NRL LIBRARY
DORDTHY STONE
M/S 2185

T Lo s

L

-

PROGRAMMER'S GUIDE TO THE
CENTRAL PROCESSOR

TeEXAs INSTRUMENTS

INCORPORATED

930039-2
MAY 1976

PROGRAMMER'S GUIDE TO THE
CENTRAL PROCESSOR

© Texas Instruments Incorporated 1976
A11 Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

No-disclosure of the information or drawings shall be made to any other person or
organizatfon without the prior consent of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES

Note: The portion of the text affected by the changes is

indicated by a vertical bar in the outer margins of
the page.

Programmer's Guide to the Central Processor

Original Mayl1973
Revised and Reissued Mayl1976

Total number of pages in this publication is 427 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO, NO. NO, NO. N N

Title.
Effec. Pages ...
i=xvi ...,
1-1-1-4
2-1-2-20.....
3-1-3-5......
4-1-4-25.....
5-1-5-7......
6-1-6-54.....
7-1-7-176
8-1- 8-65/8-66 .

A-1- A-10.....
B-1- B-10.....
C-1-C-10.....
D-1-D-4.....
E-1-E-4.....
F-1-F-4.....
G-1-G-5.....

H-1-H-2.....
User's Resp ...
Bus. Reply

[N eNeNeNeNeNeNeNe e Ne Ne Ne o Neo Ne Neo No NoeNo Mo}

TEXAS INSTRUMENTS

INCORPORATED

EQUIPMENT GROUP

AUSTIN , TEXAS

Application For Automatic Update

REF NO.
1 5

caror [111
CARD 2 I:ED:D
CARD 3 EED:D
carpa L[]

[TTTT]
[LTIT]
[LTIT]
(TTTT]
(1T
HEEEN

NAME
9 12

[PIa[R[T] [Nju]mis]e]R]

LAST , INITIAL
56

HENEEERENRNENEEN
03k L 5K

MIAJ1[L] [S[TIA[T]t[o]N]

[TTT] ENTERB USM IF US MAIL

QJu[A[N]T]1[T]v]

COMPLETE ONLY IF US MAIL ADDRESS

l

USE NUMBER
OF LINES
REQUIRED

FOR COMPLETE
ADDRESS

I

[ED] ENTER QUANTITY OF MANUALS

_— RIGHT JUSTIFIED
NAME

4I1ILIASIT'I”TTIMIL‘!IRI [] IlIIIITGol
IIIIIIIHDFIESISIIHTIIII
HENEERERNEERREEREEER
HINEEERENEEEERENEEER
HEREENEENEERENEEEEEE
HENEEREENENERRENEEER

| AM PRESENTLY ON DISTRIBUTION FOR OTHER DOCUMENTS O ves O no

FOLD AND STAPLE THIS SHEET. RETURN ADDRESS IS ON REVERSE SIDE.

ATTENTION
TECHNICAL DATA BRANCH
MAIL STATION 2146

TEXAS INSTRUMENTS

INCORPORATED

EQUIPMENT GROUP
P.O. BOX 2909
AUSTIN, TEXAS 78767

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

TABLE OF CONTENTS

Section Page

I GENERAL DESCRIPTION

1-1 The Central Processor v v ¢« v ¢ ¢ ¢ o o o o & e e e e e e e e e e e 1-1

1-2 Central Processor-Peripheral Processor
Relationship .« ¢ v o o v v v 0 v v vt v v 00 o0 v s s o P Y

1-3 Central Processor Resources . . e . ¢ ¢ v ¢ ¢ v 0 0 60 oo . 1-1

1-8 The AssembleT . v v o v ¢ o o 0 6 6 o o o o 0 0o 0o oo oo e e e .. 1-2

1-9 Coding Media . . oo o v v v oo v ot o o v s v eecesass ¢ e e e e 1-3
1-10 Punched Card .. ¢ oo vt v v vt v v oo v v oo e e eee .. 1-10
1-11 Coding FOrm. . « v o v v o o o v o o o v oo e oeeeeeseess 1=11

