
TEXAS INSTRUMENTS' PROPRIETARY RIGHTS NOTICE

This document is the property of Texas Inst:-L'fIlents
Incorpora~ted. Is SUJ)plie<l to YOIl f("~ informational
PUf1)Oses only, m,j. ~an be I"<!turnJ(i' t~ Texa¢> In­
st~nts uoan requ<"st, (fi. wl>e,,' 'rou have no further
use fol' ttt>!' doe_ni!. .

The .1nfo:'lil6tion an(!/or drawings 'set forth in this
<Iocu-..t and·alll'ig«ts in and to inventions dis­
d0S11C1 herelr". dIId ~tents """fen might be granted .
thereon dis,:;:"s f~9. emplo)'lng. or covering the ma­
terials. method$. techniques. or apparatus descri,bed
herein are tbe exc1 uslve property of Texas Instru­
ments Incorporated.

No rePrllduction shall be made of this document and
no disclosure can be made to any otner person. or
if disclosp.o to an organization. to anyone outside
of the o~ganii&ti~·. without the prior consent in
writing of Texas instruments Incorporated.

Copyright @ 19]0, by -rexas fnstrurl'ents Incorporated

--......... ------.-.,...~.~ -.. ----~ ~,~--... ----~-.-... ----... ,----~ ... -.-~ ------.---..... ---~--.--------........ '" -"'--".-:-__ -_.-:=::_-_-_-:--_-:.-_-_-~.=_:.-_-_-=_=.-"~_-.7.=__:::::.-_-_-_.::._:::_::.::..::.==::::::::::.:::::

____ ~ ___ w _________ ~ ___ .. __ _ ••• _ ... _--" ____________ ~"""_'"'.
____ .. M ____ • __ , __ ~ __________ •• ________ • _________ ".'- ., __ ~

DESCRIPTION OF

THE ASC SYSTEM HARDWARE

October 1970

~ _~ _______ ""_.' ___ • ~ .--~ ___ .. ~_ , __ "' __ c,

.--.--- -~---"---"-------.-~----­-------------------------~-.-----,---------- .,"'""'-________ __________ .w~. _. ___ .. ___________ ~ .. _,._ .. _

_____ ._ .. _______ ,'~_~_R_ _, ____ ... _ ~ __ .. ____ ... , ___ _.__ ._,_" ~ __ ~
======-.. ---:.::--.. -----=::----------.---:---=:::::: .. :::-.--,--:::::=-~~--===:..-=--::::.-:' ."'-' ______ . _ _ ~, ___ ~ __ ~ __ . ___ '.b_. ________ ._"'_. __ ._

"~- ----- ... ---.. ----------------~ ----------'::.._-----_._-<-----------_ ... _---.-.. _,-..,....- -.-.--~ '-.. . ----' --------------.--------,------.... -~-... -.. ~~ --.. .
----------~-.--... ,,-.. ----.. --.--.------.-~-----, ~..,.. ---
--.-...--------~-.---.. -----,--.--~ •• > -_.-.. --. -- -*-.------~.-.. ~~~ .. - ,~~, ~ _____ ~ ___ ... __ ~ ____ ' R_ _~ ___ ~ __ _> ___ ,, __ ~,., __ ~ __ • ~ • _ ••• _.; •• _ ----- ~-.. -~.-.-------------.. -----.-,..,,.,......,.... -'---- .. -.. ~ -.'.-' -.. " .. ----. .,."---~ -----... -~ --~ ,,--.. .. ---"',-,.,..-.----.-.~ ... ~-., ~-"-... ---. -------------..---.... -~-~,.--.~ ... - >--,.- .. ------ - '--~~ .. ~ .- '-- -~." --...... -.--~--','.,~-,--...,--------, .. - .. ~ . --- -"'''-

-----.~- ~-.,-.... ---....... -------... ~.-.....--.. ~ .. --~---. ------,-----------------... ----.~
• __________ • ___ .. __ .___ • __ ,_T

... -.---...... ---.. -,..,..-.'-,--.---.~-. -,_.- --.. ~ -- .. --- ..
,--~,.~,--,...-,. ----~,-------- •• - -, ¥'.- .­--"'"- .~.,-.----,---"'- --.. --~.-------.-.--­
~--.' "--""-,---~-....... -.--~ .. -.--- --_ "- """~ ------------_ .. '-_._-- -.• --.-~-... --"'-.--.-....... -.... " ... - .. -., ~. ----......... ~ __ ___ ._,, _______ • ___ " __ .__.ii<

__ ~_ _ h ______ .. ___________ • ____ _

.. ~- , ... --.~-,,-----------~-.*.--- -'"', _ ... _>. ___ ~_ .•• __ ~.~ ,. ~ ,,", __ . ___ .,," ~ .,..-- ._~_,,.. __ ~. ___ ,,,_,, .• ___ . __ , .. ___ ._ _w __ ~ >. _ ---------...... ---.--.----r-. -*-~ - .. ~-.-.- .. ---."-------_._------,_._--..--.-... -~~ ~ _.-.---_._'.- ---~ -------------- -~,,....---... ---.-~--... --------. ----- -_..--..-----, __ ._ ,~.-..~.~, __ ~M __ "_ , ___ ~,. ___ , __ ~_.~_., ••• __ ,

. -_. -'- -,--'-- --~,"--- ---.,--.~--.-,.~ ".- --"
----_. __ .. -:=.....=-=.-::::.-.:.:-= .. ::.:....=-:-----:==~:::.=-:::.::.:?=:::.:~~~-:::::==.::~~=~=-=:: .. -:-:: -------------.----..-.... ---~- ... ----~,.-...... --~---,------------.. -. ~'-,"
_______________ .~ __ < __ ~_"" __ ., _, ______ __ • ____ ~'w • ___ _

=--=-:.==:::-:....:. .. ::.,-::----,~::.:::.::::....-:=,::::-..:..-::--.. =::::::::. .. =::.=-~::~::-,:;~:-..:::: -----, .-~------- .. - ,..,----.-~-,--.,----,,--- --~--~~ . .---... ~y-.,.,.----- ,--",,"--~-.-
--~ --~ .. -------~,--,,~ -~,-, """--- --"'--"---"-'--'--"'"'~'- ---_.-.......... .."

----".---,.~ ~"- -~-. ...,....,.,.~-, -~-,--~, - .. --",'.-----.-... ~ ... -~--.~~.~--.------- -.~~-...... ""'"-""-----,-.---<--"'-. ...--,,~- -- .. --,~" ... ~ ... ---, -..... '.-~~,~ -'
----.....-----~-.... ----~-- ... ", .. -.,- -,-....-.-----.----"""--.--.. ---.... -.~. - ."-",--...-", ________ ~ __________ ~ __ "_"4 ____ ,.,..._. ____ • _______ .., ... __ ,_~.~~ __ _

---.--.----~-.,..,----""" " ,.-, ---~-.---.,---.~<.--.--- . ~ "-.-~.,.. --~-....,..-.. *- -_.-.,. ... _--,---. , . ..-...,.'.>------ - ... ---~,--., .. ---.- ~.- ... , ~~ __ '_ .. __ ,",,~. __ ~ __ _~_~"" •• __ ""~_". _~_ ' ___ M_~"'~_-""" ", ___ . ____ .,.. ___ . __

.-----~ ,-...... --,--------.... ,--------~. -, ,--.---.,,-~ .. ~---- _----.-.-._ ... ------___ .~_,~ ______ ... __ ,.. ____ •• , .. ___ •• __ .~ __ ~_ , ______ .~ _____ o __ ... ____ .,_ _._-__ _

----.---~-.. --. ~--... ---
--------------.~ -

---- ... ----- ... ~ . ..,-~ ---~. -----_ ... __ ... _- -~. -"'.~-~- "".

-_._-_._-_ ... ---- -.~~ -_._,---. ,---_._---. -.------- .. - -"_._",- ----.... _-

-~-.....-~-,------­'-- ------,_.-.'--------
..---~---.... ~ _.'"'--_-.'--_. ·~C~ _ __ , .. _. ___ ~_ ~ - __ ~ ..

--..-'* .. -.-----,,-----~- .. -. _.''''''
~- _ .. .,._. --.-- -.,._. - --.~~ .. -~
...... %-_. ,-................... - ~. _ - ,-- ... "'_.-

==-,-=;::-:::::::::-=::-:':.-'==-'::--=';:':~:':':::~"'~::':~ .~---."- ... -.. -.-. --._,-, _ ... _---'..-: - .. _--0. ___ ",._ .. ________ • ~ __ •• ~ ____ , , ___ -, _. ___ ,-.-, .. ,---., __ ~~~ .. ,~~. ~ ... v_ .. _
-------~ .. '~----~.- ,-,~ .. .--,.- - --~ .. -. ...,-"-~ .. - .~. ---.--~-...-~.--.- ~- .. --~- --___--_______ • ____ ... ___ ~ ... "w ___ - ~ _,_, ______ -_, ____ " ... __. _ __' ... ____ _

--,--.. ----"'" '" --'''--' -,---" .-.,..-,~---.---...-,<""~---- ------~.-,- --..-.".,,----... ~.,..~--.. --.---... --.~-,' ~.---"- .. --~---...... - ----,--.. ~ ... ~ .. "'"-- .---"-_.-
-----.---------.~,--.--"' .. ---------.. ------.. .,- .. ~.--------.. --~.-., --.---- ... -,- -_. -- ... --.~ .. ---------------___________ w_. _______ . __ ._.-.~. __ .. _.~ ____________ _ __ ____ _c_ ... __ .. ,_,_~ ____ ... ______ ~ __ ._. _______ ._. ~ < __ -----_ .. _--. __ ._-,"-_ ... _ .. _ _---'-- - ---~ ------~."--,-~ --~,-----_. _." --,,-----,,..-.... -.. --~--..... -'~ .. "-... --'..--.- ~ --.... --~ -----____ ._ ... "" _____ ~4 ____ w-_~_ ___ , __ . __ , __ ~ ___ --"_, _____ '-"',_., , ______ ,_
==~-=:.:=.::.=:.-~-=-===-===~:~~.-.--::...::.:=::=:-=--:==-==--:

TEXAS INSTRUMENTS
INC O;R P 0 RAT E D

PREFACE

This document describes the ASC System hardware as required by
the system programming staff. It is also directed to all personnel
associated with designing and configuring ASC Systems to be used
as a primary reference source.

Section A describes the Memory System of the ASC including the
MenlOry Control Unit, the Memory Modules, and the expansion
features being incorporated into the system. Section B describes the
Central Processor including the Memory Buffer Unit, the Instruction
Processing Unit, ,and the Arithmetic Unit. This section also provides
the CP instruction set, tl?-e timing analysis, and examples of vector
instruction applications. Section C describes the Peripheral Processor
including the Peripheral Processing Unit, the coxnxnunication registers,
the tixning analysis, and the PP instruction set. Section D describes
the Data Channel Unitf'). Section E describes the ASC Systexn operating
panels, and the associated procedures. Section F describes the periph­
eral devices used with the system. Section G describes the maintenance
provisions being designed into the system.

This document is designed to allow each part to be used alone. The
overall list of effective pages f()llowing the Preface provides the effec­
tive date of the A page of each section. Changes, xnodifications, or
additions will be issued as changed, or added pages with the date of the
change in the upper right hand corner of the changed page.

CONTENTS

INTRODUCTION

SECTION A MEMORY SYSTE1.1

SECTION B CENTRAL PROCESSOR

SECTION B I CENTRAL PROCESSOR DESCRIPTION
SECTION B2 CENTRAL PROCESSOR TIMING ANALYSIS
SECTION B3 CENTRAL PROCESSOR INSTRUCTION SET
SECTION B4 EXAMPLES OF VECTOR INSTRUCTION APPLICATIONS

SECTION C PERIPHERAL PROCESSOR

SECTION CI. PERIPHERAL PROCESSOR DESCRIPTION
SECTION C2 COMMUNICATION REGISTERS DESCRIPTIONS
SECTION C3 PERIPHERAL PROCESSOR TIMING ANALYSIS
SECTION C4 PERIPHERAL PROCESSOR INSTRUCTION SET

SECTION D DA TA CHANNELS

SECTION E OPERATING PANEL

SECTlON F PERIPHERAL DEVICES

SECTION G MAINTENANCE

iii

INTRODUCTION

iv

TAB LE OF CONTENTS

Title

General Organization of ASC

Use of Pipeline, Concept

System Configuration and Hardware Features

v

Page

1

3

12

GENERAL ORGANIZATION OF ASC

The ASC is an advanced computer designed especially for high­

volmne processing of well-ordered data in a multiprogramming environment.

To achieve its extremely high processing speed, the computer utilizes a pipe­

line arithmetic section and a pipeline instruction section.

Organization of the ASC is illustrated in Figure 1. A Peripheral

Processor links input/output equipment to a Central Processor and a Central

Memory. The input/output equipment available for the system includes CRT

keyboard/display units, magnetic tapes, magnetic discs, card equipment, and

line printer s.

The Peripheral Processor contains eight independent computers

which control input/output devices and schedule work for the Central Processor.

The Central Proce$sor provides the major execution facility

of the system. The interface between Central Processor {CP} and Peripheral

Processor (PP) consists of control communication links whereby the CP sig­

nals completion of jobs or its availability for other jobs and the PP initiates

new jobs. All data and instruction for the CP are obtained through the Central

Memory.

The Central Memory consists of high-speed semiconductor

tnemory tnodules which have full cycle times of 160 nsec for 256-bit words.

Since the ASC computer is a 32-bit/word computer, each tnemory cycle has

access 'to eight computer words. The Central Memory interfaces with the

CP and the Peripheral Processor.

One ASC configuration is shown in Figure 2. This diagratn

indicates four memory units, each containing 16K words of storage; thus, the

1

CENTRAL
PROCESSING

~ UNIT

11
CENTRAL
MEMORY

PERIPHERAL
PROCESSING
UNIT

1
I ~i}) I 0 .. -- - 'U

.'4i
DISPLAYS TAPES.' DISC CARDS PRINTER

Figure 1. ASC Organization

DISC DISC I DISC DISC
MODULE MODULE MODULE MODULE

t J
CENTRAL I

MEMORY 01 SC INTERFACE UN I T
UNIT 0 I

~ J
I

~--DATA CHANNEl UNIT
CENTRAL I

• MEMORY
UNJr 1 -.

MEMORY - CONTROL
UNIT

CENTRAL
MEMORY CENTRAL PROCESSOR
UNIT 2

. (SYSTEM t CONTROL)
r-- - - - - - - - - - - - - -e- - - - - - - - - - - - _.J

, I
I

CENTRAL
MEMORY PERIPHERAL PROCE SS I NG UNIT
UNIT 3

CARD OPERATING
POWER READER CONSOLE
CONTROL

W-
PERIPHERAL I NTE RfACE UNIT t-u MAINTENANCE UNIT CARD

PUNCH
,

CONSOLE
t

I" TlpES : I~-bP\ CRT .t
KEYBOARDJ -

l lIYTArES DISPLAY
UNIT~

LINE 8oo-bpi
PRINTER. TAPE

Figure 2. ASe System (Prototype)

3

b.:i'.sic rnenltol"Y size is 65K words. Th(;;le four m.odules are c.ontrolled by a

rn.emOl'Y control unit which rnultiplexet; the memory units to the Central Pro­

cessor, Peripheral Processor, or dat:, channel unit which is a special high­

speed device capable of sustaining the high data transfer rates required by

the qisc system. A significant feature:: of the ASC system is its utilization of

a large disc file with word transfer rates of 106/ sec between it and the Central

1-.&.emory. The disc file consists of fo')(modules containing 25, 000, 000 "Words

each.

USE OF PIPELINE CONCEPT

The pipeline concept being exploited in the Central Proces sor

is illustrated by the example in Figur~ 3. This example shows a "pipe" which

performs an operation consisting of three separate and distinct steps. This

r
t
I
I
I
I
I
I

- I

/:
PIPE I

I
I
L

ENTER

- . -
STEP

A

STEP
B

STEP
C

- 1--

..,
I
I
J
I
J
I
I
I

-1-- .~

I
I
I
I

...J

EXIT AFTER Sltps
A. B. AND C 4RE
COMPW:T~t>

o-l
nME = tA 0

~
t"
o-l
:0
> z en
o-l

nME .. tB ~
~
o-l

• > ..
-, +

tJr
TIME = tc +

n"

Figure 3. Pipeline Concept

4

operation can be performed on an operand by entering it in the pipe and col­

lecting the result at the exit after transit time T has elapsed. Thus, the time

required to perform an operation is the smn of the individual step times t A'

t B , an? tC' If the steps are separate and distinct as stated, then the average

operation time can be decreased by entering operands into the pipe so that

different operands are at steps A, B, and C simultaneously. If a long series
.,

of operands are routed through the pipe so that the llfill-up" and II emptyll times

are negligible, the average time required for an operation will be

The ASC arithmetic unit is constructed from a number of

II sections" (Figure 4), each of which can perform a separate arithmetic or

logical operation in the SaIne manner as the steps in the pipe of the previous

exam.ple. These sections are connected in "pipe" fashion to generate a pipe

for performing each instruction in the CPo Each section can be connected to

any of the other sections, as required, to construct a pipe for executing any

particular instruction. Figure 4 shows sections I, Z, and 8 connected in a

pipe by the solid line which may be the configuration required to perform an

instruction. The dotted line connecting sections I, 4, 6, and 8 illustrates a

configuration which may be required to execute another instruction. In this

fashion, the sections of the arithmetic unit are configured as required to

execute the ASC instructions. The proper configuration of the arithmetic unit

is established when the instruction and its operand are at the entry to the pipe­

line.'

This pipeline concept is used in the design of the ASC because

of its inherent ability to achieve high-speed operations on large volumes of

well-ordered data. If the data are arranged so that a large number of iden­

tical operations are required in sequence, the pipeline can be filled, achieving

an average operation speed equal to the time required for only one section of

the pipe. This well-ordered type of data is represented by vector or array

processing. For example. consider the vectors

5

I

I

SECTION 1

SECTION 2

I
I
I
I
I

I L __ ,

I
i -----'-----

SECTION 3

SECTION 4

,--_-1

! I SECTION 5

I

,.­
I

I L __ ,

I
I
1

I

r--- J

SECTION 6:] j I
I
! I SECTION 7

~-,--l

SECTION 8

I

I
I

I

L ___ .,

I
,
I

I
I

I
r- __ I

I
I
I
I
I

Figure 4. Sections of Arithmetic Unit Connected in "Pipe" Fashion

6

A vector addition of A + B would

c
1

c
2

c
3

+ ..•. a.
1

b.
1

result in the vector

= a l + b i

= a Z + b 2

= a 3 + b 3

C = a. + b.
ill

C where

The ASC instruction set contains vector and matrix instructions

to perform such operations so that only one instruction is required to accomplish

this operation on any length of vector. A conventional computer would require

a series of instructions to achieve this same operation. This is illustrated in

the following example:

• Conditions

- array A is stored in consecutive locations beginning at 0'

- array B is stored in consecutive locations beginning at 13

- arr;::..y C is to be stored in consecutive locations beginning at Y

- each array consists of L elements

• The subroutine required for a conventional machine is

7

Enter

1.
Load I with 0

Load R from 0' + (I)
Add to R contents !3 + (I)

Store R into y + (I)

InCrelYlent I

Branch if I =fi L

Exit

The thnerequired to accomplish the function of each section

in the ASC pipeline is 60 nsec; thus, for processing vector or array instruc­

tions, the average time per element is only 60 nsec. The CP interface with

the Central Memory is designed to sustain this rate of data processing so that

the pipeline can be utilized to its fullest extent.

The CP interface with the Central Memory is shown schemat­

ically in Figure 5. There is one 256-bit data transfer bus between the CP

and CM, which is shared by four CP storage buffers. Instructions are buf­

fered in two storage files (IB and I), each containing eight computer words.

One operand vector is buffered in two storage files (XB and X), each con­

taining eight computer words, and the other operand vector is buf~ered in

another set of storage files (YB and B). "The resultant vector from the arith­

metic unit is buffered in storage files ZB and Z in the same manner.

In addition to the pipeline construction of the arithmetic unit,

the ASC exnploys a pipeline at the instruction processing level. Up to 12

instructions are in this pipeline at any time, so streams of instructions ready

for execution are supplied at the exit of the instruction proces sing pipe in

somewhat the same :manner as streams of vector elements enter and exit

from the arithmetic-unit pipe.

8

The Peripheral Processor provides cornm.unication with 1/0

devices, functions as systern n~onitor, and fu]£ills job requests which do not

require high arithmetic capability_ Elements of the PP, shown ill Figure 6,

include one arithmetic unit which is shared by eight virtual processors, one

of which is designated as the system. monitor. Functions of the systeul moni­

tor include assignment of syst~nl-control parameters, assignment of prograITls

to each of the seven slave virtual processors, assignment of CP prugrams, and

monitoring of the progress of all programs including the CP program.

The virtual processors con~lnullicate with 1/0 devices, Central

Processor, data channel, and other system con1.ponents via 64 Communication

Registers (CR) which are 32 bits in length and can be set or read by the virtual

processor or an external device.

Associated with the virtual processor is a Read-Only Memory

(ROM) containing fixed programs which are executed by the virtual processors.

These programs are sto'red in the ROM because they are frequently used and

requi:!;e fast access.

Each virtual processor has a single-word buffer which acts as

memory address register and men~ory data regis ter for that processor. Cen­

tral Memory access requests from these single-word buffers are granted on a

priority basis.

The virtual processors are operative and share the arithmetic

unit as prograrn:med by the system monitor. This sharing is accolnplished by

dividing the time into 16 time slots represented by the segments shown on

the wheel in Figure 7. Time slots are assigned to the virtual processors

according to their needs.

SYSTEM CONFIGURATION AND HARDWARE FEATURES

The recommended physical configuration of the ASC reql:.7."':es

Approximately 4000 sq. ft. Four airconditioning units, furnished as part of

the ASC. supply cooling air to system components requiring special cooling.

9

INSTRUCT~..oNS CONTROL, - - -iIo- IB 1 -------~ UNIT

I

I

" 0 OPERA~DS Z
H XB X

TO
[-l
<t!

MEMORY 0
"

U) ,.. ::> < I!l ,
: >t

~
0 ARITHMETIC ~ OPERANDS
pq YB Y UNIT
~

OPERANDS
J ZB Z "'

Figure 5. Interfacing of Centr~l Processor and Central Memory

10

.....

.....

CENTRAL
MEMORY

,...
,......

l"'-

, .

nNGLE WORD VP o t---<

BUFFER
VP 1

i----

SWBO ~ '"

SWB 1 r+-- I
I

"
I

I

I I VP I I

I I I
I I

SEQUENCE ~I I

I I CONTROL I I

I I I I

I I t:-t--
VP7 SWB 7

.t

db I BUFFER 1
. CONTROL

COMMUNICATION
REGISTERS

CRO ~

CRl ~

I I
I I
I
I I
I I

CR 63
.-'

Figure 6. ASC Peripheral Processor

. AU

>-
I/O DEVICES
DATA CHANNE LS

..

TIME WHEEL

1 ARITHMETIC UNIT

"NAME" OF VP
TO RECEIVE AU
DU ElI'.JG THIS
TIME SLOT

8 VIRTUAL
PROCESSORS

(0-7)

8 "VIRTUAL" PROCESSORS WHICH SHARE AU

Figure 7. Time Slots Permitting Virtual Processors
To Share Arithmetic Unit

12

Normal airconditioning is also requiTed to n1.aintain a corniortable working

area.

The extremely high speed of ASC operation is possible because

of the advanced logic components which implement the system__ These logic

circuits are emitter-coupled integrated circuits having gate speeds of approx­

hnately 2 nsec.

ASC hardware features: a high-speed semiconductor memory; a

direct-access fixed-he::td disc auxiliary storage system; Peripheral Processor

which provides system control and external-internal communications; a rapid

Central Processor for data ll1.anipulation, with the feature of hardware logic

for vector-ll1.atrix operations; automatic, rapid, context switching for efficient

11.1.ultiprogramm_ing; high-speed peripheral input/output devices; and rell1.ote on­

line graphic terminals.

13

MEMORY SYSTEt1

SECTION A

i

INTRODUCTION
MEMORY CONTROL UNIT
EXPANDER/MULTIPLEXER UNIl

MEMORY UNITS

j·1HWRY SYSTEf·1
SEen ON A

CONTENTS

1

1

6

6

INTRODUCTION

The Central ~·1emory(Cr~) of the ASC system is configured from three basic
units: the Memory Control Unit (MCU), the memory port Expander/r~ultiplexeY' (EX)
and the selected Memory Units. Figure 1 illustrates a typical 01 configU\~ation.

THE MHiORY CONTROL UNIT
The Meu is organized as a two-way 256-bit/channel parallel access traffic

net between eight independent processor ports and nine memory buses, with each
processor having full accessibility to all memories.

The' ni ne memory buses are organi zed to prav; de ei ght-·way i nterl eavi ng for
the first eight buses with the ninth buses reserved for bulk storage. However,
a patchboard is provided within the MCU to facilitate addressing patterns from
no interleaving to eight-way interleaving.

The MCU provides the facilities for controlling access from the eight
processor ports to a CH having a 24-bit address space .(16 million words). In
addition~ each port contains the necessary hardYJare for performing the ~1AP and
PROTECT address processing functions (described subsequently). Conflicts at
the mew.ory buses are resolved on either a fixed priority bases (i .e., each,
processor port is assigned a relative priority) or a distributed priority basis
(i.e., all processor ports are assigned equal priority).

The unit' is asynchronously designed to operate independently of cable
delays~ processor clock rates, and memory unit access and cycle times; however,
these times can affect the memory bandVli dth. For comparati ve Ryrposes, the total
bandwidth of CM is computed as BWC~1 = No. of words/cycle X No. of Independent
memories/Memory Cycle Time, and the bandwidth provided each processor port is
BWp = No. of Words/Cycle /2 X Processor Clock Period.

INTRODUCTION 1
SECTION A

2

HIGH SPEEr;
MEMORY

"

Ill))1--__
.1 __ /
,,1-;) _____ ..

-' .

t .• '

.j I; EXAMPLE·
II; :

p" ~;l;&¥"'&:fiW'?rt,,,,,..,,:,, '~~"Y:"~\'"

"'""l~'\;:'$<
... '-......-~---

&:
~

r
I
,f
i'
t

"

The t~emory r~.AP provides for dynamic address relocation of Central Memory of
the block (i .e., page) level. Contiguous virtual page addresses from the processors
are transformed into discontiguous actual page addresses for more efficient use
of eM resources. The MAP is physically a set of up to 64 eight-bit (page address)
registers accessed via the virtual page address of an individual requesL The
content~ of the register addressed replaces the most significant bits of the virtual
address to form the actual page address. Figure 2 illustrates the Mapping pro­
cedure. The size of euch I!pagel! is a function of the size of crlt being mapped.
The minimum page size is 4K words With the maximum being 256K for full 24 bit
address i ng. .,

The PROTECT facilities consist of three 24-bit bounds register-pairs for
defining the upper and lower bound of a protected CM segment. The MCU compares
the address of each processor request to the contents of one of the bounds register­
p~irs selected via a two-bit code developed by the processor. For example, the
three central processor categories are READ, WRITE, and EXECUTE. A request pointed
toward a protected CM area is denied access to that location and the processor is
notified of the attempted violation.

The bounds register-pairs can be used to define a variety of CM protection
functions. Figure 3 illustrates a typical CM arrangemen~ for the central pro­
cessor port. Note that segments as small as 16 word groups may be defined.

The MAP provides an additional protection feature. If a processor utiliz­
ing the t'1AP feature accesses a ~1AP register containing actual page if7 the re­
quest is denied access to CM and the processor is notified. Thus, the "Oil code
signifies that the requested page is not resident in the physical central memory.

VIRTUAL ADDRESS
SPACE MAP

PAG E 0 1-------31 2
f-----

1 1

v o

ACTUAL ADDRESS
SPACE

o
1

2

A

FIGURE 2: MEt~ORY M,L\PPING

~1EMORY CONTROL UNIT 3
SECTION A

EXECUTE
ONLY

READ
ONLY

READ/WRITE
ONLY

ANY

(0

~

l 9 r
}~

{
:)

/"

~

I

" t

FIGURE 3:

Code
LOWER UPPER
BOUND BOUND

01 WRITE L_._~--' I r]

10 REt\O Ct"] [._q __

r-] 1-:--'
11 EXECUTE IS. L_.~_J

PROTECT/
PERNIT

~

IYJ
q,r,s, and t represent 16 word
addresses.

IMPLEMENTATION OF MEMORV PROYECTION

The MAP and PROTECT information for a particular processor is constructed
in CM under control of the Operating System. The information is transferred to
the MCU in response to a command from the PPU via the Common Command Register,
or automatically via one of two "Context Switch ll commands provided to the MCU
from the automatic context switch logic in the central processor.

Command Command Register (CCR) operations cause the register addressed to
be loaded with the contents of the location specified by the pointer in absolute
eM location 3816 , whereas the Context Switch command causes a set of predefined
MAP and PROTECT registers to.be loaded from the location specified by the pointer
at eM location 2816 • Figure 4 reflects the eM image of the MAP and PROTECT
registers for use with the Context Switch command. A list of MCU CCR commands
i's presented in the maintenance section. CCR commands are also available to
provide access to MeU control. and address registers for maintenance and diagnos­
tic purposes.

4

Address
n
n+8

n+16

3:
rn
3:
o
;0
-<
(""')
o
2
-I
:;0

U"J 0
rn r
(""')
-I c::
t-I Z
0""'· Z-I

»01

n n+1 n+2
I

Lw I Uvl I Lr Ur

"0 A, A2 , , . , . . . ,

-- -~~ -. --- -.. . -
, , , . , . , , .A lE A17A'-E

'--'--- .. ---

Lw - Lower Write Protect bound
Uw - Upper Write Protect bound
Lr - Lower Read Protect bound
Ur - Upper Read Protect bound
Le - Lower Execute Protect bpund
Ue - Upper Execute Protect bound

n+3 n+4 0+5 n+6
t

Le Ue ! Lw Uw Lr I Ur
i

' lA I ~d I I . .
J, 'll~'32fL\3 .!.,,:. "'i'l ---. r- L- i , , , _~._ ~_1_3_i~L!~A4~_~L~ __ ~ _~ ____ . _~ __ ' I . ! . : --- - -

An - Value of Actual Pag~ Number corresponding to Virtual Page n of MAP

FIGURE 4: CM IMAGE OF "CONTEXT SWITCW ~lAP AND PROTECT REGISTERS

n+7
J

Le Ue
, , , . r4
, . ,

r~J

THE EXPANDER/~1UL TI PLEXER (EX)

The EX adds the memory bus and the processor port expans ion capabil iti es for
configuring very large ASC Systems. The unit can be operated in anyone of three
disti nct modes:

1) Up to four IIProcessors ll can be multiplexed onto one r~cu processor port.
In th-is sense, a IIprocessorll can be a data channel or a processor bus.
Of course, the basic bandwidth limitations must be observed.

2) One ~1CU memory bus can be expanded to accoTIlil1oda te up to four t1emor<y Units.
3) A single processor's memory bus can be fanned out to allow the processor

to access up to four different memory systems.

The EX's can be interfaced\'Jith each othel~ (i.e., by IItreeingll) to provide
expansions to 16 or up to 64. -

Conflicts at the single port interface are also resolved on either a fixed or
a distributed priority basis, in a similar manner to the MCU. These modes are
selected by patch card wiring in the expan-der hardware.

THE MEf40RY UNITS

The Hemory Control Unit is designed to operate with Memory Units confi9ured
as eight-word (octet) storage devices. The TRANSLATOR PC board (patchboard) is

• used to define the size of the unit on eacti memory port as well as the inter­
leaving mode.

For the most effective use of ASC -resources, the high speed storage devices
~hould have access times in the range oT 100-250 nanoseconds. However, the sys­
tern will operate with slower memories and, due to the interleaving capability,
the degradation of performance is not linear wi th respect to memory speed. Fig­
ure 5 illustrates the pipeline nature of memory requests with an assumed module
access and cycle time of 140 nanoseconds.

The Meu also has the capability of reporting and testing the Parity logic
normally provided with Memory Units.

The active element fast memory modules which are the standard ASC memory
units have raw access and cycle times of 140 and 160 nanoseconds. .

6

CM \1RITE CYCLE

PIPELINED READ CYCLES

r------ -----------
80ns PROCESSOR I
INITIATE CYCLE

I 60ns MEr~ORY
INITIATE CYCLE

220ns

,------... -

I -
L __

-I

I
------~!

L PIP~LINE
~TE-----'

108 wps

MEMORY #0 CYCLE rUlE]

60ns DATA . I
l.l.RAN~fJJs JYCLE __

1 ~ L _____ ~EMORY #2 CYCLE TIME

l

[------ ,
I
j
I ._

L __
I

L _______ ME~_RY #3 CYCL~_~_I~E ______ _

FIGURE 5: ~lHlORY CYCLE TIMING
140nsec ~,1Er~ORY r,10DULE

1 __

MEMORY UNI TS 7
SECTION A

CENTRAL PROCESSOR DESCRIPTION

Section B1

TITLE

GENERAL

INSTRUCTION PROCESSING UNIT
INSTRUCIION FETCH
INSTRUCTION DECODE
REGISTER OPERI\ND SELECTION
EFFECTIVE ADDRESS DEV ELOPt'lENT
IMMEDIATE OPERAND DEVELOPMENT
BRANCH ADDRESS DEVELOPMENT

TABLE OF CONTENTS

.DETERHINATION OF BRANCH CONDITION
STORJI.GE OF AU RESULTS INTO THE REGISTER FILE
SCALAR HAZARO AND REGISTER CONFLICT RESOLUTION
GENERATION OF VECTOR STArHI NG ADDRESS
TRANSMITTr~L OF VECTOR PARA~lETERS TO THE ~iBU DURING VECTOR

INITIALIZATION

MEMORY BUFFER UNIT
DATA PATHS
SCALAR OPERATION
VECTOR PROCESSING
CENTRAL MEMORY REQUESTS
t1EMORY BUFFER UNIT SUMMARY

ARITHMETIC UNIT
GENER/\L
FLOATING POINT OPERANDS
STRUCTURE

i

PAGE

1

5
5
7
7
9

10
n
11
12
12
12

13

14
15
20
21
24

25
26
26

GENERAL

The Central Processor (Cp) is comprised of the Instruction Processing Unit
(IPU) to process the CP commands, the ~1emory Buffer Unit (tIJBU) to provide inter­
facing with the CM, and the Arithmetic Unit (AU) to perform the specified arith­
metic operations. The interaction of these units is shown below:

CM BUS
~--------------~

CM BUS

INSTRUCTION
PROCESSING
UNIT

MEMORY
BUFFER --------I~:r-1

INSTRUCTION PROCESSING UNIT

ARITHMETIC
UNIT

---............ -- Doto
_-. &-'" , .. ,,,. Control

The primary function of the IPU is to supply a continuous 'stream of in­
structions to the MBU. The IPU'block diagram is shown in Figure 1; it performs
the follO\Aling fUnctions:

1. Instruction fetch

2. Instruction decode

3. Register operand selection

4. Effective address development through indexing and/or indirect addressiD9

5. Immediate operand development

6. Branc~; address deve 1 opmen L

General 1
Section B1

z

IN~;,T

i--~~-f---------------~
~;. F It_E" I PROGRAM KA.

J
INSTRUCTION COUNTER

i SEL(,CTION

INST PC REGISTEr{
~ FILE I INSTRlJCTION REGISTEf KS I .-

~ >P~ MEM REGISTEH , t FILE CONTRO

~ f--

: t:;"
INDEX AND BASE INSTRUCTION A REGISTER SELECT DECODE ROM ,.- f-- i-'

I R I (T) (M) I N CONTROl.j AU ROM .!\DDR
~ f-- ;-< I

8 I

1
H, f--f- I

I

p...- r-- I

f-- --< I

~ C L_~
INDEX AND BASE INSTRUCTION

ADDITION ~ DECODE ROM

i-f- f-* f-- r--< (R) I 0' CONTROL! ~ ROM ADDR
i-e 0

".

f+- f-e f--
,

~ I
0' REGISTER I-- ROM ADDRESS DELAY SELECTION

l.!- f-
t-e

I- Rt> I A'I' CONTROl. I AU ROM AD OR V

- - - - - - ----------------r----- ------ -----------. ---

Iot-r- I ,-

ZB t----.1-., Z l­
I LM_

1022.39

REG I IMM

Mau SELECTION
AND ALIGNMENT

CONTROL.! AU ROM AODR

AU CONTROL ROM

rcM~ r
r-- ~b~~ W

TROL 1-----~---.--------_4 AU CONTROL

MUL TILEVEL AU
DEPENDING ON
INSTRUCTION
TYPE

Figure 1. CP Block DiagrzTn

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

IPU

MBU

AU

7. Determination of branch condition

8. Storage of AU results -into the register file

9. Scalar hazard and register conflict resolution

10. Generation of vector starting addresses

11. Transmittal of vector parameters to the MBU during vector initialization

MEMORY BUFFER UNIT
.If-

The primary function of the j'l1BU is to supply the AU vlith a continuous stream
of operands for vector processing Dnd provide for the storing of results of the
vector operations. The MBU performs the following functions:

1. Accept the initial vector starting addresses and parameter information
from the IPU.

2. Fetch the memory operands requested by scalar instructions.

3. Retention of 16 words in temporary X and Y buffer registers for pos­
sible ~scratch pad",operations involving data contained in the two
most recently referenced memory octets. This temporary storage ca­
pability increases by a factor of 1, 2 at .. 4 depending upon whether
a times 1, times 2, or times 4 ASC configuration is installed.

4. Storage of register operands into central memory as a result of scalar
store instructions.

5. Temporary retenti on of 8 :words in the Z-buffer reg; ster for data des- '
tined for one central memory octet address. Data stored by this means
is released to central memory when the octet address of write data
at the Arithmetic Unit output is different than the octet address
of the data contained in the Z-buffer registers. This temporary
storage capability increases by a factor of 1, 2 or 4 depending
upon whether a times 1; times 2, or times 4 ASC configuration is
install ed.

6. Update capability from the Z-buffer registers to the X or Y buffer
registers for keeping the X and Y registers current when they are
being used for "scratch pad" operations.

ARITH~ETIC UNIT

The primary function of the Arithmetic Unit is to perform the arithmetic
operations specified by the operation code of the instruction currently at the
AU level. The Arithmetic Unit is basically a sixty-four bit parallel operating
unit which is split into two halves of thirty-two bits each. Double length op­
erations are carried out using both thirty-two bit halves in parallel. Single
length operations use the left half AU, while half length

Gp.neral 3
Section Bl

ope~ations use only one half of the capability of the left half f\U. The same P,U
is used for both fixed and floating point instructions. Fixed point numbers are
represented as signed "j ntegers \ojHh negati ve numbers in 2' scamp 1 (~ment notati on.
Floatillg point numbers are in sign and magnitude with a base 16 exponent rep-
resented by an excess 64 binary number. jl

4

INSTRUCTION PROCESSING UNIT

The Instruction Processing Unit functional areas with four pipeline levels are
shown in Figure 2.

INSTRUCTION FETCH

The instruction fetch function of the IPU is concerned with instruction lookp
ahead into the next octet and instruction look-ahead along the branch path when
the loop look-ahead control is active. The principal registers involved in the
process of instruction fetching are the present address register (PA), the look­
ahead register (LA), and two eight-word instruction register files. The present
address register contains the address of the instruction presently being selected
from one of two eight-word instruction files. The look.ahead address register
ordinarily contains the next instruction octet address ahead of the octet refer­
enced by the present address reg; s tel. TVlO ei ght-vJOrd i nstructi on fil es ordi nali 1 y
hold the present i~struction octet and the next instruction octet.

An initi~l ad~r2ss is entered into the
Memory via the address bus from the IPU.
present address. When the address bus is
menting hardware advances the LA register
ahead. The LA register sends this second
instructions has returned form CM.

LA register for transmission to Central
LA is then transferred to PA as the
released by CM, the look-ahead incre~
by eight, equivalent to one octet look­
address to CN immediately after the

The first octet of instructions recieved from CM is synchronized with the Central
Processor clock at KCM. The octet is then transferred to file KA on the n9xt
clock. The second request for the look.ahead octet is synchronized at KCM when
it arrives form CM, and then it is transferred to KB on the following clock.

One clock after the first octet is entered into file KA , the Instruction Register
(IR) is loaded with the instruction word selected by the 3 least significant bits
of PA. The PA register is incremented by one as each instruction is entered into
the instruction register. When the 3 LSBt s of PA are 111, the last word in file KA
is entered into IR and the instruction look-ahead octet KB is selected. As this
transfer occurs the contents of LA is transferred to PA and the LA register is
advanced by eight to the address of the next look-ahead octet. This new look-
ahead octet ;s requested from CM while'instructions in the KB file are being
executed. T~;s process of overlapping instruction requests with instruction execu­
tion continues until a branch without look-ahead or an out-of-line indirect address
request occurs.

In the case of a branch without look-ahead, the computed branch address replaces
the contents of both the PA and LA registers. LA is requested from CM, then
advanced by eight for the next look-ahead request and then the process described
above ;s repeated.

Instruction Processing Unit 5
Section B1

FROM
AU

-102240

6

KA

KB

A

B

C

D

v

INDIRECT
THROUGH

REG::T.:: --1
.&

TO
IMM

IN MBU

NR

TO
REG

IN MBU

,-'
[-::~~. J

AR ----~+~ --------~I

Li-;~ ~~]_r
AR -t;:'o;,':!1 "1

Q +1

L __

OP R X M

TO
STORE

ADDRESS
STACK

OP

CTL A

AR ---fl!IiII

Figure 2. Instruction Processing Unit

INSTRUCTION
HAZARD

DETECTION

REGISTER
HAZARD

DETECTION

.OPERAND
HAZARD

DETECTION

A branch vlith look-ahead is set up by placing the branch instruction at the
target location of a Load look-Ahead (LLA) instruction. This branch does not
cause a delay in instruction fetching if both the branch instruction and LLA
instruction are properly located with respect to octet boundaries. The lLA
should be at the top of an octet and the target branch instruction should be
at the bottom of an octet for optimum timing. A penalty of one clock time
is paid for execution of the LLA instruction for each pass through the program
loop if the LlA is located in this manner.

A Load Look-Ahead instruction enters a count into a look-ahead counter
register (Lt) in the IPU and enters the program address value of the LLA
instruction presently being executed into a branch address register (BA).
The count from the ~·I-field of the LLA instruction corresponds to the differ-
ence of the instruction locations of the LLA and its target branch instruction.
The counter is decremented for each instruction executed follolt/ing the LLA.
When the look-ahead counter is lowered to a value which would indicate that
the target branch instruction has been requested by the instruction look-ahead
and the look-ahead is now ready to be incremented by eight to the octet beyond
the instruction octet which contains the branch instruction, then the look-ahead
control will override the normal next octet increment of eight and place the
contents of the branch address register (BA) into the look-ahead address register
(LA). This causes fetching of the octet which contains the LLA instruction and
the loop control is re-initialized when the LLA instruction is executed again
after the branch instruction returns the program to the LLA instruction. Loop
control by use of an LLA instruction only applies tq singular instruction loops
up to 256 instructions including the LLA and the BRANCH.

A·non-targeted branch instruction located between·the LLA and the target
branch instruction will inactivate the branch look-ahead control if the non­
targeted branch instruction takes the branch path. If a non-targeted branch
instruction does not branch, then an active branch look ahead remains active.

INSTRUCTION DECODE

Instruction decode in the IPU is. accomplished by the first of two Ready-only
Memories (ROM). The . .ROH size is 256 words by 32-bits •. The first ROM output
is at level 2 of the "pi pel ine and is used for l£lL control. The second ROM is
also used for control but in addition generates a field for use in driving the
address inputs to a third ROM contained in the MBU. The third ROM is used to
control the Arithmetic Unit. Outputs from both IPU ROMls contain preliminary
instruction decoding information needed for the IPU and MBU. Such things as
operand word size needed for register operand selection and effective address
development are supplied by the ROMls.

REGISTER OPERAND SELECTION

The register operand selection takes place in level 3. Register addresses
within a group of registers are specified by the R-field of the instruction
word. R~gister groups are specified by the instruction type as determined by

Instruction Processing Unit 7
Section B1

8

the operation code. The operation code is used as an address for the first ROM
which in turn supplies the two additional bits needed for register group selection.
These two bits augment the four R-field bits to form a six bit register address
~or single length instructions. This six bit register address is applied to
the input of a register selection netvlOrk which can select anyone of 48 single
word registers in the register file.

The program addressable registers in the Central Processor make up the
register file. Each register is 32-bits in length. All registers in the file
can be-loaded or stored individually or in groups of eight registers at a time
with a single instruction. There are six gnoups of eight registers:

"

Regi ster Group Group
locations Function Designated

00-07 Base address registers A
08-0F Base address registers B
10-17 General registers C
l8-1F General registers D
20-27 Index registers I
28-2F Vector parameter registers V

If the instruction word specifies a half length register operand, then the
first ROM supplies an additional bit indicating which halfword is to be selected
from the 6-bit singleleword address. If a doubleword register is specified,
then one bit is dropped from the 6-bit register address and 64-bits are selected
into the R0,register at level 4. Doubleword'register operands are always
sel,ected from an even-odd singlev/ord address pair.

Occasionally the effective address (a) is in the range a<2F and the M-field ;s
equal to zero, in which case the ~ addressed operand is selected from the regis­
ter file. Operands of this nature are selected by the IPU after the effective
address is developed. The register is selected using the 7 least significant
bits of the AR register. These 7~bits include 6-bits of singleword'address
information plus one-bit for halfword selection if specified by the instruction
type.

The output of the a selection network enters up to 64-bits of data into the,
A0 regjster, if doublewords are specified. A~ is transmitted directly to the
MBU input register (IMr1) for entry into the MBU output register (MCD) and
then to the Arithmetic Unit. The A0 register is at level 4 of the IPU. The
register operand for each instruction is carried along and held in the R0 register
i~ parallcil wit~ and I~n the same time relationshi~.as the operand in A0.

EFFECTIVE ADDRESS DEVELOPMENT

Effective address development through indexing and/or indirect addressing
incorporates a major portion of the hardware in the IPU. The T, M, and N-fields
of the instruction format specify the DJ.9..ex re~Ji.ster, base register, and address
displacem!:.[lt, respectively. The MSB of the T-field is used to 'specify inairect
aadresslng. An index register selected from an address by the 3 LSB's of the
T-field is entered into the 25-bit XR regi~ter at level-2 in the IPU. ,

-,
A base re~ister selected from an address given by the M-field is entered into

the 24-bit BR register at the same_ level. The N~field dispJacement is copied
into the NR register. XR, BR, and NR form the thre~ inputs to the ind~x
adde,~ in level 3.

The XR register is shifted one bit position to the right, left, or not at all
depending upon whether halfword, doubleword, or singleword addressing, respectively,
is specified by the instruction code. The shifting takes place prior to addition
in level 3.

The output of the index adqer is entered into a 25-bit register, AR, which
holds the effective address of the instruction presently at level 3. The LSB of AR
is the half~ord address selection-bit. The LSB is f,orced ~o ze~o for-singleword
addresses and the two LSB's are forced to zero for doub"'eword addresses.

The 21 most significant bits of the"25-bit effective address register (AR)
is sent to the Central Nemory Address Requestor in the Memory Buffer Unit (NBU)
if the addressed data is not presently residing in either the X or Y data reg­
isters of the MBU. If the addressea data is present in the X or Y registers,
then the 4 LSB's of AR are sent to the MBU to perform the selection of the
appropriate doubleword, sing1e\t-JOrd, or haltword from X or Y using 2, 3, or 4 of
the four bits, respectively.

Indirect address requests cause tralsfer of the effective address register to
the look-ahead address register (LA);J The indirect address is requested from
central memory by LA. The octet containing the indirect address is read from
memory and entered into instruction file KeM. The indirect address is selected
from KCf4 by AR. At this point, the instruction register contains the indirect
address which is interpreted according to-the indirect address format.

- Bit positions 5 throug~ 7 of the-indirect format specify the index register
to be selected into. pre-index register, XR. Bit positions 8 through 31 of this
format specify the indirect address, de~ign~t~d ADR.

Instruction Processing Unit 9
Section B1

The four most significant bits of the indirect address format (bit positions
o through 3) must be zero to indicate a IIno-operation" for the Arithmetic Unit.
The 24-bits of ADR and XR are added in th~ ind~x addition sectiOn of the IPU.
The result appears in register AR.

If the indirect bit (bit position 4) of the indirect format is a one~ then
the contents of f,R is a singleword central memory address ItJhich points to the
next level of indit'ection. The next level indirect address is requested from
central memory via the LA reg; stelA path. The pl~ocess descdbed in the preced-
ing paragraph is repeated for each level of indirect addressing. ~

If the indirect bit of the indirect format is zero~ then the tel~minal indir­
ect address has been Y'eached and the index addition hard\'Jare of the IPU develops
the address of the operand using displacement indexing according to the word
size of the instruction being executed. The terminal indirect address is sent
.:to the centra 1 memOl'y addi~ess requestor in the t"GU if the addressed data is not
presently residing in either the X or Y data registers of the MBU. The 4 LSB's
of the terminal indirect address are sent to the MBU word selection logic if
the addressed data is present in either the X or Y data registers.

Subsequent scalar instructions from One of the .instruction files' follow the
terminal iridirect address into the IPU and norma1 instruction processing contin­
ues until another indirect, execute, or branch instruction is detected.

An exception to the above 'description on indil"ect addressing occurs for the
case of a first level indirect address with a s 2F and an M - field of zero.
The first level indirect address is the address of the instruction word (the
word with four non-zero most significant op code bits and indirect bit equal to
one).

In this case~ the value of the next level indirect address is selected from
the register file and placed in the instruction register. After this, all
subsequent levels of indirection are through central memory. Indirect ref­
erences through the register 'file can occur only once for a given instruction.

IMMEDIATE OPERAND DEVELOPMENT

Immediate operand instructions use ,the index adder for modifying immediate
values. The M and N-fields of the instruction word combine to form a 16-bit
value which is added to a nonshifted index register selected from the T-field.
Sign extension into the left halfword occurs prior to addition using the MSB
of the M register for singleword arithmetic immediate operand instruct~ons.
Zeros replace sign extension for sing1eword logical immediate operand lnstruc-

. tions. Halfword immediate instructions use only the right halfword of the
result from the index adder.

10

BPANCH ADDRESS DEVELOP~lENT

Branch address development takes place in the index adder of level 3 using
inputs from the index selection register, XR 1 and_b~se selection register, BR~
of level 2. When the M-field of the branch intruction is zero, the program counter
valMe replaces the base register value in SR. The _branch-address is taken rel­
ative to the program counter plus indrix (if specified by T).

Indirect branch addresses are developed similar to indirect operand ~
addresses with the exception that indirect branch instructionsw~th B S 2F and
M = 0 reference central memory and not the register file.

DETERMINATION OF BRANCH CONDITION

Instructions of the type "Branch on Reqister Greater than" use a special
adder unit in the IPU to determine the oufcome of the branch test without
having to "'Jait for the Arithmetic Unit to perform the operation of adding to
a ~egister and testing the result with respect to the contents of another.
register. This special adder is incorporated in the IPU hardware and recelves
its inputs from the A0 and R0 registers at level 4.

For the branch instruction under discussion, the operation involves taking
the singleword contents of the arithmetic register specified by the R-field and
adding to it the contents of the arithmetic register specified by T. The result
is compared with the contents of the arithmetic register specified by T plus one.
In the, IPU, this operation is accomplished in the branch test level by taking the
Y'egister operand specified by R from the left half of 64-bit register R0. The
left half of 64-bit register A0 supplies the register addressed "by T. The
right-half of register A0 supplies the register addressed by T plus one . .-
These three singleword reyister values are added in the 3-input "branch test
adderll. The input from register T plus one is complemented (one's complement)
before addition so that the addition which takes place is the evaluation of
(G)R + (G)T - (G)T+l using one's complement addition. The result of this addition
will appear to be one less than the 2'5 complement addition of the same number.
If one desires the sum to be greater than zero in 2's complement addition~ then
the sum must be greater than minus one in one's complement addition. Therefore,
the outcome of the branch test for this instruction is true if the output of the
one's complement addition is zero or positive. This can easily be determined
from the sign position alone.

Many other branch and test instructions fall into the class that can take
advantage of the branch test level. More specifically, all of the increment or
decrement test and branch instructions can use this means for determining the
outcome of the branch test without waiting for the increment or decrement oper­
ation to take place in the arithmetic unit.

Instruction Processing Unit 11
Section B1

12

Conditional Branch instructions which compare the R-field value with the Con­
dition Code or Result Code are of a different nature than the branch instructions
just m,,::nt'j o;,ed. The: outcome of Conditi ona.1 Grancll instruct; ons are known only
if all previous instructions which set the Condition Code or Result Code have
passed through the Arithmetic Unit. If the proper code has not been set, then
the Br'anch on Comparison or Branch on Results instruction must wait in level 3
of the IPU until the code has been set by the ,'\U. The branch address ;s held
in the AR r~gister of the index adder until the branch decision is made. Then,
if the branch is taken, the branch address is transferred to the PA and LA
registers and then central memory ins~y'uctions along the branch path ay'e requested.

STORAGit OF AU RESULTS INTO THE REGISTER FILE

The IPU has the function of retaining the destination register address of
all scalar instructions (vector instructions cannot store into the register
file). These register addresses are held in a chain of 7-bit registers. Seven
bits address all 48 single\tlord registers dovm to the halfvJOrd level. The chain
of register addresses is as long as there are sections to the Central Processor
pipeline. Additional bits are carried along for control.

The IPU prav; des the pr'oper a 1"i gnmen t fr'om the AU to the reg-j s ter fi 1 e for
single~ half, and double length r~gister operand results. It also performs
the selectiDn enabling to the gate inputs of the register file.

SCALAR ~AZARD AND REGISTER CONFLICT RESOLUTION

These functions are described in Sect10n B2. Scalar hazards occur when the
effective operand address developed by an instruction is the same as the address
of a store instr'uction which preceeds the t'ead instruction and vlhich has not yet
passed completely through the Central P.rocessor pipeline structure. The hazard
condi on \~ill clear \vhen the store instruction performs its write operation into
centra 1 memory.

Register Conflicts exist when an instruction requires a register operand
which is presently in the process of modification or is going to be modified by
the Arithmetic Unit and which has not yet emerged from the AU output. The
register conflict 'ltlill resolve itself when the needed register is loaded with
the result from the Arithmetic Unit and no other modification will occur to the
contents of that register as a result of other instructions between the AU out­
put and the instruction which requires that register.

GENERATION OF VECTOR STARTING ADDRESSES

The index and base selection level and the index addition level develop
the effective starting addresses for vector instruct; ons from the vector startipg "
addresses plus index values as specified by the vector parameter file. The
generation of continuous addresses for sustaining vector operations ;s carried on
by the Memory Buffer Unit. Section B2 and B3~ vector timing and the vector
parame'ter file descriptions in the instructions describe the nperations to be
perforooed for genera~ing vector starting addresses.

TRANSMITTAL OF VECTOR PARAMETERS TO THE MBU DURING VECTOR INITIALIZATION

The vector starting addresses contained in 29, 2A~ & 2B and other vector
parameters contained in register file addresses 28, 2C, 20, 2E, 2F, and the 4 MSB's
of 2A and 28 must be transmitted to the ~'1emory Buffer Unit (t~BU) pri or to start; ng
the first arguments of the vector operation through the Arithmetic Unit. Vector
starting addresses are sent to central memory immediately after being received
at the MBU and while the remaining vector parameters are still being transmitted
from the IPU.

The parameters are selected via the A register operand selection network and
gated into the A~ register of the IPU one word at a time. The output of A~
goes to the IMM register at the MBU input and from there the parameters are dis­
tributed to the operational register$ (working registers) of the MBU. These
operational registers control the vector address gener'ating hardware in the MBU
which sustains the vector operation.

When vector initialization is completed the IPU brings the next three scalar
instructions, if such exist, down through levels 1, 2, and 3 of the IPU hardware.
These instructions reside in the top of the IPU pipeline until the last element
result of the vector operation has been sent to central memory.

Some vectors, namely Vector Order, Dot Product, Search, Compare, and Peak
Pick, require special consideration. These vectors must be restarted at their
beginning addresses when reinstated following a context switch operation if
the switching occurred during their vector processing interval. For these
vectors the IPU retains the vector instruction in level 3 and reserves level 2
for recomputing that vectors starting addresses. The following instruction .
after the vector resides in IPU level 1.

Instruction Processing Unit 13
, Section Bl

MEMORY BUFFER UNIT

The memory buffer unit (MBU) provides an interface between central memory and
the arithmetic unit (AU). The communication with ~entral memory is via a private
port of the memory control unit (MeU). During scalar operations, data specified
by effective addresses developed in the instruction processing unit (IPU) are
fetched or stored as required. For most vector operations, two operand data
strings are fetched while a result data string ~s stored. Add~e~s~s for sys~a~ning
the vector operation are computed in the t~f3U uSlng parameters lnltlally spec1fled
by the vector parameter file in the IPU. 'Details for the one times ASC are
described below. An overall block diagram of the Central Processor is depicted in
Figure 1.

DATA PATHS IN t1BV

~ctets from cent~al memory ~re rec~ived and synchronized in the register
deslgnated SC. A dlrect path 1S provlded for transfer to either the X or Y
registers from SC .. The XH and XY r~g{ster5 provide a second level of buffering 50
t~a~ ~ector prOCeSS1"$ can ~e sustalned at a high rate with a minimum of memory
hnntlng. The SC reglster 1S always tl'ansmitted to its destination on the next
clock aft~r it is received from CM. The XB and YB registers provide a third level
ofbuffenng ~nd are used to equalize th~ processing rate between the two operand
pa~hs. Both X and Y can also be stored 1n central memory for maintenance purposes.

Reslilts fl~om thE AU wh; ell are to be stored in centfa 1 memo)') are ali gned and
placed in the Z register. The Z register can be transferred to either X or Y
so that memory references are not necessary for scalar memory opeands which
reside in Z.

If the result of the output of the AU is in a different octet than the octet
currently represented in,Z~ then Z must be transferred to the ZB register which
in turn must be transferred to central memory. (he transfer'of Z to ZB must be
held up until the previous write request no longer requires ZB. If ZS contains
half words~ it is possible to have incompletely specified single words. A path
from SC to ZB is provided to permit half word fill-in from central memory.

The register pai.s designated MAB and MeD present two operands to the AU
receiver registers. Each pair can contain half words, single words or doublewords.
Their positioning is shown in Figure 3.

14

each is shown below:

r--r--p I ""1
MAC ~-~-i7~LL_".i

or I I half I I
'CD I~ I . \4- I h I Iwordl I

I 1 I I
I I I I
I I I
I I I
I I I
I.! I I ___ I sing e 14- I
I I I
I word I i
I I
I double word :
I I
'-4-- --f>

Figure 3. MBU Output Registers

Selection networks are provided for both X and Y and are capable of selecting
ha 1 f words,. s i ng1 e vJOrds, or double words. The outputs are therefore 64 bits wi de.
Single words are placed in the most significant bit positions. Half words are aligned
and signs extended so that they appear as single words. The X register file selec-

• tion can be transferred to either MAB or"MCD. The transfer to MCD is for scalar
requests of the X register file. The Y register file is transferred only to MCD.

Register and immediate operands from the IPU are received in the REG and
IMM registers respectively. They cai then be transferred to the MAB and MCD
registers as required.

The MBU receives vector initialization data from the vector parameter file
in the IPU via the IMM register. A path from IMr~ to t~AB is required for vector
t. immediates.

SCALAR OPERATION

During scalar operation the MAB register presents the IPU's register data
to the AU while the MeD register presents the IImemory" data. The "memory" :do.ta
can be selected either from X or from Y or can be an immediate operand from the
IPU.

The IPU sends two types of addresses, octet and element. The octet addres'ses
are required when an octet is to be read or written and is not currently rep­
resented in the ~1BU. The four bit element addresses specify \'/hich elements are
to be read or written. Operand addresses are accompanied by destination (X or Y)
tag. Both operand and result addresses are accompanied by word size information.
Scalar operations utilize part of the structure :E~uired for vector uperations.
Details~are discussed with vector operations.

Memory Buffer Unit 15
Section B1

VECTOR PROCESSING

During vector operation, the X and Y registers present elements of vectors
~ and B to the AU. The addresses for these operand data strings are computed in
the A ADDRESS GENERATOR and the B ADDRESS GENERATOR. A detailed diagram is shown
in Figure 4 for the ~ ADDRESS GENERATOR.

Successive addresses are the outputs of a 25 bit adder with the format shown
beloitJ. This output is the sum of the last address and one of the' increments cor­
responding to the self, inner, or outer loops. The increments associated with
a self loop are one element increments and wiJl be ±1/2, ±l or ±2 dependin~ on
word size. The inner loop increment is designated DAI. The outer loop increment
is designated DA0. Both DAI and DA0 are initially 16 bit Signed 21 s complement
numbers in the vector parameter file. They are adjusted according to word size,
sign extended, and then placed in 25 bit registers in the MBU.

8

L Binary Point
Address Format

"', The initial address (IA) is transferred to the NAA register from the IMN
/
; re~ister. The generation process is capable of providing addresses for continuous

processing of single word vector elements since a new address can be computed at
the rate of one address per clock.

In order to minimize and frequently eliminate memory delay, a "thl"'ee level II
look ahead scheme is provided. The octet address being processed references data
which is to replace the contents of the XB register. The address of an element
must in some cases be formed 16 clocks prior to its use in the selection network.
The XBA register receives a 21 bit octet address while a bit is set which initiates
a memory request when appropriate. Octet comparisons are made between NAA and XBA.
Memory requests are made only when a new octet is required ..

The four bit element selection is stored ;n a file designated the circular
address file (CAF). Since an additional 15 elements could be generated during the
interval between the generation and use of a particular address, the CAF has
space for 16 four bit entries. An additional three bit II TAG II must be stored for
each entry_ The first of these three bits indicates the presence of an address.
The second bit indicates the end of a self loop. The third bit indicates the first
address of a new octet.

16

DAS

DAI

DAO

" 02242

DCS

DCI

DCO

r­
L~'-< XB_A_ =:J

TO CENTRAL' MEMORY REQUESTOR ~>-----_____ --,I-

FROM AO ... REG OF IPU

--Figure 4. A Addres s Generator

IMM

NCA

ZA

TO ZEA AND
ZONE MODIFI­
CATION BITS

ZP FROM IPU

15.0 IPU FOR VECTOR HAZARD DETECTION

10224t

ZBA

--Figure 5. C Address Generator

Memory Buffer Unit 17
Section B1

The operand address register XBA is also used for scalar operation. Appropriate
portl~ of the 25 bH addresses fr'om the AR register ill the IPU are transferred to
~e XBA register and the XA register. The IPU indicates whether or not the octet
_~ currently in the X register. The XBA register is sent to the 0A register only

if a new octet is required. The XA register is used to enable the X selection net­
worL

During vector operation, the Z register accepts elements of vector t from the
AU. The addresses for the output da.ta string are computed in a section designated the
l ADDRESS GENERATOR. Addresses are generated one clock prior to their use (at the
alignment nehvotk). Successive addtesses are the outputs of a 25 bit addet in an
arrangement similar to that for operand address generation. The initial (IC) is
transferred to the NCA register where successive addresses are also placed. New
octets are detected between NCA and ZA. If ZBA is available ZA can be transferred
to ZBA and the write request can be processed. Sixteen bits are required to record
modification (dm<m to half v/ords) for both Z and ZB. Half \'Jord fill~in can then
be accbmplished when required. The ZB modification bits are combined in pairs to
specify zone contl~ol bits for all ZB write operations. The ZA register is pre-
sented to the IPU during vector opetation so that hazards can be detected in the
IPU.

During scalar operation, addresses from ZP in the IPU are sent to ZA and
ZEA. Since the IPU indicates octet"changes, the MBU continually transmits the
avail abil ity status of ZBA for write operations. ~Jhen ZBA is not "busi', ZA can
be transferred to ZBA and the write operation processed.

Operation of the MBU is under control-of the section designated the SEQUENCE
CONTROL. Inputs to this section are status of the memory requestor, status of each
rddr~ss generator, and status of the loop counters. Three sets of loop counters
are provided, blO from operands and one for results. The inputs combined with the
present state of the SEQUENCE CONTROL determine gate enables as vJell as the next
state.

The AU control RO~l is located in the MBU. Instruction codes are received
from the IPU and used as addresses for the ROM which generates an array of signals
which control the AU.

CENTRAL MEr10RY REQUESTS

All central memory requests are made through a controller des i gnated the
CENTRAL fvtEMORY REQUESTER. The CENTRAL MEMORY REQUESTER es tab 1 i shes pri ority ...
for the three address generators and makes the appropriate requests to the r~cu.
It also provides for the distribution of read data upon arrival in the MBU. A
max.imum of four requests "may be in some state of development during vector op­
eration. Requests can also be processed for the hard core controller during
maintenance operations.

18

MEMORY BUFFER UNIT SUMMARY

Effective addresses developed by the index unit in the IPU are routed to the
memory buffer unit. For most scalar instructions the memory buffer unit obtains
one operand from the central memory location specified by the effective address
and one operand from a register as presented from register selection. The memory
buffer presents these operands to the arithmetic unit fO\~ processing. The arith­
metic unit results replaces the register operands to the register file of the IPU.
When results are to be stored into central memor'y, the memOl~y buffer unit recei ves
the effective address into which the data is to be stored and after AU processing
provides for the storing operation. .

For vector operations, the memory buffer unit supplies the consecutive op­
erands to be processed and stores the results in central memory.

The memory buffer unit is comprised of two triplt buffered eight-word
register groups for reading and one double buffered eight-word register group for
writing in the one times ASC system. Triple buffering is provided so that vector
processing can be sustained at a high rate with a minimum of memory limiting.

For scalar operations, buffers X and Yare alternated for memory read
operations. Buffer Z is used for memory write operations. In either case, the
strategy is to invoke a memory cycle only when one is needed. For example, a
read request for data within an octet currently residing in a buffer is terminated
at the buffer. A write operation into a previously defined write octet is likev-Jise
terminated at the buffer. An actual read cycle occurs only when the required data
is not within a current octet. An actual write operation occurs only when a new
write octet is defined. .

For vector operations, buffers X and Y supply strings of numbers to be
processed and buffer Z accepts the resultant string of numbers.

Memory Buffer Unit 19
Section Bl

ARITHMETIC UNIT

UlERAl
~,>,~--

The ASC Arithmetic Unit is hasically a sixty-four bit oriented unit. The
unit is used for both fixed and floating point instructions. Floating point numbers
are in sign and magnitude along with an exponent represented by an excess 64 number.

A distinguishing feature of the ASC AU is the pipeline structure which allows
efficient processing of vector instructions. There are seven exclusive partitions
of pipeiine involved, each of which is designed to provide an output every sixty
nanoseconds. The seven sections are referred to as (1) Exponent Subtract, ~) Align,
(3) Add., (4) No¥'malize, (5) r'lultiply, (6) Accumulate, and (7) Output.

The first four sections mentioned above are the basic structure of a floating
point add instruction. Each of the sections perform parts of other instructions;
however~ they are primarily partitioned in this way to increase the floating
point add time. Each of these sections is capable of operating on double length
operands so that vector double length instructions can proceed at the clock rate.
The align section is used to perform right shifts in addition to the floating point
alignme~t for add. The normalize section is used for all normalization requirements
and win also perform left shifts for fixed point operands. The add section employs
second level look-ahead techniques to perform both fixed and floating point additions.
This section is also used to add the pseudo sum and carry which is an output of the
multiply section.

. The multiply unit is able to perform a 32 by 32 bit multiplication in one
~lock t~me. The multiplier is also the basic operator for the divide instruction
and double iengtn operations for both of these instructions require several iterat­
ions through the multiply unit to obtain the result. Fixed point multiplications
and single length floating paint multiplications are available after only one pass
through the multiplier. The output of the multiply unit is two words of 64 bits
each ~ i.e., the pseudo-sum and pseudo-carry \'lhi ch must be added to the add
section to obtain the proper solution. A double length multiplication Vlill be
perfofl1'fi2d by pipelining the three following sections: multiply~ add, and accumulate.
The accumulate section is similar to the add unit and is used for special cases
such as VOP or any instruction which needs to form a running total. Double length
multiplication is such a case, as three separate 32 x 32 bit multiplications will
be performed and then added together in the accumulator in the proper bit positions.
A double length multiplication would therefore r~quire six clock times to yield
an output while single length would require only four. A double length multiplica­
tion implies that two sixty-four bit floating point numbers (56 bits of fraction)
are multiplied to yield a sixty-four bit result with the low order bits truncated
after postnormalization. This multiplication ignores a possible round-off which
is obtained by making a fourth pass with the two least significant halves of the
operands. A fixed point multiplication \'Jill perform a 32 x 32 bit multiplication
and yield a sixty-four bit result.

20

As would be expected, division is the most complex operation to be performed
by the AU in the ASC. The method used takes advantage of the fast multiplication
capabilities and employs an iteration technique which upon a specified number of
multiplications will form the quotient to the desired accuracy. This method does

. not form a remainder. Hov/evei', a remainder can be obtained under program control.
Assuming X/V = Q Vias the solution, the remainder can be formed by muitiplying Y • Q
and subracting from X; R = X - Y • Q. The remainder will be accuracte to as many
bits as the dividend X. For floating point operations, each of the operands, along
with the result, are equal in length. For fixed point single length division,
the divisor and result are 32 bits while the dividend is 64 bits in length.

The output section is used to gather outputs from all other secti'ons and also
to do simple transfers, Booleans, etc. which will require only one clock time for
execution in the AU.

FLOATING POINT OPERANDS

A guard digit consisiting of four least significant bits is provided to
avoid loss of one hexadecimal digit of accuracy which ",/ould result from truncation

,prior double length additional and subtraction. The addition of these bits is suf­
ficient since the only times normalization \~ill be required with a possibility
of loss of accuracy, the normalization will require a shift of only one hexadecimal
digit. Normalized operands are' required for the guard digit to be of maximum use.
For example, in Multiplication~ given two operands which are normalized, the frac­
tions will be 2_4 < f<l. The result will be 2- 8 < f<l. Thus, the result will al­
ways require at the most one four-bit shift to normalize. The addition case is
more involved but can be explained by di"scuss;ng three possibilities. If the
exponents are equal, no alignment is required therefore the guard digit is not
necessary. If the exponents differ by one, the gua~d digit will retain significant
information. Finally, if the exponents differ by more than one, it can be shown
that the result to be normalized wil' require at most a shift of one hexadecimal
digit. Thus, the guard digit contains information that can be retrieved.

The results of floating point operations treat overflow and underflow as
suggested by the Share XXVII conference. Any overflow or underflow results in the
correct mantissa and the exponent correct modulo 128. An output from the AU in­
dicates overflow or underflow. The output can then be employed by taking proper
action.

STRUCTURE

Exponent Subtract - The exponent subtract section is primarily responsible
for determining the proper inputs to the add section for use in floating and. in­
structions. It is used for both scalar and vector operations and is also re­
sponsible for supplying proper input to the accumulator section for floating vector­
dot product instructions.

Arithmetic Unit 21
Section B1

This section determines the difference in the exponents of floating point
operands or in the case of equal exponents) which mantissa is larger. Upon de­
tenni ni ng the 1 argel' number, the true 0)' camp 1 ement of the operands are gated
into registers according to the operation to be performed such as Add, Subtract,
Add Magnitude, etc. Also, at this time a seven bit subtracter determines the
exponent difference which is used in the align section to properly align the
fl~ating point operands.

Since logic is required in this section to determine relative magnitudes of
the mantissa, the test instructions for greater than, less than~ or equal t,o are
also performed in this section to avoid repetition of hardware. ..

f\li~ - The align section is in operation foY' an floating add instructions
Ot~ for any ri ght shi ft i nstructi on. Fl oati ng poi nt i nstructi ons are performed
after one pass through the align section while fixed point shifts require two
cycles.

The shift logic has provisions to allow any shift length which is a multiple
of four to be performed in one cycle. Since floating point numbers are rep­
resented in hexadecimal digits, this will facilitate the very fast floating point
additions. The length of right shift can be obtained from the instruction word
for a shift instruction or from the exponent difference information as supplied
by the exponent subtract section.

Fixed point right shifts are performed by first shifting in one cycle the
largest multiple of four-bits contained within the shift value. Then, the residue
of Ot l~ 2. or 3 bits is shifted on the next cycle. This results in a minimum
of shift paths 'into each latch since the four bit paths already ex'i~t.

!~ - The add section is shared for many instructions depending only upon
which paths are selected into the section. Floating add instructions are entered
by way of the align section. Fixed point add operands enter the arithmetic unit
at the add section. The adder is also used to add the pseudo sum and carry from
the multiply section to obtain any multiplication result.

The adder is 64 bits in length and contains second level look-ahead logic.
The floating pOint numbers are in the proper format when entering the add section,
however, the fixed point operands are modified to reflect either add, subtract,
or add ~gnitude type instructions.

Normalize - The normalize section is employed for both floating add in­
structions and fixed point left shift instructions. Divisors are routed through
this section to guarantee bit normalized inputs for divide instructions.

22

This section closely resembles the align section in that floating point
(1perations require only one cycle while fixed point shifts require two. The major
'li:hffel~ence in the two sections is that the align section is given the information
concerning length of shift for hexadecimal "digits in floating pOint. The normalize
section has to compute thc length of shift required to normalize a floating point
number by examining to determ"ine I'lhich four bit group contains the most significant
logical one. An adder is also required to update the exponent when a normalization
takes place.

Fixed point left shift instructions are supplied "lith the length of left
shift from the instruction word.

!~ultipl,Y - The multiply section is required to operate on both floating and
fixed point operands. The floating point numbers are represented in sign and mag­
W4i tude "ihere the fi xed poi nt numbers are in tV/o I s cemp 1 ement from. The method of
Wilult-iplying is keyed to two's complement opeY'ands with the floating pO"int mul­
tiplication performed by arbitrarily assigning positive signs during the multi-

ication and then applying the proper sign when multiplication is complete.

The multiplier is capable of multiplying any two numbers up to 32 bits in
length in only one pass through the multiply section. The result is in the form of
;a pseudo sum and carry which must be added together to obtain the result. The sum
~nd carry are added together in the add section which has been discussed separately.

The multiply section is also used to perform division by a sequence of multi­
plication operations.

Accumulator - The accumulator is a special purpose section which is employed
an vector operation is being performed requiring an accumulated total. A prime

,example of this is the Vector-Oat-Product instruction.

like the add section which was previously described, the accumulator per­
forms a second-level look-ahead to facilitate a fast addition.

Output - All results to be sent to the CP must be gated through the output
section. Information could have originated in anyone of" the other sections of the
AU with the exception of the multiply section.

Simple instructions such as Booleahs, transfers, masks, etc. are performed
in this section and gated out in one pass th~ough the section.

Arithmetic Unit 23
Section B1

CENTRAL PBOCESSOR TmING ANALYSIS

Section 82

i

TITLE

SCALAR INSTRUCTION THHNG

ARITHMETIC UNIT
OPERJ\ND FETCHING TIt"E
REGISTER CONfLICT DELAY

TABLE OF CONTENTS

MULTIPLE STORE INSTRUCTION DELAY
READ AFTER WRITE DELAY
INDIRECT ADDRESS GENERf'l.TION TH1E
EXECUTE INSTRUCTION FETCHING
INSTRUCTION FETCHlr~G jl,FTER BRANCHING
INSTRUCTION HAZARD CONDITION

VECTOR INSTRUCTION TIMING

VECTOR PARA~1ETER FILE FETCH
MBU INITIALIZATION
MEMORY OPEP~ND FETCH
AU FILL
AU EMPTY

PAGE

1
1
7
9

10
11
11
12
12

15
16
16
17
17

SCALAR INSTRUCTION TIMING

Scalar instruction processing time in the Central Processor (CP) can be
predicted with a fair degree of accuracy by considering the following
factors:

1. Arithmetic Unit clock time
2. Operand fetching time
3. Register conflict delay
4. Multiple store instruction delay
5. Read after write delay
6. Indirect address generation time
7. Execute instruction fetching time
8. Instruction fetching time after a branch instruction without look

ahead
9. Instruction hazard refetch time

ARITHMETIC UNIT CLOCK TIMES

Arithmetic: Unit clock times (Table 1) are defined as the number of
clocks required to propagate input arguments through the AU, to the AU
output registers.. Certain instructions can be executed in sequence by
the Arithmetic Unit without creating pel'iods of inactivity or delays in
pipeline flow. The instructions listed in Table 2 are divided into fourteen
groups. Any s1ngle instruction in groups 2 through 11 may follow-any
instruction in groups la and lb without creating a delay due to different AU types.

OPERAND FETCHING TIME'

Operand fetching time refers to Central Hemory access time for obtain-
ing memory operands. This time ;s measured from the clock at which the
effective addrc::;s of th<:: operand ~s ut the {lrldress outout register (A~) of the
Instruction Processing Unit (IPU) to the clock at which the requested operand resides
in the' output· .register 0+ the Memory Buffer Unit (MBU). This time is normally ten
clocks·-if there are no memory conflicts at the MCU or priority delays at the
MBU memory controller as illustrated below:

Effective address present in register A~ of the IPU (level 4)

Effective address present ;n XBA register of the MBU .

Octet address request on CM address·bus

Memory stack time

Central Processor Clock Time

bus

Data synchronized at MBU

D~ta transferred to X-buffer

Data present at MBU output register

Scalar Instruction Timing 1
Section 82

TABLE T ARIHlf,n::nC Ur~IT TIr,jE RE:QUIREMENTS L •

FOR SCALAR INSTRUCTIONS

Clock Times Clod Times
l:.@.AQ. L --;---- ARITHf\lETI C A -----r------_._-"-

LI 1 Al 2
LH 1 AH 2
LIH 1 AIH 2
LR 1 AF 5
LL 1 AFO 5
LO 1

At1 2
LM 2 At'H-l 2
LfvlH 2 Ar-1F 5
LMF 1 At,1FD 5
U'lD 1

S 2
LN 2 S1 2
LNH 2 SH 2
LNF 1 SIH 2
LND ,

SF 5 I

SFO 5
LNr~ 2
LN!~H 2 SM 2
LNMF 1 SNH 2
LNND 1 S~1F 5

S~1FD 5
LF 1
LH1 * M 3
XCH 2 t11 3

MH 3
LAr·j 1 tvlIH 3
LAE 1 MF 4
LLA 1 MFD 6
La· 1 R-even R-odd

0 29 18
ST 1 DI 29 18
STH 1 OH :-:J8 18
STR 1 OIH 18 18
STL 1 OF 15 15
STD 1 OFO 25 25

SPS 1

STZ 1
STZH 1
STZO 1

STN 2
STNH 2
STNF 1
STNO 1

STO 1
STOH 1

STF 1
. STFM *

*Oetermined by memory access time. An LF instruction requires six memory
read cycles and an SF instruction requires six memory write cycles.

2

TABLE 1 (CONTINUED)

Clock Ti meso Clock Times
l~GICAL AND 1 TEST & BCC

ANDI 1 BRANCH BRC
OR 1 BEC
ORI 1 BAE

XOR 1 REG. MOD IBZ 2
XORI 1 & TESTING IBNZ 2
EQC 1 DBZ 2
EQCI 1 DBNZ 2

ANDD 1 ISE 3
ORO 1 ISNE 3
XORD 1 DSE 3
EQCD 1 DSNE 3

SHIFT SA ' 3 BClE 2
SAH 3 BCG 2
SAD 3

STACK PSH 3*
Sl 3 PUL 3*
SLH 3 MOD 3*
SLD 3

SUB-ROUTINE BLB 1
SC .3 BLX 1
SCH 3
SCD 3 ANALYZE LEA 1

INT 1
RVS 6 XEC

ARITH. C 2 CONVERSION FLFX 5
COMPARE CI 2 FLFH 5

CH 2 . FDFX 5
CIH 2

FXFL 4
CF 2 FXFD 4
CFD 2 FHFL 4

FHFD 4
LOGICAL CAND 1
COf4PARE CANOl 1 NORMALIZE NFX 3

COR 1 NFH 3
CORI 1

CALL MCP 1
CANDO 1 MCW 1
CORD 1

VECTOR VEeT (See Vector Timing)

* Stack Instructions take multiple passes through CP pipeline.

Scalar Instruction Timing 3
Section B2

4

Table 2. CP Instructions g}~oup':1d according to those ItJhich may fonoVJ one
another without delay in the Arithmetic Unit.

L·
LI
LH
LIH
LR
LL
LD
LMF
LNO
LNF
LND
UU~F
LNMD
LO
LAM
LAC

GROUP la

GROUP 2
LM
LMH
LN
LNH
LNt·'
LN~1H

GROUP 3

M
Ml

GROUP 7
AF SF
AFD SFO
AMF SMF
AMFD SMFO

AND
ANDI
OR
ORI
XOR
XORl
EQC
EQCI
ANDD
ORO
XORO
EQCD
BlB
BlX
LEA
INT

A
AI
AH
AIH
AM
AMH

GROUP 4

MH
MIH

GROUP 8
D
DI

CAND
CANOL
COR
CORI :

CANDO
CORD

GROUP lb

ST
STH
STR
STL
STD
STZ
STZH
STZD
STNF
STNO
STO
STOH
MCP
SPS

. NOTE: Multiple store instruction delay occurs
when sequential store instructions write

, into different central memory octets for
instructions in group lb.

S
SI
SH
SIH
SM
SMH

C
Cl
CH
CIH
CF
CD

GROUP 5

MF

GROUP 9
DH
DIH

IBZ
IBNZ
OBZ
OBNZ
STN
STNH

GROUP 6

MFD

GROUP 10
OF

GROUP 11 ,
DFD

Table 2 (Continued)

Instruction which cannot follm<J one another immediately on t;l€ next clock
in the AU pipeline are listed below in groups 12 dnd 13. Instructions which
do not use th2: Ari-::tUil:: __ ~i:: ~~'it (..~.,:, li c t nd -in nrnqn 14,

GROUP]2

FXFL
FXFD
FHFL
FHFD

GROUP 13

PSH

PUL

MOD

GROUP 14

FLFX
FLFH
FDFX

XCH

MC~I

LF

LFM

NFX
NFH

ISE

ISNE

DSE
DSNE

STF

STFM

SA

SAH

SAD

tLA
XEC

SL
SLH
SLD

Bce
BRC
BAE
BEC

SC RVS
SCH BCLE

SeD BCG

NOTE: Instructions in groups 3 through 11 require long micro-op sequences in
the Arithmetic Unit. The read-only-memory (ROM) in the Memory Buffer Unit
generates these mlcro-~equences using a feedback arrangement from the ROM
output register to the ROM address registe~. Due to the require~~nt of keeping
the data and control of a given instruction in the same level of the CP pipe­
line at the same time, it is necessary to hold the next instruction (the one
following the one with a long micro-sequence) in the input level of the r~BU
while the first instruction completes its micro-sequence in the ROM.

A s~c()nd instruction's ::.ntr." tnt': tile Arrt.·!m~tic unit '.1"111 f~llow a ~ir~-,t inst~u:
tion into the AU on the clock in which the first instruction"s result is p1aced
in the AU output register.

Sca1ar Instruction Timing 5
Section 82

The X and Y buffer registers, used for streaming vector operands into
the Arithmetic Unit, can be used during scalar operations to retain the most
recently used operand octets from eM. If a request for a \'JOrd in eM is not
contained in either the X OJ'' Y buffers, the octet of wOt'ds containing the
requested word replaces the contents of the X-buffer if Y was last used or
replaces the contents of the V-buffer if X was last used. An effective
address request for a word in an, octet which is presently contained in
either the X or Y buffers is terminated at the buffer (the address is not
sent to Central Memory) and the intended operand is read from the buffer
in which it is resident. There is no pipe delay when the required operand
is resident in either the X or Y buffer registers.

The algorithm for operating the X and Y buffers during scalar instruc­
tions is as follows:

If a = X, then set LUF = 0

I f a = Y, the'n set LUF = 1

If a f X and a ; Y and LUF = 1, then load X with (a) and set lUF = 0

If a ; X and a ; Y and LUF = 0, then load Y with (a) and set lUF = 1.

Example

This example is for a series of instructions which require operanRs
from octets in the order a, a, b, b, a, b, c, d, b, d, d, c, d. (lUF)
repres~ots the state of the last used file indicator at time n and set
(lUF)n I represents the next setting for the last used file indicator
at time n+1.

Request for
{lUF}n Set {lUF}n+l eM octet X-buffer V-buffer

a 1 0'
a 0 a 0
b 0 a 1
b 1 a , b 1
a 1 a b 0
b 0 a b 1
c 1 a b 0
d 0 c b 1
b 1 c d 0
d 0 b d 1
d 1 b d 1
c 1 b d 0
d 0 c d 1

1 c d

6

If two success'ive instr'uctions request C~1 operands from different
octets and neither one is resident in the X or Y buffers, then it is
possible fot' both requests to be issued to CM before the IPU needs to
be stopped to wait for eM access. Th; s previ des overl ap of 01 requests,
rather than having to .."ait the entire memory cycle time for each memory
octet fetch. The second octet request can be placed on the CM address
bu~ two clocks after the first octet request. The second octet data
will be available in the second buffer two clocks after the first arrives
p)'ovi di n9 that no memory confl i cts occurred and that the second read was
from an alternate memory modu-le than the first. If the tvJO read rj;quests
were to the same stack, then an additional biD clocks \lJill elapse before
the second read data is available at the buffe}' register due to memory
stack confl i ct.

A third read request in a string of sequential instructions, for
which the first two octet addresses \'Iere different, will be held in
level 3 of the IPY while the second read instruction

waits in level 4 for the data to return from- the first instruction1s
read request. The iii'st i nstructi on \lJas advanced to the t~HU input level
while the eM request was being processed. It cannot proceed past this
level because the selectiqn of the particular operand \'lord from the X or
Y buffer is accomplished at the MBU input level and the selection cannot
be performed unt 11 the data is avail ab 1 e.

An instruction can proceed to. the AU without memory delay if the
required operand is presently residing in either the X or Y buffer
regi sters.

REGISTER CONFLICT DELAY .
A register conflict delay occurs whenever an instruction requires the

contents of a register (base, index, general arithmetic, or vector para­
meter) and that register is presently in the process of being modified by
a previous instruction v/hich has not yet passed through the AU output level.
Reg; ster confl i cts occur because of the pi pe 1 i ne nature of the Central -
Processor. A register conflict delay (RCD) can occur at any of the first
three levels of the IPU; the Instruction Register (IR) levell, the Pre­
index (XR) level 2; or the Index (AR) level 3.

An ReO at the Instruction Register level is created when an instruction
attempts to select a base or index register to develop an effective address
and finds that .the base register specified by the M-field or the index·
register specified by the X-field is presently in the process of being
modified by a previous instruction somewhere downstream in the CP pipe.
The IR level conflict is relieved only after all instructions which specify
either of these two registers as a target register address have entered
their results into the register file. The time required to relieve this
conflict depends upon a consideration of scalar timing factors 1. 2, 3, 4~
5, and 9 for all instructions below and including the conflict register
modifying instruction which exists downstream in the pipeline, if an analysis
is to be made to determine the time required to relieve the register con­
flicts.

Scalar Instruction Timing 7
Section 82

" An ReD at Index level 3 is created when an instruction specifies
the use of a register operand It'hich is presently in the process of being
modified by a previous instruction. Such a conflict is relieved \'/hen the
instruction specifying the conflicting register ~ as a target register
address, has entered its result into the register file. Scalar timing
factors It 2, 3. 4, 5, and 9 must again be considered for all instructions
below ilnd including the conflict Y'egister modifying instruction if an analy­
sis is to be made to determine the register conflict delay.

An Reo at the Index level 3 is also created when an instruction is/~ncountered
for which the effective address specifies a register operand and another
instruction downstream is in the process of modifying that register location.
The effective address specifies a register operand wheneve)' an instruction
is encountered for which the M-field ecuals zero, the indirect bit equals
zero, and the effective address a is less than or equal to 2F hex. The
conflict is relieved when the instruction specifying the conflicting regis-
ter, as a target register address, has entered its result into the register
file. Scalar timing factor's 1,2,4,5, and 9 must be considered in order
to make an analysis of the time required to relieve the register conflict.

Example

This is an example of an instruction which requires a general arithmetic
register operand which is presently in the process of being modified by
a floating pOint add instruction which is'currently at the MBU output
register level. Thare are no delays in the pipeline belm'l the ~1BU output
level wll"ich would cause the pipe to halt momentarily and no Operand Fetch­
ing delay for the register modifying instruction since it has already
fetched its operand from the X or V buffer and has entered the operand into
the ~1BU output reg; s ter.

For the timing analysis with all the other possible delays assumed
non-existent: Count the number of pipe sections from the registgr modi­
fying instruction to the register file. The floating point add i'nstruc­
tion must pass through the foliowlng registers:

1. AU Receiver
2. Exponent Subtract section
3. Align section
4. Add section
5. Normalize section
6. AU output section

On the seventh clock the conflicting general arithmetic register is loaded
with the result of the floating point add instruction. Pipeline flow can
now continue on the 8th clock when the required register operand is entered
into the R~ register of level 4 of the IPQ. If the ' , "
conflict had not existed, then R~ would have been loaded on clock l.
Therefore. this register conflict delay caused a loss of seven clock times.

8

MULTIPLE STORE INSTRUCTION DELAY

A multiple Store instruction de.lay is caused \'Jhen two or more Store
instructions, all with different octet addresses, occur consecutively or
with only one i~struction separation in an instruction stream. The MBU
and AU pipe sections are provided with one address register to retain the
octet address of one store instruction. A second store instruction occurring
in a rapid sequence will be delayed at level 3 of the IPU until the first
store instruction of the sequence has passed to the AU o~tput level.

A delay due to Central fvlemory vJrite confl icts may also occur ,for any
two or more Store Instructions which are too closely spaced, but that is
a diffel"ent type of delay than the Multiple store instruction delay being
considered t)ere. The multiple store delay has a tendency to ease the memory
write conflict problem, since the pipeline operates at a reduced speed when
the multiple stores are detected.

There is no such multiple store delay for a series of tVJO or more
consecutive store instructions which all address the same octet or which
write consecutively into monotone increasing or decreasing address locations.

Scalar Instruction Timing 9
SecHon B2

10

READ AFTER ~mrTE DEL~~y (Sama Oct~t)

This delay is caused by attempting to read fl~m a Central Memory
location while a previous write instruction is still lIin the process!!
of writing into the same ·Iocation or into the same memory octet. A
If/rite instruct"ion is liin the process ll of Hriting into memory if it is
anywhere bel 0\>1 the I PU~ but not y~~t into central memory.

It is possible to acquire a modified operand over the Z to X
update path pravi di ng that there are no other stores oj nto di fferent
memory octets which ex·ist behJeen the store instruction ItJhose octet
address agrees with the operand read octet addr2ss of the instruction
,resently at level 3 of the IPU. The update from Z to X occurs after
all stores into the c.greeing octet (which are in either the MBU or
AU) have been entered into the Z-buffer. The update may occur simul­
taneously with the arrival of the read data from eM. In which case,
the read data must be merged with the update information ft'om Z.

A ~Iait for C!1 urtti::ng occurs if there ts agreement as above l but
another store into a different octet exists between the agreeing store
and the operand read instruction at AR of the IPU. A read from the
octet address of AR is made even though the address in ZBA agrees
with AR, since the write from ZBA \vill arrive in memory before the
read request is received.

The memory timing for u write then read in the same memory module is

Write

Read

Clock times 0 1 2 3

Address bus

4

Stack cycle time

Data bus active

Addr(;ss bus
1---1 Stack cycle

Data bus
I I.-'sy nc

I rX-buffer
I

5 6 7 8 9 10 11

INDIRECT ADDRESS GENERATION TIME

Each level of indirect addressing requires 10 clock times assuming
no memory confl i cts .:::,

EXECUTE INSTRUCTON FETCHING

Each Execute instruction fetch requires 10 clock times assuming
no memory conflicts. The only difference between Executes and indirects
is that an Execute instruction is .,fetching an instruction to be executed
whef-eas an irdi rect reference is "retch; n9 tile address of an operand or
the address of. the address of an operand, etc. .'

Scalar Instruction Timing 11
Section B2

:; I-lSTRUCTI ON FETCH I NG AFTER BRANCH I NG
-----j-~-...

A delay equi~alent to that of indirect or Execute occurs when
fetching instructions follm",ing n branch without look-ahead.

INSTRUCTION HAZARD CONDITION

An instruction hazard condition exists when a Store instruction
is in the process of modifying a wcrd in a central me~Jry octet from
which instructions previously read are -:urrently residing in the
Instruction Processing Unit (IPU). These instructions are then the
lI o1dll commands and hence the Central Processor must prevent their being
executed.

Prevention of' execution is accomplished simply by cancelling the
instructions above the point in the IPU where instruction addresses
agree with store addresses. In order to restart the program~ the CP
must wi.it until the culprit Store instruction has completed writing
into eN, then the IPU must Y'ecal1 the instructions which were cancelled.

Detection of an instruction hazard condition is accomnlished by
comparing the three store addres~ 'registers (ZP, ZA, and lSA) with'
the program counter value at level 3 in the IPU and comparing the ZB
address with the instruction look-ahead and present address registers.
These five comparisons detect all instruction hazards. When an octet
addl"ess agreement occurs in any of the five comf)arators, an instruction
hazard condition exists. The comparisons are diagrammed below:

eM
Store
Address

~ __ --., PC3

Indirect address chains are sent through PC3 for checking to be
sure that no stores are presently writing into a location which is
currently being used for indirect addressing.

12

An indirect addressing instruction must \I/ait for an irrk'Tlediately
preceding Vector operation to terminate before the indirect addressing
operation can proceed. This prevents an indirect operation from taking
an "old" indirect linkage when the preceding Vector operation is modi­
fying the indirect address file in Central ~lemory.

SHORT CIRCUIT PATH

A short< path
exists from the AU output register to the AU receiver regi~ter. This path is
used whenever an instruction occurs 1:1 an instruction stream for which the
immediately preceeding instruction ha:: made reference to the same reqister of
the CP register file. In this instance the preceeding instruction must be
one which will store:into the same register that"the succeeding instruction
requires as its register operand. When this condition arises, the succeeding
instruction will not wait for the normal register conflict delay. but instead
will proceed down the Central Pro~essOi~ pipeline rJithout its r'egister operand
and will acquire the operand via the AU short circuit path upon the succeeding
instructions arrival at the Arithmetic Unit.

Short circuit (SC) condititions can only occur for adjacent pairs of in­
structions of the same wm'd si'ze (double with double, single with single, etc.)
SC conditions can occur for an unlimited number of instructions in a chain as long as
they all use the same register and-have the same word size. Any single in­
struction \'Jhich does not use the same register will break the chain. Also,
two success'jve bY'anch instructions which lise the branch test level to deter-
mine the outcome of the branch ~ondition cannot use the SC path to achieve a .
faster branch decision for the second of tne two branches because the branch
test level does not have a path equivalent to the AU short circuit path. The
branch test level does not solve for the value of the argument in an Incre-
ment Test and Branch instruction, but rather determines only whether the
branch test passes or fails.

The timing for the SC path can be determined by following the first of
the pair of instructions down the pipeline to the AU output level. The time
at which the result of the first instruction arrives at the AU output can be de-
termined. The second instruction will advance to the AU receiver level and

wait there if it has arrived before the first instruction's result is uvai­
lable from the AU output. One clock is used to route the AU result back to
the AU receiver level. The second instruction advances through the AU when
all of its required arguments are supplied at the AU input.

Scalar Instruction Timing 13
Section B2

VECTOR INSTRUCTION TIMING

Vector priming is divided into four distinct processes, which are:
1. Vector parameter file fetch
2. MBU initialization
3. Mew~ry operand fetch
4.· AU fill

When a vector instruction termin~tes, a process of AU emtying occurs. This
process involves only the depletion of operand arguments from the Arithmetic
Unit.

VECTOR PARJ\METER FILE FETCH

Vector parameter file fetching occurs as .a result of specifying a
vector instruction for which a new VPF is requested from central memory.
The new VPF is requested when the effective address of the vector instruc­
tion has been developed by the normal IPU indexing hardware. This hardware
does the pre-indexing and index addition required for generating the effec­
tive address.

. VPF fetching (1) begins after the vector instruction has reached the
index addition level (level 3) and the VPF address has been developed.
VPF fetching requires 8 clock periods. However, this CM request is over­
lapped in ttme with the previous scalar instructions presently being pro­
cessed downstream by the Arithmetic Unit. Loading of a new VPF appears
no differend to the Instruction Processing Unit (IPU) than if the IPU had
encountered a scalar Load Register File instruction (LF). The fetching
of data for these files is carried out entirely by the IPU and the MBU
has not been involved up until now with the vector instruction. Also,
the memory fetching time for the VPF will be seen to be less than the
time required for memory operand fetching (2) because the register files
have a simpler interface with memory than the interface which exists at
the Memory Buffer Unit.

Overlapping memory cycles between the IPU and MBU during VPF fetch will
exist if the scalar instruction immediately prior to the vector instruction
requests a central memory operand from a new octet and all previous scalar
memory requests have been granted (data received from memory). For if this
condition exists~ the scalar instruction requesting the new octet is allowed
to advance beyond level 3 (index addition level), providing that "path ahead"
is clear. and 1evel 3 is filled with the developed address for the VPR re­
quest of the vector instruction. Thus, the time required to fetch the VPf
is completely overlapped by the ~ime required for fetching an operand of a
prior scalar instruction. The VPF fetching is essentially free in this
case.

Vector Instruction T1ming 15
Section 82

16

VPF FETCH (lOT REQUESTED

The vector initr~ction could be one which specifies the use of the
vector paralTlCter data currently residing in the VPF registers. In this
case. there is no vector parameter file fetch cycle required and the
vector priming operation proceeds immediately to the MBU initialization
process (2).

MBU initialization begins upon detection of a vector instruction a~ level
4 of the IPU. This MBU initialization is then overlapped with previous
scalar instruction processing going on downstream in the Arithmetic Unit~

MBU INITIALIZATION

. Initialization of the t~mory Buffer Unit (NBU) involves the transferring
of vector parameter data from the VPF registers in the IPU to the vector
working registers of the MBU. This process begins immediately after new
data has been entered into the VPF registers, if a VPF fetch is specified;
or immediately upon detection of a vector instruction in level 4 of the IPU
if a request for the current VPF data is specified.

MBU initialization requires.10 clock periods. This ti~~ begins with
the starting address development in the IPU for vectors At B, and C, (in
that order). Development utiiizes the pre-index and index addition levels
(levels 2 and 3) of the IPU. Then the remaining five words of the vector
parameter data is transmitted a singleword at a time to the MBU for distri­
bution to its working registers that control the vector operation.

There would be no advantage gained by transmitting the remaining inner
and outer loop increment information to the MeU at a faster rate, since the
!11ell).jry operand fetch operation (3) is overlapped with the transmission of
the remaining data. The transmission of VPF oata is completed seven clocks
before the first operand arguments are available as inputs to the AU' receiver
register. even though the VPF data is sent only one word at a time.

MEMORY OPERAND FETCH

This cycle begins five clocks after MBU initialization began. It is
considered to start at the time when the fi,rst address reaches the central
memory address requestor in the MBU. Although by this time the A address
generator has produced the first three element addresses of vector A.

Memory operand fetching of the first octet of data for vector A and B
is compieted when ~he first two operand arguments are placed in the MBU
output registers and are available as inputs to the Arithmetic Unit. The
process of first operand octet fetch requires 12 clock periods. Subsequent
octet fetches are requested at 8 clock intervals during the self loop and
the pipeline flow of operands to the AU is maintained throughout the vector
operation. The initial operand fetch is an overhead penalty which occurs
only once during the vector priming procedure. _

AU FILL

The Arithmetic Unit can proceed to fill its internal pipe sections as
soon as the operand stream is presented to its input registers from the
MBU. An AU receiver register accepts the ope\~ands from the MBU, \-.Jhich have
been transmitted beh-.Jeen phys i ca 1 cabi nets contain i ng the ~1BU and the AU.
The receiver register therefore adds one clock time to the AU operation
times given for scalar instructions in the timing section for scalars.
This figure (scalar AU time plus one) gives the number of clock intervals
before the first result appears at the Arithmetic Un-it output. Scalar AU
times vary from instruction to instruction, but once the AU has bet!n filled
in a vector mode, AU results are produced at one clock intervals for most
single length vector instructions. The exceptions to this rule appear in
Table II which lists the vector flow rates for all vector instructions.

AU EMPTY

At the termination of a vector instruction the tlU wi 11 exhaust the
final results into the Z-buffer registers and a Z-write operation is forced
to purge the output buffers of the vector results, so that scalar hazard
detection can begin fresh:

However, when a scalar instruction follows a vector, overlapping occurs
again. Two general constraints need to be listed here, though: (a) If
the subsequent scalar instruction uses indirect addressing, it will wait
in level 1 until the vector operation is completely terminated. This pre­
vents an erroneous indirect addressing linkage through an area of c.entral
memory which is being modified·by a vector instruction. (b) If the vector
instruction is of the class requiring the storage of an item count at the
completion of each self loop, then a subsequent scalar instruction must
wait at level 1. Vectors which store item counts use the 2nd and 3rd levels
of the !PU to r~start the vect0r in case a c~nt~t switcn operaticn
prematurely terminated tne vector.

Overlapping of the subsequent scalar begins after the MBU has deter~
mined that all self, inner, and outer loops are completed and that the ZB
register has initiated its last write cycle for the vector instruction.
At this time the subsequent scalar may use the facilities of the MBU to
request a memory operand required for scalar instruction execution. Thus,
the requesting of a next scalar octet is overlapped with the termination
(AU empty) of the present vector instruction in the AU.

Vector Instruction Timing 17
Section B2

In conclusion, vector timing can be computed approximately from the
fonnula T = P + R . L . NI . N~. If either NI or N0 equal zero t replace
appropri ate tenn wi th value 1.

where P = Vector prime
R = Vector Rate (clocks/element) from Table 3
l = Vector dimension

NI = Inner loop count
N0 = Outer loop count
T = Time in clock periods

P is broken up into the following approximate times (in clocks):
VPF fetch = 8
MBU Initialization = 5 (overlap adjusted)
Operana -(etch = 12
AU fill = 1 +.Scalar AU time

If the vector instruction uses the current vector parameter file, then do
not add in the time for the VPF fetch.

18

*

TABLE 3. VECTOR HJSTRUCTION THHNG

Rate is defined as the number of clock times required to obtain each
element of the result, if a vector result exists. For scalar results, the
rate is defined as the average number of clock times required to perform
~ach instruction.

Timing for son:e of the vector "instructions is based on input rate
rather than output rate from AU. These vector instructions are the 6nes
which produce infrequent results at the AU output. They include:

Vector Dot Products
Vector Peak Picking
Vector Searches
Vector Comparisons

-The rates given in the table for these instructions correspond to +h",
.... Ij"-' rate

at which the inputs change.

Vectot Instruction Rate Vector Instruction Rate

ADD VA 1 DOT
VAH 1 PRODUCT VDP 1
VAF 1 --- VDPH 1
VAFD 1.75* (~nput Rate) VDPF 1

VDPD 4

ADD SV=O SV=l
MAGNITUDE VAM 1 ·DIVIDE VD ---;-a- -8----- VAMH 1 VDH 9 9

VAMF 1 VDF 8 8
VAMFD 1.75* . VDFD 18 18

SUBTRACT VS 1 LOGICAL VAND 1
VSH 1 VOR 1
VSF 1 VXOR 1
VSFD 1.75* VEQC 1

SUBTRACT VANDD 1.75*
w\GNITUD£ VSM 1 VORD 1.75*

VSMH 1 VSORD 1.75*
VSMF 1 VEQCD 1.75*
VSMFD 1.75*

SHIFT VSA 2
MUL TIPLY VM 1 VSAH 2

VMH 1 VSAD 2
VMF 1
VMFD 3

See doubleword timing in Table 4. Vector Instruction Timing
Section B2

19

Vector Instruction Rate Vector Instruction Rate

SHIFT SEARCH
CONID VSL 2 CONIO VLM 1 .-- VSLH 2 VLMH 1

VSLD 2 VLMF 1
VLMFD 1.75*

VSC 2
VSCH 2 VS 1
VSCD 2 VSH 1

VSF 1
VSFD 1.75*

MERGE VMGH 2
(INPUT RATE) VNG 2 VSM 1

VMGD 2 VSMH 1
VSMF 1
VSMFD 1.75*

ORDER
{ VO

2
WUWUT VOD 2

RATE) VOF 2 PEAK
VOFD 2 PICKING vpp 1

(Input Rate) VPPH 1
VPPF 1

ARITHMETIC VPPFD 1.75*
COMPARISON VC 1

(I npu t Rate) VCH 1
VCF 1 CONVERSION VFLFX 2
VCFD 1.75* VFLFH 2

VFDFX 2

LOGICAL
COMPARISON VCAND 1 VFXFL 2
(Input Rate) VCANDD 1.75* VFXFD 2

VCOR 1 VFHFL 2
VCORD 1.75* VFHFD 2

SEARCH VL 1 NORMALIZE VNFX 2
(Input Rate) VLH 1 VNFH 2

VLF 1
VLFD 1.75*

* See doubleword timing in Table 4.

20 .

ASC VECTOR TIMING FOR SINGLE-VALUED VECTORS

This table sho\,IS mernor'y limitations for the different cases using single­
valued vectors. The vector instructions that refer to this table are
the ones which would require only one AU clock per element if they
were not restricted by memory speed.

TIME IN CLOCKS PER ELEMENT

ABC HALF-WORD OR SINGLE-WORD DOUBLEWORD

VVV 1 1. 75

VSV} 1 1. 25
SVV
VVS 1 1

VSS} 1 1
SVS

Note: V represents directly addressed vectors.
S represents directly addressed single~va1ued vectors or immediate

single-valued vectors.

TABLE 4.

Vector Instruction Timing 21
Section B2

CENTRAL PROCESSOR

INSTRUCTION SET

Section 133

TITLE

SCALAR INSTRUCTIONS

I ~STRUCTI ON FORfll\ T
ALPHA ADDRESS DEVELOPMENT
D I SPLACE'1ENT HWEX PIG '
BRANCH ADDRESSING
H1t4EDIATE OPEf<.L\NDS
DATA FORMATS
REGISTER FILES
DATA FORf4S
PROGRAtft, STATUS DOUBLEWORD
ASSEMBLER MNE~10NICS
LOAD INSTRUCTIONS
STORE INSTRUCTIONS
ARITHMETIC INSTRUCTIONS
LOGICAL INSTRUCTIONS
SHIFT INSTRUCTIONS·

TABLE O~ CONTENTS

COMPARE INSTRUCTIONS
CONDITIONAL BRANCH INSTRUCTIONS
INCREMENT AND TEST INSTRUCTIONS
TEST AND BRANCH INSTRUCTIONS

,MISCELLANEOUS INSTRUCTIONS
CONVERSION INSTRUCTIONS

VECTOR INSTRUCTIONS

INSTRUCTION FORMAT
PARAMETER FILE FORMAT
INSTRUCTION CHARACTERISTICS
VECTOR
ARITHMETIC INSTRUCTIONS
LOGICAL INSTRU'CTIONS
SHIFT INSTRUCTIONS
MERGE INSTRUCTIONS
ORDER INSTRUCTIONS
COMPARE INSTRUCTIONS
LOGICAL "AND" COMPARE I NSTRUCTI ONS
SEARCH INSTRUCTIONS
PEAK PICKINS I:IS:RUCTI1N~
CONVERSION INSTRUCTIONS
NORMALIZE INSTRUCTIONS
SELECT
REPLACE

LIST OF Ui~ASSIGr~ED OP CODES
SEQUEiHAL INDEX OF WSTRUCTIONS
ALPHABETICAL INDEX OF INSTRUCTIONS
OP CODE INDEX OF INSTRUCTIDrlS
VECTOR SEQUENTAL INDEX OF INSTRUCTIONS
VECTOR ALPHABETICAL WDEX OF INSTRUCTIOI!S
VEer-OR OP CODE INDEX-, OF INSTRucnOitS

PAGE

1

1
2
.)

