
/

____, NRL LIBRARY
==::! DOR THY STONE
::::::::! M/ S 2185

~ '1 L_,~

PROGRAMMER'S GUIDE TO THE

CENTRAL PROCESSOR

TEXAS INSTRUMENTS
INCORPORATED

,_

930039 - 2

MAY t976

PROGRAMMER'S GUIDE TO THE

CENTRAL PROCESSOR

.,.,.,.,,,, '"'°''"""""~- ,...,_,~_,,.,._ ,,._ __ ..,,.... _ _,.._... ,,_, __ . ..,.,..., " ,,..,,..., ...
=======--·:?.~"'.:2:_ :.::_ -:::::.:::--:::::.::-------·::. __ '";;::

,,_ __ """" '''"-"'"' ""'"'
~ .. - "'""""'"""'"'"" "_,.,,,.

- ,. ___ _________ ,, ___ .

TEXAS INSTRUMENTS
INCORPORATED

~ Texas Instruments Incorporated 1976
All Rights Reserved

The infonnation and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos­
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

No-disclosure of the infonnation or drawings shall be made to any other person or
organization without the pri~r consent of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES Note: The portion of the text affected by the changes is
indicated by a vertical bar fn the outer margins of
the page.

Programmer's Guide to the Central Processor

Original , ..
Revised and Reissued ...

May 1973
May 1976

Total number of pages m this publication is 427 consisting of the following:

PAGE
NO•

Title.
Effec. Pages
i - xvi . . .
1-1 - 1-4 . .
2-1 - 2-20. .
3-1 - 3-5. . .
4-1 - 4-25. .
5-1 - 5-7. . .
6-1 - 6-54. .
7-1 - 7-176 .

.

.

.

.

.

.

.

.

CHANGE
NO,

. . 0
. 0
. 0

. . 0

. 0

. . 0

. . 0

. . 0

. 0

. . 0
8-1 - 8-65/8-66 . 0
A-1 - A-10. . . . 0
B-1 - B-10. 0
C-1 - C-10. 0
D-1 - D-4 0
E-1 - E-4 0
F-1 - F-4 0
G-1 - G-5 0
H-1 - H-2 0
User's Resp . . . 0
Bus. Reply . . . 0

PAGE
NO.

CHANGE
NO,

PAGE
NO.

CHANGE
NO.

CARD 1

CARD 2

CARD 3

CARD 4

TEXAS INSTRUMENTS
INCORPORATED

EQUIPMENT GROUP
AUSTIN, TEXAS

Application For Automatic Update

REF NO. NAME

5 9 12

I I I I I l INIAIMIEI

I I I I I I IPIAIRITI INIUIMIB IEIRI

I I I I I I ~IAl 1 ILI 1s1TIAITl 11°1NI

I I I I I I lolu!AIN!r!1 lr!vl
COMPLETE ONLY IF US MAIL ADDRESS

I I I I I I IAl 01°1' I

I I I I I I IAlolol2 I
USE NUMBER

I I I I I I IAl0 1°13 1 OF LINES

REQUIRED

FOR COMPLETE

I I I I I I IAl0 1°141 ADDRESS

I I I I I I lAlololsl

I I I I I I IAl 01°161

LAST , INITIAL

41 56

I I I I I I I I I I I I I I I 11

I I I I I ENTER~ 'USM IF us MAIL

I I I I I ENTER QUANTITY OF MANUALS

RIGHT JUSTIFIED

NAME
41 LAST, INITIAL 60

I
ADDRESS

I 11 I I I I I I I I I I I I I I I I I I

I

I

I

I
I AM PRESENTLY ON DISTRIBUTION FOR OTHER DOCUMENTS 0 YES 0 NO

FOLD AND STAPLE THIS SHEET. RETURN ADDRESS IS ON REVERSE SIDE.

ATTENTION

TECHNICAL DATA BRANCH

MAIL STATION 2146

~TEXAS INSTRUMENTS
~ INCORPORATED

EQUIPMENT GROUP

P.O. BOX 2909

AUSTIN, TEXAS 78767

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

TABLE OF CONTENTS

Section Page

I GENERAL DESCRIPTION

The Central Processor 1-1

1-2 Central Processor-Peripheral Processor
Relationship••......

1-3

1-8

1-9

1-10

1-11

Central Processor Resources

The Assembler

Coding Media •.

Punched Card

Coding Form.

II LANGUAGE ELEMENTS

2-1 Character Set for the ASC •

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

2-12

2-13

Printable Characters

Special Characters ..

Items ..••••

Symbol ••

Character String

Decimal Integer ••

Hexadecimal Integer.

Floating Point Item .

. . . .

Fixed Point Decimal Item

Location Counter .•

Literal •.••••.•

Intrinsic Function

TABLE OF CONTENTS i

. . .

.

1-1

1-1

1-1

1-2

1-3

1-10

1-11

2-1

2-1

2-1

2-1

2-3

2-3

2-3

2-4

2-4

2-5

2-6

2-6

2-6

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

TABLE OF CONTENTS (Continued)

Section

2-14 Operators ...••.•.

2-15 Operator Types
2-16 Expressions
2-17 Sub express ions

2-18 Assumed Parentheses.

2-19 Literals

2-20 Lists ..

2-21 Intrinsic Functions
2-22 Global Attribute Functions.
2-26 Location Intrinsic Functions ••

2-27 Program Sections
2-28 Relocation . .
2-29 Constants

2-32 Location Counter
2-33 Relocatability of Symbols

2-34 Relocatability of Expressions.

III LANGUAGE STRUCTURE

Statement Format 3-1

3-2

3-3

3-4

3-6

3-7

3-8

Conventions for Describing Language Statements.

Continuation Lines

Label Field ..•.

Command Field .

Operand Field .

Remark Field .

TABLE OF CONTENTS i.i

Page

2-7

2-7

2-7

2-10

2-11

2-12

2-13

2-14

2-14

2-16

2-16

2-17

2-17

2-17

2-18

2-18

3-1

3-2

3-2

3-3

3-3

3-4

3-5

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

3-9

3-10

TABLE OF CONTENTS (Continued)

Comment Lines .•

Blank Lines

IV DIRECTIVES

4-1

4-2

Introduction

Definition Directives

4-3 Equate Directive (EQU) ..•

4-4 Set Directive (SET)•

4-5 External Name Directive (EXTRN)

4-6 Entry Name Directive (ENTRY) .

4-7 Data Directive (DA TA) .•.••

4-8 Format Directive (FORM) .

4-9 Using Directive (USING)

4-10 Drop Directive (DROP) .

4-11 Origin Directive (ORG) .

4-12 Control Directives ...•••••

4-13 Literal Origin Directive (LITORG)

4-14 End Assembly Directive (END) ..

4-15 Section Directive (SEC) .•••••.

4-16 Common Module Directive (COM)

4-17 Dummy Section Directive (DUM).

4-18 Dummy Common Module Directive (COMD)

4-19

4-20

4-21

4-ZZ

Copy Directive (COPY) .

Reserve Directive (RES)

Align Directive (ALIGN)

Do Directive (DO) ..•••

4-23 Pseudo Directives ..•••.•

TABLE OF CONTENTS iii

.
.

.

. . . .

Page

3-5

3-5

4-1

4-1

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-8

4-9

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-16

4-17

4-21

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

TABLE OF CONTENTS (Continued)

Section

4-24

4-25

4-26

Indirect Address Constant Directive (IND)
Branch Address Constant Directive (BCON)

Data Halfword Directive (DATAH) •. "
4-27 Listing Directives •••••••••••••••••••

4-28

4-29

4 .. 30

Skip Directive (SKIP) ••

List Directive (LIST)

Nolist Directive (NOLIST) .

V ASSEMBLER OUTPUT

Assembler Output

.
• •

.

. . . • •

.

.

5-1

5-2

5-3

5-5

Source Program Listing
Messages

Cross-Reference Listing •
VI ASSEMBLER-CENTRAL PROCESSOR INTERFACE

6-1 Introduction ••••.•••• . .
Instruction Formats ••••

Label .•••...
Command. . .
Operands •

6-2

6-3

6-4

6-5

6-6

6-10

R, N, X Operand List.

R, R, N Operand List.

.

6-11

6-12

6-13

Register Addressing. , •• , •••

Register Operand-R Field Addresses

Address Operand Register Addresses

.

6-14 Address Development .•••.•.••••.•..••

TABLE OF CONTENTS n·

. . .

. . .

. . .

. . .

Page

4-21

4-22

4-22

4-23

4-24

4- 25

5-1

5-1

5-3

5-5

6-1

6-1

6-3

6-3

6-3

6-3

6-7

6-8

6-8

6-11

6-12

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

6-15

6-18

6-29

6-30

6-33

6-40

6-41

6-47

6-51

6-52

6-53

6-56

6-57

6-58

6-59

6-60

6-62

6-64

TABLE OF CONTENTS (Continued)

Assembler Translation .

Machine Translation ..•

Immediate Operands .•••.••••.

Assembler Translation .

Machine Translation .•••.

Branch Address Development ..

Assembler Translation ..

Machine Translation.

Data Formats .••.•.

Fixed Point Data

Floating Point Data .•

Program Status Doubleword ••

Branch or Skip Register

Compare Code .•

Result Code .••

. . .

Arithmetic Exception Condition Code .•

Arithmetic Exception Mask

Program Counter .••••.•

VII THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

7-1 Introduction • • . • • • • • • •

7-2 Load Register Instructions

7-3 Load, Word (L) •••••
7-4 Load, Left Half From Left (LLL) •.

7-5 Load, Right Halfword From Right (LRR) •

7-5.1 Load, Right Halfword From Left (LRL) ••

7-6 Load, Left Halfword From Right (LLR) .

TABLE OF CONTENTS v

Page

6-12

6-15

6-31

6-31

6-32

6-36

6-37

6-39

6-43

6-44

6-44

6-49

6-50

6-50

6-51

6-51

6-53

6-54

7-1

7-2

7-3

7-4

7-5

7-5A

7-6

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

7-7

7-8

7-9

7-10

7-11

7-12

7-13

7-14

7-15

7-16

7-17

7-18

7-19

7-20

7-21

7-22

7-23

7-24

TABLE OF CONTENTS (Continued)

Load, Doubleword (LD) .••

Load Im.mediate, Word (LI)

.

Load Im.mediate, Halfword (LIH) ..••

Page

7-7

7-8

7-9

Load Negative, Fixed Point Word (LN) 7-10

Load Negative, Fixed Point Halfword (LNH) . 7-11

Load Negative, Floating Point Word (LNF). . 7-12

Load Negative, Floating Point Doubleword (LND). • • 7-13

Load Magnitude, Fixed Point Word (LM) . . • • . 7-14

Load Magnitude, Fixed Point Halfword (LMH) . • 7-15

Load Magnitude, Floating Point Word (LMF) . • 7-16

Load Magnitude, Floating Point Doubleword (LMD) • 7-1 7

Load Negative Magnitude, Fixed Point Word (LNM) . 7-18

Load Negative Magnitude, Fixed Point Halfword
(LNMH) . . • •

Load Negative Magnitude, Floating Point Word
(LNMF) .•••••••.•••
Load Negative Magnitude, Floating Point Double-
word (LNMD) ••••.••••••••.•

Load One's Complement, Word (LD)

Load Register File (LF) .••.••••

Load Register Files, Multiple (LFM) .

7-19

7-20

7-21

7-22

7-23

7-24

7-25 Store Instructions .. 7-25

7-26

7-27

7-28

7-28A

7-29

7-30

7-31

7-26 Store Word (ST) .•

7-27

7-28

7- 28 .1

7-29

7-30

7-31

Store Halfword (STLL)

Store Right Halfword Into Right (STRR)

Store Right Halfword Into Left (STRL)

Store Left Halfword Into Right (STLR)

Store Doubleword (STD)

Store Zero, Word (STZ)

TABLE OF CONTENTS vi

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

7-32

7-33

7-34

7-35

7-36

7-37

7-38

7-39

7-40

7-41

7-42

7-43

7-44

7-45

7-46

7-47

7-48

7-49

7-50

7-51

7-52

7-53

7-54

7-55

7-56

7-57

7-58

TABLE OF CONTENTS (Continued)

Page

Store Zero, Halfword (STZH) ... 7-32

Store Zero, Doubleword (STZD) . • . 7-33

Store Negative, Fixed Point Word (STN) . 7-34

Store Negative, Fixed Point Halfword (STNH) . 7-35

Store Negative, Floating Point Word (STNF). . 7-36

Store Negative, Floating Point Doubleword (STND). . 7-37

Store One 1 s Complement, Word (STO) . . . • . . 7-38

Store One 1 s Complement, Halfword (STDH) 7-39

Store Register Fiie (STF)

Store Register Files, Multiple (STFM)

Arithmetic Instructions . , . , • ,

Add, Fixed Point Word (A)

Add, Fixed Point Halfword (AH)

Add, Floating Point Word (AF).

Add, Floating Point Doubleword (AFD)

Add Immediate, Fixed Point Word (AI)

Add Immediate, Fixed Point Halfword (AIH)

Add Magnitude, Fixed Point Word (AM) •.•.

Add Magnitude, Fixed Point Halfword (AMH)

Add Magnitude, Floating Point Word (AMF)

Add Magnitude, Floating Point Doubleword
(AMFD)

Subtract, Fixed Point Word (S) ••••

Subtract, Fixed Point Halfword (SH)

. .

7-40

7-41

7-42

7-43

7-44

7-45

7-46

7-47

7-48

7-49

7-50

7-51

7-52

7-53

7-54

Subtract, Floating Point Word (SF) . • 7-55

Subtract, Floating Point Doubleword (SFD) . • 7- 5 6

Subtract Immediate, Fixed Point Word (SI) . 7- 5 7

Subtract Immediate, Fixed Point Halfword (SIH) . • • 7-58

TABLE OF CONTENTS vii

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

7-59

7-60

7-61

7-62

7-63

7-64

7-65

7-66

7-67

7-68

7-69

7-70

7-71

7-72

7-73

7-74

7-75

7-76

7-77

7-78

7-79

7-80

7-81

7-82

7-83

7-84

TABLE OF CONTENTS (Continued)

Subtract Magnitude, Fixed Point Word (SM) .••••.••

Subtract Magnitude, Fixed Point Halfword (SMH) .

Subtract Magnitude, Floating Point Word (SMF)

Subtract Magnitude, Floating Point Doubleword
(SMFD)•..

Multiply, Fixed Point Word (M) .••..

Multiply, Fixed Point Halfword (MH).

Multiply, Floating Point Word (MF) .

Multiply, Floating Point Doubleword (MFD)

Multiply Immediate, Fixed Point Word (MI)

Multiply Immediate, Fixed Point Halfword (MIH) .

Divide, Fixed Point Word (D) .•••

Divide, Fixed Point Halfword (DH)

Divide, Floating Point Word (DF) •

Divide, Floating Point Doubleword (DFD).

Divide Immediate, Fixed Point Word (DI).

Divide Immediate, Fixed Point Halfword (DIH) •

Logical Instructions .•

AND, Word (AND)

AND, Doubleword (ANDD)

AND Immediate, Word (ANDI)
OR, Word (OR) .•••••

OR, Doubleword (ORD) •

.

OR Immediate, Word (ORI)

Exclusive OR, Word (XOR)

Exclusive OR, Doubleword (XORD) .

Exclusive OR Immediate, Word (XOR!) .

.

Page

7-59

7-60

7-61

7-62

7-63

7-64

7-65

7-66

7-67

7-68

7-69

7-70

7-71

7-72

7-73

7-74

7-75

7-76

7-77

7-78

7-79

7-80

7-81

7-82

7-83

7-84

/

7-85 Equivalence, Word (EQC) . • • • . • • . • • . . . • • . 7-85

TABLE OF CONTENTS viii

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

7-86

7-87

7-88

7-89

7-90

7-91

7-92

7-93

7-94

7-95

7-96

7-97

7-98

7-99

7-100

7-101

7-102

7-103

7-104

7-105

7-106

7-107

7-108

7-109

7-110

7-111

7-112

TABLE OF CONTENTS (Continued)

Equivalence, Doubleword (EQCD) .•..•

Equivalence Immediate, Word (EQCI) .

Shift Instructions .•••.

Arithmetic Shifts •.

Logical Shifts .

Circular Shifts

Algorithm for Bit Reversal •

Arithmetic Shift, Word (SA).

Arithmetic Shift, Halfword (SAH) •

Arithmetic Shift, Doubleword (SAD) •••

Logical Shift, Word (SL) ••••

Logical Shift, Halfword (SLH)

Logical Shift, Doubleword (SLD) ••

Circular Shift, Word (SC) .••••.

Circular Shift, Halfword (SCH) .•.•••

Circular Shift, Doubleword (SCD)

· Bit Reversal, Word (RVS)
Compare Instructions •••••••

Compare, Fixed Point Word (C)

Compare, Fixed Point Halfword (CH)

Compare, Floating Point Word (CF) •

.

.

.

Compare, Floating Point Doubleword (CFD) ••••.

Page

7-86

7-87

7-88

7-89

7-89

7-90

7-91

7-92

7-93

7-94

7-95

7-96

7-97

7-98

7-99

7-100

7-101

7-102

7-103

7-104

7-105

7-106

Compare Immediate, Fixed Point Word (CI) • • • • . • • • 7-107

Compare Immediate, Fixed Point Halfword (CIH) • • • • 7 -108

Compare Logical AND, Word (CAND) ••••••

Compare Logical AND, Doubleword (CANDD) .

Compare Logical AND Immediate, Word (CANDI)

7-109

7-110

7-111

TABLE OF CONTENTS ix

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

7-113

7-114

7-115

7-116

7-117

7-118

7-119

7-120

7-121

7-122

7-123

7-124

7-125

7-126

7-127

7-128

7-129

7-130

7-131

7-132

7-133

7-134

7-135

7-136

7-137

TABLE OF CONTENTS (Continued)

Compare Logical OR, Word (COR) .•.•.

Compare Logical OR, Doubleword (CORD)

Compare Logical OR Immediate, Word (CORI)

Increment or Decrement, Test and Skip Instructions

Increment, Test and Skip on Equal (ISE) ..••

Increment, Test and Skip on Not Equal (ISNE) .••

Decrement, Test and Skip on Equal (DSE) ..•.

Decrement, Test _and Skip on Not Equal (DSNE) ..

Incre1nent or Decrement, Test and Branch Instructions

Increment, Test and Branch on Zero (IBZ) ..••

Increment, Test and Branch on Not Zero (IBNZ)

Decrement, Test and Branch on Zero (DBZ) ...

Decrement, Test and Branch on Not Zero (DBNZ) .

Index, Test and Branch Instructions .•....

Algorithm for Index Test and Branch .•

Branch on Less Than or Equal (BCLE)

Branch on Greater Than (BCG).

Conditional Branch Instructions .•••

Condition Algorithms for Conditional Branches

Branch on Comparison Code True (BCC)

Branch on Result Code True (BRC) .••

Branch on Arithmetic Exception (BAE)

Branch on Execute Branch Condition True (BXEC) .•

Unconditional Branch Instructions ••.•.•.•..•.•• . . .
Branch and Load Base Register With Program Counter

Page

7-112

7-113

7-114

7-115

7-116

7-117

7-118

7-119

7-120

7-121

7-122

7-123

7-124

7-125

7-126

7-127

7-128

7-129

7-132

7-133

7-135

7-137

7-140

7-141

(BLB) 7-142

TABLE OF CONTENTS x

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

TABLE OF CONTENTS (Continued)

7-138 Branch and Load Index or Vector Register With
Program Counter (BLX)

7-139 Stack Instructions ..•....

7-140 Stack Instruction Definition

7-141 Push Word Into Last-In-First-Out Stack (PSH)

7-142 Pull Word From Last-In-First-Out Stack (PUL)

7-143 Modify Stack Parameter Doubleword (MOD)

7-144 Conversion and Normalization Instructions ..•..

7-145 Algorithm for Floating Point to Fixed Point

Page

7-143

7-144

7-145

7-146

7-147

7-148

7-150

Conversions 7-151

7-146

7-147

7-148

7-149

7-150

7-151

7-152

7-153

7-154

7-155

7-156

7-157

Algorithm for Fixed Point to Floating Point
Conversions .•..•...••.

Fixed Point Normalization .••......•..•

Convert Floating Point Word to Fixed Point Word

7-152

7-154

(FL FX) . • • • • • • • • • • • • • • • • • . • • • • • • • • • • . • • 7 - 1 5 5

Convert Floating Point Word to Fixed Point Half-
word(FLFH) 7-156

Convert Floating Point Doubleword to Fixed Point
Word (FDFX) . 7-157

Convert Fixed Point Word to Floating Point Word
(FX FL) . 7 - 158

Convert Fixed Point Halfword to Floating Point Word
(FHFL) 7-159

Convert Fixed Point Word to Floating Point Double-
word (FXFD) . ..•....................

Convert Fixed Point Halfword to Floating Point
Doubleword (FHFD) .••.•.•••••

Normalize Fixed Point Word (NFX) .•.•

Normalize Fixed Point Halfword (NFH)

Miscellaneous Instructions . . . • • • . . • • •

. . 7-160

7-160

7-162

7-163

7-164

TABLE OF CONTENTS xi

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

7-158

7-159

7-159.l

7-160

7-161

7-162

7-162.l

7-162. 2

7-163

7-164

TABLE OF CONTENTS (Continued)

Exchange Words (XCH) •••••••

Load Look Ahead (LLA)

Prepare to Branch (PB) . . . ~
Load Effective Address (LEA) ••••••

Execute (X EC).

Interpret (INT)

Fork (FORK)

Join (JOIN) .

.

Monitor Call and Proceed (MCP) .•

Monitor Call and Wait (MCW) ..

.

.

.

Page

7-165

7-166

7-167A

7-168

7-169

7-170

7-170A

7-170A

7-171

7-172

7-165 Program Status Instructions . . • • . 7-173

7-166 Load Arithmetic Exception Mask (LAM) . 7-1 74

7-167 Load Arithmetic Exception Condition (LAC) 7-175

7-167.1 Load Arithmetic Exception Mask and Condition (LEM). 7-175A

7-168 Store Program Status Word (SPS) . • • • • . . . • • • • . • . 7-176

VIII THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

8-1

8-2

8-3

8-4

8-5

8-6

8-7

Introduction • •

Definition . • ••.

Execute Vector Parameter File Instructions •••••

Vector Load and Execute (VECTL) •

Vector Execute (VECT).

The Vector Parameter File •

Vector Operation Specification .

8-8 Arithmetic and Logical Comparison Condition

8-1

8-1

8-4

8-4

8-5

8-6

8-6

Specification . 8-6

8-9 Vector Length (Self Loop Count) Specification •••. 8-8

TABLE OF CONTENTS xi.i

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

8-10

8-11

8-12

8-13

8-14

8-13

8-15

8-16

8-17

P-20

8-23

8-24

8-25

8-26

8-27

8-28

8-29

8-30

8-31

8-32

8-33

8-34

8-35

8-36

8-37

TABLE OF CONTENTS (Continued)

Page

Single-Valued Vector and Word Size Specification . • • • 8-8

Single- Valued Vectors 8-8

Immediate Vectors • • • 8-11

Vector Address Development. . 8- 14

Directly Addressed Vectors.. 8-14

Vector Address Development . • • • 8-14

Halfword Index Start Specification. 8-15

Self Loop Increment Direction 8-16

Inner Loop Specification . 8- 18

Outer Loop Specification . 8-19

Program Interrupts

Vector Hazard .•••

Vector Arithmetic Instructions.

Vector Add Instructions .•

Vector Add Magnitude Instructions

Vector Subtract Instructions ..••

Vector Subtract Magnitude Instructions

Vector Multiply Instructions •.•

Vector Dot Product Instructions •

Vector Divide Instructions •

Vector Logical Instructions

Vector Shift Instructions •.

Vector Merge Instructions •

Vector Order Instructions •

Vector Compare Instructions •

8-19

8-20

8-20

8-21

8-22

8-23

8-24

8-25

8-26

8-28

8-30

8-31

8- 33

8-34

8-36

TABLE OF CONTENTS xiii.

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

8-38

8-39

8-40

8-41

8-42

8-43

8-44

8-45

8-46

8-47

8-48

8-49

8-50

8-51

8-52

8-53

8-54

8-55

8-56

8-57

8-58

TABLE OF CONTENTS (Continued)

Vector Compare Arithmetic Instructions .•.•.

Vector Compare Logical Instructions

Vector Peak Picking Instructions
Vector Search Instructions .•••

Vector Search for Largest Element Instructions

Vector Search for Largest Magnitude Instructions .

Vector Search for Smallest Element Instructions

Vector Search for Smallest Magnitude Instructions

Vector Conversion Instructions ...••...•..••.

Convert Floating Point Elements to· Fixed Point
Elements .

Convert Fixed Point Elements to Floating Point
Elements

Vector Normalize Instructions .

Vector Map Instructions ••......

Vector Select Boolean Instructions .

Vector Replace Boolean Instructions •

Vector Map Boolean Instructions ...

Vector Maximum/Minimum Instructions

Vector Compare Boolean Instructions .•

Vector Compare and/or Boolean Instructions

Vector Select .

Vector Replace

TABLE OF CONTENTS xiv

Page

8-38

8-38

8-39

8-40

8-41

8-42

8-43

8-44

8-45

8-45

8-46

8-47

8-49

8-52

8-54

8-56

8-58

8-60

8-61

8-62

8-63

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Appendix

A

B

c

D

E

F

G

H

APPENDIXES

SCALAR INSTRUCTIONS BY LOGICAL GROUPING ..

SCALAR INSTRUCTIONS IN ALPHABETICAL ORDER
BY ASSEMBLER CODE

SCALAR INSTRUCTIONS IN NUMERIC ORDER BY
MACHINE CODE

VECTOR INSTRUCTIONS BY LOGICAL GROUPING

VECTOR INSTRUCTIONS IN ALPHABETICAL ORDER
BY ASSEMBLER CODE.

VECTOR INSTRUCTIONS IN NUMERIC ORDER BY
MACHINE CODE

SCALAR INSTR UC TI ON TIME REQUIREMENTS

G-1 Scalar Instruction Ti.ming Groups

VECTOR INSTRUCTION TIME REQUIREMENTS

A-1

B-1

C-1

D-1

E-1

F-1

G-1

G-1

H-1

H-1 Ti.me Requirements for Complete Vector Operation H-1

Figure

1-1

5-1

5-2

6-1

6-2

6-3

6-4

LIST OF ILL US TRA TIONS

Title

Coding Form. • • • • • • • • • •

Sample Source Program Listing •

Cross-Reference Li.sting Example•••••

Assembler Statement Translations into Machine Code

Register File Specifications ••••••••••••••

Development of Singleword Effective Addresses

Development of Halfword Effective Addresses •••

Page

1-4

5-2

5-6

6-2

6-9

6-17

6-20

6-5 Development of Doubleword Effective Addresses . 6-23

6-6 Indirect Address Cell Format • • • • • . • • • • . • • 6-28

6-7 Development of Singleword Effective Immediate Operands. • • • • • • 6-33

6-8 Development of Halfword Effective Immediate Operands • • • . • • • • 6-34

6-9 Development of Singleword Logical Immediate Operands. • • • • • • • 6-36

TABLE OF CONTENTS xv

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

LIST OF ILLUSTRATIONS (Continued)

Figure Title

6-10 Program Counter Relative Branch Address Development

6-11 Development of Base Relative Branch Addresses ••..

Algebraic Data Formats •.•.•...

The Vector Parameter File • o • o o o • • • • • • • 0 • Q Q 0 • • • • •••••

6-12

8-1

8-2

8-3

8-4

Flow of Execution of a Vector Parameter File • • • • • • • • • • • • 0 •

Table

2-1

2-2

2-3

2-4

I e e I I e e e I I I I I • • I • Flow of Execution with B Single-valved ••

Flow of Execution with B Single-valved • • • • • • • • • • • • • • • • • • •

LIST OF TABLES

Title

Printable Characters

Special Characters ...

Operator Hierarchies and Descriptions

Use of Operators .•.

2-5 Results of Operations on Absolute and Relocatable Items in
Expressions ..•.•.

Assembler Generated Messages

Procedure Processing Message Symbols

General Forms and Variations of the Operand Lists.

Register Addressing Symbols .•.•..•.••.•..••.

Development of Singleword Addresses (Direct)

Development of Branch Addresses (Direct) ..

Value Ranges of Fixed Point Data•.

5-1

5-2

6-1

6-2

6-3

6-4

6-5

6-6

8-1

8-2

8-3

8-4

8-5

H-1

Specifications for Arithmetic Exception Mask Data Constants

Specifications of the SV Field •••••••

Specifications of the HS Field Valves.

Specifications of the VI Field Valves ••• . .
Specifications of the VI, HS, and ALCT Fields

Specifications of the ALCT Valves ••••••••

. . . . , . . .

. .
. . .

Vector Execution Rates in Clocks/ Element .•....

LIST OF TABLES xvi

.

Page

6-40

6-42

6-43

8-3

8-7

8-10

8-13

Page

2-2

2-2

2-8

2-9

2-19

5-4

5-5

6-4

6-10

6-18

6-41

6-44

6-54

8-9

8-17

8-17

8-37

8-37

H-1

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SECTION I

GENERAL DESCRIPTION

1-1. THE CENTRAL PROCESSOR

The Central Processor is that unit of the ASC dedicated to processing the

user's raw data. It is particularly oriented toward the processing of numerical

data that is typical of scientific data processing.

1-2. CENTRAL PROCESSOR-PERIPHERAL PROCESSOR RELATIONSHIP

The Central Processor operates under control of the Peripheral Processor in

which the operating system resides. The resources of the Central Processor are

ti.me- shared among users through this system which can cause a current program's

status to be saved, the program to be removed from the Central Processor, and

another program to be given control of the Central Processor.

All comm.uni.cation, either to or from the Central Processor, takes place

through the Peripheral Processor.

1-3. CENTRAL PROCESSOR RESOURCES

Once a program is given control of the Central Processor, both program and

data are streamed directly from central memory to the Central Processor and re­

sults streamed back. Streaming is accomplished by double buffering of both pro­

gram and data.

1-4. Pipeline Instruction Processing

The instructions fetched from memory are decoded in a pipeline made of four

levels. This method permits four instructions to be in the process of decoding at

any given time, and, unless a branch instruction requires the discard of some of

the instructions, each instruction is ready for execution in the arithmetic unit as

soon as its resources are available.

GENERAL DESCRIPTION 1-1

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

1-5. Vector Operations

The Central Processor performs operations on ordered sets of data without re­

quiring additional instruction decoding. Once a vector operation has been initiated,

the data upon which it operates is streamed directly to the arithmetic unit from

central memory, and the results streamed back to central memory.

1-6. Instruction Set

The Central Processor has 1 77 scalar instructions and 70 vector instructions

that provide a large range of programming ploys.

1-7. Data Formats

The Central Processor performs operations on fixed point, floating point, or

binary logical data.

Fixed point data may be ei. ther 32- bit singlewords or 16-bit halfwords, and in

either case the values are represented with any negative numbers in two's comple­

ment notation.

Floating point data may be either 32- bit singlewords or 64-bit doublewords. In

either case, the biased hexadecimal exponent method of representation is used.

1-8. THE ASSEMBLER

The assembler as implemented for the Central Processor provides for symbolic

coding of programs to be executed in the Central Processor.

There are directives which are commands to the assembler itself. These di­

rectives are used to inform the assembler of conditions to be expected at assembly

time, of conditions to be expected at object program execution time, and of the naturE

of the svmbols used bv the programmer.

The assembler mnemonics for actual machine codes are the names of proce­

dures built into the assembler. These procedures translate the mnemonics and

the operands associated with them into object code that the machine can execute.

GENERAL DESCRIPTION 1-2

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

There are also procedures built into the assembler which translate data ':hat

ii;: in a form more convenient to the programmer into the object data forms usable

by the machine.

1-9. CODING MEDIA

A source program is a sequence of source statements that are punched into

cards and entered into the computer by a card reader.

1-1 O. PUNCHED CARD

The card format is a standard 80-column punched card.

1-11. CODING FORM

Assembler source statements may be written on the standard coding form,

shown in Figure 1-1. One line of code on the form is punched into one card;

vertical columns on the form correspond to card columns.

Space is provided for program identification and for instructions to keypunch

operators. The body of the coding form consists of the statement field, columns

1 through 72, and the identification sequence field, columns 73 through 80.

GENERAL DESCRIPTION 1-3

Cl

~
M
~

>
t"4
tJ
M
(/)
()

~
H

1:J
f-j
H

0 z

......
I

,.j:>.

PROGRAM

PROGRAMMER

LABEL COMM ANO
8 10 15 17 20

-·

COOING FORM

PUNCHING
GRAPHIC

DATE
INSTRUCTIONS

PUNCH

STATEMENT
OPERAND

25 30 35 40 45 50

Figure 1-1. Coding Form

I 1 I 1 PAGE

T I T
REMARKS

55 60 65 71

OF

IDENTIFICATION
73 SEQUENCE !!.Q

1:J
~
0
Cl
~
>
~
~
M
~
(/)

Cl
c::::
H

tJ
M
f-j

0
f-3
::r:
M
()

~
f-j
~
>
t"4
1:J
~
0
()

M
(/)
(/)

0
~

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SECTION II

LANGUAGE ELEMENTS

2-1. CHARACTER SET FOR THE ASC

The ASC Assembler recognizes the EBCDIC character set as standard nota­

tion. That is, characters are "interpreted as punched on the IBM 029 keypunch.

References in this manual are made to alphabetic characters (A through Z), numeric

characters (0 through 9), and special characters (all the rest).

All characters except the double quotation mark (") and the semicolon (;) may

be used in character strings, and these also may be used freely in the remark field

and in comments. The period (or decimal point), dollar sign ($), and question mark

(?) may be used in symbols along with alphabetic and numeric characters. Most of

the special characters have unique meanings to the assembler.

The double quotation mark (") inside a character string will terminate the string.

The semicolon (;) when used inside character strings will terminate the card image,

and the string will be continued on the next line beginning with the first non-blank

character.

2-2. PRINTABLE CHARACTERS

Table 2-1 contains a list of the non-alphanumeric printable characters and

their names without regard to their special meanings to the assembler.

2-3. SPECIAL CHARACTERS

Table 2-2 lists the special characters which have unique meaning to the ASC

Assembler.

2-4. ITEMS

Any item consists of a combination of one or more characters. An item may be

a symbol, decimal integer, character string, hexadecimal integer, location counter,

floating point item, fixed point item, literal, or intrinsic function.

LANGUAGE ELEMENTS 2-1

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Table 2-.1. Printable Characters

CHAR-
NAME

CARD CHAR-
NAME

CARD
ACTER CODE ACTER CODE

blank blank - hyphen, or 11
minus sign

¢ cent sign 12-8-2 I slash (virgule) 0-1

period 12-8-3
'

comma 0-8-3

< less than 12-8-4 01
10 percent sign 0-8-4

(left 12-8-5 - horizontal 0-8-5
parenthesis bar

+ plus sign 12-8-6 > greater than 0-8-6

I vertical bar 12-8-7 ? question mark 0-8-7

& ampersand 12 t vertical arrow 8-1

! exclamation 11-8-2 : colon 8-2
point

number 8-3
$ dollar sign 11-8-3 @ at 8-4
:::~ asterisk 11-8-4 I apostrophe 8-5
) right 11-8-5

equals 8-6 parenthesis =

II quotation 8-7
; semicolon 11-8-6

marks
---, not sign 11-8-7

Table 2-2. Special Characters

CHARACTER MEANING CHARACTER MEANING

hexadecimal) right parenthesis

@ indirect addressing ¢ augment indicator

• separator > greater than

$ location counter ; continuation

,,,
multiply and comments I not

period or decimal point II EBCDIC string indicator

< less than = equals or literal

subtract indicator -

I divide
(left parenthesis

+ add
blank separator or space

LANGUAGE ELEMENTS 2-2

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

2-5. SYMBOL

A symbol is represented as a string of from one to eight EBCDIC characters,

the first of which must be alphabetic. The remaining characters may be alphabetic,

numeric, . , $, # , or any other special characters not used by the Assembler for

unique purposes. (See Table 2-2 for characters having unique meaning to the

Assembler.)

VALUE: The value of a symbol is the value of the item to whi_ch the symbol is

assigned.

Examples: AABBCCDD

Q. J$P?

2-6. CHARACTER STRING

A character string is any string of characters surrounded by double quotation

marks (not to be confused with two single quotation marks). Semicolons (;) or

double quotation marks (") cannot be parts of a character string because they oper­

ate on the string. Character strings which are as signed to symbols as values can­

not exceed 8 characters in length. Other character strings are restricted to

256 characters.

VALUE: The value of a character string is the EBCDIC representation of the char­

acters found between the quotation marks. Each character string is converted into

an even multiple of 4 characters (32 bits). Strings which do not contain a multiple

of 4 characters are filled to the right with blanks.

Example: "AB*C"

2-7. DECIMAL INTEGER

A decimal integer is a string of unsigned decimal digits (0 through 9).

VALUE: The value of a decimal integer is the 32-bit (binary representation) base

10 value of the string of digits.

Examples: 1 9

5440

LANGUAGE ELEMENTS 2-3

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

2-8. HEXADECIMAL INTEGER

A hexadecimal integer is a string of unsigned hexadecimal digits (0 through F)

preceded by a tf. The maximum number of characters after the # is 16.

VALUE: The value of a hexadecimal integer is the 32 or 64-bit (binary representa­

tion) base 16 value of the string of digits.

Example: #3B8FE5

2-9. FLOATING POINT ITEM

A floating point item is a string of decimal digits with a decimal point and op­

tionally followed by a decimal exponent. The exponent is written as the letter E or

the letter D followed by an integer constant. The item may be positive, zero, or

negative. If either the initial string of decimal digits or the integral exponent are

unsi.gned, the assembler assumes the respective part to be positive. If a decimal

exponent is given, the decimal point is not required in the initial string of digits.

The item may assume one of three forms:

1. A string of decimal digits with a decimal point, and without an exponent.

This form is assumed by the assembler, to be single precision represen­

tation.

2. A string of decimal digits, optionally with a decimal point, followed by the

letter E and an integral decimal exponent. The E specifies single preci-

sion representation.

3. A string of decimal digits, optionally with a decimal point, followed by the

letter D and an integral decimal exponent. The D specifies double preci­

sion representation. -

For both single and double precision representation, the value of the exponent,

n, has the range : -64 s n s +63. The range of values M, a floating point item,

may have is: (1) in single precision (32-bit representation), 16- 65 :::: M:::: (1 - 16- 6)

x 16 63 and true zero; and (2) in double precision (64-bit representation), 16 - 65

-14 63 -79
sM s (1 - 16) x 16 and true zero; or, approximately, 5. 4 x 10 s Ms 7. 2

x 10 7 5 . The number of bits used in the representation of the fractional part of a

LANGUAGE ELEMENTS 2-4

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

floating point item does not significantly affect its range of values, but affects the

precision of the values that may be represented.

If the maximum exponent value is exceeded, a syntax error is returned; but, if

the significance is exceeded, truncation of the least significant bits occurs and no

error message is returned.

VALUE: The value of a floating point item is the 32 or 64-bit binary representation

of the string of digits with 8 bits reserved for the exponent and with the remaining

24 or 56 bits left for the fraction. The exponent is represented in excess 64 nota­

tion. The fraction is normalized in its area.

Examples: 5. 321E+6

6D-26

5. 3

-5. 2E6

2.718

2-10. FIXED POINT DECIMAL ITEM

A fixed point decimal item is a string of decimal digits, which may have a

decimal point, followed by (1) a B or a BB, and by (2) a binary scale factor. The

item may be positive, zero, or negative. If either the initial string of decimal

digits or the binary f!!Cale factor is unsigned, the assembler assumes the respec­

tive part to be positive. A positive binary scale factor shifts the binary represen­

tation of the quantity to the left by the specified number of binary units, and a nega­

tive binary scale factor shifts the binary representation of the quantity to the right

by the specified number of binary units. Any part of the decimal numeral which

would result in a binary fraction, when converted to binary and scaled, will be

truncated. A single B specifies single precision, and a double B (i.e., BB)

specifies double precision.

The range of values of a fixed point item, F, is restricted to:
. 31 31

-2, 147, 483, 648 :s F :s +2, 147, 483, 647 (t. e., -2 :s F :s 2 - 1).

LANGUAGE ELEMENTS 2-5

PROGRAMMER 1S GUIDE TO THE CENTRAL PROCESSOR

VALUE: The value of a fixed point decimal item is the 32 or 64- bit binary repre­

sentation of the string of digits with the representation determined by converting

integer and fraction portions of the string separately and placing the result in either

32 or 64 bits as determined by the precision designator, B or BB, respectively.

Examples: 3. 21B+5

6B2

2-11. LOCATION COUNTER

3.21BB+5

6BB2

The coding symbol for the value of the location counter is $.

VALUE: The value of$ is the 32-bi.t current value at assembly time of the location

counter.

Example: $+6

2-12. LITERAL

A literal is a constant which is the relative location of the start of one or more

words of data. A literal is expressed in the form of an equals sign followed by the

data to be contained in the relative location (see Topic 2-19).

VALUE: The value of a literal is the location of a constant.

Examples: =A

=6

=A+6

2-13. INTRINSIC FUNCTION

An intrinsic function is an item used to produce substitution of another item,

expression, or list in its place. See Topic 2-21.

VALUE: The value of an intrinsic function is the identity of the particular param­

eter operated on by the function, or is the value assigned to the condition of the

parameter operated on by the function.

Example: T(RHO)

LANGUAGE ELEMENTS 2-6

PROGRAMMER 1S GUIDE TO THE CENTRAL PROCESSOR

2-14. OPERATORS

Items may be combined using the special character operators defined in Table

2-3. The table also gives hierarchy numbers for determining the sequence in which

the value of an expression is computed. Operations with higher hierarchies are

performed before operations having lower hierarchies. Operations with the same

hierarchy are performed from left to right.

2-15. OPERATOR TYPES

Each operator falls under two type classifications: every operator is either a

unary operator or a binary operator, and every operator is one of the following:

an arithmetic operator, a relational operator, or a logical operator. See Tables

2-3 and 2-4 for the operator symbols and their uses.

UNARY OPERATION: A unary operation is one that involves only one operand.

BINARY OPERATION: A binary operation is one that involves two operands.

ARITHMETIC OPERATION: An arithmetic operation is one that yields algebraic

quantities.

RELATIONAL OPERATION: A relational operation is one that yields a 11 TRUE 11 or

11 F ALSE 11 quantity; i.e., 1 or 0, respectively.

LOGICAL OPERATION: A logical operation is one that yields a Boolean quantity.

2-16. EXPRESSIONS

An expression is an item, or it is a series of items, connected by operators.

The sequence of operations performed in evaluating an expression is determined by

the hierarchy of the operators in the expression. The hierarchy of operators is

shown in Table 2-3. Operations with higher hierarchy numbers are performed

first; operations with the same hierarchy are performed from left to right.

LANGUAGE ELEMENTS 2-7

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Table 2-3. Operator Hierarchies and Descriptions

HIER­
ARCHY

7

7

7

6

5

5

4

4

3

3

3

3

3

3

3

3

2

1

1

1

SYMBOL

+

II
-·--·-

I

+

<

=
•=

<=

>

>=

++

TYPE

Unary Arithmetic

Unary Arithmetic

Unary Arithmetic

Binary Logical

Binary Arithmetic

Binary Arithmetic

Binary Arithmetic

Binary Arithmetic

Binary Relational

Binary Relational

Binary Relational

Binary Relational

Binary Relational

Binary Relational

Binary Relational

Binary Relational

Binary Logical

Binary Logical

Binary Logical

Binary Logical

DESC RI PT ION

Plus

Minus (two 1s complement)

Not (one's complement)

Logical Binary Operator

Arithmetic Product

Arithmetic Quotient

Arithmetic Sum

Arithmetic Difference

Arithmetic Less Than

Not Less Than

Arithmetic Equals

Not Equals

Less Than or Equal

Arithmetic Greater Than

Not Greater Than

Greater Than or Equal

Logical Product (AND)

Logical Sum (OR)

Logical Difference (Exclusive OR)

Logical Equivalence

The length of an expression is limited by the number of continuation lines over

which the statement may extend. The value of an arithmetic expression, E, is re-
31 31

stricted to the range: -2, 147, 483, 648::::: E ::::: +2, 147, 483, 647 (-2 ::::: E::::: 2 - 1).

The value of an expression, E, containing an external symbol or symbols is re-
23 23

stricted to the range: -8, 388, 608:::: E::::: +8, 388, 617, (-2 ::::: E::s2 - 1).

Floating point numbers are not valid in expressions which contain more than

one item. That is, floating point aritlunetic will not be performed at assembly

LANGUAGE ELEMENTS 2-8

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SYMBOL

+

II

I

+

<

=

--, =

<=

>

-, >

>=

++

GENERAL
FORM

+a

-a

a/Ii

a/b

a+b

a-b

a<b

a=b

a<=b

a>h

a>=b

a++b

a--b

a==b

LANGUAGE ELEMENTS

Table 2-4. Use of Operators

WHERE

a is an algebraic expression

a is an algebraic expression

a is an algebraic or logical
expression

a is a logical expression;
i is an integer expression

a and b are algebraic
expressions

the numerator a is an
algebraic expression; the
denominator bis an alge­
braic expression

a and b are algebraic
expressions

a and b are algebraic
expressions

a and b are algebraic
expressions

a and b are algebraic
expressions

a and b are algebraic
expressions

a and b are algebraic
expressions

a and bare algebraic
expressions

a and b are algebraic
expressions

a and b are algebraic
expressions

a and b are algebraic
expressions

a and b are logical expres­
sions

a and b are logical exp res -
sions

a and b are logical expres­
sions

a and bare logical expres­
sions

2-9

RESULTS

a

two's complement of a

one's complement of a

shift a left i binary digits if i
is positive; shift a right i bi­
nary digits if i is negative

the product of a and b

the quotient of a divided by b

the sum of a and b

the difference of a and b

true if a is less than b

true if a is not less than b

true if a is equal to b

true if a is not equal to b

true if a is less than or equal
to b

true if a is greater than b

true if a is not greater than b

true if a is greater than or
equal to b

logical product of a and b
(AND)

logical sum of a and b (OR)

logical difference of a and b
(exclusive OR)

logical equivalence of a and b

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

ti.me. The assembler wi.11 denote as an error any attempts to do ari.thmeti.c opera­

tions on double length floating point numbers in expressions, or on character strings

longer than four characters.

Certain logical operations (~<>,'<, ++, -- , and==) and all relational operations may

be performed on values that require more than four characters (32 bits) to repre­

sent them.

2-17. SUBEXPRESSIONS

An expression may contain subexpressions, and subexpressions may contain

other subexpressions. A subexpression is an expression enclosed in parentheses,

and it may appear wherever an item is valid. Subexpressions are evaluated before

other items in an expression, and the innermost subexpression is evaluated first.

The value of an item or expression is ri.ght-justi.fied i.n i.ts generated result field,

and unspecified leading bit positions will contain zeros; character strings are left­

justified with blanks filled to the right in the last word for unjustified characters.

Note: Character strings used in immediate operands (see Topic 6-32) are not left­

justified in a fullword, but justified in the 16-bi.t N field. Thus, a character stri.ng

immediate operand has a maximum of two characterters, and the ri.ghtmost byte i.s

blank filled i.f there is only one character in the string.

The value of the part of the expression or subexpression containing and affected

by a relational operator (e.g.,>,<• or =) is equated to one if the relation is true

and equated to zero i.f the relation is false. For example, i.f E is an expression of

the form:

X>Y

then, Eis evaluated as a one (1) if the relation is true, or zero (0) if the relation is

false. Also, if the assigned section of expression Xis not the same as the assigned

section of expression y, then the expression E cannot be completed and is evaluated

as false (zero).

LANGUAGE ELEMENTS 2-10

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Examples:

1. The following expression is evaluated as zero if R is a relocatable item:

R-4 >37

2. The following expression is evaluated as zero if the subexpression (X >Y)

is false and equal to A if the subexpression (X >Y) is true:

2-18. ASSUMED PARENTHESES

The following examples denote how parentheses are assumed, the results being

governed by the hierarchies in Table 2-3.

Expression: -A/ I -P2

Method: 1. Two's complement A

2. Two's complement I

3. Shift two's complement of A by value of two's complement of I

4. Multiply result by two

Assumes: ((-A)//(-1))':'2

Expression: -A//(-1>:'2)

Method: 1. Two's complement l

2. Multiply result of two 1 s complement of l by two

3. Two's complement A

4. Shift result of two's complement of A by result obtained in step 2

Assumes: (-A)//((-1)':'2)

Expression: -A/ I -(1>!'2)

Method:

Assumes:

1. Multiply l by two

2. Two 1 s complement A

3. Two's complement the result of l multiplied by two

4. Shift the result of the two 1 s complement of A by the result obtained
in step 3.

(-A)//(-(1':'2))

LANGUAGE ELEMENTS 2-11

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

2-19. LITERALS

The value of a literal is a constant. The constant is the relative location of the

start of one or more words of data. The relative location is reserved by the assemb

and the contents of the location are set to the value of the expression which specifies

the data. An expression which is to be a literal is identified by being preceded by an

equal sign (=). The assembler reserves sufficient contiguous words to contain the

value of the expression~ The number of words reserved for expressions which do

not contain forward references is determined by the number of bit positions required

to specify the value. Expressions that contain forward references are assumed to

require no more than one word to specify their respective values.

Literals which have the same value are stored only once, whenever possible.

Reaching the end of an assembly or using the LITORG directive (see Topic 4-13)

causes all literals identified, since the last LITORG directive or since the start of

the assembly, to be assigned locations and to be output. Literals appearing after a

LITORG directive that are duplicates of values occurring before that LITORG direc­

tive will be assigned at least two separate locations. Further dupli~ation will occur

if the expression composing the literal is not a single item and all of 'the quantities

composing the expression are not defined prior to their appearance in the expression.

The literal table is adjusted so that multiple-word literals are output first.

Limitations and Restrictions: The initial literal location assignment occurring after

a LITORG directive or at the end of an assembly will always start at an even-word

boundary (a location whose value is a multiple of two).

Multiple word literal values will be as signed locations beginning on even-word

boundaries. Words that are skipped to achieve even-word alignment will not be

cleared.

The value of an expression that identifies a literal is restricted to 28 characters

in length.

Subexpressions and lists (see Topic 2-20) will not be made into literals.

LANGUAGE ELEMENTS 2-12

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Creation of Address Constants: Address constants will be placed in the literal table

when symbols with relocatable values are used as literals. See Topics 2-27 and

2-28.

Examples:

LITERAL

=ETA

=50

=ETA+50

=TAU+50=RHO

NU+=PI

=(MU, NU, XI)

2-20. LISTS

VALUE

Address of a word that contains the address of symbol ETA,

if ETA is relocatable; address of a word that contains the

value of ET A, if ETA is absolute

Address of a word that contains the absolute value 50

Address of a word that contains the value of the expression

ET A+50. If this literal is used before ETA is defined, more

than one constant with this value will be allocated.

Address of a constant that contains zero or one (the value of

the expression TAU+50=RHO)

Error

Error

A list is a set of items, expressions, or sublists separated by commas. In the

most trivial case a list may be a single item. A sublist is a list enclosed in paren­

theses. Lists are used in the operand field of a statement.

If a list of parameters is enclosed by a single set of parentheses, these param­

eters are considered to be second level parameters. In the list

A, (B, C), D

B and C are second level parameters, whereas A and D are first level. Param­

eter 2 (at first level) is a sublist.

Restrictions: The maximum number of expressions in a list at one level is 15.

The maximum number of levels of parentheses in a list is five.

LANGUAGE ELEMENTS 2-13

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

The value of a parameter which is nonexistent or uncoded is always zero; e.g.,

for a general list: expa,(expd, expb), expx that is coded: Al, (A4,) the expb and expx

would both be evaluated as zero.

2-21. INTRINSIC FUNCTIONS

An intrinsic function is an operation performed on or applied to an expression

or a list. Some intrinsic functions (global intrinsic functions) lnay be used outside

or inside procedures, whereas others (local intrinsic functions) may be used only

in procedures. (This manual does not include procedure programming.)

Intrinsic function usages may be nested.

2-22. GLOBAL ATTRIBUTE FUNCTIONS

A global intrinsic function is one that may be used either outside or inside pro­

cedures.

An attribute of a parameter is the characteristic, or the value of the character­

istic of the parameter; e.g., the fact that the parameter is a literal is a character­

istic, or the value of the base of the parameter is the value of a characteristic.

An attribute function either determines the value of the characteristic of a

specified parameter or determines on a true or false basis whether a specified

parameter has a certain characteristic.

Some attribute functions are global and others are local. All global functions

are also attribute functions.

A global attribute function is one that may be used either inside or outside pro­

cedure definitions and that determines the value of some characteristic of the speci­

fied parameter.

When using an assembler directive that produces multiple code (e.g., the DO

directive), the argument (exp) of the intrinsic function cannot be a forward reference

LANGUAGE ELEMENTS 2-14

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

2-23. Base Function - B(exp)

The base intrinsic function, B(exp), is replaced by the number of the base

which yields the smallest non-negative result (displacement) when the value of that

base is subtracted from the value of the expression, exp.

If two or more bases yield the same least result, the highest m1mbered base is

selected to replace B(exp). See Topic 6-15.

Limits and Restrictions: If all bases yield a displacement greater than 4095, an

error mes sage is generated by the assembler.

The base function is replaced by:

Expression (exp) B(exp)

external reference error message generated by
assembler

absolute zero

relocatable absolute

Example: RSRU ST B(TOTAL), BSV, X2

2-24. Displacement Function-D(exp)

The displacement intrinsic function, D(exp), is replaced by the displacement

value of the expression, exp.

The displacement value of exp is the smallest non-negative difference between

the value of the expression and the values of the bases (if any) in the table of appli­

cable bases. See Topic 6-15.

If all bases have a value of zero, the displacement of the expression is the dis­

placement of the expression relative to the beginning of the control section.

Limits and Restrictions: If a displacement is greater than 4095, an error message

is generated by the assembler.

LANGUAGE ELEMENTS 2-15

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

The displacement function is replaced by:

Expression (exp) D(exp)

external reference error message generated by
assembler

absolute zero

relocatable absolute

Example: INX L X2, D(RHO)

2-25. Section Function-T(exp)

The section intrinsic function is replaced by the section number of symbol exp,

if a section number is valid. See Topic 2-27.

Limits and Restrictions: If exp is an external reference, T(exp) is greater than 256

and the value of T(exp) is the sum of 256 plus the external symbol number. See

Topic 4-5.

If (exp) is absolute, T(exp) is replaced by zero. If (exp) is relocatable, T(exp)

is replaced by an absolute value. If (exp) is in a dummy section (see Topic 4-17),

T (exp) is replaced b'f the negative of the dummy section number.

2-26. LOCATION INTRINSIC FUNCTION

The location counter symbol, $, when it is processed during evaluation of ex­

pressions, causes the current relative location in the assembly of the instruction

procedure call to be inserted in place of the symbol. In this sense, it acts some­

what like an intrinsic function. See paragraph 2-32.

2-27. PROGRAM SECTIONS

An assembly may be divided into logical subdivisions called sections. Each·

section has a protection key for use in regrouping the various sections of an assem­

bly at link edit time. A section is defined by the SEC directive; see Topic 4-15.

Sections provide the basis for addressing memory locations during an assembly.

Memory locations are identified in the assembler as relative locations from the

start of the section.

LANG DAGE ELEMENTS 2-16

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section numbers are assigned to each section by the assembler. Section num­

bers 1 through 63 may be assigned in one assembly; i.e., any given assembly may

have a maximum of 63 sections.

2-28. RELOCATION

Since the assembler does not actually place object statements in fixed Central

Memory locations, the relative locations assigned by the assembler must be re­

locatable to available memory locations. Thus the relative location of a statement

within a section is a relocatable value, and the value of a symbol, or an expression

that refers to a relative location, is a section identification and the relative location

within that section.

2-29. CONSTANTS

Two types of constants are identifiable during an assembly: (1) the actual value

of a numeral, and (2) the relative location of a symbol within its section. The rel­

ative location of a symbol in its section is referred to as an address constant.

2-30. Address Constants

There are two classifications of address constants: (1) an address constant

that is an internally relocatable value; i.e., a value whose section and relative

location within its section is defined in the current assembly; and (2) an address

constant that is an externally relocatable value; i.e., a value whose section and

whose relative location within that section is defined in another assembly.

2-31. Numeral Constants

The value of a numeral is not relocatable. An absolute value cannot be defined

as belonging to a section or to a relative location within a section. An absolute

value may result from the use of relocatable items in an expression which produces

loss of identity of the items within their sections (see Table 2-5).

LANGUAGE ELEMENTS 2-17

PROGRAMMER 1S GUIDE TO THE CENTRAL PROCESSOR

2-32. LOCATION COUNTER

The location counter is a relocatable variable whose value is the current sec­

tion number and current relative location within that section. The value of the loca­

tion counter is positioned at the statement being assembled. The character, $, re­

presents the value of the location counter symbolically. Use of $ in the operand of

various control directives (see Topic 4-12) permits the value of the location

counter to be changed so that assembly control may be changed to different sections

or to other positions within the same section.

2-33. RELOCATABILlTY OF SYMBOLS

The section to which a symbol belongs is determined by either of the following:

(1) the symbol may be equated to a procedure reference statement, or, (2) it may

be equated to the value in the location counter. Such symbols are relocatable since

the statement's location will be relocated with the section itself. Symbols defined

in other assemblies and identified by use of the EXTRN directive (see Topic 4-5)

are relocatable.

Symbols which are equated to absolute expressions or items are absolute.

Symbols equated to the T(a) intrinsic function are absolute.

2-34. RELOCATABILITY OF EXPRESSIONS

Expressions, because they contain symbols, may be evaluated as absolute or

relocatable. An expression that would be relocatable to more than one section be­

cause the symbols in the expression are defined in different sections is illegal;

e.g., A+B where A and B are relocatable and belong to separate sections.

Table 2-5 shows, for each type of operator, the relocatability of the result.

The result may be relocatable, absolute, or illegal. If the result is relocatable,

its section is the section of the relocatable item or items.

LANGUAGE ELEMENTS 2-18

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

2-35. Effect of Relational Operators

The effect of relational operations (i.e., initiated by the operators:

<,1<,=,l=,<=,>,I>.>=) is as follows:

A B A REL B

ABS ABS will compare, if same length

ABS RELOC will not compare, evaluated as false

RELOC ABS will not compare, evaluated as false

RELOC RELOC will compare if in same section

Note: Since the result of a relational operation is always zero (false) or one (true),

the result is always absolute.

Table 2-5. Results of Operations on Absolute and Relocatable Items
in Expressions

A B A+B A-B A>:<B A/B

ABS ABS ABS ABS ABS ABS(B;fO)

ABS RELOC RELOC illegal Note! illegal

RELOC ABS RELOC RELOC Note2 Note3

RELOC RELOC illegal Note4 illegal illegal

A B A++B A--B A>:,,:,B A==B

ABS ABS ABS ABS ABS ABS

ABS RELOC illegal illegal illegal illegal

RELOC ABS illegal illegal illegal illegal

RELOC RELOC illegal illegal illegal illegal

. Note 1: Illegal unless A equals zero or one. If A is one, the result is relocatable;

if A is zero the result is an absolute zero.

Note 2: Illegal unless B equals zero or one. If B is one, the result is relocatable;

if B is zero, the result is an absolute zero.

LANGUAGE ELEMENTS 2-19

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Note 3: Illegal unless B equals one. If B equals one, the result is relocatable.

Note 4: Illegal unless A and B are in the same section. If A and B are in the same

section, the result is absolute.

LANGUAGE ELEMENTS 2-20

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SECTION III

LANGUAGE STRUCTURE

3-1. STATEMENT FORMAT

A program consists of a sequence of coded lines, each li.ne containing from

1 to 80 characters. However, only the first 72 characters of a line are processed

by the assembler. A li.ne may contain a statement or a comment. Statement col­

umns 73 through 80 can be used for program identification or for sequencing.

A statement generally consists of three coding fields: a label field, a command

field, and an operand field. These three fields are of variable length and are termi­

nated by one or more blanks; i.e., no embedded blanks are permitted in these

fields. Any statement columns to the right of the operand field may be used as a

remark field which contains text.

GENERAL FORM: The general form of an assembler statement is:

I I I I I I LABEL I I COMMAND l l OPERANDS I I REMARKS I I I

[symbol]
l I

l k)l symbol : k5J[expl[,exp2[, .•. ,expn]]] :ip:
' ...J. I

[text]

TEST SEC 0

START LF #10, INIT, Xl

3-2. CONVENTIONS FOR DESCRIBING LANGUAGE STATEMENTS

The following conventions are used to illustrate the language statements:

1. Upper case letters and punctuation marks (except those explained in items

3 and 4 below) represent information that must be coded exactly as shown.

2. Lower case letters and words are generic terms that represent informa­

tion that must be supplied; i. e., a substitution must be made when coding

a parameter or option so represented.

LANGUAGE STRUCTURE 3-1

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

3. Information within brackets (] is optional. It may be included or omitted

entirely, depending upon program requirements.

4. When several choices are enclosed in braces { } , one of the enclosed

alternatives must be selected by the programmer. If one of the alterna­

tives is underlined, the parameter may be omitted and the system. assumes

the underlined alternative.

5. Mandatory blanks are represented by a slashed, lower-case letter

"b" (16). This symbol is not used to represent permissible blanks.

3-3. CONTINUATION LINES

A semicolon (;) appearing in the operand field is a line terminator which signals

that the following line is to be treated as a continuation of the current one. That is,

the semicolon is considered to be followed immediately by the first non-blank on

the following line, and the information following a semicolon on the line on which

the semicolon appeared is ignored.

Restrictions: No more than two continuation lines are permitted for each statement.

A semicolon (;) cannot be used to terminate an item; such usage will be treated

as an error.

Character strings and intrinsic functions are the only types of items that ca.n

be divided by a semicolon. Character strings can be divided anywhere within the

string, but leading blanks on the continuation line are not treated as part of the

character string. Intrinsic functions can be divided by a semicolon only after the

open parenthesis.

Examples: The following lines of code illustrate use of continuation lines:

CMPREG L (Al ':'(SUMl =SUM2))++(A2':'(SUM1 > SUM2))++(A3':'(SUM1< SUM2)), (D(;

SUMI), B2), XS COMPUTE REGISTER TO LOAD

MSSG DATA "THIS COMPUTATION EXTENDS INTO AN UN;

DEFINED REGION.''

LANGUAGE STRUCTURE 3-2

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

3-4. LABEL FIELD

A statement may be given a name by the programmer to permit references to

be made to the statement from other points within the program. The use of a name

is normally optional, but some directives do require a symbol in the label field.

The label must start in column 1. If no label is used, column 1 must be blank. The

symbol is normally equated to the current value of the Assembler's location counter.

Examples: The following are valid labels:

A$QED

BCD345

AABBCCDD

y

3-5. Reserved Symbols

The following symbols are reserved and may not be used as labels:

1. Symbolic register names; viz., BO through B 15, AO through Al 5, XO

through X7, and VO through V7.

2. The names of any of the directives; e.g., DATA, FORM, etc.

3. The names of any of the built-in procedures for the machine instructions,

i.e., the assembler mnemonics for the machine operations.

3-6. COMMAND FIELD

Each statement has a command. The command begins with the first non-blank

following the label field and is terminated by one or more blanks. The command

must be a symbol.

LANGUAGE STRUCTURE 3-3

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

The command field dictates the operation to be performed and may call an as­

sembler directive or a previously defined or built-in procedure. Thus the command

field contains a mnemonic which is the name of a directive or a label of a procedure.

New operations may be introduced by defining new procedures. (The ASC Central

Processor instruction set is represented by built-in procedures.)

Any error occurring in the command field will result in an illegal instruction.

The assembler will generate one word of zeros (absolute) of loader text and will

process the operand field for general syntax errors only.

Examples: DATA, SET, LR, and BLB are representative commands.

3-7. OPERAND FIELD

Most commands require operands. If a line is to include operands, the operand

field begins with the first non-blank following the command field.

The operand field is composed of a list of elements. Elements are composed

of one or more expressions (often referred to as parameters). The last element

in the operand list is terminated by a blank; all other elements in lists are termi­

nated by a comma. Sublists, which are elements in the form of lists enclosed in

parentheses, may exist. Intrinsic functions may also be elements in an operand.

Elements omitted from the right end of an operand list are assumed to have a

value of zero, (0, 0, 0 may be written as 0). If the operand field is left vacant, the

remark field must also be left vacant (blank). The number of blanks between fields

is not limited.

The assembler will check each expression in the operand field for valid syntax.

If a syntax error is found, the assembler will print a diagnostic flag and supply

zero in place of the expression found to be in error. The object code generated for

the remainder of the statement depends upon the use of the expression; i.e., the

command produced may or may not be correct. In some cases, a word of zeros is

generated.

LANGUAGE STRUCTURE 3-4

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

3-8. REMARK FIELD

The optional remark field is allowed as a convenience for documentation and

has no effect upon the nature of the assembled object code. A remark must be

isolated from the end of the operand field by at least one blank. The remark field

may not be continued to the next line. It cannot be used if the operand field is

omitted.

3-9. COMMENT LINES

A line (which is not a statement continuation line) whose first column contains

an asterisk (*) is treated as entirely commentary. No loader text is generated.

The line will be listed in context.

3-10. BLANK LINES

A line consisting of only spaces (blanks) in character positions 1 through 71 is

treated as commentary. A blank line will be printed on the assembly listing as a

result.

LANGUAGE STRUCTURE 3-5

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

4-1. INTRODUCTION

SECTION IV

DIRECTIVES

Assembler directives supply special types of information to the assembler. A

reference to any symbolic item in an expression on a directive line must have pre-

viously appeared as a label: e.g., it must be possible to inunediately evaluate the

expression(s) in the operand field of the directive. If the operand expression can

not be evaluated, it will be assigned a value of zero, and an error message will be

printed.

Exceptions to this rule are the sym.bols in the operands of the EXTRN, the

ENTRY, the DATA, and the USING directives, symbols which may be forward

references. The SET directive has conditional exceptions. All forward references

may be satisfied with values which do not exceed one word. The value of a forward

31 31 reference may be relocatable or absolute, and, if n is the value, -2 ::: n < 2 •

Note: In the general forms of the directive statements, items enclosed in brackets

are optional.

4-2. DEFINITION DIRECTIVES

4-3. EQUATE DIRECTIVE (EQU)

The EQU directive is used to assign a permanent value to its symbolic label.

GENERAL FORM:
LABEL

symbol
I 11'

I J> I
I _l

COMMAND

EQU

"T I

! : OPERANDS

exp

The symbolic label is defined to have the value of the expression, exp.

DIRECTIVES 4-1

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

The value of exp may be absolute or relocatable, positive or negative, and is

expanded to an integral multiple of fullwords.

Restrictions: An EQU statement must have a label.

Symbols in the expression must be defined prior to their use in the EQU di.rec-

tive; i.e., the expression cannot be a forward reference.

Symbols defined in the label of this directive cannot be redefined.

Limitations: The maximum number of characters in a character string named by

an EQU statement is 28.

ExamEles: T I i)S' i LABEL COMMAND ~~: OPERANDS·
J. J.

ALPHA EQU $+3

BETA EQU ALPHA

NO EQU 0

4-4. SET DIRECTIVE (SET)

The SET directive is used to assign a temporary value to its symbolic label.

GENERAL FORM:

LABEL
T T
: : COMMAND

T I

l _:_ OPERANDS

symbol T 11 T

: t:J:
SET exp

The symbolic label is defined to have the value of the expression, exp.

The value of the symbol can be changed by redefining it as the label of another

SET directive.

The value of exp which may be absolute or relocatable, positive or negative,

is expanded to an integral multiple of fullwords, and the expression may contain

a symbol that is a forward reference.

DIRECTIVES 4-2

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Restrictions: A SET statement must have a label.

If the value of the symbolic label is changed by being used as the label of an­

other SET directive, no subsequent values can exceed the length of the first.

Limitations: If exp contains a forward reference, n, the value of n is within the

range: -2 31 S n < 2 31 -1.

The maximum number of characters in a character string named by a SET

statement is 28.

Examples: LABEL

ALPHA

YES

BETA

COMMAND

SET

SET

SET

4- 5. EXTERNAL NAME DIRECTIVE (EXTRN)

OPERANDS·

3

BETA-ALPHA

$

The EXTRN directive is used to identify every symbol that is used but not de­

fined in the current assembly.

GENERAL FORM:
LABEL T T

.l .l

T I
COMMAND l j_ OPERANDS

blank T .s i
.l l

EXT RN
I T :16: symbol(, •.• (,symbol]]

Each name appearing in the operand field of the EXTRN directive will be output

to the Link Editor, provided that reference to that name is within the current

assembly. Any declared external names to which references are not made will

not be output to the Link Editor. Reference to an external name requires the use

of an address constant.

WARNING: Any reference within the current assembly to an external name not de­

clared by an EXTRN directive will be treated as being undefined and an error flag

will appear on the assembly listing.

Restrictions: An EXTRN statement cannot have a label.

DIRECTIVES 4-3

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Limitations: A limit of 255 external symbols may be declared for a module.

A limit of 15 external symbols may be listed in the operand field of one EXTRN

statement.

