0 through L-1 and is the dynamic index value
of A during a vector operation.

Programming Note: Floating point input vector % must be normalized prior
to use in a vector search instruction.

Vector Search for Largest with 2 or more largest elements of equal
value will store as its output the index of the first of such elements.

Similar logic applies to the vector search for largest magnitude,
search for smallest, and search for smallest magnitude instructions.

Vector Search for Largest Magnitude will recognize the number
8000 0000 for fixed point single length of 8000 for fixed point half
Tength instructions as having a larger arithmetic magnitude than
7FFF FFFF or 7FFF, respectively.

Vector Search for Smallest Magnitude will recognize the number
8000 0000 for fixed point single length or 8000 for fixed point half
length instructions as having the largest magnitude and will therefore
not output its index if any other element of the vector has a smaller
magnitude.

Search Instructions

Section B3

187



OP Code MNEM Code Instructions

50 VL - Vector search for largest arithmetic element, fixed point,
single length
51 VLH - Vector search for largest arithmetic element, fixed point,
. half length
52 VLF - Vector search for largest arithmetic element, floating
point, single length ‘
53 VLFD - . Vector search for largest arithmetic element, floating
) point, double length
54 . VLM - Vector search for largest magnitude, fixed point,
single length
55 VLMH - Vector search for largest magnitude, fixed point,
~ half Tength :
56 VLMF - Vector search for largest magnitude, floating point,
single Tlength
57 VLMFD - . Vector search for largest magnitude, floating point,
double Tength
58 VSS - Vector search for smallest arithmetic element, fixed
point, single length
59 VSSH - Vector search for smallest arithmetic element, fixed
point, half length
5A VSSF - Vector search for smallest arithmetic element, floating
point, single Tength
5B VSSFD - Vector search for smallest arithmetic element, floating
point, double length ‘
5C VSSM - Vector search for smallest magnitude, fixed point,
single length
5D VSSMH - Vector search.for smallest magnitude, fixed point,
half Tength :
5E VSSMF - Vector search for smallest magnitude, floating point,

single length
Vector search for smallest magnitude, floating point,
double length .

5F VSSMFD

Search Instructions 1878
Section B3



b
o

N
PEAK PICKING INSTRUCTIONS (/09

The algorithm for the vector peak picking instruction is as follows:

—a. for i = (1, 2, 3, ..., L-2)
834

1
i i
197 F yy s different than the sign of y;,q, then store
X vesue, 1. Y

gf yi_is the same as the sign of Vi then do not store

lue, .

bhen the value of yi+1 is zero, Yi+1 is considered to vetain the sign
of the last non-zero value in the history of yi. This convention will
select the trailing edge of a trace for which a series of y; = 0
conditions exist, i.e., the "peak" value which is stored is at the
trailing edge of a mesa. Points of inflection are not stored.

The formats for thé‘storage of the index value, i., for the four types
of vector peak picking instructions are identical to the formats
for the vector test instructions.

The item count entered at halfword lccation 2 - SAC + (XC) + HSC of the
ogtput table is a count of the total. number of peak and vallev points
stored as a result of the vector peak picking instruction.

The mo;t signifjcant!biﬁ of Fhe ALCT-field in the vector parameter file
is z§e to speczfy WQeﬁner the Vector Peak Picking instruction is to
continue the full length of the vector operation (as designated by the

L-field : - >
detecteé,or terminate after the first peak or valley point has been

If the MSB of the ALCT-field is "zero", then the Vector Peak Picking
operation will continue until the length (L) of the input vector has
been exhausted and all the peak and valley index points have been
stored. However, if the MSB of the ALCT-field is ‘"one", then the
Vector Peak Picking operation will be terminated after the first

peak or valley point has been detected. If a peak or valley point

is detected and the MSB of ALCT is "one", then the index value, 1i,

of that peak or valley point is stored into halfword location 2+ SAC +
(XC) + HSC + 1 and a one, corresponding to the number of index values
stored, is entered into halfword Tocation 2 « SAC + (XC) + HSC. The
item count will be eaual to zero and no index values will be stored if
the input vector elements are monotone increasing or decreasing.

188



Programming Note:

A floating point input vector must be normalized

prior to use in a vector peak picking instruction.

0P Code MNEM Code
DC VPP -
DD VPPH -
DE VPPF -
DF VPPFD -

Fixed point overflow
a discontinuity exists between any two data points whose difference ex-
ceeds one half the range of the fixed point number representation.

Instructions

Vector peak, fixed point, single Tength

Vector peak, fixed point, half length .
Vector peak, floating point, single Tength
Vector peak, floating point, double length

is indicated for the VPP and VPPH instructions if

Floating point overflow is indicated for the YPPF and VPPFD instructions
if a discontinuity exists between two data points such that the difference
results in a floating point overflow condition.

Floating point underflow is indicated for the VPPF and VPPFD instructions
if the difference between two data points would cause an exponent under-
flow condition.

Peak Picking Instruction 189
Section B3



CONVERSION INSTRUCTIGNS

FLOATING TO FIXED POINT

Vector conversion instructions acquire the operands to be con-
verted from vector A and the scale factor from vector B. Outputs are
stored as result vector C. When the same scale factor is applied to
all conversions, an immediate or directly addressed single-valued B
vector may be used. The algorithm for converting from floating to
fixed point is the same as that previously described for scalar float-
ing to fixed point conversicns.

0P Code MNEM Code Instruction

A0 VFLFX - Vector convert flcating point single length
to fixed point single length

) Vector R is the 1ist of floating point single length elements
to be converted. The elements are read from consecutive singleword
memory locations beginning with starting address SAA + (XA).

Vector B is the 1ist of 16-bit fixed point scale factors which
have been pre-computed and which specify the placement of the fixed
point signed integer result with respect to the decimal point to the
right of the LSB. The scale factors are cgntained in_ the right half
vord of the singleword elements of Vector B. Vector B may be specified
as a single-valued vector in which case the same scale factor is applied
to all converted elements.

The result vector C is a list of fixed point single length signed
integer elements with scale factors according to the pre-determined
values of vector B.

Floating SI MMX Operand elément 2;
Unused| SF . Scale factor bi
Fixed SL Result element c;

PROGRAM INTERRUPTION: Fixed point overflow.

190



0P Code MNEM Code Instruction

Al VFLFH Vector convert floating point single Tength
: to fixed point haif length

Vector K is the 1ist of floating point single length elements to
be converted to fixed point half length recpresentation.

Vector B is the list of scale factors which have been pre-computed
and which specify the placement of the fixed point signed integer result.
The scale factors are contained in the right half word of the singleword
elements of Vector B. Vector B may be specified as a single-valued vector
in which case the same scale factor is applied to all converted elements.

The result vector C is a list of fixed point half length signed
integer elements with scale factors according to the pre-determined values
of vector B. The elements of result vector C are stored in consecutive
halfword locations.

Floating SL Operand element a;
Unused SF Scale fTactor element bi
—
Fixed HL Result element Ci

PROGRAM INTERRUPTION: Fixed Point Overflow

0P Code MNEM Code Instruction

A2 VFDFX Vector convert floating point double length to
fixed point single length

Vector R is the 1ist of floating point double length elements to
be converted to fixed point single length representation.

Vector B is the list of scale factors which have been pre-computed
and which specify the placement of the fixed point signed integer result.
The scale factors are contained in the right half word of the singleword
elements of vector B. Vector B may be specified as a single-valued
vector in which case the same scale factor is applied to all converted
elements. :

Conversion Instructions 191
Section B3



The res#lt vector € is a list of fixed point single length
signed integer elements with scale factors according to the pre-
determined values of vector B. The elements of result vector C are
stored in consecutive singleword locations.

Floating DL Operand e]ement.ai
Unused | SF Scale factor bi
Fixed SL Result element C;

PROGRAM INTERRUPTION: Fixed point overflow

FIXED TO FLOATING POINT

Fixed to floating point vector conversion instructions acquire the
list of fixed point signed integer elements from vector K. Vector B is
the lis tof scale facters corrcsponding to the fixed point elements of
vector K. The scale factors are contained in the right half of the
singleword elements of vector B. The result vector C is a list of
normalized floating point elements. The hexadecimal exponents of the
floating point numbers are determined from the fixed point scale factors
and the amount of shifting required to normalize the floating point fraction.
The algorithm for fixed to flioating point conversion is the same as described
previously for scalar fixed to f]oat1ng point conversions. 2

0P Code MNEM Code Instructions

A8 VFXFL Vector convert fixed point single length to
floating point single length

Vector Kéis the list of fixed point single length signed integer
elements to be converted to floating point representation.

Vector B is the list of scale factors corresponding to the fixed
“point elements of vector R. The scale factors are contained in the right
half word of the singleword elements of vector B. Vector B may be specified
as a single-valued vector in which case the same scale factor is applied to
each and every Tixed point number of vector A.

192



The result vector C is a list of normalized floating point single
length elemenis. The hexadecimal exponents of the floating point numbers
are determined from the fixed point scale factors and the amount of shifting
required to normalize the floating point fraction.

Fixed SL Operand element a;
Unused SF Scale factor bi
Floating SL ‘ Result element C;

PROGRAM INTERRUPTION: Floating point overflow

OP'Code MNEM Code Instructions

AA VFXFD Vector convert fixed point single length to
‘ floating point double length

Vect&w*?fis the list of fixed point single length signed integer
elements to be converted to floating point representation.

Vector B is a 1ist_of scale factors corresponding to the fixed
point elements of vector A. The scale factors are contained in the
right half ward of the singleword elements of vector B. Vector B may
be specified as a single-valued vector in which case the same scale
factor is applied to each and every fixed point number of vector A.

The result vector T is a list of normalized floating point double length
elements. The hexadecimal exponents of the floating point numbers are
determined from the fixed point scale factors and the amount of shxftxng
required to normalize the floating puint fraction.

Fixed SL Operand element a;
Unused SF | Scale factor bi
Floating DL Result element c;

PROGRAM INTERRUPTION: Floating point overflow

OP Code  MNEM Code Instructions

AS VFHFL Vector convert fixed point half length to floating
point single length

Conversion Instructions
Section B3

193



Vector A is the list of fixed point half length signed integer
elements to be converted to floating point rcpresentation. Vector B
is the list of scale factors corresponding to the fixed point elements
of vector A. The scalp factors are contained in the halfwerd elements
of vector B. Vector B may be specified as a single-valued vector in
which case the same scale factor is applied to each and every fixed
point number of vector A.

The result vector C is a list of normalized floating point single
length elements. The hexadecimal exponents of the floating point nunbers
are determined from the fixed point scale factors and the amount of
shifting required to normalize.the floating peint fraction.

Fixed HL Operand element aj
SF Scale factor element bi
Floating SL Result element Cs

PROGRAM INTERRUPTION: Floating Point dverflow

0P Code FNEM Code Instructions

AB VFHFD Vector convert fixed point half length to
floating point double Tength

Vector A is the list of fixed point half length signed integer
elements to be converted to floating point representation.

Vector B is the list of scale factors corresponding to the fixed
point elements of vector K. The scale factors are contained in the
halfword elements of vector B. Vector B may be specified as a single-
valued vector in which case the same scale factor is applied to each and
every fixed point number of vector A. '

The result vector C is a list of normalized floating point double
length elements. The hexadecimal exponents of the floating point numbers
are determined from the fixed point scale factors and the amount of
shifting required to normalize the floating point fraction.

Fixed HL Operand element a,
SF ' Scale factor b,
Floating DL Result element ¥

PROGRAM INTERRUPTION: Floating Point Overflow

194



NORMALIZE INSTRUCTIONS

QP Code MNEM Instructions

B ey

AC VNFX ~ Vector normalize fixed point single length

Vector K is the list of fixed peint single Tength elements to be
normalized.

Vector B is not used in this operation.

—

Result vector C is the Tist of normalized fixed point single, length
elements and scale factor. The scale factor is stored into the right
quarter of doubleword element ci and represents the number of bit posi-
tions that the fixed point fraction was shifted Teft until beceming nor-
malized.  The number of positions shifted is stored as a negative 2's
compiement number.

_ The ]eft half of doubleword element ci contains the normalized
fixed point single Tength element corresponding to singleword element a,
of input vector A. !

Fixed SL Operand element a;

Fixed -SL Zeros | SF Result element C;

PROGRAM INTERRUPTION: . None

" 0P Code  MNEM Code Instructions
AD VNFH Vector normalize fixed point half length

Vector R is the list of fixed point half length elements to
be normalized.

Vector B is not used in this operation.

Result vector C is the list of normalized fixed Eoint half length
elements and scale factor. The scale factor is stored into the right half of
singleword element ci and represents the number of bit positions that the
fixed point fraction was shifted left until becoming normalized. The number
of positions shifted is stored as a negative 2's complement number.

The left half of singleword element ci contains the normalized
fixed pojnt half length element corresponding to halfword element aj of input
vector A.

l Fixed HL Operand element a,

Fixed HL - SF Result element C,

PROGRAM INTERRUPTION: None

Normalize Instructions 195
Section B3



NOTE:

The SELECT and REPLACE instructions which follow have not been
implemented for ASC serial numbers 1 end 2, but will be included
in ASC serial number 3 and all subsequent machines. These instruc-
tions will be fully supported hy the software and by the instruction
Tevel simulators

195A



SELECT INSTRUCTION

A vector select %nsﬁruction generates an output vector_t composed of
elements from vector A, The elements selected from vector A are those for
which the index location in vector A covresponds to the index value given
by the elements of vector B.

Programming Neotes:

(1) Input vectors A and B are read from contiguous memory and the output
is stored into contiguous meniory for a given self loop.

(2A) The length specification of the self loop (L-field) for a vector se-
%ect instruction is normally set equal to the number of elements of vector

(2B) It is possib1§ to shorten the vector operation and still obtain the
same result vector C by setting the self loop lencth equal to one plus the
value of the last index in vector B.