8
8

'11
12
13
16
23
26
52
65
88
95

108
115
124
132
134
141

157
159
167
173
174
178
179
180
181
183
185
187
188
190
195
1958
195C

196
199
203
207
211
213
215

SCALAR INSTRUCTIONS

INSTRUCTION FORMAT

The instruction word of the Central Processor contains 32 bits and
is divided into five fields:

,

Field Name
OP
R
T
M
N

o 4 . ____ .~_

OP R

Bit
Pas iti ons

0-7
8-11

12-15
16-19

. 20-31

12 16
T M

Field
Size Function

8 Operation Code
4 Register address
4 Address modifier tag
4 Base address designator

12 Displacement address

20 24 28 31 -_ .. -- .. I

N I

. - I ___ L_ __ L -._--.-J

Ihexadecima 1 characte'

• OP-Field
The OP-Field specifies the machine instruction to be executed.

• R-Field
The R-field addresses one of 16 registerS from the arithmetic,
base, or index register group.

• T-Field

T

0

1-7
8

9-F

The T-Field is an address modifier tag that has the following
interpretation:

, Virtual Address,a,
Addressing Type of Memory Operand

Direct address N +(M)
Indexed address N + (M) + (T)
Indirect (N + (t1»)
Indexed indirect (N + (M) +(T-8))

address

A symbol or expression enclosed by parentheses () represents
lithe contents of It.

Instruction Format 1
Section 83

2

The T-field may be decomposed into an 1- bit and an X­
field~'where the most significant I-bit designates indirect
addressing and the 3-bit X-field specifies one of seven
index registers used in the indexing operation. The index
registers are physically assigned to register file address
locations 21 through 27 (hexadecimal). A special set of
index instructions is used to load, store, modify, and test
the index registers.

H3

C:~ , , I

, -..... ---.,...-.~ .. ,,~
I X
Bit Field

Displacement indexing is provided such that the indexing
operation is compatible with word size; i.e., the index regis­
ters, are automatically aliqned according to vlOrd size. If an
index register contains the value K, the Kth element of an
array is accessed, whether it is a halfword, word, or double­
word.

~ fIj-Fi e 1 d

The M-field is a base register designator. It is used to
extend the addressing range capability of the ASC to a
potential 16.7 million words. The M-field selects one of
fifteen 24-bit base registers to be added to the N-field
displacement before indexing or indirect addressing. No
base addressing is used when M equals O .

.. N-Field
The N-field is 'the address~isplacement relative to the base
address contained in M.

The M- and N-fields also may be interpreted as immediate operands
when immediate instructions are specified by the operation code.

ALPHA ADDRESS DEVELOpr'lEiH

There are two basic methods of developing an address in the Central Processor.
The two methods are referred to as a addressing and S addressing. Central Memory

operand requests usp address development. Instrw::tion branchi:1g uses p addr'~s;
development., Both of these methods may use base and index modification. The
table of addressing types on page 1 has reference to addressing and represnets
the addition of base and index registers for singleword addressing as follows:

• No base addressing
No indexing

o 0 0 H5 H6 H7

• No base addressjng
Indexing

o 0 0 HS H6 H7

+1 2 13 14 IS 16 17

V2 V3 V4 Vs V6 V7

• Base addressing
No indexing

o 0 0 H5 H6 H7

+B2 B3 B4 B5 B6 B7

V2 V3 V4 Vs V6 V7

• Base addressing .
Indexing

o 0 0 HS -H6 H7

+B2 B3 84 85 B6 B7

+12 13 14 IS 16 17

V2 V3 V4 Vs V6 V7

M = 0

X = 0

N-field (12 bits)

virtual address (24 bits)

~1 = 0

X=k fork ="(1,2,3, ... 7)

N-field (12-bits)

index register k (24-bits)

virtual address (24-bits)

M = b -rer b = {L2_3" .• ~~5)
X = 0

N-field (12-bits)
base register b (24-bits)

virtual address (24-bits)

M = b for b = (1,2,3, ... ,15°)

X = k for k = (1,2,3, ... ,7)

N-field (12-bits)

base register b (24-bits)

index register k (24-bits)

virtual address (24-bits)

"

For the cases when M = O. a virtual address in the range 00 through
2F(hex) is interpreted as an absolute register address. If M = b, _
where (b) = 0, the corresponding virtual address range refers to
Cf;!ntt~dl Memory locdticJIIS 0 throligh 2F.

Alpha Address Development 3
Sectipn 83

When the indirect bit (I-bit of hex. character H3) of an instruction (not an
immediate instruction) is a "one"~ then the cr. address developed by the in­

struction refer'ences a location either in central memol"Y or' in the register
file depending on the M-field and the range of cr. A register from the re­
gister file is referenced if ~ ~ 2F and M = O.

The location addressed by an instruction using indirect addressing is interpreted
according to the format:

Indit'ectly
Addressed
Location

ZERO is the no-op code (4-bits)
I is the indirect flag (l-bit)
X is the index tag (3-bits)

ADR is a full 24-bit address

;~~:J
H4 HS H6 H7

Indirect
Address
Format

The base registers are not used after the original indirectly addressed instruc­
tion is interpreted. Multilevel indirect addressing is provided with independent in­
dexed and/or indirect addressing at each level.

Indirect addresses, using the above format, always reference Central Memory single
~/ords. The terminal indirect address (I=O) is indexed by displacement indexing accord­
ing to instruction word size w~en X t 0, but the operand acquired is always from Central

Memory.
An indirect address memory request is tagged as an execute request when transmitted

to central memory.

An illegal operation code program interruption occurs if the 4 most significant
bits are not all zeros at the location specified by an instruction with an indirect
flag equal to one or at the location specified by a multilevel indirect addressing
chain where the address is specified to be another indirect address.

4

01 SPlACEMENT INDEXII~G OF ALPHA ADDRESSES

SINGLEWORD ADDRESSING t a

For singleword addressing, the index value is a signed two's comple­
ment number whe.re the sign is in bit position 8 of the index register. The
fr~ction.i~ in the remainins 23 least ~ignificant bits of the index register
(blt posltl0ns 9 through 31). The N-fle1d and base registers are interpreted
as positive 12- and 24- bit nurnbers, respectively.

1-E---12 B i tS-71 Disp1acement
I N , Address .r~-field
20 31 (Positive)

I+- 24-Bits ~ I

17// / / U L/ L I (M) Base 24-bit
Positive Number 0 7 8 31

I " 24-Bits ~I

IZLI / L/ LLI / I ± I {Xl I Index (Signed)
21 5 Cornp1ement

0 789 31

1~<----24-Bits-----+)1 Virtual Address
I V I for Si ng1 e'dord
8 31 Addressing, as

The addition of a positive ind~x to a large base may result in "wrap
around!! to a low virtual address. Also, addition of a negative index to a
srnall base plus displacement may result in a Ifnegative 'fJrap around'~ to a high
virtual address

Wrap around as just described will occur only "if the maximum size memory
to contain the full 24-bit address range is connected to the"system. Any
central memory address "outside the address limit of the physical memory \'Ji11
result in a memory protection viola'tion. The \'Jrap around and address limit
are normally thought of in terms of singleword addresses, but apply equally
well to halfllJOrd,and doubleword addressing.
P.ALFWORD ADDRESSING, ah

Displacement indexing is used for halfword addressing. When a halfword
address is not indexed, the left halfword of a Central ~lemory singleword is
selected. An odd index value addresses halfwords in the least significant
half (right half) of a Central Memory ~lord. An even index value addresses
the left halfword of a Central Nemory singleword. This is true for all
halfword in~+.ructions, except fer four speci~l half\'lord load and store
instructions (LR, lL, STR, and STL).

The LR, LL, STR, and STL instructions address the right half of a
Central Memory singleword \'lhen not indexed. If. indexed, an even index value
selects words from the right half of a Central Memory singleword. An odd
index value addresses the left halfword. When an array is addressed conse­
cutively by indexing with one of the four special halfword load/store

Disp. Indexing 5
Section 83

6

instructions, an even index value addresses the right half of a Central
t1emory s;ngleword, as just mentioned; but it should be noted that v/nen this
even index value is incremented by one (forming an odd index value), the
memory operand acqu'ired by this instruction is f}'om the left half of the
next consecutive Central Hemory single~·JOrd.

The index unit in the CP hardware accomplishes displacement indexing
of ha1fwords by shifting the index register one bit posit-jon to the right
before the base (~1) and displacement N-f"ield are added. The least significant
bit of the index value effectively detennines whether the left or right half
word of a Central r,lemory singleword is addressed. A 25-bit virtual address
is generated for halfword instructions. The index value is interpreted as
a signed hlo's complement number. For halfword addressing, the sign of the
index value is in bit position 7, and the fraction is in the remaining 24
least significant bits of the index register (bit positions 8 through 31).
The N-field is interpreted as a positive 12-bit number. The base (M) is
interpreted as a positive 24-bit number.

The addition of a positive index to a large base may result in IIwrap
around!! to a low virtual address. Also, addition of a negative index to a
small base plus displacement may result in a "negative wrap around ll to a high
virtual address.

~ :
!
20

24 Bits

(M)

10 7 8

rr ~_----25 Bits

(x)
o 678

12 Bits----7>1 Displacement
Address, N-Field

(Positive) N ~
31

~
I

31

Base 24-bit Posi­
tive Number

Index (Signed)
30 31 2's Complement

1~----------25 Bits----------------~>t
,-- / V l[
8 31 _32

Virtual Address

Halfwol"c
~ddressing, ah

DOUBLEWORD ADDRESSING ~ ad
The index register is displaced one bit posit~on to the.left r~lative

to the base (M) and displacement address N before be1ng added 1n the 1nd~x.
unit. The least significant bit of the sum is forced to 0, and the rema1nlng
23 bits of the sum addl'ess a doubleword in Central r~emory. If both the
base and displacement address are odd, a carry will be generated in the
least significant bit position of the sum and will produce a doubleword
address one greater than the address obtained when either the base or dis­
placement address (or both) has a value diminished by 1.

¥ 12 Bits-~

I ~] Displacement
Address, N-Field

20 31 (Positive)

r 24 Bits =:9

fZ/uL7~
Base 24-bit Positive

(Ml :OJ Number
0 7 8 31

t ·
t

23 Bi4:s ~
~@/~'~/J~I (X) I Index (Signed)

21 s Complement
0 8 g 10 31

~ ·23 Sits >\ VirtuCll Arldress

[V --Jill for Doubleword
addressing, ad

B 30 31

T~e indQx va1ue is inter~reted a'; a sinale t\.\!O~'; c(lri~lement nU::1he~~.
For double\;'ord addressing, tne sign bit is in bit position g.",and the
fraction is in the remaining 22 least significant bits of the index register
(bit positions 10 tnrough 31). The N-field is interpreted as a positive
12-bit number. The base (M) is interpreted as a positive 24-bit number.
Displacement indexing allows one to address the Kth doubleword in a data
array by an index value equal to K.

Double\'lOrds are always selected from and stored into even-odd singlevlOrd
memory address pairs and registers address pairs.

Displacement ·Indexin~ 7
Section B3

BRAt~CH ADDRESS I NG

branch address, a, for Branch instructions are a
on of the T. M, and N-fields of the instruction word as follows:

T

o 0

1-7 0

o l-F

1-1 l-F

8 0

9-F

8

o

1-F

9-F 1-F

,
i
;

N*+(PC)

N*+(PC)+(T)

N+(M)

N+(N)+(T)

(N*+(PC))

Branch Address, B (Singleword Addressing)

Rel ati ve to program counter

Relative to program counter plus index

Base plus displacement

Base plus displacement plus index

Indirect relative to program counter

(N*+(PC)+(T-8)) Indirect relative to program counter plus index

(N+(M)) Indirect relative to base plus displacement

(N+U1)+(T -8)) Indirect relative to base plus displacement
plus index

where N + (M) is Base address plus displacement (N is positive, 12-bit
number) and N* :: Signed N-fi.eld, ll-bits plus sign bit, 2 1 s comp1ement.

~nis branch address definition is used for all test and branch instructions.

These include:
BE, BG~ BGE, Bl, BLE, BNE, B
BCZ, BCD, BCNr'1, BCH, BCNO, BeNZ
BZ, BPL. SZP, 8MI, BZM, RNZ
BRZs BRO, BRN~1, BRM, BRNO, BRNZ
BU, BO, BUO, BX, BXU, BXO, BXUO, BD
BDU, BOO, BDUO, BDX, BDXU, BDXO, BDXUO
BXEC, BLB, BlX .
IBZ, IBNZ, DBZ, DBNZ

When an indirect branch addr:.::ss is s~ecified. (T z 8), the ;nr:lire~t uddr..:.ss
f~~t is the same as that us:d by indirect a addressing, except that addresses less

,.than 2F reference central memory regardless of M.

8

If a branch address is less than or equal to 2F (8 ~ 2F), then the program branches
to central memory location B regardless of the M and T-field specifications. Branches
cannot reference the register file.

IMMEDIATE OPERANDS
Immediate operands have the following characteristics:
a) Halfword Immediate Operand Instructions

The combined M and N-fields form the immediate operand for halfword
instructions. The MSB of the right half of the instruction word ;s the sign bit.
Negative numbers are represented in two's complement form.

This immediate operand can be modified by the right half of index register X.
If X ~.O, the index register spqc1fied by X is added to tbe M aQd N fields.
For thls case, the 16th blt posltlon. of lndex reglster X 15 a s1gn bit.
If X = 0, no modification occurs.

o 16 20 31 /////.:////7-;'.<'--' . -. _ ... _-:
/// / / / . .' , + M N .
'/ / / .:~. • / ~.' .; - __ ~J _ _______ 1

lI~MED

+

(x)

o
. , . / 16, . _ ._ __ . __ -.~.l

. , .

,± : ._ -______ . ___ n_ .. n = H1~lED + (X)

b) Singleword Arithmetic Immediate Operands

Single wor9 length immediate operands for arithmetic instr4~tions
are formed from the combined M and N-fields of the instruction word with
extended sign (two's complement representation for negative numbers). The
left half of IMMED consists of the extended sign of the most significant
bit of the right half of H1~~ED. This immediate operand can be modified by
an index register when X i O. For this case, the contents of index register X
are interpreted as a signed number (two's complement representation for negative
numbers) within the range _2 23 ~ (X) ~ 223 - 1. If X = 0, no modification occurs.

o 16:
I

20 .31.

Ex_t~nd~d.~.i9n _I ±: M 1 N _ J _______ .• ___ -----" If~~1ED

o 789 ___ ._._. __ --R
f
-_-- Ex-tended- I: S I - .~~ Bits (X)

Sign _ I.

o

r
789

Exfende-d Ii S I
S1gn _ 23 Bits n = IMMED + (X)

In effect, the sign bit in the 8th bit position of the contents
of index register X is extended into the most significant eight bits (bit
positions 0 through 7) before being added to IMMED. The true 32-bit value
contained in index register X remains unchanged; the sign extension occurs
in the index unit hardware and not in the register file. The modified
immediate operand n is restricted to the range -2~3 ~ 223 - 1, since the
parallel adder in the index unit 1~ only 24 bits wide. The sign bit in the
8th bit position of n is extended into the most significant eight bits of n
before being used as a modified immediate operand by the Arithmetic Unit.

Immediate Operands 9
Section 83

The Arithmetic Unit interprets this singh:ltJord immediate
operand as though the sign bit were in the most significant b~t position
as shown be 10\"/:

n = mMED + (X)

c) ·Singlewor-d Logical Immediate Operand

A sinylcword immediate operand for logical instructions is
formed from the combined M and N-fields of the instruction, except tnat the
left half of IMMED consists of OIS instead of the extendpd ~iqn. Whpn X ~ 0,
the 24 least signilicant bits of index register X are added to IMMED. If
X = 0, no modification occurs •

. 0._. _ ... _ .. 1516. __ ;D. ____ .-ll
L.,1.~.r.o __ . I M I. ____ N _-.I IMMED

+ .' ---._--ll
24 8jts ___ --.-i (X)

0 ______ " n = IM~1ED + (X)

10

1. Fixed point, single length. 32-bit word.

Sign-, r MSB r- lSB

lL -"---------~

INTEGER .. -"----
o 1 2 31

2 1 s complement representation for negative n~l!nbers.

2. Fixed point, half length, 16-bit word (two half length words
shO\vn) .

SIGN'tt=" r~SB ,'I
! INTEGER

I-SIGN
lSB --~ j, r- tvlSB r- lSB

I! I rrn-EC-iE-R --~

o 1 2 16 17 18 31

2 1 s complement reoresentation for negative numbers.

3. Floating point, single length, 32-bit word.

Sign --~ r- MS8 ~lSB

~1!~I-E~-~-8-~--[~-IT-TI~---------F-R-A-C-T-IO-N-I-----------~I

o 1 .. 7 8 9. 31

sign and magnitude representation"for
fractional portion.

4. Floctting point, double length, 64-bit word.

Sign ---,~ -r-NSB
~------~~--------------------------I

I!\ E~~~~~~T I FRACTION

012 .. 789 31,;-lSB

~--------------------------------------'I
FRACTI~N I

32 33 63

sign and magnitude representation for fractional portion.

Figure 1. Data Formats

Data Formats 11
Section 83

REGl STE8.JI. LES

HEXADECH1AL
ADDRESS

o

F

10

IF

20

27
28

2F
30

XXFFFF

12

1 __ - 32-bits -­

--1 16-bits r­
zero

,

r-"--l
I
r
I
I
I
I
I

• I
I
I .
I
I
I
I
I .

~------------

BASE
ADDRESS
REGISTERS

HALFWORD
OPERATIONS
16-BITS
(Left Half only)

GENERAL
ARITHMETIC
REGISTERS

INDEX
REGISTERS

VECTOR
PARAMETER
REGISTERS

CENTRAL
MEMORY

File

A

B

C

0

x

V

DATA FORMS

INFINITE FORMS AND INDEFINITE FORMS:

FLOATING ADD A.U. OUTPUT -----

(+ "") + (-~ "") + 00

(+ 00) + (_ 00) IND

(_ 00) + (+ 0:>) IND.

(- 00) + (- 00)
_ co

(+ 00) + (~N) + 00

(_ OJ) + (:t N) _ OJ

(IND) + (~N) IND

(IND) + (~ 00) IND

FLOATING POINT SINGLE LENGTH FORI'IS ARE:

+ 00

_ co

IND

·7FFF

FFFF

7FOO

FFFF

FFFF

0000

FLOATIUG POINT DOUBLE LENGTH FORt'lS ARE:

+ 00

_ co

IND

7FFF

FFFF

7FOO

FFFF

FFFF

0000

FFFF FFFF

FFFF FFFF

0000 0000

FLOATING
POINT
OVERFLO,I -----

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Positive infinite form.

Negative infinite form.

Indefinite form.

The indefinite form, 7FOO "'00, is generated by the Arithmetic Unit when
an indefinite form or a IIdirty zero" appears at either input to the Arith­
metic Unit during a floating point arithmetic ope~ation.

A "dirty zero" is a floating point form consisting of a zero mantissa and
a non-zero exponent. It has the form XXOO"'OO, where at least one X is not
equal to zero.

Data Forms 13
Section B3

FLOATING
POINT

FLOATJNG fl.OD ~lAGNITUg_E 1\. U. OUTPUT OVERFLmJ ---

(+ co) + I (~ to) I + co Yes

(_ ,co) + I (2', 00) I INO Yes

(+ 00) + I(~ N 11 + co Yes

(- co) + 1(+ N) I - eo Yes

(.:!:. N) + I (2:. co) I + eo Yes •
(IND) + I (~N) I IND Yes

(INO) + I (2:. ro) I INO Yes

.(+' N) + I(INO) I INO Ye<:

(+ co) + IONO) I INO Yes

FLOATING POINT
Fl OA Tl NG SUB T PJl, CT A. U. 'OUTPUT OVERFLm~

(+ co) _ (+ eo) -INO Yes

(+ co) _ (_ 00) + co Yes

(- ro) - (+ "") - "" Yes

(_ co) _ (_ ro) INO Yes

(+ C)) - (+ N) + co Yes

(- co) - (+ N) - co Yes

(~N) - (+ co) - co Yes

(2:. N) .. (.. co) + co Yes

(INO) .. (2=. N) INO Yes

(INO) - (+ co) INO Yes

(2=. N) .. (INO) INO Yes

(±. co) • (IND) IND YC$

14

FLOATING SUBTRACT MAGNITUDE ---
(+ (0) _ 1(+ 00)1

(~ (0) - 1(2:. 00) 1

(+ ex» - I (2:. N) I
(- (0) - I(~N)I

(2"- N) - 1(+ cc)1

(INO) - I (2:. N) I
(INO) - 1(+ ex»1

(2:. N) - I< INO) I
(+ 00) _ I(INO }I

FLOATING MULTIPLY
OR FLOATING VECTOR
DOT PRODUCT

(+ ex» • (+ 00)

(+ ex» • (_ 00)

(_ co) • (+ Q) }

(_ (0) • (_ 00)

(+ 0» • (+ N)

(- 0» • (.±. N)

(.±. 0» • (0)

(±. N) • (0)

(0) • (0)

(IND) • (2:. 00)

(IND)' • (.±. N)

(IND) •
I _ ,
\ u }

A. U. OUTPUT

INO

- 00

+ 0:>

- co

- 00

rNO

IND

IND

INO

A. U. 'OUTPUT .
+ ex>

_ ex>

- (0

+ ""

+ 0>

+ co

INO

0

0

INO

IND

iND

FLOI\TItlG POINT
OVERFLm! --------

Yes

Yes

Yes

Ye~

Yes

Yes

Yes

Yes

Yes

FLOATING POINT
OVERFLm~

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

Yes

Data Forms 15
Section 83

FLOATING POINT DIVIDE
FLOATING DIVIDE flU OUTPUT OVEHFLOl,l CHECf\ ------- --... -.-~-

(='.:. (Xl h (+ 00) I'l.·u Yes No

{+ 0>){- (N) + t.~~ Yes No

(+ co)t (-N) - !.T.) Yes No

(~ 00) t ('N) - "" Yes No

(- ro)t (-N) + C':> Yes No

(+ co)f (0) + t::> Yes Yes

(:'.:. N) f (+ oo) 0. No No

(0)f (+ 00) (j No No

(0)t (+ N) 0 No No

(0)t (0) lIW Yes Yes

(N)t (0) + 0:> Yes Yes

. (-N F (0) .. co Yes Yes

(IND }t (:'.:. 0:» HW Yes No

(IND }t (+N) nm Yes No

(IND) f (0) IHD Yes Yes

(:'.:. ex>)f (IND) 1fm Yes 'No

(:'.:. N }t (INO) INO Yes No

(0)f (INO) INO Ye,s No

PROGRAM STATUS DOUBLEWORD

Control conditions within the CP which are critical to a CP program are:

1. Program counter or instruction address.
2. Arithmetic exception mask.
3. Arithmetic exception code.
4. Condition code.
5. Mem~ry protection controls and memory map controls.

PROGRAM STATUS LOCATIONS

The CP status information exists in the CP as a collection of separate
registers and flip-flops. The designations assigned to the control registers
and flip-flops along with their function are as follows:

~_..!?rogram C2.!:mter. A 24-bit counter I'lhi ch contains the current instruction
address at the index addition level of the Instruction Pr9cessing Unit.

AE - Arithmetic Exception Mask. Consists of flip-flops designated MD, MF,
t10, and ~1U. When-EheAE--MASR-flip-flops are "one" (masked ON) a signal from
the CP to the PP is activated upon detection of a maskable condition within
the CP for which a PP interrupt is desired. The maskable conditions and
their respective mask flip-flops (ff) are:

AE Mask ff

MF

M0
MU

Maskable Conditions

Divide check - Divisor is equal to zero (Fixed
point).

Fixed point overflow.
Floating point exponent overflow.
Floating point exponent underflow.

l-Jhen one of the AE fvlASK flip-flops (rim, t·1F, r~0, and MU) is fl zero"
(masked OFF), that condition corresponding to the zero flip-flop will not
activate the interrupt signal from the CP to the PP. The interrupt signal
is either inhibited or allowed to occur depending on the setting of the AE
t-1ASK bits (1 ~ masked ON, O~masked OFF). For example, if MD:=;; 1, MF = 0,
t40 = 0, and ~1U = 0, the only maskable arithmetic exception condition I'lhich
can cause an interrupt signal from the CP to the PP is a divide check.

The AE MASK bi'ts can be changed by a Load Arithmetic Mask (LA~1) in­
struction executed by the CPo

The PP interrupt conditio~within the CP which are not maskable
include an undefined operation code, eM protection boundsCM parity error
on read, and Breakpoint~ ~~d S:~cif~c~~icn erro~. '
AE, COND - Arithmetic Exception Condition. An arithmetic exception indicator
bit (0, F, 0, or U) is set to Itone ll whenever one of the following maskable
arithmetic exception conditions is detected. Table 1 presents the arithmetic
exception condition for each scalar instruction.

o - Divide Check - A djvide check interrupt condition is recognized
when the divisor is zero in fixed or floating p6int operations. The
interrupt is enabled if a one has been loaded into the MD bit of the
AE mask.

F - Fixed Point OverflOlv - When a high-order carry occurs or high­
order significant bits are lost in fixed-point add, subtract or left
arithmetic shift operations, etc., a fixed point overflow condition
is recognized. The operations is completed by ignoring the information
placed outside the register but a one will be placed in the X bit of
the AE condition register. The interruption is enabled if a one has
heen placed in the MX bit of the AE mask register.

Program Status Doubleword 1
Section 83

....
co

Divide
Check

(0)

o
01
OH
DIH
OF
OFO

Table 1. Arithmetic Exception Condit\ Table for Scalar Instructions

Fixed Point
Overflow

(F)

LM,LMH
LN,LNH ,SN,SNH
A,Al,AH,AIH,
AM,AMH
S,SI,SH,SIH,
SM,SMH I_

M(arith,R-odd)
M(base, index)
MI(arith,R-odd)
MI(base,index)
O(R-even)
OI(R-even)
OH ,DIH,
SA,SAH~SAD,
FLFX,Fl.FH,FDFX

Floating Point
Exponent
Overflow

(0)

AF,AFD,
AMF,AMFD,
SF,SFD,
SMF ,SMFO,
MF,MFD,
DF,DFD,
FXFL,FXFD,
FHFL,FHFD,

Floating Point
Exponent
Underflow

(U)

AF,AFO,
At~F ,AMFD,
SF,SFD,
SMF ,St4FD,
MF,MFD
DF,OFD,

Unassigned
Operation

Code

10,11
26
53,57,5A,5B
5D,5E,5F,
61,63,69,6B,
71,73,76,77,79,
7B,7E,7F,
9A,9B,9E,
A3,A4,A5,A6,
A7,AE,AF,
Bl,B2,B3,B4,
B5,86,87,B8,
B9,BA,BB,BC,
BD,BE ,BF,
CZ~DO,Ol ,02,
03,04,05,D6,
D7,DA,DB,DC,
DD,DF,
EA,EB,EE,EF,
Fl,F3,F5,F7,
F9,FA,FB,
FD,FE,FF,

Arithmetic
Exception
Cond iti on

Not Possible

L ,LI ,LH ,LHI
LR.,lL,LD,
LH, L~1H , U,iF , L~m ~
LN,LNH,Li~F,LND,
LNM,LNMH.LNMF,LNMD,
LF,LFM,XCH,
LM4,LLA, L0,
ST,STH,STR,STL,
SPS~STD,
STZ,STZH,STZD,
STF ,STF~1,
~l(arith,R-even) ,
I~I (ari th, R-even)',
MH,MIH,
D(R-odd)
DI(R-odd)
AND,ANDI,ANDD,
OR,ORI,ORO,
XOR,XORI,XORD,
EQC,EQCI,EQCD,

SL,SLH,SLD,
SC,SCH,SCD,
RVS,
C,e1,C:-I,CIH,'
CF,CFD
CAND,CANDI,CANDD
COR,CORI,CORD,
IBZ,IBNZ,DBZ,DBNZ,
ISE,ISNE,DSE,DSNE,
BCLE,BCG,
BC,BL,
BR,BRL,
BAE,BXEC,
PSH,PUL,MOD~
B:"B,BLX,
LEA,INT,XEC,
NFX,NFH,
~jCP ,NOI,

~floati~ Po-int E~.!~f:.:..~t Oljerf1o_~~ - ~Jhen the result characteristic
exceeds 127 in floating-point addition, subtraction, multiplication,
or division, an exponent overflow is recognized. The AE condition
register is set with a one in bit~. The interrupt will occur if
a one has been placed in the M0 bit of the arithmetic exception
lTlask register. The result vlill be set to +00 for positive overflO\'1
and _00 for negative overflow.

U - Floating Point Exponent Underflo~ - When the characteri~tic is
less than zero in floating-point addition. subtraction, multiplica­
tion. or division, an exponent underflow is recognized. The ,operation
is completed by making the result a true zero. A one is set in bit U
of the AE condition register. Interrupt will occur if a one has been
placed in the MU bit of the arithmetic exception mask register. When
the result of a floating-point addition or subtraction has an all
zero fraction~ the operation is completed by making the result a true
zero.

The bits (D! F, ~, U) so set vii 11 remain set until interrogated
by a Test Arithmetic Exception Code and Branch (.ll,E) instruction.
The R-field of an AE instruction is \lANDed" VJith the arithmetic
exception register and if any of the resulting four bits are "oneil,
then the branch will be taken. Only the AE register bits corresponding
to \I ones il in the R-field are reset to zero during execution of an
AE--instruction.

D F 0 U
-, -.> r - • -r--

AE condition re~ister
I --.---- ---I-....,

ro r1 r2 r3 i
- , _ 1 __ --.1.

R-field of AE instruction

',,"-

The Test Arithmetic Exception Code and Branch instruction
allows a program to sen~a divide check or overflow condition
(without CP interrupt) and perform corrective action if necessary.
A CP to PP Interrupt signal will not occur for the maskable arithmetic
conditions if the corresponding M~SK bits (MD, MX, M0, and MU) are
zero.

Unassigned Operation Code - If an unassigned operation code is encountered
the operation is not executed and the interrupt signal is sent from the
cp to the PPU. Also, if an indirect addressing chain detects an indirect
address for which tne four most significant bits are not all zeros, then the
indirect addressing instruction is not executed and the unassigned operation
code interrupt signal is sent from the CP to the PPU.

Program Status DoubTeword 19
Section 83

8SC - E>~e,cute instruction branch or skiJ?_ condition. This is a foUt' bit register
"'\JSR} of which only the two least signif'icant oits are used as indicators.

The BSC··bit of th'e BSR Y'egister is set to "one" whenever an Execute Instruc­
tion (XEC) executes a branch or skip type instruction and the condition for branching
or skipping is satisfied. The BSC-bit is reset to I!zero ll \tJhencver the condition
for bt~anching or skipping ;s not satisfied. No branch will occur when the BSC-bit
in the BSR indicator is set. Instead, the instruction following the XEC instruction
is executed.

Spare

A~
[~- I MCC I BSCJ BSR register

R-field of BEC
instruction

A Branch on Execute Condition (BEC) instruction can determine whether the
condition for branching or skipping was satisfied for the case of an Execute
instruction executing any conditional branch or skip type instruction. If a BEC
jnstruction (one for which R = 0001) "branches, then the condition for branching
,:a5 satisfied.

The MCC-bit of the BSR register is set to "one" whenever an Execute in­
struction executes a Monitor Call and Proceed (MCP) or a ~1onitor Call and Wait
(MCW). The monitor call does not write into central memory nor is the PPU
signaTed of a monitor call when an MCP or MCW is executed by an Execute in­
struction.

If a Branch on the Execute Condition instruction (one fo"r which R=OOlO)
branches, then an Execute instruction has executed an MCP or MCW instruction.

The indicator bits of the BSR register which correspond to the position of
"ones" in the R-field of the BEC instruction are, reset to IIzero ll by the BEC in­
struction. Bit positions of BSR which are not tested by lIones" in R are not reset
by the BEC instruction. Only the two LSB's of the BSR register are used by the
"Branch on Execute Condition instruction. The remaining two unused bits of BSR
will be tied to "zero". The 2 MSB's of the R-field of the BEC instruction are
IIdon't cares ll as a result of the 2 MSB's of BSR being forced to "zero".

CC - Compare Code. One of the flip-flops CL, CG, or CE is set by an arithmetic
or loglcal compare instruction and the bit so set will remain set until another
compare instruction modifies the setting. Thus, the compare code indicators
always reflect the outcume of the last compare instruction executed before being
tested by a Comparison Code Branch instruction. The compare code indicators are
not affected by a Comparison Code Branch instruction.

20

-

The adthmetic and
son code are listed below
with another operand (y).
instructions defining the

Arithmetic compare

(x)

(x)

(x)

(x) (y)

<

>

=

(y)

(y)

.' (y)

--- -~--- --- .~. ~ -... -~- -,

CL CG CE , CC register
I .' I" 1
I

rO r1 r2 r4 R-field of Comparison
Code Branch instruction

logical properties v·lith their correspond:ltng compad­
for the general case of one operand (x) compared
The definitions of x and yare given with the

various comparison operations.

CC, compare code Logical compare
CL CG CE [(X)j Boolean (Y)jJ

1 0 0 Mi xed "l's II and "0'SIl

0 1 0 All bits are Ill"

0 0 1 All bits are HOII

RC - Result Code - One.of the flip"flops RL, RG, or RE is set according to
the properties of the arithmetic or logical result emerging from the arithmetic
unit and the bit so set will remain set until another result from the AU modifies
the setting. Thus, the result ~ode indicators reflect the current status of·
the most recently referenced register. The result code indicators are not
affected by a Result Code Branch instruction.

i-~-~L' . -, RG 1-;-'
I - r ~- - '-----r--.- ..-, _.:-.,... ____

RC register
, . ,
I .-- -:--_ • .:..- - --r--'---
rO : r l ! r2 r3 R-field of Result

Code Branch instruction

The arithmetic and logical properties of the AU result with their
corresponding result code are listed below.

Program Status Doublewc'd 21
Section 83

- Arithmetic result RC, Result code Logical result
from AU RL RG RE from AU ---

(x) < 0 1 0 0 Mixed 1I11S11 and 1I0lS11

(x) > 0 0 1 0 All bits are 11111

(x) = 0 0 0 1 All bits are "0 11

NOTE: Load and Store instructions cause the result code to be set as if
the operand were an arithmetic result from the AU.

Bits 16 through 19 (labeled CP MEM USAGE) of the second word of the
Program Status Doubleword are reserved for Central Processor memory usage
information. The CP MEM USAGE bits indicate that the Central Processor has
been placed under the following usage mode by the Peripheral Processing Unit.

bi t 17, P

bit 18, B

bit 19, V

0,..., Mapped
1 ,..,. Not Mapped

o ~ Memory Protection
1 rJ No Memory Protection

o ~ No Breakpoint
1 ~ Breakpoint Active

o ~ Actual Breakpoint
1 ~ Virtual Breakpoint

STORE Aim LOAD pROGRAi·l STATUS

Three CCR signals from the PPU to the CP store, load, or exchange the
program status doubl eword as foT1 ows. -;;

22

Store program status doub1eword - Tne CP permits all instructions which
are currently in process to go to compleiton. No new instructions
are fetched by the instruction fetch unit after receiving this signal.
After all instructions have been completed, the program status doubleword
and all register files are stored at the location specified by the
contents of memory location 14.

Load program status doubleword - The CP immeidately loads the program
status doubleword and all register files beginning at the location
specified by the contents of memory location 15 and then proceeds
with execution.

Exchange program status - The CP first perforuls the Store operation,
then it performs- the Load operation.

The program status doubleword has the following format:

Singleword
Location Ct

loc Ct + 1

o 16 20 24 28 31

L NO.t-- I c~-s-;I cc l RC I
Used (Zero) USAGE

___ .'--__ ...L.....__ _ __

o
AE
COND

4 8 31

-<I-

It should be clear from the preceding descriptions that the CP status information
exists as a collection of separate registers and flip-flops and that the fields
designated here only indicate how the respective CP status information is formatted
in central memory. The designat-ion names of these registers have been retained
in this memory format.

A separate CP instruction is provided to store the first word of the program
status doubleword into central memory s·inglevJOt'd location a.. The Store Program
Status. Word, SPS, instruction stores the CP MEM USAGE, BSR, CC and RC status informa­

. tion according to the format.

loc Ct 0 16 20 24

I Not Icp ME~11
I Used (zero) USAGE BSR

The load, store, or exchange

WaRD-

OCTET o
1

2

3

4

5

6

a 1 2

PSDVl I

status memory map

3 4 5 6

NOT USED

REGISTER FILE A

REGISTER fILE B

REGISTER FILE C

REGISTER FILE D

REGISTER FILE I

REGISTER FILE V

28 31

CC I RC I
appears as follm'is:

7

..

Program Status Doubleword 22A
Section 83

(6)

WORP

6 J 7
'OCTer

0

1

2-

3

4-

S-

f..

7

8
C;

A co c..l
. -

B DO I Pi D1- _D.~ D' J)?
1---

C [0 11 J4- I~ 1& 17
-

D VO Vl vz.. V3 y+ Vr Vb \/7

E MA M1) Me MD IMM

F
/0

/I

llo

13

Iif.

'S-

"

o

FI~ URE 1. I NTE"RME"DIATE leVEL CP MAP

2ZB

When it is intended that the CP start a ne~ assignment through the use of
Loading or Exchanging at the Intermediate level, and there is no prior CP inter­
mediate level map availalJle to load the interna1 registers of the CP, then the
starting address of the instructions to be executed by the CP must be entered
into the P3 word of an intermediate map. This is octet 2, word 5 (numbers begin
with 0) of the intermediate map. The AE Condition, AE !vlask, cr ~1emory Usage,
BSR, CC, and RC bits must also be loaded. They are in octet 2, vlOrd 6 of the
intermediate map. All other words of the map should bc zero, initially. En­
tering of data into these locations must, of course, be done prior to an Exchange
Intermediate (either by CCR code or automatic context svritching) or a Load Inter­
med i ate (by CCR code). See Fi gure 1 for Intermedi ate Level CR ~1ap pa~e 22B

ASSEMBLER MNEMONICS

The Central Processor (CP) instructions are described using their
assembler mnemonics for each instruction. Instructions which have the same
mnemonics but different operation codes are distinguished from each other
by the register designation. For example. the assembler will recognize L
as the mnemonic for an instruction which loads an index register even though
the same mnemonic is also used to load base registers and arithmetic registers.
All three instructions have different operation codes and the one selected can
be determined from the register designation. Thus, the volume of instruction
mnemonics to learn is reduced.

Assembler Mnemonics 23
Section 83

The special characters @ and = are "used in certain ASC instruction
procedures. \'ihenever" both of these symbols are used "lith the same expression,
the order of their appearance is irrelevant. However, their appearance will
be fla.gged in el'ror by the assembler if they are used incoi'rectly. Their use
anywhere but immediately preceding an expression is illegal.

The CP instructions are written in the form:

"Label Command Operand Remarks

In all instructions, Label is optional. When used, it will be assigned
the value of the location counter of that instruction.

The operand format is dictated by the command and is described for
each instruction on the following pages. In general, the following characters
are" used to represent'special inforrnat"ion in the operand formats:

R is the name of the register involved in the operation.

N is the central memory reference in the operand and may be
represented by using a symbol \4hich is the label of a memory
location or by using base and displacement if N is replaced
by" (D ,8) where,

o is the displacement value and,

B is the base register.

X is the index register name and is optional. It is used to modify
the N field.

Examp 1 es : R, N, X or R, (0, B), X

When the N field is used for immediate referencing (to the instruction
itself), the symbol I will be" used.

24

II@II means an 1I@1l can be used to indicate indirect addressing.

= means an 11=11 can be used to cause the Assembler to create a literal
"to be generated from N an"d replace N in this instruction with the
literal's location.

For Branch instructions, ":11 may be used only in pair with a 1l@1l.

Using the II@" does not require the 11:11.

CP Operand Format Types:

1. R,@=N,X
2. R,@N,X
3. @N,X
4. R,I,X
5. I,X
6. R,R,N where the first R is for the R-field, the second for the

X-field.
7. R,@=N,X
8. @:::N,X
9. M ,@::::N,X
10. I

All values of registers must be represented by using symbolic
constants \'ihich are familiar to the assembler v"ia automatic initialization.
For example, the CP registers are represented as

Location a:::: 80
1.:::: 81
2 = 82
3 :::: 83

. E = B14
F :::: 815

10 :::: AO
11 :::: Al:

IF = A15
20 :::: xa
21 = Xl

27 = X7
28 :::: va
29 :::: Vl

2F = V7

If the register is not represented symbolically (i.e., X7 is specified
by using a 27), an error is indicated by the Assembler unless it is in the
second list item of the operand field (the Address Parameter). In this parameter,
a number will be assumed to be an absolute address. The above reserved symbols
may not be assiqned as labels by the user.

Assembler Mneumonics 25
Secti'Jn 83

In the following ljsts, for . scalar Central Processor

inst!uctions J the columns contain t.he £o11O\.,.ing :i nformation: MNE~IONIC

CODE heads-the column listing the mnemonics recognized and interpreted in

the command field of the Assembler' Language statement; INSTRUCTION heads

the column containing a brief description of the operation initiated by the

COliHnand; OPER.A.TION CODE heads the column listing the machine (CP) code #

produced by the Assembler f-.rom information in the command and operand fields

of the Assembler Language statement; TYPE FOR~lAT heads the column \qhi ch

gives the format type showing the maximum complexity permitted for the

particular command; OPERAND FOR,\IAT heads the column which contains the

symbolic r~presentation of an operand of maximum complexity for the particular

cOlElaand; and ASSEMBLER SUPPLIED R FIELD, for those commands \,:hcre it is

applicable, heads the column which contains the value 'the Assembler supplies

to the R field of the resultant machine code.

MNE1v10NIC INSTRUCTION
CODE

S1 Store arithmetic register, single length

5T Store base ,register, single length

ST StOre index register or vector parameter

register, single length

STH Store half length J arithmetic register

sm Store register right half into memory right

half, arithmetic register

STL Store register left half into memory ri6ht

half, arithmetic register

SPS

STI)

sm
STNH

STNF

STND

Ism
STOH

25A

Store

Store

Store

Store

Store

Store

Store

Store

program status word

arithmetic register, double length
\ .

negative, single length

negative, half length

negative, floating point

negative, double length

ones complement

ones complement, half length

OPERATION TYPE OPERA.ND
CODE FORMAT FOR.\!AT

24 2 R,@N,X

28 2 R,@N,X

2C 2 R,@N,X

25 2'i< R,@N,X

2D 2 R,@N,X

29 2 R,@N,X

22 3 @N,X

27 2 R,@N,X

34 7 R,@=N,X

35 7 R,@=N,X

36 7 R,@=N,X

37 7, R,@=N,X

2E 7 R,@==N,X

2A 7 R,@=N,X

~1.'\DIO~ I C
CODE

STZ

STZH

STZD

STF

STF

STF

STF

STF

STF

5TH!

L

L

L

LI

LI

LH

LIH

LR

LL

LD

INSTRUCTION

Store zero, single length

Store zero, half length

Store zero, double length

Store base register file, registers 1-7H,

M=O

Store base register file, registers 8-FH,

It-!= 1

Store arith~etic register file, registers

10-17W ~1=2

Store ari~hmetic register file, registers

IS-IF ~1=3 H'
Store index register file, registers 20-27H,

~1=4

Store vector parameter register file,

registers 28-2FW ~!=5

Store all regi5t~r fil~s, registers !-2FH
Load arith~etic register single length ~ord

Load base register single length

Load index register or vector parameter

register single length

Load immediate into arithmetic register

single length
,

OrERATIO~;

CODE

20

21

23

28

28

2B

2B

2B

2B

2F

14

IS

1C

54

TYPE OPER'-\~D

FOR\!AT FOr<':·L\T

3

3

3

9

9

9

9

9

9

3

1

I

I

4

@N,X

@N,X

@N,X

~!,@N)X

~I,@;\,X

~I,@N,X

@N,X

R,@=~,X

R,@=N,X

R,@=N,X

R. I ,X

Load immediate into index register, or vector 5C 4 R. I ,X . "
parameter register single length'

Load arithmetic register half length word

Load imnediate into arithmetic register

half length

Load memory right ha1fword into arithmetic

register right halfword

Load memory right ha1fword into ari1:hmetic

register left half\~'ord

Load arith:.letic register double length ,,,ord

15

55

10

19

17

1

4

1

1

1

R,@=N.X

R, I.X

R.@=N,X

R,@=N,X

Assembler t1nemonics 25B
Section 83

,MNB,!OmC
CODE

, i..M

um

LMF

HID

LN

LNH

LNF

LND

LNMH

LNMF

LNMD

LF

LF

LF

LF

, 25C

INSTRUCTION OPERATION TYPE OPER .. \ND
CODE FORMAT FORHA.T

Load magnitude fixed point single length -

arithmetic register

Load magnitude fixed point half length -

arithmetic register

3C

3D

Load magnitude floating point single length - 3E

arithmetic register

Load magnitude floating point double length, - 3F

arithmetic register

Load negative fixed point single length 30

(load twos complement) arithmetic register

Load negative fixed point half length - 31

arithmetic register

Load negative floating PQint single length -

arithmetic register

Load negative floating point double length -

arithmetic register

Load negative magnitude fixed pOint sipgle

length - arithmetic register •

32

33

38

Load negative magnitude fixed point half 39 .
length - arithmetic register

Load negative magnitude floating point sing~e 3A

length - arithmetic register

Load negative magnitude floating point double 3B
l

length - arithmetic register

, Load base register file, registers 1-7H, IB

M=O

Load base register file, registers 8-FH,

~1=1

Load arithmetic register file, registers

10-17 H ' lot= 2

Load arithmetic register file, registers

18-1FH, ~f=3

1B

IB

IB

1 R,@=N,X

I R,@=N,X

1 R,@=N,X
,

1 R,@:N,X

1 R,@:N,X

1 R,@:N,X

1 R,@=N,X

1 ,.R,@=N,X

1 R,@=N,X

I R,@=N,X '

1

1 R,@=N,X

9 M,@N,X

9 M,@N,X

9 M,@N,X

9 M,@N,X

~lNH!ONIC

CODE

LF

INSTRUCTION

Load index register file, registers 20-27H,

~1:::4

LF Load vector parameter register file,

registers 2S-2FH, ~!=5

LH! Load all register files

XCH Exchange - arithmetic register

LM-! Load arith~,etic mask

LAC Load arithmetic exception condition

LLA Load look ahead

La Load arithmetic register with ones

complement, single length

A

A

A

AI

AI

AI

AH

Add to arithmetic register, fixed point,

single, length

Add to base register, fixed point, single

f.ength

Add to index or vector parameter register,

fixed point, single length

Add imr.lecliate to arithmetic register,

fixed point, single length

Add immediate to base register, fixed point,

single length

Add immedi3"te 1.0'i'hdex or vector pal'ameter

register, fixed point, single length

Add fixed point, half length - arithmetic

register

AIH Add immediate fixed point, half length -

AF

arithmetic register

Add floating point, single length -

arithmetic register

AFD Add floating point, double length -

AM

arithmetic register

Add magnitude fixed point, single length -

arithmetic register

A;\!H Add magni tude fixed point, half length -

arithmetic register

OPEfu\ TI O:~ TYPE OPERA\D

CODE FOR\lAT FOR:L~T

IE 9 ~l,@N,X

lB 9 ~l,~N,X

IF 3 G~;, X
~"

lA 2 R,,~:\,X

12 8 @=!\,X

13 8 @=N,X

16 10 I

IE 1 R,@=:\,X

40 1 R,@=N,X

60 1 R,@=N,X

62 1 R,@=N,X

50 4 R, I ,X

70 4 R, I,X

'$.

72 4 R, I .X

41 1 R;@=N,X

51 4 R, I,X

42 1 R,@=N,X

43 1 R,@=N,X

44 I Rj@=)!,X

45 1 R,@=N.X

Assembler Mnemonics 25D
Section 83

MN8·10NIC
CODE

1\1-IFD

S

SI

SH

SIH

SF

SFO

SM

. SMH

gfF

SMFO

M

M

M

Mt

Mt

25E

INSTRUCTION OPERATION TYPE OPER~~O
CODE FORMAT FORHAT

Add magnitude floating point, single length - 46

arithmetic register

Add magnitude floating point, double length - 47

arithmetic register

Subt1:act fixed point, single length -

arithmetic register

Subtract immediate fixed point, single

length - arithmetic register

Subtl'act fixed point, half length -

arithmetic regtster

Subtract immediate fixed point, half

length - arithme{ic register

Subtract fl~ating paint, single length -

arithmetic register-

Subtract floating point, double length

arithmetic register

, Subtract magnitude fixed point, single

length - arithmetic register

Subtract magnitude fixed point, half

length - arithmetic,register

Subtract magnitude floating point. single

length - arithmetic register

Subtract magnitude floating point., double

length - arithmetic register
'.-

~~ltiply fixed point, single length -

arithmetic register

Multiply base register

Multiply index or vector parameter r.~gister

Multiply immediate fixed point, single

le~gth - arithmetic register

Multiply immediate to base register

Multiply immediate to index or vector

parameter register

Multiply fixed point. half length -

~rithmetic register

48

58

49

59

4A

4B

4C

40

4E

4F

6C

68

6A

7C

78

7A

6D

I

1

1

4

1

4

1

1

1

1

1

1

1

1

1

4

4

4

1

R,@=N,X

R,@=N,X

R,@=N,X

R,I,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,I,X

R,'I,X

R,@=N,X

~NE:·IO~IC

CODE

1--!I1I

1--IF

~lfD

D

DI

DH

DIH

DF

DflJ

A:\iD

A:\iD I

OR

ORI

XOR

XORI

EQC

EQCI

A.J"lDD

ORD

XORD

EQCD

SA

INSTRUCT I O~~ OPE RATI O!';
CODE

TYPE OP~lt';';';U

FOR\rAT FOF..\1.-\T

~!ultip1y in,!),:::ciiate fixed point, half lcngth - 7D 4 R, I ,x
arithmetic register

~!ul tip1y floating poi nt, single length -

arithmetic registcr

}'lultiply flo:lting point, double ler.gth -

ari thmetj c regis ter

Divide fixed point, single length -

arithmetic register

Divide irr:mediate fixed point, single

length - arith~etic register

Divide fixed point, half length -

arithmetic register

Di vide immedi ate fixed point, half length -

arithmetic register

Divide floating point, singJe length -

arithmetic regisier

Divide floating point, couble length -

arithmetic register

A);D - arithmetic register

Immediate ASD - arith:.:etic register

OR - arithmetic register

Immediate OR arithme~ic register

Exclusive OR - ari tfl",etic reJister

Inu:leciiate Exclusive or, - aritlmetic register

Equivalence - al'i thmetic register

Immediate equivalence - arithr:~etic register

AND - arithmetjc register (double length)

OR - arithmetic register (double length)

Exclusive OR - arithmetic register (double

length)

Equivalence - arithmetic register (double

length)

Arithmetic shift, fixed point, single

length - arithmetic register

6E

6F

64

74

65

75

66

67

EO

FO

E4

F4

E8

F8

EC

Fe
El

£5

E9

ED

co

1

1

I

4

1

4

1

1

1

4

I

4

1

4

I

4

I

1

I

1

4

R,@::::-\,X

R, I >X

R, I, X

R,@=N,X

R,@=N,X

R,I,X

R/~=:;,X

R, I ;X

R,~=;\,X

R, I, \.

R,@=N,X

R; I, X

R,@=N·,X

R,@=N,X

R,@=N,X

R,@=N,X

R, I ,x

Assembler ~nemonics 25F
Section B3

MNE~10NIC
CODE

SAIl

SAD

SL

SLH

SLD

SC

SCH

SCD

RVS

C

C

Cl

Cl

CH

CIH

CF

CFO

CAND

25G

INSTRUCTION OPERATION TYPE OPERAND
CODE FOru-IAT FORMAT

Arithmetic shift, fixed point, half length - CI

arithmetic register

4 R, I ,X

Arithmetic shift, fixed point, double

length - arithmetic register

Logical shift, single length - arithmetic

register

Logical shift~ half length - arithmetic

register

Logical shift, double length - arithmetic

register

Circular shift, single length - arithmetic

register

Circular shift, half length - arithmetic

register

Circular shift; double length - arithmetic

register

Bit reversal, single length - arithmetic

register

Compare fi~ed point, single length -

arithmetic register

Compare index register, single l.ength
I

eompare immediate, fixed point, single
, '.,-,.",.,.

length - arithmetic register

Compare immediate, index register, single

length f

Compare fixed point. half length -

arithmetic register

Compare immediate, fixed point, half

length -arithmetic register

Compare floating point, single length -
• h' •. arl.t .. metlc reglster

Compare floating point, double length -

arithmetic register

Compal'e logical AND - arithmetic register I

(single length)

C3

C4

CS

C7

CC

CD

CF

C6

C8

CE

D8

DE

C9

09

CA

CB

E2

4 R,I,X

4 R. I ,X

4 R, I,X

4 R, I ,X

4 R, I ,X

4 R,I,X

4 R, I.X

4· R,I.X

1 R,@=N.X

1 R.@=N.X
4~' R.I,X

4.. R,I,X

1 R.@=N,X

4 R,I,X

1 R,@=N,X

1 R,@=N,X

1 R,@=N,X

l-.l:-';E\IO~IC

CODE

CAKDI

COR

CORI

CANDD

CORD

ISZ

IBZ

IBNZ

IBNZ

DBZ

DBZ

DBNZ

DBNZ

ISE

ISNE

DSE

DSNE

BCLE

INSTRUCTION

Compare ir.m:ediate logiccil A:':D - ari thmetic

register (single length)

Compare logical O~, single length -

arithmetic register

Compare immediate logical OR, single

length - arithmetic register

Cor.mare logical .. ;':':D, double lenJth

arithmetic register

Compare logical OR, double length -

arithmetic register

Increment, test and branch on zero -

arithmetic register

Increment, test index, and branch on zero

Increment, test, and branch on non-zero -

arithmetic register

Increment, test index, and branch on

non-zero

Decrement, test, and branch on zero -

arithmetic register

Decrement, test index, and branch on zero

Decrement, test, and branch on non-zero -

arithmetic register

Decrement, test index, and branch on

non-7-ero

Increment, test, and skip on equal -

arithmetic register

Increment, test, and skip on not equal -

arithmetic register

Decrement, test, and skip on equal -

arithmptic register

Decrement, test. and skip on not equal -

arithmetic register

Branch on arithmetic register less than

or equal to

OPERJ.\TIO:-i
CODE

F2

E6

F6

E3

E7

88

SC

89

8D

8A

8E

8B

8F

80

81

82

83

84

TYPE OPER-\'\D
FOR.:\!AT FOR:·L-\T

4

1

4

1

1

7

7

7

7

7

7

7

7

1

1

1

1

6

R,I,X

R, I, X

R,'3:::.i'~,\

R,@;:;:-i,X

R,@=:;,X

R,@::;'\,X

R,@:::'\,X

R,@=N,X

R,@::=j\,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,@=N,X

R,R,N

Assembler Mnemonics 25 H
Sect; rm B3

~~SE:,:mHC
/< CODE

bu!::
BeG

Bee
PSH

PUL

nLn
ULX

LEA

LEA

INT
XEC

I:LFX

:LPH

FDFX

FXFL

FXFD

FHFL

FHFD

NFX

NFH

251

INSTRUCTION OPERATION TYPE O?ERAl\lD
CODE FOR"l6..T FOP-.l\!AT

Branch on index less than or equal tp

Branch on arithmetic register greater than

Branch on index greater than

Push word - arithmetic register

Pull word - arithmetic register ,
~1odify - arithmetic register

Branch and load register with PC

Branch and load index register or vector

parameter l"egister

Load effective address - ind~x register

Load effective address into base regjster

Interpret - arithmetic register
I

Execute

Convert floating point single length to

fixed po~nt single length - arithmetic

register

86

85

87

93

97

9F

98

99

S6

S2

92

96

AO

Convert floating point single length to Al

fixed point half length - aritkmetic register

Convert floating point double length to A2

fixed point single length

Convert fixed point single length to

floating point single length

Convert fixed point single length to

floating point double length

Convert fixed point half length to

floating point single length

Convert fixed point half length to floating

point double length

Normalize fixed point single length -

arithmetic register

Normalize fixed point half length -

arithmetic register

A8

AA

A9

AB

AC

AD

6

6

6

2

2

2

7

7

1

1

1.

8

2

2

2

2

2

2

2

2

2

R,R,N

R,R.N

R,R,N

R,@N,X

R,@N,X

R.@N'~X

R,@:::N,X

R,@:::N,X

R,@=N,X

R,@=N,X

R,@=N,X

@=N,X

R,@N,X

R,eN,X

R,@N,X

R,@N,X

R,@N,X

R,@N,.X

R,@N,X

~!:'lD!ONIC INSTRUCTI m: OPERlI..TIO;,l
CODE CODE

~lCP, ~loni tor call and 90

proceed

HeW ~loni tor call and 94

wait

VECT Vector BO

VECTL Vector after loading BO

vector fi Ie

ComEare Code Branch Operation Code ::;: 91

BCC Branch on compare 91

code

Nap Take next instruction 91

Comment: Execution of data values or indirect ---
the effect of a no-operation if the first four

code) are zeros.

BE (R) ::: (a) 91

BG (R) > (a) 91

BGE (R) > (a) 91

BL (R) < (aJ 91

BLE (R) < (a) 91

BNE (R) I (a) 91

B Unconditional branch

Logical Branch Ope7'ation Code == 91

BCZ All bits are zero 91

BCO All bits are one 91

Be~1'-t Not mixed 91

BC~I ~lixed zeros and ones 91

BCNO Not all ones 91

BeNZ Not all zeros 91

ASSE~!BLER TYPE OPER'-\~D

SUPPLIES FOR\lAT FOR\!AT
R FJELD

5 I, X

5 I, X

R 1 3 @N,X ...
:".

R == a 3 @N,X

9 M,@==N,X

R ::: 0 8 @=N,X

address constants 'hi 11 have

bits of

R = 1

R = 2

R = 3

R = 4

R :: 5

R ::;: 6

R :::: 7

R == 1

R = 2

R :::: 3

R :: 4

R = 5

R :: 6

the word (operation

8 @=N,X

8 @=N,X

8 @=N,X
,Y,

8 @=N,X

8 @=N,X

8 @=N,X

8 @:::N,X

8 @:N,X

8 @=N,X

8 @=N,X

8 @=N,X

8 @==N,X

8 @:::N,X

Assembler Mnemonics 25J
Section 83

~i:NE~·IONIC INSTRUCTION OPERATION ASSE-!BLER TYPE OPERAND
C(JDE CODE SUPPLIED FOR\LI\.T FOIzt-1AT

R FIELD

Hesult Code Branch Oycration Code :;: 95

ERe Branch on result 95 9 ~1,@::N,X

code

BZ (R) -" 0 95 R - 1 8 @:::;~,X

BPL (R) > 0 95 R :: 2 8 @::N,X

BZP (R) > 0 95 R :: 3 8 @:::N,X

B!-41 (R) < 0 95 R :::. 4 8 @::N,X

BZ~1 (R) < 0 95 R :: 5 8 @=N,X

BNZ (R) 'I 0 9S R = 6 8 @=N,X

Logical Result Branch Operation Code :: 95

BRZ All bits are zero 95 R = 1 8 @=N,X

BRO All bits are one 95 R :: 2 8 @=N,X

BRN1>-l Not mixed 95 R :: 3 8 @::N,X

SR,\t Mixed zeros and ones 9S R == 4 8 @=N,X

BR.?-{O Not all ones 9S R ::: 5 8 @=N,X

BRNZ Not all zeros 95 R ::: 6 8 @:::N,X

Arithmetic Exception Branch Operation Code ::: 9D

BAE Branch on arithmetic 9D 9 M,@=N,X
. exception

BU Floating point EXP 9D R ::: 1. 8 @::N,X

underflm

BO Floating point EXP 90 R ::: 2 8 @=N,X

overflow

BUO Floating point EXP 90 R ::: 3 8 @=N,X

underflow or overflow

EX Fixed point overflow 90 R ::: 4 8 @=N,X

BXU Fixed point overflow 90. R = 5 8 @=N,X

or floating EXP

underflow

25K

t-L'iD!ONIC
CODE

Al'ithll1etic

BXO

BXlJO

BD

BDU

BDO

BDUO

BDX

BDXU

BOXO

BDXUO

INSTRUCTION a P Et"0-\ TI 0 N ASSDIBLER TYPE OPERAND
CODE SUPPLIED FOll)l<'l.T FOfN\T

R FIELD

Excention S:~_,:!:~lch Op~at_L0!l_Sod~_~!~ontinue~

Fixed point ovcrfl 0;';

or floatinf:'; point

EXP overfloh'

Fixed point overflo\V

or floating point

EXP overf1O\~ or

underfIOI'/

Divide check

Divide check or

floating point EXP

underflow

Divide check or

floating point EXP

overfIO\.;

Divide check or

floating point EXP

underflow or overfIo\<,'

Divide check or

fixed point overfloh'

Divide check or

fixed point overflow

or fl oating point EXP

underfloH

Divide check or fixed

point overflow or

floating point EXP

overfIO\."

Divjde check or fixed

pciht overflow or

floating point EXP

overflow or underflOi,'

9D R =

9D R

9D R ==
9D R ==

9D R

9D R ;::

9D R =

90 R ;::

90 R =

9D R ;::

6

7

8

9

A

B

C

0

E

F

8 @=N,X

8
-,I

@==N,X

8 @=N,X

8 @=N,X

8 @=N,X

S @=N,X

8 @=N,X

8 @::N,.X

8 @~N,X

8 @=N,X

Assembler Mnemonics 25l
Section 83

NNH!OJUC.
CODn

INSTRUCTION OPERATION
CODE

Branch on Execute ~ondi tion' Operation ~"od~: 9C

BXEC

25M

Branch on Execute

branch condition

true

9C I

ASSHlBLER
SUPPLIED
R FIELD

R :: 1

or odd

TYPE
FOmIA!

3

OPERAND
FORHAT

@N,X

l.OAD I NSTRUCTI ONS

LOAD v!ORD (L)

There are three forms of the
load word instruction indicated by
the or codes. One of these forms has
blO classes distinguished by the R field.
In each case, the contents of the address
indicated by the T, M, and N fields is

Ope rat i on Code
Type Format
Operand Format
Type J\ddressing
SYIn~olic Notation

14, 18, lC
1
R, @ = n, X
a, vJOrd level
(a) + R

loaded into the register indicated by the R field. In the case of OP code
lC, an R-field value from 0 to 7 (hexadecimal) indicates index registers (XR)
and 1rom 8 to F vector registers (VR).

or Code

14

18

lC

lC

R-Field
Destination

AR (0 thru F)

BR (1 thru F)

R Range 0 thru 7
addresses XR 0
thru 7.

R Range 8 thru F
addresses VR 0
thru 7.

Register Loaded

Arithmetic
Base
Index

Vector

Programming Note: A Load Word instruction which specified base register
zero (BO) will set the Result Code to the value of the a addressed operand,
but otherwise appears as a no operation since base register zero is a -
fi xed "all zeros II regi ster.

Result Code: The result code register is set according to" the arithmetic
value of the operand "in the register indicated by the R-field after the
load operation is complete. The three allowable values of the result

" code are as fo 11 ows:

Contents of Rafter load Result Code (RL, RG, RE)

Negative, (R) < 0 (1 , 0,. 0)

Positive, (R) > 0 (0, 1 ,. 0)

Zero, (R) = a (0,. 0, 1)

Program Interruption: None.

26

LOAD HORD Int1EDIATE (LI)

Operation Code
Type Format
Opel'and Forillat
Type Addressing
Symbolic Notation

54. 5C
4
R, I, X
Immediate
n -t- R

The immediate operand is entered
into the register indicated by the
R-field. In OP code 54. an R-field
range from 0 thru F addresses arithmetic
registers 0 thru F. In OP code 5C, an
R-field range from 0 thru 7 addresses ~-------------------.--------
index registers 0 thru 7 ~nd an R-field range
from 8 thru F addresses vector registers 0 thru 7.

OP Code

54

5C

5C

R-Field
Destination

AR (0 thru F)

R range 0 thru
addresses XR
o thru 7.

R range 8 thru
addresses VR
o thru 7.

7

F

Register Loaded

Arithmeti c
Index

Vector

Programming Note: Whole word immediate operands for load instructions
are formed from the combined M and N fields of the instruction word
with extended sign (2's co~plement representation for negative numbers) ..
The left half of IMMED con~ists of the extended sign of the most
significant bit of the right half of IMMED. This immediate operand
can be modified by an index register when X t o. For this case, the
contents of index register X is interpreted as a signed number (2's
complement representation for negative numbers) within the range

_223 ~ (X) ~ 223 -1. In effect, the sign bit in the eighth bit
position of the contents of index register X is extended into the
most significant eight bits (bit position 0 through 7) before being
added to IMMED. The true 32-bit value contained in index register X
remains unchanged; the sign extension occurs in the index unit hardYJare
and not in the register file. The modified immediate operand, n, is
restricted to the range _223 ~ n ~23 -1 by virtue of the fact that
the parallel adder in the index unit is only 24-bits wide. The sign
b·it in th~ eighth bit position of n is extended into the most significa,nt
eight bits of n before being used as a modified immediate operand by
the arithmetic unit.

0 16

Extender! S i ~jt1

+ 0 8
Extended Sign l

0 8
Extended Sign:

1

20

M N

23 bits

n (23 bits)

31

31

IMMED

(X)

n = IMMED + (X)

Load instructions 27
Section 83

28

Result code for load imrnedi ate i nstY'ucti ons: The resu'\ t code req; ster
is set accordlng-'Fo thear-lthmeti c value of the opel~and in the regi s tel'
indicated by the R-field after the lOJd operation is complete. The
three allowable values of the result code are as follows:

Contents of R after load

Negative
Pas iti ve

Zero

(1,0,0)

(0) 1, 0)

(0, 0, 1)

LOAD HALHIORD (LH)

The ha1fword (16 bits) from
location uh is entered into the
left half of arithn~tic register AR:
The right half 'of register AR re­
mains unchanged. Note that ah re­
presents an address for which dis­
placement indexing is used and as
such denotes a halfword address. An:
odd index value selects halfwords
from the least significant half
(right half) of a central memory or

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

15
1
R, @ = N, X
ah, halfword level
(ah) -+ ARlh

when. .n.R h
i ndicatel the
1 eft half of
register AR.

register whole word. An even index -------------.- .----.-- ~---.--.-.. -.- .. -."~._._" '.'
value addresses the left halfword
of a .centra 1 memory or reg; s ter whole word. The 1 eft ha lfvwrd is selected
when not indexed.

Programming Note: " Halfword memory operand selection for normal (not reversed)
halfword address uses the LSB of the index register as shown below:

T-field

o
1··7
1-7
8-F

Contents of I Hal f\,oJord is
Index Register, selected from Central Memory
selected by T ! . I

None
Even Value
Odd Value

! Left half
Left half

°Ri ght half
Depends on LSB of index register
contents specified by terminal
indirect address

Result code for load halfword instruction: The result code register is
set accordlng to the arithmetlc valut of the operand in the left half of
the arithmetic register indicated by the R-field after the load operation
is complete. The three allowable Values of the result code are as follows:

Contents of AR£h after lOud Result

Negative (

Pos itive (

Zero (

Program Interruetion: None

code (RL, RG, RE)

1 , 0, 0)

0, 1 , 0)

0, 0, 1)

Load Instructions 29
Section 83

LOAD H'i1~E[lFTE HP,LHWRD (LI H)

55
4,

The least significant 16-bits
of the imrT,::::i ate operand is loaded
into the left half of arithmetic
register AR. The right half of
register AR remains unchanged.

Operat'lon Code
Type Format
Operand Format
Type f',ddress i ng
Symbolic Notation

R, I~ X
Immediate
n16- 31 40 AR 1h ;

~---------------.-~-~---~~-.. -.---------------------
Proqt'arnnriwJ :lote: The combined r~ and N fields form the immediate operand
"f'O"r"·hJlh:;o~nstructions. The r,1SB of the right half of the instnlction
word is the si9n bit. Negative numbers are represented in 2 1 s complement
form. This immediate operand car. be modified by the right half of index
register X. If X 1- O~ the index register specified by X is added to
the halfvwrd immediate operand. For this case, the 16th bit position
of index register X is a sign bit. If X = 0, no modification occurs.

° 16 20 31

IZIOZZIZI/1 M N

+
0 16 31
~77L1i7 //7/>j I

° 16 • 31

t///ff~ n ~

Result code for load immediate halfword instructions: The result
code register is set according to the arithmetic value of the
operand in the left half of the arithmetic register indicated by
the R-field after the load operation is complete. The three
allowable values of the result code are as follows:

Contents of ARlh after load Result Code (RL t RG, RE)

Negative (1 , 0, 0)

Positive (0, 1 , 0)

Zero (0, 0, 1)

Program InterruEti on: None.

30

I1~MED

(X)

n = IMMED + (X)

LOAD t~EMORY RIGHT HALF~JORO INTO
ARITHMETIC REGISTER RIGHT HALFWORD (LR)

For this instruction. the right
half of a central memory or register
whole word is selected when not indexed.
If indexed, an even index value selects
words from the right hulf of a central
memory or r'egi s tel~ v~ho 1 e \fJOrd. An odd
index value addresses the left halfword
of the next consecutive singleword. This

Opera ti on Code
Type Format
Operand Format
Type Addressing

Symbolic Notation

10
1
R, @ = N, X
ahr ha 1 fl,l/ord
1 evel reversed
(ahr) -- ARrh

convention is just opposite to that of the -----------,--------... -
LH instruction previously described. The
operand selected is entered into the right
ha11 of arithmetic register AR. The left half of register AR remains unchanged.

Pro.9!ammi.!:!~k: Hhen an array is addressed consecuti vely by i ndexi ng vlith
this instruction (or with LL), an even index value addresses the right half
of a memory or- register whole vvord as ir: the p1'eceding pat'agraph. But~ it
should be noted that ItJhen this even index value is inct'emented by unity (form­
ing an odd index value), the operand acquired by this instruction is from the
left half of the next consecutive central memory or register whole word.

T-field

o
1-7

1-7

8-F

Content~ of
Index Register
selected by T

None
Even Value
Odd Value

Ha lfvJOrd is
selected from

Right half

Ri ght ha 1f

(Reversed halfword
addressing)

Left half of next consecutive singleword

Depends on index register contents specified by
terminal indirect address

Result code for load right halfword instruction: The result code register is
set according to the arithmetic value of the operand in the right half of the
arithmetic register indicated by the R-field after the load operation is com­
plete. The three allowable values of the result code are as follows:

Contents of ARrhafter load

Negative

Positive
Zero

Program Interruetion: None.

Result Code (RL, RG, RE)

(1, O. 0)

(0, 1 , 0)

(O, 0, 1)

Load Instructions 31
Section 83

32

LOAD ~'1EMORY RIGHT HP,LFWORD
INTO ARITHMETIC REGISTER
"'~fFT HJ\LFWORD (LL)

The memory operand or regi ster
operand is selected as in ~n LR in­
struction. The operand selected is
entered into the left half of arith­
metic register AR.

Opera t'i on Code
Type Format
Operand Format
Type Addt~essi n9

Symbolic notation

19
1
R, @ = N~X
(llw' ha lfword

level reversed
(uhr)--l> AR, h

PrOj]rammi ng Note: See programmi ng note under' LR i nstructi on.

Result code for load left halfword instruction: The result code register is
set accordl n~fTotfle arithmeti c va 1 ue of the operand in the 1 eft half of the
arithmetic register indicated by the H-field after the load operation is com­
plete. The three allowable values of the result code are as follows:

C~ntents of ARlh after load

Negative

Positive
Zero

Program Interruption: None.

Result Code (RL, RG, RE)

(1,0,0)

(0,1,0)

(0, 0, 1)

LOAD DOUBLEWORD (LD)

The doubleword from location ad
is entered into the doubleword
Tegister designated by the R-field.

Operation Code 17
Type Format 1
Operand Format R, @ = N, X
Type Addressing ad, doublevJOrd level
Symbol i c notati on (ad) ..,. ARD

where ARD denotes an arithn~tic
doubleword register from an even­
odd address pair.

Programming notes: Doublewords are restricted to even-·odd memory
address pairs and register address pairs. The index register ;s
displaced one bit position to the left when addressing doublewords
so that the Kth doubleword in a data array is addressed by an index
value equal to K.

Result code for doubleword load: The result code register is set
according to the arithmetic value of the doubleword operand in
register ARD (composed of ItJhole word registers AR and AR + 1). The
three allovJable values of the result code are as follows:

Contents of P.RD after load
Negative
Positive
Zero

Result Code (RL. RG~ RE)
(1, 0,

(0, 1 ,

(0, 0,

0)
0)

n

Load Instructions 33
Section B3

34

.,LOf\O f,1/\GfUTUDE FIXED POINT (Un

load register AR with the magnitude
of the contents of address a.

Operation Code 3C
Type Format 1
Operand Format R, @ ::: N ,X
Type Addressing a~ singleword level
Symho 1 i c Nota t ion 1 (0.) 1 -+ AR

AR is loaded with the 2!s complement of (a) if (Q) is negative.

Result code: Set according to the arithmetic value of the register
operand afTer the operation is complete. The three allowable indicators
are as follm'lis:

Contents of AR after load instruction
Negative
Positive
Zero

Result code (RL, RG, RE)

(1,0,0)

(0,1,0)

(0, 0, 1)

Program Interruption: Overflow is possible with this instruction.
When the operand is the largest negative number, i.e., 8000 OOOOH ex
overflow will result'from complementing. The result in register
AR wi 11 be 8000 OOOOHex.

LOAD iir-\GftITUDE FIXED POItiT
HALFHORD (U'H!)

Load register ARlh with the
magnitude of the halfword contained
in location Clh.

Operation Code 3D
Type FOi'illi1t 1
Operand Format R, @ = N, X
Type Address ing o.h ha lfvJOrd 1 eVE
Symbolic Notationl(a,h)I-+ARlh

ARlh is loaded with the 2's
complement of (&) if ((i.) is
negative.

fro..9.!'amrni ng Note: The ri ght ha lfvJOrd or 1 eft ha ltV-lOrd source operand
is selected according to the contents of the index register as in the
LH instructiQn.

"Result code for load maonitude instruction:
is set according to the~arithmetic value of
of the arithmetlc register indicated by the
is complete. The three allowable values of

Contents of ARlh after load

Negative
Positive

Zero

The result code register
the operand in the left half
R-field after the load operation
the result code are as follows:

Result Code (RL, RG, RE)

(1,0,0)

(0,1,0)

(0, 0, 1)

Program Interruption: Overflow is possible with this instruction.
When the operand is the 13rgest negative number, i.e., 8000H,

overflow wi 11 result from comp 1 emt::ntin\j . The result in regi s ter
ARlh will be 8000H·

Load Instructions 35
Section 83

LOAD MAGNITUDE FLOATING POINT (U1F)

Load register AR with the magnitude
of the contents of address a.

Operation Code 3E
Type Format 1
Operand Format R, ® = N 5X
Type Addressing a, single\'JOrd level
Symbolic Notationl(a)l~ AR

AR EJ EX~r Fraction ~]
o 7 31

Result code for load magnitude instructions: The result code register
is set according to the arithmetic value of the operand in the register
indicated by the R-field after the, load operation is complete. The two
allowable values of the result code are as follows:

Contents of AR after load Result Code

Negative Not possible
Positive 0 1 0

Zero 0 0 1

Program InterruEtion: None.

36

LOAD MAGNITUDE FLOATING POINT
DOUBLEWORD (LMD)

Load register ARD with the
magnitude of the contents of
doubleword address ad.

Operation Code
Type Fa rmat
Operand Format
Type Addressing
Symbolic Notation

3F
1
R, @ = N, X
ad. doubleword level
I (ad) I -;- ;,RD

PrOllrarlming Note: DoublevlOrds are restricted to even-odd memoy'y addr'ess
pal r-s-and regis'fer address pai rs.

Result code for doubleword load: The result code register is set
accordi ng to the ari thmetfc-vafue of the daub 1 e~'Jord oper'and in
register ARD (composed of whole word registers AR and AR + 1). The
two allowable values of the result code are as follows:

Contents of ARD after load Result Code (~.L> _RG,
Negative Not possible

Positi ve (0, 1 , 0)

Zero (0, 0, 1)

Program Interruption: Specification error if R-field is odd.

RE)

Load Instructi ons 37
Section 83

,C'/~Jl NEGATIVE HORD
~l"-:r. POHn (LN) { ... t , • .J

Load register AR with the
p~~ative of the contents of
addn:'ss .0..

Operation Code 30
Type Format 1
Operand Format R, @ = N ,X
Type Addressing a., singleword level
Symbol;c Notation ... (o.) -+ AR

Pr.Q!p'ar.iming Note: Two's complement representation is used for
~qa-Uve numbey's in fixed point instructions.

R(;$ult code for load negative instruction?_: The result code register
lsset according to the arithmetic value of the operand in the register
indicated by the R-field after the load operation is complete. The
three allowable values of the result code are as follows:

"Contents of AR after load Result code (RL, RG, RE)

Negative (1 , 0, 0)
Positive "(0, 1 , 0)
Zero (O, 0, 1)

~rogram Interruption: Overflow possible on LN. When the operand is
the largest negative number, i.e., 8000 OOOOH overflow will result
from complementing. The result in register R will be 8000 OOOOH'

38

LOAD NEGATIVE HALFWORD
FIXED POINT (UIH)

Load the left half of register AR
with the negative of the contents of
address exh'

Operation Code 31
Type Format 1
Operand Fonnat H, ~ = N,X
Type Address-ing (ih' halfvJOrd level
Symbol ic Nntation 1/) AR

- v::"'h -}- LH

Pl~ograrnr1.!2..'].SLL1.9te_: TviO' s complement representation is used for nega t i ve
numbers in fixed point instructions, The right halfword or left halfword
source operand is selected according to the contents of the index register
as in the LH instruction,

Result code for load ne9..ative instructions: The result code register is
set according to the arithmetic value of the operJnd in theleft half of the
arithmetic' register indicated by the R-field after the load operation is com-
plete, The three allowable values of the result code are as follows:

Content s of ARt.H after Load Result code (RL, RG, RE)

Negative (1 .) 0, 0)

Positive (0, 1 , 0)

Zero (0, 0, 1)

Program Interruption: Overflow possible. When,the operand is the
largest negative number, i.e., 8000H overflow wll1 result from

complementing, The result in register R will be 8000H,

Load Instructions 39
Section 83

40

LO/l.D NEGATIVE FLOATING
POINT WORD (LNF)

Load register AR with the
neqative of the contents of
adch-ess a.

Operation Code 32
Type Format 1
Operand Format R, ® ::: N ,X
Type Addressing a~ singleword level
Symbolic Notation-(a) -r AR

~-----.-~-----------------------------

Prograrnminq Note: The negative form of floating !Joint numbers involves -a-changeo:rs i gn on ly.

Result cod~ for 1 Dad negatj ve in_structi o.:.~: The result code reg; ster'
is set accord"ing to the arithmetic value of the operand in the register
indicated by the R-fie1d after the load operation is complete. The
three allowable values of the result code are as follows:

Contents of AR after load

Negative
Positive
Zero

Progt'am Interru~tion: None.

LOAD NEGATIVE FLOATING
POINT DOUBLEWORD (LND)

Load doubleword register
ARD with the negative of the
contents of address ad.

Result code (RL.

(1, 0, 0)

(0, 1 , 0)

(0, 0, 1)

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

RG. RE)

33
1

.R,@=N,X
ad' doubleword level

- (a.d)"+ ARD

Programming Note: The negative form of floating point numbers involves
a change of sign only. Also, the R-field must be even, specifying an
even-odd singleword register address pair.

Result Code for Load Negative Doubleword: The result code register is
set according to the arithmetic value of the doubleword operand in
regi s ter ARD (composed Of whole "'lord regi s ters AR and AR + 1). The three
allowable values of the result code are as follows:

Contents of ARD after load Result code (RL, RG, RE)

Negativ-c , ..
\ I , 0, 0)

Positive (0, 1 , o)

Zero (0, 0, 1)

Program Interruption: Specification error if R-field is odd.

LOAD NEGATIVE MAGNITUDE
FIXED POINT SINGLEWORD (LNM)

Load register AR with the
negative of the magnitude of (a).

Operation code
Type Format
Operand Format
Type Addressing
Symbolic Notation

38
1
R,0=: N, X
a, singleword level
-I (a) I ~ AR

Pro9r'a~~:ling Note: Ti-IO I S complem2nt representation is used for negative
numbers in fixed point instructions.

Result code for 19ad negati ve magnitude tl!~ tructi on5_: The result code
register is set according to the arithmeLic villue of the operand in
the register indicated by the R-field after the load operation is
complete. The two allowable values of the result code are as follows:

Contents of AR after load

Negative
Positive
Zero

pr~~am I nterrupt.i on: None.

Result code (RL, RG, RE)

(1,0,0)

Not possible
(0, 0, 1)

Load Instructions 41
Section B3

·,_Or,D NEGATIVE r,lAGNITUDE
. lif-\LF\~ORD FI XED PO I NT (LNt~H)

Load halfvJOrd Y'egisterARlh
with the negative of the magnitude
of (11) .

I Operation Code
Type FoY'mat

t Operand Format
Type Addressing

._ Symbolic Notation

39
1
R,@= N, X
O'h > ha 1 f\</o I'd 1 eve 1
-I ("~h)l + ARl h

Progn3l~lli ~IiLJ1~ts:..?_: Ri ght ha H-"fOrd or 1 eft ha Hword from centra 1 memory
or regist.c;y' fife is selected acco~'ding to the LSB of the index reg-ister
specified by the T-field ~s in the LH instruction. Negative numbers are
represented in twols complen~nt notation.

Resul ~ co~..e for_lQil!L_~.9il,!ive ma_~Ltude i nsttuc:...ti on~_: The resuH code
register is set according to the arithmetic value of the operand in the
left half of the. register indicated by the R-field after the load operation
is complete. The two allowable values of the result code are as follows:

Contents of ARth_after load

Negative
Positive
Zero

Program InterrJ:!£..tion: None.

42

Result code (RL, RG, RE)

(1,0,0)

Not possible

(0, 0, 1)

LOAD NEGATIVE MAGNITUDE
FLOATING POINT SINGLEWORD (LNMF)

Load singleword register AR
with the negative of the magnitude
of (a).

Operation Code
Type FOl'mat
Operand Format
Type Addressing
Symbolic Notation

3A
"I
R,@= N, X
a, singleword level - I(a)j -+ AR

'/

Progt'.?-lTifll1J:1iL~()te_: The negative form of floating point numbel'S involves
a change of sign only.

ResulL Code for Load ~ati ve~~~nitude Instruct-j ons: The result code
register is set according to the arithmetic value of the operand
in the register indicated by the R-field after the load operation
is complete. The two allowable values of the result code are as
follows:

Contents of AR after load

Negative
Positive

Zero

Program Interruption: None.

Result code (RL$ RG, RE)

(1,0,0)

Not Possible
(0, 0, 1)

load Instructions 43
Section 83

44

LOAD NEGATIVE MAGNITUDE
DOUGLEWORD (LNMD)

Load doubleword register ARD
with the negative of the magnitude
of (ctd)".

Operation Code
Type Format
Operand Format
Type {\ddrcss;ng
Symbolic Notation

38
1
R) @"; ", : , X
ad ,: .. ' .. :' . :?h'ord 1 eve 1
-Ir." .' -. ~ RD \.."'t!, r~l

-----...•. __ ._----
Program!n-il!iJ_ Notes: The negRtive form of floating point numbers ir .. \'~S
a change of si~ln only. Also) the R-field must be even, specifyin;
an even--odd single\\'ol~d register address pair.

B-esu1t~ode "EEl Loa{L!~~ti ve)·lQ..9nLtuc!..~_In~_~ruc~.5 on: The result c:.~~ ~'eoi ster
1S set according to tile arifflmet-ic value of the doublewot'd operanc . '~t:gister
ARD (composed of whole word registers AR and AR + 1). The two al~ >.;:,: ~.~
values of the result code are as follows:

Contents of ARD after load

Negative
Positi ve
Zero

Result code (RL, R:::, ~,:::)
.... r __

(1, 0) 0)

Not possible
(0, 0, 1)

Program Interruption: Specification error if R-field is odd.

LOAD FILE (LF)

The contents of central
memory octet a are entered into
the eight word register file
designated by the R-field.
There are six forms of the LF
instruction having OP code ~B.

Ope ra t i on Code
Type Format
Operand Format
Type AddY'ess i ng
Symbolic Notation

1B
9
M,® N$ X
a , octet level

(a)oct. ~ RF

The distinction is made according to the contents
OP code 18 may be broken down as follows:

of the R-field!

Designation register file
R-fie1d designated by R-field Hexadeci ma 1 locations ----
XOOO Base register file A 0-7
XOOl Base register file 8 8-F
X010 General arithmetic reg. file C 10-17
XOll General arithmetic reg. file D 18-1 F
X100 Index register file X 20-27
X10l Ve·ctor register file V 28-2F

XllX. No operation, no registers loaded

Programming Notes: The three low order bits of a are ignored so that
octet a means the octet in which \-Jord a is located. Also, if a ~ 2F
and M = 0, then a references the register file which contains a •
An R-field bit of X indicates that the bit is ignored (a don't care),

Result code: Not affected.

Program Interruption: None.

Load Instructions 45
Section 83

LOAD FILE MULTIPLE (LFt·1)

The contents of six con­
secutive mCmOl"y octets starting

IF
-3

(a)N,X with location a are entered into
an six eight-.. "orci register f'lles
(A. B. C) D. X, and V) in physical
loca.tions 1 through ::'r (hexadecimal).

Operation Code
Type Forma.t
Operand Format
Type Address'ing
Symbolic r~otation

a) octet level
(a)oct. ~ all RF

ProQranminq Note: The three low order bits of a are ignored so that
Iccatlon cii$-on a fuil octet boundary.

(a) .. _> no entrl'
(a+ 1)-.;:" BRl

(~ + 2) --I:> B~2 ~Base Register Files A and B

•

(a + F) -0+ B~

(a + 10)--> A;o-~
: ~.. I ~eneral Register Files C and 0
(a + IF) --+ ~

(a + 20)--t> XRO
• •
• • ~Index Register File, X • •

(a+ 27) -4> XR7

(a + 2S) --+ XRS
• •
• • ~Vector Register File, V
• •

(a + 2F) -..... XRF

Result Code: Not affected.

Program Tnt€rruptio~' < Specification prror if a 2F and M = O.

46

,-

EXCHANGE WORDS (XCH)

An exchange instruction stores
the contents of arithmetic register
AR into location a and stores the
previous contents of location a
into register AR. It exchanges
the contents of AR and a.
Only a single length exchange
instruction exists in the ASC.

Ope ra t i on Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

lA
2
~,® N, X
a , singleword level
(AR) -+ a
(a) -+ AR

Programming Note: Ifa.::: 2F and M = 0, then two registers are
exchanged. One is ah/ays an arithmetic register and the other may
be selected from any register of the register file.

Result Code: Not affected.

Program Interruption: None.

Load Instructions 47
Section B3

\

1.0/\0 AR I THt·1ET I C
EXCEPTION MASK (LAM)

Load bits 4 through 7 of
the contents of location a into
til.:: fOUl' bit a\~ithmeti c excep­
tion mask register.

EASK{l.GlE AE CONDITIONS:

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

12
8

® = N, X
a t singleword level
(a4_7 -+- AE .~ask

An interrupt signal from the CP to the PP will ~ecome true i~ an
e adthmetic exception is detected and the mask blt correspondlng to

that arithmetic exception has been set to a "oneil.
1 ,......, masked ON ,-.., interrupt possible
Or-masked OFF ,-..-J no interrupt poss i b 1 e

Programming Note: Address a may address the base or index registers
which may contain a mask stored from a previous BLB or BLX instruction.
The R-field is not used.

Result Code: Not affected.

AE Condition Code: Not affected.

Protram Interruption: Alteration of the AE mask register will cause an
art hmetic exception program interruption if the corresponding bits of the AE
condition register and AE mask re~ister are b~th "cne ll after the LAM instruc­
tiQ,n is completed.

48

lOAD ARITHr~ETI C
EXCEPTION CONDITION (LAC)

load bits 0 through 3 of
the contents of location a
into the 'four bit arithmetic
exception condition code
reg; s ter.

AE CONDITION REGISTER

D - Divide check

Operation Code
Type Format
Operand Format
Type Adth'es sing
Symbolic Notation

U

o 1 2 3

F - Fixed point overflow
o - Floating point overflow
U - Floating point underflow

13
8

I ® == Ns X
a • singleword level
(~)0-3 -'> AE Condo

Bit (D,F,0,U) zero, indicates no arithmetic
exception condition.

Bit (D,F,0 or U) equal one, indicates an actiye
AE condition.

Programning Note: Address a may address the base or index registers
which may contain an arithmetic exception condition code stored from
a previou~ BlB or BLX instruction. The R-field is not used.

Result Code: Not affected.

AE Condition Code: Changed to the state of (a)0-3.
~,

Program Interruption: Alteration of the AE condition register will cause
an arithmetic exception program interruption if the corresponding bits of the
AE condition register and,AE mask reg~ster are both "one" after the LAC
instruction is completed.

Load Instructipns 49
SectlOn 83

LOAD LOOK AHEAD (LLA)

Tnis instruction provides
U~e instruction look-ahead unit
in the CP control hard',va re \.Ji th
advance address 'informa,tion r'e­
lating"to a subsequent Branch
instruction for which it is known

t the branch path will norcBlly

Operation Code
Type Fon:12lt
Operand Format
Type Addressing
Symbolic Notation

16
10
I
Immediate
N2i• 31 ,+ Be 4,--

(PC) ~ SR

t~ken. The LLA instruction does not influence the decision thJt is
made bv a Branch instruction) it only increases the execution speed of
a clos~d instruction loop.

The LLA instruction loads the 8 least significant bits (bit positions
24 th}'ougil 31) of the N-field of this instruction into the branch counter
(Be) internal to the CP control. Also~ the program counter (PC) is entered
into the bl'arlch addressl'egi ster (BR) internal to the CP control. These
intenial registers (BC and BR) are not addressable by CP program.

Proqramming Notes: The value, N, which is entered into the branch countpl~
-~ " sliould be equal to the difference'of instruction locations behleen this
Load look-Ahead instruction and t~e Branch instruction for which the LLA
is intended. For example~ if the LLA instruction is stored in location 401
and the Branch instruction is stored in location 429, then the value of N
should be equal to 28. If any other Branch instructions occur between
these locations and if one of the b1"anch paths is taken, then the informa­
tion in the branch look-ahead hardvvare ~Jil1 be dicarded. Such intermediate
Branch instY'uctions proceed normally when the branch paths are not taken
and the look-ahead information remains current while the branch counter
continues its count dovm. Regardless of whether or not an intermediate
Skip instruction results in the skip being taken, the computation to
determine the value for N should include both the skip instruction and
the instruction following the Skip instru:tion.

The maximum applicable loop size is 255 instructions including the LLA
instruction. The LLA instruction must be included at the top of the
program loop so that the branch counter and branch address register can
be re-initialized each time the proc·:am returns,to the top of the loop.

The R-field ;s not used.

Result Code: Not affected.

Program Interruption: None.

50

LOAD ONEIS COMPLEI~ENT (LO)

The onels complement of
location a is entered into
al~ithrnetic l~egister ML Bit
po s it ion S \Ii it h 1 lsi n (a)
are lOQded as OIS in AR and,
vice versa.

Opera ti on Code
Type F or'ma t
Opertlnd Format
Type f\ddressing
Symbolic Notation

lE
1
R, ® =: N, X
a • sinqleword level
(-;);' AR.

J J
whEire j ranges fro,: ° through 31

Res~lt Code for Load One's Complement Instruction: The result code
regist"er'is set according to the arithmetic vallie of the oper'and in
the register indicated by the AR field after the load operation
is complete. The three allowable values of the result code are
as follows:

Contents of AR after load

Negative
Positive

Zero

Program Interruption: None.

Result Code
(RL, RG, RE)

(l,O,O)
(0,1,0)

(Os 0, 1)

Load Instructions 51
Section 83

Duplicate ofpg 51

STORE HJ1.LFHORD (STH)

The contents of the left
half of arithmetic register AR
is stored into halfl,vord locationtih.

Operation Code
Type Format
Operand For'mat
Type Addressing
Symbolic Notation

25
2
R, ® N~ X
ah, halfvlord level
(AR1h) -+ 0:h

------~~~----------.. -~.-.-g~-.-------
Programming Note: ah represents an address fO\~ which displaceme'ht
i nd-exi n-gTs used and as such denotes the pr'oper ha lfworcl address.
In particular, an odd index value selects the least significant half
(right half) of a singleword location. An even index value addresses
the left halfword of a singleword location. The left half word is
selected when not indexed.

-No index or
even index
value.

(~A_R_l_h __ --,-r_i_g_no_r_e_d-.!l"""~ 1 oc as enter~g)her~ I unchanged

° 15 16 31 ° 15 16 31

Odd index
value. 1L-:_A_R_1_h __ ----'-_i g_n_o_r_e_d_--,I-- 1 DC as

I unchanged entered here
(ah)

° 15 16 31 ° 15 16 31

Result Code for Store Halfword Instruction: The result code register is
set according to- the arithmetic value of the operand in halfword location ah
after the store operation is complete. The three allowable values
of the result code are as follows:

Contents of address ah after store

Negative
Positive
Zero

Program Interruption: None.

;0),

Result code
(RL~ RG, RE)

(1 , 0, 0)

(0, 1 , 0)

(0, 0, 1)

Store Instructions 53
Section B3

54

STORE AR ITHMETIC REGISTER
df;J..FWORU INTO RIGHT Hr-\LF~JORD (STR)

The right half of arithmetic
register AR is stored into the
ri~ht half of a singleword
location when not indexed.

Operation Code
Type-Format
Operand Format
Type Addressing

Symbolic Nota.tion

20
2
R~ @ N, X
ah ' halfword

r reversed
(ARrh) -+ Cthr

If indexed s an even index value selects the right half of a singleword
location f_-~torage. An odd index value add}~esses the left halfword of
the next consecutive singleword. This convention is reversed from normal v

addressing.

No index or
even index
value.

Odd index
value

unchanged

o -15

I entf~~1 !ere I unchanged

a 15 16 31

Programming Note: When an array is addressed consecutively by indexing
\'lith this instruction (or with STL), an even index value addresses the
right half of a singleword location as in the preceding paragraph, but
~dlen this even index value is incremented by unity (forming an odd index
value), the register operand is entered into the left half of the next
consecutive singleword location.

Also, \"hen ah 5. 5F (halfword address) and M = 0, then the operand is
stot'ed into ~ halfword register using the same addressing convention
as is used for memory.

Result code for store instructions: The result code register is set_
according to the arithmetic value of the operand in halfword location
ah after the store operation is complete. the three allowable values
oT the result code are as follows:

Contents of address a h after stor€

Negative
Positive
Zero

Program Interruption: None

Result code
(RL, RG, RE)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

STORE ARITHMETIC
REGISTER LEFT HALFWORD
INTO RIGHT HALFWORD (STL)

Operation Code
Type Fonna t
Operand Format
Type Addressing

Symbolic Notation

29
2
R, ® N, X
ahr , ha lfvwrd

reversed
(AR1h) -+ a

hr

The left half of
arithmetic register AR is
stored into the right half
of a singlel'iorcl location a,s
\'Jhen not i nd€xed. If indexed. ,
an even index value selects the right half of a singleword location for
storage. An odd index value addresses the left halfword of the next con­
se~utive singleword. This convention is reversed from normal addressing.

No index "ignOre~
~

or even ARl h 1 oc (~s unchanged

index value. ,
0 15 16 31 0 15 16

--
31

Odd index

I "AR, h ignored I Loc L:.:ered here\ unchanged value.
a +1 (ab) s .

0 15 16 31 0 15 16

Programming Note: See programming note under STR ; nstructi on,

Result code for Store Instructions: The result code register is set
acco-rding to the arithmetic value of the operand in the central memory
address, ah' after the store operation is complete. The three allowable
values of the result code are as follows:

Contents of address ah after sto~

Negative

Positive

Zero

Program Interruption: None.

Result code
(RL, RG, RE)

(1 • 0, 0)
(0, 1. 0)
(O, 0, 1)

Store Instructions 55
Section 63

31

56

STORE DOUBLEWORO (STO)

The co~tents of the
doubleword register ARD is
stored into the doubleword
location specified by ad'

Operation Code
Type Forrr.at
Opel~and Format
Type Addressing
Symbolic Notation

27
2
R~ @ N, X
ad' doubleword level
(ARD) -+ ad

Programl1ing Note: OoublevJOrd registers and doublevlOrd locations are
restricted to even-odd singleword address pairs,

Result code for store instructions: The result code registel~ is set
according to the arithmetic value of the operand in location ad after
the store operation is complete. The three allm·Jable values Of the
result code are as follows:

Contents of address ad after store

Negative
Positive
Zero

Result code
(RL, RG, RE)

(1,0,.0)

(0,1,0)

(0, 0, 1)

program Interruption: Possible specification error if R is odd.

STORE PROGRAM STATUS WORD (SPS)

The full program status
doubleword (64 bits) is stored

Operation Code
Type FOI'nlat
Operilnd Format
Type Addr'essing
Symbolic Notation

'----------

22
3
@ N) X
CL , s i ng1 e\'lord
PSH -+- CL

in central memory only on specia1
signal from the PPU. This instruc­
tion (SPS) stores only the first
half (32 bits) of the doubleword.
The last half of the program status
doubleword is stored into singleword
the MEM USAGE, BSR, CC and RC status
the-format:

locatiun a. This instruction stOl'es
inforrn?tion into rnernory according to

o 16 20 24 28 31

Loc. a
[NoCuse=r-cr----

- (Zero) MEM.
US/\GE - -

BSR r CC I~

where f~Ej~ USAGE refers to Centl'a1 r1emory Usage information.

BSR refers to the Branch or Skip condition register.

CC refers t~ the Condition Code.

RC refers to theR~sult Code.
See Program Status Doubleword for more detailed information

on the meaning of these bit designations.

Programming Note: The R-field is not used.

Result Code: Unaffected.

Program Interruption: None.

STORE ZERO IN WORD (STZ)

Zero is stored into
20
3

@)N, X

1 eve 1

1 oc a t ion CL. The R -fie 1 d
is not used.

Operation Code
Type FOl~mat

Operand Format
Type Addressing
Symbolic Notation

« , singleword level
o -+- a

Result Code Setting for Store Zero Instructio~s: The r~sult code is
set only to the value: (RL, RG, RE) = (0, 0, 1).

Program Interruption: None.

Store Ins tructi ons 57
Section B3

STORE ZERO IN
HALHJORD (STZH)

Zero is stored into
location,ah' The R-'~'ie-Id,is not
used. Dlsplacement lndexlng
selects normal halfword
addresses,i.e., left ht:llf\<,/Ords
are sel ected i'Jhen the index
value is even.

Operation Code
Type Format
Openlnd Forma. t
Type J.\ddressi ng
Symbolic Notation

21
3

@N, X
B • halfword level
(f -+ O'il ...

Res~lt Code Setting for Store Zero Instructions: The result code is
set only to the valuc:--rf<L, RG" f{E) = (0, O,~.

Prooram Interruption: None. _.::.....:::...i _________ .

STORE ZERO IN
DOUBLEWORD (STZD)

Zero is stored into·
location Cld' The R-field
is not usee.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic notation

23
3
® N, X
ad' doubleword level
o -+ ad

Result Code Setting for Store Zero Instructions: The result code is set
only to the value: (RL, RG, RE) - (0, 0, 1).

Program Interruption: None.

58

STORE N£GATIVE FIXED
PQINT SINGLEWORD (STN)

Store the negative of
the contents of singleword
arithmetic register AR into
location a. The 2 1 s complement
of the value in AR is stored.

Operation Code
Type Format
Operand Format
Type Adcl res sing I Symbol ic Notation

34
2
R, ®. N, X
a , singleword level
- (AR) -+ a

Ii'

Result Code Settinq for Store Negative Instructions: The result code
is -set according to the arithmetic value in location a after the store
is complete. The three possible values of the result code are:

Contents of a after store

Zero
Positive
Negative

Result Code (RL, RG, RE)

CO, 0,1)

(0,1,0)

(l, 0, 0)

Program Interruption: Fixed point overflow will occur if the
arithmetic register contains the largest negative value (8000 OOOO)hex'
The result stored into location a is (8000 OOOO)h if the largest
negative value is stored. ex

Store Instructions 59
Section B3

F liEGATIVE
rIX~D POINT HALFWORD (STNH)

Store the negative of the
contents of the left half of
(:rith:netic reqister AR into
h2; 1 f.-;ord 1 oea t; on CLh' The 2 I S

lcment of the h~lfword value
is stored.

Operation Code
Type Format
Operand FOi'ma t
Type Addressing
Symbolic Notation

35
2
R, ® N, X
0h' halfword level
- (ARl h) ->- ah

~.-.---------

Result Code Setting for Store Negative Instructions: The result code is
s'cr-according to the arithmetic value--:rnlia1fi'JOrd 'location nh after the
store is complete. The three possible values of the result code are:

Contents of ah after store Result code jRL, RG, RE)

Zero (0, 0, 1).

. Pas i tive (0, 1 , 0)

Negative (1 ~ 0, 0)

Pro~ram Interruption: Fixed point overfloH will occur if the arithmetic
,:-eg1ster contains the lat~gest negative value (8000)h . The result stored
in location a is (8000)hex if the largest negative' ex value is stored.

STORE NEGATIVE FLOATING
POINT SINGLEWORD (STNF)

Store the negative of the
contents of singleword arithmetic
register AR into locationa.
This involves a change of sign
in floating point ~epresentation.

Operati nn Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

36
2
R,@ N, X,I
a , Singleword le
- (AR) -+ a

Result Code Setting for Store Negative histructions: The result code is
set according to the arithmetic value in location a after the store is
complete. The three possible values of the result code are:

Contents of a after store

Z~ro

Positive
Negative

r.rogram Interruption: None.

Result Code (RL, RG, RE)

(0, 0, 1)

(0, 1 , 0)

(1 , 0, 0)

STORE NEGATIVE FLOATING
POINT DOUBLEWORD (STNO)

Store the negative of the
contents of doubleword arithmetic
register Il.RD into location ad­
This involves a change of sign
in floating point representation.

Operation Code
Type Format
Operand Format LType Addressing

2mboliC Notation

37
2
R, ® N, X
ad, Daub 1 evlOrd 1 eve 1
""-- (ARD) -+ acl

Result Code Setting for Store Negative Instructions. The result code is
set according to the arithmetic value in-CfOuD1evlOl-d location arl after the
store is complete. The three possible values of the result cone are:

Contents of ad after store Result Code (RL, RG, RE)

Zero (0, 0, 1)

Positive (0, 1 , 0)

Negat-ive (1, 0, 0)

Program Interruption: Specification error if R-field is odd.

STORE ONEIS COMPLEMENT
SINGLEWORO (STO)

Store the onels complement of
the contents of singleword arithmetic
register AR into location a. Zero
bits in AR are stored as ones in a.
and vice versa.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

2E
2
R, ® N~ X

a , singleword level -(AR)j -+ ex j

for j range 0 thru 3

Result Code Setting for Store Onels Complement: The result code is set ..
according to the arithmetic value in singleword location Ct. after the
store is complete. The three possible values of the result code are:

Contents of Ct. after store

Zero
Positive

Negative

Program Interruption: None. ,

Result Code (RL, RG, RE)

(0, 0, 1)

(0,1,0)

(1,0,0)

Store Instructions 61
Section 83

STORE ONE'S COMPLEMENT
l!f\LHI0RD (STOHl

Store the one's complement
of the contents of the left half
of arithmetic register AR into
halfv/ot~d location a.,'1- Zero bits
in ARlh are stored as ones in a
and vi ce versa.'

Operation Code
Type Format
'Operand Format
Type Addressing
Symbolic Notation

2A
2
R, ® N, X
~b~Jfword level
(fIRl h) j -r Cthj
for j range a thru 15

Result Code .~.!tit:!lLf9r StoJ::~ One's CO.!'!lp}ernent: The result code is set
according to the arithmetic value in halflflOi'd location ah after the
store is complete. The three possible values of the result code arc:

Contents of ab after store

Zero
Positive
Negative

Progl~am Interruption: None.

62

Result Code

(0, 0,

(0, 1 ,

(1, 0,

(RL, RG, RE)

1)

0)

0)

STORE REGl STE'R FI LE (STF)

The contents of eiqht
consecutive registers, from
the register file designated
by the R-field, are stored
into centra 1 memory octet CL •

Source Register Fi 1 e
R-field Designated by the R··Field

XOOO Base register File A
XOOl Base register File B

X010 Arithmetic register File C
XOll Arithmetic register File 0

X100 Index Register File X
X10l Vector File V
Xll X Octet of zeros

Operation Code
Type Format
Operund Format
Type Addressing
Symbolic Notation

28
9
r~,@N,X
CL~ octet level

RF + CL octet

Hexadecimal Location in
Regi stel~ Fi 1 e

0-7
8-F

10-17

18-1F
20-27

28-2F

Programming Notes: The three least significant bits of singleword address CL

are ignored when an octet referenced is the one which contains singleword
address CL.

Also, ita ~ 2F and M = 0, then CL references an octet of the register
file. Register files may be moved or loaded with an octet of zeros
by using such an address with an R-field value of 6 or 7.

Result Code: Not affected.

Program Interruption: None.
, ,

Store Instructions 63
Section 83

STORE REGISTER FILES,
MULTIPLE (STH))

The contents of six con­
secutive register octets (reg­
ister files A, B, C, D, X, and
V) are stored into six consecutive
mem')Y'Y octets s taxti ng vri th lo­
cation 0:.

Operation Code
Type Format
Operand FOt'ma t
Type Addressing
Symbolic Notation

Zero -+ 0:

(81) -~ (J. +1

(B 2) -+ (J. + 2

•
...

•
•
•

•
•
•

•
•
•

•
•

a + F

a + 10

0: + 11

•
•
•

a + 1 F

a +:\
a +;j
a + 28

•
•
•

(V7) -+ a + 2F

STORE
BASE

REGISTER
FILES A & B

STORE
ARITHMETIC

REGISTER

FILES C & D

STORE
INDEX

REGISTER
FILE,X

STORE
VECTOR REGISTER
FI LE, V

2F
3

(ay N~ X
(J. , octet level
1\11 RF-+ ct(6 octets)

Programming Note: Ifa~2F and M = 0, then an illegal operation is specified.
This results-ln-program interruption.

Result Code: Not affected.

Program Interruption: Specification error if a. ~ 2F and M = O.

64

ARITH~iETI C I NSTfWCTI ONS

ADD WORD (A)

The four forms of the add word
i nstructi on i ndi cated by OP codes
are listed as follows:

OP'Code

40
60
62

62

R-Field

AR
BR

Range 0 thru 7
addresses XR
o thru 7.

Range 8 thru F
addresses VR
o thru 7.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

Register Involved

Arithmetic
Base
Index

Vector

40~ 60~ 62
1
R,@= N, X
at singleword level
(R) + (0) ' R

OP Code 40 - The whole word fixed point value in location a is added
to arithmetic register AR specified by the R-field. Location a
may be in centrCll memory or in one of the registers of the register
file. The result is stored into arithmetic register AR.

OP Code 60: Add the whole word contents of location a to the contents
of base register BR, specified by the R-field, and store the result into
base register SR.

OP Code 62 - Add th€ whclc word contents of location a to the contents
of index or vector ,r..egis:ter XR or VR, specified by the R-field and store
the result into index or vector register XR or VR.

Index register if 0 -= R ~ 7
Vector register if 8 !; R ~ F.

Result Code Setting: 'The result code is set according to the result of
the operation as follows:

Arithmetic 0Eeration Result

(R) L- 0

(R) 7- 0

(R) .: 0
Program Interruption: Fixed point overflow is

Result Code (RL, RG, RE)

(1 , 0, 0)

(0, 1 , 0)

(0, 0, 1)

possible.