Examples:
LABEL]>!1 COMMAND

EXTRN

EXTRN

4-6. ENTRY NAME DIRECTIVE (ENTRY)

OPERANDS·

ALPHA

SQRT, SIN

The ENTRY directive is used to establish linkages between programs that have

been assembled separately but that are to be loaded and executed together.

GENERAL FORM:
LABEL i i

__l __l
COMMAND

blank ENTRY

I I
I I

.J. .J.

I 11 !
I JJ I
' I

OPERANDS

symbol[, ... [,symbol]]

Each name appearing in the operand field of the ENTRY directive declares an

entry point into the current assembly to which external programs may refer. Any

name declared to be an entry point that is not defined within the assembly will cause

an error message to be output in the assembly listing.

Control section names can be used as entry points. Entry points are generated

automatically for them.

Restrictions: An ENTRY statement cannot have a label.

Each name appearing in the operand field of the ENTRY directive must also

appear as the label of a statement in the body of the assembly and must have a re­

locatable value defined i.n a control section.

Limitations: A limit of 255 entry names may be declared for a module.

A limit of 15 entry names may be listed in the operand field of one ENTRY

statement.

DIRECTIVES 4-4

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Examples:

LABEL COMMAND

ENTRY

ENTRY

OPERANDS

ALPHA

SQRT, SIN

4-7. DATA DIRECTIVE (DATA)

The DAT A directive generates enough fullword data units to contain the infor­

mation in the operand field.

GENERAL FORM:

LABEL i T
1. 1.
I I

[symbol] l !6 l
COMMAND

DATA

T I
I I

...l ...l

I 11 T
I~ I
' 1.

OPERANDS

exp[, .•• [, exp]]

The label symbol is the location of the first expression in the operand list. The

symbol is given the current value of the location counter.

Each expression is expanded to a multiple of fullword units.

An address constant is generated for any expression that is not absolute.

If a generated address constant refers to an external symbol, the output module

indicates that the value of the external is to be added, at link edit (or simulation)

time, to the constant displacement derived from the expression in which the external

symbol is used; e.g., for the statement:

DATA EXTRNl + 10, EXTRN2+(T< S)

in which EXTRNl and EXTRN2 are the first and second external symbols defined in

the assembly, ten will be added to the location of EXTRNl at link edit time, and

either zero or one will be added to the location of EXTRN2, depending upon whether

(T< S) is false or true, respectively.

Limitations: A limit of 15 expressions may be listed in the operand field of one

DA TA statement.

A symbol in the operand field of the data statement that is defined by an EQU or

SET statement is assumed to have a singleword value. If a symbol is set (EQU or

DIRECTIVES 4-5

PROGRAMMER 1S GUIDE TO THE CENTRAL PROCESSOR

SET) to a value (e.g., a character string) greater than one word in length, only the

rightmost word of the value will be generated as data.

Examples:
LABEL I)S' I

COMMAND
I I

I I J>Sj_ OPERANDS J_ j

DATA BETA

ALPHA DATA 0

FLTPNT DATA 1.0,2.0

DATA "LITERAL 11

DATA 1. ODO

4-8. FORMAT DIRECTIVE (FORM)

The FORM directive is used to specify arbitrary data formats.

GENERAL FORM: .------"T"j-"T"'-------1~-, --------------.
LABEL -1 j COMMAND J j_ OPERANDS

symbol 1111 FORM 1 11! I J.J: ~ J.J J expl,exp2[,exp3,•••,expn]

The values of the absolute exp res si.ons i.n the operand field of the FORM direc­

tive give the bi.t lengths of successive fields i.n the resultant data word.

Reference may be made to a format definition by using its label as the com­

mci.nd i.n any succeeding statement with an operand field composed of values to be

placed in the object word fields defined i.n the FORM statement.

Restrictions: A FORM statement must have a label.

The sum of the values of the expressions must be a multiple of fullword (32-bit)

units.

Limitations: A limit of 15 fields may be defined in the operand list of a FORM state-

ment.

Examples:
LABEL i)S'i

l I

FSTART

COMMAND

FORM

1 I
1)5 I

.J. ...L
OPERANDS·

8,4,4,4,12

FSTAR T #C4, 2, 8, #E, 31

DIRECTIVES 4-6

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

produces the hexadecimal code:

BYTE 0 1 2 3

le 4 2 8 E 0 1 F

HEX 0 1 2 3 4 5 6 7

4-9. USING DIRECTIVE (USING)

The USING directive indicates to the assembler that the specified base register

contains the value of the relocatable expression.

GENERAL FORM:
LABEL r I

.1 l
COMMAND

blank USING

T I
I I

..L ..L
I 11 T
'~I
' .L

OPERANDS

exp, register

The assembler will select a base and compute a displacement from the speci­

fied base value for each relo eatable expression that follows the USING statement.

The base selected will be that base (for the section) which produces the smallest

displacement.

WARNING: Failure to specify a base register or registers for each section of an

assembly will result in addressability errors. All relocatable values in the reloca­

table expression following the using directive must be previously defined or be the

relocatable value.

Restrictions: A USING statement cannot have a label.

Base register zero (symbol, BO) cannot be specified as the register operand

of the USING directive.

The USING directive does not produce code to place the value of exp in the base

register. The programmer must include code to actually place the value in the

base register.

Note: Refer to Topics 2-23, 2-24, and 6-16.

DIRECTIVES 4-7

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Examples:
LABEL

I \,(-1
lpl

_l 1
COMMAND OPERANDS

USING

USING

4-10. DROP DIRECTIVE (DROP)

ALPHA, B2

$il,Bl4

The DROP directive indicates to the assembler that the specified base register

is no longer available for base selection. The base will not be considered available

until another USING directive declares it to he available.

GENERAL FORM:
i l I

LABEL
I

--~ COlv1MAND I I OPERANDS
_l I

blank : i6 ~ DROP
I I

register
.J. j_ : /6 :

Restrictions: A DROP statement cannot have a label. A DROP of a register for

which no previous USING directive was encountered will generate an error flag.

Examples:
,.-------~-~---------,-l ___ ------------------.

LABEL '~' COMMAND 1~ 1 OPERANDS
I I

DROP Bl4

4-11. ORIGIN DIRECTIVE (ORG)

The ORG directive is used to set or reset the location of the origin for all or a

portion of the section being assembled.

GENERAL FORM:
LABEL

[symbol]

I 1
I I
I I

: }5;
I i

I
COMMAND J I

OPERANDS

ORG : ~:
- I

exp

The location counter is set to the value of the expression, exp. All code gen­

erated following the ORG directive will begin at the location whose value is that of

the expression.

DIRECTIVES 4-8

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

If the expression i.s blank, i.t directs th1= assembler to use the highest value

previously assigned to the location counter of the section being assembled as the

present value of the location counter.

The label, i.f present, i.s assigned the value of the location counter before the

location counter is reset.

Restrictions: The expression must have a relocatable value which must be within the

same control section as the ORG statement.

Examples:

LABEL COMMAND
T I
1)11 OPERANDS

ALPHA ORG

ORG

4-12. CONTROL DIRECTIVES

_l I

4-13. LITERAL ORIGIN DIRECTIVE (LITORG)

$+50

ALPHA

The LITORG directive sets the location of the origin for all literals {regardless

of the referring section) defined since the previous LITORG or the beginning of the

assembly directive and places the locations of the literals in their respective object

code statements.

GENERAL FORM:

LABEL J J COMMAND

[symbol] J 16} LITORG

I I
I I

-1. _l

I 11 I
~~1

OPERANDS

[exp]

The origin is determined by incrementing the value of the expression, if nec­

essary, to a doubleword boundary. The literals will be generated beginning at the

aligned lo cation.

The label, if present, is as signed the value of the location counter before the

location countt~ r is reset.

After the literals have been generated, the location counter will remain set to

the first location following the last generated literal.

DIRECTIVES 4-9

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

If the expression is blank, the current location counter value becomes the liter­

al origin before alignment.

Restrictions: The expression must have a relocatable value and must be within the

same control section as the LITORG statement.

Examples: I I
LABEL i)f;

I I
COMMAND , I-' I

lPi
OPERANDS·

ALPHA LITORG

LITORG

4-14. END ASSEMBLY DIRECTIVE (END)

$+10

The END directive signals termination of the assembly.

GENERAL FORM:
LABEL

blank

I T
I I

i i
COMMAND

END

I I

: : OPERANDS

(exp]

The value of the expression represents the beginning execution address of the

assembly when it is loaded and run (unless otherwise overridden). If the operand

field is blank, no address for beginning execution of the program is output to the

loader.

Whenever an END statement is encountered, it will be recognized as the end of

the assembly.

Restrictions: An END statement cannot have a label.

The END directive cannot be used in a procedure.

The expression, exp, must be relocatable.

Examples:
LABEL ltl

DIRECTIVES

COMMAND

END

END

4-10

I I
f~I

I
OPERANDS·

FIRST

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

4-15. SECTION DIRECTIVE (SEC)

The SEC directive defines a control section and asserts assembly control to

that section for the generation of any subsequent code that is to have the same pro­

tection conditions.

GENERAL FORM:
LABEL : :

J_ J_

[symbol] : JS:
.1 l.

COMMAND

SEC

T I
I I

-1 _J_

I 11 !
'~I
' _l_

OPERANDS

(expl][, exp2]

The label is the symbolic name applied to the control section. Subsequent uses

of a SEC statement with the same label will return control to the section at the loca-

tion immediately following the highest location count used previously within the sec­

tion. Sections may be resumed as desired.

The assembler assigns a control section number to the section when the defin­

ing statement is used for the first time. Section numbers are assigned sequentially.

Initially, the location counter is set to zero. An ORG directive (see Topic 4-11)

may be used to adjust the location counter values.

The first operand expression, expl, specifies the hardware protection of all

code generated under control of the defined section. Expression 1 need not be used

in subsequent returns to a defined section; the original protection will be assumed.

Expression 1 must be absolute with a value of 0, 1, 2, or 3. An expl value of 0

specifies read, write, or execute (i.e., no protection); an expl value of 1 specifies

read only; an expl value of 2 specifies read or write; and an expl value of 3 speci­

fies execute only. If expl is blank, the value 0 is assumed.

The second operand expression, exp2, specifies the memory alignment for the

beginning of the section. Expression2 must be absolute and the value is considered

to be an exponent of 2, i.e., 2expZ. If exp2 is not present, a value of 3 is assumed,

and, thus, the section will be aligned on an octet boundary.

The assembler will assign a control section to the module name if no SEC

directive is used. No protection (i.e., read, write, or execute) will be assumed

for such a section.

DIRECTIVES 4-11

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Restrictions: Both expressions must be absolute.

The protection condition cannot be changed after the initial defining SEC state­

ment; i.e., a given section has only one protection condition.

Limitations: Only one unlabeled SEC statement is allowed.

WARNING: The assembler will create absolute literals in a secti.on with execute

only protection even though they cannot be read and, therefore, cannot be used.

Examples: T T T I
LABEL :,}{: COMMAND !~I OPERANDS·

..J.. ..l

ALPHA SEC 1, 2

BETA SEC 0

SEC 3,3

4-16. COMMON MODULE DIRECTIVE (COM)

The COM directive defines a common module.

GENERAL FORM:
LABEL l I COMMAND ; : OPERANDS

[symbol] ~16: COM JJ6Ji [expl][,exp2]
'--~~~~~~~---11~~--~~~~-'-~-~~~~~~~~~~~~~-'

The label is the symbolic name applied to the common section. Subsequent

uses of a COM statement with the same label will return control to the common

section at the location immediately following the highest location count used pre­

viously within the section. Common sections may be resumed as desired. If no

label is present, "blank" common is defined; i.e., it is an unlabeled common sec­

tion.

The protection condition of the common section is specified by expl. The ab­

solute value of expl may be 0, 1, 2, or 3 with the same protection interpretation as

for the SEC directive; viz., no protection, read only, read or write only, and exe­

cute only, respectively. If expl is blank, zero is assumed.

DIRECTIVES 4-12

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

The beginning boundary alignment is specified by exp2 where exp2 is an expo­

nent of 2; i.e., the alignment will be 2expZ. If exp2 is blank, three (an octet bound­

ary) is assumed.

The module definition output generated for a COM statement has the same for­

mat as that for a SEC statement; the setting of a reserved bit within the format

distinguishes the defined module as a common module.

Restrictions: Both expressions must be absolute.

The protection condition cannot be changed after the initial defining COM state­

ment.

Examples: LABEL

ALPHA

BETA

COMMAND

COM

COM

COM

4-17. DUMMY SECTION DIRECTIVE (DUM)

OPERANDS

0' 3

1

The DUM directive defines an absolute dummy section.

GENERAL FORM:
LABEL

[symbol]

T T
I I
I I

'11' I pl
I i

T I
COMMAND ! : OPERANDS

DUM [expl][, exp2]

Any reference to the absolute dummy section name or to any symbol defined

within the dummy section is treated as an absolute reference to a section. The

symbolic name has a value of zero since it is the first location in the dummy sec­

tion. The values of any other symbols defined (as labels of statements) within the

section have the values of their respective displacements from the beginning of the

dummy section.

A dummy section produces no object text output and no evidence will exist in

the object "deck" that the DUM statement appeared in the source file.

DIRECTIVES 4-13

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

The operand expressions have no significance other than as a comment for the

protection and boundary conditions of the actual section for which the dummy section

substitutes.

Examples: LABEL
I 1" T
lµi

J .l
COMMAND

T I
1)61

--1 --1
OPERANDS·

ALPHA

BETA

DUM

DUM

DUM

2,3

0,0

4-18. DUMMY COMMON MODULE DIRECTIVE (COMD)

The COMD directive defines a relocatable dummy section.

GENERAL FORM: LABEL
I l

J J COMMAND
l

l _l
OPERANDS

symbol COMD [expl][, exp2]

Any reference to the dummy common module name or to any symbol defined

within the dummy common section is treated as a relocatable value to which the

value of the symbolic label is to be added at link-edit time. At assembly time the

symbolic label has the value of relative zero and symbols defined (as labels of state­

ments) within the dummy common section have values that are the relocatable dis­

placements relative to the beginning of the module.

The symbolic label is assumed to be the name of a common section.

A dummy common module produces no object text output.

The operand expressions have no significance other than as a comment for the

protection and boundary conditions of the actual common section for which the dum-

my common section substitutes.

Restrictions: A COMD statement must have a label.

DIRECTIVES 4-14

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Examples:
I I

LABEL }>1] COMMAND l~i OPERANDS·

ALPHA

BETA

COMD

COMD

4-19. COPY DIRECTIVE (COPY)

0,3

1, 1

The COPY directive causes the specified file, "sourcefilename, "to be copied

inline as source text to the assembler.

GENERAL FORM:
LABEL

blank

T T
I :

1 11 T
I~ I
I .

COMMAND

COPY

I I

I :

I 11 I
I~ I . i

OPERANDS

sourcefilename

The source statements from the file, sourcefilename, are merged into the as­

sembly after the COPY statement and before any later source statements in the as­

sembly. The file may exist on an indicated user library or on the system procedure

library.

The COPY function is processed during PASS 1 of the Assembler without re­

gard to level of assembly.

Restrictions: A COPY statement cannot have a label.

The occurrence of an END statement in the copied file will cause termination

of the assembly.

Limitations: The COPY function cannot be used to copy part of a source file; all

card images in the file will be copied.

I I

Examples: LABEL COMMAND l~i OPERANDS·

COPY SOURCE

COPY PROCl

,...
DIRECTIVES 4- 15

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

4-20. RESERVE DIRECTIVE (RES)

The RES directive is used to reserve space within the assembly.

GENERAL FORM:
LABEL

[symbol]

: l

_l l
TUT
I J) I

-1 ..l

COMMAND

RES

T I
I I

..I. .L

~ l6 T
' J_

OPERANDS

exp

The present value of the current location counter is modified by the value of

the expression, exp. The expression may be positive or negative, but must be ab-

solute.

The value of the symbolic label is the value of the current location counter be­

fore it is modified.

Restrictions: The expression, exp, must be absolute.

Limitations: The maximum value of exp is 65536.

Examples:
LABEL i lLT _Lpl COMMAND OPERANDS·

ALPHA

BETA

RES

RES

RES

4-21. ALIGN DIRECTIVE (ALIGN)

10

#16

100

The ALIGN directive causes the location counter value to be incremented, if

necessary, to place the next statement on a specified word boundary.

GENERAL FORM: LABEL : :
l .l

blank

COMMAND

ALIGN

-T I
I I

..!. ...L

I 11 !
Ip I
' J.

OPERANDS

expl,exp2

The second operand expression, exp2, specifies a basic boundary alignment

and the first operand specifies a number of words past that basic alignment; e.g.,

ALIGN 2, 8 would specify the second word past an octet boundary.

DIRECTIVES 4-16

PROGRAMMER 1 S GUIDE TO THE CENTRAL PROCESSOR

If the current value of the location counter is not on a word boundary as speci­

fied by exp2 and expl, the location counter value will be incremented by the least

value sufficient to place the new location cmmt on the specified boundary. The con­

tents of any locations skipped are not modified.

Mathematically, the location count must meet the criterion: C :: x mod (y),

where C is the location count, xis the value of expl, and y is the value of exp2.

Illustratively, this means that ALIGN 2, 8 will force the location counter value to a

member of the set { 2, 10, 18, 26, · · · }.

Restrictions: An ALIGN statement cannot have a label.

The expressions, expl and exp2, must be absolute.

Expl must be less than exp2.

Examples:
LABEL COMMAND

T I
i)'S I

j J_
OPERANDS·

4-22. DO DIRECTIVE (DO)

ALIGN

ALIGN

ALIGN

0,8

1, 2

0, 16

The DO directive provides control of assembly by including, excluding, or re­

peating a variable number of statements. The result in the assembly is the same

as i.f the 11 DO-controlled 11 statements had been included, excluded or repeated in the

source input stream.

GENERAL FORM:
LABEL

I l

_l l COMMAND
I I

! : OPERANDS

[symbol] DO
I 11 I
~ v: [expl][, [exp2][, [exp3]]]

DIRECTIVES 4-17

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

ACTION SUMMARY: The DO directive is restricted in its interpretation when used

outside of procedures. It does, however, have limited use. Letting the DO param­

eters, expl, exp2, exp3, be represented by x, y, and z, respectively, the action

of the DO directive outside of procedures may be summarized as:

1. If x > 1, assemble the next statement x times; ignore y and z.

2. If x = 1, assemble the next y statements once, and skip z statements.

3. If x < 1, skip the next y statements; ignore z.

Note: See PROGRAMMERS' GUIDE TO PROCEDURE PROGRAMMING for the inter­

pretation of the DO directive when it is used within procedures.

Restrictions: Of the intrinsic functions only B(exp), D(exp), and T(exp) are valid

as parameters of a DO statement used outside of a procedure.

Outside of procedures, DO directives can be nested only to exclude the nested

DO statement; they cannot be used to cause repetition of the nested DO statement's

control range.

Outside of procedures, no statem.ents within the range of a given DO statement

other than a nested DO statement or a SET statement may have labels.

Default Values for Parameters: The following table illustrates the Assembler's

interpretation of the DO parameters for the various cases of coding:

expl < 1 expl = 1 expl > 1

CODED ASSUMES ASSUMES ASSUMES

DO x DO x, 1, 0 DO 1, 1, 0 DO x, 1, 0

DO x, DO x, 1, 0 DO 1, 1, 0 DO x, 1, 0

DO x, ' DO x, 0, 0 DO 1, 0, 0 DO x, 1, 0

DO x,' z DO x, 0, 0 DO 1, 0, z DO x, 1, 0

DO x,y DO x,y, 0 DO 1, y, 0 DO x, 1, 0

DO x, y, DO x,y, 0 DO 1, y, 0 DO x, 1, 0

DO x,y, z DO x,y, 0 DO 1, y, z DO x, 1, 0

Note: If expl i.s defaulted, it will be assumed to be zero.

DIRECTIVES 4-18

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

ITERATION COUNT: The value of expl specifies the number of times the iteration

group is to be assembled. This value is called the iteration count.

An expl value of less than one causes the iteration group to be skipped without

action. An expl value of n, where n is greater than or equal to one, causes the

iteration group to be assembled n consecutive times.

Restrictions: Outside of procedures, if expl is greater than one, exp2 defaults to

one; if expl is equal to or less than one, exp2 may be greater than one.

Limitations: The effective value of expl is limited to the range: O ::5 expl ::5 255.

ITERATION GROUP: The value of exp2 specifies the number of statements to be

assembled as a group. This group, called the iteration group, begins with the state­

ment immediately following the DO statement.

Restrictions: Outside of procedures, if expl is greater than one, exp2 defaults to

one.

Note: Commentary lines are not statements and are, therefore, ignored in DO

directive iterations.

SKIP COUNT: The value of exp3 specifies the number of contiguous statements in

the source stream that are to be excluded when the iterations are complete. This

value is called the skip count.

The statements skipped are those that immediately follow the last statement

iterated.

If expl is less than one, the DO execution is complete after the iteration group

is skipped and exp3 is ignored; i.e., only the number of statements equal to exp2

will be skipped.

Restrictions: Outside of procedures, exp3 is defaulted to zero for all cases other

than those in which expl is equal to one.

SATISFACTION OF PARAMETERS: When a number of statements equal to (or

greater than) the value of exp2 have been assembled in one iteration, exp2 is said

to be satisfied for that iteration.

DIRECTIVES 4-19

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

When a number of iterations equal to the value of expl has been completed,

expl is said to be satisfied for that DO statement.

The DO directive is said to be satisfied when the iterations and/ or skips spe­

cified by all three parameters have been completed.

DO LABEL: A label on the DO directive provides symbolic access to the number

of the iteration the DO directive is performing (or has performed) at the time refer­

ence is made to the label.

When the DO statement has been encountered in the source stream, the label

is initially given a value of one; thus, if the DO label is used as one of the param­

eters of its own DO statement, that parameter wi.ll always be evaluated as one.

This initial assignment of the label value overrides any previous assignment of a

value to that symbol by a previous SET or DO statement.

The value of the DO label is incremented at the beginning of each iteration of

the DO directive; thus, the value of the label is always the number of the iteration

being performed, or is the number of the last iteration performed once the DO

directive is satisfied. Any attempts to modify the value of the DO label by a SET

statement or as the label of a nested DO statement within the range of the DO direc-

tive will cause an anomalous assembly. In summary, if a DO statement has an

iteration count, (value of expl) of n and has a label, the value of the label will be

incremented through the series { 1, 2, 3, ... , n} in successive iterations. If the

value of expl is less than one, the label will always have the value of one.

Once the DO directive is satisfied, the label retains its last value unless or

until its value is modified by a SET statement or it is used as the label of another

DO statement, or the DO statement is reaccessed. Such modifications must occur

outside the range of the subject DO directive.

Restrictions: The value of a DO label cannot be preset to a value other than one.

The value of a DO label cannot be modified within the range of the subject DO

directive, other than by its own iteration incrementation.

DIRECTIVES 4-20

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

NESTED DO DIRECTIVES: A DO directive is said to be nested when it is one of

the statements included in the iteration group of another DO directive which is

~alled the parent DO directive. DO directives may be nested up to 32 levels.

Restrictions: An error message will be returned if the range of a nested DO

:lirective exceeds the range of its parent DO directive even through the resultant

:i.s sembly may be the desired result.

Nested DO directives are not permitted outside of procedures. The only ex­

ception is a parent DO directive which never assembles its iteration group and thus

always excludes the nested DO directive from the assembly. All other attempts to

nest DO directives outside of procedures will produce errors.

4-23. PSEUDO DIRECTIVES

4-24. INDIRECT ADDRESS CONSTANT DIRECTIVE (IND)

The IND directive is used to generate an indirect address constant.

:JENERAL FORM:
LABEL

[symbol]

i I

I :
COMMAND

IND

l

l i
I 11 I
; k'.11
' .l

OPERANDS

expl [, exp2]

Expressionl represents the address value and expression2 represents the

;econd level index. Expres sionl may be preceded by an at sign (@') to indicate

mother level of indirectness.

!:xamples: LABEL

GAMMA

COMMAND

IND

IND

OPERANDS

@BETA

SIGMA

~estrictions: Access to indirect address constants are execute requests; there­

ore, indirect address constants must be in control sections with execute permit­

ed protection codes.

)IRECTIVES 4-21

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

4-25. BRANCH ADDRESS CONSTANT DIRECTIVE (BCON)

The BCON directive is used to generate a branch address constant to be use

by the link editor for automatic overlaying. Indirect branches thru BCON addre

constants will be trapped by the link editor to invoke the overlay supervisor to O'

lay the segment containing the target address.

GENERAL FORM:
LABEL COMMAND OPERANDS

symbo~ I~ l BCON

EXPl represents the address value to be trapped.

Examples: T I
LABEL l JS j COMMAND

CALL SCAN BCON

BCON

expl

OPERANDS

SCAN ENT

OVLY3

Restrictions: Access to branch constants are execution requests and therefore

must be in execute permit control sections.

4-26. DATA HALFWORD DIRECTIVE (DAT AH)

The DATAH directive will place the values of expressi.onl and expressi.on2

into the left and right halves, respectively. of the word generated by the statemen

Both expressions must be absolute.

GENERAL FORM: I
LABEL COMMAND 1 1 OPERANDS

[symbol] , ~ ~ DATAH

Examples:
LABEL 1)51

ALPHA

4-27. LISTING DIRECTIVES

DIRECTIVES

I
COMMAND 1~1

DATAH

DATAH

4-22

I J6 I : I expl,exp2

OPERANDS·

0. 1

-3, 2

ROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

-28. SKIP DIRECTIVE (SKIP)

The SKIP directive permits control of the assembly listing. This directive

:i.uses the assembler to skip print lines or to eject the page of the assembly listing.

he contents of the operand field also control the printing of the heading at the top

Ethe new page. The directive itself is not printed on the listing.

ENERAL FORM: LABEL

blank

T T
I I

J_ j_
COMMAND

SKIP

f I
I I

..1.. ..L
OPERANDS

(exp(, character string]]

If the expression is zero or blank, the page will be ejected. Otherwise, a

umber of print lines equal to the value of the expression will be skipped. The ex-

ression must be absolute.

SKIP directives are ignored if the NOLIST directive is used.

The operand field of the SKIP directive may have any of the following formats:

FORMAT

SKIP

SKIP n

SKIP 0, "TIT LE"

SKIP n, "TITLE"

FUNCTION

Eject the page; new page number equals old page
number plus one; print previous title.

Skip n lines; if this causes page ejection, start at
top of page as in previous format.

Eject the old page; new page number equals old
page number plus one; new title is the character
string, TITLE.

Skip n lines; this causes page ejection, start

at top of nev.r page; new title for the next page is
the character string, TITLE, regardless of
whether page is ejected now; new page number
equals old page number plus one.

~estrictions: No label is allowed with the SKIP directive.

The expression must be absolute.

JIRECTIVES 4-23

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Limitations: The character string may not exceed 100 positions.

Examples: LABEL 1)51 COMMAND OPERANDS

SKIP

SKIP

SKIP

SKIP

4-29. LIST DIRECTIVE (LIST)

3

0, ''TITLE''

6, 11 TITLE 11

The LIST directive is used to cause the object code listing to resume.

GENERAL FORM: LABEL COMMAND OPERANDS

blank LIST I
~ j6 I blank

The combination of NOLIST and LIST directives can be used when only a po

tion of the assembly listing is desired. The directive is not printed on the listir

Restrictions: No label is allowed with the LIST directive.

Example:
LABEL :)5: COMMAND :~: OPERANDS

LIST

4-30. NOLIST DIRECTIVE (NOLIST)

The NO LIST directive is used to suppress the listing.

GENERAL FORM: LABEL COMMAND OPERANDS

blank NO LIST I
~ ~ 1 blank

When the assembler encounters this directive, it stops the listing. The dir(

tive is not printed on the listing.

Restrictions: No label is allowed with the NO LIST directive.

DIRECTIVES 4-24

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Example:
LABEL i,Mi

...1 l

DIRECTIVES

COMMAND

NO LIST

4-25

[I

iJ' I
..I. .1

OPERANDS

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

5-1. ASSEMBLER OUTPUT

SECTION V

ASSEMBLER OUTPUT

The Assembler output consists of object modules and a listing wi.th messages.

5-2. SOURCE PROGRAM LISTING

An assembly listing will be output in the format shown in Figure 5-1. A double

space listing may be requested by CPSTEP option, or listing may be suppressed by

CPST EP option.

Columns with headings are provided for error flags, the location of each state­

ment, the object text generated, the statement number, and each source statement.

If program sequencing has been requested, an unheaded column of sequence numbers

will be printed.

Error Column (ERRORS): The ERROR column contains the flags for assembler

error messages and procedure processing error messages. These error flags and

their meanings are described in the section on Messages.

Statement Location Column (LOCATION): The LOCATION column contains the

location (in hexadecimal numerals) re la ti ve to the beginning of i.ts section for each

source statement.

Object Code Column (OBJECT TEXT GENERATED): The OBJECT TEXT GENER­

ATED column contains the hexadecimal object code generated by each statement in

the source program.

Statement Number Column (STMT): The STMT column contains decimal statement

numbers for each source statement in an assembly.

Note: The user should note that the Central Processor Procedure Library state­

ments which precede each program are not listed; therefore, statement numbers

begin at some number greater than zero.

ASSEMBLER OUTPUT 5-1

E;;
Ul
M
~
to
[-<
M
~

0 c:
f-3
'"Cl c:
f-3

Ul
I
N I

T F X A S I N S T R U M f N T S

FRRnR~ LOCATION OBJECT TFXT GENFRATFO

4 04040
OO'lQ()F 47 l I} 0 I) 01 5
'10'1()1() ·86 l 6 0 FFF
000011 CA 1 0 0 0 012
000017 <11 7 0 0 l 8AO
OOOO'lF
or10A~·1 ?4 I 0 5 l AlO
00;1~ ~()

'1(lfll\l 'l
'l'lOA l" 'l0!1[10C'l0

C P U A S ~ F M B l E R l I S T I N G

STHT

66q

670 BRCHTST
671
677
f: 7l SUM
674
675
676
677
67R Tl1TAL
6 7q
68Cl OUT
6R l

SEC
USING
ORG
AF
llCLF
CF
RG
ORG
~T

Ol!G
RfS
fNO

F 'J T fl V

SOURCE STATEMENT

0
BRCHTS T, Al
RRCHTST+#F
Al,IA5l
XI ,Ab• ~UM
Al,IA71
TOUL
MCHT<;T+#l'IAO
Al ,11UT,X5
BP CH TS T+#A 10
5
B~CHTST

N A M F S

!IR(HTST 01 000000

A~S~~RLY cn~DLFTF. ~.;fl qATfMFNVi HllV" FRROR!;.

Figure 5-1. Example Source Program Listing

'"Cl
~
0
CJ
~

>
~
~
M
~

Ul

CJ
PAGE 1 I c:

H

ti
0?/05170 I M

f-3
0
f-3 :r:
M
()

M z
f-3
~

>
[-<

'"Cl
~
0
()

M
Ul
Ul
0
~

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Source Statement Column (SOURCE STATEMENT): The SOURCE STATEMENT

column contains each symbolic source statement in the assembly input.

SUMMARY OF SPECIAL LISTS: Following the listing of source statements for an

assembly is a summary of special lists and the number of statements in error for

each section. The format is as follows:

LITERALS ASSIGNED TO SECTION hh

location counter value literal

ENTRY NAMES

entry name location counter value

EXTERNAL NAMES

external name

ASSEMBLY COMPLETE xxxx STATEMENTS IN ERROR -

5-3. MESSAGES

An assembly listing line consists of the hexadecimal representation of the lo­

cation counter and machine language instruction followed by the number and image

of the original source statement. Mes sage flags are indicated to the left of the lo­

cation counter value.

For each line upon which an error condition is discovered (which results in a

mes sage flag being listed) a word containing an error count will be incremented

by one. At the end of the assembly run, this count is set in the specified word on

the listing. A maximum of six flags will appear on the listing for each line of

generated listing.

ASSEMBLER OUTPUT 5-3

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Table 5-1. Assembler Generated Messages

FLAG ERROR CONDITION

A Addressability Error

B Invalid Use of Base Intrinsic

c Too Many Continuation Cards

D Duplicate Label Assignment

E General Syntax Error

F Intrinsic Function Invalidly Used

G Invalid Use of a List

H Invalid Use of a Directive

I Undefined Instruction

J Invalid Use of Displacement Intrinsic

K Invalid Use of Control Section Intrinsic

L Error in the Label Field

M Magnitude Error

N No END Card on Deck

0 Too Many Operands on Statement

p Parentheses Are Unbalanced

Q Invalid Arithmetic Operation

R Relocation Error

s Truncation Has Occurred

T Assembler Table Overflow

u Undefined Symbol

v Invalid Forward Reference

w Warning, Possible Error

x Reserved for Future Use

y Reserved for Future Use

z Disagreement in Location Counter between Pass One and Pass Two.

ASSEMBLER OUTPUT 5-4

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

5-4. Procedure Processing Generated Messages

The message flags following are generated by the Central Processor and the

Peripheral Processor procedures that the assembler processes. User generated

procedures may generate additional flags, or the same flag with a different meaning.

Table 5-2. Procedure Processing Message Symbols

FLAG ERROR CONDITION

1 Invalid use of a register, or insufficient number of parameters.

2 Questionable use of a register, or insufficient number of param-
eters.

3 Invalid use of a literal for the ASC.

4 Invalid use of an @for the ASC.

5 Invalid use of a ¢ for the ASC.

5-5. CROSS-REFERENCE LISTING

A cross-reference listing will be output in the format appearing in Figure 5-2.

The cross-reference Ii.sting can be suppressed by control card option.

Each new symbol encountered is entered in the SYMBOL column and its defi­

nition and/or cross-references are listed to the right through the TYPE, SEC,

VALUE, DEFN, and REFERENCES columns. Each new symbol will have a SYMBOL

and TYPE entry in the cross-reference listing. If the symbol is defined, the SEC,

VALUE, and DEFN fields will be filled; if the symbol is not defined, these three

fields will contain hyphens. A series of hyphens in any field indicates that, for

that symbol, the field is not applicable, not available, or not known.

Symbol Column (SYMBOL): The SYMBOL column contains the symbol whose cross­

references are listed in the succeeding columns and lines of the listing format. All

entries prior to the next entry in the SYMBOL column refer to the given symbol.

ASSEMBLER OUTPUT 5-5

>
C/l
C/l
M
~
tJj

l'
M
~

0 q
1--j

1:J q
1--j

Ul
I
O' I

CROSS-REFF~FNCE LISTING

SY"Aill TYPE SEC VALIJF DfFN · REFERENCES

·'II VAR -- 0'100'10 l l JQ 673 675 67R
A? VAR -- OIJOO'.lO I? 30 675
A5 VllR -- 001)00015 33 6 7'.\
Ab VAR -- 00000016 34 674
BRCHTST F"IT Ill 00000000 1>70 671 67? 677 6 79 6Al
Al VA~ -- onoonoa1 13 671
1$"4 --- -- -------- UNOFF 273 ?76 ~?ll 1H ~54 Hl 412 415 505
OUT R~L flt '),J0110fll 0 680 67A
5UM RCL I) l 00()()1)00F 673 674
TOTf\l REL 01 nnooo~AO 67P. 676
XI VAO. -- ()0001)0?1 45 674
x 'i l//\Q. -- 0()()()1)01') 4'l f.7A

'>l"P-A\Mr OJITF-1?/05/711 rx~CUTl""I Tl~F-OOHRS IJOMINS S?.67SfCS

Figure 5-2. Cross-Reference Listing Example

1:J
~
0
0
~

>
~
~
M
~

C/l

0
q
H

t1
M

? I
1--j

PAGE 0

ouosno I
1--j

::r::
M
(')

M z
1--j
~

'iOR >
l'
1:J
~
0
(')

M
C/l
(/1

0
~

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Type Column (TYPE): The TYPE column contains an abbreviation specifying the

type of the symbol being cross-referenced. The meanings of the abbreviations in

the TYPE column are as follows:

ABBREVIATION MEANING

REL internally relocatable

ABS absolute

EXT external

ENT entry point

VAR variable, section and value may change; the first section
and value is displayed

The VAR type symbol results from the definition of a SET or a DO directive

outside of all procedures. Symbols defined by SET and DO directives inside a

procedure have definition information only.

Section Colunm (SEC): The SEC column contains the number of the section to which

the symbol belongs and in which it is defined.

Value Column (VALUE): The VALUE column contains the value assigned to or the

evaluation of the symbol being cross-referenced. Depending upon the type of the

symbol, its value may be an address constant, a value set by the programmer, or

the evaluation of the symbol via operations. If the VALUE column contains eight

asterisks, the value of the symbol cannot be represented in eight hexadecimal digits.

Definition Column (DEFN): The DEFN column contains the number of the statement

in which the symbol is defined.

References Column (REFERENCES): The REFERENCES column contains a com­

plete listing of the statement numbers of all the statements in which the symbol

being cross-referenced appears. This will not include its definition statement

number that appears in the DEFN column.

ASSEMBLER OUTPUT 5-7

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SECTION VI

ASSEMBLER-CENTRAL PROCESSOR INTERFACE

6-1. INTRODUCTION

The assembler produces machine code statements by interpretation of symbolic

coding through procedures that are defined in the assembler. The names by which

the procedures may be called (i.e., the assembler mnemonics for the central pro­

cessor instructions) are described in Sections VII and VIII of this manual.

This section of the manual describes the modes of interpretation of symbolic

code into machine code for scalar instructions. Since the vector operations have

special characteristics, both in the assembler procedures and in the machine, they

are described in Section VIII, which is devoted entirely to the vector operations.

6-2. INSTRUCTION FORMATS

The machine instruction has an eight- bit opera ti.on code fi.eld, a four- bit R field

which either specifies a register whose contents are used or altered in the operation

or is a condition mask for the operation, a four-bit T fi.eld whose most significant bi.t

specifies indirect addressing and whose other three bits specify an index register,

a four- bit M field which speci.fi.es the base register to be used in address develop­

ment, and a 12-bit N field which specifies the displacement to be used in address

development. For instructions which use immediate operands, the M and N fields

compose a 16-bit immediate operand field. For index, test, and branch instructions,

the T field addresses arithmetic registers. All three machine formats are illustrated

in Figure 6-1.

The assembler statement of a scalar instruction may have a label, must have

a command, and may have from one to three operands.

In general:
LABEL l l COMMAND l l OPERANDS

TuT lul

~~[_s_y_rn~b_o_l~]-~~'P_1~'~-rn~n_e_m~o_n_i_c~-i~·-~~J~[~o~p~randl,]operand2[,operand3J

ASSEMBLER-MACHINE INTERFACE 6-1

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

I
0

\

0

\

I
0

0
\

I
I I

OP CODE R FIELD T FIELD M FIELD N FIELD

:
I

I k I ~~r,-•~

I
) ~ ,!""'\ I ,-,

\ l J ~ '

'-···' ·""'

I I I I I I I I I I I I I I
7 8 I I I 2 15 16 19 20

~~
OP CODE R FIELD T FIELD M FIELD I'.; FIELD

I I I I i I I I I I I I I I I
7 8 11 12 15 1 6 1920

~ ' " I MNEMONIC -·· '
OP CODE R FIELD T FIELD M FIELD N FIELD

:

OP CODE R FIELD T FIELD M FIELD N FIELD

78 1112 1516 1920

~
OP CODE R FIELD T FIELD M FIELD N FIELD

I

I

I

31
I

31

I

31

3 I
I

0 7 8 11 12 1516 1920 31
\ ~ __ ,

•00962 ~~>,: ~
Figure 6-1. Assembler Statement Translations into Machine Code

ASSEMBLER-MACHINE INTERFACE 6-2

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-3. LABEL

A label on an assembler instruction is optional. When it is present, it is a

symbol (see Topic 2-5) and it is assigned a relocatable value which is its relative

position in the assembly. If a label is not present, its field must be represented by

one or more blanks.

The label is not interpreted into any part of the machine inst:ruction.

6-4. COMMAND

The command in the assembler instruction is mandatory. The command is one

of the mnemonics defined by procedures in the assembler. This mnemonic, in

conjunction with information from the operands, determines the operation code field

of the machine code instruction (see Figure 6-1). Note that the machine operation

code may not be determined from the command mnemonic alone; e.g., the mnemonic

L for load instructions may be translated into any one of three machine codes de­

pending upon the register operand included in the statement.

6-5. OPERANDS

The operand list varies in number of operands and in operand interpretation

from instruction to instruction, but there are only two basically different operand

li.sts. They may be called the R, N, X list and the R. R, N list, respectively. Table

6-1 is a definitive list of all operand combinations.

6-6. R, N, X OPERAND LIST

The R, N, X operand list is basic to all except two of the scalar instructions.

6-7. First Operand

The first operand is that operand which is translated into the R field of the

machine instruction and also helps determine the operation code for some instruc­

tions. See Figure 6-1.

ASSEMBLER-MACHINE INTERFACE 6-3

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Table 6-1. General Forms and Variations of the Operand Lists

GENERAL DEFINITIVE VARIATIONS

FORMS SYMBOLIC N EXPLICIT BASE AND DISP

R, N, X Lists:

r, [@][=]n[, x] r,@=n, x r,@=n

r,@n, x r,@n r,@(d, b), x r,@(d, b)

r,=n,x r,=n

r,n,x r,n r, (d, b), x r, {d, b)

r, [@[=]]n[, x] r,@=n, x r,@=n

r,@n, x r,@n r,@(d, b), x r,@{d, b)

r,n,x r,n r, (d, b), x r, {d, b)

r, [@]n[,x] r,@n, x r,@n r,@(d, b), x r,@(d,b)

r,n,x r,n r, (d, b), x r, (d, b)

m, [@[=Jn[, xJ m,@=n, x m,@=n

m,@n, x m,@n m,@{d, b), x m,@(d,b)

m, n,x m,n m, (d, b), x m, (d, b)

m, [@Jn[, xJ m,@n, x m,@n m,@(d, b), x m,@(d, b)

m, n, x m,n m, (d, b), x m, (d, b)

[@[=]]n [x, J @=n, x @=n

@n,x @n @(d, b), x @(d, b)

n,x n (d, b)' x (d, b)

[@Jn[, xJ @n, x @n @(d, b), x @(d, b)

n,x n (d, b), x (d, b)

r, i[, xJ r, i, x r, i - -

i [, x l i, x i - -

i i - -

R, R, N Lists:

r, r, n r, r,n r, r, (d, b)

ASSEMBLER-MACHINE INTERFACE 6-4

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

The first operand may be a register symbol or value, a mask, or supplied

by the assembler. For those instructions where the assembler supplies the R field

of the object instruction, no "first" operand is coded; therefore, it is convenient to

refer to it as the register operand or the mask operand, as appropriate.

GENERAL FORM SYMBOLS: In general forms, the first operand, when present,

will be represented by symbols as follows:

SYMBOL MEANING

r replace r with a register symbol or register value

m replace m with an absolute expression

neither no 11 first" operand, the R field is supplied by the assembler

6-8. Second Operand

The second operand is that operand which is translated into the M and N fields

of the machine instruction and, also, specifies whether the most significant bit of

the T field is to be set to one or zero (i.e., indicates whether to use indirect

addressing.) See Figure 6-1.

The second operand may be a relocatable expression, a sublist specifying base

and displacement, or an absolute expression which is an immediate operand. In­

structions which use relocatable symbols also permit base and displacement sublists

and vice versa, but absolute expressions and relocatable values are not interchange­

able.

Since the 11 first" operand is not always coded, it is convenient to refer to the

11 second" operand as the address operand (when a relocatable symbol or a base and

displacement sublist) or as the immediate operand (when an absolute expression).

An address operand may be preceded by an@ sign to indicate indirect addressing

(see Topic 6-27), and its presence causes the most significant bit of the T field of

the object instruction to be set to one.

ASSEMBLER-MACHINE INTERFACE 6-5

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

BASE AND DISPLACEMENT SUBLIST: When a relocatable expression is coded in

the second operand, it is provided by the assembler with a base and displacement.

When it is desired to code the base and displacement explicitly, the address operand

is coded as a sublist (i.e., a list enclosed in parentheses) with the displacement

first, a comma, and then the base register symbol or value. The displacement is

translated into the N field and the base into 'the M field of the object instruction.

See Figure 6-1. Both the displacement and the base must be absolute expressions.

RESTRICTIONS ON LITERALS: In all instructions in which the data flow is from

the location specified by the address operand, a literal may be used as an address

operand since it is given a relocatable value.

In those instructions in which the data flow or the flow of control (i. e., a

branch) is to the location specified by the address operand, use of a literal is re­

stricted and may be prohibited. For some branch instructions a literal which will

create an indirect address is permitted in conjunction with the indirect address

symbol.

Note that, in any case where a literal is conjuncted with indirect addressing,

the literal must be assembled into an indirect address.

A base and displacement sublist, since it is a list, cannot be a literal.

GENERAL FORM SYMBOLS: In general forms, the second operand will be rep­

resented by symbols as follows:

SYMBOL MEANING

n

@n

replace n with a relocatable expression or a base and
displacement sublist (d,b)

use the indirect address cell at location n + index to develop a
terminal effective address

=n assembler give =n a relocatable value and store the value of n
at that location (n may be absolute)

@=n assembler give =n a relocatable value and store the indirect
address, n, at that location

(d, b) explicit base and displacement address (Continued)

ASSEMBLER-MACHINE INTERFACE 6-6

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SYMBOL MEANING

d replace d with a positive absolute expression, or a register
symbol or value

b replace b with an absolute expression, or a base register symbol
or value

i replace i with an absolute expression

6-9. Third Operand

The third operand is that operand which is translated into the three least signif­

icant bi.ts of the T field of the object instruction. See Figure 6-1.

The third operand will always be an index register symbol or value. It is con­

venient to refer to it as the index operand. In general forms, the index operand will

be represented by the symbol x.

It is always optional to leave off the index operand, but there is one instruction,

LLA, in which an index operand is prohibited.

6-1 O. R, R, N OPERAND LIST

There are only two instructions, BCLE and BCG, which use the R, R, N operand

list. It differs from the R, N, X list in that it is the second operand that is translated

into the T field of the object instruction. See Figure 6-1.

The first operand is always an arithmetic register symbol or value, the second

operand is always an even arithmetic register symbol or value, and the third operanc

is always a relocatable address (branch) symbol. The third operand does not permit

use of indirect addressing or literals.

The algorithm of these two instructions is discussed in Topic 7-127.

For convenience, the first operand may be called the register operand, the

second operand may be called the test operand, and the third operand may be

called the address operand.

ASSEMBLER-MACHINE INTERFACE 6-7

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-11. REGISTER ADDRESSING

The bank of 48 registers in the Central Processor are separated into six eight­

word files: the two base register files, A and B, the two arithmetic files, C and D,

the index register file, X, and the vector register file, V.

Symbolic addressing of the registers may be performed by their reserved

symbols built into the assembler procedures, by their decimal positions in the reg­

ister bank, by their hexadecimal positions in the register bank, or by any absolute

expression which is equated to any of the previous addresses.

Figure 6-2 illustrates the division of the register bank into files, and Table 6-2

lists the symbols by which the individual registers may be addressed.

Note that all register addressing modes are absolute values.

6-12. REGISTER OPERAND - R FIELD ADDRESSES

Register operands are translated by the assembler into the R field of the object

code.

Since there are 48 registers but only four bits in the R field, the translation

is performed modulo 16. For those assembly instructions which may refer to any

register in the bank (e. g. , L), the modulus number (i. e. , first 16, second 16, third

16) or the symbol letter (i. e. , Bx, Ax, Xx, or Vx) determines which object opera­

tion code is selected. In the object code, it is the operation code that specifies

which group of 16 registers is accessed, whereas in the assembler code the reg­

ister operand specifies which operation code to select. Note that the index and

vector register files are accessed in the same modulus, and, therefore, instruc­

tions whose names specify an index register in the R field also may use vector

registers.

ASSEMBLER-MACHINE INTERFACE 6- 8

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SYMBOLIC DECIMAL HEXADECIMAL REGISTER BANK FILE

ADDRESS ADDRESS ADDRESS

BO 0 #0 WIRED TO ZERO '\ I

Bl 1 #1
r---------)

A

I) BASE
B7 7 #1 i

~--------H
REGISTERS

B8 8 #8 (BR)

B

Bl5 15 #F)
I

AO 16 #10)
c

A7 23 #17 l ARITHMETIC
------ --·--) REGISTERS

A8 24 #18) (AR)

. D I
Al5 31 #IF

XO 32 #20 II
\ I

i INDEX
i x I REGISTERS

) I
(XR)

X7 39 #27
)

VO 40 #28)
VECTOR

v I REGISTERS

) (VR)
V7 47 #2F

Figure 6-2. Register File Specifications

ASSEMBLER-MACHINE INTERFACE 6-9

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Table 6-2. Register Addressing Symbols

SYMBOLIC NUMERIC ADDRESS SYMBOLIC NUMERIC ADDRESS l
ADDRESS ADDRESS

DECIMAL tHEXADECIMAL DECIMAL HEXADECIMAL

BO':' 0 # 0 AB 24 # lB

Bl 1 # 1 A9 2S # 19

B2 2 # 2 AlO 26 # lA

B3 3 # 3 Al 1 27 # lB

B4 4 # 4 Al2 2B # lC

BS s # s Al3 29 # lD

B6 6 # 6 Al4 30 # lE

B7 7 # 7 AlS 31 # lF

BB B # B xo~:::~::: 32 # 20

B9 9 # 9 Xl 33 # 21

BIO 10 # A X2 34 # 22

Bll 11 # B X3 3S # 23

Bl2 12 # c X4 36 # 24

Bl3 13 # D XS 37 # 2S

Bl4 14 # E X6 3B # 26

BlS lS # F X7 39 # 27

AO 16 # 10 VO 40 # 2B

Al 17 # 11 Vl 41 # 29

A2 lB # 12 V2 42 # 2A

A3 19 # 13 V3 43 # 2B

A4 20 # 14 V4 44 # 2C

AS 21 # lS vs 4S # 2D

A6 22 # 16 V6 46 # 2E

A7 23 # 17 V7 47 # 2F

>:<When these values are used in the b parameter of the explicit address sub-
list, (d, b), they specify that there is no base. I

>:<>:<When these values are used in the index operand, they specify that there
I

J is no index.

ASSEMBLER-MACHINE INTERFACE 6-10

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Examples: The following assembler statements would translate into the illustrated

hexadecimal object code:

I I I I I I I I I I 1 I

LABEL l ¥> l CMMND j ¥> : OPERANDS OP I \6 I RI ¥>ITl\6IMl¥>1 N
J_ J_ _l ..1 J.1 i_i

L B2, (Xl), X2 18 2 2 0 021
L A3, (A4) 14 3 0 0 014
L #13, (20) 14 3 0 0 014
L X2, (X3) lC 2 0 0 023
L V3, (Xl) lC B 0 0 021

6-13. ADDRESS OPERAND REGISTER ADDRESSES

Registers may be addressed in the address operand (N field) of most instructions

by coding a base and displacement sublist with base register specification of zero

(implied or explicit).

Since the N field is 12 bits, references to registers in the N field are by their

hexadecimal positions from the beginning of the register bank. Refer to the example

in Topic 6-12.

Indexing address operand register references may produce effective addresses

in virtual memory since the index word sets are greater than 48 words. Refer to

Topic 6-23. Illustratively, the index word set for a register origin, x, is:

ASSEMBLER-MACHINE INTERFACE 6-11

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

NEGATIVE
WRAPAROIJND

REGISTER
BANK

POSITIVE
OVERFLOW

VM

HIGH VM

BO

__.~

j

LOW VM

.1.

ORIGIN-t223)

I I

ORIGIN-(X+I)

ORIGIN-X

ORIGIN (X)

:.i. ...L ...L _L ..1

ORIGIN+(47-X)
j _L ...L ..1

ORIGIN+(48-X)

...I.. _j_ _L _L

VM ORIGIN+(223_1-X)

Note: VM = Virtual Memory

6-14. ADDRESS DEVELOPMENT

d

j

...I..

J

....

From the viewpoint of the user, address development occurs in two phases:

(1) the assembler's interpretation of symbolic addresses into object code, and (2)

the machine's interpretation of object code. The user must be able to anticipate

the final result of his coding. Table 6-3 gives the specifications for direct single­

word addresses.

6-15. ASSEMBLER TRANSLATION

The general translation of an assembler statement into an object statement is

described in Topics 6-6 through 6-1 O. Translation of an address operand into the

base and displacement fields is discussed in greater detail in the following topics.

ASSEMBLER-MACHINE INTERFACE 6-12

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-16. Symbolic Addresses

Since Central Processor instructions use base and displacement addressing (M

and N fields), the programmer must provide the assembler with information about

the use of base registers. This is accomplished with the USING directive,

Topic 4-9.

In developing the base and displacement fields for a symbolic address, the

assembler determines which base registers are in use, and selects that base registe

whose contents when subtracted from the program counter relative displacement of

the symbol will give the smallest positive N field displacement. Then that base regi

ter' s object address is assembled into the M field of the object instruction, and the

derived N displacement is assembled into the N field of the object instruction.

Limitations: The N displacement must be within the range: 0 ::5 N ::5 4095. The N

displacement is translated into the 12-bit N field as a positive number.

Default: The base register addressed in the M field will be base register zero if

no base registers are specified by the USING directive to be in use. This produces

program counter relative displacements, and for 0 ::5 N ::5 4 7 produces register

addressing in the address operand.

Note: Note that there are three distinct displacements involved in programming

the Central Processor in assembler language. First, there is the displacement of

a symbolic location from the beginning of the program (section) in which it is

named; this is called program counter relative displacement. Second, there is the

displacement of a symbolic location from some specified base position within the

program in which it is named; this, for convenience, will be called the N displace­

ment. Third, there is the index displacement specified by the contents of an in­

dex register addressed in the index operand.

Example: The following assembler code would produce the illustrated object code

(note that SUM is addressed by base register 2 because a smaller displacement is

possible) and results on execution:

ASSEMBLER-MACHINE INTERFACE 6-13

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

I T T T ITTTTJ l J
LABEL j_ ~ i CMMNDj ~ j OPERANDS COUNT OPl~IRj~ITl~IMj~IN

j _l _j_ _j_ _J_ j_

EX AMP SEC 0
USING EXAMP, Bl
USING EXAMP+SO, B2
BLB Bl, $+1 0 98 1 0 0 001
AI Bl, -1 1 70 1 0 F FFF
LI Xl, SO 2 SC 1 0 0 032
L B2,(Xl) 3 18 2 0 0 021
.

LI Xl, 2 (6) SC 1 0 0 002
.

ST A3, SUM, Xl (F) 24 3 1 2 OOA
SUM DATA o,o,o,o,o (3C) 00 0 0 0 000

(3D) 00 0 0 0 000
(3E) 00 0 0 0 000
(3F) 00 0 0 0 000
(40) 00 0 0 0 000

On execution:

COUNT REGISTER CONTENTS VIRTUAL MEMORY CONTENTS

0 Bl 0000 0001
1 Bl 0000 0000
2 Xl 0000 0032
3 B2 0000 0032 . -·
. . .
6 Xl 0000 0002
. . .
F A3 40EO 0000 3E 40EO 0000

6-17. Explicit Base and Displacement Addresses

Explicit base and displacement address interpretation is described in

Topic 6-8.

ASSEMBLER-MACHINE INTERFACE 6-14

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Base and displacement as calculated by the assembler can be avoided, whenever

desirable, by explicit base and displacement addressing in the address operand.

Use of explicit base and displacement requires that the programmer know both the

contents of the base register he specifies and the exact displacement from that

base location.

The principal use of the base and displacement sublist in the address operand

is to develop a register address in the M and N fields of the ob.iect code.

Limitations: Any expression used as the d parameter must have a value within the

range: 0 ~ d ~ 4095. Any expression used as the b parameter rn ust have a value

within the range: 0 ~ b ~ 15.

Note: As within any list, an empty paramter is provided, by the assembler, with

the value of zero; thus, if (d, b) is coded (AZ), the result is an M field of zero and

an N field of 12 (base 16).

Example: The following assembler code would translate into the illustrated hexa­

decimal object code:

I I I I I

R : Vi:
I I I I

LABEL j 16: CMMND 1 V, 1 OPERANDS OP l Vi j_ T'16~Ml'61 N
_l _J_ _l _J_ _l _J_ l_ _l_

L X5,(#7F, Bl) lC 5 0 1 07F
AF A3, (A8), X5 42 3 5 0 018

6-18 •. MACHINE TRANSLATION

There are four factors that determine the mode by which the Central Processor

develops the effective address: first, the operation code specifies whether the

effective address is that of a singleword, halfword or doubleword; second, the

indirect (most significant) bit of the T field specifies whether the address is to be

obtained directly or indirectly; third the M field specifies whether a base value is

to be added to the N field displacement; and fourth, the three least significant bits

of the T field specify whether the address is to be modified by an index value.

ASSEMBLER-MACHINE INTERFACE 6-15

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-19. Direct Address Development

Direct addresses are those that are developed from the N field, the contents

of the base register addressed by the M field, and the contents of the index register

addressed by the T field.

Restrictions: An M field of zero specifies no base value and any effective address

obtained that is within the range: 0 ~ EA~ 4 7, will be the address of a register.

If the M field is any value other than zero, effective addresses within the range

0 ~EA ~47 will address low virtual momory even though the contents of the base

register addressed might be zero.

The first index register (index register 0, XO) cannot be used for indexing.

It can be addressed in any other field of an instruction, but a value of zero in the T

field specifies no indexing.

6-20. Singleword Addresses

Singleword addressing is specified by the operation code (assembler mnemonic)

and the addresses are developed as follows:

1. Consider the 12-bit N field to be the positive N displacement.

2. Examine the M field and,

a. if it is not zero, find the base register it addresses and add the least

significant 24 bits of the contents (as a positive value) to the N deplace­

ment, or

b. if it is zero, treat an effective address within the range of the register

bank addresses as an indexable register address.

3. Examine the three least significant bits of the T field and,

a. if it is not zero, find the index register it addresses and add the least

significant 24 bits of the contents (as a two's complement value) to the

result of step 2, or

b. if it is zero, ignore the index unit.

4. Use the result of step 3 as the effective address of the instruction.

ASSEMBLER-MACHINE INTERFACE 6-16

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Figure 6-3 illustrates the full process, and Table 6-3 gives the full specification

for singleword addressing.

Note: This development takes place in the arithmetic unit; neither the instruction

nor the contents of the base and index registers are altered.

OP COLJE:. R i· I ELD ; FI LLD !vl r I ELD N FIELD

>o >o

I I
0 I J 1 S 1 6 1 9 .~ (\

S INGLEWORD
OPERATION

wa
100959

I
±1

8

\

8

N

iASE VALUE

INDEX VALUE

l
EFFECTOV:
I I I

DDRESS:
I I I

Figure 6-3. Development of Singleword Effective Addresses

ASSEMBLER-MACHINE INTERFACE 6-17

3 1

3 1

/

3 1

>
Cll.
Cll.
M
~
td
t""
M
~
I

~
>
()

::c:
H z
M
H z
1-j

M
~
tTj

>
()

M

O'
I

......
00

Table 6-3. Development of Singleword Addresses (Direct)

ADDRESS AND INDEX OPERANDS O.:sN.:szlZ_1 EFFECTIVE

SYMBOLIC EXPLICIT M FIELD (M)+N ORIGIN T FIELD (M)+N+(T\ ADDRESS

expr (exp a, exp a) M=O N~47 REG T=O N/A REG

N>47 VM T=O N/A VM

0<M:5l 5 ~o VM T=O ~o VM

expr,expa (exp a, expa), exp a M=O N~47 REG T=O N/A REG

0<TS7 EA<;;._47 REG

EA>47 VM

N>47 VM T=O N/A VM

0<Ts7 EA~47 REG

EA>47 VM

0<Msl5 2:0 VM O:s Ts? 2:0 VM

(expa) M=O N~47 REG T=O N/A REG

N>47 VM T=O N/A VM

(expa), expa M=O N<;;._47 REG T=O N/A REG

0<TS7 EA~47 REG

EA>47 VM

N>47 VM T=O N/A VM

0<Ts7 EA~47 REG

EA>47 VM

Where expr is a relocatable expression (symbol), expa is an absolute expression (symbol), (M) is
the content of the base register, (T) is the content of the index register, REG is a register, and

VM is a virtual memory location.

1::1
~
0
0
~
>
~
~
M
~
Cll.

0
c:::
>-<
tJ
M
1-j
0
1-j

:r:
M
n
M z
1-j

~
>
t""
1::1
~
0
n
M
Ul
Ul
0
~

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Examples: Given that the assembler statement:

L A4, SUM, XS translates into object code: 14 4 5 1 OFF, that B 1 contains: 0000

1000, and X 5 contains: 0000 OOOA; then the address will be developed as:

DISPU\CEMENT

3ASE

INDEX

MEMORY EFFECTl\IE

Given that the assembler statement:

A X4, (#A, B2) translates into object code: 62 4 0 2 OOA, and that B2 contains:

0000 2000; the address will be developed as:

DISPLACEMENT
0 0 A

SASE
0 0 2 0 0 0

MEMORY EFFECTIVE V7/1 I V.A"/10 1 012 1 0101A

6-21. Halfword Addresses

Halfword addressing is specified by the operation code (assembler mnemonic),

and the halfword specified may be either the left or the right halfword of a single­

word depending upon the code. In either case, the addresses are developed as

follows:

1. Consider the 12- bit N field to be the positive N- displacement.

2. Examine the M Field and,

a. if it is not zero, find the base register it addresses and add the least

significant 24 bits of the contents (as a positive value) to the N displace

ment, or

b. if it is zero, treat any effective address within the range of the registe1

bank addresses as an indexable register address.

ASSEMBLER-MACHINE INTERFACE 6-19

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

3. Examine the three least significant bits of the T field and,

a. if it is not zero, find the index register it addresses and,

(1) displace its 25 least significant bits to the right by one bit

(arithmetic shift) and,

(2) add the value as a two's complement signed number to the result

of step 2, or

b. if it is zero, ignore the index unit.

4. Use the result of step 3 as the effective address of the instruction.

Figure 6-4 illustrates the full process.

OP CODE R FIELD T FI ELD M FIELD N FI ELD

~ >0 I >I) >o

I I
0 ' 13 1 C) 1 b 1920 3 1

'\ v ./

HALFWORD
OPERATION

XT f3M

N

BASE VALUE

I
~I INDEX VALUE

0 7 8 '31

' ! ______ ____./

EFFECrn,; ADDRESS :

I I I I I I : l I
0 7 8 '31

100960

Figure 6-4. Development of Halfword Effective Addresses

ASSEMBLER-MACHINE INTERFACE 6-20

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Restrictions: The address developed from steps 1 and 2 is actually a word address;

it is the operation code that specifies the use of a halfword. Note then that any

symboli.c address i.s a word address; e.g., i.n the followi.ng i.nstructi.ons LH XI,

IMMOD and LR Xl, IMMOD i.s the same word, but one i.nstructi.on accesses the

left half and the other accesses the ri.ght half.

It is only the index parameter that produces halfword displacements. See

Topic 6-25, for a description of halfword index word sets.

Note: This development takes place in the arithmetic unit; neither the instruction

nor the contents of the base and index registers are altered.

Note: Table 6-3 is valid for halfword addressing up to determination of the origin,

but when indexing is speci.fi.ed, the si.ngleword di.splacement i.s only one-half the

index value; e.g., in an instruction with base register 0, an N displacement of 48

would be the first virtual memory address; but with an N displacement of 0 it would

require an index value of 96 to exit from the register bank (for H halfword operations).

The register exit point for base register 0 addresses will be:

exit= N + X, where the index value X = 2(47-N) + 2 for "H" halfword instructions

and X = 2(47-N) + 1 for "L" or "R" halfword instructions.

Examples: Given that the assembler statement:

LH A4, (#B, B2), Xl translates i.nto: 15 4 1 2 OOB, and that B2 contai.ns: 0000

0000, and Xl contains: 0000 OOOB; then the address will be developed as:

DISPLACEMENT

BASE

SHIFTED INDEX

MEMORY EFFECTIVE
RIGHT
HALF

and the contents of the right half of virtual memory location #10 would be loaded

into the left half of A4.

ASSEMBLER-MACHINE INTERFACE 6-21

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Given that the assembler statement:

LH A4, (A6), Xl translates into: 15 4 1 0 016, and that Xl contains: 0000 0004;

then the address will be developed as:
0 20

D'SPLACCMEN" ~O
SHIFTED INDEX

0 0 0 0

REGISTER EFFECTIVE 11??'?
~0 1 0 1 0 1 0

31

and the contents of the left half of AB will be loaded into the left half of A4.

6-22. Doubleword Addresses

Doubleword addressing is specified by the operation code (assembler mnemonic)

and the addresses are developed as follows:

1. Consider the 12-bit N field to be the positive N displacement.

2. Examine the M field and,

a. if it is not zero, find the base register it addresses and add the least

significant 24 bits of the contents (as a positive value) to the N displace·

ment, or

b. if it is zero, treat any effective address within the range of the registe1

bank addresses as an indexable register address.

3. Examine the three least significant bits of the T field and,

a. if it is not zero, find the index register it addresses and,

(1) displace its 23 least significant bits to the left by one bit and,

(2) add the value as a two's complement signed number to the result

of step 2, or

_ b. if it is zero, ignore the index unit.

4. Use the result of step 3 as the effective address of the instruction.

Figure 6-5 illustrates the full process.

ASSEMBLER-MACHINE INTERFACE 6-22

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

OP CODE R > IELD I FIELD M FIELD

>•.

I I
0 7 1 3 1 ", 1 f·

'\......_ __ _ ___ _,/

DoustY WORD
OPERATION

"' FIE LU

> (J

SA::=;F ·vALLIE

~I
I INDEX :ALUL

0 9 1 0

'\

l
~ : <•TECT<V: ADDRESS :

I I I I I I
0 p

100958

:

Figure 6-5. Development of Doubleword Effective Addresses

11

/

H
3 1

Restrictions: The address developed from steps 1 and 2 must be an even number

so that the least significant bit will be zero; otherwise, the bit is zeroed automat­

ically. No doubleword instruction will accept as its first word of data an odd word

location; i.. e., doubleword addressing is by even-odd word pairs only.

The index parameter, due to the register shift, produces automatic doubleword

displacements. See Topic 6-26.

Note: This development takes place in the arithmetic unit; neither the instruction

nor the contents of the base and index registers are altered.

ASSEMBLER-MACHINE INTERFACE 6-23

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Note: Table 6-3 is valid for doubleword addressing up to determination of the

origin, but when indexing is specified, the singleword displacement is twice the

index value; e.g., in an instruction with base register 0, an N displacement of 48

would be the first virtual memory address, but with an N displacement of 0 it would

require only an index value of 24 to exit from the register bank.

The register exit point for base register 0 addresses will be:

exit = N + X, where the index value X = 1 /2 (48-N) and N must be even.

Example: Given that Assembler staten1ent:

LD A6, SUMD, X 1 translates into 1 7 6 1 1 OFO, and that B 1 contains: 0000 0000,

and Xl contains: 0000 0004; then the address will be developed as:

DISPLACEMENT

BASE

SHIFTED INDEX

0 20

I
0 0 0

0 0 8

and the contents of the virtual memory location F8 and F9 will be loaded into regis­

ters A6 and A 7.

6-23. Index Word Sets

Symbolic addresses are all effectively singleword addresses as can be seen from

Topics 6-16 and 6-19 through 6-22. The index value is displaced left or right or

not at all to produce the proper index displacement units; viz., singleword units,

halfword units, and doubleword units. This produces a set of units which can be

accessed by a single symbol plus an index value; for convenience they are called

index word sets.

ASSEMBLER-MACHINE INTERFACE 6-24

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-24. Singleword Index Word Sets

Singleword index word sets are straightforward; all addressable locations with­

in the set fall within the interval:

location -(2 23), location+ (2 23 -1). Illustratively

LOCATION· 1

LO' "-'ION

LOCA ~:ON"' 1

Limitations: The index values (i.e., contents of the index register addressed by
23 23

the index operand) must be within the range: -2 ~ x ~ 2 -1

6-25. Halfword Index Word Sets

There are two types of halfword index word sets: those with left halfword

origins and those with right halfword origins.

Those halfword instructions whose assembler mnemonics end with the letter

"H" (e.g., LH, STH) all access, without index, the left half of the location addressed;

i.e., they set left halfword origins. Even index values access left halfwords, and

odd index values access right halfwords.

Those halfword instructions whose assembler mnemonics end with the letter

"L" or the letter "R" (e.g., LL, LR) all access, without index, the right half of

the location addressed; i.e., they set right halfword origins. Eve11 index values

access right halfwords, and odd index values access left halfwords.

ASSEMBLER-MACHINE INTERFACE 6-25

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Limitations: The index values (i.e., contents of the index register addressed by
24 24

the index operand) must be within the range: - 2 ~ x ~ 2 -1.

The fullword interval spanned by a left index word set is:

location -(z23), location +(2 23 -1). Note that the fullword interval of the set is the

same as that for the singleword index word set, but that there are twice as many

addressable units.

The fullword interval spanned by a right halfword index word set is:

location -(2 23), location +(223). The right half displacement extends it one word

farther than any of the other index word sets.