II LANGUAGE ELEMENTS

2-1 Charactel‘setfortheAsc...-................... 2-1
2-2 Printable CharactersS . . o o ¢ o ¢ « o ¢ 6 ¢ 0 0 o 0 o 0 0 o o o 2-1

2-3 SpeCialCharaCterS............-......‘..... 2-1

2-4 Items . . o0 v o i et i e et ettt ettt tocoecosseeeses 2-1
2-5 Symbol. . . v o v it i i it et et i e i e e e s e 2=3
2-6 Character String . . v ¢ v v v v e o v v e s 0 o o o e e e e e 2-3
2-17 Decimal Integer.ot ieiveeiveen.. 2-3
2-8 Hexadecimal Integer. . . ¢ ¢« ¢ v v v vt e vt v ot eveoes 2-4
2-9 Floating Point Item . . ¢« s ¢ « ¢ ¢ ¢ ¢ e 6 et e a0 etossee. 2-4
2-10 Fixed Point Decimal Item 00 e 2-5
2-11 Iocation Counter . . o o v e v v v vt v v v v o v veeessss. 2-6
2-12 Literal. o v o v o o o e 00 o o o s oo s eeesosscocsasass 2=6

2-13 IntrinSiCFu.nCtion......................... 2-6

TABLE OF CONTENTS i

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

TABLE OF CONTENTS (Continued)

Section
2214 OperatOorS. o v o o v o o v o o oo o s o s o0 o s s st et oo e
2-15 OpPerator TYPES v v o o ¢ o o ¢ o o o s s 0 o s 00 66 0 6 e oo oo
2-16 Expressions.;.......................«......
2-17 SUbEXPTresSSioNS . o o v o v s v v o s 0ot 0 b e e e e e e
2-18 Assumed Parentheses . . « « « « ¢ ¢ ¢ ¢ ¢ c 0 00 o 0 s o s 0o . e
2-19 Literals;....o-o..-..-......--..-----.--..-
2‘-20 Lists--oou-co-ooco.o-o.o-onoou-o. oooooo o e o o
2-21 Intrinsic FUnctions . . ¢ ¢« ¢ ¢ ¢ ¢« o o ¢ « 0 o ¢ o 0 e 06 0 0 a o oo oo
2-22 Global Attribute Functions. . « « o« « « ¢ « & e e s e e e e e e
2-26 Location Intrinsic Functions. e e e e e
2-27 Program Sections
2-28 Relocation .. ¢e oo oo .o
2-29 constants............-.............-....
2-32 Location Counter . ¢« « ¢« ¢ ¢ « « « & e e e e s e s e e e e e e e
2-33 Relocatability of Symbols . . ¢ v v v v v v v v v vt e e
2-34 Relocatability of EXpressions. « « o ¢« ¢« o v o o o o s o s o o s
II1 LANGUAGE STRUCTURE
3-]. StatementFOI‘mat..........-.-o......- oooooo .
3-2 Conventions for Describing Language Statements.
- Continuation Liines . v ¢ « ¢ ¢« ¢ ¢ ¢ o ¢ ¢ ¢ o o s e e e e e e
3-4 Label Field. . v v v v i v v v e v v o e o e v oot oo e oo oeoeae
- Command Field , e e e e e et e e e
3-7 Operand Field ., e e e e e e e e e e e
3-8 Remark Field ,,....... e e e e e, e e e e e e e e .

TABLE OF CONTENTS ii

2-14
2-14
2-16

2-16

2-17
2-17
2-17
2-18
2-18

3-1
3-2
3-2
3-3
3-3
3-4
3-5

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

TABLE OF CONTENTS (Continued)
Section
3-9 Comment Lines et e e e . . .
3-10 Blank Lines e e e e e e e e e e e
v DIRECTIVES