Arithmetic Instructions 65
Section B3

, ~!ORD H1f,lEDIATE (AI)

The four forms of the
tjd \'lord immediate instruction

Opel"a t i on Code
Type Format
Operand Format
Type Addl"e~;si ng
Symbo 1 i c Nota ti on

i catod by OP codes are listed
,)"; ollm'ls:

OP Code

50

70

72

72

R-Field

AR
BR

Range a thru 7
addresses XR
a thru 7.

Range 8 thru F
addresses VR
a thru 7.

Arithmetic

Base
Index

Vector

50, 70, 72
4
R, I, X
Immediate
(R) + n -p. R

OP Code 50 - Add the singleword arithmetic immediate operand to the contents
c;rar;thmetic register AR, specified by the R-field, and store the result
into arithmetic register AR.

Code 70 - Add the singleword arithmetic immediate operand to base register
,-speciTied by the R-field, and store the result into base register BR.

OP Code 72 - Add the singleword arithmetic immediate operand to the index
or vector register specified by the R-field, and store the result into
index or vector register XR or VR.

~~$ult Code Setting: The result code is set according to the result of
the operation as follows:

Arithmetic Oeeration -Resu 1 t Result Code (RL, RG, RE)
(R) .:::. 0 (1, 0, 0)

(Rj)0- 0 (0, 1 , 0)

(R) = 0 (0, 0, 1)

~rogram InterruEtion: Fixed point overflow is possible.

66

ADD H/\LFWORD (AH)

The halfword fixed point
~alue in location Qh is added to the
left half of singleword arithmetic
register AR specified by the R-Field.
The result is stored into the left
half of arithmetic register AR.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

41
1
R,@== N, X
ah, halfword level
(AR1h) + (ah)~ARlh

PFiOgramming Notes: Half\'JOrd fixed point arithmetic operat-ions acquir'e
t ~ register operand from the left half of arithmetic register AR. The
second operand is a half\'lOrd from location ah ItJhere ah speCifies a halfword
address by normal displacenient indexing. The result of a halfword arithmetic
operation is stored into the left half of arithmetic register AR.

Location ~ may be in central memory or in the register file. If a." ~ 5F
and M = 0, ther'\ ~ addresses one of the 96 (decimal) halfword registers
of the registe~ file ..

Result Code Setting: The result code is set according to the result of
the operation as follows:

Arithmetic Operation Result

(ARl h L<. °
(ARlh)"> °
(AR1 h) -.:: °

Result Code (RL, RG, RE)

(1,0,0)

(0, 1. 9)
(0, 0, 1)

Program Interruption: Fixed point overflow is possible.

Ari thmetic Instructions 67
Section 83

ADD HALFWORD IMMEDIATE (AIH) .

The halfword immediate operand
is added to the left half of single­
word arithmetic register AR specified
by the R-field. The result is stored
into the left half of register AR ..

Operation Code
Type Fomat
Operand Format
Type Addressing
Symbolic Notation

51
4
R, I, X
Immediate
(ARlh) ... n ~ ARlh

Programming Notes: The combined N&N fields form the immediate (mMED)
operand fOI" halfword instructions. The MSB of the f-i-field i5 the sign
bit. This immediate operand can still employ the indexing option to
effect an operand modification, of the form ml~ED + (X), where U1f·1ED is
defined above.

Result Code Setting: The result code is set according to the result of
the operation as follows:

Arithmetic OQeration Result Result Code (RL, RG, RE)

(R) <:... 0 (1,0,0)

(R) 7 0 (0, 1 , 0)

(R) =- 0 (0, 0, 1)

Program Interruption: Fixed point overflow is possible.

ADD FLOATING POINT WORD (AF)

The singleword floating point
operand in location a"is added to
arithmetic register AR specified
by the R-field. The result is
stored into register AR.

Operation Code
Type Format
Operand Format
lype Addressing
Symbolic Notation

42
1
R,@= N, X
a singleword level
(AR) + (a) -+ AR

Programming Note: Floating point inputs must be jexadecimally normalized.

Result Code setf~ng: The result code ;s set according to the result of the
operation as fo ows: ..

Arithmetic Operation Result

(R) L.. 0

(R) > O'

(~) -= 0

Result Code (RL, RG, RE)

(1,0,0)

(0, 1, "0)

(0, 0, 1)

trogram Interruption: Floating point overflow and underflow are possible.

68

ADD FLOATING POINT OOUBLEWORD (AFD)

The doubleword floatin~ point
operand in location Cd is aaded to
arithmetic register ARD specified
by the even R-field value. The
result is stored into doubleword
register ARD.

Opera ti on Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

43
1
R,@= N, X
ad, ooublell/ord leve1
(ARD) + (ad)-7ARD

Programming Notes: Doubleword floating point arithmetic operations involve
two daub 1 evwi'd operands. One operand is from reg; s ters J\R and AR + 1,
considered as a 64-bit floating point number, where AR + 1 contains the
low ordel' bits of the number. The other opel~and (memory operand) is a
double\'wl'd from singleword memory locations a and a + 1. The result is
stored into registers AR and AR + 1, where the R-field ranges from 0
through E (hexadecimal). Only even-odd reg; ster addr'ess pai rs and memory

'address pairs are permissible for doubleword operations,

Floating point inputs must be hexadecimally normalized.

Result Code Setting: The result code is set accordi ng to the result
of the operation as follows:

Arithmetic 'Operatio~ Result Result Code (RL s RG, RE)

(R) L 0 (1 ~ O~ 0)

(R) :;:0- 0 (0, 1 ~ 0)

(R) :: 0 (O~ O~ 1)

Program Interruption: Floatir't'Y 'Point overflm'l and underflow are possible.
Program specification error ifR-field is odd.

Arithmetic Instructions 69
Section B3

ADD MAGNITUDE FIXED POINT WORD (AM)

The magnitude of the singlcword
fixed point value in location a
is added to the arithmetic register
specifi ed by the R-·f; e 1 d. The result
is stored into arithmetic register
AR designated by the R-field.

Operation Code
Type Forma.t
Opet~and Format
Type Il.ddrcss i ng
Symbolic Notation

44
1
R,@= N, X

a, singlev:ord
(AR) + \(an -~ AR

Fe~l~Code Setti~l: The result code (RL, RG, RE) is set according to
the result of the operation as follows:

(AR) < a
(AR) ;> a
(AR) 0:: a

(1, 0, 0)

(a, 1, 0)

(0, 0, 1)

Pt:9.."q,r.Cim In~e!ruption: Overflow is possible. Special cases are shown belm'!
wnen tFie operand from Central Nemory is the largest negative value. Fixed
point overflow is possible when (a) is not the largest negative value and (AR) is
positive.

Value Valu~ Result of Result Code Fixed Point
.91_ (AR) of~a) 1 AR) ~LlC:LL _S..§j:.tjnq_ Overfl ow

Zero 8000 0000 (AR) + 8000: 0000 Negative Yes
Positive 8000 0000 (AR) + 8000 0000 Negative Yes
Negative 8000 0000 (AR) + 8000 0000 Positive No

70

ADD MAGNITUDE FIXED
POINT HALHIORD (J\~1H)

The magnitude of the fixed
point value in halfword location uh
is added to the left half of
singleword arithmetic register
AR specified by the R-field. The
result is stored into the left
half of whole word arithmetic
register' AR designated by the
R-field.

Operation Code
Type Format
Operand Format
Type P,dcil'essing
Symbolic Notation

Result Code Setting: The result code (RL, RG, RE) is set according to the
ha 1 fywrd result of the operation as follows:

(AR1h) < 0 (1, 0, 0)

(AR1h) ';7 a (0, 1 , 0)

(AR1h) - 0 (0, 0, 1) '-

Proiram)nterruption: Overflow is possible. Special cases are shown below
wn7n tne operan~ from ~entral Memory is the largest negative value. Fixed
pOlnt o~erflo~ ~s posslble when (a) is not the largest negative value and
(AR1h) 15 posltlve.

Value Value . Result of
of (ARlh) of (oh) (AR1h) + I(uh)1

Zero 8000 (AR1h) + 8000

Positive 8000 (AR1h) + 8000

Negative 8000 (AR1h) + 8000

Result Code Fixed Point
Setting Overflow

Negative Yes
Negative Yes

Positive No

Arithmetic llilstructions 71
Section B3

NAGNITUDE FLOATING
~jQRD (l\~iF)

The magnitude of the singleword
oating point value in location a

i~ added to arithmetic register AR
ified by the R-field. The

n~su1t is stored into at'ithmf:!tic
ister AR.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

46
1
R,@= N, X
a, singleword
(AR) -I- (a) ---{}!>AR

!ro9.rom~;lLnq Not?_: Floa.ting point input.s must be he~adecimally normalized.
!~~~s~lt-.;ocre-s:ettlnfL: lhe result code (RL, RG, RE) 15 set according to
the result of the operation as follows:

(AR) <. 0

(AR) /' 0
(AR) =- 0

(1,0,0)

(0,1,0)

(0, 0, 1)

f~rogr'am Interruption: Floating point overflow is possible.

t~AGNITUDE FLOATING
NT DOUBlEWORD (AMFD)

The magnitude of the doubleword
floating point value in location ctI is
added to doubleword arithmetic register
Au~D specified by the even R-field value.
The result is stored into doubleword
arithmetic register ARD. Only even-
odd register and memory address pairs
may be used.

I Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

47
1
R,@= N, X

cd, doub 1 eword
(ARD) + (ad~ARD

~r~~jR~~ n9 fl °f~j n~e~3~r\J~gu(~L ~u~~, bRE ~ef~d~~imgU6r9?h~a1ized.
the result of the operation as follows: .

(ARD) z 0 (1, 0, 0)

(ARD) "/' 0 (0, 1, 0)

(ARD) == 0 (0, 0, 1)

Program Interruption: Floating point overflow is possible. Specification
error if R-field is odd.

72

SUBTRACT WORD (S)

The singleword fixed point value
in location is subtracted from arith­
metic register AR specif"ied by the H­
field. The result is stored into
arithmetic register AR.

Operation Code
TYPQ Format
Opct~and Format
Type ~\cldress i ng
Symbolic Notation

48
1
R.(§)= N, X

• singleword
(AR) - (oJ ~.r\R

Result Code Settinq: The result code (RL, RG, RE) is set according to
the result of-f}~o·peration as follo\c'Js:

(AR) L. a (1 , 0, 0)

(AR) > 0 (0, 1 , 0)

(AR) :::: 0 (0, 0, 1)

Program Interru~tion: Fixed point. overfl ov.J

SUBTRACT WORD IMMEDIATE (SI)
Subtract the singleword arithmetic

immedi ate operand fJ:'om the conte lts
of arithmetic register AR specified
by the R-field. The result is stored
into register AR.

is possible.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic NotDtion

58
4
R, I, X
Immediate
(AR) .. 11 ->:>P.R

Programming Note: For arithmetic singleword immediate operand instructions,
the sign bit is extended into the most significant half of the word.
This immediate operand can still employ the indexing option to effect an
operand modification of the form IMt'1ED lI!-' (X).

Result Code Setting: Fixed point arithmetic instructions set the result
code (RL, RG, RE) according to the result of the operation as follows:

(AR) L. 0 (1, 0, 0)

(AR) "7 0 (0, 1, 0)

(AR) :;; 0 (0, 0, 1)

Program Interruption: Fixed point overflow is possible.

Arithmetic Instructions 73
Section 83

SUBl RACT IIALFVJORD (5H)

The halfword fixed point value
in location eth' is subtracted from the
left half of arithmetlC register AR
sp8cified by the R-fielcl. The result
is stored into the left half of
fcq1stcr AR.

I
Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

49
1
R,@= N, X
~, halfword
(AR1h) - (<tt)~AR'h

p~sult Code Setting: The result code (RL, RG, RE) is set according to the~
'I-CS-~-lt of the operation as follows:

(AR1h) L 0 (1, 0, 0)
(AR1h) ~7 0 (0, 1, 0)
(AR1h) ::: 0 (0, 0, 1)

prQ3rum Interruption: Fixed point overflow is possible.

SUBTRACT HALFWORD IMMEDIATE (SIH)

Subtract the ha 1 f~lOrd immedi ate
operand from the contents of the left
half of arithmetic register AR specified
by the R-field. The result is stored
into the left half of register AR.

Operation Code
Type Format
Operand Format
Type Addressing ,
Symbolic Notation

59
4
R, I, X
Immediate
(ARl h) - n ~ AR, h

Pr.99r'omming Note: The combined M&N fields form the immediate operand for
halfword instructions. The MSB of the M-field is the sign bit. This
illmediate operand can still employ the indexing option to effect an
operand modification of the form IMMED + (X).

Besult Code Setting: The result code (RL, RG, RE) ,is set according 10
the result of the operation as follows:

(AR1h) L- 0 (1, 0, 0)

(AR1h) ,.. 0 (0, 1 , 0)

(AR1h) ;: ° (0, 0, 1)

Program InterruEtion: Fixed point overflow is possible.

74

SUBTRACT FLOArING POINT WORD (SF)

The singleword floating point
value in location a is subtracted
from arithmetic register AR specified
by the R-field. The result ;s stored
into arithmetic register AR.

Operation Code
Type Format
Operand Format
Type Addressing
S~nbolic Notation

4A
1
R,@= N, X

a , S i ngl eword
(AR) - (~a) ~AR

Programming Note: Floating point inputs must be hexadecimal1y normalized . ..
Result Code Setting: The result code (RL, RG, RE) is set according to the
result of the operation as follows:

AR L.. 0 (1, 0, 0)
AR >' 0 (0, 1, 0)
AR = 0 (0, 0, 1)

~rogram Interruption: Floating point overflow and underflow are possible.

SUBTRACT FLOATING POINT DOUBLEWORD (SFD)

The doubleword floating point
value in location ad is sU,btracted
from arithmetic register ARD ?pecified
by the even R-field value. The result
is stored into register ARD.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

4B
1
R,@= N~ X

'1:i ~ doub 1 eword
(ARD) - (cd)~ARD

~amming Notes: Double floating point arithmetic operations involve two
aoubleword operanas. One operand is from register AR and AR + 1, considered
as a 64-bit floating point number, where AR + 1 contains the low order bits
of the number. The other operand is a doubleword from singleword locations,a

and a + 1. The result is stored into registers AR and AR + 1, where AR ranges fr
o through E (hexadecimal). Only even-odd register address ,pairs alld memory
address pairs are permissible for doub1eword operations.

Floating point inputs must be hexadecimally normalized

Result Code Setting: The result code (RL~ RG, RE) is set according to the
, result of the operation as follows:

ARD .(0 (l, 0, O)
ARD >' 0 (0, 1, 0)

ARD -; 0 (0, 0, l)

Pr~9ram Intprruption: Floating point overflow and underflow are possible.
Specification error if R-fie1d is odd.

Arithmetic Instructions 75
Section B3

TRACT MAGNITUDE FIXED
POINT I>IORD (SM)

The magnitude of the singleword
fixed point value in location Q is
subtracted from arithmetic register AR
specified by the R-field. The result
is stored into arithmetic register AR.

Operation Code
Type Format
Operand Fo\'rnat
Type addressing

LSymbolic Notat'ion

4C
1
R,@= N, X

ex , s; ng 1 ev.;oi~d
(AR) - 1(0;)!-';~ AR

Proqr~Hnming Note: Fixed point magnitude involves taking the 2 1 5 complement
fT'UienumGer' is negative.

B!~ult_~od~~.ettin9_: Th~ result code (RLt RG, RE) ;s set according to
tilC: result of the operatlon as follows:

(AR) L a (1, a $ 0)

(AR) > 0 (0, 1, 0)

(AR) ::: a (0, 0,1)

Pr.2.9I.9.r~ Interruption.: Overflo\,4;'s possible. Special cases are shown beloltl
wnen the operand from centra I memory is the largest negative value ..

. aluE: of Result of Result Fixed Point
{AR) (ARl - !{ex)1 Code Setting Overf10\,1

Zero (AR) - 8000 0000 Negative No
Pes itive (AR) - 8000 0000 Negative No
Negative (AR) - 8000 0000 Positive Yes

A 1 so, fixed point overflow is possible when (ex) is not the largest negative
va1ue and (AR) is negative.

76

SUBs-mACT tllf,\GNITUDE FIXED
POINT HAlFWORD (SMH)

The rI13gnit!lde of the ha 1f~\lord
fixed point value in location ah
is subtracted from the left half
of singleword arithmetic register
AR. The result is stored into
the left half of register AR.

Operation Code
Type F orrna t
Oper-and Format
Type fl1.ddress i ng
Symbolic Notation

40
1
R, @ := N, X
ah, ha HVlord

(AR1h) - \(ah)\+ ARlh

--_._------------,--
PI'o.9ramming Note: See prog!~amming note under Sf,1 instruction,

Result Code Settinq: The result code (RL, RG, RE) is set according to
the result of the-operation as follows:

(AR1 h) <.: 0

(AR1h) /' a
(AR, h) ::. a

(1,0, 0)

(0,1, 0)

(0, 0, 1)

Program Interrupt~~: Overflow is possible. Special cases are shown
below when the operand from central memory is the largest negative
value.

Value of Result of I Result Code Fixed Point
(AR1h) (AR,,) - \(ah) Setting Overfl ow

n
--~----- -_. ... ~-,~------ ---~-----

Zero (Ar1h) - 8000 Negative No

Positive (AR1 h) - 8000 Negative NO

Negative (AR1h) - 8000 Positive YES

Also, fixed point overflow is po~sible when (ah) is not th~ largest
negative value and (AR) is negative.

Arithmetic Instructions 77
Section B1

Stl!3TRJI,C T NAGN nUDE FLOA T.I NG
PO I NT ~':ORD (SNF)

The magnitude of the single-
word floating point value in locationa
is subtracted from arithmetic register
AR specified by the R-field. The
result is stored into register AR.

Operat"ion Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

4E
1
R,@= N, X
a, singlevJOrd
(AR) - I(cdl-+ AR

Pl~oqramminq Notes: Floating point magnitude involves changing the sign of
t~fraction if the number ;s negative. Floating point inputs must be hexa­
decima 11y normal i zed.

Result Code Setting: The result code (RL, RG, RE) is set according to
"th-e n:;sult of the operation as follows:

(AR) <. 0
(AR) > 0
(AR) = 0

(l, 0, 0)
(0,1,0)
(0,0,1)

Program Interruption: Floating point underflovi is possible.

SUBTR.ll.CT HAGNITUDE FLOATING
POINT DOUBLEt-lORD (SMFD)

The magnitude of the doub1e-
word floating point value in location ad
is subtracted from doubleword arith­
metic register ARD specified by the
even R-field value. The result is
stored into doubleword register ARD.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

4F
1
R,@= N, X
ad, doubl eword-
(ARD) - Kad){ -7 ARD

Programming Note: Floating poi-nt magnitude involves changing the sign' of the
fraction if the number is negative. "Floating point inputs must be hexadecimally
normalized~ I. - -,

Result Code Settillg: The result code (RL, RG,',RE) is set according to the
result of the operation as follows:

{ARD)L 0
(\ARD)? 0

{ARD} -:=. 0

(ls 0. 0)

(0, 1, 0)

(0, 0, 1)

Program Interruption: Floating point underflow is possible.
Specification error' if R-field is odd.

78

MULTIPLY l'lORD
FIXED POINT WORD (M)

The three forms of the M
instruction, indicated by OP
codes are listed in the following
table:

Operation Code
Type Fonnat
Operand Format
Type I\ddress i ng
Symbolic Notation

6C, 68, 6A
1
R,@)= N, X

CIs, sin~Jle\rJOrd
(R) * (a~J -~ R

or Code R-Field Register Addressed

6C
68
6A

6A

AR Arithmetic
BR Base

Range 0 thru 7 Index
address R 0 thru 7

Range 8 thru F Vector
address VR 0 thru 7

Of Code 6C: Multiple the contents of singleword arithmetic register A~
by the contents of singlevJord location a. If the singleword register
operand (AR) is selected from a~ even register address, the full 64-bit
signed integer prod~ct is stored into an even-odd address pair' (registers
AR and AR+l). If the singleword register operand is selected from an
odd register address (R-field is odd), then the least significant 32-bits
of the 64-bit signed integer:product is stored into the odd register
address specified by R.

(AR) * (as) ~ ARD

(AR) * (a~ -li' AR

if R is even
if R is odd.

OP Code 68: Multiply the singleword contents of base register BR by the
singleword contents of location a. The 32 least significant bits of the
64-bit signed integer product are stored into base register BR. There is
no product length option -

(BR) * (as) 4- BR for R even or odd.

OP Code 6A: - Multiply the singleword contents of index register XR or vector
register VR by the single\'lord contents of location a. The 32 least signifi­
cant bits of the 64-bit signed integer product are stored into index register
XR or vector register VR. There is no product length option.

(XR) * (as) -40 XR for R range 0 thru 7.
(VR) * (as) -. VR for R range 8 thru F.

Arithmetic Instructions 79
Section B3

80

Rcsu~t C~de SettinR: The \'esult code (RL, RG, RE) is set according to
the results of the operation as follows:

(R) <:. 0

(R) > 0

(R) = 0

(1,0,0)

(0,1,0)

(0, 0, 1)

Program Interruption: Fixed point overflow is possible for OP code 6C
when the R-field is odd and the product cannot be expressed in 32-bits.
Fixed point overflow is possible for OP codes 68 and 6A if the product
cannot be expressed in 32-bits. Fixed point overflow is indicated if the
33 most significant bits of the 64-bit product are not all zeros or not
a 11 ones.

MULTIPLY FIXED POINT
WORD IMMEDIATE (MI)

The three forms of the MI
instruction, indicated by OP
codes are as follows:

Oper'ation Code
Type Format
Operand Format
Type Addl~ess i ng
Symbolic Notation

7C, 78, 7f.1.
4
R, I, X
Immediate
(R)*n-wR

OP Code R-Field Register Addressed

7C ft,R Arithmetic

78 BR Base
7A Range 0 thru 7 Index

addresses XR 0 thru 7

7A Range 8 thru F Vector
addresses VR 0 thru 7

OP Code 7C: Multiply the contents of singleword arithmetic register AR
by the singleviOrd arithmetic immediate operand. If the singleword register
operand (AR) is selected fi~om an even regi ster address, then the full 64-bit
signed integer prod~ct is stored into an even-odd register address pair
(registers AR and AR+l). If the singleword register operand is selected
from an odd register address (R-field is odd), then the least significant
32-bits of the 64-bit signed integer product is stored into the odd register
address specified by R.

(AR) * n -. ARD

(AR) * n -+ AR

if R is even

is R is odd.

OP Code 78: Multiply the singleword contents of base register BR by the
singleword arithmetic immediate operand. The 32 least significant bits
of the 64 bit signed integer produ~t are stored into base register SR.
There is no product length option

'OP Code 7A:
register VR
significant
register XR

(BR) * n --- BR for Reven or odd

Multiply the singleword contents of index register XR or vector
by the singleword arithmetic immediate operand. The 32 least
bits of the 64-bit signed integer product are stored into index
or vector register VR. There is no product length option.

(XR) * n ~ XR for R range 0 thru 7

(VR) * n -\10 VR for R r~nge 8 thru F.

Arithmetic Instructions 81
Section B3

82

!<~~.l..l.l!~ode S~J:.:t!!2.9.": The result code (RL, RG, RE) is set accord"ing to
the results of the operation as follows:

(R) L.. 0

(R) '/ 0

(R)- 0

(1,0,0)

(0,1,0)

(0, 0, 1)

Er09r~:0_.l!!.!.f?E~2tion: Fixed point overflow is possible fo\~ OP Code 7C
when the R-field is odd and the product cannot be expressed in 32-bits.
Fixed point overflow is possible for OP codes 78 and 7A if the product
cannot be expressed in 32-bits.

FIXED POINT MULTIPLY
HALFWORD (r1H)

Multiply the contents of
the left half of singleword
arithmetic register AR by the
operand from halfvwl'd location a h.
The full 32-bit signed integer
product is stored into singleword
arithmetic register AR. There is no
product length option.

Operation Code
Type Fonnat
Operand Format
Type Addressing
Symbolic Notation

60
1
R,@= N~ X
ah, ha 1 fW01~d
(AR1h) * (ah) -t' AR

Besult Code Setting: The result code (RL, RG, RE) is set according to the
singleword result of the operation as follows:

(AR) <-. 0

(AR) > 0

(AR) = 0

Program Interru~tion: None.

MULTIPLY FIXED POINT
HALFWORO H1iItEOIATE (t~IH)

Multiply the contents of

(1 ,

(0,

(0,

the left half of singleword
arithmetic register AR by the
halfword immediate operand. The
full 32-bit signed integer

0,

1 ,

0,

product is stored into singleword
arithmetic register AR. There is no
product length optior..

Result Code Setting: The result code
single\vord result of the operation as

(AR) L ° (1 , 0, 0)

(AR) > 0 (0, 1 , 0)

(AR) = ° (0, 0, 1)

Program Interruption: None.

0)

0)

1)

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

(RL, RG, RE) is set
fo 11 O\'JS:

70
4
R, I, X
Immediate
(AR1h) * n -\l>AR

according to the

Arithmeti c Instructi ons 83
Section 83

MULTIPLY FLOATING
POINT ~JORD (i'iF)

Multiply the floating point
contents of singleword arithmetic
register AR by the contents of
singl~word location as. The
singleword floating point product
is stored into arithmetic register AR.

Operation Code
Type Format
Operand Format
Type Addn~ssing
Symbolic Notation

6E
1
R,@= N, X

as, singleword
(AR) * (a s) ~ AR

Result Code Settin~: The result code (RL, RG, RE) is set according to the
result of the operation as follows:

(AR) ~ 0 (1 , 0, 0)

(AR) ';> 0 (0, 1 , 0)

(AR) = 0 (0, 0, 1)

Program Interruption: Floating point overflow and underflow are possible.

MULTIPLY FLOATING POINT
OOUBlEWORD (MFD)

Multiply the floating point
contents of doubleword arithmetic.
register ARD by the contents of
doubleword location ad. The
doubleword floating point product
is stored into arithmetic register ARD.

Operation Code
Type Format
Operand Format
Type Addressing
Symbo 1 i c Nota t"j on

6F
1
R,@= N, X
ad, doub 1 eword
(ARD) * (a d) -+-ARD

Result Code Setting: The result code (RL, RG, RE) is set according to the
result of the operation as follows:

CARD) <. 0 (1, 0, 0)

(ARD) > 0 (O, 1, 0)

(ARD) = 0 {O, 0, l}"~

Program Interruption: Floating point overflow and underflow are possible.
Specification error if R-field is odd.

84

DIVIDE FIXED POINT WORD (D)

This division is of the form:
arithmetic register operand divided
by location CI. The fixed point d'iv'idend
is from the register operand and the
divison is a single~vord froin 'location as.
If the dividend is selected from an

I Opera t i on Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

64
1
R,®= N, X

as, s i ng1 e'tlOrd
(ARD/ ~t s) -'f'AR

even register address, then the dividend (a 64-bit signed integer~ is
acquired from the even-odd register address pair AR and AR+l. The 32-bit
signed integer quotient is stored into the even register, AR. The odd
register address~ AR + 1, retains the low order 32-bits of the double
length dividend.

If the dividend is selected fro~ an odd register address, then the
dividend (a 32-bit signed integer) is acquired from the odd register AR
specified by R. The 32-bit signed integer quotient is stored into register AR.

(ARD)/(Ci.S) --pAR if R is even
(AR)/(cxs) ~ AR if R is odd.

Result Code Setting: The result code (RL, RG, RE) is set according to the
result of the operation as follows:

(AR) '- 0
(AR) > 0

(AR) = 0

(1,0,0)

(0,1,0)

(0, 0, 1)

Program Interruption: Fixed point overflow is indicated if the quotient
cannot be expressed in 32-bits of register AR when the R-field is even ..
Also, a fixed point Divide Check is indicated if the divisor is equal to
zero. In either case, an AU result is stored into register AR.

Arithmetic Instructions85
Section 83

DIVIDE FIXED POINT
INMEOIATE \~ORD (DI)

This division is of the
form: arithmetic register
operand divided by the immediate
operand. The fixed point dividend
is from the register operand and
the divisor is a singleword arith­
metic immediate operand. If the

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

74
4
R, I, X
Immediate
(ARD)/n ~ AR

I'

dividend is selected from an even register address, then the dividend (a 64-
bit signed integer) is acquired from the even-odd register address pair AR and
AR + 1. The 32-bit signed integer quotient is stored into the even register
address, AR. The odd register address, AR + 1, retains the low order 32-bits
of the double length dividend. If the dividend is selected from an odd
register address, then the dividend (a 32-bit signed integer) is acquired
from the odd register AR specified by R. The 32-bit signed integer quotient
is stored into register AR.

(ARD)/n -to- AR if R is even
(AR)/n -+ AR if R is odd

Result Code Setting: The result code (RL, RG,
result of the operation as follows:

(AR) '- 0 (1 , 0, 0)

(AR) > 0 (0, 1 , 0)

(AR) = ° (0, 0, 1)

RE) is set according to the

Program Interruption: Fixed point overflow is indicated if the quotient
cannot be expressed in 32-bits of register AR when the R-field is ev€n.
Also, a fixed point divide check is indicated if the divisor is equal to
zero. In either case~ an AU result is stored into register AR.

86

DIVIDE FIXED POINT
HALFWORD (OH) .

This division is of the form:
arithmetic register operand divided
by location all. The fixed point
dividend is a 32-bit signed integer
from register AR and the division

Operation Code
Type Format
Operand Format
Type Addt'essing
Symbolic Notation

65
1
R,@= N, X
a.b' ha lfVJord
(AR) / (a.h)JI" ARl h

is a 16-bit signed integer from
half\'iOrd location ah. A 16-bit signed integer quotient is formed in
left half of register AR. The right half of register AR retains the
orde(bits of the dividend.

the
16 10\'/

Result Code Setting_: The result code (RL, RG, RE) is set according to the
result of the op~ration as follows:

(AR1h) L.. ° (1 , 0, 0)

(AR1h) »- ° (0, 1 , 0)

(AR1h) :: a (0, 0, 1)

Program Interruption: A fixed point overflow is indicated if the quotient
cannot be expressed in 16 bits. A fixed point divide check is indicated if
the divisor equals zero. In either case, an AU result is stored into the left
nalt of register AR.

DIVIDE FIXED POINT
HALFWORD IM~EDIATE (DIH)

This division is of the form:
arithmetic register operand divided
by the halfword immediate operand.
The fixed point dividend is a 32-tit
signed integer from register AR and'

Operation Code
Type Format
Operand Format
Type Addl~ess i ng
Symbolic Notation

75
4
R, I, X
Immediate
(AR}/n -~ARlh

the divisor is a 16-bit signed integer
from the halfword immediate operand. A 16-bit signed integer quotient is
formed ir. the left half of register P.R. The right half of register AR
retai ns the 16 10\</ order bits of the di vi dend.

Result Code Setting: The result code (RL, RG, RE) is set according to
the result of the operation as follows:

(AR, h) L.. a

(AR l h) :> a

(ARlh) ::: a

(1, 0, 0)

(0,1, 0)

(a, 0, 1)

Program Interruption: A fixed point overflow is indicated if the quotient
cannot be expressed in 16 bits. A fixed point divide check is indicated
if the divisor equals zero. In either case, an AU result is stored into the

left half of register AR.

Arithmetic Instructions 87
Section 83

DIVIDE FLOAT!
POINT \~ORD ([iF)

This division is of the form:
arithmetic rei:;,rister operand divided
by location n~. The floating point
dividend is fr'om the singlevwl'd
arithmetic register AR and the
division is a singleword from

I Operati on Code
Type; FOrmi.lt
Operand Format
Type Addressing
Symbolic Notation

66
1
R~ @ :: N~ X
as, S i ng1 evlOrd
(A R) / (as) -'r AR

location as. The floating point quotient is
stored into singleword register AR.

'j'

Programming Floating point d'ivis-ion results in a quotient which "is the
same 1ength -as-the dividE:'ncl and divisor from which the quotient \lias obtained.

B..es~1t Code Settin9.: The result code (RL, RG, RE) is set according to the result
of the operation as follows:

(AR)<'::O
(AR) :::>0

(AR) == 0

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Progt'am Inter!!J.p!ion: Floating pofnt exponent overflow or underflow is possible.
Divide check iHld exponent overflow is indicated if the divisor equals zero. See
the table of infinite and indefinite forms (pages 13-16) for definitions of the
register result following these program interruption conditions . .
DIVIDE FLOATING POINT
JOUBLEWORO (ufO)

This division is of the form
arithmetic ster operand divided
by locationoe. • The floating point
dividend is ff"Om the double\'wrd
arithmetic register ARO and the
divisor is a dnubleword from location
The floating point quotient is stored

I Operation Code 67
Type Format 1
Operand Format R, @ = N, X
Type addressing ad, doubleword
Symbolic Notation (A@O) / (ad) -'r ARO

ad. --.---....... --.... ~---"----- .~ .. --
into doubleword register ARD.

Programming Note: Floating point division results in a quotient which is the
same length as the dividend and divisor from which the quotient was obtained.

Result Code Setting: The result code (RL, RG, RE) is set according to the result
of the operation as follows.

(ARD) ...e. 0

(ARD) > 0

(ARD) = 0

(1, 0, 0)

(0,1,0)

(0,0,1)

program Inten'1..lption: Fioating point exponent over71IJw or underflow is possible.
Divide check and exponent overflow is indicated if the divisor equals zero. Spec­
ification errcr if R-field is odd. See the table of infinite and indefinite forms
for definitions of the register result follO\ving these program interruption con­
ditions.

88

LOGICAL INSTRUCTIONS

AND WORD (AND)
A logical AND operation is

applied at each bit position (j)
of tvw operand s i ng1 eVlOrds. One
operand is from arithmetic register
AR and the other operand is from
location a. The result is stored
into register AR.

Operation Code
Type Format
Operand Forma t
Type Addressing
Symbolic Notation

EO
1
R,@= N, X
a~ s i ng1 e\'1Q}~d
(AR) .1\ (a) .4> AE

J J
for j range 0 thru 3

Result Code Setting: The result code (RL, RG, RE) is set after each
logical operation according to the logical properties of the result

. as shown below.

All bits are "zeroll

All bits are "one"
Mixed "ones" and IlzerosH

Program Interruption: None.

AND WORD IMMEDIATE (ANDI)

The logical AND operation
is applied at each bit position (j)
of two operand sing1ewords. One
operand is from arithmetic register
AR and the other operand is the
singleword logical immediate
operand. The result is stored into
register AR.

(0, 0, 1)

(0,1,0)

(1,0,0)

Operation Code FO
Type Format 4
Operand Format R, I, X
Type Addressing ._, Immediate Logical
Symbolic Notation (AR). n n. -;.AR.

J J J
for j range ° thru 31

Programming Note: Singleword logical immediate operands are formed from
the combined M and N fields of the instruction word. Zeros are located
in the left halfword and the M and N fields make up the right halfword.
This immediate operand may be modified (prior to the logical operation)
by adding to it, the 24 LSB's of an index register designated by the
X-field. If X = 0, no modification occurs.

Resul...!, Cod~ Setting: The result code (Rt, RG, RE) is set after each
logical operation. according to the logical properties of the result
as shown below.

All bits are "zero"
All bits are."one"
Mixed "ones " and "zeros"

Program Interruption: None.

CO, 0, 1)

(0,1,0)

(l,O,O)

Logical Instructions 89
Sect; Oil 83

OR l'JORD (OR)

A logical OR operation is
applied at each bit position (j)
of t\,iO operand singlcl'!ords. One
operand is from arithmetic regis­
ter P-.R and the other opeY'2J.nd
from h~cation a. The result
is stored into register AR.

Opera t"i on Code
lype Format
Operand Format
Type Addressing
Symbolic Notation

E4
1
R, (~= N> X
Ch singlewot'd
(AR) . v (a) . -l;> AR .

J J J
for j range ° thru 31

Result_~o.de Setting: The result code (RL, RG) RE) is set after each
logical operation according to the logical properties of the result
as shoH!l bel 0\'1.

All bits are Hzeroll

All bits are lIone ll

Mixed 110nes ll and IIzeros"

(0, 0> 1)

(0,1,0)

(1,0,0)

Program I.!lterruption: None.

OR t<JORD IMMEDIATE (ORI)

A logical OR operation is
applied at each bit position (j)
of h'lo operand singlevlOrds. One
operand is from arithmetic regis­
ter AR and the other operand is
the singleword logical immediate
operand. The result is stored
into register AR.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

F4
4
R, I, X
Immediate logical
(AR) • v n. ~ AR.

J J J
for j range ° thru 31

Result Code Setting: The result code (RL, RG, RE) is set after each'
logical operation according to the logical, properties of the result
as shOlltn below.

All bits are II zero\[(0, 0, l)

All bits are II oneil (0, 1 , 0)

Mixed lIones ll and "zerosll (1, 0, 0)

Pro9ram Interruetion: None.

90

EXCLUSIVE OR WORD (XOR)

A logical EXCLUSIVE OR
operation is applied at each
bit position (j) of two
operand singlewords. One
operand is from arithmetic.
reg; s ter {1,R and tilE: other
operand is from location a.
The result is stored into
regi s tel"' AR.

Operation Code
Type Format
Operand Fonnat
Type Addressinq
Symbolic Notation

E8
1
R.@== N, X
a, sing1eword
(AR) ,(t) (a) ." AR.

J J J
for j range 0 thru 31

K--_____ _

Result Code Setting: The result code (RL, RG, RE) is set after each logical
operation according to the logical pt'operties of the l'esult as shown oe10\'1.

All bits are Il zero" (0, 0, 1)
All bits are "-one" (0: 1,0)

Mixed "ones" and "zeros" (1, 0, 0)

Program Interruption: None

EXCLUSIVE OR WORD IMMEDIATE (XORI)

A logical EXCLUSIVE OR :
operation is applied at each
bit position (j) of two
operand singlewords. One
operand is from arithmetic
register AR and the other
operand is the singleword
logical immediate operand.
The result is stored into register AR.

Operation Code
Type Format
Operand FOt~mat
Type Addressing
Symbolic Notation

F8
4
R, I, X
Immediate logical
(AR) . (f) n· ~ AR .

J J J
for j range ° thru 31

Result Code Setting: The result code (RL, RG, RE) is set after each logical
operation according to the logical properties of the result as shown below.

All bits are IIzero" (0, 0, 1)
All bits are "one ll (0,1,0)

Mixed 1I0nes" and "zeros" (1, 0, 0)

Program Interruption: None.

logical Instructions .91
Section 83

EQUIVALENCE WORD (EQC)

A logical EQUIVALENCE opera­
tion is applied at each bit posi­
tion (j) of two operand single­
~lOrds. One operand is from
arithWoetic register AR and the
other operand is from loca-
ti 011 cy.. The resul tis s tOl~ed
into register A R.

Operation Code
Type Format
Opey'and For-Illat
Type Addressing
Symbolic Notation

EC
1
R,@= N, X
Q.t sil1g1cwOI~d
(AR) . G (cy.) • -t- AR .

J J J
for j range 0 thru 31

Result Cede Setting: The result code (RL, RG, RE) is set after each logical
operation according to the logical properties of the result as shown bel 0 /.

All bits are II zero" (0, 0, 1)

All bits are "oneil (0, 1, 0)

Mixed "ones" and IIzerosll (1,0,0)

Pro9ram Interruption: None.

EQUIVALENCE WORD IMr~EDIATE (EQCI)

A logical EQUIVALENCE
operation is applied at each
bit position (j) of two operand
singlewords. One operand is
from arithmetic regi-ster AR
and the other operand is the
singleword logical immediate operand.
The result is stored into register AR.

Operation Code
Type Format
Opera:1d Format
Type Addressing
Symbolic Notation

FC
4
R, I, X
Immediate/logical
(AR) ·0 0." -4l'AR.

J J J
for j range 0 thru 31

Result Code Setting: The result code (RL, RG, RE) is set after each logical
operation according to the logical properties of the result as shown below.

All bits are II zero ll

All bits are "one"
Mixed "ones ll and "zeros"

Program Interruption: None.

92

(0, 0, 1)

(J, 1,
."

(1, 0,

0)
0)

AND DOUBLtWORD (ANOO)

A logical AND operation
is applied at each bit position
(j) of two operand doublewords.
One operand is from arithmetic
register ARD and the other
operand is from location ad.
The result is stored into
register ARD.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

E1
1
R,@= N, X

ad, doub 1 eword
(ARO)./\ (ad) .-i:'ARD.

J J J
for.) l~ange ° thru 63

Resl:!.L.t_Code SettjM,: The result code (RL, RG, RE) is set after each logical
operation according to the logical properties of the result as shown below.

All bits are II zero ll (0, 0, 1)

All bits are Hones" (0,1,0)
Mixed "ones" and "zeros ll (1,0,0)

Program Interrupti?n: Specification error if R-field is odd.

OR DOUBLEWORD (ORD)

A logical OR operation
Operation Code
Type Format
Operand Fonnat
Type Addressing
Symbolic Notation

E5
1
R.@= N. X
ad dou b 1 eVvQrd
(ARD).v (ad) ARO.

J J J

is applied at each bit position
(j) of two operand doublewords.
One operand is from arithmetic
register ARD and the other
operand is from location ad.
The result is stored' into

for j range 0 thru 63

register ARD.

Result Code Setting: The result code (RL, RG~ RE) is set after each logical
operation according to the logi£al properties of the result as shown below.

All bits are IIzeroll (0, 0, 1)

All bits are "one ll (0, 1, 0)
Mixed !lones" and "zeros" (1, 0, 0)

Program Interruption: Specification error if R-field is odd.

Logical Instructions 93
Section B3

~~CLUSIVE OR DOUBLEWORD (XORD)
. Opet'ati on Code
. Type FOt'mat

Operand Format
Type Addressing
Symbolic Notation

E9
1
R, ®= N, X

cd, doubleword
(ARD) . ® (ad) .·~ARD.
. J J J

A logical EXCLUSIVE OR
operation is applied at each
bit position (j) of two operand
doub18words. One operand is
from arithmetic register ARO
and the other operand is from
location ad. The result is
stored into register ARD.

for j range ° lhru 63

Re:..su.lt C9de Sett.ing: The result code (RL~ RG, RE) is set after each logical
operation accord"ing to the logical properties of the result as shown below.

All bits are "zero" (0, 0, 1)

All bits are 1I0nes ll (0, 1, 0)

Mixed "ones ll and IIzeros" (1, 0, 0)

Progr~m Interruption: Specification .error if R-field is odd.

EQUIVALENCE DOUBLEWORD (EQCD) -
Operation Code
Type Format
Operand Format
Ty.pe Addressing·
Symbolic Notation

ED
1
R)@= N, X
ad ~ doub 1 evvord
(ARD) l!J (a d) j+ARDj

/\ logical EQUIVALENCE
~peration is applied at each
bit position (j) of two
operand doublewords. One
operand is from arithmetic
register ARD and the other
operand is from location ad.

for j range a thru 63

The result is stored into register ARD.

Result Code Setting: The result code (RL, RG, RE) is set after each logical
operation according to the logical properties of the result as shown below.

All bits are IIzeroll (0, 0,1)

All bits are 1I0nesll (0, 1, 0)

Mixed Il~mesll and "zeros" (1, 0, 0)

Program Interruption: Specification error if R-field is odd.

94

SHIFT INSTRUCTIONS

ARITHMETIC SHIFT WORD (SA)

The contents of the single­
word arithmetic register AR,
designated by the R-field, is
shifted arithmet i ca l1y either
right or left and the result
is entered into register AR.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic: Notation

CO
4
R, I, X
Immcdi.ate
(AR) .-io- AR.

J J-sc (Arith.)

The direction and the amount of shift is determined by the shift count (SC)
information in the 7 LSBls of the N-field of the instruction wOt'd. The
direction and amount of shift may be modified by the index register specified
by the X-field when X ~ O. When modification occurs, MN and (X) are added
the same as for halfword immediate operands. The least significant 7 bHs
of the result are interpreted as a twos complement number to determine the
direction and amount of shift. This is equivalent to 7 bit addition.
Overflow of the 7 bit shift count is not detected. For example, a minus
60 indexed ~y a minus 7 gives a plus 61; plus 60 indexed by plus 6 gives
a minus 62. Bit position 25 of the N-field and of the contents of X is
interpreted as the sign position for shift instructions only. A positive
sign of the resulting shift count causes a left shift of SC bit positions.
A negative sign of the resulting shift count causes a right shift of SC bit
positions. The value of SC is \'1ithin the range: -64~SC :::;;+63. '

Arithmetic right shift (negative shift count)

, I S E sign extension

L Sign bit remains unchanged

Arithmetic left shift (positive shift count)

bits shifted

bits shifted out of
low-order bit position
are lost

thr~u~h sign ---1 S I 4 \ 46...------
posltlOn are'" I " "
lost ~~------------~

o zeros are entered
into low-order bit
position

Programming Notes: The 7-bit shift count is used for all word sizes. If the
resulting shift count should exceed the word size of 32-bits for singleword
shift instr~ctions, then the register re~ult would appear a~ follows: .

Shift Instructions 95
Section 83

Arithmetic Left Shift -:- A register result of zero \'Jith overflow detection.
"'"(6ere Ho-uld be- no overflow detection if the original value of the register
before shifting \'/as zero.

Arithmetic Ri~ht Shift - Either zero or minus one (fixed point, 21 s
cGmpH:rnent) depending on whether the original register value was positive
or negative, respectively. The M-field is not used but must be zero.

Also, the most significant bit of the T-field is not used, i.e., indirect
shift counts are not possible. The r~-field is not used, but must be Zel~O.

~esult Code Sett~: The result code (RL, RG, RE) is set according to the
arithmetic value of the result as follows:

(AR) <. 0

(AR) > 0

(AR) = 0

(1,0,0)

(0,1,0)

(0, 0, 1)

P~Dgram Interruption: Fixed point overflow is detected, for arithmetic
left shifts only, if the sign bit changes during the shift. The entire
s.hift operation designated by the shift count is completed regardless
of overflow conditions.

96

ARITHr~ETIC SHIFT H{\Lh!ORD (S~,H)

C1
4
R, I, X
Immediate

The contents of the 'j eft
half of sinalev'lord urithliJetic
register AR~ designated by the
R-field, is shifted arithmetically
either right or left and th~
result is entered into the left
half of register AR.

Oper'ation Code
Type Format
Operand Format
Type !Iddress i ng
Symbolic Notation (ArrJ h) . -+ AR 1 h .

r J J-'SC
(Arith.)

------------------.
The direction and the amount of shift
is determi ned inexactly the same manner as desc}'; bed in the SA ins tructi on.

Proqrmominq Notes: The 7-bit shift count is used for an ltIord sizes. If
the-resul~ng shift count should exceed the word size of 16-bits for half­
words, then the reg; s ter resul t \'JOul d appear as descri bed under programmi ng
notes of the SA instruction. .

Also, the most significant bit of the T-field 'is not used, i.e., indirect
shift counts are not possible. The M-field must be zero.

Result Code Setti~: The result code (RL, RG, RE) is set according to
the arithmetic value of the resu"lt as follows:

(Jl.R1h) ~ 0

(AR1 h) > O·

(AR1h)::: a

('1,0,0)

(0,1, 0)

(0, 0, 1)

Program Intern~ . .p.tion: Fixed point overflovJ is detected, fOt' arithmetic
left shifts only, if the sign bit changes during the shift. The entire
shift operation designated by the shift count is completed regardless
of overflow conditions.

Shift Instructions 97
section B3

ARITHMETIC SHIFT DOUBLEWORD (SAD)

C3
4
R, I, X
Immediate

The contents of the double­
word arithmetic register ARD~
designated by the even R-field
va.lue, is shifted at'ithme:tical1-
either right or left and the
result is entered into double­
word register ARD.

Operation Code
Type Format
Opet'and Format
Type Addl~ess i ng
Symbo"lic Notation (ARD) .··-f,,-.ARD .-sc

J J

The direction and the amount of shift is
determined in the same manner as described in the SA instruction.

PrQ9lamm~otes: The shift count (SC) cannot exceed the doubleword
size of 64-bits. Also, the most significant bit of the T-field is not

(Arith.)
"

used, i.e., indirect shift counts are not possible. The M-field must be zero.

Result Code Setting: The result code (RL~ RG, RE) is set aceoT'ding to
the arithmetic value of the doubleword result as follows:

(ARD) L.. 0 (1, 0, 0)

(ARD) > 0 (° , 1, 0)

(ARD) ;;; 0 (0, 0, 1)

Program Interruption: Fixed point overflow ;s detected, for arithmetic
left shifts only, if the sign bit changes during the shift. The entire
shift operation designated by the shift count is completed regardless
of overflow conditi.ons. Specification error if R-field is odd.

98

LOGICAL SHIFT WORD ~SL)

The contents of the single­
word arithmetic register AR, desig­
nated by the R-field, is shifted
logically and the result is entered
into arithmetic register AR.

Operation Code
Type Format
Operand Fan-nat
Type Addt'ess i ng
Symbolic Notation

C4
4
R ~ I ~ X
Immediate
(AR) . ----il" AR .

J J-SC
(log"jcal)

The direction and the amount of shift is determined by the shift count (SC)
information in the 7 LSB's of the N-field of the instruction word. The
direction and amount of shift may be modified by the index register specified
by "the X-field vIher. X t O. i\!hen modification occurs, MN and (X) are added
the same as for halfword immediate operands. The least significant 7 bits
of the result are interpreted as a twos complement number to determine the
direction and amount of shift. This is equivalent to 7 bit addition. Over­
flow of the 7 bit shift count is not detected. For example, a minus 60
indexed by a minus 7 g"ives a plus 61; plus 60 indexed by plus 6 gives a
minus 62. Bit position 25 of the N-field and of the contents of X is
interpreted as the sign position for shift instructions only. A positive
sign of the resulting shift count causes a left shift of SC bit positions.
A negative sign of the resulting shift count causes a right shift of SC
bit positions. The .value of SC is within the range: -64 5 SC S +63.

Logical right shift (negative shift count)

zeros are
inserted
into high-order
bit position

I bits shifted
O--tlioo- I---~~ out of low-order

.1..-__________ --' bit pos it i on are
lost

Logical left shift (positive shift count)

bits shifted
out of bit
pas iti on 0 are
lost

o zeros are inserted
into low-order bit
positions

logical left shifts are the same as arithmetic left shifts, except that
overflows are not detected.

Programming Notes: The 7-bit shift count is used for all word sizes.
If the resulting shift count should exceed the word size of 32-bits for
singleword shift instructions, then the register result would appear as.
follows:

Shift Instructions 99
Section B3

Logical left shift - all zeros and no overflow detection.

Logical right shift - all zeros.

Also~ the most significant bit of the T-field is not used, i.e.,
inclit'ect shift counts are not possible. The til-field must be zero.

B.~~~1.:LCode Setting.: The t'esult code (RL, RG, RE) is set acco1'ding to
the logical proper~ies of the singleword result as follows:

Nixed Itones" and "zel~os II (1 , 0, 0)

All bits are lionel! (0, 1 , 0)

All bits are II zero" (0 , 0, 1)

Pro]ram ~nterruption: None.

100

LOGICAL SHIFT HALFWORD (SLH)

The contents of the left
half of singleword arithmetic
register AR~ designated by the
R-field, is shifted logicaliy
and the result is entered into
the left half of register AR.
The direction and the amount of
shift is determined in the same
manner as described in the SL
instruction.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

C5
4
R.I,X
Immediate
(ARlh) .~ARlh.

J J-sc
(1 09 i ca 1)

Programming Note~: The 7-bit shift count is used for all word sizes. If
the resulting shift count should exceed the word size of 16-bits for half­
words, then the register result would appear as follows:

Logical left shift - all zeros and no overflow detection.

Logical right shift - all zeros.

Also, the most significant bit of the T-field i~ not used, i.e., indirect
shift counts are no~ possible. The M-field must be zero.

,!3.esult Co~e Settit:!.9:.: The l'esult code (RL. RG. RE) is set according to
the logical properties of the halfword result as follows:

Mixed "ones"

All bits are
All bits are

Program I nterl~u12ti on: None.

and lIzerosll
lI one"

"zero"

(1 , 0, 0)

(0, 1 , 0)

(0, 0, n
-m-.

Shift· Instructions 101
Section 83

lOGIC/\L SHIFT DOUBLEHORD (SLD)

The contents of the
double~ord arithmetic register
ARD, designated by the even
R-fieTd value, is shifted
logically and the result
is Gnt~red into doubleword
register ARD. The direction
and amount of shift is
rletenrli ned in the same nwnner
as described in the SL instruction.

Opc:r'a t -j on Code
Type Format
Operand F0rmat
Type {\ddress i ng
Symbolic Notation

C7
4
R, I, X
Immediate
(ARD) . -}> ARD.

J J-SC
(logical)

Proqramming Notes: The shift count (SC) cannot exceed the doubleword size
----'" ~---of 6/i·-bits s although SC may be set to mi nus 64 togetan all zeros resul t.
Also) the most significant bit of the T-field is not used, i.e., indirect
shift counts are not possible. The M-field must be zero.

Result Code ,Setting: The result code (RL, RG, RE) is set according to
the logical properti~s of the doubleword result as follows:

r'iixed lIonesll and "zeros!! (1, 0, 0)

All bits are "one" (0, 1 , 0)

All bits are IIzera" (0, 0, 1)

Pro[!,am Interr'ui2ti on: Specification error if R-field is odd.

102

CIRCULAR SHIFT WORD (SC)
CC
4
R, I, X
Immed-j ate

The contents of sin91e­
wQrd arithmetic register AR,
designated by the R-,field,
is shifted circularly and
the result is entered into
register AR.

Operation Code
Type Fonnat
Operand Format
Type f\ddr'c:s s i I1g
Symbolic Notation (AR) j--{l·/\R(j_sc)

Mod 32

The d-irection and the amount of shift is determined by the shift
count (SC) information ill the 7 LSB's of the N-field of the instruction
word. The direction and amount of shHt ITIcy be modified by tile index
reg-ister specified by the X-field vlhen X =I O. ~~hen modification occurs,
MN and (X) at'e added the same as for ha1fvwrd immediate operands. The
least significant 7 bits of the result are interpreted as a twos complement
number to determine the direction and alliount of shift. This is equiva-lent
to 7 bit addition. Overflow of the 7 bit shift count is not detected.
For example, a minus 60 indexed by a minus 7 gives a plus 61; plus 60
indexed by plus 6 gives i?- minus 62. Bit position 25 of the N-field and
of the contents of X is interpreted as the sign position for shift in­
structions orily. A positive sign of the resulting shift count causes .
a left shift of SC bit positions. A negative sign of the resulting shift
count causes a right shift of SC Pit positions. The value of SC is within
the y'ange: -64::::' SC ~ +63.

Circular right shift (negative shift count)

Bits shifted out of low-order bit position are entered into high-order
bit position.

Circular left shift (positive shift count)

Bits shifted out of high-order bit position are entered into the low­
order bit position. Overflows are not detected.

Shift Instructions 103
Section B3

f.\:'~9I~'!l!~i.n __ 2JLCl!.~~_: Th0. 7-bit shift count is used for all \'lOrd sizes.
If the resulting shift count stlould exceed the word size of 32-bits
for singleword shift instructions, then the register result would
appear as follows:

Circular right shift - Actual right shift equals shift count
plus 32. -(SC is modulo 32).

Circular left shift - Actual left shHt equals shHt count
minus 32. (SC is moc:ul0 32).

Also, the most significRnt bit of the T-field is not used, i.e., indirect
shift counts are not possible. The M-field must be zero.

Result Code Setting: The result cede (RL, RG, RE) is set according to
the" 1 ogicaiproperti es of the s-ingleword resuH as fenows:

Mixed Ilones ll and "zeros" n, 0, 0)

All- bits are II oneil (0. 1 , 0)

All bits are II zero ll {O, 0, on
Pro9.~~!!, Interrul?tion: None.

104

CIRCULAR SH1FT HPILn'!ORD (SOl)

CD
4

The contents of the left
half of s in91 e\~'otd iirithr.E';ti c
regi s ter !\R> des i gnD tc~d bj the
R-field, is shifted cir"cu'!ClI"ly
and the result is entered

OpeFCi ti on Code
Type Format
Operand Format
Type Addr'ess i ng
Syn~olic Not~tion

R, I, X
Immediate
(ARlh)--7 ARlh

into tile 1 eft ho. If of reDi s ter j (j··sc)
AR. The: di~~ection and the amount
of shi ft is detenn'i nc:~d 'j n the same ,-_._-_._-----------
manner as described in the SC instruction.

Proqramr:1inq J\;otcs: The 7-bit shift count is used fer all word sizes.
"[[the '('es-LiTclngshift cOlmt should ~)~~tg the t'JOl-d s'ize of '16-bits
for halfwords, then the registel" result would appeal' as fol1ows:

Circular right shift - Actual right shift equals
shift count plus nearest
smaller multiple of 16 which
brings SC into the range

-16 ~ SC ~ 0 (SC is modulo 16).

Circular left shift - Actual left shift equals
shift count minus nearest
smaller mult'iple of 16 which
brings SC into the range
0::: sc ~ 15 (SC is modulo 16)

{\lso, the most significant bit of the T-field is no! used, i.e.~ i'1-
direct shift counts are not possible. The M-field must be zero.

Result Code Setting: The result code (RL, RG, RE) is set according to
the logicarproperties of the ha1fvJOrd result as follows:

Mixed "ones" and "zeros u

An bits are "one"

All bits are "zero"

Program I nterru [!t ion: None.

(1 , 0,

(Oll 1 ,

(0, 0,

0)

0)

1)

Shift Instructions 105
Section 83

CIRCULAR SHIFT DOUBLEWORD (SeD)

The contents of the
doublewora arithmetic regis-
ter ARO, des i 9natE:d by the
even R-field value, is shifted
circularly and fh2 result is
entered into doubleword regis-
ter ARD. The direction and the
amount of shift is determined in
the same manner- as descri bed "j n the
SC ins truct"j on.

Operation Code
Type Format
Operand FOri:1at
Type l\ddress i ng
Symbolic Notation

CF
4
R, I, X
Immediate
(ARD) j-4' !\RDU_sc)

Mod 64

£.r..2..9.!:~~'Tli~~LNotes : The shift count (SC) cannot _~c~ed the daub 1 eword
size of G4-bits. The original value results if SC is zero or minus 64.
Also, the most significant bit of the T-field is not used, i.e.,
indirect shift counts are not possible. The M-field must be zero.

Result Code Set1jn9..: The result code (RL, RG, RE) is set according
to the logi~roperties of the doubleword result as follows:

Mixed "ones" and "zeros" (l, 0, 0)

All bits are "one" (0, 1, 0)

All bits are "zero" (0,0,1)

Pro~ram Interruption: Specification error if R-field is odd.

106

BIT REVERSAL WORD (RVS) I
I Operation Code

Reverse the right most

C6
4
R, I, X
Irmnec1i ate
See Below

n bits of the contents of
arithmetic register AR. The
other bits of (AR) remain
unchanged. n is equal to
IMMED + (X) and is restricted

l Type Format
Operand Format
Type Address -j ng
Symbolic Notation

to the range a ~ n ~ -32, where n
Let m = -n

is a 2 1 s complement number.

For m == (2)3.4, ... 32)

(R) j+31-m --'b R32 _j for j = (1,2,3, ... n)

(R)k for k = (O,l,2, ... 31-m) remain unchanged.

For m = 0 or 1, the contents of R remain unchanged.

For example, suppose n = -7

Before REV
. Reg. R 1234567

After REV
Reg. R unchanged 7654321

Result Code Sett; ng.: The result code (RL, RG, RE)
properties of the sing1eword result as the logical

Mixed "ones" and "zeros" (1 ,

All bits are lIone ll (0,

All bits are uzero" (O~

Program Interruption: None.

is set according
follows:

0, 0)
1 , 0)
0, 1)

to

Shift Instructions 107
Section B3

108

cm~;:;AHE INSTRUCTIONS -"-------------
r.nt·~PARE WO RD (C)

01' Code C8
Opcrati on Code
Type Format
Operand Format

C8, CE
1

This compare instruction tests the Type Addres$ing
R, @ ::.- N, X
a, sing1ewol'd
(R) .: (~) cQntents of singh:ord arithmet·ic register I Symbolic Notation

AR rel?tive to the contents of location a ____ . _______ _
and preserves the resu1 t of the comV:1r; son
in the con~are co~e bits (Cl, CG, CE) as specified below. The contents of AR
and a remain unch~nged.
C01'~PARE. Cod~_Settin.9.: (Cl, CG,

Of> Code CE

(AR) < (a)
(AR) > (a)
(AR) :: (a)

eE)
(1,0,0)
(0,1,0)
(0,0,1)

This instruction compares the contents of the index reoister XR or vector
register VR, designated by R,relative to the contents of the fixed point single
length operand in location a and preserves the result of the comparison in the
compare code bits shown below. The contents of XR or VR and a remain unchanged.

XR for R-field range ° thru 7
VR for R-field range 8 thru F

(Cl, CG, CE)

(1,0,0)
(0,1,0)
CO, 0, 1)

Result Code: Not Affected

Program Interruption: None

COMPARE WORD IMMEDIATE (CI)

OP CODE D8

This compare immediate
singleword instruction tests
the contents of arithmetic re­
gister AR relative to a single
length arithmetic immediate
operand and preserves the result
of the comparison in the compare
code bits. The contents of AR
remain unchanged.

Operation Code
Type Format
Operand Fvr-mat
Type Addressing

Symbolic Notation

D8 it DE
4
R, I, X
Immediate,
arith~ whole word
(R): n

Campa re r.ode Se~! i n~l: (CL, CG, C E)

(AR) <. H1HfO

(AR)). U;~1EO

(AR):: Hit-tED

OP CODE DE

(1, O~ 0)

(0,1,0)

(O~ 0, 1)

This compare immediate' singlewol'd instruction tests the contents of
index register XR or V€ctOl~ t'egistet' VR, designated by R, relative to a
single length arithmetic immediate operand and preserves the result of the
comparison in the compare code bits. The contents of XR and VR remain un­
ch?nged.

XR for R-field range 0 thru 7

VR for R-field range 8 thru F

Com~are Code Setti n9:' (Cl, CG,'CE)

(R) L.. IMMED

(R) > IMMEO

(R)::::. IMJ~EO

Result Code: Not Affected

Program Interruption: None

COMPARE HAlFWORO (CH)

(1 ,

(0,

(0,

The compare halfword instruction tests
the contents of the 16 most significant bits
of arithmetic register AR relative to the
contents of ha1fword location ah, and pre­
serves the result of the comparison in com­
pare code bits as' specified below. The
contents of AR and a remain unchanged.

Compare Code Setting: (Cl, CG, CE)

(ARlh) < (ah)
(~R1h) '> (ah)
(ARlh) = {ah}

Result Code: Not Affected

Program Interruption: None

(1,0,0)
(O~ 1.0)
(0, 0, 1)

0,
1,
0,

0)
0)

1)

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

C9
1
R, @ = N, X

a-h., ,nr-l fwortl
(ARlh):(ah)

Compare Instructions 109
Sect; on B3 .

COMPARE HALFWORD IMMEDIATE (CIH)
D9
4
R, I) X

A compare imm2diatc halfword
'instruction tests the most signi­
ficant 16 bits of arithmetic
reg'istel~ AR relative to a ha'ifword
immediate operand and preserves the
result of the comparison in the
compare code bits. The contents of
register AR remains unchanged.

Operati on Coele
Type format
Operand Fo)'mat
Type J!,ddress i ng
Symbolic Notation

Immed"l ate ha"' fvlOrd
(ARl h) :nrh

Co§..£ar~:.._ Sett~: (CL, CG, CE)

(AHlh) < nrh (1 ~ 0, 0)
(P.Rlh) > nrh (0, 1 , 0)
(ARlh) :: nrh (0, 0) 1)

Result Code: Not Affected

Program Interr~tion: None

cm~PARE FLOATING POINT HORD (CF)

The compare floating point instruction
tests the contents of the singleword arith­
metic register AR relative to the contents
of location a and preserves the result of
the comparison in the compare code bits as
specified below. The contents of AR and a
rama; n unchanged.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

CA
1
R, @ :: N, X
a, sing1e\'Iord
(AR}:{a)

PROGRAr~t'lING NOTE: Floating point input arguments must be hexadecimally
prior to use in a floating point compare i~struction.

Compare Code Setting: (CL, CG,'CE)

norma1ized

(AR) < (a)
(AR) > (a)
(AR) :: (a)

Result Code: Not Affected

Program Inter-ruption: None

110

(1) 0, 0).
CO, 1,0)
CO, 0, l}

COMPARE FLOATING POINT DOUBLfWORD (CFD)

The compare instruction tests the con-
tents of the doubleltJOrd a.rithmetic register
ARDrelative to the contents of location ad
and preserves the result of the comparison
in the compare code bits as specified below.

Operation Code
Type Format loperand Format
Type Addressing
Symbolic Notation

CB
1
R, @ ::; N, X
ad, doub 1 eword
(ARD) : (a,d)

The contents of ARD and ad remain uncha~ged.
PROGfV:\r~tIJING NOTE: Floi:lting Doint input arguments Elust

TrTor:-'f,rusef'iY'a floating po-int comlJr.lre illstruct-ion.
be hexadecimally normalized

~are Code Settins.: (CL. CG. CE)

(ARD) <: (ad)
(ARU) "l (ad)
(ARD) = ,(ad)

Result Code: Not Affected

(1, 0, 0)
(0,1,0)
(Ot 0, 1)

!:.!:Qgram Interruption: Specification enor if R-field is odd.

COMPARE LOGICAL AND (CAND)

This whole word logical compare instruc­
tion first performs a logical "ANO" operation
on the contents of register AR and the con­
tents of location 0.. The compare code bits
are set accor'ding to the logical p~'opcrt-ies
of the 32-bit result, but the result is not
stored.

ComEare Code ~etting: (CL, CG, CE)

. Mi xed "ones II and "zeros II (1 , 0,
All bits are "one ll (0, 1 ,
All bits are "zero tl (0, 0,

Result Code: Not Affected

Program Interru~tion: None

0)
0)
1)

Operation Code
Type Format
Operand Format
Type I\ddressing
Symbolic Notation

E2
1
R, @ :: N) X
ex, singleword
(AR) . 1\ (c:) .

J J
for' j range
o thru 31

Compare Instructions 111
section B3

(,C~IPM~E LOGICAL ItAt~DII U1f1EDIf1T[(Cld'mI)
F2
4 11115 logical illlm2dic;.te "in5tn!ct-jon

first ~Jc:}'fon;)s a logical HANIY'opel'ation
on the' ~inglcwurd contents of register
M: Jnd t.he singlevlOrc logical immediate
o~~rand. The compare code is set ac­
Ci'..If!.HII:1 to the log-ical pY'operties of "
th: 32-bit result, but the result ;s

Operati on Cndf.,!
Type Form::.t
Operand Format
Type J\ddress i ng
Symbolic Notation

R, I, X
Immediate, logical SW
(J\R)j 1\ n.

J
for j range 0 thru 31

fi(.t stofc:d. The contents of register AR l'e!l1ain unchanged by this instruction.

r,1i xed "11 s II and 110 1 S II
All bits are "111
All bi ts are 110 11

Result Code: Not Affected

_!lro,grarn Interrupti on:· None

CON?ARE LOGICAL OR (COR)

(1,0,0)
(0,1,0)
(0, O~ 1)

This logical compare instruction first
performs a logical IIOR" operation on the
contents of register AR and the contents of
location o. The compare code bits are set
according to the logical properties of the
32-bit result, but the result is not stored.

The logical properties and the respec­
tive compare codes are listed below.

Conpare Code Setting: (CL, CG, CE)

Mixed lIone5 11 'and "zeros"
All bits are "oneil
All bits are "zero"

Result Code: Not Affected

Program Interruption: None

112

(l,0,0)
{O, 1, O}
(0,0,1)

Operati on Code
Type Format
Opel~and Format
Type Addressing
Symbolic Notation

E6
1
R, @ = N" X
a, sing1eword
(AR}j V {a)j

for j range ° thru 31

Op0ration Code F6
Type Fo {'ma t 4 This logical immediate instruc­

tion first performs a logical "OR"
operation on the contents of s'ingle­
vlord resi ster AR and tile s i n91 €vlOid
logical ;miTIt",diate o~'er().nd. The com-
paTe code is set according to the
1 09i ca 1 propert'i es of tile 32-!Jit
result, but the result is not storerl.

I Ope.r'and Format I;, I. X I Type J',ddy~ssing Immediate, logical SW

S YI_-_'1 b c_~_ 1 i C _H l_l,-,l: a t ion __ (A_R_)_j _\1_ n j
for j range a thru 31

The contents of register AR
remain unchanged by logical compare instruct-ions.

Comp-nre Cod2 Set_ting,: (el. CG, CE)

~'ixed "1's" and "OISII
All bits are lilll
All bi ts are 110"

Result Code: Not Affected

Program Interruption: None

(1,0,0)
(0,1,0)
CO, 0, 1)

COMPARE LOGICAL "ANO II DOUBlEWORD (CANDD)

Doubleword logical compare instructions
first perform the specified logical operation
on the contents of doubleword register ARD
and the contents of doubleword location ad.
The compare code bits are set according to
the logical properties of the 64-bit result.
but the result ;s not stored. The logical
properties and the respective compare codes
are listed below.

Compare Code Setting: (CL, CG, CE)

Mixed "1'5" and "0'SIl
All bits are 111"
All bits are "0"

Result Code: Not Affected

(1,0,0)
(0,1,0)
(0, 0, 1)

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

E3
1
R. @ :; N, X
ad- doubleword
(ARD)j !\ (ad)j
for j range ° thru 63

Program Interruption; Specification error if R-field is odd.

Compare Instructions 113
Section B3

lOGIC{,L "OR H DOUBLE HORD (CORD)

Doubleword logical compare instructions
f'il'st pt"!rform the specified logical operation
on the contents of double\'/ot'd reSlistei~ ARD
,or;0 the contents of doub1 ewoy'd 1 ocati on ad.
F,(' con:;Ji.iI'C COGE' bits are set according to
p;.:. logica1 propetties of the 64-bit y<esult,

the result is not stored. The logical
rties and the respective compal'e codes

ar~ listed below.

f0~11~~XC Code Setting: (CL, CG, CE)

Mixed II"\ISII and IIO'S"
All bits are 11111
All bits are HOIl

Result Code: Not Affected

(1,0,0)
(0,1,0)
(0, 0, 1)

I Opcl'J.ti on Code
, Type Format

Operand Format
·r.ype Addressing
Symbolic Notation

Program I.nterru!?tiol1: Specification error if R-field is odd.

114

E7
1
R, @ ::; N, X
ad <Ioub 1 eword
(ARD)j V (ad)j

for j range
o thru 93

CONDITION/\L BRL\NCH INSTRIJCl IONS ----------------"
BRA~CH ON Cm~PARISON THUE (B-cc)

The R-field of the instruction word is
matched with the compare code indicators
and a branch is taken to location B if the
logica1 equation, COND"" r1'CUr2'CG+T3'CE,
is true, otherwise the next instruction in
sequence is takEn. Terms CL, CG~ & CE in

Operation Code
Type Forrnat
Openmd Format
Ty~):; l\ddress i ng
Synil";':Jl i c Notati on

91
9
t,l,@:: N, X
6) branch
6 -+ PC if corm

the logical equation are the compare code indicators. while r, I r2~ & ~3 are the
3 LSB's of the R-field. The most sifJnificant bit of thp. R-field 15 ignored.
The instruction mnem0n~c, R-field value. and branch condition are shown below
for the case of a Branch on Co:::parison True instrLlction ope1'ating on the compare
code setting of a pl'e\/iou5 Arithmetic Comparison instruction. These instructions
i flel ude C" CiT) t:H! "nH~. CF, C FD.

t~nernoni c R-field
NOP XOOO
BE XOOl
BG X010
BGE X011
BL X100
BLE X101
BNE X110
B Xl 11

Compare Code: Not Affected

Result Code: Not Affected

Program Interruption: None

Branch on Comparison Condition
take next instruction
(R) :: (a)

(R) > (a)

(R) ~ (a)

(R) < (a)

(R) ~ (a)

(R) t (a)

unconditional branch

Conditional Branch InstrucUons 1"15
Section B3

The branch address, S~ for a I3ranch on CondHion True "instruct"ion is u
f~mction of the T, r~, and N-f"ields oY tr!e insti'uctioll \'lord as follows:

T fv! Branch Address, B
------- ----.--- ---_ .. _-_._--

0

1-7

0

1·· 7

8

9-F

8

9-F

where

0 N*+(PC) Relative to program counter

0 N'~+(PC)+{T) Relative to p1'ogram counter p"lus index

l-F N+(M) Base plus displacement

l··F

0

0

l-F

l-F

N1·(f~)+(T) Base plus displacement plus index

(N*+(PC» Indirect relative to pr'ogram counter

(N*+(PC)+(T-B)) Indirect relative to program counter plus index

(N+(M» Indirect relative to base plus displ~cement

(N+(H)+(T-8» Indirect relative to base plus d"isplacement
pl us index

. N + (1) is Base address plus displacement (N is positive, 12-bit
number) and N* ~ Signed N-field, ll-bits plus sign bit, 2 1 s complement.

lhis branch address definition is used for all test and branch instl~uctions.

These i riel ude:
BE. BG, BGE, BL, BLE, BNE, B
BCZ, BCO, BCNM, BCM, BCNO, BCNZ
BZ, BPL. BZP t 8MI, BZM, BNZ
BRZ t BRO) BRNt~, BRM, ERN}), BRNZ
BU, BO, BUD, BX) BXU, BXO, BXUO, BO
BOU, BOO, BOUD, BOX, BDXU, BOXO, BOXUO
eXEC, CLB; .BlX " .
IBZ. IBNZ, OBZ, OBNZ

When an indirect branch address is specified (T ~8), the indirect address
format is the same as that used by indirect addressing. except that addresses
~2F reference central memory regardl ess of 11.
If a branch address is less than or equal to 2F (8 ~ 2F), then the program
branches to central memory location' -regardless of the M and T-field speci­
fications. Branches cann0t reference the re~ister file.

116

Relative branch ,addresses are generated as follo~s:

For ~1 :::: a
N-field

Progt'am
counter

+

Branch address, S

8

31
-.-~

31
____ ...:..:.N*_+~~P-=-C) ---- -____ J

Conditional Branch Instructions 117
Section 83

BfU\NCH ON CO!,tPf\RISON AFTER LOGICJ\L
COMPARISON INSTRUCTIONS (BeC)'

The Brallch on Comparison instruction
described on the previous page also func­
tions as a 'log; C (:1 '1 test to determine the
olltcOm(~ of a previous Logical Compar)son
inst)'uction. These instruct.ions 'inc1ude:

Opel'uti on Code
TYr)c Format
Operand Format
Type t\ddress; ng
Symbolic Notation

CAND, COR, CANDD~ CORD, CANDI, CORIo

r'':nf~monic R-field f3ranch condit'ion ------------------_._----,-_ .. _- ~----

NOP XOOO Do not branch
BCZ XOOl All bits are zero
BCQ X010 An bits are one
BCNM XOl1 Not mixed
BCM X100 1·1; xed ze t'OS & ones
BCf·lQ Xl01 Not all ones
BCNZ X110 Not all zeros
B X111 Unconditional branch .

Result Code: Not Affected

Program)nterrupti 0'1: None

118

91
9
M, @":;: N, X
6, branch
B -)- PC if COND

BRANCH ON RESULT CODE TRUE (nRC)

The R-field of the instruction \'lord is
matched with the result code indicators and
a branch is taken to location 8 if the logi­
cal equation, COND ~ r ·RL+rn·RG+r.'RE, is
true, othendse the nelt instrllcti~n in se-

Opel'a ti on Code
Type Formilt
Operand Format
Type Address; ng
Symbolic Notation

95
9
~~~@=N,X 
8, branch 
8 + PC if R COND 

quence is taken. Ter;ns RL, RG, & RE in the .~ 
logical equB.tion are the result code indicators, while r" r 2 , & r3 are the 
3 lSB's of the R-field. The most significant bit of the R-fteld i~ ignored. 
The instruction mnemonic, R-field value, and branch condition are shovJn below 
for the case of a Branch on Result Code True instruction operating on the 
result tode setting of a previous Load, Stores or Arithmetic instruction. 

Mnemonic R-field Branch on REsult Code Condition 
~~~~------~~~~------~~~~~~ 

NOP XOOO
BZ XOOl
BPL X010
BZP X01l

: BMI X100
B2M X10l
BNZ X110
B Xl11

Compare Code: Not Affected

Result Code: Not Affected

Program Interruption: None

take next instruction
(R) = 0
(R) > 0
(R) > 0 -
(R) < 0
(R) ~ a
(R) ; 0
uncondi tiona 1 branch

Conditional Branch Instructions 119
Section B3

BAAt·:CH ON RESULT CODE INSTRUCTION
AFTER A LOGICAL INSTRUCTION (BUn:

Operat"j on Code
Type Format

95
9
M, @ =:: N, X
B, branch
B + PC if R CONO

The bra.nch on Result Code instruction
desc.'r-J bed on the prey; ous page al so func­
tie.'f .. S as a logical test to determine the
outcome of a pi"evious logical instruction.
The resul t COdA setti ng is cletermi ned by
the current 1 og1 ca 1 propel't i es of the

lopcrond Format
Type Address i l1g
Symbolic Notation
---------,---------

most recently refei~enced register, providing
a logical instruction.

that regi ste}~ v!as referenced by

t·1nemoni c

NOP
" BRZ
BRO

BRNM
BRM
BIDlO

BRNZ
B

Cos' a re Code:

Resul t Code:

R-field Branch condition
XOOO Do not branch
XOOl All bits are zero
X010 All bits are one
XOll Not mixed
X100 Mixed zeros & ones
X10l Not all ones
X1l0 Not all zeros
Xl 11 Unconditional branch

The indicator code settings are not affected by any of the
branch instructions just described.

Not Affected

Program Interruption: None

120

RRJ\NCH ON ARITH11ETIC EXCEPTION (rAE)

The R-field of the instruction word
is compa Y-ed vd th thi~ a y"ithmc: ti G c;xcepti on
code c.;ld ii bn~nch is t(~ken to "location f3
when the 109~C&l equation.

Operd-; on Code
Type Forrrlat
Operand Fonnilt

I Type Address i ng
Symbolic Notation l_', _____ _

9D
9
tvl ~ @ == N, X
f;, branch
a ~ PC if AE COND

r.RI\NCH =: r-O'D+r-I'X+r2'0-1-l"3'U ---- ----------
is true; otherwise the next instruction in sequsilce is taken. Terms If, X, 0,
and U in the logical equation ,"re the e,:ritlm::2't-ic exce\Jtion code bits, \'Jhile
t') r , :1" and r? repl~esent th'~ bits of the R-f-ie1d. The table bolow shO\'Js
tHe b~ancn conditfons for a Sf: - - instruction. the branch address, B, for
a BAg - - instruct-ion is defined identica1 to that of a Bl~anch on comparison
True instruction.

The arithmetic exception bits are set when the condition occurs and the
bit so set \'-Jill remain set untn it is tested by a.8J\E - - instruction.
Only the tested bit/s as indicated by lIone5 11 in the R-fie·!d are reset upon
execution of the AE test instruction. Bits not tested are not res2t. Thus
the AE bits (0, X, 0, and U) ftre cum~lative in indicating arithmetic exceptions.

Mnemonic R-field
--------~~~~~-

SU

BO

BUO

BX

BXU

BXO

BXUO

BD

BDU

BOO

BDue

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

Branch on Condition ---- .~---------------

Floating point ~xp. underflow

Floating point expo overflow

Floating point expo underflow or
overfl ow

Fixed point overflow

Fixed point overflow or floating point
exp. underfl ow

Fixed point overflow or floating point
expo overflow

Fixed point overflow or floating point
expo underflow or overflow

Divide check

Divide check or floating point expo
underflow

Diviae check or floating point expo
overflow

Divide check or floating point expo
underflow or overflow

Conditional Branch Instructions 121
Section B3

BDX

BDXU

BDXO

BDXUO

"1100

1101

1110

1111

Result Code: Not Affected

Program InterruEtion: None

122

Divide (heck or fixed point overflow

Di vi de check or fi xed poi nt overfloH
or floating point expo underflow

Divide check or fixed point overflow
or floating point expo overflow

Di vi de check or fi xed poi nt overfl G'rl
or floating point exponent underflow
or overfl OVJ

BRANCH ON EXECUTE CONDITION (BXEC)

The R-field of the instruction
word is compared with the Branch or
Skip register (BSR) and a brDnch is
taken to location B when the logical
equation.

Opera.tion Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

BRANCH::: ro . BSRo + r l . f3SR 1 + r2'~;jCC + r3 . BSC,

is true; othE:Y"I'Jise the next instruction in sequence is taken.

9C
3
@ N. X
i!, branch
B -+ PC if
BRANCH true

7---'----

The BSC term in the logical equation is the Branch or Skip Condition bit.
The MCC ternl is the Monitor Call Condition bit. Terms r • f 1, r 2, and r3 re-
present the four bits of the R-field. 0

The sse bit is set to a "one ll \vhen an Execute instruct; on executes any
conditional branch or skip type instruction and the condition for branching
or skipping is satisfied. The i~CC bit is set to a lionel! when an Execute
instruction executes an Mep or MeW instruction. The branch or skip is not
taken when BSC is set nor is a monitor call made to central memory and the
PPU when the MCC bit is set.

If a BXEC instruction (on~ for which R=OOOl) branches, then the condition
for branching was satisfied. If a BXEC instruction (one for which R=OOlO)
branches, then an Execute instruction has executed an MCP or MeW instruction.
Both conditions are tested by a BXEC instruction with an R-field of 0011.

The indicator bits of the BSR register which correspond to the position
of lIones" in the R-field of the BXEC instruction are reset to "zero" by the
eXEC instruction. Bit positions of BSR which are not tested by "ones ll in R
are not reset by the BXEC instructiun. Only the two LSBls of the BSR register
are used by the BXEC instruction. The. tV.JG ~~SB bits of the 4-bit BSR register
are spare indicator bits which are p~~esently tied to II zero " and are unassigned.

COMPARE CODE: Not affect~d

RESULT CODE: Not affected

PROGRAM INTERRUPTION: None

Conditional Branch Instructions 123
Section 83

H!CREMENT AND TEST INSTRUCTIONS ----- .. ._--
INCRENENT, TEST AND BRANCH ON ZERO (lBZ)

.Q~~gE¥ 88

The contents of the arithmetic register
specified by the R-field ;s incremented by
t:nity and tested for zero. If the contents

Operati on Code
Type Format
Op('!r:~md Forrr.a t
Type Addressing
Symbolic Notation

88, 8C
7
R, @ = N~ X
B, branch
B + PC if := 0

of register AR equal zero after modification,
then a branch is taken to the branch address, B. If (AR) is non-zero the next
instruction in sequence is t~ken. '

Modification

(AR) + 1 -+ l\R

or Code BC

The contents of the index register or vector register (XVR) specified by
the R-field is incremented by unity and tested for zero. If the contents of
register XVR equal zero after modification,"then a branch is taken to the
branch address, B. If XVR is non-zero, the next instruction in sequence is
taken.

XVR is an index register, XR, 'f the R-field value is ° thru 7.
XVR is a vector register, VR, if the R-field value is 8 thru F.

Test Condition after modification

Modification
r--------~--------(XVR) = 0 (XVR) f O~

(XVR) + 1 -+- XVR B -+ PC (PC) + 1 -+ PC

Result Code: (Rl, RG t RE) is set according to the arithmetic value of the
register after modification as follows:

Negative
Positive
Zero

Program Interruption:

124

(1,0,0)
(0,1,0)
(0,0, 1)

None

I NCRH1ENT , TEST AND BRANCH ON NON-ZERO (IBNZ)

Ot> Code 89 ------
The contents of arithmetic register AR

is incremented by unity and tested for non­
zero. If (AR) is non-zero after modifica­
tion, a branch is takp.n to B. Jf (AR) is
zero, the next instruction is taken.

I Ope}~at i on Code
Type FO!'lnut
Operand Format
Type Addressing
Symbolic Notation

Test Condition after modification

Modification

(AR) + 1 + AR

op Code 8D

~-~
(AR) = OJ (AR) 1 0

(pc) + 1 + PC 1 e + PC

89, 80
7
n, @ :.: N, X
13, branch
13 + PC if I 0

The contents of the index reg;ste}~ or vector register specified by the
R-field is incl"'emented by unity and tested for non-zero. If (XVR) is non­
zero after modification" a branch is taken to B. If (XVR) is zero, the next
instruction is taken.

Test Condition after modification

Modification
r----------~~-------

(XVR) = ° (XVR) ~ O~
(XVR) + 1 + XVR (PC) + 1 + PC s + PC

Result Code: (RL, RG, RE) is set according to the arithmetic value of
the register after modification as follows:

Negative
Positive
Zero

Program Interrupti on:

(1,0,0)
(0,1,0)
(0, 0, 1)

None

Increment and Test Instructions 125
Section B3

DECRH1ENT, TEST AND 8RANCH Ol~ ZERO (DBZ)

or Code aA v·_"* __ ' ___ -

The contents of the (u"ithmeti c reg i St2t'
speci fi ed by the R~'fi e 1 dis decremented by
un-ity and tested fen" ze)~o. If the contents

I

I Opcrati on Code

I Type Format
Operand Format l T,Y"pe 1'.ddl"cSS i ng
_~ymbOn c Notati on

8A) 8E
7
R, @ == N, X
B, branch
B ->- PC if = 0

of register AR equal zero after modification.
th0n 11 branch is taken to the bnmch i.iddress, B,
instruction in sequence is taken.

If (AR) is non-zero the next

Test Condition after modification
~-____ .. A---",

_MO_d_i_f_i c_a_t_i_on_-+_-,-(_AR_<) == a _I (AR) =f a
(AR) - 1 ->- AR B + PC (PC) + 1 ->- PC

cp· Code BE

The contents of the index register or vector register specified by the
R-field is decremented by unity and tested for zero. If the contents of
register XVR equal zero after modific~tion~ then a branch is taken to the
branch address, 8. If (XVR) is non-zero, the next instruction in sequence
is taken.

Test Condition after modification

t"lodi fi cat; on
~----.----- --./.'\..._--~

I

(XVR) = a (AR) ~ 0

(XVR) - 1 ->- XVR B ->- PC (pc} .,. 1 ->- PC

Result Code: The result code (RL, RG~ RE) is set according to the arithmetic
vafue of the register after modification as follo\'/s:

-Negati ve
Positive
Zero

Program Interruption:

126

(1, 0, 0)
(0,1,0)
(0, 0, 1)

None

DECREtiiENT! TEST {,ND BRANCH ON NON-ZERO (D3NZ '1"

Cpel'ati LJr: Code
O~Co_de 88 lType Format

Operand FoY'mat
The contents of arHhmc:t'tc: 1'('9i stet Type Addy'(!sS i ng

AR is decremented by unity and tested for Symbolic Nottltion
non-zero. If (AR) is n0I1-Z0';'0 after modi - '_________ '
fication) a branch is taken to S. If (AR)
is zer'o, the next instruct"lon is,taken.

Test Condition after modification

r----.-/'-------~
I (AR) - 0 (AR) 1 0

~+ 1 -> PC B -> PC

Nodification

(AR) - 1 + AR

OP Code SF

88, SF
7
R, @ '" N, X
6, branch
B+PC if t 0

The contents of the index register or vector register specified by the'
R-field is decremented by unity and tested for non-zero. If (XVR) is non­
zero after modification, a branch is taken to B. If (XVR) is zero, the next
instruction is taken.

Test Con.clition after modification

~~
Modification (XVR) " 0 I (XVR) " 0

(XVR) - 1 XVR (Pc) + 1 + pc 8 + PC

Result Code: The result code (RL. RG, RE) is set according to the arithmetic
value of the register after modification as follows:

Negative
Positive
Zero

Program Interruption:

(1,0,0)
(O~ 1, 0)
(0,0,1)

None

Increment and Test Instructions l27
Section B3

I NCREiVlFNT, TEST AND SKI P OtJ EQUAL (I s E)

The cont~nts of arithmetic register AR
~s incremented by unitv and COlill.larcd rcla~·
tive to the contf.~nts of locatio;) (L If
AR = (a) after (AR) has be~n modified~ then
the next instr~ction is skipped. If (AR) f
(u), then the next instruction is taken.

Opetat'j on Code
T.vpe Fotnwt
(Jper'ond Fonrwt
Type Ad(ii'eSS i ng
Symbolic Notation

Test Condition after modification

r------·P-..·--------.... ·-.. -·-····,,,
N~~i f.l· c_. a._t 1_' o_n __ ' (AR) = (a) I (AR) t .. _~~! __

(ru~) + 1 ~ AR ~(PC) + 2 ~ PC (PC) + 1 ~ PC

80
1
R. @ ::: N~ X
0., singlGwm~d
P(;+2'''''PC if::

Result Code: The result code (RL, RG, RE) is set according to the arithmetic
value of the reg'jster after modification as follmIJs:

Negative
Positive
Zei'o

Proaram Interruotion: ----------_.

128

(i, 0, 0)
(0,1,0)
(0, 0, 1)

None

INCREMENT) TES1: AND SKIP ON NOT EQU!IL (ISNE)

The contents of arit~netic register AR
is incremented by unity and compared rela··
tive to the contents of location a. If
(AR) r (a) after (AR) has been rr:odi fi ed,
then the next instruction is skipped. If
(AR) = (a), then the next instruction is
taken.

Operation Code
Type Format
Operand Format
Type Addressing
Symbolic Notation

81
1
R, @ :::: N, X
a, singleword
PC+2+PC if r

Test Condition after modification
,-- ~~

Modification (AR) :: (a) (AR) "I (a)

(AR) + 1 + AR (Pc) + 1 + PC (pc) + 2 + PC

Result Code: The result code (RL, RG, RE) is set according to the arithmetic
value of the register after modification as follows:

Negative
Positive
Zero

Program Interruption:

(.', 0, 0)
(0, 1, '0)
(0, 0, 1)

None

Increment and Test Instructions 129
Section B3

DECREMENT, TEST AND SKIP ON EQUAL (DSE)

The contents of arithmetic regist~r AR
is decremented by unity and compared rela­
tive to the contents of location a. If
(AR) ::: (ex) afte)' (AR) has been modi fi eel,
then the next instruction -is skipped. If
(AR) t (a), then the next instruction is
taken. '

Operation Code 82
Type FOY'rI1<1t 1 lopero.nd Format R,@:::Ii,X
Type Addressing (h single\<}ord

s~~:~(!O 1 i c Nota.t_i_O_ll_P_C_+_2-_tP_C_,:_f_:::_

Test Condition after modification

Result Code: The result code (RL, RG, RE) is set accoy'ding to the a.rithmetic
valueof··'the register after modiffcation as follows:

130

Negative
Positive
Zero

(1,0)0)
(0,1,0)
(O, Os 1)

None

DECREI"iENT, TEST AND SKIP ON NOil-EQu/\L (DSNE)

The contents of arithm0tic l'cgistcr fiR
is decrelTlented by unity qnd compared l~ela~
tive to the contents of location a. If
(AR) t (Q) after CAR) has bc~n modified,
then the next instruction ~s skipped. If
(AR) = (a), then the next i~struction is
taken.

Open).ti on Code
Type Format
Operand format
Typ.::: Addressing
Symbolic Notation

Test Condition after modification

~-.--.-~
Modi fi cat; on . Ic--__ {A_R_) _"'_(ex_)_-+t __ (_AR_)_t_(_a_)

(AR) - 1 -+ A~ (PC) + 1 -+ PC (PC) + 2 -+ PC

83
1
R, @ = N, X
ex, S in91 e\'Jord
PC+2-+PC if "f

Result Code: The result code (RL, RG, RE) is set according to the arithmetic
value of the register after modification as fo110ws:

Negative
Positive
Zero

Program Interruption:

(1,0,0)
CO, 1, O}
(0, 0, 1)

None

Increment and Test Instructio~s 131
Sectlon B3

AND BRANCH INSTRUCTIONS

f.\RANCi; ON LESS THl\N OR EQUAL TO (13CLE)

The co~tcnts of the arith~et1c or
ind2x register specified by the R-field

O[JC':rati on Code
Type ForrrDt
Operand F (lY'mat
lype Addles sing
Syrnbo"lic Notation

84, 86
6
R, R, N
B s branch
See table beloltl

is added to the contents of the arithmetic register specified by the T-field.
The sum is stored into the arithmetic or index register specified by the
R-field. This result is then compared relative to the contents of the arith­
rndic register specified by the T-f-lcld plus one. l\ b)'anch to location S is
taken if the result is less than or equal to the contents of arithmetic register
l plus one. The T-field must be eVen. The inct'(;:m0::nt and limit must be stored
into an even··odd arithmetic register addr~ess pail'.

OP Coade 84
- .'iOdification

CAR) + (AT) -rMR

(AR) <s (AT+l)

B -+ PC

(AR) > (AT+1)}

(PC) + 1 -+ PC

Test Condition
aftel~

modification

OP Code 86

1'10d ifi ca t ion

(XVR) + (AT) -+ XVR
1 (XVR) > (AT+n} Test Condition

------ ,.---- after
! (PC) + 1 -+ PC modification

(XVR) $ (AT+l)

s -+ PC

The branch address, B, is relative to the program counter or ~elative
to the base address depending on the M-field selection as shown in the table
below. Indexed branch addressing is not possible. Also, indirect branch
addressing is not possible.

M-field

o

l-F

N* + (PC)

N + (M)

Branch address.s

Relative to program counter

Relative to base address

where N is a positive, 12-bit number
and N* is a signed, 2's complement number {ll-bits plus sign bit}.

Result Code: The result code (RL, RG, RE) is set according to the arithmetic
value of the register after modification as follows:

Negative (1, 0, 0)
Positive (0, 1,0)
Lero (0, 0, 1)

Program Interruption: Specification error if T-field is odd.

132.

BRANCH ON GREf\TER THAN (BeG)

OP Code 85 - Arithmetic Register

OP Code 87 - Index Register

The contents of the arithmetic or
index register specified by Lhe R-field

Opt~ration Codc:

I Typ\~ Format
OLlf:T2.nd Format I Type Address i n9
Symbol-i c flotation

85, 87
6
R, R3 N
p, branch
See table below

is added to the contents of th8 arithmetic register specified by the T-field ..
The sum is stored into the z:riUlmetic or index register specif"-ied by the R-field.
This result is then cODlparcd relative to the contents of the arithmetic regis­
ter specified by the T-field plus one. A branch to location a is taken if the
}~esuH is grc(lte~' th.:ln th2 contents of ,H'i-Jl:fletic l'eg-ister T plus one. The
T-field m~st be even. The increment and limit must be stored into an even-odd
arHhmet-ic register addY"ess pair.

Op Code 85

Modification ___ ~:) ~ (AT+1) ~ (AR) > (l\T+1) } Test Condition
------- after

B + PC modification (AR) + (AT) + AR I (PC) + 1 + PC

Op Code 87 .

r"10dification~ (XVR) ~ (AT+_1_} ___ -t--__ (_XV_R_,)_>_ (AT+n} Test Condition
- after

(XVR) + (AT) + XVR· (PC) + 1 + PC B + PC modification

The br-anch address, s. ;s r'elative to U',e prO~lram counter' or" Y'elative
to the base address depending on:the M-field selection as shown in the table
below. Indexed branch addressing is not possible. Also, indirect branch
addressing is not possible.

M-field

° l-F
N* + (PC)
N + (t·n

Branch address)S

Relative to program counter
Re1ative to base address

where N is a positive, 12-bit number
and N* is a signed, 2 1 s complement number (ll-bits plus sign bit).

Result Code: The result code (RL, RG, RE) is set according to the arithmetic
value of the register after modification as follows:

Negative
Pos itive
Zero

Program Interruption:

(l~ 0,0)
(0,1,0)
(0, 0, 1)

Specification error if I-field is odd.

Test and Branch Instruction 133
Section B3

i'HSCEl.LN:EOUS INSTRUCTIONS - .. ----~-.------------,~~--

PUSH WORD INTO LIFO STACK (PSH)

The R-field designates the nrithmetic
register to be stored in a push opeY-at-jolL

The effective add)~ess~ o:d~ spccif-jes a.
doub-Ieil}ord location, The first v/Oi'-d con-~
tains a positive 16~bit word couni and a
pos Hi ve 16-bit Spr:;ce count in the 1 (=ft
and right half viord. l'cspectively. \'iOl'd
and spoce CGunts are in 2'5 (.Qlfiplcment re­
pn?sentnti or.. The second v!ord COil"

tains a 24-bit stack pointer as shown in
the figure below.

Location

r- -~ WORD COUNT ±: SPACE COUNT
I

15- 16 ------31

0+1 ~STACK POINTER I
~ --------------~31

The doubleword locations shown above
are restricted to Qn even - odd

singl~word .address pair

UpC:t'at-j on Code
-l.vpe Format
Operand Fonr.at
Type Addressing
~ymbolic: Notation

93
2
R, @ N, X
(jd~ doub kword
(AR) -» (P)
(P)+l -+ P ..

In a push word instruction tha first word at location a is read from
memory. The space and word counts are tested to see if either vJOul d resul t
in a negative value after one is added to the word count and one is.subtracted
from the space count. If either \vould become negatives then the operation is
terminated, the word and space counts are not updated) nothing is pushed, and
the next instruction in sequence is executed. If both the space and word
counts are zero or positive after one is added to the word count and one is
subtracted from the space count, then the update rl word and space counts are
stored back into location a and the stack pointer word is read from singleword
location a+l. The stack pointer is a 24-bit central memory address designating
the location into which the contents of register AR is then stored. The stack
pointer is incremented by one and stored back into location a+l. The next
instruction is executed from the location specified by the program counter
plus two (skip). No overflow is indicated. Incrementing of the stack pointer
is carried out using full 32-bit addition.

Result Code: Not Affected

Program Interruption: None

134

PULL WORD FROM LIFO STACK (PUL)

The R-field specifies the arithmetic
register to be lo,,!.ded in a pull opera.tion.

In a pull word instruction the word
from location a is read. The space end
word counts are tested to see if either
would result in a negative value after

Operat-j on Code
Type Format
Opel'and Format
Type Addr'ess; ng
Symbolic Notation

L

97
2
R, @ N, X
a.d . clot.vble\tord
(P)-l -+ P
((p)) -+ AR

one is subtracted from the word count ~
and one is added to the space COU1t. If either would becom2 negative, then the
operation is ternlinated. the word and space counts are not updated, nothing is
pulled, and the next instruction in sequence is executed. If both the space
and \'iord counts are zero or pos it i ve after one iss ubtracted from the word
count and one is added to the space count, then the updated Vlord and space
counts are stored back into location a and the stack pointer is read from
singleword location a+l. The stack pointer is decremented by one before being
I,lsed to spec-i fy a 24-bit central memory addy'€ss of an op~rand whi ch is then
read from memory and loaded into register AR. The decremented stack pointer
is then stored back into location a+l. The next instruction is executed from
the location specified by the progl~am counter p1us two (skip). No overflow
is indicated. Decrementing of the stack pointer is carried out using 32-bits
of the AU adder. .

Result Code: Not Affected

Program Interruption: None

MODIFY WORD PAIR (~10D)

Modify operates on the word-pa~;
described in PUSH. The contents of tr~
left half of the arithmetic register
specified by the R-field is added to the
word count and subtracted from the space

Operation Code 9F
Type Format 2
Operand Format R, @ N, X
Type AddressingC'J.d" doubleword
Symbolic Notation (P)+(AR1h)-+P

count. Execution is forbidden if the result in the word or space count goes
negative. In this case) the operation terminates and the next successive
instruction is executed. If both word and space counts result in values which
are non-negative, the modified vlord and space counts replace the original
values in central memory, the half\'iord arithmetic register value is added to
the pointer value and the modified pointer is stored in memory and the next
sequential instruction is skipped. No overflow ;s indicated. Modification
of the stack pointer is carried out using full 32-bit addition.

If the halfword arithmetic register value is negative (2 1 s complement),
the mcst recent ~tack entries are deleted. If.the halfword arithmetic regis­
ter value is positive, a gap of unused stack locations is created.

Result Code: Not Affected

Program Interruption: None

Miscellaneous Instructions 135
Section B3

\.

8Hft.NCH AND LOAD BASE REGIST[R vllTH PC (BLB)

The contents of the pro9Y'am counter pl us
one is stored into the base register specified
by the R-fi e 1 d and then {in u!1condit i ana 1
branch is taken to the branch address~ B. The
branch addi~ess -; s defi ned the same as for the
bl~anch on compar';son instructions. Also,
the Arithmetic Exception Condition bits

O;:>eration Code
Type Format
Operand FOY-mdt R. @ "" N,X
T,ype Address; ng ~,branch
Symbolic Notation (PC)+'1 .~ BR

f3 -.. PC

(O~ F., OJ U) are stored in"l;o bit positions 0 thru 3 of base reg'ister BR and
the Arithmetic Exception j1lask l>"its (iv1D) t~F, MO, mJ) are stQ}~ed into bit
positions 4 thru 7 of base register BR.

Progrill~ning note: (OR) appears as shown below after the BLB instruction.

048 31
Base AE corm Af. W\SK .
RegistertBR (DtE,O:U) M(Ds~,O~U

(Pc) + 1

Result Code: Not Affected

Program Interruption: None

136

BRANCH AND l.OAD l1WEX OR VECTOR
REG1sTTI~-rBLX) ----

The contents of the program counter
plus one is stored into the index register
or vectOf~ register specified by the R-field
and then (In unconditional branch ;s taken
to the hranch address, S. The branch ad­

Operation Code 99
Type Format 7
Operand Format R, @ = N, X
Type Addressing e, branch
Symbolic Notation (PC}+l -+ XVR

B -+ PC

dress is defined the same as for the branch on comparison instructions,: Also,
the Arithrr:etic Exception Condition bits (0) F, 0, U) a~'e stored into bit posi­
tions 0 thru 3 and the Arithmetic Exception r~ask bits U~O, rtF. r~o, NU) at'e
stored into bit positions 4 thru 7 of index or vectOi- register (XR or VR).

Progra.mming note: (XVR) appears as shown in the diagram for the BLB instruction
on the preceeding page, with the exception of replacing BR with XR or VR depend­
ing upon the value of the R-field.

XVR is XR if the R-field value is 0 thru 7
XVR is VR if the R-field value is 8 thru F

Result. Code: Not Affected

Program Interruption: None

Miscellaneous Instructions 137
Secti on B3

LOAD EfFECTIVE ADDRESS (LEA)
Operation Code 56~ 52

OP Code !:i6 Type Format 1
Operand Format R, @ = N, X

Load the effective address Type Addressing a, singleword
generated by this instruction intol Symbolic Notation Op Code 56 a -+ XR or VR

'the inHex or vector register Op Code 52 .. a -+ BR
~ (XR or VR)9 designated by the ,-----------
f R-fi eld. The effective address cO:1ta-j ns 24--bits and 'i s entered into
bit positions 8 thru 31 of XR or VR!. The e'ight MSB's (0 thru 7) are
filled with zeros.

OP Code 52

Load the effective address of this instruction into base register BR,
designated by the R-field. EA is entered into positions 8 thru 31 of BR.
The eight ~'Sl3ls (0 thru'7) are filled vJith zeros.

Programming notes: All effective addresses generated by this instruction are
singleword addresses. When indirect addressing is specified (T-field greater
than or equal to 8), then multi-level indirect addressing is possible and the
terminal indirect address will refer to a singleword address (i.e., there is
no displacement indexing for halfword or doubleword addresses). The indirect
address format follows the normal indi rect format. Indi rect address requests
are tagged as execute l~eques ts \~hen transmi tted to central memory.

After an LEA instruction for which a ~ 2F,:there is no way to tell whether
the contents of register R contains a central memory address or a register
address, except by examining the M-field of the LEA instruction which placed
the address into register R.

Result Code: Not Affected

Program Interruption: None

138

INTERPRET (INT)

This instruction loads the operation
code and the R-field of the instruction at
location a into arithm~tic register AR (even).
It also loads the T~ M~ & N-ficlds of-the
instruction at location a into register
fIR + 1 (odd register location).

o -+ ARO_19

Operation Code
Type format
Oper'und Fot'mot
Type Addressing
Symbolic Notation

(a)O-ll ~ AR20 _31

(a)12-31 ~ AR + 112-31 o -+ AR + 10_11

Result Code: Not Affected

Program Interruption: Specification error if R is odd.

EXECUTE (XEC)

This instruction executes the instruc­
tion at location a. The program counter is
incremented by one following the execution
of this instruction. :

If the instruction being executed is

Operatl0n Code
Type Format
Operand Format
Type Addressing
Symbolic NoLation

92
1
R, @ = N) X
C1, singleword
(see be 1 0\'/)

96
8
@ = N, X
a, singleword
(a) -; IR

a branch or skip type instruction and the condition for branching or skipping
is satisfied, the BSC-bit of the BSRregister is set to lIone" indicating that
the branch would have occurred and the instruction following the XEC is exe­
cuted. A program branch will not occur.

The memory protection hardware will interpret the request for the instruc­
tion at location a as an execute request. Also, any indirect memory requests
are tagged as execute requests [this is true regardless of instruction type).

Compare Code: Depends on instruction being executed.

Result Code: Depends on instruction being executed.

Program Interruption: Depends on instruction being executed.

Pro rammin Note: If an XEC instruction executes a Branch on Execute Condition
ins tructi on BXEC'.), for whi ch" the LSB of the R-fi e 1 d- is one, the BSC-bi t of the
BSR register is reset too-zero if Bse was previously true (one) and remains a zero
if BSC was previ6~sly false (zero). If the LSB df the R-field of the BXEC ;n­
struction is zero, then the Bse bit rem-ains unchanged.

Miscellaneous Instructions 139
Section B3

140

MONITOR CALL AND PROCEED (Mep)

An Mep instruction stores a single
length logical irnmed-jate operand into
actual merr.ory location 07. The most
significant eight bits of lecation 07
a~'e stored as "zeros" in accord \,rith
the logical immediate oper'0.nd format.
The immedi ate opel~and can be modHi cd
by the contents of index register X
when X is not equal to zero.

Operation Code
Type Format
Operand Forma.t
Typf~ Address i ng
Symbolic Notation

90
5
I, X
Immediate
n ... 07

The Central Processor siqnals the PPU that it has executed an Mep in­
struction via the CP/PPU communications area of the CR-file of the PPU, and
then the CP proceeds to the next instruction.

RESULT CODE: Not Affected

PROGRAr1 INTERRUPTION: None

MONITOR CALL AND WAIT (MCW)

An MCW instruction stores a
single length logical immediate
operand into actual memory location
07. The most significant eight bits
of location 07 are stored as "zeros"
in accord with the logical immediate
operand format. The immediate operand
can be modified by the contents of index
register X when X is not equal to zero.

Operation Code
Type Format
Operand Format
Type {~::ld:"e:;s i r.g
Symbolic Notation

94
5
I, X

n ... 07

The Central Processor signals the PPU that it has executed an MCW in­
struction via the CP/PPU communications area of the CR-file of the PPU. If
the PPU is prepared for context switching, then the CP performs an automatic
exchange intermediate operation thereby exchar.ging the CP program. If the PPU
is not prepared for context switching, then the CP halts until such time that
the PPU initiates a context switch operation.

RESULT CODE: Not Affected

PROGRAM INTERRUPTION: None

CONVERSION INSTRUCTIONS

FLOATING TO FIXED POINT CO~VERSION INSTRUCfIONS - -

Floating point wholevlord numbers c;:;n be c0:1v2rtd to whole \'JOI'd or
halfword fixed point numbers. Floating roint doubleword numbers can
be converted to whole word fixed point numbers.

Scalar conversion instructions acquire the floating point whole word
opel"and from arithmetic register ll.R. specif-ied by the R-field of the
instruction format. Doubleword floating point operands are read from
doubleword register ARD specified by the; R-f-ield vJith the LSB igno}~ed.
Reg"ister ARD is the even-odd register address pair AR and jl,R+l.