Illustratively:

FULLWORD
LOCATION

LOCATION-(22 3)

LOCATION-1

LOCATION

LOCATION+l

LOCATION+(2 23)

a-

LEFT ORIGIN

x -224 I x.-22•+J

I I = I J I~

J:!. _1

x- 2 x >- 1
_[I _l _1 _l _l

ORIGIN x +I
_l _l!. _l _1 _J

X--+2 X 0,+3

.l _1 i _l _l _l

6. 26. Doubleword Index Word Sets

RIGH' OhlGIN

x -?24 l
I ::F I ~

x -3 x 2

x ORIGIN

x +1 x +2

Doubleword index word sets originate at an even-odd doubleword location and

are indexed by doubleword incremental units.

Restrictions: The location name in the address operand must be the name of an

even numbered location.

ASSEMBLER-MACHINE INTERFACE 6-26

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Limitations: The index values (i.e., contents of the index register addressed by
22 22

the index operand) must be within the range: -2 S. x S. 2 -1.

The singleword interval spanned by a doubleword index word set is:

location -(223), location+ (2 23 -1). Note that the singleword interval of the set

is the same as for the singleword index word set, but there are only half as many

addressable units.

Illustratively:

FULLWORD
LOCATION

LOCATION -12 23 l

LOCATION -cz 23 -

LOCATION-2

LOCATION-· 1

LOCATION

LOCATION+1

LOCATION+(223_2)

LOCATION+(2 23 - t)

6-27. Indirect Address Development

::;:

.l.

..L

...L .l.

..L

...L .l.

l ...L

WORD SET

x -222

....L l :::;:

X=-1
.1 .1 -1 .1 ...L

..L ..LL ..L

x 0
_L .l. _L _l_ _L

...LL

....L 1 .

x 2 2 :> - 1

.l ...L ...L _L .l.

.l. ...L _L ...L ..1

Indirect addresses are those that are developed from indirect address cells

which are originally addressed by the T, M, and N fields of the instruction. The

indirect address cells may or may not specify additional indirection and/or indexing

Figure 6-6 illustrates the indirect address cell format.

ASSEMBLER-MACHINE INTERFACE 6-27

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

T "'IELD ADDRESS FIELD

~! I
0 4 8 3 1

Figure 6-6. Indirect Address Cell Format

The indirect addresses are developed as follows:

1. Examine the most significant bit of the T field and,

a. if it is not set to one, this is not an indirect address; develop the

appropriate direct address (Topic 6-19 through 6-22).

b. if it is set to one, proceed to step 2.

2. Develop a singleword address (Topic 6-20).

3. Examine the indirect address cell in the location found in step 2 and,

a. if the most significant bit (bit 4) of its T field is set to one,

(1) develop an address from its address field (a full24-bi.tvirtual

memory address) and the contents of the index register specified

(if any) in its T field, and

(2) use the contents of the location obtained to repeat step 3.

b. if the most significant bit of its T field is zero, develop an appropriate

24-bi.t singleword, halfword, or doubleword virtual memory address.

4. Use the terminal address obtained as the location from which or to which

data is to be moved.

Restrictions: All initial addresses in the T,M, and N fields (address and index

operands) will be developed as singleword addresses.

Only the first level of indirection can refer to a register; there is no M field

in an indirect address cell and all addresses refer to virtual memory.

The terminal address index increment will always be appropriate to the word

size specified by the operation code.

Indirect address development is i.n the execute mode; i.ndi.rect address cells

must be i.n execution permitted control sections.

ASSEMBLER-MACHINE INTERFACE 6-28

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Program Interruptions: If any intermediately accessed location contains a one

in any bit position zero through three, an illegal operation interrupt will occur.

Note: Indirect addressing will not be inadvertently introduced into immediate

operand instructions by introduction of a one into the most significant bit of the T

field because those instructions do not examine the indirect bit.

Note: Table 6-3 is valid for development of the first level of indirect address

development. The table need only be altered by coding the operands with an @

sign on the left as they are expressed in the table. The T field values would then

always be either: T = 8, or 8 <:::TS 15 in place of T = 0 and 0 < TS 7, respectively.

Example: Given that base register B 1 is in use with contents of: 0000 0000, and

registers XI, X2, X3, X4, XS, X6, and X7 each contains: 0000 0000, and the following

assembler code transtated as illustrated:

LABEL V> CMMND V> OPERANDS COUNT OP 16 R 16 T 16 M V> N

. . . .
L A2,@)NODE10, Xl F 14 2 9 l OFF - 16 T 16ADDRESS .

NODElO IND @NODE11,X2 FF 0 A OOOlFE
IND @NODE12, X3 100 0 B 0002FD . . .

NODEl 1 IND Dlll,X4 lFE 0 4 0003FC
IND Dl 12, X5 lFF 0 5 0004FB
. •

NODE12 IND D121, X6 2FD 0 6 0005FA
IND Dl22, X7 2FE 0 7 0006F9

. WORD 1 WORD 2 .
DlU DATA 2,4 3FC 0000 0002 0000 0004

.
Dl 12 DATA 3,5 4FB 0000 0003 0000 0005

.

.
Dl21 DATA 2,3 5FA 0000 0002 0000 0003

.
Dl22 DATA 4,5 6F9 0000 0004 0000 0005

then on execution of instruction F the address will be developed as:

ASSEMBLER-MACHINE INTERFACE 6-29

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

DISPLACEMENT
0 F F

BASE
0 0 0

INDEX
0 0 0

FIRST LEVEL FF
0 • o@o

ADDRESS E
F 8'

INDEX
0 0

SECOND LEVEL I
.. F £

ADDRESS

INDEX

TERMINAL

and 0000 000 2 will be loaded into A2.

6-28. Creating Indirect Address Cells

Indirect address cells with the full power of indirect addressing are normally

programmed with the IND directive (see Topi.c 4-24). This directive provides for

building T fields in the indirect address cells. This produces indirect addr~ss

indexing which is convenient for the creation of tree structures of addresses.

The load effective address instruction also creates effective address cells (in

the base, index or vector registers), but these cells will have no T field and, thus,

no intermediate or terminal indexing.

Refer to the example in Topic 6-27.

ASSEMBLER-MACHINE INTERFACE 6-30

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-29. IMMEDIATE OPERANDS

If the "second" operand of an instruction is specified by the instruction to be

an immediate operand, it is developed by the assembler into a 16-bit absolute value

that occupies the Mand N fields of the object instruction. See Figure 6-1.

All assembler mnemonics for instructions which treat the M-N field as imme-

diate data end with the letter "I", e. g. , LI, AI, SI.

6-30. ASSEMBLER TRANSLATION

The assembler will translate either numeric expressions or character strings

into immediate M-N fields.

6-31. Numeric Immediate Operands

Numeric immediate operands are right-justified in the right half of the instruc­

tion word and unspecified bit positions are filled with zeros. Negative numbers

are expressed in two's complement form with the sign bit in bit 16 of the instruction

word.

Limitations: The value of an expression used as an immediate operand must be

within the range: -32, 768 ~ i ~ + 32, 767 (-2 15 Si~ 2 15 _1).

6-32. Character String Immediate Operands

Character strings used as immediate operands are left justified in the right

half of the instruction word and unspecified bit positions are filled with zeros.

Restrictions: Since EBCDIC character representation is used in the ASC and

EBCDIC representation requires one byte per character, a character string imme­

diate operand is restricted to two characters in length. A single character operand

will have a blank represented in the right byte.

ASSEMBLER-MACHINE INTERFACE 6-31

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-33. MACHINE TRANSLATION

The Central Processor processes the object code representation of an imme­

diate operand as a numeric or as a logical value, depending upon the operation

code, and modifies the 16-bit immediate value by the appropriate index value, de­

pending upon the operation code and the presence of an index operand.

6-34. Numeric Immediate Development

Numeric immediate operands are developed as signed numbers with negative

values represented in two's complement form and may, if so specified or permitted,

be modified by an index value. The effective immediate operand will be of the word

size appropraite the operation code, i. e., will be a singleword or a halfword.

6-35. Singleword Numeric Immediates

Singleword immediates are specified by the operation code and the effective

immediate is developed as follows:

1. Extend the sign of the 16- bit value in the M-N field to the left to produce

a full 32- bit signed value.

2. Examine the T field of the instruction (ignoring the indirect bit) and,

a. if it is zero, ignore the index unit, or

b. if it is greater than zero,

(1) add the 24-bit signed value in the index register addressed to the

value obtained in step 1 (the index unit is only 24 bits in length),

and

(2) extend the sign of the result to a full 32- bit singleword.

3. Use the full singleword result as the effective immediate operand.

Figure 6- 7 illustrates the full process.

Limitations: The index value in the index register addressed, if any, must be with-

in the range:
23 23

-2 SX~2 -1.

The effective immediate operand produced will be within the range:
23 23

-2 sei~2 -1.

ASSEMBLER-MACHINE INTERFACE 6-32

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

1009(,1

0

SINGLEWORD
OPERATION

EXTENDED +I t--------1
- I s IGN

0

Fl ' le LLJ IL-Lu l'\11MEDIATE

~ I! :

EXTEND

SIGN

MODIFIE:.R

EFFECTIVE IMMEDIATE

3 1

I 1':i NI LO IATf.

31

Figure 6- 7. Development of Singleword Effective Immediate Operands

Note: The load look ahead (LLA) instruction does not permit modification of its

immediate operand, and the shift instructions place closer limitations on the pos-

sible values of the effective immediate operand. These instructions are described

in Section VII.

Note: The development of an effective immediate operand takes place in the arith­

metic unit; the original instruction word is not modified.

6-36. Halfword Numeric Immediates

Halfword immediates are specified by the operation code and the effective

halfword immediate value is developed as follows:

1. Consider the data in the M-N field to be a 16-bit signed value with negative

numbers in two's complement form.

2. Examine the T field of the instruction (ignoring the indirect bit) and,

a. if it is zero, ignore the index unit, or

b. if it is greater than zero,

ASSEMBLER-MACHINE INTERFACE 6- 33

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

(1) extract the 16- bi.t signed value from the right half of the index

register addressed, and

(2) add it to the value obtained in step 1.

3. Use the value obtained in step 2 as an effective halfword immediate operand.

Figure 6-8 illustrates the full process.

OP CODE T FIELO I MM E:.DIATE:

I I I I : I I ~ I , ! : I
0 , 1 3 1 '3 1 b 3 1

HALFWORD
OPERATION X1

I
~I

IM'.VIFDIA"'F I

+I
- I MODIFIER

1 G 3 1

f~F""ECTIVE IMMEDIA I~

1 f,

100963

Figure 6 .. 8. Development of Halfword Effective Immediate Operands

Restrictions: Only the right half of an index register is accessed by the index

operand (T field).

Limitations: The index value in the right half of the index register addressed, if

any, will be within the range: -z 15 5. X 5. 2 15 -1.

The effective immediate operand produced will be within the range:

- 2 1 5 5. ei S. 2 1 5 - 1 .

ASSEMBLER-MACHINE INTERFACE 6-34

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-37. Logical Immediate Development

Logical immediate operands are developed as pure binary values and may, if

so specified, be modified by an index value. The effective immediate operand will

be of the word size appropriate to the instruction; i. e. , will be a singleword or

halfword.

6-38. Singleword Logical Immediates

Singleword immediates are specified by the operation code and the effective

immediate is developed as follows:

1. Extend zeros into the left of the logical value in the M-N field to produce

a full 32- bit logical value.

2. Examine the T field of the instruction (ignoring the indirect bit) and,

a. if it is zero, ignore the index unit, or

b. if it is greater than zero,

(1) add the 24-bit logical value in the index register addressed to

the value obtained in step 1 (the index unit is only 24 bits in

length), and

(2) extend zeros to the left to produce a full 32- bit logical value.

3. Use the full singleword result as the effective immediate operand.

Figure 6-9 illustrates the process.

Restrictions: Index modification is by one's complement addition only; there is no

overflow into the eight most significant bits of the singleword and no end-around­

carry.

ASSEMBLER-MACHINE INTERFACE 6-35

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

IM:\1EDIATE

I I I I
0 7 i 3 ~ ·5 1

::: ;NGLE"WORD
O"'ERA ·10";

·~-------- --~cRO

p

RO----~--

MODIFIER

EFFECT I vF IMMt. DIP.; f

' 1

I t',1 '.!I f~ 0 I AT E

3 1

31

Figure 6-9. Development of Singleword Logical Immediate Operands

6-39. Halfword Logical Immediates

Halfword immediates are specified by the operation code and are developed

under the same restrictions as singleword logical immediates; i.e., index modi­

fication is by one's complement addition only.

Halfword logical immediates are developed under the additional restraints that

index modification is restricted to the 16 bits of the right half of the index register,

and that the result is restricted to a 16-bit logical value. No extension of zeros is

required.

6-40. BRANCH ADDRESS DEVELOPMENT

Branch addresses may be either program counter relative or base relative.

The branch addresses developed are always singleword addresses. Table 6-4

gives the specifications for direct branch addresses.

ASSEMBLER-MACHINE INTERFACE 6-36

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-41. ASSEMBLER TRANSLATION

The assembler translates all symbolic addresses into program counter relative

branches if possible. Base relative branches can be forced by coding the address

operand as an explicit base and displacement sublist.

6-42. Symbolic Branch Addresses

A symbolic address, which in other types of instructions would be translated

into base and displacement fields, is translated into program counter relative

branches if the displacement from the current location counter is within the interval:

location -2048, location +204 7.

For those branches which fall outside the program counter relative interval,

the assembler produces the typical base and displacement values on the basis of the

information supplied by the USING directive (see Topic 4-9).

Restrictions: Branch addresses will be program counter relative whenever possible.

Branch addresses never refer to the register bank.

Limitations: For branch addresses to be program counter relative, their displace­

ment from the current location must be within the range: -2048 s d S 204 7 (i.e.,

-2 12 s d s2 12 -1). .

Example: Given that base register B 1 is in use with contents of: 0000 0000, and

the following assembler statements translated as illustrated.

-r I I I ,,111111
LABEL I~ 1CMMND1 ¥> I OPERANDS COUNT OP1V,1R1¥>1T1¥>IMl¥>IN

...1-1 _l _l I I I I I j I J.
SUM AF Al, (AS) F 42 1 0 0 015

BCLE Xl,A6,SUM 10 86 1 6 0 FFF
CF Al, (A2) 11 CA 1 0 0 012
BG TOTAL 12 91 2 0 1 BAO

TOTAL ST Al,OUT,XS SAO 24 1 5 1 AlO
.

OUT RES 5 AlO five words reserved

ASSEMBLER-MACHINE INTERFACE 6-37

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

the BCLE branch is program counter relative with a negative displacement because

the location to which it branches, SUM, is within -2048 words of its own location,

whereas the BG branch is base relative because the location to which it branches

is greater than 2047 words from its own location (viz., SAO= 2208 base 10, 12=18

base 10, and 2208 - 18 = 2190).

6-43. Explicit Base and Displacement Branch Address

Either program counter relative or base relative branches can be coded explicitl

with a base and displacement sublist as the address operand.

6-44. Program Counter Relative Branch

Since a base register specification of zero specifies a program counter relative

branch, the sublist can be used to produce an explicit branch displacement by

coding a displacement only. This requires that the precise displacement be known.

Limitations: For an explicit program counter relative branch, the expression used

as the d parameter must have a value within the range: -2048 5 d ~ 2047. If the b

parameter is coded, the expression used must have a value of zero: b = O.

6-45. Base Relative Branch

When a branch address is coded explicitly with a base register other than zero,

the branch will be base relative. The contents of the base register and the precise

displacement from that base location must be known. The displacement in -such an

instruction is always positive.

Limitations: To produce an explicit base relative branch, the expression used as
12

the d parameter must have a value within the range: O 'S. d s_ 4095 (i.e., 0 <.:;_ d S. 2 -1

and the expression used as the b parameter must have a value within the range:

O<b~l5.

6-46. Indirect Branch Addresses

When the assembler statement specifies that the branch address is to be develop

by indirect add res sing, the address of the first level indirect address cell is

ASSEMBLER-MACHINE INTERFACE 6-38

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

obtained by the standard direct address development as described in Topics 6-16,

6-20, and 6-24.

The indirect address cell format is the same as that for non- branch instructions

i.e., the terminal branch address will always be an absolute virtual memory addresE

and never program counter relative. Refer to Topic 6-27.

Restrictions: The first level of indirection cannot access the register bank; branch
c,:

address development, regardless of the T and M field~', will never address a

register.

6-4 7. MACHINE TRANSLATION

There are three factors that determine the mode by which the Central Processor

develops the effective branch address: first, the indirect (most significant) bit.of

the T field specifies whether the branch address is to be developed directly or

indirectly; second, the M field specifies whether a direct branch address is to be

program counter or base relative; and third, the three least significant bits of the

T field specify whether the address is to be modified by an index value.

6-48. Program Counter Relative Branch AddressDevelopment

Direct program counter relative branch addresses are developed when the

indirect bit of the T field and the M field are both zero. The address is developed

by the following procedure:

1. Consider the 12-bit N .field to be a signed value with negative numbers in
two's complement form.

2. Add the value from.step 1 to the current value of the program counter.

3. Examine the three least significant bits of the T field and,

a. if they are zero, ignore the index unit, or

b. if they are greater than zero, add the 24-bit signed value in the index
register addressed to the value obtained in step 2.

4. If the branch condition is true or if the instruction is an unconditional
branch, enter the result into the program counter; otherwise, go to the
next instruction.

Figure 6-10 illustrates the process and Table 6-4 gives the specifications for
branch addressing.

ASSEMBLER-MACHINE INTERFACE 6-39

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

OF CODE

0 7

'----.... ,-----/ v
BRANCH

OPERATION

R FIELD T FIELD M FIELD N FIELL:

~I I I
13 15 16 19 20

PC
RELAl I Ve:

I
TI D!SFLACEMEN>

PROGRAM .0JN1~R ~ALUE

iRANCH ADDRESS

31

31

3 1

Figure 6-10. Program Counter Relative Branch Address Development

6-49. Base Relative Branch Address Development

Direct base relative branch addresses are developed when the indirect bit of

the T field is zero and the M field is not zero. The effective address is developed

by the following procedure:

1. Consider the 12-bit N field to be a positive value.

2. Add the value from step 1 to the positive 24-bit value in the base register
addressed by the M field

3. Examine the three least significant bits of the T field and,

a. if they are zero, ignore the index unit, or

b. if they are not zero, add the signed 24- bit value in the index register
addressed by the T field to the value from step 2.

ASSEMBLER-MACHINE INTERFACE 6-40

>
CJ)
CJ)

M
~
tp
t:""'
M
~
I

~
>
0
::c:
H z
M
H z
1-3
M
~
hi
>
0
M

0--
1

*"'

Table 6-4. Development of Branch Addresses (Direct)

ADDRESS & INDEX OPERANDS

SYMBOLIC EXPLICIT M FIELD N FIELD T FIELD DEVELOPMENT

expr (expa, exp a) M=O - 2 11s:N.:::2 11 _ 1 T=O (PC)+N

,
i

O<Ms:l 5 Os:Ns:2 12-l T=O N+(M) -,-
I
I

_zlls:Ns:2ll_1 expr,expa (expa, exp a), expa M=O T=O (PC)+N

'
' O<T.:::7 (PC)+N+(T)

:::~ 0<MS:l5 0::SN::s2 12-l T=O N+(M)

0<T::s7 N+ (M)+(T)

(exp a) M=O -2 11::sN::s2 11 -l T=O (PC)+N

(expa), expa M=O _zll::sN::s2ll-l T:::O (PC)+N

0<T::S7 (PC)+N+(T)

O<M:Sl 5 O::sN::s2 12-l T=O N+(M)

O<T:s 7 N+(M)+(T)

Where expr is a relocatable expression (symbol), expa is an absolute expression (symbol),
(PC) is the present value of the program counter, (M) is the content of the base register, and
(T) is the content of the index register.

*expr will not be translated with M > 0 unless the value of N would fall outside the range:
_2 11 5 N 5 2 11 _l.

"CJ
~
0
0
~
>
~
~
M
~
CJ)

.()
c
H

tJ
M
1-3
0
1-3
::c:
M
0
M z
1-3
~
>
t:""'
"CJ
~
0
0
M
Cfl
Cfl
0
~

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

4. If the branch condition is true or if the instruction is an unconditional
branch, enter the result into the program counter; otherwise go to the
next instruction.

Figure 6-11 illustrates the process.

OP CODE

0 7

' '---- ___ __,/ v

100966

BRANCH
OPERATION

R FIELD l FIELD

~I

+1

I

p

13 1 5 16

N FIELD

I I
1 9 2 0

BASE VALUE

INDEX VALUE

BRANCH ADDRESS

Figure 6-11. Development of Base Relative Branch Addresses

6-50. Indirect Branch Address Development

j 1

3 1

3 1

If the most significant bit of the T field is set to a one, the effective branch

address will be developed indirectly.

Indirect branch address development proceeds the same as that for other

instructions with the exception that an M field of zero at the first level will not

ASSEMBLER-MACHINE INTERFACE 6-42

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

produce a reference to a register when 0 5 N 5 4 7. Branch address development

never accesses the register bank. See Topic 6-27 for a description of the develop­

ment process.

6-51. DATA FORMATS

The ASC uses two algebraic data formats: fixed point with two 1 s complement

representation for negative numbers, and floating point with excess 64 (biased)

exponent representation. Fixed point values may occur in either singleword or

halfword lengths. Floating point values may occur in either singleword or double­

word lengths. Figure 6-12 illustrates the machine formats of these data forms.

H :
0 1 FIXED POINT SINGLEWORD

LEFT HALFWORD Rlt;Hr dALFWORD

INT:GER

I . I
Fl XED POI NT HALFWORDS

IC!
BOA~ED FRAC:TOON EXPONENT

I I I I I I I I I
0 7 8 31

FLOATING POINT SINGLEWORD

0 1 7 8 31

EVEN +I BIASED
LOCATION - , EXPONENT FRACTION

ODD
LOCATION FRACTION

32 63
FLOATING POINT DOUBLEWORD

100967

Figure 6-12. Algebraic Data Formats

ASSEMBLER-MACHINE INTERFACE 6-43

PROGRAMMER S GUIDE TO THE CENTRAL PROCESSOR

6-52. FIXED POINT DATA

The assembler format for fixed point data is described in Topic 2-10.

The range of values that any given fixed point data constant may have depends

upon its proposed usage. Table 6-5 lists the ranges for some typical uses:

Table 6- 5. Value Ranges of Fixed Point Data

PURPOSE VALUE RANGE

GENERAL ALGEBRAIC:

Singleword
31 31

-2 ~fx~2 -1

-215 15
Halfword ~ fx ~ 2 -1

INDEXES:

-223 23
Singleword ~ fx ~ 2 -1

Halfword
24 24

-2 ~fx~2 -1
22 22

Doubleword -2 < fx ~ 2 - 1 -

BASES:
24

Singleword 0 ~fx~2 -1

6-53. FLOATING POINT DATA

The assembler format for floating point data is described in Topic 2-9.

6-54. Normalized Floating Point Values

A normalized floating point value is one in which at least one of the four most

significant bits of the fraction is set to one. All floating point data created by the

assembler is normalized as is required by many floating point instructions.

WARNING: Although all floating point data constants created by the assembler will

be normalized, there is no guarantee that all input data will be normalized.

ASSEMBLER-MACHINE INTERFACE 6-44

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6- SS. Infi.ni te and Indefinite Floating Point Values

Infinite (too or -oo) floating point values are output from the arithmetic unit

when a floating point operation would have a resultant value that, if normalized,

would require a biased exponent greater than 127. Such operations produce a

floating point overflow condition (see Topic 6-60), and attempts to use these values

in subsequent operations other than division will also cause the overflow condition.

Indefinite floating point values are output from the arithmetic unit when input

to the unit is either an indefinite form or a "dirty zero". A "dirty zero" is a

floating point value with a zero fraction, but a non-zero exponent. Overflow also

occurs whenever an indefinite value is input to the arithmetic unit for any operation.

The hexadecimal representations of the infinite and indefinite forms are as

follows:

HEXADECIMAL FORM
VALUE

SINGLE WORD DOUBLEWORD

too 7FFF FFFF 7FFF FFFF FFFF FFFF

- 00 FFFF FFFF FFFF FFFF FFFF FFFF

IND 7FOO 0000 7FOO 0000 0000 0000

DATA FORMS

INFINITE FORMS AND INDEFINITE FORMS:

FLOATING ADD OUTPUT

FLOATING
POINT
OVERFLOW

(t 00) t (t 00) too Yes

(too) t (- 00) IND Yes

(- oo)t(t:xi) IND Yes

(- oo)t(-oo) - CXl Yes

(t oo) t (± N) too Yes

(- oo) t (± N) - CXl Yes

(DZ) t (± N) IND Yes

(DZ) t (± oo) IND Yes

ASSEMBLER-MACHINE INTER FACE 6-45

PROGRAMMER 1S GUIDE TO THE CENTRAL PROCESSOR

FLOATING POINT SINGLE LENGTH FORMS ARE:

+co

- co

IND

7FFF

FFFF

?FOO

FFFF

FFFF

0000

FLOATING POINT DOUBLE LENGTH FORMS ARE:

+ co

- co

IND

7FFF

FFFF

?FOO

FFFF

FFFF

0000

FFFF

FFFF

0000

Positive infinite form.

Negative infinite form.

Indefinite form.

FFFF

FFFF

0000

The indefinite form, ?FOO · · · 00, is generated by the Arithmetic Unit when

an indefinite form or a "dirty zero" appears as input to the Arithmetic Unit during

a floating point arithmetic operation.

A "dirty zero" is a floating point form consisting of a zero mantissa and a

non-zero exponent. It has the form XXOO

equal to zero.

FLOATING ADD MAGNITUDE OUTPUT

(+ co) +
I<± co ''

+ co

(- co)+ I<± co ,, IND

(+ co) + I(+ N)I + co

(- co) + H± N)I - co

(± N) + I<± co >I + co

(DZ) + I<± N >I IND

(DZ) + I<± co >I IND

(±. N) + l(DZ >I IND

(±co) + l<Dz >I IND

ASSEMBLER-MACHINE INTERFACE 6-46

00, where at least one X is not

FLOATING
POINT
OVERFLOW

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

FLOATING
POINT

FLOATING SUBTRACT OUTPUT OVERFLOW

(+co)- (+ co) IND Yes

(+co) - (- co) + co Yes

(-co) - (+ co) - co Yes

(-co)-(-co) IND Yes

(+co) - (.±.. N) + co Yes

(-co) - (± N) - co Yes

(± N) - (+ co) - co Yes

(±N)-(-co) + co Yes

(DZ) - (± N) IND Yes

(DZ) - (± co) IND Yes

lt N) - (DZ) IND Yes

(±co) - (DZ) IND Yes

FLOATING
FLOATING POINT
SUBTRACT MAGNITUDE OUTPUT OVERFLOW

(+co) - I(±. co ll IND Yes

(- co) - I (±.co) I - co Yes

(+co) - I(±. N) i + co Yes

(- co) - H±. N) I - co Yes

(±. N) - J (.±..co >i - co Yes

(DZ) - '(.±.. N) I IND Yes

(DZ) - I(.±.. co H IND Yes

(.±. N) - f(DZ)I IND Yes

(i_ co) - f'DZ) I IND Yes

ASSEMBLER-MACHINE INTERFACE 6-47

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

FLOATING MULTIPLY FLOATING
OR FLOATING VECTOR POINT
DOT PRODUCT OUTPUT OVERFLOW

(+oo)• (+ <Xl) + <Xl Yes

(+oo)• (- <Xl) - CXl Yes

(- <Xl) (+ <Xl) - <Xl Yes

(- <Xl) (- <Xl) + <Xl Yes

(+oo)• (:!:. N) + <Xl Yes

(-oo)· (±. N) + <Xl Yes

(:!:. <Xl) • 0) IND Yes

(±. "N) • 0) 0 No

(0) . 0 0 No

(DZ) • (±. <Xl) IND Yes

(DZ) · (±. N) IND Yes

(DZ) · (0) IND Yes

FLOATING
POINT DIVIDE

FLOATING DIVIDE OUTPUT OVERFLOW CHECK

(±. <Xl) + <±. <Xl) IND Yes No

(+oo)-;.(N) +oo Yes No

(+oo)+(-N) - <Xl Yes No

(-co)-T(N) - co Yes No

(-co)-r(-N) +co Yes No

(±.co) + (0) +co Yes Yes

(±. N) + (±.co) 0 No No

0) + (.:!:.co) 0 No No

0) + (.±. N) 0 No No

0) + (0 IND Yes Yes

N) .;- (0 +co Yes Yes

(-N)7-(0 - <Xl Yes Yes

ASSEMBLER-MACHINE INTERFACE 6-48

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

•
FLOATING
POINT DIVIDE

FLOATING DIVIDE OUTPUT OVERFLOW CHECK

(DZ) + (±. ro) IND Yes No

(DZ) + (±. N) IND Yes No

(DZ) + (0) IND Yes Yes

(±. ro) .;- (DZ) IND Yes No

(+ N) +(DZ) IND Yes No

(0) + (DZ) IND Yes No

6-56. PROGRAM STATUS DOUBLEWORD

The program status doubleword is a set of controls and registers internal to

the Central Processor. They are accessible only in part to the programmer

through the branch and load instructions, BLB and BLX, and the program status

instructions, LAM, LAC, and SPS.

For access purposes, the program status doubleword may be said to have the

following format:

0
T T

NOT USED

.l. .J. ..1. .l. .J. .l. .J. .l. .J. .J. ..1. .J. .J. ..1.

AE AE
COND MASK

I I I

32 35 36 39 40

1 5 1 6 19 20

CP
MEMORY 3SR

USAGE

.J. .J. ..1. -1. .1 .1

PROGRA~ COUNTER

I I I I I I

2 3 24 27 28 31

COMPARE RESULT
CODE CODE

..1. .l. L .l.

63

The control state and Central Processor memory usage fi.elds are of no inter­

est to the Central Processor programmer, but rather to the system programmer.

All the other fields are affected by and/or affect the result of one or more Central

Processor instructions.

ASSEMBLER-MACHINE INTERFACE 6-49

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-57. BRANCH OR SKIP REGISTER

The branch or skip register is a four-bit field in which only the two least

significant bits are used.

The least significant bit is set (to one) or reset (to zero) depending upon wheth­

er, when an execute instruction, XEC, executes a branch or skip instruction. the

condition for branching or skipping is true or false, respectively. See Topic 7-161.

The setting of this bit is used by the branch on execute condition instruction,

BXEC. The BXEC can be coded to branch on either condition true or condition

false. See Topics 7-135 and 7-131.

6-58. COMPARE CODE

The compare code is a four-bit field that is set upon execution of an arithmetic

or a logical compare instruction to indicate the nature of the comparison result.

Only the three least significant bits of the field are used.

The compare code is used by the branch on compare code true instructions to

determine whether a previously executed comparison meets the condition for

branching.

The specifications of the lists are as follows:

ARITHMETIC LOGICAL
COMPARE

CODE
COMPARISON COMPARISON I 2 I cl I C9·1 eel RESULT RESULT

x<y mixed ones and I 0 I 1 I 0 I 0 I zeros

x>y all bits ones (o
I 0 I 1 I 0 I

x=y all bits zeros
10 1 0 1 0 111

ASSEMBLER-MACHINE INTERFACE 6-50

PROGRAMMER 1S GUIDE TO THE CENTRAL PROCESSOR

6-59. RESULT CODE

The result code is a four- bit field that is set according to the arithmetic or

logical properties of a result emerging from the arithmetic unit to be entered into

a register. The setting is changed only when a new result emerges from the

arithmetic unit; thus, the result code reflects the properties of the data in the

most recently modified register. Only the three least significant bits of the field

are used.

The result code is used by the branch on result code true instructions to deter­

mine whether the properties of the most recently acquired datum meets the conditi01

for branching.

The specifications of the bits are as follows:

RESULT
ARITHMETIC LOGICAL

0 RESULT RESULT
e

x<O mixed ones and lo,1 10,ol zeros

x>O all bits are ones lo,o,!,ol

x=O all bits are zero 10101011'

6-60. ARITHMETIC EXCEPTION CONDITION CODE

The arithmetic exception condition code is a four-bit field whose bits are set

whenever the arithmetic unit detects one of the arithmetic exceptions: divide check,

fixed point overflow, floating point exponent underflow, or floating point exponent

overflow. See Topic 6-62. Illustratively:

ARITHMETIC EXCEPTION CONDITION coDEI D 1 x, o , ul.
Divide Check, D: The divide check bit, D, is set to one when the arithmetic unit

encounters an attempt to divide by zero in either fixed or floating point operations.

ASSEMBLER-MACHINE INTERFACE 6-51

PROGRAMMER 1S GUIDE TO THE CENTRAL PROCESSOR

Fixed Point Overflow, X: The fixed point overflow bit, X, is set to one when a

fixed point arithmetic or arithmetic shift operation produces a result in which a

high order bit or bits would be lost (i.e., move out the left end of the data word).

The operation will be completed by ignoring the lost bits.

Floating Point Exponent Overflow, 0: The floating point exponent overflow bit,

0, will be set to one when a floating point operation produces a result in which the

biased exponent would exceed 127. The operation is completed by entering a result

of tco for positive values and - co for negative values.

Floating Point Exponent Underflow, U: The floating point exponent underflow bit,

U, is set to one when a floating point operation produces a result in which the biased

exponent would be less than zero. The operation is completed by entering a result

of true zero.

6-61. Resetting the Arithmetic Exception Code

All bits set by detection of an arithmetic exception condition remain set until

reset by the execution of a branch on arithmetic exception condition (BAE) instruction

in which the corresponding bit of the R field (mask operand) of the instruction con­

tains a one. Thus, a branch on arithmetic exception of divide check will not remove

the record of a previous fixed point overflow, and so on.

Illustratively:

AE
COND

R FIELD
MASK

AE
COND

QQ
1 I I I I 1 I I

0 0 0 0 0 0

Refer to Topi.cs 7-131 and 7-134.

••• I

•••

•••

! 1 t It 1 t
I I I I
I I I I

0

~
I I

The arithmetic exception condition code can be reset in its entirety by the

LAC instruction, Topic 7-167.

ASSEMBLER-MACHINE INTERFACE 6-52

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-62. ARITHMETIC EXCEPTION MASK

The arithmetic exception mask is a four- bit field that is used to specify whether

detection of any given arithmetic exception (or combination of exceptions) is to

cause a program interruption. When a given bit is set to a zero, detection of an

arithmetic exception condition corresponding to that bit will not cause program

interruption; when the bit is set to one, detection of the corresponding arithmetic

exception will cause program interruption.

The bits of the arithmetic exception mask correspond on a one-to-one basis

with those of the arithmetic exception condition code; illustratively:

AE lo COND 1X 10 1u
I I I I
I
I I I I
I I I I

I ~
I I

AE
MASK ,x ,o ,u

The arithmetic exception condition code and the arithmetic exception mask

are continuously compared (within the arithmetic unit), and, at any time a bit setting

of one occurs in both corresponding bits, a program interrupt signal is issued to the

peripheral processor for system action.

6-63. Setting the Arithmetic Exception Mask

The arithmetic exception mask is set by the load arithmetic exception mask

(LAM) instruction. Refer to Topic 7-166.

Since only bits four through seven of the word accessed by the LAM instruction

are loaded and all other bits of the word are ignored, the data constant which

specifies the desired interrupt conditions can be built as either a fullword or a

left halfword. Illustratively, the singleword accessed by LAM appears as if it

were:

ASSEMBLER-MACHINE INTERFACE 6-53

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

0 4 7 1 5 1 6 3 1

Table 6-6. Specifications for Arithmetic Exception Mask Data Constants

INTERRUPTS HEXADECIMAL INTERRUPTS HEXADECIMAL

none #0000 0000 D #0800 0000

u #0100 0000 Dor U #0900 0000

0 #0200 0000 Dor 0 #OAOO 0000

0 or U #0300 0000 D, 0, or u #OBOO 0000

x #0400 0000 Dor X #OCOO 0000

X or u #0500 0000 D, x, or U #ODOO 0000

X or 0 #0600 0000 D, x, or 0 #OEOO 0000

X, 0, or U #0700 0000 D, x, 0, or u #OFOO 0000

6-64. PROGRAM COUNTER

The program counter is a 24-bit field which contains the current instruction

address.

The value in this field informs the Central Processor which instruction in the

program to begin processing when the signal from the Peripheral Processor

(system) starts processing. The capability of the Central Processor to store the

program status doubleword and then reinstate it (both on signal from the Periph­

eral Processor) enables program interruptions by the system without destruction

of the currently executing program.

ASSEMBLER-MACHINE INTERFACE 6-54

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SECTION VII

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

7-1. INTRODUCTION

This section describes the scalar instructions implemented in the Central Pro-

cessor. The assembler mnemonic for each instruction is given with the instruction

name, and then a description of the instruction with its operands, restrictions,

limitations, and other programming information follows.

7-1
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-2. LOAD REGISTER INSTRUCTIONS

Table 7-1 lists the load register instructions discussed on the following pages.

MNEMONIC

L

LLL

LRR

LRL

LLR

LD

LI

LIH

LN

LNH

LNF

LND

LM

LMH

LMF

LMD

LNM

LNMH

LNMF

LNMD

LO

LF

LFM

Table 7-1. Load Register Instructions

INSTRUCTION NAME TOPIC

Load, Word 7-3

Load, Left Halfword from Left 7-4

Load, Right Halfword from Right 7-5

Load, Right Halfword from Left 7-5. l

Load, Left Halfword from Right 7-6

Load, Doubleword 7 - 7

Load Immediate, Word 7-8

Load Immediate, Halfword 7-9

Load Negative, Fixed Point Word 7-10

Load Negative, Fixed Point Halfword 7-11

Load Negative, Floating Point Word 7-12

Load Negative, Floating Point Doubleword 7-13

Load Magnitude, Fixed Point Word 7-14

Load Magnitude. Fixed Point Halfword 7-15

Load Magnitude, Floating Point Word 7-16

Load Magnitude, Floating Point Doubleword 7 - 1 7

Load Negative Magnitude, Fixed Point Word 7-18

Load Negative Magnitude, Fixed Point Halfword 7-19

Load Negative Magnitude, Floating Point Word 7-20

Load Negative Magnitude, Floating Point Doubleword 7-21

Load Ones Complement, Word 7-22

Load Register File 7-23

Load Register Files, Multiple 7-24

7-2
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-3. LOAD, WORD (L)

The instruction L causes the data in the effective address to replace the contents

of the register addressed by the register operand.

GENERAL FORM:

Examples:

Addressing:

LABEL

[symbol]

T T
.1 .1
I t1 I
I Jl I

J _l

REGISTER
OPERAND

BR, AR, XR,
or VR

Program Status:

COMMAND
T I
I I

j_ j_

L

L

L

I t1 T
I KJ I
' _l_

ADDRESS
OPERAND

BR, AR, XR,
VR, or CM

RESULT CODE REFLECTS

OPERANDS

r, [@][=]n[, x]

B2, (A3)

Xl,@NUM, X3 I('_ I\' '

INDEX EFFECTIVE
OPERAND ADDRESS

zero or BR, AR, XR, VR,
XR or CM

PROGRAM INTERRUPTIONS

+, 0, or - none

Note: If base register zero (BO) is addressed by the register operand, the result

code is set according to the algebraic value in the effective address although base

register zero remains set to zero.

7-3
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-4. LOAD, LEFT HALFWORD FROM LEFT (LLL)

The instruction LH causes the data in the effective halfword address to replace

the contents of the left half of the arithmetic register addressed by the register

operand.

Terminal index displacement is by halfword increments beginning from the

initial left halfword of the index word set.

GENERAL FORM:

-r 1 l I
LABEL COMMAND I I OPERANDS

.l .l .J. ...L

[symbol] l .S 1 LLL 1~1 r, [@][=]n[, x] I I
' j_

Examples: LLL Al, =#12F3

LLL A2,NUM,X3

Addressing:
REGISTER ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND OPERAND VALUE ADDRESS

left left half zero n/a left half of BR,
half of of BR, AR,

XR
AR, XR, VR, or CM

AR, only XR, VR, or
even

CM odd right half of BR,
AR, XR, VR, or CM

Program Status:
RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-4

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-5. LOAD, RIGHT HALFWORD FROM RIGHT (LRR)

The instruction LRR causes the data in the effective halfword address to

replace the contents of the right half of the arithmetic register addressed by

the register operand.

Terminal index displacement is by halfword increments beginning from the

initial right halfword of the index word set.

GENERAL FORM:

I I I I
LABEL I I

I I
COMMAND l -~ OPERANDS

Examples:

1 I l~T r, [@][=]n[, x] [symbol] _l '5_l LRR I I
. _l

LRR Al, WORD

LRR Al ,@WORD, Xl

Addressing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND OPERAND VALUE ADDRESS

right right half zero n/a right half of BR,
half of of BR, AR

XR
AR, XR, VR, or CM

AR, only XR, VR, or
even

CM odd left half of BR,
AR, XR, VR, or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-5
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-5. 1 LOAD, RIGHT HALFWORD FROM LEFT (LRL)

The instruction LRL causes the data in the effective halfword address to re-

place the contents of the right half of the arithmetic register addressed by the

register operand.

Terminal index displacement is by halfword increments beginning from the

initial left halfword of the index word set.

GENERAL FORM:

LABEL : : T I
COMMAND I I OPERANDS

J. J. _J_ _!_

Examples:
[symbol] ; V) i

J. J.
LRL I V) !

~ l r,[@][=]n[,x]

LRL Al, WORD

LRL Al ,@WORD, Xl

Addressing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND OPERAND VALUE ADDRESS

right left half zero n/a left half of BR,

half of of BR, AR
XR

AR, XR, VR, or CM
even

AR, only XR, VR, or
CM odd right half of BR,

AR, XR, VR, or CM
'---·

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-SA

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-6. LOAD, LEFT HALFWORD FROM RIGHT (LLR)

The instruction LLR causes the data in the effective halfword address to

replace the contents of the left half of the arithmetic register addressed by

the operand.

Terminal index displacement is by halfword increments beginning from the

initial right halfword of the index word set.

GENERAL FORM:

Examples:

Addressing:

LABEL

[symbol]

T T
I I

J. 1

REGISTER
OPERAND

left
half of
AR, only

Program Status:

COMMAND

LLR

LLR

LLR

ADDRESS
OPERAND

right half
of BR, AR,
XR, VR, or
CM

I I
I I

J_ ..1
OPERANDS

r, [@][=]n[, x]

Al, WORD

Al, @'WORD, Xl

INDEX INDEX EFFECTIVE
OPERAND VALUE ADDRESS

zero n/a right half of BR,

XR
AR, XR, VR, or CM

even
·--·-··-·-

odd left half of BR,
AR, XR, VR, or CM

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-6

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-7. LOAD, DOUBLEWORD (LD)

The instruction LD causes the data in the effective doubleword address to re-

place the contents of the even-odd arithmetic register pair addressed by the register

operand.

Terminal index displacement is by doubleword increments of even-odd word

pairs.

GENERAL FORM:

: : I I
LABEL COMMAND I I OPERANDS

l. l. ..!. ..!.

[symbol]; l6i LD : 16 : r, [@][=]n[, x]
l ' J

Examples: LD A2,ADDR

LD A2,@ADDR, X3

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR; even-odd BR, AR, XR, zero or BR, AR, XR, VR,
pair only VR, or CM XR or CM; even-odd

pair only

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - specification error if AR is odd

Restrictions: Both register and effective addresses must be even valued.

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by doubleword increments.

7-7
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-8. LOAD IMMEDIATE, WORD (LI)

The instruction LI causes the effective immediate operand to replace the con­

tents of the register addressed by the register operand.

GENERAL FORM:

: I T I
LABEL

J. l COMMAND I I OPERANDS
..1. ..1.

[symbol] I l6 T LI : 16 : r,i[,x] I I
_l . ' J.

Examples:
LI X2, 123

LI Vl, #3CF9, Xl

Addressing:

REGISTER INDEX IMMEDIATE
OPERAND OPERAND MODIFIER

AR, XR, or VR zero none

XR
23 23

-2 sms2 -1

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

7-8
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-9. LOAD IMMEDIATE, HALFWORD (LIH)

The instruction LIH causes the effective immediate operand to replace the

contents of the left half of the arithmetic register addressed by the register operand.

GENERAL FORM:

i ; T I
LABEL COMMAND I I OPERANDS

l J_ _I_ _I_

[symbol] ~ l6 : LIH I~ I r, i[, x] ' I
l. ..l . J.

Examples:
LIH A2, #36C9

LIH Al, 1236, X4

Addressing:

REGISTER INDEX IMMEDIATE
OPERAND OPERAND MODIFIER

left half of zero none
AR, only

XR right
15 15

half -2 s:ms:2 -1

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

7-9
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-10. LOAD NEGATIVE, FIXED POINT WORD (LN)

The instruction LN causes the algebraic negative (twos complement) of the

value in the effective address to replace the contents of the arithmetic register

addressed by the register operand.

GENERAL FORM:

i 1 l I
LABEL COMMAND I I OPERANDS

J_ l ...L ...L

Examples:

[symbol] ; 16i LN I j6 I r, [@][=]n[. x] ' I
I i . J_

LN Al,RSLT

LN Al, @ADDR, Xl

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, zero or BR, AR, XR, VR,
VR, or CM XR or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

Note: Fixed point overflow and failure to change from negative to positive occur

for the case of the algebraically largest negative number; i. e., the twos comple-

ment of 8000 0000 (base 16) is 8000 0000.

7-10
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-11. LOAD NEGATIVE, FIXED POINT HALFWORD (LNH)

The instruction LNH causes the algebraic negative (two's complement) of the val1

in the effective halfword address to replace the contents of the left half of the arith­

metic register addressed by the register operand.

Terminal index displacement is by halfword increments beginning from the

initial left halfword of the index word set.

GENERAL FORM:
T I

LABEL T I
j_ l COMMAND J_ l OPERANDS

[symbol]
I I

l~l LNH
I I
:~1 R, [@][=]n[, x]

Examples: LNH Al, RSLT

LNH Al, @ADDR, Xl

Addressing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND OPERAND VALUE ADDRESS

left left half zero n/a left half of BR,
half of of BR, AR,

XR
AR, XR, VR, or CM

AR, only XR, VR, or
even

CM odd right half of BR,
AR, XR, VR, or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, o. or - fixed point overflow

Note: Fixed point overflow and failure to change from negative to positive occur

for the case of the algebraically largest negative number; i. e., the twos comple­

ment of 8000 (base 16) is 8000.

7-11
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-12. LOAD NEGATIVE, FLOATING POINT WORD (LNF)

The instruction LNF causes the algebraic negative (sign change only) of the

value in the effective address to replace the contents of the arithmetic register

addressed by the register operand.

GENERAL FORM:

LABEL : !
_l _l

[symbol] T ll T

j_ ID l
Examples:

Addressing:

REGISTER
OPERAND

AR

Program Status:

COMMAND

LNF

LNF

LNF

LNF

I I
I I

.J. .l.

Iv!
' ID I
" i

ADDRESS
OPERAND

BR, AR, XR,
VR, or CM

OPERANDS

r,[@][=]n[,x]

Al, FLOAT

Al, (A2)

Al,@(A3),X2

INDEX
OPERAND

zero or
XR

EFFECTIVE
ADDRESS

BR; AR, XR, VR,
or CM

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

7-12

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-13. LOAD NEGATIVE, FLOATING POINT DOUBLEWORD (LND)

The instruction LND causes the algebraic negative (sign change only) of the

value in the effective doubleword address to replace the contents of the even-odd

arithmetic register pair addressed by the register operand.

Terminal index displacement is by doubleword increments of even-odd word

pairs.

GENERAL FORM:

LABEL : 1
.1 l

[symbol]

Examples:

Addressing:

REGISTER
OPERAND

AR; even-odd
pair only

Program Status:

COMMAND
f I
I I

LND

LND

LND

..I. ..I.

I ll I
I~ I
' J.

ADDRESS
OPERAND

BR, AR, XR,
VR, or CM

RESULT CODE REFLECTS

+, 0, or -

OPERANDS

r,[@][=]n[,x]

AZ, (A4)

AZ,@ADDR, Xl

INDEX
OPERAND

zero or
XR

EFFECTIVE
ADDRESS

BR, AR, XR, VR,
or CM; even-odd
pair only

PROGRAM INTERRUPTIONS

specification error if AR is odd

Restrictions: Both register and effective addresses must be even valued.

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by doubleword increments.

7-13

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-14. LOAD MAGNITUDE, FIXED POINT WORD (LM)

The instruction LM causes the absolute value of the data in the effective ad­

dress to replace the contents of the arithmetic register addressed by the register

operand.

GENERAL FORM:

1 1 I I
LABEL

_l _J
COMMAND ! : OPERANDS

[symbol] I J6 I I I
r, [@][=]n[. x] f I LM ! J6 J _j ..l

Examples:
LM Al, WORD

LM Al,@ADDR, Xl

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, zero or BR, AR, XR, VR,
VR, or CM XR or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

Note: A result code of negative and fixed point overflow are possible only for the

case of the algebraically largest negative number, i.e., 8000 0000 (base 16).

7-14

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-15. LOAD MAGNITUDE, FIXED POINT HALFWORD (LMH)

The instruction LMH causes the absolute value of the data in the effective half-

word address to replace the contents of the left half of the arithmetic register ad­

dressed by the register operand.

Terminal index displacement is by halfword increments beginning from the

initial left halfword of the index word set.

GENERAL FORM:

I I T I
LABEL I I COMMAND I I OPERANDS

l l _I_ _I_

[symbol] : 16: I I
r,[@][=]n[,x] LMH ~ 16 l J_ J_

Examples:
LMH Al, WORD

LMH Al, @ADDR, X2

Addressing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND OPERAND VALUE ADDRESS

left left half zero n/a left half of BR,
half of of BR, AR,

XR
AR, XR, VR, or CM

even
AR, only XR, VR, or

CM odd right half of BR,
AR, XR, VR, or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

Note: A result code of negative and fixed point overflow are possible only for the

case of the algebraically largest negative number, i.e., 8000 (base 16).

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-15
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-16. LOAD MAGNITUDE, FLOATING POINT WORD (LMF)

The instruction LMF causes the absolute value of the data in the effective ad­

dress to replace the contents of the arithmetic register addressed by the register

operand.

GENERAL FORM:

i T I I
LABEL

l l COMMAND J l OPERANDS

[symbol] ~ /6 : I I

l. ..1
LMF : /6 l r, [@][=]n[, x]

Examples:
LMF Al, RSLT

LMF Al, @ADDR, X3

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, zero or BR, AR, XR, VR,
VR, or CM XR or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+or 0 none

Note: A negative result is not possible.

7-16

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-17. LOAD MAGNITUDE, FLOATING POINT DOUBLEWORD (LMD)

The instruction LMD causes the absolute value of the data in the effective double-

word address to replace the contents of the even-odd arithmetic register pair ad­

dressed by the register operand.

Terminal index displacement is by doubleword increments of even-odd word

pairs.

GENERAL FORM:

i i T I
LABEL

J_ J_
COMMAND l i OPERANDS

[symbol] : ~i LMD I~ I r,[@][=]n[,x]
I J_ ! l

Examples:
LMD A2, RSLT

LMD A4, @ADDR, Xl

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR; even-odd BR, AR, XR, zero or BR, AR, XR, VR,

pair only VR, or CM XR or CM; even-odd
pair only

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+ or 0 specification error if AR is odd

Restrictions: Both register and effective addresses must be even valued.

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by doubleword increments.

7-17
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-18. LOAD NEGATIVE MAGNITUDE, FIXED POINT WORD (LNM)

The instruction LNM causes the negative (two's complement) of the absolute

value of the data in the effective address to replace the contents of the arithmetic

register addressed by the register operand.

GENERAL FORM:

1 1 I I
LABEL

...1 ...1
COMMAND J j OPERANDS

[symbol] ; ~i LNM : 11 i r,[@][=Jn[,x]
_l • . i

Examples:
LNM Al, (AZ)

LNM Al ,@ADDR, X2

Addressing.

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, zero or BR, AR, XR, VR,
VR, or CM XR or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

0 or - none

-

Note: A positive result is not possible.

7-18
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-19. LOAD NEGATIVE MAGNITUDE, FIXED POINT HALFWORD (LNMH\

The instruction LNMH causes the negative (two's complement) of the absolute

value of the data in the effective halfword address to replace the contents of the

left half of the arithmetic register addressed by the register operand.

Terminal index displacement is by halfword increments beginni.ng from the

initial left halfword of the index word set.

GENERAL FORM:

i T I I
LABEL COMMAND I I OPERANDS

J_ J_ ...L ...1

[symbol] I iT LI~MH : !6 : r, [@][=]n[, x] 1 I
_j • . _l

Examples:
LNMH Al, RSLT

LNMH Al ,@ADDR, Xl

Addressing:
REGISTER ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND OPERAND VALUE ADDRESS

left left half zero n/a left half of BR,
half of of BR, AR,

XR
AR, XR, VR, or CM

AR, only XR, VR, or
even

CM odd right half of BR,
AR, XR, VR, or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

0 or - none

Note: A positive result is not possible.

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-19
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-20. LOAD NEGATIVE MAGNITUDE, FLOATING POINT WORD (LNMF)

The instruction LNMF causes the negative (sign change only) of the absolute

value of the data in the effective address to replace the contents of the arithmetic

register addressed by the register operand.

GENERAL FORM:

I I I I
LABEL I I COMMAND I I OPERANDS

J_ J_ _l _l

[symbol] ; l6: LNMF : l6 : r, [@][=]n[, x]
J_ j , I

Examples:
LNMF Al, (AZ)

LNMF Al, @ADDR, X3

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND· OPERAND OPERAND ADDRESS

AR BR, AR, XR, zero or BR, AR, XR, VR,
VR, or CM XR or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

0 or - none

Note: A positive result is not possible.

7-20

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-21. LOAD NEGATIVE MAGNITUDE, FLOATING POINT DOUBLEWORD (LNMD)

The instruction LNMD causes the negative (sign change only) of the absolute

value of the data in the effective doubleword address to replace the contents of the

even-odd arithmetic register pair addressed by the register operand.

Terminal index displaced is by doubleword increments of even-odd word pairs.

GENERAL FORM:

: I 1 I
LABEL I COMMAND J I OPERANDS

...1 l _l

[symbol] ;!6: LNMD ~ l6 : r, [@] [=] n[, x]
i .

Examples:
LNMD A2, RSLT

LNMD A4,@(A3), Xl
-

---·- ··-

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR; even-odd BR, AR, XR, zero or BR, AR, XR, VR,

pair only VR, or CM XR or CM; even-odd
pair only

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

0 or - specification error if AR is odd

Restrictions: Both register and effective addresses must be even valued.

Note: A positive result is not possible.

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by doubleword increments.

7-21
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-22. LOAD ONE'S COMPLEMENT, WORD (LO)

The instruction LO causes the one's complement of the data in the effective ad­

dress to replace the contents of the arithmetic register addressed by the register

operand.

GENERAL FORM:

T T T I
LABEL l l COMMAND I I OPERANDS

..L _[_

[symbol] T 16 i LO ! 16 : r, [@][=]n[, x]
I ' . I

Examples:
LO Al, (Al)

LO Al ,@ADDR, Xl

_Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR B~ AR, X~ zero or B~AR,XR VR,
V~ or CM XR or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

7-22
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-23. LOAD REGISTER FILE (LF)

The instruction LF causes the contents of the word octet beginning at the effec­

tive address to replace the contents of the eight-word register file addressed by the

mask operand.

GENERAL FORM:

i I I I
LABEL

J_ l COMMAND J i OPERANDS

[symbol] : ~; LF ~ ~ : m, [@]n[, x]
I i . i

Examples:
LF 1, BASEREG, X2

LF 4,@VECTR, X3

Addressing:

MASK REGISTER FILE ADDRESS INDEX EFFECTIVE
VALUE LOADED OPERAND OPERAND ADDRESS

0 BR-A BR, AR, zero register file
1 BR-B XR, VR, or BR-A, BR-B,
2 AR-C or CM XR AR-C, AR-D,
3 AR-D XR-X, orVR-V,
4 XR-X or CM octet
5 VR-V

6,7 no operation, take next instruction
-----·-----·-·-- .. ------··------

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

not affected none

Restrictions: The effective address will be forced to a multiple of eight, i. e. ,

to an octet boundary.

Note: With a mask value of six or seven, all parts of this instruction are assembled

and it can be made operative by programmed alteration of the R field.

Note: Base register zero is wired to zero and will not be altered if file A is loaded.

7-23
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSO~

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-24. LOAD REGISTER FILES, MULTIPLE (LFM)

The instruction LFM causes the contents of the six central memory octets that

begin at the effective address to replace the contents of the six eight-word register

files.

GENERAL FORM:

T i T I
LABEL COMMAND I I OPERANDS

J_ J_ ...L -1.

[symbol] ; ~i LFM i ~ l [@]n[,x]
J . • _l_

Examples:
LFM SAVEREG

LFM @ADDR, Xl

Addressing:

ADDRESS OPERAND INDEX OPERAND EFFECTIVE ADDRESS

CM only zero or XR CM only

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

not affected specification error if effective
address is a register address

Restrictions: The effective address must refer to central memory and will be

forced to a multiple of eight, i.e., to an octet boundary.

Note: Base register zero will not be altered since it is wired to zero.

7-24

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-25, STORE INSTRUCTIONS

Table 7-2 lists the store instructions discussed on the following pages.

MNEMONIC

ST

STLL

STRR

STRL

STLR

STD

STZ

STZH

STZD

STN

STNH

STNF

STND

STO

STOH

STF

STFM

Table 7-2. Store Instructions

INSTRUCTION NAME

Store Word

Store Left Halfword Into Left

Store Right Halfword Into Right

Store Right Halfword Into Left

Store Left Halfword Into Right

Store Doubleword

Store Zero, Word

Store Zero, Halfword

Store Zero, Doubleword

Store Negative, Fixed Point Word

Store Negative, Fixed Point Halfword

Store Negative, Floating Point Word

Store Negative, Floating Point Doubleword

Store Ones Complement, Word

Store Ones Complement, Halfword

Store Register File

Store Register Files, Multiple

7-25

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

TOPIC

7-26

7-27

7-28

7-28.l

7-29

7-30

7-31

7-32

7-33

7-34

7-35

7-36

7-37

7-38

7-39

7-40

7-41

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-26. STORE WORD (ST)

The instruction ST causes the data in the register addressed by the register

operand to replace the contents of the effective address.

GENERAL FORM:

1 i I I
LABEL

J. J.
COMMAND ~ : OPERANDS

Examples:

[symbol] ~ 16: ST
I I

r, [@]n[, x] ' 16 : _j_ _i

ST Bl, RSLT

ST X2, SAVEREG, Xl

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

BR, AR, XR, BR, AR, XR, zero or BR, AR, XR, VR,
or VR VR, or CM XR or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

7-26
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-27. STORE LEFT HALFWORD INTO LEFT (STLL)

The instruction STLL causes the data in the left half of the arithmetic

register addressed by the register operand to replace the contents of the effec­

tive halfword address.

Terminal index displacement is by halfword increments beginning from the

initial left halfword of the index word set.

GENERAL FORM:

I T I I
LABEL I I COMMAND I I OPERANDS

l _l _[_ _l

[symbol] ~ ~ i STLL I~ I r, [@]n[, x] ; I
_l . . I

Examples:
STLL Al,STORE

STLL A2,@ADDR, Xl

Addressing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND OPERAND VALUE ADDRESS

left left half zero n/a left half of BR.,
half of of BR, AR,

XR
AR, XR, VR, or CM

AR, only XR., VR, or
even

CM odd right half of BR,
AR, XR, VR, or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-27
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-28. STORE RIGHT HALFWORD INTO RIGHT (STRR)

The instruction STRR causes the data in the right half of the arithmetic

register addressed by the register operand to replace the contents of the effec­

tive halfword address.

Terminal index displacement is by halfword increment beginning from the initial

right halfword of the index word set.

GENERAL FORM:

LABEL : : T I
COMMAND I I OPERANDS

.l .l _l_ _l

[symbol] ; ~i STRR : ~ l r, [@]n[, x]
I • . -1

Examples:
STRR A3, RSLT

STRR AZ, @RSLT, Xl

Addressing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND OPERAND VALUE ADDRESS

right right half zero n/a right half of BR,
half of of BR, AR,

XR
AR, XR, VR, or CM

AR, only XR, VR, or
even

left half of BR,
CM odd

AR, XR, VR, or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

Note: Indirect address indexing by singleword increments although the terminal

indexing is by halfword increments.

7-28
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-28. 1 STORE RIGHT HALFWORD INTO LEFT (STRL)

The instruction STRL causes the data in the right half of the arithmetic

register addressed by the register operand to replace the contents of the effec­

tive halfword address.

Terminal index displacement is by halfword increment beginning from the initial

left halfword of the index word set.

GENERAL FORM:

I I T I
LABEL I I COMMAND I I OPERANDS

I I ...1 ...1

[symbol] ; ~i STRL I~ I r, [@]n[, x]
_i i ~ :

Examples:
STRL A3, RSLT

STRL A2, @RSLT, Xl

Addressing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE

OPERAND OPERAND OPERAND VALUE: ADDRESS

right left half zero n/a left half of BR,
"' AR, XR, VR, or CM half of of BR, AR,

XR even
AR, only XR, VR, or right half of BR,

CM odd
AR, XR, VR, or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

Note: lndirect address indexing by singleword increments although the term i tL1 I

indexing is by halfword increments.

7-28A
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

~

PROGRAMM::.<::R'S GUIDE TO THE CENTRAL PROCESSOR

7-29. STORE LEFT HALFWORD INTO RIGHT (STLR)

The instruction STLR causes the data in the left half of the arithmetic register

addressed by the register operand to replace the contents of the effective halfword

address.

Terminal index displacement is by halfword increments beginning from the

initial right halfword of the index word set.

GENERAL FORM:

: : T I
LABEL COMMAND I I OPERANDS

.1 .1 _L _l

[symbol] :l>)i STLR : l6 : r, [@]n[, x]
_l • . l

Examples:
STLR Al, (A2)

STLR A2, @RSLT, Xl

Add res sing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND OPERAND VALUE ADDRESS

left right half zero n/a right half of BR,
half of of BR, AR, AR, XR, V R, or CM
AR, only XR, VR, or

XR even

CM odd left half of BR,
AR, XR, VR, or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-29
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-30. STORE DOUBLEWORD {STD)

The instruction STD causes the data in the even-odd arithmetic register pair

addressed by the register operand to replace the contents of the effective double­

word address.

Terminal index displacement is by doubleword increments of even-odd word

pairs.

GENERAL FORM:

I 1 I I
LABEL I I COMMAND I I OPERANDS

l I I

[symbol] ; kl~ STD
I I r, [@]n[, x] ;~l _l .

Examples:
STD A2, RSLT

STD A2,@ADDR, X2

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR; even-odd BR AR, XR zero or BR AR, XR VR
pair only VR, or CM XR or CM; even-oddi

pair only

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - specification error if AR is odd

Restrictions: Both register and effective addresses must be even valued.

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by doubleword increments.

7-30
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-31. STORE ZERO, WORD (STZ)

The instruction STZ causes a word of zeros to be stored into the effective ad-

dress.

GENERAL FORM:

LABEL
I 1 I I
I I COMMAND l j OPERANDS
I I

[symbol]
1 I

STZ I~ I [@]n[, x] _: ~: ~ :
Examples:

STZ RSLT

STZ @(Al), Xl

Addres sing:'-·-···--L--.

ADDRESS OPERAND INDEX OPERAND EFFECTIVE ADDRESS

BR, AR, XR, VR, or CM zero or XR BR, AR, XR, VR, or CM

L--.. ··~ ·--···-. '"'·-···----·- ··-~·

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

zero none

-· ----·------------ -·--

7-31
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-32. STORE ZERO, HALFWORD (STZH)

The instruction STZH causes a halfword of zeros to be stored into effective

halfword address.

Terminal index displacement is by halfword increments beginning from the

initial left halfword of the index word set.

GENERAL FORM:

LABEL : I I I

J_ l COMMAND l i OPERANDS

[symbol] i l6 : STZH
I I

[@]n[, x]
J_ l ~~l

Examples:
STZH RSLT

STZH @(Al), XI

Addressing:

ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND VALUE ADDRESS

left half zero n/a left half of B R,
of BR, AR,

XR
AR, XR, VR, or CM

XR, VR, or
even

CM odd right half of BR,
AR, XR, VR, or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

zero none

~: Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-32
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-33. STORE ZERO, DOUBLEWORD (STZD)

The instruction STZD causes a doubleword of zeros to be stored into the effec-

tive doubleword address.

Terminal index displacement is by doubleword increments of even-odd word

pairs.

GENERAL FORM:

LABEL

[symbol]

Examples:

T T
I I
I J_

COMMAND

STZD

STZD

STZD

L------···--·-- -·-- -- ---- --- - -- --·-·--·
Addressing:

II
I : OPERANDS

[@']n[, x]

RSLT

@(A3), Xl

ADDRESS OPERAND INDEX OPERAND EFFECTIVE ADDRESS

BR, AR, XR, VR, or CM zero or XR BR, AR, XR, VR, or
CM even-odd pair

··- -------- ----- -----------1
Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

zero none

Restrictions: The effective doubleword address must be even valued.

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by doubleword increments.

7-33
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-34. STORE NEGATIVE, FIXED POINT WORD (STN)

The instruction STN causes the algebraic negative (two's complement) of the

value in the arithmetic register addressed by the register operand to be stored into

the effective address.

GENERAL FORM:

LABEL

[symbol]

Examples:

: I

l l
T 11'

I Ji I
_L •

COMMAND

STN

STN

STN

I
I I

..J.. .l
OPERANDS

r,[@]n[,x]

Al,(Al)

Al, @ADDR, Xl

'----· ·----··--·---------- ·----·--·· -·--·------·-----------------· ----- -
Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, zero or BR, AR, XR, VR,
VR, or CM XR or CM

'----··------··· ···-·····--- <-------·- -- _____ _,__ __

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

._____. -· ···---·

Note: Fixed point overflow is possible only for the algebraically largest negative

value and the value stored is the same as the value in the register; i.e., the two's

complement of 8000 0000 (base 16) is 8000 0000.

7-34

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-35. STORE NEGATIVE, FIXED POINT HALFWORD (STNH)

The instruction STNH causes the algebraic negative (two's complement) of the

value in the left half of the arithmetic register addressed by the register operand

to be stored into the effective halfword address.

Terminal index displacement is by halfword increments beginning from the

initial left halfword of the index word set.

GENERAL FORM:

LABEL

[symbol]
Examples:

i T
.1 l
! 11T
I~ I
I .

COMMAND

STNH

STNH

STNH

T I

l i OPERANDS

r,[@]n[,x]

Al, RSLT

Al, @ADDR, Xl

,___ ___ --·· -. ---·· ----------·---··-···-· _____ J
Addressing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE

OPERAND OPERAND OPERAND VALUE ADDRESS

left left half zero n/a left half of BR,
half of of BR, AR,

XR
AR, XR, VR, or CM

AR, only XR, VR,
even

or
CM odd right half of BR,

AR, XR, VR, or CM ,___ ______ ,. . ··--' -----·-- _,, _____ -- -- ,___ ______ ·-- _______ ,,_.. _____ --- . - ·-·- - . -·· ·-··· ----····------------
Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

-·--·------··----·---------···-· ··-----·----·-· -----------··----··--··---·--------------·---
Note: Fixed point overflow is possible only for the algebraically largest negative

value and the value stored is the same as the value in the register; i. e. , the two's

complement of 8000 (base 16) is 8000.

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-35
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-36. STORE NEGATIVE, FLOATING POINT WORD (STNF)

The instruction STNF causes the algebraic negative (sign change only) of the

value in the arithmetic register addressed by the register operand to be stored into

the effective address.

GENERAL FORM:

LABEL i i
J_ _l

[symbol]

Examples:

Addressing:

REGISTER
OPERAND

AR

Program Status:

COMMAND

STNF

STNF

STNF

-r-1
: :

ADDRESS
OPERAND

BR, AR, XR,
VR, or CM

RESULT CODE REFLECTS

+, 0, or -

OPERANDS

r,[@]n[,x]

Al, FLOAT

Al, @ADDR, Xl

INDEX
OPERAND

zero or
XR

EFFECTIVE
ADDRESS

BR, AR, XR, VR,
or CM

PROGRAM INTERRUPTIONS

none

...__ __________________ _..._ _____________________________________ _

7-36
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-37. STORE NEGATIVE, FLOATING POINT DOUBLEWORD (STND)

The instruction STND causes the algebraic negative (sign change only) of the

value in the even-odd arithmetic register pair addressed by the register operand

to be stored into the effective doubleword address.

Terminal index displacement is by doubleword increments of even-odd word

pairs.

GENERAL FORM:

LABEL

[symbol]

Examples:

i :
J_ J_

COMMAND

STND

STND

STND

I

I I
J _J_

OPERANDS

r, [@]n[, x]

A2, FLOAT

A2, @ADDR, X2

---------------··--·-·------------····-----·-------------------·- - ··-------
Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR; even-odd BR, AR, XR, zero or BR, AR, XR, VR,

pair only VR, or CM XR or CM; even-odd
pair only

----·----~-------- --·-- ------ - ---- ·---- - ·-----·· ·--· - -- ' --

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - specification error if AR is odd

----···---··-------·--'

Restrictions: Both register and effective addresses must be even valued.

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by doubleword increments.

7-37

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-38. STORE ONE'S COMPLEMENT, WORD (STO)

The instruction STO causes the one's complement of the data in the arithmetic

register addressed by the register operand to be stored into the effective address.