(3A) If the vector length is specified according to 2A above, then an in-

dex boundary 1imit equal to the largest positive number (7FFFheX) must be
placed in the data location following the last index value of vector E.

(3B) If the vector length is specified according to 2B above, then the in-
dex boundary limit is not necessary.

(4) Each index value given by vector B is a positive fixed point halfword.
- Vector B should be a contiguous 1list of monotone increasing halfwords.

(5) An index value of zero selects the first element of vector .

(6) If inner or outer loops are employed, then a dummy value shou'd be
placed at the end of each self loop vector A and the index of thig dummy
value should be placed at the end of each self Toop index vector B.. Each
successive index 1ist must be in contiquous memory, i.e., DBI and DBP must
be equal to one. Vector A may use delta increments not equal to_ one for
inner or outer loops if desired. However, the resultant vector ¢ of selec-
ted elements should use delta increments, DCI and DCP equal to one if the
number of selected elements varies from self loop to self Toop. Delta
increments for vector % are added to the address of the Tast element selec-
ted for each self loop.

Select Instruction 1958
Section B3



0P CODE MNEMONIC CODE JNSTRUCTION

-+

B4 VSEL Select singlewords from vector A
B5 VSELH Select halfwords from vector A
B7 VSELD Select doublewords from vector A

o

Example: A singleword select instruction using one self loop of length 8.

Singlewgrd ) Halfword Singleword sg?ected
vector A index_vector B vector C
+16 ‘ 2,3 -54
t7z : 5,6 -75
-54 JFFF , - ' -64
-75 | : -15
+71
~ -64
-15
+14

195C



REPLACE INSTRUCTION

A veclor replace instruction accepts as inputs a contiguous list of
replacement elements from vectoh+ﬁ and a contiguous Tist of indices from
vector é. Elements from vector A replace previously existing elements in
a central memory region defined as the C output array. . Elements of the C
output array that are replaced with elements of vector A are those ele-
ments for which the index location in the € outpyt array corresponds to
the index value given by the elements of vector B.

Programming Notes:

(1) The length specification of the self loop (L-field) for a vector re-
- place instruction should be set equal to the number of replacement ele-

- ments in vector A. This value is also equal to the number of indices of
vector B.

(2) Each index value given by vector B is a positive fixed point halfword.
Vector B should be a contiguous list of monotone increasing halfwords.

(3) An index value of zero selects the first element of vector k.

(4) If inner or outer loops are employed, then it becomes a requirement
that each self loop be of the same length. In general, the length of the
data replacement vectors throughout all of the inner and outer loops are
not the same length. In order to obtain meaningful results using inner
and outer Toops, a dummy region of memory must be established at the end
of the g'data output array for each self loop. The size of the dummy re-
gion for each self loop C output array is equal to one plus the difference
between the sizes of the maximum and minimum data replacement vectors as
found by searching the data replacement 1ists throughout all inner and
outer loops. "

For the case of a self loop passing over the maximum data replacement
vector, one dummy element is picked up one location past the end of the
data replacement vector A and is placed in the final address available to
the dummy output region of that self loop.

For the case of a self loop passing over the minimum data replacement
vector, the first dummy replacement element after the last data replace-
ment element is picked up and placed in the first location past the data
output array, which is at the beginning of the dummy output region. The
last dummy element is placed in the final address available to the dummy
output region of that self loop.

This nrocedure establishes a constant number of repla
and indices for each self loop. The number of elements of
array is assumed to be constant for each self loop.

nt emants
a

el
ta output

i

Cemel
the

Select Instruction 195D
Section B3



0P CODE MNEMONIC INSTRUCTION

B8 VREP Replace singlewords in vector E

B9 : VREPH Replace halfwords in vector ¢
->

BB VREPD Replace doublewords in vector C

Example: A singleword replace instruction using one self loop of length 4.

Singleword Halfword Single vector E’ Singleword vector E
vector A index vector B before replacement after replacement
-54 2,3 | 16 16
=72 N 5,6 72 72
-64 27 ' -54
-15 36 -72

7 71

32 -64

8 -15

14 14

195E



0X
X

2X
3X

7X
8X
9X
BX
FX

UNASSTGNED OPERATION CODES

CP Scalar Illegal Operation Codes

5E
5F

79
7B
7E
7F

9A
9B
9t

A3
A4

DA
DB
DC
DD
DF

EA
EB
EE
EF

A5
Ab
A7
AE
AF

Bl
B2

B4

CP Vector Il1legal Operaticn Codes

DA

EA
EB
EE
EF

where x represents any onc of 16 possible codes (0,1, 2, 3,...C,D,E,F)

196



£g uo1398s

L6l

op

~ BITS

4-7

QP BITS 0-3

o] 1] 2 3 4 | 6 7 8 9 A B c D E F

0] A stz | | A (Al | A Al | ISE | mep | FLFX| VECT | s AND | ANDI
1] STZH | LNH | AH | AIH 1sue | BSS | LR SAH ANDD

20 L Team [sps | INF | AF | LEA | & AL | DSE | INT | FDFYX CAND | cANDI
3] fiac [stzo (o | am | osne | s SAD CANDD
AEED ST |stn | AM LI |D DI | BCLE | Mcw sL R | oRI
s [stv [stwr |ww Timw | ow | o | ees | 8RS SLH ORD

6| LA STNF | AMF | LEA | DF BOLE | XEC 1 e COR | CORI
4 PYEN ET RN ETC R 0 I e R M coRd

8 l, |t ST |wm s ST | M ML |18z BB | FXPL c ¢ lxor | xoRr
9 o |LL ST LNMH | SH S ;Eémzw' BLX | FHFL_ cH  |cin | xoRD

Al lxen |ston juer s | I w0 loez FXFD CF

s|| [tF [stF |wwo lseo | |1 loenz | | Faro CFD

cil b lst T fswo ir |w MI | 1BZ | BXEC | NEX s EQC | EQCI
D{| LR [STR |LMH |swH wio [min ez | BEE | new 5cH EQLD

el ] st | |sw MF DBZ c eT

F Y [stn oo sweo MFD ~ losnz | moD | st

SCALAR X

69/



86l

0P BI.. 0-3

1BE 4 5 6 7 8 A C D E

0 VA VL VFLFX VSA | Ve VAND

1 VAH | VLH “i | e VSAH | VCH  |VANDD

. TR T S R S e

3 L] VAFD | VLFD ; 1 ’ VSAD | VCFD  [VCAKDD

4 Cvan | v L VD i ] vsL v VOR

5 UVAMH | VLM VDH i % YSLH | VOD  |VORD
0P |6 CLVAME | VLMF § VOF . vos lveor
BITS |7 § VAMFD | VLMFD g VDFD { % VSLD | VOFD  [VCORD
4-7 |8 Vs Vss ; VP : *VFXFL VG [VXOR

9 L VSH | ussH | vopH 5 % - VFHFL VMGH  [VXORD |

A g VSF . | VSSF | VOPF | E é CVEXFD | §

8 |11 | vse | vsso | voprD | | b e | e

¢ {1 Twsw fussm | o | § L YKFX ves L vep gvzqc

D  i | VSMH | VSSMH | VMH | | VNFH VCSH {VPPH  |VEQCD

E L y] 1| VSHF | VSSMF, | v VPPF

F % VSMFD | VSSMFD | VMFD vesp | vPPFD

VECTOR




SEQUEKRTIAL INDEX OF INSTRUCTIONS

HNEM ' OP PAGF
“ODE L INSTRUCTION CODE WO,
L LOAD ARITH REG SINCLE LGTH WO 14 26
L LOED OASE REG SINGLE LGIH 18 26
L LOAG INDEX REG GR VECTOR PARAM REG STNGLE LGTh 1C 26
L1 LOAD IMMED TINTC ARITH KEG SINGLE LGIH 54 27
LI LOAD IMMED INTC INDEX REGC CR VECTOR PARANM REG SNCLET  5C 27
LH LOAY ARITH REG HALF LGIH wC 15 29
LIH LOAE IMMED TNTL ARITR REG FALF LGTE 55 30
LR LOAD MERCRY R wl INTC ARITH RSG5 RH WD 10, 31
LL LOAD MEMCRY Rk WL INTO ARITH REG LH »b 19 32
LD LCAU ARITH REG LulE LCTH WC 17 33
LM LOAD MAG FIXLU °CINT SIANGLE LGTH ARITH REG L3C 34
LMH  LDAD MAG FIXED PLINI RALF LGTH ARTTH REG 30 35
LMF L0%0 MAG FLOGAT PUINT SINGLE.LGTH ARITH REG 3¢ 36
LMD LOAD MAG FLOCAT PCINT CELE LGTH ARITH RES 3F 37
LN LOAD NEG FIXED PCIANT SINGLE LGIH (LD 2%'S COMPYARITH R3O0 38
LNH  LOAD NEG FIXED PCINT HALF LGTH ARITH REG 31 39
LNF LOAD NEG FLCAT PCINT SINGLE LGTH ARITH REG 32 40
LND LOA AEG FLCAT PCINT DELE LGTH ARITH REG 33 40
LNM  LOAD NEG #AG FIXED POINT SINGLE LGTH ARITH REG 38 4]
LNMH  LOAD NEG FIXED PCINT RALF LGTH ARITH REG 35 42
LNMF  LOAD NEG MAG FLCAT PCINT SINGLE LGTH ARITH Rte 3A 43
LNMD  LOAD NEG MAG FLOAT PCINT DELE LCTH ARITH REG 38 44
LF ~  LCAD SASE RFG FILE, REG 1-7 A 8 45
LF LOAL BASE REG FILE, REG 3-F 1B 45
LF L0OAD ARITH RCG FILE, REG L¢-17 18 45
LF L&Y ARITH ReG FItE, REG L¥-1F 1B 45
LF LOAD INDEX REG FILE, REG 20-27 18 45
LF LOAD VECTCR PARAM REG FILEs RFEC 28-2F 18 45
LF# LOAD ALL REG FILES ‘ 1F 46
XCH  EXCHANGE ARITH REG 1A 47
LAM  LOAL ARITH MASK 12 18
LAc  LMAD ARITH CONDITICN ‘ 13 49
LLA  LOAC LCCK AHEACL 16 50
LO LOAC ARITH REG WITH 1'S COMP SINGLE LGTH 1€ 5]
ST STARE ARITH REG, SINGLE LGTH 24 52
ST STNRT BASE REG, SINGLE LGIR 28 52
ST STCRE INCEX REC OR VECICR PARAM REG,SINGLE LGIH 2C 52
STH STMAE HALF LGTR, ARITI REG 25 53
STR STORE REG Rh IANTO MEMCRY Ridy ARITH REG 2D 54
STL STARE REG LH In1G MEMORY RE, ARITH REG 29 55
STD STCRE ARITE REG, DBLE LGTh 27 56
SPS STPRE PRCGRANM STATLS WUKD 22 57
572 STPRE ZERC,y SINGLE LGTHE 20 57
STZH STORL ZCLRC, RALF LCIF 21 58
STZC STCRE ZERC, CBLFE LGTH 23 58
STN  STORE NEG FIXEL POINT SINGLEWORD 34 59
STNH  STCRE NEG Fix€L PUINT BALFWURD 35 60
STNF  STPRE NEG FLCAT PCINT SINGLEWORD : 36 60
STND STPRE NFG FLGAT POINT CCUBLEWORD 37 61
S7TTD CNF'S COMPLEMENT 5INGLEWCRU 28 g
S¥Td CNF'S COMPLEMENT HALFWLRD 2A 62
STF STORE BASE REG FILE, RLG 1-7 28 63
STF STORE 2ASE RIG FILE, REG 5-F : 28 63
STF STNRE ARITE RFC FILE, REG 10-17 23 63
STF STCRE ARITH RES #ILEs, REG 1B-1F . .ouB 63

Sequential Index 199
Cactinn R



SEQUENTIAL INDTY (CONTINUED)

FHEM )
CODE THSTRUCTION

e i b S

STORE INDEX REC FILE, REG Z0-27 .
ST STORE VECTCR PARAM REG FILF. REG 28-2F
STFM  STORE ALL REG FILESe REG L1-2F

A ABD TO ARITH REG FIXED PCINY SINGLE LGTH

A ADD TO BASE REG FIXEL PUINT SIAGLE LGTH

A ADD TG0 INDEX Cr vECTCR PARAM REG FIXED PCINT SINGLE
Al © ADD IMMED T0 ARITH REG FIXED PCINT SINGLE LGTH

AX ACE IMMECD TC BASE REC FIXEL POINT SINCLE LGTH

Al ADD TMMED TO INCEX QR VECTCR PARAM REG FIXFD PY SNGL
AH ADD FIXED PCERLD HALT LGTH ARITH RIEG

ATH ADD IMMEL FIXEL POINT HALF LGTH ARITH REG

AF ADD FLCAT PCINT SIWGLE LGTH ARITH KES

AFD ADD FLOAT PCINT DBL LGTH ARITH REG

AN ADD PAG FIXED POINT SINGLE LGVE AKITH REG

ANH ADD WMAG FIXED PCINT RALF LCGTh ARITH REG
AMF ADD MAG FLCAT POINT SINGLE LGTH ARITH REG
AMFD  ADD MAG FLCAT POINT DLBL LGTH ARITH

S SURTIR FIXEC POINT SINGLE LZTH ARLITH REG

SI SUBTR I#MEL FIXED PUINY SINGLE LGTH ARITH REG
SH SURTR FIXEL POINT RALF LGTH ARITH REG

SIH SURTR IMMEC FIXED POINT HALF LCTH ARITH REG
SF SUBTR FLCAT POINT SINGLE LCTYH ARITE REG

SFD SUBTR FLOAT PT DELE LGTH ARITH REG

SH SUBTR FAG FIXEC PCINT SINGLE LGTH ARITH REG

SHMH | SUBTR FMAG FIXED PUINT HALF LGTH ARITH REC
- SURBTR MAG FLCAT POINT SINGLE LGTh ARITH REG
-0 SUBTR MAC FLOAT POINT DBLE LGIH ARITH REG

M MULTIP FIXED PCINT SINGLE LGTH ARITH REG

M MULTIP BASE REG

M MULTIP INDEX OR VECTCOR PARAM REG .