The scale factor or Q-point is sllpplied as one of the arguments for
the conversion process and is obtained from halfword location aha Dis­
placement indexing is applied in the standard manner vlhen addressing
ha1fi'/ords. If r'·1:::: 0 and O-h::: 2F.l, the scale factor is read from an
absolute halfword register address. The scale factor is a 16-bit signed
integer and is represented in 21 s complement notation for negative num~
bers. The scale factor locates the fixed point result relative to the
decimal point to the right of the least significant bit (fixed point
; nteger format).

A fix2j point ~hclcwcrd signed intes~r re~ult is stored into general
arithmetic registe}~ AR. Register AR+l remains unchanged. A fixed
point ha1fword signed integer t'esult is stored into the left half of
arithmetic register AR. The right half of register AR remains unchanged.

The algorithm for converting from floating to fixed point is as follows:

1) Record the sign of the floating point fraction.

2) Subti~act 6410 (40)hex from the biased hexadecimal exponent
to obtain the unbiased bexadecimal exponent, HE.

3) Multiply HE by 4 (shift left 2 bit positions) to obtain the
equivalent binary exponent, BE. BE is 9-bits including sign.

4) Consider the floating point fraction to be aligned such that
its MSB (bit position 8) is located in bit position 1 of the
fixed point output register.

5) Insert a zero into the sign position (bit position 0) of the
fixed point output register.

Conversion Instructions 141
Section 83

6) Add 31 to the scale factor and subtract from this sum the
value of BE obtained in step 3 above. This gives the number
of bit !Jositions that the quantity, G~ in the fixed point
output register is to be shifted.

If H = 31 + SF -'BE ~ O. then shift G right H bit positions.
Insert zeros into the vacated positions at the left erid
of the fixed point output register. Truncation is possible
in this step \'!hE-~n shifting right.

If H = 31 + SF - BE < 0, then shift G left H bit positions.
Insert zeros into the vacated positions at the right end
of the fixed point output register. Overflow is possible
on this step when shifting left.

7} If the sign recorded from step 1 was negative, then take the
2's complement of the number in the fixed point output register.

8) Store the entire 32-bit fixed point output register into the
whole \\ford ar-ithmetic register specified by the AR-field if
the instruction specified a whole word result. Store the
least significant 16-bits of -the fixed point output register
into the left half of arithmetic register AR if the instruction
specif~ed a halfword.

.
Several examples are given in Figure 1 for both whole and half word re­
sults. Half word results are chosen from the sixteen LSB's of the fixed
point integer. In the example, haH length conversions v.JOuld overflow
for any scale factor from -256 to +3. Figure 2 shows the same examples
for a negative floating point input. The results in Figure 2 are the
twols complement of the results in Figure 1. It should be noted however
in Figure 2, the result of two separate conversions with a scale factor
difference by one does not of necessity yield identical results shifted
one position with respect to each other. This is due to the loss of
some significance past the LSB and is related to a round-off problem.
Scale factors of 000000000 and 000000001 in Figure 2 demonstrate this
fact.

142

SXCit",~, EXPOllENT FRACnml

Floating Point Operand . t~[~~~~~lJ
Scale Factor (Input)

100~~~00 l
111110011 ;

. 111110100

111110101

111110110

I

I

I
000000000

000000001
I

I

0000100"10

0~0~~0~11 }
011111111

FIXED POrrH INTEGER (Output)

OVERFLOIJ

[911O"T '_11 0 IOlOoJoi¥D 001,IT?TiJ?OOop50oC!]

I: OQiiIQ] 11 IQ2l~J_ o~~IJ10Tf@60I 0000 I

~LEll I 1 o.9IT o~ all oJJmoJ!i05iJooDOJ
I I
I I
I I

I 0000 10000 loooo'! on 0 h j 1 0 ~ ['-Ol-C-Jj-;--OJ.-O-] -'-1-1 O-_Q-i]

[0000 I 0000 I 00001 0011 1--1lUJJ 00] Q I QQj QL~®J
I I
I I
I ~jl

000010000 10000 I 0000 I 0000 I 0000 I 0000 I 000] I

[00001 ~oool ;0001 o;~a 10000 10000 I ooo~ I GOOD]

Figure 1

Conversion Instructions 143
Section [33

144

Scal~ Factor (Input)

100000000 }
- to -

111110011

111110100

111110101

111110110

I

\ ,
-000000000

000000001

,
000010010

000010011 }
- to-

011111111

FIXED POINT INTEGER (Output)

[lsiQ)]~QQiJJol~rlQJJLI u·,10 1010iliOoo-IOOoO-1

Lllio L29_o IlJQiIDi!i~1Q91_lIQQiQ- [iQQQ_lo900 I

rmO]y'lOO I 0110]-111 iliQ9iJ 1 o-m]OlOo~
I I
I I
I I

[1111 [j 1-~-11l11 110.91 10001 \1011 1101P 10111]

11111 11111 \1111 Gloo 1100011101 11101 10100 I
I
I
I I

[111111111]11111111111111 11111 11111 11111

I 0000 I 0000 I 009:9 I 0000 I 0000 10000 10000]0000 I

Figure 2

CONVERT FLOATING POINT TO
FIXED POINT WORD (FlFX)

The floatin9 \\'hole word
operand to he converted is
read from arithmetic r~gistGr
P,R. The scale factor lIsed .
in the conversion process is'
read from halfword address ah"

Operation Code
Type FOl'mat
Operand Formclt
Type Addressing

AO
2
R, Cd N, X
o.h ~ ha 1 fvwl"'d

After conversion, the fixed point whole word signed integer is
stored into arithmetic register AR.

32-bits 16-bits

AR Floating s~ uh ~cale fact~~ Arguments

32-bits

AR Fixed SL Result

Result Code: The result code (Rl, RG, RE) is set according to the
arithmetic value of the result in register AR as follows:

Negative (1, 0, 0)

Positive . (0, 1, 0)

Zero (0, 0, 1)

frogram Interruption: Fixed point overflow.

conversion Instructions 145
Section B3

CONVERT FLOATING POINT ~JORD
TO FIXED POINT HALFWORD (FLFH)

The floating point whole
word operand to be converted
is read from regi s ter AR. 1 he
sea 1 e factor used in the convct'S ion

Operation Code
Type Format
Operand Format
Type Address,i ng

process is read from halfword address a h,

Al
2
R, @ N, X
ah, ha 1 fword

After conversion, the fixed point halfword signed integer
is stored into the left half of arithmetic register AR.

result

32-bits 16-bits
AR r-(--F-l-o'atin~""-"-SL'-J a h ~l e factor] Arguments

l6-bi ts
AR (fixed HL r----ul

------- Result

Result Code: The result code (RL, RG, RE) is set according to the
arithmetic value of the result in the left half of register AR as
follows:

Negative (1, 0, 0)

Positive (0, 1 , 0)

, Zero (0, 0, 1)

Program InterruEtion: Fixed point overflow.

146

CONVERT FLOATING POINT DOUBLEWORD
TO rIXED POINT SINGLE WORD (FDFX)

Operation Code A2
Type Format 2

The floating point doubleword
operand to be converted is read I Operand For'mat R, @ N. X

Type Addressing ah. halfword I - , _ -_____ _
from doubleword register ARD. The
scale factor used in the conversion
process is read from h~lfword address

After conversion, the fixed point whole word signed integer result
is. stored into arithmetic register AR.

ARD Floating

AR

l6-bits
ah I Sca 1 e factor

32-bits
AR Fixed SL

64-bits
DL

AR+l
Arguments

Result

Result Code: The result code (RL, RG, RE) is set according to the
arithmetic value of the result in register AR as follows:

Negative (1~ 0, 0)
Positive CO, 1, 0)
Zero (0, 0, 1)

Program Interruption: Fixed point overflow. Specification error if
R-field is odd.

Conversion Instructions 147
Section B3

FIXED TO FLOATING POINT CONVERSION INSTRUCTIONS

148

Fixed point \1hole or halfword numbers ran be converted to Hhole at
doubleword floating point numbers.

Scalar conversion instruction~ acquire the fixed point whole word·
signed i nt€ger operand from arithmeti c reg i s ter AR. Ha If''lOrd fi xed
poi fit signed ; nteger operands are read from the 1 eft ha lf of a t'i thmeti c
register AR.

The scale factor or Q-point is supplied as one of the arguments for
the cOl}version process and ;s obtaine.d from half\'Jord location ah' Dis­
placement indexing is applied in the standard manner when addre~sing
ha 1 fvwrds. The seal e factor is a 16-bi t signed integer and ; s repre­
sented in 2's complement not~tion for negative numbers. The scale
factor for these conversions establish the appropriate exponent for
the floating point number. The unbiased hexadecimal exponent range
is -64 ~ HEX. EXP. ~ +63. Floating point exponent overflow and under­
flow will be detected if a scale factor results in a hexadecimal ex­
ponent outside the range following the conversion operation.

A floating point whole word result is stored into arithmetic register
P.R. .n. double\'JOrd f10ating point result is stored into the ~ouble\'JCrd
register ARD. ARD is the even:-odd registel~ address pair AR and AR + 1.

The algorithm for converting fixed point to floating point number
representation is as follows:

1) Determine the sign of the fixed point Signed integer
to be converted. If the sign is negative, take the
2 1 s complement of the fixed point number. The sign
information is saved. If the fixed point operand is
a halfword~ it is entered into the right half of the
whole word register leading to the arithmetic unit
(AU). The sign of this halfword operand is extended
16-bits into the most significant half of the register
leading to the AU. The AU may now operate as though
all fixed point operands are whole word (32-bit) signed
integers ~

2) Move the decimal point from its position to the right
of the lSB for integer representation to the left of
the MSB of the 32-bit register containing the operand
from 1 ~bove. The r.:..:mber is n11!! in fractional rep~a­
sentation. This operation is accomplished simply by
adding 32 to the scale factor.

3) Perform Q floating poi nt norlTw 1 i ze opera ti on on the
fixed point fraction by shifting the fract-ion left
by a multiple of fOUi' bit positions such that the
most significant four bits contain at le~lst one 111".
Four is subtractcd from the scale factor for each
multiple of four bit positions t.hat the fraction is
shifted.

4) The fraction is shifted left the number of bit posi­
tions specified by the t'tJO LSB's of the scale factor
(0 = (00), 1 = (01), 2::: (10), 3 = (11), providing
that this shift would not cause overflow. If an over­
flow condition exists, then the fraction is shifted
right by an amount equal to zero for (00), one for (11),
two for (10), and thi~ee for (01) and the scale factor
is incremented by four.

5) The scale factor is shifted right two bit positions
{equivalent to division by four} and then addition
of the shifted scale factor and +64 = (l~OOO,OOO) is
taken modulo 128. The result is placed in the biased
hexadecimal exponent position of the floating point
output.

6) The fraction is entered into the floating point fraction
position of the output and the sign information saved in
step 1 is placed in the MSB position. The floating point
number is stored into register AR if a whole word and into
doubleword register ARD if the result is specified to be
a doubleword.

Figures 3 and 4 demonstrate the types of result to be obtained
through use of a fixed to floating instruction. Halfword operands
will be inserted into the sixteen LSB's with the sign bit extended
into the sixteen MSB's. If the number to be converted is negative,
a two's complement operation is perf~rmed in the AU before proceed­
ing with alignment. This insures that the floating point magnitude
will be the same if two fixed point numbers which are the two's
complement of each other are converted by a fixed to floating in­
struction. Detection of exponent overflow or underflow will set
the corresponding Arithmetic Exception Code.

Conversion Instructions 149
Section B3

FIXED POINT INTEGER

SCALE FACTOR (INPUT) FLOATING POINT RESULT

111100000

111100001

111100010 [0100\ 0000 i un ll"Cll 00 i 0111 11001 ! 1 001 TOl 001
I , __ L.....__,. ,!

1111 Dean

111100100

FIXED POINT INTEGER

,SCALE FACTOR (INPUT) FLOATING POINT RESULT

1111 00000

111100001

11110001 a

111100011

1111001 00

150 Figure 4

CONVERT FIXED POINT TO
FLOATING POINT WORD (FXFL)

AS
2 The fixed point whole

word operand to be converted
is read from register AR.

Operation Code
Type Format
Operand l-"ormat

LType Addressing
R, @ N, X
ah. ha 1 fvJOrd

The scale factor, used
as an argwl1E:nt in t.he conversion, is read from half\'Jord address a b,

After conversion, the normalized floating point whole word result
is stored into register AR.

32-bits 16-·bi ts

[~fac~ /\rguments AR Fixed SL a
h

32-bi ts

AR I Fl~ating . SL Result

Result Code: The result code (RL, RG, RE) is set accoding to the
irithmetic value of the floating point result in register AR as
follows:

Negative (1, 0, ~1

Positive (0, 1, 0)
Zero (0, 0, 1)

Program Interruption: Floating point overflo~

Conversion Instructions 151
section 83

CONVERT FIXED POINT WORD
TO FLOATING POINT DOUBLEWORD (FXFO)

Opc:ratiol1 Code
Type rormat

AA
2 The fixed point whole word

opet~and to be converted is read
from register AR. ~perand fonnat

TypE' Addrt:ss i ng
R. @ N, X
ah, halfword

--.. -~--
The scale factor, used as an

argument in the convers -j on ~ is reud from hal f'tlOi'd address C(h'

/lIfter c()nversion, the normal"izrd floating point double\Vord result
is stored into doubleword register ARD.

32-bits 16-bHs

AR ~d SL Cih { Seal e -f~ct~o ~--] Arguments

64 bits

ARD C Floating DL

Result Code: The result code (RL, RG, RE) is set according to the
arithmetic value of the floating point result in register ARD as
fo -11 O~'iS :

Negative
Positive
Zero

(1, 0, 0)

(0,1,0)

(0, 0, 1)

Program Interruption: Floating point overflow.
Specification error if R-field is odd.

152

Result

CONV[RT FIXED POINT W\LF\IURD
TO FLOATING POIlH vJORD (F:lFL)

Operdtion Code A9
Type Format 2
Operand Format R, @ N, X The fixed point halfword

operand to be converted is read
from the 1 eft ha If of reg; s tel'
AR.

~;:)~Address ;~_~~ 1 hlOrd

The seale factor is reild from ha If\'iOrd addl'ess Ci h'

After conversion, the normalized floating point whole word result
is stored into register AR.

H~-bits l6-bits

AR [Fixed HL Cih I Sca 1-;~~ Arguments

. 32-bi ts

AR Floating .'5i._] Result

Result Code: The result code (RL, RG, RE) is set according to the
arit~netic value of the floating point result in register AR as follows:

Negative (1, 0, 0)
Positive (0, 1,0)

Zero (0, 0, 1)

Program Interruption: Floating point overflow.

Conversion Instructions 153
Section 83

CONVERT FIXED POHn Hf\LH;Of~D
TO FLOf\TING POINT DQU[3L~~!ORD (FHFD)

The fixed point half
lcn~th operand t~ be (on-
vel'ted is reB d frOill reg is ier J\H.

I Open; ti on Codc AB

I
Type Format 2
Operdnd Forma.t R, @ N, X
Type I-\ddl~essing ah, halfvmrd
----------.--------------

The sca.le fact.or is l~ead ·ft~om haHvwd locat'ion a h.

After conversion, the nurmalized floating point double length result
is stored into double length register ARD.

16-bits 16-bits

AR ~:;dHL-J rs-----·--~ Scale fJctor \ Arguments

64-bits

ARD r==_.~ _____ F_l_o_a_t_i_h9 ____ _ OL Result

Result Code: The result code (RL, RG, RE) is set according to the
arithriietlcva.lue of the floating point Y'esult in register ARD as folloVIS:

Neg&ti~e (1, Os 0)

Positive (O~ " 0)
Zero (0, 0, 1)

Program Interruption: Floating point overflow.
Sp~cification error if R-field is odd.

154

NOR1'1M.IZE FIXED POINT
HORD (NFX)

The fixed point whole
word number to be normalized
is read from 10co.-
tior. a.

I
I Opcl"dti on Code

TypE:: Format
Operand Formnt
TypE: Addressing L-____ _

AC
2
R, @ N, X
a, singleword

After normalization, the fixed point whole word result is stored
into the left half of dnuble~ord reqister ARD. The scale factor.
equal to the number of bit p0sition~ that the fixed point number
was shifted, is stored into the right quarter of doubleword register
ARD. Zeros are entered into bit positions 32 through 47 of (ARD).

The fixed point number ha.s been normalized when the two most
significant bit positions differ, (O~ 1) or (1, 0). If the fixed
point number was initially zero~ it is considered normalized and
the scale factor (or shift count) is zero. The shift count is
stored as a negative number or zero for all normalizations.

0 31

a \ Fixed SL] Operand

C 31 47 63

ARD I Fixed SL I Zeros
f

SF] Result

Result Code: The result code (RL, RG, RE) is set according to the
arithmetic value of the result in the left half of doubleword register
ARD as fo 11 ows:

Negative

Positive.
Zero

(1,0,0)

(0, l~ 0)

(0,8, 1)

Program Interruption: Specification error if R-field is odd.

Conversion Instructions ·155
Section 83

NORt~ALIZE FIXED POINT
H,\LHWRD (NFH)

The fixed point half
length number to be normalized
is read from halfword location a h.

Opcl'ation Code
Type Format
Operand Format
Type Addressing

AD
2
R, @ N, X
oJ" hal h'ord

After normalization, the fixed point half length result is stored
into the left half of the single length re9ister specifi:;d by the ~
R-field. The scale factor is stored into the right half of register AR.

0 15

ah [Fi xed-H-~~~~[~ ~~~~~~~~Jci OpeY'and

0 15 31
AR I Fi xed I~'L: r SF

I
Result ~ .c!il

Result Code: The result code (RL, RG, RE) is set according to the
arithmetic value of the result in the left half of register AR as
follows:

Negative (1, 0, 0)

Positive (0, 1 , 0)

Zero (0, 0, ' , I J

Program InterruEtion: None.

156

VECTOR INSTRUCTIONS

INSTRUCTION FO~MAT

A vector instruction appearing in the instruction fetch unit has the
format sllo'i'!ll belco.v.

N

. The instruction serves to convey: (1) the fact that this is a vector in­
struction and, (2) the location of an eight word vector parameter list in
central memory. These eight words are loaded into the vector' par(1me:ter reg­
isters assigned to locations 28 through 2F (hexadecimal) and are used for
further definition of the vector operation. The vector parameter registers
are loaded as part of the vector instruction.

@; 0P-fie1d

The operation code field specified that a vector instruction
is to be executed. The exact nature of the vector instruction
is contained in the vEctor parameter file.

e R-field

The R-field indicates \'1hetiler information for the vector
parameter file (VPF) is read from central memory as part
of the vector initialization procedure or retained from a
pri Ot' setti ng.

• R-field

x x x 0
x x x 1

Load VPF from central memory
Use current parameter file

If R = 1, the current status of the vector parameter file
is retained for the current instruction. A memOl~y cycle to'
access a new parameter list is not executed under this con­
dition.

• T-field

The T-field is an address modifier tag that may be decomposed
into an indirect addressing bit. I, and a 3-bit index register
designator, X. The table below represents the address as a .
furiction of the N-field and the T-field.

Vector Instruction Format 157
Section 83

158

I . I Virtual
__ T _____ t-____ Ad~res_=__.~pe_ .. ___ ,, ___ Address of VPF

o
1-7

8

9-F

Direct address Nb
Indexed address Nb + (T)
Indirect address (Nb)
Indexed indirect (Nb + (T-8» 1 __ _

where Nb = N + (M)

Note that when an address refers to an octet of central
memory (as for the Cdse It/hen loading the vector parameter
file) the three least significant bits of the address are
forced t9 zero after indexing and indirect addressing.
This says that a memory octet cannot cross memory 'twrd
(256-bit) boundaries.

The index registers designated by X are those assigned
to register location 21 through 27 (hexadecimal) .

• M & N-field

The M-field is a base'register designator which selects
one of 15 registers assigned to locations 1 through F(H'
The N-field displacement is added to the base address }.
when no indexing is used t also when indexing is used,
provided M 1 O. The N-field is added to the base address
and the index register when indexing is used. Base ad­
dressing is not used when M = O.

The VPF address generated for VECT is standa.rd a. addressing
developed from the T, M~ and N fields to specify an o~tet
location of a vector parameter file to be loaded into the
VPF registers prior to the execution of the vector instruc­
tion. The addressing convention of VECT is identical to
that of scalar instructions. Addressing of vectors from
the vector parameter file is different and is described on
the next few pages.

Reg.

28
28
28
28

29
2A
28

29
2A
28

29
2A
2A
2B

2C
2C
20

20

2E
2E
2F

2F

PAR.A~lETER FILE FORi1AT

Hegister

28

29

2A

2B

2C

2D

2E

2F

Description

Operation code
"ri""h fi L"," r"''''''''''r.f ... ",,,, ·1~:Qets r, ¥. '"'" u~. 'tdI~U#~v.)VU c.;,)

~1ngle-valued v-ector
Vector dimension

Initial index A
Initial index B
Initial index C

Starting address A
Starting address B
Starting address C

Immediate operand A
Immediate operand B
Halfword starting addr.
Vector increment directi~n

! 6A. inner loop + J\. l' + LJB i , inner loop
- 6. C., inner loop

1

Inner loop count
+ + 6 AO' outer loop
- ~BO' outer loop
: ~CO' outer loop

Outer loop count

Vector Parameter File Format 159
Section B3

OPERATIor~ CODE

0PR-field - specifies the vector operation to be performed.

SV, INSTRUCTION VARIATIONS

SV-field - specifies the type of aJdressing for single-valued vectors.
Register 28

Bit PasHia!!,> 12.13.El_~_,l5_

x 0 X X
X 1 0 0

X 1 0 1

X 1 1 0

X 1 1 1

where

__ ve~~or L_j_ V~;to~ __ fL

DSVV I DV
DV DSVV

~~;v_v _____ J _____ ~_~vv
DV '= 01 rectly addressed vector

DSVV = Directly addressed single-valued vector

ISVV = Immediate single-valued vector

Vector A is said to be directly addressed when the starting address
for that vector is determi ned by the contents of the 24-bi t addn:ss fi e 1 d
of register 29. (Bits 8 through 31. labeled SAA). Vector B is directly
addressed by the contents of the 24-bit address field (labeled SAB) of
register 2A. The XA and XB fields of registers 29 and 2A must be zero for
non-indexed direct addressing of vectors A and B.

~.

Indexed direct addressing is implied for the DV and DSVV cases when
the XA and XB fields of registers 29 and 2A are non-zero. Anyone of the
seven index registers in locations 21 through 27 may be used to index the
starting address of vector A or B. The index register selected is specified
by the XA and XB fields similar to the selectio~ used by the T-field for
scalar instructions. In the case of vector addresses, the three LSB's
of XA and XB select an index register which is added to the starting
address of vectors A and B, respectively. The most significant bit of
XA and XB is ignored (i.e., indirect vector starting addresses are not
permitted) •

160

Immediate operand A is the 32-bit contents of register 29~ when SV = XllO.
Immediate operand B i sthe 32-bi t contents of reg; ster 2A, \A/hen SV = Xlll.

SV-field description:

Bit 12 is used to specify the pl'oduct length options for vector multiply
and vector dot pr'oduct opel"ations. It also specifies the dividend length for
vector divide instructions. See length option table follovring the vector divide
ins t I"U C t ion.

A II zero ll in bit 13 indicates th2.lt the addresses of both A and B input
vectors a1~e automatically incren:ented by the self loop or by the inner and outer
loop operations regardless uf the value of the other three bits of SV.

A lIone" in bit 13 (f,nd a !!zey'o"in bit 14 (xlOx) indicates the self loop
does not increment the 'input vcH"i<:,ble specified by bit 15. Incr'ementinD vector
address B is disabled when bit 15 = 1. The starting addresses for vectors A
and 13 is indicated by the contents of regisU~l~ 29 and 2(,. in the standard manner.
Inner and outer lOaf's incrementing occU\~s in the no\~mal manner when bH 13 = 1
and bit 14 = 0 (xl Ox) . This means that a nEi'i directly addressed single-valued
vector can be used as a constant argument dur"ing the next self-loop fo'llo'tling
an inner or outer loop by specifying a non-zero delta increment for the input
variable sPecified by bit 15 (designated DSVV in the table on the preceding
page) .

A "one ll in bit 13 and a 1I0ne" in bit 14 (Xl1X) disables vector address in­
crementing in all loops (self loop, inner and outer loops) for the input variable
specified by bit 15. FOl~ this case, the contents of vector parameter register
29 or 2A is interpreted as the value of the irilITlediate operand. In addition, the
word length of the immediate operand will depend on the vwrd length of the vector
instruction as specified ~y the operation code.

If the vector instruction is a fixed point half length operation, the im­
mediate operand is the contents of bits 16 through 31 of register 29 or 2A
(Register 29 if SV = x110 and register 2A if SV = xlll).

If the vecto\~ instruction is a fixed or floating point single length
operation, then bits 0 through 31 are interpreted as the immediate operand.
If the vector instruction is a floating point double length operation, the
bits 0 through 31 are interpreted as thp. left half of the double length imme­
diate operand and bits 32 through 63 of the immediate operand are zero. Imme­
diate operands for vector instructions may not be indexed by the contents of
the index register specified by XA or XB.

ALCT, ARITHt1ETIC AND LOGIC,I\L Cor,IPARISON TEST

The ALCT field, located in hexadecimal character H2 of vector parameter
register 28, specified the test cdteria which is applied to the results of
the vector comparisons to determine which elements of vector A are stored
in the output vector. See the instruction descriptions for Vector Arithmetic
Comparison and Vector Logical Comparisons for further details on the function
of the ALCT field.

L~ VECTOR LENGTH

L-fie1d specifies fge length of the vector operation (self-loop dimension).
The maxirum length is 2 - 1 = 65, 535 elementary operations.

Vector Parameter File Format 161
Section 83

XA t XBs AND XC-FIELDS

These fields sp~;cify the -index registet~ vlhich may be used to modify
the starting addresses of the A, B, and C vectors. The index registers
specified by the 3 LS13 l s of the XA, XB, and XC fields ai'e the same as those
used by the scalar instructions (Y'egisters 21 through 27).

If the vector instruction is a fixed or floating ~oirlt single length
operation, then the contents of ind~x registers XA, XB, and XC specify a,
singleword displaceiGent which is added to the singleword starting address
expy'essc:d by SMI., SAB, and SAC. Let the indexed star'ting addt-esses for
vectors /l., Bs and C be denoted by IP., I8 s and Ie. Then, for indexed single­
word vector operations:

IA == SA!\ + (XA)
18 == SAG + (XB)

Ie - SAC + (XC)

If XA, XB. ~r XC are zero, then.the starting addresses SAA, SAB, and SAC
a re not -j ndexed.

HALF LENGTH ELEMENTS AND HS-FIELD

If the vector instruction is a fixed point half length opera.tion, then
the contents of index regi s ter XA~ XB, and XC specifi es a ha If\'wrd memory
aut.if'es::. "illcY"emeni.. which is addeci to the singleltlOrd starting address expressed
by SAA, SlAB, and SAC. For the cases)Jhere it is undeshable to use up to
three additional index t'egisters to supply a halfl'l/ord vector address dis­
placement but \'Jhere it is necessa\'y to stal~t a vector operation from an odd
halfword memory addr"ess (the right half of a central memory singleword),
the HS-field is provided in the most significant hex character (Ha) of
register 2A. The least significant three bits (bits 1, 2, and 3) of
hex character HO of register 2A provide a means of displacing the single­
word starting addresses (SAA, SASs and SAC) by one halfword address. If
an index register is not used, then a lIone" in bit position 1, 2, and 3
of the HS--field \-Jill specify a starting address in the right half of cen­
tral memory singleword address SAA, SAB, and SAC, respectively, providing,
of course, that a half length vector operation ;s ordered by the aPR-field.

If "an index regi"ster is not used and a "zero" is in bit position 1,
2, and 3 of the HS-field, then the left half central memory singleword will
be selected as the initial operand for vectors A, 8, and C, respectively.

If an index register is used, then the even or oddness of the sum of
(XA) + HSA, (XB) + HSB will determine whether the left or right half of a
central mpmory word is selected for the initial r.~1fword vector el~~cnt.

162

An odd sum t~efers to the ri ght half \vord, WhCl~ei1S an f~ven sum y'efers to the
left half lrwrd. HSA -is in bH position 1 of rcgister 2A (the second most
significant bit position) > HSB is in bit position 2 and fiSC is in bit posi­
tion 3. For halfvwrd vectOl' operativns ~ the indexed hal fword starting ad­
dresses of vectors A, B. and Care:

IA ::: S{\A x 2 + (XA) + HSA

IB - S!\S x 2 + (XB) + HSB

IC ::: SfJ,C x 2 + (XC) + HSC

DOUBLE ,LENGTH ELEMENTS

If the vector instruction is a floating point double length operation,
then the contents of index registers XA, X8, and XC specify a double\'.fOY'd
displacement wh-ich is added to the sing-leltlOrd starting address exptAessed by
SAl:", SAG, and SAC. The least significant bit of SAA, SAB, and SAC is ignored
when generating a doubleword vector starting address. Vector doubleword ele­
ments must be stored in even-odd centl~al memor-y address pairs. For double­
word vector operations the indexed doubleword starting addresses of vectors­
A, B, and Care:

IA.= ~A + (XA)

IS SAB + (X8) ::: 2--

Ie SAC + (XC) = -2-

The most significant bit of the HS-Field of the vector parameter file pre-
viously was not used. ~

This bit is used to delete the indices from the output array for the eight
Vector Compare (ve) instructions and the four Vector Peak Pick (VPP) instructions.

When the MSB of both the HS-fie1d and che VI-field are "zero ", the output
array for these vector instructions is as described on page 171 of Section B3
of this Hardware Manual. .

When the MSB of the HS-field ;s "one ll , only the item counts after each self
loop completion are stored. All of the indices are deleted. Delta increments
for the inner or outer loop are applied to the three vector addresses after each
self loop completion. The delta e increment is applied to the address of the
item count, and not to the location of the last index value as it would have
been had the i~dices been stored.

Vector ,Parameter File Format If
Section 83

VI, VECTOR SELF-LOOP INDEXmG DIRECTION

The VI-field 'provides additional informetion for the vector index units.
A "oneil in bit position 1 (2.3) of register 28 specified that vector ad­
dress A (8,C) is decr'ementcd by unHy after each clomentar'Y oper'ation of
a vector instruction (usefu"! fOt' convolution, etc.). {-\ II zero" causes the
nOrTl1a 1 for'iiJard i ncrementi ng of vector addresses by un"i ty.

The most sianificant hit of the VI-field of the vector paramet6t file is
used to delete t~e item counts (except for the first itrnR count) from the C
output vector of Vector Compare (vel and Vector Peak Pick (VPP) instructions.
This applies to all four word size formats of the Vector Arithmetic Comparison
and Vector Peak Pick instructions, and to the four Vector Logical Comparison
instructions.

When the m0st si~nificant bit of both the VI-field and the HS-field are
"ZerO", the output array for these vector instructions is as described on
page 171 of Secti on B3 of thi s Hardwar"e ~I\anua 1.

\>Jhen the HSB of the VI-field is "one", the item count stored at the begin­
ning of the output array is the total item count for the complete vector and
is equal to the sum of all the item counts for each inner and outer loop that
would have been stored had the MSB of the VI-field been"zero". All other item
COUllts~ except the one at the beginning of the output a)~r'y~ are deleted. All
tha.t ref!1~ins~ follol/lin.g the beginning totf1"1 item connt, is a list of indices
for each e 1 emr;nt where a cO:J1pa.r-i son true is detected for Vector Compare
instructions or \.,rhete a. peak or valley is found for Vector Peak Picking instruc­
tions. If inner or inner and outer loops are invoked, then the indices are
flot r'eset at the beginning of each new self loop, but continue to increment
throughout the entire vector.

If the delta C increment for both inner and outer loops is unity, then
a continuous output of indices is stored in consecutive halfword locations
for ve and VPP instructions. In the case of VPP instructions, the normal
peak isolation which occurs b~tween two succesive self loops when the MSB
of the VI-field is II zero II does not exist when this bit is "oneil. This allows
one to set the splf loop length to one (L=l), and find peak in a vector by
sampling every nth data point, i.e~ delta A for the inner loop is equal to n.

In addition to the deletion of indices for Vector Compare and Vector
Peak Picking instructions) setting the MSB of the VI-field to "one" in a
Vector Dot Product or Vector Search instruction reduces these instructions
to one which produces a singular output regardless of the number of inner
or outer loops specified. That is, a Vector Dot Product (VDP) produces one
scalar output which has as its value the summation of all cj elements which
would h~~e been prn~uced from each self loop of the VDP witn inner or inner

163A

and outet~ loops had th{~ most sign-incant bit of the VI-f"ield been "zero."
The delta illcrements for the A and B input vector arc applied at each turn
of the loop, but the ar'Hhmo.tic unit does nc,t n;cc-jVG the liend of self loop"
signal and consequently does not reset its internal accumulator that is
summing the individual products.

For the Vector Search instructions, a single index value results which
represents the location of tile elcinent meeUno the search critel~ia regaY'dless
of thR numbor of inner or outer loops employed. For example, an entire matrix
array could be searchGd for 'its liH'~jest Z.t'ithiI12tic element, even in CiJses
where address increments are required to mlve to the next row or column at
inner or outer loop turning points. The indQx value of the result is a measure
of thc.total number of elements testerl up to the one meeting the search criteria.

The index value may overflow its maximum range if the product of the num­
ber of self loops times the number 9f inner loops times the number of outer
loops is greater than or equal to 2 6 for the Vector Searcb, Compare, and Peak
Pick instructions Ylhcn the r'\SB of the VI-field is "one. 1I Also~ for' the Vector
Compare and Peak Pick instructions the total item count will overflow if the
total number of true compari50ns exceeds 216 - 1.

Consider an example of the VI and HS··field fVlSB usage with a Vector CompaY'e
instruction. Given matrix A which is a 4 by 3 array of elements and B which is
a row vector of length 3. Vector B is to be compared with the rows of A for
arithmetic equals. The inn9r loop count is set to 4. Four cases are presented,
one for each of the four settings of the VI and HS most significant bits. Item
count values are enclosed by a sq.uare.

[A] =" ~ ~ 1]
[B] :; [1 2 3J

Vector Pa~ameter File

OP :; Vecto}' Arithmetic Compare for Equal
ALeT :; 1
SV :; 0
L = 3
DAI "'" 1
OBI = -2
DCI :; 1
NI = 4
DAO :; 0
DBO = 0
DCO = 0
NO :; 0 Vector Parameter File Format 1638

Section 83

163C

HS \., msu C Vector Output (Each element represents
a halfword)

----------------------,
o

o

1

1

NI AND N0, LOOP COUNT

o

o

1

!9 0 2 3 4 6 8 10 11

Grll~J~2_:

f21

NI-field specifes the inner loop count or the number of times that a
given vector instruction is to be executed in an inner loop. Loop counting
is done internally in the index unit, only the initial inner loop count is
suppl"ied by the NI-f"ield. If NI is zero, the self loop routine ;s executed
once, there is no inner lOU!-l, allJ ti1e outer lOOp count U~0) 1s not 2xClminod.
If HI is one, the self loop routine is executed once, there is no inner loop
address modifications, and the outer loop is executed N0 times. If NI is
any value other than 0 or 1, the specified vector operation ;s executed NI
times and then the outer loop is executed~ this process is repeated until
the outer loop counter equals zero.

N~-field specifies the outer loop count or the number of times that
the inner loop routine is to be executed. Here again the loop counting
is accomplished by h2t'dvJal~e in the index unit and only the initio,' outer
loop count is supplied by the Nyj-field, A ol'anch to the outer loop is
taken each time the inner loop counter (LPCI) in the index unit reaches
zero. The LPCI is reloaded with the value in the NI-field and the outer
loor counter (LPC0) is decremented by one each time the outer loop is
taker.. The compound vector instruction is completed ~'!hen the outer Yoop
count in LPCP reaciles zero. If N0 is zero or one, the speci n ed vector
operation is executed NI times and then the operation is terminated. If
N0 is any value other than zero or one, the specified vector operation
is executed NI times and then the outer loop address modifications occur,
the inner nested loop is repreated. This process continues until the outer
loop counter equals zero. Refer to the flow chart for an illustration of
the vector loop procedure.

DAI AND OBI-FIELDS

These fields specify the address increments for vectors A and B
following each vector operation during an inner loop. The increments
are not added to the addresses SAA and SAB contained in registers 29 and
2A5 but instead are added to the address registers IA and IB contained
with the MBU. The addition is accomplished using the addition hardware
of the t'1!3U. Increments may be positive Oi~ nege,tive 2's complement 16-bit
numuel~s .

IA ~ (U\) + to.A. ---., , ,
1 I

J inner loop
IB -(- (IB) 1- LlB.

1

For single length vector operations, the IA and IB addresses are
initially equal to SAA + (XA) and SAB + (XB), respectively. In· this
case, DAI and DA0 are singleword address increments. Inner and outer
loop increments are applied to the terminal address of each self loop.
This terminal addr'ess is equal to the sel,f loop initial address plus L-l.

Inner and outer loop increments for half length vector instructions
represent halfword address increments. Inner and outer loop increments
for' double length vector instructions represent double length address
increments. This is similar to the displacement indexing applied to
scalar addressing, the increments are shifted right one bit for halfword
operations and left one bit for doubleword operations before being added
to the terminal self loop address in the index unit.

When the ~~-field equals X100, the ele~ents of Vector A rc~aln con­
stant during the self loop (i.e., L times). The constant value K is ac­
quired from the contents of central memory location SAA + (XA) initially.

Vector Parameter File Format 163
Section B3

Then if the inner' loop COllnt in -j s ~Jreater' than one~ the add!~ess IA ::: Sf\l\ + (Xl\)
1S incremented by DAI or poss-jbly D/\P (if N0 > 1). The self -loop is n9a'in ex­
exuted L times with the nev! vclh!f: of L Tho number' of dHfCt'ent values of K
which may be acquired using both inner and wtGr loop featun;s is equal to fa
times N0.

When the SV-field equals X10l, the elements of vector B remain constant
during the self loop. The constani: \',:thlC K is 0,(in::d from the contents of
eM location SAB + (XG) initially. If'inner and outer loops are specified,
then this address is iIlcl'emented by UBI Ol' D~lf1. The sc:H loop is again ex.!
ecuted L tim:::s \dth thE! nevI value of l~. The number of different values of
K which may be acquired using bOt!l inner and outer loop features is equal to
NI time N¢.

Note that the addresses Sf}'.!, + (XM and S/\S -I- (XB) repl~esent s i ng1 cword
addresses. See the starting addresses listed under the description of the
XA, XB, and XC field fO\~ hi)1fvmrd and doublewoy'cl sto,rting addres.s c1efiniti0ns.

When the SV-field equals X110 or Xll', the elements of vector A or B
(respectively) remain constant during the self loop, inner loop~ and outer
loop. The immediate operand from ~egister 29 or 2A is used throughout the
entire vector operation~ including all inner and outer loop.

DA0 AND DBO-FIELDS ..

164

These fie"lds specify the addr(~ss incr('ments for vectors A and B following
til~ Vt:!ctCIl' OlJE;I'dtiui'l foy' which the hHiEf' loop count !idS f2".::iled 2E:(O. Th..-:
increments are added to the address regjsters IA and IB contained within the
~IDU. The same statements for half and doub"le length vector operations apply
here as they did for the DAI and OBI fields.

IA + (lA) + ll.AO } IB *" (IB) + L\BO
outer loop
(s;ngleword incrementing shown)

DCI AND DC0-FIElDS

DCi-field specifies the address ;ncrement~ nC., for the output vector
address following each vector operation duing an 1 inner loop.

When a vector dotpt'oduct operati on is specifi ed by the 0PR-fi el d, the
C address in the index unit is not modified~ since only a scalar result is
stored. Therefore, if looping is desired the DCI field must indicate an
increment for the C address.

OCO-field specifies the address increment, L\C , for the output vector
address after each innpr loop routine has been comBleted. DCI and DC(i} are
shifted right or left one bit position prior to addition in the index unit
for halfword or doubleword vector instructions.

An increment K vJill index a vector address by K halfwords, single­
word, or doublewords depending on the word size of the vector operation
which is specified. The flow chart below illustrates the procedure for
a vector instruction \-lith inner and outer loops.

i ES

----~.-
LP 4:-t- I

&

III <E-- (IA) + J/iI
l-/lJ_O ___ --i!i!>..JfT t3 .f--- (I8)+I:>f3LI--~

Ie ~ {IC)t- J::f2:I
PI k- (LPr) - .:t

Vector Inner and Outer
loop FloVl Chart

Vector Parameter File Format 165
Section 83

INSTRUCTION CHARACTERISTICS

The vector instructions are described with the understanding that
four diff"rent data formats apply to each instruction (except for logical
and shift instructions).

DATA FOR~1ATS

a) Fixed point, single length, 32-bit word
b) Fixed point, half length, 16-bit word
c) Floating point, singlo length, 32-bit word
d) Floating point, double length, G4-bit word

Vector instructions have the following general characteristics:

VECTOR LENGTH
+ + ~

The dimension of the argument vectors A and B and the result vector ~
is specified by the L-field of the vector parameter registers (H4-H7)
of register 28). If the L-field equals zero, the vector instruc~ion
becomes a no operation. If the L-fie1d equals one, the vector in­
struction is equivalent to a scalar operation, although the inner
and outer loop features may still be incorporated if desired. If
the L-field is any value other than zero or one, the vector opera­
tion specified by the 0PR-field is executed as described in the
vector instruction descriptions. The maximum length is 216-1.

ADDRESSES
+ +

The elements of vectors A 8nrl B are read from consecutive memory
locations. The result vector I is stored int6 consecutive loca­
tions. The addresses for the initial vector elements (a 1, b1, and
c1) are determined from the ve~tor address parameters contained in
29, 2A, and 2B. Vectors A, B, and C cannot address the register file.
An aC:lress 2 2F references central memory.
SINGLE VALUE VECTORS

An instruction with an SV-fie1d which specifi~s a single valued
vector operation, has as its result a vector C,
where C = (c1, c2, c3········, cn)

with c. = k operation b.
1 1

for SV = X100 or X110

and c. = a. operation k
1 1

for SV = X101 or Xlll

Vector Instruction Characteristics 167
Section B3

168

sv k value
X"IOO Contents of location g
ilOl Contents of location 18
X1l0 Contents of re~li s ter 29
Xlil Content;:; of reg} s te)~ 2{\

.-- ----<----

The most significant bit of the SV-field is ignored except when it
is used to speci fy the prorluct 1 ength for HiUHi ply or di vi dcnd "' ength
for divi~e operations.

For SV = X100, K is the contents of location IA initially, where IA
is equa.1 to:

IA ::: SAA + (X/~)
IA = SAA x 2 + (XA) + HSA
IA ::: SA!\ + (XA)

2

single length operations
half length operations
double length operations

When the inner and outer loop feature is used, the subsequent
single-valued operands for the self loops are acquired from
central fiiemory locations lA, where IA is modified by the loop
increments.

IA + (IA) + DAI
IA + (IA) + DA~

If inner loop
If outer loop

For SV ::: X10l, K is the contents of location IS initially, where
IB is defined similarly.

For SV = X110 or Xlll, K is the operand contained in register 29
or 2A, respectively. K remains unchanged during all self, inner,
and outer loops. For halfword vector instructions, the value K
is obtained from bits 16 through 31 of register 29 or 2A. For
singleword vector instructions, K is obtained from bits 0 through
31 of register 29 or 2A. For doubleword vector instructions,
the most significant half of K is obtained from bits 0 through 31
of register 29 or 2A and the least significant half (bits 32
through 63 of K) is zero.

INNER AND OUTER LOOPS

This instruction write-up on1y describes the self loop operation.
The user can form multiple loops which change the starting address
of each pass of the self loop. All vector instructions can use
both the inner and outer loops as well as the self loop, except
for vector order instructions. S~;ne ap!11;cations of the innpr and
outer loop feature are described in Section B4.

DOUBLE LENGTH

Vector doubl~~ngth operations require that the double length
operands be stored into even-odd memory or register singleword
address pairs.

ARITHMETI C EXCEPTI ON

vlhen mask bits in the al~ithrneti c excepti on (AE) t'egi ster are off,
the vector operation will run to normal completion. Uhen masked on, the
vector operation terminates when the arithmetic exception condition occurs,
such that an "exchange interliiedi(~tell can be effected by the PPU.

t\RITIH~[TIC EXCEPTIONS FOR SCALAR OR VECTOR OPERATIONS

- --
HASKED OFF MASKED ON

. .
--
--

FLOATING POINT FIXED POINT FIXED OR FLOATING POINT

Data

AE
register

-
~NDERFLOW OVERFLm~ OVERFLm~

FLOATING UNDERFLOW
FLOATING OVERFLOW
FI XED OVERFLOW
DIVIDE CHECK

~et to 0 Set to ± GO Modulo word Freeze CP and
size Exchange intermediate.

Set AE Cond Set AE Cand Set AE Cond Handl ed by softvlare
--'---------------------

DEFINITIONS
+ "", fl oati ng point

Single 1 ength 7FFF FFFF

Double length 7FFF FFFF FFFF FFFF

- GO, floating point

Single length FFFF FFFF

Double length FFFF FFFF FFFF FFFF

Zero, fixed or floating point

Half length 0000_

Single length 0000

Double length 0000

0000

0000 0000 0000

Vector Instruction· Characteristics 169
Section B3

... t\r::i an arithmetic exception condition occurs ~ the result code wi 11 be set
'r~nrJin0 to the table below.

\...,> _' ;J

{ti' i thJ1::?t i c
Excepti on
Condi ii or!

n ;-;e.1po:r>nT- ov erf i ow
(pDsitive overflow)
(nesative underflow)

Result Code I
AU

RL RG RE Result

1
o

>-o--o-r-:nus. modulo wprd Si-:e
1 0 positive, modulo word

size
___ -----------,-----If---------- >---------------
Floating point exponent overflow

(positive fraction)
(negative fraction)

'rloal'j"9 poi nt exponent underf'i 0\11
(p~s. or neg, fraction)

Divide check (fixed point)
01Vlde check (floatlng point)

(positive dividend)
(negative dividend)

o
1

o

1 0 pos. co

o ~-n-eg_. __ ~-----------__ _

o 1 zero

Unpredictable Unpredictable

o
1

1
o

o
o

pOSe (X)

neg. (X) __________________________ -4 ____________ ~ __________________ __

','[CTOR HAZARD RULE

Consider the array of octets from v/hich the 1: and ~ vectors are formed
for input to the Arithmetic Unit (AU) and the array of octets into which the
n:sults at'e stored frQ!ll the output of the AU. Define the IIpresent octet address
of ; nput vectors f(or -[511 to be the octet addresses of the vector el ements at' and
b which are presently being processed as inputs to a vector computation. he
It~resent octet address of output vector ell is defined to be the octet address
of result c. corresponding to the computation involving arguments a. and b .•
The Vector Aazard Rule is stated as follows: > 1 1

A "Hazard Condition" occurs whe!lever the present octet
addresses of input vector tor l3' or the next four octet
addresses for each of vectors It. or l3' is the same as the
present result octet address or the eight past result .-octet address of output vector C.

If the Hazard Rule is violated the "old" rather than the "new (upl.:ated) in­
formation is used as the operand. For example. a vector operation will use the
t'old ll va lues for one of the operands if the el ement address of c. is one great~r
than the element address of either a. or b. and all vectors are assigned a pos­
itive increment direction during the1self ioop.

170

NORMALIZEO INPUTS

Floating point inputs must be hexadecimally normalized prior to their use
in the following vector instructions:

VAF

VAFO

VA~1F

VAMFD

VSF

VSFO

VSr~F

VS~1FD

VCF

VCFO

Vector Add Floating Poing Single Length

Vector Add Floating Point Double Length

Vector Magnitude Floating Point Single Length

Vector Magnitude Floating Point Double Length

Vector Subtract Floating Point Single Length

Vector Subtract Floating Point Double Length

Vector Subtract Magnitude Floating Point Single Length

Vector Sub~iact Magnitude Floating Point Double Length

Vector Arithmetic Compare Floating Point Single Length

Vector Arithmetic Compare Floating Point Double Length

Vector Instruction Characteristics 1:
Section B3

INDEX VALUE STORAGE

Format for storage of index values dul"in] fi Vector Arithmetic Comparison~
Vector L.ogical Comparison, or Vector Peak Picking instruction.

tla 1 fword
Address

HSAC

HSAC. + 1

HSAC + 2

HSAC + 3

HSAC + 4

HSAC + 5

--

item count
-._----

index i
,----

index j
.-

index k

index 1

; ndex m

etc,

,

.

16-bits

where HSAC= 2'SAC + (XC)+HSC -= Ha1f\'JOrd starting address of vector c:
and HSC = Halfword starting address even-odd selection.

(O~vent ~dd).

HALFWORD ADDRESS INCREMENTS FOR STORAGE OF INDEX VALUES

Increments for' vector C:(during inner and outer loops) are referenced from
the last index stored as a result of the previous self loop operation. For '.
example t if index m is the last index stored in a self loop (See diagram above)
and the delta increments for the inner or outer loop are one (DCI ='It DC0 = 1),
then the entry point for the item count of the next self loop is stored into
ha1fword location HSAC + 6. The unit of measure for DCI and. DCc for these vectors

is one halfworti for a delta value of one.

Vector Instruction Characteristics 171
Section 83

ASSEf't13LER r;'Nn~ONICS

The Assembler furnishes built-itl procedu.res to aid in the building
of Vector Parnmeter Files. These procedures generate data in the sequence
of code from which the procedure calls are made. Each of the eight words
which m3ke up the Vector P().ramet~r F"ile fol' ci.'ch Vector instruct'ion may be
generated by a separate procedure ca 1"1. The usel~ may \"/"; sh to defi rl2 an en­
tire vector file by bui,ding a procedure which contains eight separate tal1s,
but one will not be finished in the Assembler as a single procedure because
of the volUilie of p<.:ram2ters which I.'JOuld be associated \Jith the call.

Vector dllta generated by the above method may then be placed in
the vector PiH'cwleter {'8gisters by the use of instructions such as VECTL~
which loads the file and executes the vector instruction; LF, which loads
the vector file; or L which replaces individual vector parameters.

The first word (vector operation \;lord) of the eight is built by
ca 11 i ng the procedure \·those name is one of the mnemon i cs def; ned on the
fol10l'ling pages, depending upon the operation. In all cases, the format
of the call resembles the scalar instruction format:

(label) command ALCT, L, SV

where ALCT is used only in certain test instructions and should be zero
fOl~ the other i os ti'uct~ OilS

L

SV

(label)

is the vector length
is the single valued
is optional

vector addressing type

~/ords 2, 3, and 4 are built by calling the procedure VCTRA whose~~format is:

where

(label) VCTRA SA, X, Q

SA is the starting address of a vector
X is the index used to find the starting address of the vector
Q is the value of the HS or VI field used in words 3 or 4 of a

vector instruction
label is optional

If X or Q is left b1ank, a zero value is assum€c,

. Words 5-8 are built using the DATAH pseudo-directive.

172

VECTOR (VECTL)

A vector instr~Jtion
appearing in the instruction
fetch unit has the format
coinmon to most scal(1f instruc­
tions. The instruction serves
to convey: (1) the fact th~t
this is a vector instruction~
and (2) the location of an
eight \fIOrd vector parameter list

Operation code
Type rorr.~a t
Operand Format
Type Addressing
Symbolic Notation

(General)

in centra 1 mertlory. These ei ght \':ords

BO
3
@ N,X

R = 0

~ oct£-t -t
A~ op. if -~ c

are loaded into the vector paramEter rE:gisters ass;~]ned to locations 28 through
2F (hexadecimal) and are used for fuy·ther defin; tion of the. vector operation.
The vector registers are loaded as part of the vector initialization procedure
prior to the execution of the vector instruction.

The format of VECT appeared under INSTRUCTION FORMAT on page 151.

Result Code: Not useful after vector operation.

Program Interruption: Depends upon vector instruction being executed.

VECTOR (VECT)

A vector instruction
appearing in the instruction
fetch unit has the format
common to most scalar instruc­
tions. Thp. instruction defines
the vector operation.

Operation code
Type Format
Operand Format
Type Addressing
Symbolic Notation

(General)

80 R ~ 1
3

The Vector registers are not loaded ~s part Q~ this irstructicn. The current
vector registers are used.

The format of VEeT appeared under INSTRUCTION FORMAT on page 151.

Result Code: Not useful after vector operation.

Program Interruption: Depends upon vector instruction being executed.

Vettbr- '173
Section 83

174

~METIC INSTRUCTIONS

ADD
-).- -+

A vector" add instruction with argument vector A and 13,
-+

where ! = (a l , a2 ! a3 , . ··t all
and B = (b1, b2 , b3, ... , bL) -+',

has as its result a sum vector C, with c,., = a. + b ..
1 1

OP Code
40
41
42
43

ADD MAGNITUDE

MNtt-1 Code
VA
VAH
VAF
VAFD -

Ins tructi on
Vector add fixed point, single length
Vector add fixed point, half length
Vector add floating point, single length
Vector add floating paint, double length

A vector add magnitude instruction with
generates a result vector C,

-+ -+
argument vectors A and B

-+
where C = (cl ' c2 ! c3' "., cL)

with c1 = ai + Ib d .
OP Code

44
45
46
47

SUBTRACT

MNEf>'1 Code
VAM
VAMH
VAMF
VAMFD

Instruction
Vector add magnitude fixed point, single length
Vector add magnitude fi~ed point, half length
Vector add magnitude floating point, single length
Vector add magnitude floating point, double length

. -+ -+
A vector subtract instruction with argument vectors A and B generates

-+ a result vector C, ...
where C = (cl ' c2 ' c3 '

= a. - b .• with c;

OP Code
48
49
4A
4B

1 1

MNEM Code
VS
VSH
VSF
VSPD

Instruction
Vector subtract fixed point, single length
Vector subtract fixed point, half length
Vector subtract floating point, single length
Vector subtract ¥lcating point, doubl~ length

SUBTRACT MAGNITUDE
-). +

A vector subtract magnitude
-).

instruction with argument vectors A and B
generates a result vector C,

-}-

wher'e C = (c1 , c2 , c3 , •.. , cL)

VIi til

OP Code

4C
40,
4E
4F

c~ =
1

NULTIPLY

a. -
1

VSM
VSMH
VSMF
VSMFD -

Instruct-ion

Vector subtract ~agnitude fixed point, single length
Vector subtract magnitude fixed point, half length
Vector subtl'Bct magnitude floating PO"irlt, single length
Vector subtract magnitude floating point.double length

+ -7

A vector multiply instruction with argument vectors A and B generates a
+

result vector C.
+

where C = (c" c2 ' c3, ...• cL)
VJith c. = a .• b ..

1 1 1

See product length options table.

OP Code

6C
60
6E
6F

DOT PRODUCT

f1jNEM Code
VM
V~iH
VMF
VMFD

Instruction
Vector multiply fixed point, single length
Vector multiply fixed point, half length
Vector multiply floating point, single length
Vector mUltiply floating point, double length

The vector dot product instruction forms a sum of products of the type:

l
= a .. b.

1 1
(sca 1 ar result)

+
where the ai are elements of a row vector A+= (a1, a2, a3, ... aL)

and the bi are elements of a column vector 8 = (b" b2 , b3, •.. bL)

The scalar result, c1, is stored in central memory at the location
specified by SAC + (XC). See product length options table.
OP Code MNEM Code Instruction

68 VDP
69 VDPH
6A VDPF
68 VDPFD -

Vector dot product,
Vector dot product,
Vector dot product,
Vector dot product,

fixed point, single length
fixed point, half length
floating point, single length

floating point, double length

Vector Arithmetic Instructions 175
Section 83

DIVIDE
+ +

A vector divide instruction vlith o!'gument vectors A ~nd B, fonus a
result vector t such that each element ci of the rfsult equals 3 i divided
by bi , See length options table,

c. = a·/b.
1 1 1

The four cases for single-valued vectors are:

SV-fie1d Operat"j on Value K

x 1 0 0

x 1 0 1

x 1 1 0

x 1 1 1

or Code
64
65
66
67

k/b.
1

a/k
k/b.:

I

~1NEI~ Code
VD
VDH
VDF
VDFD

k := (SAA + (XA))
k = (SAG + (XB))

k ~ (29)-1

k =: (2AU
immediate
operand

Instructions
Vector divide fixed point, single length
Vector divide fixed point, half length
Vector divide floating point, single length
Vector divide floating point, double length

LENGTH OPTIONS

The dividend length options for vector divide and the product length
options for vector multiply and vector dot product are specified by the'
MSB of the SV-field (single value field) as follows:

Fixed Point .
~~~ 

Floating Point 

single half' single L double 
----------~t_ __ -1_e-n~th--_i-----10~:.n~t~h--~~~1~en~Q~t~h~~~ 
"0 x x x 

1 x x x 

64-bit 

32-bit 

32-bit 

16-bit 

32-bit 

32-bit 

64-bit 

64-bit 

NOTES: Vector dot products accumulate a 64-bit sum in the arithmetic 
unit. Whether the l6~ 32 t or 64 LSB's are read will depend 
on the type of VDP and the SV-field as sllown above. 

176 

Fixed point signed integer products are formed from vector 
multiply and vector dot product instructions. Fixed point 
signed integer dividends and quotients are used and produced 
in vector divide instructions. 



The product length fm' Vector lv.:,lltiply. f"lxed point, single length, is 64-bits. 
When SV = 0 xxx, all 64-bits are stored. When SV = 1 xxx, the least significdnt 
32-bits of the product are stored. Overflow cannot occure when SV = 0 xxx. Over­
flow is detected dudng the vectOl~ operation Hhen SV = 1 xxx if the most signifi­
cant portion of the product exceeds 32-bits. 

OverflO\;f is detected in the Arithrneti c Unit for the above case if the 33 t·1SB I s of 
the 64-bit product are not all liones ll or not all IIzerosli. 

The pl'oduct length for VecLor t~u1tip"ly, fixed point, half length is 32-bits. When 
SV = Oxxx, all 32 bits are stored and overflows cannot occur. When SV =.lxxx, the 
least sigl1ificc::nt 16-bits of the product are stored and overf10\'1s are detected 
during the vector operation if the significant portion of the product exceeds 16-bits. 

Fixed point. single length~ Vector Do~ Product operations generate 64··bit products 
and accumlate a 64-bit sum in the Arithmetic Unit. When SV = Oxxx, the entire 
64-bit sum is stored and overflow is detected during the vector operation if the 
sum exceeds the 64-bit accumlator word size. 

When SV = lxxx, the 32 least significant bits of the sum are stored. Overflow is 
detected during the vector operation if the significant portion of the 64-bit sum 
exceeds 32-bits. 

Fixed point, half length, .Vector Dot Product operations generate 32-bit products 
and accumulate a 32-blt sum in the Arithmetic Unit. When SV = Oxxx, a 32-bit sum 
is stored and overflow is detected during the vector operation if the sum exceeds 
32-bits. 

When SV = lxxx, the 16 least significant bits of the 32-bit sum are stored. Over­
flow is detected during the vector dperation if the significant portion of the 
32-bit sum exceeds l6-bits. 

During Vector Divide, fixed point, single length, when SV = Oxxx, the dividends are 
64-bit signed integers. When SV = lxxx, the dividends are 32-bit signed integers. 
The divisors are 32-bit signed integers. When the relative magnitude of dividend 
and divisor i.s such that the quotient cannot be expressed by.a 32-bit signed integer, 
an overflow occurs and the central memory location cOl'responding to that output 
element is loaded with an unpredictable number. . 

During Vector Divide, fixed point, half length, when SV'= Oxxx, the dividends are 
32-bit signed integers. When SV = lxxx, the dividends are 16-bit signed integers. 
The divisors are l6-bit bit signed integers. When the relative magnitude of, 
dividend and divisor"is such that the quotient cannot be expressed by a l6-bit 
signed integer, an overflow occurs and the central memory- location corresponding"' 
to that output element 1S loaaed with an unpredictable number. . 

In cases where a given length vector input argument is specified by the vector 
op code, but where the SV-field or other vector specifiers indicate a dlffer~nt" 
word size resuit, the delta increments for the ~niler and outer looV~ will be 
adjusted automatically by hardware such that an increment of K results in an 
address advancement of K-words of whatever word size is appropriate. For example, 
a sing1e1ength, fixed point, vector multiply may be specified with an SV-field of 
Ox xx which indicates that a double length product is to be generated. In this case, 
a delta C increment (DCI or DC0) which is equal to the value K will advance the C 
vector address by K doublewords. 

Vector Arithmetic Instructions 177 
Section 83 



LOGICAL INSTRUCTIONS 

t ... vector logical instruction Viitl! argument vectm's A and B, forms 
1 t ~ + a resu veCLor C, where 

C. - a. Boolean operation b,. 
1 1 

The Boolean operations are defined for bits of the singleword or double 
word elements of a· and b.. # 

1 1 

OP Code 

EO 
E4 
E8 
EC 
E1 
E5 
E9 
ED 

178 

Boolean operation 

AND 
OR 
Exclusive OR 
Equivalence 

Logical Equation 

x • y 
x + y 

xy+xy 
xy+xy 

\'Jhere x 

and. y 

= bit j of element a. 
1 '\ fOt' j range 0 

= bit j of element b. /' 
1 
/ 

through 31 if single length 
and 0-63 if double length. 

MNEfvt Code Instruction -------

VAND - VectOl~ 1 ogi ca 1 AND, single length 
VOR Vecto!" lo;ical OR, single length 
VXOR - Vector logical Exclusive OR, single length 
VEQC - Vector logical Equivalence, single length 
VANDD - Vector logical AND, double length 
VORD - Vector logical OR, double length 
VXORD - Vector Exclusive OR, double length 
VEQCD - Vector Equivalence, double length 

":iTt 



SHIFT INSTRUCTIONS 
.-). -~ 

A vector shift instruction with argument vectors A and B result in 
vector C, where 

ci = ai shifted SC bit positions. 

The shift count, SC, is a 7-bit signed integer contained in bit positions 
25 through 31 of the elements of vector B. Negative shift counts,are re: 
presented in 21 s complement form. A negative sign represents a rlght Sillft 
and a positive sign a left shift of SC positions. 

OP Code MNEM Code 

CO VSA -
C1 VSAH -
C3 VSAD -
C4 VSL -
C5 VSLH -
C7 VSLD -
CC VSC -
CD VSCH -
CF VSCD -

Instruction 

Vector arithmetic shift~ fixed point, single length 
Vector arithmetic shift, fixed point, half length 
Vector arithmetic shift, fixed point, double word 
Vector logical shift, single length 
Vector logical shift, half length 
Vector logical shift, double length 
Vector circular shift, single length 

. VectOt' circular shift, half length 
Vector 'circular shift, double length 

PROGRAr~ INTERRUPTION: Fixed point overflov/ is detected, for arithmetic 
left shifts only, if the sign bit changes during the shift. The entire 
shift operation designated by the shift count is completed regardless 
of overflow conditions. 

Vector Shift Instructions 179 
Section 83 



~ERGE INSTRUCTIONS ----..... ----.... -_._--

A vector ,merge singleword instruction with argumen'. 

where X - (a" B2, a3, ... , all _ ..... 
and 8 == (b1 , b2 , b3 , •. "S bL )" 

generates an output vector C, ¥Ihete 

C =: (a 1, b1, u2' b2 , a3 , b3 , ... , aL• bL) 

OY' (2;-1::: a; -~ 
r? for (i :: 1, 2, 3, .. "' L) 

= b~ , J 

,'s A and B, 

The elements a; and hi above represent single length, 32-bit \'Jords. 

The L-field in the vector parameter file specifies the input vector length 
for vectOi~ merge ins tructi ons .. The output vector ~'Ji 11 be:: tw; ce the 1 ength 
of the input vector. 

A vector merge halfward instruction generates an output v~ctor t as in 
Vt~G, except that for this instruction th,;: elements ai and b. represent 
half length, 16-bit i'JOrds. 1 

A VE:ct01' mer'uc doubleword instruction generates an output vector C' as in 
VfviG, except that for this instruction the elements ai and bi represent 
double length, 64-bit words. 

180 

OP Code 
08 
09 
DB 

MNEM Code 
VMG 
VMGH 
VMGD -

Instruction 

Vector merge single words 
Vector merge half words 
Vector merge double words 



ORDER INSTRUCTIONS 

A vecta)" Ol~s~~r i~truction performs an arithrl1ct-ic compariso;l of'-il-the_cflemcnts 
of vectors A or B, such that the sma 11 er e1 f::ment, vJhcthe;y' fn)ITI A or B'. is 
the next e'!elilcnt to be stored in fornrlng the output vo.ctm' C~ 

Pronrarning Notes: 
-~.- --_._-

1) 

2) 

3) 

The Vector Ol'der -lnstnlction on-!y applies to the vector' self lJop. 
There is no innor not outer loop featuie for this instruction. If 
inner (NI) or outer (N0) loop counts are specified in the vector 
parameter file. they are disregared by trw hCinhlJiire ('dId only the 
self loop (vector operation of length L) vrill be executed. 

-' -'l' 
Floating point vectors K and 8 must be norn~lized prior to use in 
a vector order instruction. 

A boundary limit equal to the lal~gest positive number must be p-Iaced 
in the data locat'ion following the 'iast entry in the files to be 
ordered. These boundary values for the different data formats are: 

Boundarv 1 imit rrrf:--rrrr--
7FFF 
7fFF FFFF 
7FFF FFFF FFFF FFFF 

Data Format 
"STn-gl e 'I ength, fi xed poi nt 
Half length, fixed point 
Single length, floating point 
Double length, floating po';nt 

4) The output vector may not be v/rittcn over either input vector. 

Programming Example: V0D instruction 

A ::: 2, 4, 5, 7, 1 , 3, 4, 6, 8, 5, 6, 12, (7FFFr;, 

B ::: 3, 6, 8, 9. 2, 3> (7FFF) 

c - 2, 3, 4, 5, 6, 7, 1 , 3, 4, 6, 8, 5, 6, 8, 9, 2, 3, 12, (7FFF) 

where L ::: lA + 'B+1 = 12 + 6 + , ::: 19 

The length specification~ L, in the vector parameter file should be set -':?7 .-::-} 
to the sum of the lengths of the two vectors A & B ~lus 1 to include at 
least one boundary limit so that the result vector -~ can be used in a 
subsequent vector order instruction if desired . 

...3t -> 
L ~ length A + length 8 + 1 

Vector Order Instructions 181 
Section 83 



If~ during the pI"ocessing of a Vector' Order instruction» two equal values 
al'C simultaneously present,~d to the arHhmetic unit f}'olJ1 vecLors 7tand 1i, 
the vahle nn:sented fi'om voctor J-t-;s the eiement vihich is delivered to the 
arithn"t9tic'unit output; the value from vector-rtis retained at the arith­
r:~,:;tic Llnit input for co"mparison with the next clen.ent of vecto}'IC 

OP Code 

D4 
V5 
D5 
D7 

182 

MNEf·1 Code 

VO 
VOD 
VOf 
VOFO 

Instruct-ion 

Vector order sin01ewords~ fixed point 
Vector order halfwords. fixed p0int 
Vector order- singlel<IOrds, float-ing point 
Vector order doublewords, floating point 



CO~lPl\RE INSTRUUIGNS 

ARITHfIjElI C 

[-I ernent a" of "i nput vector it: -i s aY'ithmeti cilTly compared It/Eh 
element bi of i np0t v2ctor "ft. The result of th i s compar; son vii 11 set 
one of the three comparison code bits and reset (zero) the other two 
depending on whether the: compar'"ison "is: 1) ai less than bi, 2) ai 
greater than b-j, 3) ai equal to b;. The comparison coele b-its CL, eG, 
and CE al'e then matched ~"Jith the 3 LSB's of the /\LCT field (hexadecimal 
character H2 (!f rC!gister 28; bits denoted by r1, r2, and r3). If the 
logical equat-ion COND =: r1 • CL + r2 . CG + r3 . CE, is tl~ue for element 
ai and bi, then the index value, i, corresponding to the position of 
element 0i and b-i in the vector input stY'cam, is stored as a halfwod:l 
value in result vector t: The t-ir'st index value is stored "into half--
word location 2· SAC +(XC)+HSC+l. Successive index vJlues are stored 
into consecutive halfword locations. If COND is fa-Ise, nothing is stored. 

The next operand elements of the input vectors (a i+ 1 and bi+ 1) 
are then acquired and the operation is repeated until the length (L) of 
the vector has been exhausted. Just before this vector instruction is 
terminated, a count of the number of items for which COND was true is 
stored into ha1"fl-lJord memory lacaUon 2 • SAC + (XC) + HSC. 

The ALCT-fie1d (Arithmetic and Logical Comparison Test) of the 
vectOl~ pat'ameter file is used to specify one of the following comparison 
options for a Vector Arithmetic Comparison instruction. 

ALCT-field Vector arithmeti c 
bits r' 1 r2 r3 Comparison opti ons • a i : bi 

----

X 0 a 0 do nothing 

X 0 a 1 a. = b. 
1 1 

X a 1 0 a. » b. 
1 1 

X 0 1 a. 
1 

> b. _ 1 

X 1 a 0 a. 
1 

.::.. b. 
1 

X 1 a 1 a. L... b. 
1 - 1 

X 1 1 a a. 
1 

t b. 
1 

X 1 1 1 store index i for all i from 0 
through L-l 

When the 000 option is specified, the AU compares all ai and bi 
elements, but since COND never becomes true, no index values are ever 
stored. Although, before this instruction is terminated, a count of 
the number of items for which COND was true (for this case, item count 
equals zero) is stored into holfworrl mAmory location 2 • SAC + (XC:) + HSC. 

There are four types of Vector Arithmetic Comparison instructions, 
one for each of the four data formats. 

OP Code MNEM Code 

DO VC 
D1 VCH 
02 - VCF 
D3 VCFD 

Instruction 
Vector arithmetic comparison, fixed point, single length 
Vector arithmetic comparison, fixed point, half length 
Vector arithmetic comparison, floating point, single length 
Vector arithmetic comparison, floating point, double length 

Vector Compare Instructions 183 
Se:...cJJon 83 



IJr911!:'l.l!nming Notes: 
1) The address of a s i ngh:\'lOrd vector clement ai is equd 1 to SAA -I- (XA) + i, 

wilet'G SAA is the stiwting addrc:ss of the vector 7\") (XA) is the static 
index value during a given vector operation, and i is the dynamic index 
value. The value of i runs from a to L-l during a vector operation. 
lhe maximum range of i ;s eqlJc11 to the Iflctximurn range of the length 
specification (L) of a vector operation. L is l"imited to 16-bits 
corresponding to a maximum vector length of 216 - 1 or 65,535 elements. 

2) The most significant bit of the ALCT-field ~n the vector parameter file 
is used to specify \,!!1'2they' the vector compadson is to continue the full 
length of the vector operation or termi-
nate after the first comparison true has been detected. 

If the HSB of the ALCT-field is "zel~oll~ then the Vector Arithmetic 
or Logical Comparison operation (whichever is specified) will continue 
until the length . : of the vector has been exhausted. However, if 
the MSB of the ALCT-field is "OllC Il , then the Vector Arithmetic Ol~ 
Logical Co~parison operation will be terminated after the first 
compal~ison true condition has been detected. Just before the in~ 
struction is terminated the index value,i, corresponding to the 
position of elements a1 and bi for which CaND is true will be stored 
into halfword location 2 • SAC + :XC) + HSC + 1 and a count of the 
number of items for It:hich CaND was true w"ill be stored into halfword 
memory location 2 • SAC + (XC) + HSC. In ihis case, the item count 
will be equal to ene, if COND ever becomes true during the vector 
compari son operati on. The itClfi count wi 11 be equ3l to zero and no 
index value \'1111 be stored if COND never becomes true during the 
v2ci::or c::>mpariso:1 opel~atio:1. 

For example, if .inner and outer loops are used and the first comparison true 
is detected during the third inner loop, then two zero item counts are stored into 
locations 2'SAC+(XC)+HSC and 2·SAC+(XC)+HSC+l. The item count for the third self 
loop, which has a value of one~ ;s stored into location 2·SAC+(XC)+HSC+ (loop 
number minus one) which equals 2·SAC+(XC)+HSC+2. The index value of the first 
element \'!hich compal'ed is stored into location 2·SAC+(XC)+HSC+ (loop number) 
which equals 2·SAC+(XC)+HSC+3. The index value, i, stored here is referenced to 
the particular self loop being processed at the time that the first comparison 
true is detected. For example, if the first element of a new self loop is the 
first one which has a comparison true, then the i~dex value, i, is equal to zero. 

3) 

4) 

If it is desirable to use an odd halfword starting address for result 
vector rand a single or double length immediate operand is used 
(immediate single-valued vector), the immediate operand K must be 
stored in register 29. If K were stored in register 2A, the (HS) 
halfword starting address information would be covered by K. An 
SV-field equal to X110 will specify an immediate single-valued 
operand K, where K is obtained frOm registpr 29. Another instrurtion 
which stores half length results, but which may use single or double 
length input arguments is the Vector Logical Comparison instruction. 

Floating point vector ~ and Bmust be normalized prior to use in a 
vector arithmetic comparison instruction. 

184 



LOGICAL llANO" CO;!'Pf:.RE JNSTHUCTIOi~S 

Element aj of_input vector T'is ·Iogic.~ll'ly \lANDed" with element b; of 
input vector B. Olle of the three compc\r'ison code bits (CL, CG, or CE) 
will be set depending upon the logical properties of c1' where Cj = a;A b;. 
Fo}' logical operations the conditions code is set as fol1ovJs: (Cl) c. 
contains mixed "onesll and "zerosll, (CG) an bit positions of ci are ~onell 
or (CE) all bit positions of ci are "zero". 

The comparison code bits CL, CG, and CE are then matched with the 3 LSB's 
of the ALCT field (bits that \ve shall label as r" t'2. and r3). If the 
logical equation, COND = rl • CL + r2· CG + r3· CE, is true, then the 
index'value, i, of input vector -iP element Cti and bi is stored as a 
halfword value in result vector C. The first index value is stored into 
halfword location 2 • SAC + (XC) + HSC +1. Successive index values are 
stored into consecutive ha1fword locations. If COND is false, nothing 
iss tored. 

The next operand elements of the input vectors (a·+l and b'+l) are then . 
acquired and the operation is repeated until the 1ength (L} of the vector 
has been exhausted. Just before this vector operation is terminated, a 
count of the number of items for which COND was true is stored into halfword 
JTlemory location 2 • SAC + (XC,) + HSC. 

The ALCT-field of the vector parameter file is used to specify one of 
the following comparison options for a Vector Logical Comparison 
instruction. 

bits 

X 

X 

X 

X 

X 

X 

X 

X 

ALCT-field 
r, r2 r3 

0 0' 0 Do nothing 

0 0 1 All zeros 
0 1 0 All ones 
0 1 , All ones or all zeros::: (not mixed) 
1 0 0 Mixed ones and zeros 

1 0 1 Not a 11 ones:; (mi xed or all zeros) 
1 1 0 Not all zerose (mixed or all ones) 
1 1 1 Store index i for'all i from 0 

through L-l 

The comparisons in this table refer to the logical 
properties of a.~ b. for a VCAND instruction and to 
a;v b; for a VCbR il,struction. 

Logical IIAND'Compare Instructions 185 
Section 83 



There arc four types of Vector Logical Comparison instructions s tv!O for 
CJch of two data lengths. 

or Code MNEM Cod~ Instruction -----
£2 VCAND Vector logical comparison using /\ND, single length 
r3 VCJ\NDD - Vector logical comparison using AND, doub1e length 
E6 VeOR Vector lO~jical comparison using OR, single 1 cngth 
El VCORD Vector 10g;-ca1 comparison using OR, double length 

#: 

y~i~t0X~J-:.o_gjcaJ_C2..!!2iJrisons uS}~'lYR functions are described identical to 
:he 10gicdl AND compal'ison instructions, except that element ai of input 
vector' 7\"';s logical"iy "ORed" I-'lith element bi of input vector i3"'. 

The vector terminating feature described for adthrnetic compares are 
effective on all of the Vector Logical Comparison instructions listed 
above 1:1;1('11 the MSB of the ALCT -fi e 1 din the vector pal'ameter fi 1 e is 
"oneil. 

If it is dc:::sirable to use an odd halfword starting address for result 
vector ~and a single or double" length immediate operand is used 
(immediate single-valued vector), the immediate operand K must be 
stored in register 29. If K were stored in register 2A, the (HS) 
halfl'iord starting address information ",!ould be covered by K. An 
SV··field equal to X110 vii 11 specify an fmmediate single-valued operand 
K, where K is obtained from register 29. 

186 



SEARCI: INSTnUCTIONS 

There are sixteen search instructions. Four types of eoch of the followin£~ 
Search for largest arithmetic element 
Search for largest magnitude 
Search for smallest arith~etic element 
Search for smallest magnitude 

The four types of each of the above refer to \fJOrd size data reprcsenta- .. 
tion: (1) fixed point, single length; (2) fixed point, half length; 
(3) floating point,.single length; and (4) floating point, double length . 

. .;.. 
The search instruction tests every element~ ai, of Vector A relative t.o 
all other elements of A and stores the index value, i, of the largest 
or snlallest element (depending on the operation code) into the halfword 
memory locat"ion specified by address 2 • SAC + (XC) + HSC. The value 
of i is within the range a through L-l and is the dynamic index value 
of~ during a vector operation. 

Programming Note: Floating point input vector A must be normalized prior 
to use in a vector search instruction. 

Vector Search for Largest with 2 or more largest elements of equal 
value will store as its output the index of the first of such elements. 

Similar logic applies to the vector search for largest magnitude, 
search for smallest, and search for smallest magnitude instructions. 

Vector Search for Largest Magnitude will recognize the number 
8000 0000 for fixed point single length of 8000 for fixed point half 
length instructions as having a larget arithmetic magnitude than 
7FFF FFFF or 7FFF, respectively. ~ 

Vector Search for Smallest Magni tude wi 11 recogni ze the number 
8000 0000 for fixed point single length or 8000 for fixed point half 
length instructions as having the largest magnitude and will therefore 
not output its index if any other element of the vector has a smaller 
magnitude. 

Search Instructions 187 
Section B3 



OP Code MNHl Code 
50 VL 

51 VLH 

52 VLF 

53 VLFD 

·54 VL~1 

55 VLMH 

56 VLMF 

57 VLMFD 

58 VSS 

59 VSSH 

5A VSSF 

58 VSSFD 

5C VSSM 

50 VSS~1H 

5E VSSMJ:." 

5F VSSMFD -

Insttuctions 
Vector search for largest arithmetic element~ fixed point, 

single length 
Vector search for largest arithmetic element, fixed point, 

ha If 1 ength 
Vector search for largest arithmetic element, floating 

point, single length 
Vector search for largest arithmetic element, floating 

point, double length 
Vector search for largest magnitude, fixed point, 

single length 
Vector search for largest magnitude, fixed point, 

half length 
Vector search for largest magnitude, floating point, 

single length 
. Vector search for largest magnitude, floating point, 

daub le 1 ength 
Vector search for smallest arithmetic element, fixed 

point, single length 
Vector search for smallest arithmetic element, fixed 

point, half length 
Vector search for smallest arithmetic element, floating 

point, single length 
Vector search for smallest arithmetic element) floating 

point, double length 
Vector search for smallest magnitude, f.ixed point, 

.single length' 
Vector search·.for smallest magnitude, fixed point, 

half length' 
Vector search for smallest magnitude, floating point, 

single length 
Vector search for smallest magnitude, 

double length 
floating point, 

Search Instructions 1878 
Section 83 



PEAK PICKING INSTRUCTIONS -- ~-

The algorithm for the vector peak picking instruction is as follows: 

for ; '" (~ 2~' L 2) . . \i. » .... j, ••• , -

di ff'erent than the sign of Yi+l' then store 

If the sign cf y, is the same as the sign of Yi+l' then ~2- no_!. store 
th·~ l' nld"'x Vo" -111["' 1,' "- , "-.. , .......... ~ .. 

~!hen the value of Yi+l is zero~ Yitl is considered to retain the sign 
of the last non-zero value in the histoY'y of Yi. This convention will 
select the trailing edge of a trace for which a series of Yi = 0 
conditions eX'ist, i.e., the "peakll value wh-ich is stOt~ed is at the 
trailing edge of a mesa. Points of inflection are not stored. 

The formats fOt' the storage of the index value, i., for the four types 
of vector peak picking instructions are identical to the formats 
for the vector test instructions. 

~I 't 
!ile ~. ~em COtm~ f'ntered at _half"v,'ord location 2 . St\C .,. (XC) + HSC of the 
out~~t table 15 akcount, of the tota1.number of oeak and valley points 
stoY_d as a resul ~ of tne vector peaR picking instruction. W 

The most signif~cant, bl~ of ~he ALCT-field in the vector parameter file 
15 u~e~ to 5rec~fy wne~ner tne Vector Peak Picking instruction is to 
~O~!lnldue) the fUI~ length of the vector operation (as designated by the 

- 1e or ternllnate after the first peak or valley point has boen 
detected. ' ~ 

If the MSB of the ALCT-field is Il zero", then the Vector Peak Picking 
operation will continue until the length (L) of the input vector has 
been exhausted and all the peak and valley index points have been 
stm~ed. However, if the I'1SB of the ALCT-field is "one", then the 
Vector Peak Picking ·operation will be terminated after the first 
peak or valley point has been detected. If a peak or valley point 
is detected and the MSB of ALCT is "oneil, then the index value, ;, 
of that peak or valley point is stored into halfword location 2- SAC + 
(XC) + HSC + 1 and a one, corresponding to the number of index values 
stored, is entered into halfword location 2 • SAC + (XC) + HSC. The 
item count will bf' equal to zero and no index vallIE'S will be stored if 
the input vector elements are monotone increasing or decreasing. 

188 



Programming Note: A floating point input vector must be normalized 
pnor to use lh-a vector' peak picking instruction. 

OP Code MNE~i Code Instructions 

DC Vpp Vector peak, fixed point, single length 
DO VPPH Vector peak, fixed point, half length '" DE VPPF Vector peak, floating point, single length 
DF VPPFD Vector peak, floating point~ double length 

Fixeq point overflow is indicated for the VPP and VPPH instructions if 
a di scant; nuity exi sts between any hvo data poi nts whose di fference ex­
ceeds one half the range of the fixed point number representation. 

Floating point overflow is indicated for the VPPF and VPPFD instructions 
if a discontinuity exists betl'Jeen two data points such that the difference 
results in a floating point overflow condition. 

Floating point underflow is indicated for the VPPF and VPPFD instruction~ 
if the difference between two data pOints would cause an exponent under­
flow condition. 

Peak Picking Instruction 189 
Section B3' 



CONVERSION INSTRUCTIONS 

FLOATING TO FIXED POINT 

Vector convers i on ins tructi ons ac:qui n::: the operands to be con­
verted from vector tand the scale factor from vector B. Outputs are 
stot'cd as t'esult vectm~ t. I~hen the same scule factor is applied JO 
alJ conversions. an immediate or directly addressed single-valued B 
vector may be used. The algorithm for convt,y'ting from floating to 
fixed point is the same as that previously described for scalar float­
ing to fixed point conversions. 

Of> Code MNEf.1 Code Instruction 

AO VFLFX Vector convert floating point single length 
to fixed point single length 

Vector ~ ii the list of floating point single length elements 
to be converted. The elements are read from consecutive singleword 
ffieillory locations beginning with starting address SAP. + (XA). 

Vector ~ is the list of 16-bit fixed point scale factors which 
have been pre-computed and which specify the placement of the fixed 
point signed integer result with respect to the decimal point to the 
right of the LSB. The scale factors are contained in the right half 
word of the singleword elements' of Vector IT. Vector l may be specified 
as a single-valued vector in which case the same scale factor is applied 
to all converted elements. 

The result vector C is a list of fixed point single length signed 
integer elements w"ith scale factors according to the pre-determined 
va 1 ues of vector fr. 

Floating St 1 
1----------0 Unused SF 
----------

Fixed SL 

Operand element ai 

Scale factor b. 
1 

Result element c. 
1 

PROGRAM INTERRUPTION: Fixed point overflow. 

190 



OP Code MNEM Code 

Al VFLFH 

Instruction 

Vector convert floating point single length 
to fixed point half length 

Vector 1( is the list of floating point single length elements to 
be converted to fixed point half length representation. 

Vector Et is the list of scale factors which have been pre-computed 
and which specify the placement of the fixed point signed integer result. 
The scale factors are contained in the right half word of the singleword 
elements of Vector ~ Vector Fmay be specified as a single-valued vector 
in which case the same scale factor is applied to all converted elements. 

The result vector C is a list of fixed point half length signed 
integer elements with scale factors according to the pre-determined values 
of vector~. The elements of result vector ~are stored in consecutive 
halfword locations. 

[ F1 oati n9 SL 

[--------G Unused SF 
--------

, Fi xed H~ 

Operand element ai 

Sea 1 e factor e 1 eiilent b. 
1 

Result element c. 
1 

PROGRAM INTERRUPTION: Fixed Point Overflow 

OP Code 
A2 

~1NEM Code 
VFDFX 

Instruction 
Vector convert floating point double length to 
fixed point single length 

Vector t is the list of floating point double length elements to 
be converted to fixed point single length representation. 

Vector B is the list of scale factors which have been pre-computed 
and which specify the placement of the fixed point signed integer result. 
The scale fa:tor~ are contained in the right half word of the singleword 
elements of vector B. Vector B may be specified as a single-valued 
vector in which case the same scale factor is applied to all converted 
elements. 

Conversion Instructions 191 
Section 83 



-), 

The res~lt vector a is a list of fixed point single length 
signed,integer elements \'lith_scale factors uccotding to the pr~; 
determl ned va 1 ues of vector 8". The elements of res u It vc.'ctor Care 
stored in consecutive singleword locations. 

I Floating Dl 

[------w·0 Unused SF 
-------

Fixed SL ] 

Operand element ~, 
1 

Scale factor b. 
'I 

Result element c, 
1 

f..ROGRA~1 INTERRUPTION: Fixed point overflow 

FIXED TO FLOATING POINT 

Fixed to floating point vector conversion instruc!ions acquire the 
list of fixed point signed integer elements from vectOl~ A. Vector If is 
the list of scale factors corresponding to the fixed point clements of 
vector if. The scale factors are contained in the rigjlt half of the 
singleword elements of vector s: The result vector C is a list of 
normalized floating point elements. The hexadecimal exponents of the 
floating point numbers are determined from the fixed point scale factors 
and the amount of shifting required to normalize the floating point fraction. 
The algorithm for fixed to floating point conversion is the same as described 
previously for scalar fixed to floating point conversions. ~ 

OP Code 

A8 

MNEM Code 

VFXFL 

Instructions 

Vector convert fixed point single length to 
floating point si~gle length 

-7> 
Vector A is the list of fixed point single length signed integer 

elements to be converted to floating point representation. 

Vector Er is the list of scale factors corresponding to the fixed 
. point elements of vector 7t The scale factors gre contain~d in the right 
half word of the singleword elements of vector 130 Vector B may be specified 
as a single-valued vector in which case the ~me scale factor is applied to 
each and ev~ry fixed point number of vectOt~ A. 

192 



-to 
The result vector C is a list of nonnalized floating point single 

1 ength elements. The hexadecimal e0pOilents of the fl oati ng point numbers 
are determined from the fixed point scale factors and the amount of shifting 
required to normalize the floating point fraction. 

I---------G Unused SF 
---------

Operand element a. 
1 

Scale factor b. 
1 

Result element ci 

PROGRAr~ INTERRUPTION: Floating point I)\f~rfll)'" 

OP Code 
AA 

MNEM Code 
VFXFD 

~ 

Instructions 
Vector convert fixed point single length to 

floating point double length 

Vector A is the list of fixed point single length signed integer 
elements to be converted to floating point representation. 

Vector' [tis a list of sCale factors corresponding to the fixed 
point elements of vector 7\. The scale factors are contained in the 
right half ward of the singleword elements of vector B. Vector ff may 
be specified as a single-valued vector in which case the same scale 
factor is applied to each and every fixed point number of vector p(, 
The result vectorris a list of normalized floating point double length 
elements. The hexadecimal exponents of the floating point numbers are 
determined from the fixed point scale factors and the amount of shifting 
required to normalize the floating Voint fraction. . 

Fixed SL 

Floating DL 

Operand element ai 

Scale factor bi 

Result element c. 
1 

PROGRAM INTERRUPTION: Floating point overflow 

OP Code 
A9 

MNEM Code 
VFHFL 

Instructions 
Vector convert fixed point half length to floating 
point single length 

Conversion Instructions 193 
section B3 



194. 

Vector It 'is tile list of f'ixed pO'int half 1ength signed integel~ 
elements to be converted to floating point representation. Vector r 
is the list of scale fDctors corresponding to the fixed point elements 
of vector A"". The scalD factors are contained in the halfl'iOfd elements 
of vector B'. Vector B may be specified as a single-valued vector in 
which case the same scale factot' is applied to eac.h and every fixed 
point number of vector X. 

-'7' 

. The result vector C is a list of normalized floating point single 
length elements. The hexadecimal exponents of the floating point numbers 
are determined from the fixed point scale factors and the amount of 
shifting required to normalize,the floating point fraction. 

I Fixed HL 

[_SF .._____: J 
~_ng __ S_L ____ ~ 

Operand element ai 

Scale factor element b. 
1 

Result element c1 

PROGRAM INTERRUPTION: Floating Point 0vArflow 

OP Code NNEM Code 
AB VFHFD 

Instructions --.. ~---- --- .~-'"" .. ~ .. 

Vector convert fixed point half length to 
floating point double length 

Vector A is the list of fixed point half length signed integer 
elements to be converted to floating point representation. 

Vector l is the list of scale factors corresponding to the fixed 
point elements of vector A. The scale factors are contained in the 
halfword elements of vector rr. Vector B may be specified as a single­
valued vector in which case the same scale factor is applied to each and 
every fixed point number of vector A. 

The result vector tis a list of normalized floating point double 
length elements. The hexadecimal exponents of the floating point numbers 
are determi ned ft'om the fi xed poi nt scale factors and the amount of 
shifting required to normalize the floating point fraction. 

I Fixed HL Operand element ai 

[ SF Scale factor bi 

Floating Dl Result element ci 

PROGRAM INTERRUPTION: Floating Point Overflow 



NORMALIZE INSTRUCTIONS 

OP Code 
AC 

MNEM 
VNFX 

Instructions -------
Vector normalize fixed point single length 

Vector ~ is the list of fixed point single length clements to be 
normalized. 

Vector Eris not used in this operation. 
-,-

Result vector C is the list of normalized fixed point single, length 
elements and scale factor. The scale factor is stored into the right 
quarter of doubleword element ci and represents the number of bit posi­
tions that the fixed point fraction was shifted left until becoming nor­
malized. The number of positions shifted is stored as a negative 2 1 s 
complement number. 

The left half of doubleword element ci contains the normalized 
fix:d point singJ •. e length element corresponding to singleword element ai of lnput vector A. 

I, Fixed SL Operand element ai 

Result element ci 

PROGRAr~ INTERRUPTION:, None 

Instructions " OP Code 
AD 

MNEM Code 
VNFH Vector normalize fixed point half length 

Vector it is 
be normalized. 

the list of fixed point half length elements to 

Vector t is not used in this operation. 

Result vector C;is the list of normalized fixed point half length 
elements and scale factor. The scale factor is stored into the right half of 
singleword element ci and represents the number of bit positions that the 
fixed point fraction was shifted left until becoming normalized. The number 
of positions shifted is stored as a negative 21 s complement number. 

The left half of singleword element ci contains the normalized 
fixed p~nt half length element corresponding to halfword element ai of input 
vector A. 

\ Fixed HL 

\ Fixed HL 

PROGRAM INTERRUPTION: None 

Operand element ai 

Result element ci 

Normalize Instructions 195 
Section 83 



195A 

NOTE: 

The SELECT and REPLACE instructions which follow have not been 
1mplen:ented for ASC serial numbers 1 c:nd 2. but will be included 
in ASC serial numbey 3 and all subsequ2nt m2lchines. These instruc­
tions will be fully supported by the software and by the instruction 
level simulators 



SELECT INSTRUCTION 

A vector select instruction Generates an output vector t composed of 
elements from vector A. The elem~nts selected from vector ~ are those for 
which the index locatioi1 in vector -A corresponds to the index value given 
by the elements of vector B. 

ProgralTlmi n9 Note~: 

(1) Input vectors A and -8 are read from contiguous memory and the output 
is stored into contiguous menlOl"y for a given self loop. 

(2A) The length specification of the self loop (L-field) for a vector se­
l~ct instruction is normally set equal to the number of elements of vector 

(2B) It is possibl~ to shorten the vector operation and still obtain the 
same result vector C by setting th~ self "loop length equal to one plus the 
value of the last index in vector B. 

(3A) If the vector length is specified according to 2A above, then an in­
dex boundary limit equal to, the largest positive number (7FFFhex ) must b~ 

+ 
placed in the data location" following the last index value of vector B. 

(38) If the vector length is specified according to 2B above, theri the in­
dex boundary limit is not necessary. 

+ 
(4) Each index value given by vector B is a positive fixed point halfword. 
Vector! should be a contiguous list of monotone increasing halfwords~ 

-+ 
(5) An index value of zero selects the first element of vector A. 

(6) If inner or outer loops are employed) ~hen a dummy value sho~~d be 
placed at the end of each self loop vector A and the index of thi~ dummy 
value should be placed at the end of each self loop index vector B., Each 
-successive 'index 1 ist mus~ be in contiguous memory) i.e., OBI and DB0 must 
be equal to one. Vector A may use delta increments not equal to one for 
inner or outer loops if desired. However, the resultant vector C of selec­
ted elements should use delta increments, DCI and DC0 equal to one if the 
number of selected elements varies from self loop to self loop. Delta 
increments for vector C are added to the address of the last element selec­
ted for each self loop. 

Select Instruction 1958 
Section 83 



195C 

OP CODE ~1NH10NJC CODE J NSTRUCTION ------- -----
+ 

B4 VSEL Select singlewords from vector A 

85 VSELH Select halfvJOrds from vector -'A 

B7 VSELD Select doubl~words from vector t. 
.. 

Example: A singleword select instruction using one self loop of length 8. 

SinglewQrd 
vector A 

+16 

+72 

-54 

-75 

+71 

-64 

-15 

+14 

Halfword 
index vector it 

2 , 3 

5 , 6 

7FFF , 

Singleword s~lected 
vector C 

-54 

-75 

-64 

-15 



REPLACE INSTRUCTION 

A vector replace instruction accepts as inputs a contiguous list of 
replacement elements from vector.)-A and a contiguous list of indices from 
vector B. Elements from vector A replafe previously existing elements i~ 
a central memory region defined as the C output array. ~Elements of the ~ 
output array that are replaced with elements of vector A are tHose ele­
ments for which the index location in the t output array corresponds to 
the index value given by the elements of vector TI. 

(1) The len~th specification of the self loop (L-field) for a vector re­
place instructio¥ should be set equal to the number of replacement ele­
ments in vector A. This value is also equal to the number of indices of 
vector B. 

-)-

(2) Each index value given by vector B is a positive fixed point halfvJOrd. 
Vector B should be a contiguous list of monotone increasing halfwords. 

-+ 
(3) An index value of zero selects the first element of vector A. 

(4) If inner or outer loops are employed, then it becomes a requirement 
that each self loop be of the same length. In general, the length of the 
data replacement vectors throughout all of the inner and outer loops are 
not the same length. In order to obtain meaningful results using inner 
and outer loops, a dummy region of memory must be established at the end 
of the t data output arr~ for each self loop. The size of the dummy re­
gion for each self loop C output array is equal to one plus the difference 
between the sizes of the maximum and minimum data replacement vectors as 
found by searching the data replacement lists throughout all inner and 
outer loops. , 

For the case of a self loop passing over the maximum data replacement 
vector, f)ne dummy el emen~ is pic ked 'up one 1 oca ti on past the end of the 
data replacement vector A and is placed in the final address available to 
the dummy output region of that self loop. 

For the case of a self loop passing over the minimum data replacement 
vector, the first dummy replacement element after the last data replace­
ment element is picked up and placed in the first location past the data 
output array, which is at the beginning of the dummy output region. The 
last dummy element is placed in the final address available to the dummy 
output region of that self loop. 

This ~rocedure establishes a constant number of replacement eler~e:-,t5 
and indices for each self loop. The number of elements of the data output 
array is assumed to be constant for each self loop. 

Select Instruction 1950 
Section B3 



OP CODE MNEMONIC INSTRUC1 ION ---
-+ 

88 VREP Replace singlevJOrds in vector C 
-+ 

89 VREPH Rerlace halfwords in vector C 
-> 

BB VREPD Replace doublewords in vector C 

Example: A singleword replace instruction using one self loop of length 4. 

-+ -+ 
SingleWf'd Ha 1 fword Single vector' C Singleword vector C 
vector index vec tor -B before re~lacemen~ ?fter replac~ment 

-54 2 , 3 16 16 

-72 5 , 6 72 72 

-64 27 -54 

-15 36 -72 

71 7i 

32 -64· 

8 -15 

14 14 

195E 



UNASSIGNED OPE~ATION CODES 

yP SC:91;;.r J.l.le9..9l..Q~ration~_g~:.~_ 

10 5E 79 1'5 
11 5F 7B AD 

7E 1\7 
61 7F I\E 

26 63 AF 
I 69 9A 
53 6B 98 81 
57 71 9E 82 
5A 73 83 
5B 76 A3 84 
5D 77 A4 

B5 C2 OA F1 
86 OB F3 
B7 00 DC F5 
88 01 DO F7 
B9 02 OF F9 
BA 03 FA 
BB Dil EA FG 
Be 05 EB FO 
80 06 EE FE 
BE 07 EF FF 
BF 

CP Vector I lleg.a 1 O~eratioi1 Codes 

OX 60 C2 
lX 61 C6 

62 C8 
2X 63 C9 

CA 
3X 

A3 CB 
7X A4 CE 
8X A5 

A6 OA 
9X A7 
BX AE EA 

AF EB 
FX EE 

EF 
where x represents anyone of 16 p~ssib1e codes (0,1,2, 3, ... C,O,E,F) 

.196 



V> 
CD 
n 
M-..... 
o 
::s 

OP 

BITS 

4-7 

OP BITS 0-3 

6 I 7 i 8 9 A B , C.I ~'r E I -L! 
_04-tA:....+-__ -l-i _S_TZ_+-L_N _.J-..-A_.....-+-! _A I __ +-_A __ ~_~E I M.'C_P--+_F~~~l V~e-S~ I AN~ I ANDI 11 

! STZH LNH AH AIH I ; ISNE t;~-~ FLFH SAH i ,i\NDD .. 
f ~lAM ~S~P~~·L·=·N=F=+-=A=~==+-L-EA--~A--~-AI--~Ir---~---+----T----i-----~---TlI-----r---' 

+-__ -+_s_-+-_--+_'_-+-_-.; __ -+-____ !-.DS,E ____ I_N_T-+_F_D_F_X. +-__ 'I--~--Jt __ +_C_!\I_ND_~ND I i 
LAC STZD LND AFD I DSNE PSH I SAD I CANDO I I 

I 1 ~-~--+--! - .. ~ 
I L ST STN AM LI I D D1 BCLE I r'lC\~ ! ,! SL I OR I ORI !. . -- 1---1 
~ 5TH STNH Ar~.H LIH DH DIH BeG B~~ SLH! I ORO I i 

N 
~ . STD I ::::- :~iD u~:A __ -:~D _~.~1:~~_ ~¥Uf~l-d --~ :---~m -1

1
: II ~::D I COR! ! 

° . l --~ST LN~--- ~·-~c-S~ =1- -Ml_ullB~~LB-~~~ ----IC -Cl I xo~ XOR11 

LL STL i LNMH SH I SIH I I IBNZ I BLX I ~HF~ _ CH I CIH I XORD I ! 
p ~eH ~ .. ~T·o~"-T L~~F sF---··I· . M . -'. - -~~I-·-·-· T"OBZ -r - - FXF; I --- CF --J-l I 'I 

LF STF _! LN~D SFDl- __ ~J __ ~~_~lDB~ '-~tFHFD-I~-~- I 1---1 
L ST : LM SMj LI MIMI IIBZ t B~E; ! NFX i_S~___ ! EQC EQCl I 

o LR STR LMH SMH! MH _ l~IH -rr;z B-!: NFH I 5CH 1--_ EqC\> i 

E I\I/ffo -- ;~~.- _L~~--- SMF -----~MM~cFD· 1_____1 ~uBB~Z I c II cr I _I 
F LFM STFM LMD l SI'1FD I I h MOD I seD .. I I 

I. i 

1 
.-
2 

---
3 

4 

5 
.-

6 
-

7 

8 

9 

A 

B 
i-

e 

1 I o 4 I 2 , 3 5 

SCALAR 

* 



-" 
1.0 co 

OP 

BITS 

4-7 

OP Bf: ... 0-3 

?I 2b 4 5 

0 VA VL 

1 I VAH VLH 
I 

2 ! VAF VLF I 
i I 

6 7 8 9 A B I c I 0 IE-I 

f--+++-+--+----+-----t----+----I'--.--- -1---1-~~L __ I_v:~_J~c -j~ 
f--+t+-i--+---+----7j---+·----+-·-----

1 
--- --fv:~;· __ -_lV_S~H H~---l~~ I 

! l 1 1 " ,SAD ! VCFD I veAN, 3 I i VAFO VLFD • I l 
, i I 4 
, 

VAM VLM ! i ; j -- I 

5 : I VAMH I VLMH , 
, . 

6 
I VAMF ! VUI:F ! ! , , 

! 

I VAMFD I 7 ! VLMFD 
i ~ .. --..... I 

VSS 8 ; VS I 
, 

VSH I VSSH 9 , ! 
i \ 

! ~ 
A , VSF i VSSF ! , i 

! i B ! I ~ I VSFD VSSD 
; : • i .- I 

C 
I ! ! VSM J VSSM , 

I , 

I i I 
t 

0 VSMH t VSSHH 
I : ! VSHF VSS~1F; E 

'.' 

- --
F VSMFD VSSMFD 

l 

~~~~~--~--~I-V-D-~,--~!----I~--,~-~\-- I,'VSL Ivo -~~ . 
; 1 l' 1 • I J!

f-"-+--+----+----.,.-----l----'---.---- \ I r-·---+------_·--t· .. -----I

I--t--+--'--r----r-----+-' _V_D_H_J _, ; ; L_-J VSLH ! VOD IVORD;
'I V'DCI 'I' -+11----, ----~ ---I ; lin;:: h.'Cf'1D I

-, . ~ ~ ~V; If \)1\ I
I--I--+-+--t--t-----f----+-' ---t----··-··1--·-----:.-----r r--I

1 VDFD ! \ J .. "''' ____ +.~_ ---- ~~;. I VOF~_ IVCORD i,
-+----.:.--! -----f---l---.---.\..---~---- -- -4- t

I VDP!! :' VFXFL i I I Vf,;G I \,XOR I
-++-r-+----+-----I--·--i --·1 ; ~ ! i j-\"'r'.H L'XORD i

' VDPH I I 1 VFHFL 1 1- I '1'1\.1 ._~ ___ ,

1 VDPF j I ' : VFXFD 1 It: \ ! I
___ +i - 1 i j '~-;:-'-=T----It-- ~ 1-1 I VDPFD :11 i ! ; VrnFu ! t Vi~G \ i

"';'-'--+--'--+I-vM--+-! ---i:--~--....;..l---,.-V·-N-F-X--"-----lvcs i vpp j~!EQ~-l

~-~----~----+------+I-V-M-H--~; ----·~I------~I----~i-v-NF-H--+\·-----:\·V--CSH IVPPH /vEQC-D-1
't--v-'r-,i-F·--t----+I----+---<\-i--·---' ; '---I VPPF I I

VMFD 1 I VCSD (VPPF~
• ~ ~_~Q;.'t~_~!tIt!'''"~'<~

VECTOR

SEQU EfffI AL INDEX Or: r NSTRUCTI ONS '----
!'lNEr-·' or P!~G[
"OD" _.,-.f._ I NSTf;U_C.TJ flN CODE ,l{I~

L lO1\D ARITIi KEG S I Nell-: lGTH we 1't 26
l lO~D ef.~E REG ~,INGLf:: LGIH Hi 26
l Ln~[) [I'\OEX R(G CIR VL.c~TL~ PA~AM KEG ~ IfJGU LGlh IC 26
II LOAD 1 fJl'''ED fi\Te t.~<ITh i-<.[G ~) I,\;GL [LGfH 54 27
II LOtiO ItJ~EC INTC INDEX kEG CR Vr:CTOR PAi{M' KEG SNGL[5C 27
lH LfJ l\,{) .i\RfTH l~ EG HALf, LGIH I\C 1 5 29
LIH l(l~C 1 t'/VTO If\TL AR I I r kEG ~- 1\ L F LGH- ')5 30
lR L(J!lU rvU"CKY RH we INTC 1\ R. I T!--i Rr:::, kH .~D 10 ,; 31
lL LDllD f·~01CKY [(h I-d:' INTO M<I1H REG LH fjl) 19 32
LO LCIlU ARITH REG DljlE L CTI-' yJ [17 33
lM Lfl!\[) flAG FIXLD O(Ii\T S 1 i\ (; L E LGTH AkITH I~ EG 3C 34
U1H LOAD rJ.AG FIXED PC If'd hALF lGfH ARITH KEG 3D 35
U~f l (l ~ U. MAG FLeAT Pl'.;Ii\1 Sll\Glf:, LGTH At{ITH ~EG 3E 36
LMD lOtIO (J AG FlCAT P(II\T G~LE LGrli ARYTH Kt:G 3F 37
IN lOtIO I\IEG FIXED pelf,T SINGLE lG1H (LD 2 r S CC""P)ARIH~ R30 38
lNH L(lAD NEG FIXED PUINT HALF LGrH ARITH RE:G 31 39
lNF LO~D ,'i E G FLCA 1 PCINT S I ~\GL E LGTH ARITH KEG 32 40
LND lOtI) 1\EG FLCAT PClt,l DELE LGTH t~RITH REG 33 40
lNM LOAD NEG :-1 Jl G F-IXt:J POil\T S PJGLE LGTH AR. I fH REG 38 41
lNMH lOI\D t-.EG f-IXI:::C PCI:\T bAL F L::iTH A~rlH REG 39 42
I.NMF LOAD Nt:G fJ.t'lG FLCAT P(;[l\if S HGLE LGTtI AKITH Rl:l,j 3A 43
lNMO lOIlD ~EG t-iAG F-LOAf PCTl\T DeLI: lCfH AKITH REG 3B 44
IF LCt!O BASE ~fG r I LEt RE::; 1-7 18 45
IF l(ll'lC SASE. ReG FILE., R.EG n-F 1B 45
l.F U)i'lO AklfH R[G FILE, f~EG 1 (:-17 IB 45
IF UlaD tiKI frl ReG F Il E, REG 1 ~- If- lB 45
If· lOIlO If\['EX REG FILE, KEG 20-2.7 18 45
IF lO~D IIECTCK PAr<A:-- RE:G FILL, ,H:G 2R-2F 18 45
lFM lO"O ALL REG "F Ill: S IF 46
XCH [Xr.HA~G[I\RITH l.{i:G lA 47
LAM lO~L; .ARITH rJ A~ K 12 48
(-Ai: -l-f't li D ARITH CC~UIT[C~ 13 49
LLA LOI~D LeeK AH~AC 16 50
LO lOllL; ARtTH REG 1": I n- I' ~ cor/p SIl\iGLE lGTH IE 51
ST S Fl.{ E Ai{ I TI:- RLG, SIi\lGLE LSTH 24 52
ST ~TflR[eASE ~[G, ~ Ir~GL E LG1H 28 52
ST ~TC'{E I i\,/CEX REG ~~ VE;"fCl{ PARAM R r: G , S [.\j G L E LGrH 2C 52
STH STr-t[HALF lGf~, JlRITI~ ;<EG 25 53
STR STnKE REG KH I f\ Tfj (IIEft,CRY KH, ARITH REG 20 54
STL ST'1i\[REG LH 1\\ 1 G "·EtJURY RI-:, ARITJ-l REG 29 55
STO S TC,U: A~ITt- KEG, oeLE LGTh 27 56
SPS !> Trr~ [PI{CGKAr-' !:JrATL~ W(kD 22 57
STl ~TrKE lERf, SI~GLE LGT~ 20 57
STZH srr;K[ZERC, bALF LGII:- 21 58
SrlD s H~f. lEKO, CBLF. LeTI-! 23 58
sr~ STORE f\E(J, FIXEC POINT S I r\jGLE~~OqD 34 59
S TNlf ~TCKE 1\ E.G f1)«((PUINT 1"1/1L F v.ul{O 35 60
STNF S rnf<[',\[C' -"'teA r 1)0 1 1\ f .,; P-t"; lEw 0 ~ [) 36 60
ST~D STnK(,'tEG FLeAT PI] 1 NT t;(t;fsLEv-.GRD 37 61
S -: .. :;> CN!=t~ CCfoiPLEJVEt\T ~l'~GlHjC;{C 2E 61
s-,'l'"'jI Cl\lFt~ CCtJPlFr-'!::I\ T HALHJ[r{[) 2A 62
STF S Tmo: BASE KEG fILf, KeG 1-7 2B 63
STF S Tn;~ t: 2ASE tl[G fIll':, I{tG ts-F 7.R 63
STF S rr'!:{[L'.K, ITt- r{l":G F IL f., RfG 11.1-17 2~ 63
STF S TO·:t[AKITh KE'-; t:ru:. KEG 18-1F ~~ 63

Sequential Index 199
~UQ.g .Ill

SEQUENJIAL rtm~.~ (CONTJNUEOt

f,!NEM OP PAC::
~9J?J:_ INSTRUCT! ON CODE tiC. ------

STORE INDEX REG FILEt ReG 20-27 2B 6.3
!J-rt-' STORE \fEeTCR PARAM REG FILF:'t REG 28-2F 2B EO. , '

Sl"Hi 5 TO'{£: ALL REG f-ILE,S, ,{[;C l-?f 2F 6':
/!J ADO TO AR I TH REG F[X[C PCiNi SINGLf lGTH LtO 65
A ADO TO BASE REG fIXEG PCUH SI!\GlE LGTH 60 6:
A ADO TO INDEX OK J [C rc:~ Pi\t{j\/I. RfG FIXeD PCI!\r !:>HGLE 62 6:
AI ADa IMMEO TO AH I1 Ii t{EG FIKEfJ PCINT SINGLE LGTH 50 6E
AI ADD I Mt"fC TO BASE t~ EG FIX[C POINT S l,\lCl E LGTI-i 70 6~
AI AnD frAMED TO I~CEX OR VF.crCR PtoRAtJ. REG FIXFD PT $NGl 72 6·:

.~

AH ADO fIxeD porNI Hfl.Lr lGTH ARIT'" REG 41 6'7
AIH ADD I Mf<~EV FIXEL POI~T t..;AL F L G r I- AR JTH REG 51 62
AF AnD FLCAf PC [l" T Sf,~Glf: LGH- AR 11 h kE::l 42 62
AFD ADD FLOAT PGPH [;BL LGTH l\RITII REG 4~ 69
AM ADD flAG FIXED PO It'4 T ~tl'iGl.E lGn- AhlTH Kr:G 44 7C
Ar-~H AOO f.'AG FIXED PO II',;T hALF LGfh AR ITh Rf:G 45 71
AMF ADD /lAG FLeAT POINT ~INGlE LGTh A!.u T H REG 46 72
AMFD ADO f;/AG FlCAT PO 11"1 r USl lGTH ARITH 47 72
S ~URTR FIXfC pona :,If'I'3LE L::;TH (d< 1 TI- REG 48 73
SI SUAT~ Ir~1-iEL; fIXeD PUINl SII\GlE l.GTH ARITH iU-G 58 73
SH SUiHR FfXEC POINT hALF LGTH ARITH REG 49 74
SIH SUflTR IM"'EC FIXEG POINT HALF lGTH AR ITH KEG 59 74
SF SUBTR FLeAT POINT SINGLE LGrH IlKlTl-' REG 4A 75
SFD SU8TR FLOAT PT DELE lGT ... ARITH REG 4B 75
SM SUfHR flAG FIXEC POINT :> HJGl E l GTH AR ITH REG 4(, 76
SMH SUBTR PAG FIXELJ PUINT hALF ·LGTI-. AR ITh RfG 40 77 "., SU8TR MAG FlCAT PO I I~ T ~ I I~G L F. lGTh ARITH KEG 4E 78
_A'" 0 SUtHR MAG flOAt PO I Nl DBLE lG1H AR 1 TH REG 4F 78
M fJ.Ull"IP FIXED PGINT SINGLE LGTH ARlTH REG 6C 79
H MUl rIP BASE ReG 68 79
f"\ MULTIP INDEX OR VECTOR PARAM REG 6A 79
t-\l "'·Ul TIP t tIMED F!XEC PU I r~ r :; 1:'IGl F. lGTH ARITH REG 1C 81
HI ~UlTIP IfJMED TC BASE Rf:G 78 81 ,
HI MUlTIP IMMEO Te [NDEX OR VECTOR PARA~ REG 7A 81
MH rv.UlTIP FIXEO PCliH HALF LGfH.ARITH REG 60 83
fo\lH tlULTIP H'MED FIXED PC INT HALF lGT'H AR 11 H RCG 70 83
MF MUlTIP FLOAT PC I I~ r SINGLE lGTH ARI.TH REG 6E 84
~FO MUlfIIl FLOAT PCINT DULE lGTH AH I TH' REG 6F 84
[) OIVICE FiXED pellH !:>INGLE LGTH AR IHl, kEG 64 85
01 DIVIDE I~MEO .-IXED PCI"'T 5INGlE LGrH AR ITH REG 74 86
DH DIVICE FIXED POINT HALF LGTH ARt Ttl REG 65 87
OIH Of VICE r"'MEC FIXED PC I~H HALF lGTH AR [TH REG 75 f!tf.
OF DIVIDE FLOAT PCli\JT ~I:~GlE LGTH AR ITH f{ cG 66 88
OFD DIVIDE FLOAT PCli-H IJ l) ,_ t LGTH AR ITH RfG 67 88
AN~ AND 11~ ITH REG EO 89
ANDI I~~ED AND ARITH REG FO 89
OR OR ARITH REG E4 90
CRt IMMEO OR AfHTH REG F4 90
XOR EXCLLSIVE CR AR, Hi REG E8 91
XORI ·-·,..1 MMEO EXCll.SIVE OR Af<f TH KEG F8 91
EOC EOUIVALENCE ARITH REG EC 92

~:I I"',..EC EQUIVALENCE AR ITH REG FC 92
060 AND ARITf1 RCG LBlE lGTH El 93

ORO OR ARITH REG DBlE lGTH E5 93
"~RO EXClUSIVE OR ARIlH IH:(~ calf: lGrH E9 94
EQCD EOUIVALENCE ARITH REG LBlE l GTI-: 170 94

200

~'1NHl
cone
SA
5hH
Sfr.D
Sl
5lH
SLD
SC
5CH
SCD
RVS
C
C
CI
C1
CH
CIH
CF
CFO
CAND
CANOl
COR
CORr
CANDO

·CORO
Bec
SE
CG
BGE
Bl
BLE
BNE
B
BCI
BCO
fjCN~

BCM
BCND
BCNZ
BRC
61
ePL
SIP
eMI
BIM
BNZ
BLR
BRZ
BRO
BR.N~

BRM
BRNO
BRNZ
BAE
eu
eo

INSTHUCTION

AR'fTH SHIFT FIXFU POfNT S!f'lGLE lG1H t\F{ITH REG
I~ R T r~· S H I r r F! XC:, p u 1 :, 1 HAL F L G r Ii t, ~:, I 1 h it E G
A R Y r h Sf II F T F I X r f) P (J It.: 1 DB l E LeT H A R 1: f H R [G
LOGIC~L 5HJ~T S(~GLE LGTH ARIT~ REG
UVICliL ::'HlfT I-tl,Lr LGTt" 1\~llH f~EG

lor.IliH SHIFT LPLf: LGlt, ARITH ,:u=(;
C T P eLLA ;<. ~ I- I F· r '; I l\ C, L E l G 1 Ii A R r r h R E (,
CTPCL.U,!: ~rlfT HM,f' U;H1 ';\rd rl J KEG
C T R eLL M-Z S I; If- T L e LEU; r I, I\f-~ IT H r~ 1: c;
BIT R:::'\lFRS/\L ::'P'lC;U: LG111 llf~ITtl REG
CCMPAR[fIxE£; P(JltJl ::'Ii,GL[!\RITH RlG
cr~p~HL INCEX REC ~1l\GLE lGl~

cr/fPAf~[!r-'I'EL F!X!:D pelt,f S!l'~(.,LF LGTh t.RITH keG
C(~PARE IMVFC I~UEX REG SI~GLE LGTH
C C /'I r ARE F I X E C P f J I r~ It, A L F L G T H A R I T I: R f G
C r ~ P /l REi ~! fj ELf I X U~ P T H /I L F L G T H A \~ I fI iRE G
CC"'IP/'>RE fLCI\T P!lfNl ~II\GLE LGTb ARITH kEG
(, C ""}J tdU, F LeA T p lJ t f'd C G L E L G 1 H M\ I Tf': R F G
CO'PAKE LCGICAL A:\jD AR lTH r(l:G SINGLE LGTH
CCMPr.;-<.[Ir:t/Fl) lCGICA.I_ "At\f) IHU fl- RFG SII\GLf lGlh
C 041 P ,li R ELf) G I (ALe k ~! 1'1 G L [L G T H A R IT H REG
C (Jv' P t rU: If) fJ (' C leG Ie ALL R SIN G L F L G T H A!{ I T H R [G
C C M P 1''. R [LUG I CAL M,; f) 0 f< L E L G T H A R I T Ii REG
C(Jv'P~RE LOGICAL OR D~LE LGTH nRITH REG
D Q t i'~ 0" C \ C C'" PAR [cue F:
(R 1 L ~ {f~ L P}' A } R:= 1
(R) GR (ALPHA) R=2
(Rl GR CR E~ (ALPHA) K=3
(R) l~ (AlPI-:A) R=4
(R) LS OR EC (ALPHA) R::~

(Rl f'.CT Ew (ALPHA) R=6
L;NCChC I T ICl\ ~L t:!RM~LH

ALL 8ITS /lRr. ZERO
ALL BITS AHF (j1\t
r\nT t-'IXEC
~f~EG ZEROS AI\L C~E~

N n T il L L cr~ E S
NOT ALL IERC~

HRA~CH C~ R[~ULT CCD~
(R) EQ ZEKC
(RI GR ZERC .
(R 1 [;{ eKE C Z f. '~LJ
(R) LS IEKC
(R) lS r;n E('; Zt;RO
tR) l\Gf f{.; 7ERl
8 R A I\j C H C 1\ L (G I C. A L ra. ~ LJ L T
ALL t.: IT~ ~ H[lUU.
ALL e ITS J\ R (C !\ f:
NnT tvlx~C

,., I XFC It=KUS ANe U~E~
f\fn ALL C"J E S
NOT /'ILL ZEt<G~

eR~''lc.ti C!\ l\~ITI (VIII IC L,xLlr:lTICN
F'lrAl PT [XP li!\[ilRI'Ll;~,

I-l(,'~l PT (XP LJVF!·:fLUvi

I{= 7
R=1
R=2
R= 3
K=4
R=5
R=6

K= 1
K=2
K=3
R:: It

R=5
R=6

5/69
OP P{\GE

CODE NO. -----

co 95
(1 97
(3 98
(if 99
C ~" , .1 101
C.l 102
(C 103
co lO$'
CF "106
(6 107
C8 108
CF 108
DB lOS
DE 108
(9 109
09 110
CA 110
CB 111
E2 111
f2 112
f6 112
f-6 113
E3 113
E7 114
'11 115
91 115
9i. 115
91 115
91 115
91 115
91 115
91 115
91 118
91 118
91 118
91 118
91 118
91 11 >i
95 119
95 119
95 119'
95 119
95 119
95 119
95 119
95 120

R=l 95 120
R=2 95 120 * K= 3 95 120
K=4 95 120
P=5 95 120
1{=6 95 120

90 121
P=~ 90 121
r=2 90 121

Sequential Index 201
Section B3

nuo
6X
~xu

8XO
5XUO
no
aDU
tiDa
snua
aoxu
sox
80XO
Bnxuo
aXEC
tBI
lSI
IBNl
IBNI
Dez
VBI
DBNI
CSNl
ISE
J:SNE

if
JSNE
BClE
selE
BeG
BeG
PSH
PUl
MOD
alB
BlX
LEA
tEA
lNT
Jeft
t1CP
Hew
HOP
flfX
flFH
fOFX
fXFl
F'XFD
FHfL
FHFO

';$= x
oftfH
VEeT
VEtTI-

..