GENERAL FORM:

: i T I
LABEL COMMAND I I OPERANDS

l _l _J_ _J_

[symbol] I~ I STO I~ I r, [@]n[, x] I I
! l _l j_

Examples:
STO Al,NEG

STO Al, @ADDR, X2

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, zero or BR, AR, XR, VR,
VR, or CM XR or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

7-38
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-39. STORE ONE'S COMPLEMENT, HALFWORD (STOH)

The instruction STOH causes the one's complement of the data in the left half

of the arithmetic register addressed by the register operand to be stored into the

effective halfword address.

Terminal index displacement is by halfword increments beginning from the

initial left halfword of the index word set.

GENERAL FORM:

I T I I
LABEL I I

J_ J_
COMMAND l l OPERANDS

[symbol] : f6: I f6 I r,[@]n[,x] STOH . I
..1 . ' J_

STOH Al, RSLT

Examples: STOH Al ,@ADDR, Xl

- -

Addressing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND OPERAND VALUE ADDRESS

left left half zero n/a left half of BR,
half of of BR, AR,

XR
AR, XR, VR, or CM

AR, only XR, VR, or
even

CM odd right half of BR,
AR, XR, VR, or CM

---''-- ---'--

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

.___ _______ ------- __ .. ________ .. __ --·-------------- ----·----------------'--'

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-39
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-40. STORE REGISTER FILE (STF)

The instruction STF causes the contents of the eight-word register file ad­

dressed by the mask operand to be stored into the word octet beginning at the effec-

tive address.

GENERAL FORM:

,.---L-A-B~E-L~-~~,-~~,~-C-0-M~M-A~N-D~-~~,-J.~:~O~P-E-R~A-N-D~S·-·~--~~~~~~~--.

[symbol] m, [@]n[, x] ; k$: ST F 1.
1 161-f J. ..L

Examules: l==I

Addressing:

MASK
VALUE

0
1
2
3
4
5

6,7

Program Status:

STF

STF

REGISTER FILE
STORED

BR-A
BR-B
AR-C
AR-D
XR-X
VR-V

ADDRESS
OPERAND

BR, AR,
XR, VR,
or CM

word octet of zeros stored

RESULT CODE REFLECTS

1, SAVEREG

5,@ADDR, Xl

INDEX
OPERAND

zero
or
XR

EFFECTIVE
ADDRESS

register file
BR-A, BR-B
AR-C, AR-D
XR-X, or VR-V,
or CM octet

PROGRAM INTERRUPTIONS

not affected none

Restrictions: The effective address will be forced to a multiple of eight, i.e.,

to an octet boundary.

7-40
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-41. STORE REGISTER FILES, MULTIPLE (STFM)

The instruction STFM causes the contents of the six eight-word register files

to be stored into the six central memory word octets that begin at the effective

address.

GENERAL FORM:

I I r I
LABEL I I COMMAND I I OPERANDS

J_ J_ ...1. ...1.

[symbol] : 16 : STFM I~ I [@']n[, x] ' I
j ...i . J_

Examples:
STFM SAVEREG

STFM @ADDR, Xl

Addressing:

ADDRESS OPERAND INDEX OPERAND EFFECTIVE ADDRESS

CM only zero or XR CM only

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

not affected specification error if effective
address is a register address

-

Restrictions: The effective address must refer to central memory and will be

forced to a multiple of eight, i.e., to an octet boundary.

7-41
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-42. ARITHMETIC INSTRUCTIONS

Table 7-3 lists the arithmetic instructions discussed on the following pages.

MNEMONIC

A

AH

AF

AFD I

AI

AIH

AM

AMH

AMF

AMFD

s
SH

SF

SFD

SI

SIH

SM

SMH

SMF

SMFD

M

MH

MF

MFD

MI

MIH

D

DH

DF

DFD

DI

DIH

Table 7-3. Arithmetic Instructions

INSTRUCTION NAME

Add, Fixed Point Word

Add, Fixed Point Halfword

Add, Floating Point Word

Add, Floating Point Doubleword

Add, Immediate, Fixed Point Word

Add Immediate, Fixed Point Halfword

Add Magnitude, Fixed Point Word

Add Magnitude, Fixed Point Halfword

Add Magnitude, Floating Point Word

Add Magnitude, Floating Point Doubleword

Subtract, Fixed Point Word

Subtract, Fixed Point Halfword

Subtract, Floating Point Word

Subtract, Floating Point Doubleword

Subtract Immediate, Fixed Point Word

Subtract Immediate, Fixed Point Halfword

Subtract Magnitude, Fixed Point Word

Subtr,act Magnitude, Fixed Point Halfword

Subtract Magnitude, Floating Point Word

Subtract Magnitude, Floating Point Doubleword

Multiply, Fixed Point Word

Multiply, Fixed Point Halfword

Multiply, Floating Point Word

Multiply, Floating Point Doubleword

Multiply, Immediate, Fixed Point Word

Multiply Immediate, Fixed Point Halfword

Divide, Fixed Point Word

Divide, Fixed Point Halfword

Divide, Floating Point Word

Divide, Floating Point DoublewQrd

Divide Immediate, Fixed Point Word

Divide Immediate, Fixed Point Halfword

7-42

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

TOPIC

7-43

7-44

7-45

7-46

7-47

7-48

7-49

7-50

7-51

7-52

7-53

7-54

7-55

7-56

7-57

7-58

7-59

7-60

7-61

7-62

7-63

7-64

7-65

7-66

7-67

7-68

7-69

7-70

7-71

7-72

7-73
7-74

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-43. ADD, FIXED POINT WORD (A)

The inst .. · ·· ..:tion A causes the value in the effective address to be added to the

value in the register addressed by the register operand, and causes the sum to be

loaded into the register.

GENERAL FORM:

1 i I I
LABEL COMMAND I I OPERANDS

J_ J_ __J_ _l_

[symbol] ~ ~: A l 16 I r,[@][=]n[,x]
J. .l . J_

Examples:
A Bl, =#100

A Xl, @ADDR, X2

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

BR, AR, XR, BR, AR, XR, zero or BR, AR, XR, VR,
or VR VR, or CM XR or CM

._ ___
-·'. .. -···---------- ~·---·------- - - --

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

'--- - . ····-·· ---··-·--··--· ·---·- ··---·---·---·--·- _________________________ _,

7-43

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-44. ADD, FIX ED POINT HALFWORD (AH)

The instruction AH causes the value in the effective halfword address to be

added to the value in the left half of the arithmetic register addressed by the register

operand, and causes the sum to be loaded into the left half of the register.

Terminal index displacement is by halfword increments beginning from the

initial left halfword of the index word set.

GENERAL FORM:

LABEL : :
l .l

[symbol] ; ~i
J. J.

Examples:

COMMAND

AI-I

AH

AH

[I
I I

J. J.
OPERANDS

r, [@][=]n[, x]

Al, =#FFF

Al ,@ADD, Xl

-------------------,--------·--·----------------------··---··- - ·-··· .••••••• ...,J

Addressing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND OPERAND VALUE ADDRESS

left left half zero n/a left half of BR,
half of of BR, AR,

XR
AR, XR, VR, or CM

AR, only XR, VR, or
even

CM odd right half of BR,
AR, XR, VR, or CM

-~-- .

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

·-·-----------------·---------- -· ---· -
Note: ·Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-44

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-45. ADD, FLOATING POINT WORD (AF)

The instruction AF causes the value in the effective address to be added to

the value in the arithmetic register addressed by the register operand, and causes

the sum to be loaded into the register.

GENERAL FORM:

Examples:

LABEL : :
.1 .1

[symbol] } l6 I
COMMAND

AF

AF

AF

T I
I i

..L ..L

I u I
I 11J I
• _l

OPERANDS

r, [@][=]n[, x]

Al, (A2)

Al,RSLT,Xl

.......... _____ ... __________ .. ·.-,~-~---- ---·-··---····-·--·---- - ··---···--·- -·. -- -···· ... ··-····-·--· - ··- ·-··------·---.. ·---·-

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR. AR. XR. zero or BR. AR, XR, VR,
VR. or CM XR or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, O, or - floating point exponent overflow

floating point exponent underflow

7-45
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-46. ADD, FLOATING POINT DOUBLEWORD (AFD)

The instruction AFD causes the value in the effective doubleword address

to be added to the value in the even-odd arithmetic register pair addressed by the

register operand, and causes the sum to be loaded into the register pair.

Terminal index displacement is by doubleword increments of even-odd word

pairs.

GENERAL FORM:

T I
LABEL .~ 1
[symbol]

Examples:

Addressing:

REGISTER
OPERAND

AR; even-odd
pair only

Program Status:

COMMAND

AFD

AFD

AFD

T I
I I

-1 .1

I ti I
I~ I
. I

ADDRESS
OPERAND

BR AR, XR,
VR or CM

RESULT CODE REFLECTS

+, 0, or -

OPERANDS

r, [@][=]n[, x]

A2, (A4)

A2, RSLT, Xl

INDEX EFFECTIVE
OPERAND ADDRESS

zero or BR AR XR, VR
XR or CM; even-odd

pair only

PROGRAM INTERRUPTIONS

floating point exponent overflow

floating point exponent underflow

specification error if AR is odd

Restrictions: Both register and effective addresses must be even valued.

•

Note: Indirect address indexing is by singleword increments although the terminal

indexing is doubleword increments.

7-46
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-47. ADD IMMEDIATE, FIXED POINT WORD (AI)

The instruction AI causes the effective immediate operand to be added to the

value in the register addressed by the register operand, and causes the sum to be

loaded into the register.

GENERAL FORM:

LABEL : : COMMAND
T I
I I

.1 .1
OPERANDS

[symbol]

Examples:

1 .1

AI

AI

AI

I tL I
I~ I
• _l

r, i[, x]

Al, 13

Bl,15,Xl

~-~--~-------~--~-------~------------' Addressing:

REGISTER INDEX IMMEDIATE
OPERAND OPERAND MODIFIER

BR, AR, XR, zero none
or VR

XR
23 23

-2 :Sm ~2 -1
-

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

._ _____ ,. ____________ ,._ !-.-----··--·-------·------------

7-47

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-48. ADD IMMEDIATE, FIXED POINT HALFWORD (AIH)

The instruction AIH causes the effective immediate operand to be added to the

value in the left half of the arithmetic register addressed by the regi_~ter operand,

and causes the sum to be loaded into the left half of the register.

GENERAL FORM:

'-------------------------·------------
Addressing:

REGISTER INDEX IMMEDIATE
OPERAND OPERAND MODIFIER

left half of zero none
AR, only

XR right
15 15

half -2 ~m::s2 -1

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

-

7-48
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-49. ADD MAGNITUDE, FIXED POINT WORD (AM)

The instruction AM causes the absolute value of the data in the effective ad­

dress to be added to the value in the arithmetic register addressed by the register

operand, and causes the sum to be loaded into the register.

GENERAL FORM:

: ; T I
LABEL COMMAND I I OPERANDS

-1 -1 _L J_

[symbol] ; ~i
J_ •

AM I~ I
I l r, [@][=]n[, x]

Examples: AM Al, ABS, Xl

AM Al, @ADDR, Xl

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, zero or BR, AR, XR, VR,
VR, or CM XR or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

Note: Fixed point overflow is possible when the value in the arithmetic register is

positive; it will occur when the value in the effective address is the algebraically

largest negative number (8000 0000, base i6) and the register contents are zero or

positive.

7-49
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-50. ADD MAGNITUDE, FIXED POINT HALFWORD (AMH)

The instruction AMH causes the absolute value of the data in the effective half­

word address to be added to the value in the left half of the register addressed by

the register operand, and causes the sum to be loaded into the left half of the

register.

Terminal index displacement is by halfword increments beginning from the

initial left halfword of the index word set.

GENERAL FORM:

LABEL i i COMMAND
T I
I I OPERANDS

I I _J_ _J_

[symbol] ; ~i
_j i

AMH I T
: ~: r, [@][=]n[, x]

Examples:
AMH A3, RSLT

AMH A3,@ADDR, Xl

Addressing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE

OPERAND OPERAND OPERAND VALUE ADDRESS

left left half zero n/a left half of BR,
half of of BR, AR,

XR
AR, XR, VR, or CM

AR, only XR, VR, or
even

CM odd right half of BR,
AR, XR, VR, or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

Note: Fixed point overflow is possible when the value in the register halfword is

positive; it will occur when the value in the effective halfword is the algebraically

largest negative number (8000, base 16) and the register halfword contents are

zero or positive.

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-50
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-51. ADD MAGNITUDE, FLOATING POINT WORD (AMF)

The instruction AMF causes the absolute value of the data in the effective ad-

dress to be added to the value in the arithmetic register addressed by the register

operand, and causes the sum to be loaded into the register.

GENERAL FORM:

LABEL

[symbol]
Examples:

: I

1 l COMMAND

AMF

AMF

AMF

I I
I I

.J. .I.
I I

·~1

OPERANDS

r, [@][=]n[, x]

Al,ABS

Al,@ADDR, Xl

-·-----·--·------ ---'
Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, zero or BR, AR, XR, VR,
VR, or CM XR or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - floating point exponent overflow

7-51

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-52. ADD MAGNITUDE, FLOATING POINT DOUBLEWORD (AMFD)

The instruction AMFD causes the absolute value of the data in the effective

doubleword address to be added to the value in the even-odd arithmetic register

pair addressed by the register operand, and causes the sum to be loaded into the

register pair.

Terminal index displacement is by doubleword increments of even-odd word

pairs.

GENERAL FORM:

: : I I
LABEL COMMAND I I

J_ _l .l

;l6i I~ I [symbol] AMFD i I
L l ' _l

Examples:
AMFD

AMFD

Addressing:

REGISTER ADDRESS
OPERAND OPERAND

AR; even-odd B~ AR, XR,
pair only VR, or CM

Program Status:

RESULT CODE REFLECTS

+, 0, or -

OPERANDS
·---

r, [@][=]n[, x]

A2,ADD

A2,@ADDR, Xl

INDEX EFFECTIVE
OPERAND ADDRESS

zero or B~ A~ XR, V~
XR or CM; even-odd

pair only
·-· _,, __ _._ __ .. --·---

PROGRAM INTERRUPTIONS

floating point exponent overflow
specification error if AR is odd

L........---.. - •··--·----•· -· ••• •-••••··--- ·-- ·------·--J --------·-···-·----·--- •••·-• - --- "M•- 0 .. _____ -•-••• ----··---·-· •• ·-

Restrictions: Both register and effective addresses must be even-valued ..•

Note: Indirect address indexing is by singleword increments although terminal

indexing is by doubleword increments.

7-52
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-53. SUBTRACT, FIXED POINT WORD (S)

The instruction S causes the value in the effective address to be subtracted

from the value in the arithmetic register addressed by the register operand, and

causes the difference to be loaded into the register.

GENERAL FORM:

: : [I
LABEL l 1 COMMAND 1 1 OPERANDS

l===========:=;::~==============i==i============,-=-~====================I
[symbol] ;f5i S 116/ r,[@][=]n[,x]

~ ' . i
Examples: l==f

S Bl,=#100

S Xl ,@ADDR, X2

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, zero or BR, AR, XR, VR,

VR, or CM XR or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

7-53

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-54. SUBTRACT, FIXED POINT HALFWORD (SH)

The instruction SH causes the value in the effective halfword address to be

subtracted from the value in the left half of the arithmetic register addressed by

the register operand, and causes the difference to be loaded into the left half of

the register.

Terminal index displacement is by halfword increments beginning from the initial

left halfword of the index word set.

GENERAL FORM:

LABEL 1 i T I

l _l
COMMAND l .~ OPERANDS

Examples:
[symbol] ; !6i SH

I 161
r,[@][=]n[,x]

I , : l
SH Al, =#FFFF

SH Al ,@SUB, Xl

Addressing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND OPERAND VALUE ADDRESS

left left half zero n/a left half of BR,
half of of BR, AR,

XR
AR, XR, VR, or CM

AR, only XR, VR, or
even

CM odd right half of BR,
AR, XR, VR, or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-54
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-55. SUBTRACT, FLOATING POINT WORD (SF)

The instruction SF causes the value in the effective address to be subtracted

from the value in the arithmetic register addressed by the register operand, and

causes the difference to be loaded into the register.

GENERAL FORM:

LABEL i ;
_l _l

[symbol]

Examples:

"""' ------ -- - -~ -
Addressing:

REGISTER
OPERAND

AR

COMMAND
I I
I I

1 _l_

SF

SF

SF

ADDRESS
OPERAND

BR, AR, XR,
VR, or CM

OPERANDS

r, [@][=]n[, x]

Al, (A2)

Al, RSLT, Xl

INDEX EFFECTIVE
OPERAND ADDRESS

zero or BR, AR, XR, VR,
XR or CM

-

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - floating point exponent overflow
floating point exponent underflow

------ ---------··· ·----------- '------------------------

7-55
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-56. SUBTRACT, FLOATING POINT DOUBLEWORD (SFD)

The instruction SFD causes the value in the effective doubleword address to

be subtracted from the value in the even-odd arithmetic register pair addressed

by the register operand, and causes the difference to be loaded into the register

pair.

Terminal index displacement is by doubleword increments of even-odd word

pairs.

GENERAL FORM:

-: I l I
LABEL

J_ l COMMAND I I OPERANDS
...L ..1

[symbol] : l6i SFD I~ I r, [@][=]n[, x] ; I
j • . J

Examples:
SFD A2, (A4)

SFD A2, RSLT, Xl

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR; even-odd BR, AR, XR, zero or BR, AR, XR, VR,
pair only VR, or CM XR or CM; even-odd

pair only
-.--- --·-·--------- ··-- ·-- -·-·~-·-~-·--L....------- -------··---

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - floating point exponent overflow
floating point exponent underflow
specification error if AR is odd

Restrictions: Both register and effective addresses must be even valued.

Note: Indirect address indexing is by singleword increments although terminal

indexing is by doubleword increments.

7-56

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-57. SUBTRACT IMMEDIATE, FIXED POINT WORD (SI)

The instruction SI causes the effective immediate operand to be subtracted

from the value in the arithmetic register addressed by the register operand, and

causes the difference to be loaded into the register.

GENERAL FORM:

LABEL

[symbol]

Examples:

Addressing:

COMMAND

SI

SI

SI

REGISTER

I I
I I

..L ..L

I. IL I
' 1U I
• J_

OPERANDS

r, i[, x]

Al, 13

Al,15,Xl

INDEX IMMEDIATE
OPERAND OPERAND MODIFIER

AR zero none

XR
23 23

-2 ::::m::::2 -1

·-

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

7-57

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-58. SUBTRACT IMMEDIATE, FIXED POINT HALFWORD (SIH)

The instruction SIH causes the effective immediate operand to be subtracted

from the value in the left half of the arithmetic register addressed by the register

operand, and causes the difference to be loaded into the left half of the register.

GENERAL FORM:

LABEL
T T

COMMAND
T I

: : I I OPERANDS·
l _l_

[symbol] T~T SIH
I I r, i[, x] l _L l~l

Examples:
SIH A2, 3

SIH A2, 5, xl

Addressing:

REGISTER INDEX IMMEDIATE

OPERAND OPERAND MODIFIER

left half of zero none

AR, only XR right 15 15
half -2 sm::::2 -1

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

-

7-58
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-59. SUBTRACT MAGNITUDE, FIXED POINT WORD (SM)

The instruction SM causes the absolute value of the data in the effective address

to be subtracted from the value in the arithmetic register addressed by the register

operand, and causes the difference to be loaded into the register.

GENERAL FORM:

T T T I
LABEL I I COMMAND I I OPERANDS

I l_ J.. J_

[symbol] T~I
I I
I .l

SM l~T r, [@][=]n[, x]
. I

Examples:
SM Al, ABS, Xl

SM Al ,@ADDR, Xl

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, zero or BR, AR, XR, VR,
VR, or CM XR or CM

"----·--···· ·---..

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

1----··----

Note: Fixed point overflow is possible when the value in the arithmetic register is

negative; it will occur when the value in the effective address is the algebraically

largest negative number (8000 0000, base 16) and the contents of the arithmetic reg­

ister are negative.

7-59
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-60. SUBTRACT MAGNITUDE, FIXED POINT HALFWORD (SMH)

The instruction SMH causes the absolute value of the data in the effective half­

word address to be subtracted from the value in the left half of the a;rithmetic registe

addressed by the register operand, and causes the difference to be loaded into the

left half of the register.

Terminal index displacement is by halfw~:>rd increments beginning from the

initial left halfword of the index word set.

GENERAL FORM:

LABEL
I · I T I
I I C0~"1MAND l i OPERANDS ..l _l

[symbol] : k5 : SMH I k5 I r, [@][=]n[, x] I I
..l. ..i . J_

Examples:
SMH A3, RSLT

SMH A3,@ADDR, Xl

Addressing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND OPERAND VALUE ADDRESS

left left half zero n/a left half of BR,
half of of BR, AR,

XR
AR, XR, VR, or CM

AR, only XR, VR, or
even

CM odd right half of BR,
AR, XR, VR, or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

-
Note: Indirect address indexing is by singleword increments although terminal

indexing is by halfword increments.

7-60
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-61. SUBTRACT MAGNITUDE, FLOATING POINT WORD (SMF)

The instruction SMF causes the absolute value of the data in the effective

address to be subtracted from the value in the arithmetic register addressed by

the register operand, and causes the difference to be loaded into the register.

GENERAL FORM:

LABEL

[symbol]

Examples:

T i
J_ J_

COMMAND

SMF

SMF

SMF

I I
I I

i i

l l6 i
. J_

OPERANDS

r,[@][=]n(,x]

Al, ABS

Al, @ADDR, Xl

'------------------------····-- ·-····--·--- ---·----·-·--·- ··-·-··------·----- ---··---------·----
Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, zero or BR, AR, XR, VR,

VR, or CM XR or CM

--~

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - floating point exponent underflow

7-61

THE SCALAR INSTRUGT!QNS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-62. SUBTRACT MAGNITUDE, FLOATING POINT DOUBLEWORD (SMFD)

The instruction SMFD causes the absolute value of the data in the effective

doubleword address to be subtracted from the value in the even-odd arithmetic

register pair addressed by the register operand, and causes the difference to be

loaded into the register pair.

Terminal index displacement is by doubleword increments of even-odd word

pairs.

GENERAL FORM:

.,. 1 I I
LABEL : : COMMAND l .. ~ OPERANDS

[symbol]
I I

SMFD I 1' I r, [@][=]n[,x] l ~: ~ l
Examples:

SMFD A2, SUB

SMFD A2,@SUB, Xl

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR; even-odd BR, AR, XR, zero or BR, AR, XR, VR,
pair only VR, or CM XR or CM; even-odd

pair only
-~----

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - floating point exponent underflow
specification error if AR is odd

Restrictions: Both register and effective addresses must be even valued.

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by doubleword increments.

7-62
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-63. MULTIPLY, FIXED POINT WORD (M)

The instruction M causes the value in the effective address to be multiplied by

the value in the register addressed by the register operand, and causes the product

to be loaded into the register or registers.

The full doubleword integer product is loaded into an even-odd register pair if

the register operand addresses an even arithmetic register; but only the least sig­

nificant half of the integer product is saved and loaded if the register operand

addresses an odd arithmetic register or a register from any other register file.

GENERAL FORM:

LABEL 1 I I I

l l COMMAND ! : OPERANDS

[symbol] I~ I M I I
r, [@][=]n[, x] I I ~ ~ l i _l

Examples:
M Al, (A2}

M A2, RSLT, Xl

Addressing:

REGISTF:.f\. DESTINATION OF ADDRESS INDEX EFFECTIVE
OPERAND RESULT OPERAND OPERAND ADDRESS

even AR AR even-odd pair BR, AR, zero BR, AR,

odd AR odd AR singleword
XR, VR, or XR, VR,
or CM XR or CM

BR, XR, BR, XR, or VR singleword

or VR singleword
-·-

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow
. ----·-· ---------. ·- ·-·--- -·-.. ---- ··---------------------------'

Limitations: Where only a singleword product is saved, the product, p, must have

c

a value within the range: _z3 l ::: p ~ z3l_1; otherwise, a fixed point overflow occurs.

Restrictions: When an even arithmetic register is addressed in the register operand,

the data in the succeeding odd arithmetic register will be replaced by the result of

this instruction.

7-63

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-64. MULTIPLY, FIXED POINT HALFWORD (MH)

The instruction MH causes the value in the effective halfword address to be

multiplied by the value in the left half of the arithmetic register addr,essed by the

register operand, and causes the fullword product (32 bits) to be loaded into the

register.

Terminal index displacement is by halfword increments beginning from the

initial left halfword of the index word set.

GENERAL FORM:
-1 l T I

LABEL I I COMMAND I I OPERANDS
J_ J_ _J_ _L

I I
: l1 : r, [@][=]n[, x] [symbol] 116~ MH

J_

Examples:
MH Al, RSLT

MH Al ,@ADDR, Xl

Addressing:
REGISTER ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND OPERAND VALUE ADDRESS

AR; left left half zero n/a left half of BR,
half for of BR, AR, AR, XR, VR, or CM
data, XR, VR, or

XR even

fullword CM odd right half of BR,
product AR, XR, VR, or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

Restrictions: Any data in the right half of the arithmetic register will be replaced

by the result of this operation.

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-64

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-65. MULTIPLY, FLOATING POINT WORD (MF)

The instruction MF causes the value in the effective address to be multiplied

by the value in the arithmetic register addressed by the register ope.rand, and

causes the product to be loaded into the register.

GENERAL FORM:

LABEL 1 : 1 I

_l _l
COMMAND : :

I I I » I [symbol] 1161 MF ' l _j ..l

Examples:
MF

MF

Addressing:

REGISTER ADDRESS
OPERAND OPERAND

AR BR, AR, XR,
VR, or CM

Program Status:

RESULT CODE REFLECTS

+, 0, or -

OPERANDS

r,[@][=]n[,x]
-

Al, (A2)

Al,MULT,Xl

INDEX EFFECTIVE
OPERAND ADDRESS

zero or BR, AR, XR, VR,
XR or CM

PROGRAM INTERRUPTIONS

floating point exponent overflow
floating point exponent underflow

'--·-----------·,---~-----------------1

7-65
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-66. MULTIPLY, FLOATING POINT DOUBLEWORD (MFD)

The instruction MFD causes the value in the effective doubleword address to

be multiplied by the value in the even-odd arithmetic register pair a~dressed by

the register operand, and causes the product to be loaded into the register pair.

Terminal indexing is by doubleword increments of even-odd word pairs.

GENERAL FORM:

LABEL : T I I

J l COMMAND I I OPERANDS
j _l

[symbol] ; ~i MFD : 161 r,[@][=]n[,x]
_l _i , I

Examples:
MFD AZ, (A4)

MFD A2, RSLT, Xl

-
Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR; even-odd BR, AR, X~ zero or B~ AR, XR, V~
pair only V~ or CM XR or CM; even-odd

pair only

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - floating point exponent overflow
floating point exponent underflow
specification error if AR is odd

.._ __ -- •. --· ---....--~·--· .. __ ---~--··· -

Restrictions: Both register and effective addresses must be even valued.

~: Indirect address indexing is by singleword increments although the terminal

indexing is by doubleword increments.

7-66

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-67. MULTIPLY IMMEDIATE, FIXED POINT WORD (MI)

The instruction MI causes the effective immediate operand to be multiplied by

the value in the register addressed by the register operand, and causes the product

to be loaded into the register or registers.

The full doubleword integer product is loaded into an even-odd register pair

if the register operand addresses an even arithmetic register; but only the least

significant half of the integer product is saved and loaded if the register operand

addresses an odd arithmetic register or a register from any other register file.

GENERAL FORM:

1 I I I
---·-·--·---

LABEL l COMMAND : I OPERANDS
J_ I

[symbol] I~ I MI I I r,i,[,x] I I ·~1 .l_ _l
Examples:

MI B2,#FFCF

MI Vl,3,X3

Addressing:
REGISTER DESTINATION OF INDEX IMMEDIATE
OPERAND RESULT OPERAND MODIFIER

even AR AR even-odd pair zero none

odd AR odd AR singleword
XR

23 23
-2 ::5m::5 2 -1

B~X~ BR, X~ orVR
or VR singleword

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow

,___

Limitations: When only a singleword product is saved, the product, p, must have

a value within the range; -231 s p s 231_1; otherwise, a fixed point overflow occurs.

Restrictions: When an even arithmetic register is addressed in the register operand,

the data in the succeeding odd arithmetic register will be replaced by the result

of this instruction.

7-67

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-68. MULTIPLY IMMEDIATE, FIXED POINT HALFWORD (MIH)

The instruction MIH causes the effective immediate operand to be multiplied

by the value in the left half of the arithmetic register addressed by the register

operand, and causes the fullword product (32 bits) to be loaded into the register.

GENERAL FORM:

LABEL

[symbol] 1 ~ ~

Examples:

COMMAND

MIH

MIH

MIH

I
I I

! 11 I
I~ I

OPERANDS

r, i[, x]

Al, 3

Al,5,Xl

·-----·-· -----·-···-----·--·-------------
Addressing:

REGISTER INDEX IMMEDIATE
OPERAND OPERAND MODIFIER

AR; left half zero none
for data,

XR right
fullword product 15 15

half -2 sms2 -1

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - none

Restrictions: Any data in the right half of the arithmetic register will be replaced

by the result of this operation.

7-68

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

I

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-69. DIVIDE, FIXED POINT WORD (D)

The instruction D causes the value in the effective address to be divided into

the value in the arithmetic register addressed by the register operand, and causes

the quotient to be loaded into the single register addressed by the operand.

GENERAL FORM:

i i T I
LABEL COMMAND I I OPERANDS

..1 l i i

[symbol] J 16 I D : 16 l r, [@][=]n[, x]
• ..1

Examples:
D Al, (A2)

D A2, RSLT, Xl

Addressing:

REGISTER
DIVIDEND RESULT

ADDRESS INDEX EFFECTIVE
OPERAND dPERAND OPERAND ADDRESS

even AR AR even- AR even BR, AR. zero BR, AR.
odd pair singleword XR. VR. or XR. VR.

or CM XR or CM
odd AR AR odd AR odd singleword

singleword singleword

Program Status:
RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow
divide check

Limitations: When a quotient is derived from a doubleword dividend, the quotient,

q, must have a value within the range: -z3 1 s q s z31_1; otherwise, a fixed point ovE

flow will occur.

Note: When a doubleword dividend is selected (by addressing an even arithmetic

register), the second word of the dividend is not altered when the quotient is loaded

into the even singleword arithmetic register.

7-69

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-70. DIVIDE, FIXED POINT HALFWORD (DH)

The instruction DH causes the value in the effective halfword address to be

divided into the value in the arithmetic register (fullword) addressed by the register

operand, and causes the quotient to be loaded into the left half of the register.

Terminal index displacement is by halfword increments beginning from the initial

left halfword of the index word set.

GENERAL FORM:

T T I I
LABEL I I

I I
COMMAND l : OPERANDS

T J6 T I I
-

[symbol] I I DH : 16 j r, [@][=] n[, x]
I I

Examples:
DH Al, RSLT

DH AZ,@RSLT,Xl

····----
Addressing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE
OPERAND OPERAND OPERAND VALUE ADDRESS

AR; left half zero n/a left half of BR,
fullword of BR, AR, AR, XR, VR, or CM
of data, XR, VR,

XR even
or

halfword CM odd right half of BR,
quotient AR, XR, VR, or CM

Program Status:
RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow
divide check

Limitations: The quotient,. q, must have a value within the range: _zl5 s q $ zl5_1;

otherwise, a fixed point overflow will occur.

Note: The right halfword of the dividend is not altered when the halfword quotient

is loaded.

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by halfword increments.

7-70

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-71. DIVIDE, FLOATING POINT WORD (DF)

The instruction DF causes the value in the effective address to be divided into

the value in the arithmetic register addressed by the register operand, and causes

the quotient to be loaded into the register.

GENERAL FORM:

LABEL : r I I
COMMAND I I

.l .l _l_ _J_

(symbol2 ; kS i DF I kS I
I I

i j_ . .1
Examples:

DF

DF

Addressing:

REGISTER ADDRESS
OPERAND OPERAND

AR BR, AR, XR,
VR, or CM

Program Status:

RESULT CODE REFLECTS

+, 0, or -

OPERANDS

r,(@][=]n(,x]

Al, RSLT

Al,@RSLT, Xl

INDEX EFFECTIVE
OPERAND ADDRESS

zero or BR, AR, XR, VR,
XR or CM

PROGRAM INTERRUPTIONS

floating point exponent overflow
floating point exponent underflow
divide check

--·--------·· --· ----------- ------·----' ~------·--------------'

7-71

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-72. DIVIDE, FLOATING POINT DOUBLEWORD (DFD)

The instruction DFD causes the value in the effective doubleword address to be

divided into the value in the even-odd arithmetic register pair addressed by the

register operand, and causes the quotient to be loaded into the even odd register

pair.

Terminal index displacement is by doubleword increments of even-odd word

pairs.

GENERAL FORM:

1 I I I
LABEL

l l COMMAND i I
..1.-L

[symbol] T~i DFD
I I
d1j _l •

Examples:
DFD

DFD

Addressing:

REGISTER ADDRESS
OPERAND OPERAND

AR; even-odd BR, AR, XR,
pair only VR, or CM

Program Status:

RESULT CODE REFLECTS

+, 0, or -

OPERANDS

r, [@][=]n[, x]

AZ, (A4)

A2,@RSLT, Xl

INDEX EFFECTIVE
OPERAND ADDRESS

zero or BR, AR, XR, VR,
XR or CM; even-odd

pair only

PROGRAM INTERRUPTIONS

floating point exponent overflow
floating point exponent underflow
divide check
specification error if AR is odd

. . - - -··· . - -· ····- -·- .. - - ---····· ----· ·---- .. ---~

Restrictions: Both register and effective addresses must be even-valued.

Note: Indirect address indexing is by singleword increments although the terminal

indexing is by doubleword increments.

7-72
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-73. DIVIDE IMMEDIATE, FIXED POINT WORD (DI)

The instruction DI causes the effective immediate operand to be divided into

the value in the arithmetic register addressed by the register operand, and causes

the quotient to be loaded into the single register addressed by the operand.

GENERAL FORM:

: : T I
LABEL COMMAND I I OPERANDS

.l .l ...l ...l

Examples:
[symbol] ; 1' i DI ~ ~ I r, i[, x]

_l _i . J_

DI Al, 3

Di Al,#FF,Xl

Addressing:

REGISTER
DIVIDEND QUOTIENT

INDEX IMMEDIATE
OPERAND OPERAND MODIFIER

AR AR AR zero none
singleword singleword

XR _z23 5m5223 -1

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - divide check

7-73

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-74. DIVIDE IMMEDIATE, FIXED POINT HALFWORD (DIH)

The instruction DIH causes the effective immediate operand to be divided into

the value in the arithmetic register (fullword) addressed by the register operand,

and causes the quotient to be loaded into the left half of the register.

GENERAL FORM:

T T T-1 ·------
LABEL I : COMMAND l I OPERANDS

I .1..

Examples:
[symbol] T}5T DIH ! ~: r, i[, x] I I

j_ _L . .L -

DIH A3, 1

DIH A3,#C,X3

Addressing:
REGISTER INDEX IMMEDIATE
OPERAND OPERAND MODIFIER

AR; fullword zero none
dividend,

XR right
left halfword 15 15
quotient

half -2 :SmSZ -1

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow
divide check

Limitations: The quotient, q, must have a value within the range: _zlS :s q s zlS_l;

otherwise, a fixed point overflow will occur.

Note: The right halfword of the dividend is not altered when the halfword quotient

is loaded.

7-74
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-75. LOGICAL INSTRUCTIONS

Table 7-4 lists the logical instructions discussed on the following pages.

Table 7-4. Logical Instructions

MNEMONIC INSTRUCTION NAME TOPIC

AND AND, Word 7-76

ANDD AND, Doubleword 7-77

ANDI AND Immediate, Word 7-78

OR OR, Word 7-79

ORD OR, Doubleword 7-80

ORI OR Immediate, Word 7-81

XOR Exclusive OR, Word 7-82

XORD Exclusive OR, Doubleword 7-83

XORI Exclusive OR Immediate, Word 7-84

EQC Equivalence, Word 7-85

EQCD Equivalence, Doubleword 7-86

EQCI Equivalence Immediate, Word 7-87

7-75
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-76. AND, WORD (AND)

The instruction AND causes the data in the effective address to be ANDed, bit

by corresponding bit, with the data in the arithmetic register addres.sed by the

register operand, and causes the result to be loaded into the register.

GENERAL FORM:

LABEL
T T ----··r··--r··· -- -----· -----·----------
I l COMMAND I I OPERANDS

_i _L _L ____

[symbol] l J6 T AND I j6 I r, [@][=]n[, x] I I ; I
I I j_ __

.... -
Examples: ANO Al,@(A3),Xl

AND Al, RSLT, X2

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, zero or BR, AR, XR, VR,
VR, or CM XR or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed none

-

7-76
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-77. AND, DOUBLEWORD (ANDD)

The instruction ANDD causes the data in the effective doubleword address to

be ANDed, bit by corresponsing bit, with the data in the even-odd arithmetic registe1

pair addressed by the register operand, and causes the result to be loaded into

the register pair.

Terminal index displacement is by doubleword increments of even-odd word

pairs.

GENERAL FORM:

Examples:

LABEL l 1
[s ym bo 1] : l6 :

.l. J_

COMMAND

ANDD

ANDD

ANDD

f I
I I

j_ .1
I 11 I
I~ I
, _I

OPERANDS

r, [@] [=] n[, x]

AZ, (A4)

A2,@RSLT, Xl

'------------------~--------------------'
Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR; even-odd BR, AR, XR, zero or BR, AR, XR, VR,

p~ir only VR, or CM XR or CM; even-odd
pair only

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed specification error if AR is odd

7-77
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-78. AND IMMEDIATE, WORD (ANDI)

The instruction ANDI causes the effective immediate operand to be ANDed, bit

by corresponding bit, with the data in the arithmetic register addressed by the

register operand, and causes the result to be loaded into the register.

GENERAL FORM:

: I I I
LABEL

J_ l COMMAND l i OPERANDS·

[symbol] T l6 i ANDI
J_ _L

l!6T
_L l

r,i[,x]

Examples:
ANDI Al, #FFCD

ANDI Al, #FF39, Xl

-
Addressing:

REGISTER INDEX IMMEDIATE
OPERAND OPERAND MODIFIER

AR zero none

XR
23

O!Om!S2 -1

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed none

Restrictions: Modification of the immediate operand by an index value is by one's

complement addition only; i.e., there is no sign extension from the 24-bit index

and no end-around-carry to the least significant bit.

Note: The effective immediate operand is 24 bits, therefore bits 0-7 of the ANDed

result can never be ones.

7-78
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-79. OR, WORD (OR)

The instruction OR causes the data in the effective address to be ORed, bit

by corresponding bit, with the data in the arithmetic register addres.sed by the

register operand, and causes the result to be loaded into the register.

GENERAL FORM:

LABEL 1 I I I

l l COMMAND l l OPERANDS'

Examples:
[symbol] ~ ~: OR

I I
r, [@][=]n[, x]

J_ .1 l~l
OR Al, (A4)

OR Al, @WORD, Xl

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, zero or BR, AR, XR, VR,
VR, or CM XR or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed none

7-79
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-80. OR, DOUBLEWORD (ORD)

The instruction ORD causes the data in the effective doubleword address to be

ORed, bit by corresponding bit, with the data in the even-odd arithmetic register

pair addressed by the register operand, and causes the result to be loaded into

the register pair.

Terminal index displacement is by doubleword increments of even-odd word

pairs.

GENERAL FORM:

LABEL i I COMMAND
I I

I l l l OPERANDS·

(symbol] 1 ii ORD I I r, (@][=]n(, x]
i I : ~:

Examples:
ORD A2, RSLT

ORD A4, @RSLT, Xl

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR; even-odd BR, AR, XR. zero or BR, AR, XR. VR,

pair only VR, or CM XR or CM; even-odd
pair only

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed specification error if AR is odd

7-80
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-81. OR IMMEDIATE, WORD (ORI)

The instruction ORI causes the effective immediate operand to be ORed, bit

by corresponding bit, with the data in the arithmetic register addressed by the

register operand, and causes the result to be loaded into the register.

GENERAL FORM:

LABEL

[symbol]

Examples:

Addressing:

: I

J. l
T 11; l p J_

COMMAND

ORI

ORI

ORI

REGISTER

I I
I I

...L ...L

I ti I
Ip I
' l_

OPERANDS·

r, i[, x]

Al, 3

Al,#FF,Xl

INDEX IMMEDIATE
OPERAND OPERAND MODIFIER

AR zero none

XR
23

O~m~2 -1

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed none

Restrictions: Modification of the immediate operand by an index value is by one's

complement addition only; i.e., there is no sign extension from the 24-bit index

and no end-around-carry to the least significant bit.

7-81
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-82. EXCLUSIVE OR, WORD (XOR)

The instruction XOR causes the data in the effective address to be exclusive

ORed, bit by corresponding bit, with the data in the arithmetic register addressed

by the register operand, and causes the result to be loaded into the register.

GENERAL FORM:

LABEL i I T I

J_ J COMMAND ! : OPERANDS·

Examples:
[symbol] l ~: XOR

I I
r, [@](=]n[, x]

J_ J_ l i1 l
XOR Al, (Al)

XOR Al,@RSLT,Xl

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, none or BR, AR, XR,
VR, or CM XR VR, or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed none

... -·--

7-82

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-83. EXCLUSIVE OR, DOUBLEWORD (XORD)

The instruction XORD causes the data in the effective doubleword address to

be exclusive ORed, bit by corresponding bit, with the data in the even-odd arith­

metic register pair addressed by the register operand, and causes the result to

be loaded into the register pair.

Terminal index displacement is by doubleword increments of even-odd word

pairs.

GENERAL FORM:

Examples:

Addressing:

LABEL COMMAND
T I
I I

.1 .l

[symbol] 1 !6i
i L

REGISTER
OPERAND

AR; even-odd
pair only

XORD

XORD

XORD

I 11 !
I VJ I
' l

ADDRESS
OPERAND

BR, AR, XR,
VR, or CM

Program Status:

RESULT CODE REFLECTS

ones, zeros, or mixed

7-83

OPERANDS·

r, [@][=]n[. x]

AZ, RSLT

AZ, RSLT, Xl

INDEX
OPERAND

zero or
XR

EFFECTIVE
ADDRESS

BR, AR, XR, VR,
or CM; even-odd
pair only

PROGRAM INTERRUPTIONS

specification error if AR is odd

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-84. EXCLUSIVE OR IMMEDIATE, WORD (XORI)

The instruction XORI causes the effective immediate operand to be exclusive

ORed, bit by corresponding bit, with the data in the arithmetic register addressed

by the register operand, and causes the result to be loaded into the register.

GENERAL FORM:

Examples:

Addressing:

I I
LABEL T T

J_ _l
COMMAND l i OPERANDS·

[symbol] XORI I t1 !
I ¥J I

J_ _l
r, i[, x]

XORI Al, 3

'-----------------·--···-- ____ _.

REGISTER INDEX IMMEDIATE
OPERAND OPERAND MODIFIER

AR none none
!------·-··----

XR
23

0x2 -1

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed none

Note: Modification of the immediate operand by an index value is by one's com­

plement addition only. There is no sign extension or end-around carry.

7-84

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-85. EQUIVALENCE, WORD (EQC)

The instruction EQC causes the data in the effective address to be equivalenced,

bit by corresponding bit, with the data in the arithmetic register addressed by the

register operand, and causes the result to be loaded into the register.

GENERAL FORM:

LABEL 1 i T I

l ..1
COMMAND l l OPERANDS·

Examples:
[symbol] T ~i I I

r, [@][=]n[, x]
: I

EQC : ~ l
EQC Al, (A2)

EQC Al, @RSLT, Xl

·---~--

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, none or BR, AR, XR,
VR, or CM XR VR, or CM

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed none

-

7-85

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-86. EQUIVALENCE, DOUBLEWORD (EQCD)

The instruction EQCD causes the data in the effective doubleword address to

be equivalenced, bit by corresponding bit, with the data in the even-odd arithmetic

register pair addressed by the register operand, and causes the result to be loaded

into the register pair.

Terminal index displacement is by doubleword increments of even-odd word

pairs.

GENERAL FORM:

LABEL T T
..1 ..1

I I
COMMAND I I OPERANDS·

.L .1.

[symbol] EQCD iuT
_l i

r, [@][=]n[, x]

Examples:
EQCD A2, (A4)

EQCD A2,@RSLT

-------··- ---·---------------------------'
Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR; even-odd BR, AR, XR, zero or BR, AR, XR, VR,
pair only VR, or CM XR or CM; even-odd

pair only

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed specification error if AR is odd

~-------·-·--------·· ___ __________________ __,

7-86
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-87. EQUIVALENCE IMMEDIATE, WORD (EQCI)

The instruction EQCI causes the effective immediate operand to be equivalenced,

bit by corresponding bit, with the data in the arithmetic register addressed by the

register operand, and causes the result to be loaded into the register.

GENERAL FORM:

LABEL 1 I
.,. I

J_ l COMMAND ! : OPERANDS·

Examples:
[symbol] 1 i~ EQCI I I

r, i[, x] i _.l l 16 l
EQCI Al, #FF

EQCI Al,#Cl,Xl

Addressing:

REGISTER INDEX IMMEDIATE
OPERAND OPERAND MODIFIER

AR zero none

XR
23

Osxs2 -1

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed none

Note: Modification of the immediate operand by an index value is by one's com-

plement addition only. There is no sign extension or end-around carry.

7-87

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-88. SHIFT INSTRUCTIONS

Table 7-5 lists the shift instructions discussed on the following pages.

Table 7- 5. Shift Instructions

MNEMONIC INSTRUCTION NAME TOPIC

SA Arithmetic Shift, Word 7-93

SAH Arithmetic Shift, Halfword 7-94

SAD Arithmetic Shift, Doubleword 7-95

SL Logical Shift, Word 7-96

SLH Logical Shift, Halfword 7-97

SLD Logical Shift, Doubleword 7-98

SC Circular Shift, Word 7-99

SCH Circular Shift, Halfword 7-100

SCD Circular Shift, Doubleword 7-101

RVS Bit Reversal, Word 7-102

7-88
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-89. ARITHMETIC SHIFTS

Arithmetic shifts are implemented to preserve the sign of the shifted fixed

point value and to detect fixed point overflow.

An arithmetic right shift (negative shift count) causes the sign bit to be extended,

unchanged, so that all replaced bits are ones for negative values and zeros for

positive values. Bits shifted out the right end are lost. Illustratively:

l~-s~l_s_s_~--x 1 xx~
During an arithmetic left shift (positive shift count), the sign bit is continuously

checked, and, if it changes, a fixed point overflow is indicated in the arithmetic

exception condition register. The shift is completed regardless of this condition.

Bits shifted through the sign bit are lost and zeros· enter the low order bit positions.

Illustratively:

~xy,~x !_y_x_Y __ ~ _____ o_o--'I

7-90. LOGICAL SHIFTS

Logical shifts preserve no arithmetic information. With either right or left

shifts, zeros are entered into the vacated bit positions and bits shifted out the

designated end are lost. There are no arithmetic exception conditions.

7-89
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-91. CIRCULAR SHIFTS

In circular shifts, the bits shifted out the designated end are entered into the

bit positions being vacated at the other end.

A circular right shift (negative shift count) causes bits to be shifted out the

right end of the word and to be reentered at the left end. Illustratively:

~..___xyz ____

4 ~uv~ ~
A circular left shift (positive shift count) causes bits to be shifted out the left

end of the word and to be reentered at the right end. Illustratively:

•
~~c-l(_~r __ a_b-Jcj:::)

The result code is set logically.

Note: The 7-bit shift count is used for all word sizes. If the resulting shift count

should exceed the word size of 32- bits for single word shift instructions, then the

register result would appear as follows:

Circular right shift - Right shift modulo 32

Circular left shift - Left shift modulo 32

The most significant bit of the T-field is not used, i.e., indirect shift counts are

not possible. The M-field must be zero.

7-90

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-92. ALGORITHM FOR BIT REVERSAL

Bit reversal is performed by the following steps:

1. If shift count is positive, zer9 the result field.

2. The word upon which reversal is to be performed is copied twice to pro­
duce a doubleword with two identical halves.

3. A circular shift, according to the shift count, is performed on the left
singleword.

4. The bits of the right singleword are reversed.

5. A logical shift opposite to that of step 2 is performed on the doubleword.

6. The resultant left singleword is sent to the specified arithmetic register.

This instruction reverses the rightmost bits of an arithmetic register. Other

bits remain unchanged. Values greater than zero show results as indicated below.

The initial bit assignment for register AR runs from 0 on the left to 31 on the

right. Bit Reversal values of 0 and -1 leave register AR unchanged.

Values
of na

+ 1 to +Max.
0

-1
-2
-3
-4

-29
-30
-31
-32
-33
-34
-35

-60
-61
-62
-63

-64 to -Max.

Bit Reversal Output

Contents of AR After
Bit Reversal Instruction

000 ...
012
012
012
012
012

30 31
30 31

28 29 31 30
27 28 31 30 29

26 27 31 30 29 28

0 1 2 31 30 29 ... 5 4 3
0 1 31 30 29 ...
0 31 30 29 ..•
31 30 29 ..•
30 29 28 ...
29 28 27 ...
28 27 26 •.•

32100 .••
2101,J ...
1 0 (J • • ••
0 0 .•.
0 .••

5 4 3 2
5 4 3 2 1

5 4 3 2 1 0
2 1 0 0

2 1 0 0 0
2 1 0 0 0 (J

Where 0 represents a bit position that is zero.

7-91

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-93. ARITHMETIC SHIFT, WORD (SA)

The instruction SA causes the data in the arithmetic register addressed by the

register operand to be arithmetically shifted left or right, the number of bits specifi<

by the effective immediate operand. If the effective immediate operand is positive,

the shift is to the left, and if it is negative, the shift is to the right.

GENERAL FORM:

T I I I
LABEL

J_ l COMMAND I I OPERANDS·
.l

[symbol] l ~:
J_ J_

SA I~ I
l l r, i[, x]

Examples:
SA Al,3,Xl

--- -------·
Addressing:

REGISTER INDEX IMMEDIATE EFFECTIVE
OPERAND OPERAND MODIFIER IMMEDIATE

AR zero none -64~ i ~+ 63

XR right half XR

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, 0, or - fixed point overflow, left shift
only

Restrictions: Regardless of the index value, the effective immediate operand will

be within the range: -64 s i s +63. Index overflow is truncated, but not detected.

Note: During left shifts any change of the sign bit causes a fixed point overflow.

7-92
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-94. ARITHMETIC SHIFT, HALFWORD (SAH)

The instruction SAH causes the data in the left half of the arithmetic register

addressed by the register operand to be arithmetically shifted, left or right, the

number of bits specified by the effective immediate operand. If the effective

immediate operand is positive, the shift is to the left, and if it is negative, the shift

is to the right.

GENERAL FORM:

LABEL
T T T I

l l COMMAND I I OPERANDS·
l _l_

[symbol] T r5 i SAH
I 1

r, i[, x] : ~:
Examples:

j I

SAH A3, 6, X2

Addressing:

REGISTER INDEX IMMEDIATE EFFECTIVE
OPERAND OPERAND MODIFIER IMMEDIATE

left half of zero none
AR, only

XR right half XR -64~ i ~+ 63
~··------

Program Status:

RESULT CODE REFL F:CTS PH_OGHAM [NTERRUPTIONS

+, 0, or - fixed point overflow, left shift
only

Restrictions: Regardless of the index value, the effective immediate operand will

be within the range: -64 ~ i ~ +63. Index overflow is truncated, but not detected.

Note: The contents of the right half of the register are not affected.

Note: During left shifts any change of the sign bit causes a fixed point overflow,

but the total shift is completed regardless of this condition.

7-93
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-95. ARITHMETIC SHIFT, DOUBLEWORD (SAD)

The instruction SAD causes the data in the even-odd arithmetic register pair

addressed by the register operand to be shifted arithmetically left or right, the

number of bits specified by the effective immediate operand. If the effective imme­

diate operand is positive, the shift is to the left, and if it is negative, the shift is to

the right.

GENERAL FORM:

: T I I
LABEL

J_ l COMMAND l j_ OPERANDS·

[symbol] I 16: SAD I I r,i[,x] l j_ ~ 161
Examples:

SAD A2, 10, Xl

Addressing:

REGISTER INDEX IMMEDIATE EFFECTIVE
OPERAND OPERAND MODIFIER IMMEDIATE

AR; even-odd zero none
pair only

XR right half XR -645 i 5+ 63
L---

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

+, o, or - fixed point overflow, left shift
only

specification error if AR is odd

Restrictions: Regardless of the index value, the effective immediate operand will

be within the range: -64 s i :S +63. Index overflow is truncated, but not detected.

Note: During left shifts any change of the sign bit causes a fixed point overflow,

but the total shift is completed regardless of this condition.

7-94

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-96. LOGICAL SHIFT, WORD (SL)

The instruction SL causes the data in the arithmetic register addressed by the

register operand to be shifted logically, left or right, the number of bits specified

by the effective immediate operand. If the effective immediate operand is positive,

the shift is to the left, and if it is negative, the shift is to the right.

GENERAL FORM:

T T
LABEL : l COMMAND

T I
I I

...L ...L

(symbol]
I T
I ~I
j I

SL I il I
I VJ I
' _l

Examples: SL

Addressing:

REGISTER INDEX
OPERAND OPERAND

AR zero

XR

Program Status:

H F:su LT COD F: Rl•:FI,F:c:·1·s

ones, zeros, or mixed

OPERANDS

r, i(, x]

Al,10,Xl

IMMEDIATE EFFECTIVE
MODIFIER IMMEDIATE

none -64~i~+ 63
-
right half XR

PHOGHAM INT 1-..:H RlJPTlONS

none

Restrictions: Regardlcs s of the index value, the effective immediat<· operand will

be within the range: -64 s i s +63. Index overflow is truncated, but not detected.

7-95
THE SCALAR INSTRUCTTONS FOH Tlll': CE:NTHAL PROCESSOl~

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-97. LOGICAL SHIFT, HALFWORD (SLH)

The instruction SLH causes the data in the left half of the arithmetic register

addressed by the register operand to be shifted logically, left or rig?t, the number

of bits specified by the effective immediate operand. If the effective immediate

operand is positive, the shift is to the left, and if it is negative, the shift is to the

right.

GENERAL FORM:

LABEL T T I I

_l l COMMAND l -~ OPERANDS·

Examples:

[symbol] I li5: SJ,H I I r, i[. x]
_l _l ~ '6 l

SLH Al,10,Xl

Addressing:

REGISTER INDEX IMMEDIATE EFFECTIVE
·oPERAND OPERAND MODIFIER IMMEDIATE

left half of zero none -64~ i ~ + 63
AR, only

XR right half XR

Program Status:.

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed none

Restrictions: Regardless of the index value, the effective immediate operand will

be within the range: -64 :s: i :s: +63. Index overflow is truncated, but not detected.

Note: The contents of the right half of the register are not affected.

7-96

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-98. LOGICAL SHIFT, DOUBLEWORD (SLD)

The instruction SLD causes the data in the even-odd arithmetic register pair

addressed by the register operand to be shifted logically, left or right, the number

of bits specified by the effective immediate operand. If the effective immediate

operand is positive, the shift is to the left, and if it is negative, the shift is to the

right.

GENERAL FORM:

i T T I
LABEL COMMAND I I OPERANDS

J_ J_ .J_ ..l

[symbol] ; ~i SLD I~ I r, i[, x] I I
J_ J_ ' J_

Examples:
SLD A2, 10, Xl

Addressing:

REGISTER INDEX IMMEDIATE EFFECTIVE
OPERAND OPERAND MODIFIER IMMEDIATE

AR; even-odd! zero none -64~i~+ 63
pair only

XR right half XR

-------~--·--- ·--'---·-··-·---------·-

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed specification error if AR is odd

Restrictions: Regardless of the index value, the effective immediate operand will

be within the range: -64 ~ i $ +63. Index overflow is truncated, but not detected.

7-97
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-99. CIRCULAR SHIFT, WORD (SC)

The instruction SC causes the data in the arithmetic register addressed by the

register operand to be shifted circularly, left or right, the number of bits specified

by the effective immediate operand. If the effective immediate operand is positive,

the shift is to the left, and if it is negative, the shift is to the right.

GENERAL FORM:

: : I I
LABEL

l .l
COMMAND l l OPERANDS

Examples:

[symbol] I l6 I SC I l6 I r, i[, x] I I ~ l l .l

SC Al,10,Xl

Addressing:

REGISTER INDEX IMMEDIATE EFFECTIVE
OPERAND OPERAND MODIFIER IMMEDIATE

AR zero none -64~ i ~+ 63

XR right half XR

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed none

Restrictions: Regardless of the index value, the effective immediate operand will

be within the range: -64 s: i s +63. Index overflow is truncated, but not detected.

Note: The shift count is performed modulo 32.

7-98
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-100. CIRCULAR SHIFT, HALFWORD (SCH)

The instruction SCH causes the data in the left half of the arithmetic register

addressed by the register operand to be shifted circularly, left or ri~ht, the number

of bits specified by the effective immediate operand. If the effective immediate

operand is positive, the shift is to the left, and if it is negative, the shift is to the right.

GENERAL FORM:

LABEL 1 i T I
COMMAND I I OPERANDS

l i _l J_

Examples:
[symbol] I i6 I SCH 11'1 I r, i[, x] I I ~ l -1 i

SCH Al,3,Xl

Addressing:

REGISTER INDEX IMMEDIATE EFFECTIVE
OPERAND OPERAND MODIFIER IMMEDIATE

left half of zero none -64::Si::S+ 63
AR, only

XR right half XR

------·--~

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed none

Restrictions: Regardless of the index value, the effective immediate operand will

be within the range : -64 s; is +63. Index overflow is truncated, but not detected.

Note: The contents of the right half of the register are not affected.

Note: The shift count is performed modulo 16.

7-99
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-101. CIRCULAR SHIFT, DOUBLEWORD (SCD)

The instruction SCD causes the data in the even-odd arithmetic register pair

addressed by the register operand to be shifted circularly, left or right, the number

of bits specified by the effective immediate operand. If the effective immediate

operand is positive, the shift is to the left, and if it is negative, the shift is to the rig

GENERAL FORM:

LABEL 1 I

I l COMMAND
I I
I I

__]_ _l

[symbol] SCD
I 11 I
Ip I
' I

Examples:
SCD

Addressing:

REGISTER INDEX
OPERAND OPERAND

AR; even-odd zero
pair only

XR

Program Status:

RESULT CODE REFLECTS

ones, zeros, or mixed

OPERANDS

r, i[. x]

A2, 16, X2

IMMEDIATE EFFECTIVE
MODIFIER IMMEDIATE

none -64:::: i:s + 63

right half XR

PROGRAM INTERRUPTIONS

specification error if AR is odd

Restrictions: Regardless of the index value, the effective immediate operand will

be within the range: -64 ~ i s; +63. Index overflow is truncated, but not detected.

7-100

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-102. BIT REVERSAL, WORD (RVS)

The instruction RVS causes the reversal of the rightmost or leftmost n bits

(where n is the value of the effective immediate operand) of the data in the arithme­

tic register addressed by the register operand. The rightmost n bits are reversed

if n is negative, and if n is positive, the register is cleared. The other bits of the

register remain unchanged.

GENERAL FORM:

LABEL i I I I

j_ l COMMAND I I OPERANDS
...i J_

Examples:
[symbol] : !6: RVS I !6 I r, i[, x] I I

j_ ..L ' ..L

RVS Al, -5, Xl

Addressing:

REGISTER INDEX IMMEDIATE EFFECTIVE
OPERAND OPERAND MODIFIER IMMEDIATE

AR zero none -64~ is +63

XR right half XR

Program Status:

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

ones, zeros, or mixed none

Restrictions: Regardless of the index value, the effective immediate operand will

be within the range: -64 s; i s; +63.

Note: Although this operation uses a seven bit shift count, the reversal will be

modulo 32; thus, operationally, the shift count is within the range: -32 s; sc :5 32,

and sc values 0 and -1 are effectively no operation.

7-101

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-103. COMPARE INSTRUCTIONS

Table 7-6 lists the shift instructions discussed on the following pages.

Table 7-6. Compare Instructions

MNEMONIC INSTRUCTION NAME TOPIC

c Compare, Fixed Point Word 7-104

CH Compare, Fixed Point Halfword 7-105

CF Compare, Floating Point Word 7-106

CFD Compare, Floating Point Doubleword 7-107

CI Compare Immediate, Fixed Point Word 7-108

CIH Compare Immediate, Fixed Point Halfword 7-109

CAND Compare Logical AND, Word 7-110

CAN DD Compare Logical AND, Doubleword 7-111

CANDI Compare Logical AND Immediate, Word 7-112

COR Compare Logical OR, Word 7-113

CORD Compare Logical OR, Doubleword 7-114

CORI Compare Logical OR Immediate, Word 7-115

7-102

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-104. COMPARE, FIXED POINT WORD (C)

The instruction C causes the compare code to be set to reflect whether the value

in the register addressed by the register operand is greater than, equal to, or less

than the value in the effective address. The contents of both the register and the

effective address are unchanged.

GENERAL FORM:

LABEL
I I I I

l l COMMAND : : OPERANDS

Examples:
[symbol]

T T I I

l 16 l c ~ 16 j r,[@][=]n[,x]

c Vl,(Al)

c Al ,@RSLT, Xl

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

A~X~ B~A~X~ zero or BR, AR, x~ v~
or VR V~ or CM XR or CM

Program Status:

COMPARE CODE REFLECTS PROGRAM INTERRUPTIONS

>, -, or< none

RESULT CODE
i--- - -

not affected '

7-103
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-105. COMPARE FIXED POINT HALFWORD (CH)

The instruction CH causes the compare code to be set to reflect whether the

value in the left half of the arithmetic register addressed by the register operand

is greater than, equal to, or less than the value in the effective halfword address.

The contents of both the register and the effective address are unchanged.

Terminal index displacement is by halfword increments beginning from the

first left halfword of the index word set.

GENERAL FORM:

LABEL T 1 T I

..l l
COMMAND l i OPERANDS

[symbol] T ~i CH
I I

r, [@][=]n[, x] I I ~~l
Examples:

CH Al, RSLT

CH Al, RSLT, Xl

Addressing:

REGISTER ADDRESS INDEX INDEX EFFECTIVE

OPERAND OPERAND OPERAND VALUE ADDRESS

left left half zero n/a left half of BR,
half of of BR, AR,

XR
AR, XR, VR, or CM

AR, only XR', VR, or
even

1--·--- I-------·--------·-----·-
CM odd right half of BR,

AR, XR, VR, or CM
-

Program Status:

COMPARE CODE REFLECTS PROGRAM INTERRUPTIONS

>, =, or< none

RESULT CODE
-· ---

not affected

7-104
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-106. COMPARE, FLOATING POINT WORD (CF)

The instruction CF causes the compare code to be set to reflect whether the

value in the arithmetic register addressed by the register operand is greater than,

equal to, or less than the value in the effective address. The contents of both the

register and the effective address are unchanged.

GENERAL FORM:

LABEL

[symbol]

Examples:

: l

J_ l
T 11 i l VJ J_

COMMAND

CF

CF

CF

T I
I I

J. .J.
I 11 I
I VJ I
' J_

OPERANDS

r, [@][=]n[, x]

Al, RSLT

Al, @RSLT, Xl

"------------------------·-·----·----·--·------·-'
Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR BR, AR, XR, zero or BR, AR, XR, VR,
VR, or CM XR or CM

.

Program Status:

COMPARE CODE REFLECTS PROGRAM INTERRUPTIONS

>, -, or< none

----- ·- --·- ----
RESULT CODE

--· -·----· -·· - ... ·-
not affected

Note: The input floating point arguments must be hexadecimally normalized prior

to use in a floating point compare instruction.

7-105

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-107. COMPARE, FLOATING POINT DOUBLEWORD (CFD)

The instruction CFD causes the compare code to be set to reflect whether the

value in the even-odd arithmetic register pair addressed by the regi~ter operand

is greater than, equal to, or less than the value in the effective doubleword address.

The contents of both the register and the effective doubleword are unchanged.

Terminal index displacement is by doubleword increments of even-odd word pairs.