4-1 Introduction oo u e o .
4-2 Definition Directives40+ .
4-3 Equate Directive (EQU). + 4 ¢ ¢ ¢ s ¢ v« .
4-4 Set Directive (SET) e e e e e e e
4-5 External Name Directive (EXTRN) . .
4-6 Entry Name Directive (ENTRY)
4-7 Data Directive (DATA) . .. v v o v ¢ ..
4-8 Format Directive (FORM) . ¢+ ¢ ¢ ¢ . « &
4-9 Using Directive (USING) . . ¢ ¢ ¢ ¢ ¢« &
4-10 Drop Directive (DROP) . . ¢ ¢ v ¢ e 0 s ¢ 0 s
4-11 Origin Directive (ORG) .+ . s ¢ ¢ ¢ ¢ ¢ s ¢ o s
4-12 Control Directives . . v o v v v v v v v v o v o oo
4-13 Literal Origin Directive (LITORG)
4-14 End Assembly Directive (END).
4-15 Section Directive (SEC) . v v v v v o v 0 v v v
4-16 Common Module Directive (COM)
4-17 Dummy Section Directive (DUM).
4-18 Dummy Common Module Directive (COMD)
4-19 Copy Directive (COPY) v v v v v ¢ 0 v 0 v o
4-20 Reserve Directive (RES) . ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o «
4-21 Align Directive (ALIGN) .. ¢+ ¢ oo oo oo
422 Do Directive (DO) . v v ¢t ¢ ¢ 0 o o o o .o

4.23 Pseudo Directives

TABLE OF CONTENTS

iii

o o & o o o o o

Page

3-5
3-5

4-1
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-8

4-9

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-16
4-17

4-21

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section
4-.24 Indirect Address Constant Directive (IND)
4-25 Branch Address Constant Directive (BCON)
4.26 Data Halfword Directive (DATAH). . ¢« v v ¢ ¢ ¢ o « »
4-27 LiStingDil‘eCtiVGS............. e @ ¢ @ o o o @ o o
4-28 Skip Directive (SKIP) et e e e e e
4-29 List DireCtiVe (LIST) e o o o o e o o . . e e o o .
4-30 Nolist Directive (NOLIST) . ¢ ¢« s ¢ « « & . 0 e

A\ ASSEMBLER OUTPUT
5-1 Assembler Output¢.cccc 0.
5-2 Source Program Listing e o e o o o * o o o
5-3 Messages........-....oao e o o o e o e o
5-5 Cross-Reference Listing C e s e e e e e s

VI ASSEMBLER-CENTRAL PROCESSOR INTERFACE
6-1 INtroduction . v o o v ¢ o ¢ o o o ¢ o 0o 0 60 e o oo oo oo
6-2 Instruction FOormats « « v ¢« ¢ ¢ ¢ o ¢ ¢ o o 0 o o e e e
6-3 Label.......-..-oo...... e o o e o o o o
6-4 Command . v v v v v o v o o o 0 s 0 b e st st e e e e e e
6-5 Operands...........-.... . o o o e o o o
6-6 R,N,XoperandLiSt........o ® o o o 0 o 0 o o o
6-10 R,R,NoperandLiSt........ ® o o 0 o o o ¢ o
6-11 Register Addressing . . v . v v v v vt v v v v v o o o nnose
6-12 Register Operand-R Field Addresses
6-13 Address Operand Register Addresses
6-14 Address Development

TABLE OF CONTENTS (Continued)

TABLE OF CONTENTS iv

Page

4-21

4-22

4-22
4-23
4- 24
4-25

6-1

6-1
6-3
6-3
6-3
6-3
6-7

6-8
6-8
6-11

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section
6-15 Assembler Translation e e e ..
6-18 Machine Translation. . « v v ¢ v ¢ o v o v v o v @ e e e e e
6-29 Immediate Operands. . « . .« . .. e e e ...
6-30 Assembler Translation e ..
6-33 Machine Translation. « v ¢ ¢« o ¢« v o v o« .. e e
6-40 Branch Address Development. . « « v v ¢ ¢« o 0 v s o 0 o s 0 &
6-41 Assembler Translation e e e e
6-47 Machine Translation. « ¢ v ¢ « ¢ ¢ v ¢ ¢ e o 0o o v 0 0o o
6-51 Da.ta.FOl‘matS......-..o...-. . o o o o o o o o
6-52 Fixed POint Data e o o o o o o . . e o o e o o o o o o
6-53 Floating Point Data . v v v ¢ ¢ o v oo v s 0 0 0000 ..
6-56 Program Status Doubleword.
6“57 Bra.nch 01‘ Skip Register « o o o o . e o o * e o]
6"58 Compare COde. e ® o o ¢ o o 0o o o o e o o 0 o 0 o o o o .
6"59 ResultCOde e @ ©6 @6 o ¢ o ¢ ¢ 6 o 0 o o o o o o e o o o ° o
6-60 Arithmetic Exception Condition Code. . .+ v v « o .«
6-62 Arithmetic Exception Mask . . « v v v ot v oo v o v v
6-64 Program Counter. « « « o « o ¢ ¢ 6 e 6 0 s 0 s s s e oo oos