SEQUENTlAL INDEX (~.9N~l rWED l.

INSTRUCTION
or PAGE

CODE NO.

FLOAT PT EXP UNDERFLOW CR OVERFLOW R=3 90
f IXEC PT OVEKFLOW R=l, em
FIXED PT O~[KFLOh CR FLeAJ EXP UNDERFLOW R=5 gO
FIXED PT O~EI{FLOh CR FLCAT EXP {JVERFLOh K=t-. 90
FIXEC PI OVR OR ~LGAT EXP PT OVR OR UNLf~FLOW R=7 90
CIVILE CHECK R:R 90
OIVILE CHECK Uk FL[Al PT EXP U~DE~FLO~ R=9 90
CIVle[CHECK OR FLGAl PT EXP OVERFLO~ R=A 90
DIVICE CHECK OR FLOAT PT fXP U~DER OR DVERFlO~ R=B 9D
DIVIDE CHK OK FI~EG PI CVR OP FLOAT EXP UNDR~L R=D 90
DIVIDE CHECK OR fIXED PT OVFRFLOh R=C 90
C[VICE CH" CR FIX[L (JVR Of{ FLOAT PT [XI-> UVRF-UI R=f 90
DTVICE CHK OK FIXEr) CVI{ Ck FLT EXP OVR CI{ ur'~[:K R=F 90
BRANCH O~ EXECLTE HRANCH tCNOITIGN TKUE R=l UK noo 9C
IN~REMENT TEST ANU enANCH eN ZERO ARITH REG 88
IN~REMENT TEST INOEX ANC bRANC~ ON ZERO 8C
INCRE~ENT lEST A~G BkA~CH CN NCN-ZERC ARITH REG 89
I~CREMENT TEST INDEX A~G BRANCH O~ NON-ZERO 80
CECRE~ENr lE~T AND 8KANCH ON ZERO ARITH REG 8A
OEr.RE~ENT TEST INDEx ANC RRANCb ON ZERe 8E
OECR[MEN T TE ST AND bRA NCH eN NCN-lE RC IIR ITH REG 8B
DECREMENT TEST INDEX AND BRANCH ON NON-ZERO SF
INCRE~ENT TEST ANC ~KIP ON EQUAL ARlTH R.EG 80
INrREMENT lEST AND ~KIP C~ NCT ECUAL AKITH REG 81
Or::CREMENT TEST AND ~KIP ON EQUAL ARlfH REG 82
DFCREMENT TEST AND ~K [P ON NOT EQUAL AR I H1 kEG 83
BR~NCH ON ARITH REG LESS ThAN CR ECUAl TO 84
f:1R.ANCH ON INDEX LF.SS THAN CR ECUAL Te 86
BRANCH ON ARITH REC GREATFR THAN 85
BRANCH C~ INDEX GREA 1 (I{ THAN 81
PlSH WD ARITH REG 93
PULL WC ARITh REG 91
~OnIFY ARITH REG ~9F
BRANCH AND L CAD REG ~ I rt-{ PC 98
BRANCH AND LOAD INDEX REG CR VECTOR PAUAM REC 99
LOAO [FFECTIVE AUDRE~S INUEX RFGISTER 56
LOAD EFFECTIVE ADDR[SS INIC OA~E KEG 52
I ~TERPRET AR I TH REG 92
EXECUTE 96
~CNITCR CALL Af\D PRuCEEC 90
~(Nl TCR CALL .4f\D \ojJ\ I r 94
JAKE NEXT INSTRUCTln~ R=O 91
CCNVERT fLCAT PT 5~GLE LGTH fa F I XED I-> l' SiJGl E AR I Ttl f~AO
C(NVERT FLCAT PT ~NGLE lGI~ TO FIXED PT hALF ARITH R Al
CC"'VERT Flc~r PT DBlE LGTIl TO FIXED PI SINGLF LGfH A2
C(~VERT FIXEO PT SINGLE l~TH TO FLOAT PT SINGLE LGTH AS
CCNVERT FIXEt PT ~INGLE LGTH TU FLOAT ~T DOLE LGTH AA
CCNVERT FIXED PT HALF LGTH TO FLCAf PT SINGLE LGfH A9
cr~VERT FIXED PT HALf LGTH fa FLOAT Pf DaLE LGTH AS
NC~MALIZE FIXED POiNT ~I~GLE LGTH ARI1H REG At
NCR"AlllE flXEO POINT hALF LGT~ ARllH RfG AD
VECTGR R=l BO
VECTOR AFTER LeADING VECTOR FILE f=O SO

121
121
121
121
121
121
121
1 ?" ,-1
121
122
122
122
122
123
124
124
125
125
126
126
127
127
128
129
130
131
132
132
133
133
134
135
135
136
137
138
138
139
139
140
140
115
145
146
147
151
152
153
154
155
156
173
173

coDe
A
/II
A
/iF
AFfJ

.M1
Al
AI
AI
IdH
AM
Af4F
AMFD
A~H

AN~
ANDD
ANOI
B
BAE
8CC
BCG
eCG
eeu:
BClE
BCt1
BCNM
BeND
BCNl
BCD
BCl
aD
BOO
sou
SOUG
BOX
60XO
aoxu
80XUQ
BE
BG
BGE
BL
BLB
81..1:
8LR
BlX
Br-tI
BNI:
aNI
BO
BPl
eRC

ALPHABETICAL INDEX OF INSTRUCTIONS

INSTRI.!CTION
OP PAGE

CODE NO.
ADn IG ARITH REG FIXED PCI~T SINGLE lGfH 4U
Acn Ie 2A~~ RlG flXEC PCI~T ~[~GLE LGTH 60

• II r J) Ie! i\ G E XC, ~ V L C r l ,; p ,1 i< ,~ IV KEG FIX r: G pel I\,j T .) I \l G l F 6 2
Ace f L t t, r r:: elf\: T S r I\(~ L c: L G r f- I\f~ I T Ii K [G 4 2
AC 0 ~L[AT PCI\f C~L ~~r~ A~ITH R~G 43
ACr:, f I XfC pel:'- I h~U- LGfH AKI fl-- ReG 41
A[~ Iw~tC T[bR[TH R~G FIXED peINf ~INGLE LGTH 50
A D J) 1 IV II E eTC f' A S l: K i- r; F L>(t [POI f\i T ::., I I\; G L E L G r 1- 7 a
A~n IIV~FC Ie I~DEX U~ VeCTCR PAR~~ KEG FIXEr PI SNGL 72
f~ r r I W fi E C F I 'I f [I).~ I 1~ r l-- tI L F L G T I- A,~ r r l-- i{ E G 5 1
A~8 ~AC FIXfL P(I~T SI~GLE LGr~ ARJTh ~EG 44
ArD ~AG FL(AT prl~T SI~GLE LGT~ ARITH R~G 46
ACt; t-!I (F L (t~ T .f C r l\ T L eLL G T to /J R I T l-- 4 7
A r; I) ~ A G F I H C P f' I f\ T I- ~ L r L c r H A R I f r. REG 4 5
A~n ~~Ill-- kEG FO
ft "In A R I T l-- R E C CPU:: l G r h E I
I~~C[~~c ~RIrh REG FO
LW'T!\CITfU,t'L t::P/lI\CH R=7 91
lR4~CH (~ ARIT~~flIC EXCEPIICN 90
l' P. !l :\ (h C f\ C (/-I P t\ R c C U:' t 9 1
ERA~tH C~ APIll-- ~~G CR[~TFR fPAN 85
b P i\ '\ L h r: t-. I 1\ Cf x G P f:' lIT ERr H A \ 8 1
~' P I'. f\!:Y CJ, I~'-~ J H i-' L G L [J ::, T I . A i\ c.-~ E C U A LTC 8 4
PPA\(H [~ Il\UrX L[S~ Th~l\ (R fCLAL IC 86
fo< !X[[IfHCS A!\C U\E~ 1<=4 91
1\0T t" [XlC R.:::,j 91
r-.OT - filL (h.ES 1<=5 91
,...nr All lERes R=6 91
ALL ellS ARE C~F R=2 91
ALL BITS !tHE Z(P{' R=l 91
OIVT[E (PECK K=8 90
LT\i[LE CHEel'; Lf' ILC/\T PT fXP UV[,UlUr. R==A 90
CIVICE ChEC~ CR rL[uT PT EXP U~DERFLC~ R=9 90
f)'VI:::E CI-'I:CK Ck t-u:H PT EXP Ui\()E~ OR CVtRrlLv. R=B qc
D r \J I L E C bE:::' K u< r- I x ;: fJ !J T C V ERr: l G ','I f.{ = C q 0
DIVICE (~K CR FI~~L LVR CR FlCAr PT EXP CVRFL~ K=F 9D
ntVICE CHK C~ ~r~EC ~T LV~ CK FLCAT EXP ~NURfl R=D 90
OTVILf.: CI K Cf< I-·l,,;t[: CVK L;{ FLT r:xp CVi{ CR L~:CK R=F 90
(:~ 1 [C {/J L P ~ J.l , R = 1 9 1
(!".!) (i{ (ALPhA) i{::::2 91
(:u GR CR E(~ (:lL~hA) R=j 91
(q) LS (lllFl-JA) ,{='i 91
B R b :~ C h I'd\ 0 l C:~ L KEG ~d 1 h PC 98
(:u L~ c-~ EC \J\'-~JI-Al K='.J 91
b~A" .. CH Ci\ LCCI:t,LRI:SLLf 95
~R~~CP a~c LeA['NC~x ~[S CR VECTCR PA~A~ REG q9
(il) LS l~:KC K=4 95
{i<} l\CI fC (t~'-~Hl\) t<=6 91
(~) :\ C T t \~ Z [K [R = b 9 5
fLellT f-T lXP L'vf~flCf-, K=2 90
(Q) GR lERC 1<=2 95
ck,A\Ch U, H;:~LL T C(,,[9'>

65
65
65
68
69
67
66
66
66
68
70
72
72
71
89
93
89
115-
121
115
133
133
1Jt:
132
138
118
118
118
118
118
121
121
121
121
122
122
122
122
115
115
115
115
136
115
120
137
119
115
119
121
119
119

Alphabetical Index 203
<:0,..""; r\l!'\ 0 'I)

5/69

NNEM
(

'_.-:..;;:r-:

, ,-{ rl
eRNt'l

'* BHlIO.
BRNZ

~i; BRO
SRI
eu
eua
ex
eXEC
Bxe
I3XU
BXUG
Bl
BH~

BZP
C
C
C/I.NO
CAl\;CC
CANOl
CF
eFa
CH •

CIH
COR
CORD
CORI
C
CBi\JI
CBNl
OBl
CHl
OF
CFO
CH
OI
CIH
DSF
CSNE
EQC
EOCO
EOCI
FDFX
fHFG
FHFl
FlFH

»!= X
,;':0

F l(Fl'

204

ALPlfABETICAL INDEX (CONTINUED)
---"'-__ R __ ' __ '_"' ___ r ~-----.-.-..---

IN c::~rO"f'T- O~I ~.~-::.~".~~
M[XED ZEROS AND CNE~
NOT t.:IXEC
I\OT ALL (l\ES
~,(1T IILL Zr::R[~

ALL tIT~ ~P.E cl\r
ALL EITS ~RE LtRC
FLCAT PT EXP U~DERFLC~

FL(AT PT EXP U~DEPFLC~ C~ CVERFLCW
FIXED PT O~ERFLC~

R=4
R",,3
R= 5
K::: (~

k=l
R=l
R=3

OP
CODE
95
95
95
95
95
95
90
90
90

t<R{lf"CH Cf\ EX(-CLTE e,Ul~\C"" CCi\l;flfC)i\ TRvt~ R=l C;Q r;rD 9C
f PEL PT [\lfl<FU't. (R FLCAI [XP CVERFLU" R=6 9D
F r x f: CPT (] 'v f!~ F L (I t" C R F L C l\ rEx P L f\ C f: R FLO, n = 5 90
rIXEC PT c~n CR Fl(AT lXP PI aVR CR UNLEKFLl~ k=7 gD
(~) EQ ZERl K=l 95
(R) lS CK (C ZERG R=5 95
(Rl GR CR (f, Zf.RC R=3 95
cr"PARE FI HD PClf\T ~rl\GLf I\R1 lH r~EG e8
C~~PARE IN~FX Pfl ~I~CLr LClh CE
CfMPARE LOGICAL ~~D ARITH REG SII\GLE lCT~ E2
C(~PARE LOGICAL A~L ceLE LGTH ARITh REG E3
cr~PARE IP~EL lCGICAL AI\U ARIT~ KEG sr~GlE LClh F2
Cff/PARE FLeAf PPlf\T SIH;LE LCTt- ARITH RI:G CA
C (f./ P " REF l C /I f P (! I f\ T C [< L E L G T h /J HIT t· ;~ F G C P
Cf"'PARE F£XFC Pll1t\T hflLF lGrH "RITt- REG C9
cr,,~p.6RE ftJl-'EC FIXEC P(;II\T SIf\JGLf lGTH ARITh ~t:G 08
C(MPMH: ll"/'If:L; lNtlEX REG SIf\GlE lGT!- DE
C(fo<!PARE Il"fv[f) F I XED P 1 HALF LG TH AH I Til REG 09
CC~P~RE LCGICAL CR ~I~GLE lGrH ARITH RtG [6
C(flPARE LCGleAL Ck [ELf LGTH ARITt- REG F7
C r '" PAR ElM jI! £: L 1I1 G I CAL [1.< SIN G L E L G T H A R I T H r~ E G F 6
CIV[CE FIXEr P£l~T SI~CLE LGTH ARfTH REG 64
lJFCREr~Ef\T TeST AND Hf<:t~hCH Cr-. N(i'J-ZERC M<Ifl-' ReG 8f'
CECRE~Ef\1 TFST [~CEX J\~C HRANC~ C~ NCN-ZERO 8F
UFCREPENT TEST AND BRJ\~CH (N ZE~C ARITH KEG 8A
DECREMENT TEST INDEX Af\C RRANC~ ON lERe 8E
DIVICE FLOAT PCINT ~If\GlE lGfH ARITH REG 66
DIVIDE FLOAT PCI~f CBLE lGfH ARITH REG 67
CIVILE FIXEC P(I~T HALF LGT~ ARIT~ REG 6~

DIVICr: If'ltv'EC' FIXE!) PClf\1 Sri,GLf LGTli ARITh f~::~ 7 /'t
CIVICE I~~Er FIX~C PCI~T HALF LGTt- AllTH ~[G 7~
LFCRE~E~T TEST Of\C ~KIP eN ECUAL ARITH ~EG 82
CF(REMENT TEST AND SKIP ON Ncr E~LAL ARIIH R[G 83
ECLI\lALEI\CE ARIH- REG EC
EOLIYAlEI\CE ARITH REG ceLE LGTt- ED
I~W[L EQUIVAlEf\CE ARlr~ REC Fe
tr~vERT FlCAf PT DELE LGTh fC FIX[C PT SI~CLE lGl~ A2
cr~VERT FIXEC PI HALF LGTH Te FlCAr pr DBLE LGTH AR
CCNVERT FIXEC PI ~AlF lGTH re FLCAT Pf ~INGlE lGIH A9
C(~VERI FlCAT PT S~GLE LGTH TC FIXED PT ~ALF ARll~ ~ Al
CUlVERT FLCAl PT !)t,GLE LGTt-· TO I-IXf:D PT ~"GlE ARlTl- ~AO
Cf~V~RT FlxEO FT SI~GLE lGII- Te FL(AT FI CELE lGr~ AA
C(NVERI FIXED PT ~lNGlE LGTH IC flCAT PT SINGLE lGTH A8

PAGE
NO.

-Y25-
120
120
120
120
120
121
121
121
123
121
121
121
119
119
119
108
108
·111
113
112
110
111
109
10;
lOB
110
112
114
113
85

127
127
126
126
88
88
87
86
87

130
131

92
94

992
147
154
153
146
Hl5
152
151

ALP~I\BETI (AU NDEX (CONTI NUEr!l

'NEI~ OP PAc:;.~ tODE INSTRUCTION CODE j\;O.
------------~

JSl 1 NCRffJEf\T lEST JlI'~ C B1Uf\Ch eN lERG I\!:U H' REG 88 124
ISZ IW-:RE~f~~T IE ST HJ)[X .'l f\ r; BRM~C!" ON lERe BC 12<1-
IBNZ I ~l r I{ t I" E. i\ T 1[::'1 1\ i, L Er~f,I\Ch IN NO~-l fRO AR In-: ({EG 89 125
IBNl I 1IJr:.;~LfJf: \ 1 H ~,l 1f\[;LX A f\l, BRAf\CI- (1\ f\O,-lfR(80 °125
PH I ~J f l K P R t 1 j'!!Ilr R fl, 92 139
I Sf I r\lr.~{E ~f \ f H::, I /J f\ C ::,r:fP 0.; ~ CU A L t.RITlj KEG 80 128
!SI\lE IN(kE,'[\1 FST A r,: [' ~)t<IP

, . r
UI\I 1\(1 U.Llil ARITH RE"; 81 " 129

L len; APllli l~ E G :,1"CLE LCTH he 14 26
l Lrl\[) EA:,[f<EG :.If\Cl[L C H- 18 26
l lfl/lU I f\ C [x RtG (' ,-) ,I> "LCrCH p ,\ ~I\,~ REG SINGLE lG 11-1 IC 26
LAC L (1 i'J [: llRfTI1 C L r\! I 1 J C!\ 13 49
LAM LP~D I'Itd 111 fill S '" 12 48
LD l f' tl[~ t.RlfH '~ EG [:bL t LGTI-< he 17 33
LEA lC:\0 EFf-EC1[Vl: /" L lj ~ [S) II\DEX RLGISH:R 56 138
LEA LOI\f) EfFECfIVF !\CI:KES~ INTC BASE REG 52 138
IF lC~D BASE K ':G I- ILl=, RtG 1-7 IB 45
IF lfllD e!l ':J E :n::; , ILl' , RFC H-F 18 45
IF l r 1\ l; ilF:lfH nEG r I l E, f~ LC 1 C-17 iii 45
IF l (1'" C ,1Kiff-! H:G F 1 L L, ,{ LC IS-If IH 45
If lOr.O If\uEX HfG r!l [, r~ EG 2C-27 18 45
LF lellD VECfCK PA:,A/>' 1< E G FILE, I{ EG 22-2F 1H 45
IF t~ l0'1U ALL :< E: G FILFS IF 46
LH l r t C tI,< ! T t-I :< E: G HALF'U;f!' ~c 1') 29

tnt L unv t L I 1\ L. IlR[H- K[G SI\GL[LGTb 54 27
1I lr'I\O frJ;'"r:c I f\ rr I '\f)EX I{~: G [R JFCTCR PARfW R [G ~r\iGLE ~)C 27
llH lflllC Ii>'AJEC li\lC A~ I 1 h REG rALF LGn- 55 30
II lrllG fJEfJ(t<Y Rh L 11\ 1 C /JRITI1 RF:G u- tiG 19 32
llA lrljl) LceK ~HfAL 16 50
lfJ l (l t I~ !'IllS F I X E [PC;If\T iII\;GL[LGfH A'{ITH ~EG 3C J34
UID UHf) '" ll,C, FLeAf PLIl\f CtlE LGfH flf<ITH REG 3F 37
lMF U:."q:; f'I..o~ FlCAT PCI\T S I f~G L E LGTH llRlfH ,.{EG

":';~
3E 36

lMH lelll! /I/JG F rx EL PlJI\T I-AlF LGTb tn<.ITI-! K.l: G 3D 35
IN l('llU \EG fIXEC PCPd S I ~\GL E LGTH (LD 2 ' S CCi"P)ARIT~ R30 38
LNO lr:t.G I\fG flCAf PL I f\ r c l~ L E l~TH ARITH REG 33 40
lNF l r: ('II) f\[G FlCI\T PC 11\ T SIf\GLE lGfH f,RITII REG 32 40
lNH lfflC r--.£G flXEL PClf\T 11.' L F LGrH M?ITH KEG 31 39
l"'fI L(flG 1\ E::~ "'tC FIXEl PCIl\f ~I~GLE lGTh AKITH ~EG 38 41
lNMG lf1/1(J t'\fG "'1\ G fLrAT PCI:\l CPLE lGTI-' A~ I r H REG 38 44
lN~f lG"C f\[G IV t<~ f d:t, 1 PC H\ I S I", GL f LGTb AKITH REG 3A 43
LI\J~"lh Ln /1(; NlG f I x [D PlII\T HALF LGfH flRITH kEG 39 42
LO LCAl.) At1ITh REG V. I H- I • ~ CU",fJ SINGLE lCIH lE 51
LR lOM) flf:"'CRV Rtf WL It\TC ARITh REG RH wo 10 31
PI ,..Ul TI P ellS E REG 68 79
", flLtfIP l:\;['E'< (R vec T.CR p/lRatJ RFG 6A 79
PI ~ULrIP FlY I~C r-LINT SlhGLE LGTH APITP Rt=G 6C 79
tiC P "('X[TeN (/\L l /1 ~ li PKLCI::EC 90 140-
tiC ;oJ ,.. l"! [f(>~ ClILL .., ~\ D .' II I 1 94 140
flF I"Cl1IP FLl:.AT P (11\ r ~ 1i',GU: lGTI-! A(~Ifb KEG bE 84
fiFO r-rULrIP Fu;r,r \JCINf u~L[Lcrr; Ii R I r r kEC 6F 84
/'til l"l;lf{P I {II1·n: C fC lj :\ :, E REG 18 81
f'lI f.l,tfIP I :- II r L, f([:, L E'(C :~ VfCfCI'<I PflKAfJ KEC 7A 81
III ;"'U l r I ,l Ir't",..n r I XLi) PCll\T Sl\CL[LGTH /1:~ITH RH} 7C 81
filH r-L' .. Tl P f-I<F.' rl(["T h\L l- lG r~ Af~lTl- g(G 60 83
fllH I"'lJlflP If>I,..EO f IX t: 0 PC [I'd HALF LGlh ARIIH i<EG 10 83
.. 00 ,..CDIfY AR 11 H REG 9f 135

Alnh"'h~tif".::ll lnrlav 'Jf"\t::

NO?
NFH C,':
eRD
CR I
PSH
PUl
RVS
$
S,'\

SJ\D
SAH
sc
seD
SCh
SF
SFO
SH
51
SIH
SL
SLD
SLiI
SM
S r~F
Sf"'1FO
,:".t1H

}

-vl0H
S I)S

Sf
ST
Sf
srD
STF
STF
STF
STr
srF
STF
S TFr1
STH
Sfl
STN
Sf NO
STNf
STNH
STR
5fl
SlID
STIH
"Ecr

~;~ f l

.ttH
XEC
>COR
XORD
XORI

AL f~ r f Al~::.'U:S;~_L" .. .DiflE x -.t._r~lilItl U EDt
INSTRUCTION -------

TAKE NEXT INSTRUCTION R=O
NClH",tllIlE fIXr.:C POINT hM.F lGn- ARITH R[G
1\(t:f'!j~lIZE FI/<,t:L I'l]ll\f ::'It\iGlf~ LGTh IqUlr- ,1,fC
CR AR.ITH KEG
CR A~I1H REG Celf LGIH
IfJtrEl CR AHITh R!:G
P l ~ H h 0 A I, I T h ~ f C
PULL ~C ARiT~ RfG
HIT R[~E~S~l 51~CLE LGr~ ARITH REG
SL(r~ FIX~C pnl~T SII\GL[LGIH ARITH REG
II R T Ii- S HI F T f I X ELf: C I i\ T S I M; U: L ,,~ n· 6 R I r I-' l{ E C
ARTfH SHIFT FIXFD FCI1\T DhLE LGfh t1RITI-' IHG
A P IT t-. S Ii 1FT f f I([L pel i\ T ~: A L F L G T H A R I T h R t G
CFI.CtlAR ShIfT Sll\GLF: LGTH IlRJIH REG
CIPClLAP SI-'Iff rJLE LGT~ ARITH REG
CTRCLlA~ S~I~T ~AL~ LGr~ ARIT~ R[G
surfR Fl(~T ~C[~I SI~GLE LGTH Akllh ~EG
~urTR FLeAT ~l C8LE LGTH ARITH REG
SUPTR FIxEC relNl ~ALF LGT~ ARlfl-' REG
~ UP T R U'i t-' E C f I x E (j' pel fH S I h G L E L G T h A R I TIl R r G
S L"I' T RI f'I tJ f [f 1 f. f C pel r\ T 1-' A l F l G T I~ A l~ I T b i< [G
l n r. 1 CAL S Ii J Frs I 1\ G l E L G T h Md r I- f< f G
LnGICAl ~HIFT C~LE Left- ARI1H REG
LOGICAL SHIFl t-ALF len· ARITh R[C
SUBIR ~AG FIXEC POINT ~I~GLE LGTH ARlfH R[G
SLRIR ~AG FLtAT peINl SI~GlE LGTI- ARITH REG
SLPTR ~AG fLCAT ~cl~r DelE LGT~ ARIIH RFG
SLrIR MAC FIYEC PClhT ~ALFlGTI- A~ITH RlG
C~Ft~ CC~Pl[~E~T SI~GLl~CRC

CNF'S CC~PLFkfNT HAlF~CRC
STr~f. PP'(GRA~ SfHfLS "eRe
STORE ARIIH P~Gt SINGLE LGTH
::i f r, R f.. E fl S 1: n I: G. ..) [1\ C L E l G T I-
ST(~[I~CEX ~tG LR V[CTC~ PA~~~ ~ECtSI~GlE LGrH
S fOR EAR I r H j{:: G, eEL E L G T Ii
~Tr.~f. eASE KEG FILE, KEG 1-7
ST~RE BASE ~~G FILEt REG B-F
STORE ARIT~ REG FIL~, REG 10-l1
STOKE A~!Th ~fG fILE, REG Id-1F
STn~E INDEx ~EG ~IL~, R~G 2C-27
~ T C H E V t C f ({ P /l q A rv. ,([G F- I L E, I{ F- G 2 e - <2 F
STORE ALL REG FILES, REG 1-2F
STORE ~AlF lGTb, ARITH ~EG

ST~~E gEG LH I~TC ~E~CRY RH, A~[Th REG
~fOHE hEG Flx~C ~OINT SlNGl~~O~C
STCRE ~EG FlCAT POINT CCUBlEWORD
STORE NEG FlGAI POINT SlNGlEWORD
slrRE ~EG FIXEC PCINf HAlFWORO
STrRE REG RH I~TO ~E~CRY RI-'. ARITH REG
S T eRE Z Eke, .) I 1\ G l E L G T I-
ST~~E lEMa, CBlE lGT~
ST~R~ ZERO t hALF lCTh
vr:crCRR=l
~FCICR AfTER l~AUI~G VEcrOR FILE R=G
~XCH~NGE ~RlrH REG
EXFCLTF
[X(llSIVE Cg ARIT~ ~EG

EXf.ltSIVE: CR ~kllh RI:G [tiLE l.Glh
I~MEt fXClLSIVE OR ARllh REG

OP
CODE
91
lI.D
,'1C
(=4

E5
Fit

93
97
(6
't 8
CO
C3
C1
CC
CF
CO
4A
4B
49
S8
59
C4
C7
C5
4C
4E
4F
40
?F.
2A
22
24
28
2C
27
2B
2B
2B
28
2B
1B
2F
25
29
34
37
36
35
20
20
23
21
BO
BO

1A
96
r:a
F9
F8

PAGE
NO.
115
156
155

90
,:.93
90

134
135
107

73
95

.,98
97

103
106
105

75
75
74
73
74
99

102
101
;,16
78
72
77
61
62
57
52
52
52
56
63
63
63
63
63
63
64
53

~55
59
61
60
60
54
51
58
58

.173
173

47
139

91
94
91

OP MNH1
CODE CODE

1.2
13
14
15
16
I 7
1 e
Ie;
1/J
IE
lS
le
Ie
IE
Ie
lC
Ie
J E
IF
2C
21
22
23
74

·25
27
2[:
2S
2/J
2e
2£1
2e
28
2e

. ,,-i.e
2C
2C
2E
2F
3(
31
32
33
34
3~

3t
J7
38
3«;
3A
]D
3C
3C
3E
3f
4(

Lit 1>1

LAC
l
ut
LlA
LO
L
LL
XCH
tF
LF
LF
L~

Lf
IF
L
LR
LO
LFM
STZ
STZH
SP$
S TZD
51
S IH
srp
51
Sll
STOR
STf
SIF
STF
STF
SIF
SH
Sf
STR
STO
STfM
LN
LNt-!
LNF
LNO
SIN
SINr
STNF­
SIND
LNM
LNMH
LNt'f
IN'''L
lM
LMH
LMf
U10
A

OP COJ[INOrX OF INSTRUCTIONS ---_._--... _,---------

INSTRUCTION --------
LeAD tlRITH 1-1/1SY-
LCAI: AI~[rl- CC,d..iITIl\
L C f~ C /J KIll' :{ l G ~ r l\ I~ l;:: l ~ T H " U
LCAC A~[It-- :'<r:::; fjflLf I.GTH he
lC/lC lCft< "h/lC
lCIIC Md n, I:f G DI.~LL LG I t~ ~~C

leA c t~ t\ S E ~ Fe:) I .\ C; L E LeT I~
LGl!!'; l-'(tv(R't t"f- i~L II\]C lll<ITH r<f(i Lh he
[XCHM~C)E /l i~ t II-< ;{ f:G .
L C M) !: /l ~ i: ..! h.: ritE, '~ t G 1 - 7
LCAC B8SE ~~G fILE, RFC H-F
L C /J CAR [I r tI l G F (l E. l~ C I: 1 C _. 1 7
LCAC ARlIt-- K~G ~[L[. R~C le-iF
lCAC I~CEX RtG rILE, REG 2C-27
lC~[VEtTC~ ~A~t~ ~FG FILE, REC 28-2F
l C A:.; 11\ r:; E X i! t: G L.~ ''It: C rr t< P II k A I" ~ (G S If'~ C L E L C T J-;

L cAe fo,I E ,., C ~ y j~ r ~..; L • ,\ T I": , :~ I r~· :~ E C K. H \t; C
leA CAR r r 1- :n: G \'I. I r I- 11 S. C C f>t PSI 1\ C L E L G TI'
LCAC ALL KeS FIle~

ST(~f lEKC, ~IhGLE lGTJ-
STCRE ZFkC, hALF lGTH
::, T C ~ E f>~ (S lUq; S 1 AT L.) W L ,~C
STC~E ZE~C CrLE LGTt--
STlt<E t.:<lTt- lEG, ~l.\GL[LGTh
S T (R E ~- A l F l G T 1-. A K rT Ii ~ l G
STCnF M~Ilt-- Rf-G, CLlF lGTH
~Tlk[tA~~ ~[G, ~1~GLl lG1J-
STL~r REG u~ I~r(/'i~f'J'J-~Y Rf-, ARITH KEG
STC~f CH:.'~ t,.CtJI-Ltl\[I\T i-'l\Lr~CRC

~ TeRf [.'\~E ·H-G I IU_, KEG 1-7
ST(~E eASE ~lG FILF, K.EG 8-F
~TCRE t~ITI- kEC F[lJ-, REG 10-17
ST(RE ARIT~ ~(G FILE, HEG IB-IF
STCRf I1\LEX ~lG fILE, PEG 20-27
~ T (:< £ \i E C r u ~ P II t: /It.; .~ t G 1- I L (, REG 2 b - 2 F
ST(~F I~Lrx k~G [R vFCICR PARAtJ REG, SI\GlF lGTH
!:lTGU REG kf! It,ll r-f-t-'LRY RI-, I'IRITIl REG
~TCRE (~l'~ CC~PLE~E~l SI~ClE~C~8

ST~Rf ALL RfG FILES, REG 1-2F
LeAL 1\[(F[;,LC PlIl\l ~II\GLF lCTf' (LG 2'S LU~P)!It<IIH K
L Gun j\; E~; r- I)c; r; PC I :\ T f't L F l G r I- A R I r r. ru:: G
L C II C l\ C; f L L ,u reI 1\ 1 ~ I .j G L E l G H~ II R I T H r!= G
1.(1\[. f\EG FU";'\T PlII\T DeLE: LGTt- Af~IHJ KEG
STlRE I\lG·I-[~EC P(l~T SII\Gl[~CRL

~T(~E I\FG FlxEC PCI~r I-ALFhUKC
ST(~C 1\::"; f-lU\f PCIi,T :-:Ir--GLfv-,(K(;
:.. 1 n~ E 1\ t: G ~ It ~ td P I~ I i\ T L L.. l,; ;) l [W C I~ [1

LCAL 1\[~ ~f1!~ fLl(CL i'CihT SIf-l''';U: LGTH ARlIt-- t<H~

l C II i) ~J E C r I x ~ i) t' C I "T hAL r L G T H A H (T H IH: G
l~AC ~EC ~DG FLeAT ~CI~T ~1~GlE LGT~ ARITh ~FG
LCAf; NEG tvilf; flC/lf ~CII\T DtLE lCrH Al<lfh l~fG

leAc r-A~ rIxlC p(l~r ~r~GLE LGTH AHITH ~fG
lLAi; tit:': f [-O-_l., ,Pl!.\l '·ALF lGH- I\,~rr .. ; f~rG

l c ~ e IV /l ',~ r l ;' ,\T ~) C I :\ I :..I!\ G L F. L G Tf- J'\i< IT H ~~ E G
L CAe t-' ~ r: f li: A r t1 c [1\ T rj c L E l G T I- /10{ t fI--i rH- G
AOD TO ARITH RE.::J FIXED PCll\f SINGLE LGrh

PAGE
NO.

48
49 '.
26
29
50
33
26
32
47
45
45
45
45
45
45
26
31
51
46
57
58
57
58
52
53

. 56
52
55
62
63
63
63
63
63
63
52
54
61
64
38
39
40
40
59
60
60
61
4i
42
43
44
34
35
36
37
65

Op Code Index 207
.. ____ ~~.Q':l

r' /" I~
), \.,.//

*

or !~NHl
cnnF
'-'>.' CODE

ld'l
7;''2 AF
'13 /",r-n
(+4 AN
45 1\ l"Ui
46 AHF
47 Al"\ru
l-t 8 S
ll9 SH
ttl}. Sf
413 srn
lie s r~
4C SHH
'tE ~MF

4F SNfD
jC AI
'.:it AiH
'52 LEA
')4 II
55 lIH
56 LEA
58 51
59 SIrI
5C II
60 A

A
i 0

65 OH
66 Of
6 ? DfD
68 M
bA M
6e M
60 1'-1H
6E Mf
6f MFC
7C AI
72 AI
74 01
75 OIH
78 MI
7A Ml
7C Ml
70 MIH
60 f <"'~ ~..Jt:

81 ISNt
82 OSE
83 OSNE
84 £3ClE
a5 Bce
""6 BClE
,ji 1 BeG
rlO leI
ae; 10NI
SA 08l

OP CODE INDEX (CONTINUED)
-"---.------....... __ ._._..,_"'_~....L...

I NSTRUCTI ON
ADG FIXEC PUINf HALf lGfH IIkiTH R'fG
ACG f-LCAf POlt\T :"YNGLE lGTI~ MU1H f{,:G
flOC FLCf~r POIi~1 1~f:lL tJ;n! A:UH· r;r:c
1\ U 0 r: A C F I X f U P [) I \ r S I f\ C L E L G n, i\ r<, 1 T I" t', r C
A [) D 1,1 A C } I x F r; P i"i i '< I I-! {-\ L F L Cl t· 11:<.. ~ 1 Ii R != (,
lise t1t\c FLlAf Pl;[\T ~Ii,,'::;LE Lcn' ,\f-\! II-; 1',rJ
AD U II A C 1- L L hlP (; [, tl UH. L G r h M{ T ' h
S G B T R r I x f. C P C 1I'H ~ I I'; G l t: t G I H "~l 11: f< r:. G
S U 8 T R f I K [C per i ; 1 H M F L G rr; f\ R 1 f H : ~..-: G
SUe T 0, F L 0\ J PC { 1\ T :.>1 i~ G L E L G 1 h J\ '{ IT h i"; F G
S LJ B T R F L C II r pel \'i r D Ii U: L G H, fd~ I ; I-i U- G
S U G T R fl," C H x [C P (j 1 t'n S I h; G l r L G 1 I ~ /\ r: I 1 H Ii r:e;
~ u e T R fV Ii C ~ I x E C P l'~ [t,~ I hAL r L G 1 f- 1\;.) 1 ! Ii f-),;- r,

S U [3 r H fJ t\ G f· L C (\ I P l: I I'i 1 S t f\ (; '. [LeT f' ,I\,,,~ tTl) :, L ()

SUB 1 R r~ 1\ G r L l A T I) 0 un [: !j L f L G H-l :" R 1 l!--! iU:-:
A 0 L I f'tv [L 1 () M-.. I T H y~ [G r I x 'l; pel >J: S l:'J G U L \, HI
ADD I jII f'J ELf I X [C pel 1\ T I II L F L G n- (\ td 11-1 i{ f C
tel t-d J E f F- [C I I V E JI L· f) K f-'; S :> I ~\ fC tJ t\ S f, f~ E ,;
LOA D I t-',;;: f L pn r :H I I H k F G S!'~ G Lt.- l.l~ T H
lOA CIt' fl E C l!'oJ 1 C to I)" I l H :q.- C f--- '\ L F L G I f~
LOAD EFFEcrI~E ACD~ES~ I~D~X RFGI~I\R
S U H T HIM 1'-1 f: C f [,; t: CPU I ;"J 1 ::, I f\ l; L [L r; 1 H A? I T H ~ F G
suerR (P~EC FIXE~ PCJ~T HALF LGTh A~rTf--- RtS
LtJAD [f'lIJElJ 11\11 I\LEX [~[G r-·{ V[C1U;.z f-l/\!Z!d" r',f:G St'JG~

ADD TO BASE IZEr; r I XED PC 1 rn S If';(;I.[LG jH
ADe Te P\Lt:X (If{ VE:(.TCR PI-\~<'M H[C; f'lX~[) PCl .. !T Sf,)GLE
DiVIDE FiXED i->lI,\T ~:i'~GLE LGT:l :"nH~ :),r:S
DIVIOf f-IXtD DCI,\T HALF LGTh /JRlrl, ;:~[G

CIV[CE FUJAl Pi.lP':f ::df'-,r;!_r: LGTH l\Rr fH RE(;
L r v I C F: Fl c>-)' T ;:; L I '. 1 t>~ L t L {') f H i. r<. I 1 H "U, ~
MULllP l:A'::'[KL:u
~ULTIP [~GEX OR JEeTeR PAKbM RIG
fJUlTIP FIXED peIrd ~Ir'lGlf. LGTH A'UfH ,<-EG
P U l TIP I- I x cUP L 1 :, r hAL F l r; r H A k { f Ii ;{ Hi !<!

f'J. U L TI P F L C J\ T reI r\T S I ~ J C L E L G r H A ~ I 1 H i{ t C
f-tULTIr fLCAT PI.~I\T i~l'Ll' lGTt' Ai~TTI, '{t-,';
AOD 1"'f"':0 Te R'l_,L !{[G FI>;r-L PCI',T :.dr\~~lr L:Jft·

PAGE
NO.

t:"7
VI

68
69
70
71
72
72
13
74
7'5
75
76
77
78
78
66
68

138
27
30

138
73
74
27
65
&8
85
87
"-"

VJ

ADO If'JIf'FO TO I!\tHX U~ V[CrCp, PAj','W :U':S r!Xrl~ PT St"Gl
DIVIDE IMMEU rIXL:U PC[t\;T SI";\,lt~ LG1H A'nHI ~U:G

70
79
79
83
84
84
66
66
86
87
81
81
81
83

C I V ICE I ~ tt. E D r· I ~\ ~ C pel 1\ T H"\ L F L (; r H ,'; \: I r H "r-'~

'~lTID I~KED Te HA~f R~G
M U L fI P Ir-1l'-l EDT C I N G t: X C-<. '.,I (: C H: P f> t\ R M' R ;:: (; I
flULTIP If'tflED rLXFC PCII\f Slt~GU. LGTIl :~,UTl" <.':G
fJ LJ L TIP [t-' t'" E [; F r x f:[~ pel i\ T r t~ L f L (j r Ii t\ k. I Tl-- k t-:~

f i-~ C ;', F f~ U, I T F :- j ,.1', U !:, Kif-' UN t-- lJ l; 1\ L t> 1<, I ! ~ I ><. t: \.,
INC~!:t~t~l J"c.~l Llf'tlJ .:>nlp J~J i~tJ; 1_ t; ..",L f\t\; ~tl .\ ~

UEC~Ejll.l.:rn TE~ T AI\G ~Kl P c~ ElUI\L Ai{ II Ii RHJ
o E (,I{ E ,v, tf ,1 I F S T M,D ') t< I P t:!Ii il C r ;: C I \ t, L l\ R IT h ;; d;
B R .-VK H rNA R I n' R F.: G L [S S r r II NCR H. I J A LTC
eRA~CH CN ARIlf--- REG GR~~T[~ lrA~

BRANCH UN INDEX LESS THA~ CR rCUAL rc
eRANCH eN lNOEI Gk.fAfE~ fHAN
INC l~ EMf: r\ T 1 F ~ T A f\t C f.~ f~ A/', :::. Hen Z L RnA r.~ I r H R l G
INC~E~E\l r[~T ~f\tU ~kA~CH C~ NC~-lEk.C ARITr KEG
OF. crn. f't, E N r 1 F :.) T M: 0 ['. R I'd\ C HeN l E:'H:; A R I T H :~ t. G

128
I~S'
130 , ",
I .J I

13?
133
132
133
124
125
126

Q~~IQpg_INDEX .i~ONTINUEDl
r:/69 -' .

OP !~t~EM PAGE
CODE CODE I NSTRUCTI ON NO.

-----.~--.. --,,~.~
sa OBNl DECREf<1H, r rE~l Md) BRM\CH CN "JON-lUW AR r r H REC 127
8e iBZ I NCRE/'fi,f:-l\iI P: ST [NDFX A1\() B n (t,1'i C I~ eN ZE\-([i 124
8e ICNl T f..! C P, E ~ E 1\) r '! F~ T rr\{;[>< ;';,l\~ () ?ANCH ON NON-lF.RU 125
8E OEl [r: eRE jill [t\ T fEST [f\[j[X A!\O BRA;\jCt, ON It:tZu 126
8F OBNl DEC? EMf ~\ T Ie S T [1\ D F X I\~D QRI\1\Clc CI'l NU~-ZF,KO 127
90 MCP I-'Ci\Il(Jf{ CALL t>f\jiJ P~CLt~f:u 140
91 H(C I:'RM'-lCH (1\ CCtJP/.\r{C eel) E 115
H NOP TAKE I\[XT I f\~ ~ I rW C r I Li ~ R=O 115
'11 RE { ;{) (C (/'tlPt-;A) R=l 115
91 e.G ou GI~ (r~Lrfif\) R=2 115
<;11 BGL:. (K l GR CR lC (ALPhA) R= 3 115
91 Bt (f<.) LS (ALPH~\) R=4 1'15
91 BlE on LS C ') ' r·, LC (:'U)H,\) R=~ 115
91 BNE . (R) 1,0 T tC (ALPhA) R=6 115
91 B L N C C ~'Ii l) I TIC 1\ {I L eKAI'\Cr- R=7 115
91 BCZ flLL BITS P t< F ZERr, R= 1 118
91 BCQ ALL flITS Ai<F·CNE R=2 118
91 BGNM 1\CT fVIX[u R=3 118
ql SCM t<'IX~lJ Z~Kf; ~ t, f\ f) Ci\[S R=4 118
91 RCNO t,C I fill C!~f~ R=I) 118
91 BeNZ I\C1 i\L l iEf<n~ R=n 118
92 INT I,\iTU{PRET AR I Hi REG 139
93 PSH PUSH I~ C AHllh 1\ FG 134
94 fJ,(. W t<C1\IIU~ CALL A~, L WA IT 140
95 BRC eRA1\(H Ci\ t<E~LLl el[,1: 119
95 Bl (K) FW lEf{C R=l 119
'is BPL \ R l GR If:P.L R=2 119
95 BlP (K.) GR CR tC ltkC R=3 119
95 BMf (iU lS ?F:RC R=4 119
95 Bltot (R) L~ OR E c., ZERO R=5 119
95 8f\Z (R } t\CT EC ZERC R=6 119
95 BlR t~R A''4(H Cf\ LOGICAL RFSULI 120
95 SRl ALL ellS JiRF ZERO 120
95 BRO ALL elTS flkE C1\[120 *
Y'J BR~M /\CT fVIxEC 120
<lIS BRM I"IXFC Z F K (1 S AND (!\if:; i20
95 BFl~O f\CT ~LL GNE.S 120 '$
95 BRNI I\cr AL l l E K(l:.:. 120
96 X(C t::XI::(LTE 139
97 put PULL ~C hK I fH REG 135
98 aLi} (:<RA~KH A ~\C LLJiC Rf:S hTTH PC 136
9'1 BlX bKh\CH Af\lJ L L l\l~ INLEX KEG Ck VECTUK PAK.M' REG 137
9C SXEC BRA\:Cli Ci'. f: x [C I~ r r. u R ,\ rKH CCNDITICN TRUE R=l OR nOD 123
9C BilE l3RlI\JCH CN AR I TH'1E r IC [XCEPTlOr\ 121
9C BU FLCAT P 1 EXP Uf\CEi{FLLW R=1 121
YO 80 flCAl PI EXP LlvtERFLCr. R=2 121
10 BUD FlC~T PT !:: x I' 1.)/\ OEf{ F UJW (J I{ CVE~FLOh R=3 121
'1e ~)(fiXEL F:- GVh{rLuv-i R=4 ~ '" ILl
90 BXlJ fIXED PT CVEt<rLUI-. C'{ I-LUAT EXP UNLJE~ FLU. R=? 121
9C BXO Flxt=D Pf C.Y'Ft<FLUv-. OR f-LOAT EXt-> Q'.Jff{FLOw R=6 121
9C BXUtl f·IXEC PT UVK U'{ FLCAf·PT uVI{ OR LNllEKFlClh R=7 121
9C BC liIVICE C!lECI< R=8 121
90 B(;U DIvIDE CH!=Cl< CR fLC4T PT r-xP L1\UERFlCW R=9 121
9C BOO ['1111CE CHELf<' U< I- L C L\ r rf [x I-' r;V[RFlOh R=A 121
9C BDUO DIVle[(hEel< ui~ F L IJ Ii r Pf F'(P UI\OER Uf{ lJVEKFlOW R=B 121

Op Code Index 209
Section 83

NNEi~
CODE CODE

'IC
go
90
')0
9F
AC
Al
A2
1.8
A9
AA
AO
AC
AD
BO
60
CO
C1
C3
C4
C5
(6 •

- -'
C9
CA
CB
CC
CO
ce
CF
DB
09
DE
EO
El
E2
E3
E4·
(5
E6
E1
f8
f9
Fe
EO
FO

F6
F.e
FC

Btl(
BCXU
BDXO
Br.XUO
Men
FlFX
FlFH
FCFX
FXFL
FhFL
FXFD
FHfD
NFX
NiH
VEcr
VEtTl
SA
SAH
SAO
Sl
SLH
RVS
SlD
(

CH
CF
(FO
SC
SCH
C
scn
Cl
(IH
CI
AND
ANOO
CAND
CANDO
OR
ORO
CCR
ceRO
XCR
XCRO
E'C
Eeco
ANDI
CANOl
OR!
CCRt
XCRI
E Qt:: 1

210

or CODE 1 NDEX (CONTl NUED) --_._----_.-

INSTRUCTION

CIVIOE CHECK OR FIXE0 PT OVERFlO~
!J I V ICE C WC [1 R r I x fT C V ~ Cl R FLO 1\1' PTE X P
DIVIDE CHK Uk FIXED LVR CR ~LOAf PT EXP
D I V IDE C W~ 0 f{ F I ,(l: C n v f~ 0 R F LeA T !J 1 t X P
~OCIFY ARlrH REG

R=C
UVt{FLOw R=O
OVRf-lW R:::F
CVRFU' R=r-

COi\VERT f-UAT PT ~1-';GLt t:T1- TO FIXED Pi .:",IICLl': !.lnTl-f R
CONVERT FlU\1 PI St\GLf: LCTh Te FIXEr; pr ~'i,LF' ARITH R
CONVERT FLCAT PI CEL.t LGTH rlJ FIXUJ PI :'I,~GLI- LCTH
cm~VERr fIXED PT SU~GL[LGHI TC FlGAT PT SI!\jGL[LGTI-!
CONVERT FIXfU PT HALF lGrH Te Flc/.\T PT SINGl.E LGTH
CONVERT FIXFG pr SIN~L[lGTH TO FLC~T PI UUL~ lGTH
CONVERT FlxfC PT ~ALF lGTH TU ~LOAr PT OkLE lGTH
f\CRMAlIlE FIXr:L PClf\T SIl\iGLE LGTi-I ARITH REG
NORMALIZE rIXEC POI~T HALF LGTH ARITH ReG
VECTOR
VECTOR AFTER LOACI~G VECTOR FILE
ARITH SHIFT fIXEr POINT SINGLE LGTH 4~IrH REG
ARITH SHIFT fIXEC PCINT HALF LGTH ARITH REG
ARITH SHI~f FIXED PCINT OBlF lGTH ARITH REG
LOG[CAl SHIFf SI~GLE LGTH ARlfH ~EG
LOGtCAL SHIrl bALF LGT~ ARlfH REG
eIT REVFRSAl SI~GLE LGTH AR[TH REG
LOGICAL SHIFf CBlE lGTH Af{lTH REG
(OflPARE: FIXf-G PUINf 5[NGLE ARITH KEG
CC~PARE FIXEO POI~r HALF:LGfH ARITH KEG
COMPARE FLCAT POINT SI~GLE lGTH ARITH REG
COP-PARE FLeAT Pul~l CBlF. lGTH ARITH REG
CIRCULAR SHIFf ~1~GlE lGTH ARIfH REG
CIRCULAR SHIFT HALF LGTH ARITH REG
COMPARE INDEX REG SINGLE LG1H
CIRCULAR S~[fT DBlE LCTh ARITH REG
COMPARE IMt-'[Q FrXi:O POINT :lINGLE LGTH ARIrH RrG
COMPARE IMMEL POINT HALF lGTH ARITH ~EG

CC~PARE l~~ED I~DFX ~EG SINGLE LGTH
AN!) ARITH REG
AND ARITH REG OBLE lGTH
COfJ,PARE lOGICAL Ai4D ARITH REG SINGLE LGTti
CO,..PARE LCG.1CAl Ai'lL CBlE LGTh ARITH KEG
OR ARlfH REG
CR ARlrH REG LUlE LGTH
COYPARE lOGICAL O~ SINGLE LGTH ARITH REG
COMPA~E LOGICAL CR DBlE LGTH AHITH REG
EXCLUSIVE CR ARITH REG
EXCLU::'IVE CR ARITj-I REG CBLE LGTH
EQUIVAlF~CE AR[Th REG
EQUIVALENCE ARITl1 REC CalF. LGTt-:
t"'~EC A~C ARIT~ KEG
COY PARE I,..",ED LUGICAL AND A~IT~ ~EG SI~GLE LGTH
IMVEO CR ARISH REG
COMPARE IMMfO LOG{CAL CR SI~GLE LGTH ARITH REG
{"'MEC EXCLUS I vE C~ hR I Hi REG
IMMEO.EQLIVALE~CE ARlfH REG

PAGE
NO.

122
122
122
122.
135
145

" 146
147
151
153
152
154
155
156
173

- 173

9b
97
98
99

101
107
102
"tO~
109
110
111
103
105.
108
106 .
lOB
110
109

89·
93

111
113

90
93

112
114

91
94
9~
94
89

112
90

113
91
92

VECTOR S AL INDEX OF INSTRUCTIONS
~~;-~~--~-~~=~-'--~~.~--.- ..

NNH1
CODE INSl nUCTION

VA VEtTCR ADD FIXED PUf~T SINGLf LGTH
V AH V F elL ~ ,''1 C C F I X U; P r: Ird !-' MJ L G T H
\lAF VECTeR I\[)[) FLCI~l Pllr,T SJNCLf LGTh
V A f: 0 V F C T Lf{ I\[) [) r L CAT pel 1\ T U tl L F L G T H
V A M V F C r L g f\ L r; 1" 1\ G F 1 .x c [) pel NT S r ~~ G L [L G T H
V AM H V f: eTC R /l. CO/I A G r I X HJ P L I I~ 1 HAL F L G T H
V .i\.;'1 F V F eTC RAe [) ti A G F L C /\. T P [r 1\ T S f\ eLF Lei h
V AM F C V r (r L RAe D rl: A G r L[l /q P LIN T C B L F L G T H
V $ V != C r L K S li b 1 ;.: F I X t L P L I i\ r S I,~ G L r= L G T H
V S H V r C 1 C< S l; 0 1 R f- [X F f) P L I :\ T f ,,[I L F L G rt-'
VSF VFCTCf{ SLGTR FlGr-\T Pl:INT Sll\JGLE LGTH
V SF 0 V E C T (R S U t::s T i-: r L fJ I~ 1 PC r I~ T n (3 L [l G T H
VSM VECTC~ SUHH fJflG FIXEC PCH,T SINGLE LCTh
VSI'H-1 VFCTGR SLhY;-{ /-lAG fIxlD PCI1,T HALF LGTH
VSMF vrCTCR SLfHR ~.1AG FLU!d PCJIf\T SINGLe LGTH
VSMFC VFCT['{ Sl,B1R ,."jl~ FLG{.T PLlt\T DBle LGTH
VM vrCT[!t tJ.Llr FIXLO PClt\T SIi\GLF LGrH
VMH VFCTCR ,",ULI FIXiC PClf\T HALF LGTH
VHF VEereR ~UlT FLOAT PGIt\T S[~GLr LGTH
VMFO VEeTeR ~LLr FLCAl PLT~r 0BLE LGT~
VOP YFcrCR OCT PRL~UCr FIXED PCINT SI~GLE LGTH
V 0 P H V f C T C R D C T P k l~ L U C T f- I X F: C tJ~; I'~ T H t\ L r l G f Ii
VDPF V!:CTCK e(T Pf<LLUI.I· H_l:i.T peIl'lT S I\GLE LCTH
VDPFC Vr:CrCR DCI PRLGUCT FLCfd P(P'iT OGLE lGffi
vo
VOH
VOF
VOFo
\lAND
\JOR
VXOR
VEQC
VANDe
YaRD
VXORC
VEQCC
VSA
VSAH
VSAO
VSL
YSLH
VSLD
vsc
VSCH
VSCO
VMGH
VMG
V t-1GO
va
VOD
\lOf
VOfO

V fer c r: D I 1/ [C E F r x c c P C J p~ I ::; Iii G l [l G T I I
V F C T C i~ C I V [r:: E F I)<. E: L PC I N T f-i A L F l G T h
VEcreR DIVIDE FLCAT tJCli\T SINGLe LGTh
vrcrC'=.(Glv'ICE FLfj/d POINT C'jlE LGTH
VECTL~ LCGICAL ~~c SINGLE LGTH
VECTC~ lCGICAl Dk ~If\GlE LCTH
VFCTCR LCGICAL [XCLG5IV~ OR SI~GLE LGTH
VEtTCR lCGICAL E~UIVALENCf SINGLE lGTH
V E C T (;t L (G I CAL /J 1\ 0 i) L Lf~ L"; T H
V{."CfCi~ lCGICAL Jt<. [jeLf U-,Th
VECTCR fXClUSIvE OR CbLE LGTH
VFCTl~ ECUIVAL[~C[C8LE LGTh
V(CT(~ ARt fH ShIFl FIXEL P(INT SINCLE LGIH
Vt'CTCR AKITH ShIFT FIXED pCINT HALF lGIH
V F C H. K ~ R I ll-l Sf- I F I F I X E C pel 'H D £.I L F l G T H
VECTeR LCvlCAL Sh[/-T SI\r,LE L::;rll
v F C I C i<. l G G I CAL S 11 IF T f i A L r L G r Ii
VFcrCR LCGICAl .~Hlfr CRLE lGTH
VECfL~ CIRCULAR S~IFf ~INGlE LCTH
VEC rei, C IKCuLA.K ,)H 1 F r HIiLf LGTI-'
VEelCR CIRCULAR SHI~r GULc lGT~

VFC T(,~ tJEI{Gf Sf\~;Lt: ~d.';:';

VECTCK t-iF.RG(IJhLI::- nUS
VFCrC~ GReER SINGLEWC~ FlXEC PT
VECTCR CRDER HAL~ ~u~ FIXtC PT
VEcreR tlr<DCi~ SI\jIJLb.rJ~ fLI;!\r PT
VEcr['~ CRGCR Celt v,D~ FLC:~T PI

OP PAGE
CODE NO.

174-
'to 174
; 1 174
t~ 174

4 ;:'----174
4 i l'"[J
45 I,
46 174
47 "174
48 174
49 174
ItA 174

174 4B/-175
4C 175
40 171:
ItF ~
4F /]75
6C 175
60 175
6E 175
6F 175
68- 175
69 175
6A 175

175 6B .
f...,!.i ,'- 1 71)
65 176
66 176
6 7~J 76
EO 178
Eit 178
E8 178

'~}. EC..-J 78
E l 178
E5 178
E9 178
EO 178
cc-~179

C l 179
CL,J79
C4 179
C5 179
(7 179
Cc--'79
co 179
CF 179
D3-180
09 180
DB 180
0 4181
05 131
06 131
07 18~

Vector Sequential Index 211
Section 83

VECTOR SEQUENTIAL H!DEX (CONTI NtJ[D ____ .. "~.~. __ ~. l--__ ._~_, __ ~. ____ ._~ __

r~NEt~ OP PAGE
CODE I NSTRUCTl ml CODE NO.

--'--'''''~'--- - .. ---
ve VECTOR ARITH ec~p rIxr-[) PI S r r-~ GL E LGTH uo 183
VCH VFr:rc~ 4RITH C(!MP ': I X d_ P r H~ L f- Lr~ TH 01 183
VCF V(Crli~ A R I f I~ CCI· P ru: 1 PT Ji'-JGlE LCTH D2r 183
\lCFD Vr:CTC~ !d{ I 1 H CU',\-, f· L L n r Pl !~ [i L l L:::; fh 03 183

_. "t-

';CANG \tEeTeR LOGICAL CCi't,p v) ! ",G A\JU SINGLE l G TI-J E2 185
VCANCDVFCTlf~ LCGICAL c~;vp lj':,[ij(; A;'~ tJ ClILE lGTh E3 185
veDR VFCTC:-{ LCGfCi' .. l C r~F, P li.)I;,G C'-{ .; P~GL E l G f!! E6 185
VCDRD \If-CfeR LCGlCAL c cr-~ P LS[i\G r ') .h f) F:l E LGrH E7 185
Vl VECTCR SRCH FeR LG~T :'i.f-(IT H U [I"[:'-IT F I X [!j PT S li'J':U:: LGTH 50 187
\,lUi VFCTCR S;~Cl-i FOR lG~T A,{iT:i Eu:r:[NT F[xEU PT rAl f- lGTH 51 187
VLF V.FCTUR SRCH FOR LG S 1 !-If'; I T H El[f'JFt"jT FU1Al PT SINCLE lGTH 52 187
VlFD VECTeR SRCr-. fOR LG:,T f1Rl1"11 fLEI1[NT f-LUf\l P1 Cl~LE LGTH ~) '3 187
VLM VfCrC,{ SR\"~- t= C f< lG~r j.l! j.", G FIXED PT S U\lG u-: L GT~l Sit 187
VU'lH VECfCR SRCH FUr< LuST ~, ,'Is fIXED Pf Hll,U:: lGTH 55 187
VlMF VfCTCR SRCl-! FCi~ LGS 1 i",,\G i-L()!\T PT SII\GLr: L E t,~G 1 H 56 187
VU'1FC VECHJR SRCI- FUK lG)l (",AG FLJ/-\T PT OBLE LGTH 57 187
vss VfCTCR SRCH FCH Sl'<lL:) T i'R II I- eL EY;ENT FIXcL PT ~!-JGLE lGTH 58 187
VSSH VFcrOR SRCh FLk ~ (J L S 1 ,\R 1 fri EL H~E f\1 FIXEC eT hAlf LGTH 59 187
VSSF vrCTCR SRCI-' FuR ~rvLSl : ... RIT}"i EL !;-t"t:;'-n fl\Jlii PT ~NGLf lGTH 5A 187
,'$sr:::: 'iEcrC?, SRCI- FCR ~,t' L -; T t'lR IT I~ tL UJ,tNT Flfl,'\T PT LHL E LGTH 5B 187
VSSM VI:CTOR SRCH FGR Sf'lLJT t-AG FIXEC PT SINGLE L G T t' 5C 187
VSSMr- VECTeR SRCH FOR S,ViL S T i'~ A G FIXlC PT HALi- LGfH 50 187
V SSr-'F VF.CrCK SRCI-' f- 01< S~';L~T :·~AG FLOAT PT SINGLE LG.Th 5E 187
\lSSMfDVr:ClCR SgCh f-ef< ~t/L:.,.r /'lAG FLC:\T PT liSle LCn! 5F 187
vpp vr:crCR PEAK f I Xf C PT :.; [r-iS L E LG1H OC 188
VPPH Vf-CICR PEAK FIXEL fJ I I' t'L r LGrH 00 ' 188
VPPf VFCTCR PEAK FLeAl PT :,{NGLE lGT!: DE 188
VPPFC V(CICR PEAK FLCAT PT UI:)LE lGTH OF 188
VFlFX VFCTCR CNVRT FlOf\T P J ;",\JGL f: LGTH TO FIXE\] PT ::,~-.j~l F LGTH AO 190
\lFlFI- Vr:CTCR CNVRT FLCAT PI .':.,f\GlE LGTH TG FIXl:L PT hi\L r LGTH td 191
VFOF x Vf:CTCR C NV!{ r f Li U\ 1 I-' 1 CHLF LGll-. fO FIXED PT S'~GllE LCTH A2 191
VFXFl VEeTeR CNVfF f L f, t, 1 PT SNGLt v; HI TC fleAT PT .)1'JGL [= LGTH AS 19?
VFXfC VFCTC'< Ci\VRT FlO ... T PT ~NbL E LGTH TO FlGl\T P-T UHL F LGTH AA 193
VFHFl VECTeR CNVRf FIXLL P r hALF LGH- f(] fLO/,.\ T PT SNGLL LGTH A9 193
VFHFD Vr:CTCR CNVRT FIXl:D PT HALf- LGTf--l TO f- Ll~A r pr Cull- lG1H API 194
VNFX VFCTC~ f"CR I" AL I Z [rIXI:I; p r :) I ;'-I~L E LGTH AC 195
'JNFH VECTLK ~CRtll\LI H: r 1 XU: PT \- II L F L G H· AD 195

ZlZ .

NNEi~
CODE

VA "FCfeR
\fAF Vff:TCR
VAro Vr-CTCR
VAH Vf (·TeR
VAt~ \i r r: f l. 1<
vAMF VFcrCR
VAMFC vrCTeR
Vh/-IH vrCTCR
v MW VFCTCR
vANDe.; Vr-CTCR
VC VECfCR
\lC/,NC Vfr.Tl~

~CANCL;Vr-CfCR

VCF VFCfCR
"cro \tFCTlR
VCH Vf(: T cr~
"COR Vr-(fCR
\lCORC \tfCICR
\10 vfcrCR
\lOF Vi=r.TCR
\lOFD VFCTCR
\lOH VEeTCR
\lOP "FCrCI<
VDPF vrCICR
\lOPF[\d~C T (,"<

\lOPH V~CTCR

"f:WC VFClCR
"EOCi.. VF(T(R
\lrIJFX vrc Tn:
\lFHfL \tFCI[K
\!f-HFl \lFCTCR
\/FLFI- Vff:T(R
\JFLfX vr-r.lr~

"rXFC \/Fe TU"{
"FXfl ,,1:(1[-<
\lL \lrr.rcR.
\tLF \tHrcR
\tlFD Vr-r.1CR
"Ui v"r.TeR
"U' \t crT L ,I.

\llfwlF vr(rc.{
"lMfC VECI(R
~LMH VFt:fC~

VM \lFCf(~

\tMF v I: t:: r L to{

'IMFO V"(lel-(
'IMG V!= r: f C'~
~"'GO Vff:Tt~

vl"~H \tFCiCR
'It-'H \I r:: r:. fl~ I~
",-.jFH vF~r(q

VNfX VFCflR

VECTOR ALPHABETICAL INDEX or 1 NSTRucn ONS

or PAGE
INSTRUCT J ON CODE NO. -----

ACO FIXED f'CII\T ~[r-.GLE lGfH 40 174
ACO Ft.CflT peiNT SINGLE LGTH '.2 174
tIC LJ FLh'i T PClfl.1 CdLt: LGIH 43 174
Ace F I XU: PCii\T I-< At F LGTH 41 174
f\CD (~ Ae r I X!: LJ OlI,\f .) [f\GL F l GT fl 44 174
t.LC :-' /.J S rL(Af Pl' [: T ::,t~GL E LCTH 46 174
,"l.CC ~I t> G FLctd ?([t\·T c~u: LGJH 47 174
l~CO f< II G FrXfO PSI\r H".LF LGIH ;45 174
LCG1CAL 11,\ C)If\GLE LGTH EO 178
LlGrCAL 1'1\ L CPLE lGfl-< El 118
~~' I H- CCJ'!.J FIXEL flT SINGLE LGTI-! 00 183
lCGICAL CCt-'F LSli\G /INC SIt\GLF LGT..-. E2 185
Lcele/IL cu'p LSli\G A,\ iJ CBLE LCft-- E3 185
~RITt-- CCWP FLCAT PT ~I!\iGLE LGHI 02 183
IlKI rh C[fliP FlCAf P r L t3L E LGH" 03 183
~KI TI1 CC'''I) FIxeL PT H'\LF LGTH 01 183
LCGICAl cu,'':; t..;S{\G (,1 -) I l'i G L [LGfH E6 185
LCGICAl C.Ci"F LS I !\G (R DeLE lGfH E7 185
C Iv' If. E fiXEC PCIT\f SI\Glf LCTH 04 176
DI\tICE r LlA 1 PCI\T Slt'.;GLE LGf'- 66 -176
DIVICE FL(.. t\T FeIf\T Ct:LF. LGTI- 67 176
CIVICE F I X E C PC 1 i\ T I-AlF l C T~- 65 176
ecr PRCLLCT, FIXI:L PC I f'\{ S P\GL E lGTH 68 175
eeT PHCLLCl flCAT Pi:'I\T SIf\,GLE lGTH 6A 175
LCT PRCLLCT r L(t, I PCfi\T GBlE len-, 68 175
DC r FRlLliCl FIXEC P~Ir-.;T HALF LGfh 69 175
LCGICAL 1'~LIVALt~CE'~INGLE LGTH EC 178
f: cur v II U' '" (. (LE:LI: LG T~' £:0 178
Cf\Vr<T FL[Af PI LLLI: LGT.- Te f"rXE:C Pl 51\GLLE lGTH A2 191
Cl\VPT I-IX(C PT ~ tlU .. LGTI- Te fLCAT PT CuLf LGTH AS 194
C(\,VR I FI/LL P1 ~ .. f,Lr LGrt-· Te FLOAT PT :)I\.Glf: LGTH A9 193
U,VR f Fl(:l\f F-T ::'1\ Gl f LGTIi TO FIXE£; PT hALF LGTH Ai 191
Ci\Vt1T f U'AT PT ~ f\ GL t: L GT ~~ Tf fiX fC PI ~1'lCL E LGTH AC 190
C~I/~ r r If',\ f PT JhGLF LGTH TC FlC AT PT LilLI: lGTH A~ 193
Ct\V!<f fLLAI PT .:..I,Gt ~- LCTH Te FlCAf Pf ~NGLE LGTH AS 192
SRCI: Fell LGST "kITII ELFf'lFI\T FIX[(~ PT SIf'.IGlf lGTH 50 187
SRC'- Fer LGST t~ j, I T H [LEf-rI::NT FLUAr PT S IrJGl f LGTH 52 187
Sr<CI FCR l(, ~, T "K i T I f £ LO'Ef'.IT FLeAf PT L til E l GTH 53 187
S~CI- ref{ lG::: 1 ,', f< I r 11 flEf'lEI\T FIXf:C PT HJ\ Lf· lGTH 51 187
~RCI- J"'-Ci: LC~r t' ,'\ ~ FIXEr: PT ~ I \(,L (LGTI- 54 187
SRC,,-, FCi' lc:;r FHG fl.LAT PT SIt\CL[LFI\GTI- 56 187
SRCt- f-L? l(; S T ""At;, FLGAT PT C13Lf- lGTI-' 57 187
::,RCI- fCH lC)J (II I' r , '- j' I x E II PT I-ALf LGTf-< 55 187
:YLlI fIX[C 1lL.!\1 ~ [r\GL c: LGfH 6C 175
f"LLT F 1I: ,'\1 PC l:\ T .. >l\GLE LGTh 6£ 175
" L l T F l'";.\ T PC (,\ r nl~ L E L (J T I~ 6F 175
t< E .{(;.: ~:\{~l-: y.,[~ DB 180
f"fRG[L Q, ;: nU"; DB 180 '-
"'E~Gf:.II~~t. h.es os 180
t-'LLT Fi<Ft.; PC lr\ r hALF l GTI- 60 175
NCkf'lAlIf.: FIXt:[; PT .- ,-\ U" lG f l- AC 195
r..;CRl"hlflf r J ,{ E: I~ r'T :;f\iGL[LGTt-; AC 195

Vector Alphabetical Index "213
Section 83

VECTOR ft.LPHABETIC!\L IND~X (CONl.!l1UEO t
-----------~---------.-----

wl!n~
or P/\GE

CODE NO -~ I NSTIWCT I ON --- "-----, --_ .. _----
't:'o V'=CfCR CHDER S I "J1.:lL :.: ~oJC S f-IXH) PT 04 lBl
VOO VECfCR CRDER H.6!. f- \\ J S I {XC[pr 05 181
vor: VfefeR CRLcf{ s U\CU:~'I)C s H.Jt, f pr 06 181
\fOFD VECleR ORDER ceu: ~\ DS F Lei\} pr 07 lS'j

\lOR VEeTeR LCGICliL OR SIr, G L E LGT'H E'i 178

VOPD VrCTCR lCGJCIlL C t{ ;~ P. L f LGII- F.5 178
vpp VF(TCR PEtl!(fIXte PI s r N GL E LGTH DC 188
\lPPF VfC1LR P !: Ii K H.C ill P1 Sl,\~,j_t l '::. T h ,0 r: 188
VPPf·D Vt:fTCR PEtlK FLC t., T r) '1 •• C:3L[LGIH Dr 188
\JPPH \lFr:fLR prill< F Lx L L PI f- ,q f- lGlh DO 188
\)S vr:creR SL u r i~ r Inc PC I t\ 1 S u\;; u= l::!H 48 17't
VSA vrcru< t ~ I r 1- ~ r 1fT F r x F L FCl:'\l :"IhC;Lt: L :: rr~ CO 179
VSAO vr::c rCR llRllh S~ if· T FlxcL pc It\ I i..;B L E-: LGlh C3 179
VSAH VEeTCR f-lU r h ~f- !t- 1 FIX[C PClr,;l tlAU LCfH C1. 179
'J SC VFcrCR CIRCLl.llR ::.hIl-T ~I\GLE LeTf- CC 179

VSCD VFCTCR C I i{CLlAH Sfi If T CPU. L t; T r- CF 179

\l5CH Vf:r.TCR Clf~(LLAI: St· H r HlLF len· CD 179
VSF vrCTLR ::'l. b r it r I I.' i\ I pel 1\ T ~ I ,\ G L r: Left; 44 174
VSFD VfcrCR Std3TR FLLl\l PLI\T Df'LE LGTH 411 174
\iSH VFCTCk SL8T;:;; F,lXlG P[IKT Lt'lLf l GT~' 49 174
VSt \f\:-CTCR lCGICAl Sf-' 1FT ~If\GU LG 11 C4 179
VSlD Vr:CTCR lCGICAL ~I'ff-T ftU l G r t' C7 179
"SlH vr(TCR lCGICAL St" 1FT t il L f- L G T~' C5 179
V Sf'! VF(TCR SLBfR ~pS F r x E [. PCI f\ r s, I ~,:GU_ LGTH 4C 175
""" 175 ";MF vre H.R SU1fi< Ii", G fLCAf PClf\T ~1\'GLf L Gli'" 4£ .. ~r

,.~<:) /-1 F 0 V':C1CR SLUff{ MIIG fLC/H PC.I{\l Df:U: lG1H 4F f , ';)

VSMH VFf.TCR SUfHR f'//Jr; F I X r r r Lit, r btll F LeTt! 4D 175
\ISS v'-r.rCH SRO· FeR Sf' L ~ 1 tl}-(I 1 I· tlHFl\f rrx;::c PT ~NC;Lr LGfH 58 187
VSSF V((lCR SRCr Fe 1< .':,ivL:" i /I ~ I T/-- LUi'ilhT FLt.: 1\ I PT .) r\J::-, L F lGTH 5A 187
\lSSFO v':Cf(k SRCI-' f C'< :" I' L ~ 1 .oK n I f:lfr'Lf'\T r lUll Pl CLl E L \~ T H 58 187

VSSH vr:r;rCR SHCH F (";~ sr"L::; 1 ; .. Rl n· tLI:fvEf\T f=rXEC Pl h /',L f· lGTH 5<; 187
V55M VFcrCR SRCr FlH ~)flLSI ~' :.\ G fI;;[L PT J J"CL E LGlh 5C 187

!'~~ 187 v S St·1f· VFClCR SKCh f- CI< SfVLSi !'AG h. C4 T P T ~U'lGU: L GIl-' 5E
VSSMFCvEr.rCR Sf1(.r t= C:~ J'" L:" J (. f1 C F L :3 t\ T P r (.,'Li: L~ T! 5F 187
~SSMH Vr:r:TlK S~Ch H.K ..) ~~.' L ..) r /'lAC f I -(t L PT t- ;'j L f-=- L;3 f I 50 187
VXOH. vrcrCR lCGIC4l fXClL~f vf 01{ SIl\GLc LSft1 £:8 178
VXO~O VJ:CTCR EXClUS[\lF ~r. L :.! L E: LGTIi E9 178

~...J 1"<.

214

OP
CODE
ilO

,~ 1
42
43
44
it 5
46
47
4E!
49
4A
4e
4C
-4·0
4E
4F
SC
51
52
53
54
55
56
51
58
59
SA
58
5C
50
5E
5F
64
65
66
61
1-,8
69
6A
66
6C
6e
6E
6F
AO
At
A2
A8
.a.q
~.:\

Ad
AC
AD
CO

VECTOR or CODE INDEX OF INSTRUCTIONS -.- ------- ~--.-----.- .. ------..,.---.. -----
tvjNEM PAGE
CODE INSTRUCTIOi'! NO.
\I A. VECTOR ADD FIXEO pO!Nl SINGLE lGTH 174 -
VAH VECTCR ,'ICD FIXfO Prj PH HAL F lGTH 174
VAF VEC T(~ .ALl) FLC/lr PllNT ~lhIGLE LGTH 174
V/,FD VEeleR
VAM VECTCR
VAt-'H VEcrCR
VAt"F VEcreR
VAMFO VEcrr~R

vs \/ECrCR
\I SH VEcreR
v SF \/ECreR
\lSFD Vf:CTCR
\J s,.., V[CTCt<
VSI-iH YECTCk
VSMF VEC ITR
VStJFD VEeTCR
Vl IIECTeR
VlH VECTCR
VlF VECTCR
VLFO VEeTeR
VLfwI VECTei{
Vl~H V£CTCR
Vlt-!F VECTCI{
VlMFD VECTCR
VSS VECTCR
\lSSH VfCTCH
VSSF VEcreR
VSSG vECTCH
VSSM VEcrCR
\lSS~H veCTCR
VSSMF VECTCR
VSSMFDvECTCR
\10 \lECTCR
VOH VECTeR
VDf VEcreR
VOFD VECTeR
\IV P VECTCi{
VOPH VECTCR
VOPF VECTCR
\lOPFO "ECTC~
VM \,lECTOR
VMH VEC1CR
VMF \lECTCk
VMFO VFCTGi{
YFlFX VEeTCR
VFlFH VECTeR
VfDFX VECTCR
VFXFL VECTeR
VFhFt VECTCH
vFXFO \JECT(~

VFHfO VFCTCR
VNFX VECTCR
VNFH VECTC~

VSA Vt:CTCR

t\ D[-)' rLCAf PCTf\f DoLE LGTH 174
."1 eo t" AG FI;<[C PCTNT SINGLE LGTH 174
ACl: NIIG f-IXEf: PCINr Ht\LF LGTf{ 174
ACO tv:AG FLCAT PCINr SINGLE LGrH 174
f\cn "'lAG FUJAf r'CINT DBlE LGTH 174
SLJllTR F I X 0: flu Ir~T ::>IhlGLE lGTH 174
SLBTr{ F-lXll) PClf\T tJAL F LG1H 174
SL..BTR FLO:d f-lClf\T SINGLE LGTH 174
S LJ B r t{ FLOAT PUINT oeL!:: LGIH 174
) l; [) f ;..~ t-:f;G !-=IXLL POli\T SINGLE LGTH 175
SLBfR i"AG FIXED PCTf\T HtllF LGTH 175
SuB T,{ hAG FLCAf POIJ\:T ~INGlE lGfH 175
SLBr!~ I·IAG FLC!,f PCINT CBLE LGTH 175
SRCH FOR lG~r ARIIH fLE{~ENT FIX[D PT SINGLE LGTH 187
St<CH FCf\ LG~ T AR I fH ELF."'[~T FIXED PT HALF LGTH 187
S f~el~ FUR LGST Ai~ IlH EL n'-:ENT FLOAT PT ::. It.GLE LGTH 187
SRCH FCr:{ LGST fIR I TH f:-L EM1:N r FLOAT PI UBLE LGTH 187
Sf\CH FOR LGST ;-1AG FIXED PI SIf\GL lGTH 187
SRCH f-LJR lG:,T i",AG FIXED PT HALF LGTH 187
s~C~ FCR LG~T tHG FLOAT PT S INGL E LGTt-< 187
Si<CH FOR LGST MAG FLOAT PI DBLE lGTH 187
SRCH fOK ~Ml::>r ARITH ELH1ENT F[Xf-D PI SNGLE LGTH 187
SHCr- FGR ~f-i.LST Ak[T!- fLfNE"lT FIXED PT HALF LGTH 187
s f{ CI-~ FGR SI-'L~T AKITr ElEI"F.Nr FLCAT PT SNGLE lGfH 187
SHCIi !'f1R Sf.~ L S T "\RlfH ELOH:t\T fLCt.T PT DelE LGll-! 187
SRCh FOR ~f'lL~T /'lAG FIXED PT :>INGLE LGTH 187
SKCH FCR sriLST fJAG FIXEL PT HALf- lGT .. 187
SRCH FOR Sr-1 lS T MAG FLOAr pr SINGLE LGTH 187
SRCh f-JK !:JJIo'L~T tJ.\ G FLOAT PT DtjL E LGTH 187
D[VIDE FIXEL POINT SINGLE LGT'-' 176
DIVIDE FIXED POINT HALF lGTH 176
DIVIDE FLOAT POINT S l'\lGLt: LGTH 176
CIVIPE FLGAT puua [fiLE lCfH 176
eGf PkGOUC r fIXEO PCINf ~INGlE LGTH 175
DC r PROGLCr fIXED PCINT HALf LGTH 175
DeT PKut.:UCT FLOAT PCINT S D~GL E LGTH 175
l.;CT PKCDucr FLO:'! PC[NT CBLE LGTI-i 175
i~ UL T FIXED POINT SINGLE LGTH 175
t-lULT FIXEC PGINl HALF- LGTH 175
f;'LlT fLeAf PC[l\f SINGLE lGTH 175
~LL r FLOAT PCI~T OGLE LGTH 175
CNV~l flOA f PT S~~Gl r: LGTH TC F[X(C PT SNGlE lGTH 190
c;,Vfn FlUAT PT S ''IIGL E LGTH TO FIXED PT HALF LGfH 191
CI\;Vt<T FLOAT PT CdlE LGTH TU FIXEO Pf SNGLE LGTH 191
Ck V R T HXcD pT S \J(;L [LGTH TC FLOAT PT sr-..GlE lGTH 192
r i\N r< T FIXED PT ~. '" r: ~ , LGTH TO flOAT PT S~JG!...E LGTH 193
CI\YRT FLCt.T PT S''iGL r: LGTH TO fLCAr pr OBlE lGTH 193
Cr-.VKl FIXED PT I-'J\LF LGTI-! TO FLOAT PT CBLE LGTH 194
!\CRi""AlIZE t:IXED PT Sll~GLE LGTH 195
I\CR~ALI1E FIXE£.J PT I-AlF lGTH 195
hRITI-' SrIFT FIXED POINT SINGLE LGTH 179

Vector Op Code Index 215
Section 83

or MNEI~
CODE CODE ,-- I NSTRUCTI ON

<:1 VSAt-: VECTOR t.RIHI SHIFT rIXED POiNT HALF LGTH
C3 VSAO VECTeR ARIIH ShIrr F[XE~ PCTNT rBL~ lGTH"
C4 \lSL VECTeR lCGICt<L ~hrrT SII\GLE LGTH
C 5 \I S l H V E C T C R UJ G I C fl l S h I F I Ii 1\ L F LC, T H
C7 VSLD V(C1CR lUCICAL ~hlFT OBLE lGTH
ce \lSC VECTCR CIRCUL/I'~ SHIFT ~I\;GlE LGTI"
CC V$CH vECTCR CIRCULAR SHIrT HALr LGTH
cr- VSCO VEtTCR C(RCUlflR SHIFT C:;LE lGTH
DO ve VECTCR ARITH COMP F!XEC PT SINGLE LGfH
01 VCH VECTCR ARlfH CG~P FIXEC PI HALF LGfH
02 VCr VECTOR lIfHTH CO~IP FLOAT PT "SINGLE lGTH
03 vcro VECTCR AKI P-l COI>l\P FlC~\T PT GULE LGffl
D4 VO VECTCR CHDER SINGLEhG5 FIX[C PT
D5 VOO VECTOR aHOER HALF hDS FIXED PT
D6 VOF VECTeR ORDER SINGLf.hO~ FLOAT PT
01 ~GFO VECTCR ORDER DBLE hCS FLeAT PT
u9. V~GH VECTeR ~ERGr: HAlFhOS
D.S VMG V E CT OR MERGE S"lGL!: ~~ D S

VMGD VECTeR ~ERGE CbLf wr~

~v vpp VECTCR PEAK FIXEC Pf ~I~GLE lGTH
00 VPPH VECTeR PEAK FIXED PT HAL? LGfH
OE VPPF VECTeR PEAK FLOAT PT SI~GLE LGTH
OF VPPfO VECTeR PEAK FLCAT PT DBlE LGTH
EC 'lAND VECTeR LCGICAL A~D SINGLE lGfH
Fl VANDD VECTCR LOGICAL AND CBlE LGIH
£2 VCAND VECTCR lCGICAl cc~p U~ING AND SI~GLE LGT~

£3 VCANODVECTCR LCGICAl CC~P USI~G AND DBlE lGTH
1.4 'lOR VECTCR LOGICAL OR SINGLE LGTH
£5 VGRO VECTCK LOGICAL GR L~Lt LGT~
~6 VCGR VECTC~ LCGICAL C(~P USI\G CR SINGLE LGf~

[7 VCGRD VECTOR LCGICAl CGMP USI~G CR DBLE L~lH

E8 VXCR VECTCR LGGICAL EXCLUSIVE OR SINGL[; LGTH
t~ VXCRO VECTCR FXCLU~IVE OR COLE lGTH
EC VEQC VECTOR LOGICAL EUUIVALE~CE SINGLE LGTH
EO VECCD VECTCR EQUIVAL~NCE CBlE lGTH

216

PAGE
NO.

"179
179
179
179
179
179
179
179
183
183
183
183
18l.
181
181
181
180
180
180
188
1B8
188
188
185
185
lH6
186
178
178
185
185
178
178
178
178

EXAMPLES OF VECTOR INSTRUCTION APPlICAllON

Section B4

TITLE

GENERAL

flt!\TRIX - VECTOR ~,jULTIPLICATJOU

!"ATP1X ~it!l-}IPLIUnION, EX.J:lJ,1PLE B

t!1A TRI X TRANSPOSE

. FI XED FI l TER

FIXED FILTER l\~lD DECrr~ATE

INTERPOLATION

i

PAGE

1

1

3

6

9

11

13

14

GENER~\L

A ~,et of examples vJin SH've to illus-J:rate tre vector' loop ft":'ature of
the ASC. Tho example problems are: (1) matrix-vector multiplication,
(2) ~atrix multiplication, (3) mutrix transpose. (4) fixe~ filter, (5) fixed
filter and decimate, and (6) interpolate.

Mi\TRIX· .. VECTOR r'iUl TIPLIC/\TION

The data array for matrix [AJ is stored consecutively by ro~s ;nd con­
secutively within rows, i.e. the first element of one row is stored in the
location following the last element of the previous row .

.....
The data array for vector B is stored hi consecutive locations.

Given: matrix [AJ of dimension K by L -and vector B of dimension L

Find: C = [AJ 1r
where vector Cis of dimension K and

element c; ::: ~ a·. • b. for 1 <. is. K lJ J -o

:::

-Solution: Each element, ci' of vector C is the result of a vector
dot product (VDP) operation involving the i tn row of
rna tri x [A] and the column vector T.

A matrix-ve.ctor product may be programmed on the ASC by issuing a vector
instruction with the following set of vector parameters:

~PR .-...." Vector dot product command

SV = 0 or 8 depending on whether a single or double length fixed
point result is desired.

l ::: L Vector dimension.

XA == XB ::: XC ::: 0 No initial index for vectors A, B, & C.

Matrix-Vector ~~ltiplication 1
Section B4

2

_ •• _ •••••• M __ j

Yes IA (- (IA) + 1
I8 <-(18) - (l-l)
IC <-(Ie) + 1
LC-E-L

(K-l) times

Figure 1. Flow chart for matrix-vector multiplication.

Equiv. of
j <E---j+ 1

Equiv. of
i +.-i+1
j~l

inner loop ._-

SAA "'-'

SAB ----

SAC ---

VI :: 0

DAI :: 1

Starting address of m~tl'ix [f\] (address of element a 11)

Starting addrEss of vector if (address of element t.,)

Starting address of result. vector t (address of result element
c1)

A VI field equal to zero indicates positive incrementing of
all vector addresses by unity during the self-loop.

6ft.;, ; ncremen t for inner loop

Advances the "NI address in the index unit to the address of
the first element of the next row of matrix [A] from the add­
ress of the last element of the current row.

OBI .- -(L-l) llJ)..:, increment for inner loop

DCI = 1

NI = K

Returns the 118 11_address in the index unit to the starting add­
ress of vector B from the address of the last element of vector
B. OBI is equal to the number of backspaces I"equi red to re­
establish the initial address of vector tfor the next VDP oper­
ation involving the next rO\>./ of matrix [A] and vector B.

Note that the A & B addresses are incremented (by unity) L-l
times during the self-loop as shown in figure 1.

t.C,.: for inner loop

Advances the storage address to the next location for the sub­
sequent VDP operation.

Note that the C address is not incremented during the self-loop
of a VDP operation, since a VDP generates a scalar result.

Also, the· elements of vector [may be spaced any number of add­
resses apart up to 21~ - 1 = 32,767 by inserting the value of
the desired spacing int~rval into the DCI field.

Inner loop count

For this example, K is the number of rows of matrix [A], which
also determines the number of elements of result vector c:. The
operation is completed when all K rows of [A] have been processed.

MATRIX MULTIPLICATION, EXAMPLE A

The data' array for matrix [AJ is stor~d consecutively by rows, i.e. the
first element of one row is stored in the location following the last element
of the previous row.

The data array for matrix [8] is stored consecutively by columns, i.e. the
first element of one column is stored in the location following the last element
of the preceeding column (the column on its left).

Matrix Multiplication. 843
Sectl0n

4

LC <- L
LPCI<--NI:: M
LPC0 (- NP:::: K

CL"C=o
Yes

[_.~_~:cr~::iJ

No

IA'E- (lA) + 1
IB <--(IB) + 1

.'

Equiv. of
k -- k+l

(L-l) times self-looD
L.-.-.:.....-.-..:-_~ _____ ..l~~

~(M times)

,_~~I_~~!=>~_N_O ______ """I
:~~~~:~.: ~J, __ _ Equ"iv. of

k- l'
j j+l Yes

Decr~
(K times)

LPC~ = 0

,Yes

Next
Instr.

No

I A (- (IA) - (L-l)
IB <-(IS) + 1
IC<-{IC) + 1
LC-E-L

Lir~-1 ~~ i mes

IA(-(IA) +1
IB <-(IB) - (L'M - 1)
IC -<-(IC) + 1
LPC! ~NI = M
LC<-L

(K-l) times

inner loop

Equiv. of
i - ;+1 '
k...- 1
j - 1

outer loop

~1gure 2. Flow chart for matrix multiplication of example A

Given: matrix [A] of dimension K by L

and matrix [tiJ of dimension L by M

Find: matrix [e] of dimension K by M~

\'Jhcre [e] == [A] [BJ
L

such that element Cij =>- a· k . bk •
k=l

1 ,J

all a12

a21 a22

Solution:

all bll b12 blr~ l ell c12

a2L b21 b22 b2M c2l c22

Each element,·ci·' of matrix [eJ is the result of a vector dot
product operatio~ involving the ith row of matrix [AJ and the jth
column of matrix [BJ.

Vector parameter set for matrix multiplication:

0PR "-' Vector dot product command

SV == 0 or 8

l = L Vector dot product length

XA == XB = XC = 0 No initial index for vectors ~BJ& C.

SAA ---

SAB ,......,

SAC ---

Starting address of matrix [AJ (address of element al,)

Starting address of matrix [BJ (address of element bl,)

Starting address of result matrix [e] (address of result
element ell)

VI = 0 Positive incrementing of all vector addresses by unity during
self-loop.

DAI = -(l~l) Number of backspaces to return to the first element of the cur­
rent row of matrix [A] from the address of the last element of
the current row.

Matrix i1ultiplicatio·o 5
Section B4

cH~

c21~

6

OSI ::: 1

DCI =: 1

N I = r'1

Advanc.e to the next column of matdx [B] from the address of
the last element of tile .curtcnt column.

Adv~nce the storago address to the next location for the sub­
sequent VDP operation. Result matrix [C] is generated by rml's.

Inner "DOD count

Fot tilis example. ~1 is the number of columns of ma,trix [8J. This
method COi:1putes all product:.; of tile: column::; of [B] wit.h the f-irst
row of [A], before advancing to the next row of [AJ.

bAa 'incn:!l1el1t for outer loop

Pldvance to t he next row of [A] from the addr'ess of the 1 as tel e­
mcnt of the previous row.

DBO:::: -(t.·H-l) .680 increment for oute}~ loop

DC!Zl ::: 1

N~ ::: K

Return to the stcu~ting address of matri x [B] from the address of
the last element~ bLM .

ACO inctement fOl~ outer loop

Advance the star-age addtess to the next rovi of result matrix [C]
from the address·of the last elen~nt of the previous row.

Outer loop count

For this example~ K is the number of rows of matrix [AJ. The
function of the outer loop is to advance to the next row of
[A] before continuing with the processing of the inner loop.
The operation is completed when all K rows of [A] have been
processed. See Figure 2 for the flow chart describing matrix
multiplication. .

MATRI X MULTIPLICATION, EXAMPLE B

The result matrix [C] could just as easily have been generated a column
. at a time ratner than a rOi'J at a time a.s previously described. This would

entail modification of the increment and loop count information as follows:

DAI = 1 Advance the address in index unit HAil to the address of the
next row of matrix [A] from the address of the last element
of the current row.

OBI = - (L-1) Return the address in index unit "8" to the address of the
first element of the current column of matrix [B] from the
bddress of the last element of the current column.

LC <_ .. L ---1
LPCI <-NI z.: K J
LPC0<- Ny) :: M

'--fAc-, .-----t ~~~~: .
Ace Ace + a'l bk , .

. 11(. J

~times)

L~-J

LC = 0
No

Yes

~ecr LPC0

(M times)

No

- -_._--

IA~ (IA) + 1
IB -E-(IB) + 1

Equiv. of
k -- k+l

l-- (Cl) times ------._-.--~---

Equiv. of
i...u.-- i+l
k- 1

LPC0 :: 0 -_ ~. ~.=t

Equiv. of
i -.1
k- 1 . . Yes

Next
, Instr.

...

IA(-(IA) - (LK-l)
IB ~(IB) + 1
Ie ~-(IC) - M(K-1) + 1
LPCI "E-NI = K
LC<--L

j -j+l '.

(M-l) times • _ ~
Figure 3. Flow chart for matrix multiplication in which the res.ult

is generated by columns instead of by rm<iS as in example B

Matrix Mlitiplication 7
Section B4

DCI = fo1

NI -- K

The DCI field specifics the number of spaces to advance the
storage addre~;~.. For th'is examp'ic, t·j,·l stor(}~!e loci:lt'ions ar;::~
skipped over. This has the effect of storing results by col­
umns 'instead of by rows.

Inner loop count

K is the number of rows of matrix [!~J. The inner loop consists
of multiplying a particular column of matrix [B] times all K
rmlJs of fr:atrix [AJ; resulting in one: colun,:1 of [CJ.

DA0 =-{bK-l) Return to the all element of [AJ from the address of the last
elernent, aKL.

080 :: 1 Advance to the top elemerrt of the next colunm of matrix [S]
from the address of the bottom elrment of the current column.

DC0 :: -M(K-1)+l Advance to the stot(l.ge address of the first element in the next
column of result mat\"ix [C] from the last element of the current
co 1 UlIII1.

N0 = M Outer loop count

8

M is the number of columns of matrix [B]. The outer loop func­
tion in this example is to advance to the next column of [8] and
to return to the start of [A] before continuing with the pro­
cessing of the inner loop. The operation is completed when all
M columns of [8] have been processed. See Figure 3 for the flow
chart of this matrix multiplication procedure.

Now, suppose the result matr-ix [C] of a previous matrix multipli­
cation is to be used as the [8] matrix in a subsequent matrix
multiplication. Since the columns of [B] are multiplied by the
rows of [AJ using a vector dot product operation~ the elements
of the columns of [8] must be stored in consecutive memory lo­
cations for efficient processing of the column vectors. The data
of matrix [8] is not ordered in this manner if it is the result
'of some previous matrix multiplication. The "transpose II of the
data array (in memory) fm~ matrix [B] is required before in; ..
tiating any matrix multiplication involving [BJ. Such a "trans­
positionUcan be accomplished separately (exa~ple 3) or in con­
junction with the previolls matrix multiplication. To perfm~m
"transposition" in conjunction with a matrix multiplication it
is only necessary to modify the DCI and Dee parameters in the
vector parameter file of example 2b. The modification involves
inserting the value of unity in place of M in the DCI field and
inserting the value of unity in place of -M(K-1) + 1 in the DC0
field. This change has the effect of storing the results of the
matrix multiplication by rows instead of by columns as was done
.in example 2b. The resulting matrix [C]T is then the transpose
of [C).