GENERAL FORM:

I T T I
LABEL l l COMMAND I I OPERANDS

j _]_

[symbol]
l I CFD I~ I r,[@][=]n[,x] J ~l ~ l

Examples:
CFD A2, (A4)

CFD A2,RSLT,Xl

Addressing:

REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS

AR; even-odd B~ AR, XR, zero or B~A~ x~ v~
pair only VR, or CM XR or CM; even-odd

pair only

Program Status:

COMPARE CODE REFLECTS PROGRAM INTERRUPTIONS

>, -, or< specification error if AR is odd

-·--- --- . --
RESULT CODE

not affected
~~~--~-~~··....._... _____ 

Note: The input floating point arguments must be hexadecimally normalized prior 

to use in a floating point compare instruction. 

7-106 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-108. COMPARE IMMEDIATE, FIXED POINT WORD (CI) 

The instruction CI causes the compare code to be set to reflect whether the 

value in the register addressed by the register operand is greater than, equal to, or 

less than the value of the effective immediate operand. The contents of the register 

are unchanged. 

GENERAL FORM: 

LABEL T I I I 

l l COMMAND l l OPERANDS 

[symbol] 1161 CI I~ I r, i[, x] I I 
~ l I I 

Example: CI Al, #FA 

CI Al,#C,X2 

Addressing: 

REGISTER INDEX IMMEDIATE 
OPERAND OPERAND MODIFIER 

AR, XR, zero none 
or VR 

23 23 
XR -2 :::: x:52 -1 

Program Status: 

COMPARE CODE REFLECTS PROGRAM INTERRUPTIONS 

>, =, or< none 

RESULT CODE 
-

not affected 

7-107 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-109. COMPARE IMMEDIATE, FIXED POINT HALFWORD (CIH) 

The instruction CIH causes the compare code to be set to reflect whether the 

value in the left half of the arithmetic register addressed by the register operand 

is greater than, equal to, or less than the value of the effective immediate operand. 

The contents of the register are unchanged. 

GENERAL FORM: 

: I I I 
LABEL 

j_ l COMMAND J i OPERANDS 

Examples: 

(symbol] 
I I 

CIH I I r, i(, x] l 16 l ~~l 

CIH Al, 10, Xl 

Addressing: 

REGISTER INDEX IMMEDIATE 
OPERAND OPERAND MODIFIER 

left half of zero none 
AR, only 

XR right half XR 

Program Status: 

COMPARE CODE REFLECTS PROGRAM INTERRUPTIONS 

>, =, or< none 

RESULT CODE 

not affected 

7-108 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-110. COMPARE LOGICAL AND, WORD (CAND) 

The instruction CAND causes the compare code to be set to reflect whether 

the logical ANDing of the data in the arithmetic register addressed by the register 

operand with that in the effective address produces a result that is all ones, all 

zeros, or mixed. The contents of both the register and the effective address are 

unchanged. 

GENERAL FORM: 

LABEL : : T I 
COMMAND I I OPERANDS· 

.1 .1 .l_ _l_ 

Examples: [symbol] T 16 i CAND '16! r, [@][ =]n[. x] l l 
I I 
' l 

CAND Al, (A2) 

CAND Al, RSLT, X2 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

AR BR, AR, XR, zero or BR, AR, XR, VR, 
VR, or CM XR or CM 

Program Status: 

COMPARE CODE REFLECTS PROGRAM INTERRUPTIONS 

ones, zeros, or mixed none 

RESULT CODE 

not affected 

7-109 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-111. COMPARE LOGICAL AND, DOUBLEWORD (CANDD) 

The instruction CANDD causes the compare code to be set to reflect whether 

the logical ANDing of the data in the even-odd arithmetic register pair addressed 

by the register operand with the data in the effective doubleword address produces 

a result that is all ones, all zeros, or mixed. The contents of both the register 

pair and the doubleword address are unchanged. 

Terminal index displacement is by doubleword increments of even-odd word 

pairs. 

GENERAL FORM: 

LABEL T : I I 

_l J_ 
COMMAND l _i OPERANDS 

[symbol] l ~: 
_l _l 

CAN DD I I 
l~l r,[@][=]n[,x] 

Examples: 
CAN DD A2, (A4) 

CANDD A2, RSLT, Xl 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

AR; even-odd BR, AR, XR. zero or BR. AR: XR, VR. 
pair only VR. or CM XR or CM; even-odd 

pair only 

Program Status: 

COMPARE CODE REFLECTS PROGRAM INTERRUPTIONS 

ones, zeros, or mixed specification error if AR is odd 

RESULT CODE 

not affected 

7-110 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-112. COMPARE LOGICAL AND IMMEDIATE, WORD (CANDI) 

The instruction CANDI causes the compare code to be set to reflect whether 

the logical ANDing of the data in the arithmetic register addressed by the register 

operand with the effective immediate operand produces a result that is all ones, all 

zeros, or mixed. The contents of the register are unchanged. 

GENERAL FORM: 

Examples: 

Addressing: 

LABEL 

[symbol] 

: I 

J_ l 

I---- - . -- ··--·------- ---

COMMAND 

CANDI 

CANDI 

CANDI 

T I 
I I OPERANDS 

...L ...L 

I T 
l~l r, i[, x] 

Al,#FFCD 

Al,#0,Xl 

REGISTER INDEX IMMEDIATE 
OPERAND OPERAND MODIFIER 

AR zero none 

XR 
23 

Osxs2 -1 

1----· 

Program Status: 

COMPARE CODE REFLECTS PROGRAM INTERRUPTIONS 

ones, zeros, or mixed none 

RESULT CODE 

not affected --------------------
Note: Modification of the immediate operand by an index value is by one's com-

plement addition only. There is no sign extension or end-around carry. 

Note: The effective immediate address is only 24 bits, therefore bits 0-7 of the 

anded result can never be ones. 

7-111 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-113. COMPARE LOGICAL OR, WORD (COR) 

The instruction COR causes the compare code to be set to reflect whether the 

logical ORing of the data in the arithmetic register addressed by the register operand 

with that in the effective address produces a result that is all ones, all zeros, or 

mixed. The contents of both the register and the effective address are unchanged. 

GENERAL FORM: 

: I 1 I 
LABEL 

_l J COMMAND ~ : OPERANDS 

[symbol] T T COR I I r, [@][ = ]n[, x] l '5 l ~ 111 
Examples: 

COR Al, (A2) 

COR Al ,@(A3), Xl 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

AR BR, AR, XR, zero or BR, AR, XR, VR, 
VR, or CM XR or CM 

Program Status: 

COMPARE CODE REFLECTS PROGRAM INTERRUPTIONS 

ones, zeros, or mixed none 

RESULT CODE 

not affected 

.. ·--··---------·-··-· _______ _.._ ____________________ _ 

7-112 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-114. COMPARE LOGICAL OR, DOUBLEWORD (CORD) 

The instruction CORD causes the compare code to be set to reflect whether 

the logical ORing of the data in the even-odd arithmetic register pair addressed . . 

by the register operand with the data in the effective doubleword address produces 

a result that is all ones, all zeros, or mixed. The contents of both the register pair 

and the doubleword address are unchanged. 

Terminal index displacement is by doubleword increments of even-odd word 

pairs. 

GENERAL FORM: 

LABEL T I I I 

J_ l COMMAND I I OPERANDS· 
.l. .l. 

Examples: 
[symbol] hs: CORD l 16 T r, [@][ =]n[, x] 

J_ J_ J_ J_ 

CORD AZ, (A4) 

CORD AZ, @(Al), Xl 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

AR; even-odd BR, AR, XR, zero or BR, AR, XR, VR, 
pair only VR, or CM XR or CM; even-odd 

pair only 

Program Status: 

COMPARE CODE REFLECTS PROGRAM INTERRUPTIONS 

ones, zeros, or mixed specification error if AR is odd 

RESULT CODE 

not affected 

7-113 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-115. COMPARE LOGICAL OR IMMEDIATE, WORD (CORI) 

The instruction CORI causes the compare code to be set to reflect whether the 

logical ORing of the data in the arithmetic register addressed by the .register operand 

with the effective immediate operand produces a result that is all ones, all zeros, 

or mixed. The contents of the register are unchanged. 

GENERAL FORM: 

LABEL 1 I I I 

_L l COMMAND l : OPERANDS· 

Examples: 

(symbol] 1 k5: CORI I I r, i(, x] 
_L _L l~l 

CORI Al, 3 

CORI Al, #F, XZ 

Addressing: 

REGISTER INDEX IMMEDIATE 
OPERAND OPERAND MODIFIER 

AR zero none 

XR 
23 

O::sx::s2 -1 

Program Status: 

COMPARE CODE REFLECTS PROGRAM INTERRUPTIONS 

ones, zeros, or mixed none 

RESULT CODE 

not affected 

Note: Modification of the immediate operand by an index value is by one's comple­

ment addition only. There is no end around carry or sign extension. 

7-114 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-116. INCREMENT OR DECREMENT, TEST AND SKIP INSTRUCTIONS 

Table 7-7 lists the increment or decrement, test and skip instructions dis­

cussed on the following pages. 

Table 7- 7. Increment or Decrement, Test and Skip Instructions 

MNEMONIC INSTRUCTION NAME TOPIC 

ISE Increment, Test and Skip on Equal 7-117 

ISNE Increment, Test and Skip on Not Equal 7-118 

DSE Decrement, Test and Skip on Equal 7-119 

DSNE Decrement, Test and Skip on Not Equal 7-120 

7-115 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-117. INCREMENT, TEST AND SKIP ON EQUAL (ISE) 

The instruction ISE causes the fixed point value in the arithmetic register ad­

dressed by the register operand to be incremented by unity and the result to be 

stored in the register and causes this value to be arithmetically compared to the 

value in the effective address. If the two values are equal, the next instruction is 

skipped; if the two values are not equal, the next instruction is executed in turn. 

GENERAL FORM: 

LABEL : I l I 

_l l COMMAND ! : OPERANDS· 

[symbol] l 16: 
_l _l 

ISE 
I l 
~ 16 I r, [@][ = ]n[, x] 

Examples: 
ISE Al,(Xl) 

ISE Al, @(A2), Xl 

ISE Al, @SAVE, X2 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

AR B~ AR, X~ zero or B~AR, x~ v~ 

V~ or CM XR or CM 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - none 

Note: If a ~ 2F and M=O, where a is specified to be the same register address as 

defined by the R-field, then the next instruction is taken. 

7-116 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-118. INCREMENT, TEST AND SKIP ON NOT EQUAL (ISNE) 

The instruction ISNE causes the fixed point value in the arithmetic register 

addressed by the register operand to be incremented by unity and the. result to be 

stored in the register and causes this value to be arithmetically compared to the 

value in the effective address. If the two values are not equal, the next instruction 

is skipped; if the two values are equal, the next instruction is executed in turn. 

GENERAL FORM: 

LABEL 1 i I I 

_l _l 
COMMAND l j_ OPERANDS 

[symbol] T 1&i l _l 
ISNE I 16 ! 

~ l r, [@][ =]n[, x] 

Examples: 
ISNE Al,(Xl) 

ISNE Al ,@(A2), Xl 

ISNE Al, @SAVE, X2 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

AR B~ AR, XR, zero or B~ AR. XR, VR, 
V~ or CM XR or CM 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - none 

Note: If a ~ 2F and M=O, where a is specified to be the same register address as 

defined by the R-field, then the next instruction is skipped. 

7-117 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-119. DECREMENT, TEST AND SKIP ON EQUAL (DSE) 

The instruction DSE causes the fixed point value in the arithmetic register ad­

dressed by the register operand to be decremented by unity and the r,esult to be 

stored in the register, causes this value to be arithmetically compared to the value 

in the effective address, and, if the two values are equal, causes the next instruc­

tion to be skipped; if the two values are not equal, the next instruction is executed 

in turn. 

GENERAL FORM: 

LABEL 1 T COMMAND 
I I 

I : 
I I OPERANDS· 

..l .l. . 
[symbol] 

T I : ~: DSE I T 

l~l r, [@][ = ]n[, x] 

Examples: 
DSE Al,(Xl) 

DSE Al, @(AZ), Xl 

DSE Al, @SAVE, X2 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

AR B~A~X~ zero or BR, A~ XR, V~ 
V~ or CM XR or CM 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - none 

Note: If QI :s ZF and M=O, where QI is specified to be the same register address as 

defined by the R-field, then the next instruction is taken. 

7-118 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-120. DECREMENT, TEST AND SKIP ON NOT EQUAL (DSNE) 

The instruction DSNE causes the fixed point value in the arithmetic register 

addressed by the register operand to be decremented by unity and the result to be 

stored in the register and causes this value to be arithmetically compared to the 

value in the effective address. If the two values are no equal, the next instruction 

is skipped; if the two values are equal, the next instruction is executed in turn. 

GENERAL FORM: 

LABEL r T I I 

I l COMMAND l _:_ OPERANDS· 

[symbol] T l6 i DSNE 
I T 

r, [@][ =]n[, x] ~ l6 : 
ExamEles: 

i J_ 

DSNE Al,(Xl) 

DSNE Al ,@(AZ), Xl 

DSNE Al,@SAVE, X2 
i----. 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

AR B~ AR, X~ zero or B~A~X~V~ 

V~ or CM XR or CM 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - none 

Note: If a ~ 2F and M=O, where a is specified to be the same register address as 

defined by the R-field, then the next instruction is skipped. 

7-119 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-121. INCREMENT OR DECREMENT, TEST AND BRANCH INSTRUCTIONS 

Table 7-8 lists the increment or decrement, test and branch instructions 

discussed on the following pages. 

Table 7-8. Increment or Decrement, Test and Branch Instructions 

MNEMONIC INSTRUCTION NAME TOPIC 

IBZ Increment, Test and Branch on Zero 7-122 

IBNZ Increment, Test and Branch on Not Zero 7-123 

DBZ Decrement, Test and Branch on Zero 7-124 

DBNZ Decrement, Test and Branch on Not Zero 7-125 

7-120 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-122. INCREMENT, TEST AND BRANCH ON ZERO (IBZ) 

The instruction IBZ causes the fixed point value in the register addressed by 

the register operand to be incremented by unity and the result store~ in the register, 

and, if the new value is zero, causes a branch to the effective branch address; if 

the new value is not zero, the next instruction in sequence is executed in turn. 

GENERAL FORM: 

LABEL 
I T I I 

_l : COMMAND I I OPERANDS· 
l_ 

[symbol] T 1'5i 
J_ _l 

IBZ 
I 1 

l~l r,[@[=]]n[,x] 

Examples: 
IBZ Al, OUT 

IBZ Xl,@SAVE, X2 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

A~X~ CM only zero or CM only 
or VR XR 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - none 

7-121 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-123. INCREMENT, TEST AND BRANCH ON NOT ZERO (IBNZ) 

The instruction IBNZ causes the fixed point value in the register addressed by 

the register operand to be incremented by unity and the result to be s,tored in the 

register, and, if the new value is not zero, causes a branch to the effective branch 

address; if the new value is zero, the next instruction in sequence is executed in 

turn. 

GENERAL FORM: 

: I I I 
LABEL 

I : 
COMMAND l i OPERANDS· 

[symbol] I iT l _l 
IBNZ 

I I 

l 16J r, [@[=]]n[, x] 
Examples: 

IBNZ Al,OUT 

IBNZ Xl,@SAVE, X2 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

A~XR, CM only zero or CM only 

or VR XR 

-
Program Status: 

r 
RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - none 

7-122 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-124. DECREMENT, TEST AND BRANCH ON ZERO (DBZ) 

The instruction DBZ causes the fixed point value in the register addressed by 

the register operand to be decremented by unity and the result to be .. stored in the: 

register, and, if the new value is zero, causes a branch to the effective branch 

address; if the new value is not zero, the next instruction in sequence is executed 

in turn. 

GENERAL FORM: 

l ! I I 
LABEL COMMAND I I OPERANDS· 

.1 .1 .L .1 

[symbol] I ~T DBZ !~1 r, [@[ =]]n[, x] 
l : ' _l 

Examples: 
DBZ Al, OUT 

DBZ Xl,@SAVE,X2 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

AR, XR, CM only zero or CM only 
or VR XR 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - none 

7-123 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-125. DECREMENT, TEST AND BRANCH ON NOT ZERO (DBNZ) 

The instruction DBNZ causes the fixed point value in the register addressed by 

the register operand to be decremented by unity and the result to be .stored in the 

register, and, if the new value is not zero, causes a branch to the effective branch 

address; if the new value is zero, the next instruction in sequence is executed in 

turn. 

GENERAL FORM: 

T T T I 
LABEL 

.l l 
COMMAND l l OPERANDS· 

[symbol] : ~: DBNZ 
.l .l 

I~ I : l r, [ @[ =] ]n[ , x] 

Examples: 
DBNZ Al, OUT 

DBNZ Xl,@SAVE,Xl 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

AR, XR, CM only zero or CM only 

or VR XR 

Program Status: 
....---

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - none 

7-124 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-126. INDEX, TEST AND BRANCH INSTRUCTIONS 

Table 7-9 lists the test and branch instructions discussed on the following pages. 

Table 7-9. Index, Test and Branch Instructions 

MNEMONIC INSTRUCTION NAME TOPIC 

BCLE Branch on Less Than or Equal 7-128 

BCG Branch on Greater Than 7-129 

7-125 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-127. ALGORITHM FOR INDEX, TEST AND BRANCH 

An index, test and branch operation proceeds by the following steps: 

1. The value in the register addressed by the first operand is added to the 
value in the even register addressed by the second operand. 

2. The sum from step 1 is stored in the first operand register. 

3. The sum from step 1 is compared to the value in the odd register addressed 
by the second operand, and 

a. if the comparison condition is true, a branch is taken to the branch ad­
dress dedved from the third operand, or 

b. if the comparison condition is false, the instruction next in sequence 
is executed. 

Illustratively, for branch on greater than (BCG): 

1. REGl I value, v + REG2 increment, i 

limit, t 

2. REGl ¢= I value + increment I 
3. REG2 increment 

REGl I value + increment ( :f, limit 

a. if v + i > t, PROGRAM COUNTER~ operand three j 

b. if v + i '/> t, PROGRAM COUNTER~._$_+_1 ____ _. 

7-126 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-128. BRANCH ON LESS THAN OR EQUAL (BCLE) 

The instruction BCLE causes the value in the register addressed by the first 

operand to be added to the increment value in the even-odd register pair addressed 

by the second operand, causes the result to be stored in the first operand register, 

causes the result to be arithmetically compared to the limit value in the second 

operand register pair, and, if the result is less than or equal to the limit, causes 

a branch to the branch address. If the result is greater than the limit, BCLE causes 

the instruction next in sequence to be executed. 

The increment value is the value in the first word of the even-odd arithmetic 

register pair addressed by the second operand, and the limit value is the value in 

the second word of the arithmetic register pair. The branch address is developed 

from the third operand. 

GENERAL FORM: 

1 I I I 
LABEL 

J. l COMMAND I I OPERANDS· 
--1 --1 

Examples: 
[symbol] ! 16: BCLE i 161 r, r, n 

i ..1 ' _l 

BCLE Al, A2, OUT 

BCLE Xl,A2, LOOP 

Addressing: 

FIRST REGISTER SECOND REGISTER BRANCH ADDRESS 
OPERAND OPERAND OPERAND 

AR,:XR, or VR even-odd AR pair CM only 
only 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - specification error if second 
register operand is odd 

Restrictions: This instruction uses fixed point arithmetic only. 

Limitations: There is no index operand for address or value modification. 

7-127 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-129. BRANCH ON GREATER THAN (BCG) 

The instruction BCG causes the value in the register addressed by the first reg­

ister operand to be added to the increment value in the even-odd arithmetic register 

pair addressed by the second operand, causes the result to be stored in the first 

operand register, causes the result to be arithmetically compared to the limit value 

in the second operand register pair, and, if the result is greater than the limit, 

causes a branch to the branch address. If the result is not greater than the limit, 

the instruction next in sequence to the BCG instruction is executed. 

The increment value is the value in the first word of the even-odd arithmetic 

register pair addressed by the second operand, and the limit value is the value in the 

second word of the arithmetic register pair. The branch address is developed from 

the third operand. 

GENERAL FORM: 

LABEL i i 1 I 

J_ J_ 
COMMAND : : OPERANDS 

Examples: [symbol] T J6 T 
; : BCG I J6 I 

~ l r, r, n 

BCG Al, AZ, OUT 

BCG Xl, AZ, LOOP 

Addressing: 

FIRST REGISTER SECOND REGISTER BRANCH ADDRESS 
OPERAND OPERAND OPERAND 

A~ XR, or VR even-odd AR pair CM only 
only 

Program Status: 

-··~·----------·-·- -
RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - specification error if second 
register operand is odd 

Restrictions: This instruction uses fixed point arithmetic only. 

Limitations: There is no index operand for address or value modification. 

7-128 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-130. CONDITIONAL BRANCH INSTRUCTIONS 

Table 7-10 lists the branch instructions discussed on the following pages. 

MNEMONIC 

BCC 

NOP 

B 

BE 

BG 

BGE 

BL 

BLE 

BNE 

BCZ 

BCO 

BCNM 

BCM 

BCNO 

BCNZ 

BRC 

BZ 

BPL 

BZP 

BMI 

BZM 

BNZ 

BRZ 

BRO 

BRNM 

Table 7-1 O. Conditional Branch Instructions 

INSTRUCTION NAME 

Branch on Comparison Code True 

No operation (Branch on no conditions) 

TOPIC 

7-132 

7-132 

Unconditional Branch (Branch on any condition) 7-132 

Branch on Compare Code of Equal 7-132 

Branch on Compare Code of Greater Than 7-132 

Branch on Compare Code of Greater Than 7-132 
or Equal 

Branch on Compare Code of Less Than 7-132 

Branch on Compare Code of Less Than or Equal 7-132 

Branch on Compare Code of Not Equal 7-132 

Branch on Compare Code of All Bits Are Zero 7-132 

Branch on Compare Code of All Bits Are One 7-132 

Branch on Compare Code of Not Mixed 7-132 

Branch on Compare Code of Mixed Zeros and 7-132 
Ones 

Branch on Compare Code of Not All Ones 

Branch on Compare Code of Not All Zeros 

Branch on Result Code True 

Branch on Result Code of Zero 

Brap.ch on Result Code of Positive 

Branch on Result Code of Zero or Positive 

Branch on Result Code of Negative 

Branch on Result Code of Zero or Negative 

Branch on Result Code of Not Zero 

Branch on Result Code of All Bits Are Zero 

Branch on Result Code of All Bits Are One 

Branch on Result Code of Bits Not Mixed Zeros 
and Ones 

7-129 

7-132 

7-132 

7-133 

7-133 

7-133 

7-133 

7-133 

7-133 

7-133 

7-133 

7-133 

7-133 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Table 7-1 O. Conditional Branch Instructions (Continued\ 

MNEMONIC 

BAE 

BRM 

BRNO 

BRNZ 

BU 

BO 

BUO 

BX 

BXU 

BXO 

BXUO 

BD 

BDU 

BDO 

BDUO 

BDX 

BDXU 

BDXO 

BDXUO 

BXEC 

INSTRUCTION NAME 

Branch on Result Code of Bits Mixed Zeros 
And Ones 

Branch on Result Code of Not All Bits Ones 

Branch on Result Code of Not All Bits Zeros 

Branch on Arithmetic Exception 

Branch on Floating Point Exponent Underflow 

Branch on Floating Point Exponent Overflow 

Branch on Floating Point Exponent Under-
flow or Overflow 

Branch on Fixed Point Overflow 

Branch on Fixed Point Overflow or Floating 
Point Exponent Underflow 

Branch on Fixed Point Overflow or Floating 
Point Exponent Overflow 

Branch on Fixed Point Overflow or Floating 
Point Exponent Overflow or Underflow 

Branch on Divide Check 

Branch on Divide Check or Floating Point 
Exponent Underflow 

Branch on Divide Check or Floating Point 
Exponent Overflow 

Branch on Divide Check or Floating Point 
Exponent Overflow or Underflow 

Branch on Divide Check or Fixed Point Over­
flow 

Branch on Divide Check or Fixed Point Over­
flow or Floating Point Exponent Underflow 

Branch on Divide Check or Fixed Point Over­
flow or Floating Point Exponent Overflow 

Branch on Divide Check or Fixed Point Over­
flow or Floating Point Exponent Overflow 
or Underflow 

Branch on Execute Branch Condition True 

7-130 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 

TOPIC 

7-133 

7-133 

7-133 

7-134 

7-134 

7-134 

7-134 

7-134 

7-134 

7-134 

7-134 

7-134 

7-134 

7-134 

7-134 

7-134 

7-134 

7-134 

7-134 

7-135 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-131. CONDITION ALGORITHMS FOR CONDITIONAL BRANCHES 

The conditional branch instructions determine whether the branch path is to be 

taken according to whether the result is true for a logical operation between the bits 

in a program status field and the R field mask (mask operand) of the conditional 

branch instruction. Let the value of the R-field be represented as r 1, r 2 , r 3 , r 4 · 

The branch on comparison code true operation branches if, in the logical equation 

cond = cl· r 1 + cg· r 2 + ce · r 3 , cond is true (one). Refer to Topic 6-58. 

The branch on result code true operation branches if, in the logical equation 

cond = rl · r 1 + rg • r 2 + re · r3, cond is true (one). Refer to Topic 6-59. 

The branch on arithmetic exception operation branches if, in the logical equation 

cond = D · r 0 + X · r 1 + 0 • r 2 + U • r3, cond is true (one). The arithmetic excep­

tion mask is also reset, bit by bit, according to the logical equations: D = D -

D • r 0, X = X - X • rl' 0 = 0 - 0 • r 2, and U = U - U · r 3. Refer to Topic 6-60 

and 6-61. 

The branch on execute branch condition operation branches if, in the logical 

equation cond = c · r 3 , cond is true (one). Refer to Topic 6-57. 

Note: In the preceding equations, · represents a logical AND, + represe:n.ts a 

logical OR, and - represents a logical exclusive OR. 

Illustratively, these matching operations may be represented: 

7-131 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER 1 S GUIDE TO THE CENTRAL PROCESSOR 

COMPARE 

"l' I RESULT 
CODE 0 cl CODE u 1 r:; I re c !;; r l 

I I I I I 
I I I I I I 

x x x x x x x x 
I I I I I 

R-FIELD R-FIELD 
ro r l r 2 r ) MASK r" r r r 

MASK (.; l I 2 ) 

Pz p 3 

AE 

~ ~ DI x I 0 I u I BSR I COND D x 0 ,u G 0 0 c 
I I I I I I I I 
I I I I I I I 
x x x x x x x x 
I I I I I I I 

R-FIELD R-FIELD 
ro rl r 2 r3 r r 1 r 2 r3 MASK MASK 0 

p l Pz p 3 0 0 

s l i 1 l.sz 
l_.Ys3 

cond 

7-132 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-132. BRANCH ON COMPARISON CODE TRUE (BCC) 

The instruction BCC causes a branch to the effective branch address if the 

compare code reflects the condition(s) for branching specified by the mask operand;, 

otherwise, the instruction next in sequence to the BCC instruction is executed in turn. 

This same machine instruction has an extended set of mnemoni...::s within the 

assembler whereby the assembler provides the mask value for the desired branch 

conditions. 

In either method of coding, the compare code condition must have been set 

in the compare code field of the program status doubleword by the previous 

execution of an arithmetic or logical compare instruction. 

GENERAL FORMS: 

: : r I 
LABEL COMMAND I I OPERANDS 

-1 -1 .J. ..l 

Examples: 
[symbol] l 1'5: BCC I~ I m, [@[ = ]]n[, x] I I 

.1 ..1 .1 .l 

[symbol] i~: code l~t [@[=]n[,x] 
-·---- ---1--1-==~,_;._:;;:_:_-.:;- ·-· ·c-- - -- ... ·-·- ... --- -----·-----.. ·-·- ·-;-~ 

BCC LT, LSTHN, Xl 
- . --·-- --~-------·-··· .. --·---------------- -----· ·- -·---------------------- --

NOP NONE, XI 
B ALWAYS - . ·---· --
BE STOP,X2 
BG GO 
BGE HERE, X4 
BL THERE 
BLE @GONE,X6 
BNE NTEQUAL,Xl --BCZ HERE 
BCO THERE,X3 
BCNM GO 
BCM OUT 
BCNO IN,X6 
BCNZ GOING,X7 

------------. ·····--·-·· - -

7-133 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 

' 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

EXTENDED CODE AND MASK DEFINITIONS: The masks for specifying branch 

conditions are defined in the following table with the assembler mnemonics. that 

will provide the masks without coding them in the operand field: 

MASK ARITH 
DEFINITIONS 

LOGIC 
VALUE CODE CODE 

0 NOP no operation, take next instruction NOP 

BRANCH IF COMPARE CODE 
REFLECTS COMPARE 

ARITHMETIC RESULT OF LOGICAL RESULT OF 

1 BE equal all zeros BCZ 

2 BG greater than all ones BCO 

3 BGE greater than or equal not mixed ones and zeros BCNM 

4 BL less than mixed ones and zeros BCM 

5 BLE less than or equal not all ones BCNO 

6 BNE not equal not all zeros BCNZ 

7 B unconditional branch, go to effective branch address 

Addressing: 

ADDRESS OPERAND INDEX OPERAND EFFECTIVE ADDRESS 

CM only zero or XR CM only 

Program Status: 

COMPARE CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 
-- - -· . -

RESULT CODE 

-- ·- - .. 

not affected 

7-134 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-133. BRANCH ON RESULT CODE TRUE (BRC) 

The instruction BRC causes a branch to the effective branch address if the 

result code reflects the condition(s) for branching specified by the mc:i-sk operand; 

otherwise, the instruction next in sequence to the BRC instruction is executed in 

turn. 

This same machine instruction has an extended set of mnemonics within the 

assembler whereby the assembler provides the mask value for the desired branch 

conditions. 

In either method of coding, the result code condition must have been set in the 

result code field of the program status doubleword by the previous execution of 

an instruction which affects the result code. 

GENERAL FORMS: 

LABEL ; l T I 

l 
COMMAND : : OPERANDS 

Examples: 
[symbol] T T BRC I I m, [@[ = ]]n[, x] ,~l ~i6l 

i:=::==7c ___ ·• 
I)!> I l V>l 

... 

[symbol] l _!_ 
code [@[ = ]]n[, x] 

BRC NEG, INCOMP, X3 
BZ HERE,X2 
BPL THERE, X3 
BZP AGAIN, X3 
BM! OUT, XS 
BZM NOPE, X6 
BNZ AROUND, X? 
BRZ AGAIN, X2 
BRO AROUND, X3 
BRNM LOOP,X4 
BRM HERE, XS 
BRNO THERE, X6 
BRNZ OUT, X7 

7-13S 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

EXTENDED CODE AND MASK DEFINITIONS: The masks for specifying branch 

conditions are defined in the following table with the assembler mnemonics that 

will provide the masks without coding them in the operand field: 
.. 

MASK ARITH 
DEFINITIONS 

LOGIC 
VALUE CODE CODE 

0 no operation, take next instruction 

BRANCH IF RESULT CODE REFLECTS 

ARITHMETIC RESULT OF LOGICAL RESULT OF 

1 BZ zero all bits zero BRZ 

2 BPL positive all bits one BRO 

3 BZP zero or positive not mixed BRNM 

4 BMI negative mixed zeros and ones BRM 

5 BZM zero or negative not all ones BRNO 

6 BNZ not zero not all zeros BRNZ 

7 unconditional branch, go to effective branch address 

Addressing: 

ADDRESS OPERAND INDEX OPERAND EFFECTIVE ADDRESS 

CM only zero or XR CM only 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

I 

' 

I 
I 

Note: Although the mask values of zero and seven with the BRC instruction produce 

a no operation and an unconditional branch, respectively, there is no corresponding 

mnemonic such as NOP or B to produce those masks as there is for the BCC 

instruction. The assembler is implemented to produce a machine instruction with 

the operation code of 91 only for NOP and B. 

7-136 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-134. BRANCH ON ARITHMETIC EXCEPTION (BAE) 

The instruction BAE causes a branch to the effective branch address if the 

arithmetic exception code reflects the occurrence of the arithmetic exception(s) 

specified as the branch condition by the mask operand; otherwise, the instruction 

next in sequence to the BAE instruction is executed in turn. The conditions tested 

by the BAE instruction are reset to zero in the arithmetic exception code; those 

not tested are not reset thus permitting cumulative arithmetic exception detection~ 

This same machine instruction has an extended set of mnemonics within the 

assembler whereby the assembler provides the mask value for the desired branch 

conditions. 

In either method of coding, the arithmetic exception code must have been set 

in the arithmetic exception code field of the program status doubleword by the 

previous execution of an instruction which affects the arithmetic exception code. 

GENERAL FORM: 

1 : I I 
LABEL 

J_ J_ 
COMMAND l i OPERANDS 

[symbol] ! ~: BAE I~ I m, [@[ =]]n[, x] 
J_ J_ l l 

[symbol] : )S: code l )ST [@[ = ]]n[, x] 
I I J_ J_ 

Examples: BAE AEX, MESG, X4 

BU ERROR,Xl 
BO STOP,X2 
BUO END,X3 
BX AGAIN, X4 
BXU WHY, XS 
BXO @WHERE,X6 
BXUO HERE, X7 
BD THERE, Xl 
BDU AROUND,X2 
BDO @LOOP,X3 
BDUO OUT, X4 
BDX GO,XS 
BDXU GONE,X6 
BDXO GOING, X7 
BDUXO ENOUGH,Xl 

7-137 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 

-



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

EXTENDED CODE AND MASK DEFINITIONS: The masks for specifying branch 

conditions are defined in the following table with the assembler mnemonics that 

will provide the masks without coding them in the operand field. 

i----------,~--.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~..---~~~--t 

MASK 
VALUE 

BRANCH IF ARITHMETIC EXCEPTION CODE REFLECTS 

0 no operation, take next instruction 

1 

2 

3 

4 

5 

6 

floating point exponent underflow 

floating point exponent overflow 

floating point exponent underflow or overflow 

fixed point overflow 

fixed point overflow or floating point exponent underflow 

fixed point oyerflow or floating point exponent overflow 

7 fixed point overflow or floating point exponent underflow 
or overflow 

8 

9 

10 

11 

12 

13 

14 

15 

Addressing: 

divide check 

divide check or floating point exponent underflow 

divide check or floating point exponent overflow 

divide check or floating point exponent underflow or 
overflow 

divide check or fixed point overflow 

divide check or fixed point overflow or floating point 
exponent underflow 

divide check or fixed point overflow or floating point 
exponent overflow 

divide check or fixed point overflow or floating point 
exponent underflow or overflow 

CODE 

BU 

BO 

BUO 

BX 

BXU 

BXO 

BXUO 

BD 

EDU 

BDO 

BDUO 

BDX 

BDXU 

BDXO 

BDXUO 

ADDRESS OPERAND INDEX OPERAND EFFECTIVE ADDRESS 

CM only zero or XR CM only 

7-138 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

7-139 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-135. BRANCH ON EXECUTE BRANCH CONDITION (BXEC) 

The instruction BXEC causes a branch to the effective branch address if the 

branch or skip register reflects the previous occurrence of an execute instruction 

(XEC) (see Topic 7-161) which caused execution of a conditional branch or skip 

instruction wherein the condition for branching or skipping was satisfied; other­

wise, the instruction next in sequence to the BXEC instruction is executed in turn. 

The branch or skip condition bit of the branch or skip register in the program 

status doubleword is reset to zero whenever the BXEC instruction is executed. 

GENERAL FORM: 

LABEL 1 I T I 

I : 
COMMAND I I OPERANDS 

_J_ i 

[symbol] ; !6i 
I I 

BXEC I l6 I 
~ : [@]n[. x] 

Examples: 
BXEC HERE,Xl 

BXEC @SAVE,X2 

Addressing: 

ADDRESS OPERAND INDEX OPERAND EFFECTIVE ADDRESS 

CM only zero or XR CM only 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

7-140 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-136. UNCONDITIONAL BRANCH INST RUCTIONS 

Table 7-11 lists the unconditional branch instructions discussed on the following 

pages. See the conditional branch instructions for unconditional branches and skips 

that may be derived from them. 

Table 7 -11. Unconditional Branch Instructions 

MNEMONIC INSTRUCTION NAME TOPIC 

BLB Branch and Load Base Register With Program 
Counter 7-137 

BLX Branch and Load Index or Vector Register With 
Program Counter 7-138 

7-141 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-137. BRANCH AND LOAD BASE REGISTER WITH PROGRAM COUNTER (BLB) 

The instruction BLB causes the program counter value incremented by unity to 

be loaded into the base register addressed by the register operand, and causes an 

unconditional branch to the effective branch address. 

GENERAL FORM: 

i 1 I I 
LABEL 

_l l. 
COMMAND 1 _l OPERANDS 

Examples: 
[symbol] : ~: BLB I~ I r,[@[ =]]n[, x] 

_l _l ~ J 
BLB Bl, 0 

BLB B2,@SAVE, X2 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

BR CM only zero or CM only 
XR 

Program Status: 
'''-·--------·· -- .. ~. 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

Note: Si.nee it is the second word of the program status doubleword that is being 

loaded into the base register, the register will contain in its eight most significant 

bits the arithmetic exception condition code and the arithmetic exception condition 

mask. See Topic 6-56 for details of the program status doubleword. 

This program status information can be reinstated by use of the LAM and LAC 

instructions. 

7-142 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-138. BRANCH AND LOAD INDEX OR VECTOR REGISTER WITH PROGRAM 
COUNT ER (BLX) 

The instruction BLX causes the program counter value incremented by unity 

to be loaded into the index register or vector register addressed by t.he register 

operand, and causes an unconditional branch to the effective branch address. 

GENERAL FORM: 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

XR or VR CM only zero or CM only 
XR 

Program Status: 
·- • ••·----·-~ - '·-- M •··-·~-

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

Note: Since it is the second word of the program status doubleword that is being 

loaded into the index or vector register, the register will contain in its eight most 

significant bits the arithmetic exception condition code and the arithmetic exception 

condition mask. See Topic 6-56 for details of the program status doubleword. 

This program status information can be reinstated by use of the LAM and 

LAC instructions. 

7-143 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-139. STACK INSTRUCTIONS 

Table 7-12 lists the stack instructions discussed on the following pages. 

See Topic 7-140 for the definition of a stack operation. 

Table 7-12. Stack Instructions 

MNEMONIC INST RUCTION NAMES TOPIC 

PSH Push Word Into Last-In-First-Out Stack 7-141 

PUL Pull Word From Last-In-First-Out Stack 7-142 

MOD Modify Stack Parameter Doubleword 7-143 

7-144 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-140. STACK INSTRUCTION DEFINITION 

The stack instructions are ~.,r use on push down stacks. They push, pull, and 

modify pointers on a stack by manipulating a pair of adjacent central memory words 

(called the stack parameter doubleword). The effective address of the instruction 

addresses the first word of the pair. The stack parameter doubleword has the 

following format: 

BITS 0 15 lG 31 
r----------------------------------~~~;,__------------------------------~J;.,. 

WORD COUNT SPACE COUNT 

STACK POINTER 
BITS 1 

The word count (WC) is the number of words currently in the stack (2 15 -1 

words maximum) and the space count (SC) is the count of unused words :remaining 

in the stack (2 15 -1 words maximum). 

The stack pointer (SP) is the 24-bit central memory address of the next 

available location in the stack. Modification of the stack pointer is by full 32-bit 

two's complement addition. 

If the stack acted upon by the stack instruction permits the specified operation, 

the instruction next in sequence to the stack instruction is skipped; if the operation 

exceeds the stack parameters (i.e., the stack is already full for PSH, is already 

empty for PUL, or does not have enough entries or enough spaces for MOD), the 

next instruction is executed. Thus, the instruction following a stack instruction 

would be a pointer to a routine that handles the case of a full stack, of an empty 

stack, or of a stack with inadequate parameters for modification. 

Note: The programmer must provide the actual stack and the stack parameter 

doubleword. The stack parameter doubleword might, for example, be created by 

DATA directives or by store instructions. 

7-145 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-141. PUSH WORD INTO LAST-IN-FIRST-OUT STACK (PSH) 

The instruction PSH causes the data in the arithmetic register addressed by 

the register operand to be stored in the next available location in a stack and 

causes the stack parameter doubleword to be updated. The effective address 

specifies the address of the stack parameter doubleword that describes the stack. 

If the stack is already full (i.e., the space count is zero), the parameters are 

not changed and the instruction next in sequence to the PSH instruction is executed; 

otherwise, the next instruction is skipped. 

GENERAL FORM: 

"'T I I I 
LABEL : : COMMAND l j OPERANDS· 

Examples: 
[symbol] 

I I 
PSH I J6 I r, [@]n[, x] 116 : ~1 

PSH Al,STACK 

PSH Al, @ADDR, Xl 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

AR BR, AR, XR, zero or BR, AR, XR, VR, 
VR, or CM XR or CM; even-odd 

pair only 

Program Status: 
···-·-·---·--- --- -------------..-----------------------, 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

Limitations: The maximum number of stack entries addressable by this instruction 
15 

is 2 -1. 

Note: Updating the stack parameter doubleword includes incrementing the word 

count by unity, decrementing the space count by unity, and incrementing the stack 

pointer by unity. 

7-146 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-142. PULL WORD FROM LAST-IN-FIRST-OUT STACK (PUL) 

The instruction PUL causes the data in the last created entry in a stack to be 

loaded into the arithmetic register addressed by the register operand and causes 

the stack parameter doubleword to be updated. The effective address specifies the 

address of the stack parameter doubleword that describes the stack. 

If the stack is already empty (i.e., the word count is zero), the parameters are 

not changed and the instruction next in sequence to the PUL instruction is executed; 

otherwise, the next instruction is skipped. 

GENERAL FORM: 

LABEL i 1 1 I 

..1 ..1 
COMMAND 1 l OPERANDS· 

[symbol] Ii~ PUL I I r, [@]n[, x] l ..1 ~ 16 l 
Examples: 

PUL Al,STACK 

PUL Al,@ADDR,Xl 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

AR BR, AR, XR, zero or BR, AR, XR, VR, 
VR, or CM XR or CM; even-odd 

pair only 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

Limitations: The maximum number of stack entries addressable by this instruction 

. 215 1 
lS - • 

Note: Updating the stack parameter doubleword includes decrementing the word 

count by unity, incrementing the space count by unity, and decrementing the stack 

pointer by unity. 

7-147 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-143. MODIFY STACK PARAMETER DOUBLEWORD (MOD) 

The instruction MOD causes the stack parameter doubleword addressed by the 

effective address to be modified by the value in the left half of the ar~thmetic register 

addressed by the register operand. A negative (two's complement) modification 

value causes deletion of the most recent stack entries, and a positive modification 

value causes creation of a gap of unused stack locations. 

If the modification would cause either the word count {exceed the number of 

present entries for negative modification) or the space count {exceed the maximum 

table length for positive modification) to become negative, the stack parameter 

doubleword is not modified and the instruction next in sequence to the MOD 

insti:uction is executed; otherwise, the next instruction is skipped. 

GENERAL FORM: 

LABEL 
T T T I 

t l COMMAND I I OPERANDS· 
..l _J_ 

[symbol] 
T T 

MOD I~ I r,[@]n[, x] l~l l l 
Examples: 

MOD Al,STACK 

MOD Al,@ADDR, Xl 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

left half of BR, AR. XR, zero or BR, AR. XR, VR. 
AR. only VR. or CM XR or CM; even-odd 

pair only 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

15 15 
Limitations: The modification value, x, is limited to the range: -2 s x s 2 -1. 

Note: Modification includes, if xis the modification value, the algebraic addition 

of x to the word count, algebraic subtraction of x from the space count, and 

algebraic addition of x to the stack pointer. 

7-148 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Note: This instruction does not alter the stack; it alters the stack parameters and, 

therefore, the entry to which the stack parameter doubleword presently points. 

7-149 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-144. CONVERSION AND NORMALIZATION INSTRUCTIONS 

Table 7-13 lists the instructions for converting floating point numbers to fixed 

point numbers and vice versa, and the floating point normalization in.structions ·that 

are discussed on the following pages. 

Table 7-13. Floating Point/Fixed Point Conversion Instructions 

MNEMONIC 

FLFX 

FLFH 

FDFX 

FXFL 

FHFL 

FXFD 

FHFD 

NFX 

NFH 

INSTRUCTION NAME 

Convert Floating Point Word to Fixed Point Word 

Convert Floating Point Word to Fixed Point 
Halfword 

Convert Floating Point Doubleword to Fixed 
Point Word 

Convert Fixed Point Word to Floating Point Word 

Convert Fixed Point Halfword to Floating Point 
Word 

Convert Fixed Point Word to Floating Point 
Doubleword 

Convert Fixed Point Halfword to Floating Point 
Doubleword 

Normalize Fixed Point Word 

Normalize Fixed Point Halfword 

7-150 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 

TOPIC 

7-148 

7-149 

7-150 

7-151 

7-152 

7-153 

7-154 

7-155 

7-156 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-145. ALGORITHM FOR FLOATING POINT TO FIXED POINT CONVERSIONS 

The conversion of floating point values to fixed point values is performed by 

the following steps: 

1. Record the sign of the floating point fraction. 

2. Subtract 40 base 16 from the biased hexadecimal exponent to obtain the 
unbiased hexadecimal exponent. 

3. Multiply the unbiased hexadecimal exponent by 4 (shift left two bit 
positions) to obtain the equivalent binary exponent, ie., (nine bits including 
sign). 

4. Align the most significant bit of the floating point fraction (bit position 8) 
into bit position 1 of the fixed point output register. 

5. Insert a zero into the sign bit (bit position 0) of the fixed point output 
register. 

6. Obtain the shift factor, h, for the value in the fixed point output ·register: 

a. Add 31 to the scale factor, sf, (obtained from the effective halfword 
address), and 

b. subtract the binary exponent (obtained in step 3), so that 

c. h = 31 + sf - be. 

7. Shift the contents of the fixed point output register: 

a. right h bit positions if h is positive 

b. left h bit positions if h is negative, or 

c. not at all if h is zero. 

8. If and only if the sign (recorded in step 1) was negative, take the two 1 s 
complement of the number in the fixed point output register. 

9. Send the content of the fixed point output register to its single word or 
halfword, as appropriate, destination. 

7-151 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-146. ALGORITHM FOR FIXED POINT TO FLOATING POINT CONVERSIONS 

The conversion of fixed point values to floating point values is performed by 

the following steps: 

1. Determine the sign of the fixed point integer to be converted, and 

a. record the sign information, and 

b. if and only if it is negative, take the two's complement of the fixed 
point number. 

2. Add 32 to the binary scale factor, sf, obtained from the effective halfword 
address (move the decimal from the right to the left end of the value). 

3. Perform a floating point normalization on the fixed point fraction by 

a. shifting the fraction left a multiple of four- bit units until at least 
one of the fou:r most significant bit positions contains a one, and 

b. subtracting four from the binary exponent for each four-bit unit, h, 
shifted, so that: be = sf + 32 - 4h. 

4. Convert the binary exponent to a hexadecimal exponent by 

a. shifting the fraction according to the two least significant bits of the 
binary exponent. [If these bits are (00) no shift occurs.] 

(1) if no overflow would occur, shift left one bit for (01 ), two 
bits for (10), and three bits for ( 11), or 

(2) if overflow would occur on left shift, add four to the binary 

exponent and shift the fraction right one bit for ( 11), two 
bits for (10), and three bits for (01 ); and 

b. shifting the binary exponent right two bits (i.e., divide by four). 

5. Produce the biased hexadecimal exponent by adding 64 to the hexadecimal 
exponent modulo 12 8. 

6. Assemble the floating point number by 

a. placing the normalized fraction in the fraction portion of the floating 
point output, 

b. placing the biased hexadecimal exponent in the exponent portion of 
the floating point output, and 

c. placing the sign information saved in step la in the most significant 
bit of the floating point output. 

7. Send the result to its singleword or doubleword, as appropriate, destination 

7-152 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Note: The operation of both conversion algorithms takes place in the arithmetic 

unit in registers that are not accessible to the programmer. 

7-153 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-147. FIXED POINT NORMALIZATION 

A fixed point number is said to be normalized when it differs in its two most 

significant bits, i.e., when the bit pattern is 01 ol" 10. A fixed point zero is 

considered to be normalized. 

A normalization instruction causes the fixed point value to be shifted left 

until the two most significant bits differ (unless the value was initially zero), 

counts the number of bit positions shifted, and stores the shift count as a 

negative number (two's complement) or zero. 

7-154 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-148. CONVERT FLOATING POINT WORD TO FIXED POINT WORD (FLFX) 

The instruction FLFX causes the floating point word in the arithmetic register 

addressed by the register operand to be converted to a fixed point word according 

to the scale factor in the effective halfword address and causes the result to be 

loaded into the arithmetic register. 

GENERAL FORM: 

l r r I 
LABEL 

l l COMMAND l l OPERANDS· 

[symbol] 1 V5 T I I 
r, [@]n[, x] 

l _l 
FLFX ~~l 

Examples: 
FLFX Al, FACTOR 

FLFX Al,@CM,Xl 

Addressing: 
REGISTER ADDRESS INDEX INDEX EFFECTIVE 
OPERAND OPERAND OPERAND VALUE ADDRESS 

AR, left half zero n/a left half of B~ 
fullword of .B~ AR, 

XR 
AR, XR, V~ or CM 

even 
XR, V~ o_r 
CM odd right half of B ~ 

AR, X~ V~ or CM 
-· . --·~··-·· --- ............. _ ... -------1--·---.. ·-·- -- -

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - fixed point overflow 

'-·---.--,..-- .. -· 

7-155 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-149. CONVERT FLOATING POINT WORD TO FIXED POINT HALFWORD (FLFH) 

The instruction FLFH causes the floating point word in the arithmetic register 

addressed by the register operand to be converted to a fixed point halfword accord­

ing to the scale factor in the effective halfword address and causes the result to be 

loaded into the left half of the arithmetic register. 

GENERAL FORM: 

LABEL T T I I 

I : 
COMMAND l i OPERANDS· 

[symbol] 
T T FLFH I J6 I r,[@]n[,x] 
: 16 : ~ l 

Examples: 
FLFH Al, FACTOR 

FLFH Al ,@WORD, Xl 

Addressing: 
REGISTER ADDRESS INDEX INDEX EFFECTIVE 
OPERAND OPERAND OPERAND VALUE ADDRESS 

AR, left half zero n/a left half of BR, 
fullword of _BR, AR, 

XR 
AR, XR, V R. or CM 

XR, VR, 
even 

or ~---·--1 f---·---------···----- -- --

CM odd right half of BR, 
AR, XR, VR, or CM 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - fixed point overflow 

~----·-·----·--·--~-----.J'--------·-----------·--' 

7-156 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-150. CONVERT FLOATING POINT DOUBLEWORD TO FIXED POINT WORD 
(FDFX) 

The instruction FDFX causes the floating point doubleword in the even-odd 

arithmetic register pair addressed by the register operand to be converted to a 

fixed point word according to the scale factor in the effective halfword address 

and causes the result to be loaded into the even arithmetic register. 

GENERAL FORM: 

Examples: 

Addressing: 

LABEL 

(symbol] 

T T 
.i .i 
T 11 T 
I IO I 
.i l 

REGISTER 
OPERAND 

even-odd 
AR pair 

COMMAND 

FDFX 

FDFX 

FDFX 

ADDRESS 
OPERAND 

left half 
of BR, AR, 
XR., VR., or 
CM 

T I 
I I OPERANDS 

_l_ _l_ 

I f6 I 
I I 
. .i 

r, (@]n(, x] 

A2, FACTOR 

A4, @HERE, Xl 

INDEX INDEX EFFECTIVE 
OPERAND VALUE ADDRESS 

zero n/a left half of BR., 

XR even 
AR, XR, VR., or CM 

odd right half of BR, 
AR, XR, VR., or CM ,_ ____________ . 

- '--- --· -------·-···- ---····--------- --- ------- --·-- --·-·---- - ·-------·- .. - ·--- --· ---·· . ·--· ··- .. ·-··--I 

Program Status: 
RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - fixed point overflow 
specification error if AR is odd 

7-157 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-151. CONVERT FIXED POINT WORD TO FLOATING POINT WORD (FXFL) 

The instruction FXFL causes the fixed point word in the arithmetic register 

addressed by the register operand to be converted to a floating point .word accord­

ing to the scale factor in the effective halfword address and causes the normalized 

result to be loaded into the arithmetic register. 

GENERAL FORM: 

1 f T I 
LABEL COMMAND I I OPERANDS· 

.1 .1 .l. .l. 

[symbol] ; l6 i 
i _l 

FXFL !~T r, [@]n[, x] 
l_ l_ 

Examples: 
FXFL Al, FACTOR 

FXFL Al, @HERE, Xl 

Addressing: 

REGISTER ADDRESS INDEX INDEX EFFECTIVE 
OPERAND OPERAND OPERAND VALUE ADDRESS . 

AR, left half zero n/a left half of BR. 
fullword of _BR. AR, 

XR 
AR. XR, VR. or CM 

even 
XR, VR, or 
CM odd right half of BR, 

AR. XR, VR. or CM 
i-....--.-~·------ '-·--·---- '---·-- -- -----·---"--··-··------ -----------------

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - floating point exponent overflow 

7-158 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-152. CONVERT FIXED POINT HALFWORD TO FLOATING POINT WORD 
(FHFL) 

The instruction FHFL causes the fixed point halfword in the left half of the 

arithmetic register addressed by the register operand to be converted. to a floating 

point singleword according to the scale factor in the effective halfword address 

and causes the normalized result to be loaded into the arithmetic register. 

GENERAL FORM: 

I I I I 
LABEL l l COMMAND l : OPERANDS 

[symbol] 
] I 

l 16 J_ FHFL I I 

l 16 l r, [@]n[, x] 

Examples: 
FHFL Al, FACTOR 

FHFL Al, @(A2), Xl 

Addressing: 

REGISTER ADDRESS INDEX INDEX EFFECTIVE 
OPERAND OPERAND OPERAND VALUE ADDRESS 

A~ left half zero n/a left half of BR. 
fullword of .B~ AR, 

__ - __ __; 
·---------··--· - A~ XR, V~ or CM 

XR even 
. X~ VR, or ·---- ---·-·-- -- --·----·------- ------------- -----· 
CM odd right half of B~ 

A~X~V~ or CM 
---- &..----· --·-- -·· ------- ··-··--· ·- ------ --- . ---·-- . -·---- - -··--···· - . -- ---.. -···· 

Program Status: 
RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - floating point exponent overflow 

7-159 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-153. CONVERT FIXED POINT WORD TO FLOATING POINT DOUBLEWORD 
(FXFD) 

The instruction FXFD causes the fixed point word in the even arithmetic 

register of the even-odd pair addressed by the register operand to be converted 

to a floating point doubleword according to the scale factor in the effective half­

word address and causes the normalized result to be loaded into the even-odd 

arithmetic register pair. 

GENERAL FORM: 

T 1 
LABEL l l 

[symbol] 

Examples: 

COMMAND 

FXFD 

FXFD 

FXFD 

[ I 
I I 

..L ..L 

I ii I 
I ID I 
, I 

OPERANDS· 

r, [@]n[, x] 

AZ, FACTOR 

A4, @HERE, Xl 
'----------------------------------------! 

Add res sing: 

REGISTER ADDRESS INDEX INDEX EFFECTIVE 
OPERAND OPERAND OPERAND VALUE ADDRESS 

even-odd left half zero n/a left half of BR, 

AR of .BR, AR, ~----·-···· - -····-·~ --··--· ·-·· ---···-- - -·· -·· AR, XR, VR, or CM 
XR., VR, 

XR even 
or 1--------1 -------·---- ··------·--·--! 

CM odd right half of BR, 
AR, XR, V R., or CM 

-

Program Status: 
RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+,O,or - floating point exponent overflow 
specification error if AR is odd 

----·~-------· 

7-160 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-154. CONVERT FIXED POINT HALFWORD TO FLOATING POINT DOUBLE­
WORD (FHFD) 

The instruction FHFD causes the fixed point halfword in the left half of the 

even register of the even-odd arithmetic register pair addressed by the register 

operand to be converted to a floating point doubleword according to the scale factor 

in the effective halfword address and causes the normalized result to be loaded into 

the even-odd arithmetic register pair. 

GENERAL FORM: 

Examples: 

Addressing: 

LABEL 1 T 
l l 

[symbol] l 16 : 
j_ .l 

REGISTER 
OPERAND 

even-odd 
AR pair 

COMMAND 

FHFD 

FHFD 

FHFD 

ADDRESS 
OPERAND 

left half 
of BR, AR, 
x.R., VR, or 
CM 

I I 

J l OPERANDS· 

I T 
l 16 l r, [@Jn[. x] 

Al, FACTOR 

Al, @HERE, Xl 

INDEX INDEX EFFECTIVE 
ADDRESS OPERAND VALUE 

zero n/a left half of BR, 
---·-·--+------- AR, XR, VR, or CM 

XR even 

odd right half of BR, 
AR, XR, VR, or CM 

Program Status: 
RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+, 0, or - floating point exponent overflow 
specification error if AR is odd 

7-161 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-155. NORMALIZE FIXED POINT WORD (NFX) 

The instruction NFX causes the fixed point word in the effective address to be 

normalized and causes the normalized fixed point result to be loaded into the even 

register of the even-odd arithmetic register pair addressed by the register operand 

and the scale factor to be loaded into the right half of the odd register. The left 

half of the odd register is filled with zeros. 

GENERAL FORM: 

T 1 T I 
LABEL COMMAND I I OPERANDS· 

l i .1 -1 

(symbol] hs: I ! 
r,[@]n[,x] l i 

NFX l 16 l 
Examples: 

NFX A2,PNPT 

NFX A2,@INPT, Xl 

Addressing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

AR; even-odd B~ AR, X~ zero or B~A~ XR, V~ 
pair only V~ or CM XR or CM; 

singleword 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+,O,or - specification error if AR is odd 

7-162 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-156. NORMALIZE FIXED POINT HALFWORD (NFH) 

The instruction NFH causes the fixed point halfword in the effective halfword 

address to be normalized and causes the normalized fixed point result to be loaded 

into the left half of the arithmetic register addressed by the register operand and 

the scale factor to be loaded into the right half of the register. 

GENERAL FORM: 

: I I I 
LABEL 

I : 
COMMAND I I OPERANDS 

_J_ 

[symbol] 
I~,-

NFH I~ I r,[@]n[,x] J ~ I I 
' I 

Examples: 
NFH Al, INPTH 

NFH Al ,@INPTH, Xl 
I 

' 
Addressing: 

REGISTER ADDRESS INDEX INDEX EFFECTIVE 
OPERAND OPERAND OPERAND VALUE ADDRESS 

AR left half zero n/a left half of B R. 
fullword of BR, AR, 

XR 
AR, XR, V R, or CM 

XR, VR, 
even 

or 
CM odd right half of BR, 

AR, XR, VR, or CM 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

+,0,or - none 

7-163 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-157. MISCELLANEOUS INSTRUCTIONS 

Table 7-14 lists the miscellaneous instructions discussed on the following 

pages. 

Table 7-14. Miscellaneous Instructions 

MNEMONIC INSTRUCTION NAME TOPIC 

XCH Exchange Words 7 -158 . 

LLA Load Look Ahead 7-159 

PB Prepare to Branch 7-159.1 

LEA Load Effective Address 7-160 

. XEC Execute 7-161 

INT Interpret 7-162 

FORK Allow mix of scalar and vector 7-162. 1 

JOIN Allow only scalars or only vectors 7-162.2 

MCP Mani.tor Call and Proceed 7-163 

MCW Monitor Call and Wait 7-16-t 

7-164 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7 -158. EXCHANGE WORDS (XCH) 

The instruction XCH causes the current data in the effective address to replace 

the data in the arithmetic register addressed by the register operand while the 

current data in the arithmetic register replaces the contents of the effective 

address; i.e., the current contents of the locations are exchanged. 

GENERAL FORM: 

LABEL 1 I 1 I 

_L l COMMAND ! : OPERANDS 

[symbol] 1 l6i 
_L J_ 

XCH I 1 
~ 16 J r, [@]n[, x] 

Examples: 
XCH Al, RSLT 

XCH Al, (A2), Xl 

Addressing: 
REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

AR BR, AR, XR, zero or BR, AR, XR, VR, 

VR, or CM XR or CM 
--·-··-· _.., __ ,,._ .... L..----.,,.,_, _____ ,, •• ,, .•..• ____ '----·--.. ---------' 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

7-165 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-159. LOAD LOOK AHEAD (LLA) 

The instruction LLA provides the lookahead unit in the Central Processor 

control hardware with information about a branch instruction that is to be executed 

and that will most frequently take the branch path. The instruction LLA does not 

influence the branch decision; it only increases the execution speed of a closed 

instruction loop. 

The value of the immediate operand i must be equal to the number of 

executable instructions from the instruction LLA through the branch instruction 

that is expedited; e.g., if LLA were in location 401 and the branch instruction 

were in location 429, the value of i would be 28. 

GENERAL FORM: 

LABEL 
T I 

COMMAND 
I I 

: : I I OPERANDS· 
.l. -1 

[symbol] 
T T 

LLA i~T i l r5: _l i 
Examples: 

LLA 28 

LLA BRCH-$ 

Addressing: This instruction permits no programmer addressing; the registers 

into which LLA enters values are internal to the Central Processor control hard-

ware, and index modification of the immediate operand is not performed. 

Program Status: RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

Restrictions: This instruction may have only an immediate operand without index 

modification. 

Limitations: The maximum applicable program loop size, including the LLA 

instruction, is 255 instructions, i.e., 0 < i :s 255. 

Note: The instruction LLA must be included within the program loop defined by 

the expedited branch instruction so that the branch counter and branch address 

registers (internal to the central processor) will be reinitialized each time the 

program reenters the loop. 

7-166 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Note: If the execution of a branch instruction between the LLA and the expedited 

branch instruction results in its branch path being taken, the branch look ahead 

information is discarded; if the branch path is not taken, the look ahead information 

remains current for the intended branch instruction. 

Note: The execution of a skip instruction does not alter the number of executable 

instructions within the domain of the LLA instruction and its related branch 

instruction; i.e., the instruction immediately following the skip instruction must 

be counted regardless of whether execution results in the instruction's being skipped. 

Note: The LLA and the PB instructions use the source registers, and hence can­

not both be effective at once. 

7-167 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-159. 1 PREPARE TO BRANCH (PB) 

The instruction PB provides the lookahead unit in the Central Processor con­

trol hardware with information about a branch instruction that is to be executed 

and that will most frequently take the branch path. The instruction PB does not 

influence the branch decision; it only increases the execution speed of a program 

branch. 

The PB instruction develops a f3 address from its T-, M-, and N-fields in the 

same way that a standard branch instruction (BCC or BRC) would do if it were 

placed at the instruction address of the PB instruction. The R-field of the PB in­

struction should be set to the difference between the instruction address of the PB 

instruction and the intended branch instruction. This count may not exceed 15 

since the R-field is only four bits. Counts of 11 0" and "l" are not used. 

The internal IPU hardware saves both the f3 address developed by the PB in­

struction and the length count specified by the R-field. The length count is dec­

remented by one as each new instruction is entered into the instruction register 

(IR). At the octet boundary where the look-ahead would normally request the next 

octet past the octet containing the branch, it recalls the (3 address saved by the PB 

instruction and requests it instead of the normal look-ahead octet. In this manner 

the instruction at the branch address of the target branch instruction will be avail­

able for immediate processing following the execution of the target branch instruc­

tion. 

Should the target branch fail to take the branch, the hardware will realign it­

self to take the downstream instructions. This is done by rerequesting the branch 

instruction's octet if necessary, plus the next octet of look-ahead instructions be­

yond the branch octet. 

Note: The LLA and PB instructions use the source registers, and hence cannot 

both be effective at once. 

7-167A 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

GENERAL FORM: 

LABEL 1 I l' I 

_L l COMMAND ! : OPERANDS· 

[symbol] T ~i 
_L _L 

PB I ~ 

l~l r,@[$+x] 

Examples: 
PB 7, @ $ + 8 

In the above example the R-field is "7, 11 designating seven instruction loca­

tions from the PB to the branch instruction. The branch address developed by the 

PB is indirect to the PB instruction address, plus eight (Program counter + 8 ). 

Program Status: RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

Limitations: The maximum difference between the PB and the branch address can-

not exceed 15 due to the size of the R-field. Values of zero and one should not be 

used. 

Note: The execution of a skip instruction does not alter the number of executable 

instructions within the domain of the PB instruction and its related branch instruc­

tion; i.e., the instruction immediately following the skip instruction must be 

counted regardless of whether execution results in the instruction's being skipped. 

7-167B 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-160. LOAD EFFECTIVE ADDRESS (LEA) 

The instruction LEA causes its own effective address (24 least significent bits) 

to be developed and causes that address to be loaded into the register addressed by 

the register operand. The eight most significant bits are zero. 

GENERAL FORM: 

LABEL 
T T T I 

: : COMMAND I I OPERANDS· 
_!_ _L 

[symbol] 
T T 

LEA I }6 I r, [@][=Jn[, x] l 16 l I I 
' i 

Examples: 
LEA Xl, $ 

LEA Vl ,@HERE, Xl 

Add res sing: 

REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

BR, XR, BR, AR, XR, zero or BR, AR, XR, VR, 

or VR VR, or CM XR or CM 

Program Status: 
RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

Restrictions: When used to produce an indirect address constant, this instruction 

does not produce a T field and, thus, no terminal indexing. See Topic 6-27 for 