Ml MULTIP IMMED FIXED PUINT SIMGLE LGTH ARITH REG
MI MULTIP IMMED TC BASE REG

M MULTIP IMMED TC INDEX CR VECTOR PARAM REG

MH NULTIP FIXED PCINT HALF LGIH ARITH REG
MIH MULTIP IPMED FIXED PCINT HALF LGTE ARITH RCG

MF MULTIP FLOAT PCINT SINGLE LGTH ARITH REG

MFD MULTIP FLOAT PCINT CBLE LGTH ARITH REG

C CIVICE FIXED PUINT SINGLE LGTH ARITH REG

D DIVICE IMMED r+IXED PCINT SINGLE LGYH ARITH REG
DH DIVICE FIXED POINT HALF LGTH ARITH REG

DIH  DIVICE IMMED FIXED PCINT HALF LGTH ARITH REG
DF DIVIDE FLOAT PCINT SINGLE LGTH ARITH REG
CFD  DIVIDE FLOAT PCINT DBLE LGTH ARITH RFG
AND  AND ARITH REG
ANDI  IMMED AND ARITH REG
OR OR ARITH REG
CRI  IMMEDC OR ARITH REG
XOR  EXCLUSIVE CR AR.TH REG
XORI -=FMMED EXCLLSIVE UR ARITH KEG
EQC  EQUIVALENCE ARITH REG
1 IMMED EQUIVALENCE ARITH REG
_ <D AND ARITH REG LBLE LGTH
ORD  CR ARITH REG DBLE LGTH 4
XERD  EXCLUSIVE OR ARITH RREG GBLE LGTH
- EQCD EQUIVALENCE ARITH REG LBLE LGTH

200

0P PAZC
CODE e
2B 62
28 £z
2F £
40 )
60 6=
62 63
50 EF
10 [ 52
72 €7
41 67
51 (o
42 ER
43 65
44 7c
45 71
46 77
47 72
48 73
58 73
49 74
59 74
GA 75
4B 75
4C 76
4D 77
LE 78
4F 78
6C 7¢
68 79
6A 75
7C 81
8 g1
TA 81
6D 83
1D 83
6F 84
6F 84
64 85
T4 86
65 87
15 by
66 88
67 88
EOQ 89
FO 89
E4 90
F& 90
ES g]
F8 91
EC 92
FC 92
El 93
ES 93
ES 94
FD 94



°

SEQUENTIAL INDEX (CONTINUED)

0P  PAGE 5/6s
MNEM ¢ GE
cone INSTRICTION LODE M.
SA ARTTH SHIFT FIXEU POINY SINGLE LGTH aRITH REG co 95
SAH ARTTE SHIFT FIXTL PULLT HALF LOTH ASITH REG C1 97
S&D ARYTH SHIFT FIXED POINT DBLE LGTH ARITH RILG c3 98
SL LOGICAL SHIFT SINGLE LGTH ARITH REG ce 99
SLH LOTICAL SRHRIFT FALLR LGTE ARITH REG cs 101
SLD LOGTILAL SHIFT LBLE LGIE ARITH 2FG ¢y 102
SC CIRCLLAY SEHIFT SIANGLE LGTH ARITH REG cc 103
SCH CYRCLLADR SHIFT HALE LGTH ARITH REC co 108
SCD CIRCLLAR SHIFT LOBLE LGTH ARITH REG cF 106
RVS BIT REVFRSAL SINGLE LGTH ARITH REG ce 107
C COMPARE TFIXFEC POINT SIKRGLE ARITH REG c8 108
C COHPARE INDEX REC SINGLE LGTH cE 108
Cl  CCVPARE IMMED FIXED POIANT SINGLE LGTH ARITH KEG pg 108
c1 COCMPARE IMMED INDEX REG SIAGLE LGTH DE 109
CH CCMPARE FIXEL PFUINI EALF LGTH ARITH REG ce 109
CIH COMPARE IMMEL FIXED PT KALF LGTH ARITH REG pg 110
CF CCMPARE FLCAT POINT SINGLE LGTE ARITH REG ca 110
CFD COMPARE FLCAY PUINT LCBLE LGIH ARITH REG ce 11
CAND COMPARE LCGICAL AND ARITH RLG SINGLE LGTH e2 111
CANDI COMPARE IMMFD LOGICAL "AND ARITH RFG SINGLE LCGTH F2 112
COR CCMPARE LOGICAL CR SINGLL LGTH ARITH REG E6 112
CORI  COMPARE IMMOCL LCGICAL LR SINGLF LGTH ARITH REU F6 113
CANDG CCMPARE LOGICAL AND DRLE LGTH ARITH REG E3 113
CORC  CCMPARE LOGICAL OR DRLE LGTH ARITH REG E7T 114
BCC CRENCH CN CCMPAR[L COCF 31 115
GE {RY £ (ALPEA) ' R=1 g1 115
BG (R) GR (ALPHA) R=2 31 115
BGE (RY GR GR kG (ALPHA) R=3 91 115
BL {R) LS (ALPHA) R=4 91 115
BLE (RY LS DR EGC (ALPHA) R=5 91 115
BNE (RY NCT EG (ALPHA) R=6 91 115
B UNCGRCITICNAL BRANCH R=7 91 115
BCZ ALL EBITS ARE ZERG R=1 g1 118
BCO ALL BITS ARE ONE R=2 91 118
BCNM  NOT FIXEC R=3 g1 118
BCHM MIXED ZERGS ANL CNES R=4 51 118
BCNO NOT ALL CNES R=5 91 118
BCNZ NOT ALL ZERCS R=6 91 118
BRC BRANCH CON RESULT CCDF 95 119
B2 (R) EQ ZERC R=1 95 119
BPL (RY GR ZERC R=2 35 119
gzp (R) Cx CR EC ZEiRry R=73 95 119
BMI {RY L5 ZERC R=4 95 119
BZIM (R)Y LS OR EGC ZtRU R=5 95 119
BNZ {R) NCT EC 7ERL R=6 95 119
BLR BRANCH CN LCGICAL RESULT 95 120
BRZ ALL BITS ART Z2CRu R=1 s 120
BRO ALL BITS ARE ChE R=2 95 120 3*
BRNM NPT MIXED R=3 95 120 -
BRM MIXED ZFRUS AND URES R=4 95 120
BRNO ADT ALL CNES R=%5 9% 120 %
BRNZ NOY ALL ZERCS R=6 35 120
BAE BRANCH CN ARITEMY TIC EXLLPTICN D 121
BU FLOAT PT CXP UNDLRELOGY, o R=1 9p 121
80 FLCAT PT EXP UVERTLUW R=2 I 121

Sequential Index 201
Section B3



i

HER
i

840
ax
8XU
BXD
BRUQ
350
20U
B0
BOUG
BOXU
BOX
BOXG
BDXUC
BXEC
iBz
182
IBRZ
IBNZ
143:%4
DBZ
DBNZ
DNz
I1SE
IENE
SE
USHE
BCLE
BLLE
8Le
BLG
P3H
PUL
KOD
gLB
BLX
LEA
LEA
INT
REC
MLP
KCH
jiniy
FLFX
FLFH
FOFX
FXFL
FXAFD
FHFL
FHFD
FX
KFH
VECT

VECTL VECTCGR AFTER LCADING VECTUR FILE

*

202

FLOAT
FIXED
FIXED
FIXED
FIXEL
CIVILE
DIVICE
CIVICE
DIVILE
DIVIDE
DIVIDE
CIVICE
DIVILE CH
BRANCH ON
INCREMENT
INCREMENT
INCREMENT
INCREMENT
CECREMENT
DECREMENT
DECREMENT
DECREMENT
INCREMENT
INCREMENT
DECREMENT
DFCREMENT
BRANCH CN
BRANCH ON
BRANCH ON
BRANCH GN
PLUSH WD A
PULL WD A
MODIFY AR
BRANCH AN
BRANCH AN
LOAD EFFE
LOAD EFFE
INTERPRET
EXECUTE
MCNITCR C
MONETCR C
TAKE NEXT
CONVERT F

PY
PT
PT
PT
PT
CH
CH
CH
CH
CH
CH
CH

CCNVERT F

CCNVERT F
CCRVERT F
CCNVERT F
CCNVERT F
CCNVERT F
NCRMALIZE
NCRMALIZE

VECTCR

SEQUENTIAL INDEX (CONTIHUED)

op

INSTRUCTION CODE
EXp UNDERFLGW CP QVERFLOW R=3 q0
OVERFLOW R=¢4 oD
OVERFLOW CR FLCAT EXP UNDERFLOW R=5 90
OVERFLOW CR FLCAT EXP (OVERFLOW R=6 9D
OVR OR FLUGAT EXP PT OVR OR UNDEKFLOW R=7 an
ECK R=8 S
ECK CR FLCAT PT EXP UNDERFL(CW R=9 9D
ECK OR FLUAT PT EXP OVERFLQOW R=A 9D
ECK CR FLCAT PT tXP UNDER QR UVERFLOW R=B 1)
K CR FIAZEL PT CVR (0P FLOAT EXP UNDRFL R=D 9D
ECK CR FIXED PT OVFRFLOW R=C 9D
K CR FIXEL OGVR UR FLOAT PT EXP OVRFLL R=E 9D
K CR FIXED CVYR CR FLT EXP OVR CR UNDR R=F SD
EXECLTE BRANCH COCNDITICN TRUE R=1 OR ODD SC
TEST ANL BRANCH CN ZERC ARITH KREG 88
TEST INDBEX ANC BRANCEF ON ZERQ 8C
TEST AND BRANCH CN NCN-ZERC ARITH REG 89
TEST INDUX ANL BRARNCH ON NOR-ZERQC 8D
TEST AND BRANCH CN ZERG ARITH REG BA
TEST INUEX ANC BRANCE ON ZERC 8L
TEST AND BRANCH CN NCN-ZERC ARITH REG 88
TEST INDEX AND BRANCH ON NON-ZERO gF
TEST AND SKIP UN EQUAL ARITH REG 80
TEST AND SKIP CN NCY EQUAL ARTTH REG 81
TEST AND SKIP ON LQUAL ARITH REG 82
TEST AND SKIP CN NOT EQUAL ARITH KEG 83
ARITH REG LESS THAN CR EQUAL TGO 8%
INDEX LESS THAN CR ECUAL TC 86
RITH REC GREATFR THAN 85
INDEX GREATCR THAN 87
RITH REG 93
RITh REG 9?
ITH REG “9F
D LCAC REG wWITH PC 98
D LCAD INDEX REG CR VECTOR PARAM REC 99
CTIVE ALDRESS INDEX RECISTER 56
CTIVE ACDRESS INTC BASE REG 52
ARITH REG 92
96
ALL AND PRUCEEC 90
ALL BND WAIT 94
INSTRUCTION R=0 91
LCAT PT SNGLE LGTH TO FIXED PT SHGLE ARITH RAQ
LCAT PT OSNOLE LGTH TO FIXED PT HALF ARITH R Al
LCAT PT DBLE LGTH TQ FIXED PT SINGLE LGTH A2
IXEC PT SINGLE LoTH TC FLCAT PT SINGLE LGTH AB
IXEL PT SLINCLE LGTH TU FLOAT 7 DBLE LGTH AA
IXED PT HALF LGTH TO FLCAT PT SINGLE LGTH AS
IXEC PYT HALF LGTH TO FLOAT PT DBLE LGTH AB
FIXELD POINT SINGLE LCGTH ARITH REG AC
FIXED PUINT KALF LGThk ARITH REG AD
’ R=1  BO
F=0 80

PAGE
NO,

121

121

121

121
121

121
121
121
121

122
122
122
122
123
124
124
125
125
126
126
127
127
128
129
130
131

132
132
133
133
134
135
135
136
137
138
138
139
139
140
140
11§
145
146
147
151

152
153
154
155
156
173

173




MEM
&

A

A

EF
AFD
B
Al
AT
LY
AlH
J 33!
ABF
EWMFD
L#H
AHD
ANDD
ANDI

BAE
BCC
BCG
BECG
BCLE
BCLE
BCH
BCONM
BCNO
BCNZ
BCO
BCZ
8D
BDO
BDU
BoUQ
BDX
BDXO
BOXU
8DXUuUd
BE
BG
BGE
BL
BLB
BLE
BLR
BLX
BMl
BNE
BNZ
BO
BPL
BRC