Mntrix tnmsposition involves moving the element in position ;, j of a
data array irito position j, i, where the first symbol designates row posi-
tion and thE second symbol designates column position. What effectively happens
is that I'OViS became columns Jnd columns become rOltJs. In terms of memory cldd­
resses, the column elements of a K by M dim2nsion matrix, [A], are initially M

. locations apart, i.e. with M-l storage locations between any two adjacent col­
umn elen12nts. i4hn(~ the 1'0\11 elements of [.AJ are stored in consccut:ive memory
locations and the first element of any row (except the first row) is stored
in the location fol1o~ing the last element of the previous row.

After n!atrix transrJosit-ion the originul column elements \\rill be stored in
consecutive locations while the original rO~Telements ~ill be stored K locations
apart. The resulting transposed matrix, [A] , is of dimension M by K.

Matt'ix tra.nsposHion may be ptograrnm(~d on the l1.SC by issuing a vector
instruction with.the following vector paran~ters:

VL0R, Vector logical 0R. ~PR ~

SV ::: 7 ~ Vector A; directly addressed.

L Immediate operand single-·valued vector B.

(2A) ::: 0

L ::: 1

XA = XB - XC = 0

SAA

SAB

SAC

VI = 0

DAI = 1

OBI = 0

DCI := K

Immediate op~rand from the contents of register 2A is zero.

Vector dimension equals one.

No initial index for vectors A, B, & C.

Starting address of rnatnx. [A] (address of element all)

Starting address B i~ not used when SV = 7.
,

Starting address of result matrix [C] (address of element cll)

Positive incrementing of vector addresses A, B, & C by unity
during self-loop.

Advance the address of [A] to the next element on the current
row.

Not used.

Advance the storaye addr·e::.s by K so that the jth elemen·t of
the current row is stored into the (j-l)K location of the' cur­
rent column.

Matrix Transpose 9
Section 84

10

(K times)

LPC0 = 0 No
-;.....~----.-.. -.. _. __ ._,

Yes

Next
Instr.

,
r---------~.-------

1/1.(-(IA) +1
I C 4;-. (I C) - K (M-1) + 1
LPCIO(-NI = r~
LC cf - L = 1

Equiv. of
j -- j+l

Equiv. of ,
; -- i+ 1
j -1

L -_ -~i) times I --1

Figure 4. Flow chart for matrix transposition.

N I _. f~

DA0 '" 1

DBIO ., 0

14 'is the nuribcr of elements in each 1"01;1 of [1\]. The inner
loop is completed when the Cllrl'2nt rmJ of Hlz;;tr';x [A] has been
transposed 'into a col uilln of resul t matt"; x [C].

Advance to the first elen~nt of the next row of matrix [AJ
from the address of the last cle:nent ill the current 1"0'11.

Not used.

Dew - -K(M-l)+l Advance to the storage address of the first element in the
next colun:n of result lmtrix [C] from the address of the last
element in the current column.

N0 - K

FIXED FILTER

K is the number of rows of matrix [AJ. The outer loop is com­
pleted when all K rows of [AJ have been converted into K
columns of result matrix [CJ. The flow chart for matrix
transposition is shown in figure 4.

Note that a vector" logical 0R (VL0R) instrllction is used
because it requires only one clock time in the arithmetic
unit. An im:nediat.e operand of zero for the single-va1ued
vector is used with the vector logical 0R instruction~so
that the data is not affected by being moved to a new area
of memory although the data array has been transposed.

Alternates for this instruction are a vector logical AND with
an immediate operand of all lIones ll (1 clock time) or a vector
add with .:n immcd"ic.te oper"nd of zero (2 cluck -cilneS) (W a
vector multiply with an immediate operand of one (3 clock
times) etc.

The fixed filter operation is described by the formula:

L-l
:>-:
;=0

c == k
• b.

1
for 0< k ~ N-L

where the input trace consists of N data !Joints, denoted by a· (0 < j .:5 N·.l)
and the fixed filter is represented by vector lfltlith components bi ,(0 < ; :5. L-l).

--ck represents an output point which results when filter B is applied to
input trace 7!: shifted by k.

This operation is programmed on the ASC by issuing a vector instruction
with the following vector parameters:

pPR .-...... - Vector dot produt.: L

SV = 0 or 8 Both vectors di rectly addressed

XA == XB == XC == 0 No initial index for vectors A, B, & C

Fixed Filter 11
Section 84

12

I'll times
n"~'J

Deer LPCI L~_:: c:-
(LPCI = 0

Yes

O;;}L~C0- l
1 time

LPC0 = 0

- - -- Yes

Next
Instr.

No

No

IA- (lA) - (L-l) + D
1B- (IB) - (L-l)
lC- {Ie) + 1

----------. f_ ~ __ .. ___ _

Doesn't happen

Equi v of'
i -- i+1

Equiv. of
k~k+D
i~O

Figure 5. Flow chart for (a) fixed filter operation \'Jhen D = 1
(b) fixed filter and decimate \'Jhen D 1 1.

SAA -.,

SAB

SAC' ,......,

-Starting address of input trace, A. (address of data point ,
ao/.

-Startinq address of fixed filter, B (address of filter point
bo). ~

Start-jns; address of output trace, f. (address of output
point co),

VI :: 0 Positive incrementing of vector addresses by unity during
self-loop. $

DAI ::: -(L-1)+l Returns input trace to the current starting point (element d k)
plus one. Effectively moves filter along the input ti'ace.

OBI =-(L-l) Returns fil ter address to starting point from last filter
point.

DCI = 1 Advances output storage address by one fOl' next VDP operati on.

NI = N-L+l Determines the number of output points. The fixed filter
operation'is complete when N-L+l output points have been
computed. See Figure 5 for the flow chart of a fixed filter
operation.

FIXED FILTER AND DECIHATE

- The fixed filter and decimate opcratic:1 13 describ~d by t:-:c formu1a:

L-l
ck = L

i=O
for 05;k ::.lNOL J +1

This operation requires modification of only two parameters from those listed
in example 4. The DAI and NI parameters must be modified as follows:

DAI = -(L-l)+D

IN-Lj NI = -0 +1

Returns the input trace to the current starting point (element
akD) plus D. Effectively moves the filter along the input
trace at intervals spaced 0 apart. 0-1 output points dre
IIdecimated" between each output point which is stored. These
D-1 output points are not computed.

Determines the number of output points. The number lNoLJ '.
is the nearest integral number below ~D,if this value 1S
not an integer. The fixed filter and decimate operation is
complete whenlN:1/DJ +1 output points have been computed.
See Figure 5 for the flow ch~rt of this operation.

Fixed Filter end Decimate 13
Section 84

J lLIJ:.gp.:2~AU.9J~
Interpolation is descrHH::d by the formt;la:

a. . b.
l+m l-1'pL

for o:s. m ::: N-L

and 0 s. p ~. D- 1

For this operation a set of filters must be stored in memory such that
the first filter point of one filter is stored in the location following the
last filter- point of the prev'ious filter. These fnters may be viewed oS
column vectors of matrix [6J. There are 0 fixed filters all of length L.
so the [B] matrix is of dimension L by D. In general~ the O-th filter in the
first column has the values 1, 0, 0, ... ,0 stored in L consecutive locations.
This filter vdll transfer the input trace to the output region of melnory~
storing each input point into locations sp:c~d 0 addresses ~part.

The 0-1 locations between stored output points are reserved for insertion
of the interpolated points. The other 0-1 filters in matrix [B] are used for
interpolation.

The interpolation operation is equivalent to the applicotion of D fixed
filters to the -input trace, with storage arranged in such a manner that the
D output tlAaces fo rm3d (\ re mel~ged.

The vector parameter list for interpolation is as follows:

Vector dot product command

SV = 0 or 8 Directly addressed vectors

XA = XB = XC = 0 No initial index for vectors A, 8, & C.

SAA ,-..,.....

SAB

SAC --:

VI :: 0

OAI = -(1.-1)

14

Starting address of input tracp (address of input point ao)

Starting address of filter table (address of filter point
boo of the O-th filter)

Starting address of output trace (address of output point co)

Positive incrementing of vectors A, B, & C during self-loop.

Returns the address of the input trace to the current starting
point (address of element am)'

Figure 6. Flow chart for interpolation.

Equ'iv. of
;<'':-;+1

Equiv. of
;(-0
p~-p+l

times .. -

Interp01ation 15
Section B4

OBI::: "I

DCI - 1

NI ::: D

Df".p ::: -(L-1)+ 1

DB0 =.: -(lD-1)

DC0 ::; 1

N~ ::: N-L+l

16

Advances the addrnss of the fi Iter table to the first point of
the next filter from the last point of the filter just applied.

Advances the storage address of the output trace. Increments
p in the representation of output term cD' m. .-p.

Dis the !lumber of fi xed fi 1 teY's. The inner loop is camp 1 ete
when 0 fixed filters have been applied to the current segmsnt
of the input tr'ace. ,

Returns the address of the input trace to the current starting
point plus one (address of element am+1).

Returns the filter address to the start of the filter table from
the address of the end filter point~ bL_1, D-1.

Advances the storage address of the output trace to the beginning
of the next interpolation interval. Increments m by one in the
representation of output term c ~~

!. ,J'- \J.

Specifies the OUt2t lccp COUilt. For this example, O(N-L+1) out­
put points are stored. The flow chart of Figure 6 shows that
the output storage address is incremented D(N-L) + (0-1) times,
or D(N-L+l) -1 times.

PERIPHERAL PROCESSOR
DESCRIP1IUN

Section C1

TABLE OF CONTENTS

TITLE

FUNCTIONS OF THE PERIPHERAL PROCESSING UNIT

. ELEI-1ENTS OF THE PPU

R:::AO DriLY ;:E;,;vt,'I'
VIRTUAL PROCESSORS
SINGLE WORD BUFFER
COMMUNICATION REGISTERS

PPU INTERRUPTS & TIME SLOT OVERRIDES

TIME SLOT OVERRIDES

AUTO~1ATIC INTERRUPT

PROGRAMMED INTERRUPTS

MAINTENANCE EXCEPTIONS

lOGIC CLOCK MODULE

PAGE

1

1

i
1
3
4

5

5

6

7

7

. 11

i

FUNCTI ONS OF THE PERl PtIERAL. PROCESS I NG UN IT

The peripheral processing unit (PPU) provides comnunication with I/O
devices, functions as the system monitor. and fulfills those job fequests
which do not require a rich arithmetic instruction repertoire. The PPU is
time shared at the bit time (85 n sec) level by up to eight programs s each
of which is executed by one of eight virtual processors (VPn).

One vi rtua 1 processor is des i gnated as the mas ter contTo 11 er. Otrler VP I S

are used for dedicated subservient control functions. The remainder of the
VP's are sc~eduled as needed to perform I/O operations to schedule and perform
other CP utilization tasks within the operating system.

ELEMENTS OF THE PPU

The PPU consists of eight virtual processors which time share a collect­
ion of other PPU elements. The shared elements include the arithmetic unit
(AU)) the read only melnory (ROM)) -the file of communication registers (eRn)'
and the,single word buffer (SWB) which provides access to CM. These elements
and their re12tionships are indicated in Fig. 1.

READ ONLY MEtltORY

The ROM contains a pool of programs and is not accessed except by
reference from the program counter. The pool includes a skeletal monitor
program and at least one control program for each I/O device connected to
the system. The ROM has an access time of 25 n sec and provides 32 bit
instructions to the VP units. Total program space in ROM is expandable to
4K words. The memory is organized into256\1JOrd modules so that portions of
programs can be modHied without complete refabrication of the memory.

The I/O device programs can include control functions for the stc:age
media as well as data transfer functions. Thus, motion of mechanical de­
vices can be controlled directly by the program rather than by highly special
purpose hardware for each device type. Variations to a basic program are
provided by parameters supplied by the monitor. Such parameters are carried
in CM or in the accumulator registers of the VP executing the program.

VIRTUAL PROCESSORS

The eight VP's share the oti-,t:f PPU e:·::~"ellts. To implemeJlL Lids sna.-'ing,
time is divided into cycles with each cycle containing sixteen time slots.
Each time slot is one bit period (85 n sec) in duration. These time slots
are assigned to VP's on the basis of time slot availability and program
requirements. A VP is operative whenever a time slot assigned to that VP

Elements of the PPU 1
Secti on C1

SINGLE WO
BUFFER RD

FIG. 1. Peripheral

f I -~-;r:,: AU I
I J

VP
SEQUENCE
CO:--lTROL

~
I

VP H
~I VP ~ 1+~=:h
I

-1~1~T.1
l'

I I I i

: : I 1
1 VP

7

Processing Unit

I

I
I
I
I

occurs. Th~s, if a VP has been assigned no time slots~ it is not
executing program. If a VP has been assigned one of the sixteen
time slots, it is executing program 1/16 of the time. More than
one time slot can be assigned to a sinqle VP. The monitor VP turns
the slave Vp·s on and off-by manipulat~on of the time slot assign­
ments.

The nBjor components of each VP are a program counter (PC)~ a
next instruction register (NIR), an instruction register (IR), and
four accllJr.ul ator regi sters (Vpr~n) whi ch are addressable to the byte
level. Each VP also has a counter (BC) vlhich keeps count of the
number of bit periods which have been used in execution of the cur­
rent instruction. When the time slot assigned to a particular VP
occurs, the IR and the BC of that VP rrovide control of the PPU data
paths and the AU. If the data manipu~ation thus effected completes
the instruction, the IR is updated, and the BC is reset. However,
if additional bit periods are required to complete the current
instruction, the Be is advancpd, Anrl the TR rem?ins unc~~~ged.

The source of instructions may be either ROM or C~1. The memory
being addressed from the PC is controlled by the addressing mode
which can be modified by the branch instructions or by clearing the
system. Each VP is placed in the ROM mode and each PC points to
location 0 when the system is cleared.

Hhen the program sequence is obtained from central memory, it ;s
acquired via the SWB. Since this is the same buffer used for data
transfers to or from cr~, and sinc2 Ci~ access is slower than ROM
access, execution time is more favorabie when program is obtained
from ROM.

All eight VP's are identica1, but there extsts a switch on the
maintenance panel \'ihich selects one VP for certain operations. Dur­
ing normal system operation, the selector switch will always designate
VPo but the manual selection is provided as a diagnostic aid. The
switch selects the VP which will 'respond to the operator·s switch
manipulotion during system initialization. The selected VP is also
exempt from the scheme employed for 'protection of the contents of the
CR file. In addition, the selected VP is provided with an automatic
interrupt, whereas the interrupt for each of the other Vp·s must be
programmed.

SINGLE HORD BUFFER

The SWB provides VP access to CM. The SWB consists of eight
32-bit dat~ registers. eight 24-bit address registers, and controls.
Each of the eight register sets has a fixed association with one of
the eight VP's. Viewed by a single VP, the SWB appears to be a mem­
ory data register and a memory address register.

Elements of the PPU 3
Section Cl

4

At any given time the S\:JB Illay contain up to eight mernoy"y requf:sts l

one for each VP. These t'f!quests are processed on Z'- combinc:.tion;.l.l
priority - first "in, f"irst out b~s;s. TheY'e are two priority .levels,.
and if two or r.1Oi~e requests of equal prict'ity are unprocessed at; any
time,. they are handled first in t first out.

When a request arrives at the S\llf3, it automatically hRS a pr"iority
assignment detennined by the 04 priority file maintained ill one of the
CRls, The file is an~angE:d by V'P numbers and all requests froiT! a par­
ticular VP receive the pr"jority encoded in t\'/O bits of the priodty"
file. The contents of the file are progrcumned by the mon"itor, and tlie
pri ority code a 5S'j gnment for each VP is a funct i on of the program to be
executed by the VP.

COMMUNICATION REGISTERS

The PPU includes up to 64 CRls, each of which contains 32 cells.
Each Cll is addressa~le f"O::i t;le V';l's and can "lso bl;; r..-;ud Of \IIrit~l:i1
by the devi ce to \'/hi ch it connects. The CR I S provi de the control and
data links to all peripheral equipment includ-ing the system console.
Some pararneters \>thich control system functioning are also stored in
the eRls from \';here the control is ef(ercised. An example of CR assign­
ments is shown in Section C2. These assignments are unique to a par­
ticular ASC system.

Each CR cell has two sets of. inputs as sho'rm belov/. One set i.s
connected into the PPU, and the other set is available for use by
the peripheral device.

PPU data

PPU da ta ga te

Q

CR
Cell

t
Clock

t---- Peripheral data

_~....-__ Peri pheral data gate

The contents of the first 20 CRls can be protected from modification
by individual vPls. The protection is conttoiled by softv/are via CR
bits specifically for that purpose. The VP selected
by the IIVP SElECT Ii switch on the maintenance panel is insensitive to
the CR protection scheme, and can.always modify the contents of pro­
tected CRls.

PPU INTERRUPTS & TIME SLOT OVERRIDES

TIME SLOT OVERRIDES

The THijE SLOT OVEf~RI DE byte in the CR fi 1 e prov; des one bit fol' each VP.
The bit position corTesponding wHh the VP selected by the VP SELECT svritch
on the Maintenance Panel is effective during certain maintenance operations.
The remaining positions contain 1 IS to keep that VP inactive regardles~ of the
contents of the Tm!..: SLOT Tf.I.BLE.

These overr; de bi ts may be set or n-:set by softV/i}Y'C;, hOi'lever, under certai n
circumstances these bits ~,Jill be set automatically by harQv:are, but tlley are
never reset by hardv/are.

Automatic settinq of override bit IIi II occurs as a result of any of several
events in VP .• The e~ents are:

1

a. CM parity error
b. CM protection violation
c. eM breakpoint
d. CR protection violation
e. illegal OP code

When one of these events C~2 detected, the appropriate override bit is set
(other than the selected VP) and subsequent time slots assigned to the VP are
voided. The VP may not cOlr:plet~ its CU~Te~lt instructior: ~\Jhcn the override bit
is set.

When automatic setting of an override bit occurs, the TI~E SLOT OVERRIDE
REASON byte in the CR file may also be automatically updated. This byte con­
sists of a control bit, a three bit VP # field. and a four bit override reason
field. If the control bit is fll"~ then updating of the TmE SLOT OVERRIDE
REASON byte is inhibited. If the control bit is tlO", then updating of the
byte is permitted.

Updating consists of setting the control bit to "1", loading the VP #
field with the number of the VP for which an override event has been detected,
and loading the override rea~on field with e code indicating which event a.
through e. has occurred. If an override event occurs \;Jhile the control bit
is set, the time slot override occurs, but the reason for the override is not
recorded. The reason codes are as follm'/s:

Code

0
1
2
3
4

5-F

Event

a
b
c
d
e

unused

PPU Interrupts & Time Slot Overrides 5
Section C1

AUTOt-lt\TIC INTERRUPT,

The VP selected by the VP SELECT switch is pt'ovided with an automatic
instl'uction level interrupt. ~~hen the interl~upt sigrldl occurs, the VP com­
pletes its current instruction, and then inl.ps to Ror~i location 1016' Any of
several events can produce the interrupt signal. The events are:

A. Ale pC',vcr fa il Ul'e

B. Ct~ parity en'or in selected VP
C. CH pt'otection violation in selected VP
D. CM breakpoint ill selected VP
E. STOP button (Operator's Pa.nel)
F. disc p}~otection violation
G. illegal OP code in selected VP
H. CP interrupt

~o provide effcctive t efficient reaction to these events, three bytes in
the CR file are employed. Tllese are the OUTSTANDING EVENT byte~ the INTERRUPT
fI.ASK lJyte" and the rR()('LS~J !lfIERlWFTS byte. ihe r€lation..;hilJ vi these bjtE!S
is indicated in Figure 2 and is explained in the following paragraphs.

When events A. through H. are detected, they are recorded in the OUTSTANDING
EVENT byte. This record of the event remains until the selected VP responds to
an interrupt si gna 1 caused by the eV,cnt or until the record is erased by soft­
w~re. When an event is thus recorded~ the interrupt signal to the selected VP
is generated providing the corresponding bH position in the INTERRUPT fYlASK byte
is "1". When the VP responds to the interrupt signal, the three CR bytes are
modified as follows:

6

1. A record of the event or events causing the interrupt is made
in the PROCESSED INTERRUPTS byte. This record may be refer­
enced by software during interrupt servicing and should be '
reset by software at the conclusion of the service.

2. The record in the OUTSTANl.il HG eVENT byte of the event' or events
causing the interrupt is erased. Note that events recorded in
this byte, but inhibited by the mask, are not erased.

3. The'mask bit for the event causJng the interrupt and the mask
bits for all events of equal or lower priority are reset, thereby
in hihiting interrupts Laused by subsequent events whose prior­
ity is equal or lower. Event priority is as follows:

Event

A
B

C-H

Priority

high
middle
low

After these modifications have occurred, the software service routine
commences. During this time, all events will be recorded as OUTSTANDING
EVENTS~ but will not generate interrupts unless their priority. is high
enough to ovel~corne the automatic inhibiting v:hich has occurred. At the con­
clusion of the interrupt service routine, the PHOCESSED INTeRRUPTS byte
should be reset by software, and the INTERRUPT MASK byte should be restored
by sofblare to any desired mask. Note that when a mask bit is set by soft­
ware that an interrupt \'Jill immediately occur if the corresponding event has
been recorded in the OUTSTANDING EVENT byte but has previously been inhibited.
If this is not desired, any of the event records in the OUTSTANDING ~VENT byte
may be erased by soft\'lare before the modification of the INTERRUPT r·1ASK byte.

PROGRAMMED INTERRUPTS

Each V~ including the selectE~ VP.is prc~~ded with an instruction level
interrupt which can be initiated only under software control via the INTERRUPT
CONTROL byte in the CR file. VP reaction to the interrupt is similar to reac­
tion to the automatic interrupt alre.ady described. When the interrupt signal
occurs, the VP completes its current instruction and then traps to ROM location
11 16 , Note th~t each VP em~loys the same trap location.

The three CR bytes employed for the previously described automatic inter­
ru pt are in no way re 1 a ted to the programmed i nteiTupts . The programmed
interrupts are controlled only by the INTERRUPT CONTROL byte in the CR fiie.
The pl~ogrammed interrupt structure. is depicted in Figure 3.

When bit "iff in the INTERRUPT CONTROL byte has ueer! set to Ill" by softwiii~e,
an interrupt signal to VPi is gen~rated. When the VP responds to the interrupt,
bit lIill is automatically reset.

Note that the VP will not respond to the interrupt under the following
conditions:

1. The VP has no assigned time slot.
2. The VP's time slot assignment is being overrlden by the TIME SLoT

OVERRIDE byte.
3. The VP cannot complete its current instruction due to an endless

loop of indirects.

MAINTENANCE EXCEPTIONS

During maintenance operations, the foregoing automatic hardware reactions
may be modified. There are two switches on the Maintenance Panel which affect
the react; ons. The switches are the TEST MODE 5'1" tch and the AUTO INTERRUPT
OFF switch.

PPU Interrupt~ & Time Slot Overrides?
Section Cl

If the TEST ~10DE sv/"i tell i:; in the "Norma 1/1 pas i ti on, then the selected VP
cannot experience a CR protection violation. However~ if the switch i~ not in
the IINonnal li position, the selected VP becomes subj(:ct to CR protection under
contro'l of the CR PROTECT COifiROL byte in the CR file. If CR protection for
the selected VP is in effect, and if a violation occurs, the hardware reaction
is as foll o\t~S:

1. The addressed CR is not r:lodified, and
2. The event is l'eCO}'<.i:2d as event E in the OUTSTJ\NDING INTEr<}{UPT

byte. Thus, under these circu~il:; tc;nc(s, eVHlt E may rc:·present
either (a) CR protect-ion violation -in selected VP, or' (b) STOP
button (Operator's Panel).

The other Mai ntenance Panel switch wlli ch affects the hard''Jare I s reactions
to the events under consideration is the AUTO INTERRUPT OFF switch. If this
switch is -in the "off" condition (not the normal opera.ting condition) ~ then
the following applies:

8

1. Events A through H are recorded, as usual, in the OUTSTANDING
EVENTS byte. However, no interrupt signal to the PPU results.
The reaction is as if all interrupt mask bits \"~ere "0".

2. The time slot override bit for the selected VP is effective,
and is set by hardware if event A through H occurs.

3. The override reason byte operates normally io}" non-selected
VP's, but is not updated if the override is for the selected VP.

t r
, I
I I

l.

FIG. 2.

- ___ .- __ __ --.J

AUTOMATIC INTERRUPTS

PPU Interrupts & Time Slot Overrides 9
Section Cl

FIG. 3 PROGRAt~NED INTERRUPTS

10

LOGIC CLOCK MODULE

The Logic Clock ~"odule (L01) is capable of performing maintenance functions
and providing synchronization for normal operation. Specific clock pulse sources
are three different interna-Ily (on the LCl~ Card) generatr.d clock rates und pro""
visions for using an oscillator external to the machine as a clock signal.

Th,= three intenlally generated clock rates are normal (s5 ns), marginal,
(5% faster' than norm21L and sOlo\'! (normal period plus 100 nanoseconds). The
linlits of the extern~l signal source have not been determined. The internal
source period is adjustable (for the normal and rrJRrgina"! rates) in steps of
1/2 over the range from 40 to 159 by using jumper \'Jiring through the proper
sequence of printed circuit de1ay lines.

The LCM has 9 input control lines. Seven of these input lines constitute
a COM14AND to the 109 icc lock as fo 11 ows :

o -+ Run contin­
uously

1 -+ Burst

Burst Count Code
(BCD, 0-15 Pulses)

" Clock
a
o
1
1

Source Code
a -+ Normal
1 -+ t'lat~gi nal
a -+ Slo\'J
1 -~ Externai

The command is entered into the LCt" registers by the SYSTHl STANDBY or LOAD
signals. SYSTEM STANDBY initializes the LC14 when it is true and causes COM~AND
to be loaded and executed \lJhen it goes false. All further COt1MANDS are loaded by
LOAD. LOAD control signal enters Cm"f'lAND into the Lcr'1 registers when it goes
true and execution begins with the second clock period. When COMMAND has been
executed, a REPLY output signal is set true. When operating in BURST, the
REPLY signal is not set until the completion of the required pulses.

The logic clock can BURST or RUN continuously with any of the four clock
sources, and it is stopped with a burst of 7ero pulses (COMMAND: 1 0000 Xjl.XB).
Since all synchronization on the LCM is accomplished using a locally shaped
clock, control functions may be performed even if the system external to the
L01 is not receiving a clock signal.

Log; c C1 oc k t1odu1 e 11
Section Cl

Co!~!)lUNICATION REGISTERS DESCRIPTIOil

Section C2

TITLE

COMr'1U1HCATlON REGISTEHS DESCRIPTlOii
T/-\Gl t, OF CCiflTE.fHS

COMMUNICATION REGISTERS & ~SSIGNMEHTS
TIME SLOT OVERRIDE
tIME SLOT OVERRIDE REASON
INTERRUPT CONTROL
OUTSTANDING f:VEiH

INTERRUPT MASK

PROCESSED INTERRUPTS
VP CM BASE
TmE SLOT TABLE
UNIT REGISTERS
CO~1r~ON COr~f0AND REGI STER
CCR TRANSFER BIT
PPU fv'IAINTENANCE CONTROL
Sl-JB PRIORITY
START-UP AND AUDIO
CLOCK
AVAILABILITY
DCU COND I Tl ON
CP CONDITION
NCU CONDITION
BREAKPOINT CONTROL
CR PROTECT CONTROL
CM PROTECT CONTROL
DCU CONTROL
SLAVE TO MASTER
MASTER TO SLAVE
DEVICE ATTENTION
r~ONITOR Q NON-EMPTY
MONITOR Q CONTROL
TCP Q NON-EMPTY
TCP Q CONTROL
PAPER CONTROL
TAPE CONTROL
I/O DEVICES
TERMINAL DEVICES

PAGE
1
8

8

8

9

9

9
10

10

11

12

12

13

13

14

16

16

17

17

17

18

19

19

20

20

20

21

22
'22

22

22

23

23

24

24

i

«

.It)

.12.

L3

.11

Communications Registers and Assignments for ASC SystCr.1 #1

'T. s. t.' ,

c. Vf' 1.'

pcv tJ" ~ to

I ~ c,.,... -;:; ;;"

! I D

i3 L.rs \.

-;-;$". J?. ;; s.

c vf-p ~ .
Kc" ~,":. <" f' C.?

.. _---" ---------- --- ----

0 ;] In I:' "- s e

.[c1 Ii; .t" :, 5 ~'

;.. ;t. C! Ii I:: :",. - ~

.j ,!. II: .(;; :'t
,-.-

-. ----_._----_. ------- _.

/ P ~, ..!. m I~ .. l. ~ ~

.. f' l"
>:.J e II! J3 .:l- .$ e

6> :1 /II B a.. !; ~

- -_.
,. I-' ::! I); d ~- .; '"

7; 5, 2 7. ,", _.? T. S. :3

_J __ Vi_'? ____ __ ~ l._.~~! ___ :lL // F

.6- ;r; S , ~.:: r. ." .:" -:- :-, .1'/ , J r, s. '7

.' ., v I' # C. \" t) f: ;..' vi' .-,..
L.;" ~ !. 1~2 c; ~:' - r ,nCt' .)1" ~ ."

. .-f

--
fl t i'1 e B t e ,..

-- ---- '1

~: .. - ,.

I ,
j
1

---- -"C ~ ttl ,.,., -0-::;:; -- - _.
1:;~9/:;

- .-

. ,- r /;1i·-'i) II/t.) :.' .- ,:. ; ;" ~ ~ /r' <' t; " ~ ! :" i __
T

11 i' - C,,", ('! 1 /-tddre .-; !. B

I V F.'eLJ
_(1

f.' .<>

,.,
.~~L_JJ .il·dJJ :..1 __ 1 __ v f> it

.,
'-c '" r .• -

I /(~ 9 '" w .. 'I' : I' i

- - - -- - - ---..... - .- -
LJ . I(

.
I S /- w .;,.. u e <:; i-,

.- -

13 I~; 1:1: E' I "1 I J..:, "" t, ... " '" IV \.6- 0 . .: ,; c !:e t-'f "
,~

.. L & J.

" r F e /.. d J. ./

I I ~ w 0; I G,.."", r H£~._ ~~~~ : ~(" t , ~ ,
.. --- --._- --

s i ~ ,.
._ .. ____ ___ ~_~~w ~ ... _____ ~ __ ~

S t C. r

, .- - - -------------- --

- ..

1
Section C2

--

.1.7

.19

a.o

2.1

22

2?