details of the indirect address word format. 

Limitations: When this instruction (operation code) is used as an address tracing 

element, the 24-bit address developed leaves no traces of its mode or path of 

development; therefore, it will not be possible to distinguish between low memory 

and registers when the effective address is less than of equal to 2F; neither will 

it give the correct terminal address i.f substituted for an indexed halfword or 

doubleword instruction since it is always indexed as a singleword instruction. 

7-168 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-161. EXECUTE (XEC) 

The instruction XEC causes the instruction at the effective address to be 

executed and the program counter to be incremented by one; i.e., the next instruc -

tion executed is the one following the XEC instruction. 

If the instruction at the effective address is a branch or skip instruction and 

the condition(s) for branching or skipping are true, no actual branch or skip is 

executed but rather the branch or skip condition bit of the branch or skip register 

of the program status doubleword is set to one to indicate that the condition(s) 

were true. The next instruction executed is still the one following the XEC 

instruction. 

GENERAL FORM: 

LABEL : T T I 

I l COMMAND : : OPERANDS 

[symbol] 116 i I T 
[@[ = ]]n[, x] j I 

XEC ~ !6l 
Exam:eles: 

XEC $+1, X2 

XEC @HERE, Xl 
--------

Addressing: 

ADDRESS OPERAND INDEX OPERAND EFFECTIVE ADDRESS 

BR, AR, XR, VR, or CM zero or XR BR, AR, XR, VR, or CM 

Program Status: 

.COMPARE CODE EFFECT PROGRAM INTERRUPTIONS 

that of instruction those of instruction executed 
executed 

RESULT CODE EFFECT 

that of instruction 
executed 

Note: If the XEC instruction executes a branch on execute branch condition 

instruction (BXEC), the branch or skip condition bit of the branch or skip register 

of the program status doubleword will be reset to zero if it is presently true (one) 

and will remain zero if it is presently false (zero). 

7-169 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-162. INTERPRET (INT) 

The instruction INT causes the operation code and register (R) field of the 

instruction in the effective address of this instruction to be loaded (r~ght-justified) 

into the even arithmetic register of the even-odd arithmetic register pair addressed 

by the register operand of this instruction, and causes the index, base, and dis-

placement (T, M, and N) fields of that instruction to be loaded (right-justified) into 

the odd arithmetic register of the even-odd register pair. See Topic 6-2 for a 

detailed description of the machine code format of instructions. 

GENERAL FORM: 

LABEL 
I I T I 
I l COMMAND I I OPERANDS· 

_l I 

[symbol] l }6i 
l _l 

INT I i6 T : : r,[@][=]n[,x] 
Examples: 

INT A4, BRANCH 

INT A2,@=THERE, Xl 
·--~ .......... ,.....,....,,...-- -.-.--~-···--~-~=="""'---· ... ·-~ _____ .,... ____ ._"_._,..,,....,.._--=-=,..,...--=.--

Addressing: 
REGISTER ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND OPERAND ADDRESS 

AR, even-odd BR, AR, XR, zero or BR, AR, XR, VR, 
pair only VR, or CM XR or CM 

-----
Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected specification error if AR is odd 

Note: The 20 most si.gni.ficant bits of the even register and the 12 most significant 

bits of the odd register are set to zero. 

7-170 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-162. 1 FORK (FORK) 

The FORK instruction is an advisory type instruction to the IPU control. Exe­

cution of the FORK instruction sets the fork indicator bit within the IPU control 

and allows subsequent vector or scalar instructions to proceed to execution inde­

pendently. In the times-four CP, this means that any combination of vector or 

scalar instructions can be in execution simultaneously in each of the four MB U-A U 

pairs. 

A FORK instruction with the fork indicator already 11 on11 results in the equiva-

lent of a JOIN followed by a FORK. 

7-162. 2 JOIN (JOIN) 

. The JOIN instruction is an advisory type instruction to the IPU control. Exe­

cution of the JOIN instruction resets a control bit which then disallows parallel 

pipeline processing of subsequent mixtures of vector and scalar instructions. In 

the times-four CP, this means that only scalars can be in execution at a time or 

only a singular vector at a time. Combinations of vectors and scalars cannot be 

in execution simultaneously. 

7-170A 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 





PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-163. MONITOR CALL AND PROCEED (MCP) 

The instruction MCP causes a monitor service request signal to be issued to 

the Peripheral Processor (PP) via the Central Processor/Peripheral Processor 

communication link, and causes the Central Processor (CP) to proceed with execu­

tion of the next instruction. 

turned, and causes the Central Processor (CP) to proceed with execution of the 

next instruction when the storage is complete. 

GENERAL FORM: 

: I I I 
LABEL 

I : 
COMMAND I I OPERANDS 

...J.. ..1 

[symbol] 
1 I 

l~l MCP 
I 1 

l ~ l i[, x] 

Examples: 
MCP #FFC,Xl 

Addressing: 

INDEX IMMEDIATE 
OPERAND MODIFIER 

zero none 

XR 
23 23 

-2 :sx:s2 -1 

Program Status: 

RESULT CODE PROGRAM INTERRUPTIONS 

not affected none 

7-171 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-164. MONITOR CALL AND WAIT (MCW) 

The instruction MCW causes a monitor service request signal to be issued to 

the Peripheral Processor (PP) via the Central Processor /Peripheral Processor 

communication link, and causes program execution to begin with the next instruction 

when the proper context switch returns the program to Central Processor (CP) 

control. 

GENERAL FORM: 

T T I I 
LABEL : : COMMAND l ~ OPERANDS 

I I I I 
[symbol] _l ~l MCW l 16 l i[, x] 

E~mples: 

MCW #F,X2 
- . -

Addressing: 
INDEX IMMEDIATE 

OPERAND MODIFIER 

zero none 

XR 
23 23 

-2 :S XS 2 -1 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

Note: There is no hardware protection to ensure that the program is not returned 

to the Central Processor before the monitor service is completed; this is a function 

of system programming. 

7-172 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-165. PROGRAM STATUS INSTRUCTIONS 

Table 7-15 list the program status instructions discussed on the following 

pages. 

Table 7-15. Program Status Instructions 

MNEMONIC INSTRUCTION NAME TOPIC 

LAM Load Arithmetic Exception Mask 7-166 

LAC Load Arithmetic Exception Condition 7-167 

LEM Load Arithmetic Exception Mask and Condition 7-167. 1 

SCLK Store 32 Bit, Fixed Point Clock 7-167.2 

SPS Store Program Status Word 7-168 

7-173 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PFOCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-166. LOAD ARITHMETIC EXCEPTION MASK (LAM) 

The instruction LAM causes the contents of bits four through seven of the 

effective address to replace the contents of the arithmetic exception mask register 

(AEM) of the program status doubleword. 

The effect is to enable an interrupt signal from the Central Processor (CP) 

to the Peripheral Processor (PP) for any arithmetic exception condition detected 

whose corresponding bit is now set to one in the mask. A mask bit of zero disables 

the interrupt for the corresponding arithmetic exception. See Topics 6-60 through 

6-63 for a more detailed description of maskable interrupts. 

GENERAL FORM: 

1 ; T I 
LABEL 

_l _l 
COMMAND : : OPERANDS 

[symbol] I t5 I LAM 
I I [@[ = ]]n[, x] I I : 16 j 

_l l 
Examples: 

LAM (Bl) 

LAM RSLT,Xl 

Addressing: 

ADDRESS OPERAND INDEX OPERAND EFFECTIVE ADDRESS 

B~ A~ X~ VR;orCM zero or XR B~ A~ X~ V~ or CM 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

~: This instruction may be used to reinstate an arithmetic exception mask that 

was stored in a base, index, or vector register by a previously executed branch 

and load base register (BLB) or branch and load index register (BLX) instructions. 

See Topic 7-137, 7-138 and 6-63. 

7-174 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-167. LOAD ARITHMETIC EXCEPTION CONDITION (LAC) 

The instruction LAC causes the contents of bits zero through three of the 

effective address to replace the contents of the arithmetic exception code register 

(AEC) of the program status doubleword. 

A bit setting of one in the corresponding bit of the code indicates that a 

specific arithmetic exception condition has been detected in the execution of an 

instruction, and a bit setting of zero indicates that no corresponding arithmetic 

exception has been detected. See Topic (i-(iO for a more detailed discussion of 

the maskable interrupts. 

GENERAL FORM: 

T T T I 
LABEL I I COMMAND I I OPERANDS i _l I 

[symbol] l ~I LAC I T [@[=]]n[,x] I I ~ ~ : i i 

Examples: LAC (B 1) 

LAC RSLT, Xl 

Addressing: 

ADDRESS OPERAND INDEX OPERAND EFFECTIVE ADDRESS 

BR, AR, XR, VR, or CM zero or XR BR, AR, XR, VR, or CM 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

~: Since the arithmetic exception code (AEC) is changed by this instruction, 

record of any arithmetic exceptions prior to the execution will be lost unless the 

current arithmetic exception code is saved through execution of a branch and load 

base register (BLB) or, branch and load i.ndex register (BLX). The arithmetic 

exception condition code loaded by this instruction may be the reinstatement of 

such a previously stored arithmetic exception code. See Topics 7 - 137, 7 -138, 

and 6-61. 

7-175 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-167. 1 LOAD ARITHMETIC EXCEPTION MASK AND CONDITION (LEM) 

The instruction LEM loads bits 0 through 3 of the contents of location a into 

the four-bit arithmetic exception code register (AEC) and loads bits 4 through 7 of 

the contents of location a into the four-bit arithmetic exception mask register 

(AEM) of the program status doubleword. 

Bits 0 through 3 load the arithmetic exception condition code register as 

follows: 

Bit 

0 Divide check 

1 Fixed point overflow 

2 Floating point overflow 

3 Floating point underflow 

Bits 4 through 7 load the arithmetic exception mask as follows: 

Bit 

4 Divide check 

5 Fixed point overflow 

6 Floating·point overflow 

7 Floating point underflow 

Result Code: Not set. 

Programming Notes: An interrupt signal from the CP to the PPU is activated if 

an arithmetic exception is detected and if the mask bit corresponding to that arith­

metic exception has been set to a 11 one. 11 An interrupt is not possible for that 

arithmetic exception if the mask bit is set to "zero. 11 

7-175A 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Note: Alteration of the AE condition register and AE mask register by a LEM in­

struction will cause an arithmetic exception program interruption if the corre­

sponding bits of the AE condition register and the AE mask register are both "one" 

after the LEM instruction has passed through the CP pipeline. This implies that 

a program interruption will occur after completion of a LEM instruction if any of 

the following pairs of bits from the contents of location a are both ' 1one 11 : 

(0, 4) 

( 1, 5) 

(2, 6) 

( 3, 7) 

This instruction is paired with the BLB and BLX instructions in that the bit 

positions (bits 0 through 7) agree with the position of the AE condition and AE mask 

bits stored as a result of a previous BLB or BLX instruction. 

7-167. 2 STORE CLOCK (SCLK) 

The instruction SCLK stores the current value of the 32-bit, fixed-point CP 

clock into singleword location a. This clock is incremented by "one" every CP 

clock pulse. It cycles modulo 232 approximately once every four minutes (based 

on a 60 ns clock rate). 

Result Code: Set arithmetically. 

. 7-175B 
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

7-168. STORE PROGRAM STATUS WORD (SPS) 

The instruction SPS causes the second halfword of the program status double­

word to be stored into the effective address. The left half is loaded with zeros. 

Refer to Topic 6-56 for a more detailed discussion of the program status doubleword. 

GENERAL FORM: 

j T I I 
LABEL 

I : 
COMMAND l i OPERANDS 

Examples: 
[symbol] T J6' SPS I I [@]n[, x] : ~ l 16 l 

SPS (Al) 

SPS SAVE, Xl 

Addressing: 

ADDRESS OPERAND INDEX OPERAND EFFECTIVE ADDRESS 

BR, AR, XR, VR, or CM zero or XR BR, AR, XR, VR, or CM 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not affected none 

Note: The instruction SPS stores only the second halfword of the program status 

doubleword; the full program status doubleword is stored in central memory only 

on a special signal from the Peripheral Processor. The second word of the pro­

gram status doubleword is loaded into a register by the branch and load base 

register (BLB) and branch and load index register (BLX) instructions. Refer to 

Topics 7-137 and 7-138. 

7-176 

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

SECTION VIII 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 

8-1. INTRODUCTION 

Data for vector instructions may be organized into one, two, or three dimen­

sional arrays. A one-dimensional array with one element is called a scalar. A 

vector is a sequence of elements (a one-dimensional array). A two-dimensional 

array is a matrix. All other dimensioned arrays are called n-arrays. 

The vector instructions cause specific operations which are performed on two 

series of input data and produce one series of output data. Data is structured as 

vectors in memory in order to utilize the vector instructions. The definition of a 

specific vector operation is contained in an octet of data called the Vector Param­

eter File. The set of instructions which define a vector parameter file are found 

in Figure 8-1. There are two means of executing the operation defined by the vec­

tor parameter file: (1) the file is loaded into the vector registers from memory 

and executed, (2) the file residing in the vector registers is executed. The vector 

parameter file is described in Figure 8-1 and should be referred to often during 

the study of the following sections. 

8-2. DEFINITION AND FORMATS OF VECTOR INSTRUCTIONS 

The Vector instructions in the ASC Central Processor define vector operations 

on an ordered set of data. This data may be organized into one-, two-, or three­

dimensional arrays. The execution of a vector instruction requires the building of 

a vector parameter file and the execution of a vector execute instruction. The vec­

tor operation, the argument vectors, and the resultant vector are described in the 

vector parameter file. In Figure 8-1, the contents of the vector registers are 

described. 

In vector operation on three dimensional arrays, the vector looping structure 

is somewhat analogous to a triple nested DO structure in FORTRAN. The self 

8-1 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

inner, and outer loops of the vector operation correspond to the innermost, middle 

and outermost loops of a triple nested FORTRAN DO. As in FORTRAN, the outer 

loop determines the number of iterations of the inner loop, and the inner loop deter­

mines the number of iterations of the self loop. The analogy to FORTRAN breaks 

down when discussing the increment values for each loop. The vector instructions 

provide more power by allowing variable, positive, or negative increments in the 

inner and outer loops. 

The self loop is analogous to a vector operation such as the operation: 

.... - -AE> B - C 

- -where e is the operation to be performed between vectors A and B. The resultant -vector is C. In reference to the vector parameter file (Figure 8-1), the starting -- -address of vectors A, B, and Care determined by SAA, SAB, and SAC respectively. 

Each vector in the self loop is a contiguous array. At the end of each self loop, for 

two- or three-dimensional arrays, SAA, SAB and SAC will have been incremented 

by the length of the self loop (LEN) -1. Also the increments DAI, DBI and DCI are 

added to SAA, SAB and SAC respectively. The inner loop count NI, is decremented. 

When the inner loop has been iterated NI times, for a three-dimensional array, the 

outer loop increments DAO, DBO, and DCO are added to SAA, SAB, and SAC re­

spectively. The inner loop count (NI) is reset to the original value and the outer 

loop count (NO) is decremented. When the outer loop count (NO) becomes zero, the 

vector operation is terminated. 

After a vector operation is described in the vector parameter file, the vector 

operation is performed when the Vector Load and Execute Instruction (VECT L) or 

the Vector Execute Instruction (VECT) is executed. The instruction VECT L causes 

the vector parameter file to be loaded into the vector register file, and causes the 

vector parameter file to be executed. The instruction VECT causes the vector 

parameter file presently residing in the vector register file to be executed. 

8-2 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

VECTOR 
REGISTER 

VO 

Vl 

V2 

V3 

V4 

V5 

V6 

V7 

LEFT HALF RIGHT HALF 

BYTEO BYTE1 BYTE2 BYTE3 

I HO I H 1 I H2 I H3 I H4 1 HS I H6 I H7 I 

ASSEMBLER 
STATEMENTS 

OPR ALCTJ sv LEN - Operation alct, len, 

XA SAA VCTRA a, xa 

HS XB SAB VCTRA b, xb, hs 

VI xc SAC VCTRA c, xc, vi 

DAI DBI DATAH dai, dbi 

DCI NI DAT AH dci, ni 

DAO DBO DATAH dao, dbo 

DCO NO DAT AH dco, no 

Object VPF Coded VPF 

REGISTER 

NUMBER FIELD 
SPECIFIES 

28 OPR type of vector operation 

ALCT arithmetic or logical comparison condition 

sv single-valued vector 

LEN vector length (self loop count) 

29 XA vector A starting address index 

SAA starting address of vector A or immediate A 
2A HS right or left halfword starting addresses 

-XB vector B starting address index 

SAB starting address of vector B or immediate B 
2B VI self loop increment directions 

XC vector C starting address index 

SAC starting address of vector C 
2C DAI inner loop increment for vector A .. address 

DBI inner loop increment for vector B address 

2D DCI inner loop increment for vector C address 

NI inner loop count 

2E DAO outer loop increment for vector A address 

DBO outer loop increment for vector B address 

2F DCO outer loop increment for vector C address 

NO outer loop count 

Figure 8-1. The Vector Parameter File 

8-3 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 

sv 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

8-3. EXECUTE VECTOR PARAMETER FILE INSTRUCTIONS 

The following instructions cause execution of a vector parameter file that 

exists in the program. 

Note that a vector parameter file is not executed from central memory, but 

must first be loaded into the vector register file. 

8-4. VECTOR LOAD AND EXECUTE (VECTL) 

The instruction VECT L causes the vector parameter file addressed by the 

effective octet address to be loaded into the vector register file, and causes the 

vector parameter file to be executed. 

GENERAL FORM: 

LABEL : I COMMAND 
I I 

OPERANDS 
J_ l I I 

...I. ..L 

Examples: [symbol] fj6T VECTL ! l6 T [@]n[, x] [ n[, x] I I 
J_ _l L J_ 

VECTL MATX 

VECTL @VADSET, Xl 

Addressing: 

ADDRESS INDEX EFFECTIVE 
OPERAND OPERAND ADDRESS 

BR, AR, XR, Zero or XR BR, AR, XR, VR, 
VR, or CM or CM 

Program Status: 

.RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not useful after vector those of vector operation being 
operation executed 

8-4 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Restrictions: The effective address vector parameter file must be an octet bound­

ary; i.e., a multiple of eight. 

Note: The assembler places zero in the R field which specifies that the vector 

parameter file must be loaded to be executed. 

8-5. VECTOR EXECUTE (VECT) 

The instruction VECT causes the vector parameter file presently residing in 

the vector register file to be executed. 

GENERAL FORM: 

LABEL l r T I 

.1 l COMMAND I I OPERANDS· 
.J. ..1 

Examples: 
I ~T I ! 

[symbol] _l l VECT l~l l@lnl_, xJ 

VECT MATX 

VECT @vADSET, Xl 

Addressing: Addresses are not used by this instruction. 

Program Status: 

RESULT CODE REFLECTS PROGRAM INTERRUPTIONS 

not useful after vector those of vector operation being 
operation executed 

Note: Although the assembler generates the T, M, and N fields specified in the 

operand of the VECT instruction, these fields are ignored. The assembler also 

places one in the R field which specifies that the vector parameter file to be exe­

cuted is already loaded. 

8-5 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

8-6. THE VECTOR PARAMETER FILE 

The vector parameter file specifies a complete vector operation. When a vec­

tor parameter file is loaded into (or already exists in) the vector register file, an 

execute vector parameter file instruction (see Topic 8-3) will cause the specified 

vector operation to be executed. 

Figure 8-1 illustrates the vector parameter file and describes its fields as 

they exist in the vector register file. An example of one of the general assembler 

·statement sets that would produce a vector parameter file is also included. 

Note: The command VCTRA is a CPU procedure designed to permit symbolic cod­

ing of the three vector words of the VPF. 

'Figure 8-2 illustrates the flow of execution of a typical vector parameter file 

wherein neither of the argument vectors is single-valued. 

Note: As a convention, the vector addressed or contained in the second word of the -vector parameter file will be called argument vector A, the vector addressed or 

contained in the third word of the vector parameter file will be called argument -vector B, and the vector addressed in the fourth word of the vector parameter file -will be called the resultant vector C. 

8-7. VECTOR OPERATION SPECIFICATION 

The type of vector operation is specified by the assembler mnemonic in the 

first instruction of the vector parameter file. 

The various operations available are described in Topics 8-26 through 8-51. 

8-8. ARITHMETIC AND LOGICAL COMPARISON CONDITION SPECIFICATION 

The ALCT field specifies the comparison condition to be used between elements 

of argument vectors and specifies when the vector operation is to terminate. Both 

the comparison condition and terminate condition are used in vector compare 

instructions. For vector peak picking instructions, only the terminate condition is 

8-6 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

YES 

YES 

YES 

VECTOR 
VECTL 

PERFORM 
ELEMENTARY 
OPERATION 

RESET 
LEN 

RESET 
NI 

NEXT 
(8)1009688 INSTRUCTION 

NO 

NO 

NO 

LOAD VECTOR 
PARAMETER 
FILE 

INCREMENT 
ELEMENT 
ADDRESSES 
(UNITS) 
DECREMENT 
LEN 

INCREMENT 
ELEMENT 
ADDRESSES 
(DAI ,DBI ,DCI) 
DECREMENT NI 

Figure 8-2. Flow of Execution of a Vector Parameter File 

8-7 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

checked. The terminate condition specifies whether the operation is to stop at the 

first true condition or to record all true conditions found in all loops of the vector 

parameter file. 

See Table 8-6 of Topic 8-38 for a complete specification of the ALCT field. 

8-9. VECTOR LENGTH SPECIFICATION (SELF LOOP COUNT) 

The LEN field specifies the number of times the self-loop operation of the vec­

tor parameter file is to be executed. A value of one for the LEN field effectively 

makes the self loop dimension a scalar operation. Given a self loop on a one--dimensional contiguous argument vector A with m elements, the value of the LEN 

field is m. 

Range: The value of the LEN field must be within the range: 0 ~ LEN ~ 216 - 1. A 

zero value for LEN makes the vector parameter file a no operation; the inner and 

outer loop conditions will not be examined. 

8-10. SINGLE-VALUED VECTOR AND WORD SIZE SPECIFICATION 

The SV field specifies the attributes of the input vectors, i.e., directly 

addressed, immediate, or directly addressed single-valued. 

For multiply and dot product operations with fixed point values as the argument 

vector elements, the SV field also specifies the element length of the elements of 

the resultant vector; for divide operations with fixed point values as the argument 

vector elements, the SV field specifies the length of the dividend elements of the -input vector A. All other operations and all floating point products, dot products, 

and dividends contain the element length specification as an integral part of the 

instruction; e.g., the instruction VAH specifies fixed point halfword addition with 

fixed point halfword results and ignores any word size specification in the SV field. 

Table 8-1 contains the complete spedfications of the SV field. 

8-11. SINGLE-VALUED VECTORS 

A single-valued vector is effectively a scalar operand for the self loop. 

8-8 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

SV FIELD 
VECTOR TYPE 

VALUE - -- LOOP USAGE -AoB = c 

0 - 3 n n n all loop increments active for all input 

8 - 11 
vectors 

4, 12 k n n self loop increment inactive for single-
valued input vector 

-- - --· -
5, 13 n k n 

6, 14 i n n all loop increments inactive for imme-

7, 15 i 
diate vector 

n n 

n = a vector of any LEN 

k = a single-valued vector 

i = immediate 

ELEMENT LENGTH OF RESULT 

SV FIELD DIVISOR OR MULTIPLICAND INPUT OF: 

VALUE SING LEW ORD HALFWORD 

0 :5 sv :5 7 doubleword singleword 

8 :5 sv ~ 15 singleword halfword 

Note: These length options apply only to products, dot --
products, and dividends in fixed point operations; float-

ing point operations do not change precision. 

Table 8-1. Specifications of the SV Field 

For purposes of execution of a vector parameter file, a single-valued vector is 

stored as a single-element vector, i.e., this vector address is not incremented 

during the self loop execution, but may be incremented by either or both the inner 

and outer loop increments in their turns. During the execution of the self loop, 

only one value will be acquired from central memory for the single-valued vector. 

The SV field specifies which argument vector is single-valued (see Table 8-1 ). 

8-9 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

YES 

YES 

YES 

(B) 1 009698 

Figure 8-3. 

VECTOR 
VECTL 

PERFORM 
ELEMENTARY 
OPERATION 

RESET 
LEN 

RESET 
NI 

NEXT 
INSTRUCTION 

NO 

NO 

NO 

LOAD VECTOR 
PARAMETER 
FILE 

INCREMENT 
ADDRESSES 
OFAANOC 
DECREMENT LEN 

INCREMENT 
ELEMENT 
ADDRESSES 
(DAI ,OBI ,DCI) 
DECREMENT NI 

INCREMENT 
ELEMENT 
ADDRESSES 
(OA0,080 ,DCO) 
DECREMENT NO 

--Flow of Execution with B Single- Valued 

8-10 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

- - -Example: Given Ao B = C, 

where each Bi is a single-valued vector with m elements. 

-The LEN value in the vector parameter file is m to encompass A in the self 

·-loop. The SV value is five or thirteen to denote B as single-valued within the self -loop only. The inner loop count is r to encompass B in the inner loop. The inner -loop increment values are -m + 1 for A to reposition the counter for the next self 

loop, and positive unity for B and C to position to the next column. 

In performing an operation on A and B, Bis treated as a vector having one 

element bi in any given self loop. However, on each successive inner loop i = 1, 2, 

... r. Thus, a different bi is used only when the inner loop increment is used. 

8-12. IMMEDIATE VECTORS 

An immediate single-valued vector is a single-valued vector that has the 

additional restriction that none of the loop increments are active. The vector value 

resides in the vector parameter file itself; thus, the immediate vector is obtained 

from the vector parameter file for all loops and never from central memory. The 

argument vector that is to be immediate is specified by the SV field (see Table 8-1). 

A halfword immediate vector is contained in the right half of the second or the 

third word, as specified. The value of sueh a vector is within the range: 

_21s <;;. i ~ 2 1s _ 1. 

A singleword fixed point immediate vector occupies the entire vector parameter 

file word; i.e., the second or third word as specified. The value of such a vector 

is within the range: -231 < i < 231 - 1. If the HS field is used to denote a starting -address in the right halfword, then the single-valued vector must be A. A single--valued vector B would override the HS field. 

A floating point immediate vector occupies the entire vector parameter file 

word; i.e., the second or third word as specified. This applies to both singleword 

8-11 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

and doubleword operations; the second word of such a vector in a doubleword opera­

tion is treated as being filled with zeros. 

GENERAL FORMS: The general forms of the assembler coded vector parameter 

files for halfword immediate vectors are as follows: 

LABEL 
I 
i : COMMAND : l OPERAND 

_L _j_ _l J_ 

T T 
T Y, 1 [symbol] J6 mnemonic alct, len, sv 

[symbol] ~ 
I 

)$ VCTRA I a, xa or i 

[symbol] JS VCTRA lS 
I 
I i, hs or b, xb, hs 

[symbol] JS VCTRA ~ 
I 
I c, xc, vi 

[symbol] JS DAT AH ~ 
I 

dai, dbi I 

[symbol] JS DATAH Y> 
I dci, ni I 

[symbol] lS DATAH l'> I dao, dbo I 

(symbol] 
_l J6 _l 

DAT AH 
_l }) l deo, no 

For singleword and doubleword immediate vectors the general form is shown below. 

LABEL 1 
.1 
! 

[symbol] 

(symbol] 

[symbol] 

[symbol] 

(symbol] 

[symbol] 

[symbol] 

[symbol] 

1 
l 

COMMAND 

mnemonic 

VCTRA or 
DATA 

DATA or 
VCTRA 

VCTRA 

DAT AH 

DATAH 

DATAH 

DAT AH 

: 
_l 

I 
I lj 
I 
I )'> 
I 
I 

[ OPERAND 
_l 

I 
alct, len, sv 

a, xa or 
i 

i or 
b, xb, hs 

c, xc, vi 

dai, dbi 

dci, ni 

dao, dbo 

dco, no 

Restrictions: Only one of the two argument vectors can be an immediate value. 

A doubleword immediate vector cannot be fully specified; only the first word is 

created and the other (least significant) word is treated as zero. 

8-12 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

(8)1009708 

Figure 8-4. 

YES 

YES 

YES 

VECTOR 
VECTL 

PERFORM 
ELEMENTARY 
OPERATION 

RESET 
LEN 

RESET 
NI 

NEXT 
INSTRUCTION 

LOAD VECTOR 
PARAMETER 
FILE 

INCREMENT 

>--------t-t ~~o:i;..~s.,E~ 
NO DECREMENT LEN 

NO 

NO 

-

INCREMENT 
ADDRESSES 
OFA ANDC 

&~'i:1R0E~1:1~T NI 

INCREMENT 
ADDRESSES 
OFA ANDC 

WtdRE~CJ~T NO 

Flow of Execution with B Single- Valued Immediate 

8-13 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Immediate vector values cannot be modified by an index value. 

Example: Given an operation on argument vectors: 

- - -AoB=C 

- -such that amgt A and B is an immediate vector then the vector parameter file is 

described as follows. The LEN field is m to denote the self loop. The SV field is -seven or fifteen to specify that B is an immediate vector and no loops are active -for B. The inner loop count is q + 1, and the outer loop count is t. Assuming 

that all the elements are stored sequentially, both inner and outer loop increments - -for vectors A and C are positive unity. 

-Note: A might be a 3-array, three vectors, or one vector with (m) (q) (t) ele-

ments. 

8-13. VECTOR ADDRESS DEVELOPMENT 

The starting addresses of the argument vectors, A and B, and the resultant 

-vector, C, and their index registers, if any, are specified in the second, third, 

and fourth words of the vector parameter file. Fields in the third and fourth words 

also specify left or right halfword index word sets and self loop address increment 

directions. 

8-14. DIRECTLY ADDRESSED VECTORS 

Directly addressed vectors are those whose elements are acquired from central 

memory and whose element starting addresses are developed from the address 

fields and index register fields of the vector parameter file. 

The a, b, and c operands of the second, third, and fourth words, respectively, 

of the assembler coded vector parameter file are translated into the 24 bit address 

fields SAA, SAB, and SAC, respectively, of the object vector parameter file. 

The xa, xb, and xc operands of the assembler coded vector parameter file are 

translated into the address index fields XA, XB, and XC, respectively, of the object 

vector parameter file. These three fields address registers in the index register 

file (viz, registers Xl through X7). 

8-14 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

-- -For any given vector A, B, or C, the address developed is the sum of the 24 

bit address and the contents of the index register if one is specified. The index dis­

placement produced is halfword, singleword, or doubleword as appropriate to the 

instruction (see Topics 6-19 and 6-23 for index displacement development). Half­

word index word sets can be started from an initial left halfword or an initial right 

halfword by specifications of the hs operand (see Topic 8-5 ). 

Restrictions: No indirect add res sing of vectors is permitted; thus, the most signi­

ficant bits of the address index fields are ignored. 

The address increments of the vectors in the self loop are ±1 as specified in 

the VI field. The specification of positive or negative incremental direction is 

1hrough the VI field described in Topic 8-17. 

The effective starting address of doubleword vectors must be in an even word 

boundary. 

Note: During execution of a vector parameter file, the addresses are not incre­

mented in the vector registers. The current element address is contained in the 

hardware unit only. The current element addresses within the hardware unit are 

cumulative for all loops - self, inner, and outer. 

8-15. HALFWORD INDEX START SPECIFICATION 

The HS field specifies in which halfword of a central memory word a vector(s) -- -begins. Bits 1, 2, and 3 of the HS field refer to A, B, and C. A bit which is on 

indicates an initial right halfword address. A bit which is off indicates an initial 

left halfword address. 

For a halfword vector instruction, the contents of index registers are used to 

compute the starting addresses of the vectors. The indexed halfword starting -- -addresses of vectors A, B, and Care developed as follows: 

IA= 2 · SAA+ (XA) + HSA 

IB = 2 • SAB + (XB) + HSB 

IC = 2 • SAC + (XC) + HSC 

8-15 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

If the sum of the last two elements of the preceding equations is even, the vec­

tor begins in the left halfword. An odd sum specifies the right halfword. If an 

index register is not specified, that element is treated as O. The final element 

of the equation is zero (left half) or one (right half). 

The most significant bit of the HS field is used to delete indices from the out­

put array for the eight Vector Compare (VC) instructions and the four Vector Peak 

Pick (VPP) instructions. 

If this bit is off, the actual element index values are used for the output array. 

If this bit is on, the index values for the elements which satisfied the operation are 

suppressed. 

8-16. SELF LOOP INCREMENT DIRECTION 

-- -The VI field specifies which vector(s), A, B, or C, if any are arranged with 

their element addresses in decreasing order. Bits 1, 2, and 3 of the VI field cor-
~ ......... ___,.... --+-

res pond to vectors A, B, and C, respectively (bit 1 - A, etc. ). An off bit indicates 

positive unity, and an on bit indicates negative unity. 

The most significant bit of the VI field refers to the count of the number of 

elements which satisfy the vector operation in process. If this bit is off, the out­

put count is the total count for each self loop. If this bit is on, the output count is 

the total count for the vector operation. The MSB of the VI field is also used to 

compute the dot product involving non-contiguous input vectors. When this bit is on 

the dot product can be computed using non-contiguous elements in memory. The 

summation of the products is stored upon completion of each inner loop. 

Restrictions: The self loop element addresses are always incremented or decre­

mented by unity where units are the word size specified by the instruction; i.e., 

halfword, singleword, or doubleword units. There is no provision in the self loop 

for variable increments. 

8-16 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

HS VECTOR INDEX BEGINS 

FIELD FROM HALFWORD 

VALUE - - -A B c 

0 L L L 

1 L L R 

2 L R L 

3 L R R 

4 R L L 

5 R L R 

6 R R L 

7 R R R 

Where L indicates an initial left halfword 

and R indicates an initial right halfword 

for the index word set. 

Table 8-2. Specifications of the HS Field Values 

VI SELF LOOP ELEMENT 

FIELD ADDRESS INCREMENT 

VALUE - - -A B c 

0 +l +l +l 

1 +l +l -1 

2 +l -1 +1 

3 +1 -1 -1 

4 -1 +l +l 

5 -1 +1 -1 

6 -1 -1 +1 

7 -1 -1 -1 

Table 8-3. Specifications of the VI Field Values 

8-17 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

8-17. INNER LOOP SPECIFICATION 

All the inner loop specification fields are halfword fields and can be conve­

niently coded with DATAH directives. 

The DAI, DBI, DCI, and NI fields in the vector parameter file specify the inner 

loop conditions. 

8-18. Inner Loop Vector Address Increments 

The DAI, DBI, and DCI fields specify the inner loop address increments of the 

vectors A, B, and C, respectively. They each are added to the current values of 

the respective vector element addresses at the completion of each but the last self 

loop within the inner loop. This addition occurs in the hardware; the addresses in 

the vector registers are not altered. 

Range: The increment values may be either positive or negative fixed point half­

word values. The values of the DAI, DBI, and DCI fields must be within the range: 

_zlS .s DAI, DBI, DCI s. zl 5 - 1. 

Note: A value of zero in an increment field will cause the first element of the next 

self loop to have the same address as the last element of the currently completed 

self loop. The addresses are not incremented after the last elementary operation 

of the self loop. 

8-19. Inner Loop Count 

The NI field in the vector parameter file specifies the number of times the self 

loop is to be executed. 

Range: The inner loop count is treated as a positive value only, and must be within 

the range: 0 ~ ni s zl6 - 1. 

Note: A value of zero as the inner loop count causes a NO OPERATION. The outer 

loop specifications will not be examined, and the self loop will not be executed. 

A value of one as the inner loop count causes the outer loop count to be checked 

for a value greater than one. The vector increments for the inner loop are not to 

be made. 

8-18 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

8-20. OUTER LOOP SPECIFICATION 

The DAO, DBO, DCO, and NO fields in the vector parameter file specify the 

outer loop conditions. All the outer loop specification fields are halfword fields and 

can be conveniently coded with DAT AH directives. 

8-21. Outer loop Vector Address Increments 

The DAO, DBO, and DCO fields specify the outer loop address increments of 

the vectors A, B, and C, respectively. They each are added to the current values 

of the respective vector element addresses at the completion of each but the last 

inner loop within the outer loop. This addition occurs in the hardware; the addresses 

in the vector registers are not altered. 

Range: The increment values may be either positive or negative fixed point half­

word values, and must be within the range: -2 15 s DAO, DBO, DCO s 2 15 - 1. 

Note: A value of zero in an increment field causes the first element of the next self 

loop to have the same address as the last element of the currently completed self 

loop. The addresses are not incremented by either the self loop increment or the 

inner loop increment after the last elementary operation of the self loop in any 

given loop phase. 

8-22. Outer Loop Count 

The NO field in the vector parameter file specifies the number of times the 

inner loop is to be executed. 

Range: The outer loop count is treated as a positive value only, and must be within 

the range: 0 s NO s 216 - 1. 

Note: A value of zero or one as the outer loop count causes the vector to be a NO 

OPERATION. The self loop and inner loop will not be executed. 

8-23. PROGRAM INTERRUPTS 

The elementary operations between any two elements of the argument vectors 

are subject to the same program interrupts as their scalar counterparts. 

8-19 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

The maskable interrupts (the arithmetic exception conditions: fixed point over­

flow, floating point exponent overflow, floating point exponent underflow, and divide 

check) when masked off permit the vector operation to run to completion; when 

masked on, the vector operation terminates on occurrence of the exception con­

dition. See Topics 6-56 and 6-62 for a discussion of the program status double­

word and the arithmetic exception condition mask. 

The unmaskable interrupts, such as specification errors for doubleword ele­

ments addressed on odd-even word boundaries, will cause termination of the vec-

tor operation whenever they are encountered. 

8-24. VECTOR HAZARD 

Because of the buffering scheme used to implement the vector operations, a 

condition known as the vector hazard condition exists. Essentially, it involves 

those cases in which it is desired to have the elements of the resultant vector 

stored in the same locations as the elements of one of the argument vectors and 

immediately reusing the new data in the same vector operation. 

The Vector Hazard Rule may be stated: 

A Vector hazard condition exists when the addresses of the current 

octet of elements or the addresses of the next two octets of ele-- -ments of argument vectors A or B are the same as the addresses 

of the current octet of elements or the addresses of the past three 

-octets of elements of the resultant vector C. 

-When the vector hazard condition occurs, the old data in the elements of A or -B are used rather than the new (processed) data represented by the elements of the -resultant vector C. 

8-25. VECTOR ARITHMETIC INSTRUCTIONS 

A vector arithmetic instruction causes the specified arithmetic operation to be 

performed on two correlated elements (one each from two argument vectors), and 

causes the result to be stored as the element of a resultant vector. The order in 

8-20 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

- -which the A and B elements are operated upon and the order in which the resulting 

values are stored are dependent upon the respective self, inner, and outer loop 

increments. The other parameters in the vector parameter field cause identical 

operations to be performed on specified elements of the vectors until the self, inner, 

and outer loops are satisfied. 

Note: In the following instruction descriptions, the following notation is used: 

-A is a vector with elements a1, a2, ... , an; 

The elements appear sequentially in memory although not necessarily 

contiguously. 

The subscripts appear in sequence in the examples for convenience only. This 

is not required in the actual vector operation. 

Fortran instructions are used to describe more easily the vector operations. 

The resulting vector parameter file is also included. 

8-26. VECTOR ADD INSTRUCTIONS 

-- --A vector add instruction, with argument vectors A and B, produces a self loop 
~ ~ ......... -+-

resultant vector C where C = A + B. 

The alignment of the various elements for addition in the inner and outer loops 

may be displaced by the inner and outer loop increments. 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONIC 

VA vector add, fixed point singleword elements 

VAH vector add, fixed point halfword elements 

VAF vector add, floating point singleword elements 

VAFD vector add, floating point doubleword elements 

8-21 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Example: 

DIMENSION C(lO, 20), A(lO, 20), B(lO, 20) VECTOR, PARAMETER FILE - - -C=A+B 
VAF 0, 10 

VCTRA A 

VCTRA B 

VCTRA c 
DATAH 1, 1 

DATAH 1,20 

DATAH 0,0 

DATAH 0, 1 

8-27. VECTOR ADD MAGNITUDE INSTRUCTIONS 

- ·--A vector add magnitude instruction, with argument vectors A and B produces a 
~ ~ ~ .......... 

self loop resultant vector C, where C = A + \Bl . 

The alignment of the various elements for addition in the inner and outer loops 

may be displaced by the inner and outer loop increments. 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONIC 

VAM 
vector add magnitude, fixed point singleword elements 

VAMH vector add magnitude, fixed point halfword elements 

VAMF vector add magnitude, floating point singleword elements 

VAMFD vector add magnitude, floating point doubleword elements 

Example: 

DIMENSION C(lO, 20) A(lO, 20), B(lO, 20) VECTOR PARAMETER FILE - - -C=A+B 
VAF 0, 10 

VCTRA A 

VCTRA B 

VCTRA C 

8-22 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Example: (continued) 
VECTOR PARAMETER FILE 

8-28. VECTOR SUBTRACT INSTRUCTIONS 

DATAH 

DAT AH 

DATAH 

DATAH 

- -

1, 1 

1,20 

0,0 

0' 1 

A vector subtract i.nstruction, wi.th argument vectors A and Bj produces a 
......... ~ ~ .___.. 

self loop resultant vector C where C = A - B. 

The ali.gnment of the vari.ous elements for subtracti.on i.n the i.nner and outer 

loops may be di.splaced by the i.nner and outer loop i.ncrements. 

ASSEMBLER 
MNEMONIC OPERATION SPECIFIED 

vs vector subtract, fixed point singleword elements 

VSH vector subtract, fixed point halfword elements 

VSF vector subtract, floating point singleword elements 

VSFD vector subtract, floating point doubleword elements 

Example: 

DIMENSION C(lO, 20), A(lO, 20), B(lO, 20) VECTOR PARAMETER FILE - - -C=A-B 
VSF 0, 10 

VCTRA A 

VCTRA B 

VCTRA c 
DATAH 1 ' 1 

DATAH 1' 20 

DATAH 0, 0 

DATAH 0, 1 

8-23 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

8-29. VECTOR SUBTRACT MAGNITUDE INSTRUCTIONS 

- -A vector subtract magnitude instruction with argument vectors A and B, pro-
__... ~~~ 

duces a self-loop resultant vector C where C =A - IBI. 

The alignment of the various elements for subtraction in the inner and outer 

loops may be displaced by the inner and outer loop increments. 

ASSEMBLER OPERATION SPECIFIED 
MNEMONIC 

VSM vector subtract magnitude, fixed point singleword elements 

VSMH vector subtract magnitude, fixed point halfword' elements 

VSMF vector subtract magnitude, floating point singleword elements 

VSMFD vector subtract magnitude, floating point doubleword elements 

Example: 

DIMENSION C(lO, 20), A(lO, 20), B(lO, 20) VECTOR PARAMETER FILE -- - -C =A - IBI 
VSMF 0, 10 

VCTRA A 

VCTRA B 

VCTRA c 
DATAH 1, 1 

DATAH 1,20 
°'v--

DAT AH 0,0 

DATAH 0' 1 

8-24 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

8-30. VECTOR MULTIPLY INSTRUCTIONS 

·- -A vector multiply instruction, with argument vectors A and B, produces a self 
......... ...... ....... ~ 

loop resultant vector C where C = A x B. 

The alignment of the various elements for multiplication in the inner and outer 

loops may be displaced by the inner and outer loop increments. 

ASSEMBLER 
MNEMONIC 

OPERATION SPECIFIED 

VM vector multiply, fixed point sineleword argument elements 

VMH vector multiply, fixed point halfword argument elements 

VMF vector multiply, floating point singleword elements 

VMFD vector multiply, floating point doubleword elements 

Limitations: The instructions VM and VMH do not specify the element length of the 

result elements. See Topic 8-10 for the method of specification. 

Note: The instruction VM causes 64 bit products to be generated in the arithmetic -unit. If the MSB of the SV field is off, indexing on the resultant vector C is treated 

as a doubleword. If singleword results are specified (MSB of SV field is on), the -least significant 32 bits of that product are stored in the resultant vector C. Over-

flow is detected. 

Note: The instruction VMH causes 32 bit products to be generated in the arithmetic -unit. If the MSB of the SV field is off, indexing on the resultant vector C is treated 

as a fullword. If halfword results are specified (MSB of SV field is on), the least -significant 16 bits of that product are stored in the resultant vector C. Overflow 

is detected. 

8-25 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR. 



PROGRAMMER 1S GUIDE TO THE CENTRAL PROCESSOR 

Example: 

DIMENSION C(lO, 20), A(lO, 20), B(lO, 20) VECTOR PARAMETER FILE 

VMF 0, 10 

VCTRA B 

VCTRA A 

VCTRA c 
DATAH 1, 1 

DATAH 1,20 

DATAH 0, 0 

DATAH 0, 1 

8-31; VECTOR DOT PRODUCT INSTRUCTIONS 

The vector dot product operates on two vectors and produces a scalar output. 

- -The operation sums the products of the elements of A and B addressed in the self -loop and stores the scalar result in the address designated by C. Following the exe--- -cution of the self loop the A, B and C addresses are modified by the specified inner 

and outer loop increments. Since the self loop is used in the dot product, the ele-
~ ....... _...... _.. 

ments of A and B must be contiguous. The self loop is never applied to C as C is 

single-valued. 

Algebraically, the dot product is: 

m 

Ci= L 
j=l 

a·• b· J J 
-Ci E C, i = 1, n 

where n and mare integers denoting the number of elements in the vectors. 

·-The sparse dot product is the dot product of non-contiguous elements of A and -B. In order to obtain the sum of non-contiguous elements, the MSB of the VI field 

is set. This allows accumulation of the products over the whole vectors rather than 

storing the results at the completion of each self loop. This produces a scalar result 

and can never result in a vector. 

8-26 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONIC 

VDP vector dot product, fixed point singleword argument elements 

VDPH vector dot product, fixed point halfword argument elements 

VDPF vector dot product, floating point singleword elements 

VDPFD vector dot product, floating point doubleword elements 

Limitations: The instructions VDP and VDPH do not specify the element length of 

the result elements. See Topic 8-10 for the method of specification. 

Note: The instruction VDP causes 64 bit dot products to be generated in the arith--metic unit. If the MSB of the SV field is off, indexing on the resultant vector C is 

trea'ted as a doubleword. If singleword results are specified (MSB of SV field is -on), the least significant 32 bits of that dot product are stored in vector C. Over-

flow is detected. 

Note: The instruction VDPH causes 32 bit dot products to be generated in the arith­

metic unit. If the MSB of the SV field is off, indexing on the resultant vector is 

treated as a fullword. If halfword results are specified (MSB of SV field is on), 

the least significant 16 bits of that dot product are stored in the resultant vector. 

Overflow is detected. 

Example 1: The following illustrates a dot product: 

DIMENSION X(lO), Y(lO) 

DOTPR = O 

VECTOR PARAMETER FILE 

VDPF 0,10,8 
DO 10 I= 1,10 

VCTRA y 

10 DOTPR = DOTPR + X(I) * Y(I) 
VCTRA x 
VCTRA DOT PR 

DATAH 0,0 

DATAH 0, 1 

DAT AH 0,0 

DAT AH 0, 1 

8-27 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Example 2: The following illustrates a spare dot product: 

DIMENSION X(lO), Y(lO) 

DOTPR = 0 

VECTOR PARAMETER FILE 

VDPF 0, 1, 13 
DO 30I=1,10,2 

VCTRA y 

30 DOTPR = DOTPR + X(I) >:< Y(I) 
VCTRA x 
VCTRA DOTPR,, 8 

DATAH 2,2 

DATAH 0,5 

DATAH 0,0 

DATAH 0, 1 

MATRIX-MATRIX MULTIPLY 

DIMENSION D(20, 20)A(l0, 20) B(lO, 20) VECTOR PARAMETER FILE 

DO 20 J = 1, 20 

DO 20 I= 1, 20 

D(I, J) = 0 

DO 2 0, K = 1 , 10 

20 D(I, J) = D(I, J) + A(K, J) * B(K, I) 

8-32. VECTOR DIVIDE INSTRUCTIONS 

VDPF 

VCTRA 

VCTRA 

VCTRA 

DATAH 

DATAH 

DATAH 

DATAH 

- -

0, 10, 8 

B 

A 

D 

1, -9 

1,20 

-199, 1 

1, 20 

A vector divide instruction, with argument vectors A and B, produces a self 
~ ...... ~~ 

loop resultant vector C where C = A/B. 

The alignment of the various elements for division in the inner and outer loops 

may be displaced by the inner and outer loop increments. 

8-28 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSEMBLER OPERATION SPECIFIED 
MNEMONIC 

VD vector divide, fixed point singleword argument elements 

VDH vector divide, fixed point halfword argument elements 

VDF vector divide, floating point singleword elements 

VDFD vector divide, floating point doubleword elements 

Limitations: The instructions VD and VDH do not specify the element length of the 

-dividend elements (vector A). See Topic 8-10 for the method of specifications. 

Note: If the relative values of dividend and divisor are such that the quotient 

cannot be expressed in 32 bits, overflow occurs and the output result is un­

predictable. 

Note: The instruction VDH causes 16 bit quotients to be generated from 16 bit -divisors (vector B elements) and either 32 bit dividends (MSB of SV field is on) or 

16 bit dividends (MSB of SV field is off). Indexing of the resultant vector is by full­

words if the MSB is on and by halfwords if the MSB is off. If the relative values of 

dividend and divisor are such that the quotient cannot be expressed in 16 bits, over­

flow occurs and the output result is unpredictable. 

Example: 

DIMENSION C(lO, 20), A(lO, 20), B(lO, 20) VECTOR PARAMETER FILE 

~ ~~ 

C = A/B VDF 0,10,8 

VCTRA A 

VCTRA B 

VCTRA c 
DATAH 1, 1 

DATAH 1,20 

DATAH 0,0 

DATAH 0, 1 

8-29 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

8- 33. VECTOR LOGICAL INSTRUCTIONS 

A vector logical instruction causes the specified logical operation to be per­

formed on two correlated elements (one from each argument vectors), and causes 

the result to be stored as an element of a resultant vector. The other parameters 

in the vector parameter file cause identical operations to be performed on sequen­

tial elements of the vectors until the self, inner, and outer loops are satisfied. 

- -In terms of the self loop only, given argument vectors A and B and a resultant 

vector C, where C = A © -B. 

Any given elementary operation is defined the same as its scalar counterpart. 

ASSEMBLER 
MNEMONIC 

VAND 

VANDD 

VOR 

VORD 

VXOR 

VXORD 

VEQC 

VEQCD 

Example: 

OPERATION SPECIFIED 

vector AND, singleword elements 

vector AND, doubleword elements 

vector OR, singleword elements 

vector OR, doubleword elements 

vector exclusive OR, singleword elements 

vector exclusive OR, doubleword elements 

vector equivalence, singleword elements 

vector equivalence, doubleword elements 

DIMENSION LC(lO), LA(lO), LB(lO) 

LC= AND (LA, LB) 

VECTOR PARAMETER FILE 

VAND 0, 10, 8 

VCTRA LB 

VCTRA LA 

VCTRA LC 

DAT AH 0,0 

DAT AH 0, 1 

DATAH 0,0 

DAT AH 0, 1 

8-30 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

LC = OR (LA, LB) VOR 0, 10, 8 

VCTRA LB 

VCTRA LA 

VCTRA LC 

DAT AH 0, 0 

DAT AH 0, 1 

DAT AH 0, 0 

DAT AH 0, 1 

LC= XOR (LA, LB) VXOR 0, 10, 8 

VCTRA LB 

VCTRA LA 

VCTRA LC 

DAT AH 0,0 

DAT AH 0, 1 

DAT AH 0,0 

DAT AH 0, 1 

LC = EQU (LA, LB) VEQC 0, 10, 8 

VCTRA LB 

VCTRA LA 

VCTRA LC 

DAT AH 0,0 

DAT AH 0, 1 

DAT AH 0, 0 

DAT AH 0, 1 

8-34, VECTOR SHIFT INSTRUCTIONS 

-A vector shift instruction causes the elements of the argument vector A to be -shifted left or right the number of bit positions specified in B and causes the results 

to be stored as elements of a resultant vector. Vector B can be an immediate value 

or a vector composed of halfwords containing the shift counts. 

8-31 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

-In terms of the self loop only, given argument vector A and a shift count sc, 
6 6 __..__..... ........ 

where -2 ~ sc ~ 2 - 1, C = A where the elements of A are shifted sc positions to -produce C. 

A negative shift ,count causes a right shift and a positive shift count causes a 

left shift. 

ASSEMBLER 
MNEMONIC 

VSA 

VSAH 

VSAD 

VSL 

VSLH 

VSLD 

vsc 
VSCH 

VSCD 

Example: 

OPERATION SPECIFIED 

vector arithmetic shift, fixed point singleword elements 

vector arithmetic shift, fixed point halfword elements 

vector arithmetic shift, fixed point doubleword elements 

vector logical shift, singleword elements 

vector logical shift, halfword elements 

vector logical shift, doubleword elements 

vector circular shift, singleword elements 

vector circular shift, halfword elements 

vector circular shift, doubleword elements 

DIMENSION LC(lO), LA(lO), LB(lO) 

LC = ASHF (LA, -3) 

VECTOR PARAMETER FILE 

VSA 0, 10, 7 

VCTRA LA 

VCTRA #FFFFFFFD 

VCTRA LC 

DATAH 0,0 

DATAH 0, 1 

DATAH 0, 0 

DATAH 0, 1 

8-32 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

VECTOR PARAMETER FILE 

LC = LSHF (LB, 20) VSL 0, 10, 7 

VCTRA LB 

VCTRA #00000014 

VCTRA LC 

DAT AH 0, 0 

DAT AH 0, 1 

DAT AH 0, 0 

DAT AH 0, 1 

LC = SLHF (LB, 10) VSL 0, 10, 7 

VCTRA LB 

VCTRA #OOOOOOOA 

VCTRA LC 

DAT AH 0, 0 

DAT AH 0 1 
' 

DAT AH 0,0 

DAT AH 0, 1 

8-35. VECTOR MERGE INSTRUCTIONS 

A vector merge instruction causes elements to be acquired alternately from - -the two argument vectors A and B, anc. causes them to be merged into a resultant -vector C. 

- -In terms of the self loop only and given arguments vectors A and B, with -n elements, respectively, c = (a1, b1, az, bz, ... ' an, bn) 

Note: Use of a single-valued vector as either argument vector would produce alter-- -nate identical elements in the resultant vector; e.g., given A and single-valued B 
__,._ 

then c = (a1, b1, az, b1, ... 'amb1). 

Note: The lengths of the input vectors must be the same if not a single valued or 

immediate valued vector. 

8-33 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONIC 

VMG vector merge, singleword elements 

VMGH vector merge, halfword elements 

VMGD vector merge, doubleword elements 

Example: 

- - -C=AoB VECTOR PARAMETER FILE 

-A= (0, 2,4, 6, 8) VMG 0,5,0 -B = (1,3,5,7,9) VCTRA A 

Then, VCTRA B -·c = (O, 1, z, 3,4, 5, 6, 7, 8, 9) VCTRA c 
DATAH 0,0 

DATAH 0, 1 

DATAH 0, 0 

DATAH 0, 1 

8-36. VECTOR ORDER INSTRUCTIONS 

A vector order instruction performs an arithmetic comparison of the elements ..... ........ ....... ...... 
of vectors A and B, such that the smaller element, whether from A or B, is the -next element to be stored in the output vector C. If two equal values are compared 

....... ~ ~ ........ ·-+-
from A and B, the value from A is stored in C and the value in B is retained for -comparison with the next element of A. 

- -The input vectors A and B must be of a special form, (e1, ez, .•. , en, R.) 

where ei are the elements of the vector and R. is the boundary limit. The boundary 

limit is the largest positive number possible in the designated form (see following 

table). The boundary limits at the end of the argument vectors are necessary to -prevent overrunning the end of the first vector exhausted. For vectors A with m - -elements and B with n elements, vector C may contain as many as m + n - 1 element! 

Thus, LEN $ m + n - 1. If A or B is immediate single valued, LEN may be any 

length desired. 

8-34 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

- --Note: The boundary limits for A and B are equal, thus only the boundary limit for - -A is stored in C which then contains one element less than the total of elements in - -A and B (i.e., m + n - 1 ). 

ASSEMBLER 
OPERATION SPECIFIED 

BOUNDARY 
MNEMONIC LIMIT 

VO vector order, fixed point singleword elements 7FFF FFFF 

VOH vector order, fixed point halfword elements 7FFF 

VOF vector order, floating point singleword ele- 7FFF FFFF 
men ts 

VOFD vector order, floating point doubleword ele- FFFF FFFF 
men ts 

Restriction: The resultant vector must not be written over either argument vector; 

the restart condition for a vector order instruction begins from the initial argument 

elements. 

- -Floating point vectors A and B must be normalized prior to use in a vector 

order instruction. 

Limitations: Vector order instructions operate on only the self loop; values for the 

inner and outer loops are ignored. 

If the HS field is to be used and an immediate single-valued vector is used, the -immediate vector must be vector A. 

Example: 

-- - -C=AoB 

A= (0,3,7,2,5,Q) 

B=(2,9,l,4,Q) 

Then, 

c = (0,2,3,7,2,5,9,1,4,R) 

8-35 

VECTOR PARAMETER FILE 

VO 0, 10, 0 

VCTRA A 

VCTRA B 

VCTRA c 
DATAH 0,0 

DATAH 0, 1 

DATAH 0,0 

DATAH 0, 1 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

-Example: B is Immediate Single-Valued Vector 

- - -C=AoB VECTOR PARAMETER FILE -A= (0,1,2,3,4,5,4,7,1,Q) VO 0, 9, 15 -B = (5) VCTRA A 

Then, VCTRA 5 -c = (0, 1,2,3,4,5,4,5,5) VCTRA c 
DAT AH 0,0 

DAT AH 0, 1 

DAT AH 0, 0 

DATAH 0, 1 

-. Example: A is Immediate Single-Valued Vector 

- - -C=AoB -A= (5) 

B= (0,1,2,3,4,5,1,1,£) -c = (0, 1,2,3,4,5,5,5,5) 

- -If A is the single-valued vector, the element value (5) in B is continuously com-

pared to the single-valued vector. 

8-37. VECTOR COMPARE INSTRUCTIONS 

A vector compare instruction causes the specified comparison to be made be­

tween corresponding elements of two argument vectors, and causes the index num­

bers of the true comparisons to be stored as halfword elements of a resultant 

vector, beginning in the second halfword. 

At the completion of each self loop the count of the number of true conditions 

is stored in the first halfword of the resultant vector. 

Various information is obtained using the most significant bits of the ALCT, VI, 

and HS fields. 

The high order bit of ALC T field, if on, indicates that the vector operation is 

to terminate on the first true compare. 

8-36 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER 1S GUIDE TO THE CENTRAL PROCESSOR 

The high order bit of the VI field, if on, indicates that item counts will not be 

stored for the index vector produced during each self loop. A total item count (re­

presenting the sum of the item counts which would have been stored if the MSB had -been on) is still recorded at the beginning of the C vector immediately prior to 

termination of the vector operation. 

The high order bit of the HS field, if on, indicates that no index values are to 

be stored into the output vector. 

High order bit of: 

VI 

0 

0 

0 

0 

1 

1 

1 

1 

HS 

0 

0 

1 

1 

0 

0 

1 

1 

ALCT 

0 

1 

0 

1 

0 

1 

0 

1 

Results in: 

Store count and indices for each self loop. 

Terminate on first true compare-store count and 
index. 

Store count only for each self loop. 

Terminate on first true compare-store count only. 

Store indices only for each self loop, total count 
stored at termination. 

Effectively same as 001. 

Store total count only at termination. 

Effectively same as 011. 

Table 8-4. Specifications of the VI, HS, and ALC T Fields 

Low Order 3 Bits of: Comparison True if: 

ALCT Arithmetic Logical 

0 Never true Never true 

1 Aj = Bj All bits zero 

2 Aj > Bj All bits ones 

3 Aj ~ Bj Not mixed zeros and ones 

4 Aj < Bj. Mixed zeros and ones 

5 Aj ~ Bj Not all ones 

6 Aj #- Bj Not all zeros 

7 Always true Always true 

Table 8-5. Specifications of the ALCT Values 

8-37 

THE VECTOR INSTRUCTIONS FOR THE CENTAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Restrictions: Floating point argument vector elements must be normalized prior to 

the vector comparison. 

-Limitations: The elements of the resultant vector C are limited to halfword posi-

tive integers; i.e., the values of the indices of the argument vectors are limited to 

the range : 0 ~ j ~ z l 6 - 1. 

If the HS field is to be used and one of the argument vectors is to be an imme--diate single-valued vector, the immediate vector must be vector A; i.e., the second 

word of the vector parameter file. 

-Note: A zero will be stored as the first and only element, ci, of vector C for any 

self loop in which a true comparison is not found. 

8-38, VECTOR COMPARE ARITHMETIC INSTRUCTIONS 

A vector compare arithmetic instruction compares elements of two argument - -vectors, A and B, for aj > bj, aj = bj, or aj < bj. The result of this comparison is 

tested for true against the ALCT field, and the indices of the elements satisfying -the comparison are stored as elements of a resultant vector C. See Table 8-5 for 

the ALCT field. 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONIC 

vc vector compare arithmetic, fixed point singleword elements 

VCH vector compare arithmetic, fixed point halfword elements 

VCF vector compare arithmetic, floating point singleword elements 

VCFD vector compare arithmetic, floating point doubleword elements 

8-39, VECTOR COMPARE LOGICAL INSTRUCTIONS 

A vector compare logical instruction compares the result of a logical opera-- -tion on elements of two argument vectors, A and B, to be checked for all bits on, 

all bits off, or bits mixed on and off. The result is compared to the ALCT field, 

and the indices of the elements which satisfy the comparison are stored as elements 
....... -·-

of a resultant vector C. See Table 8-4 and Table 8-5. 

8-38 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Restrictions: There are no vector compare logical halfword instructions. 

ASSEMBLER OPERATION SPECIFIED 
MNEMONIC 

VCAND vector logical comparison using AND, singleword 

VCANDD vector logical comparison using AND, doubleword 

VCOR vector logical comparison using OR, singleword 

VCORD vector logical comparison using OR, doubleword 

8-40. VECTOR PEAK PICKING INSTRUCTIONS 

A vector peak picking instruction records the sign changes between elements 

of a vector by storing the respective index in the resultant vector. When all peaks 

and valleys (sign changes) have been found and their indexes stored, the count is 

stored as the first element of the resultant vector. 

The algorithm for the vector peak picking instruction is as follows: 

i = 1, 2, ... , n 

If the sign of Yi is different than the sign of Yi+l• then the index value, i, is stored. 

If the signs are the same, no value is stored. When the value of Yi+ 1 is zero, Yi+ 1 

is considered to retain the sign of the last non-zero value of Yi. 

The MSB of the ALCT field determines whether the operation is to continue 

for all elements of the input vector or to terminate after the first change is detected. 

If the bit is off, all elements are tested; if the bit is on, the operation terminates 

after the first valley or peak is detected. 

The MSB of the HS and VI fields are used as described previously. Thus, the 

self loop count and index values may be suppressed. 

Restrictions: When a floating point argument vector is specified, the elements of 

the argument vector must be normalized prior to the peak picking operation. 