VII THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR
7"1 Intl’Oduction..........-.......-...-.......
7-2 Load Register InStruCtiOl’lS e o o o ¢ o o 0 ¢ o 0 o 0 o o 0o o o o o
7-3 Load,WOl‘d(L)..............-..........
7“4 Load, Left Half FrOm Left (LLL) e o o o o o o 0 0 e o 0 o
7-5 Load, Right Halfword From Right (LRR) . «.
7-5.1 Load, Right Halfword From Left (LRL) ¢+ ¢ ¢ o ¢«
7-6 Load, Left Halfword From Right (LLR)

TABLE OF CONTENTS

TABLE OF CONTENTS v

(Continued)

Page

6-12
6-15

6-31
6-31
6-32

6-36
6-37
6-39

6-43
6-44
6-44

6-49
6-50
6-50
6-51
6-51
6-53
6-54

T-2
7-3
7-4
7-5
7-5A
7-6

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

=7

7-8

7-9

7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19

7-20

7-21

7-22
7-23
7-24

7-25
7-26
7-27
7-28

7-28.

7-29
7-30
7-31

TABLE OF CONTENTS (Continued)

Load, Doubleword (LD). ¢« ¢« ¢ ¢+ ¢ ¢ ¢ o s ¢ 06 00 o424
Load Immediate, Word (LI) « ¢« ¢ ¢ o ¢ ¢ o ¢ ¢ ¢ ¢ o « s

Load Immediate, Halfword (LIH) .. ¢ ¢ e ¢ ¢ s e o o &

Load Negative, Fixed Point Word (LN)
Load Negative, Fixed Point Halfword (LNH)
Load Negative, Floating Point Word (LNF).
Load Negative, Floating Point Doubleword (LND).

Load Magnitude, Fixed Point Word (LM)

Load Magnitude, Fixed Point Halfword (LMH). . .
Load Magnitude, Floating Point Word (LMF) ...

Load Magnitude, Floating Point Doubleword (LMD)

Load Negative Magnitude, Fixed Point Word (LNM) .

Load Negative Magnitude, Fixed Point Halfword

(LNMH)oooo.ooo.oooooooo--ooooo- ooooo

Load Negative Magnitude, Floating Point Word
(LNMF) . . L] . . . L . . . e o * o . . o o

Load Negative Magnitude, Floating Point Double-
Word (LNMD) . . L] . . L] o .« o L L] . . e o L2 e o L

Load One's Complement, Word (LD)
Load Register File (LF) v v o ¢ s ¢ ¢ o s 0 ¢ 6 e 0 o o
Load Register Files, Multiple (LFM)

Store InstructionNs . . v v ¢ ¢ ¢ ¢ o ¢ o o o s o e o s o« e e e .

Store Word (ST) . v o o ¢ ¢ ¢ o o ¢ o s o o s o a6 s o oo oo

Store Halfword (ST LL) L e o * . . L L] .

Store Right Halfword Into Right (STRR)

Store Right Halfword Into Left (STRL)

Store Left Halfword Into Right (STLR)

Store Doubleword (STD) e e e e e e e e e e
Store Zero, Word (STZ) « . v o o o v v v oo v ..

TABLE OF CONTENTS vi

Page

-7

7-8

7-9

7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18

7-20

7-21
1-22
7-23
7-24

7-25
7-26
1-27
7-28
7-28A
7-29
7-30
7-31

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

7-32
7-33
7-34
7-35
7-36
7-37
7-38
7-39
7-40
7-41

7-42
7-43
7-44
7-45
7-46
1-47
7-48
7-49
7-50
7-51
7-52

7-53
7-54
7-55
7-56
7-57
7-58

TABLE OF CONTENTS

(Continued)

Store Zero, Halfword (STZH). . . « .+ .. .