ALPHARETICAL INDEX OF INSTRUCTIONS

0P  PAGE
INSTRUCTION CODE _NO..
ADN IG ARITH REG FIXED PLCIRT SINGLE LGIH 40 65
AN TC DASE RLG FIXED PUINT SINGLE LGTH 60 65
SARD TC0 INLEX CR VECTLE PARAM REG FIXTU PCINT SINGLE 62 65
ACEL FLUAT BCINT SINGLE LGTH ARITH REG 42 68
AT FLCAT PCIAT CBL L3TF ARITH RES 473 69
ACT FIXFD PUINT BHALF LGTH ARITH RIC 41 67
ACE IvMELC 10 ARITH RES FIXED PCINT SINGLE LGTH 50 66
ADD IFMED TC RASLE REG FIXED POINT SINGLE LGIK 70 66
ADN INMFFD TC IADEX R vECTCR PARANM REG FIXID PT SNGL 72 66
ATT TWNMELD FIXELD PLINT FALFE LGTH ARXITE REG 51 68
ATD FAC FIXEL PUINT SINGLE LGIF ARITR REG 44 70
ACD MAC FLCAT POINT SINGLE LGTH ARITH RES 46 72
ACD #AC FLCAT FCINT LBL LGTE ARITH 47 72
. ADD MAC FIXED PCOIANT FALF LCTH ARITE REG 45 7
AND ARITE REC EO 89
AND ARITH REC [PLE LGITHR E1 93
IMMEL AND ARIfH REC FO 89
UNCCNDITICAAL ERAANCH » R=7 91 115-
ERANCH (AN ARITEMEIIC EXCEPTICN 9D 121
ERANCHR CN CCMPARE CCLE 91 115
ERANCH CN ARITF REC CREATER THAN , 85 133
BRANCH CN INLFX CGREATER THAN 87 133
EPANCE CA AALTE RLG LIy TEHAN CR EQUAL TC 34 IRY.
PRANCH CN INCEX LESS THAN CR ECUAL TC 86 132
MIXEL ZFRCS ANLD UNES R=4 g1 118
NOT ®IXEL R=3 91 118
NOT - ALL CNES R=5 51 118
NOT ALL ZERCS R=6 91 118
ALL BITS ARF CANF R=2 91 118
ALL BITS ARE Z¢PC R=1 91 118
DIVILE CHECK _ R=8 - 9D 121
LIVILE CHECK I« FLCAT PT FXP OVERFLUW R=A 9D 121
CIVICE CHECKX UrR TelaT FT EXP UNDERFLCHW R=9 9D 121
DIVIZCE CHFCK CR FLEAT PT EXP UNDFR OR QVERFLLw R=B =18, 121
DIVILE CHECK CR FIXED P1 CVERFLCW R=C 9D 122
DIVICE CHX CR FIAFL LVR CR FLOAT PT EXP CVRFLw R=F 9D 122
DIVILE CHK CRrR FIAEL PT (VR CR FLCAT EXP UNDRFL R=0 9D 122
DIVICE Ctk CR FIAFD CVvr GR FLT EXP (VR CR ULNCR R=F 90 122
() LQ (ALPEA) R=1 91 - 115
{2} CR (ALFRA) R=2 91 115
() GR CR EG (ALPRA) R=3 91 115
(RY LS (ALFHA) R=4 91 115
BRANCH AND LCAL REG wllk PC 98 136
() L3 €< EC (ALvERA) R=Y 91 115
BRANCH CN LCCTIZAL RESLLT 95 120
FRANCEF ANC LCAC INCDTx RCG CR VECTCR PARAM REG 99 137
() LS Z2:5RC ) R=4 95 119
{R) ANCT FC (ALFHA) R=6 91 115
(R} NCT EG Z2ERC R=6 95 119
FLCAT FT EXP LLVERFLCHW R=2 9D 121
(R) GR ZERC R=2 95 119
ERANCH ON RESLLT CCiC 95 119

A1phébetica1 Index

Cortinn D2

203



5/69
HNEM

z t“;’{

BRNM

x BiC .

ke
"

BRNZ
BRO
BRZ
BU
BUCO
BX
BXEC
BXGC
BXU
BXUC
8z
BZM
BZP
C

C
CAND
CANEL
CANG I
CF
CFD
CH®

CIH
COR
CORD
CORT
C
CBNZ
CBNZ
0BZ
sz
OF
CFD
CH
Ci
CIH
DSE
CSNE
EQC
EQCOD
EQCI
FDF X
FHED
FHFL
FLFH
& X
D
FXFL'

204 -

ALPHABETICAL INDEX (CONTINUED)

INSTRUCTION ngE
FMIXED ZEROS AND CKES R=4 95
NOT MIXEC R=3 95
NOT ALL CNES 2=5 9§
NOT ALL ZERCS R=¢& 95
ALL BITS ARE CMNF =7 95
ALL EITS ARE ZERC k=1 95
FLCAT PT EXP UNCERFLCH . R=1 9D
FLCAT PT EXP UNDERFLCW CR CVERFLCY R=3 9D
FIXED PT OVFRFLCH R=4 9D
ERANCH CN EXCCUTE ERANCE CONGITION TRUE  R=1 2 GRD 9C
FIXEL PT CVERFLOW CR FLCAT EXP OVERFLOUw R=6 9D
FIXEC PT OVERFLGW CR FLCAT EXP UNCERFLCW R=5 9D
FIXEC PT CVR CR FLCAT EXP PT OVR CR UNLCERFLLW R=7 9D
(R) EG ZERC R=1 95
(R} LS CR EC ZERC R=5 95
(R) GR CR EC ZERC R=3 95
COVPARE FIXFD PUINT SINGLE ARITH REG cs
CTMPARE INCFX REC SIACLE LGTH CE
CCMPARE LGGICAL AND ARITH REG SINGLE LCTH £2
COMPARE LGCTCAL ANL CBLE LGTH ARITh REG £3
CrMPARE INMNEL LCGICAL AND ARITH KEC SINGLE LCIH F2
CTMPARE FLCAT PNINT SINGLE LCTF ARITH REG CA
COMPARE FLEAT PUINT CELE LGTE ARITH REG cp
COMPARE FIXED PUINT KHALF LGTH ARITF REG c9
COMPARE [MMEC FIXED PCINT SINGLE LGTH ARITH R&G De
CCMPARE 1&MEL INLEX REC SINGLE LGTH DE
CCMPARE INMMED FIXED F1 HALF LGTH ARITH REG D9
CCMPARE LCGICAL CR >INGLE LGTH ARITH REG E6
CCMPARE LCGICAL CR LPBLE LGTH ARITF REG £7
CrMPARE IMMEL LUGICAL CK SINGLE LGTH ARITH MEG Fo
CIVICE FIXEL PLINT SINCLE LGTH ARITH REG 64
CFCREMENT TEST AND BRAWCH CN NCN=ZERC ARITH REG 8R
CFCRENMENT TEST INCEX ANL BRANCF ON NCN-ZERO 8F
UFCREMENT TEST AND ERANCH CN ZERO ARITH REG 8A
DECREMENT TEST TNDEX ANC BRANCF ON ZERC 8E
DIVIGCE FLOAT PCINT SINGLE LGIH ARITH REG 66
CIVICE FLCAT PCINT CRLE LGTH ARITH REG 67
CIVICE FIXEC PCINT HALF LGTF ARITF REG 65
GIVICE INMED FIXED PCINT SIAGLE LGTH ARITH REG 74
CIVICE IMVEC FIKEC PCINT KALF LGTF AITH REA 75
LECREMENT TEST BAC SKIP CN ECUAL ARITH REG 82
CFCREMENT TEST AND SKIP ON NCT EGUAL ARITH RLG 83
ECUIVALEACE ARITE REC £C
EQUIVALENCE ARITH REG CRLE LGTF ED
INVEL EGUIVALENCE ARITF REC FC
CONVERT FLCAT FT CELE LGTh TC FIXEDL PT SINCLE LGIE A2
CONVERT FIXEC 7 HALF LGTH TC FLCAT PT CRLE LGTH AR
CONVERT FIXEC PT KALF LGTH TC FLCAT PT SINGLE LGIH A9
CCNVERT FLCAT PT SNGLE LGTH TC FIXED PT FALF ARITK R Al
CCNVERT FLCAT PT SNGLE LGTF-TQ FIXED PT SWGLE ARITH RAQ
CONVERT FIXED FT SINGLE LGTR TC FLCAT F1 LCELE LGI-  AA
CCNVERT FIXED PT SINGLE LGIH TC FLCAT PT SINGLE LGTH A8

PAGE

MO,
120
120
120
120
120
120
121
121
121
123
121
121
121
119
119
119

no
(Ve

108
11
113
112
110
111
109
106
108
110
112



Y
CODE

iz
182
IBNZ
IBNZ
INT
ISE
ISNE

n
=

H

I

LAC
LAM
Lo
LEA
LEA
LF
LF
LF
LF
LF
LF
LFM
iLH
W7
Ll
LIH
LL
LLA
Le
LMD
LMF
LMH
LN
LND
LNF
LNH
LANM
LNMD
LM
LNMh
Lo
LR

MCP
¥CA
MF
¥FD
M1
M1
o3
i
MIH
»GD

ALPHABETICAL INDEX (CONTINUED)

INSTRUCTION

INCREMENT TEST AND BRANCH CN ZERC ARITH REG
INFCREVMEMRT TEST INDEX AND BRANCE ON ZERC

EMNORENMENT T0ST BANL ERELNCH UN NCH-ZERC ARITH REG

ENCRUNMENT Tt ST IALLEX ANL BRANCE CN NON-ZERC
INTLERPRET ARTTE RECG

FNCRENMENT TEST AND SKIP CN EQUAL ARITH REG
INCREVMENT TEST AND SKIP N NOT EGQUAL ARITH RES
LCAL ARITH QEC SINCLE LGTH WC

LOAL BASE kEG LINGLE LCTH

LOAD INCEX REG CR vLCTCR PARAM REG SINGLE LGTH
LO&C ARITH CUN TTICHK

LOAD ARTTH MASH

LOBL ARITH REG CbLbE LGTH WC

LGAU EFFECTIVE ALLRESS INDEX RUEGISTER

LOAD EFFCECTIVFE AQPERESS INTC BASE REG

LCAD BASE R=ZC +ILE, REC 1-7

LOCAD BASE REC (Iek, REC 8-F

LOAL ARTIH PEG TIub, RLC 1C-17

LOAC ARITH EC FlLi,y, RLC 18-1F

LOAD INDEX REG FLLT, REG 2C-27

LCAD VECTCR PakAN REC FILE, REC 28-2F

LPAL ALL REG FILEDS

LreC ARITH RES HALF LGTE wL

LOLE IMMEL INTL ARITE REG SIANGLE LGTE

LOAD IMefE0 INTE INDEX REG CR O VECTCR PARAF REC SNCLE

LMAC IMMEC INTU ARITH REG FALF LGTH
LCAL MEMLCRY RE wi INTC ARITH REG Lt sl
LNAY LCCK AHEAL

LOAL MAD FIXKEL PCINT SINGLE LGTH ARITH REG
LNAD MAG FLCAT PULINT DELE LGTH ARITH REG
LOAD MAG FLCAT PCINT SINGLE LGTH ARITH REG
LOAL MAG FIXEL PUINT RALF LGTH ARITH REG

oP
CODE

88
8C
89
8D
32
80
81
14
18
1C
13
12
17
56
52
1B
18
18
18
18
1B
1F
15
54
5C
55
19
16
3C
3F
3E
30

*%

LCAG NEG FIXEL PCINT SINGLL LGTH (LD 2'S CCMPIARITH R30

LCAD NEG FLCAT PLINT CLLE LGSTH ARITH REG

L0A) NEG FLCAT PCINT SIANGLE LGTH ARITH REG
LCAD NEG FIXELDL PCLINT HALF LGIH ARITH REG

LCAL NES MAC FIXEL PCINT SINGLE LCGTH ARITH REG
LOAD NEG MAG FoCAT PCINT DPBLE LGTE ARITH REG
LCAC NEG MAG FLOUAT PULINT SINGLE LGTH ARITH REG
LA NLG FIXLD PUINT HALF LGTH ARITH REG

LCAD ARITH REG WITF 1'S CUMP SINGLE LGTH

LOAG MEMCRY RH WL INTC ARITH REG RH WD

MULTIP BASE REC

MLLTIP INLEX (R VLCTCR PARAM RFG

MULTEP FIXeCD PLUINT SIANGLE LGTH APITH REG
MONITCR CalL ANUG PRUCEEL

MONTITCR CALL ANDG AT

MULTIFE FLOAT PUINT SINCGLE LGTH ARITH REG
MULTI? FLUAT PUINT LDRLE LGTE ARITE REG

MULTIP INMMEDL TC uwaASE REG .

FULTIP IviecL U IALEX CR VECTCR PARAM REC
PULTIY IVMern FIXLi, POINT SIANCLE LGTH ADNITH REU
FLETEIP FICET PUlnT FHALE LGTE ARITE REG

#ULTIP IMeED FLIXED PCINT HALF LGIh ARIIH REG
BCOIFY ARIIH REG

33
32
31
38
3B
3A
39
1E
1D
68
6A
6C
90
G4
6L
6F
78
TA
7C
6D
- 1D
9F

ATnhahatiral Tndavy

PAGE
N
124
124
125
125
139
128

» 129

26
26
26
49
48
33
138
138
45
45
45
45

45

45
46
29
27
27
30
32
50
‘34

84
84
81
81
81
83
83
135

onn



57 MNEM
CODE
ROP
NFH

CRD
CR1
PSH
PUL
RVS
S
SA
SAD
SAH
SC
SCD
SCHh
SF
SFD
SH
SI
SIH
SL
SLD
SLH
SM
SHF
SKMFD

SHH

3
+w10H
SPS
ST

ST
ST
STD
STF
STF
STF
STF
STF
STF
STFl
STH
STL
STN
STND
STNF
STNH
STR
Stz
STZD
STZH

" MECT

MTL
xCH
XEC
XUR
X0RD
XORI

L.