'30

3.1

COmffiunications Reghters and A~si..gnments for ASC System #1

." ._- ~- -- - Ii ""e-Cl .. c. 1-, SlvB Pr,'c.r,"t y (C~J :: h/f};)~:;t) .. C'::...;="''''/"> / """;1. 1 :':1("> Re.o..\.
~ 1-' N -2 ?? \.) .< $,., ~, C- s,~ c..

~~~~J_ . ..: J. 1- L_.:.J_~~_::.L_.:Jl~J~ If I c~'-.2:_~ f '" <, ~ ,,<\ 
...,n.) •• .... ~~ .,,=' ~'l 4'"" '"r'" '- _'\_.~ 

/? e "- L T , 
"" :2 C '- '" 

.. 
c. j. 

S f. c ~m .. $ L- e 
\pI " ,,~ ~,~ 

s 
, :,~ e- N S Eo c. 

~1 1 '\ '\, 
}~ '1 ,,)ts \pf) .l~ ,'1 ,\, ~.,. ,-:. -y )'3 

~ .. :.,10-
, 

.",~ ..,:"1- IP l 0 0 0 CO ::? ' ~o ('!I' "\p' II' ,?-. ).. 't, to! ,..~C' Y \p' l' '!<i> o.\() '1-" yC- t .. Y .... Y''=' >1' , ~ )-"",0 ~o -"P ). __ ... __ .f"""" -"- --- -
c? Res i" 0" S c- O c. u c.o",,\~o\:~c> .... C.? c.o"e\~t;c" rr-c.u ~o",J~-t ~c.· 

s 11'1 I~ I~ I 1~(C.-1) Be. 1<2.':: 0\ 0 Il?ll Ce.:,: :~ e r" I~ I? j~J~ r IK ~ I ~ I~ I~ I E .. V £, ~ e P t ,c. £ .... ;--._- _ ......... 
c i'? Pre t (' '- :- C. I;; Pre. t('c t i) C. \,.1 C. C'" 1 r-t!' l 

Vr-r 1-±.Li.1 ~ 1 ,I! tl I~I ., \If'~.1 ~1 "/.! ~l "\ I !:! J S~ IA. !S. IFl l : ~ I PJ:~t, _ ....... - 7_ I L IS:,? _ ..! - C C. 0 I 

~~ t~"J,~H~r\ ,Pb\IRR I?SKI -
, 

, -

"'~,...,... .~ 

'~( IC:15 l';ftlc~<r1"I£1LMI " 
S.I U At.-ce,)-cicn ! 

.L 2 3, J 2. .t. a I?i Pu .t. 2 .J. 2. .L 2. oj ~ ! ~J ~ J ~ I '" II:> I t J 
PQ..per f!.vlc..e Cor>t:r", 

\) ~ a .,.., - L,'t') C - r. J. I I 
C- r .. t ,. caL I ./ N~r . C r,' t .. ~( ~ I .1 ~ I s a.. 1"'-;012. ..J.c>n.,,,~ , 

R.l.1 Pl Rl Pl LL L? Isul T 1) .l.IU'2.!DJltl'lID ~lt,~.! i:'71;:,~ ~jl i;"J~~1{111~d~L. __ 
S La.. ... C! ro fi? a s t e,' fi)as- i'~r CD SLa...ve v p St:a.i:I.'Z -'- n h,' b ; t -

I '/, ,I ""0 ~ I 21 'jl Lli ;-1 lol '? Vpol ~I 7.1 '3 1-11 s-I ).!)i "i\1 ') 0 ~1 "LJ "3 I.\J 5/ lof ~ \~lC\.:i -,-I ',$ I "I£"IJ 7 

D?!~£~il ~o p A e T mRCT Loef< ~ .. ~ 0" r ,. 0 /1 e r.$ ':' .. :::.k - Fre(' l,arC'i:!.~i' 
1~ ~~ L L lUlU w ,V ( J' q-t If,% }}.~ I 

sr 
~lz13J1 oo'o~ 10 2.1 031 o~ le,,-! "·1 KR 8 c c. c c ., 

K 1-. ~ £. ! 

R 0 M D U. M P 

f'l'-C-D £K~rC\S<! v?", "'CD Bre>, .. 1- po; ,., ~ 1>10"::-,'" C"niral/f!'r D~:",,[r' eon t r ~ L 

ip" I 1.1 .~ I ~I ,\ ! ~ 1 61 ., 't'o I !.I ",I '31 " I :" I ,I ~ 
s ~ s t e m L ." s i- t.. 0 e /< '" u t :. 

, !' I I I I 1 I I' I : I , J I I I . • ,I I I 1 I C'oIC.LI·~:.lo3 r·'iC.~ '_'1 " ~c;;,O H 121·13jH JSI.Lio:.171.LSI19 lrl~'.l!n.I1?;l.lfi1S 2.bl2.1j:U 2-", 30 i.31. 

r ~ s T C 0 N T I( 0 l.. 

3-
S.ection C2 



COlr!"'nun~cati.ons ReQi~tt::.r:..: and Assi.~nrn~nt$ for I\':;.C System #1 

5 
Sect; on C2 



59 

Communications. Re.gtsters and J\ssi,gniTlcnts for ASC System #1 

r-~=-"-- 'M---8--;~-"~--: 'f)-~-~-'W~~;---;--;~"------~' -------=-1 
r~T-:1':- ~ :?--;;-2-1-:-"~--:Z'--;;?-::-"--~;;~;-;'~: ::' -I 
r~-----~--~,".---[-~~-:«---/,--~~--- _I 
f-'--'--~-~'-~~""""''''''''''''''-- ---------~.-----~----.-,.,,----..£ 

.---------.. -"~.-.. --~,.~,----------------------------

---...... -.• _-._---_._---

-----------------.---.-------~----.-.,,-. --

r----------------------~~--------~--~-~-.--------,----------------~.--------------------~ 

7 
Section 2 

I 



OUTSTANDING EVENT 

~ I t'~p , j;1V I M8 I_Sp J DV I OP I_~p J 
Thi"s byt\:: records 2vents which \'Iin calise a:1 automatic interrupt. 

A bit is s~t by an event and is reset when the interrupt reactibn occurs. 
The byte is neVEI' set by soft~\,Rre, nor is i t e;~pected that the byte be 
read or tested by soft\tlare. A complete description of tr1"is byte is avail­
able in Section C1. 

Events associated with the bit positions are: 

PF -ale pm'fer fed 1 ure 
MP - eM parity error in selected VP 

MV - CM protection violation in scl~cted VP 

MB - CM breakpoint in selected VP 
SP - STOP button (Operator's Panel) 

DV - Disc protection violation 
- , 

OP - Illegal OP code in selected VP 
CP - CP interrupt 

INTEHRUPT t-"!\SK 

This byte prevents events recorded in the Outstanding Event 
byte from causing the automatic interrupt. These bits are set by soft­
ware to pe\~mi t interrupts and liluy be r'eset by sofb/a re to i nhi bi t i nter­
rupts. Bit pos iti on i ntpl'fwetations r.orrespond \'Ji th those of the Out­
standing Event byte. _ Hard\'Iare also resets bits as described in Section 
C1. 

PROCESSED INTERRUPTS 

This byte indicates which of several events has causedan auto­
matic interrupt. These bits are set by hardware when the interrupt 
occurs, and must be reset by software. Bit position interpretations 
correspond with those of the Outstanding Event byte. A complete des­
cription of the Processed Interrupt byte is available in Section Cl. 

9 
Section C2 



10 

8 __ .. __________________________ 31 

VP 1 Cf.1 b.ASE 

---.~ 
These registers are used by the VP's for development of eM addresses 

as i nd-j cated by the ins tructi on descri pt ions inSect; on C4. 

Softivare Responsi bi 1 i ty: 

1. Enter the appropriate eM base address for program to be run 
i'l the VP. 

Hardware Responsibility: 

1. Select one of the eight base registers as determined by the 
Time Slot Table and the time slot look ahead logic, and 
present the contents of the selected register to the PPU 
internal controls. 

TH'iE SLOT TABLE 

o 
T.S. i T.S. i , 

0 
i 

; 

r 
T.S. I 
4 I 

T.S. 1 
Thru 
1.S. 15 

8 I , 

! 
T. s.1 

12 I 

31 
T • S-. I T.S. 1. S :-~ 1. S-. I 1. S. I 1. S. I I 1 9 2 I 10 I 3 11 I I 

1.-! 

T.S. 1.S. 1. S. 1. S. 1.S. T. S. 
5 13 6 14 7 15 

4n 4n + 4 

I 
L·-VPt(eniploying this time slot if 

time slot is assigned. 

assigned bit: 

o this time slot not assigned. 

1 this time slot assigned to the 
VP indicated. 



Time slots OCC[lr' in sequence ftorn time slot 0 through time slot 15. 
Time 510<\;$ <] tI!rc}u~:h 15 al~e ass<igned to the Vp1s designated in 

the table. If a VP is assigned a series of adjacent time slots, only the 
first and alternatu slots of the series are effective. Time Slot 0 uses 
the TEST MODE switch to select the VP. If the TEST MODE switch is in the 
NORt'1AL position) the VP SELECT svritch speci-ries the VP using T.S.O, If 
the TEST t'iODE switch is not NOHil,L\L, the T.S. table specifies the VP. The 
Time Slot Table call be overridden when the Time Slot Override b~te indicates 
that the table entry is inval"icl. The time slot us\:; is also affected during 
maintenance operations by the V, BURST. and CONTROL fields of the PPU r'lMN­
TENANCE CONTROL registers, and by the TEST MODE switch on the Maintenance 
Panel. 

Software Responsibility: 

1. Modify the time slot table as requ"ired to control VP 
activity. 

Hard~"are Responsibility: 

1 . . Provide a time slot counter to designate the number of each 
time slot. 

2. Scan the TIME SLOT TABLE to select the VP to be allotted 
each time slot. 

3. Al ter the resul t obtai ned by the scan of the TmC SLOT Ti~BLE 
if: 

a) TIME SLOT OVERRIDE is indicated. 
b) Adjacent time slots are assigned to a VP. 

c) Certain maintenance functions are in effec't as deter­
mi ned by the ~ia i ntenance Logi c whi ch interprets the 
PPU MAINTENANCE CONTROL registers located in the CR 
file. 

UNIT REGISTERS 

o 31 
~----~-----4--------------

I DCU 
! 

CP MCU 

Thesp registers are use"d for dirE'rt communication betv:ecn the PPU 
and other units within the system and are used in conjunction with the 
Common Command Register. Complete detailed assignments for these registers 
have not been determined, but the primary use of them will be for maintenance 
purposes. 

11 
Section C2 



12 

eQi.l~lor~ Cmli"lAND REGISTER 

o 3 4 7 8 15 

~_D __ ~I ______ o_p __ ~I ______ AD_D_R __ __ 

The eQr,11·lON eQW,1AND REGISTER (CeR) provides cOll/;n~!1ds from the ,ppu 
to all other units to control maintenance facilities und to provide com­
n:unication links which C\re infrcqu(~ntly used. The 10 field desionates 
\-fhi ell unit is to interpret the commands and perform the necessary acti ons. 
The OP field ;s an operation code. The ADDR fic"ld contc.rin$ an address or 
an operand if requi red fOl~ the cornmand. 

A more detailed explanation of the intent of the CCR is in Section G. 

Sofbwre Re·sponsibility: 

1. Insert commands into the eCR as required. 

Hard\'1are Responsibility: 

1. Present the contents of the eCR to all units. 

eCR TRANSFER BIT 

This bit is used to control transfer of the command contained in 
the CCR. The CCR TRANSFER BIT is set by software to indicate to CCR 
recipients that a nevI command is available in the CCR. The unit addressed 
by the CCR then resets the CCR TRANSFER BIT when the command has been re­
ceived or when it has been executed, depending on the type of command. If 
the type of command is such that the eCR nU\~ISFER BIT .is reset on receipt 
of the command by the unit, then completion of the command will .be indicated 
via the IICommand Complete" bit in the CONDITION byte relating to the appro­
pri ate unit. 

Note that a command can b9 issued to CCR recipient units by a single 
~/ord transfer ; nto the enti re CR .. word contai ni ng the eCR and the CCR TRANSFER 
BITt providing the remaining 15 bits of the word are written as IIO·S". 

Software Responsibility: 
1. Set the CCR TRANSFER BIT to notify CCR recipients that a new 

command is present. 
2. Monitor the CCR TRANSFER BIT to determine when an issued command 

has been executed. 

Hardware Responsibility: 
1. Present the contents of the eCR TRANSFER BIT to all units. 
2. Provide input lines for resetting of the bit. 



PPU MAINTENANCE CONTROL 

This portion of the CR file has been described in Section G. 

SWB PRIORITY 

Bit indicating VPo priority. 

o 
1 

Pri or; ty 

highest 

1 mvest 

This hBlfword riesignates thp priority of VP requests to eM. T~e 
bit associated with each VP may be modified by VP programs at any 
time. When more than one CW request is present in the SWB, the requests 
are serviced according to the priority assignment in the SvJB PRIORITY 
halfword. If two requests of equal priority are present, then the oldest 
request is serviced first. 

Software Responsibility: 

1. Load SWB PRIORITY as required for optimum use of eM by the PPU. 

Hardware Responsibility: 
1. Hardware selects the appropriate bit for presentation to 

the internal SWB controls. Selection is based in the contents 
of the T.S. table and the time slot look ahead logic. 

13 
Section C2 



14 

START-UP AND AUDIO 

bit 0 -

bit 1 

bit 2 
bit 3 

Start 

Bootstrap 
Native Input Device Code 

Operati n9 

bit 4 
-)PPU Clock Control 

bit 5 

bit 6 
bit 7 -)Aud-ible Alarm 

Start-up (bits 0 through 3) is initiated by the use of the 
START button or the LOAD button located on the Operator's Panel. De­
pression of the LOAD button must be simultaneous with positioning of the 
spring loaded system initialization switch in orde0 to be effective. Start­
up causes the following sequence: 

1. All cells are cleared via the asynchro~ous reset lines. 
(The system can be shut down and stopped via the console 
or by depress-ion of the STOP button on the Oper'ator's 
Panel with no intervening power loss to clear the cells.) 

2. a) The Start bit is set. 

b) The Bootstrap bit is set if the start-up was initiated 
by the LOAD button, but is not set if the start-up was 
initiated by the START button. 

c) The Native Input Device code is set according to the 
position of the system initialization switch on the 
Opera tor's Panel. "Oil denotes Ca rd Reader, "1" denotes 
disc. 

d) The Operating bit is set. 

The Audible Alarm bits control an audible alarm. If bit 6 is 
"l" then the alarm is in the fixed frequency mode, and bit 7 is the on/off 
switch. A "1" in bit 7 denotes lion". If bit 6 is 110" then the alarm is 
in the generated frequency mode, in which case bit 7 is the audio source. 
In thi s mode, any desired tone can be cY'eated by programmi ng bi t 7 to 
change at the desired frequency. 



Software Responsibility: 

1. 

2. 

3. 

Interprets 

Inte:"prets 

Resets bit 

and 

bit 
') at ,) 

reSQts bits 0 aild 

2. 

the conclu~;ion of 

l. 

shut down. 

4. Sets and resets bits 6 and 7 as desired for audio~control. 

Hardware Responsibility: 

1. Sets bit 0 when the START button or the LOAD button is 
depressed. The buttons are on the Operator's Panel. 

2. Sets bit 1 when the LOAD button is depressed. 

3. Sets and/or resets bit 2 when the LOAD button is depressed 
so as to reflect the position of the system initialization 
switch on the Operator's Panel. A HOll in bit 2 indicates 
that the system initialization switch is in the Card Redder 
position, and a 11111 indicates the disc position. 

4. Sets bit 3 when the START button or the LOAD button is 
depressed. Employs bit 3 for operation of the OPERATING 
light on the Operator's Panel. 

5. Continuallj ~eact to bits 6 and 7 as described above. 

The PPU Clock Control bits control the frequency of the PPU 
logic clock when the CLOCK RATE switch on the Maintenance Panel is in the 
"Normal" position. For other pos"itions of the CLOCK RATE svJitch, the hID 
Clock Control bits are ineffective. The code is: 

bit 4 bit 5 

0 0 Nominal Rate 

0. 1 SlO\'1 (Nominal Period + 100 ns) 

1 0 Fast (Nominal Frequency + 5%) 

1 -: Nominal Rate 

Software Responsibili~v: 

1. Set and Reset bits for desired frequency code. 

Hardware Responsibility: 

1. Control PPU logic clock frequency as described ~bove. 

15 
Section C2 



16 

CLOCK 

Lr-

I 

---'---' 

o 

--~~ 
~ 

31 

These five bytes pl~ovide a. binary count of l&psed t me in the 
system. Hlis counter is driven by an 'independent 10 rnhz osc l"Iator; hOlvever, 
since these CR bytes an:? updated in synchl"or.'isrn with t.he PPU logic clock 
(nominal 8~) nanosecond period), the least significant t\\lO or three bits 
of the count will not be accurate. 

If the contents of these bytes are altered by softvJa re, the count 
is indeterminant until the next hardware update occurs. The update nullifies 
the attempted programm2d modification. 

Software Responsibility: 
1. Read the CLOCK as required. 
2. Never write into the CtOCK. 

1. Update the CLOCK in: synchroni sm vii til the PPU log; c clock. 
2. Provide a 10 mhz counter as a source for updating of CLOCK. 

AVAILABILITY 

This byte provides a running account of which Vp·s are available 
for assignments., The start-up procedure software sets these bits to 1 to 
show all Vp·s available. 

Software Responsibility: 

1. Set bits to show VP availability. 
2. Reset bits to show VP activity_ 

Hardware Responsibility: 
1. None. 



DCU CONDITION 

The r~SB of this byte is the Command Complete bit. This bit. is 
set by the DCU at thE: conclusion of certain types of maintenance commands 
issued to the DCU via the Common Command Register. The bit is sub5equently 
reset by sofhlare. . 

The remaining bits are used by the DCU to noti fy the PPL1' that 
certain unusual events have occurred. Detailed assignments for the bits 
have not been determined, but it is anticipated that they will include 
01 parity error. 01 breakpoint, and CH protection violation. It is 
possible that some of the condition bits may indicate that additional 
data relative to the event may be obtained thru the use of the CCR. 

CP ·CONDITION 

The MSB of this byte is the Command Complete bit. This bit is 
set by the CP at the conclusion of certain types of maintenance commands 
issued to the CP via the Common Command Register. The bit is subsequently 
reset by softvJare. 

The remainder of this byte is used by the CP to notify the PPU 
that unusual ev~nts have occured. These unusual events include CM parity 
error, eM breakpoint, and CM protection violation. Refer to this Section, 
page 23, for a detailed description of the CP condition byte. 

MCU CONDITION 

. The MSB of thi s byte is the Command Complete bi L ... Thi s bit is 
set by the MCU at the conclusion of certain types of mqinten~nce commqnds 
issued to the MCU via the Common Command Register. The bit is subsequently 
reset by software. 

The remainder of this byte is used by the MCU to notify the PPU 
that unusual events have occurred. Detailed assignments for the bits have 
not been determined, but it is anticipated that they will include CM parity 
error, CM breakpoint, and CM protection violation. It is possible that 
some of these condition bits may indicate that additional data relative 
to the event may be obtained through use of the CCR. 

17 
Section C2 



CR PROTECT CONHWL 

vp-Tvp'-~- - - - - - ' VP7, 
1 0 I 1: ! 1--_____ , __________ -1 1 

These bits can place the VP under CR Protection to prohibit 
writing into any CR up to CR number 13 . When a CR protection violation 
occurs, the CR cells involved are not ~~anged and the time slot'override 
is set. The bH position indicated by the VP SELECT s\'lifch on the Maintenance 
Panel is ineffective when the TEST MODE s~itch on the Maintenance Panel is 
in the "Normal" position. 

SoftVJa rel<es pons i bi 1 i ty: 
1. Set bits to subject VP's to CR protection on all subsequent 

write references. 
2. Reset bits to inhibit the CR protection check on all sub­

sequent write references. 

Hardware Responsibility: 
1. When abit is set, it sends a protect enable signal into the 

internal PPU controls at the appropriate time as indicated 
by the T.S. Table and the time slot lookahead logic. A "111 
in the bit position indicated by the VP SELECT switch is ignored. 

CM PROTECT CONTROL 

! VPO VPl I - - - - -- VP7: 
...... __ • __ --l-I _______ ~_'__ __ J 

These bits can place the VP undpr eM protection. All VP's employ 
the same three boundary pair parameters that are set up through the use 
of the Common Command Register (CCR). All 01 t'equests, issued by a Vp, 
are classified in one of three cl~sses. If protection is in effect, the 
address requested is checked against the appropriate boundary pair. The 
three classes of requests are write, instruction fetch, and operand fetch. 
If a write request violates the protection, the memory cell is not modified. 
All violations result in a hardware reaction identical to that for breakpoint, 
i.e., either time slot override or automatic VP interrupt, depending on 
comparison of the VP number in violation and the VP SELECT switch. 

Software Responsibility: 
1. Set bits to subject Vp·s to CM protection on all subsequent 

Ct4 references. 

2. Reset bits to inhibit the CM protection check on all subsequent 
CM references by VP's. 

Hardware Responsibility: 
1. When a bit is set, it sends a CM protect enable signal into the 

internal SWB controls at the appropriate time as indicated by 
the Time Slot Table and the time slot lookahead logic. 

19 
Section C2 



20 

DCU CONTROL (for ASC system # 1) 

These bits control the disc activity via the two Data Channels, 
DCO and DC,. The start bit (S ) is set to 11111 by the softwat'e to indicate 
to the channel that execution n0f a chilin of commands vJill start. This 
bH is reset by the channe 1 ~"hen the ella in has been camp 1 eted and the 
channel -is again idle. The AbOl~t hit (A ) is set by softvJarc to cause 
the channel to abort the current link inna chain of commands. The bit is 
reset by the channel, indicating cOl1lpletion of the link deletion. 

SU:WE TO t~ASTER 

VP 0 I VP 1 - - - - - - I· VP 71 

These bits are flags' for the software. Bits are set by slave 
VP's when service from the master VP is required and are reset by the 
master VP. 

Software Responsibility: 
1. Set a~d reset bits as required for passing messages from 

slave VP's to master YP. 

Hardware Responsibility: 
1. None. 

MASTER TO SLAVE 

These bits are flags for the software. Bits are set by the master 
VP to indicate required action by the slave VP. The bits are reset by the 
slaves. 

Software Responsibility: 
1. Set and reset bits as required for passing messages from the 

master VP to the slave VP's. 

Hardware Responsibility: 

1. None. 



_DEVI cl21UENTIOi~ _ (for 11.SC System If 1) 

o 15 31 

[---"---------v777~~WJ:7~ __ ~__ ~:..LLuL2_d&J_ 

These bits indicate that an I/O device status has changed. There 
is one bit for each i.!c)gnetic tape, paper device, and console. J)hen soft­
ware has taken appropriate action, software resets the bits. The bits do 
not indicate stat.us but rather status change. Bit positions are assigned 
as fo 11 OVIS : 

bO 

bl 

b2 

b3 

b4 

b5 -

b6 

b7 

-b 
8 

bg 

b10 

bll 

b'2 

Software 

1600 bpi tape #1 

1600 bp-j tape #2 

1600 bpi tape #3 

800 bpi tape til 

800 bpi tape #2 

1 II tape #1 

111 tape #2 

card reader #1 

card punch #1 

pri nter #1 

printer #2 

console #1 

console #2 

Responsi bil ity: 

b13 console operator #1 

b14 - console operator #2 

1. Monitor these bits to determine that status changes have· 
occurred. 

2. Reset bits. 

Hardware Responsibility: 
1 . , Set bits to. indic~te devi r : status changes. 

21 
Section C2 



22 

lo'IOlHTOR Q NON-EMPTY 

This byte is employed by sofhJare in conjunction ItJith the Monitol~ Q 
Control byte in order to implenlent efficient and orderly accc-:ss to queques in CM. 

Software Responsibility: 

1. Set and reset bits as required by activity in queques. 

HardwCll'e Responsibility: 

1. None. 

r·10NITOR Q CONTROL 

This byte is employed by software in conjunction vlith the t'lonitor Q 
Non-Empty byte in ordel~ to implement efficient and orderly access to queques 
in eM. 

Software Responsibility: 

1. Set and reset bits as required by activity in queques. 

Hardware Responsibility: 

1. None. 

TCP Q NON-E!11PTY 

This byte is employed by sofhvare in conjunction with the Tep Q 
Co~trol byte in the CR file in order to implement efficient and orderly 
access to queques in CM. 

SoftvJa re Respons i bi 1 i ty: 

1. Set and reset bits as required by activity in queques. 

Hardware Responsibility: 

1. None. 

TCP Q CONTROL 

This by~e is employed by sofbJare in conjunction vlith the TCP Q 
Non-Empty byte in order to imp 1 ement.Effi ci ent and orderly access to 
queques in eM. 

Software Responsibility: 

1. Set and reset bits as required by activity in queques. 

Hardware Responsibility: 

1. None. 



PAPER_CONTROL (for ASC system #1) 

o 4 5 9 10 11 15 
n~G~.f(l~TI5Tr~~1~,t<1r>T0~rJI-IT 1 LL_' "L_~.LL,"_~~_ .. L.tIL~ ... __ . -.' 

These b'its are used by several paoer device handler pro9rams to share 
a VP. The paper device driver program operates at a functional lovel between 
the PCU programs and the paper device handlers. The driver temporarily 
relinquishes control of t~e VP to device handler programs as required. The 
driver polls the Paper Control bits to d~tcrmine which of several paper devic~s 
requires use of the shared VP. Tho driver and the Paper Control bits allow for 
expans'ion to ten paper devices as shown below: 

Card Readers .......... (R) bits 0 (critical) bO to b3 expansion direction 
5 (non-critical) bS to bc) ('x!,ansinn direction . () 

Card Punchers ......... (P) bits 4 (crit-ical) b4 to bl expansion direction 
9 (nano·critical) bg to b~ expansion direction 

L fne Printers ......... (L) bits 10,11 (critical) bio to '14 expansion direction 

Paper Driver Terminate(T) bits 15 

These bits are controlled entirely by the: pal)r:r di~~Ve;~, hand,eY's, ana 
tile associated hardl-Iare except vlhen the Proaramming System wants to indicate a 
device or to terminate the driver. The initiating a device, the Programming 
System will set the aDPropriate device CALL (K) bit, which will be reset when 
the driver detects it and the driver is initiated. If the TERMINATE (T) bit 
is set by the Programm'ing System, the driver ~'Jill reset the bit and terminate 
the driver. 

Software Responsib'il ity: 
1. Set ca11 bits to initiate devices. 
2. Set the terminate:bit to terminate the device. 
3. Monitor all bits to determine that status changes have occurred. 
4. Reset bits when recognized and responded to. 

Hardware Responsibility: 
1. Set Critical Service bits in response to device activity. 

These bits are employed for the sharing of a VP by two tape handlers. 
There are three programs, called tape drivers, each of which operates.at a 
functional level between the PCU programs and the tape handlers. Each driver 
can control two handler/device combinations. The Tape Control bits are polled 
by the driver programs, and the bits indicate that the associated transport 
or handler requires use of the shared VP. Driver #1 polls al and 61, Driver 
#2 polls a2 and 62,etc. 

These bits are controlled entirely hy the tape handlers except ~or one 
situation. When a PCU \fJants to initiate a tape handler, it does so by setting 
one of the Tape Control bits. The driver initiates a handler and upon task 
completion, the handler will reset the bit. 

23 
Section C2 



24 

I/O DEVICES (for ASC System #1) ----------- ... . 

r-----..... --.--.---­
Consoles 1 & 2 

.•. _. ___ • ____ ~ ____ ._ --1. __ ... ___ ... --.--_______ _ 

I 

j 1600 #1 

l----- . [ ---_.- .•. -.. - ._-------
Printer #1 -- .... - ..... . .... _-

1600 1/2 

1600 #3 

800 #1 

lit #1 

800 #2 

...... -.. -___ . __ J~. 
111 #2 

These eR's are used for communication between the deY'ice handler 
programs and the devices. These bits are controlled and interpreted by 
the handlers and devices only. 



cp- pp cor1r1UN I C/\TI m'l 

Th,e fol1ovJinq paqes define the direct communication link betl'Jeen the 
Central Processor and the Peripheral Processor. 

Softvlare has the opt'ion of monitoring the CP requests for attention via 
polling loops, an interrupt structure, or a cOMbination of,the two. The 
options> once selected, are "hard I'fired" and not under rroqram control. 

Interrupts may be selected for each or any of the followinq conditions: 

(1) System Errors (Pad ty or Breakooint) 

(2) MCP Instructions 

'. ~(3) r'iOJ Instr'tJctions 

(4) Error Conditions (Protect Violation, Ille~al Operation, or 
Arithmetic Exception) 

(5) Reason Codes ("Master Contr'o 11 er" busy conditi ons) 

25 
Section C2 



CR BYTE 

OA 1 

OA 3 

12 o 

12 2 

UNIT REGISTER: 

CONTROL BYTE: 

RESPONSE BYTE: 

CONDITION BYTE: 

26 

CP CONTROL AND CONDITION BYTES 

UNIT REGISTER 

[ _==_--~R (_0-_7_) _____ t_~ 
CONTROL BYTE 

[CA_I CT 1 ~}~ I s~lTR AC I~ 

RESPONSE BYTE 

.CONDITION BYTE 

Loaded with contents of CP hard core status via 
44nn CCR commands. 

Set and reset by Master Controller for control of 
CP Automatic Switching. Bits CA, CT, SA, and SP 
are internal to Master Controller while bits SR, 
TR, AC, and AS are monitored by CP hard\'Jare. 

Set by CP hardware to inform the Master Controller 
of a service requirement. Reset by Naster Controner 
after service performed. 

Set by CP hardware to inform the Master Controller of 
the Cpls condition. All bits but RB are reset by th~ 
Master Controller. 



CODE INTERPRETATION 

CA: CP Available Set by Master Controller when no CP step is 
primed. Ind'ic(]tes the need to pool for activity 
on the CP executio~ queue. Reset when a CP step 
is primed. ' 

CT: CP Test Set by Master Controller to indicate CP control 
is being relinquished to Men. When set, the 
Master Controller will not respond to any other 
activity in the CP Response or Condition bytes. 

SA: Step Active Set by r~iJ.ster Controller when a CP step is 
initiated. Reset when a steo terminates and no 
steo is primed for execution~ 

SR: System Reset Set by ~1aster Controller to ;nit'iate a CP reset. 
Must be reset before any other CP action is 
taken. 

TR: Term; nate Request Set by the 1·105 ter Controller to term; nate out­
standing CCR or Automatic Switches in the CP 
Reset by the r~c. 

AC: Allow Ca1l Set by the Master Controller to permit Automatic 
Mer and MCW calls. Reset to inhibit these calls. 
Should be reset anytime a CCR command is used 
that invalidates the next job step status defined 
by pointers 16, 17, and 28. 

'.~ 

AS: A 11 0\11 Switch Set by the r·1as ter Contra 11 er to perm; t automat; c 
MCW and Error context switching. Reset to inhibit 
these switches. 

SE: System Error Set by C~' to indicate a Parity Error or Breakpoint 
Match during normal CP operation. Reset by Master 
Contra 11 er. 

AT: Attention Set by the CP to indicate an abnormal termination 
(as defined by the Condition Byte) of an automatic 
call or switch (as defined by the MC and SC bits), 
Reset by the Master Controller. 

r,~c: Mes~age Complete :;e"L by the SP to indicate the compietiOl~ vf an 
MCP or MCW. Reset by the Master Controller after 
operation on the message. 

27 
Section C2 



28 

SC: Si'.itch Camp'lete Set by the cr to 'j ndi cate the camp 1 eU on of an 
1'1Ci~ or Et'ror sVlitch. Reset by the I'laster 
Controller after priming the next switch. 

RZ(O-2): Reason Codes Set by the CP to inform the Master Controller 
of the following context switch conditions: 

CODE 

000 

001 

010 

all 

100 

101 

110 

lil 

INTERPRETl\TION 

NOOP 

Mcr ; nh i b Hed ~,.' f~C 0 r' SC 
bits bei ng set. 

MeW inhibited by Me or SC bits 
be; ng set. 

Error s\:,'itch ir.hi~ited by !'';C cr SC 
b'its being set. 

MCW inhibited by AC = o. 

Mep inhibited by AC = O. 

Mew, inhibited by AS = O. 

Error switch inhibited by AS = O. 

The Master Controller resets these bits and sets the CP Rnn Bit 
via a CCR command after preparing for the indicated condition. 

CC: Command Complete 

AB: Abnormal 

BP: Bl"eakpoint 

PE: Parity Error 

Set by the CP to indicate the completion of 
the last requested CP CCR Command. Reset 
by tile I;iaster Cuntroller. 

Set by th~~P to indicate the last requested 
CP CCR command termi nated abnol~ma 1; ty. Reset 
by tne Master Controller. 

Set by the CP to inform the r1aster Control"ler 
of a eM Parity Error. Reset by the Master 
Controller. 

Set by the CP to inform the Master Controller 
of a CM Parity Error. Reset by the ~1aster 
Controller. 



IL: III etja 1 Operati on 

AE: ArithlTleti c 
Exception 

PV: Protect Violation 

RB: Run Bit 

Set by the CP to .inform the Mas teY' Contro 11 er 
that an ill ega 1 operat i on code forced Ol' att­
empted to force an Error context switch. Reset 
by the ~aster Controller. 

Set by the CP to indicate that an arithmetic 
exception fotced 01' attempted to force an Etror 
context switch. Reset by the Master Controller. 

, 
Set by the CP to indicate that a O~ ptotect vio­
lation forced or atten~ted to force an Error 
context sl'fitch. Reset by the 11aster Controller. 

Continuously gated CR bit reflecting the state 
of the Cpls internal run bit. 

29 
Section C2 



PERIPHERAL PROCESSOR TI1~ING !\N,L\!.VSIS 

section (3 



TABLE OF CONTENTS 

TITLE PAGE 

EXECUTION TH1ES 

i 



EXECUTION TI~l[S 

There are seV2ra 1 factots \,!hi ch affect ins tructi on executi on times in 
the PPU. The effect of some of these variables is not amenable to quan­
titative analysis. Hm'Jever, if some assumptions are made, tables of exe­
cution times can be formulated. Then the effect of the assumptions can be 
considered qualitatively. " 

Table 1 gives time units for executing all PPU instructions. These 
tables are based on the following assumptions. 

1. Hhere cr'l access is requi red, no memory interference 
occurs. 

2. The VP has two diametrically opposed time slots. 
(Under this assumption each time unit in the Table 
is equal to 680 ns). 

It \'/;11 be noted that the tC'.ble presents tv.;o values for skip or branch 
instructions. The first figur"e is for "fall through") and the second f"igure 
is for taking the skip or branch. 

Assun~tion 1, is not unusual for execution timR tables. Because the~a 
are mu1tip1e users of the eM, it ;s possible that a VP may not be able to " 
acquire memory access immediately. The number of time units lost \vhen this 
occurs and the frequency of occurrence are functions of the totol system use 
of the eM. 

Each VP communicates with eM via the SWB, and present estimates are that 
this requires 300 ns when no interference occurs. Since all VP units vJithin 
a PPU share the same memory bus, a given VP may have to '\vait its turn;" 
Other VP units may be using the bus for program acqu"isition and/ol~ data trans­
fer. 

Deviations from assumption 2. affect the execution times in tltlO ways. 
First, and most obvious) Hhen a different number of time slots are allocated 
to a VP the value of each time unit is altered. For example) if only one 
time slot is "used, then each time unit is equal to 1360 ns. If four equally 
spaced time slots (0, 4, 8) 12) are used, then each time slot is equal to 
340 ns. Note that if the time slots are not symetrically spaced, then the 
time unit values vary. For example, if time slots 0, 2. 8, 10 are assigned 
to a VP, then the time units are alternately 170 ns and 510 ns. These, of 
course, average out to the 340 ns figure used for four equally spaced slots, 
but the overall picture is ch;J.:":gcd due tn the second way in ~;hich slot 
assignments affect execution times. 

PPU Timing Analysis 1 
Secti on C3 



Time slot assigmnent can affect execution time due to tne time unit 
becoming lE::ss than the 300 liS requited for cr access. Hhen triG time unit 
is reduced to 170 ns by tIle assif3n';ient of altern3te time slots, the number 
of time units given by the tables must be increased by onc for every reference 
to cr~. 

In addition to these general considerations there is a specific class 
of instructions fo}' \'Jh'ich instrucUon tim .. :;s interact v/ith memory acc'?ss in 
another" v:ay. Instructions hhich si~ore data ir,to 01 at'e considered com.:' 
pleted v/hen the data is delivered to the SvH3 eVE:tI though the SHB may not 
have actua'lly a.ccessed cr'l yet. If success'ive instt~uctiol)s require Oi 
access, they will be delayed untn the SvlB has completed the storC1ge 
requested by -tile previous store instru<:tion. Thus, in a memory interfer­
ence environm2nt, it is desirabie to avo'id follovling tll"is class of inst}'uc·· 
tions with any instruction which references Ct'1. 

2 



Table 1. Execution Times 

Time Units Time Un; ts 
Instruction from ROt·1 from CH 4-eacn ' eac 

additional additional 
level of i level of 

T :: 0-7 T = 8-F ind; re~"!._' T :: 0-7 T = 8-F ; ndi reet 

STORES 

ST :4 1 3 2 2 4 2 
lC 1 3 2 2 '4 2 
90 1 3 2 1 4 2 
98 1 3 2 1 4 2 
10 1 3 2 2 4 2 
18 1 3 2 2 4 2 
94 1 3 2 1 4 2 
9C 1 3 2 1 4 2 

STA lE 1 3 2 2 4 2 
16 1 3 2 2 4 2 

STH 9i 1 1 -. 
99 1 1 
95 1 1 
9D 1 1 

STB 93 ' 1 1 
98 1 1 
97 1 1 
9F 1 1 

STL 15 2 4 2 3 5 2 
1D 2 4 2 3 5 2" 
11 2 4 2 3 5 2 
19 2 4 2 3 5 2 

STR 17 2 4 2 3 5 2 
IF 2 4 2 3 5 2 
13 2 4 2 3 5 2 
1B 2 4 2 3 5 2 

STF lA 4 0 2 5 7 2 
3A 4· 6 2 5 7 2 

LOAD 

LD 04 2 
" '. 

4 2 2 4 2 
OC 2 4 2 2 4 2 
80 1 4 2 1 4 2 
88 1 4 2 1 4 2 
38 2 4 2 2 4 2 
08 2 4 2 2 4 2 
84 1 4 2 1 4 2 
8C 1 4 2 1 4 2 

LDA 06 2 4 2 2 4 2 
OE 2 4 2 2 4 2 

LDH 81 1 1 
89 1 1 
85 1 1 
80 1 1 :-

LOB 83, 1 1 
8B 1 1 

PPU Timing Analysis 3 .. 
Section C3 



Table 1. Cont'd. 

Time Un; ts Time Units 
Instruction from ROt!; from C~~ - el1ch-- - --'-eac1-1 -

additionJl adclHional 
level of level of 

T :: 0-7 T :: 8-F i ndi I'cct T ::: 0-7 T :: 8-F indirect 

LOB 87 1 1 • 
8F 1 1 

LDL 05 2 4: 2 2 4 2 
00 2 4 2 2 4 .' 2 
39 2 4 2 2 4- 2 
09 2 4 2 2 4 2 

LOR 07 2 4 2 2 4 2 
OF 2 4 2 2 4 2 
3B 2 4 2 2 4 2 
DB 2 4 2 2 4 2 

LDF OA 5 7 2 5 7 2 
2A 5 7 2 5 7 2 

ADD 

AD 50 2 4 2 2 4 2 
DO 1 4 2 1 4 2 AOH 01 1 1 

ADS 03 1 1 
,!\Ol 51 2 4 2 2 4 2 

R 53 2 4 2 2 4 2 

SUBTRACT 

SU 54 2 4 2 2 4 2 
04 1 4 2 1 4 2 

SUH 05 1 1 
SUB 07 1 1 
SUL 55 2 4 2 2 4 2 
SUR 57 2 4 2 2 4 2 

LOGICAL--OR 

OR ·44 2 4 2 2 4 2 
C4 1 4 2 1 4 ,2 
E4 ' 1 4 2 1 4 2 

ORH C5 1 1 
E5 1 1 

ORB C7 1 1 
E7 . 1 1 

ORL 45 2 4 2 2 4 2 
ORR 8.7 ? 4 'I 2 4 2 .. ... L. 

lOGICAl--ANO 

40 2 4 2 2 4 2 
CO 1 4 2 1 4 2 
EO 1 4 , 

2 1 4 2 ANH C1 1 1 
E1 1 1 

4 .. 



ANB 

J\NL 
ANR 

Instruction 

C3 
E3 
41 
43 

LOGICAL--EXCLUSIVE OR 

EX 

EXH 

EXB 

EXL 
EXR 

4C 
CC 
EC 
CD 
El:! 
CF 
EF 
4D 
4F 

LOGICAL--EQUIVALENCE 

EQ 

EQH 

EQB 

EQl 
EQR 

COMPARE 

CE 

CEH 

CEB 

CEl 
CER 
CN 

CNH 

CNB 

CNL 
CNR 

48 
C8 
E8 
C9 
E9 
CB 
EB 
49 
4B 

30 
D8 
F8 
D9 
F9 
DB 
FB 
31 
33 
34 
DC 
FC 
DU 
FO . 
DF 
FF 
35 
37 

Tab121. ConVd. 

Ti me Un its Ti me Un i 1..$ 
from ROM from eM 

-'--'--,--' Ii ad-d-~-~f-'-~-no-l-r--· T.----ladd~'~~~na 1 

level of level of 
_T_=_O-."L _T_=_8_-F indirect T = 0-7 T = 8-r ~~ndirec~_ 

1 
1 
2 
2 

2 
1 
1 
1 , 
I 

2 
2 

2 
1 
1 
1 
1 
1 
1 
2 
2 

2/3 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
2/3 
2/3 
2/3 
.1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
2/3 
2/3 

4 
4 

4 
4 
4 

4 

4 
4 
~ 

4 
·4 

4/5 
4/5 
4/5 

4/5 
4/5 
4/5 
4/5 
4/5 

4/5 
4/5 

2 
2 

2 
2 
2 

2 
2 

2 
2 
2 

2 
2 

2/2 
2/2 
2/2 

2/2 
2/2 
2/2 
2/2 
2/2 

2/2 
.2/2 

1 
1 
2 
2 

2 
1 
1 
1 
1 
1 
1 
') 

2 

2 
1 
1 
1 
1 
1 
1 
2 
2 

2/3 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
2/3 
2/3 
2/3 
2/3 
1/2 
1/2 
1/2 
1/2 
1/2 
2/3 
2/3 

4 
4 
I 

4 
4 
4 

4 
4 

4 
4 
~ 

4 
4 

4/5 
4/5 
4/5 

4/5 
4/5 
4/5 
4/5 
4/5 

4/5 
4/5 

PPU Timing'Analysis 5 
Section C3 

2 
2 

2 
2 
2 

2 
2 

2 
2 
2 

2 
2 

2/2 
2/2 
2/2 

2/2 
2/2 
2/2 
2/2 
2/2 

2/2 
2/2 



Table 1. Cont'd 
Ti nle Ulli ts I Ii me Units 
from ROM from eM 

----.. ---.----.--- .. _. -11~d~~~~ona~r-- ad~~~~lona1 
I ns true ti on 

I level of level of 
T = 0-7 T = 8-F indir2ct T = 0-7 T = 8-F indirect ---.-----4-.....:..-.--=~~ 

PUSH 
P:I; ! 
. v .. ~, 

UH:J\ 
.:;dIZ (4) 
l'OLL 
Ute (3) 

P':;'!EDIATES 
lDI 

LDHI 

LOBI 

;~~d I 
QRBI 
n~HI 
ANSI 
EXHI 
[xBI 
EQtll 
[OBI 
i\DI 
hDHI 
AD31 
sur 
SUHI 
SUBI 
en 
CEHI 
CEBI 
Cfn 
CNHI 
CUBI 

58 
59 
58 

50 
5F 
F5 
5C 
F4 
00 

72 
62 
76 
66 
7E 
6E 
65 
67 
61 
63 
60 
6F 
69 
68 
70 
71 
73 
74 
75 
77 
78 
79 
1B 
7C 
70 
7F 

?ET/RESET CR BIiS 
Sl FA 
SR FE 
~L F2 
~R F6 

6 

3/10 
3/9 
3/9 

1 
3+ 

1/2 
2+ 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1/2 
1/2 
1/2 
1/2 
1/2 
1/2 

1 
1 
1 
1 

5/12 
5/11 
5/11 

3 
5+ 

4+ 
4 

2/2 
2/2 
2/2 

2 
2 

2 
2 

3/10 
3/9 
3/9 

1 
3+ 

1/2 
2+ 
1 
~ 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1· 
1 
1 
1 
1 
1 
1 

1/2 
1/2 
1/2 
1/2 
1/2 
1/2 

1 
1 
1 
1 

5/12 
5/11 
5/11 

3 
5+ 

4+ 
4 

2/2 
2/2 
2/2 

2 
2 

2 
2 



Tab'le 1 . Cant I d 
Time UnHs Time Units 

Instruction from ROM from C~l 

I 
---

i each each 
I addHional additional 
I level of level of 

. TO O-7r OS-F indirect T = 0-7 T = 8-F i ndi rect ---
TEST CR UNDER MASK A~D SKIP 

TOl CA 1/2 

" 

1/2 I _ 

TOR CE 1/2 1/2 
TZL C2 1/2 1/2 
TZR C6 1/2 1/2 
TAOL EA 1/2 1/2 

. TAOR EE 1/2 1/2 
TAZl E2 1/2 1/2 
TAZR E6 1/2 1/2 

SHIFT 
SHL (1) 64 0+ 0+ 
SHA (1) 60 0+ 0+ 
SHC (2) 6G 0+ 0+ 

TEST & SET 
TSZL 02 1/2 1/2 
TS,OL DA 1/2 1/2 
TRZL 92 1/2 1/2 
TROL 9A 1/2 1/2 
TSZR 06 1/2 1/2 
TSOR DE 1/2 1/2 
TRZR 96 1/2 1/2 
TROR 9E 1/2 1/2 

ARITm1ETIC TEST {CONDITIONAL BRANCHES) 
TZ BO 1/3 1/5 0/2 1/3 1/5 0/2 

AO 1/3 1/5 0/2 1/3 1/5 0/2 
TZH Bl 1/3 1/5 0/2 1/3 1/5 0/2 

Al 1/3 1/5 0/2 1/3 1/5 0/2 
TZB B3 1/3 1/5 0/2 1/3 1/5 0/2 

A3 1/3 . 1/5 0/2 1/3 1/5 ' 0/2 
TN .B4 1/3 1/5 0/2 1/3 1/5 

" 
0/2 

A4 1/3 1/5 0/2 1/3 1/5 0/2 
TNH B5 1/3 1/5 0/2 1/3 1/5 0/2 

A5 1/3 1/5 0/2 1/3 1/5 0/2 
TNB B7 1/3 1/5 0/2 1/3 1/5 0/2 

A7 1/3 1/5 0/2 1/3 1/5 0/2 
TP B3 1/3 1/5 0/2 1/3 1/5 0/2 

AS 1/3 1/5 0/2 1/3 1/5 0/2 
TPH B9 1/3 1/5 0/2 1/3 1/5 0/2 

A9 1/3 1/5 0/2 1/3 1/5 0/2 
TPB BB 1/3 1/5 0/2 1/3 1/5 0/2 

AB 1/3 1/5 0/2 1/3 1/5 0/2 

PPU Timing Analysis 7 
Section C3 



Table 1. Cent I d 
Time Urdts 

fmm ROf1 
I lime Units 
I fr0.11 cr~ 

~-~~~~~~!: 1- --"---l'--'----'-'"~]a~~'f~~'::-
level of level of 

T ~ 0-7 T = 8-F indirect T ~ 0-7 T = 8-F indirect 
.-f-..:...........~~-+- --_._- ------- --------_.-

Tr~ 

TtlB 

BC 
AC 
BD 
AD 
BF 
AF 

pm£!;_JiQ.l2.I FY AN fLBRANpl 

lSZ 82 
IBN B6 
OBZ SA 
OBN BE 

nRANCH UNCONDITIbNAL 
SPCS AE 
BRS 46 
BCS - 12 
BeAS 52 
BPe 5A 

Be 

Bell. 

BRSM 

5E 
42 
02 
32 
4A 
4E 
56 

VP SET/RESET FLAG 
VPS 86 
VPR 82 
VPTO 8E 
VPTZ 8A 

1/3 
1/3 
1/3 
1/3 
1/3 
1/3 

1/3 
1/3 
1/3 
1/3 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 

1 
1 

1/2 
1/2 

1/5 
1/5 
1/5 
1/5 
1/5 
"1/5 

1/5 
i/5 
1/5 
1/5 

4 
4 
4 
4 
4-
4 
4 
4 
4 
4 
4 
5 

0/2 
0/2 
0/2 
0/2 
0/2 
0/2 

0/2 
0/2 
0/2 
0/2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1/3 
1/3 
1/3 
1/3 
1/3 
1/3 

1/3 
1/3 
1/3 
1/3 

2 
2 

-2 
2 
2 
2 
2 
2 
2 
2 
2 
3 

1 
1 

1/2 
1/2 

1/5 
1/5 
1/5 
1/5 
1/5 
1/5 

1/5 
1/5 
1/5 
1/5 

4 
4 
4 
4 
4 
4-
4 
4 
4-
4 
4 
5 

I ' , 

(1) A shift of 0 places takes 1 time slot. For nonzero cases, the total 
shift is made lip of a series of incremental shifts of 1,4, or- 8-bit 
positions. For each increment required to make up the total shift, 
count 1 time slot. For example, a shift of 15 requires increments 

8 

of 8,4,1,1,1. Thus 5 time slots are required to shift 15 places. 
Worst case time is 7 time slots for a shift of 31 places. 

(2j Similar to SilL & SHA except shift increment:. are 1, 4, 8, & 16. 
(3) Table entry is -for time required to acquire the instruction to be 

executed. Add the execution time for the acquired instruction. 
(4) Add appropriate time units for each level of indirect addressing 

exhibited by the object instruction. 

0/2 
0/2 
0/2 
0/2 
0/2 
0/2 

0/2 
0/2 
0/2 
0/2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 



PERIPHERAL PROCESSOR 

INSTRUCTION SET 

Section C4 



TITLE 

I NTRODUCTI ON 
HORD FOR~lATS 

TABLE OF CONTENTS 

OPERAND SOURCE - DESIINATION RELATIONSHIPS 
R FIELD ADDRESSING 
T, N FIELD ADDRESSING 
INSTRUCTIONS DESCRIPTION FORt'lI.\T 

INSTRUCTION DESCRIPTIONS 
STORE INSTRUCTIONS 
LOAD INSTRUCTIONS 
ARITHMETIC INSTRUCTIONS 
L3GIC~L INS~RUCTIO;~ 
COMPARE AND SKIP INSTRUCTIONS 
STACK INSTRUCTIONS 
MISCELLANEOUS INSTRUCTIONS 
IMr~EDIATE INSTRUCTIONS 
SET/RESET CR BITS INSTRUCTIONS-
TEST CR UNDER MASK AND SKIP INSTRUCTIONS 
SHIFT INSTRUCTIONS 
TEST AND SET INSTRUCTIONS . 
ARITHf.'IETIC TEST INSTRUCTIONS 
INDEX MODIFY AND BRANCH INSTRUCTIONS 
BRANCH UNCONDITIONAL INSTRUCTIONS 
VP FLAG INSTRUCTIONS 

INDEXES. 
SEQUENTIAL INDEX OF INSTRUCTIONS 
MNEMONIC INDEX OF INSTRUCTIONS 
OP CODE INDEX OF INSTRUCTIONS 

PAGE 

1 

2 
3 
5 
6 
9 

11 
13 
15 
18 
23 
25 
27 
30 
36 
'37 
39 
40 
43 
47 
48 
51 

52 
57 
62 



The Peripheral Processor instructions are described in the follmling 
s; xteen groups; 

* STORE INSTRUCTIONS move data from a VPR or CR to a CR, VPR, or to a 
C!v1 1 oca t ion. " 

* LOAD INSTRUCTIONS move data from a CR, VPR, or from a CM location to 
a VPR 0)" CR. 

* ARITIii'1ETIC INSTRUCTIOtIS add or subtract cr~ or VPR data to or from 
VPR data and place the results in the VPR. 

* LOGICAL INSTRUCTIONS perfonn logical operations between VPR data 
and CM, CR, or VPR data and place the results in the VPR. 

* COMPARE AND SKIP INSTRUCTIONS compare CM, CR, or VPR data with VPR 
data and can perform a program skip, depending on the results. 

* STACK INSTRUCTIONS store or retrieve operands in a reserved area 
of memory into \"hi ch operands are stored (pushed) and retri eved 
(pulled) on a last-in, first-out basis. 

* MISCELLANEOUS INSTRUCTIONS include six various instructions. 

* IMMEDIATE INSTRUCTIONS perform load, logical, arithmetic, and compare 
operations with the immediate operand. 

* SET/RESET CR BITS INSTRUCTIONS set or reset bits in a CR. 

* TEST CR UNDER MASK AND SKIP INSTRUCTIONS test bits ina CR and 
perform a skip if the test is satisfied. 

* SHIFT INSTRUCTIONS shift the contents of a VPR a specified number of 
bits. 

* TEST AND SET INSTRUCTIONS test bits in a CR and perform a program 
skip if the test is satisfied. Independent of the test results, 
the specified bit(s) are set or reset. 

-* ARITH~1ETIC TEST INSTRUCTIONS test a VPR or a CR and perform a condi­
tional branch if the test is satisfied. 

* IND[X r~aDIFY AND BRANCH It~STRUCTION::: modi fy the contents of a VPR, 
test the result and perform a program branch if the test is satisfied. 

* BRANCH UNCONDITIONAL INSTRUCTIONS provide unconditional branching. 

* VP FLAG INSTRUCTIONS modify or test a CR bit, and the addressed bit 
is a function of the identity of the VP executing .the instruction. 

Introduction 1 
Section C4 



2 

worm FORfvI.A T 

INSTRUCTION WORD FORl~AT 

The instruction Hord is divided into four fields; 

H£X 023 6 

0_ OP <00' I ;T~ I' N}\T FIEL-D JE 

I..-...L---.J........l.-..l-~ I , I I ; , I I I I I I I .. L.L.L.LL.l 
o 1 2. 3 4 5 6 1 8 9 10 " 12 13 I.e 15 ,6 17 ;tl 19 20 21 22 23 24 2!j 262. 7829 30 31 

£tTS 

OP FIELD 

The OP field, consisting of eight bits and represented by the two 
digit hexadecimal or code, ahvays specifies the operation to be performed. 
Most operati ons fa 11 into famil i es of three vJhere numbers of the family 
specify whole word, half word, or byt~ class of operation. 

R FIELD 

The R field usually specifi~s a location in a VPR or eR file. 

T ,N FIELD 

The LN fields function together to specify an immediate operand~ an 
operand address, or a branch address. 

DATA WORD FORf,1AT 

All arithmetic instructions interpret data in two's complement repre­
sentation for negative numbers, and overflow are not detected. Data for­
mats are as fryl1ows; 

whole word 

t s I Integer 
o 31 

hulf word 

I s 1 Integer Integer 
o 15 16 . 31 



byte 

Indirect Cell Format 

--------------------------, 
ADR • I 

.___ . ____ .___ __.J 

31 

The indirect cell word may specify an operand address or' a b}'anch address. 

OPEPJi.ND SOURCE - DESTINATION RELATIm:SHIP 

The opetands specified by the R field and by the T,N fields may be 
whole vwrd, half \'wrd, or byte operands depending on the operation. t~hen 
half word or byte addressing is used, the combinations of source and des­
tination locations are grouped to.the source-destination relationship of 
both operands in CR or VPR, one operand ill Ct1, and immediate operand. 

BOTH OPERANDS IN CR OR VPR 

When both operand locations are in the VPR or the CR files, the two 
halfwords or bytes may be independently taken from any position within 
the VPR or CR. 

VPR or CR HALFWORD 

. ,---I ---,--1_ VPR or CR HALFWORD 

VPR or CR BYTE 

I I I VPR or CR BYTE 

Operand Source - Oestinatibn 3 
Section C4 



4 

ONE OPERAND IN Cl1 

Hhen one of the operand location is in n1 and the other is in the VPR 
or the CR files, byte addressing does not {;xist. Halfword 'Iocations may 
be independently taken from any position \'vithin the Cf" \'JOrd an:i the VPR 
or CR. 

L ___ I ~ 

n1~1EDIATE OPERAND 

1><1 
l~ 

Ct1 HALFHORD 

VPR or CR HALFWORD 

When the operand source is an immediate operalld, and the destination is 
either a VPR or a CRs the destination may be in allY halfwOl~d or byte position. 
The operand source is always the least significant. byte or halfword. 

L ___ J_ .. ___ I 
/1 
I~ 

I I 
~l 
I I I 

IMMEDIATE OPERAND Ht\LFHORD 

VPR or CR 

IMMEDIATE OPERAND BYTE 

VPR or CR BYTE 



R FIELD ADDRESSING --------
The R field can address a Virtual Processor Register or a Communications 

Register as specified by the operation. 

VPR ADDRESSING 

When the OP code specifies that the R field is addressing a VPR, the VPR 
location is determined as follows: 

ADDRESSING LEVEL 
R FIELD ------.-------r-------i 

HALF HaRD I BYTE WORD 
"9D lJ --j------I 
, -"0) 1'0-3 I a VPRO' HO-1 

~--~-----+-~V~PR H , 

-t 0' 2-3 
f 

vp~ . I I . 0 
2 VPRo-' H4_5 I VPR0. , H 

I 4·-7 
VPRO' 1-16- 7 

v 

3 

4 VPR1, HO-1 VPR1,1-I0_3 
5 VPR" H2- 3 VPRl 
6 VPR1, P,4-5 VPR1, H4-7 I 7 VPR" H6-7 

8 VPR2, HO-l VPR2, HO_3 I 9 
VPR2, H2_3 VPR2 

A VPR2, H4-5 VPR2, 1-14_7 
1 
i 

B VPR2, H6- 7 I 
C VPR3, HO-l VPR3, HO_3 I 

VPR3, H2-3 
I 

D ./ . VPR 
VPR3, H4-5 ' 

3 
E VPR3, H4-7 i F I VPl<3' H6-7 

CR ADDRESSING 

When the operation specifies that the R field is addressing a CR, the 
address is developed by addin; the R field and the least significant byte 
of VPR. The address developed references one of the 64 C~ tile words ~u 
the by~e, half word, or whole word level in a manner similar to VPR address­
ing. The contents of VPR3 remain unchanged. 

R Field Addressing 5 
Section C4 



6 

The T)N field can he developed into an inlmediate operand, a direct or 
indirect operand addr25s, or a direct or indirect branch address as speci­
fied by the oper·c'ition. A fe~v opera.tions requl1'e that the usual T~N deve­
lopment is modified hy itaugmclntinS)lI. Augmentin9 is defined as replacing 
the three LSB·s of the effective addl'csS with the identity of the VP exe­
cuting the instruction. When augmenting occurs in combination with indirect 
addl'essing. on1y the first level indirect addreSS is augmented. The T field 
may spccHy indexed vnd/OI~ "ilvJirect addressing. Any VPR half iv/ora except 
for the left half of VPRO I",lay be designated as the index register by the 
T f"ield. 

The eight types of T)N field development and indirect addressing are 
shown in tabular form~ using the following symbolic notations: 

n16 the 16 bits of the N field 

n24 or n32 a 24 Ol' 32 bit signed number developed, by sign extension, 
from the 16 bit N field. 

b24 the 24 bits of the eM base register located in the CR file. 

t 24 or t 32 - a 24 or 32 bit signed number developed) by sign extension, 
from the VPR hal f \'lOrd des i gna ted by the th tee l.S!3! S of 
the T field. 

the 24 bit prog.ram counter address whi ch refel'enced the 
current instruction. 

the 24 bits of the ADR field in an indirect cell. 

IMMEDIATE OPEP~NDS 

T Operand 

0,8 n 32 

1-7 } n32 + t 32 
9-F 

OPERAND ADDRESSES, a 
eN Operands (word indexinq) 

T a 

o n1G + b24 

1-7 n16 + b24 + t 24 

8 (n16 + b24 ) 
9-F (n16 + b24 + t 24 ) 



o· 
1-7 

8 

9-F 

BRANCH ADDRESSES, B 

PC Relative (word indexing) 

T 
I 
I S 

index-ing) 
I I Note: 

i 
I 

I 

The LSB I s (4 for' VPR 
ooerand, 8 for CR 
o~erand) reference 
the registers in a 
manner identical to 
R field addressing. 

o I n24 + pc24 + 1 'j.. 13 references same 
1-7 1 n24 + pc24 .+ 1 + t 24 ) memory 

8 '(n + D, c + 1) ! 24 24 { fl'rst i ndi rect address 
references Ci~. For termi na 1 

9-F (n24 + pc24 + 1 + t24)t address, see indirect address 
~ ______ ~ _________________ ) ___ d_e_v_el._opment. 

ROM (\'/ord indexina) 
T 8 

n16 
. 
~ 

0 \. 
1-7 n16 + t 24 ) 
8 (n16 ) ) 

{n 16 + t 24 )J 9-F 

8 references RO~ 

f~rst indirect address references 
VFR file. For terminal address, see 
indirect address development. 

T,N Field Addressing 7 
Section C4 



8 

Bose Relative (word inclexi.D.9l. . . . . .. . . ------~- -
T f3 _. 

n16 + 024 ) 0 references CM 
1-7 n16 + b24 + t 24 

8 (n16 + b24 ) first indirect address refer-
ences eM. For term; nil 1 address, 

9-F (n16 + b24 + t 24 ) } see indirect address development 

I\b 1 t I I . d n) so U €: ~\ wora , n eXl 9 -
T S 

0 n16 } references eM 
1-7 n16 + t 24 

8 (n16 ) } 
first level indirect references CM. 
For terminal addresses, see indirect 

9-F (n16 + t 24 ) address development. 

INDIRECT ADDRESSES 

Multi-level indirect addressing and indexing is possible in the PPU 
instt'uction set. As shown on page 2, each indirect cell contains a T field 
which is interpreted in a manner similar to the T field in an instruction 
word. 

The first level indirect address developed from the original T,N fields 
may reference cr~, VPR or CR, depending em the T ,H development by the opera­
tion. Additional levels of indirect addressing always reference eM. Ter­
minal operand addresses always reference CM, but terminal branch addresses 
may reference either Ct~ or Rm~. If the MSB of the final indirect cell is 
"111, then the branch address references eM. I f the MSB is "0 II, then the 
branch address references ROM. 

In some instructions, indirect addressing is undefined, and is noted 
in the instruction descriptions. For these instructions, the indirect tag 
bit is ignored. 

o Jperan d Add ress ( d' d wor ln eXlng ) 

T ex 

0 ADR24 

1-7 ADR24 + t 24 

8 (ADR24) 

9-F (ADR24 + t 24) 



Branch Address (~l"ord i.ndexi ri~Ll 
T B 

o ADR24 } 
1-7 ADR24 + t 24 

rT"M.S-S-of indirect cel'-:: O";-re­
erenccs ROM. If MSB of indirect 
cell = 1, references CM. 

8 (ADR24) 1 ' MSB of indirect cell ignored. 
9-F (ADR24 '+ t 24 ) / .. 

L. __ ,_---'-_ 

INSTRUCTION DESCRIPTION FORMAT 

The PPU instructions are presented in the following format: 

Symbolic Statement 
(Table 1.) 

This paragraph contains a general 
discussion of the instl'uction type. 

Op 
Code 

R 
Field 

T"N 
Field 

Op Code R field T)N field 
number specified specified 

location location 

A d"i::.~uss"ion of Uris op<:;-at"iun 
may be requi red. 

Op 
Code 

R 
Field 

T"N 
Field . 

Op Code R fi e 1 d T ,N fi e 1 d 
number specified specified 

location location 

A discussion of this operation 
may be required. 

Instruction Description Format 9 
Section C4 



10 

Table 1. Glossary of Symbolic Terms used in PPU Instructions 

Term Meaning 

ex operand nddress developed by the; ntet'pretati on of the T 
and N fields. 

(location) 

r 

VPR 

CR 

• -+-

+ 

branch location developed by the interpretation of the T 
and N fields. 

the contents of "location" \"h~re location is an address. 

a register; either VPR or CR 

virtual processor register 

communication register 

"; s t~~ansferred toll 

pl us (arithrreti c addi ti on) 

minus (arithmetic subtraction) 

, OR 1 ogi ca 1 OR functi on 

® 

0 

PC 

= 

~ 

EA 

R 

Ri 

(r). 
1 

I 

1T 

> 

< 

logical AND fu~ction 

logical EXCLUSIVE OR function 

logical EQUIVALENCE function 

program counter containing the address of the current 
instruction '~ 

equal {not "is replaced by" in this document' 

not equal 

effective address developed by the interpretation of the T 
and N fields. 

R field of the instruction 

the ith bit of the R field 

the ith bit of a hex character contained in a register 

,lithe logical summation of" 

"the logical product of" 

equal or greater, than 

1 ess than 



STORE ~10RD (ST) 
(r) -+ a 

The operand specified by the R field 
is stored in the location specified by 
the T,N field. 

STORE WORD ABSOLUTE (STA) 
(r) -+ a 

The operand specified by the R field 
is stored in the location specified by 
the T,tl field. 

STORE HALFWORD (STH) 
(r) -+ a 

The operand specified by the R field 
is stored in the location specified by 
the T,N field. Indirect addressing is 
undefined. 

STORE BYTE (STB) 
(r) -+ ex 

The operand specified by the R field 
is stored in the location specified by 
the T,N field. Indirect addressing is 
undefined. 

STORE LEFT HALHJORD (STL) 
(r) -+ ex 

The operand specified by the R field 
is moved to the 1 eft half of tt'n!· IlilJ,,:ar~ 
location specified by the T,N field. 

STORE RIGHT HALFWORD (STR) 
(r) -+ ex 

The operand specified by the R field 
is stored in the right half of the 
location specified by the T,N field. 

STORE INSTRUCTIONS 

Op R ']'~ N 
Code Fie~d Field 
14 
lC 
90 
98 
10 
18 
94 
9C 

VPR -+ eM 
VPR -+ CM augmented 
VPR -> VPR 
VPR -+ CR 
CR -+ 01 ~ 
CR -+ CM augmented 
CR -+ VPR 
CR -}- CR 

Op R 'T~N 
Code Fie ld Fie ld 
lE 
16 

Op 
Code 
91 
99 
95 
9D 

Op 
Code 

93 
9B 
97 
9F 

Op 
Code 

15 
1D 
11 
19 
Op 
Code 

17 
1F 
13 
1B 

VPR -+ CM absolute~ agmented 
VPR -+ CM absQlute 

R T"N 
Field Field 
VPR -+ VPR 
VPR -+ CR 
CR -+ VPR 
CR -+ CR 

R T"N 
Field Field 

VPR -+ VPR 
VPR -+ CR 
CR -+ VPR 
CR -+ CR 

R T"N 
FieZd Field 

VPR -+ CM 
VPR -+ CH augmented 
eR -+ eM 
eR -+ eM augmented 
R T"N 
FieZd FieZd 

VPR -+ eM 
VPR -+ eM augmented 
eR -+ eM 
eR -+ eM a~gmented 

Store Instructions 11 
Section e4 



;;./69 

12 

STORE VP FILE (STF) 
(ro) -I- a 

(r1) -I- a + 1 

( r2) -> a + 2 
(r3) -I- a + 3 

The contents of a 11 fOU1~ VPRs are 
stored into four consecutive locations in 
CM. T~N field development is modified 
such that the first of the four CM ad­
dresses is forced to be a multiple of 
four. 

Op R T,N 
Code FieZd FieZd 

lA (not used) CM augmented 
If T = a - 7, the 2 LSB's of 

the effecti ve address are forced 
to zero and augmenting occurs in 
the 3 bits adjacent to the LSB's. 
If T = 8 - F, augmenting occurs 
norma lly, however, the 2 LSB" s of 
the effective address indirectly 
acqui red are forced to zero. 

Op R T,N 
Code FieZd FieZd 

2A (not used) CM 
If T = a - 7, the two least 

significant bits of the effective 
address are forced to zero. If 
T = 8 - F, indirect addressing 
occurs normally, however, the two 
least significant bits of the 
effective address indirectly ac­
quired are forced to zero. 



LO,L\O WORD (LO) 
(cd -;. r 

The operand indicated by the T,N 
field is loaded into the register 

.specified by the R field. 

LOAD WORD ABSOLUTE (LOA) 

(a) -T r 

The operand indicated by the T,N 
- field is loaded into the register in­

dicated by the R field. 

LOAD HALFWORD (LOH) 
(a) -+ 

The operand indicated by the T,N 
field is loaded into the register 
specified by the R field. Indirect 
addressing is undefined. 

LOAD ~YTE (LOB) 

(a) -+ r 

The operand indicated by the T,N 
field is loaded into the register 
specified by the R field. Indirect 
addressing is undefined. 

LOAD LEFT HALFWORO (LOL) 

(.J.) -+ r 

The left half of the operand il'­
dicated by the T,N field ;s loaded 
into the register specified by the R 
field. 

LOAD INSTRUCTIONS 

Op R T, N 
Code Pield Field 

04 
OC 
80 
88 
38 
08 
84 
8e 

VPR -<- CM 
VPR +- CM augmented 
VPR -<- VPR 
VPR +- CR 
CR -+- CM 
CR +- eM augme~ted 
CR -<- VPR 
CR -+- CR 

Op R T>N 
Code Fie ld F-ie"Ld 

OE 
06 

Op 
Code 

81 
89 
85 
80 

Op 
Code 

83 
8B 
87 
8F 

Op 
Code 

05 
00 
39 
09 

VPR -+- CM absolute augmented 
VPR -+- CM absolute 

R 
FieZd 

VPR -+-

VPR -+-

CR ~-

CR -+-

R 
Field 

VPR -+-

VPR -+-

CR + 

CR +-

R 
Fietd 

VPR +-

VPR +-

CR +-

CR +-

T>N 
FieZd 

VPR 
CR 
VPR 
CR 

T,N 
Field 

VPR 
CR 
VPR 
CR . 

T,N 
Fietd 

CM 
01 augmented 
01 
CM augmented 

Load Instructions 13 
Section C4 



5/69 

LOAD RIGHT HALFYiORD (LDR) 

(a) ~ .-

The right half of the operand indica­
ted by the T,N field is loaded into the 
half of the register specified by the 
R field. 

LOAD VP FILE (LDF) 

(O'.) ~ rO 

(a + 1) ~ r, 
(a + 2) ~ r 2 
(a + 3) -)- r3 

The four VPR's are loaded from four 
consecutive CM locations. T,N field 
development is modified such that the 
first of the four CM addresses is forced 
to be a multiple of four. 

14 

Or R T~N 
Code Field Field 

07 
OF 
38 
OB 

VPR + CM 
VPR + eM augmented 
CR + Ctfl. 
CR + eM augmented 

Op R T~N 
Code Pield Field 

OA (not eM augmented 
used) 

If T = a - 7, the 2 LSB's of the 
effective address are forced to zero 
and augmenting occurs in the 3 bits 
adjacent to the LSB's. If T = 8 - F, 
augment; n9 occurs normally, however, 
the 2 LSB's of the effective address 
indirectly acquired are forced to 
zero. 

Or R T~N 
Code Field Field 

3A (not eM 
used) 

If T = a - 7, the 2 LSB's of the 
effect; ve address are forced to zel~O. 
If T = 8 - F, indirect addressing 
occurs normally, hm'lever, the two 
least significant bits of the effec­
tive address indirectly acquired 
are forced to zero. 



ADO HORD (AD) 
(r) + (cd "* r 

The operand speci fi ed by the T sN 
field is added to the contents of the 
VPR specified by the R field and the 
result rep! aces the contents of the 
VPR. Overflows are ignored. 

ADO HALFWORD (ADH) 
(r)' + (a)"* r 

The ha If\'lord specifi ed by the T ,N 
field is added to the contents of the 
VPR ha H\,IO rd spec if i ed by the R fi e 1 d 
and the result replaces the contents 
of the VPR hal fword. Overflol.'/s are 
ignored. Indirect addressing is un­
defined. 

ADO BYTE (ADS) 

(r) + (a) "* r 

The byte indicated by the T,N 
field is added to the contents of the 
VPR byte specified by the R field and 
the result replaces the contents of the 
VPR byte. Overflows are ignored. In­
direct addressing is undefined. 

ADO LEFT HALFWORD (ADl) 
(r) + (a) "* r 

The left half of the operand 
specified by the T,N field is added to 
the contents of the VPR halfword 
specified by the R field and the re­
sult replaces the contents of the 
VPR ha 1 f\'lOrd. Overflows are ignored. 

ARITHMETIC INSTRUCTIOns 

Or R T .. 1V 
Code Field Pield 
50 VPR CM 
00 VPR VPR 

Or R T .. N 
Code Field Field 
01 VPR VPR 

,Or R T .. N 
Code Field Field 
03 

Or 
Code 
51 

VPR 

R 
Field 

VPR 

VPR 

T it .. ' 

Field 
CM 

Arithmetic Instructions 15 
Section C4 



I~DD R I GIn HAL HIO RD (AD R)_ 

(r)+ (a)' -+ r 

The right half of the operand 
specified hy the T,N field is added to 
the contents of a VPR ha lfvwrd specif; ed 
by the 'R field and the result replaces 
the contents of the VPR halfvJOrd. Over­
flows are ignored. 

SUBTR1\CT ~mRD (SU) 

(r) - (a) -+ r 

The operand specif; ed by the T.N 
field is subtracted from the contents of 
the VPR speci fi ed by the R fi e 1 d and the 
resul t l~eplaces the contents of the VPR. 
Overflows are ignored. 

SUBTRACT HALFHORD (SUH) 

(r) - (a) -+ r 

The halfword specified by the T,N 
field is subtracted from the contents of 
the VPR ha H\'iord s peci fi ed by the R' fi e 1 d 
and the l'esult replaces the contents of 
the VPR haHvlord. Overflows are ignored. 
Indirect addressing is undefined. 

SUBTRACT BYTE (SUB) 
(r) - (a) -+ r 

The byte specified by the T,N 
field is subtracted from the contents of 
the VPR byte specified by the R field, and 
the result rep laces the contents' of the 
VPR byte. Overflows are ignored. rndi rect 
addressing is undefined. 

SUBTRACT lEFT HAlFWORO (SUL) 
(r) - {a} -+ r 

The left half of the operand 
specified by the T,N field is subtracted 
from . the contents of the VPR halfword 
specified by the R field and the result 
replaces the contents of the VPR halfword. 
Overflo\'ls are ignored. 

16 

Op R T3N 
Code FieLd FieLd 

53 VPR eM 

Op R T3N 
Code Fie Ld F1:e Ld 

54 VPR eM 
04 VPR VPR 

Or R T3 N 
Code Field Field 

05 VPR VPR 

Or R T3 N 
Code Fie ld Fie Ld 

07 VPR VPR 

Or R T3 N 
Code Field FieLd 

55 VPR CM 



SUBTRACT RIGHT HALFHORD (SUR) 
(r) - '(a) -)- r 

The right half of an operand 
specified by the T~N field is sub­
tracted from the contents of a VPR 
half'VlOrd specified by the R field and 
the result replaces the contents of the 
VPR halfword. Overflows are ignored. 

Op R T,N 
Code Field Field 

57 VPR CM 

Arithmetic Instructions 17 
Section C4 



LOGICAL INSTRUCTIONS 
LOGICAL OR HORD (OR) 

Op R T~N 
(r) OR (a) -+ r Code FieZ,d Field 

The operand specified by the T,N field 44 VPR CM 
is logically combined using the OR function C4 VPR VPR 
'-lith the operand specified by the R field E4 VPR CR 
and the result replaces the contents of 
the VPR. 

LOGICAL OR HALFHORD (ORH) 
Op R T~N 

(r) OR (a) . -+ r Code Field Field 
The operand hal f\'lOrd s peci fi ed by the C5 VPR VPR 

T5N field is logically combined using E5 VPR CR 
the OR function wi th the operand hal f\'Iord 
specified by the R fi eld and the result 
replaces the contents of the VPR halfword. 
Indirect addressing is undefined. 

LOGICAL OR BYTE (ORB) 
Op R T~N 

. (r) OR (a) -+ r Code Field FieZd 
The operand byte specified by the T,N C7 VPR VPR 

field is logically combined using the OR E7 VPR CR 
function with the operand byte specified 
by the R field and the result replaces the 
contents of the VPR byte. Indi rect ad-
dressing is undefined. 

LOGICAL OR LEFT HALFWORD (ORl) 
Op R T~N 

(r) OR (a) -+ r Code FieZd FieZd 
The left half of the operand word 45 VPR CM 

specified by the T,N field is logically 
combined using the OR function with the 
halfword specified by the R field and the 
result replaces the contents of the VPR. 

LOGICAL OR RIGHT HALFWORD (ORR) 
Op R T~N 

(r) OR (a) -+ r Code FieZd FieZ,d 
The right half of the operand word 47 VPR CM 

specified by the T,N field is logically 
combined using the OR function with the 
halfword specified by the R field and the 
result replaces the contents of the VPR 
halfword. 

18 



LOGIC~L AND tiORD (AN) 
(r) . (a.) -,. r 

The operand specified by the T,N 
fields is logically combined using 

. the AND function with the operand 
specified by the R field and the re­
sult replaces the contents of the VPR. 

LOG I CAL AND ~AL niORD (hNH) 
(r) . (a.) -+ r 

The operand halfword specified by 
the T,N field is logically combined 
using the AND function with the half­
word in a VPR specified by the R field. 
The result replaces the contents of 
the VPR halfword. Indirect addressing 
is undefi ned. 

LOGICAL AND BYTE (ANB) 
{r} . (a.) -+ r 

The operand byte specified ,by the 
T,N field is logically combined using 
the AND function with the operand 
byte specified by the R field. The 
result replaces the contents of the 

VPR byte. Indirect addressing is un­
defined. 

LOGICAL AND LEFT HALFWORD (ANL) 
{r} . (a) -+ r 

The left half of the operand 
specified by the T,N field is logically 
combined using the AND function with 
the halfworu in a VPR specified by the 
R field and the result replaces the 
contents of the VPR halfword. 

LOGICAL AND RIGHT HALFWORD (ANR) 
{r} . (ex) -+ r 

The right half of the operand word 
specified by the T,N field is logically 
combined using the AND function vJith the 
VPR halfword specified by the R field. 
The result replaces the contents of the 
VPR halfVlord. 

Op 
Code 
40 
CO 
EO 

Op 
Code 
C1 
E1 

Op 
Code 
C3 
E3 

Op 
Code 
41 

Op 
Code 
43 

R 
Field 
VPR 
VPR 
VPR 

R 
Field 
VPR 
VPR 

R 
Field 
VPR 
VPR 

R 
Field 
VPR 

R 
Field 
VPR 

T~N 
Field 
CM 
VPR 
CR 

T~N 
Field 
VPR 
CR 

T~N 
Field 
VPR 
CR 

T~N 
Field 
eM 

T,N 
Field 
eM 

Logical Instructions 19 
Section C4 



LOGICAL EXCLUSIVE"OR WORD (EX) 
(r) @ (a) + r 

The operand specified by the T,N field 
is logically combined using the exclusive 
OR function with the operand specified 
by the R field. The result replaces the 
contents of the VPR. 

LOGICAL EXCLUSIVE OR HALFWORD (EXHt 
(r) c±) (a) + t' 

The opera nd ha 1 fvJO rd spec ifi ed by the 
T,N field is logically combined with the 
VPR halfword specified by the R field 
using the exclusive OR function. The 
result replaces the contents of the VPR 
halfword. Indirect addressing is un­
defined. 

LOGICAL EXCLUSIVE OR BYTE (EXB) 
(r)@(a) +r 

The opel~and byte speci fi ed by the T ,N 
field is logically combined using the 
exclusive OR function with the operand 
byte specified by the R field. The re­
sult replaces the contents of the VPR· 
byte. Indirect addressing is undefined. 

LOGICAL EXCLUSIVE OR LEFT HAlFWORD (EXL) 
(r) (±) Ca) + r 

The left half of the operand word 
specified by the T ,N field is logically 
combined using the exclusive OR function 
with the halfword specified by the R field 
and the result replaces the contents of 
the VPR halfword. 

LOGICAL EXCLUSIVE OR ~IGHT HAlFWORo (EXR) 
(r}(±) (a) +r 

The right half of the operand word 
specified by the T,N field is logically 
combined using the exclusive OR function 
with the halfword specified by the R 
field. The result replaces the contents 
of the VPR halfword. 

20 

Op 
Code 

4C 
CC 
EC 

Op 
Code 

CO 
ED 

Op 
Code 

CF 
EF 

Op 
Code 
40 

Op 
Code 

4F 

R 
Field 

VPR 
VPR 
VPR 

R 
Field 

VPR 
VPR 

R 
Field 
VPR 
VPR 

R 
Field 
VPR 

R 
Field 

VPR 

T"N 
Field 

cr~ 
VPR 
CR 

T"N 
Pield 

VPR 
CR 

T"N 
Field 
VPR 
CR 

T"N 
Field 
eM 

T"N 
FieZd 

CM 



LOGICAL EQUIVALENCE l>JORD (~ 
(r) (0 (a) -+ r 

The operand specified by the T,N 
field is logically combined using the 
equivalence function with the operand 
in the VPR specified by the R field. 
The result repl aces the contents of 
the VPR. 

LOGICAL EQUIVALENCE HALH!.ORD (EQH) 
( r) (, .. ) (a) -+ r 

The operand halfvJOrd indicated by 
the T,N field is logically combined 
using the equivalence function with 
the operand halfword specified by the 
R field. The result replaces the CLn­
tents of the VPR halfword. Indirect 
addressing is undefined. 

LOGICAL EQUIVALENCE BYTE (EQB) 
( r) i...:' (a) -+ r 

A byte specified by the T,N field 
is logically combined using the 
equiva 1 ence functi on vlith the byte 
in a VPR sp~cified by the R field. 
The result replaces the contents of 
the VPR byte. Indirect addressing is 
undefined. 

LOGICAL EQUIVALENCE LEFT HAlFWORD (EQL) 
(r) (:". (a) -+ r 

The left half of the operand word 
specified by the T,N field is logically 
combined using the equivalence function 
with the halfword in a VPR specified 
by the R field. The result replaces 
the contents of the VPR halfword. 

Op 
Code 
48 
C8 
E8 

Op 
Code 
C9 
E9 

Op 
Code 

CI3 
EB 

Op 
Code 

49 

R 
Field 
VPR 
VPR 
VPR 

R 
Field 

VPR 
VPR 

R 
Field 

VPR 
VPR 

T~N 
Field 
CM 
VPR 
CR 

T,N 
Field 

VPR 
CR 

T,N 
Field, 

VPR 
CR 

R T,N 
Fie ld . Fie ld 

VPR CM 

Logical Instructions 21 
Section C4 



LOGICAL EQUIVALENCE RIGHT HALFWORD (EQR) 
-~--~--~ -_._---

{r} 8 (a) . -l- r 

The right halfword of the operand 
specified by the T~N field is logically 
combined using the equivalence function 
\'1ith tbe VPR ha lfvwrd specif-j ed by the 
R field. The result replaces the contents 
of the VPR ha lfword. 

22 

Op 
Code 

48 

R 
Field 

VPR 



cm~PARE HORD, SKIP IF EQUAL (cE). 

(PC) + 2 7 PC if (r) = (a) 

The contents of the register indicated 
by the T,N field is compal'ed with the con­
tents of the VPR indicated by the R field. 
A ski pis made dependi ng on the resul t. 

Cor~PJ\RE HALFVJORD, S~IP IF EQU~~(CEHl 

(PC) + 2 7 PC if (r) =. (a) 

The halfv.J01'd indicated by the T,N field 
is compared vIi th the contents of the VPR 
haHword ind-icated by the R field. A 
skip is made depending on the result. 
Indirect addressing is undefined. 

~OMPARE BYTE, SKIP IF EQUAL (CEB) 
(PC) + 2 ~ PC if (r) = (a) 

The byte indicated by the T,N field 
is compared with the contents~ of the VPR 
byte indicated by the R field. A skip 
is made depending on the result. Indirect 
addressing is undefined. 

COMPARE LEFT HAlFVJORD, SKIP IF EQUAL (CEL) 

(PC) + 2 + PC if (r) ~ (a) 

The left half of the word addressed by 
the T,N field is compared with the half 
word addressed by the R field. A skip is 
made depending on the result. 

COMPARE RIGHT HALFWORD, SKIP IF EQUAL (CER) 
(PC) + 2 4 PC if (r) = (a) 

The right halfword addressed by the 
T,N field is compared with the halfword 
addressed by the R field. A skip is made 
depending on the result. 

COMPARE WORD, SKIP.IF NOT EQUAL (CN) 
(PC) + 2 4 PC if (r) 1 (a) 

The contents of the register indicated 
by the T,N field is compared with the con­
tents of the VPR indicated by the R field. 
A skip is made depending on the result. 

Op 
Code 

30 
08 
F8 

Op 
Code 

09 
F9 

Or 
Code 

DB 
FB 

Op 
Code 

31 

Op 
Code 

33 

Op 
Code 

34 
DC 
FC 

COMPARE AND SKIP INSTRUCTIONS 

R 
Pield 

VPR 
VPR 
VPR 

R 
Pield 

VPR 
VPR 

R 
Field 

VPR 
VPR 

R 
NeZ-a 

VPR 

R 
Field 

VPR 

R 
Field 

VPR 
VPR 
VPR 

T .. N 
FieZ-cl 
Crq 
VPR 
CR 

VPR 
CR 

T .. N 
Pield 

VPR 
CR 

T.,N 
P1:eZ-a 

CM 

T .. N 
Pield 

eM 

T.,N 
Pield 

CM 
VPR 
CR 

Compare and Skip Instructions 23 
Secti on C4 



24 

~Ot'li?ARE HP\f·HiORO; SKI ~ IF J£9.T EQUAL~~'IlH) 

(PC) + 2 + PC if (r) f (a) 

The halfvJOrd indico.ted by the T ,N 
field is compared with the contents 
of the VPR word indicated by the R 
field. A skip is made depending on the 
l'esuH. Indirect addressing is un­
defined. 

COt'1PARE BYTE, SKIP IF NOT ElliLALJCNli 

(PC) + 2 ~ PC if (r) i (a) 

The byte indicated by the T,N field 
is compared with the contents of the 
VPR byte indicated by the R field. A 
skip is made depending on the result. 
Indirect addressing is undefined. 

COHPARE LEFT HALFI\10RO, SKIP IF NOT EQUAL (CNL) 

Op 
Code 
00 
FD 

Op 
Code 

OF 
FF 

Op 
(PC) + 2 + PC if (r) t (a) Code 

The left half of the word addressed 
by the T,N field is compared with the 
halfword .addressed by the R field. A 
skip i~ made depending on the result. 

35 

CGr"iPARE RIGHT HALF\>JORO, SKIP IF NOT EQUAL (CNR) Op 

(PC) + 2 or PC if (r) t (a) Code 

The right halfword addressed by the 
T ~N field is compared with the half­
word addressed by the R field. A skip 
is made depending on the result. 

37 

R 
Field 
VPR 
VPR 

R 
Field 

VPR 
VPR 

R 
Field 

VPR 

R 
Field 

VPR 

T~N 
FieZd 

VPR 
CR 

T;lN 
Field 

VPR 
CR 

T~N 
Field 

cr~ 

T~N 
Field 

CM 



Two consecutive parameter words are 
maintained in 0.1 by the stack instructions 
to provi status of the last-·in, first--
out stack of operands. 

The fi rst parameter vlOrd prov; des a 
word count parameter in the 16 most sig­
nificant bits. The word count indicates 
the number of operands currently in the 
stack. The 16 least significant bits of 
the first parameter word are the space 
count. The space count indicates the re­
mai ni ng s tack capacity. T?S maximum space 
allmvable for a stack is 2 - 1. 

The second parameter word, at the CM 
address one greater than the address of 
the fi rst parameter "'lord, contains the 
stack pointer. The ~ext available, unused 
-siack location is given by the pointer. 
The pointer occupies the 24 least si9ni­
fi cant bi ts of the parameter vwrd, and the 
8 most significant bits are unused. 

PUSH STACK (PUSH) 

The first parameter word i~ ~ead from 
the CM location specified by the T,N 
fields. A test for zero is performed on 
the space cou nt. I f the s pace count is 
zero, the execution terminates, and the 
next sequential instruction is taken. 
If,the space count is non-zero, the space 
count is decremented, the word count is 
incremented, and the resultant par\1:Ti8t€\' 
word replaces the original parameter word 
in eM. 

The second parameter vwrd is then 
read from 01. Tl-jis word, the stack 
pointer, is incremented, and the result 
rep 1 aces the ori gi na 1 va 1 ue in eM. lne 
value of the stack pointer before incre­
menting is the effective address into 
which the operand is stored. When exe­
cution is completed, the next sequential 
instruction is skipped. 

Op 
Code 

58 

R 
Field 

VPR 

STACK INSTRUCTIONS 

T~N 
Field 

CM 

Stack Instructions 25 
Section C4 



PULL STACK (PULL) 

The first parameter \'lord is lnE::ad from 
the eM location specified by the T,N fields. 
A test for z.ero is performed on the \'lord 
count. I f the word count is non-zero, the 
St1~ce count is incremented, the \'JOrd count is dec ren;en ted, and the res u 1 tan t pa rarnete r 
word replaces the original parameter word 
in CIA. 

The second parameter Vlord is then read 
from eM. The stack pointer is decremented, 
and the result replaces the original value 
in cr,\' The ne\'l value of the stack pointer 
is the effective address from which the 
operand is taken. When execution is com­
p1cted, the next sequential instruction is. 
skipped. 

J'100IFY STACK U~OD) 

The amount of the modification is 
denoted by the contents of the VPR half­
\vord des·jgnated by the R field. If the 
halfword modification value is negative 
(2's complement), deletion of the most 
recent stack entt~i es, resul ts. If the 
halfv;ord modification value is positive, 
a gap of unused stack locations is 
created. 

The first parameter word is read 
from the Ct1 location specified by T ,N 
field addressing. The modification 
value is added to the word count and 
subtracted from the space count. If 
either result is negative, the execu­
tion terminates, and the next sequential 
instruction is tak en .. If both results 
are non-nega ti ve, the new wo rd and space 
counts replace the original parameter 
\'/ord in CM. 

The second parameter word is then 
read from CM. The modification value 
is added to the stack pointer and re­
places the original parameter word in CM. 
When execution is completed, the next 
sequential instruction is skipped. 

26 

Or 
Code 

59 

Op 
Code 

58 

R 
Field 

VPR 

R 
Field 

'VPR 

T"N 
FieZd 

eM 

T.;N 
FieZd 

eM 



LOAD EFFECTIVE ADDRESS (LDEA) 

EA -+ r 

The effective address of this in­
struction is d2veloped from the T,N 
fields as if to reference Crv1, and is 
loaded into the VPR specified by the 
R field. 

ANALYZE EFFECTIVE ADDRESS (ANAZ) 

EA of object instruction -+ r 

The effective address of this in­
struction, developed from the T,N fields, 
points to an object instruction in CM. 
The effective address of the object in­
struction is developed according to the 
T,N interpretation n0r~a~ly employed by 
the object instruction, and the resultant 
address is loaded into the VPR specified 
by the R field. If the object instruction 
is an immediate, then the immediate operand 
(32 bits) is loaded into the VPR. 

The result of development of the effec­
tive address of the object instruction is as 
if the object instruction were in the loca-
t i on of th e ANAZ vii th the fa 11 owi ng except ion. 
If the object instruction is any program 
counter relative branch, then the quantity 
"(PC)" employed for development of S is one 
greater than it wou 1 d .be i f t~~ abject i n­
struction were in the location of the ANAZ. 

MISCELLANEOUS INSTRUCTIONS 

Op 
Code 

50 

Op 
Code 

5F 

R 
Field 

VPR 

R 
Field 

VPR 

T~N 
Field 

CM 

'1'~ N 
Field 

eM 

Miscellaneous Instructions 27 
Section C4 



LST POLL BITS (POLL) 

If the tested byte = 0, 
then (PC) + 1 ~ PC 

and 0 ~ r. 

I f the tes ted byte -:j 0, 
then (PC) + 2 ~ PC 

cmd Code -+ r. 

lest the byte specified by the T ,N 
fields for a "1" in any bit position, and 
skip if any "lis" ate present. A code is 
planted in the halfword of the VPR speci­
fied by· the R field. The planted code is 
a binary representation of the bit posi­
tion of the most significant "111 present 
in the tested byte. 

If no 1I1'sll are present in the tested 
byte, the next sequential instruction is 
take.n, and the halfword specified by the 
., fi e 1 dis cleared to zero. Ind; teet ad­
Jressing is undefined. 

EXECUTE CENTRAL ~ln10RY (EXEC) 

The instruction in the CM location 
specified by the T,N fields is executed. 
If the object instruction (the instruc­
tion pointed to) is a branch or skip and 
the condition for branching or skipping 
is satisfied, the branch or skip will be 
taken. Note that the instruction pointed 
to may be located by di rect or indi rect 
addressing and may also be an EXEC to 
continue pointing. When the final object 
instruction is located, the result of its 
execution will be as if it ~Jere in the 
location of the original EXEC with the 
following exception. If the object in­
'struction is any program counter re 1 at; ve 
branch, then the quanti ty II (PC) II emp 1 o.yed 
for development of S is one greater than 
it would be if the object instruction 
were in the location of the original EXEC. 

28 

Op 
Code 

F5 

R 
Field 

VPR 

A code of a results if the most 
significant bit of the tested byte 
is a lilli, and a code of 7 results 
if only the least significant bit 
of the tested byte is a 11111. 

Op 
Code 

5C 

R 
Pield 

(not 
used) 

T,N 
Pield 

.eM 



LOAD VP BASE IN CR FROM VPR (LDMB) 

(0;) -+ r 

The three least significant bytes of 
the VPR operand s~ecified by the T,N 
fields is entered into the three least 
significant bytes of one of the first 
eight CR's. The most significant byte 
of the recipient CR remains unchanged. 
The particular one of eight CR's addressed 
by tlli sins iructi on is determi ned by the 
identity of the VP executing the instruc­
tion. VPo loads CROO' VPl loads CR01' etc. 
The R field of the lnstruction is ignored. 
This instl~uction is exempt from the CR 
protection mechanism. 

t:n OPERATION (NOPt 

Op 
Code 

F4 

Op 
Code 

00 

R 
Ft:eld 

(not 
used) 

R 
Fiel,d 

(not 
used) 

T,N 
Field 

VPR 

TjN 
FieZd 

(not 
used) 

Miscellaneous Instructions 29 
Section C4 



LOAD WORD rr,lf>1EDIATE (LDI) 

Immediate Operand -+ r 

The immediate operand indicated by 
the T~N fields is loaded into the register 
specified by the R field. 

LOAD HJ1.LFWORD I1"j~EDIATE (LDHI) 

Immediate Operand -+ r 

The immedi ate hal f\lJord operand i n­
dicated by the T,N fields is loaded into 
the hal fword of the regi s tel" speci fi ed 
by the R field. 

LOAD BYTE IMMEDIATE (LOBI) 

Immediate Operand -+ r 

The immediate byte operand indicated 
by the TsN fields is loaded into the byte 
of the register indicated by the R field. 

LOGICAL OR HALFWORD IMMEDIATE (OR~l~ 

Immediate Operand OR (r) -+ r 

The immediate halfword specified by 
T,M field development is combined with 
the VPR halfword specified by the R field 
using the OR function. The result re­
places the contents of the VPR 

LOGICAL OR BYTE IMMEDIATE (ORBI) 

Immediate Operand OR "(r) -+ r 

The immediate byte specified by T,N 
field development is combined with the 
VPR byte specified by the R field using 
the OR function. The result replaces 
the contents of the VPR. " 

30 

Op 
code 
72 

62 

Op 
Code 

76 

66 

Op 
Code 

7E 

6E 

Op 
Code 

65 

Op 
Code 
67 

mt1EDIATE INSTRUCTIONS 

R 
Field 

VPR 

CR 

R 
Field 

VPR 

CR 

R 
Field 

VPR 

CR 

R 
Field 

VPR 

R 
Field 

VPR 

T~N 
Field 

Immediate 
Operand 

Immediate 
Op~rand 

T~N 
Field 

Immediate 
Operand 

Immediate 
Operand 

T~il 
Field 

Immediate 
Operand 

Immediate 
Operand 

T~N 
FieZd 

Immediate 
Operand 

T~N 
FieZd 

Immediate 
Operand 



LOG 1 CAL ANn Hf\lF~!ORD H~r~~DIfHE (f\NHI) 

IIrlffiedfate Operand . (r) -+ l' 

The immediate halfword specified 
by T,N field development is combined 
with the VPR hal fVJord speci fi ed by 
the R field using the AND function. 
The result replaces the contents of 
the VPR. 

LOGIUI.L AND BYTE IMlv1EDI ATE (ANSI) 

Imrr,ediate Operand· (r) -+ r 

The immediate byte specified by 
T,N field development is combined with 
the VPR byte specified by the R f~e~d 
using the AND function. The result 
replaces the contents of the VPR. 

LOGICAL EXCLUSIVE OR HALFWORO IMMEDIATE 
"[ExFur--

Immediate Operand+: (r) -+ r 

The immediate halfword specified 
by T,N field developme nt is combined 
wi th the VPR byte spec; fi ed by the R 
field using the exclusive OR function. 
The result replaces the contents of 
the VPR. 

LOGICAL EXCLUSIVE OR BYTE IMMEDIAT~ 
(EXBI) 

Immediate Operand'i:' (r) -+ r 

The immediate byte specified by 
T,N field development is combined 
with the VPR byte specified by the 
R field using the exclusive OR func­
tion. The result replaces the contents 
of the VPR. 

Op 
Code 

61 

Op 
Code 

63 

Op 
Code 

60 

Op 
Code 

6F 

R 
Pield 

VPR 

R 
Pield 

VPR 

R 
Pield 

VPR 

R 
Field 

VPR 

fl'~N 

Pield 

Immediate 
Operand 

T~N 
Pield 

Immedi ate 
Operand 

T3 N 
Pield 

Immedi ate 
Operand 

T,N 
Pield 

Immediate 
Operand 

Tmmediate Instructions 31 
Section C4 



LOGICAL EQUIVALENCE HALFHORD 11'11._ 

(EQHI) . 

Inlnediate OperandG (d -+ r "'I: 

Code 
The immediate hulfword specified by 69 

T,M field development is combined with the 
VPR halfword specified by the R field using 
the equivalence function. The result re-
places the contents of the VPR. 

LOGICAL EQUIVALENCE BYTE IMMEDIATE (EQBI) 

Inmedi ate Operand G (r) -+- r 

The immediate byte specified by 
T,M field develooment is combined with 
the VPR byte specified by the R field 
using the equivalence function. The" 
result replaces the contents of the VPR. 

ADD WORD IMMEDIATE (ADI) 

(r) + immediate operand -+- r 

The immediate operand word speci­
fied by T,M field development is added 

. to the VPR word specified by the R field. 
The result replaces the contents of the 
VPR. Overflows are ignored. 

ADD HALFWORD IMMEDIATE (ADHI) 

(r) + immediate operand -+- r 

The imm ediate operand halfword 
specified by T,M field development 
is added to the VPR halfword speci­
fied by the R field. The result re­
places the contents of the VPR. 
Overflows are ignored. 

Op 
Code 

6B 

Op 
Code 

70 

Op 
Code 

71 

VPR 

R 
Field 

VPR 

R 
Field 

VPR 

R 
Field 

VPR 

T~N 
Field 

Immedi ate 
Operand 

T~N 
FieZd 

Immediate 
Operand 

T,N 
Field 

Immedi ate 
. Operand 



(r) + inlmedi ate operand -+ r 

The imnediate operand byte specified 
by T ,N fi e 1 d deve 1 opff~en tis added to the 
VPR byte specified by the R field. The 
result replaces the contents of the VPR. 
Overflows are ignored. 

SUBTRP\CT HORD __ Hir~ED1.8TE (SUI) 

(r) - immediate operand -+ r 

The immediate operand word speci­
fied by T,N field developrnentis sub­
tracted from the VPR word specified 
by the R field. The result replaces 
the cont2nts ~f the VPR. Overflows 
are ignored. 

SUBTRACT HALFWORD IMMEDIATE (SUHI~ 

(r) - immediate operand -+ r 

The immediate operand halfword 
specified by T,N field development 
is subtracted from the VPR halfword 
specified by the R field. The result 
replaces the contents of the VPR. 
Overflows are ignored. 

SUBTRACT BYTE H1MEDIATE (SUB I) 

{r} - immediate operand -+ r 

The immediate operand byte speci­
fied by T,N field development is sub­
tracted from the VPR byte specified 
by the R field. The result replaces 
the contents of the VPR. Overflows 
are ignored. 

Op 
Code 

73 

Op 
Code 

74 

Op 
Code 

75 

Op 
Code 

77 

R 
Fietd 

VPR 

R 
Field 

VPR 

R 
Field 

VPR 

R 
Field 

VPR 

Immediate 
Operand 

Immediate 
Operand 

T.,N 
Field 

Immediate 
Operand 

Immediate 
Operand 

Immediate Instructions 33 
Section C4 



CONPARE vlORD n~f~EDIATE, SKIP)F EQUAL (CEl) 

(PC) + 2 -7 PC if immediate operand = (r) 

The immediate operand word speci­
fied by the T,N field development is com­
pared ·with the opel~and word addressed by 
the R field. A skip is made depending 
on the result. 

COMPARE HALFWORD I~~EDIATE, SKIP IF EQUAL 
TCEHI) 

(pc) + 2 -7 PC if immediate operand - (r) 

The immediate operand halfword 
specified by the T,N field development is 
compared with the operand halfword ad­
dressed by the R field. A skip is made 
d~pending J~ t~e result. 

COMPARE BYTE IM~lEDIATE, SKIP IF EQUAL (CEBI) 

(PC) + 2 ->- PC if immediate operand == {r} 

The immediate operand byte speci­
fi ed by the T ,N fi e'l d development is com­
pared with the operand byte addressed 
by the R field. A skip is made depending 
on the resul t. 

COMPARE WORD IMMEDIATE, SKIP IF NOT 
EQUAL (CNI) 

(PC) + 2 -7 PC if immediate operand 1 (r) 

The immedi ate operand \-Jord 
specified by the T,N field development 
is compared with the operand word 
addressed by the R field. A skip is 
made depending on the result. 

34 

Op 
Code 

78 

Op 
Code 

79 

Op 
Code 

7B 

Op 
Code 

7C 

R 
Field 

VPR 

R 
Field 

VPR 

R 
Field 

VPR 

F 
Field 

VPR 

T,N 
Field 

Immediate 
Operand 

T,N 
Field 

Immediate 
Operand 

T,N 
Field 

Immediate 
Operand 

T,N 
Field 

Immedi ate 
Operand 



COMPARE HALFWORD IMM[DIATE~ 
SRrpTFNorEctl[Al-n;nilIl---

(PC) + 2 ~ PC if immediate operand t (r) 

The immedi ate opel'and hu lfvwrd 
specified by the T,N field develop­
ment is compared with the operand half­
vlOrd addressed by the R fie"ld. A skip 
is made depending on the result. 

COMPARE BYTE IMMEDIATE,SKIP IF NOT 
EQuAI--(CrTBll---" 

(PC) + 2 + PC if immediate operand t (r) 

The immediate operand byte speci­
fied by the T,N field development is 
compared \lJith the operand byte addressed 
by the R field. A skip is made depend­
ing on the result. 

Op 
Code 

70 

Op 
Code 

7F 

H 
FieZd 

VPR 

R 
FieZd 

VPR 

Immediate 
Operand 

T"N 
Field 

Immediate 
Operand 

Immediate Instructions 35 
Section C4 



SET LEFT HALF (SL) 

R OR (r) -+ r 

Ul ISU are set in those bit positions 
marked by "1's" in the R field, in the 
left half of the CR byte operand speci­
fied by the address in the T,N fields. 
Indirect addressing is undefined. 

SET RIGHT HALF (SR) 

R OR (r) -+ r 

"l's" are set in those bit positions 
marked by "l's" in the R field, in the 
right half of the CR byte operand speci­
fied by the address in the T,N fields. 
Indirect addressing is undefined. 

RESET LEFT HALF (RL) 

R • (r) -+ r 

"D's" are set in those bit positions 
marked by "115" in the R field, in the 
left half of the CR byte operand speci­
fied by the address ·in the T,N fields. 
Indirect addressing is undefined. 

RESET RIGHT HALF (RR) 

R • (r) -+ r 

"D's" are set in those bit positions 
marked by Ill's" in the R field, in the 
right half of the CR byte operand speci­
fied by the address in the T,N fields. 
Indirect addressing is undefined. 

36 

SET/RESET CR BITS INST~UCTIONS 

Op 
Code 

FA 

Op 
code 

FE 

Op 
Code 

F2 

Op 
Code 

F6 

R 
Fiel,d 

~1ask 

R 
Field 

Mask 

R 
Field 

Mask 

R 
Field 

Mask 

T,N 
Field 

CR 

T,N 
Field 

CR 

T,N 
Field 

CR 

T,N 
Field 

CR 



TEST CR UNDER MASK AND SKIP INSTRUCTIONS 

TEST FOR ANY 1 (TOl L 
r' 

(PC) + 2 + i f ,~ . ~i . (r) i = 1 

The left half of the byte operand 
specified by the T,N fields is tested 
for a 11111 in any bit position(s) marked 
by "l l s" in the R field. The next se­
quential instruction is skipped if the 
test is satisfied. Indirect addressing 
is undefined. 

T~ST FOR ANY 1 (TOR) 
, -I 

(PC) + 2 + PC if I R. • (r). : = 1 
1 1 , 

The ri ght hal f of the byte operand 
specified by the T,N fields is tested 

'for a 11111 in any bit position(s) marked 
by "115" in the R field. The next se­
quential instruction is skipped if the 
test is satisfied. Indirect addressing 
is undef; ned. 

TEST FOR ANY 0 (TZL) 
.. 

(PC) + 2 + PC if IT 'R .• (r). OR R. = 0 
. 1 1 1 

The left half of the byte operand 
specified by the T,N fields is tested 
for a 110" in any bit position(s) marked 
by 1I11S" in the R field. The next se­
quential instruction is skipped if the 
test is satisfied. Indirect addressing 
is undefined. 

TEST FOR ANY 0 (TZR) 

(PC) + 2 + PL if IT Ri • (r)i OR Ri = 6" 
-, 

. The ri ght half of the byte operand 
specified by the T,N fields is tested 
for a "0" in any bit position(s) marked 
by "115 11 in the R field. The next se­
quential instruction is skipped if the 
test is satisfied. Indirect addressing 
is undefined. 

Op 
Code 

CA 

Op 
Code 

CE 

Op 
Code 

C2 

Op 
Code 

C6 

R 
Field 

Mask 

R 
Field 

~1ask 

R 
FieZd 

Mask 

R 
FieZd 

Mask 

T,N 
Field 

CR 

T,N 
Pield 

CR 

T,N 
Field 

CR 

T"N 
FieZd 

CR 

Test CR Under Mask and Skip Instructions 37 
Section C4 



lEST FOR ALL 1 (TAOL) 
r-- . , 

(PC) + 2 -~ PC if II; R, .• (r) OR R. i == 1 
L 1 

The 1 eft half of the byte operand 
specified by the T,N fields is tested 
for all "lis" in bit positions marked 
by "l l sl1 in the R f·ield. The nc:xt se-' 
quential instruction is skipped if the 
test is satisfied. Indirect addressing 
is undefined. 

TEST FOR ALL 1 (TAOR) 

(PC) + 2 -* PC if II iR; - (r) OR ·R.: == 1 
L.. 1..J 

The right half of the byte operand 
specified by the T,N fields is tested 
for all 1I1'sll in bit positions marked 
by "llslI in the R field. The next se­
quential instruction is skipped if the 
test is satisfied. Indirect addressing 
ts undefined. 

TEST FOR ALL 0 (TAZl) 
r­

(PC) + 2 -* PC if L l R; -. 
. , 

° (r)i!==O 

The left half of the byte operand 
specified by the T,N fields is tested 
for all 1I01S" in bit positions marked 
by "l'sll in the R field. The next se­
quential instruction is skipped if the 
test is satisfied. Indirect addressing 
is undefined. 

TEST FOR ALL 0 (TAZR) 
r f 

(PC) + 2 -* PC if L LRi . (r)i ; == 0 

The right nalf of the byte operand 
specified by the TsN fields is tested 
for all IIO'S" in bit positions marked 
by "l'sl1 in the R field. The next se­
quential instructi on is skipped if the 
test is satisfied. Indirect addressing 
is undefined. 

38 

Op 
Code 

EA 

Or 
Code 

EE 

Op 
Code 

E2 

Op 
Code 

E6 

R 
Field 

Mask 

R 
Field 

Mask 

R 
Field 

Mask 

R 
Pield 

Mask 

T"N 
Field 

CR 

CR 

CR 

CR 



~.l!.i.FJ.l.9GICAL (SI-1L) 

The contents of the VP speci fi ed by 
t~;t [.: field are shifted the number of bit 
rD'i.itions specified by the immediate op­
~(Jnd. The six LSBls of the immediate 
!~W:l',md arc trcclted as a signed number with 
rH'(~ative values represented in 2 1 s comple­
n:nt form. Positive values result in left 
shHts and negative values result in right 
shifts. Shift l~ange: +31 to -32. "0 1 5 11 

~rc shifted into the vacated portion of 
the VPR. Indirect addressing is undefined. 

S~lI FT ARITflf.1ETI C (SHA) 

The contents of the VPR specified by 
the R field are shifted the number of bit 
positions specified by the immediate operand. 
The six LSB 1 s of the imllied i ate operand are 
treated as a signed number with negative 
values represented in 21s complement form. 
Positive values result in left shifts and 
negative values result in right shifts. 
Sh; ft range: +31 to -32. Left shifts are 
identical to left logical shifts. For 
right shifts~ the most significant bit 
position remains unchanged and is shifted 
into the vacated portions of the VPR. 
Indirect addressi~g is undefined. 

SHIFT CYCLIC (SHC) 

The contents of the VPR specified 
by the R field are shifted tIle '1H,lmbtl 
of bit positions specified by the immediate 
operand. The six LSB1s of the immediate 
operand are treated as a signed number 
with the negative values represented in 21 s 
complement form. Positive values result in 
left shifts and negative values result in 
right shifts. Shift range: +31 to -32.' 
With both right and left shifts, bits are 
shifted into one end of the VPR as they 
exit from the other end. Indirect address­
ing is undefined. 

Op 
Code; 

64 

Op 
Code 

60 

-Op 
Code 

6C 

SHIFT INSTRUCTIONS 

R 
FieZd 

VPR 

R 
Field 

VPR 

R 
Field 

VPR -I~ 

'1',N 
Fiel.d 

Immediate 
Opel~and 

T,N 
FieZd 

Immediate 
Operand 

T,N 
FieZd 

Immediate 
Operand 

Shift Instructions 39 
Section C4 



TEST FOR ANY 0, SET AND SKIP (TSZL) 

R OR (r) -+ r 

(~C) + 2 -~ PC if 1r [~i . (r) OR R;] = a 

Test the left half of the byte operand 
specified by the T,N fields for a 1I0il in 
any position(s) marked by "1'sll in the R 
field; skip the next sequential instruction 
if the test is satisfied. Independent of 
the test result, set 1I1'sll into those posi­
tions marked by the R field. Indirect 
addressing is undefined. 

TEST FOR ANY 1, SET AND _SKIP (TSOL) 

R OR (r) -+ r 

(PC) + 2 -+ PC if L ~LR1· . (r).l = 1 
lJ . 

Test the left half of the byte 
operand specified by the T,N fields 
for a "l" in any position(s) marked 
by "l'sll in the R field; skip the 
next sequential instruction if the 
test is satisfied. Independent of 
the test result, set IIl'sll into those 
positions marked by the R field. In­
direct addressing is undefined. 

TEST FOR ANY 0, RESET AND SKI P (TRZL) 

R· (r) -+ r 

(PC)-+ 2 -+ PC if 1r fR .• (r). OR R~ = 0 
L 1 1 ~ 

Test the left half of the byte 
operand specified by the T,N fields 
for a "0" in any position(s) marked 
by 1I1'sll in the R field; skip the 
next sequential instruction if the 
test is satisfied. Independent of 
the test result, set "O·S" into those 
positions marked by the R field. In­
direct addressing is undefined. 

40 

TEST AND SET INSTRUCTIONS 

Op 
Code 

02 

Op 
Code 

DA 

Op 
Code 

92 

R 
FieZd 

Mask 

R 
Field· 

Mask 

R 
Field 

Mask 

T~ N·,. 
Pield 

CR 

CR 

T~N 
Field 

CR 



TEST FOR ANY 1, RESET AND ~.KIP (TROl) 

R· (r) -+ r 
r- -, 

(PC,) + 2 -+ PC ; f 1.: L R; • (r) i _! = 1 

Test the left half of the byte 
operand specified by the T,N fields 
for a 111" in any position(s) marked 
by "1 IS" in the R field; skip the 
next sequential instruction if the 
test is satisfied. Independent of 
the test result, set "0'5" into those 
positions marked by the R field. In­
direct addl"essing is undefinl.J. 

TEST FOR ANY 0, SET AND SKIP (TSZR) 

R OR (r) -+ r 

Test the right half of the byte 
operand specified by the T,N fields 
for a 110" in any position(s) marked 
by "1'5" in the R field; skip the 
next sequential instruction if·the 
test is satisfied. Independent of 
the test result, set "l's" into those 
positions marked by the R field. In­
direct addressing is undefined. 

TEST FOR ANY 1, SET AND SKIP (TSOR) 

R OR (r) -r r 
r- "'1 

(PC) + 2 -+ PC if L L~i • (r}i.J = 1 

Test the right half of the byte 
operand specified by the T,N fields 
for a 11111 in any position(s) marked 
by Ill's" in the R field; skip the 
next sequential instruction if the 
test is satisfied. Independent of 
the test resultJ set Ill's" into thosp 
positions marked by the R field. In­
direct addressing is undefined. 

Op 
COM 

9A 

Op 
Code 

06 

Op 
Code 

. DE 

R 
Pield 

~1ask 

R 
Pield 

Mask 

R 
Pield 

Mask 

CR 
If> 

T,N 
Pield 

CR 

T,N 
Piela 

CR 

Test and Set Instructions 41 
Section C4 



, 
TEST FOR ANY 0, RESET AND SK~P (TRZR) 

R . (r) -+ r 

( PC ) + 2 -+ PC ; f 1r r R . • (r). 0 R R l = 0 L 1 1 1...1 

Test the right half of the byte 
operand specified by the T,N fields 
for a 110 11 in any position(s) marked 
by "llsl1 in the R field; skip the 
next sequential instruction if the 
test is satisfied. Independent of 
the test result, set 110'5 11 into those 
positions marked by the R field. In­
direct addressing is undefined. 

TEST FOR ANY 1, RESET AND SKIP (TROR) 

R . (r) -+ r 

( PC) + 2 -+ PC if L [!; . (r ) ; J = 1 

Test the right half of the byte 
operand specified by the T,N fields 
for a "1" in any position(s) marked 
by "l's II in the R fi e 1 d; ski p the 
next sequential instruction if the 
test is satisfied. Independent of 
the test resu"lt t set "0'5" into those 
positions marked by the R field. In­
direct addressing is undefined. 

42 

Op 
Code 

96 

Op 
Code 

9E 

R 
Fie"ld 

Mask 

R 
Fie"ld 

Mask 

T,N 
FieZd 

CR .. 

T"N 
Fie"ld 

CR 



j,(ST \.JHOLE FOR ZERO, BRANCH (TZ) 

S ~ PC if (r) = 0 

Test the contents of the whole 
\'Iord sped fi ed by the R fi e 1 d and 
branch to the memOl~ location speci­
fied by the T,M fields if the test 
condit'ion is satisfied. 

TEST HALF FOR = ZERO, BRANCH (TZH) 

8 ~ PC if (r) = 0 

Test the contents of the half 
word specified by the R field and 
branch to the memory location speci­
fied by the T,N fields if the test 
condition is satisfied. 

T~~T BrIU_Q.R_=_ZE~9, BR~NCH (TZB) 

s ~ PC if (r) = 0 

Test the contents of the byte 
specified by the R field and branch 
to the memory location specified by 
the T,N fields if the test condition 
is satisfied. 

ARITHMETIC TEST INSTRUCTIONS 

Op 
Code 

BO 

AO 

Op 
Code 

B1 

Al 

Op 
Code 

B3 

A3 

R 
Field 

VPR 

CR 

R 
Field 

VPR 

CR 

R 
Field 

VPR 

CR 

T"N 
Fie"ld 

B, PC Rel 

s, PC Rel 

T"N 
Fie"ld 

B, PC Rel 

S, PC Rel 

T,N 
Field 

B, PC Rel 

8, PC Rel 

Arithmetic Test Instructions 43 
Section C4 



TEST HHOlE FOR 1- ZERO, I3RANCI.L,.{Tt~l 

B + PC if (r) t 0 

Test the contents of the whole word 
specified by the R field and branch to 
the memory location specified by the 
T,N fields if the test condition is 
satisfied. 

TEST HALF FOR ~ ZERO, BRANCH (TNH) 

B + PC if (r) ~ 0 

Test the contents of the halfword 
specified by the R f~eid cr.d brar.c~ to 
the memory location specified by the' 
T,N fields if the test condition is 
satisfied. 

TEST BYTE FOR i ZERO, BRANCH (TNB) 

B + PC if (r) t 0 

Test the contents of the byte 
specified by the R field and branch 
to the memory location specified by 
the T,N fields if the test condition 
is satisfied. 

TEST WHOLE FOR ~ ZERO, BRANCH (TP) 

B + PC if (r) ~ 0 

Test the contents of the whole 
word specified by·the R field and branch 
to the memory location specified by the 
TtN fields if the test condition is 
satisfied • 

. ' 44' 

Op 
Code 

B4 

A4 

Op 
Code 

B5 

A5 

Op 
Code 

B7 

A7 

Op 
Code 

B8 

A8 

R 
Field 

VPR 

CR 

R 
Field 

VPR 

CR 

R 
FieZd 

VPR 

CR 

R 
Field 

VPR 

CR 

B, PC Rel 

B, PC Rel 

T,N 
Field 

B, PC Rel 

B, PC Rel 

T,N 
FieZd 

B, PC Rel 

B, PC Rel 

T,N 
FieZd 

13, PC Rel 

I3t PC Rel 



TEST HALF FOR ~ ZERO ,BRANCH (TPH) 

8 + PC if (r) ~ 0 

Test the contents of the half­
word specified by the R field and 
b r<lnch to the memory 1 oca ti on s peci -
fied by the T,N fields if the test 
condition is satisfied. 

TEST BYTE FOR ~ ZERO, BRANCH (TPS) 

8 + PC if (r) : 0 

Test the contents of the byte 
specified by the R field and branch 
to the memory location specified by 
the T,N fields if the test condition 
is satisfied. 

TEST WHOLE FOR < ZERO, BRANCH (TM) ._---_.-
s + PC if (r) < 0 

Test the contents of the whole 
word specified by the R field and 
branch to the memory location speci-
fied by the T,N fielns if thp. test 
condition is satisfied. 

TEST HALF FOR < ZERO, BRANCH (TMH) 

e + PC if (r) < 0 

Test the contents of the halfword 
specified by the R field and branch to 
the memory location specified by the 
T,N fields if the test condition is 
satisfied. 

Op 
Code 

B9 

A9 

Op 
Code 

BB 

AB 

Op 
Code 

BC 

AC 

Op' 
code 

BD 

AD 

H 
Field 

VPR 

CR 

R 
Field 

VPR 

CR 

R 
Field 

VPR 

CR 
n 

R 
Field 

VPR 

CR 

T,N 
Field 

S, PC Rel 

8 .. , PC Rel 

']', N 
Field 

8, PC Rel 

S, PC Rel 

T,N 
Field 

S, PC Rel 

S, PC Rel 

T,N 
Field 

a, PC Rel 

a, PC Rel 

Arithmetic Test Instructions 45 
Section C4 



46 

TEST BYTE FOR < 'Z.ERO ~ B RN~CH (Tt~B) 

8 ~ PC if {r} < 0 

Test the contents of the byte 
specif"ied by the R field and branch 
to the memory location specified by 
the T,N fields if the test condition 
is sat<jsfied. 

Op 
Code 

SF 

AF 

R 
Field 

VPR 

CR 

T.,N 
Field 

B, PC Rel 

S, PC Rel 



INDEX '''CDIFY AND BRANCH INSTRUCTIONS 

INCREMENT VPR BY 1, BRANCH IF RESULT ~ 0 
TfBl) 

(r) + 1 + r, B + PC if (r) + 1 = 0 

The VPR halfv/ord specifi~d by the 
R fi e 1 dis incremented by 1 and the re­
sult replaces the contents of the VPR 
halfword. If the result is zero, a 
branch is taken to the location speci­
fied by the T,N fields. 

INCREMENT VPR BY 1! BRANCH IF RESULT # 0 
(IBN) 

(r) + 1 + r, 8 + PC if (r) + 1 t 0 

The VPR halfword specified by the 
R field is incremented by 1 and the 
result replaces the contents of the 
VPR halfHord. If the result is non 
zero, a branch is taken to the loca­
tion specified by the T,N fields. 

DECREMENT VPR BY 1, BRANCH IF RESULT ~ 0 
(OBZ) 

(r) - 1 + r, a + PC if (r) - 1 = 0 

The VPR halfword specified by the 
R field is decremented by 1 and the 
result replaces the contents of the 
VPR ha1fvJOrd. If the result is zero, 
a branch is taken to the location 
specified by the T,N fields. 

DECREMENT VPR BY 1, BRANCH IF RESULT # 0 
(DBN) 

(r) - 1 + r, B + PC if (r) - 1 1 0 

The VP? halfword specified by the 
R field is decremented by 1 and the 
result replaces the contents of the 
VPR halfword. If the result is non 
zero, a branch is taken to the location 
specified by the T,N fields. 

Op 
Code 

B2 

Op 
Code 

B6 

Op 
Code 

BA 

Op 
Code 

BE 

R 
FieZd 

VPR 

R 
FieZd 

VPR 

R 
Field 

VPR 

R 
Pield 

VPR 

T.,N 
Fiel.a 

S, PC Rel 

T.,N 
FieZd 

a, PC Rel 

T.,N 
Fiel.d 

a, PC Rel 

T"N 
Pield 

B, PC Rel 

Index Modify and Branch Instructions 47 
Section C4 



48 

BRAJ~CH. PC RELATIVE SAVE PC J.~pcsl 

(PC) + 1 + r, B + PC 

The (PC) + 1 is saved in the VPR 
specified by the R field. The most 
significant bit of the VPR is loaded 
to indi cate from v/hi ch memory the 
instruction stY'lng is currently being 
accessed. A lip indicates 01, and a 
HO" indicates RmYl. 8 replaces the 
contents of the PC. 

BRANCH TO Cr>1, BASE RELATIVE SAVE PC (BCS) 

(PC) + 1 + r, B ~ PC 

The (PC) + 1 is saved in the VPR 
specified by the R field. The most 
significant bit of the VPR is loaded 
to indicate from \,lhi ch memory the 
instruction str'i ng is currently be; ng 
accessed. A "1" indicates cr~, and a 
"Olt indicates ROI'1. 8 replaces the 
contents of the PC. 

BRANCH TO ROM, SAVE PC (BRS) 

(Pc) + 1+ r, B ~ PC 

The (PC) + 1 is saved in the VPR 
specified by the R field. The most 
significant bit of the VPR is loaded 
to indicate from "'/hich memory the 
instruction string is currently being 
accessed. A "1" indicates CM, and a 
"a" indicates ROM. B replaces the 
contents of the PC. 

BRANCH TO CM, ABSOLUTE, SAVE PC (BCAS) 

(Pc) + 1 + r, B + pc 

The (PC) + 1 is saved in the VPR 
specified by tr.a K field. The most 
significant bit of the VPR is loaded 
to indicate from which memory the 
instruction string is currently being 
accessed. A "1" indicates CM t and a 
"Oil indicates RO~1. 13 repl aces the 
contents of the PC. 

BRANCH UNCONDITIONAL INSTRUCTIONS 

Op 
Code 

AE 

Op 
Code 

12 

Op 
Code 

46 

Op 
Code 

52 

R 
Pield 

VPR 

R 
Field 

VPR 

T.,N 
Field 

13, PC Re 1 

T.,N 
Field 

B, Base Rel 

R T.,N 
Field Field 

VPR 13, ROM 

R 
Field 

VPR 

T.,N 
Field 

13, Absolute 



BRANCH, PC RELATIVE (BPC) 

B -+ PC 

e repl aces the contents 
of the PC. 

BRANCH TO ROM (BR) 

13 -+ PC 

13 replaces the contents 
of the PC. ' 

BRANCH TO CH, BASE RELATIVE (Be) 

B -+ PC 

13 repl aces the contents 
of the PC. 

BRANCH TO eM, ABSOLUTE (BCA) 

B -+ PC 

13 replaces the contents 
of the PC. 

Op 
Code 

5A 

5E 

Op 
Code 

R 
Field 

(not used) 

(not used) 

T.,N 
F1:eld 

13, PC Rel 

S, PC Rel 

42 (not used) 13, ROM 

Op 
Code 

02 

32 

Op 
Code 

4A 

4E 

R T.,N 
FieZd Field 

(not used) 13, Base Rel 

(not used) 13, Base Rel 

R T.,N 
Field Field 

(not used) 13, Absolute 

(not used) 13, Absolute 

Branch Unconditional 49 
Section C4 



50 

BRANCH TO BOM~ STORE PC (BRsr~) 

(PC) + 1 fixed eM location 

B -+ PC 

The (PC) + 1 is stored into one 
of eight eM locations depending bn 
the identity of the VP executing the 
instruction. The most significant 
bit of the 01 location is modified 
to ind-icate fi'om \'/hich memory the 
instl'uction string is currenily 
being accessed. A "111 indicates 
n1, and a flail indicates Rm1. The 
eight eM locations are contiguous 
and begin at 2°16- B replaces the 
contents (If th~ DC. T rd-i r'2C+: 
(id{11~ssid8 is ui!Jefilie,.i. 

Or R T~N 
Code FieZd Field 

56 (not used) B, ROM 



~ET VP FLAGj-,!PS) 

A flag bit is set in the CR byte 
specified by the T,N fields. The 
position of the bit within the byte 
is determined by the number of the 
VP executing the instruction. 
Indirect addressing is undefined. 

RESET VP FLAG (VPR) 

A flag bit is reset in the CR 
byte specified by the T~N fields. 
The position of the bit within 
the byte is determined by the 
number of the VP executing the 
instruction. Indirect address­
ing is undefined. 

TEST CR FOR 1 AND SKIP IF = 1 (VPTO) 

(PC) + 2 ~ PC, if flag = 1 

A flag bit in the CR byte speci­
fied by the T,N f-ields is tested for 
11111. The position of the bit \vithin 
the byte is determined by the number 
of the VP executing the instruction. 
A skip is taken if the test condition 
is satisfied. Indirect addressin"g is 
undefined. 

TEST CR FOR 0 AND SKIP IF = 0 (VPTZ) 

(PC) + 2 ~ PC, if flag = 0 

A flag bit in the CR byte speci­
fied by the T,N fields is tested for 
110", The position of the bit within 
the byte is determined by the number 
of the VP executing the instruction. 
A skip is taken if the test condition 
is satisfied. Indirect addressing is 
undefined. 

Or 
Code 

86 

Or 
Code 

82 

Or 
Code 

8E 

Or 
Code 

SA 

VP FLAG INSTRUCTIONS 

R T~N 
Pield P-ield 

(not used) CR 

R T~N 
Pield PieZd 

(not used) CR 

R T~N 
Pield pieZd . 

(not used) CR 

R T~N 
Field pieZd 

(not used) CR 

VP Flag Instructions 51 
Section C4 



5/69 

52 

MNEM 
ceDE 

ST 
ST 
ST 
ST 
ST 
ST 
ST 
ST 
STA 
STA 
STI1 
5TH 
5TH 
STH 
ST8 
STS 
STB 
STB 
STl 
STt 
STt 
STL 
STR 
STR 
STR 
STR 
STF 
STF 
LO 
to 
to 
to 
to 
·lO 
LD 
to 
LOA 
loA 
lOH 
lOH· 
LOH 
lOH 
LOB 
LOB 
LOB 
LOB 
LOL 
LOL 
LOL 
tOl 
lOR 
LOR 
lDR 

SEQUENTIAL INDEX OF INSTRUCTIONS 

INSTRUCTION -----STORE WD fRCM VPR TO C~ 
STORE A~~ bD FROM VPR TO eM 
STORE WD FRCM VPR TO VPR 
STORE we fRCM VPR TO CR 
STORE we FRC~ CR TO C~ 
STORE ALG hD FRO~ CR TG C~ 
STORE we FRCM CR TO VPR 
STORE WO FRCM CR TO CR 
STORE AUG he fRGM VPR TO CM ABS 
STORE WD FRCM VPR TO CM ASS 
STORE Hk fRCM VPR TC VPR 
STORE Hk fRC~ VPR TG CR 
STORE HW FRCM CR TO VPR 
STORE Hw fROM CR TO CR 
STORE B FRO~ VPR TO VPR 
STORE B FROM VPR TO CR 
STORE B FROM CR TO VPR 
STORE B FROM CR TC CR 
STORE LH FRCM VPR TO CM 
STORE AUG LH CF C~ FROM VPR(L OR R HALF) 
STORE CM tH FROM CR 
STORE AUG eM LH FROM CR 
STORE CM RH FROM VPR 
STORE AUG C~ RH FROM VPR 
STORE C~ RH FROM CR 
STORE AUG eM RH fROM CR 
STORE FILE FRCM VPR INTO AUG CM 
STORE fILE FRCM VPR INTO CM 
LCAD wD TC VPR FROM C~ 
lCAD AUG hD TC VPR FRCM C~ 
LeAD WO TC VPR FROM VPR 
LeAt WD FRCM CR TO VPR 
LeAD ~D FRO~ CM TC CR 
LCAD AUG ~D Te CR FRC' C~ 
LeAD WO FRCM VPR TO CR 
LCAC WD FROM CR TC CR 
leAD AUG ~D Te VPR fROM C~ 
LOAD WO Te VPR FROM C~ ASS 
tCAC HW FRGM VPR TO VPR 
LeAO HW FRCM CR TC VPR 
LeAD HW FROM VPR TO CR 
LeAC HW FROM CR TO CR 
LeAD B FRCM VPR TO VPR 
LeAD B fRCM CR TO VPR 
LeAD B fRCM VPR TO CR 
LCAC B FRC~ CR TO CR 
LCAD til FROM eM Te VPR 
LeAD AUG lH FROM eM TC VPR 
LeAD lH FROM CM TO CR 
LCAD AUG tH fROM CM TC CR 
LOAD RH fROM CM Te VPR 
LCAt AUG RH FROM CM TO VPR 
LeAD RH fROM eM TO CR 

OP PAGE 
CODE NO. 
14 11-
lC 11 
90 11 
98 11 
10 11 
16 11 
94 11 
9,C 11 
lE 11 
16 11 
91 11 
99 11 
95 11 
90 11 
93 11 
98 11 
91 11 
9f 11 
15 11 
10 11 
11 11 
19 11 
11 11 
IF 11 
13 11 
IB 1 t 
1A 12 
2A· 12 
04 13 
ot 13 
80 13 
88 13 
38 13 
08 13 
84 13 
8t 13 
OE 13 
06 13 
81 13 
89 13 
85 13 
80 13 
83 13 
88 13 
81 13 
8F 13 
05 13 
00 13 
39 13 
09 13 
07 14 
OF 14 
38 14 



5/ 

SEQUDlTII\L INDEX ( CONTINUED) ----------.. _-_. __ .. _----
Mr, r M OP PAGE 
ceDE II\STRLCTICi\; cnOE NO .. 

LDK LeAC II u GfIT1-' F R D f·re i'l rc CR -(fS-14--
LDr- LeAD fILE FRCt-1 01 AUG INTC VPR OA 14 
LOF LeAO FILE Fl-<. (: t'. Ct'1 nne VPR 3A 14 
AD fI[O Vi I f\ (fJ l( VPk 50 15 
AD . ACt) r. 11\ \lrR 1 c V P~l DC 15 
/lDti ACO Hi> IN VPR lC \IPR Cl 15 
ADB 1\[0 B u\ vrR ln VPR 03 15 
AOL 11,( 0 u: H..: CfJ 1"0 VPR- 51 15 
/ll)R At [) RH UJ Cf<' 1Q VPR 52 16 
su 51. B r ~j IN C~ FReft. VPR. ~4 16 
~u SL l~ 1 W IN '.leg rrWIJ VPR 04 16 
SUi! Sl a 1 hi-l 11\ VPR FR[rv' v DC' I ,~ 05 16 
suB sun B IN V Pf{ FROfJ VPR 07 16 
SUL SURT LH 11\ Ci"l FRet} VPR 55 16 
SU;{ SlB T HH 11\ Ct-A F RC~ VPR 57 17 
CR. f1R LCCfCAl h ( j\~ Cf'I Te VPR 44 18 
CR OR LOGICAL I'l I"J VPR TC VPR C4 18 
CR OP l[GICAl W IN CR TC VPR E4 18 
C~H OR LCGICr~L Hr. IN \- PR !c .~ 1-',~ C5 18 
CRH OR lOGICt\L hh H; CR TO VPR E5 18 
eRa Of! LOGICAL e IN VPR TO VPR C1 is 
CRB OR lCGIC/H B IN CR TC VPR E7 18 
CRl 01< LCGICAl LH IN Cf'/. Te VPR 45 Ul 
eRR r'f/ LCGICAl RI-1 IN C tv1 TO VPR 41 18 
Ml ANC LCGICAL Vi IN C 1'1 Te VPR 40 19 
fJ.,',j l\"lO LCGICAL It; IN VPR rc VPR co 1<J 
AN rNO lCGICfJL w IN CR TO VPR EO 19 
Mm flNC lCG ICt'l hw IN VPR f r' Li VPR C1 19 
A'>lH AND LCGICAL Hr. IN CR TC VPR E1 19 
ANB J\"lD LOGICAL B IN VPR rc VrR C3 19 
bNB AND lCGICfJl B IN CR TO VPR E3 19 
ANl foND LCGICAL Lb IN CfJ TC VPR 41 19 
ANR "f\JO LCGICAL RH IN Cf" TC VPR 43 1<) 
EX EXCLUSIVE Of< ~ iN ((.;I TO VPR 4C l·e 
EX FXClLSIVE CI< ~ IN VPK TO VP!~ CC 20 
EX EXCLLSIVE CR VI IN CR TC VPR EC 20 
EXH EXCLUSIVE OR !-w 11\ \JPR TO VPR CO 20 
EXH EXCLUSIVE CR !-w 11\ CR- TO VPR EO 20 
EXB EXCLLSIVE CR e IN VPR TC VPR CF 20 
EXB rXCLUSIVE GR B IN CR TC VPR EF 20 
E XL EXCLUSIVE CR LH Cr-' Te VPR 40 2C 
EXR FXCLLSIVE CR RH Ct-J Te VPR 4F 20 .. 
EO LCGICAL E<';UIVALENCE W C~ Te VPR 48 21 
EO LCGICAL ECUIVALENCE h VPR Te VPR C8 21 
EO lCGICAL Ec.:UIVALENCE W CR TO VPR E8 21 
EOH lCGICAL ECLIVJ\LENCE Hh VPR TO VPR C9 21 
EQH tCGIClIL [c;,;IJIVALENCE Hh CR Tn VPR. E9 21 
fOB lCGICAL ECUIVAtENCE B VPR TO VPR C8 21 
EQB lCG ICAl" ECUIVAlENCE 8 CR TO VPR E8 21 
EOl LCGICAL EC;UIVAlENCF. LH CM TO VPR 49 21 
(UR LOGICAL r.:C;UIVALENCE Rh CI'-1 TO VPR 48 22 
CE r"Cf'APARE W cr- TC VPK, ~IE 30 23 
CE CCMPARE Vi VPR rc VPR, SIf 08 23 

Sequential Index [If I n:-; tructicns 53 
Section C4 



SEQUFNTIAL INDEX (CONTINUED) 
--.------,~-

~1\EM OP PAGE 
J;:J2JL~ If\STRLCTICN CODE NO", _ .. _---_._< 

CE CCMPARE ~J CR TO VPR", SIE Fa 23 
CEH CCMPARE H~~ VPH TO VPR" SIE 09 23 
CEH f.CMPARE H" CR Te VPR? SIE F9 23 
CEe COMPARE B VPR TC VPR" SIE C8 23 
CEB CCMPARE B CR 1'0 VPR, S[[ FB 23 
CEL CCMP.lIRE Ltc CtJ Te v PH, ~IE 3 I. 23 
CER CCMPARE RH C~ Te VPR, SIE 33 23 
eN CCMPM<[ w eM 10 VPR, SINE 34 23 
CN C(~Pf~RE \'i VPR Te v PRy SINE .DC 23 
eN C(t,lPAR[ w CR ro VPR., SINE FC 23 
CNH CCMPARE 11111 VPR 10 VPR, S Il\f: 00 24 
C"lH r.CMPAHE Hh CR fO VPR. SINE FD 24 
eNB CCt.,lPARE B VPR Te VPR, SINE Of 24 
CNS CCt>\PARE 8 CR TO VPR t SINE FF 2.4., 
CNL CCMPARE lP CI'I TO VPR t SINE 35 24 
CNR CCfJPARE RI-' CM TO VPR, SINE 31 211 

PUSH PUSh INTO STACK 58 25 
PULL PULL FRCN STACK 59 26 
fJOO M(O STACK 56 26 
lOEA lCAC EFFECTIVE ADDRESS 50 27 
ANAl f'lNAlYlE (tJ 5F 21 
POll peLl CR ~ SET VPR F5 28 
EXEC EXECUTE CfJ 5C 28 
lONS LeAD \lP BASE fRet" VPR TC CR F4 29 
NOP NO CPERATION 00 29 
LOI LCAL I 1".jI.I EC. W INTO VPR 72 30 
lOI lCAD I r~ flEe \\ INTC CR 62 30 
lOHI LCAD I~I,IED HW !KTC VPR 16 30 
lOHI LCAC IM~E( I1W INTC CR 66 30 
lOSI LeAC rt-l~EC B INTO VPR 1E 30 
LDBI leAD I1J:fJEO B INTO CR 6E 30 
CRHI O~ LOGICAL IM,."EC HW TO VPR 65 30 
CRBl Of< LOGICAL H/~EC 8 TO VPR 61 30 
ANHI AND LCGICfll IIVfJEO HVf Te VPR 61 31 
ANBI AND UJGICAl tfJMED B TO VPR 63 31 
EXHI EXCLUSIVE CR H-lfl.EC r. vI TO VPR 60 31 
EXBI EXCLUSiVE OR IfJfJEC e TO VPR 6F 31 
EQHI lCGICAL ECUIVALENCE 1",,,,EO HW TO VPR 69 32 
EQBI lOGICAL EC;;UIVALENCE ItJfo1EO B TO VPR 6B 32 
AOI Ato ItJ~ED w Te VPR 1C 32 
AOHI ACO I~MED Hr. 10 VPR 11 32 
~OBI ACO ItJ.MED £:1 TO VPR 13 33 
SUI SUtH IMMEC W FRCM VPR 74 33 
SUHl SlBl It-'MEC HW FROM VPR 75 33 
SUBl Sl!8T IMMEC B FROM VPR 11 33 
CEI CCfJ.PARE IIIp.4EC W WITh VPR, SIE 78 34 
CEHI COMPARE IfJMEO HW wITH VPR, SIE 79 31t 
CESI CC,.WARt: ItttJEO B wITh \JPR, SIE 78 34 
CNI CCMPARE·IMMEC W WITh VPR, SINE 7C 34 
CNHI CCMPARE I II,.. EO hw WITh VPR, SINE 70 35 
CNst COMPARE ItJtJEO B wITh \lPR, SINE 1F 35 
Sl SFT BITS IN CR, L~ fA 36 
SR SET BITS IN CRt RI- FE 36 

54 



t~r\EM. 

ceDE 
_"" _'w_' _._ 

RL 
HR 
TOl 
TOR 
III 
T z'R 
TAUl 
lAOK 
TAll 
TAlR 
SHl 
SHA 
SHe 
TSIl 
TSOL 
fRlL 
TROl 
TSlR 
TSOR 
TRlR 
iROR 
Ti 
TZ 
TIH 
llH 
TIB 
lIB 
TN 
TN 
TNH 
TNH 
TNB 
TNS 
TP 
TP 
TPH 
TPH 
lPS 
TPS 
TM 
TM 
TMH 
H-tH 
TM13 
TMB 
IBZ 
IBN 
OBl 
CBN 
8PCS 
ecs 
SRS 
etAs 

SEQUENTIAL INDEX (CONTINUED) 

1 t\ S T R L C TI C 1\1 
R 1= SET E T rsn;;--c i{-;"°l" I­
Rr.:SEl BITS IN cr~t Kll 
TES1 UNCER M~SK I~ CR FOR ANY 1 LH E SKIP 
TFST LNCER ~A~K [~ CR FOR ANY 1 RH & SKIP 
lfST LNDER ~ASK I~ CR FC~ ANY 0 ll- ~ SKIP 
TFST LI\OER i"ASK If, CR f-CR ANY 0 RH f.. SKIP 
TfST LNCEH PASK I~ CR feR ALL 1 lh & ~KIP 
TCST L~DER ~ASK l~ CR FeR ALL 1 RH E SKIP 
TEST VWER f'iASK II\. CR feR L\LL 0 L1-' E: SKIP 
TFsr L~CER ~A~K IN CR FeR ALL 0 RH & SKIP 
SHIFT lCGICAL \,J 
SH 1FT i~ R I H-I h 
SHIFT CYCLIC r. 
TFST FeR A~Y C IN CR l~ SET £. SKIP 
T~Sl FeR ANY 1 IN CR Lb ~ET 

TEST FOR ANY C IN CR LH RESET 
TEST FOR A~Y 1 IN CR L~ ~E~ET 
T t= ':- T f C H of!. 1\ Y C ! i\ eRe ~, <:: r T 

TFSI FOR ANy 1 IN CR RH SET 
TEST FOR ANY G IN CR RH R:SET 
TEST feR M,v 1 IN CR R~ RESET· 
TEST ~ ARITh, BRA~Ch IF VPR [C 0 
TEST h ARITH, RRANCb IF CR EQ 0 
TEST ~h ARIT~, B~A~Ch IF vp~ EQ 0 
TEST hW ARITH, E~ANCh IF CR EC 0 
TFSl B AKlfH, BRANCH IF V~R EC 0 
TeST B ARIT~, HR6~C~ IF CR ~O 0 
TEST h ARITH, 8R~NCh If VPR NEQ 0 
T~Sl h ARITH, BRANCh IF CR NEt 0 
TEST ~h ARITH, BRANCH IF VPR ~EQ C 
TEST HW ARlTH, BRANCr IF CR NEQ 0 
TEST H ARITh, 8R~NCH IF VPR NEQ a 
TEST B ARITH, RRA~CH l~ CR NEe 0 
TFST ~ ARIT~, BR~NC~ If vp~ G~ GR EQ 0 
TEST ~ ARITh, BRANCr IF CR GR UR EC 0 
TfST HW ARITHf BRANCH IF W}R GR CR EQ 0 
TEST hW ARITH, 8RA~C~ IF CR GR OR EO 0 
TEST e ARITH, BRA~CI- iF VPR GR CR EQ 0 
TFST B ARIIH, RRA~Ch IF CR GR OR EO 0 
Tf.ST r-. ARITH, GRANCr IF- Vt>R LS 0 
TEST h ARITh, BRA~Ch IF CR lS 0 
TFST Hk ARITH, eRA~CH [F VPR LS 0 
TEST hW ARITH t 8RANCH IF CR lS 0 
rf-ST 8 ARITh, RRANCI- IF VPR LS 0 
TEST B ARIIH, 8RA~Ch IF CR LS 0 
I\CR VPR BY I, BRANCH IF RESULT Ee 0 
INCR v~~ BY 1, eRANCH [F RESULT N~Q 0 
OEeR VPR BY 1, BRANCh IF Rt~UlT EC 0 
OECR VPR BY 1, BRANCH IF RESULT NEe 0 
PRANCH UNCCNCIT Te REL PC, SAVE PC IN VPR 
PQANCH LNCC~C(T TC C~ REL BASE, SAVE PC IN VPR 
PRANCH LNCC~O[r TC RC~, SAVE PC IN VPR 
PP4NCH LNCCNClr Te C~ ABSCL, SAVE PC IN VPR 

OP PAGE 
CODE NO .. 
-F-2-_o~ 

F6 36 
CA 31 
CE 31 
C2 31 
C6 37 
EA 38 
EE 38 
~2 38 
E6 38 
ell 3S 
60 3<; 
6C 3€J 
02 4C 
DA ftC 
92 4C 
9A 41 
!J 6 41. 
CE itl 
96 42 
9E 42 
BO 43 
AO 43 
B 1 It 3 
Al 43 
B3 43 
A3 43 
B4 44 
A4 44 
B5 44 
AS 44 
S7 44 
A1 44 
B8 44 
A8 44 
89 1.5 
A9 45 
BB 45 
AB 45 
Be 45 
AC 45 
80 45 
AD 45 
BF 46 
AF 46 
82 47 
86 47 
BA 41 
BE 47 
AE 48 
12 48 
46 48 
52 48 

S2Quential Index of Instructions 
Section C4 55 



56 

MM:H 
ceDE -----.--epe 

BPe 
BR 
Be 
Be 
BCA 
eCl, 
eRS~i 

\iPS 
\iPR 
VPTO 
VPTZ 

J r~ s JJ~l&J:_LC;: I'J 
fQA~CH UNCC~Clr Te REl PC 
ERANCH UNCC~Dlr IC AUG REL PC 
PRA~CH UNCC~DIT Te RO~ 

PRA~CH UNC(~CIT Te eM ~IT~ REl ~ASF 
I'H-< A fI C H L N C C 1\ D n 1" C R E l C 1-<1 W IT I- BAS E AUG 
PRAI\CH CNCCI\OIT Te ABSOL CM 
FRAi\CH UNCCi\CIT Te AUG ABSOL 0"\ 
PRANCH UNCCI\OIT Te ABSOL ROM, SAVE PC IN CM LOC 
Ie. Al;G 
SFT VP FLAC I~ CR 
RESET VP FLAG JI\ CR 
TFST CR p SKIP IF EQ 1 
TEST CR FeR C AND SKiP If EQ C 

01' PAGE 
CODE NO .. 

-SA-- - 49 
SE 49 
42 49 
02 49 
32 49 
4A 49 
4E 49 
56 5C 

86 51 
82 51 
BE 51 
8A 51 



YtN~MONIC INDJ"X OF INSTRUCTIONS 

Mt-:EM OP PAGE 
S.kOE. INSIRLCTrCN ~ 0 Q. E -1i12.!_ 

---~-----

tiD "C 0 W 11\ OJ Te VPR 50 15 
AD A[O h 11\ VPR TO VPR DO 15 
ADS fI[ [J B IN VPR TO VPR 03 1 ~ 
AOBI ACC I Mr~ E C II Te VPR 73 33 
t\DH l\ [[; Hh IN V Pf·l TG VPR 01 lS 
ADHI ACO It.!/JED \-lh Te VPI< 71 3') t_ 

ADI ACC [f1tJED W TC VPR 70 32 
/l Dl ACC U< IN Cfl TO VPR. Sl 15 
flOR ACO Rf-J 11\ ('" .. TC VPR 53 16 
M4 flNU lCGICAL h ! 1\ Ct-' TC VPR 40 19 
A'Ij "NC LCGICAl It. TN \lPR TC VPR CO 19 
AN "1\0 L(GICAL V, TN CR. Te VPR EO 19 
ANAl /I"'lALYIE Cf-I SF 27 
ANB AND lGGICAl El IN VPR TO VPR C3 19 
ANB IiNC LCGIC/lL B 11\ CR TG VPR E3 19 
ANSI ~Nl) LCGIC/lL If.'tJEC B Ie VPf~ 63 31 
ANH " ;\1 0 lCGICAL hit. IN VPR TC \lPR C1 , 19 
ANH {It,D LCGICAl H .. IN CR lC VPR El ; 19 
ANHI M\C LCGIClll I fJ'" EO Hh TC VPR 61 31 
M..:L fiNO lCGICAl lh IN CIV TC Vpg 41 19 
ANR !l.NO LCGICAL Rr- IN Cf-' Ie VPR 43 19 
ec F ~Af\CfJ UNCC1\[ !T TC REL CM ~~ I H- HASE AUG 32 49 
HC p ~.ll.i\C h UNCC\DIT TC C1', 'hIT!-- REL BASE 02 49 
eCA P~AI\CI-' UNCOd.:rl Ie AUG ABSOL C f'<; 4E 49 
eCA rRAI\'CH UNC[/\O I r Ie AESCL c ~" 4A 49 
eCAS PRAhCH UNCCi\ClT TC ctJ ASSCL, SAVE PC IN VPR 52 48 
BCS PPAi\CH LNC(t-.C IT fe C~ I-<EL BAS E, SAVE PC IN VPR 12 48 
epc PRAl\qi LNCO.D I r Te REl PC SA 49 
erc PRAl\CH UNCCi\Clf Te AUG REL PC SE 49 
BPes f1qAI\Ch UNCCf'.OIf Te REl PC, SAVf PC IN VPR AE 48 
SR PRAi\CH UNCCI\Crr Te RCfJ 42 49 
eqs PRAf\CH UNCCr-.OIT TC RCt', SAVE PC If\; VPR <:if- 46 48 
8RSM PRAf\CH LNCCI'IDIT Ie AHSCL RCr.~ , SAVE PC IN CM LOC 56 50 

le, AUG 
CE "CMP.llRE w C to· TO VPR, SIE 30 23 
CE ((,..PARE W vp~ Te VPR. SIE 08 23 
CE CCMPARE r. CR Tr VPR, SIE F8 23 
CEB rCtJPARE B VPR TG VPR, SIE DB 23 
CEe C(tJPARE B C~ Te VPR, SIE FB 23 
CEBI rr:MPAI-<F. 0 ' ,.. EO 6 wITh VPR, SIE 18 34 
CEH CC"'PARE Hn VPR TC VPR, SIE 09 23 
CEH CCfJPARE H~ CR TC VPR, SIE F9 23 
CEHI rCMPARE r,..,.,EC Hh \-IITIi vPR, SI£: 79 34 
eft CCMPARE 11It-'EC y., WITh VPR, SIE 78 34 
CEl rCfo'PARE lh CtJ Te VPR, SIE 31 23 
CER "(!"FARE Rt< ctJ TC VPR, ct'r-

..>.c 33 23 
C~ CCMPARF w eM f{~ VPR, S[NE 34 23 
CN CCf-'PtlRE W VPR TC VPR, SINE DC 23 
CN SCMPARE W CR TO VPR. S[NE FC 23 
CNS rCMPAR( B VPR TC VPR, SINF OF 24 
CNS CCMpARE B CR TO VPR, :SINE FF 24 
C"iSI "OtJfARE If.'tJEC f wIT!-- VPR, SI1\lE 7F 35 
CNH r:CMPARE H ... VPR rc '(PH t SI~E DD 24 

Ilnemonic Index of Instruct; :):1S 

Sectil·~ C4 57 



58 

5/69 

f<'t,E M 

_LC;JL~ 
CNH 
cr~H I 
C.tH 
CNl 
(NR 
t:BN 
C!3l 
EQ 
((J 

EQ 
[QB 
fOB 
EOBI 
EQH 
EQH 
EQHI 
EOl 
fOR 
EX 
EX 
EX 
EXB 
EXa 
EXBI 
EXEC 

, EXH 
EXH 
EXHI 
EXL 
fXR 
JBN 
IBI 
to 
LO 
tD 
LO 
lO 
to 
LO 
to 
lOA 
lOA 
lOB 
lOB 
lOB 
lOB 
LOBI 
L081 
tOEA 
tOf 
lDF 
tOH 
tOH 

MNEMONIC INDEX (CONTINUED) 

INSTRLCTICN 
CCP'IPARE' Hlh· CR TO VPR, SINE 
rCMPARE [PMEC Hk kiTH VPR, SINE 
CCMPARE I~~EO W WITh VPR, SINE 
COMPARE lH C~ TO VPR, SINE 
rCMPARE RH CM TO VPR, SINE 
OECR VPR BY 1, BRANCH IF RESULT NEQ 0 
OECR VPR BY If URANCH IF RESULT EC 0 
LCGICAl ECUIVAlENCE h eM TO VPR 
lCGICAL ECUIVALENCE W VPR TO VPR 
LCGICAL ECGIVALE~CE W CR TO VPR 
lCGICAl ECUIVALENCE B VPR TO VPR 
lCGICAl ECUIV~LENCE B CR TO VPR 
lCGICAL E,UIVALENCE I~rED B TC VPR 
lCGICAL ECUIVAlENCE H~ VPR TO VPR 
LCGICAl ECUIVALENCE Hw CR TO VPR 
L(GICAl E(UIVAlENCE I~PED HW TO VPR 
LOGICAL EcurVAlENCE lH CM TO VPR 
LOGICAL ECUIVAlENCE RH CM TO VPR 
EXCLUSIVE OR h IN C~ TO VPR 
EXCLUSIVE CR ~ IN VPR TO VPR 
EXCLUSIVE OR ~ IN CR TO VPR 
EXCLUSIVE CR E IN VPR TO VPR 
EXCLUSiVE CR e IN CR Te VPR 
FXCL~SIVE OR IM~ED B'TC VPR 
EXECUTE CM 
EXCLUSIVE CR ~w I~ VPR TO VPR 
EXClLSIVE OR hW I~ CR TC VPR 
EXCLUSIVE OR IMMEC hh TO VPR 