Store Zero, Doubleword (STZD) .

Store Negative, Fixed Point Word (STN)

® o o o o o o o

e o

e o o o o o

o o o o o

Store Negative, Fixed Point Halfword (STNH)

Store Negative, Floating Point Word (STNF).

Store Negative, Floating Point Doubleword (STND). .

Store One's Complement, Word (STO) . .

Store One's Complement, Halfword (STDH)

Store Register File (STF)

Store Register Files, Multiple (STFM) .

Arithmetic Instructions. . .

Add, Fixed Point Word (A)

Add, Fixed Point Halfword (AH)

Add, Floating Point Word (AF).

Add, Floating Point Doubleword (AFD)

Add Immediate, Fixed Point Word (AI) ..

Add Immediate, Fixed Point Halfword (AIH)

Add Magnitude, Fixed Point Word (AM)

Add Magnitude, Fixed Point Halfword (AMH)

Add Magnitude, Floating Point Word (AMF)

Add Magnitude, Floating Point Doubleword

(AMFD)

Subtract, Fixed Point Word (S).
Subtract, Fixed Point Halfword (SH)

e @ o 06 o s o & 0 0 ¢ o o 0 o o

Subtract, Floating Point Word (SF)

o ¢ o o o o

Subtract, Floating Point Doubleword (SFD).

Subtract Immediate, Fixed Point Word (SI).

Subtract Immediate, Fixed Point Halfword (SIH) ...

TABLE OF CONTENTS

vii

Page

7-32
7-33
7-34
7-35
7-36
7-37
7-38
7-39
7-40
7-41

7-42
7-43
7-44
7-45
7-46
7-47
7-48
7-49
7-50
7-51

7-52
7-53
7-54
7-55
7-56
7-57
7-58

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

7-59
7-60
7-61
7-62

7-63
7-64
7-65
7-66
7-67
7-68
7-69
7-70
7-71
7-72
7-73
7-74

7-175
7-76
=77
7-78
7-79
7-80
7-81
7-82
7-83
7-84
7-85

TABLE OF CONTENTS (Continued)

Subtract Magnitude, Fixed Point Word (SM) . .

e o o o o o

Subtract Magnitude, Fixed Point Halfword (SMH).

Subtract Magnitude, Floating Point Word (SMF)
Subtract Magnitude, Floating Point Doubleword

(SMFD) v ¢ o v v et v vt et o s oosoosanneens

Multiply, Fixed Point Word (M)
Multiply, Fixed Point Halfword (MH).
Multiply, Floating Point Word (MF)
Multiply, Floating Point Doubleword (MFD) . .
Multiply Immediate, Fixed Point Word (MI) . .

e o o o o @

Multiply Immediate, Fixed Point Halfword (MIH).

Divide, Fixed Point Word (D). « « ¢« ¢« « ¢ v ¢ « «
Divide, Fixed Point Halfword (DH)
Divide, Floating Point Word (DF)
Divide, Floating Point Doubleword (DFD). ...
Divide Immediate, Fixed Point Word (DI). .. .
Divide Immediate, Fixed Point Halfword (DIH)

Logical Instructions . . v o v v v v v v o0 00 000 0 0o
AND, Word (AND) 4 ¢ ¢ v o ¢ 0 0 ¢ o 00 6 0 0600
AND, Doubleword (ANDD) & ¢ ¢ ¢ v ¢ o ¢ o ¢ « o « .
AND Immediate, Word (ANDI) v
OR, WOTd (OR) . v ¢ ¢ ¢ ¢ ¢ ¢ 00 o s 06 v 06060090
OR, DoubleworTd (ORD) ¢ ¢ ¢ ¢ ¢ o ¢ ¢ ¢ s 0 s 6 0 o«

OR Immediate, Word (ORI) . ¢« ¢ ¢« v ¢ ¢ v e 0 o o « »

Exclusive OR, Word (XOR) . v ¢ ¢ ¢ v ¢ 6o 6 v o o

Exclusive OR, Doubleword (XORD) . ¢ ¢ ¢ ¢ ¢ v o &
Exclusive OR Immediate, Word (XORI)