ALPHABETICAL INDEX (CONTINUED)
TAEKE REXT INSTRUCTICON R=0
NCREALIZE FIXTLD POINT HALF LGTH ARITH REG
NCRMALIZE FIXEL POINT SINGLE LCTH ARIIr 2AFS
CR ARIIH REG
CR ARITH REG COLE LGIH
INFEL CR ARITH REC
PLSH wD AKITH REC
PULL WL ARITH RFEC
BIT REVERSAHL SINCLE LGTHF ARITH REG
SLETR FIXCC POINT SINGLE LGIH ARITHF REG
ARTTH SHIFT FIXEL FCINT SINGLE LOTH ARITE REC
ARTTH SHIFT FIXFD PCINT DBLE LCTH ARITF RFC
ARTTH SHIFT FIXEL PCINT HALF LCTH ARITHh REG
CTRLULAR SHIFT SIANGLE LCTH ARITH REG
CIPCLLAP SHFIFT D3LE LGY+ ARITH RES
CTRCLLAY SHFIFT FALF (CTF ARITH REG
SUPTR FLCAT FCINT SINGLE LCTH ARITH REC
SUPTR FLCAT 1 CBLE LGTH ARITH REC
SURTR FIXEC PCINT FALF LGTF ARITH REC
SURTR IMMEC FIXEG PCINT SIAGLE LGTR ARITH REG
SURTR INMEL FIXKEC PCINT HALF LCTH ARITH REG
LOCICAL SHIFT SINGLE LGTh ARITEF REC
LNGICAL SHIFT CRLE LCTH ARITH REC
LOGICAL SHIFT FALF LCTH ARITH REC
SURTR MAG FIXEC POINT SINGLE LCGTH ARITH RZIG
SUBTR MAC FLLAT PCINT SINGLE LGTH ARITH RCC
SLPTR MAG FLUAT PCINT DBLE LGTH ARITHE REC

- SURTR MAC FIXYEC PCINT RALF-LGTE ARITH RELG

CNF'S CCMPLEOFENT SINGLIWCREC
CNFYS COMPLFMENT HALFWCRE
STCRE PRCGRAF STATLS WCRE
STORE ARITH PTG, SINGLE LGTH
STORE BASE REG. SINGLE LGTH
STORE INCEX KECG UR VECTCR PARANM REC,SINGLE LGIH
STORE ARIfH REG, DRLE LGTH

STORE BASE REG FILE, REG 1-7

STNRE BASE KEG FILE, REG 8-F

STORE ARITE REGC FILE, REG 10-17

STNRE ARITH REG FILE, REG lu-1F
STORE INDEX REG FILY, REG 2¢-27

STCRE VECICR PARAM «EG FILE, RFG 28-2F
STORE ALL REG FILES, REG 1-2F '
STARE HALF LGTH, ARITH REG

STCRE REG LH INTC MEMCRY Rb, ARITE REG
STORE NEG FIXEL POINT SINGLEZWORC

STCRE NEG FLCAT POINT CCUBLEWORD

STORE NEG FLGAT POINT SINGLEWORD

STMPRE NEG FIXEC PCINT HALFWORD

STORE REC RH INTO MENMCRY Rk, ARITH REG
STCRE ZERC, SInGLE LCTH

STRRE ZE~Q, CBLE LGTH

STORE ZERQ, HALF LCTh

VECTCR

VFCTCR AFTER LCADING VECTOR FILE

EXCHANGE ARITH REG

EXFCULTF

EXCLLSIVE CR ARITK REC

EXCLLSIVE (kR &4RTIR REG CRLE LGTH
IMMEL EXCLULSIVE GR ARIThH REG

o »
nou
C -

oP

CODE

91
&p
AC
4
ES
F4
93
S
c6
48
co
C3
Cl
CC
CF
cD
4 A
48

49

58
59
C4
c7
cs
4¢C
4E
4F
4D
2F
28
22
24
28
2C
27
28
28
28
2B
2B
2B
2F
25
29
34
37
36
35
20
20
23
21

BO
B0

1A
96
£8

F9

r8

PAGE
NO.

115
156
155
80
=93
90
134
135
107
73
95
.98
97
103
106
105
75
75
74
73
74
99
102
101



0P MNEM
CODE  CODE
12 LAK
13 LAC
14 L

15 LH
16 LLA
17 Lo

1 g L

16 LL
14 XCH
18 LF
18 LF
1B LF
1R LF
1B LF
1B LF
1C L

IC LR
IE LD
1F  LFM
2C SYZ
21 SVIH
22 SPS
2% STID
24 ST
*25 SIH
21 SIp
2¢ ST
256 S1L
28 STOH
28 STF
2B STF
28 STF
28 STF
28 STF

-yl STF

2C S1
2C  S1TIR
2E 8TO
2F  STFM
3C LN
31 LNH
32 LNF
33 LND
34 STN
35 STNk
3¢ SINF
37 STIND
38 LNM
36 LNMH
3A  LNNMF
38 LNML
3C LM
3C LMH
3E  LMF
3F LMD
4¢C A

LCAD
LCAL
LCAD
LCAL
LCAL
LCAL
LCAL
LOAL
EXCHA
LCap
LCAC
LCcag
LCAL
LCAL
LCAL
LCAD
Lcar
LCAC
LCap
STCRE
STCRE
STCRE
STCRE
STCRE
STCRE
STCRF
STUwE
STLRE
STORE
STCRE
STURE
STCRE
STCRE
STURFE
STURE
STLRF
STCRE
STCRE
STICRE
LCAL
Loan
LCAD
LCAL
STCLRE
2TCRE
STORE
JI08e
LtCAL:
LCAD
LCAL
LCAL
LCAL
LLAL
LCAL
LtCag

0P £0DT INDCX OF TNSTRUCTIONS

I PAGE
INSTRUCTION NO.
BRITH MASK &8
ARITE CONLITION 49
ARITH RiG sINGLD LOTH wb 26
ARITE 2¢5 HALF LGTH Wi 29
LCOK Aio AL 50
ARITH {5 CHLE LG wC 33
BASE =EC SINGLE LCTH 26
MENCRY kb e INIC AGRITH RVG Lk wO 32
NGE ARLIH REG 47
BASE R+ FILE, REGC 1-7 45
BASE RVC FILE, REC n—F 45
ARTIF OLC FILE, RTG 1C-17 45
ARTTH KEG FILE, REC L8=1F 45
INCEX ®eG FILE, REG 2C-27 45
VECTCR PARAM RFG FILE, REC 28-2F 45
INDEX 2 G L2 VECTC(R PAKAM REG SINCLE LCTH 26
MENCRY RF WL INTU ARITE REG RH WC 31
ARTITH QG wITF 1¢S5 CCMP SIANGLE LGTH 51
ALL REG FILES 46
JERC, S>INGLE LGTH 57
2ERC, HALF LGTH 58
FRLGRAF STATULL WCC 57
26RC CrLE LCGTH 58
ARITE tEG, SINGLE LGTH 52
FALE LCTE, ARITH REG 53
ARITEF REG, CLLE LOTH 56
EASE ®LG, SINCGLE LGTF 52
REG Lk INTC FEMLRY RE, ARITH REG 55
CMNE'S LUMFLENMENT HALFWCORD 62
CASE REG §ILE, REC 1-7 63
BASE RLC FILF, REG 8-F 63
ARITH KEC FILt, REG 10-17 63
ARITEH REC FILE, REG 18-1F 63
INLEX RLC FILE, PEG 20-27 63
VELTLE PARAN REG FILE, REG 28-2F 63
INCEX KFG CR VFCICR FPARAM REG, SINGLF LGTH 52
REG ki* INIC MEMCRY RE, ARITH REG 54
CNL'S CCMPLEMENT SINCLEWCRL 61
ALL REG FILES, REG 1-2F 64
NCC FLALL PUINT SIAGLE LCTH (LD 2'S CUMPIARITH R 38
NEG F1Xocl PCINT BFALF LGTF ARITR REG 39
NESG FLLAT VCINT STHUGLE LGTE ARITH FFG 40
NEG FLICAT PCUINT DELE LGTEH ARITH REG 40
NEG FIXEL PCINT SINGLOWCRE 59
NEG FIXEC PCINT FALFWUKRD 60
NFS FLUAT PCIAT SINGLEWCRD 60
NEC FLUAT PLIAT LoudLEWCRD 61
L3 OMAG FIXUL PUINT SINGLE LGTH ARITH REG 43
NES TIXEN PCINT HALF LGTH ARITH RFG 42
NEC MAC FLCAT PCINT SINGLE LGTH ARITH 2EG 43
NEG MAG FLCAT PCINT DELE LGTH ARITH wFC 44
MAT FIXLL PCINT STNGLE LGTH ARITH REG 34
NAS FIARL PLIAT IALE LGTE ARITH RES 35
MAL FLOAT OCINT LINGLE LCTH ARITH RES 36
MAT FLUAT PCINT NELE LGTH ARJITH RES §§

ADD TO ARITH REG FIXED PCINT SINGLE LGTH

Op Code Index 207

. CAhartarn DR



ap
cnng
(O

b
43
44
&%
46
47
&g
4G
LA
4B
4C
4C
4E
4F
3G
51
52
54
55
56
58
59
SC
60

65
66
617
68
6A
6C
60
6E
6F
7C
12
T4
15
18
7A
7C
70
8G
81
82
23
84
8s
“6‘
ol

48

86

84

OP_CODE TuDEX (CONTINUED)

MNEH

CORE INSTRUCTION

&M ADD FIXED POINT HALF LGITH ARITH RYG

AF ACL FLCAT PUOINT LTNGLE LGTH ARITH RIG

AFD ADD FLCAT POINT CBL LGTH ARITH REC

AH ALD FMAC FIXEL POINT SIANGLE LGTH ARKITr ®IC
AMH ADD MAC FIXED POINT HALF LTTH AXTIH REG

ARF ATC MAC FLLAT PUINT SIANGLE LCTE ARITH REC
ARED ADU FAC FLCAT PGIaT CBL LOTH ARTITH

S SUBTR FIXED POIMRT SINGLE LGIH ARLIE REG

SH SUBTR FIXCEL POIHT HALF LGTE ARITH 290

SF SUBTR FLCAY POINT STRGLE LCTH ARITH REG

SN SUBTR FLCAT PCInNT DBLE LGTR ARITH 56

SM SUBTR KAC FIXED PUINT SIKNGLE LGTH A1TH BeG
SHH SUBTR MAC FIXEL POINT RALD LGTE ARYIL 271
SHE SUBTR NMAG FLCAT PUINT SIARGLE LGTe AETH 06
SHFD SUBTR #AC TFLCAT POINT COLLE LGTH ARLIIH RUG
AT ADL IMPEL TO ARITH REG FIXYL PCINT SINGLE L
AN ADD INMPEL [IXTIC POINT FALF LGTE AKITH REC
LEA LOAD EFFECIIVE ALDRESS INTUC BASE REG

Lt LOAD IMMEL INIC ARL1IH BEG SINGLE LGTH

LIH LOAC IMPELD INTC ARITH REG FALF LGl

LEA LOAD EFFECTIVE ADDRESS INDFX REGISTSR

St SURBTR IMMEC FIXED POINDT SIAGLE LGIH ARITH R
SIH SUBTR IMMEL FIXE. PCINT HALF LGTH AR[TE RES
Li LOAD INMMED INTU O INDEX RUEG M VECTUR PaRAN

A ADD TO BASE RESG VFIXED PRINT SINGLE LGTH

A ADC TC IRNLeX OR VECTOR Palkar REG FIXED 201w
D DIVIOE FIXED PLINT SIKNGLE LGTH AUITH 2FC

DH DIVIDE FIXED PCIAT HALF LGTH ARITH REG

CF CIVICE FLOAT POInNT SINGLEe LGTH ARITH REG
DFD LIVICE FLCAT 2001 Ll LOTH AT Red

M HULTIP CGASE RKEG

M MULTIP INCEX ORrR VECTOR PARAM RIG

M MULTIP FIXED PCINT SINGLE LOSTH ARITH REG

MH FULTIP #IXeD PULILT RALF LSTH ARITH REG

MF MULTIP FLCAT PCINT SIMNCLE LGIKH ARITH REC
MFC MULTIP FLCAT PCINT COLE LGTie ARTTH RES

Al ADD IMNMED TOC BALL REG FIXEL PCIT SINSLD LG
Al ADD IMMFD T0O InNDIX CR VECTCR PAvAM REG FIXE
[ 921 CIVICE IMMED FIXED POINT SInGLLE LGIH ARTITH
DIH CIVICE IMMED FIXKEC PCINY KALF LGIH AnITH KT
MI FULTIP? IMMED TC BASE RFEG

MI MULTIP IMMED TC INLLX CR VELTOR PARAM REGI
Ml MULTIP INMMED FIXPFS POINT SINGLE LGTH AQITH
MIH FULTIP [NMMED FIXHEC PCINT HALF LGTH ARITH Kt
1St THO<EMENT T80 »hu SKIP UN pUULAL ARTIN Hbo
ISNE INCREMENT TEST ANU o>ndP ON wus u ral Avl Th
DSE DECREMENT TEST ANL SKIP CN ECQUAL ARITITH REG
DSNE DECREMENT TFST ARD SKIF N HCT SQYMAL ARITH
BCLE BRANCH N ARITH REG LCSS THAN CR EQUAL TC
BCG BRANCH CN ARITEF REG GREATIR THAN

BCLE BRANCH CN INDEX LESS THAN CR FQUAL TC

BCG BRANCH CN INDEXY GREATER THAN

182 INCREMENT TFST ANDC HRAMRCH CN ZLRO ARIIH REG
IBNZ INCREMEANT TOST ANU BRANCH CN NCN-ZERC ARILTH
D8z DECRUMENT T5sT AMND 2RANCH CMN ZERC ARITH REG

GTH

iV ad
o

G

SNGE

1

STHGLE

Tt
BoPT
REG

~
2

SMGL

)

-
N
)

NS

RED

124
126



0P  MNEM
CODE  CODE
58 DBNZ
8¢ IBZ
8C 1CNZ
BE DRZ
8F DBNZ
90 MCP
91 BCC
31 NOP
91 BE
S1 BG
91 HBCE
91 BL
91 BLE
91 BNE
91 B