8-39 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Limitations: The values of the indices of the argument vector are limited to the 

range: 0 'f. i ~ 2 16 - 1 (positive halfword integers). 

Inflection points and the leading edges of plateaus are not detected, 

- -Irrelevant Fields: The B address and B address index fields are ignored. 

-Note: A zero is stored as the first and only element, c 1, of vector C for any self 

loop in which a peak is not found. 

ASSEMBLER 
OP ERA TION SPECIFIED 

MNEMONIC 

VPP find vector peaks, fixed point singleword elements 

VPPH find vector peaks, fixed point halfword elements 

VPPF find vector peaks, floating point singleword elements 

VPPFD find vector peaks, floating point doubleword elements 

8-41. VECTOR SEARCH INSTRUCTIONS 

A vector search instruction causes every element of the argument vector to be 

compared to every other element of the argument vector, and causes the index num­

ber of the largest element or the smallest element, as specified, to be stored as a 

single-valued halfword resultant vector for each self loop. 

Restrictions: The elements of the argument vector must be normalized prior to the 

search operation when a floating point search is specified. 

-The HS field is deactivated if the SV field specifies B as an immediate vector. 

Limitations: The values of the indices of the argument vector are limited to the 

range: 0 <,; i <,; 216 - 1 (positive halfword integers). 

Irrelevant Fields: The ALCT, SAB, and SB fields are ignored. 

Note: If there are two or more equal elements which are the largest (or smallest) 

elements, the index number stored is that of the first encountered in the search. 

8-40 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Example: The following illustration shows the vector peak picking instruction. 

+2 

l/l +1 
II.I 
:::> 
.J 0 
c( 
> 

t< -1 

-2 

i--

-

f) INDICATES PEAK PICK ITEM POINT 

THE FIRST AND LAST ITEMS OF A 
CAN NEVER BE PEAK PICK ITEM 
POINTS 

A ( singleword s) C (halfwords) 

0 
1 
2 
1 
1 
2 
2 

-2 
-1 
-1 

1 

4 
2 
4 
6 
7 

8-42. VECTOR SEARCH FOR LARGEST ELEMENT INSTRUCTIONS 

A vector search for the largest element instruction causes the index value of 

the algebraically largest element of the argument vector to be stored as a single­

valued halfword resultant vector in the self loop. 

-An inner loop count may be applied, thus resulting in a vector C containing 

elements each being the index of the algebraically largest element in each self 

loop. 

ASSEMBLER OPERATION SPECIFIED 
MNEMONIC 

VL find largest element, fixed point singleword elements 

VLH find largest element, fixed point halfword elements 

VLF find largest element, floating point singleword elements 

VLFD find largest element, floating point doubleword elements 

8-41 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Note: If there are two or more equal elements that are larger than all others, the -index of the first encountered is stored as the self loop element of C. 

Example: The following is an example of a vector search for largest element 

instruction. 

Example 1 • VL 

A (singlewords) 

-33 
0 
5 

-10 
7 
5 

10 
-45 

· C (halfwords) 

6 

8-43. VECTOR SEARCH FOR LARGEST MAGNITUDE INSTRUCTIONS 

The vector search for largest magnitude instruction searches the argument 

vector for an element of the largest absolute value. The index of this element is 

stored as a single-valued halfword resultant vector in the self loop. 

ASSEMBLER 
OPERATION SPECIFIED MNEMONIC 

VLM find element of largest absolute value, fixed point singleword 
elements 

VLMH find element of largest absolute value, fixed point halfword 
elements 

VLMF find element of largest absolute value, floating point single-
word elements 

VLMFD find element of largest absolute value, floating point double-
word elements 

8-42 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Note: If there are two or more equal elements whose absolute values are larger 

than all others, the index of the first encountered is stored as the self loop ele--ment of C. 

Example: The following assembler code and illustration shows a simple search for 

largest magnitude. 

Example 2. VLM 

A (singlewords) 

-33 
0 
5 

-10 
7 
5 

10 
-45 

C (halfwords) 

7 

8-44. VECTOR SEARCH FOR SMALLEST ELEMENT INSTRUCTIONS 

A vector search for the smallest element instruction causes the index value of 

the algebraically smallest element of the argument vector to be stored as a single­

valued halfword resultant vector in the self loop. 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONIC 

vss find smallest element, fixed point singleword elements 

VSSH find smallest element, fixed point halfword ele:r.p.ents 

VSSF find smallest element, floating point singleword elements 

VSSFD find smallest element, floating point doubleword elements 

Note: If there are two or more elements that are smaller than all others, the index -of the first encountered is stored as the self loop element of C. 

8-43 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Example: The following assembler code and illustration shows a simple search for 

smallest elements. 

Example 3. VSS 

A (singlewords) -C (halfwords) 

-33 
0 
5 

-10 
7 
5 

10 
-45 

7 

8-45. VECTOR SEARCH FOR SMALLEST MAGNITUDE INSTRUCTIONS 

A vector search for the smallest magnitude instruction causes the index value 

of the smallest absolute value element of the argument vector to be stored as a 

single-valued halfword resultant vector. 

ASSEMBLER OPERATION SPECIFIED 
MNEMONIC 

VSSM find element of smallest absolute value, fixed point single -
word elements 

VSSMH find element of smallest absolute value, fixed point half-
word· elements 

VSSMF find element of smallest absolute value, floating point single-
word elements 

VSSMFD find element of smallest absolute value, floating point double-
word elements 

Note: If there are two or more elements whose absolute values are smaller than 

all others, the index of the first encountered is stored as the self loop element -of C. 

8-44 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Example: The following assembler code and illustration shows a search for smallest 

magnitude. 

Example 4. V SM 

A ( Singlewo rd s) 

-33 
0 
5 

-10 
7 
5 

10 
-45 

8-46. VECTOR CONVERSION INSTRUCTIONS 

C (halfwords) 

1 

A vector conversion instruction causes the fixed or floating point elements of -the argument vector A to be converted to floating or fixed point elements of vector - --c according to the scale factor(s) of vector B. 

See Topics 7-145 and 7-146 for the algorithms for the elementary conversion 

operations. 

8-47. CONVERT FLOATING POINT ELEMENTS TO FIXED POINT ELEMENTS 

A convert floating point elements to fixed point elements instruction causes the 

floating point elements of vector A to be converted to fixed point values according 

·-to the halfword scale factors (fixed point values) of vector B, and causes the fixed -point values to be stored as the elements of vector C. 

8-45 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

-
ASSEMBLER 
MNEMONIC 

OPERATION SPECIFIED 

VFLFX convert floating point singleword elements to fixed point 
singleword elements 

VFLFH convert floating point singleword elements to fixed point half-
word· elements 

VFDFX convert floating point doubleword elements to fixed point 
singleword elements 

Restrictions: The scale factors are the right halfwords of the singleword elements - -of vector B; i.e., vector B loops and indexes are by singleword increments. 

-Limitations: The scale factors (elements of vector B) are restricted to the range: 

-Z 15 S sf ~ z 15 - 1. 

Note: These instructions all differ from their scalar counterparts in that these 

scale factors are in right halfwords of singlewords, whereas scalar scale factors 

are normally in the left halfword with halfword addressing (i.e., left halfword 

index word sets). 

8-48. CONVERT FIXED POINT ELEMENTS TO FLOATING POINT ELEMENTS 

A convert fixed point elements to floating point elements instruction causes 

--the fixed point elements of vector A to be converted to floating point values accord--ing to the halfword scale factors (fixed point vaJues) of vector B, and causes the 

floating point values to be stored as the elements of vector C. 

ASSEMBLER OPERATION SPECIFIED 
MNEMONIC 

VFXFL convert fixed point singleword elements to floating point 
singleword elements 

VFXFD convert fixed point singleword elements to floating point 
doubleword elements 

VFHFL convert fixed point halfword elements to floating point single-
word elements 

VFHFD convert fixed point halfword elements to floating point double-
word elements 

8-46 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Restrictions: For the fixed point singleword arguments (instructions VFXFL and 

VFXFD), the scale factors are the right halfwords of the singleword elements of 

- -vector B; i.e., vector B loops and indexes are by singleword increments. The in-

structions operating on fixed point halfword arguments have halfword elements in ·- - -vector B, also; i.e., the HS field is effective for both vectors A and B. 

Limitations: The scale factors are restricted to the range: _zl5 ~ sf ~ zl5 - 1. 

Note: These instructions all differ from their scalar counterparts in that these 

scale factors are in right halfwords of singlewords, whereas scalar scale factors 

are normal in the left halfword with halfword addressing (i.e., left halfword index 

word sets). 

8-49.· VECTOR NORMALIZE INSTRUCTIONS 

A vector normalize instruction shifts each of the fixed point elements of the 

argument vector left until the two most significant bits of each element differ (01 

or 10), counts the number of bits positions each is shifted, and causes the normal­

ized fixed point values and the negatives (two's complement) of their respective 

shift counts to be stored as the elements of the resultant vector. An element hav-

ing a value of zero is considered to be normalized and to have a scale factor of 

-32. 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONICS 

VNFX normalize fixed point singleword elements 

VNFH normalize fixed point halfword elements 

NORMALIZE SINGLEWORDS (VNEX): In terms of the self loop only, given argu-

- - -ment vector A, a resultant vector C is produced where each element of C is the 

- -corresponding element of A. Each element in C is a doubleword element with the -normalized element of A in the first word of the doubleword and with the two 1 s 

complement scale factor in the (right) halfword of the second word. The unused 

halfword is filled with zeros. 

8-47 

THE V_ECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

NORMALIZE HALFWORDS (VNFH): In terms of the self loop only, given argu-- - -ment vector A, a resultant vector C is produced where each element of C is the -corresponding element of A. The resulting element is a singleword element with -the normalized element of A in the left halfword and with the two's complement 

scale factor in the right halfword. 

Limitations: The scale factors are restricted to the range: _zl5 S sf SO. 

- -Irrelevant Fields: The B address and B address index fields in the third word of 

the vector parameter file are ignored. 

Note: Zeros are entered at the right as the value is shifted left. 

8-48 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

8-50 VECTOR MAP INSTRUCTIONS 

A vector map instruction replaces elements of one vector with the corre­

sponding elements of another vector. The elements that are mapped are deter­

mined by a third index vector. 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONICS 

VMAP Vector Map Singlewords 

VMAPH Vector Map Halfwords 

VMAPD Vector Map Doublewords 

VECTOR MAP ON EQUAL, SVmsb OPTION BIT EQUAL TO ZERO 

A Vector-Map-on-Equal instruction accepts as inputs a contiguous list of in-- -dices from vector A and a set of source mapping elements from vector B. The 

-elements of vector B that are mapped are those elements for which the index lo-

cation in B corresponds to the index value given by the elements of vector A. -Elements from source mapping vector B replace previously existing elements in 

- -a central memory region defined as the C output vector. Elements of the C output 

vector that are replaced are those elements for which the index location in C cor­

responds to the index value given by the elements of vector A. Elements of vector 

B do not replace elements of vector C for those index locations in C that are not 

represented in the index list given by vector A. 

This instruction differs from the Vector Replace instruction in the manner in 

which elements of vector Bare used. Vector Replace uses consecutive elements 

of vector B, whereas Vector Map uses only those elements of Vector B that are -mapped by the specification of vector A. 

Self Loop Programming Notes 

1) The length specification of the self-loop (L-field) for a Vector-Map-on­

Equal instruction should be set equal to the number of elements of a self­

loop of the C vector. Or, if the B vector is the greater in length, then 

set the L-field equal to the number of elements of vector B. 

8-49 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

2) It is possible to shorten the vector operation and still obtain the same 

result vector Cby setting the self-loop length equal to one plus the value 

of the last index in vector A. 

3) If the vector length is specified according to 1 above, then an index 

boundary limit equal to the largest positive number (7FFF hex) must be 

placed in the data location following the last index value of vector A. 

4) 

If the vector length is specified according to 2 above, then the index 

boundary limit is not necessary. 

-Each index value given by vector A is a positive, fixed-point halfword. 

Vector A should be a contiguous list of monotone increasing halfwords. 

·5) An index value of zero maps the first element of vector B into the first --element of vector C. 

Example 1: A singleword Vector-Map-on-Equal (SV msb=O) instruction using a 

self-loop of length 8. 

Singleword Singleword Single word 
Singleword - -Index Vector C Before Vector C After 

Vector A Vector B Replacement Replacement 

2, 3 -14 16 16 

5, 6 -70 82 82 

7FFF, - -25 27 -25 

-34 36 -34 

-69 71 71 

-30 32 -30 

- 6 8 - 6 

-12 14 14 

VECTOR MAP ON NOT EQUAL, SVmsb OPTION BIT EQUAL TO ONE 

A Vector-Map-on-Not-Equal instruction accepts as inputs a contiguous list of 

- -indices from vector A and a set of source mapping elements from vector B. The 

8-50 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

elements of vector B that are mapped are those elements for which the index lo­

cation in Bis not represented in the index list given by vector A. Elements from 

source mapping vector B replace previously existing elements in a central mem­

ory region defined as the C output vector. Elements of the C output vector that 

are replaced are those elements for which the index location in C is not repre­

sented in the index list given by vector A. Elements of vector B do not replace 

elements of vector C for those index locations that correspond to the index value 

given by the elements of vector A. 

Self Loop Programming Notes 

1) The length specification of the self-loop (L-field) for a Vector-Map-on­

Not-Equal instruction should be set equal to the number of elements of a 

self-loop of the C vector. Or, if the B vector is the greater in length, 

then set the L-field equal to the number of elements of vector B. 

2) An index boundary limit equal to the largest positive number (7FFF hex) 

must be placed in the data location following the last index value of 

vector A. 

3) Each index value given by vector A is a positive, fixed-point halfword. 

Vector A should be a contiguous list of monotone increasing halfwords. 

4) An index list beginning with a value of 11one 11 maps the first elements of 

vector B into Cbut not the second element (element Co is replaced with 

Bo but not C1 by B1 ). 

Example 2: A singleword Vector-Map-on-Not-Equal (SVmsb=l) instruction using 

a self-loop of length 8. 

Singleword 
Index 

Vector A 

2, 3 

5, 6 

7FFF, -

Singleword 
Vector B 

-14 

-70 

-25 

Singleword 
Vector C Before 

Replacement 

8-51 

16 

82 

27 

Singleword 
Vector C After 

Replacement 

-14 

-70 

27 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Singleword Singleword Singleword - -Index Singleword Vector C Before Vector C After 
Vector A -Vector B Replacement Replacement 

-34 36 36 

-69 71 -69 

-30 32 32 

- 6 8 8 

-12 14 -12 

8-51 VECTOR SELECT BOOLEAN INSTRUCTIONS 

The Vector Select Boolean instructions generate an output vector from ele­

ments of an input vector. The elements of the input vector are mapped into the 

output vector depending upon the logical state ("l" or "O") of bits in a control 

vector. 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONICS 

VSELB Vector Select Singleword Boolean 

VSELHB Vector Select Halfword Boolean 

VSELDB Vector Select Doubleword Boolean 

VECTOR SELECT ON ONE, SVmsb OPTION BIT EQUAL TO ZERO 

A Vector-Select-on-One instruction generates an output vector C composed of 

elements from vector B. The elements selected from vector Bare those for 

which the location in vector B corresponds to the location on nonzero elements of - -vector A. Selected elements are stored into contiguous locations of vector C. 

Example 1: A singleword Vector-Select-on-One (SVmsb=O) instruction using a 

self-loop of length 8. 

8-52 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Halfword Singleword 
Boolean Singleword Selected 
Vector A - -Vector B Vector c 

0, 0 +16 -54 

l, 1 +82 -75 

0, 1 -54 -64 

1, 0 -75 -15 

+71 

-64 

-15 

+14 

VECTOR SELECT ON ZERO, SVmsb OPTION BIT EQUAL TO ONE 

A Vector -Select-on-Zero instruction generates an output vector C composed 

of elements from vector B. The elements selected from vector Bare those for 

which the location in vector B corresponds to the location of zero elements of 

vector A. Selected elements are stored into contiguous locations of vector C. 

Example 2: A singleword Vector-Select-on-Zero (SV msb= 1) instruction using a 

self-loop of length 8. 

Halfword 
Boolean 
Vector A 

0, 0 

1, 1 

0, 1 

Singleword 
Vector B 

+16 

+82 

-54 

-75 

+71 

-64 

-15 

+14 

8-53 

Singleword 
Selected 
Vector C 

+16 

+82 

+71 

+14 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Vector Select Programming Notes for Self Loops 

1) The length specification of the self-loop (L-field) for a Vector-Select­

Boolean instruction is set equal to the number of elements of vector A or 

"B. 

2) Each element of vector A is a halfword that assumes one of two Boolean 

values. "Zero" is assumed if the value is zero, and "one" is assumed if 

the value is nonzero. 

8-52 VECTOR REPLACE BOOLEAN INSTRUCTIONS 

The Vector Replace Boolean instructions replace elements of one vector with 

corresponding elements of another vector. The replacement is enabled by the 

logic ·state (11 1 11 or 11 0 11 ) of elements in a third control vector. 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONICS 

VREPB Vector Replace Singleword Boolean 

VREPHB Vector Replace Halfword Boolean 

VREPDB Vector Replace Doubleword Boolean 

VECTOR REPLACE ON ONE, SV b OPTION BIT EQUAL TO ZERO ms 

A Vector-Replace-on-One instruction accepts as inputs a continuous list of 

replacement elements from vector Band a continuous list of Boolean elements 

from vector A. Elements from vector B replace previously existing elements in 

a central memory region defined as the C output vector. Elements of the C output 

vector that are replaced with elements of vector Bare those elements for which 

the location in the C output vector corresponds to the location of. nonzero elements 

of vector A. Elements of the C output vector remain unchanged in those locations 

for which the corresponding location in vector A is zero. 

Example 1: A singleword Vector-Replace-on-One (SVmsb=O) instruction using a 

self-loop of length 8. 

8-54 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Halfword Single word Single word - -Boolean Singleword Vector C Before Vector C After 
X -Vector Vector B Replacement Replacement 

0, 0 -54 16 16 

1, 1 -72 82 82 

0, 1 -64 27 -54 

1, 0 -15 36 -72 

71 71 

32 -64 

8 -15 

14 14 

VECTOR REPLACE ON ZERO, SV msb OPTION BIT EQUAL TO ONE 

A Vector-Replace-on-Zera instruction accepts as inputs a continuous list of 

replacement elements from vector Band a continuous list of Boolean elements 

from vector A. Elements from vector B replace previously existing elements in 

a central memory region defined as the C output vector. -Elements of the C output 

vector that are replaced with elements of vector Bare those elements for which 

the location in the C output vector corresponds to the location of zero elements of 

vector A. Elements of the C output vector remain unchanged in those locations 

for which the corresponding location in vector A is nonzero. 

Example 2: A singleword Vector Replace on Zero (SVmsb=l) instruction using a 

self-loop length of 8. 

Halfword Single word Single word - -Boolean Singleword Vector C Before Vector C After - -Vector A Vector B Replacement Replacement 

0, 0 -54 16 -54 

1, 1 -72 82 -72 

0, 1 -64 27 27 

1, 0 -15 36 36 

8-55 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Halfword Single word Singleword - -Boolean Single word Vector C Before Vector C After - -Vector A Vector B Replacement Replacement 

71 -64 

32 32 

8 8 

14 -15 

Programming Notes for Self Loops 

1) The length specification of the self-loop (L-field) for a Vector-Replace­

Boolean instruction is set equal to the number of elements of vector A or 

c. 
2) Each element of vector A is a halfword that assumes one of two Boolean 

values. "Zero" is assumed if the value is zero, and "one" is assumed if 

the value is nonzero. 

8-53 VECTOR MAP BOOLEAN INSTRUCTIONS 

The Vector Map Boolean instructions map the elements of a continuing vector 

into element locations of an output vector. The logic state ("l" or "O") of ele­

ments in a third control vector determine which elements will be mapped. 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONICS 

VMAPB Vector Map Singleword Boolean 

VMAPHB Vector Ma.p Halfword Boolean 

VMAPDB Vector Map Doubleword Boolean 

VECTOR MAP ON ONE, SVmsb OPTION BIT EQUAL TO ZERO 

A Vector-Map-on-One instruction accepts as inputs a continuous list of 

Boolean elements from vector A and a set of source mapping elements from 

vector B. The elements of vector B that are mapped are those elements for which 

8-56 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

the location in B corresponds to the location of nonzero elements of vector A. 
Elements from source mapping vector B replace previously existing elements in 

a central memory region defined as the C output vector. 

Elements of the C output vector that are replaced are those elements for 

which the location in C corresponds to the location of nonzero elements of vector 

A. Elements of the C output vector remain unchanged in those locations for which 

the corresponding location in vector A is zero. 

Example 1: A singleword Vector-Map-on-One (SVmsb=O) instruction using a 

self-loop of length 8. 

Halfword Singleword Singleword - -Boolean Singleword Vector C Before Vector C After 
A -Vector Vector B Mapping Mapping 

0, 0 -54 16 16 

1, 1 -72 82 82 

0, 1 -64 27 -64 

1, 0 -15 36 -15 

-29 71 71 

- 5 32 - 5 

-47 8 -47 

- 2 14 14 

VECTOR MAP ON ZERO, SVmsb OPTION BIT EQUAL TO ONE 

A Vector -Map-on-Zero instruction accepts as inputs a continuous list of 

Boolean elements from vector A and a set of source mapping elements from 

vector B. The elements of vector B that are mapped are those elements for 

which the location in B corresponds to the location of zero elements of vector A. 
Elements from source mapping vector B replaced previously existing elements in 

a central memory region defined as the C output vector. 

Elements of the C output vector that are replaced are those elements for 

which the location in C corresponds to the location of zero elements of vector A. 

8-57 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Elements of the C output vector remain unchanged in those locations for which the 

corresponding location in vector A is nonzero. 

Example 2: A singleword Vector-Map-on-Zero (SVmsb=l) instruction using a 

self-loop of length 8. 

Halfword Singleword Single word - -Boolean Single word Vector C Before Vector C After 
Vector A -Vector B Mapping Mapping 

0, 0 -54 16 -54 

1, 1 -72 82 -72 

0, 1 -64 27 27 

1, 0 -15 36 36 

-29 71 -29 

- 5 32 32 

-47 8 8 

- 2 14 - 2 

Programming Notes for Self Loops 

1) The length specification of the self-loop (L-field) for a Vector-Map­

Boolean instruction is set equal to the number of elements of vector A. 
Vectors Band C should be of this same length. 

2) Each element of vector A is a halfword that assumes one of two Boolean 

values. "Zero" is assumed if the value is zero, and "one" is assumed if 

the value is nonzero. 

8-54 VECTOR MAXIMUM/MINIMUM INSTRUCTIONS 

These instructions compare the elements of two input vectors and form an 

output vector from the results of the comparison. 

8-58 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONICS 

VMAX Vector Max/Min Fixed-Point Singleword 

VMAXH Vector Max/Min Fixed- Point Halfword 

VMAXF Vector Max/Min Floating-Point Singleword 

VMAXD Vector Max/Min Floating-Point Doubleword 

VECTOR MAXIMUM, SVmsb OPTION BIT EQUAL TO ZERO 

A Vector-Maximum instruction forms an output vector C composed of the 

larger of the elements from either vector A or vector B. That is, element ci as­

sumes the larger arithmetic value of the elements ai or bi• 

c· = MAX(a· b·) 1 1' 1 

Example 1: A Fixed-Point, Singleword-Vector-Maximum instruction with a self­

loop of length 8. 

- - Vector C Vector A Vector B 

40 72 72 

75 20 75 

-11 45 45 

56 56 56 

32 - 9 32 

16 64 64 

97 28 97 

21 20 21 

VECTOR MINIMUM, SVmsb OPTION BIT EQUAL TO ONE 

Vector Minimum, SVmsb option bit= 1 

A Vector-Minimum instruction forms an output vector C composed of the 

smaller of the elements from either vector A or vector B. That is, element Ci 

assumes the smaller arithmetic value of the elements ai or bi. 

c· - MIN(a· b·) 1 - 1' 1 

8-59 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Example 2: A Fixed-Point, Singleword-Vector-Minimum instruction -vith a self-

lo op length of 8. 

- - -Vector A Vector B Vector c 

40 72 40 

75 20 20 

-11 45 -11 

56 56 56 

32 - 9 - 9 

16 64 16 

97 28 28 

21 20 20 

8-55 VECTOR COMPARE BOOLEAN INSTRUCTIONS 

All ALCT options of the arithmetic-compare instructions can be used to gen­

erate Boolean vector outputs. A Boolean vector is a vector containing elements 

having a value of either "zero" or "one." For the arithmetic compare instruc­

tions, a "one" is placed in the C output vector in each halfword location corre­

sponding to the location of true comparisons of elements in the input vectors A and 

B. A "zero" is placed in the halfword location corresponding to the location of 

false comparisons of the A and B input vectors. 

No item count is stored for any of the Boolean vector compare instructions. 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONICS 

VCB Vector Compare Fixed-Point Singleword Boolean 

VCHB Vector Compare Fixed-Point Halfword Boolean 

VCFB Vector Compare Floating-Point Singleword Boolean 

VCFDB Vector Compare Floating-Point Doubleword Boolean 

Example 1: A Vector Compare Fixed-Point Singleword Boolean instruction with 

ALCT comparison option set to search for "greater than or equal to". 

8-60 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Singleword Single word Halfword 
Vector A - -Vector B Vector c 

40 72 0 

75 20 1 

-11 45 0 

56 56 1 

32 - 9 1 

16 64 0 

97 28 1 

21 20 1 

8-56 VECTOR COMPARE AND/OR BOOLEAN INSTRUCTIONS 

All ALCT options of the logical compare instructions can be used to generate 

Boolean vector outputs. A Boolean vector is a vector containing elements having 

a value of either "zero" or "one". For the logical compare instructions, a "one" 

is placed in the C output vector in each halfword location corresponding to the lo­

cation of true comparisons of elements in the input vectors A and B. A "zero" is 

placed in the halfword location corresponding to the location of false comparisons 

- -of the A and B input vectors. 

No item count is stored for any of the Boolean vector compare instructions. 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONICS 

VCAB Vector Compare AND, Singleword Boolean 

VCADB Vector Compare AND, Doubleword Boolean 

VCORB Vector Compare OR, Singleword Boolean 

VCORDB Vector Compare OR, Doubleword Boolean 

Example 1: A Vector Compare OR Singleword Boolean instruction with ALCT 

comparison option set to search for "mixed zeros and ones". 

8-61 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Singleword Single word Halfword - - -Vector A Vector B Vector c 

005A 0000 01 

0000 0000 00 

0048 0024 01 

5A5A A5A5 01 

8-57 VECTOR SELECT 

A vector select instruction generates an output vector C composed of ele­

ments from vector B. The elements selected from vector Bare those for which 

the index location in vector B corresponds to the index value given by the elements 

of vector A. 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONICS 

VSEL Select singlewords from vector B 
-VSELH Select halfwords from vector B 

-VSELD Select doublewords from vector B 

Programming Notes: 

1) Input vectors A and Bare read from contiguous memory and the output is 

stored into contiguous memory for a given self loop. 

2A) The length specification of the self loop (L-field) for a vector select in­

struction is normally set equal to the number of elements of vector B. 

2B) It is possible to shorten the vector operation and still obtain the same 

result vector Cby setting the self loop length equal to one plus the value 

of the last index in vector A. 

3A) If the vector length is specified according to 2A above, then an index 

boundary limit equal to the largest positive number (7FFF 16 ) must be 

placed in the data location following the last index value of vector A. 

8-62 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

3B) If the vector length is specified according to 2B above, then the index 

boundary limit is not necessary. 

4) Each index value given by vector A is a positive fixed point halfword. 

Vector A should be a contiguous list of monotone increasing halfwords. 

5) An index value of zero selects the fir st element of vector B. 

6) If inner or outer loops are employed, then a dummy value should be 

placed at the end of each self loop vector Band the index of this dummy 

value should be placed at the end of each self loop index vector A. Each 

successive index list must be in contiguous memory, i.e., DBI and DB0 

must be equal to one. Vector B may use delta increments not equal to 

one for inner or outer loops if desired. However, the resultant vector C 
of selected elements should use delta increments, DCI and DC0 equal to 

one if the number of selected elements varies from self loop to self loop. 

Delta increments for vector Care added to the address of the last ele-

ment selected for each self loop. 

Example: A singleword select instruction using one self loop of length 8. 

Halfword Singleword Singleword Selected 
Vector A Index Vector B -Vector C 

2, 3 +16 -54 

5, 6 +72 -75 

7FFF, - -54 -64 

-75 -15 

+71 

-64 

-15 

+14 

8-58 VECTOR REPLACE 

A vector replace instruction accepts as inputs a contiguous list of replace­

ment elements from vector Band a contiguous list of indices from vector A. 

8 .. 63 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Elements from vector B replace previously existing elements in a central memory 

region defined as the C output array. -Elements of the C output array that are re-

placed with elements of vector Bare those elements for which the index location 

-in the C output array corresponds to the index value given by the elements of 

vector A. 

ASSEMBLER 
OPERATION SPECIFIED 

MNEMONICS 

VREP Replace singlewords in vector C -VREPH Replace halfwords in vector C 

-VREPD Replace doublewords in vector C 

Programming Notes: 

1) The length specification of the self loop (L-field) for a vector replace 

instruction should be set equal to the number of replacement elements -in vector B. This value is also equal to the number of indices of 

vector A. 

2) - . Each index value given by vector A is a positive fixed point halfword. 

Vector A should be a contiguous 1i st of monotone increasing halfwords. 

3) An index value of zero selects the fir st element of vector B. 

4) If inner or outer loops are employed, then it becomes a requirement that 

each self loop be of the same length. In general, the length of the data 

replacement vectors throughout all of the inner and outer loops are not 

the same length. In order to obtain meaningful results using inner and 

outer loops, a dummy region of memory must be established at the end of 

the C data output array for each self loop. The size of the dummy region 

for each self loop C output array is equal to one plus the difference be­

tween the sizes of the maximum and minimum data replacement vectors 

as found by searching the data replacement lists throughout all inner and 

outer loops. 

8-64 
THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

For the case of a self loop passing over the maximum data replacement 

vector, one dummy element is picked up one location past the end of the data re­

placement vector Band is placed in the final address available to the dummy out­

put region of that self loop. 

For the case of a self loop pas sing over the minimum data replacement 

vector, the first dummy replacement element after the last data replacement ele­

ment is picked up and placed in the first location past the data output array, which 

is at the beginning of the dummy output region. The last dummy element is placed 

in the final address available to the dummy output region of that self loop. 

This procedure establishes a constant number of replacement elements and 

indices for each self loop. The number of elements of the data output array is 

assumed to be constant for each self loop. 

Example: A singleword replace instruction using one self loop of length 4. 

Halfword 
Vector A 

2, 3 

5, 6 

Single word 
Index 

Vector B 

-54 

-72 

-64 

-15 

Singleword 
Vector CBefore 

Replacement 

16 

72 

27 

36 

71 

32 

8 

14 

8-65/8-66 

Singleword 
Vector C After 
Replacement 

16 

72 

-54 

-72 

71 

-64 

-15 

14 

THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR 





PROGRAMMER 1S GUIDE TO THE CENTRAL PROCESSOR 

APPENDIX A: SCALAR INSTRUCTIONS BY LOGICAL GROUPING 

ASSMB 
CODE 

ST 

ST 

ST 

STLL 

STRL 

STRR 

STLR 

STD 

STZ 

STZH 

STZD 

STN 

STNH 

STNF 

STND 

STO 

STOH 

STF 

STF 

STF 

STF 

STF 

STF 

STFM 

L 

L 

L 

LLL 

LRL 

INSTRUCTION 

Store arithmetic register, singleword 

Store base register, singleword 

Store index register or vector parameter 
register, singleword 

Store arithmetic left halfword into memory 
left halfword, indexed 

Store arithmetic right halfword into memory 
left halfword, indexed 

Store arithmetic register right halfword into 
meT""'· , if right halfword, indexed 

Store arithmetic register left halfword into 
memory right halfword, indexed 

Store arithmetic register, doubleword 

Store zero, word 

Store zero, halfword 

Store zero, doubleword 

Store negative, fixed point word 

Store negative, fixed point halfword 

Store negative, floating point word 

Store negative, floating point doubleword 

Store ones complement, word 

Store ones complement, halfword 

Store base register file A, M=O 

Store base register file B, M=l 

Store arithmetic register file C, M= 2 

Store arithmetic register file D, M=3 

Store index register file X, M=4 

Store vector parameter register file V, M=5 

Store all six eight-word register files 

Load arithmetic register, singleword 

Load base register, singleword 

Load index register or vector parameter 
register, singleword 

Load arithmetic register left halfword from 
memory right halfword, indexed 

Load memory left halfword, indexed, into 
arithmetic register right halfword 

A-1 
SCALAR INSTRUCTIONS BY LOGICAL GROUPING 

MCHN 
CODE 

24 

28 

2C 

25 

26 

2D 

29 

27 

20 

21 

23 

34 

35 

36 

37 

2E 

2A 

2B 

2B 

ZB 

ZB 

ZB 

2.B 

2.F 

14 

18 

lC 

15 

10 

OPERAND 
FORMAT 

r,[@]n[,x] 

r, [@]n[. x] 

r,[@]n(.x] 

r, [@Jn[. x] 

r, r@lnr. xl 

r, [@]n(, x] 

r,[@]n[,x] 

r,(@]n(,x] 

[@]n[. x) 

[@]n[,x] 

[@Jn[, x] 

r, [@]n[, x] 

r,[@]n(,x] 

r,[@]n[,x] 

r,[@]n[,x] 

r,[@]n[.x] 

r, [@]n[, x] 

m, [@]n[, x] 

m, [~n[, x] 

m, [@]n, [, x] 

m, [@]n[, x] 

m, [@]n[, x] 

m, [@Jn[, x) 

[@]n[, x] 

r,[@][=]n[,x] 

r, [@][=]n[, x] 

r, [@][=]n[, x] 

r, [@][=]n[, x) 

r, [@][=Jnr,xJ 

TOPIC 

7-26 

7-26 

7-26 

7-27 

7-28. l 

7-28 

7-29 

7-30 

7-31 

7-32 

7-33 

7-34 

7-35 

7-36 

7-37 

7-38 

7-39 

7-40 

7-40 

7-40 

7-40 

7-40 

7-40 

7-41 

7-3 

7-3 

7-3 

7-4 

7-5. 1 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
CODE 

LRR 

LLR 

LO 

LI 

LI 

LIH 

LN 

LNH 

LNF 

INSTRUCTION 

Load memory right halfword, indexed, into 
arithmetic register right halfword 

Load memory right halfword, indexed, into 
arithmetic register left halfword 

Load arithmetic register, doubleword 

Load immediate into arithmetic register 
singleword 

Load immediate into index register, or vector 
parameter register, singleword 

Load immediate into arithmetic register, 
halfword 

Load negative, fixed point singleword, 
arithmetic register 

Load negative, fixed point halfword, 
arithmetic register 

Load negative, floating point singleword, 
arithmetic register 

MCHN 
CODE 

10 

19 

17 

54 

5C 

55 

30 

31 

32 

LND Load negative, floating point doubleword, 33 
arithmetic register 

LM Load magnitude, fixed point singleword, 3C 
arithmetic register 

LMH Load magnitude, fixed point halfword, 30 
arithmetic register 

LMF Load magnitude, floating point singleword, 3E 
arithmetic register 

LMD Load magnitude, floating point doubleword, 3F 
arithmetic register 

LNM Load negative magnitude, fixed point single- 38 
word, arithmetic register 

LNMH Load negative magnitude, fixed point halfword, 39 
arithmetic register 

LNMF Load negative magnitude, floating point single- 3A 
word, arithmetic register 

LNMD Load negative magnitude, floating point double- 3B 
word, arithmetic 

LO Load arithmetic register with ones complement lE 
single word 

LF Load base register file A, M=O 1 B 

LF Load base register file B, M=l lB 

LF Load arithmetic register file C, M=2 1 B 

LF Load arithmetic register file D, M=3 lB 

LF Load index register file X, M=4 1 B 

A-2 
SCALAR INSTRUCTIONS BY LOGICAL GROUPING 

OPERAND 
FORMAT 

r, [@)[=Jn[, x] 

r,[@)[=Jn[,x] 

r,[@][=)n[,x] 

r, i[, x] 

r, i[, x) 

r, i[, x] 

r,(@][=]n[,x] 

r, [@][=]n[, x} 

r, [@'][ = ]n(, x] 

r,[@][=]n[,x] 

r, (@][=]n[, x] 

r,(@][=]n[,x] 

r, [@][ = ]n[, x] 

r, [@][ = ]n[, x} 

r, [@][ = )n(, x] 

r,[@)[=]n(,x) 

r, (@][=]n(, x] 

r, (@][ = ]n(, xJ 

r, [@][=Jn[, x] 

m, [@Jn[, x] 

m, [@]n(, x] 

m, [@]n(, x] 

m, [@]n(, x] 

m, [@]n(, ¥] 

TOPIC 

7-S 

7-6 

7-7 

7-8 

7-8 

7-9 

7-10 

7-11 

7-12 

7-13 

7-14 

7-15 

7-16 

7-17 

7-18 

7-19 

7-20 

7-21 

7-22 

7-23 

7-23 

7-23 

7-23 

7-23 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

r-----·-·-·. ----·------------------------~----r----------r-----. AS SM Fl 
CODE INSTRUCTION MCHN 

CODE 

LF 

LFM 

A 

Load vector parameter register file V, M=5 lB 

Load all six eight-word register files lF 

Add to arithmetic register, fixed point single- 40 
word 

A 

A 

Add to base register, fixed point singleword 60 

Add to index or vector parameter register, 62 
fixed point singlewo rd 

AH 

AF 

Add to arithmetic register, fixed point halfword 41 

Add to arithmetic register, floating point single 42 
word 

AFD Add to arithmetic register, floating point 
doublewo rd 

Al Add immediate to arithmetic register, fixed 
point singleword 

Al Add immediate to base register, fixed point 
singleword 

AI Add immediate to index or vector parameter 
register, fixed point singleword 

AIH Add immediate to arithmetic register, fixed 
point halfword 

AM Add magnitude to arithmetic register, fixed 
point singleword 

AMH Add magnitude to arithmetic register, fixed 
point halfword 

AMF Add m.agnitude to arithmetic register, floating 
point singleword 

AMFD Add magnitude to arithmetic register, floating 
point doubleword 

S Subtract from arithmetic register, fixed point 
singleword 

SH 

SF 

SFD 

SI 

Subtract from arithmetic register, fixed point 
halfword 

Subtract from arithmetic register, floating 
point singleword 

Subtract from arithmetic register, floating 
point doubleword 

Subtract immediate from arithmetic register, 
fixed point singlewo rd 

A-3 

SCALAR INSTRUCTIONS BY LOGICAL GROUPING 

43 

50 

70 

72 

51 

44 

45 

46 

47 

48 

49 

4A 

4B 

58 

OPERAND 
FORMAT 

m, [@Jn[, x] 

[@)n[,x) 

r, [@][=Jn[, x] 

r, [@][=Jn[, x] 

r, [@)[=Jn[, x] 

r, [@][=Jn[, x) 

r,[@][=]n[,x] 

r, [@][=Jn[, x] 

r,i[,x) 

r, i[, x] 

r, i[, x] 

r, i[, x] 

r,[@][=Jn[,xJ 

r, [@J[ =]n(, x) 

r, [@][=Jn[, xJ 

r, [@](=Jn[,x) 

r, [@J[ =Jn[, x] 

r, [@][=Jn[,xJ 

r,[@J[=Jn[,x] 

r,[@J[=Jn[,xJ 

r,i[,x] 

TOPIC 

7-23 

7-24 

7-43 

7-43 

7-43 

7-44 

7-45 

7-46 

7-47 

7-47 

7-47 

7-48 

7-49 

7-50 

7-51 

7-52 

7-53 

7-54 

7-55 

7-56 

7-57 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
CODE INSTRUCTION 

SIH Subtract immediate from arithmetic register, 
fixed point halfword 

SM Subtract magnitude from arithmetic register, 
fixed point singleword 

SMH Subtract magnitude from arithmetic register, 
fixed point halfword 

SMF Subtract magnitude from arithmetic register, 
floating point singleword 

SMFD Subtract magnitude from arithmetic register, 
floating point doubleword 

M Multiply, fixed point singleword - arithmetic 
register 

M Multiply, fixed point singleword - base register 

M. Multiply, fixed point singleword - index or 
vector parameter register 

MH Multiply, fixed point halfword - arithmetic 
register 

MF Multiply, floating point singleword - arithmetic 
register 

MFD Multiply, floating point doubleword -
arithmetic register 

MI Multiply immediate, fixed point singleword -
arithmetic register 

MI Multiply immediate, fixed point singleword -
base register 

MI Multiply immediate, fixed point singleword-
index or vector parameter register 

MIH Multiply immediate, fixed point halfword -
arithmetic register 

D Divide into arithmetic register, fixed point 
singleword 

DH Divide into arithmetic register, fixed point 
halfword 

DF Divide into arithmetic register, floating point 
singleword 

DFD Divide into arithmetic register, floating point 
doubleword 

DI Divide immediate into arithmetic register, 
fixed point singleword 

A-4 

SCALAR INSTRUCTIONS BY LOGICAL GROUPING 

MCHN 
CODE 

59 

4C 

4D 

4E 

4F 

6C 

68 

6A 

6D 

6E 

6F 

7C 

78 

7A 

7D 

64 

65 

66 

67 

74 

OPERAND 
TOPIC 

FORMAT 

r,i(,x] 7-57 

r,(@][=]n(,x] 7-59 

r,[@](=]n(,x] 7-60 

r, (@][=]n(,x] 7-61 

r, [@][=]n(,x] 7-62 

r,(@][=]n[,x] 7-63 

r,[@][=]n(,x] 7-63 

r, (@][=Jn[, x] 7-63 

r, [@][ =]n(, x] 7-64 

r, [@]( = ]n(, x] 7-65 

r,[@][=]n[,x] 7-66 

r, i(, x] 7-67 

r, i(, x] 7-67 

r,i[,x] 7-67 

r, i(, x] 7-68 

r, [@][=Jn[, x] 7-69 

r,[@][=]n[,x] 7-70 

r,[@][=]n[,x] 7-71 

r, [@](=]n(, x] 7-72 

r, i[, x] 7-73 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

r---·~--~-··~~~~~~~~~~~~~~~~~~~--,.--~~~~~~~~~~--,r--~--i 
ASSMB 
CODE INSTRUCTION MCHN 

CODE 

DIH Divide immediate into arithmetic register, 7S 
fixed point halfword 

AND AND, singleword - arithmetic register EO 

ANDD AND, doubleword - arithmetic register El 

ANDI AND immediate, singleword - arithmetic FO 
register 

OR OR, singleword - arithmetic register E4 

ORD OR, doubleword - arithmetic register ES 

ORI OR immediate, singleword - arithmetic registeI F4 

XOR Exclusive OR, singleword - arithmetic register EB 

XORD Exclusive OR, doubleword - arithmetic register E9 

XOR! Exclusive OR immediate, singleword- F8 
arithmetic register 

EQC Equivalence, singleword - arithmetic register EC 

EQCD Equivalence, doubleword - arithmetic register ED 

EQCI Equivalence immediate, singleword - arithmetic FC 
register 

SA Arithmetic shift, fixed point singleword - CO 
arithmetic register 

SAH Arithmetic shift, fixed point halfword - C 1 
arithmetic register 

SAD Arithmetic shift, fixed point doubleword - C3 
arithmetic register 

SL Logical shift, singleword - arithmetic register C4 

SLH Logical shift, halfword - arithmetic register CS 

SLD Logical shift, doubleword - arithmetic register C7 

SC Circular shift, singleword - arithmetic register CC 

SCH Circular shift, halfword - arithmetic register CD 

SCD Circular shift, doubleword - arithmetic CF 
register 

RVS 

c 

c 

CH 

Bit reversal, singleword - arithmetic register 

Compare arithmetic register, fixed point 
singleword 

Compare index or vector register, fixed point 
singleword 

Compare arithmetic register, fixed point half­
word 

A-5 
SCALAR INSTRUCTIONS BY LOGICAL GROUPING 

C6 

CB 

CE 

C9 

OPERAND 
FORMAT 

r, i[, x] 

r, [@][ =]n[, x] 

r, [@][ = ]n[, x] 

r, i[, x] 

r, [@][ =]n[, x] 

r,[@][=]n[,x] 

r,i[,x] 

r,[@][=]n[,x] 

r, [@][ = ]n[, x] 

r, i[, x] 

r,[@][=]n[,x] 

r, [@][ = ]n[. x] 

r,i[,x] 

r, i[, x] 

r,i[,x] 

r, i[. x] 

r, i[. x] 

r, i[, x] 

r, i[, x] 

r, i[, x] 

r, i[, x] 

r, i[, x] 

r,i[,x] 

r, [@][ =]n[, x] 

r, [@][=]n[, x] 

r,[@][=]n[,x] 

TOPIC 

7-74 

7-76 

7-77 

7-78 

7-79 

7-80 

7-81 

7-82 

7-83 

7-84 

7-8S 

7-86 

7-87 

7-93 

7-94 

7-9S 

7-96 

7-97 

7-98 

7-99 

7-100 

7-101 

7-102 

7-104 

7-104 

7-lOS 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
CODE INSTRUCTION 

CF Compare arithmetic register, floating point 
singleword 

CFD Compare arithmetic register, floating point 
doubleword 

CI Compare immediate arithmetic register, fixed 
point singleword 

CI Compare index or vector register with 
immediate, singleword 

CIH Compare arithmetic register immediate, 
fixed point halfword 

CAND Compare logical AND, singleword -
arithmetic register 

CAN DD Compare logical AND, doubleword - arithmetic 
register 

CANDI Compare immediate logical AND, singleword -
arithmetic register 

COR Compare logical OR, singleword - arithmetic 
register 

CORD Compare logical OR, doubleword -- arithmetic 
register 

CORI Compare immediate logical OR, singleword -
arithmetic register 

ISE Increment arithmetic register, test, and skip 
on equal 

ISNE Increment arithmetic register, test, and skip 
on not equal 

DSE Decrement arithmetic register, test, and skip 
on equal 

DSNE Decrement arithmetic register, test, and skip 
on not equal 

BCC Branch on compare code true 

NOP Take next instruction, Assembler supplies 
R field of zero 

BE Branch on compare code of equal, Assembler 
supplies R field of one 

BG Branch on compare code of greater than, 
Assembler supplies R field of 2 

BGE Branch on compare code of greater than or 
equal, Assembler supplies R field of 3 

A-6 

SCALAR INSTRUCTIONS BY LOGICAL GROUPING 

MCHN 
CODE 

CA 

CB 

DB 

DE 

D9 

E2 

E3 

F2 

E6 

E7 

F6 

80 

81 

82 

83 

91 

91 

91 

91 

91 

OPERAND 
TOPIC 

FORMAT 

r,[@](::;]n[,x] 7-106 

r, [@][::; ]n[, x] 7-107 

r,i[,x] 7-108 

r,i[,x] 7-108 

r,i[,x] 7-109 

r, [@][::; ]n[, x] 7-110 

r, [@](::;]n[, x] 7-111 

r, i[, x] 7-112 

r,[@][::;]n[,x] 7-113 

r,(@][=]n(,x] 7-114 

r, i[, x] 7-115 

r,[@](=]n(,x] 7-117 

r, [@][=]n[, x] 7-118 

r,[@](::;]n[,x] 7-119 

r,[@][=]n(,x] 7-120 

m, [@[=]]n(, x] 7-132 

[@[ =]]n[, x] 7-132 

[@[=]]n[,x] 7-132 

[@[ = ]]n(, x] 7-132 

[@[ = ]]n(, x] 7-132 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
CODE INSTRUCTION 

BL Branch on compare code of less than, 
Assembler supplies R field of 4 

BLE Branch on compare code of less than or equal, 
Assembler supplies R field of 5 

BNE Branch on compare code of not equal, 
Assembler supplies R field of 6 

B Unconditional branch, Assembler supplies 
R field of 7 

BCZ Branch on compare code of all bits are zero, 
Assembler supplies R field of one 

BCO Branch on compare code of all bits are one, 
Assembler supplies R field of 2 

BCNM Branch on compare code of not mixed, 
Assembler supplies R field of 3 

BCM Branch on compare code of mixed zeros and 
ones, Assembler supplies R field of 4 

BCNO Branch on compare code of not all ones, 
Assembler supplies R field of 5 

BCNZ Branch on compare code of not all zeros, 
Assembler supplies the R field of 6 

BRC Branch on result code true 

BZ Branch on result code of zero, Assembler 
supplies the R field of one 

BPL Branch on result code of positive, Assembler 
supplies the R field of 2 

BZP Branch on result code of zero or positive, 
Assembler supplies the R field of 3 

BM! Branch on result code of negative, Assembler 
supplies the R field of 4 

BZM Branch on result code of zero or negative, 
Assembler supplies the R field of 5 

BNZ Branch on result code of not zero, Assembler 
supplies the R field of 6 

BLR Branch on logical result 

BRZ Branch on result code of all bits are zero, 
Assembler supplies the R field of one 

BRO Branch on result code of all bits are one, 
Assembler supplies the R field of.2 

BRNM Branch on result code of bits not mixed zeros 
and ones, Assembler supplies the R field of 3 

A-7 
SCALAR INSTRUCTIONS BY LOGICAL GROUPING 

MCHN 
CODE 

91 

91 

91 

91 

91 

91 

91 

91 

91 

91 

95 

95 

95 

95 

95 

95 

95 

95 

95 

95 

95 

OPERAND 
FORMAT 

TOPIC 

[@[=])n[,x] 7-132 

[@[=]Jn[, x] 7-132 

[@[=])n[,x] 7-132 

[@[ = ]]n[, x] 7-132 

[@[=]Jn[, x] 7-132 

[@[=]]n[,x] 7-132 

[@[=]Jn[, x] 7-132 

[@[=]]n[,x] 7-132 

[@[=]Jn[, x] 7-132 

[@[=]]n[,x] 7-132 

m, [@[=]Jn[, x] 7-133 

[@[ = ]]n[ , x] 7-133 

[@[=])n[,x] 7-133 

[@[=]]n[,x] 7-133 

[ @[ = ]]n[ , x] 7-133 

[@[=]]n[,x] 7-133 

[@[=]]n[,x] 7-133 

m, [@[=]Jn[, x] 7-133 

[@[=]Jn[ , x] . 7-133 

[@[=]Jn[, x] 7-133 

[@[=]]n[,x] 7-133 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
CODE INSTRUCTION 

BRM Branch on result code of bits mixed zeros and 
ones, Assembler supplies the R field of 4 

BRNO Branch on result code of not all bits ones, 
Assembler supplies the R field of 5 

BRNZ Branch on result code of not all bits zeros, 
Assembler supplies the R field of 6 

BAE Branch on arithmetic exception condition true 

BU Branch on floating point exponent underflow,, 
Assembler supplies R field of one 

BO Branch on floating point exponent overflow, 
Assembler supplies R field of 2 

BUO Branch on floating point exponent underflow 
or overflow, Assembler supplies R field of 3 

BX Branch on fixed point overflow, Assembler 
supplies R field of 4 

BXU Branch on fixed point overflow or floating 
point exponent underflow, Assembler supplies 
R field of 5 

BXO Branch on fixed point overflow or floating 
point exponent overflow, Assembler supplies 
R field of 6 

BXUO Branch on fixed point overflow or floating 
point exponent overflow or underflow, 
Assembler supplies R field of 7 

BD Branch on divide check, Assembler supplies 
R field of 8 

BDU Branch on divide check or floating point 
exponent underflow, Assembler supplies R 
field of 9 

BDO Branch on divide check or floating point 
exponent overflow, Assembler supplies R 
field of A 

BDUO Branch on divide check or floating point 
exponent overflow or underflow, Assembler 
supplies R field of B 

BDX • Branch on divide check or fixed point over-
flow, Assembler supplies R field of C 

BDXU Branch on divide check or fixed point overflow 
or floating point exponent underflow, Assem-
bler supplies R field of D 

A-8 
SCALAR INSTRUCTIONS BY LOGICAL GROUPING 

MCHN 
CODE 

95 

95 

95 

9D 

9D 

9D 

9D 

9D 

9D 

9D 

9D 

9D 

9D 

9D 

9D 

9D 

9D 

OPERAND 
TOPIC 

FORMAT 

[@[ = ]]n[, x] 7-133 

[@[ = ]]n[, x] 7-133 

[@[ = ]]n[, x] 7-133 

m, [@[ = ]]n[, x] 7-134 

[@[ = ]]n[, x] 7-134 

[@[ = ]]n[, x] 7-134 

[@[=]]n[, x] 7-134 

[@[ = ]]n[, x] 7-134 

[@[ = ]]n[, x] 7-134 

[@[ =]]n[, x] 7-134 

[@[ = ]]n[, x] 7-134 

[@[ = ]]n[, x] 7-134 

[@[=]]n[,x] 7-134 

[@[=]]n[,x] 7-134 

[@[=]]n[,x] 7-134 

[@[ = ])n[ , x] 7-134 

[@[=]]n[,x] 7-134 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
INSTRUCTION 

CODE 

BDXO Branch on divide check or fixed point overflow 
or floating point exponent overflow, Assem-
bler supplies R field of E 

BDXUO Branch on divide check or fixed point overflow 
or floating point exponent overflow or under-
flow, Assembler supplies R field of F 

BXEC Branch on Execute branch condition true, 
Assembler supplies R field of one or odd 

IBZ Increment arithmetic register, test, and 
branch on zero 

IBZ Increment index or vector register, test, and 
branch on zero 

IBNZ Increment arithmetic register, test, and 
branch on not zero 

IBNZ Increment index or vector register, and 
branch on not zero 

DBZ Decrement arithmetic register, test, and 
branch zero 

DBZ Decrement index or vector register, test, 
and branch on zero 

DBNZ Decrement arithmetic register, test, and 
branch on not zero 

DBNZ Decrement index or vector register, test, 
and branch on not zero 

BCLE Branch on arithmetic register less than or 
equal 

BCLE Branch on index or vector register less than 
or equal 

BCG Branch on arithmetic register greater than 

BCG Branch on index or vector register greater 
than 

BLB Branch and load base register with program 
counter 

BLX Branch and load index or vector register with 
program counter 

PSH Push word into last-in-first-out stack 

PUL Pull word from last-in-first-out stack 

MOD Modify stack parameter doubleword 

FLFX Convert floating point singleword to fixed 
~oint sin_g_leword 

A-9 
SCALAR INSTRUCTIONS BY LOGICAL GROUPING 

MCHN 
CODE 

9D 

9D 

9C 

SS 

SC 

S9 

SD 

SA 

SE 

SB 

SF 

S4 

S6 

85 

87 

9S 

99 

93 

97 

9F 

AO 

OPERAND 
TOPIC 

FORMAT 

[@[=]]n[,x] 7-134 

[@[ = ]]n[, x] 7-134 

[@]n[, x] 7-135 

r, (@[ = ]]n[, x] 7-122 

r, [@[ = ]]n[, x] 7-122 

r, [ @[ = ]]n[ , x] 7-123 

r, [ @[ = ]]n[ , x] 7-123 

r,[@[=]]n[,x] 7-124 

r,[@[=]]n[,x] 7-124 

r, [@[ =] ]n[, x] 7-124 

r, [@[ = ]]n[, x] 7-124 

r, r,n 7-12S 

r, r, n 7-12S 

r, r, n 7-129 

r, r, n 7-129 

r, [@[ = ]]n[, x] 7-137 

r, [@[ = ]]n[, x] 7-138 

r, [@]n[, x] 7-141 

r, [@]n[. x] 7-142 

r,[@]n[,x] 7-143 

r, [@]n[, x] 7-148 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASS MB 
CODE INSTRUCTION 

FLFH Convert floating point singleword to fixed point 
halfword 

FDFX Convert floating point doubleword to fixed 
point singleword 

FXFL Convert fixed point singleword to floating point 
singleword 

FHFL Convert fixed point halfword to floating point 
singleword 

FXFD Convert fixed point singleword to floating 
point doubleword 

FHFD Convert fixed point halfword to floating point 
doubleword 

NFX Normalize fixed point singleword 

NFH Normalize fixed point halfword 

XCH Exchange - arithmetic register with effective 
address 

LLA Load look ahead 

PB Prepare to branch 

LEA Load effective address into base register 

LEA Load effective address into index or vector 
register 

XEC Execute addressed instruction in line 

INT Interpret - arithmetic register 

FORK Fork 

JOIN Join 

MCP Monitor call and proceed 

MCW Monitor call and wait 

LAM Load arithmetic mask 

LAC Load arithmetic exception condition 

LEM Load arithmetic exception mask and condition 

SCLK Store Cluck 

SPS Store program status word 

VECTL Load and execute vector parameter file, 
Assembler supplies R field of zero 

VECT Execute vector parameter file, Assembler 
supplies R field of one 

A-10 
SCALAR INSTRUCTIONS BY LOGICAL GROUPING 

MCHN 
CODE 

Al 

AZ 

AS 

A9 

AA 

AB 

AC 

AD 

lA 

16 

9E 

52 

56 

96 

92 

9A 

9B 

90 

94 

lZ 

13 

11 

AE 

zz 
BO 

BO 

OPERAND 
FORMAT 

TOPIC 

r, [@]n[, x] 7-149 

r, [@]n[, x] 7-150 

r;[@]n[, x] 7-151 

r, (@Jn(, x] 7-152 

r, [@]n[, x] 7-153 

r, [@]n[, x] 7-154 

r, [@]n[, x] 7-155 

r, [@]n[, x] 7-156 

r, [@]n(, x] 7-158 

i 7-159 

--- 7-159.1 

r, [@][ =]n[, x] 7-160 

r, [@][=]n(, x] 7-160 

[@[ = ]]n[, x] 7-161 

r,[@][=]n[,x] 7-162 

--- 7-162.1, 

--- 7-162.Z 

i(, x] 7-163 

i[, x] 7-164 

[@[=]]n[, x] 7-166 

[@[ = ]]n[, x] 7-167 

r@r=Jlnr,xl 7-167.1 

--- 7-167.Z 

[@]n[, x] 7-168 

[@]n[,x] 8-4 

[@]n[, x] 8-5 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
CODE 

A 

A 

A 

AF 

AFD 

AH 

AI 

AI 

AI 

AIH 

AM 

AMF 

AMFD 

AMH 

AND 

ANDD 

ANDI 

B 

BAE 

BCC 

BCG 

BCG 

IBCLE 

APPENDIX B: SCALAR INSTRUCTIONS 

IN ALPHABETICAL ORDER BY ASSEMBLER CODE 

INSTRUCTION 

Add to arithmetic register, fixed point single­
word 

Add to base register, fixed point singleword 

Add to index or vector parameter register, 

Add to arithmetic register, floating point 
singleword 

Add to arithmetic register, floating point 
doubleword 

MCHN 
CODE 

40 

60 

62 

42 

43 

Add to arithmetic register, fixed point halfword 41 

Add immediate to arithmetic register, fixed 50 
point singleword 

Add immediate to base register, fixed point 70 
singleword 

Add immediate to index or vector parameter 72 
register, fixed point singleword 

Add immediate to arithmetic register, fixed 51 
point halfword 

Add magnitude to arithmetic register, fixed 44 
point singleword 

Add magnitude to arithmetic register, floating 46 
point singlewo rd 

Add magnitude to arithmetic register, floating 47 
point doubleword 

Add magnitude to arithmetic register, fixed 45 
point halfword 

AND, singleword - arithmetic register EO 

AND, doubleword - arithmetic register El 

AND immediate, singleword - arithmetic FO 
register 

Unconditional branch, Assembler supplies R 91 
field of 7 

Branch on arithmetic exception condition true 9D 

Branch on compare code true 91 

Branch on arithmetic register greater than 85 

Branch on index or vector register greater than 87 

Branch on arithmetic register less than or 84 
equal 

B-1 

OPERAND 
FORMAT 

r, [@][ = ]n[, x] 

r,[@][=]n[,x] 

r,[@][=]n[,x] 

r,°[@][=]n[,x] 

r, [@][=]n[, x] 

r, [@][ =]n[, x] 

r,i[,x] 

r, i[, x] 

r, i[, x] 

r,i[,x] 

r, [@][ = ]n[, x] 

r, [@][=]n[, x] 

r,[@][=]n[,x] 

r, [@][ = ]n[, x] 

r, [@][ = ]n[, x] 

r, [@][=]n[, x] 

r, i[, x] 

[@[=]]n[,x] 

m, [@[ = ]]n[, x] 

m, [@[=]Jn[, x] 

r, r, n 

r, r, n 

r, r, n 

TOPIC 

7-43 

7-43 

7-43 

7-45 

7-46 

7-44 

7-47 

7-47 

7-47 

7-48 

7-49 

7-51 

7-52 

7-50 

7-76 

7-77 

7-78 

7-132 

7-134 

7-132 

7-129 

7-129 

7-128 

SCALAR INSTRUCTIONS IN ALPHABETICAL ORDER BY ASSEMBLER CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
CODE 

BCLE' 

BCM 

BCNM 

BCNO 

BCNZ 

BCO 

BCZ 

BD 

BDO 

INS TR UC TION 

---
Branch on index or vector register less than 
or equal 

Branch on comp 
ones, Assemble 

Branch on comp 
Assembler supp 

Branch on comp 
Assembler supp 

are code of mixed zeros 
r supplies R field of 4 

are code of not mixed, 
lies R field of 3 

are code of not all ones, 
lies R field of 5 

B ranch on comp 
Assembler supp 

are code of not all zeros, 
lies the R field of 6 

and 

Branch on comp 
Assembler supp 

are code of all bits are one, 
lies R field of 2 

Branch on comp 
Assembler supp 

are code of all bits are zero, 
lies R field of one 

Branch on divide 
R field of 8 

check, Assembler supplies 

check or floating point Branch on divide 
exponent overflo w, Assembler supplies R 
field of A 

BDU Branch on divide 
exponent unde rfl 

check or floating point 
ow, Assembler supplies R 

BDUO 

BDX 

BDXO 

BDXU 

field of 9 

check or floating point Branch on divide 
exponent overflo 
supplies R field 

w or underflow, Assembler 
of B 

check or fixed point overflow, Branch on divide 
Assembler supp lies R field of C 

check or fixed point overflow 
exponent overflow, Assembler 

Branch on dividt: 
or floating point 
supplies R field of E 

Branch on divide ~ check or fixed point overflow 
or floating point 
bler supplies R 

exponent underflow, Assem-
field of D 

check or fixed point overflow 
exponent overflow or under-

BDXUO Branch on divide 
or floating point 
flow, Assembler . supplies R field of F 

BE Branch on comp 
supplies R field 

BG Branch on comp 
Assembler supp 

are code of equal, Assembler 
of one 

are code of greater than, 
lies R field of 2 

-..-........ ·---·-· 

B-2 

MCHN 
CODE 

86 

91 

91 

91 

91 

91 

91 

9D 

9D 

9D 

9D 

9D 

9D 

9D 

9D 

91 

91 

OPERAND 
TOPIC 

FORMAT 

r, r, n 7-128 

[@[=]]n[,x] 7-132 

[@[ = ]]n[, x] 7-132 

[@[=]]n[,x] 7-132 
-

[@[ = ]]n[, x] 7-132 

[@[ = ]]n[, x] 7-132 

[@[=])n[,x] 7-132 

[@[=]Jn[, x] 7-134 

[@[=]]n[,x] 7-134 

[@[=]]n[,x] 7-134 

[@[=]Jn[, x] 7-134 

[@[=]]n[,x] 7-134 

[@[ =] ]n[, x] 7-134 

[@[ = ]]n[, x] 7-134 

[@[=]]n[, x] 7-134 

[@[ = ]]n[, x] 7-132 

[@[=]]n[,x] 7-132 

SCALAR INSTRUCTIONS IN ALPHABETICAL ORDER BY ASSEMBLER CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

---- -··---.---·----·---·----------------....... ----.---------""T-"----i ASSMB 
CODE 

BGE 

BL 

BLB 

BLE 

BLR 

BLX 

BMI 

BNE 

BNZ 

BO 

BPL 

BRC 

BRM 

BRNM 

BRNO 

BRNZ 

BRO 

BRZ 

BU 

BUO 

BX 

INSTRUCTION MCHN OPERAND 
CODE FORMAT 

TOPIC 

----·~--~---------------+--~--.,1----------t-----; 
91 (@[=]]n(,x] I\:ranch on compare code of greater than or 

equal, Assembler supplies R field of 3 

Branch on compare code of less than, Assem­
bler supplies R field of 4 

Brar.ch and load base register with program 
counter 

Branch on compare code of less than or equal, 
Assembler supplies R field of 5 

Branch on logical result 

Branch and load index or vector register with 
program counter 

Branch on result code of negative, Assembler 
supplies the R field of 4 

Branch on compare code of not equal, 
Assembler supplies R field of 6 

Branch on result code of not zero, Assembler 
supplies the R field of 6 

Branch on floating point exponent ave rflow, 
Assembler supplies R field of 2 

Branch on result code of positive, Assembler 
supplies the R field of 2 

Branch on result code true 

Branch on result code of bits mixed zeros and 
ones, Assembler supplies the R field of 4 

B c·a.nch on result code of bits not mixed zeros 
and ones, Assembler supplies the R field of 3 

Branch on result code of not all bits ones, 
Assembler supplies the R field of 5 

Branch on result code of not all bits zeros, 
Assembler supplies the R field of 6 

Branch on result code of all bits are one, 
Assembler supplies the R field of 2 

Branch on result code of all bib> are zero, 
Assembler supplies the R field of one 

Branch on floating point exponent underflow, 
Ass ernble r supplies R field of one 

Branch on floating point exponent underflow 
or overflow, Assembler supplies R field of 3 

Branch on fixed point overflow, Assembler 
supplies R field of 4 

B-3 

91 

98 

91 

95 

99 

95 

91 

95 

9D 

95 

95 

95 

95 

95 

95 

95 

95 

9D 

9D 

9D 

(@[ = ]]n(, x] 

r, [@[ = ]]n[, x] 

[@[ =]Jn(, x] 

m, [@[=Jln[,x] 

r,[@[=])n(,x) 

[@[=])n[,x] 

(@[=])n[,x] 

[@[=])n(,x] 

[@[=]Jn[ , x] 

[@[ = ))n[, x) 

m,[@[=)]n(,x) 

[ @[ =] )n[ , x] 

(@[=]]n[, x) 

[@[=))n[,x] 

[@[ = ])n[, x] 

[@[=))n[,x] 

[@[=))n[,x) 

[@[ = ]]n(, x] 

[@[=]Jn[, x] 

[@[=))n[,x) 

7-132 

7-132 

7-137 

7-132 

7-133 

7-138 

7-133 

7-132 

7-133 

7-134 

7-133 

7-133 

7-133 

7-133 

7-133 

7-133 

7-133 

7-133 

7-134 

7-134 

7-134 

SCALAR INSTRUCTIONS IN ALPHABETICAL ORDER BY ASSEMBLER CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
CODE 

BXEC 

BXO 

BXU 

BXUO 

'---.~·----

INSTRl JC:T'ION 
•·~-v,.-..,.. 

Branch on Execute bran 
Assembler supplies R f 

ch condition true, 
ield of one or odd 

Branch on fixed point o' 
point exponent overflow 

rerflow or floating 

• Assernbler supplies 
R field of 6 

erflow or floating Branch on fixed point ov 
point exponent underflow . Assembler supplies 
R field of 5 

erilow or floating 
or underflow, Ass em-

Branch on fixed point ov 
point exponent overflow 
bler supplies R field of 7 

BZ Branch on result code o 

supplies the R field of o 

f zerD, 

ne 
Assembler 

BZM Branch on result code o 
Assembler supplies the 

f zero or negative, 
R field of 5 

BZP Branch on result code o 
Assembler supplies the 

f zero or positive, 
R field of 3 

C Compare arithmetic reg ister, fixed point 
singleword 

C Compare index or vecto r register, fixed point 
singleword 

CAND Compare logical AND, singleword - arithmetic 
register 

CANDD Compare logical AND, 
tic register 

duuble\vord - arithme-

CANDI 

CFD 

CH 

CI 

CI 

CIH 

Compare immediate log 
arithmetic register 

ical AND, singleword -

Compare arithmetic reg ~is te r, floating point 
singleword 

Compare arithmetic reg is Le r, floating point 
double word 

Compare arithn1etic reg ister, fixed point 
halfword 

'thrnetic Compare immediate an 
fixed point singleword_ 

register, 

Compare index or vecto 'T register with imrne-
diate singleword 

Compare arithmetic re 
fixed point halfword 

gister trnrnediate, 

B-4 

MCHN 
CODE 

9C 

9D 

9D 

9D 

95 

95 

95 

CB 

CE 

E2 

E3 

F2 

CA 

CB 

C9 

DB 

DE 

D9 

OPERAND 
TOPIC 

FORMAT 

[@]n[, x] 7-135 

[@[=]]n[, x] 7-134 

[@[ = ]]n[, x] 7-134 

[@[ = ]]n[, x] 7-134 

[ @[ = ]]n[ , x] 7-133 

[@[ = ]]n[, x] 7-133 

[@[=]]n[,x] 7-133 

r, [@][ = ]n[, x] 7-104 

r, [@][ = ]n[, x] 7-104 

r,[@][=]n[,x] 7-110 

r, [@][ = ]n[, x] 7-111 

r, i[, x] 7-112 

r, [@][ =]n[, x] 7-106 

r, [@][ = ]n[, x] 7-107 

r,[@][=]n[,x] 7-105 

r, i[, x] 7-lOB 

r, i[, x] 7-108 

r,i[,x] 7-109 

SCALAR INSTRUCTIONS IN ALPHABETICAL ORDER BY ASSEMBLER CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB MCHN OPERAND 
CODE INSTRUCTION 

CODE FORMAT 
TOPIC 

COR Compare logical OR, singleword - arithmetic E6 r,[@][=]n[,x] 7-113 
register 

CORD Compare logical OR, doubleword - arithmetic E7 r, [@][ = ]n[, x] 7-114 
register 

CORI Compare immediate logical OR, singleword - F6 r,i[,x] 7-115 