Equivalence, Word (EQC) .+ ¢ v v e o v v v v v v

TABLE OF CONTENTS viii

Page

7-59
7-60
7-61

7-62
7-63
7-64
7-65
7-66
7-67
7-68
7-69
7-70/
7-71
7-72
7-73
1-74

7-75
7-76
-7
7-78
7-79
7-80
7-81
7-82
7-83
7-84
7-85

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

7-86
7-87

7-88
7-89
7-90
7-91
7-92
7-93
7-94
7-95
7-96
7-97
7-98
7-99
7-100
7-101
7-102

7-103
7-104
7-105
7-106
7-107
7-108
7-109
7-110
7-111
7-112

TABLE OF CONTENTS (Continued)

Equivalence, Doubleword (EQCD)
Equivalence Immediate, Word (EQCI) .

Shift Instructions + v ¢« « v « v ¢ o ¢ o o «

Arithmetic Shifts . . .+
Logical Shifts
Circular Shifts
Algorithm for Bit Reversal .

Arithmetic Shift, Word (SA).

.

Arithmetic Shift, Halfword (SAH) . .

Arithmetic Shift, Doubleword (SAD)

Logical Shift, Word (SL) « « v v v ...

Logical Shift, Halfword (SLH)

Logical Shift, Doubleword (SLD).

Circular Shift, Word (SC)

Circular Shift, Halfword (SCH). . .
Circular Shift, Doubleword (SCD)

" Bit Reversal, Word (RVS)

Compare Instructions

e o o o o o o

Compare, Fixed Point Word (C)

Compare, Fixed Point Halfword (CH)

ooooo

Compare, Floating Point Word (CF)

Compare, Floating Point Doubleword (CFD)

3

Compare Immediate, Fixed Point Word (CI) . . .

Compare Immediate, Fixed Point Halfword (CIH)

Compare Logical AND, Word (CAND)

Compare Logical AND, Doubleword (CANDD) . ..

Compare Logical AND Immediate, Word (CANDI)

TABLE OF CONTENTS ix

Page

7-86
7-87

7-88
7-89
7-89
7-90
7-91
7-92
7-93
7-94
7-95
7-96
7-97
7-98
7-99
7-100
7-101

7-102
7-103
7-104
7-105
7-106
7-107
7-108
7-109
7-110
7-111

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

TABLE OF CONTENTS (Continued)

Section Page
7-113 Compa-re LOgical OR’ Word (COR) e e s 0 o o 0 ¢ 0 0 ¢ o o o 7-112
7-114 Compare Logical OR, Doubleword (CORD) 7-113
7-115 Compare Logical OR Immediate, Word (CORI) 7-114

7-116 Increment or Decrement, Test and Skip Instructions 7-115

7-117 Increment, Test and Skip on Equal (ISE) 7-116
7-118 Increment, Test and Skip on Not Equal (ISNE)....... 7-117
7-119 Decrement, Test and Skip on Equal (DSE) e e e (-118
7-120 Decrement, Test and Skip on Not Equal (DSNE). 7-119

7-121 Increment or Decrement, Test and Branch Instructions ... 7-120

7-122 Increment, Test and Branch on Zero (IBZ).4 ... 7-121
7-123 Increment, Test and Branch on Not Zero (IBNZ) 7-122
7-124 Decrement, Test and Branch on Zero (DBZ). 7-123
7-125 Decrement, Test and Branch on Not Zero (DBNZ) 7-124
7-126 Index, Test and Branch Instructions t e v e e e e, T-125
7-127 Algorithm for Index Test and Branch............. 7-126
7-128 Branch on Less Than or Equal (BCLE) 7-127
7-129 Branch on Greater Than (BCG) e ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o0 0o .. (=128
7-130 Conditional Branch Instructions e e eee. =129
7-131 Condition Algorithms for Conditional Branches 7-132
7-132 Branch on Comparison Code True (BCC) . ¢ e+ v o 1-133
7-133 Branch on Result Code True (BRC) . ¢« ¢ ¢ ¢ ¢ ¢ e e 0o e oo« (-135
7-134 Branch on Arithmetic Exception (BAE) ...« 4. 7-137
7-135 Branch on Execute Branch Condition True (BXEC). ... 7-140