EXCLUSIVE CR lH C~ TO VPR 
EXClLSIVE CR RH C~ TC VPR 
INCR VPR BY 1 f. I3RANCH IF HESUL T "'EQ 0 
INCR VPR BY 1, BRANCH IF RESULT EO a 
LCAD ~D TC VPR FROM C~ 
LOAD AUG wD Te VPR FRC~ C~ 
LCAD hD TC VPR FRCM VPR 
LCAr hD FRC~ CR Te VPR 
LCAD ~D FRC~ CM TC CR 
lOAD AUG hO TC CR FRC~ CM 
LeAD wo FRG~ VPR TO CR 
LCAD WO FRG~ CR TC CR 
LCAD hD TC VPR FRC~ C~ ABS 
LCAD AUG "0 Te VPR FRC~ C~ 
LCAD B FRG~ VPR TO VPR 
LeAD 8 fRC~ CR TO VPR 
LCAD 8 FR(P VPR TC CR 
LOAD 8 FRC~ CR TO CR 
LeAD IMMEC B INTO VPR 
LeAD I~~ED B INTO CR 
LCAD EFFECTIVE ADDRESS 
LeAD fILE FRO~ CM AuG INTC VPR 
LCAD FILE FROM CM INTO VPR 
LCAD HW FRC~ VPR TO VPR 
LCAD HW FRC~ CR TC VPR 

OP PAG~ 
coot;.. ~o,. 

FD 24 
70 35 
"le 34 
35 24 
3"1 24 
BE 47 
SA 47 
4g 21 
C8 21 
E8 21 
CB 21 
EB 21 
6B 32 
C9 21 
E9 21 
69 32 
49 21 
4B 22 
4C 20 
CC 20 
EC 20 
CF 20 
EF 20 
6F 31 
5C 28 
CO 20 
ED 20 
60 31 
4D 20 
4F 20 
86 47 
82 47 
0'. 13 

. ac 13 
80 13 
88 13 
38 13 
08 13 
84 13 
ac 13 
06 13 
OE 13 
83 13 
86 13 
81 13 
SF 13 
lE 30 
6E 30 
50 27 
OA 14 
3A 14 
81 13 
89 "3 



5/69 

MNErv~ONIC INDEX j CONIJl~UEr~) 

'·H\ HI OP PAGE 
_CCDE II\STHLCrICN ~9Df; ___ NO .. --------

llJH lCAC H\·i Fl{CfJ VPR TO CR 85 13 
LOH LCAC 1-'1>. F RCIJ CR Te CR 80 13 
LOHI lC i\C I pr·' E C }-I-I INTC VPR 76 30 
lOHI LCAe ff'lrJEC H .. !I\TC CR 66 30 
LOI lCAG lfAJJEC Yt INTC VPR 72 30 
l 0 I lC AC I fJ. f'J E C Vl INTG CR 62 30 
lOL L(Ae LH FRer- eF TC VPR JJ5 13 
lOL lCAC AuG lH FR(W CM TC VPR 00 13 
lOL lCAG LH FHU! Cf.I: TC CR 39 13 
LOL LCl\C AUG Lh FHC/'I Ci" TC Cf\ 09 13 
LOMB l(/',C VI> BASE F RCt~ VPR Te CR Fit 29 
LOR L(Ae RH FRet' c /v' TC V P f~ C7 14 
LOR lCAe AUG RH FRCfV Cf'iI TO VPI< OF 14 
LOR l(Ae RH FRet" Ct,\ Te CR 3B 14 
LOR lCAe AUG RH FR(W CM Te CR 08 14 
fiOO ""CD STACK 58 26 
f\fJP NC CPER.ATIC~ 00 29 
CR OR L(GICAL \-. IN Ctv TC VPR 44 18 
CR OR LOGICAL h IN vrR TC VPR C4 18 
(R CP LOCICAl Vi IN CR TO VPR Eit 18 
C~B Of< LOGICAL e IN VPR TO VPR C7 18 
CRB OR LCGICAL 8 p, CR Te vp~ E7 18 
ORBI OR LCGICAL IfVt-'FO H Te \lPR 67 30 
Cq,H 01< lCGICAL I-:h If\. VPR Te VPR C5 18 
CRH OR lCGICAl I-'Vi 11\ CR T( VPR 1:5 18 
ORHI OR LOGICAL It'flED I-'W Te: VPR 65 30 
CRl OP LOGICAL LH 11\ CM TC VPR 45 18 
CRR CF< lOGrCAl R I~ IN CM Te VPR 41 18 
POLL peLl CR &. Sf T VPR F5 28 
PUll PUll FRC,., SfACK 59 26 
PUSH DUSt-' INTO STACK 58 25 
Rl RfSET BITS IN CR, lh F2 3-6 
RR Rf:SET BITS If'.l CRt RH F6 36 
SHA SHIfT ARITH W 60 39 
SHC SHIFT CYCLIC v. 6C 39 
SHl SI-'IFT lCGICAL w 64 39 
Sl SET BITS IN CR, lH FA 36 
SR SET BITS IN CR. RI-: FE 36 
ST STORE we FRC"; CR TO C"" 10 '11 
ST STORE we FROI VPR TO (fJ 14 11 
ST STCRE AUG \\1.: FHC~ CR Te CI>I 18 11 
ST STORE AL:G hO fROM VPR TO CM It 11 
Sf STORE hO FRCM VPR TC VPR 90 11 
ST STORE WC fRC~ CR TO VPK 94 11 
ST STeHE wo FRCf>!. V PH Te CR 98 11 
Sf SlORE WD FHC'" CR TO CK 9C 1 I 
STA STORE AUG ~c FROM VPR TO CM A8~ IE 11 
STA STORE WO FRCM VPR Te C iVl Aes 16 11 
STB STORE B FRC'" VPR TO VPR 93 11 
STB STORE B FRCtJ \lPR TO CR <JB 11 
srB STORE B FRGtt CR Tl vPR 97 11 
STB STORE a FRCt-' CR TC CR 9F 11 
STF STO~E FIlf FRO~ VPR It\TC eM 2A II 

Mnem,n1G Index of Instructions 
Section C4 59 



60 

Mf\EM 
ccnE 
-S--rf 

STH 
5TH 
SlH 
STH 
STL 
STL 
STL 
STl 
STR 
STR 
srR 
STR 
su 
SU 
SUB 
SUBI 
suu 
SUHI 
SUI 
SUl 
SUR 
TAOl 
lAOR 
TAll 
lAIR 
Ht 
TM 
1MB 
TMB 
TMH 
lMH 
TN 
TN 
TNS 
TNS 
TNH 
TNH 
TOl 
TOR 
TP 
TP 
TPS 
TPS 
TPH 
TPH 
TROl 
TROR 
TRll 
TRlR 
TSOl 
TSOR 
TSll 

J 1\ S T R U C J~~N 
STORE FILE fRCM VPR I~TC AUG CM 
STORE HW FRCH VPR rc ~PR 

STORE HW FRCM VPR Ie CR 
STORE H~ fRCM CR TO VPR 
STORE Hh FRC~ CR TO CR 
STORE LH FRCM VPR TO C~ 

STCRE ALG lH CF C~ FRC~ VPR(L OR R HALF) 
STORE C~ LH FROM CR 
STORE AUG CV lH FRG~ CR 
STORE C~ RH FROM VPR 
STORE AUG CM RH FRO~ VPR 
STORE CM RH FROM CR 
STORE AUG CM RH FROM CR 
SUBT h IN CM FROM VPR 
SLBT W IN VPR FROM VPR 
SlBT B IN VPR FRO~ VPR 
SlBT r~~EC B FRG~ VPR 
SlBT ~w II\ VPR FRCM VPR 
SLBT IM~Er HW FROM VPR 
SlBT IM~EC h FRC~ VPR 
SCBT lH IN CM FROM VPR 
StBT RH I~ CM FRO~ VPR, 
TEST ~NDER ~ASK I~ CR FCR ALL I Lh & SK[P 
TEST UNDER ~ASK I~ CR FCR ALL 1 RH & SKIP 
TEST UNDER ~ASK IN CR FeR ALL 0 L~ & SKIP 
TEST LNDER PASK Ih CR FOR ALL 0 RH & SKIP 
TEST ft ARITH, BRA~CH IF VPR LS 0 
TEST w ARITh, BRANCh IF CR lS 0 
TEST B ARITh, BRANCh IF VPR lS 0 
TEST B ARITH, BRANCh IF CR LS 0 
TEST HW ARITH, BRANCH IF VPR lS 0 
TfST HW ARITH, BRANCH IF CR LS 0 
TEST ft ARITH, BRA~Ch IF VPR NEO 0 
TEST ft ARITH, BRA~CH IF CR NEC 0 
TEST B ARITH, BRANCH IF VPR NEQ 0 
Tf.ST B ARITH, BRA~CH IF CR NE~ 0 
TEST HW ARITH, BRANCH IF VPR ~EQ 0 
TEST HW ARITH, BRANCH IF CR NEQ 0 
TfST UNCER ~ASK IN CR FOR ANY 1 lH & SKIP 
TEST LNDER ~ASK I~ CR FeR ANY 1 RH & SKIP 
TfST W ARITH. BRANCH IF VPR GR OR EQ 0 
TfST ft ARITH, BRANC~ IF CR GR OR EO 0 
TEST B ARITH, BRA~CH IF VPR GR OR EQ 0 
TEST B ARITH, 8RA~CH IF CR GR OR EQ 0 
T£5T HW ARITH, BRANCH IF VPR GR OR EQ 0 
TEST Ht. ARITh, BRANCH IF CR GR UR EQ 0 
TEST FOR A~Y 1 l~ CR lH RESET 
TEST FOR ANY 1 IN CR RH RESET 
TEST fOR ANY C IN CR lh RESET 
TEST FeR ANY C IN CR RH RESET 
TEST FOR ANY 1 IN CR lH SET 
TEST FOR A~Y 1 IN CR RH seT 
TeST feR ANY C IN CR l~ SET & SKIp 

OP 
CODE 

lA 
91 
99 
95 
90 
15 
lO 
11 
19 
17 
IF 
13 
IS 
5't 
04 
01 
71 
05 
15 
74 
55 
51 
EA 
EE 
E2 
E6 
Be 
At 
BF 
AF 
BO 
AD 
B4 
A4 
B7 
Al 
85 
A5 
CA 
CE 
B8 
A8 
88 
AS 
89 
A9 
9A 
9E 
92 
96 

,OA 
DE 
02 

PAGE 
HO .. 
12 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
16 
16 
16 
31 
16 
33 
33 
16 
17 
38 
38 
38 
38 
45 
45 
46 
46 
45 
45 
44 
44 
44 
44 
44 
44 
37 
37 
44 
44 

, 45 
45 
45 
45 
41 
42 
40 
42 
40 
41 
40 



MNEMONIC INDEX (CONTINUED) 

MI\EM OP PAGE 
ceDE I f\. S T R lJ C T r ~~ saOE NO. 
-TSlR TFST FOR .ANY C IN CR RH SET 06 41 

TI TEST h AR ITh t ARANCb 1 F VPR EC a BO 43 
Tl TEST v.. ARITI-:, UR.llt\CI-: IF CR EO 0 AO 43 
T1B TES1 e AR IT H, BIUI\Cb IF VPR EC a 83 43 
lIB TFS T e ARITH, ERAI\Ch IF CR EO 0 A3 43 
T1H TFST t-'W ARITH, BRANCH IF VPR HJ 0 01 43 
Tll1 TEST r-r. tlRITh, BRANCh IF Cr< EC 0 tvl 43 
TlL Tf S T LNOER I"ASK I 1\ CR f-eR AkY 0 lh [. SKIP (2 37 
TZR TEST L"!OER f"ASI<' 11\ CR FeR t\f\;Y 0 RH [. ~KIP (6 37 
VPR RfSET VP FLllG I[\. C ,{ 82 51 
VPS Sf T VP F l /l() 11\ CR 86 51 
VPTO TFST (':l K, SKIP IF EQ 1 SE :1 
VPTl lFST CR FeR 0, A\C S I~ ! P IF EC !) 8A 51 

Mnemonic Index of Instructions 
Section C4 61 



&/69 

* 

* 

OP 
CODE 

00 
02 
04 . 
05 
06 
07 
08 
09 
01\ 
OB 
ac 
00 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
14 
113 
1C 
10 
IE 
IF 
2A 
30 
31 
32 
33 
34 
35 
31 
38 
39 
3A 
38 
40 
41 
42 
43 
44 
45 
46 
41 
48 
49 
4A 

OP CODE INDEX OF INSTRUCTIONS 

INSTRlICT!UN 
NO OPEHArION----
BRhNCH UNCONDrr TO CM ~IfH REL 8ASE 
LOAD WD TO VPR fRUM CM 
LOAD lH FROM CM TO VPR 
LOAD WO TO VPR FROM CM ASS 
LGAn RH FROM CM TO VPR 
LOAD AUG WO IU CR FRO~ eM 
LOlD AUG LH FROM eM TO CR 
LOAD FILE FROM CM AUG INTO VPR 
LOAD AUG RH FKOM CM TO CR 
LOAD AUG WO TO VPR FROM CM 
LOAD AUG LH FROM CM TO VPR 
LOAD AUG WD TO VPR FROM eM 
LUAD AUG RH F~JM eM TO VPR 
STORE WD FROM CR TO eM 
5TOR~ CM LH FROM CR 
BRANCH UNCONOIT TU CM REl AASE, SAVE PC IN VPR 
STORE CM RH F~OM'CR 
STORe WD FROM VPR TO 
STORE LH F~OM vp~ TO 
STORE hO FROM VPR TO 
STORE CM RH FROM VPR 

CM 
CM 
CM ABS 

STORE AUG we fRUM CR to CM 
STORE AUG eM lH FROM CR 
S rORE FILE FROM VPR uno AUG CM 
STORE AUG CM kH FROM ~R 
STORE AUG WO FROM VPR TO CM 
STORE AUG LH OF eM FROM VPR(L OR R HALF) 
STORE AUG WD FROM VPR TO eM 4BS 
STORE AUG eM KH FROM VPR 
STORE FILE FROM VPR INTO CM 
COMP~RE W CM TO VPR, SIE 
COMPARE LH CM TO VPR, SIE 
BRANCH UNCONDIT TO REt CM WITH BASE AUG 
COMPARE RH CM TO VPR, SIE 
COMPARE W CM TO VPR, SINE 
COMPARE lH CM TO VPR, SINE 
COMPARE RH eM TO VPR. SINE 
LO~O ~D'FROM CM TO CR 
LOAD lH FROM CM TO C~ 
LOAD FILE FROM CM INTO VPR 
LOAt RH FROM CM TO CR 
AND LOGICAL W IN CM TO VPR 
AND LOGICAL LH IN CM TO VPR 
BRl~CH UNCOND!T TO ROM 
AND LOGICAL RH IN CM TO VPR 
OR lOGICAL w IN CM TO VPR 
OR LOGICAL LH IN CM TO VPR 
BRANCH UNCONDIT TO ROM, SAVE PC IN VPR 
OR LOGICAL RH IN CM TO VPR 
LOGICAL EOUlVALENCE W CM TO VPR 
LOGICAL EQUIVALENCE LH CM TO VPR 
BRANCH UNCONDIT TO ASSOl CM, 

NNEM 
C(JOE ----Nap 
BC 
LO 
LOL 
LOA 
LDR 
LO 
LOL 
LDF 
LOR 
LO 
lOL 
LOA 
LOR 
5T 
STL 
BCS 
STR 
ST 
~TL 
STA 
STR 
5T 
STL 
STF 
STR 
ST 
STL 
STA 
STR 
STF 
CE 
CEl 
Bt 
CER 
eN 
CNl 
CNR 
LO 
lOL 
LDF 

LOR 
AN 
ANl 
eR 
ANR 
OR 
ORL 
BRS 
ORR 
EO 
eQl 
SCA 

PAGE 
. NO. --'"2-9-

49 
13 
13 
13 
14 
13 
13 
14 
14 
13 
13 
13 
14 
11 
11 
48 
11 
11 
11 
11 
11 
11 
11 
12 
11 
11 
11 
11 
11 
12 
23" 
23 
49 
23 
23 
24 
,24 
13 
13 " 
14 
14 
19 
19 
4~ 
19 
18 
18 
48 
18 
21 

.21 
49 



ml 

CODE 
411 
4C 
'to 
4E 
4F 
50 
51 
52 
53 
54 
55 
56 
,7 
58 
59 
5A 
513 
5C 
50 
5E 
SF 
60 
61 
62 
63 
64 
65 
66 
67 
69 
6f) 
bC 
60 
6E 
6F 
70 
71 
72 
13 
74 
75 
76 
17 
18 
79 
1B 
lC 
70 
1E 
7F 
80 
81 
82 

OP CODE INDEX (CONTINUED) 

INSTRUCTldN 
LOGICAL FOUl VALE;'J('E KH eM Tfl VPi{ 
fX(lUSIVE OR W I~ C~ TO VPR 
EXClU~lVE OR lH CM TO VPR 
r>R I\NCH UNcwm 1 T Tu AUG MjSOL CM 
fxrlUSIVE OK ~H eM TO VPR 
ACD W IN C~ rc VPK 
i\uD LH [i Ctv' 10 VPR 
h~A~CH u~CO~OIr TU eM AH~OLt SAVf PC IN VPR 
AUD RH IN Cfv1 TO VPR 
~UBT ~ I~ C~ FRL~ VPR 
:>UE\ T lH IN (1,1 f- 1{f)/·l VPR 
i-\RI\lr.H U:\lCONG ro AGS RUM,SV i")C PJ CM lOC tD,l\lIG 
SU~T KH [N eM rRO~ VP~ 
PUSH PHD ~ T .... l.K 
PUll F~O,"'l Sr~\CK 

HRA1\.JCH UNCUN1)l r TO REl PC 
MUO ~TACK 

EXECU1E CM 
lOAC EFFECTIVE ADDRESS 
BRANCH UNCOf\oPIT ru AUG REL PC 
ANftLYlE CM 
SHIFT AKITH W 
AND LC::iICAl IMMEl) HW TO VPR 
LO~D [MM(D h INfO CR 
AND LCGICAL IMMtO a TO VPR 
~HIFr LU~ICAL w 
DR LOGICAL IMM[U hW TO VPR 
LOAC IMMEO H~ INTO CR 
OR lUG ICAL II":MEC b TO VPR 
LOGICAL [QUIVALE~CE IMMEO HW TO VPR 
LOGICAL FQUIVAlE~CE IMMEO B TO VPR 
SHIFf CYCLIC W 
EXCLU~IVE OR IMMED Hh TU VPR 
LOAD IMMfD B I~IO CR 
[XCLUSl~E OR IMMfO B fO VPR 
ADO IMMfD W TU VPR 
A&O IMME0 H~ TO VPR 
LOAD [MMED W INTO VPR 
ADO I~MEO H TO VPK 
5UBT IMMEO ~ FRLM VPK 
SUB T I MMF.D Hh F lU)!"l VPR 
LOAD [~~ED H~ I~TU VPR 
S~BT lMM[U B FRLM VP~ 
COMPARE IMMEl) W WITH VPR, SIE 
COMPARE [MMED H~ wITH VPR, 51E 
COMPARE IMHEC B WITH Vpg, StE 
LUMPARt :MMEO ~ wITH VPR, ~1~E 

CUMPI\RE IMMEl; Hw WITH VPR, SINE 
LUAD IMMEO H INfO vP~ 
:OMPAKE [MMEO B WITH VPK, ~tNE 
lUAO wD TO VPK f~OM VPR 
LOAt HW FROM VP~ TU VPR· 
R(S[T VP FLAG I~ CR 

MN[M 
CUOE 
EQr{ 
EX 
EXL 
BCA 
EXR 
AD 
ACL 
SCAS 
ADK 
~U 

SUL 
BRSM 
!)UR 
PU!>H 
PULL 
apc 
MOD 
EXEC 
lOEA 
BPe 
ANAl 
SHA 
AI\fHI 
LOI 
ANBI 
SHL 
ORHI 
LDHI 
O~BI 
EQHI 
EQBI 
SHC 
E''XH I 
LOBI 
EXBI 
AOI 
ADHI 
LOI 
ADBI 
SUI 
SUHI 
LtlHI 
SUBI 
CEI 
CEHI 
CEBI 
C'\II 
CNHI 
LOBI 
C:-tB I 
LD 
UJH 
VPR 

PAGE 
!\lO. 
22 
20 
20 
49 
20 
15 
15 
48 
16 
16 
16 
50 
17 
25 
26 
49 
26 
28 
27 
49 
27 
39 
31 
30 
31 
39 
30 
30 
30 
32 
32 
39 
31 
30 
31 
32 
32 
30 
33 
33 
33 
30 
33 
34 
34 
34 
34 
35 
30 
35 
13 
13 
51 

Op Code Index of Instructions 
Section C4 63 



OP CODE INDEX ( CONTI NUED) - .---. 
OP MNEM PAGE 

tODE INS1RUCT[ON ~O[)~ NO. 
-83"" ---_._,---,-_.,--- ----

lU£\O B fl{m'l VPR TO VPR LOB 13 
64 L04C wD FRON VPR fO CR lO 13 
85 LOAQ HW FRDrI VPR TO CR LDH 13 
86 SET VP FLAG IN CR VPS 51 
87 LOAD 6 FROI~ VPR TO CR LOB 13 
88 LOAC ¥-iD FROt" CR TO VPR LO 13 
89 LOAO mJ FRQ1J, Cr.-

" TO VPR LOH 13 
8A fEST CR FOR 0 AND SKIP IF EC TO 0 VPT,l 51 
88 L Gtd:: [1 FRm~ CR TO VPR Lon 13 
Be LUAD ltiD FROi"i CR 1U CR LO 13 
80 lOf .. D H \.J FRUf-l CK TU CR LOH 13 
SE TEST CRt SKlP IF EW TO 1 VPTO 51 
SF LUAD t:\ FRm1 CR TO CR LUB 13 
90 STORE WD FRCi'~ VPK. TO VPK ST 11 
91 STORE HW F;{ON VPR TO Vpg STH 11 
92 lEST FOR ANY 0 IN CR LH RESET TRZL 40 
93 srO~E B FK.OM VPR TO VPR STB 11 
94 SIOK.E wo FROf'h CK 10 VPR 5T 11 
95 STOR!: HW FR01v1 CR TO VPR 5TH 11 
96 TEST FOR ANY 0 IN CR RH RESf:T TRIR 42 
97 STORE B FRO/V: CR TO VPR STB 11 
98 STORE WD FRCN VPR TO CR ST 11 
99 "SlO'RE HW FRCM VPR 10 CR STH 11 
9A TES'- FOR ANY 1 IN· CR lH RESET TROL 41 
CJB SrOR.E 6 FRm·1 VPR TO CR STB 11 
9C STORE wD FROM Cl{ TO CR ST 11 
'tm STORE HW FRON CR TO CR STH 11 
9E fE,ST FOR ANY l IN CR RH RESET TROR 42 
9F ~TORE B FROivl CR 10 CK. STB 11 
AO TEST W AR IT Hv BKtI,i''iCH IF CR FQ 0 Tl 43 
A1 TE ST Hw AR [ ftl t BRANCH [f CR EQ 0 TZH 43 
A3 TEST B ARITH., BRANCH IF CR EQ 0 TIO 43 
A4 TEST W ARITH, BRANCH IF CR NEQ 0 TN 44 
A5 TEST HW ARITH, BRANCH if- eR NEQ 0 TNH 44 
A1 TEST i:) ARITH, "BRANCH IF CR NEQ 0 TNB 44 
AS TEST W AlU fH f BRMtCH IF CR GR OR EO 0 Tr 44 
A9 TEST HW ARIHh ORANCH If 

I 
CR. GR OR EQ 0 TPH 45 

AS TEST B ARITH, BRANCH IF CR GR OR EO 0 TPB 45 
. At TEST w ARITH, BRANCH IF CR lS 0 TM 45 

AD lEST HW ARITH, t3RANCH IF CR LS 0 TMH 45 
AE BRANCH UNCONDIT TO REL PC t SAVE PC IN VPR BPCS 48 
AF fEST 13 ARI HI, BRANCH IF CR LS 0 TMB 46 
BO TEST Vi AR IT !-It BRAl4CH IF \fPR EO 0 Tl 43 
Bl TEST HW AKITH, BRA:'KH IF VPR EQ 0 TIH 43 
82 INCR VPR BY 1 , BRANCH IF RESULT EO 0 IBI 47 
83 TEST B ARITH, BRAi-iCH IF VPR EQ 0 TlB 43 
64 TEST h ARITH, BRANCH IF VPR ~Ew 0 TN 44 
65 TEST H\.J ARITH, t)RANCH IF VPR NEQ 0 TNH 44 
86 INCR VPR BY 1 • 13RANCH iF RESULT NEQ 0 IBN 47 
87 TEST l:3 ARlfH, BRANCH If VPR f\lEQ 0 TNB 44 
Btl TEST h ARIrH t BRANCH IF VPR GR OR EO 0 TP 44 
B9 TEST HW ARI HI t BRANCH 11- \fPR GR OR EO 0 TPH 45 
B~ DEeR VPR BY 1 t tiRAN,CH IF RESULT EQ 0 DBl 47 

64 



OP CODE INDEX (CONTI NUED) ---- "'---

OP W,JH1 PAGE 
CODE: t N$ TRuer r uN C(JOE NO. -----

fE Sf -Y"PS--Ts-BB B Af{ITH, 8RtI.NCH IF VPR SR OK r- r) 0 C\:.'" 

BC TEST ~ ARITH, BRANCH IF v' r f~ LS 0 H'l 45 
BO H:ST H~~ ARlfH, HRANCH H VPR LS 0 H;H 45 
BE tECR VPR. BY 1 f bRM~CH J F R!:SULT NEQ 0 Dl'l,N 47 
BF IE S T U AKlfH t or<.f\NCH IF VPR. . ;:; 

L~ 0 r r'18 46 
CO /\ND L(JGICf~l ;'i II\,: vPR 10 VPR !\ !,.J 19 
Cl AND LLlGICAL II., 1\ VP1<. Ie VPR IHH 19 
C2 H:ST UNfH::R r-; .".5>K r N CR Fe'" ANY 0 tH [, SK I P r lL 37 
C1 ANO LOC,ICt\L B U-I VPI{ TO VPR ANb "19 
C4 (JK l:JGIcr ... l (J IN VPR TO VPR ell{ 18 
C5 Uk lL1':-;IC;\L (-l ~~ II\, VPf< TO \lPR tHH 18 
C6 IE S T L \itH" R MASK I :\i CR FC;~ ANY 0 HH [.. SKIP flR 37 
C7 {,R loe I (..\L 'J. {, 11\; VPR T(1 \iPR ORB 18 
(8 LOGICAL ECJIVAlf\JCf y; VPR TO VPR EQ 21 
C -) lOGr:Al CCUIVALUiCE H~ vPR TO VPf{ EQH 21 
CA fE ST lil\JDER ~.ASK IN CR FLJ:'{ ANY 1 LH £ SKIP TOl 37 
cn lOG I Cf\L rc;uIVAl[,-~l.f: B VPR. Te VPK FJb 21 
cc fXr.lUSIVi: UK ~; [ :\, VPR TU VPR EX 20 
CD FXClUSIVF UK H\o, I ~ VPR fO VPR EXH 20 
CE lEST UNDER M!\SK r f'( c"R FuR Ai'v.Y 1 RH £ SKiP TOR 37 
CF EXCtUSIVF OR B I"l VPR TG VPR EXB 20 
DO AUD .'4 IN VPK. TO "PR AD 15 
01 AGO H~\ IN VPR TO vPR ADH 15 
02 TEST fO!< ANY 0 li~ CR LH 3fT - & SKIP TSIL 40 
03 ACO U p~ VP f{ ro 'vPR ADB 15 
D~ SUBT W IN VPR FROt'" VPR SU 16 
05 SUBT HW [ j\j VPR FROM VPK SUH 16 
06 TEST FOR ANY 0 I 'J CK RH SET TSlR 41 
01 SUfH U IN IJ P I-{ FR!WI VPR SUB 16 
08 CCMPARE W VPr< TO VPR, SIC CF 23 
09 CCf.'PARE HW vrR TO VPK, ~[E CEH 23 
OA TEST FOR ANY 1 [t-.! CR LH SET TSOl 40 
On COMPARE n VP;<, TO VPR, SIE CEa 23 
DC COMPARE W vp;:" TO VPR, SINE eN 23 
OD COMPARE HW VPK If} VPR, SINE CNfl 24 
DE rE Sf fOR ANY 1 p~ CR RH SET TSOR 41 
OF COMPARE n VPR Te VPR., S I i ... E C,'H) 24 
EO AND lCGICAl W IN CR TO VPR A\I 19 
E1 ANO LUGICAl Hh IN CR TO VPR ANH 19 
1:2 TtST UNDER t-'A~K IN CR FUR All 0 lH & SKIP TAll 38 
E3 Aiif) lCGICAL e I l-. eR- TO VPR A!'~e 19 
E4 OR lJGICAl ~ IN CK TO VPR. OR 18 
E5 DR lOGICAL HW 11\ CR TO VPR OI~H 18 
E6 lEST t;NOER to1 A~K IN CR FUt{ ALL 0 RH & SKIP TAlR 38 
E1 OR lOGIC'\l B IN CR TU VPR ORe 18 
EB lOG ICAl EQUIVALENCE W CR TO VPR EO 21 
E9 luGICAL E::~UIVALENl.E H~ CR. TO VPR fOri 21 
EA TEST l;!'WER tJASK IN CR FUt< ALL 1 Lli f.. SKIP TAOL 38 
Eg LOGICAL fQUIVALF.:\lCE e Ci< TO VPR EQB 21 
EC EXCLuSIVE OR w IN CR TO VPR EX 20 
EO EXCLUSIVE OR HH IN CR TO VPR EXH 20 
E[ H:ST U~DER MA~K Ii'.J CR FO,~ ALL 1 RH f.. SKIP TAOR 38 
EF [)(r:lUSIV£ OR B (N CR TO \lPR EXo 20 

Op Code Index of Instructions 
Section C4 65 



66 

OP 
CODe 
F2 

F4 
F5 
F6 
F8 
F9 
F~ 

n~ 
F ,--, 
FD 
Ff 
FF 

OP CODE INDEX (CONTINUED) -------_.'----

I NS TRue T I (jN ---------
RESET BITS iN CR, lH 
l(l!\O VP 8ASE fROM VPR TO CR 
POll CR & SET VPR 
RESET BITS IN CRy RH 
CUMPARE W CR fO VPR, SI[ 
COMPARE HW CR TO VPR, SIC, 
SET BITS IN CRf lH 
COMPARE B CR YO VPR. SIE 
CO"PARE w cn TO VPR, SINE 
COMPARE HW CR TO VPR, SINE 
SET HITS IN CRt RH 
COMPARE B CR TO VPR, ~INE 

MNEM PAGE 
CODE __ ~w .. 
RL 36 
l m-m 29 
POLL 28 
RR 36 
CE 23 
CEH 23 
Sl 36 
CEa i 23 
CN 23 
CNH 24 
SR 36 
CNt> 24 



DATA CHANNELS 

SECTION D 



ASC 

TABLE OF CONTENTS 

Title 

GENERAL 

MEMOR Y BUS CONTROL 

DATA CHANNEL 

DISC CHANNEL CONTROLLER 

TERMINAL CHANNEL CONTROLLER 

i 

_ J':\;;,TEXAS INSTRUMENTS 

Page 

1 

1 

1 

6 

12 

Section D 



ASC 

GENERAL 

The Data Channel Unit (DCU), figure I, provides the interfacing required 

between the eM and the disc storage units. The DCU consists of an expandable 

Memory Bus Control (MBC), two general purpose Data Ch::mnels (DC) for data 

buffering and nlemory addressing, and two Disc Channel Controllers (DCC) to 
~ 

match the storage device to the Data Channel. The DCCs <l.re controlled by 

Cornm.unication Register bits in the PPU. 

MEMORY BUS CONTROL 

The MBC is a 1x4 expansion unit providing four ports, each identical to 

the CM bus, serviced in a round robin sequence. The maximum data rate of 

a particular DCC is dependent on the number of active channels since they all 

share the MBC. The MBC can be expanded to p.rovide 16 data ports, as shown 

in. figure 2 by using four n1.ore 1x4 expansion units. 

DATA CHANNEL 

The Dq, figure 3, provides data buffering between the 256 bit CM inter­

face and the 32 bit device interface. File 1 consists of eight 32 bit registers 

(ROO thru R07) that have bidirectional access to the CM and the eight registers 
~}. 

(RIO thru R11) in File 2. The General Register File consists of four 32 bit 

registers, R20 thru R23. The DC Data Buffer is a 32 bit register whose data 

inputs are controlled by the DCC. 

The DC is controlled by an 8 bit Control Byte from. the DCC. The code 

consists 0.£...-0 hexidecima1 digits. The leftmost digit identifies a SOurce 

register, the right digit identifies a destination register. Table I lists the 

hexdigit-register assignments. Examples of typical control bytes and the . 
resulting action are given in Table 2. The source digit in the control byte 

controls the selection of a register onto the General Data Bus, and the 

destination digit enables the appropriate register to accept the data. Devia­

tions from this procedure occur for transfer between File 1 and File 2; and 

CM accesses. 

Section D 

~f3.;;,TI=:XAS INSTRUM ENTS 1 



Central .... ... 
Memory "' 

, 
J 

... .... 

r-1emory 
Bus 

Control 
r·me !< , .. 

.-

i 
Data I 

Channel I 
DC 0 r 

Data 
Channel 

DC 1 

I 

i------i 

Identical 
Channel 
Expansion 

..,.. .... 

To CR Cells. 

in PPU 
• 
I~ 

. I 
l 

Disc 
-> . Channel 

- Controller ,., ~------_J Disc 
... 1 s ... o ...... o'" 

DeC 0 

Disc 
Channel 

/.--i;t:.l Controller 

Dec 1 

I 

Data Channel Unit 
I 

(DCU) ~ 

I \., Qv~ I 
L j 

Figure 1. Data Cha.nnel Unit Block Diagra:m 



ASC 

CENTRAL 
~1HnRY 

r 
I -,- 1 X 4 , 

.. 1 X 4 -
, -

.; 

-
.- 1 X 4 

.., 
"- . -"' 

-"" 1 X 4 ., 

""'-
~, 

"'-
~ 1 X 4 

., 

.... -
~ 

.L 
~ 

,/ 
~ 

.... 

", 

L -

.L --
.,-

..;. -

" 
J 

...-!--
.L 

~ .... 

, 

DATA 
CHANNELS ---

, 

~ 

~ " 
... 

.., 
, 

-." , 

, 

~ 

-"" r 

~ , 

'> 

... -

, 

-"" , 

_ .. 
r 

~ 
r 

Figure 2. Expanded Memory Bus Control Block Diagram 

Section D 

3 



CENTRAL 
MEMORY 

VIA 
MBC 

256 Bits 

To/From 01 

CN Address 
(32 Bits) 

.of/('. 

--
-e' 

~--~ 
.... 
~ 

-.. -
...-... - -7 

-:.: 

File 1 

ROO 
ROl 
R02 

R03 

R04 

ROS 

R06 
R07 

File 2 
~ R10 

...,. ... 

Rll -" ... 

k-- R12 . 

§ R13 

R14 
I 

, 

... R15 r 
R16 

~~-~ R17 --l 
GENERAL I 
REGISTER FILE ! 

R20 

R21 

R22 

R23 

General 
Data 
Bus (32 Bi ts) 

!--. 

.... ...... 

Decoder 

11emory • r-h 
Control .G~ ... -------------------~llsequence 1----
Lines s: ntr 1 

Figure 3. Data Channel Block Diagram 

DISC 
CHit\'NEl 

CONTROLLER 

----------'';3- Data to DeC 
(32 Bits) 

Data from DeC 
(32 Bits) 

Control Byte 
(8 Bits) 

.------==;- DeC Hold 
(1 Bit) 

". 



! S (" .i1. '" 

Table 1. Hexdigit-Register Assignments 

Hexcligit Register 
----_._-

0 DCC 
1 File 1 
2 File 2 
3 CM 
4 R20 
5 R21 
6 R22 
7 R23 
8 RIO 
9 RII 

A R12 
B R13 
C R14 
D RI5 
E RI6 
F RI7 

Table 2. Typical Control Bytes and Resulting DC Action 

Typical Control Bytes 

59 

95 

F4 

OA 

AO 

12 

21 

IB 

Bl 

35 

53 

Special Codes 

00 

Resulting Action 

R2I transferred to RII 

Rll transferred to R2I 

.R J 7 transferred to R20 

Dec transferred to Rl Z 

R12 transferred to DCC 

File 1 (256 bits) transferred to File 2 

File 2 (256 bits) transferred to File 1 

R03 (32 bits) transferred to the adjacent 
register in File 2 (R13) 

R13 (32 bits) transferred to the adjacent 
register in File 1 (R03) 

Read CM at the addreRR conf-::tlned in R21 

Write in CM at the address contained in R21 

No-op 

Section D 

5 



ASC 

The two permitted transfers between File 1 and File 2 include complete 

transfers and register transfers. An 256 bits of File 1 may be parallel trans­

ferred to FilE' 2 or all 256 bits of File 2 may be parallel transferred to File 1. 

imy one of the eight regislers in File 1 (32 bits) may be parallel transferred 

to the adjacent register in File 2 0'1". conversely anyone of the 8 registers in 

File 2 may be parallel transferred to the adjacent register in File 1. 
, 

The position of the digit "3 11 in the Control Byte specifies the type of CM 

access, either CM Read or CM W rite. The other digit in the Control Byte 

identifies the register which contains the CM address for the memory access. 

Sequence Control determines the type of CM access and sets appropriate con­

I-rollines to the MpC. For CM Read, when Read Data is true, all 256 bits of 

an octet in CM will be loaded into File 1. For CM Write, the data in File 1 

will be written in CM as permitted by the zone control byte in the memory 

address register. 

It is possible that the DCC will send some Con~rol Bytes fast.;:;l' than the 

DC can execute them. When its occu.rs the DC will send the DCC a Hold 

sigria1, stopping the DCC at that point in its program. When the DC execute~ 

the command, the Hold signal will be cleared and the DCC can continue its 

program. 

DISC CHANNEL CONTROLLER 

The DCC, figure 4, is designed to match the characteristics of the Disc: 

Module to the requirements of the ASC system. In order to do this, the DCC 

must accomplish the "following tasks: 

1) Monitor control lines connected to CR bits in the PPU. 

2) Obtain from CM a Communications Area, set up by PPU software, 

describing the job ~he DCU is to perform. 

3) Monitor the condition of the disc module at all times and issue 

instructions to the disc as required. 

4) Supply Control Bytes to the DC. 

6 



ASC 

ROt~ 
Program 

Selection ~ , 

ROl"l 

'-----:-~ 
Bvte 2 (8 B ts) 

Bytes 3 & 4 (1 Bits) 
Soer:i <\.1 _, 
Format " 
(32 Bits) 

Control Byte.... Bvte 1 
(8 Bits) "-

Data To/From DC ~--------~...;:;-"!Jio"l 
(32 Bits) --

DCC 
Buffer 

r<------.. ---. 

Index & 
Sector Clock 

'--"!~~ Data To/From 
Disc Storage 

(32 Bits) 

Figure 4. Disc Channel Controller Block Diagram. 

Section D 

7 



j\SC 

5-} Accept and send data to the DC. 

6) Accept and send data to the disc. 

COlvuv1UNICA TIONS AREA FILE 

Each jot; that the DCU is to perfonn is described by a comnl1111ications 

area in the CI'vi as follows: 

A. Operation. - - Type of job to be perfonned 

1) Rea.d - Read the disc and transfer the data to the eM 

2) Write - Write on the disc the data obtained £rOIn the CM. 

3) Erase - Write "OIS" on the disc. 

4) Read Check - Read the disc and check for parity, do not tra.nsfer 

the data to CM. 

B. CM Address -- The address in CM where the data is to be stored for 

the Read operation or the address in CM where the data is to be found for the 

W"rite operation. This address may be absolute or virtual. If virtual, the 

DCC rnust perform the Map Routine (ROM) to obtain the absolute address. 

CM address has no meaning for Erase and Read Check operations. 

C. Disc Address -- The address on the disc where the data is to be 

stored for the W rite operation, obtained fp r the Read operation, zeroed for 

the Erase operation, or checked for parity on the Read Check operation. 

D." Map Pointer -- An address in CM where a map image of the memory 

is located. It is used when the CM address is virtual. See Map Routine, ROM. 

E. Link Address -- The address in CM where the Communications Area 

for the next job is located. 

F. Storage area pointers (12) each containing a CM address and word 

count so that DM data may be written or read from several different noncon­

tiguous areas of CM. 

"~~~TEXAS INSTRUMENTS 



ASC 

DISC BOOKKEEPING SECTION 

The DCC Disc Bookkeeping Section interfaces the DCC Data Bus and a 

Disc Interface Unit (DIU). A DIU will support two Disc Modules which are 

asynchronous to each other. Each Dlv1 sends the DCC a sector clock, indicat-. 

ing the beginning of a new sector, and an index rnark, indicating sector zero on 
t:' 

the disc. The DCC counts the sector clocks and always knows tbe disc position. 

This is done by c01mter sAAR 110" and '11". The D1v1. must be addres sed one 

sector in advance, therefore, the AARs are actually one sector ahead of the 

true DM position. The DM being used for a job is selected by SELDM from the 

control logic. The selected AAR is compared with the sector portion of the 

Disc Address for the current job. The output of the Com.parator Com.p is sent 

to the Control Logic. The Control Logic determ.ines if the job is to be pro­

cessed in this sector and which ROM progranlsare required. 

READ ONLY MEMORY 

The DCC uses a Read Only Memory (ROM) to direct the channel to perform. 

fixed sequences of operations. The ROM will also supply special fixed CM 

addresses which are unique to each channel. Control Logic is responsible for 

decoding and executing the ROM instruction and performing the tests and 

branches called for. The ROM has a capacity of 256 words. Each word con­

sists of 33 bits. The least significant bit is used to determine the parity 

(true or cornplim.ent) of the word. The ROM word may have either of 2 formats. 

Normal Format Byte 0 Byte 1 Byte 2 Byte 3 

Special Format 32 bit word 

In the Normal Format the 32 bits will be divided into four 8 bit bytes. 

The bytes will be used as follows: 

Byte 1 DC Control Byte 

Byte 2 Next ROM Address 

Bytes 3 and 4 DCC Internal Control 

Section D 

9 



From Data Bus 
(32 Bits) 

eN) Sect ..... <~--. 
Comp 

Disc I'Bits 18-251 Sector 
cO(~jre Address (N' 

Rpni :tPl" 

'I' (N+l) Sect .... 
I Comp 

D1SC LU?-25) Sector 
Address -" ---;> Compare -.. 

Register IN+lj (N+1) 

• 
(N+2) Sect .; 

I Comp 
Disc (18-25 ) Sector t Address . Compare ~ , 

Regi ster{N+2J (N+21 
. SELDr4 

Selected 
Disc 

r---.;;a')oo- Word Camp 

Oi sc I'.d 

I (18-31) 
Oi sc JI.d 

! bl~c3H 
: {18-3l} 

AddreSS-(29..,311 i ~Jord 
d (N( 

, Compare 

d(N+U I--

d-<~ 1 
"26-2&1 Octet . Compare .. 

Job Select Sector om Control logic ~ Counter Fr 
(18-25) 

( -E-.J 

Oct Comp 

I Octet 
Counter 

Angular 
..... ..... Address 

Reoister"A' 

: 

Anguiar 
..... Address 

.Register-"B' 

Word 
Counter 

Figure 5. Disc Bookkeeping Block Diagr~m 

, 

"' 

Sector Clock "A" 
I 

..., 

T • 

ndex "A" 
From 
Disc 

Interface 
Unit 

ector Clock "B" 

ndcx "8 11 

From ROM Transfer 
Data Routines 



ASC 

In the Special Format the bits 29··31 are 111. The 32 bit word is loaded 

into the DC Register R20, the ROM address is incremented. 

Routines prograrnmed into tht:! ROlvf are: 

1) LA - Look Ahead 

2) SW - Status Word 

3) DS - Initial Start 

4) AA - Angular Address Update 

5) TDW - Transfer Data Write (CM· ........ DM) 

6) TDR - Transfer Data Read (DM-.CM) 

7) MAP - CM address Mapping 

Control Logic forces the ROM address to the beginning of each program 

as required. Byte 2 of the ROM word then dictates the next address. Control 

Logic is responsible for synchronizing the ROM address with the DC and DU. 

In the case of conditional branches, the control logic may fa rce a jump in ci 

program's normal addressing sequence. 

Section D 

11 



SCOPE 

Identification 

Thi s descri pti on covers the reClui rements of the Tel11l; na 1 

Channel Controller. 

Us~e as Pa It of the Tota 1 Sys tern 

The TCC is part.,(lf the Data Channel Unit (DCU) which 

prov; des the requi red i nterfaci ng between Central f.1emory (Ct'l) 

and external units. Th~ DCU cogsists of general purpose Data 

Channels (CC) which communicete with eM and are attached to 

the external units via special purpose channel controllers. 

The present DCU configuration contains tVIO types of channel 

controllers. The Disc Channel Controller (DeC) matches a Disc. 

Interface Unit (DIU) and consequently Disc Modules to the OC. 

The Terminal Channel Controlle~ (DCe) matches Selector Interface 

Units (SIU) to the DC. In this document SIU will be used to 

refer to any device that might be attached to the TCC. The 

incorporation of the Tce irto the DCU ~~ shnwn in figure 6. 

The TCC has hJO STU ports. Hm<Jever, the TCC port 

address i ng a 11 o\'Js for expandi nq up to 32 ports. 

Usage 

In order to match the characteristics of the SIU to the 

requirements of the ASe~ the Tee must accomplish the following: 

12 



Vl 
ro 
() 

<"+ ..... 
o 
::l 

o 

MCV 

._-----, 
! , 

CR 
FILE 

I 
- - -- -:- +-1 

r-----r\- ----; I 
-

DC DCC 

r--------

___ --i---D~~-T .. ~~C -,J: ~-i DIU 

I --If-, ----- I 
, ' 1-____________ ~ __ 

I 

DC Dee 

DC Tee 

i 
---; r DIU 

1..--------
t

4 
___ • _______ _ 

, ' 

SIU,O 

.. SIU 1 

~igure 6 TCC Incorporation In Data Channel 



(1) communi ca te wi th the: PPU v i a CR bi ts , 

(2) obtain from cr~ a Communications Area (CA}, set up by 

PPU Software describing the job the channel is to perform, 

(3) supply commands to the DC, 

(4) accept and send data and status to the DC, and 

(5) nccept and send data and status to the SIU. 

Component Identification 

A block diagram of the TCC is shown in figure 7. 

14 



PPU PPU 

Ii\ 
.. ------~------ _____ :?- SIU 

Channel C ,,, ommand 
yv ord 

DC 
Control 

Channel 
Control 

General D-•• ta Bus 
--

Command 
Regi ste r 

~ ~-,~ --

, 
\ 

Mai ntena nee 
Control 

Inc rementlr I \l! 
+8 I Word 

--r I : -1 I Count ~ L Register 

~\~.'~~ 

Channel 

Da~ 

Figure 7 TCC 131 ock Diafjram 

J 

Uime l-
Out -==l--. 

Status 
Register 

Control 

I l 
I
I [' 1/ 

11 SIll 

~I i-Data 

II ! In Data 
! Register 1 

! 

I 

LJ /1 I Register 2 

Data 

, I I Parity 
, I 

I 
I 
I 

I 

I 
I 

I 
L SIU J> Data Out 



RCQUI REI-tENTS 

Performance 

1. Primary Performance Character; sti cs a.'e: 

a. All TeC Operations are controlled by ASC software 

VJith bits in· the CR file and w'ith Communication 

Areas (CA) in CM. 

b. Control bits in the CR file give ASC software the 

ability to: 

(1) Start the TCC 

(2) Cause the TCC to abort any chain of jobs 

(3) Accept status reports from the TCC when part 

of the DC or CM is down 

(4) Communicate with the Tce regarding the need 

to reorder jobs 

(5) Control maintenance operations within the TCC 

(6) Switch the TCC from a Low Priority CA chain to 

a High Priority chain. 

c. ASC software uses CAs to assign jobs to the TCC. 

d. Communication between the TCC and SIU consists of 

32-bit data words and 32-bit control words. Each 

32-bit word is accompanied by two additional bits) 
one to differentiate beh-/een data and control words 

and one parity bit. A control word consists of up 

to 16 hardware status bits in the most significant 

half (bits 0-15) and a i6-bit control message in the 

remaining portion (bits l6-31). 

e. The TCC operates on a ha 1 f dup 1 ex bas is. Hov/eve r, 

. it does have the capability of accepting a control 

16 



word from the SIU when in the Write mode. Such an 

occurrence a lvJays consti tutes an a.bort candi U on. 

f. The TCC is capable of supporting a sustained word 

transfer rate of 500,000 32-bit words per second 

(2~~ bytes/sec). 

g. The Tce responds to ASC system initialization and 

sends a clear signal to the DC and to the SIU. 

2. Physical Characteristics. 

a. The TCC is a TTL device which operates on the 500 ns 

TTL clock. 

b. The TCC hardware is located in the ASC column DC3-TTll 

which is adjacent to the DC-DCC ECl column. 

TCC Definition 

1. Terminal Data Channel Prograrrming Interface 

The Terminal Data Channel provides the interface 

betvveen the ASC Programmi ng Sys tem and the ha rdwa re 

attached to the channel. The Programming System communicates 
"[,t. 

directly with hardi'lare through the CormlUnications Area (CA) 

and the CR Fil e. 

a. Corrmunications Area (CA) 

The CA format is shown in figure 8M The 

areas in the CA which are not presently being used may 

be used by software for its own purposes. 

Word 0 of the CA is always located on an 

an octet boundary. The most significant bit of 

this word (bit 0) ;s always a 1. The next 7 

bits .(bits 1-7) are not used by the TCC. The 

17 Section 0 



CA Fonrlat 
Bit 

15 16 23124 31 

I Word 0 Li nk Address 

1 

2 

Channel 
3 Address ~1emory Address 

4 Command In; ti a 1 Word Count 
...J 

co 
5 Status 

6 Protocol Nessage 1 Protocol Message 2 

, 
7 Word Count Error Protocol Message 3 

Figure 8 Communication Area Format 



remai ni ng 24 bits (bi ts 8-31) conta; n the Li nk 

Address which points to the next CA in the chain. 

This Link Addl~ess is stOl'ed in a DC General 

Register at the beginning of the execution of 

the CA. 

Word 1 of the CA is not used by the 

TCC. The MSBls (bits 0-7) of Word 1 contain the 

Channel Address (CAD) for the TCC. This is the 

address of the TCC port that is to be involved 

in this. transfer. It is stored in the TCC at 

,the beginning of execution of the CA. The 

remaining 24 bits (bits 8~31) of this word contain 

the Memory Address where the data for this CA 

is to be obtained or stored. This address is 

stored in a DC General Register at the beginning 

of execution of the CA. 

The most significant half of Word 4 

(bits 0-15) contains the Command Field shown 

in Fi gure 9. 

Control Word options 1,2, and 3 

refer to options which the TCe may take 

with regard to the sending and receiving of 
" 

Control Words before and after block transfers. 

Control Word 1 option indicates to the TCC 

that it is to send a Control Word to the SIU 

before any data transfer in either direction 

is started. This Control Word is formed by 

the TCCand consists of Control Hessage 1 

19 Section 0 



MSB 

CA r~~~~~ ~ Unassigned 
Word . 

3 

12 13 14 15 
" ,/ ':/. ,- I ,I '"-r- -I ,.. // /'/1 ! LL_ 

l 1. _____ Read/Wri te 

L -- ---- -Control \~ord 1 Opt; (''1 

-- -- -- -- -- - Con tro 1 Word 2 Opt; on 
-- Control Word 3 Option 

Figure 9. Command Field ' 

20 



taken from CA vwrd 5. Control Hard 2 

option indicates to the TCC that it should 

take the Cont.ro 1 t1essage in Contra 1 ~1essage 2 

position and send it to the SIU at the completion 

of data transfer in'the case of a Hrite and 

at the completion of data transfer plus 

possibly one Control Word transfer (Option 3) 

in the case of a Read. Control Word 3 

option indicates to the TCC that it should 

expect to receive a Control Hard at the 

com~letion of data transfer in the case of 

a Read and at the completion of data transfer 

plus possibly one Control Word transfer 

(Option 2) in the case of a Write. This 

Control Message is to be placed in Control 

t1essage 3 position of the CA. 

Read/Hrite is indicated by bit 15 

of CA word?4 Read is indicated by a one in 

positi,on 15 and a Write is indicated by a zero. 

The 'right half of Hard 4 (bits 16-31) 

contains Initial Word Count. This is the number 

of words that are to be transferred by execution 

of this CA. 

Word 5 of the CA contains the Status 

field. The meaning of the 4 t1SBs (bits 0-3) is 

fixed. The 16 lSBs are used for reporting 

status from the SlUe 

Bit a of the Status field contains the 
, 

complete bit. The TCC sets thi.s bit after it 
21 Section D 



hilS completed execution of a CA (either satisfuctorily 

or unsutisfactorily). 

Bit 1 contains Illegal Word Count. This 

flag is set to indicate that the TCC received a 

Control Word from the SIU when the count contained 

in the TCC Word Count Register was not zero or 

that a Data Word was received when count was zero. 

In the first case~ the remilining Word Count is 

written in the CA in the Word Count Error field 

along with the Control Message that was received. 

Bit 2 contains Time Out (TO). This 

flag is set to indicate that the TCC timed out 

during a TCC - SiU transfer. 

Bit 3 contains the Parity Error {PEl 

flag whi ch i rrdi cates that a pal~i ty error was 

detected in an SIU to TCC transfer. 

Status from the SIU is written into the 

16 LSBs of the status word up'on receiving a 

control word (Control Word 3) from the SIU. The 

status is located in the 16 MSB s of thi s control. 

word. 

Word.6 of the CA contai ns Control 

Message 1 and Control r~essage 2. These are 

"output ll Control Messages (i.e., they \'1;11 always 

be sent to the SIU). The contents of the 

Control Hessages are determined by software, 

and their ,use is controlled by Options 1 and 2 in the 

Command field. Word 6 is stored in DC General 

,22 



Registers at the beginning of the CA. 

Hard 7 contains the ~!ord Count Error 

in its 16 MSBs (bits 0-15). Count in the TCC 

~lord Count Register is loaded into this halfword 

any time the TCC receives a Control Hord .. \lhen 

Word Count in the register is not O. The 16 

LSBS (bits 16-31) contain Control i'iessage 3. 

Its contents are software designated, and its 

use is software controlled via Option 3 in the 

Corrmand. 

Any control word received by the 

TCC at a time other than that specified by 

Option 3 is also placed in Control Message 3 

position. The 16 MSBs are placed in the 

low order position of the status word. This 

;s followed by an abort of the CA. 

Communications Area Chains 

TCC CAs are looped by the Programming 

System as shown in figure 10. The TCC begins the loop 

at the Header which is the dedicated memory address 

holding the address of the first CA. It stops 

processing CAs when it comes back to the Header 

after processing the CAs in the loop. The CAs 

may be relinked by the Prograrrming System in order 

to process ne\,1 requests. However, since the TCC only 

goes through a loop once, all re1inking must be done 

ahead of where the TCC is \'larking in the loop. Neither 

the Prograrrming System nor the TCC are corrmitted to 

23 Section D 



Dedicated 
~~e;r!ory Address 

Header ._----'---' 

CA 1 

-~-I~' ._----\\ 
-l \ 

, \ 

I \. 

----------< 

( 
j CA 2 

I 

\ . 
\r----1 -=--

CA n 

Figure 10 CA linked lists Structures 
24 

------1 / 
i/ 

. I 

./ 
i 

i 

\ 
\ 

\ 
\ 
\ 

\ 
I , 
i 
\ 

i 

! 

\ 
\ 

i 

j 



do a job until the CA ;s fetched. 

The sign bit (bit 0) of the Link Address 

(word 0 of the CA or Header) indicates whether the 

accessed memory area is actually a CA or is in reality 

a Header .. All C.L\s have a sign bit of one in the Link 

Address. A zero in this position indicates a Header. 

After the Tce has initially accessed the Header to 

get it started in the loop~ it will treat the Header 

as a CA when it accesses it again. However~ upon 

~heckin3 the sign bit and finding it to be a zero~ the 

TCC wi 11 stop. 

There are 10vl priority and high priority 

CA chains built for the TCC. Each type of chain has 

its own Start bit in the CR File and its own Header 

in a dedica.ted memory address. 

If the TCC is operating in the low priority 

chain when it receives the high priority Start~ it 

will finish the CA that it is presently processing, 

save the 10vJ pri ori ty 1 ink address, go to the hi gh 

priority chain (via its Header) and do all of the CAs 

in it, and then return to the 10\'1 priority chain u$ing 

the link address that it had saved previously. If 

both Start bits are set at the same time, the TCC will 

complete the high priority chain before going to the 

low priority header. 

Both Headers always have a zero in bit 0 

and are located on an octet boundary. 

25 Section D 



When the Program:ni ng Sys te'm is ready to 

relink CAs, it sets the Relink Request bit in the 

CR File. It cannot continue with relinking until the 

TCC sets the Relink OK bit in the CR File. This bit 

is set as soon as the TCe receives Relink Request if 

the TCC is in the process of perform; ng a CA. Ho\IJever, 

if the TCC is involved in linking when it receives 

Relink Request, it continues to the next CA and 

fetches it before setting Relink OK. 

When the TCC finishes the data transfer 

associated with a given CA and finds Relink OK set, 

it stops and does not complete execution of the CA 

until Relink OK is reset by the Programming System 

(Relink Request is to be reset before Relink OK is reset). 

The Programming System resets these bits when relinking 

has been completed. When Relink OK is reset, the 

TCC reaccesses the' CA in order to get the Link Address, 

which may have been changed, and then continues processing 

the CA.' 

During relinking, the Programming System 

recognizes that the TCC is operating on the first CA 

in the loop which does not have a complete bit set in 

the status field of the CA. The Programming System is 

not a 1 lowed to remove thi s CA from the chai n. Note 

- that if there is a high priority and a low priority 

chain the possibility exists that there will be a 

CA in each chain that the Programming System will have 

to leave in~ 

26 



Protocol 

To perinit a certai n amount of f1 exi bil ity 

in the communications Protocol, the TCC accepts 

protocol options based on the three control word op­

tion bits of the CA Command. The three optional con-
r 

trol words and their relationship to data transfer 

are shown in figure 11. 

When Control Word 1 Option in the CA Command is 

0, it indicates to the TCC that a Control Word should be 

transferred to the SIU at the beginning of the CA before 

any data is transferred. The TCe forms this Control 

Word from Control Message 1 in the CA. 

Control Word 2 Option being a indicates to the 

TCC that Control Word 2 is to be sent to the SIU. The 

actual time at which Control Word 2 is sent depends 

on whether the TCC is in the Read or Write mode and 

whether Control Word 3 Option is exercised. 

When Option 2 is 0, the TCC is in the 

. Read mode; and Option 3 is 1; Control Word 2 is 

sent to the SIU after the last data word is 

received by the Tce (as indicated by the count in 

the Word Count Register being zero). 

When Option 2 is 0, the Tce is in the 

Read mode; and Option 3 is 1; Control Word 2 is 

sent to the SIU after Control Word 3 is received. 

When Option 2 is a and the TCC is in 

the Write mode, Control Word 2 is sent to the 

27 Section 0 



""1"----'-' 
I ASC Send; ng 

_ ~---t.--__ M. '-'----,~--=----- ~- ~.- --~ -~. -----J 
I I 
I I [C~word ~Ptiin~i) ___ ] 

I • 
I . 

! 

ControJ Word 1 -'(Qp11 o~;ii~d, .. _,_J 
Data 

: . 

I 

1_ ContrQLWord 2 ~Q~ti~_~~l)::-~J 

I 
l 

j 

I 

I , '-11 

-1- -. 

I I 
I . , 

r--' 
I 
! 

I 

.. - --_. -,. _._---- -- ,-"--- ._--

, , .. -- .. ---- ---1 SIU Sending 

( 

Data 

, 
L,_.Co.ntrol Word_3_._ (Qp,ttCl.ni,lJL _____ .! 

I 
I ---.-,----- -------1 
I .. -. -----1 

,-------------.• --, .. --~-,---- ---'----_., _ .. _-' ........ -. __ .-..•. _-- ----------' 
Fiaure 11 Protocol _28_ 



SIU after the last Data Word is sent (as indicated 

by the count in the ~Jord COllnt Register being 

zero) . 

Control Word 3 Option being 0 indicates that 

the TCe is to receive a Control Word and place the Control 

Message in Contr'o 1 t'lessage 3 pas iti on in the tA. The 

exact position of Control Word 3 in the protocol is 

determi ned by Read/vJd te and Opt; on 2. 

When in the Read mode with Option 3 equal 

zero, Control Word 3 is received by the TCC 

immediately after the "last data word (as indicated 

by a zero count in the ~~ord Count Register). 

When in the Write mode with Option 3 equal 

zero and Option 2 equal zero, Control Word 3 is 

received after sending Control Word 2. 

When in the Write mode with Option 3 equal 

zero and Option 2 equal one, Control Word 3 is 

received after sending the last Derta Word (indicated 

by zero count in Word Count Register). 

Any time the TCC finds it necessary to send 

status to the SIU, it does so by sending a 32-bit 

control word with status in the 16 MSBs and Control 

Word 2 (whether Option 2 is set or not) in the 16 

lSBs. Any time Control Word 2 is sent because of 

Option 2, it is accomp ... nied by status. The status hits 

sent are Time Out» Parity Error, and Illegal Word Count. 

(6) Status from the SIU is always to be accompanied 

by Control Word 3 and vice versa. Status is in the 

16 MSBs with Control Word 3 in the 16 LSBs. 

29 Section D 



The ASC software can control the TCC via the CR file. 

T\I/o bi ts o{ CR wi 11 be used for Lovl Pri ori ty 

Start (LPS) and High Priority Start (HPS). 

If LPS is 1 and HPS is 0, the TCC uses 

the LcJ'tl Pri ority Header ina dedi cated memory 

" location and processes the CA chain. After the 

TCC finishes all CAs in the chain and comes back 

to the Header, it resets the lPS and stops. 

If HPS is 1 and LPS is 0, the TCC uses 

the High Priority Header and processes the CA 

chain, resetting HPS and stopping after it works 

its way back to the Header. 

If LPS is 1 and the Tce has already 

worked down part of the CA chain when it receives 

HPS, it will finish the CA that it is currently 

working on, save its Link Address, and go to the 

High Priority Header. After completing the High 

Priority chain, the TCe returns to the Low Priority 

chain via the Link Address saved out of tha~ 

chain. If the TCCjs between CAs when it receives: 

HPS, it will save the Link Address that it is 

currently using and go to the High Priority Header. 

If HPS is 1 and LPS is 1, either because 

it was ~et at the same time as HPS or because it 

was set after operation in the High Priority 

chain began, the TCC will compl,ete the High Priority 

chain and then enter the Low Priority chain via 

the Low Priority Header. 

30 



One blt of CR is used for the TCC Abort bit. 

The fol1o'vJing interpretation will be assigned to TCC 

Abort in conjunction with the Start bits: 

LPS or HPS Abort ------ ---

0 a Channel Inacti vel P,cti ve 

1 0 Start and Channel Actl ve 

a 1 Abort Channel Operations 

1 1 Abort current CA and proceed 
to appropriate Header 

Software can set both starts and Abort and 

reset both starts. The TCC can reset both starts and 

Abort". 

A four-bit channel condition field in the 

CR file is use-d by the TCC to report certain abnormal 

events to the PPU. The fi21d is fOrmi.ltt2d as follo-v:s: 

r (J 
1---- encoded event (listed in 

decreasing priority) 

000 - eM Parity Error 

001 - CM Protect Error 

010 - CM Breakpoint 

all - Illegal DC Code 
(hardllJare error) 

Condition Attention 

When one of H,e events occurs ~ tIle TCe wi ~-; 

set the Condition Attention bit, will enter the 

appropri ate event code, and \'1; 11 abort. The Programmi ng 

System will reset the Condition Attention when appropriate 

31 Section 0 



software action has been taken. 

If more than one event is simultaneously 

detected by the TCC, only the highest priority event 

is reported. 

Two CR bits will be used to communicate with 

the TCC during a rclinking of CAs. When software 

desires to relink the CAs, a Request Relink bit 

will be set in the CR file. Within 10 microseconds 

(generally within 1 microsecond), the TCC will reply 

by setting the Relink OK bit. The time difference 

depends on whether the TCC is executing a CA or 

linking between CAs when it gets Request Relink. 

If it is between CAs, it wi 11 go to the -next CA 

before setting Relink OK. Software resets Request 

Relink and Relink OK when it finishes relinking. 

The TCC comnunicates with the Common 

Maintenance Registers (CMR) of the CR file for 

maintena.ice purpo;;ts. This includes communication 

with the Common Comnand Register (CCR) and the Unit 

Register (UR) allocated fOl the DCU. The CCR is used 

to issue maintenance commands and to exercise CM 

protect and breakpoint options. The UR is used to 

transfer data between the PPU and the TCC during 

maintenance. 

·ASC software will be responsible for performing software 

timeouts on CA chains to detect TCC and/or DC failures. 

32 



OPERATING PANEL 

Sect j 



Title 

Introduction 

Starting Description 

Stopping Description 

Alarm System 

i 

TABLE OF CONTENTS 

3 

5 

6 



I NTRODUCTI ON 

The ac and de power control segments of the ASC operating panel 

can be noted at the upper left of Figure 1. The ke y turns on the power to 

the entire cornputer system, and this status is indicated by the ac ON indicator. 

To apply dc power to the processors, the de ON switch is pressed. When all 

voltages, pr.essures, and temperatures are within operating ranges and 'if all 

interlocks are engaged, the sta.ndby indicator is lighted, indicating that the 

systern is ready for operation. When the power is increased, the processors 

are aut01uatically cleared. Upon reaching standby status, the operator can 

cause the processors to begin execution by pressing the STAR T button in the 

system. control area of the panel. The system. status indicator will then show 

that the s ystern. is in the operating condition. Similarly. the STOP button 

causes the processors to stop execution and the system. status to return to the 

standby condition. 

The normal/abnormal indicators in the system status area re­

late to switches throughout the system which must be in particular positions 

if the system is to operate in a normal fashion. Included are switches to pro­

vide maintenance functions throughout the s ystelu such as those for the power 
"c(~. 

supply mar gining control and those on the rnaintenance panel. A digital clock 

is provided at the top center of the operating panel. The EMERGENCY OFF 

is a pull-type switch for emergency removal of primary power to the systen'l. 

It requires maintenance personnel for resetting. In the lower left-hand portion 

of the panel, the bootstrap facilities are shown. The system may be loaded 

initially from disk or from. the card reader by setting the system initialization 

switch to the desired initialization source and depressing the LOAD button. 

An alarm horn in the power control unit sounds in the event of power failure. 

The ALARM '::Z.c.:SET button in the lower rigi.~t- hand area of the operating panel 

allows the operator to turn off the alarm horn. A loudspeaker is provided 

within the operating panel for signaling from the operating system. The volume 

control is in the lower right-hand corner of the operating panel. 

Introduction 1 
Section E 



AC POWER 

ONQOFF 

e JACl 
~ 

DC POWER 

EMERGENCY OFF 

I 8:20 I {9] o 
SYSTElvl STATUS 

G ., ",,:-I_S_T_A_N_D_B_Y--, ABNORMAL I 
I 

SYSTEM INITIALIZA TION 

~ARD 0 DISC 

SYSTEM CONTROL 

I ALARM 
I RESET 

Figure 1 ~. ASC Opera ting Panel 

SPEAKER -I 
I 

o 
VO.LUME 



STARTING DESCRIPTION 
--~----,-.----,.-----

The KEY swi tch app'! iE's primary AC power through the main three 

phase power relay to the peripheral equipment (tape and disc units, 

printer, card punch, card reader, etc.) and to the POltler Control Unit 

(PCU). At this time either the NORMAL or ABNORMAL indicator is lighted 

depending on conditions. No other lamps are lighted. The DC ON indicator/ 

switch is then pressed to apply DC power to the logic columns. The DC OFF 

indicato'r/svritch lamp is turned off. Lighting of the DC ON lamp confirms 

DC power, but voltages, pressures· and temperatures may not be within 

operating ranges. In this stage, the ASC cannot be turned off with the 

KEY: the operator must first press the DC OFF switch then turn the KEY 

off. 

The STANDBY indicator is an environmental status monitor. The 

standby state and subsequent sYstem operation is inhibited unless all 

monitored subsystems are within tolerance. The following signals indicated 

by a level or a pulse are required: 

1) 

2) 

3) 

4) 

"go" from each of the four disc modules (discs up to speed). 

II gall from thin film environmental control 1 

"go" from thin film environmental control 2 

System Standby from the PCU - a signal provided by PCU 

indicating that all environmental conditions monitored 

by PCU are within operational limits. 

The Override Panel in the PCU cabinet provides a switch for 

each lIoverridablell function such as an inoperative disk module, to 

negate the Standby inhibit signal. The operator is notified of override 

operation by the display console, a bulletin board or some other type of 

status indicator. The Override Panel is accessible only to maintenance 

personnel. 
Starting Description 3 
Section E 



The LOAD~ START and STOP lamps are controlled by signals from 

the ECl columns~ When the system reaches the standby state, the LOAD and 

START lamps will light. When either the LOAD or START switch is pressed, 

both of their lamps are extinguished when the systenl goes to the oper~te 

state and the STOP lamp is lighted. When either the STOP switch is pressed 

or the plAogram is stopped through the display console, the system reverts 

to 'the standby state, the STOP lamp turns off, and the LOAD and START 

lamps are lighted. 

After the prescribed warm up period, the STANDBY indicator is 

lighted. (The ASC must first reach STANDBY before operation is possible.) 
l 

A program is started by one of two means: the LOAD indicator/switch or 

the START indicatOl~/sv.Jitch. The program is initiated ft'om the card 

reader. cr di sc sources v:hen the LeAD SVJ1 tell and the CARD DISC s\'J; tch 

are opera ted simultaneous ly. The CARD/DISC svJi tch is a momentary on, 

three position, center off rotary switch. At the simultaneous activation 

of these two switches, VPO is programmed to select the informatj.on from 

the designated source and then start the run. The START indicator/switch 

is used to resume operation of the ASC from the program currently in 

Central Memory instead of reloading another program from card or disc. 

Whenever a program is running, the OPERATING indicator is lighted and 

the STANDBY indicator is turned off. 

4 



STOPPING DESCRIPTION 

There are three levels of turn-off: soft shut down, IIquasi" 

emergency off and emergency off. The first is an orderly turn off and 

is accomplished vJith the CRT display keyboard. Hhen the operator types 

in a halt message the ASC goes through a routine of stop operations and 

is placed in the standby state. 

The STOP switch is used for turn-off in case of, for example, 

an imniinent power failure or \'Jhen the display is inoperative. Pressing 

this switch causes the primary power failure type shut down procedure 

to be initiated. Status of the processors is saved in Central Memory, 

but data retrieval from tape or card is interrupted immediately in an 

unorderly fashion. To complete the turning off, the ASC, DC OFF must .. 

be pressed and then the KEY turned off. The DC OFF cannot be activated 

unless the system is in Standby. 

Emergency Off is the same as pulling the plug. No consideration 

is given to saving system status. The system can only be restarted after 

IIEmergency Off ll by maintenance personnel. 

There is a signal from th~ PCU called IlSwitches Normal ll which 

indicates' 1) that the fot.lr IInormalll'switches on the Maintenance Panel 

.are in the normal position. and 2) that the logic column power supply 

switches are in remote. If all these conditions are met, the PCU sends 

the Operator's Panel a signal lighting the NORMAL indicator. If the 

conditions are not met, the ABNORMAL indicator is lighted. The two 

conditions cited above will be in the PCU logic. In either the Normal 

or Abnormal state the computer can go to Standby. 

Stopping Description 5 
Section E 



ALARt,1 S,{STEt~ 

The ALARM RESET switch is a command switch to the PCU to turn 

off the alarm horn. The alarm \'Jarning ;s sounded \'Jhen a poltler phase is 

lost, or when a high voltage, low voltage or cabinet fault is detecteJ. 

A second audio system is provided by a loud speaker under the 

table which gives an aural indication under control of the operating system. 

The volume control regulates only the sound intensity and cannot turn the 

sound completely off. Provision will also be made for a headphone jack 

under the front of the table .for communication with operating personnel 

at other locations. 

6 



PERIPHERAL DEVICES 

Section F 



i 

TABLE OF CONTENTS 

TITLE 

DEVICE CONTROL 

DEVICE CHARACTERISTICS ---------.--. 
OPERATOR CRT DISPLAY CONSOLE 
CP,RD READER 
LINE PRI tiTER 
CARD PUNCH 
IBM COMPATIBLE TRANSPORT (1600 bpi) 
IBM COMPATIBLE TRANSPORT (800 bpi) 
TrAC COMPATIBLE TRANSPORT 
DISC 

INPUT/OUTPUT CO~1t~ANDS_ 

OPERATOR CRT DISPLAY CONSOLE 
CARD RU.DER 
LINE PRINTER 
CARD PU[KH 
IBM COMPATIBLE TRANSPORT (1600 bpi) 
IBM COMP~TJBLE TRANSPORT (800 bpi) 
TIAC Cm~PATIBLE TRANSPORT 
DISC 

PAGE 

1 

1 

1 
1 
2 
2 
2 
2 
3 
3 

3 

3 
3 
3 
4 
4 
4 
4 
5 



DEVICE CONTROL 

The peripheral devices of the ASC are controlled by a closely related 
combi nati on of speci al purpose hard\'Iare and software. The programs Hhi ch 
interface wi th the speci a1 purpose Ilard';mre are call ed devi ce handl ers. 
These handlers are executed in the PPU. The degree of device control pro­
vided by a device handler rather than special purpose Ilardware varies from 
d~vice to device. For devices with faster data rate~ special purpose hard­
ware is required. The peripheral device, control hardware, and hWldler are 
treated as a package by the Pl'ogrammi ng Sys tern. Spec; fi c commands are des­
cri bed by the Pi'ogrammi ng System through use of ali st of paramet.ers in 
Centrul r'ierrlory. The required handler ;s then called into use in order to 
control the peripheral device in such a way as to satisfythe in~ut/ou:t;:>ut 
requi rement. 

DEVICE CHARACTERISTICS 

OPERATOR CRT DISPLAY CONSOLE 

1. Displ ay 
Characters per line: 64 
Lines per page: 32 
Vie\-1ing Area: 7 1/211 X 9 1/2" 
Character Repertoire: 64 ASCII Alphanumerics 
Storage Nethod: ~ecirculating Delay line 

2. Keyboard 
Alphanumerics: 64 Total 
Cursor .Contro 1: Space, Carr; age Return, Tab, Vert; cal Tab, Home 
Edit Control: Replace, Insert, Delete, Clear 
Mode Control: Send, Receive, Compose 

CARD READER 

Rate: 1500 cards/minute 
Card Type: IBM 5081 or equivalent 
Input Hopper: 2500 cards 
Output Stackers 1 & 2: 2000 cards each 
Read Mode: photoelectric, serially by column 
Operating Controls: power, clear, hold 

1 
Section F 



2 

LINE PRINTER 

Rate: 1000 lines/minute, line at a time 
Characters: EGCDIC repertoire, open face 
Character Code: EGCUIC 

Gothic style 

Character Spacing: 10 charactet's/inch, 6 lines/inch 
Paper Specifications: Standard, edge punched (1/2 inch hole centers) 

fanfold paper 4 1/2 to 19 inches wide will be 

Operating Controls: 

CARD PUNCH 

used. _ 
Paper tension, paper position, phasing controls, 
skip feed (top of form), line feed, clear, power. 

Rate: 100 cards/minute 
Card Type: rm15081 or equivalent 
Input Hopper: 1000 cards 
Output Stacker: 1000 cards 
Punch t'1ode: serially by column 
Verification: electro-mechanical, bit by bit comparison, mispunched 

ca rds offset 
Operating Control: pOlder, clear, hold 

IBf.i COi~Pl\TIBLE TRArJSPORT (1600 bpi) 

T S· 'd~h 500 +.000. h ape 1 ze: \'11 I., -. -.004 1 nCI es 
.thickness - 1.5 mil, rr~lar base 

Tape Handling: Single capstan, vacuum chamber buffering 
Tape Speed: 112.5 ips ± 2% 
Start/Stop Time: 3.5 ms max. 
Start/Stop Distance: .168 ± .028 inches 
Head Ass·y: read, write, erase, 9 track 
Dens ity: 1600 bpi 
Rate: 45K words/sec. 

POSITIONING ARM DISC 

Capacity/Channel: 
Channels per disc: 
Tota 1 capacity: 50 
Data Rate/channel: 
Rotational latency: 
Random Average Seek 
Maximum See:( time: 

6 25 x 10 words 
2 6 
x 10 words 
2.0 x 106 words 

34 ms maximum 
time: 55 ms 
100 ms 



HEAD/T~ACK DISC 

Capacity/Channel: 50,528,356 words 
Tota 1 Capacity: 101 ,056,712 vwrds 
Data Rate/Channel: 500K words/sec 
Rotational Latency: 34 ms maximum 
Words/Sector: 64 
Sectors/Revolution: 256 data sectors, 1 maintenance sector 

INPUT jOUTPUT COf·1MAlWS 

OPERATOR CRT DISPLAY CONSOLE 

1. 
2. 
3. 
4. 

Define Page: 
Write Block: 

Clear screen, output page format, position cursor 
Update variable fields, position cursor 

Read Block: Input operator response fields 
Erase Block: Clear operator response or variable fields 

CARD READER 

1. Read: input ~pecified number of columns, interpreting data as 
a. Symbolic Format Normal, 
b. Symbolic Format Control, or 
c. Object Module Format depending on the data in the first 

column read. 

LINE PRINTER 

1. Write Fixed length: Output the specified amount of data, printing 
132 characters per 1 i ne. . . 

2. Write Variable Length: Output the specified amount of data, printing 
on each line the number of .. characters specified at the beginning of 
each line image. 

CARD PUNCH 

1. 

2. 

Write Fixed Length: Output the specified amount of data, punching 
80 columns per card. 
Write Variable length: Output the specified amount of data, 
punching on each card the number of columns specified at the 
beginning of each card image. 

3 
Section F 



4 

IBt/j COHPATIBLE TRJ\NSPORT (1600 bpi) 

1. Rewind & Unload: Rewind to BOT and revert to manual control. 
2. Hewi nd: Reltli nd to BOT. 
3. Backspace Fil es : Backs pace the s peci fi ed number of fi 1 es . 
4. Backspace Records: Oackspace the s~ecified number of records. 
5. Sk'ip FOr\;lard Files: Skip forvJa.rd the specified number of fi"les. 
6, Ski P FOrYla.rd Records: Ski p forwad the sped f'i ed number of ,records. 
7. Read to File r,1fl.rk: Read the remaining records in the cur-rent frJe, 

transferring alternate records to alternate ones of a pair of eM 
data buffe~~ reg; ons. 

8. Read One Record, One Buffer: Read the next record, transferring 
all data into a single CM data buffer region. 

9. Read One Record, Two Buffel~s: Read the next tecord, fill i ng 
alternate ones of a pair of CM data buffer regions. 

10. Write One Recotd, One Buffer: Write one tecord, transferring 
all data from a single CM data buffer region. 

11. Wri te One Record, Two Buffers: vJri te one record, empty; ng data 
from alternate alles- of a pair of C!v1 data buffer regions. 

12. Wri Many Records: Hrite many recOl~ds, acquiring alternate 
records from alternate ones of a pair of eM data buffer regions. 

13. t4rite Tape ~'Iarks: Hrite the specified number' of IBM compatible 
tape marks. . 

14. Erase: Erase the specified amount of tape. 

HEAD/TRACK DISC 

1. Read: Read the specified amount of data beginning at the specified 
word location on the disc, transferring data into a single eM data 
buffer region which may be defined by actual or virtual addressing. 

2. Write: Write the specified amount of data beginning at the speci­
fied sector location on the disc, transferring data from a single' 
CM data buffet~ regi on \vhi ch may be defi ned by actual or vi rtua 1 ad­
dressing. Partia1 sectors cannot be written, and when a nonintegral 
number of sectors is specified, the last portion of the sector is 
filled with zeros. 

3. Erase: Write the specified number of zeros beginning at the speci­
fied sector location. An integral number of sectors is erased .. 

4. Read Check: Identical to "Read" except no data is transferred to 
CM. Parity is checked and results indicated to provide a quality 
check on previously recorded data. 



MAINTENANCE 

Section G 



ASC 

Title 

INTRODUCTION 

LOGIC CLOCKS 

General 

TABLE OF CONTENTS 

Logk Clock Module 

Central Proces sor Interconnections 

Data Channel Unit Interconnections 

Peripheral Proces sor Interconnections 

PPU MAIN TENANCE REGISTERS 

General 

Descriptions 

Maintenance Modes 

COMMON MAINTENANCE REGISTERS 

General 

Descriptions 

Central Processor MaintenanZ'c 

Data Channellvlaintenance 

Memory Control Unit Maintena,nce 

~TEXASINSTRUMENTS i 

Page 

1 

2 

2 

3 

5 

5 

5 

6 

6 

8 

16 

29 

29 

31 

32 

38 

38 



ASC 

INTRODUCTION 

Maintenance features in the ASC Systenl are integrated with the opera­

tional logic. The data and control cells within each rnajor unit can be inter­

rogated and controlled from an external source with only minor disturbance 

to the state of the unit. The large number of·cells involved prohibits the 

direct approach of providing input and output lines for each cell at the unit 

interface, so unit designs include a SlTl.all nlaintenance controller which can 

select a sLl.bset of the unit's cells for external presentation or can force the 

. subset to a state prescribed externally. The additional hardware required 

to provide this addressability is held to a rninimum by sharing some selec­

tion trees between the operational logic and the maintenance logic. The 

result of this design approach is that a large portion of each unit can be 

exercised and checked from an external source providing only a small por­

tion of the unit, the rnaintenauce controller, is known to be operating proper-

1y. This slTIall portion of the unit is referred to as the maintenance hardcore. 

The size and nature of the maintenance hardcore varies frorn unit to unit. 

The external source used to stim.ulate the lTIaintenance hardcore of the 

unit under test usually is one or more other units of the system. The first 

unit tested is the PPU, and this test is performed by use of specially de­

signed external test equipment, and by self test features. When the PPU has 

been checked, it becomes the basic tool for stimulation of the maintenance 

hardcore of the other units. As each unit is tested, it becomes a tool to pro­

vide additional flexibility to tests for subsequent units. 

The special external equipment required for testing the PPU consists of 

the PPU Maintenance Panel for manual test control, a card reader for semi-

automatic test control and the Test Control Logic for interfacing the panel 

and there~der with the PPU ffic.i.'1tenanr:e hardcore. A :!:1nrt i.s provided for 

driving the Test Control Logic from a stored program processor to expedite 

checkout and maintenance operations. The Test Control Logic communicates 

with the hardcore via the PPU Maintenance Registers in the Comm.unication 

1 

~TEXAS INSTRUMENTS 

Introduction 
Section G 



sc 

Registers shown below. These CR's provide extensive self test capability 

because the PPU n1.ailltcnance hardcore can be fJtin1.ulated by prograrns exe-

cuted in the VP's. 

A 

8 

C 

o 
E 

F 

PPU 
r'iAI NTENANCE 

REGISTERS 

Maintenance Registers of the PPU Communic3.tion Registers 

After the PPU has been tested, it is used to stimulate the hardcore of 

the other units via the COlnmon Maintenance Registers of the CR I s. These 

registers include the Unit Registers (UR), the Comnl.on Command Register 

(CCR), and the Transfer Bit (TB). The CCR, presented to all units, con-

tains commands addressed to a specific unit under test. The UR contains 

private unit registers required to augment the CCR commands. The TB 

controls the flow of inforn1.ation between the Common Maintenance Registers 

and the unit under test. 

LOGIC CLOCKS 

GENERAL 

The logic clocks in the ASC systeln provides the syncronization pulses 

required by the system hardware and special maintenance capabilities. The 

six logic clocks are provided by Logic Clocks Module (LCM) circuit boards 

with the clock period adjusted to the specific location. 

The maintenance feature of the LCM is the adjustability of the clock 

period to the three rates of normal, marginal (5% faster than normal), and 

slow (normal clock period + 100 nanoseconds) to facilitate checkout. In ad­

dition to these three speeds, an external signal generator may be used to 

2 



ASC 

conirol the clock rate. The clock output of the LCM ITlay be a continuous 

train of pulses or a burst of frorn I to 16 pulses as selected by the operator. 

LOGIC CLOCK MODULE 

The LCM has 3. variable clock period. The block diagra1}l illustrates 

the clock period selection. The p!'inted circuit deJays which are shovvn. to be 

variable in 1/2 nanosecond steps are selected through the use of jumper wir-

ing (in series) the desired set of delay lines. The three internally generated 

clock rates are called normal, InargiEal (5% faster than normal), and slow 

(normal clock period + 100 nanoseconds). 

) EXTERNAL ENABLE 

I EXTERNAL"] 
OSCILLATOR -----' MARGINAL ENABLE 

MARGINAL PER10~O----1r-...... 

> INTERNAL ENABLE 

NORMAL -----+----4 
ENABLE 

INTERNAL 
OSCILLATOR 

102236 

NORMAL PERIOD 

SLOW 
ENABLE ---t-----i 

8-148 1/2NS 
1/2 NS STEPS 

0-15 1/2 NS 
1/2 NSSTEPS 

100 NS 
FIXED 

,~-------------------~--------------~/ 
PR INTEO CIRCUIT DELAY LINES 

Logic Clock Module Block Diagram 

SLOW PERIOD 

The CP and DCU control commands for a particular LCM corne from the 

Common Command Register (CCR); of the 16 bits in the CCR, only 15 are 

used by the LCM. When the CCR bits 0- 3 match the four unit ID bits 

which are wired to each unit, and CCR bits 4-7 are 0, 0, 1, 0, respectively, 

and a Transfer Bit (TB) is received and recognized, the LCM will load and 

3 Logic Clocks 
C,....,..A! -.-- ~ 



ASC 

exec-ute the request contain~d in CCR bits 8··15. It should be noted here that 

CCR bit 12 is the msb and GeR bit 15 is the lsb for the burst count code; also, 

a "stopl: comlna.nd would be a burst of arbitrary length. The control corn­

mands for the PPU is frorn. the Start-Up and Audio byte of the CR file. 

UNIT C0DE 

03 04 

LC~1 C9lDE 
(=0010) 

1 BURST' L 
o CONTI NUOUS3 

NOT USED 

BURST C0UNT 
C~E . 
0000~16; ALL 0THERS N0RMAL BCD 

tOO, 11 ~N0RMAL SPEED 
01 ~ MARGI NAL SPEED 

. 10 ----?SL0W SPEED 

Other bputs to the LCM are <:'.S follows: 

1) An initializing or system stand-by signal, present during power 

turn-on, to put the LGM in its initial state which is no output, ready to ac­

cept its first command. 

2) The external signal generator output, i. e., the external source. 

3) A signal from a switch, - EXTR, is used to select the external 

signal generator as the clock source. If this switch is moved to a new poc;i­

tion while a command is being executed, the LGM will (a) cOlnplete a burst, 

or (b) stop immediately upon detection of the change if running continuously, 

and wait until the next LCM command to start again. When operation is re­

sumed, the source will be determined by the current switch position and CCR 

bits 10 and 11, with the switch being the dominant signal. 

The LCM clock signal distribution network provides for driving up to 11 

separate lines and a single reply signal, CACKCMD. The clock signal will 

be normally false and will be free of spikes and II crippled (partial)11 pulses; 

when running, the clock signal has a 50% duty cycle. The reply line is set 

true for one .c~ock period dura~ion (then reset) at the beginning of a continuous 
. 4 



cOlnmand or at ,the end of a burst, and is used to reset TB for all applica­

tions except for the PPU., 

CENTRAL PROCESSOR ll',JTERCONNECTIONS 

The Ceniral Processor (CP) contains four cards, a lnaster and three 

II slave" boards. The 1v1B U, AU, and IPU each contains one o! the subserviant 

LCM's. During rnaintenance and checkout procedures these three modules 

may be operated independently (on a unit level). During normal operation 

these units are set to the external, continuously running rnode acting only as 

clock fan-out and distribution networks for the master LCM. 

All four modules recognize the follo'wing CCR command format: 

CCR 

DATA CHANNEL UNIT INTERCONNECTIONS 

The DCU clock will recognize the following format: 

CCR 

PERIPHERAL PROCESSOR IN TERCONN EC TION S 

The ppr S LCM is controlled by the Maintenance Control Panel (MCP) 

and two CR bits, with the MCP signals being dominant. 

The "CLOCK RATErr switch on the MCP is used to select normal, mar-

ginal. slow, or external clock speeds and clock source; it may also select 

a step mode (burst of one pulse). The absence of any of these signals in the 

true state is interpreted as being one of the If OFF" positions of the switch 

5 Logic CLOcks 
Section G 



A C 

The only p:rograrn control available' in the PP is effected through the use 

of the two CR bits vv"hich specify the selected period of the internally gener­

ated clock signal. These two bits are located in the Start-Up and Audio byte. 

Tlie code for these two bits is as follows: 

BITS: 4 5 ._------
00 or 1 1 NORMAL 

o 1 MARGINAL 

I 0 SLOW 

A. restriction on this operation is that these tVIO bits have clock rate control 

. only when the MCP "CLOCK RATE" s'witch is in the normal position. 

The LCM jn .the PP will stop anytime the MCP "CLOCK RA TE" switch 

is turned, and must be restarted manually be depression of the II GENERA TOR 

!NIT!! button on the MCP. 

PPU MAIN TENANCE REGISTERS 

GENERAL 

The PPU Maintenance Registers provide the communication link between 

th'e PPU maintenance hardcore and the equiprrwnt controlling PPU tests. 

The test equipm.ent loads these registers with commands and addresses, and 

observes resuits in these registers. The commands which appear in the PPU 

Maintenance Registers are decoded and executed by the Maintenance Logic 

which is the major part of the maintenance hardcore. 

The Maintenance Registers are loaded with commands from the Main­

tenance Panel (rnanual rnode), the card reader (serni-automatic mode), a 

sn1.all stored program cornputer, or from an operative VP within the PPU 

(automatic rnode). The source of the commands is dependent on the test 

mode which is controlled by a Maintenance Panel switch. The reaction of 

the Maintenance Logic to the cornmands is essentially identical for all corn­

Inand sources. The relationship of the PPU test facilities are shown in 

Figure 1. 

6 
_ , f I 

02~"2i~~,r~~., 1;1 C"i:r,%;~ 



ASC 

Small Stored 

U1 .,.... 
o 

EXTERNAL TEST EQUIP. 

PPU 

VP Logic 
Mai ntenanc" I 

Figure 1. PPU Maintenance Hardware 

7 PPU Maintenance Register s 
_p~ction G 



DESCRIPTIONS 

The Jviaintenance Registers are divided into seven fields as indicated 

below. The Control field contains the basic conunanJ to be executed by the 

Maintenance Logic, and the rCJnaining fields cOl1.tcdn addresses and para-

meter s referenced by the cOHnnands or data resulting frOln comnla.nel execu-

tion. 

17 24 25 31 
15[--~--L 

--
0 7 8 Control 

Burst I V I REG 

C 

D 

SR E 

DR F 

CONTROL FIELD 

24 25 26 27 28 29 I 30 31 
I I 

B PC I S 
U L L P COMWIND C 
S 0 L A CODE Y C E R 

K G E 

Busy - Set by Maintenance Logic on the bit period il1.'ll1.'lediately following re­

ceipt of any non-zero cOl1.'lIT1.and code in bits 28- 31. Reset by Main­

tenance Logic on the bit period immediately following completion of 

the cOl1.'lIT1.and. Resetting does not occur if the coml1.'land is illegal. 

8 



ASC 

PC Lock, - Set or reset by the J\1aintenance simultaneous with resetting 

. of Busy bit. Indicates current status of program counter lock which 

is aHected by Cl command code of 8 or 9 in bits 28- 31. "1" denotes 

locked, "Oil denotes nonual. 

Illegal - Set by Maintenance Logic if an illegctl cOITnnand is received. 

Com.mand Code - Set by the Test Control Logic or by a VP to ~nitiate a rnain-

tenance operation. Reacted to and reset by the Maintenance Logic. 

Resetting occurs simultaneous with the resetting of the busy bit. 

Maintenance Logic reaction to comm.ands varies slightly depending 

on whether the 11aintenance Panel indicates manual, semi-automatic, 

or automatic test mode. Reactions to the 16 command codes are 

given in Table 1. 

F FIELD 

17 23 

The F field' specifies the portion of a VPR or CR to be affected by 

command codes 5 and 6. This fie~d is not modified by the Maintenance Logic. 

F 

XXXX 000 

xxx x 001 

XXXX 010 

XXXX 011 

XXXX 100 

XXXX 101 

XXXX 110 { 
XXXX III j 

9 

Register portion 

byte 0 

byte 1 

byte 2 

byte 3 

left half 

right half 

whole word 

PPU Maintenance Register s 
Section G 



sc 

BURST FIELD 

o 7 r-'-'--I -, J D 

The Burst field specifies a nurnber used in conjunction with com.mand 

codes C and E. This field is never modified by the Maint.enance Logic. 

V FIELD 

8 15 

D 

The V field specifies which VP's are under test as required for com.­

mand codes C, D, E, and F. In the manual test mode, only one of the bits 

will be "l". This field is never modified by the Maintenance Logic. 

REG FIELD 

16 17 19 20 23 24 25 26 31 

I I Vp 

I 

Selection D Group 

The VP, Group, and Selection portions of the REG field designate a 

register which is to be involved in the data transfer specified by command 

codes 2, 5, and 6. 

10 



ASC 

VP Group Selection. Register Designated 
---,. .. _ ...... ---------_. __ . ---,--,---,-----------

n 0000 

n XOOI 

n XOlO 

n XOII 

n XIOO 

n XIOI 

XIIO 

Xlll 

1000 

i 

i 

i 

i 

i 

PC ill VPn 

NIR in VPn 

IR in VPn 

SWBA i:1 VPn 

SWBD in VPn 

illeg&.l for automatic n'"lode 

If Group and Selection designate SWBCS' SWBC9' SWBC A in conjunction 

with co!nr.nand code 5, then the con'"lmand has a special meaning. These codes 

are used for controlling the asynchronous por'tions of the SWB as follows: 

SWBCs - SWB stops on even state 

SWBC9 - SWB stops on odd state 

SWBC A - SWB normal 

The Maintenance Logic maintains these control conditions until a change IS 

commanded. 

The VP portion of the REG field is used to specify a VP# in conjunction 

with command codes 3, 4, and 7. 

The SWB Test portion of the REG field is used for placing the SWB under 

test, but only during the Serni-automatic rnode. Whether or not the SWB has 

been placed under test affects the interpretation of command code C. The 

use of the SWB Test bits is independent of cOlnmands. The Maintenance 

Logic responds immediately to these bits as follows: 

oit 24 

o 
o 
1 

1 

bit 25 

o 
1 

o 
1 

reaction 

none 

SWB placed in normal condition 

SWB placed under test 

none 

11 
d~IEXAS INSTRI'MENTS 

PPU Maintenance Registers 
Section G 



ASC 

SR FIELD 

o 31 C-- Data o'~ J 
~"cmory Address E 
_._._-------- . 

The SR field provides data for comn'land codes 1 and 5, and provides a 

n'lenlory address for con'lYnand codes 3, 4, and 7. This field is never modi-

Hed by the Maintenance Logic. 

DR FIELD 

o 31 

I<---_Data ----,I F 

The DR field provides data to the Maintenance Logic for comnland codes 

6 and 7. For co:rnrnand COd8S 1, 2, 3, and -:1:, the DR field is loaded by the 

Maintenance Logic. 

Table 1. Conunand Codes 

CODE DESCRIPTION 

o 

1 

2 

This is the state of the comnland code at the completion of any 

command unlcs s the com~and is illegal or cannot be completed. 

'When such commands occur, the Comm.and Code must be set 

to 0 by the tester in order to clear the Maintenance Logic. 

'When the code is set to zero by the tester, the Maintenance 

Logic resets the Busy, PC Lock, and Illegal bits, and is ready 

to accept new commands. 

(SR)- DR 

«(REG))- DR 

For autom.atic mode, illegal if REG specifies SWBC or MIR. 

12 

~£XA£ INSTRUMENTS 



ASC 

Table 1. Command Codes (Continued) 

CODE DESCRIPTION 

3 

4 

5 

6 

7 

8 

9 

A 

B 

«SR)CM - DR 

The portion of the SWB designated by bits 17 -19 of the REG 

field is used -for this cOlnmand. 

«SR»ROM - DR 

An NIR and part of the MIR are required. The NIR designated 

by bits 17-19 of the REG field is used. 

(SR)-- (REG) 

If REG specifies VPR or CR, then the portion of the register 

affected "is controlled by the F field. For automatic mode, 

illegal if REG specifies SWBC or MIR. If REG specifies 

SWBC8. SWBC9'. or SWBCA' then command code 5 is inter­

preted differently, and controls the asynchronous portions of 

the SWB. 

(DR)- (REG) 

If REG specifies VPR or CR, then the portion of the register 

affected is controlled by the F field. For automatic mode, 

illegal if REG specifies SWBC or MIR. 

(DR)-- (SR)CM 

The portion of the SWB designated by bits 17-19 of ~he REG 

field is used for this command. 

Lock PC's of all VP's designated by V field. 

Unlock PC's of all VF's designated by V field. 

Reset (asynchronous reset line) all F/F's urdque to aU VP's 

designated by V field. 

Set (asynchronous set line) all F IF's unique to all VP's de­

signated by V field. 

13 

~TEXAS INSTRUMENTS 

PPU Maintenance Registers 
Section G 



i\SC 

CODE 

C 

D 

Table 1.. Conl1nand Codes (Continued) 

DESCRIPTION 

Autonl.atic Mode -

Advance all Vpl s designated by V field. Advancem.ent occurs 

under the influence of the tirne slot ta·ble. Amount of adV'ance·. 

n'lent is detennined by counting the nurnber of time slots indi-

cated by the Burst field. Counting begins at T. S. O. 

Semi-Automatic Mode -

Reaction dependent on whether or not SWB has previously been 

placed unde!' test as described under Register Field 

1) SWB not under test -

Advance the PPU the number of time slots indicated by 

the Burst field. This is equivalent to normal operation 

within the PPU except that it occurs for a lim.ited til-ne. 

2) SWB l.mder test -

Advance the SWB the number of time slots indicated by 

the Burst field. 

Manual Mode -

Reaction dependent on whether or not SWB has been placed 

under test by activation of the SWB LOCK switch on the Main­

. tenance Panel. For each case, reaction is identical to re-

spective Semi-Automatic case. 

Automatic Mode -

Advance all Vpl s designated by V field. Advanceluent occurs 

under the influence of the time slot table. Advancement of 

each VP continues until that VP completes its current instruc­

tion.· Note that if nlore than one VP is designated by the V 

field, then termination of advancement of the designated Vpl s 

does not necessarily .occur at the same time. 

14 



ASC 

. Table 1. Command Codes (Continued) 

CODE DESCRIPTION 

E 

F 

Selni-Autornatic Mode -

Start time slot counter. Proceed as for Automatic Mode. Stop 

time slot counter at thne slot O. 

Manual Mode -

Advance the VP (only one) designated by the V field. Advance­

ment occurs independent of the time slot table. Continue until 

the designated VP cOlnplete~~ its current instruction. 

Automatic Mode -

illegal command 

Semi-automatic Mode -

illegal command 

Manual Mode -

Advance the VP (only one) designated by the V field. Advance-

ment occurs independent of the time slot table. Amount of ad­

vancement is determined by the Burst field. 

Automatic A10de -

illegal' command ", 

Semi-Autorn.atic Mode -

illegal cOInr£l.and 

Manual Mode -

Start advancement of the VP (only one) designated by the V field. 

Advancement occurs independent of the time slot table. Advance­

ment continues after "cun'1lJletionlf of the COn1.llldlld by tho::: !v1ain­

tenance Logic. Advancement stops when any new command code 

is received including a second "F" command. If the second 

command is other than "F" then in addition to discontinuing ad­

vanceme~'o£ tiHt·.* .ignated .VP, perform the new command. 

15 

~ ... TrYAc;:. INc;:.Tnll ..... rNT~ 

PPU Maintenance Registers 
Section G 



ASC 

MAINTENANCE MODES 

AUTOMATIC MODE 

In the AutoHl.atic Mode a VP loads the Maintenance Register s through 

its normal addressing capability.·. A VP operating ~onnally can place other 
;-

VP's under test, control the advancement of the VP's under test, and inter-

rogate and/ or luodify the results of the advancement. 

SEMI-AU TOMA TIC MODE 

In the Semi-Automatic Mode, a card reader or sm.all COl1.1.puter controls 

the advancement of the VP's under test, and can interrogate and/ or modify 

the results of the advancement. 

1} Card Reader Control 

The card reader hlterprets the cards colUlnn by colUlun and passes 

card conllna.ndtl io the Test Control Logic. A card com...--na..'1.d is a se­

quence of two or more of the ltexadecima1 digits 0 - F, terminated by' a 

blank column 01' end of card. These digits are represented by the alpha-

. numeric characters 0 - 9 (Single 0 to 9 punch) and A - F (a 12 punch and 

a single 1 to 6 punch). 

A card column containing an eleven punch (alone or with other 

punches) is ignored. This allows overpunching error s with a minus 

sign without having to punch another card. 

An illegal" card command is treated the same as an end of card. An 

illegal command is defined to be: 

1. A single digit field. 

2. A field starting with a digit other than 0 to 6. 

3. A character other than 0 - F, blank, or containing an 11 punch. 

The card command size will be two, three, or five digits depending 

on the command code as shown in Table 2. If the card field has too 

16 



ASC 

Table 2. Card Reader COlnmands 

Card 
Code Mnelnonics 

ox 00 NOP 

01 XSD 

02 XRD 

03 XCD 

04 XMD 

05 XSR 

06 XDR 

07 XDC 

08 LPC 

09 UPC 

OA RST 

OB SET 

OC CLK 

OD CYC 

OE CMP 

OF HLT 

IXXXX LDL 

2XXXX LDR 

3XXXX LRG 

40X LRF 

5XX LVT 

6XX LCB 

~ .. .Jdb:1T~XAS INSTRUMENTS 

Test Control Logic Interpretation 

Load X into the least significant hex of the 

Control field in the CR file.'" This action 

is sues a cmnnl.and to the Maintenance Logic. 

Th.e Test Control Logic interprets the Busy 

bit (bit 0 of the CR located Control Field) 

to deterrnine when to proceed. If X is "E" 

or II F", the Test Con.trol J logic also does 

the following: 

"OE" - If (SR) ::: (DR), continue test. If 

(SR) .; (DR), stop test with Compare Error 

light on. Ignore remainder of card. 

"OF" - Stop Test. Ignore remainder of 

card. 

Load XXXX into the most significant half 

of the SR field in the CR file. 

Load XXXX into the least significant half 

of the SR field in the CR file. 

Load XXXX into the REG field in the CR 

file. 

Loa": OX into the F field in the CR file. 

Load .XX into the V field in the CR file. 

Load XX into the Burst field in the CR file. 

17 
PPU 1'I/laintenance Registers 
Section G 



ASC 

luany digits,. the extl'a digits will be'ignored. I£ the card field has at 

least two digits but less than the required number, the action will take 

place leaving the hex digits in the register that correspond to the missing 

digits undisturbed. 

2) Progralnm.ed Processor Control 

A stored program. processor lnay be connected to the Test ContJ'ol 

Logic to expedite checkout and rnaintenance activities. Card conllnands 

are generated and the DR output is sampled by the processor to provide 

extended r.naint~.nance capa bilitie s: 

1) Maintenance cOITImand sequence looping to facilitate signal 

timing analysis (5 cope loops). 

2) Printing contents of all or of selected registers as the PPU 

executes a series of instructions (microtrace). 

3) Interactive hard c.opy display and rnodification of PPU register 

and C111c'C:atio!1 contents. 

When the processor is connected to the Test Control Logic the card 

reader input is selectively disabled under control of the processor. 

When the processor is not connected the card reader input is enabled. 

The processor is detachable test equipment and is 'not an integral part 

of the PPU. 

MANUAL MODS 

In the Manual Mode the Maintenance Registers are loaded from the Main­

tenance Panel to control the advancement of the vpt s and interrogate and/ or 

modify results of the advancement. Manipulations of the Maintenance Panel 

are interpreted by the Test Control Logic, appropriately encoded, and loaded 

into the FPU lvla':":ltenance Registers. 

The Maintenance Panel (Figure 2) includes some controls for purposes 

other than loading the Maintenance Registers. All functions of the panel are 

given in Table 3. 

18 

_~C;:'I("C: INC:T~llMrNT~ 



876 11 12 

'- -.-~. 

5 2 3 4 21 22 13 14 15 

10 

23 

9 
s 

16 1718 19 

Figure 2. PPU Maintenance Panel 

20 29 30· 28 

I j 



Z 
IJJ 
.-1 
;0 
C 
,~ 
M 
Z 
-I 
'J) 

N 
o 

No. 

1. 

z. 

3. 

4. 

5, 

Table 3. PPU Maintenance Pe.nel Controls and Indicators 

Control/Indicator Function 

MASTER CLEAR 

Push button/ Indicator 

PANEL TEST 

Push button/Indicator 

COMPARE ERROR 

Indicator 

TRANSFER CCR 

VP SELECT 

Switch 

Enabled and lit only if the TEST MODE switch (30) is not in the 

NORMAL position. Switch forces all the cells in the PPU and in 

the interface controls of all of the I/O devices interfacing with 

the PPU to "Oil. This occurs via the asynchronous reset line pro­

vided for th!:! cells, and is independent of the PPU clock system. 

All the panel lamps are illuminated. 

Illuminates if (SR) f; (DR). 

Enabled and lit in Manual Test Mode. Sets the TB bit in the Com-

mon Maintenance Registers to initiate a transfer of the CCR to a 

unit other than the PPU. 

If TEST MODE (30) ::: NOR: designates the selected VP for time 

slot zero. 

If TEST MODE (30) = MANUAL: designates the VP under test. 

If TEST MODE (30) = CARD STEP or CARD AUTO: i..,..'1.activc. 

The adjacent light extinguishes if the switch is in the NOR posi-

tion. 



No. 

6. 

7. 

N -

Table 3. PPU Maintenance Panel Controls and Indicators (Continued) 

Control/Indicator Function 

VP 

Disrlay 

TIME SLOT 

Display 

CLOCK BURST COUNT 

Switches 

Data Display 

Display 

Displays the current VP if; 1. the CLOCK RATE (28) ::: STEP or 

2. the TEST MODE (30) ::; MAN and the MANUAL SELECT 25 ::; 

PP CLK, PP REV, or PP BST~ Current VP is the VP currently 

at the execution level (MIR) in the PPU. This is the VP \vhich 

will react to the next clock p::tlse and which corresponds to the 

time slot displayed at TIME SLOT (7). 

Displays a decimal readout of the current tilDe slot if; 1. the 

CLOCK RA TE (28) ::; STEP or 2. the TEST MODE (30) ::; MAt~ 

and the MANUAL SELECT (25) is in the PP eLK, PP REV, or 

PP BST. Time slot is the tilne slot which selected the displayed 

VP (6). Due to time slot lookahead, this is not the time slot con­

trolling VP selection at the IR level or at the tilne slot table scan 

level. 

Provides input data to the Burst field when the MAt\lUAL STEP 

(26) is depressed if the MANTJAL SELECT (25) is in the PP BST 

or VP BST position. 

Provides a hexadecimal readout of the DR. The small lights ad­

jacent to the hex character displays provide a binary readout of 

the DR. 



-• 

N 
N 

No. 

10. 

11. 

12. 

13. 

Table 3. PPU Maintenance Panll C~ntrols and Indicators (Continued) 

Control/ Indicator 

Data Switch 

Switches 

AUTO INTERRUPT OFF 

Push button/Indicator 

(2 color) 

LOCK PROGRAM COUNTER 

Push button/Indicator 

(2 color) 

REGISTER FROM DISPLAY 

Push button/Indicator 

(2 color) 

Function 

Provide input data to the SR. The value on the switches is insert­

ed into the SR when any of the LOAD DISPLAY switches (13 thru 

19) are activated. 

The selected VP does not receive the auto interrupt signal but its 

time slot is overriden the same as the other VPs. If the automatic 

interrupt logic is disabled (abnormal), then the indicator is il­

luminated and the light a9-jac~nt to ih;" switch it illuminated. 

Enabled in the Manual Test Mode. If illuminated, the program 

counter of the VP under test is locked. If not illumi::J.ated, no 

program counters are locked. Switch causes the following if 

Busy is 110"; 1. VP (21)-- V field, and 2. Command Code !18" -

control field if indicator is off, or Command code "911 - control 

field if indicator is on. 

Enabled in Manual Test Mode unless LOCK LOAD/DISPLAY (20) 

is activated. Switch causes the following if the Busy bit is "0"; 

1. REGISTER (21, 24) - REG field, 2. VPR/CR (23)- F field, 

and 3. Comm.and code I! 6"- Control field. 



No. 

14. 

15. 

16. 

17. 

Ul1:j 
('l) 1:j 
~C ..... 
0 ~ !j 

fll Cl ..... 
~ 
M-
('l) 
!j 18. 
fll 
!j 
(l 

<l> 

;:0 
('l) 

CTQ ..... 
(j) 
M-
('l) 

"'I 
(j) 

Table 3. PPU Maintenance Panel Controls and Indi.cators (Continued) 

Control/Indicator Function 

CMa FROM DISPLAY 

Pust,. button/L'1dicator 

(2 color) 

REGISTER FROM SWITCHES 

Switch/Indicator 

(2 color) 

DISPLAY REGISTER 

Push button/Indicator 

(2 color) 

DISPLAY CMO' 

Push button/Indicator 

(2 color) 

DISP J....JA Y SWITC HES 

Push button/Indicator 

(2 color) 

Enabled L'Yl Manual Test Mode if both REGISTER VP (21) and VP 

indicated by (5) indicate a different VP. The switch causes the 

following if Busy is !lO"; 1. DATA SVvITCHES-f- SR, 2. REGISTER 

~ REG field, 3. Command Code 117" -+ Control field. 

Enabled i...."'1 Manual Test Mode. The switch causes the follo"Vfing 

if the Busy :jit is "0"; 1. REGISTER-> REG field, 2. VPR/CR 

FJELD (23)-+ F field, 3. DATA SWITCHES (10) -+ SR, and 4. Com­

mand Code "5"-+ Control field. 

Enabled i...."'1 Manual Test Mode. The switch causes the following 

if the Busy bit is "0"; 1. REGISTER-I" REG field, 2. Connnanci 

Code "2It-+ Control field. 

Enabled in Manual Test Mode if REGISTER VP (21) and VP SE­

LECT (5) indicate a different VP. The s'\vitch causes the follow-

i...."'1g if Busy bit is ItO"; 1. DATA SWITCHES (l 0) ..... SR, 2. REG­

.;,1 ISTER-i>REG field, 3. Command Code 113" --> Control field. 

Enabled in the Manual Test Mode. The switch",causes the follow­

ing if Busy bit is ttOtt; 1. DATA SWITCHES (10)4 SR, 2. Com­

mand Code ttl" -l> Control field. 

> 
Cl'J 
('j 



(. 
~ 
-: 
~ 
n 
z 
11 
-! 
Xl 
:: 
~ 
~ 
Z 
--! 
fJl 

Table 3. PPU Maintenance Panel Controls a.nd Indicators (Continu.ed) 

No. 

19. 

20. 

Control/Indicator 

DISP LA Y ROMO' 

Push button/Indicator 

(2 color) 

LOCK 

LOAD/DISPLAY 

Push button/Indicator 

(2 color) 

21. REGISTER VP 

Switch 

22. REGISTER GROUP 

Switch 

Function 

Enabled in the Manual Test Mode. The switch causes the follow-

ing if the Busy bit is "0 '1 ; 1. DATA SWITCHES (1 0) ~ SR, 2. REG­

ISTER -flo REG field, 3. Com.mand Code "4'1 -"> Control field. 

Used in. the Manual Test Mode to lock any of the LOAD/DISPLAY 

switches (13 thru 19) so that the function normally initiated by the 

locked switch occurs continuously. LOCK switch will lock the 

function switch simultaneously depres sed if the function switch is 

enabled, and both indicators will illuminate; the other functions 

will be disabled and be extinguished. The locking is removed by 

1. LOCK LOAD/DISPLAY switch, 2. changing any sw:;'tch condi­

tion normally required for initiation of the locked fu..'1ction. If, 

while a LOAD / DISP LAY function is locked, another fu...'1ction, not 

subject to locking, requires the use of the Control field, then the 

locking logic temporarily relinquishes use of the Control field. 

When the second function is complete (as indicated by the Busy 

bit) then the locked function continues. 

Provide input data to the REG field when one of the LOAD/DIS­

PLAY switches is activated. 

> 
c,n 

n 



~ 
--' 
-f 
!'II 
>C 

-> 
1(Jl 
n Oz 
'00 
;~ 
.;0 
.c os:: 
~!'II 
0% 
~ 
(Jl 

N 
U'I 

No. 

23. 

24. 

25. 

26. 

Table 3. PPU Maintenance Panel Controls and Indicators (Continued) 

Control/Indicator 

REGISTER 

VPR/ CR FIELD 

Switch 

REGISTER 

SELECTION 

Switch" 

MANUAL SELECT 

Switch 

MANUAL STEP 

Push button/Indicator 

Function 

Provides input data to the F field when one of the following LOAD 

DISPLAY switches is ,enabled; 1. REGISTER FROM DISPLAY 

(13), or 2. REGISTER FROM SWITCHES (15). 

Provides input data to the REG field when one of the LOAD/DIS­

PLAY switches is activated. 

.. 
Provides input data to Maintenance Registers as described under 

MANUAL STEP (26). 

Enabled and lit in Manuai Test Mode. Switch causes the following 

if the Busy bit is 1'0": 

a. CLOCK BURST COUNT (8) ..... Burst field if MANUAL SELECT 

(25) is in PP BST or VP CLK. 

b. BP SELECT (5)-+V field if MAl~UAL SELECT (25) is in VP 

CLK, VP CYC, VP CNT, VP RST, or VP SET. 

c. Commcmd code "C"'" Control field if MANUAL SELECT (25) 

is in PP CLK, PP REV, or PP BST. 
... 

d. Command code "D" ..... Control field if MANUAL SELEC T (25) 

is in VP CYC. 

e. Command code "E'I.-. Control field if MANUAL SELEC T (25) 

is in VP CLK. 



No. 

27. 

Table 3. PPU Maintenance Panel .n:·~trols and Indicators (Continued) 

Control/Indicator Function 

CARD STEP 

Push button/Indicator 

f. Command code !IF!I...,. Control field if MANUAL SELECT (25) 

is in VP CNT. 

g. Corrunand code flNI -!). Control field if Ml-u"\lU AL SELEC T (25) 

is in VP BST. 

h. Command code "BI!~ Control field if MANUAL SELECT (25) 

is in VP SET. 

1. Binary 16 -+ Burst field if MANUAL SELECT (25) is in PP 

REV. 

j. Binary 1-+ Burst field if MANUAL SELEC T (25) is in pp eLK. 

If TEST MODE (30) switch is in CARD STEP, the CARD STEP 

button/indicator is illuminated and enabled. Depressing the but­

ton initiates the sequence of tests punched on one card. If the 

card includes a command for a cOInparison, and if the comparison 

fails, then the remainder of the card is ignored by the Test Con-

trol Logic and COMPARE ERROR (3) is illuminated. 

1£ the TEST MODE (30) switch is in CARD AUTO, the CARD STEP 

button/indicator is initially illuminated and enabled. Depressing 
,,", ~ 

the button initiates the sequence of tests punched on the card deck. 

Card tests continue with the CARD STEP button/indicator extin-
.. 

guished and disabled. The tests continue until a comparison 



N 
-J 

C/)1j 
(1) 1j 
~c::: ..... 
0 
~ l::l 
p.l o ..... 
l::l ,..,.. 
(1) 
l::l 

~ 
n 
(1) 

~ 
(1) 

()Q ..... 
til ,..,.. 
(1) 
Ii 
til 

No. 

28. 

29. 

30. 

Table 3. PPU Maintenance Panel Controls and Ixldicators (Continued) 

Control/Indicator Function 

CLOCK RATE 

Switch 

, 

GEN INITIATE 

Push button/Indicator 

TEST MODE 

Switch 

command fails. When this occurs, the remainder of the card is 

ignored by the Test Control Logic, no additional cards are read 

by the reader, the CARD STEP button/indicator is illuminated 

and enabled, and COMPARE ERROR is illum.inated. 

Controls clock source to the PPU as follows: 

a. 

b. 

c. 

d. 

e. 

NOR - Normal frequency 

MAR - Marginal frequency (normal + 5%) 

EXT - Clock source provided by external generator 

STEP - Clock source under control of MANUAL STEP (26) 

SLOW - Normal period + 100 ns 

The light adjacent to the switch is lit if the switch is not in the 

NOR position. 

Enabled and lit under the following circumstances: 

a. CLOCK RATE switch in "NOR", "MAR", or "SLOW" position 

and clock source stopped. 

b. CLOCK RATE switch in "STEpt' position. 

Activates the applicable maintenance equipmeht in Manual Test 

Mode (MAN), Semi-Automatic Test Mode (CARD STEP or CARD 

AUTO), or Normal Operating Mode or (Automatic Test Mode) 



N 
ex> 

Table 3, PPU Maintenance Panel ( ___ cntrols and Indicators (Continued) 

No. Control/Indicator Fu.."'1.ction 
~~--~~~~~~~~~--------------------------.--------------~~~~~------------------" -------

(NOR). The light adjacent to the switch is illUlYl.inated when the 

switch is not in NOR. 

31. LOCK SWB Enabled ill Manual Test Mode. Places SWB under test or removes 

Push button/Indicator SWB from under test depending on present state of switch. 111u-

millated if SWB is under test. 

32. LO, Ll LO - Illuminated if Busy bit is zero. 

Ll - Illuminated if an illegal maintenance command is sensed. 



ASC 

COMMON MAINTENANCE REGISTERS 

GENERAJ .. 

Maintenance is performed on the CP, MCU, and DCU using a program oper­

ating in the PPU which controls the designated unit via the Conunon Maintenance 

Register (eMR) as shown below. 

,..-- , CP 

.--' I 
I 

C I 

PPU r.._~ 

HI MCU 
I--~ R 
1 
1 
r.._~ 

DCU 
, 

PCU 
I 

.-----
'I 
1 r--1 
1 

1-..4 
}--- --
I 
1 r--I 
I 
I 
I 
l._ --1 
I 
1 -I 
I 
I 
I 
L_ ---

'---

C1>1 

CM 

CM 

Ctvl 

-_. Maintenance 
. Lines 

Processor & 
~lodule Buses 

The eMR cOnlnlands action to be taken, transfer of data directly to or from. 

the unit addressed, or between Central Mem.ory and the addressed unit, using 

dedicated pointers contained in low order CM. The appropriate status registers, 
~;r 

section control cells, decode circuitry, and hard core circuits are contained in 

each of the addressed units. These circuits are tailored to the needs of the unit 

in which they reside and interface in a standard way with the CMR. 

This concept allows for system expansion and flexibility without having to 

reserve large blocks of CRs in the PPU for maintenance use. CM transfers to 

and from the addressed unit uses the unitls normal bus and addressing m.echanism 

to pick up the pointer and request the required transfer of data. 

The layout of the' CMR in the CR byte is shown below. 

DCU 

CCR ID I OP 

0 4 8 

CP MCU 

unas igned 

OPERAND T 
B 
16 

29 

unassigned 
} 

Unit 
Registers 

Comm.on Maintenance Registers 
Section G 



AS 

Other Clv1R ' s rnay be used for operational communications where speed of 

response, interaction between the PPU and the other unit, or grouping of the 

CR for monitor response is dictated by the system requirements. 

The com.mun1cations between the MCU and the other unit is the normal ad-

dress charm.31. 1£ the operand specified by the CCR is in CM then the unit gen-
If 

crates an addres s and requests the data from the MCU. Normally the data 

accessed is a specific word in the lowest portion of CM. This word in turn 

points to a data field where the actual data is located. The unit must provide 

for suppression of Map and Protect while the pointer and data are being accessed. 

"The maintenance panel may load CCR and the appropriate UR using a half 

word or byte load of the appropriate CR froin the switch or display register. 

The corresponcing words can be observed by transferring the appropriate CR 

to the Display Register. The "transfer CCR" push button switch is provided on 

the panel to set TE. TB is located. at the Oth position of the !F! byte in the 

lv1air ... tenance panel CR and may be set by the maintenance card reader by a LRF 

8Xl6 instruction where X is the value of F that is desired in the right hex of 

the byte. 

CCR is contained in the left half CR word that contains the F field and con-

trol field bytes. Since a zero value of these fields results in no action to the 

pPU. a whole word may be lQaded into this CR by instruction that "contains the 

desired command in the left half word and a 1 in bit sixteen and zeroes in bits 

11-31. This causes the desired action to be'set In CCR and TB triggered. 

Signals which are contained in CCR code and which are also need for hard­

ware action such as context switching are routed to the unit directly where they 

are "OR!ed!! with the decoded value of the CCR for the same action. This pre­

vents coding the signal or special decoding at the PPU interface. 

30 



ASC 

DESCRIPTIONS 

UNIT REGISTEH .. 

The eight one byte registers are used to transfer data from the addressed 

unit to a CR file and to load data directly when required. The loadjng of UR in 

the PPU is via software. Conrrnand Codes and supplementary ad,dresses in 

CCR cause the transfer to or frorn the unit addressed and proper routing within 

the unit. 

CCR 

Common Com.mand Register is shared by all the other units for maintenance 

control and infrequent communications. The register is divided into three sec-

tions. 

ID(O-3) This field designates the unit that is to interpret the command and 

perfonn the necessary actions. Unit ID assignments are: 

Bits 0-3 

1 - MCU 

2 - DCU 

4 - CPU 

OP(4-7) This is an operation code that is unique to the u~it addres.sed by 

ID. The op codes are used to: 

a) Direct loading or unloading of registers, control, or com­

. munication cells in the addressed unit from or to Central 

Memory. A dedicated communication word in 'CM con­

tains a pointer to the CM region to be used. 

b) Transfer a byte of data to or from the UR register in the 

CR file. This allows the unit addressed to be controlled 

or accessed by the maintenance panel, card re~der, or 

small computer. 

c) Initiate a control action based on the contents of the CCR. 

d) Load communication or control cells directly from the 

eCR. 
31 

Common Maintenance Registers 
Section G 



ASC 

ADDR(8-1S) The operand field 

a) addresses specific registers or cells of the unit 

corresponding to ID. 

b) contains immediate operand for the addressed unit. 

c) contains supplementary Operation cOlnmand. 

d) a combination of a, b, c above. 

TB 

Transfer bit. When this bit is set to one, the unit addressed by the ID 

field takes the action indicated by the balance of the instruction in CCR. Two 

kinds of response result: 

a) When the action is completed, TB is reset to zero by the addressed 

unit. 

b) When the com.m.and is received, TB is reset to zero by the addressed 

unit. When the action is completed, bit 0 of the addressed unit I s con­

dition byte is set. 

CENTRAL PROCESSOR MAINTENANCE 

Maintenance features of the ASC require appropriate actions to' take place 

in the Hard Core control of each of the three units in the CPo Figure 3 illustrates 

the type of control envisioned for the IPU. The AU and MBU have similar hard-

ware. 

The cells in each unit are divided into two types, the Hard Core cells and 

the functional cells. All cells receive clocks from the clock distribution logic 

centrally located in the Central Processor clock module. Section control bits 

in the Hard Core are controlled by CCR com.m.ands and are used to enable or 

disable the appropriate cells in each respective unit. Section controls are re-

. quired to enable the cells to be loaded for any 'reason - this includes normal 

operation, maintenance loading, setting, or resetting. A cell can be stored, 

however, even if the section control would not allow loading. Certain CCR com­

mands require that the functional cel1s not be allowed to change regardless of 

32 

r1!...TC:-VAS INSTRllMENTS 



ASC 

" 

NORMAl.. DATA_~ T 
GATING ----.., 

LOGIC 
I 

SEC I 

I r-- G 

I M<"+O-
I 
I 

t=l-LOGIC CLOCK MODULE 

SCI 

@-~ 
--< I eLK BURST 

GE:N COUNT CLK I DISTR .- I 

I B A -. 
RUN -I~ __ ,...J-H 
(CSIR) -

NORMAL,lHARD CORE 
GATING SIGNALS 

v 

AU 

CCR 

" 

t 02.237 

MBU 

HARD 

H.C. 
CELL 

CCR INSTR. 
OECODE 

I 

CORE 

H.C. 
CELL 

j STATES 

) 

--1""- __ +...,-__ ..J.j 

CCR 

/ 

UR 

SECTION 
CONTROL 

HARD 
CORE 

COMPLETE 

PPU 

IPU 

TB 

Figure 3. Central Processor Maintenance Logic 

33 
Common Maintenance Registers 
Section G 



i\SC 

the section control status. During this time, the Hard Core will be required to 

operate thus necessitating clocks from the Logic Clock Module. In this case 

the Hard ,Core has the capability of turning off any or all of the gates to the func­

tional cells. The lines that control the gating, labeled A and B, are functions 

of the state of the Hard Core and possibly a function of the line labeled "Normal 
i" 

Gating Logic". If the Norm.al Gating Logic is located in such a way that the 

Hard Core can include it in the determination of A and B the resulting hardware 

will be a m.inimurn. 

The priInary control of the CP is through the CCR and the CSIR registers. 

The run bit in the CSIR controls whether the functional portion of the CP is in . 

an execution or a wait state. In the later mode the Logic Clock Module is sup­

plying clocks to the "hard coreti of the CPU. The hard core of the CP can 

execute any of the CCR commands (except LCM Comm.and which is executed 

independently by the LCM) in the Wait state and can execute any of the status, 

intermediate, or details type commands in either the run or wait state. In 

these cases the run bit controls whe~her execution proceeds after the command 

is complete. 

The Cpts LCM will respond to a 42XX command and reset the TB bit when 

it has taken the required action. 

The command register in the cpr s hard core asynchronously accepts the 

CCR input without requiring clock pulses. The TB is reset indicating reception 

of the command. When the command is completed, the PSC bit in the CP Con­

dition byte is set. 1;'his bit must be reset by software. (Note this signal is ,used 

by the CSIR to indicate switching completed by the CPo ) 

Commands to the LCM can: Stop the clock: 4280 16 

Start continuous clocks: 4200 

Burst of n clock pulses: 428n 

The later command allows the CP or hard core to be stepped through their 

commands. If :he CP is to execute a burst of n steps, the run bit m.ust be on 

when the Burst command is given. 

34 



ASC 

The CCR commands used by the CP are described below: 

CCR 
code 
(hex) 

40XX 

4100 

. 4101 

4102 

4103 

4104 

4105 

NOOP 

Stores all section control usi.ng pointer at location 10. The CP 

halts and transfers the state of its section control to CM. The 

AU stores its section control into the location specified by the 

pointer in location 10. The MBU stores its section control one 

word past the location specified by the pointer. The IPU stores 

its section control two words past the location specified by the 

pointer. 

Loads all section control using pointer at location 11. The CP 

acts in a manner similar to the Store section Control instruction 

except a new section control state is loaded. 

Unlock PC. Unlocks the PC and allows the normal instruction 

sequence to continue. 

Lock PC. The present address register is not allowed to be incre-

mented or set to a neW value. This causes the corresponding in­

struction to flow down the pipe; onCe all old instructions have been 

completed a state will be reached where all levels of the pipe are 

executing the same instruction. 

Reset. Resets all CP storage cells (to 0) in every CP section not 

inhibited by section control. This command may only be sent when 

the Run bit is off. 

Set. Sets all CP storage cells (to 1) in every CP section not inhib­

. hed by section control. This command may only be sent when the 

Run bit is off. 

Common Maintenance Registers 
35 Section G 



ASC 

4108 

410A 

,'st'oi--e ~ta::tUS':u'sirif(pointel"~a.t lobati6n'~14;, 'The Cp,perii1.its all in­

structions which are currently in process to go to completion. No 

new instructions are fetched by the instruction fetch unit after re-
. ; ,,~ .~' 

ceiving this signal. After all instructions have been completed, the 

program status doubleword and all register files' 'are stored accord­

ing, tOrth~, ad9.res~ giv,en 9y,memory,~~~ation ~4 • 
... ~ ..J _ •• .., -J.,# ~ .~ ~ ~. • •• , '. ,,~ 

Ldad 'Stci.tu;s 'uslng 'pointer at iocatiou«l-S:' ~'The' CP: is reset and then 

a:new 'p'r"Ogram 'status' doublewo:r'd ,and :all'regi-ste'1' files are loaded 

'according,t6'tne addr'ess 'given bY'lnemory 16tatiQn 15 and then pro­

ceeds with' exec-u1idii, prbvided,that" the, CP is' 'm, the "run" state as 

defmed' "by bit Rof the'Context;Switbh'lntertock Registe~ (CSIR) • 

. ' ~ .... ". ", . ~-.. r' 

Exchange Status using pointers at locations' 14 'ana. 15, and load map 

ancr=p'r&teet . bounds :U6,irig :p'oiil'tel' 'a.tfZ8~ - The,CP first pei'forms as 

1 f8r:~':rOS~:)'lt thlfx't<pe:j'~bPtnsf a~s:r-r6'r -'4',r09\i~:: Simttlt11rteously, the mem­

ory ma~~§{-to&aedff~btn-tb.'1VAdff~es~-~g'i:'v~nJ"br-lfi:femory location 28. 

,Br.h~{p;X91:~cJ.i99i19,o~~s:y;eg}l'te~rS,)~p'-ped .a,;r;e .Jt~Wr 911es for, ~~"IPU and 

MBU buses. The CP executi<~l];,(£3~tLP-8t P5Rf,~<r1".:until the new map 

and protect bounds from location 28 have been loaded. This action 
_. " . .. . _ _ ,- . f 0 1 £. ' 

is in~ependent "at the status of the'·CSIR regis,t1H''''except as stated 
,HH 

in 4109. 

§~Pl;?fj Wt,eJffii1~i'1fJd~¥~~g,p:pil;lt.~r~~~ 10cat;i.qn 1 Q..'_ .. Jf a vector instruc­

tion is being proce.~~!1~J~YH!:m t~'~s~:itkfn~~HRJW43 the vectors are 

abnormally terminated and the intermediate results within the arith-
- ".-. • 'to. -- • 

'metic unit are permffted to complete. -'the:ii~status information is 
'(sm !HL6IHi:f10_' <l~-,iT .Io·.r.~f:' ,') no.b:>':Hl '(d be:;.rc!irlrd 
stored for the entire CP such that, when reinstated, the program 

.n,.) at .:tid W1YL orB 
that was executing would be resumed at the point in the vector com-. 

: Ph:fat:f'Oii'Tatr~h{cBjtHelfeP~ta.t@savai?,fe.-c~rd~d t!t'.5:.vided fhllji;~he 

! -\i~Efor.5ffist:f~t't'18iY::tfi\Hbt o1'J:~erfl\fue ttWe§rtl$'t ha1i to be restarted 

from the beginning. 

36 



ASC 

4l0C 

4l0D 

4l0E 

410F 

'42mn 

* 

If a scalar instruction is being processed, any intermediate results 

within the arithmetic unit are permitted to complete. Then, status 

information is stored for the entire CP such that, when reinstated, 

the program that was executing would be resumed at the point where 

the CP status ,was recorded. 

Load Intermediate using pointer at location 17. The CP immed­

iately loads the status information, as described under 410B, be­

ginning with the address given by memory location 17 and then 

proceeds with execution, provided that the CP is in the" run" state 

as described by bit R of the Context Switch Interlock Register 

(CSIR) . 

. Exchange Intermediate using pointers at locations 16 and 17, and 

load map and protected bounds using pointer at location 28. The 

CP first performs as described under 410B~ it then performs ac­

cording to 410C. 

Store details usiD.g pointer at location 18. The CP immediately 

stores its internal status (all flip-flops) beginning with the address 

given by location 18 and resumes execution if Run bit i~ 1, other­

wise it halts. 

Load details using pointer at location 19. The CP immediately 

loads its total internal status (all flip-flops not inhibited by section 

control) beginning with the address given by location 19 and pro­

ceeds with execution if the run bit is 1. 

CP Logic Clock Module Command. This command is detected by 

logic in the L~M not by the Cpf s hard core. The format is: 

Continuous Normal Clock 0 X 0 0 

" Margin Clock 0 X 0 1 

" Slow Clock o X 1 0 

" Normal Clock 0 X I 1 

37 
Common Maintenance Registers 
Section G 



ASC 

44nn 

Note: n is ignored in above commands. 

Burst of n Normal clock pulses 1 X 0 0 

Burst of n Margin clock pulses 1 X 0 1 

Burst of n Slow clock pulses 1 X 1 0 

Burst of n Normal clock pulses 1 XII 

Store byte nn of hard core status into UR. The CP stores the 

specified syte into the CP' sUR. The CP clock must be off during 

this command. 

DATA CHANNEL MAINTENANCE 

A CMR interface is provided to allow setting and testing of the internal 

functions of each DC and DCC pair. Using the CCR com.mands the DCC con­

trol and buffer registers may be loaded or read one byte at a time, the com.­

mand in the control register executed, or the indicator bits from the DIU set. 

MEMORY CONTROL UNIT MAINTENANCE 

Control of the MCU maintenance (Section A) is through the CCR and the 

unit registers. Paths are also provided via the MCU to interface with the 

CM modules. The CCR commands used by the MCU are: 

CODE (Hex) 

10 XX 

11 bn 

11 (b+8)n 

12 bn 

12 (b+8)n 

NOOP 

Fetch byte n (O-F) of Processor Interface Subunit b(0-7) status 

into UR 

Fetch byte n(O-F) of Memory Interface Subunit b l s (0-7) status 

into UR 

Store byte n(O-F) of Processor Interface'Subunit b(O-7) status 

from UR 

Store byten(O-F) of Memory Interface Subunit b(O-7) status 

from UR 

38 

~£xAsINSTRUM£NTS 



ASC 

130n 

131n 

1488 

1489 

ISb8 

15 b9 

16 bO 

16 (b+8)O 

16 Xl. 

1780 

17 m8 

17 m9 

Fetch byte n(O-F) of the MCU Control Interface Subunit into 

UR 

Store byte n{O-F) of the MCU Control Interface Subunit from 

UR 

Store all Map and Protect Registers into CM us:i.ng pointer at 

location 38 

Load all Map and Protect Registers from CM using pointer at 

location 39 

.. Store Protect Registers for Processor Interface Subunit b(0-7) 

into CM using pointer at location 38 

Load Protect Registers for Processor Interface Subunit b{0-7) 

from CM using pointer at location 39 

Reset Proe-essor Interface Subunit b(0-7) registers 

Reset Memory Interface subunit b(O-7) registers 

Reset all MCU registers 

Shutdown Central Memory 

Store Map segment m(0-3) from CM using pointer at location 

38 

Load Map segment m(0-3) from CM using pointer at location 

39 

Common Maintenance Registers 
39 Section G 

~TEXAS INSTRUMENTS 


	001
	002
	003
	004
	005
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	02-000_Sec_A_Memory_System
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	03-000_Sec_B1_Central_Processor
	03-001
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	04-000_Sec_B2_CP_Timing
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	05-0000_Sec_B3_CP_Instr_Set
	05-0001
	05-001
	05-002
	05-003
	05-004
	05-005
	05-006
	05-007
	05-008
	05-009
	05-010
	05-011
	05-012
	05-013
	05-014
	05-015
	05-016
	05-017
	05-018
	05-019
	05-020
	05-021
	05-022
	05-022A
	05-022B
	05-023
	05-024
	05-025
	05-025A
	05-025B
	05-025C
	05-025D
	05-025E
	05-025F
	05-025G
	05-025H
	05-025I
	05-025J
	05-025K
	05-025L
	05-025M
	05-026
	05-027
	05-028
	05-029
	05-030
	05-031
	05-032
	05-033
	05-034
	05-035
	05-036
	05-037
	05-038
	05-039
	05-040
	05-041
	05-042
	05-043
	05-044
	05-045
	05-046
	05-047
	05-048
	05-049
	05-050
	05-051
	05-052
	05-053
	05-054
	05-055
	05-056
	05-057
	05-058
	05-059
	05-060
	05-061
	05-062
	05-063
	05-064
	05-065
	05-066
	05-067
	05-068
	05-069
	05-070
	05-071
	05-072
	05-073
	05-074
	05-075
	05-076
	05-077
	05-078
	05-079
	05-080
	05-081
	05-082
	05-083
	05-084
	05-085
	05-086
	05-087
	05-088
	05-089
	05-090
	05-091
	05-092
	05-093
	05-094
	05-095
	05-096
	05-097
	05-098
	05-099
	05-100
	05-101
	05-102
	05-103
	05-104
	05-105
	05-106
	05-107
	05-108
	05-109
	05-110
	05-111
	05-112
	05-113
	05-114
	05-115
	05-116
	05-117
	05-118
	05-119
	05-120
	05-121
	05-122
	05-123
	05-124
	05-125
	05-126
	05-127
	05-128
	05-129
	05-130
	05-131
	05-132
	05-133
	05-134
	05-135
	05-136
	05-137
	05-138
	05-139
	05-140
	05-141
	05-142
	05-143
	05-144
	05-145
	05-146
	05-147
	05-148
	05-149
	05-150
	05-151
	05-152
	05-153
	05-154
	05-155
	05-156
	05-157
	05-158
	05-159
	05-160
	05-161
	05-162
	05-163
	05-163A
	05-163B
	05-163C
	05-163D
	05-164
	05-165
	05-167
	05-168
	05-169
	05-170
	05-170A
	05-171
	05-172
	05-173
	05-174
	05-175
	05-176
	05-177
	05-178
	05-179
	05-180
	05-181
	05-182
	05-183
	05-184
	05-185
	05-186
	05-187
	05-187B
	05-188
	05-189
	05-190
	05-191
	05-192
	05-193
	05-194
	05-195
	05-195A
	05-195B
	05-195C
	05-195D
	05-195E
	05-196
	05-197
	05-198
	05-199
	05-200
	05-201
	05-202
	05-203
	05-204
	05-205
	05-206
	05-207
	05-208
	05-209
	05-210
	05-211
	05-212
	05-213
	05-214
	05-215
	05-216
	06-000_Sec_B4_Vector_Instr_Appl
	06-001
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	07-000_Sec_C1_Periph_Proc
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	08-000_Sec_C2_Comm_Regs
	08-001
	08-01
	08-03
	08-05
	08-07
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	09-000_Sec_C3_Periph_Proc_Timing
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-000_Sec_C4_Periph_Proc_Instr_Set
	10-001
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	10-54
	10-55
	10-56
	10-57
	10-58
	10-59
	10-60
	10-61
	10-62
	10-63
	10-64
	10-65
	10-66
	11-000_Sec_D_Data_Channels
	11-001
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	12-000_Sec_E_Oper_Panel
	12-001
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	13-000_Sec_F_Periph_Devs
	13-001
	13-01
	13-02
	13-03
	13-04
	14-000_Sec_G_Maint
	14-001
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39