31 BCZ
91 BCQ
91 BCGHNM
91 BCH
91 BCNO
91 BCNZ
92 INT
93 PSH
94 MCW
95 BRC
%5 BRBZ
95  BFL
95 BZP
95 BMI
95 BZN
95 BNZ
95 BLR
95 BRZ
95 BRO
9y  BRNM
95 BRM
35 BRNO
95 BRNZ
96 XEC
97 PUL
98 BLB
95  BLX
9C BXEC
9C BAFE
9C BUL
9C  BO
3C  BLO
9C  BX
9y  BXU
9C  BXx0
9C BXUD
9C BC
90 BLCU
9C 80O
9C BDUO

0P CODE INDEX (CONTINUED)

PAGE

INSTRUCTICH NO.
DECREMENT TEST AND BRARCH CN NON-ZERO ARITH REG 127
INCREMENT TEST INDEX ARD BRANCHI CN ZERCO 124
TMCRERENT TEST IALEX ANL BRANCH ON NON-7FERU 125
CECREMONT TEST [RTDX AND BRANCH ON ZERQ 126
DECREMENT TEST INDEX AND BRANCH CN NCON-ZERO 127
FCRITOR CALL ANU PROULEEU 140
PRANCH CN COMPARED CCub 115
TAKE NOXT INSTRUCTICH R=0 115
(R} EC (ALPHA) R=1 115
(R} GR (ALFHA) R=2 115
(RY GR TR £C (ALPHA) R=3 115
(R} LS (ALPHA) R=4 115
(R} LS CrR LL (ALPHA) R=5 115
(R) KNOT EGC (ALPHA) R=6 115
ULNCCNUITICHAL BRANCE R=7 115
ALL BITS ARFE ZERC R=1 118
ALL RITS ARF CNE R=2 118
NCT MIXED R=3 118
MIXED ZEROS AND CNES R=4 118
NCT ALL CKES R=5 118
NCT ALL ZERDS R=6 118
INTFRPRET ARITH REG 139
PUSH wl ARITH REG 134
FOCNTTUR CALL ANL wAIT 140
BRANCH Ch rRESULLT CLLE 119
(R} FG ZERC R=1 119
iR} GR ZERL R=2 119
{R) GR CR EC ZiKC R=3 119
{R} LS ZERC R=4 119
(R} LS OR EG ZERD R=5 119
(R} NCT EG ZERC R=6 119
BRANCH CN LOGICAL RESULT 120
ALL BITS ARF ZERD 120
ALL BITS ARE CNE 120
NCT MIXED 120
MIXFD ZFROS AND CNES 120
NCT ALL CNES 120
NCT ALL ZEROS 120
EXECULTE 139
PULL WC ARITH REG 135
BRANCH ANC LULAL REG WITH PC 136
ERANCH AND LUAL INLEX REG (K VECTUR PARAM REG 137
BRANCH CN EXTCLTE BRANCH CCNDITICN TRUE  R=1 OR 0ODD 123
BRANCH CN ARITHMETIC EXCEPTION 121
FLCAT Pl EXP UALERFLUW R=1 121
FLCAT PT EXP UOVERFLCw R=2 121
FLCAT PT EXP UNOERFLOW CR CVERFLOW R=3 121
FIXEL FT UVERFLUW R=4 123
FIXED PT UVERFLOW CR FLUAT EXP UNDERFLCW R=5 121
FIXFD FT CVvFRFLUW CR FLOAT EXP DOVERFLOW R=6 121
FIXEC PT OGVR O® FLUAT "PT QVR 0OR ULNUERFLOW R=7 121
CIVIDE CHECK R=8 121
DIVIDE CHFCKk R FLCAT FT FXP ULNDERFLCwW R=9 121
LCIVILCE CHECK LR FLCAT PT EXP CVERFLOW R=A 121
CIVICD ChECK U FLLAT PT FXP UANDER OK OVERFLOW R=B 121

Op Code Index

209
Section B3 :

¢

<2
>3



0P CODE IHDEX (CONTINUED)

PNEM PAGE
CODE  CODE INSTRUCTION _NO.
9C  BEX DIVIDE CHECK OR FIXEw DT OVERFLOW R=C 122
9D BCXU  DIVIDE CHK OR FIXED OVR OR FLOAT PT EXP OVRFLOW R=D 122
9D BOXC  DIVIDE CHX QR FIXED CVR CR FLCOAT PT EXP OVRELW R=F 122
90 BEXUC DIVIDE CHK COR FIALL AVR CR FLCAT P1 EXP CVRFLW R=F 122

9F  MCD MOCIEY ARITH REG 135
AC  FLFX  CONVERT FLUAT PT SKRGLE £5TF TO FIXED PT SaCLE ARITH R 145
Al  FLFH  CONVERT FULLAT PT SKGLE LG0Tk TC FIXED PT EFALF ARITH R« 146

K2  FLFX CONVERT FLCAT PT CHLE LGTH 7O FIXED PT SIAGLE LGTH 147
£8 FXFL  CONVERT FIXED FT SINGLE LGYH TC FLGAT PT SINGLE LGTH 151
AS FHFL  CONVERT FIXED PT HALF LGTH TC FLCAT PT SINGLE LGTH 153
&R FXFD CONVERT FIXFD PT SINGLE LGTH TO FLCAT PT OBLE LGTH 152
AB  FHEYD CONVERT FIXFL PT FALF LCTH TO FLOAT BT DRLE LGTH 154
AC  NEX KCRMALIZE FIXEL PCINT SINGLE LGTH ARITH REG 155
AD  NFH NORMALIZE TFIXED POINT HALF LGTH ARITH RCG , 156
BC VECT VECTOR 173
BO VECTL VECTCR AFTER LOACING VECTOR FILE - 173
€0 SA ARITH SHIFT FIXEC PCINT SINGLE LGTH ARITH REG gy
Ci1 SAH ARITH SHIFT FIXEL PCINT HALF LGTH ARITH REG 97
C3 SAD ARITH SHIFT FIXED PCINT DBLE LGTH ARITH REG 98
€4 SL LOGICAL SHIFT SIANGLE LGTH ARITH REG 99
€S SLH LOGICAL SHITI FALF LGTH ARITH REG 1017
€& " RVS BIT REVFRSAL SINGLE LGTH ARITH REG 107
©SLD LOGICAL SHIFYT CBLE LGTH ARITH REG 102
. C COMPARE FIXtL FUINT SINGLE ARITH REG 108
9 CH COMPARE FIXED POINT HALFILGTH ARITH REG 109
CA CF COMPARE FLCAT POINT SINGLE LGTH ARITH REG 110
B CFD COMPARE FLCAT PUINT CBLE LGTH ARITH REG 11
€cC scC CIRCULAR SHIFT SINGLE LGTH ARITH REG 103
CD SCH CIRCULAR SHIFT HALF LGTH ARITH RECG 105
CE C COMPARE INDEX REG SINGLE LGIH 108
CF SCD CIRCULAR SKFIFT UBLE LGTH ARITH REG 106
08 CI COMPARE INMMED FIXi D POINT SINGLE LGTH ARITH RFC 108
D9 CiH COMPARE IMMEL POINT HALF LGTH ARITH REG 110
DE CI CCMPARE IMMED INDFX REG SINGLE LGTH 108
EOQ AND AND ARITH REG 89
El1 ANDD  AND ARITH RFG DBLE LGTH 93
E2 CAND COMPARE LOCICAL AND ARITH REG SINGLE LOTH 111
E3 CANDD CCMPARE LCGICAL ANL COBLE LCTH ARITH REG 113
E4 - OR CR ARITH REG 90
£5 ORD CR ARITH REG LBLF LGTH , 93
E6 CCR COMPARE LCCGICAL GCR SINCLE LGTH ARITH REG 112
E7 CCRD COMPARE LOGICAL CR DBLE LGTH ARITH REG ‘ 114
F8 XCR EXCLUSIVE GR BARITH REG ' 91
ES XCRD EXCLUSIVE CR ARITH REG CBLE LGTH 94
EC ECC EQUIVALFICE ARITK REG 9y
ED  EQCD EQUIVALENCE ARITI REG CBLF LGTh 94
FO ANKCI [MMEC ANL ARITEF REG 89
Y  CANCI COMPARE IMMEL LUGICAL AND ARITH REG SINGLE LGTH 112
s ORI IMMED CR ARIIH REG 90
F6 CCRI CCMPARE IMMFC LOG(CAL CR SINGLE LGTH ARITH REG 113
F8 XCRI1 IMMED EXCLUSIVE R ARITH REG 91
FC EQCI IMMED EQUIVALENCE ARITH REC 92

210



MNEM
CODE

VA
VAH
VAF
VAFD
VAM
VAMH
VAMF
VAMFL
VS
VSH
VSF
VSFOD
VSHM

vV SHMH
VSHMF
VSMFC
VM

¥ MH
VM
VHFD
vDP
VDPH
¥DPF
VDPFD
YO
Y¥DH
VOF
vDFD
VAND
VOR
VXOR
YEQC
VANDL
VORD
VXORL
VEQCLC
VSA
VSAH
VSAD
VSL
VSLH
VSLD
vsC -
VSCH
vSCD
VYMGH
VMG
VMGD
vQ
vQaD
VOF
VOFD

VECTCR
VFECILR
VECTCR
VFECTLR
VECTLR
VECTCR
VECTCR
VECTLR
VFCTLR
VFCITLR
VFCTCR
VECTCR
VECTCR
VFCTGR
VECTCR
VECTCR
VECTCR
VECTCR
VECTCR
VECTCR
VFCTCR
VECTCR
VECTLR
VFCTCR
VECTIR
VECTCR
VECTCR
VFCTICR
VECTLR
VECTCR
VFCTICR
VECTLR
VECTCR
VECTCR
VECTCR
VFCTLR
VECTCR
VECTCR
VECTLR
VECTLR
VFECICR
VFCICR
VECTCR
VECICR
VECICR
VETTER
VECTCR
VECTCR
VECTCR
VECTCR
VECTCR
VECTCR

FIx
FIX
FLC
FLC
MAG
MAC

A0D
ACDC
ADD
ADD
ACD
ACD
ACD FAG
AL MAG
SUBIR F
SUBTR F
SUBTR F
sSubTr F
SULBTIR ¥
SLBIR M
SUBTR M
SUBIR M
MLLT F
MULT F
MULT F
MULT O F

VECTOR SEQUENTIAL INDEX OF INSTRUCTIONS

PUINT SINGLE LGTH

POINT HALE LGITH

PLINT SINGLE LGTH

PCINT DBLE LGTH

PCINT SINGLE LGTH
PLINT HALFE LGTH
PLINT SANGLE LCGTH
PLINT CBLF LGTH
IXEL PLUINTY SINGLE LGTH
[XED PLINT LALFE LGTE

LOAT PUINT SINGLE LGTH
LOAT PCINT D2LE LGTH

AG FIXELD PUINT SINGLE LGTH
AG FIXCD PCINT HALF LGTH
AG FLOAT POIAT SINGLE LGTH
AG FLUAT PLINT CBLE LGTH
IXtD PCINT SINGLE LGTH
IXED POINT HALF LGTH

LGAT PGINT SINGLE LCGTH
LCAT PLINT UBLE LGTH

tD
ch
Al
AT
FIXED
FIXED
FLCAT

fLeary

€0

0P  PAGE
ODE _HO.

174
174

174
I
e 174
45 174
ao 174
47 *174
i 174
an 178
g 174
s 175
oy 175
ag 175
af 175
ec 175
eg 175
ep 175

4qQ
41

DCT PRULUCT FIXED PCINT SINGLE LGTH
DCY PRCLUCT FIXEL PCOINT HALF LGTH
CCT PRLLULT FLUAT PUINT SINGLE LOGTH
DCT PRULLUCT FLCAT PCINTY DOGLE LGTH
DIVICE FIXED POLINT SINGLE LGTH
DIVICE FIXEL PCINT HALF LGTH

OIVICE FLCAT PCINT SINGLE LGTH
CIVICE FLUAT POINT CHBLE LGTH
LCGICAL ANC SINGLFE LGTH

co 175

6A
6B .
G4
65
66
67 176

EC

LCGICAL
LCGICAL
LCGICAL
LCGICAL
LCGICAL
EXCLUST

O SINGLE LCTH

CXCLUSTVE CR SINGLE LGTH
ECUILVALENCE SINGLE LGTH
AND DELE LOTH

SR OBLE LGThH

VE OR DBLE LGTH

L@

E4

CQUIVALINCFE C2BLE LGTh

ARTTH SKIFT FIXEL PCINT SINCLE LGIH
ARITH SHIFT FIXED PCINT HALF LGTH
ARTITH SHIFT FIXED PCINT DBLE LGTH
LCGICAL SKHIFT SINAGLE LGTH

LOGICAL SHIFT HALF LGTH

LCGICAL SHIFT CBLE LGTH

CIRCULAR SKHFIFT SINGLE LCTH

CIRCULAR SHIFT HALF LGTH

CIRCULAR SHIFT LBLe LGTH

MERCFE HALVWLS

MERGE SASLE wlLy

MERGE ULbLE wDS

GRCER SINGLEWDS FIXEL PT
CROER HALEF wDLS FIXwC PT

URDCIR SINGLLEWDS FLOAT PT
DRUER CRLE WDS FLCAT PT

co 179
cr_ 179
03 180
D9 180
DB_ 180
D47 18]
D5 131
D6 131
07 181

Vector Sequential Index 211
Section B3



VECTOR SEQUENTIAL INDEX (CONTINUED)

MNEM 0P  PAGE
CODE INSTRUCTION CODE _NO.
Ve VECTCR ARITH CCHMP FIXVID PT STNGLE LGTH po 183
VCH VECTCR ARITH COMP “IXbL PT HALF L5TH pr 183
VCF VECTLR ARITH CCFP FLUYT PT LINGLE LOTH : pDz. 183
VCFD  VFCTCR ARFIH CUMP FLLAT P1 UpLE LGTE D3 . 183
VCANC VECTCR LCGICAL CUMP LSING ANU SINGLE U5TH . gz 185
VCANDOVFCTCR LCGICAL CuMP UuSING ANu CBLE LGTE E3 185
VCOR  VFCTLR LCGICAL COUMP UsInG CR SINGLE LGTH Ee 185
VCORD VFCTCR LCGICAL CUMP ULSING CR ORLE LGIH ' £7 185
VL VECTCR SRCH FCR LGST AKITH ELEMENT FIXCU PT SINTLE LGYH 50 187