7=-136 TUnconditional Branch Instructions .« . . ¢ v v v o v v v e o o o s o (=141

7-137 Branch and Load Base Register With Program Counter
(BLB)o-oo ------- ® o o o o o o 8 ° ¢ 0 s o o 0 e v e 0 v o+ o 7-142

TABLE OF CONTENTS x

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

TABLE OF CONTENTS (Continued)

Section Page

7-138 Branch and Load Index or Vector Register With

Program Counter (BLX) . .. ¢ . v et v v v N A X
7=139 Stack Instructions . . . ¢ ¢ v v v o v v e v 0 o 0 0 0 v s oo e e T-144
7-140 Stack Instruction Definition . . « ¢ o ¢ ¢ o ¢ ¢ ¢ o o o 0 o o o & 7-145
7-141 Push Word Into Last-In=-First-Out Stack (PSH) 7-146
T7-142 Pull Word From Last-In=-First-Out Stack (PUL) 7-147
7-143 Modify Stack Parameter Doubleword (MOD) e o . 1-148

7-144 Conversion and Normalization Instructions. 7-150

7-145 Algorithm for Floating Point to Fixed Point

Conversions D S o
7-146 Algorithm for Fixed Point to Floating Point

CONVersSiONS . o v o o ¢ ¢ o o e o o 00 o s s o s o o ooeeoeess (=152
7-147 Fixed Point Normalization. e e e e e e e 7-154
7-148 Convert Floating Point Word to Fixed Point Word

(FLFX)CQ.O..CIC.'....!I. oooooo ® o o o 0o o o 0 7-155
7-149 Convert Floating Point Word to Fixed Point Half-

WOI‘d(FLFH)....-......-...-..--..-o..... 7-156
7-150 Convert Floating Point Doubleword to Fixed Point

WOI‘d(FDFX)..---......--........-...... 7-157
7-151 Convert Fixed Point Word to Floating Point Word

(FXFL) . L] L . . . L] o o L] . L] L] . . . L] . L] . L] . . L] L e o L 7-158
7=-152 Convert Fixed Point Halfword to Floating Point Word

(FHFL) . L] L] L] . L] L] L] . . . L] L] L] . L] . L] L] . . L] 7-159
7-153 Convert Fixed Point Word to Floating Point Double-

WOI‘d(FXFD)..............-o.-........... 7-160
7-154 Convert Fixed Point Halfword to Floating Point

DOU.b].eWOI‘d(FHFD) e o & o 8 o o 0 0 & 0 o 0 s 0 o 0 & s e & 2 000 7-160
7=-155 Normalize Fixed Point Word (NFX) . v v ¢ ¢ ¢ 6 ¢ v 000 .. 1=-162
7-156 Normalize Fixed Point Halfword (NFH) ¢ . e v ... 7-163

T=157 Miscellaneous INStructions . v v o o ¢ ¢ ¢ ¢ v 0 e o o 0 e s vesaeo 1-164

TABLE OF CONTENTS xi

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

TABLE OF CONTENTS (Continued)

Section
7-158 EXChangeWOl‘dS(XCH)........--....-.......
7-159 LoadLOOkAhead(LLA)......-..-.....-.....
7-159.1 Prepare to Branch (PB)
7-160 Load Effective Address (LEA) . v v ¢ ¢ o ¢ o o 0 0 s 06000
7-161 EXeCute(XEC)......o.-.........-........-
7"162 Interpret(INT)..........................-
7-162.1 Fork (FORK) « ¢ v i v i it e e e e e e e e e e e e e e e e
7-162.2 Join (JOIN) . . . v o e e e e e e
7-163 Monitor Call and Proceed (MCP) e e e e
7-164 Monitor Call and Wait (MCW) . v ¢ ¢« ¢ « v o ¢ ¢ 0 00 o 0o o
7-165 Program Status Instructions . . e . o oo v v oo v v v v o 0o o o
7-166 Load Arithmetic Exception Mask (LAM). « v ¢ v v v o v o
7-167 Load Arithmetic Exception Condition (LAC)
7-167.1 Load Arithmetic Exception Mask and Condition (LEM) .
7-168 Store Program Status Word (SPS) « + ¢ ¢ v ¢ v ¢ ¢ 6 e o v o«
VIII THE VECTOR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