arithmetic re gis te r 

D Divide into arithmetic register, fixed point 64 r, [@][ = ]n(, x] 7-69 
single word 

DBNZ Decrement arithmetic register, test, and SB r,[@[=]]n(,x] 7-125 
branch on not zero 

DBNZ Decrement index or vector register, test, SF r,[@[=]]n[,x] 7-125 
and branch on not zero 

DBZ Decrement arithmetic register, test, and SA r,[@[=]]n[,x] 7-124 
branch on zero 

DBZ Decrement index or vector register, test, SE r, [@[ = ]]n[, x] 7-124 
and branch on zero 

DF' Divide into arithmetic register, floating 66 r, [@][ = ]n[, x] 7-71 
point singleword 

DFD Divide into arithmetic register, floating 67 r,[@][=]n[,x] 7-72 
point doubleword 

DH Di vi de into arithmetic register, fixed point 65 r,[@][=]n[,x] 7-70 
halfword 

Dl Divide immediate into arithmetic register, 74 r,i[,x] 7-73 
fixed point singleword 

DIH Divide immediate into arithmetic register, 75 r,i[,x] 7-74 
fixed point halfword 

DSE Decrement arithmetic register, test, and S2 r,[@][=]n[,x] 7-119 
skip on equal 

DSNE Decrement arithmetic register, test, and S3 r,[@][=]n[,x] 7-120 
skip on not equal 

EQC Equivalence, singleword - arithmetic register EC r, [ @][ = ]n[, x] 7-S5 

EQCD Equivalence, doubleword - arithmetic ED r, [@][=]n[, x] 7-S6 
register 

EQCI Equivalence immediate, singleword - arithme- FC r,i[,x] 7-S7 
tic register 

FDFX Convert floating point doubleword to fixed A2 r, [@]n[, x] 7-150 
point singleword 

FHFD Convert fixed point halfword to floating point AB r, [@]n[, x] 7-154 
doubleword 

B-5 

SCALAR INSTRUCTIONS IN ALPHABETICAL ORDER BY ASSEMBLER CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
CODE 

FHFL 

FLFH 

FLFX 

FORE 

FXFD 

FXFL 

IBNZ 

IBNZ 

IBZ 

IBZ 

INT 

!SE 

ISNE 

JOIN 

L 

L 

L 

LAC 

LAM 

LD 

LEA 

LEA 

LEM 

LF 

LF 

LF 

LF 

INSTRUCTION 

Convert fixed point halfword to floating point 
singleword 

Convert floating point singleword to fixed 
point halfword 

Convert floating point singleword to fixed 
point singleword 

Fork 

Convert fixed point singleword to floating 
point doubleword 

Convert fixed point singlewo rd to floating 
point singleword 

Increment arithmetic register, test, and 
branch on not zero 

Increment index or vector register, and 
branch on not zero 

Increment arithmetic register, test, and 
branch on zero 

Increment index or vector register, test, 
and branch on zero 

Interpret - arithmetic register 

Increment arithmetic register, test and skip 
on equal 

Increment arithmetic register, test, and skip 
on not equal 

Join 

Load arithmetic register, singleword 

Load base register, singleword 

Load index register or vector parameter 
register, singleword 

Load arithmetic exception condition 

Load arithmetic mask 

Load arithmetic register doubleword 

Load effective address into base register 

Load effective address into index or vector 
register 

Load arithmetic exception mask and condition 

Load base register file A, M=O 

Load base register file B, M=l 

Load arithmetic register file C, M=2 

Load arithmetic register file D, M=3 

B-6 

MCHN 
CODE 

A9 

Al 

AO 

9A 

AA 

AB 

B9 

BD 

BB 

BC 

92 

BO 

Bl 

9B 

14 

lB 

lC 

13 

12 

17 

52 

56 

11 

lB 

lB 

lB 

lB 

OPERAND 
FORMAT 

r, [@]n[, x] 

r, [@]n[, x] 

r, [@]n[, x] 

r, [@]n[, x] 

r,[@)n[,x] 

r,(@[=]]n[,x] 

r, [[[ "]]n[, x] 

r, [@[ = )]n[, x] 

r, [ @[ '- ]]n[ , x] 

r, [@]( = ]n[. x] 

r, [@][ = ]n[, x] 

r, [@](-= ]n[, x] 

r,[@)[-']n[,x] 

r,[@][=]n[,x] 

r,[@][=]n[,x] 

[@[=]]n[,x] 

[@[=]Jn[, x] 

r, [@][=]n[, x] 

r, [@][ =]n[, x] 

r, [@][=]n[, x] 

[@[ = ]]n[, x] 

m, [@]n[, x] 

m, [@]n[,x] 

m, [@]n[, x] 

m, [@Jn[, x] 

TOPIC 

7-152 

7-149 

7-148 

7-162.] 

7-153 

7-151 

7-123 

7-123 

7-122 

7-122 

7-162 

7-117 

7-llB 

7-162.2 

7-3 

7-3 

7-3 

7-167 

7-166 

7-7 

7-160 

7-160 

7-167,l 

7-23 

7-23 

7-23 

7-23 

SCALAR INSTRUCTIONS IN ALPHABETICAL ORDER BY ASSEMBLER CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

LF 

LF 

LFM 

LI 

LI 

LIH 

LLA 

LLL 

LLR 

LM 

LMD 

LMF 

LMH 

LN 

LND 

LNF 

LNH 

LNM 

LNMD 

LNMF 

LNMH 

LO 

Load index register file X, M,~4 1 B 

Load vector parameter register tik V. 111=5 lB 

Load all six eight-word register fil·~:.• l F 

Load immediate into arithmeti,; re~rnte r 54 
single word 

Load immediate into index reg113ter, or vi::ctor 5C 
parameter register, singleword 

Load immediate into arithmetic regio te 1. 55 
halfword 

Load look ahead l 6 

Load memory left halfword, indexed, into 15 
arithmetic register left halfword 

Load memory right halfword, indexed, into 19 
arithmetic register left halfword 

Load magnitude, fixed point singleword, 3C 
arithmetic register 

Load magnitude, floating point douLk\\urcl, 3F 
arithmetic register 

Load magnitude, floating point singlewo1·d, 3£ 
arithmetic register 

Load magnitude, fixed point halfv.:nrrl. 30 
arithmetic register 

Load negative, fixed point singleword, 30 
arithmetic register 

Load negative, floating point doublt:wo rd, 33 
arithmetic register 

Load negative, floating point singleword, 32 
arithmetic register 

Load negative, fixed point halfword, 31 
arithmetic register 

Load negative magnitude, fixed point single- 38 
word, arithmetic register 

Load negative magnitude, floating point 3B 
doubleword, arithmetic register 

Load negative magnitude, floating puinl 3A 
singleword, arithmetic register 

Load negative magnitude, fixed point halfword, 39 
arithmetic register 

Load arithmetic register with one.:; complement lE 
single word 

B-7 

OPERAND 
FORMAT 

m, [@]n[, x] 

m,[@]n[,x] 

[@]n[, x] 

r,i(,x] 

r, i[, x] 

r, i(, x] 

r, [@][=]n[.x] 

r, (@)[=]n(,x] 

r, [@][ =]n[, x] 

r, [@](-= ]n[, x] 

r,[@][=]n[,x] 

r, (@][ '-]n[, x] 

r,[@](-"]n(,x] 

r,[@]l=]n[,x] 

r, j@]( = ]n[, x] 

r,[@][=]n[,x] 

r,(@][=]n[,x] 

r,(@][=]n[,x] 

r, [@][ = ]n(, x] 

r,[@][=]n[,x] 

r,[@][-=]n[,x] 

TOPIC 

7-Z3 

7-Z3 

7-Z4 

7-8 

7-8 

7-9 

7-159 

7-4 

7-6 

7-14 

7-17 

7-16 

7-15 

7-10 

7-13 

7-12 

7-11 

7-18 

7-21 

7-ZO 

7-19 

7-ZZ 

SCALAR INSTRUCTIONS IN ALPHABETICAL ORDER BY ASSEMBLER CODE 



PROGRAMMER 1S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
CODE 

LRL 

LRR 

M 

M 

M 

MCP 

MCW 

MF 

MFD 

MH 

Ml 

Ml 

MI 

MIB 

MOD 

NFH 

NFX 

NOP 

OR 

ORD 

ORI 

PB 

PSH 

PUL 

RVS 

s 

INSTRUCTION 

Load memory left halfword, indexed, into 
arithmetic register right halfword 

Load memory right halfword, indexed, into 
arithmetic register right halfword 

Multiply fixed point singleword - arithmetic 
register 

Multiply, fixed point singlev.ord La1:H:: 

register 

Multiply, fixed point singleword - index or 
vector parameter register 

Monitor call and proceed 

Manito r call and wait 

Multiply, floating point singleword ·· 
arithmetic register 

Multiply, floating point doubl_.wo rd -
arithmetic register 

Multiply, fixed point halfword -- arithmetic; 
register 

Multiply immediate, fixed point singleword -
arithmetic register 

Multiply immediate, fixed point singleword -
base register 

Multiply immediate, fixed point i;ingleword -
index or vector parameter register 

1.h1ltiply ilnmediate, iixed point llaii'-'''' <d -
arithmetic register 

Modify stack parameter doubleword 

Normalize fixed point halfword 

Normalize fixed point singleword 

Take next instruction, Assen1bler supplies R 
field of zero 

OR, singleword - arithmetic register 

OR, doubleword - arithmetic register 

OR immediate, singleword - arithmetic 
register 

Prepare to Branch 

Push word into last-in-first-out stack 

Pull word from last-in-first-out stack 

BH reversal, singleword - arithmetic register 

Subtract from arithmetic register, fixed 

B-8 

MCHN 
CODE 

10 

lD 

6C 

68 

6A 

90 

94 

6E 

6F 

6D 

7C 

78 

7A 

7D 

9.F 

AD 

AC 

91 

E4 

ES 

F4 

9E 

93 

97 

C6 

48 

OPERAND 
FORMAT 

r, [@][=Jn[, x] 

r,[@][=)n[,x) 

r,[@][=)n[,x] 

r,[@][=]n[,x] 

r, [@][ =]n[, x] 

i[, x] 

i(, x] 

r,[@][=]n[,x] 

r, (@JI =)n[, x] 

r,l@][:::]n[,x] 

r, i[, x] 

r, i(, xj 

r. i(, .i..J 

r,(@]n[,x] 

r, [@]n[, x) 

r, (@]n(, x] 

[@l=]]n(,x] 

r,[@][=]n[,x] 

r, [@][ = )n[, x] 

r, i[, x] 

r,[@]n[.x) 

r,[@]n[,x] 

r, i[, x] 

r,[@][=]n[,x] 

TOPIC 

7-5. 1 

7-5 

7-63 

7-63 

7-63 

7-164 

7-65 

7-66 

7-64 

7-67 

7-67 

7-67 

7-68 

7-143 

7-156 

7-155 

7-132 

7-79 

7-80 

7-81 

7-159.l 

7-141 

7-142 

7-102 

7-53 

SCALAR INSTRUCTIONS IN ALPHABETICAL ORDER BY ASSEMBLER CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

r-----.---···-----------------------r-------------..,---...., ASSMB 
CODE 

SA 

SAD 

SAH 

SC 

SCD 

SCH 

SCLK 

SF 

SFD 

SH 

Sl 

SIH 

SL 

SLD 

SLH 

SM 

SMF 

SMFD 

SMH 

SPS 

ST 

ST 

ST 

INSTRUCTION 

Arithrnetic shift, fixed point singleword -
arithmet.ic register 

A ritrunetic shift, fixed point doublewo rd -
arithmetic register 

Arithrnetic shift, fixed point halfword -
a rithmellc register 

Circular shift, singleword - arithmetic 
regis le r 

Circular shift, d1iublewurd - arithmetic 
register 

Circular shift, halfword - arithmetic register 

Store clock 

Subtract fron1 arithrr1etic register, floating 
point singlewo rd 

Subtract from aritlunetic register, floating 
point doubleword 

Subtract fron-1 arithmetic register, fixed 
point halfword 

Subtract inun•;;iic.te fron1 arithmetic register, 
fixed point si11gleword 

Subtract irnn1ediate from arithmetic register, 
fixed point halfword 

Logical shift, singleword - arithmetic 
regis tt: r 

Logical shitt, d1mblewunl - arithmetic register 

Logical shilt, hG.lfword - arithrnetic register 

Subtract magnitude fro1n arithmetic register, 
fixed point singleword 

Subtract magnitude fro1n arithmetic register, 
floating point singleword 

Subtract magnitude from arithmetic register, 
floating point doubleword 

Subtract rnagnitude from arithmetic register, 
fixed point halfword 

Store program status word 

Store arithmetic register, singleword 

Store base register, singleword 

Store index register or vector parameter 
register, singleword 

B-9 

MCHN 
CODE 

co 

C3 

Cl 

cc 

CF 

CD 

AE 

4A 

4B 

49 

58 

59 

C4 

C5 

4C 

4E 

4F 

4D 

l2 

24 

28 

2C 

OPERAND 
FORMAT 

r, i[. x] 

r, i(. x] 

r, i[. x] 

r, i(. x] 

r, i[, x] 

i, i[, x) 

r,[@](=)n(,x] 

r,[@)[=-]n(,x] 

r, [<c;i][ :o)n[, x] 

r, i(. x] 

r, i[, x] 

r,i[,x] 

r, i[, xj 

r,i(.x] 

r, [@;][ =- ]n[, x] 

r, [@](=)n(, x] 

r, [@][=]n[, x] 

r, (@][=]n[, x] 

[@Jn[. x] 

r, [@]n[, x] 

r, (@]n[, x] 

r, (@]n[. x] 

TOPIC 

7-93 

7-95 

7-94 

7-99 

7-101 

7-100 

7-167.2 

7-55 

7-56 

7-54 

7-57 

7-58 

7-96 

7-98 

7-97 

7-59 

7-61 

7-62 

7-60 

7-168 

7-26 

7-26 

7-26 

SCALAR INSTRUCTIONS IN ALPHABETICAL ORDER BY ASSEMBLER CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
CODE 

STD 

STF 

STF 

STF 

STF 

STF 

STF 

STFM 

STLL 

STLR 

STN 

STND 

STNF 

STNH 

STO 

STOH 

STRL 

STRR 

STZ 

STZD 

STZH 

VECT 

VECTL 

XCH 

XEC 

XOR 

XORD 

XOR! 

INSTRUCTION 

Store arithmetic register, doubleword 

Store base register file A, M=O 

Store base register file B, J\.1;::1 

Store arithmetic register file C, M=2 

Store arithmetic register file D, M=3 

Store index register file X, M~4 

Store vector parameter register file V, M=5 

Store all six eight word register files 

Store arithmetic left halfword into memory 
left halfword, indexed 

Store arithmetic register left halfword into 
memory right halfword, indexed 

Store negative, fixed point word 

Store negative, floating point doubleword 

Store negative, floating point word 

Store negative, fixed point halfword 

Store ones complement, word 

Store ones complement, halfword 

Store arithmetic right halfword into memory 
left halfword, indexed 

Store arithmetic register right halfword into 
memory right halfword, indexed 

Store zero, word 

Store zero, doubleword 

Store zero, halfword 

Execute vector parameter file, Assembler 
supplies R field of one 

Load and execute vector parameter file, 
Assembler supplies R field of zero 

Exchange - arithmetic register with effective 
address 

Execute addressed instruction in line 

Exclusive OR, singleword - arithmetic 
register 

Exclusive OR, doubleword - arithmetic 
register 

Exclusive OR immediate, singleword -
arithmetic register 

B-10 

MCHN 
CODE 

27 

2B 

2B 

2B 

2B 

2B 

2B 

2F 

25 

29 

34 

37 

36 

35 

2E 

2A 

26 

2D 

20 

23 

21 

BO 

BO 

lA 

96 

EB 

E9 

FB 

OPERAND 
FORMAT 

r, [@]n[, x] 

m, [@]n[, x] 

m, [@]n[, x] 

m, [@Jn[, x] 

m, [@Jn[, x] 

m, [@Jn[, x] 

m, [@]n(, xJ 

[@Jn(, x] 

r, [@]n[, x] 

r, [@]n[, x] 

r,[@]n(,x] 

r,[@]n[,x] 

r,[@]n[,x] 

r, [@]n[,x] 

r, [@]n[, x] 

r, (@]n(, x] 

r, [@]n[, x] 

r,[@]n[,x] 

[@]n[, x] 

[ <<P]n[, x] 

[@]n[,x] 

[@]n[.x] 

[@]n[,x] 

r, [@]n[, x] 

[@[ =]]n[, x] 

r,[@][=]n[,x] 

r, [@][ = ]n[, x] 

r, i[, x] 

TOPIC 

7-30 

7-39 

7-39 

7-39 

7-39 

7-39 

7-39 

'7-41 

7-27 

7-29 

7-34 

7-37 

7-36 

7-35 

7-38 

7-39 

7-28. 1 

7-28 

7-31 

7-33 

7-32 

8-5 

8-4 

7-158 

7-161 

7-82 

7-83 

7-84 

SCALAR INSTRUCTIONS IN ALPHABETICAL ORDER BY ASSEMBLER CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

APPENDIX C: SCALAR INSTRUCTIONS IN NUMERIC ORDER BY MACHINE CODE 

MCHN ASSMB 
CODE CODE 

10 LRL 

11 LEM 

li LAM 

13 LAC 

14 L 

15 LLL 

16 LLA 

17 LD 

18 L 

19 LLR 

lA XCH 

lB LF 

lB LF 

IB LF 

lB LF 

IB LF 

lB LF 

lC L 

lD LRR 

IE LO 

lF LFM 

20 STZ 

21 STZH 

22 SPS 

23 STZD 

24 ST 

25 STLL 

26 STRL 

27 STD 

28 ST 

INSTRUCTION 

Load memory left halfword, indexed, into 
arithmetic register right halfword 

Load arithmetic exception mask and condition 

Load arithmetic mask 

Load arithmetic exception condition 

Load arithmetic register, singleword 

Load memory left halfword, indexed, into 
arithmetic register left halfword 

Load look ahead 

Load arithmetic register, doubleword 

Load base register, singleword 

Load memory right halfword, indexed, into 
arithmetic register left halfword 

Exchange - arithmetic register with effective 
address 

Load base register file A, M=O 

Load base register file B, M:.:I 

Load arithmetic register file C, M=2 

Load arithmetic register file D, M=3 

Load index register file X, M.::4 

Load vector parameter register file V, M"'5 

Load index register or vector parameter 
register, singleword 

Load memory right halfword, indexed, into 
arithmetic register right halfword 

Load arithmetic register with ones comple­
ment, singleword 

Load all six eight-word register files 

Store zero, word 

Store zero, halfword 

Store program status word 

Store zero, doubleword 

Store arithmetic register, singleword 

Store arithmetic register left halfword into 
memory left halfword 

Store arithmetic register right halfword into 
memory left halfword 

Store arithmetic register, doubleword 

Store base register, singleword 

C-1 

OPERAND 
FORMAT 

r, f@]f = ]nf. x] 

r@r = ]]nf, x] 

[@[=)Jn[, x) 

[@[:: ]]n[, x) 

r, [@)[=Jn[, x) 

r, [@)[=Jn[, x) 

r, [@][=Jn[, x] 

r,[@](=]n[,x] 

r, [@][=]n[,x] 

r,[@)n[,x] 

m,[@]n[,x] 

m, [@)n[, x] 

m, [@)n[, x) 

m,[@']n[, x) 

rn, [@)n[, x] 

m, [@:)n[, x) 

r,[@][=)n[.x] 

r,(@]l=]n[,x] 

r,[@)[=)n[,x] 

[@Jn[,x] 

[@]n[, x] 

[@]n[, x] 

[@]n[. x] 

[@]n[,x] 

r, [@]n[, x] 

r, r@ln[, x] 

r,f(cjl]nf,x] 

r, [@]n[, x] 

r,[@]n[,x] 

SCALAR INSTRUCTIONS IN NUMERIC ORDER BY MACHINE CODE 

TOPIC 

7-5. 1 

7-167.1 

7-166 

7-167 

7-3 

7-4 

7-159 

7-7 

7-3 

7-6 

7-158 

7-23 

7-23 

7-23 

7-23 

7-23 

7-23 

7-3 

7-5 

7-22 

7-24 

7-31 

7-32 

7-168 

7-33 

7-26 

7-27 

7-28, 1 

7-30 

7-26 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

MCHN ASSMB 
CODE CODE 

29 STLR 

2A STOH 

2B STF 

2B STF 

2B STF 

2B STF 

2B STF 

2B STF 

2C ST 

2D 

2E 

2F 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

3A 

3B 

3C 

3D 

STRR 

STO 

STFM 

LN 

LNH 

LNF 

LND 

STN 

STNH 

STNF 

STND 

LNM 

LNMH 

LNMF 

LNMD 

LM 

LMH 

INSTRUCTION 

Store arithmetic register left halfword into 
memory right halfword, indexed 

Store ones complement, halfword 

Store base register file A, M=O 

Store base register file B, M=l 

Store arithmetic register file C, M=2 

Store arithmetic register file D, M=3 

Store index register file X, M=4 

Store vector parameter register file V, M=5 

Store index register or vector parameter 
register 

Store arithmetic reg is te r right halfword into 
memory right halfword, indexed 

Store ones complement, word 

Store all six eight-word register files 

Load negative, fixed point single word, 
arithmetic register 

Load negative, fixed point halfword, 
arithmetic register 

Load negative, floating point singleword, 
arithmetic register 

Load negative, floating point doubleword, 
arithmetic register 

Store negative, fixed point word 

Store negative, fixed point halfword 

Store negative, floating point word 

Store negative, floating point doubleword 

Load negative magnitude, fixed point single­
word, arithmetic register 

Load negative magnitude, fixed point half­
word, arithmetic register 

Load negative magnitude, floating point 
singleword, arithmetic register 

Load negative magnitude, floating point 
doubleword, arithmetic register 

Load magnitude, fixed point singleword, 
arithmetic register 

Load magnitude, fixed point halfword, 
arithmetic reg is te r 

C-2 

OPERAND 
FORMAT 

r, (@]n[, x] 

r, [@]n[, x] 

m, [@Jn[, x] 

m, [@Jn[, x] 

m, [@]n[, x] 

m, [@]n[, xJ 

m, [@Jn[, x] 

m, [@Jn[, x] 

r, [@Jn[, xJ 

r, [@Jn[, xJ 

r, [@]n[, xJ 

(@]n(,x] 

r, [@'](=Jn[, x] 

r, l@, ][ = ]n[, x] 

r. [ti! H =Jn[, xJ 

r,[@][=Jn[,xJ 

r,({9'.]n[, xJ 

r,[@]n[,x] 

r, (@]n(. xJ 

r,[@Jn[,xJ 

r,[@](=Jn[,xJ 

r, [@][=]n[,xJ 

r,[@](=Jn[,xJ 

r,(@](=Jn[,xJ 

r,[@][=]n[,xJ 

r,[@][=]n[,x] 

SCALAR INSTRUCTIONS IN NUMERIC ORDER BY MACHINE CODE 

TOPIC 

7-29 

7-39 

7-40 

7-40 

7-40 

7-40 

7-40 

7-40 

7-26 

7-28 

7-38 

7-41 

7-10 

7-11 

7-12 

7-13 

7-34 

7-35 

7-36 

7-37 

7-18 

7-18 

7-20 

7-21 

7-14 

7-15 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

MCHN 
CODE 

3E 

3F 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

4i\_ 

4B 

4C 

4D 

4E 

4F 

50 

51 

ASSMB 
CODE 

LMF 

LMD 

A 

AH 

AF 

AFD 

AM 

AMH 

AMF 

AMF'D 

s 

SH 

SF 

SFD 

SM 

SMH 

SMF 

SMFD 

AI 

AIH 

--- -,_., -- ---···-·---------------------,.---------r----, 

--
INSTRUCT ION 

Lo<i.d m.tgnitude, floating point singleword, 
arithrnetic register 

Load magnitude, floating point doubleword, 
arithmetic register 

Add to drithm,~tic register, fixed point 
singleword 

Add to a rithrnetic register, fixed point halfword 

Add to arith1netic register, floating point 
singlevlOrd 

Add to arithmetic register, floating point 
doubleword 

Add magnitude to arithmetic register, fixed 
point singleword 

Add rnagnitude to arithmetic register, fixed 
point halfword 

Add rnagnit.ude to arithmetic register, 
floating point singleword 

I 

Add magnitude to arithmetic register, 
floating point doubleword 

Subtract frorn arithmetic register, fixed 
point singleword 

Subtract frorn arithmetic register, fixed 
point halfword 

SubtL" t froni arithmetic register, floating 
point singleword 

Subtra,~t ironi arithmetic register, floating 
poinl doubleword 

Subtract rnagnitude from arithmetic register, 
fixed point singleword 

Subtract. n1agnitude from arithmetic register, 
fixed point halfword 

Subtract rnagnitude from arithmetic register, 
floating point singleword 

Subtral'.t magnitude from arithn1etic register, 
floating point doubleword 

Add inunediate to arithmetic register, fixed 
poiri!: singleword 

Add im1nediate to arithmetic register, fixed 
point halfword 

OPERAND 
TOPIC FORMAT 

r,[@][=]n[,x] 7-16 

r,[@][=]n[,x] 7-17 

r, [@][ = ]n[, x] 7-43 

r, [@][=]n[, x] 7-44 

r,[@][=]n[,x] 7-45 

r, (@][ =]n[, x] 7-46 

r,(@][=]n[,x] 7-49 

r, [@][=]n(,x] 7-50 

r,[@][=]n(,x] 7-51 

r,[@][=]n(,x] 7-52 

r,[@][=]n[,x] 7-53 

r,[@][=]n[,x] 7-54 

r, [@][ =]n[, x] 7-55 

r,[@J[=]n(,x] 7-56 

r,[@][=]n[,x] 7-59 

r,[@][=]n(,x] 7-60 

r, [@][ = ]n[, x] 7-61 

r,(@][=]n(,x] 7-62 

r, i[, x] 7-47 

r, i[. x] 7-48 

_ __.__ ----·-----· ·-·--------------------------'-------------

C-3 
SCALAR INSTRUCTIONS IN NUMERIC ORDER BY MACHINE CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

...... ~ . .._. ... 
MCHN ASSMB 

INSTRUCTION OPERAND 
CODE CODE FORMAT 

TOPIC 

52 LEA Load effective address into base register r, (@](=]n[, x] 7-160 

54 LI Load immediate into arithmetic register r, i(, x] 7-8 
singleword 

55 LIH Load immediate into arithmetic register, r,i[,x] 7-9 
halfword 

56 LEA Load effective address into index or vector r, [@][ = ]n[, x] 7-160 
register 

58 SI Subtract immediate from arithmetic register, r, i(, x] 7-57 
fixed point singleword 

59 SIH Subtract immediate from arithmetic register, r,i[.x] 7-58 
fixed point halfword 

SC LI Load immediate into index register, or vector r, i[, x] 7-8 
parameter register, singleword 

60 A Add to base register, fixed point singleword r, (@](=]n[, x] 7-43 

'62 A Add to index or vector parameter register, r, [@][=]n[, x] 7-43 
fixed point singleword 

64 D Divide into arithmetic register, fixed point r, [@][=]n[, x] 7-69 
singleword 

65 DH Divide into arithmetic register, fixed point r, [@][ = ]n[, x] 7-70 
halfword 

66 DF Divide into arithmetic register, floating r, [@][=]n[, x] 7-71 
point singleword 

67 DFD Divide into arithmetic register, floating r,[@][=]n(,x] 7-72 
point doubleword 

68 M Multiply, fixed point singleword - base r, [@][=]n[, x] 7-63 
register 

6A M Multiply, fixed point singleword - index or r, [@](=]n(, x] 7-63 
vector parameter register 

6C M Multiply, fixed point singleword - arithmetic r,[@][=]n[,x] 7-63 
register 

6D MH Multiply, fixed point halfword - arithmetic r,[@][=]n(,x] 7-64 
register 

6E MF Multiply, floating point singlewo rd - r, [@]( =]n[, x] 7-65 
arithmetic register 

6F MFD Multiply, floating point doublewo rd - r,[@][=]n[,x] 7-66 
arithmetic register 

70 Al Add immediate to base register, fixed point r,i(,x] 7-47 
single word 

C-4 
SCALAR INSTRUCTIONS IN NUMERIC ORDER BY MACHINE CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

MCHN 
CODE 

72 

74 

75 

78 

7A 

7C 

7D 

8D 

81 

82 

83 

84 

85 

86 

87 

88 

89 

8A 

8B 

8C 

8D 

8E 

8F 

90 

91 

91 

ASS MB 
CODE 

AI 

DI 

DIH 

MI 

MI 

MI 

MIH 

ISE 

ISNE 

DSE 

DSNE 

BCLE 

BCG 

BCLE 

BCG 

IBZ 

IBNZ 

DBZ 

DBNZ 

IBZ 

IBNZ 

DBZ 

DBNZ 

MCP 

BCC 

NOP 

INSTRUCTION 

Add immediate to index or vector parameter 
register, fixed point s ingleword 

Divide immediate into arithmetic register, 
fixed point singleword 

Divide immediate into arithmetic register, 
fixed point halfword 

Multiply immediate, fixed point singleword -
base register 

Multiply immediate, fixed point singleword -
index or vector parameter register 

Multiply immediate, fixed point singleword -
arithmetic register 

Multiply immediate, fixed point halfword -
arithmetic register 

Increment, test and skip on equal 

Increment, test and skip on not equal 

Decrement, test and skip on equal 

Decrement, test and skip on not equal 

Branch on arithmetic register less than or equal 

Branch on arithmetic register greater than 

Branch on index less than or equal 

Branch on index greater than 

Increment, test and branch on zero 

Increment, test and branch on not zero 

Decrement, test and branch on zero 

Decrement, test and branch on not zero 

Increment, test and branch on zero 

Increment index or vector register, and 
branch on not zero 

Decrement index or vector register, test, 
and branch on zero 

Decrement index or vector register, test, 
and branch on not zero 

Monitor call and proceed 

Branch on compare code true 

Take next instruction, Assembler supplies 
R field of zero 

C-5 

OPERAND 
FORMAT 

r,i(,x] 

r,i(,x] 

r, i(.x] 

r,i(,x] 

r,i(,x] 

r,i(,x] 

r,i(,x] 

r, (@][=]n(,x] 

r, (@][=Jn(, x] 

r, (@][ = ]n(, x] 

r,(@][=]n(,x] 

r,r,n 

r,r,n 

r,r,n 

r,r,n 

r, [@[=]]n(,x] 

r, (@[ = ]]n(, x] 

r, (@(=]]n(,x] 

r, (@[=]]n(,x] 

r,(@[=]]n(,x] 

TOPIC 

7-47 

7-73 

7-74 

7-67 

7-67 

7-67 

I 
7-68 

7-117 

7-118 

7-119 

7-120 

7-128 

7-129 

7-128 

7-129 

7-122 

7-123 

7-124 

7-125 

7-122 

r,[@[=]]n[,x] 7-123 

r,[@[=]]n[,x] 7-124 

r,[@[=]]n[,x] 7-125 

i,[,x] 7-163 

m, [@[=]]n[, x] 7-132 

[@[=]]n[,x] 7-132 

SCALAR INSTRUCTIONS IN NUMERIC ORDER BY MACHINE CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

MCHN ASS MB OPERAND 
CODE CODE INSTRUCTION FORMAT TOPIC 

91 BE Branch on compare code of equal, Assen1bler [@[=]]n[,x] 7-132 
supplies R field of one 

-

91 BG Branch on compare code of greater than, [@[=]Jn[, x] 7-132 
Assembler supplies R field of 2 

. 91 BGE Branch on compare code of greater than or [@[ =]]n[, x] 7-132 
equal, Assembler supplies R field of 3 

91 BL Branch on compare code of less than, [@[=]]n[,x] 7-132 
Assembler supplies R field of 4 

91 BLE Branch on compare code of less than or [@[=]]n[, x] 7-132 
equal, Assembler supplies R field of 5 

91 BNE Branch on compare code of not equal, [@[ = ]]n[, x] 7-132 
Assembler supplies R field of 6 

91 B Unconditional branch, Assembler supplies [@[=]Jn[, x.] 7-132 
R field of 7 

91 BCZ Branch on compare code of all bits are [@[ = ]]n[, x] 7-132 
zero, Assembler supplies R field of one 

91 BCO Branch on compare code of all bits are one, [@[=]]n[,x] 7-132 
Assembler supplies R field of 2 

91 BCNM Branch on compare code of not mixed, [@[=]]n[,x] 7-132 
Assembler supplies R field of 3 

91 BCM Branch on compare code of mixed zeros [@[=]]n[, x] 7-132 
and ones, Assembler supplies R field of 4 

91 BCNO Branch on compare code of not all ones, [@[=]]n[,x] 7-132 
Assembler supplies R field of 5 

91 BCNZ Branch on compare code of not all zeros, [@[ = ]]n[, x] 7-132 
Assembler supplies the R field of 6 

92 INT Interpret - arithmetic register r, [@][ = ]n[, x] 7-162 

93 PSH Push word into last-in-first-out stack r, [@]n[, x] 7-141 
-- -

94 MCW Monitor call and wait i[, x] 7-164 

95 BRC Branch on result code true m, [@[=]]n[,x] 7-133 

95 BZ Branch on result code of zero, Assembler [@[=]Jn[, x] 7-133 
supplies the R field of one 

95 BPL Branch on result code of positive, Assembler [@[=]Jn[, x] 7-133 
supplies the R field of 2 

95 BZP Branch on result code of zero or positive, [@[=]Jn[, x] 7-133 
Assembler supplies the R field of 3 

95 BMI Branch on result code or n~gative, Assembler [@[=]Jn[. x] 7-133 
supplies the R field of 4 

95 BZM Branch on result code of zero or negative, [@[ = ]]n(, x] 7-133 
Assembler supplies the R field of 5 

C-6 
SCALAR INSTRUCTIONS IN NUMERIC ORDER BY MACHINE CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

MCHN ASSMB 
INSTRUCTION 

OPERAND 
TOPIC 

CODE CODE FORMAT 

95 BNZ Branch on result code of not zero, Assembler [@[ = ))n[, x] 7-133 
supplies the R field of 6 

95 BLR Branch on logical result m[@:[ = ))n[, x] 7-\33 

95 BRZ Branch on result code of all bits zero zero, [(g.[ =]Jn[. x] 7-133 
Assembler supplies the R field of one 

95 BRO Branch on result code of all bits are one, [@[=))n[,x] 7-133 
Assembler supplies the R field of 2 

95 BRNM Branch on result code of bits not mixed zeros [@[ = ))n(, x] 7-133 
and ones, Assembler supplies the R field of 3 

95 BRM Branch on result code of bits mixed zeros and [@[=]Jn[. x] 7-133 
ones, Assembler supplies the R field of 4 

95 BRNO Branch on result code of not all bits ones, (@ (=)Jn(, x] 7-133 
Assembler supplies the R field of 5 

95 BRNZ Branch on result code of not all bits zeros, (@( = )]n[. x) 7-133 
Assembler supplies the R field of 6 

96 XEC Execute addressed instruction in line [@( = ))n[, x] 7-161 

97 PUL Pull word from last-in-first-out stack r,[@]n[,x] 7-142 

98 BLB Branch and load base register with program r,(@[=))n[,x) 7-137 
counter 

99 BLX Branch and load index or vector register with r, (@[=)Jn[. x) 7-138 
program counter 

9A FORK Fork --- 7-162. 1 

9B JOIN Join --- 7-162.2 

9C BXEC Branch on Execute branch condition true, (@Jn[. x) 7-135 
Assembler supplies R field of one or odd 

9D BAE Branch on arithmetic exception condition true m, (@;[=]Jn(, x] 7-134 

9D BU Branch on floating point exponent underflow, [@[ = ]]n[, x] 7-134 
Assembler supplies R field of one 

9D BO Branch on floating point exponent overflow, [@[=]Jn[, x] 7-134 
Assembler supplies R field of Z 

9D BUO Branch on floating point exponent underflow [@[=]]n[, x] 7-134 
or overflow, Assembler supplies R field 
of 3 

9D BX Branch on fixed point overflow, Assembler [@[=]]n[,x] 7-134 
supplies R field of 4 

9D BXU Branch on fixed point overflow or floating [@[ = ]]n[, x] 7-134 
point exponent underflow, Assembler 
supplies R field of 5 

9D BXO Branch on fixed point overflow or floating [@[=]]n[,x] 7-134 
point exponent overflow, Assembler supplies 
R field of 6 

9D BXUO Branch on fixed point overflow or floating [@[ = ]]n[, x] 7-134 
point exponent overflow or underflow, 
Assembler supplies R field of 7 

C-7 
SCALAR INSTRUCTIONS IN NUMERIC ORDER BY MACHINE CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

MCHN ASSMB 
INSTRUCTION 

OPERAND 
CODE CODE FORMAT TOPIC 

9D BD Branch on divide check, Assembler supplies [@[=]]n[, x] 7-134 
R field of 8 

9D BDU Branch on divide check or floating point [@[ = ]]n[, x] 7-134 
exponent underflow, Assembler supplies R 
field of 9 

9D BDO Branch on divide check or floating point [@[ = ]]n[. x] 7-134 

exponent overflow, Assembler supplies R 
field of A 

9D BDUO Branch on divide check or floating point [@[ = ]]n[, x] 7-134 

exponent overflow or underflow, Assembler 
supplies R field of B 

9D BDX Branch on divide check or fixed point over- [@[-=]]n[,x] 7-134 

flow, Assembler supplies R field of C 

9D BDXU Branch on divide check or fixed point over- [@'[=]]n[,x] 7-134 

flow or floating point exponent underflow, 
Assembler supplies R field of D 

9D BDXO Branch on divide check or fixed point over- [@[ = ]]n[, x] 7-134 

flow or floating point exponent overflow, 
Assembler supplies R field of E 

9D BDXUO Branch on divide check or fixed point over- [@[=]]n[, x] 7-134 

flow or floating point exponent overflow or 
underflow, Assembler supplies R field of F 

9E PB Prepare to branch --- 7-159.1 

9F MOD Modify stack parameter doubleword r,[@]=[,x] 7-143 

AO FLFX Convert floating point singleword to fixed r,[@]n[,x] 7-148 
point singleword 

Al FLFH Convert floating point singleword to fixed r, [@]n[, x] 7-149 
point halfword 

AZ FDFX Convert floating point doubleword to fixed r, [@]n[, x] 7-150 
point singleword 

AS FXFL Convert fixed point singleword to floating r, [@]n[, x] 7-151 
point singleword 

A9 FHFL Convert fixed point halfword to floating point r, [@]n[, x] 7-152 
singleword 

AA FXFD Convert fixed point singleword to floating r, [@]n[, x] 7-153 
point doublewo rd 

AB FHFD Convert fixed point halfword to floating r,[@]n[,x] 7-154 
point doubleword 

. AC NFX Normalize fixed point singleword r, [@)n[, x] 7-155 

AD NFH Normalize fixed point halfword r, [@]n[, x] 7-156 

AE SCLK Store clock --- 7-167.Z 

BO VECTL Load and execute vector parameter file, [@]n{, x] 8-4 
Assembler supplies R field of zero 

C-8 
SCALAR INSTRUCTIONS IN NUMERIC ORDER BY MACHINE CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

MCHN 
CODE 

BO 

co 

Cl 

C3 

C4 

cs 
C6 

C7 

CB 

C9 

CA 

CB 

cc 

CD 

CE 

CF 

DB 

D9 

DE 

EO 

El 

EZ 

ASSMB 
CODE 

VECT 

SA 

SAH 

SAD 

SL 

SLH 

RVS 

SLD 

c 

CH 

CF 

CED 

SC 

SCH 

c 

sen 

CI 

CIH 

CI 

AND 

ANDD 

CAND 

INSTRUCTION 

Execute vector parameter file, Assembler 
supplies R field of one 

Arithmetic shift, fixed point singleword -
arithmetic register 

Arithmetic shift, fixed point halfword -
arithmetic register 

Arithmetic shift, fixed point doubleword -
arithmetic register 

Logical shift, singleword - arithmetic 
register 

Logical shift, halfword - arithmetic register 

Bit reversal, singleword - arithmetic 
register 

Logical shift, doubleword - arithn1etic 
register 

Compare arithmetic register, fixed point 
singleword 

Compare arithmetic register, fixed point 
halfword 

Compare arithmetic register, floating point 
singleword 

Compare arithmetic register, floating point 
double word 

Circular shift, singleword - arithmetic 
register 

Circular shift, halfword - arithmetic 
register 

Compare index or vector register, fixed 
point singleword 

Circular shift, doubleword - arithmetic 
register 

Compare immediate arithmetic register, 
fixed point singleword 

Compare arithmetic register immediate, 
fixed point halfword 

Compare index or vector register with 
immediate, singleword 

AND, singleword - arithmetic register 

AND, doubleword - arithmetic register 

Compare logical AND, singleword - arith­
meti_c register 

C-9 

OPERAND 
FORMAT 

[@]n[, x] 

r, i[, x] 

r, i[, x] 

·r ] r, iL, x 

r, i[, x] 

r,i[,x] 

r, i[, x] 

r, i[, x] 

TOPIC 

B-5 

7-93 

7-94 

7-95 

7-96 

7-97 

7-102 

7-9B 

r, [@][=]n[,x] 7-104 

r,[@][=]n[,x] 7-105 

r,[@][=]n[,x] 7-106 

r,[@][=]n[,x] 7-107 

r,i[,x] 7-99 

r, i[, x] 7-100 

r,[@][=]n[,x] 7-104 

r, i[, x] 7 - 101 

r,ij,x] 7-lOB 

r, i[, x] 7 -10 9 

r,ij,x] 7-108 

r,[@][=]n[,x] 7-76 

r, [@][ =]n[, x] 7-77 

r,[@][=]n[,x] 7-110 

SCALAR INSTRUCTIONS IN NUMERIC ORDER BY MACHINE CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

MCHN ASSMB 
INSTRUCTION 

CODE CODE 

E3 CANDD Compare logical AND, doubleword - arith­
metic register 

E4 OR OR, singleword - arithmetic register 

OR, doubleword - arithxnetic register 

Compare logical OR, singleword - arith­
metic register 

ES ORD 

E6 COR 

E7 CORD Compare logical OR, doubleword - arith­
metic register 

EB XOR Exclusive OR, singleword - arithmetic 
register 

E9 

EC 

ED 

FO 

F2 

F4 

F6 

FB 

FC 

XORD Exclusive OR, doubleword - arithmetic 
register 

EQC Equivalence, singleword - arithmetic 
register 

EQCD Equivalence, doubleword - arithmetic 
register 

ANDI AND immediate, singleword - arithmetic 
register 

CANDI Compare immediate logical AND, single­
word - arithmetic register 

ORI OR immediate, singleword - arithmetic 
register 

CORI Compare immediate logical OR, singleword -
arithmetic register 

XORI Exclusive OR immediate, singleword -
arithxnetic register 

EQCI Equivalence immediate, singleword -
a rithxnetic register 

C-10 

OPERAND 
FORMAT 

r,[@][:]n[,x] 

r, [@][: ]n[, x] 

r, [@][: ]n[, x] 

r, [@][: ]n[, x] 

r, [@][: ]n[, x] 

r, [@][:]n[, x] 

r,[@][:]n[,x] 

r, [@][: ]n[, x] 

r, [@][: ]n[, x] 

r, i[, x] 

r,i[,x] 

r,i[,x] 

r, i[, x] 

r,i[,x] 

r, i[, x] 

SCALAR INSTRUCTIONS IN NUMERIC ORDER BY MACHINE CODE 

TOPIC 

7-111 

7-79 

7-80 

7-113 

7-114 

7-8Z 

7-83 

7-85 

7-86 

7-78 

7-llZ 

7-81 

7-115 

7-84 

7-87 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

APPENDIX D: VECTOR INSTRUCTIONS BY LOGICAL GROUPING 

ASSMB 
CODE 

VA 

VAH 

VAF 

VAFD 

VAM 

VAMH 

VAMF 

VAMFD 

vs 
VSH 

VSF 

VSFD 

VSM 

VSMH 

VSMF 

VSMFD 

VM 

VMH 

VMF' 

VMFD 

VDP 

VDPH 

VDPF 

VDPFD 

VD 

VDH 

VDF 

VDFD 

VAND 

VOR 

VXOR 

VEQC 

VANDD 

MCHN 
CODE 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

4A 

4B 

4C 

4D 

4E 

4F 

6C 

6D 

6E 

6F 

68 

69 

6A 

6B 

64 

65 

66 

67 

EO 

E4 

EB 

EC 

El 

INSTRUCTION 

Vector add, fixed point singleword elements 

Vector add, fixed point halfword elements 

Vector add, floating point singleword 

Vector add, floating point doubleword 

Vector add magnitude, fixed point singleword 

Vector add magnitude, fixed point halfword 

Vector add magnitude, floating point singleword 

Vector add magnitude, floating point doubleword 

Vector subtract, fixed point singleword 

Vector subtract, fixed point halfword 

Vector subtract, floating point singleword 

Vector subtract, floating point doubleword 

Vector subtract magnitude, fixed point singleword 

Vector subtract magnitude, fixed point halfword 

Vector subtract magnitude, floating point singleword 

Vector subtract magnitude, floating point doubleword 

Vector multiply, fixed point singleword 

Vector multiply, fixed point halfword 

Vector multiply, floating point singleword 

Vector multiply, floating point doubleword 

Vector dot product, fixed point singleword 

Vector dot product, fixed point halfword 

Vector dot product, floating point singleword 

Vector dot product, floating point doubleword 

Vector divide, fixed point singleword 

Vector divide, fixed point halfword 

Vector divide, floating point singleword 

Vector divide, floating point doubleword 

Vector logical AND, singleword 

Vector logical OR, singleword 

Vector logical Exclusive OR, singleword 

Vector logical Equivalence, singleword 

Vector logical AND, doubleword 

D-1 

VECTOR INSTRUCTIONS BY LOGICAL GROUPING 

TOPIC 

8-26 

8-26 

8-26 

8-26 

8-27 

8-27 

8-27 

8-27 

8-28 

8-28 

8-28 

8-28 

8-29 

8-29 

8-29 

8-29 

8-30 

8-30 

8-30 

8-30 

8-31 

8-31 

8-31 

8-31 

8-32 

8-32 

8-32 

8-32 

8-33 

8-33 

8-33 

8-33 

8-33 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
CODE 

VORD 

VXORD 

VEQCD 

VSA 

VSAH 

VSAD 

VSL 

VSLH 

VSLD 

vsc 
VSCH 

.VSCD 

VMG 

VMGH 

VMGD 

VO 

VOH 

VOF 

VOFD 

vc 
VCH 

VCF 

VCFD 

VCAND 

VCANDD 

VCOR 

VCORD 

VPP 

VPPH 

VPPF 

VPPFD 

VL 

MCHN 
CODE 

ES 

E9 

ED 

co 
Cl 

C3 

C4 

cs 
C7 

cc 
CD 

CF 

D8 

D9 

DB 

D4 

DS 

D6 

D7 

DO 

Dl 

DZ 

D3 

EZ 

E3 

E6 

E7 

DC 

DD 

DE 

DF 

so 

INSTRUCTION 

Vector logical OR, doubleword 

Vector Exclusive OR, doubleword 

Vector Equivalence, doubleword 

Vector arithmetic shift, fixed point singleword 

Vector arithmetic shift, fixed point halfword 

Vector arithmetic shift, fixed point doubleword 

Vector logical shift, singleword 

Vector logical shift, halfword 

Vector logical shift, doubleword 

Vector circular shift, singleword 

Vector circular shift, halfword 

Vector circular shift, doubleword 

Vector merge singlewords 

Vector merge halfwords 

Vector merge doublewords 

Vee tor order s inglewo rds, fixed point 

Vector order halfwords, fixed point 

Vector order singlewords, floating point 

Vector order doublewords, floating point 

Vector arithmetic comparison, fixed point singleword 

Vector arithmetic comparison, fixed point halfword 

Vector arithmetic cornparison, floating point singleword 

Vector arithmetic comparison, floating point doubleword 

Vector logical comparison using AND, singleword 

Vector logical comparison using AND, doubleword 

Vector logical comparison using OR, singleword 

Vector logical comparison using OR, doubleword 

Vector peak, fixed point singleword 

Vector p~ak, fixed point halfword 

Vector peak, floating point singleword 

Vector peak, floating point doubleword 

Vector search for largest arithmetic element, fixed point 
singleword 

D-2 

VECTOR INSTRUCTIONS BY LOGICAL GROUPING 

TOPIC 

8-33 

8-33 

8-33 

8-34 

8-34 

8-34 

8-34 

8-34 

8-34 

8-34 

8-34 

8-34 

8-3S 

8-35 

8-35 

8-36 

8-36 

8-36 

8-36 

8-38 

8-38 

8-38 

8-38 

8-39 

8-39 

8-39 

8-39 

8-40 

8-40 

8-40 

8-40 

8-42 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB MCHN 
CODE CODE 

VLH Sl 

VLF SZ 

VLFD S3 

VLM S4 

VLMH SS 

VLMF S6 

VLMFD S7 

vss S8 

VSSH S9 

VSSF SA 

VSSFD SB 

VSSM SC 

VSSMH SD 

VSSMF SE 

VSSMFD SF 

VFLFX AO 

VFLFH Al 

VFDFX AZ 

VFXFL A8 

VFXFD AA 

VFHFL A9 

VFHFD AB 

VNFX AC 

VNFH AD 

INSTRUCTION TOPIC 

Vector search for largest arithmetic element, fixed point 8-42 
halfword 

Vector search for largest arithmetic element, floating point 8-42 
single word 

Vector search for largest arithmetic element, floating point 8-42 
doubleword 

Vector search for largest magnitude, fixed point singleword 8-43 

Vector search for largest magnitude, fixed point halfword 8-43 

Vector search for largest magnitude, floating point singleword 8-43 

Vector search for largest magnitude, floating point doubleword 8-43 

Vector search for smallest arithmetic element, fixed point 8-44 
singleword 

Vector search for smallest arithmetic element, fixed point 8-44 
halfword 

Vector search for s1nallest c..rithn1etic elernent, floating point 8-44 
single word 

Vector search for smallest arithmetic element, floating point 8-44 
doubleword 

Vector search for smallest magnitude, fixed point singleword 8-4S 

Vector search for smallest magnitude, fixed point halfword 8-4S 

Vector search for smallest magnitude, floating point singleword 8-4S 

Vector search for smallest magnitude, floating point doubleword 8-4S 

Vector convert floating point singleword to fixed point single- 8-47 
word elements 

Vector convert floating poirit singleword to fixed point halfword 8-47 
elements 

Vector convert floating point doubleword to fixed point single- 8-47 
word elements 

Vector convert fixed point singleword to floating point single- 8-48 
word elements 

Vector convert fixed point singleword to floating point double- 8-48 
word elements 

Vector convert fixed point halfword to floating point singleword 8-48 
elements 

Vector convert fixed point halfword to floating point doubleword 8-48 
elements 

Vector normalize fixed point singleword 8-49 

Vector normalize fixed point halfword 8-49 

D-3 
VECTOR INSTRUCTIONS BY LOGICAL GROUPING 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB MCHN 
INSTRUCTION 

CODE CODE 

VMAP F8 Vector map singleword 

VMAPTI !-''• Vector map halfword 

VMAPD FR Vector map doubleword 

VSEI. BO Select singlewords from vector R 

VSEI.H Bl Select halfwords from vector B 

VSELD B3 Select doublewords from vector B 

VSELB B4 Vector select singleword boolean 

VSELHB BS Vector select halfword boolean 

VSELDB R7 Vector select doubleword boolean 

VREP H8 Replace singlewords in vector c 
VREPH H9 Replace halfwords in vector C 

VREPD RH Replace doublewords in vector c 
VREPB BC Vector replace singleword boolean 

VREPHB BD Vector replace halfword boolean 

VREPDR BF Vector replace doubleword boolean 

VMAPP, FC: Vector map singleword boolean 

VMAPHB FD Vector map halfword boolean 

VMAPDR FF Vector map doubleword boolean 

VMAX F4 Vector maximum/minimum fixed point singleword 

VMAXH FS Vector maximum/minimum fixed point halfword 

VMAXF F6 Vector maximum/minimum floating point singleword 

VMAXFD F7 Vector maximum/minimum floating point doubleword 

VCB FO Vector compare fixed point singleword boolean 

VCHB Fl Vector compare fixed point halfword boolean 

VCFB F2 Vector compare floating point singleword boolean 

VCFDB F3 Vector compare floating point doubleword boolean 

VCAB EA Vector compare AND singleword boolean 

VCADB EB Vector compare AND doubleword boolean 

VCORB EE Vector compare OR singleword boolean 

VCORDB EF Vector compare OR doubleword boolean 

D-4 
VECTOR INSTRUCTIONS BY LOGICAL GROUPING 

TOPIC 

8-~0 

8-50 

8-50 

8-57 

8-57 

8-57 

8-51 

8-51 

8-51 

8-58 

8-58 

8-58 

8-52 

8-52 

8-52 

8-52 

8-53 

8-53 

8-54 

8-54 

8-54 

8-54 

8-55 

8-55 

8-55 

8-55 

8-56 

8-56 

8-56 

8-56 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
CODE 

VA 

VAF 

VAFD 

VAH 

VAM 

VAMF 

VAMFD 

VAMH 

VAND 

VANDD 

vc 

VCAB 

VCADB 

VCAND 

VCANDD 

VCR 

VCF 

VCFB 

VCFD 

VCFDB 

VCH 

VCHB 

VCOR 

VCORB 

VCORD 

VCORDB 

VD 

VDF 

VDFD 

VDH 

VDP 

VDPF 

MCHN 
CODE 

40 

42 

43 

41 

44 

46 

47 

45 

EO 

El 

DO 

EA 

EB 

EZ 

E3 

FO 

DZ 

F2 

D3 

F3 

DI 

Fl 

E6 

EE 

E7 

EF 

64 

66 

67 

65 

68 

6A 

APPENDIX E: VECTOR INSTRUCTIONS IN 
ALPHABETICAL ORDER BY ASSEMBLER CODE 

INSTRUCTION 

Vector add, fixed point singleword 

Vector add, floating point singleword 

Vector add, floating point doubleword 

Vector add, fixed point halfword 

Vector add magnitude, fixed point singleword 

Vector add magnitude, floating point singleword 

Vector add magnitude, floating point doubleword 

Vector add magnitude, fixed point singleword 

Vector logical AND, singleword 

Vector logical AND, doubleword 

Vector arithmetic comparison, fixe<l point singlewor<l 

Vector compare AND singleword lioolean 

Vector compare AND doubleword boolean 

Vector logical comparison using AND, singleword 

Vector logical comparison using AND, doubleword 

Vector compare fixed point singleword boolean 

Vector arithmetic comparison, floating point singleword 

Vector compare floating point singleword boolean 

Vector arithmetic comparison, floating point doubleword 

Vector compare floating point doubleword boolean 

Vector arithmetic comparison, fixed point halfwor<l 

Vector compare fixed point halfword boolean 

Vector logical comparison using OR, singleword 

Vector compare OR singleword boolean 

Vector logical comparison using OR, doubleword 

Vector compare OR doubleword boolean 

Vector divide fixed point, singleword 

Vector divide floating point, singleword 

Vector divide floating point, doubleword 

Vector divide fixed point, halfword 

Vector dot product, fixed point singleword 

Vector dot product, floating point singleword 

E-1 

TOPIC 

8-26 

8-26 

8-26 

8-26 

8- 27 

8-27 

8-27 

8-27 

8-32 

8-32 

8-38 

8- 56 

8-% 

8-39 

8-39 

8-55 

8-38 

8- 55 

8-38 

8-55 

8-38 

8-55 

8-39 

8-56 

8-39 

8-56 

8-32 

8-32 

8-32 

8-32 

8-31 

8-31 

VECTOR INSTRUCTIONS IN ALPHABETICAL ORDER BY ASSEMBLER CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
CODE 

VDPFD 

VDPH 

VEQC 

VEQCD 

VFDFX 

VFHFD 

VFHFL 

VFLFH 

VFLFX 

VFXFD 

VFXFL 

VL 

VLF 

VLFD 

VLH 

VLM 

VLMF 

VLMFD 

VLMH 

VM 

VMAP 

VMAPB 

VMAPD 

VMAPDB 

VMAPH 

VMAPHB 

VMAX 

VMAXF 

VMAXFD 

MCHN 
CODE 

6B 

69 

EC 

ED 

AZ 

AB 

A9 

Al 

AO 

AA 

AB 

50 

52 

53 

51 

54 

56 

57 

55 

6C 

F8 

FC 

FB 

FF 

F9 

FD 

F4 

F6 

F7 

INSTRUCTION 

Vector dot product, floating point doubleword 

Vector dot product, fixed point halfword 

Vector logical Equivalence, singleword 

Vector logical E;iuivalence, doubleword 

Vector convert floating point doubleword to fixed point single­
word 

Vector convert fixed point halfword to floating point doubleword 

Vector convert fixed point half length to floating point singleword 

Vector convert floating point singleword to fixed point halfword I 

Vector convert floating point singleword to fixed point single­
word 

Vector convert fixed point singleword to fixed point doubleword 

Vector convert fixed point singleword to floating point single­
word 

Vector search for largest arithmetic element, fixed point 
singleword 

Vector search for largest arithmetic element, floating point 
singleword 

Vector search for largest arithmetic element, floating point 
doubleword 

Vector search for largest arithmetic element, fixed point 
halfword 

Vector search for largest magnitude, fixed point singleword 

Vector search for largest magnitude, floating point singleword 

Vector search for largest magnitude, floating point doubleword 

Vector search for largest magnitude, fixed point halfword 

Vector multiply, fixed point singleword 

Vector map singleword 

Vector map singleword boolean 

Vector map doubleword 

Vector map doubleword boolean 

Vector Map Halfword 

Vector map halfword boolean 

Vector maximum/minimum fixed point singleword 

Vector maximum/minimum floating point singleword 

Vector maximum/minimum floating point doubleword 

E-2 

TOPIC 

8-31 

8-31 

8-33 

8-33 

8-47 

8-49 

8-49 

8-47 

8-47 

8-48 

8-48 

8-42 

8-42 

8-42 

8-42 

8-43 

8-43 

8-43 

8-43 

8-30 

8-48 

8-53 

8-48 

8-53 

8-48 

8-53 

8-54 

8-54 

8-54 

VECTOR INSTRUCTIONS IN ALPHABETICAL ORDER BY ASSEMBLER CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB MCHN 
CODE CODE 

VMAXH F5 

VMF 6E 

VMFD 6F 

VMG D8 

VMGD DB 

VMGH D9 

VMH 6D 

VNFH AD 

VNFX AC 

VO D4 

VOF D6 

VOFD D7 

YOH DS 

VOR E4 

VORD ES 

VPP DC 

VPPF DE 

VPPFD DF 

VPPH DD 

VREP B8 

VREPB BC 

VREPD BB 

-VREPDB BF 

VREPH B9 

VREPHB BD 

vs 48 

VSA CO 

VSAD C3 

VSAH Cl 

vsc cc 

VSCD CF 

VSCH CD 

INSTRUCTION 

Vector maximum/minimum fixed point halfword 

Vector multiply, floating point singleword 

Vector multiply, floating point doubleword 

Vector merge singlewords 

Vector merge doublewords 

Vector merge halfwords 

Vector multiply, fixed point halfword 

Vector normalize fixed point halfword 

Vector normalize fixed point singleword 

Vector order singlewords, fixed point 

Vector order singlewords, floating point 

Vector order doublewords, floating point 

Vector order halfwords, fixed point 

Vector logical OR, singleword 

Vector logical OR, doubleword 

Vector peak, fixed point singleword 

Vector peak, floating point singleword 

Vector peak, floating point doubleword 

Vector peak, fixed point halfword 

Replace singlewords in vector C 
Vector replace singleword boolean 

-Replace doublewords in vector C 

Vector replace doubleword boolean -Replace halfwords in vector C 

Vector replace halfword boolean 

Vector subtract, fixed point singleword 

Vector arithmetic shift, fixed point singleword 

Vector arithmetic shift, fixed point doubleword 

Vector arithmetic shift, fixed point halfword 

Vector circular shift, singleword 

Vector circular shift, doubleword 

Vector circular shift, halfword 

E-3 

TOPIC 

8-54 

8-30 

8-30 

8-35 

8-35 

8-35 

8-30 

8-49 

8-49 

8-36 

8-36 

8-36 

8-36 

8-33 

8-33 

8-40 

8-40 

8-40 

8-40 

8-58 

8-52 

8-58 

8-52 

8-58 

8-52 

8-28 

8-34 

8-34 

8-34 

8-34 

8-34 

8-34 

VECTOR INSTRUCTIONS IN ALPHABETICAL ORDER BY ASSEMBLER CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

ASSMB 
CODE 

VSEL 

VSELR 

VSELH 

VSELHR 

VS ELD 

VSELDB 

VSF 

VSFD 

VSH 

,MCHN 
CODE 

BO 

B-+ 

Bl 

B'i 

B3 

B7 

4A 

4B 

49 

VSL C4 

VSLD C7 

VSLH C5 

VSM 4C 

VSMF 4E 

VSMFD 4F 

VSMH 4D 

vss SB 

VSSF SA 

VSSFD 5B 

VSSH 59 

VSSM 5C 

VSSMF SE 

VSSNFD SF 

VSSMH SD 

VXOR EB 

VXORD E9 

INSTRUCTION 

Select singlewords from vector B 
Vector select singleword boolean -Select halfwords from vector B 

Vector select halfword boolean 

Select doublewords from vector B 
Vector select doubleword boolean 

Vector subtract, floating point singleword 

Vector subtract, floating point doubleword 

Vector subtract, fixed point halfword 

Vector logical shift, singleword 

Vector logical shift, doubleword 

Vector logical shift, halfword 

Vector subtract magnitude, fixed point singleword 

Vector subtract magnitude, floating point singleword 

Vector subtract magnitude, floating point doubleword 

Vector subtract magnitude, fixed point halfword 

Vector search for smallest arithmetic element, fixed point 
single word 

Vector search for smallest arithmetic element, floating point 
singleword 

Vector search for smallest arithmetic element, floating point 
doubleword 

TOPIC 

8-S7 

8-Sl 

8-57 

8-Sl 

8-S7 

8-Sl 

8-28 

8-28 

8-28 

8-34 

8-34 

8-34 

8-29 

8-29 

8-29 

8-29 

8-44 

8-44 

8-44 

Vector search for smallest arithmetic element, fixed point 8-44 
halfword 

Vector search for smallest magnitude, fixed point singleword 8-45 

Vector search for smallest magnitude, floating point singleword 8-45 

Vector search for smallest magnitude, floating point doubleword 8-45 

Vector search for smallest magnitude, fixed point halfword 8-45 

Vector logical Exclusive OR, singleword 8-33 

Vector logical Exclusive OR, doubleword 8-33 

E-4 
VECTOR INSTRUCTIONS IN ALPHABETICAL ORDER BY ASSEMBLER CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

APPENDIX F: VECTOR INSTRUCTIONS IN NUMERIC ORDER BY MACHINE CODE 

MCHN ASSMB 
CODE CODE 

INSTRUCTION TOPIC 

40 VA Vector add, fixed point singleword 8-26 

41 VAH Vector add, fixed point halfword 8-26 

42 VAF Vector add, floating point singleword 8-26 

43 VAFD Vector add, floating point doubleword 8-26 

44 VAM Vector add magnitude, fixed point singleword 8-27 

4S VAMH Vector add magnitude, fixed point halfword 8-27 

46 VAMF Vector add magnitude, floating point singleword 8-27 

47 VAMFD Vector add magnitude, floating point doubleword 8-27 

48 VS Vector subtract, fixed point singleword 8-28 

49 VSH Vector subtract, fixed point halfword 8-28 

4A VSF Vector subtract, floating point singleword 8-28 

4B VSFD Vector subtract, floating point doubleword 8-28 

4C VSM Vector subtract magnitude, fixed point singleword 8-29 

40 VSMH Vector subtract magnitude, fixed point halfword 8-29 

4E VSMF Vector subtract magnitude, floating point singleword 8-29 

4F VSMFD Vector subtract magnitude, floating point doubleword 8-29 

SO VL Vector search for largest arithmetic element, fixed point single- 8-42 
word 

51 VLH Vector search for largest arithmetic element, fixed point half- 8-42 
word 

52 VLF Vector search for largest arithmetic element, floating point 8-42 
singleword 

53 VLFD Vector search for largest arithmetic element, floating point 8-42 
doubleword 

S4 VLM Vector search for largest magnitude, fixed point singleword 8-43 

SS VLMH Vector search for largest magnitude, fixed point halfword 8-43 

S6 VLMF Vector search for largest magnitude, floating point singleword 8-43 

S7 VLMFD Vector search for largest magnitude, floating point doubleword 8-43 

S8 VSS Vector search for smallest arithmetic element, fixed point 8-44 
singleword 

S9 VSSH Vector search for smallest arithmetic element, fixed point 8-44 
halfword 

SA VSSF Vector search for smallest arithmetic element, floating point 8-44 
singleword 

SB VSSFD Vector search for smallest arithmetic element, floating point 8-44 
doubleword 

F-1 
VECTOR INSTRUCTIONS IN NUMERIC ORDER BY MACHINE CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

MCHN ASSMB 
CODE CODE INSTRUCTION 

SC 

SD 

SE 

SF 

64 

6S 

66 

67 

68 

69 

6A 

6B 

6C 

6D 

6E 

6F 

AO 

Al 

VSSM Vector search for smallest magnitude, fixed point singleword 

VSSMH Vector search for smallest magnitude, fixed point halfword 

VSSMF Vector search for smallest magnitude, floating point singleword 

VSSMFD Vector search for smallest magnitude, floating point doubleword 

VD Vector divide, fixed point singleword 

VDH Vector divide, fixed point halfword 

VDE Vector divide, floating point singleword 

VDFD Vector divide, floating point doubleword 

VDP Vector dot product, fixed point singleword 

VDPH Vector dot product, fixed point halfword 

VDPF Vector dot product, floating point singleword 

VDPFD Vector dot product, floating point doubleword 

VM Vector multiply, fixed point singleword 

VMH Vector multiply, fixed point halfword 

VMF Vector multiply, floating point singleword 

VMFD Vector multiply, floating point doubleword 

VFLFX Vector convert floating point singleword to fixed point halfword 

VELFH Vector convert floating point singleword to fixed point halfword 
elements 

TOPIC 

B-45 

8-45 

B-45 

B-45 

B-32 

B-32 

8-32 

B-32 

B-31 

8-31 

8-31 

B-31 

8-30 

8-30 

8-30 

B-30 

B-47 

B-47 

AZ VFDFX Vector convert floating point doubleword to fixed point singleword B-47 

AB VFXFL Vector convert fixed point singleword to floating point singleword B-4B 

A9 VFHFL Vector convert fixed point halfword to floating point singleword B-4B 

AA VFXFD Vector convert fixed point singleword to floating point double- B-4B 
word 

AB VFHFD Vector convert fixed point halfword to floating point doubleword B-4B 

AC VNFX Vector normalize, fixed point singleword B-49 

AD VNFH Vector normalize, fixed point halfword B-49 

BO VSEL Select singlewords from vector n 8-57 

Bl VSELH Select halfwords from vector B B-57 

-B3 VSELD Select doublewords from vector B 8-57 

B4 VSELB Vector select singleword boolean 8-51 

BS VSELHB Vector select halfword boolean B-51 

B7 VSELDB Vector select doubleword boolean 8-51 

-BB VREP Replace singlewords in vector C B-5B 

-B9 VREPH Replace halfwords in vector C B-5B 

F-2 
VECTOR INSTRUCTION IN NUMERIC ORDER BY MACHINE CODE 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

MCHN ASSMB 
CODE CODE 

INSTRUCTION 

BB 

BC 

BD 

BF 

co 
Cl 

C3 

C4 

cs 
C7 

cc 
CD 

CF 

DO 

Dl 

DZ 

D3 

D4 

DS 

D6 

D7 

DB 

D9 

DB 

DC 

DD 

DE 

DF 

EO 

El 

E2 

E3 

E4 

ES 

VREPD 

VREPB 

Replace doublewords in vector C 
Vector replace singleword boolean 

VREPHB Vector replace halfword boolean 

VREPDB Vector replace doubleword boolean 

VSA Vector arithmetic shift, fixed point singleword 

VSAH Vector arithmetic shift, fixed point halfword 

VSAD Vector arithmetic shift, fixed point doubleword 

VSL Vector logical shift, singleword 

VSLH Vector logical shift, halfword 

VSLD Vector logical shift, doubleword 

VSC Vector circular shift, singleword 

VSCH Vector circular shift, halfword 

VSCD Vector circular shift, doubleword 

VC Vector arithmetic comparison, fixed point singleword 

VCH Vector arithmetic comparison, fixed point halfword 

VCF Vector arithmetic comparison, floating point singleword 

VCFD Vector arithmetic comparison, floating point doubleword 

VO Vector order singlewords, fixed point 

VOH Vector order halfwords, fixed point 

VOF Vector order singlewords, floating point 

VOFD Vector order doublewords, floating point 

VMG Vector merge singlewords 

VMGH Vector merge halfwords 

VMGD Vector merge doublewords 

VPP Vector peak, fixed point singleword 

VPPH Vector peak, fixed point halfword 

VPPF Vector peak, floating point singleword 

VPPFD Vector peak, floating point doubleword 

VAND Vector logical AND, singleword 

VANDD Vector logical AND, doubleword 

VCAND Vector logical comparison using AND, singleword 

VCANDD Vector logical comparison using AND, doubleword 

VOR Vector logical OR, singleword 

VORD Vector logical OR, doubleword 

F-3 
VECTOR INSTRUCTION IN NUMERIC ORDER BY MACHINE CODE 

TOPIC 

8-58 

8-52 

8-52 

8-52 

8-34 

8-34 

8-34 

8-34 

8-34 

8-34 

8-34 

8-34 

8-34 

8-38 

8-38 

8-38 

8-38 

8-36 

8-36 

8-36 

8-36 

8-35 

8-35 

8-35 

8-40 

8-40 

8-40 

8-40 

8-33 

8-33 

8-39 

8-39 

8-33 

8-33 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

MCHN ASSMB 
INSTRUCTION TOPIC 

CODE CODE 

E6 VCOR Vector logical comparison using OR, singleword 8-39 

E7 VCORD Vector logical comparison using OR, doubleword 8-39 

ES VXOR Vector logical Exclusive OR, singleword 8-33 

E9 VXORD Vector logical Exclusive OR, doubleword 8-33 

EA VCAB Vector compare AND singleword boolean 8-56 

EB VCADB Vector compare AND doubleword boolean 8-56 

EC VEQC Vector logical Equivalence, singleword 8-33 

ED VEQCD Vector logical Equivalence, doubleword 8-33 

EE VCORB Vector compare OR singleword boolean 8-56 

EF VCORDB Vector compare OR doubleword boolean 8-56 

FO VCB Vector compare fixed point singleword boolean 8-55 

Fl VCHB Vector compare fixed point halfword boolean 8-55 

FZ VCFB Vector compare floating point singleword boolean 8-55 

F3 VCFDB Vector compare floating point doubleword boolean 8-55 

F4 VMAX Vector maximum/minimum fixed point singleword 8-54 

F5 VMAXH Vector maximum/minimum fixed point halfword 8-54 

F6 VMAXF Vector maximum/minimum floating point singleword 8-54 

F7 VMAXFI: Vector maximum/minimum floating point doubleword 8-54 

F8 VMAP Vector map singleword 8-50 

F9 VMAPH Vector map halfword 8-50 

FB VMAPD Vector map doubleword 8-50 

FC VMAPB Vector map singleword boolean 8-53 

FD VMAPHE Vector map halfword boolean 8-53 

FF VMAPDEj Vector map doubleword boolean 8-53 

F-4 
VECTOR INSTRUCTIONS IN NUMERICAL ORDER BY MACHINE CODE 



PROGRAMMEI: ·s GUIDE TO THE CENTRAL PROCESSOR 

APPENDIX G: SCALAR INSTRUCTION TIME REQUIREMENTS 

INSTRUCTION CLOCK TIMES INSTRUCTION 

LOAD L 1 
LI 1 
LH 1 
LIH 1 
LRL 1 
LRR 1 
LLL 1 
LLR 1 
LD 1 

LM 2 
LMH 2 
LMF 1 
LMD 1 

LN 2 
ARITHMETIC 

LNH 2 
LNF 1 
LND 1 

LNM 2 
LNMH 2 
LNMF 1 
LNMD 1 

LF 1 
LFM >::: 

XCH 2 

LAM 1 
LAE 1 
LEM 1 
LLA 1 
LO 1 

STORE ST 1 
STH 1 
STRL 1 
STRR 1 
STLL 1 
STLR 1 
STD 1 
SPS 1 
SCLK 1 

':'Determined by memory access 
time. 

G-1 
SCALAR INSTRUCTION TIME REQUIREMENTS 

STZ 
STZH 
STZD 

STN 
STNH 
STNF 
S T::'-JD 

STO 
STOH 

STF 
S TF:\1 

A 
Al 
AH 
AIH 
AF 
AFD 

A:\1 
AMH 
AMF 
Ai\lFD 

s 
SI 
SH 
SIH 
SF 
SFD 

SM 
SMH 
SMF 
SMFD 

M 
Ml 
MH 

MIH 
MF 
MFD 

CLOCK TIMES 

1 
1 
1 

2 

2 

1 
1 

1 
1 

1 
: 

2 
2 
2 

2 
s 
s 

.?. 
2 

5 

5 

, 
.... 

2 
2 

2 

5 
5 

2 

2 
5 
5 

3 
3 

3 

3 
4 
6 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

INSTRUCTION 
CLOCK 

INSTRUCTION 
TIMES 

ARITHMETIC D 16 
(Continued) DI 16 

DH 16 
DIH 16 
DF 16 
DFD 16 

LOGICAL AND 1 TEST & 
ANDI 1 BRANCH 
OR 1 
ORI 1 

XOR 1 
REG MOD 

XOR! 1 
& TESTING 

EQC 1 
EQCI 1 

ANDD 1 
ORD 1 
XORD 1 
EQCD 1 

SHIFT SA 3 
SAH 3 
SAD 3 

SL 3 
STACK 

SLH 3 
SLD 3 

SC 3 SUB-
SCH 3 ROUTINE 
SCD 3 

RVS 6 
ANALYZE 

-xKITH c 2 
COMPARE CI 2 

CONVER-
CH 2 

SION 
CIH 2 

CF 2 
CFD 2 

LOGICAL CAND 1 
COMPARE CANDI 1 

COR 1 

G-2 
SCALAR INSTRUCTION TIME REQUIREMENTS 

CORI 

CAN DD 
CORD 

BCC 
BRC 
BXEC 
BAE 
PB 

IBZ 
IBNZ 
DBZ 
Dl3NZ 

!SE 
ISNE 
DSE 
DSNE 

BCLE 
BCG 

PSH 
PUL 
MOD 

BLB 
BLX 

LEA 
INT 
XEC 

FLFX 
FLFH 
FDFX 
FXFL 
FXFD 
FHFL 
FHFD 

CLOCK 
TIMES 

1 

1 
1 

-
-
-
-
-
2 
2 
2 
2 

3 
3 

3 

3 

2 
2 

3 
3 
2 

1 
1 

1 
1 
-

5 
5 
5 
4 
4 
4 
4 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

INSTRUCTION CLOCK TIMES INSTRUCTION 

NORMALIZE NFX 3 VECTOR 
NFH 3 

CALL MCP l 
MCW l 

MISCELLANEOUS 

FORK 1 
JOIN 1 

G-3 
SCALAR INSTRUCTION TIME REQUIREMENTS 

VECT 

\'EC TL 

CLOCK TIMES 

(See Vector 
Timing) 

(See Vector 
Timing) 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

G-1. SCALAR INSTRUCTION TIMING GROUPS 

The following lists are of Central Processor instructions grouped 

according to those which may follow each other without a delay in the 

Arithmetic Unit. 

GROUPlA GROUPlB 

L LAM AND ST SCLK 
LI LAC ANDI STH SPS 
LH LEM OR STRL SPS 
LIH CAND ORI STRR XCH 
LRL CANDI XOR STLL 
LRR COR XOR! STLR 
LLL CORI EQC STD 
LLR CAN DD EQCI STZ 
LD CORD ANDD STZH 
LMF ORD STZD 
LMD XORD STNF 
LNF EQCD STND 
LND LEA STO 
LNMF INT STOH 
LNMD MCP 
LO MCW 

Note: For instructions in group lB, multiple store instruction delay occurs 

when sequential store instructions write into different Central Memory octets. 

GROUP 2 

LM A s 
LMH AI SI 
LN AH SH 
LNH AIH SIH 
LNM AM SM 
LNMH AMH SMH 

G-4 
SCALAR INSTRUCTION TIMING GROUPS 

IBZ !SE 
IBNZ ISNE 
DBZ DSE 
DBNZ DSNE 
c STN 
Cl STNA 
CH BLB 
CIH BLX 
CF 
CD 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

GROUP 3 GROUP 4 GROUP 5 GROUP 6 GROUP 7 

M (A) FXFL FLFXQ NFX AF SF 
MI (A) FXFD FLFH NFH AFD SFD 

FHFL FDFX AMX SMF 
FHFD AMFD SMFD 

Groups 8 and 9 are lists of instructions ''hich cannot im1nediately 

follow each other on the next clock into the Arith1netic Unit pipeline. 

GHOUP 8 GROUP 9 

MF D DF SA SL SC HVS PSH 
MFD DI DFD SAH SLI-1 SCH BCLE PUL 

DH SAD SLD SCD RCG MOD 
Diil XCH 

:\1C\\ 

Ciroup 10 is a list of instructions \\'hich do not use the Arith1netic Unit. 

GROUP LO 

LAM LF STF SPS BCC 
LAE LFiv1 STFM XEC BRC 

LLA FORK LEM BAE 
PB JOIN SCLK BEC 

Note: Any instruction in groups 2 through 8 may immediately follo\\· any 

instruction in groups lA or lB without creating a delay. 

G-5 
SCALAR INSTRUCTION TIMING GROUPS 





PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

APPENDIX H: VECTOR INSTRUCTION TIME REQUIREMENTS 

Table H-1. Vee tor Execution Rates in Clocks /Element 

VECTOR VECTOR 
INSTRUCTION RATE INSTRUCTION 

ADD VA 1 SHIFT VSA -- ---VAH 1 \'SAH 
·VAF 1 \'SAD 
\'AFD 2 

\'SJ. 

ADD VAM 1 
\' Sl.11 

MAGNITUDE VAMH 
\' Sl.U 

1 
\'AMF 1 \'SC 

VAMFD 2 \SCH 
\' SCll 

DOT \'DP l 
PRODUCT VDPH l i\..U:RGE v ;l.i(;JJ 

(Input Rate) VDPF I (Input RaL<!l \'MG 
VDPFD 4 \' !\1Gll 

DIVIDE VD 16 \'ECTOR \'U 
VDH 16 ORDER VCD 
VDF 16 !Output Ratel \'OF 
VDFD 16 \'OFD 

SUBTRACT VS I ARITHMETIC vc 
VSH I COMPARISON VCH 
VSF I (Input Rate) \'CF 
VSFD 2 VCFD 

SUBTRACT VSM I LOGICAL VCA;\;D 
MAGNITUDE VSMH I COMPARISON VCAt';DD 

VSMF I (Input Rate) \'COR 
VSMFD 2 VCORD 

MULTIPLY VM I LOGICAL VAND 
VMH l VOR 
VMF 1 VXOR 
VMFD 3 VEQC 

VANDD 
VORD 
VSORD 
VEQCD 

H-1 
VECTOR INSTRUCTION TIME REQUIREMENTS 

\'ECTOR 
RATE INSTRUCTION 

2 SEARCH \'L ---
2 (Input Patel \LH 
2 \'I .F 

:!. 
\'I. FD 

2 \' l.M 
2 \'I.!l.1H 

2 
\'I.MF 

2 
\LM Fil 

2 vss 
VSSH 

2 VSSF 
2 VSSFD 
2 VSSM 

6 
VSSMll 
VSSMF 6 
\'SMFD 

b 

6 
PEAK \'l'P 
PICKI::'\G \'PPH 

I 
(Input Rat•·I VPPF 

I 
\'l'l'FD 

I 
2 

CONVI::HSION \'FLFX 
\'FLFH 

I 
VFDFX 

2 
I \' FX FL 
2 VFXFD 

VFHFL 
l VFHFD 
l 
I NORMALIZE VNFX 
1 VNFH 

2 
l 
z 
2 

HAT.t: 

1 
I 

l 
.!. 

1 

I 
I 
! 

I 

l 
1 
2 

1 
l 
I 
z. 

l 
1 
1 
~ 

2 

2 

2 

2 

2 
2 
2 

2 
2 



PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR 

Table H-1. Vector Execution Rates in Clocks/Element (Continued) 

VECTOR VECTOR VECTOR 
INSTRUCTION RATE INSTRUCTION RATE INSTRUCTION RATE 

ARITHMETIC VCB l SELECT VSELB l MAP VMAP 3 
COMPARE VCHB l BOOLEAN VSELHB l VMAPH 3 
BOOLEAN VCFB l VSELDB l. 75 VMAPD 3 
(Input Rate) VCFDB l. 75 

REPLACE VREP 3 MAP VMAPB l 
LOGICAL VCAB l VREPH 3 BOOLEAN VMAPHB l 
COMPARE VCADB l. 75 VREPD 3 VMAPDB 1. 75 
BOOLEAN VCORB l 
(Input Rate) VCORDB l. 75 REPLACE VREPB 2 

BOOLEAN VREPHB 2 
SELECT VSEL 3 VREPDB 2 

VSELH 3 
VS ELD 3 

H-1. TIME REQUIREMENTS FOR COMPLETE VECTOR OPERATION 

The total time, t for execution of a vector instruction can be computed 

approximately from the formula: 

t = P + (R •L•NI •NO) 

where: 

NO = outer loop count 

NI = inner loop count 

L = vector dimension 

R = vector rate in clocks/element 

p = approximates 26 + previous scalar time. 

The rate, R, is defined as the nu1nber of clock tin1es required to 

obtain each element of the result. 

Timing for vector dot products, peak picking, searches, and 

comparisons are based on elen1ent input rate rather than output rate 

because the Arithmetic Unit outputs of these instructions are infrequent. 

H-2 
TIME REQUIREMENTS FOR COMPLETE VECTOR OPERATION 



TEXAS INSTRUMENTS 
INCORPORATED 

EQUIPMENT GROUP 
AUSTIN, TEXAS 

PUBLICATION UPDATE 

TYPE OF CHANGE 

0 IMMEDIATE 
(MAY CAUSE PERSONAL INJURY OR 
EQUIPMENT DAMAGE/FAILURE) 

0 ROUTINE 
(BATCH PROCESSED) 

PUBLICATION 

PROGRAM ASC PUBLICATION NO. 930039-2 -----
TITLE Programmer's Guide To The Central 

DATE May 1976 
Processor 

JOB NO. 

SUBMITTED BY 

NAME ---------- PHONE 

ADDRESS ----------------------------------------

MAIL STATION DATE 

LIST PAGE AND PARAGRAPH OR FIGURE NUMBERS AND DESCRIBE RECOMMENDED CHANGES. 

FORWARD CHANGES BY FOLDING THIS SHEET AND STAPLING. RETURN ADDRESS IS ON BACK OF SHEET. 



TEXAS INSTRUMENTS INCORPORATED 

EQUIPMENT GROUP 

P.O. BOX 2909 

AUSTIN, TEXAS 78767 

ATTENTION: TECHNICAL DATA BRANCH 

MAIL STATION 2146 



/ 

.• 