VLH VECTCR SRCH FCR LGST ARITH ELENMENT FIXEL PY KHALE LGTH 51 187
VLF VFCTUR SRCH FOR LGST ARITH ELTUMENT FLOAT PT SINGLE LGTH 52 187
VLFD - VECTCR SRCH FOR LGST ARITH CLENMIENT FLOAT PT CBLE LGTH 93 187

VLM VECTCR SRub FUR LGST MAG FIKED PT SINGLE LGTH 54 187
VLMH VECTCR SRCH FUR LGST MAG FIXED PT HALF LGTH 55 187
VLMF  VFCTCR SRCH FCR LGST MAG rLOAT PT SINGLFE LENGIH 56 187
VLMFLC VECTCR SRCH FUR LGST MAG FLJAT PT DBLE LOTH 57 187

¥SS VECTCR SRCH FCR SMLLT ARITH ELEMENT FIXEL PT 5SHNGLE LGTH S8 187
VSSH  VFCIOR SRCH FLR SMLST ARITH ELFMENT FIXEC PT KALF LGTH 59 187
YSSF O VFCTLR SRCH FUR SMLST ARITHY ELEMENT FLOAT PT SNGLE LGTH 54 187
JSSEL MECTCR SRCE FOR SMULST ARITE ELEMENT FLOAT PT LBLE LGTH 5B 187

VSSM  VECTOR SRCH FOR SMLST NMAG FIXED PT SINGLE LGTH 5¢ 187
VSSHEF VECTCR SRCH FUR SMLST MAG FIXEL PT HALF LGTH 5D 187
VSSMF VECTCR SRCH FOR SMLST MAG FLUOAT PT SIKRGLE LGTh 56 187
VSSMEDVECTCR SRCH FCR SMLLT MAG FLCAT PT UBLEC LGTH SF 187
vep VECTCR PEAK FIXFU PT SIMSLE LGTH » DC 188
VPPH VFCICR PLEAK FIXEL P1 baLy LGIH DD . 188
VPPF VFCTCR PEAK FLCAT PT SINGLE LGTH _ DE 188
VPPFL VCCICR PEAK FLCAT PT DBLE LGTH DF 188

VFLFX VFCTCR CNVRT FLOAT Pl SNGLE LGTH TO FIXFL PT SNCLF LGTH A0 190
VFLFF VECTCR CNVRT FLOAT PT SNGLE LGTH TG FIXFEL PT KALF LGTH Al 191
VFDF X VFCTCR CNVRT FLUAT PT LBLE LGTHI TQ FIXED PT SANGLLE LGTH A2 191
VEXFL VECTCR CNVRT FLGAT PT SNGLE LGTH TG FLCAT T SNGLE LGTH A8 192
VFXFC VFCTCR CAVRT FLOAT PT SNGLE LGTH TG FLUAT PT LBLE LGTH aa 193
VFHFL VECTCR CNVRT FIXLL PI RALF LGTH TO FLOAT PT SNGLE LGTH A9 193
VFHFD VECTCR CNVRT FIXED PT HALF LGTH TC FLUAY PT Cult LGIH AB 194
VNFX VFCTCR NCRNMALIZF FIXEN PT O SINSLE LGTH ac 195
VNFH VECTLR NCRMALIZE FIXED PT tALF LOTH AD 195

212



MNEM

CODE

YA VECTICR
VAF VECTCR
VAFD VFCTCR
VAH VICTCR
VAM VPO IUR
VARF  VFCTOR
VAMFLC VFCTUR
VAMR  VFCICR
VAND VFCT(CR
VANDL VFCTCR
vC VECTCR
VCANLC VECTLR
VCANCLYFCTCR
VCF VECTICR
vCFD VFCTLUR
VCH VFCLTCR
VCOR  VFCOICR
VCORL VFCICR
VD VECTCR
VDF VECTCR
VDFD VFCTLR
vDH VELCTCR
vCP VFECTCR
VOPF  VECICR
VDPFL VECTCR
VOPH VWECTCR
VEQC VFCICR
VEQCL VFCTCR
VITDFX VICTCR
VFHFL VFCICR
¥FHFL VFCICR
VFLFF VFCTCR
VFLFX VFCTICR
VEXFC VFCTOR
VEXFL VFLCTICR
VL VECTCR
VLF VFCICR
VLFD VFOTICR
VLH VIFCTCR
VLV Verye2
VLMF  yTeiR
VLMFL VECICR
VLMH  VFOTCR
VM VFCICR
VMF VECTER
VMFD  VFCICR
VMG VEOIER
VMGD  VECTLR
vHidGH  VF{TTCR
VMH VEO TR
VAFH VFTTICR
YNFX VECTLR

ACD
AELD F
ACL F
ACL F
ACD W
ALC W
ACC W
ALD ¥
LLGIC
LLGIC
ARTITH
LCCIC
LCGIC
ARITH

VECTOR ALPHABETICAL TNDEX OF INSTRUCTIONS

INSTRUCTTON

FIXEOQ £CINT SINGLE LGTH

LCAT POINT SiFGtE LGTH
LOAT PCINT C3LE LGIH
IXED PLINT fALF LGTH
AC Xty PCINT SINGLE LGTH
AG FLCAT PUINT 5NGLE LCTH
AG FLCAT PCUINT C2LE LCIH
AG FIXFO POINT HALF LCGTH
AL AnT SINCLE oGIH
AL Anb CELE LGTF
CCxP FIXEL PT SINGLE LGTH
AL CCMP LSING Anp SINGLE LGTFE
AL CULME LSING AND CBLE LCIF
CCvP FLCAT PT SINCLE LGTH

ARLIR CCvE FLCAT PT L2LE LCTH

AR TH
LCGIC
LCGIC
CIvIL
GIVIC

Ce»y FIXCHL PT HALF LGTH

AL CLMF ULSIENG TR-SINGLE LGTH
AL CCVMP LSIANG CR DEBLE LGTH

E FIXED PCINT SINGLE LCTH

E FLCAYT PCIANT SINGLE LCTH

DIVICE FLLAT FCINT CHLE LGTH

CIvICL
CCT F

cer P

E FIXEC PCINT HALF LCTH
RCLLCT. FIXEL PCINT SINGLE LGTH
RCLLCT FLCAT PCINT SINGLE LGTH

CCT PRCLLCT FLCAT PCINT UBLE LGTH

pCr ¢

LCGIC
SQUTY
CAVRT
CNVRT
CMNVRI
CANVRT
CAVHT
Chvr T
CAVRT
SRCH
SRCH
SRCH
SRCHE
SRCF
SRCH
SRCH
SRCE
Moot
MLLT
et
VERCH
MERGFE
MERGY
MLLT
NCRwA
NCRMA

RLLUCT FIXEC PCINT HALF LGIH
AL FQUIVALENCE-S>INGLE LGTH
ALENCE LELE LGTE

FLCAT PT LELE LGTE TC FIXED PT SNGULLE LGTH
FIXEC PT FALF LGTE TC FLCAT PT CoLt LGTH
FIAELL PT BALE LGTH TC FLCAT PT SAGLE LGTH
FLGAT FT SANGLE LOTH TG FIXED PT HALF LGTH
FLOAT PT ShGLE LOTE TC FIXED PT oS>NCLE LGTH
FLOAT PT ONGLF LOTH TC FLCAT PT LBLE LGTH
FLLAL PT oGl LCTH TC FLCAT PT ONGLE LGTH
FCR OLOST ARKITH ELFMENT FIXCC PT SINCLE LGTH
FCE LGST ARITH CLEMENT FLUAT PT SINGLE LGTH
FCR LGST ARITo ELCMENT FLCAT PT LoLE LCGTH
FOo LGSl ARITH FLEMENT FIXELD PT HALFE

FLin LOST MAT FIXER PT SINGLE LGTH
FUe LGST MaG FLOCAT PT SINCLE LFENGTH
FCr LGST MAG FLCAT PT CBLE LGTE
FOR LOST MAC ¢ IXED PT FALF LGTH
FIXCE PLINT SINGLE LGIH

FLEUAT PCIAT LINCGLE LCTH

FLOAT PLUINT DUELE LGTR

SNOLE wWES

LOLE nbS

AL FWES .

FI<FL PCINT RALF LGTH
LIZS FIXFU BT FALF LGIE

LIZE FILED T SINGLE LCTH

Vector Alphabetical Index
Section B3

OP  PAGE
CODE 1O
40 174
47 174
R
41 174
44 174
46 174
41 174
¢ 45 174
gec 178
g1 178
o0 183
g2 185
g3 185
pz 183
D3 183
p1 183
Fe 185
g7 185
o4 176
66 176
67 176
65 176
68 175
6 175
6R 175
69 175
gec 178
gep 178
a2 191
AB 194
AQ 193
Ay 191
ac 190
AA 193
AB 192
50 187
52 187
53 187
51 187
54 187
56 187
57 187
55 187
6C 175
6F 175
6F 175
og 180
0B 180
Dg 180
6D 175
AC 195
AC 195

213



M
T‘

%O VECICR
van VECTCR
VOF VECTCR
VOFD VECICR
vOR VECTCR
VORD  V¥FCTCR
vpp VECTCR
¥PPFE VFOILR
VPPED VECTCR
VPPH VFOT(R
Vs VFCICR
vSa VECTUR
VSAD VFCTCR
VSAH VECTCR
vSC VFCTCR
VSCD  VFCTCR
VSCH VFECTCR
VSF VFCTLR
VSFD VECTCR
VSH VECTCR
vVSL VECTCR
VSLD VICTCR
VSLH  VvICTCR
YSH VECTCR

TME VECTLR
SSHFD VECICR
VSMH VFOTCR
VSS VTCTCR

VSSF  VECICR
VSSFO VILOTLR

SSH  VFOTCR

VSSM  VFCTCR
VSSMF VFCTCR

VSSMFLVELTCR
USSMH VTOTLR
VXOR VFCICR
VXQORDO VFCTCR

214

VECTOR ALPHABETICAL INDEX (CONTINUED)

SINGLEIWES FIXED
HALF w0S§ tiXUC
GRLER \I\CLLWL
GROER CBLE WBS
LCGICAL QR SINGL
LCGICAL CR CRLF
PEAK FIXED PT OSINGLE LGTH

PEAK FLEAT FT STIANGLE LCThH

PEAK FLUAT T CaLt LGIH

PEAK FIxULL PT FALE LGIE

SLBTR TIXYED PCINT JINGLFE LTIH

PRITE SEIFT FIXEFU PCINT OSINCGLE L OTH
ARTTR SHIFT FIXce PCOINT CBLE LGIH
ARITH SEIFT FIXELD PUINY HALE LGIH
CIRCULAR SKHIFT LINGLE LITH

CIRCULAR SHIFT LoLe LsTFE

ClaACLLAY SeIFT FALEF LCTH

SLETR VYA POINT STAGLE LCTH

SUBTR FLCAT PLINT DBLE LGTH

SUBTR FIXED PCINT LALF LGTH

LOCGICAL SHIFT SIANQGLE LGUH

LCGICAL SHIFT Crit LCGTH

LOGICAL SHIFT v ALF LGTH

SLBIR MAD FIXED PCOINT SINGLE LGTH
SLRBTR MeG FLCAT PUINT SINGLE LGTF
SLBIR MAG FLCAT BCINT DRLE LGTH

SUBTR MAG FIXIE PUINY RALF LCTH

SRCE FCR SHLOLT ARITE ELFMENT TFIXFC PT
SRCE FOR oVMLLT ARTITE ELEMENT FLUAL PY
SRCE FCR LiL3) ARITTE ELEFENT TLCAY PY CLLE LGTH
SRCE FOR SwL31 ARITE eLEMENT TIXED PT HALE LGTH
SRCF FLR ovLsy valG FLACL PT S>InCLE LGIn

SRCH FUER SMLST 1#aG FLCAT PT SINGLE LGTH

SRCE rFOR SYLOLT FAC FLIAT PT LsLe LGT!

SRACH FLrR LMLLT val FTAEL 2T BALE LGTH

LCGICAL EXCLUSIVE OR STAGLE LSTIn

EXCLUSIVFE CR CL3LE LCTii

CROER
CREER

PT
=}
rL3AT P
Feeat PT
£ LGTH
Lol

LNCGLE LGIH
GNGLF LGTH

Ixy

opP

D4
05y
D6
D17
E4
€5
(e
LE
b
0o

PAGE

CODE KO

181
187
181
181
178
178

188
188
185
188

48 174

cu
C3
ct
cc
CF
co
4A
48
49
C4
o
cs
4C
4E
4F
4D
58
54
58
59
5C
S5E
5F
50
E8
E9

179
179
179
179
176
179
174
174
174
179
179
179
175
175

2 -

175
175
187
187
187
187
187
187
187
187
178
178



MHEM
CODE
VA VECTOR
VAH  VECTCR
VAF  VECTCR
VAFD VECTCR
VAM  VECTCR
YaArH  VECTCR
VAMF  VECTCR
VAMFDO VECTOR
Vs VECTECR
VSH  VECTCR
VSE  VECTCR
VSFD  VECTCR
VSK  VECTER
VSMH  VECTCR
VSMF  VECICR
VSMED VECTCR
Vi VECTCR
VLH  VECICR
VLE  VECICR
VLFD VECTCR
VLM  VECTCR
VLMH VECTCR
VLMF  VECTCR
VLMFD VECTOR
vSS  VECTCR
VSSH  VECTCR
VSSF  VECTCR
VSSD  VECTCR
VSSM VECTCR
VSSMH VECTCR
VSSMF VECTCR
VSSMFOVECTCR
VD VECTCR
VOH  VECTCR
VOF  VECTCR
VDFD VECTCR
VUP  VECTGR
VOPH VECTCR
VOPE VECTCR
VDPFD VECTCA
VM VECTOR
VEH  VECICR
VME  VECTCR
YMFD  VECTCOR
VELFX VECTCR
VFLFH VECTCR
VEGFX VECTCR
VEXFL VECTCR
VFHFL VECTCR
VFXFD VECTCR
VEHFD VFCTCR
VNFX VECTCR
VNFH VECTCR
VECTCR

VSA

VECTOR 0P CODE INDEX OF INSTRUCTIONS

INSTRUCTICH
ADD FLXED POINT SINGLE LGTH
ACD FIXED POINT HALF LGTH

ACD FLGAT PULINT SINGLE LGTH

apl) FLOAT PCIANT DBLE LGTH

ACD MAG FIAFEL POINT SINGLE LGTH

ACL MAG FIAED PCINT HALF LOTH

AUD MAG FLCAT PCINT SINGLE LGIH

ACD MAG FLOAT PCINT DBLE LGTH

SUBTR FIXFL PUINT SINGLE LGTH

SUBTR EIXED PCINT HALF LGTH

SLHTR FLOAT PCINT SINGLFE LGTH

SUBT® FLOAT PUINT DBLE LGIH

SUBTR MAG FIXEL POINT SINGLE LGTH

SUBTR MAG FIXED PCINT HALF LGTH

SURTR MAG FLCAT POINT SINGLE LGTH

SUBTR MAG FLUAT PCINT DBLE LGTH

SRCH FOR LGST ARITH ELEMENT FIXLD T SINGLE LGTH
SRCH FCR LGST ARITH ELFMENT FIXED PT HALF LGTH
SRCE FUOR LGST ARITH ELEMENT FLOAT PT SINGLE LGTH
SRCH FCR LGST ARITH ELEMENT FLOAT PT DBLE LGTH
SRCH FOR LGST AAG FIXEL PT SIAGL LGTH

SRCH FUR LGST MAG FIXED PT HALF LGTH

SRCH FCR LGST MAG FLOAT PT SINGLE LGTH

SRCH FCOR LGST MAG FLOAT PT COELE LCTH

SRCH FOR SMLST ARITH ELEMENT FIXFD PT SNGLE LGTH
SRCE FCR SMLST ARITE ELEMENT FIXED PT HALF LGTH
SRCE FUR SMLST ARITH ELEMENT FLCAT PT SNGLE LGTH
SRCH PR SMLST ARITH ELCMENT FLCAT PT DRLE LCGTH
SRCH FOR SMLST MAG FIXED PT SINGLE LGTH

SRCHE FCR SMLST MAG FIXEL PT HALF LGTH

SRCH FOR SMLST MAG FLOAT PT SINGLE LGTH

SRCh FOR >SMLST MAG FLUAT PT DBLE LGTH

DIVICE FIXEL POINT SINGLE LGThH

DIVIDE FIXED POINT HALF LGTH

CIVIDE FLOAT POINT SinNGLe LGTH

CIVIPE FLGAT PUINT EBLE LCTH

CCT PRGDUCT FIXED PCINT SINGLE LGTH

DCT PROCLCT FIXED PCINT HALF LGTH

DCT PROLUCT FLOAT PCINT SINGLE LGTH

UCT PRCDUCT FLGAT PCINT CBLE LGTH

PULT FIXED POINT SINGLE LGTH

MULT  FLIXEC PGINT HALF LGTH

MULT  FFLCAT PCINT SINGLE LGTH

MLLT  FLOAT PCINT DBLE LGTH

CMNVRT FLCAT PT SNGLE LGTH TC FIXEDC PT SNGLE LGTH
CWVRT FLUAT PT SNGLE LGTH TO FIXED PT HALF LGIH
CNVRT FLOAT PT ColLF LGTH TU FIXED PT SNGLE LGTH
CNVRT FIXcD PT SNSLE LGTH TC FLCAT PT SNGLE LGTH
CNVRT FIXED PT FALE LGTHE TO FLOAT PT SNGLE (GTH
CANVRT FLCAT PT SNGLE LGTH TG FLCAT PT DBLE LGTH
CNVRT FIXED PT HALF LGTH TO FLOAT PT CBLE LGTH
NCRMALIZE FIXED PT SINGLE LGTH

NCRMALIZE FIXEU PT FALF LGTH

ARITH SFIFT FIXEQ POINT SINGLE LGTH

PAGE
o
174
174

174
174
175
175
175
175
187
187
187
187
187
187

187

187
187
187
187
187
187
187
187
187
176
176
176
176
175
175
175
175
175
175
175
175
190
191
191
192
193
193
194
195
195
179

Vector Op Code Index 215

Section B3



op

MREM

| CODE CODE

.1
€3
C4
s
C7
cC
o
CF
DO
Di
D2
D3
D4
05
T&
By
ug,
ng

Ui
oD
DE
DF
€C
Fl
E2
€3
L4
£5
€6
€7
E8
£9
EC
ED

216

YSAH  VECTOR
V3AD VECTLCR
VSt VELTCR
YSLH  VECTCR
VSLD VECICR
vSC VECTCR
VSCH  vECTCR
VS5CD VECTCR
Ve VECTCR
VCH YECTCR
VCF VECTCR
VCFD  VECTCR
VO VECTCR
VoD VECTCR
VOF VECTCR
VGFD  VECTCR
VHGH  VECTCR
VMG VECTCR
VMGD  VECTCR
VPP VECTCR
VPPH VECTCR
VPPF VECTCR
VPPFD VECTCR
VAND VECTCR
VANDD VECTGR
VCAND VECTCR
VCANDDVECTCR
VOR VECTCR
VORD  VECTCR
VCGR  VECTCKR
VCORD VECTOR
VXCR VECTCR
VXCRD VECTCR
VEQC VECTCR
VECCD VECTCR

\

VECTOR 0P CORE INDEX (CONTINUED)

INSTRUCTION

ERITH SHIFY FIXED PUINT HALF LGTH
ARITH SRIFT FIXED PCINT DBLE LGTH
LOGICAL SHIFT 5INGLE LGTH

LCGICAL SHIFT HALE LOGTH

LOGCICAL SHIFT DBLE LGTH

CIRCULAR SHIFT SINGLE LCTH
CIRCULAR SHITIT HALF LGTH

CIRCULAR SHIFY C3LE LGTH

ARITH COMP FIXEC PT SINGLE LGTH
ARITH CCGMP FIXECL PT EALF LGTH
ARITH COMP FLOAT PT 'SINGLE LGTH
ARITH CCHMP FLCAT PT DBLE LGTIH
CRDER SINGLEWLS FIXLD PT

CRDER HALF wDS FIXKED PT

CRDER SINGLEWDS FLOAT PT

CRCER DBLE WOS FLCAT PT

MERGE HALFWDS -

MERGE SNGLT wES

FERGE DBLE WIOH

PEAK FIXED PT SINGLE LGTH

PEAK FIXED PT HALP LGITH

PEAK FLCAT PT SINGLE {GTH

PEAK FLCAT PT DBLE LGTH

LCGICAL AND SINGLE LGTH

LOGICAL ANC CBLE LGTH

LCGICAL CCMP UsING AND SINGLE LGTH
LCGICAL CCMP USING AND OBLE LGTH
LOGICAL (OR SINGLE LGTH

LOGICAL OR LBLE LGTH

LCGICAL COCMP USING CR SINGLE LOTH
LCGICAL CCMP USING CR DBLE LGIH
LGGICAL EXCLUSIVE OR SINGLT LGTH
EXCLUSIVE OR CBLE LCGTH

LOGICAL EQUIVALENCE SINGLE LGTH
EQUIVALENCE CBLE LGTH

PAGE
NO.

179
179
178
179
179
179
179
179

183
183
183
183
181.
181
181

181
180

180
180
188
188
188
188
185
185
186
186
178
178
185
185
178
178
178
178



EXAMPLES OF VECTOR INSTRUCTION APPLICATION

Section B4



TABLE OF CONTENTS

‘ TINE PAGE
GERERAL 1
MATRIX - VECTOR MULTIPLICATION 1
MATRIX MULTIPLICATION, EXAMPLE A 3
MATRIX MULTIPLICATION, EXAMPLE B 6
MATRIX TRANSPOSE 9
"FIXED FILTER | 11
FIXED FILTER AND DECIMATE 13
INTERPOLATION , 14




GENERAL

A set of examples will serve to illus*rate thc vecter loop feature of
the ASC. The examplc problems are: (1) matrix-vector muitiplication,
(2) matrix multiplication, (3; matrix transpose, (4) fixed filter, (5) fixed
filter and decimate, and (6) interpolate.

MATRIX-VECTOR MULTIPLICATION

The data array for matrix [A] is stored consecutively by rows and con-
secutively within rows, i.e. the firsi element of one row is stored in the
Tocation following the last element of the previous row.

—2 . K . - ..

The data array for vector B is stored in consecutive locations.

Given: matrix [A] of dimension K by L
-— . -
and vector B of dimension L

Find: € = [A] B

where vector C is of dimension K and

] _ L
element c; = ST as. b, for1<19<K

3=T 1 J
N - -1 ( A
< a1 312 A3 I L by
< 31 255 353 SRR 31 b,
1 0 d b3\
k) [ e o KL b, )

Solution: Each e]ement, c;, of vector T is the result ?f a vector
dot product ( 5 ) operation involving the i th row of
matrix [A] and the column vector B.

A matrix-vector product may be programmed on the ASC by issuing a vector
instruction with the following set of vector parameters:

@PR  ~~ Vector dot product command

SV = 0 or 8 depending on whether a single or double length fixed
point result is desired.
L = L Vector dimension.

XA = XB = XC = 0 No initial index for vectors A, B, & C.

Matrix-Vector [ultiplication 1
‘ Section B4



LS e L
LPCI 4N =
LPCP < 0

K

s Rl

/

Accumelate
Acce~ Acc +

aj; -

products

N

)

Decr LC

fl

0

(L times)

No

N
/

< LC

¥ Yes

Store ci@ym—Acé

1

L. Decr LPCI

< LPCI = 0

Yes

L (K timeé)

. No

v

IAe— (JA) + 1
IB<«<—(IB) + 1

(L-1) times

Equiv. of
J &=t

seif-loop

/

Next
Insir.

y

IA €~ (IA) + 1

1B <—(IB) - (L~1)

IC<E—(IC) + 1
LC ¢ L

(K-1) times

Equiv. of
i €——i+]
J -1

inner loop

A

Figure 1. Flow chart for matrix-vector multiplication.



SAA  ~ Starting address of matrix [A] (address of element 311)

SAB ~ Starting address of vector B (address of element b])

SAC  ~ Starting address of result vector E”(address of result element
. C])

VI = 0 A VI field ecqual 1o zero indicates positive incrementing of

all vector adaresses by unity during the self-lcop.
DAI =1 af; increment for inner loop

Advances the "A" address in the index unit to the address of
the first element of the next row of matrix [A] from the add-
ress of the last element of the current row.

DBI = -(L-1) &k increment for inner loop

Returns the "B"_address in the index unit to the starting add-
ress of vector B from the address of the last element of vector
B. DBI is equal to the number of backspaces required to re-

" establish the initial address of vector B for the next _VDP oper-
ation involving the next row of matrix [A] and vector E.

Note that the A & B addresses are incremented (by unity) L-1
times during the self-loop as shown in figure 1.

DCI =1 aC; for inner Toop

Advances the storage address to the next location for the sub-
sequent VDP operation.

Note that the C address is not incremented during the self-loop
of a VDP operation, since a VDP generates a sca]ar result.

Also, the elements of vector C may be spaced any number of add-
resses apart up to 212 - 1= 32,767 by inserting the value of
the desired spacing interval into the DCI field.

NI

H
-~

Inner loop count
For this example, K is the number of rows of matrix [A], which

also determines the number of elements of result vector C. The
operation is completed when all K rows of [A] have been processed.

MATRIX MULTIPLICATION, EXAMPLE A

The data'array for matrix [A] is stored consecutively by rows, i.e. the
first element of one row is stored in the location following the last element
of the previous row.

The data array for matrix [B] is stored consecutively by columns, i.e. the
first element of one column is stored in the location following the last element
of the preceeding column (the column on its left).

1ication 3
Matrix Multip Section B4



LC € L
LPCI<—NI = M
LPCH<NG = K

¥

Acc e~ Acc + 3. b, .
ik + Ykj

j .
v (L times)
Decr LC

o

< =0 N

¥ Yes

Store Cij““' Acc

§

! Decr LPCI

oner

(M times)
No
LPCI = 0 Y
C )
Yes
1
Decr LPCP
(K times)
<
Lpeg = 0 \___No
-0 >
Yes
3

Figure 2.

| Equiv. of
IAe— (IA) + 1 k== ki
IB «—(1B) + 1
(L-1) times self-loop
[:
] Equiv. of
K o 1
IA <= (IA) - (L-1) ;o
1B <— (I8) + 1 J = 3
1C<—(IC) + 1
LC g L
(M-1) times inner loop —
ki Equiv, of
IA & (IA) +1 el
IB <—(IB) - (L-M - 1) (= ]
1€ <—(1C)+ 1 Ve
LPCI <—NI = M

LC<—L

(K-1) times

outer Toop

Flow chart for matrix multiplication of example A



Given: matrix [A] of dimension K by L

and matrix [B] of dimension L by M

Find: matrix [C] of dimension K by M,
where (€] = [A]l [B] ]
such that element cy; =~%{% ajp - by
TR TP byy <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>