8“1 Il’ltrOdU.CtiOn.......................--.......
8-2 Definiti.on.ooonooooo‘..o.looooaoocoooooooooo
8-3 Execute Vector Parameter File Instructions. . « « « ¢« ¢ o « « »
8-4 Vector L.oad and Execute (VECTL) . ¢ ¢ ¢ v v v v 0 0 o o v
8-5 VeCtOrExecute(VECT)......................
8-6 TheVeCtOl‘Pal‘ameterFile........-.............
8-7 Vector Operation Specification . . ¢ ¢ ¢ v v v o v e v v v v v
8-8 Arithmetic and Logical Comparison Condition

Specification « o v v v v v v v e vt e et et e et e e e e

8-9 Vector Length (Self Loop Count) Specification.

TABLE OF CONTENTS xii

Page

7-165
7-166
7-167A
7-168
7-169
7-170
7-170A
7-170A
7-171
7-172

7-173
7-174
7-175
7-175A

7-176

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section

8-10
8-11
8-12
8-13
8-14
8-13
8-15
8-16
8-17
8-20

8-23

8-24

8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32

8-33

8-34

8-35

8-36

8-37

TABLE OF CONTENTS

(Continued)

Single-Valued Vector and Word Size Specification

Single-Valued Vectors

Immediate Vectors . .

Vector Address Development

Directly Addressed Vectors. . .

Vector Address Development

Halfword Index Start Specification. .

Self Loop Increment Direction . .

Inner Loop Specification

Outer Loop Specification . .

Program Interrupts

Vector Hazard.

Vector Arithmetic Instructions. . « ¢« « « . .

Vector Add Instructions

Vector
Vector
Vector
Vector
Vector

Vector

Add Magnitude Instructions

Subtract Instructions

oooooooooooooo

e 6 0 o o o o o o o o o o o

e o o o o o 0 o o o o .

Subtract Magnitude Instructions

Multiply Instructions . .

Dot Product Instructions

® o o o o o 0 0 6 o 0 o s s o o

Divide Instructions.

Vector Logical Instructions .

Vector Shift Instructions . .

Vector Merge Instructions. .

Vector Order Instructions . .

Vector Compare Instructions

TABLE OF CONTENTS

xiii

.

Page

8-8

8-8

8-11
8-14
8-14
8-14
8-15
8-16
8-18
8-19

8-20

8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-28

8-30
8-31
8-33
8-34

8-36

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

TABLE OF CONTENTS (Continued)

Section Page
8-38 Vector Compare Arithmetic Instructions 8-38
8-39 Vector Compare Logical Instructions 8-38
8-40 Vector Peak Picking Instructionse.eceeeo.. 8-39

8-41 Vector Search INStTUCLIONS &« o o o o ¢ o ¢ o o0 e s s s eosoaees 8-40

8-42 Vector Search for Largest Element Instructions 8-41
8-43 Vector Search for Largest Magnitude Instructions 8-42
8-44 Vector Search for Smallest Element Instructions 8-43
8-45 Vector Search for Smallest Magnitude Instructions ... 8-44

8-46 Vector Conversion Instructions . . ¢ ¢ ¢ « ¢ o o v o 00 0o s e 0. 8-45

8-47 Convert Floating Point Elements to Fixed Point
Elements o o o v o v o o s o v oo oo e o aenneeeeeeeas. 8-45
8-48 Convert Fixed Point Elements to Floating Point
Elements .. e oo v v vonnen e e s s s e s e e e e 8-46

8-49 Vector Normalize Instructions . « v« ¢« v ¢ ¢ ¢ ¢ ¢ v ¢ ¢ e 0 0o s o.. 8-47

8-50 Vector Map Instructions . . v v v v v v v ot o v o s o0 cee .. 8-49
8-51 Vector Select Boolean Instructions e . 8-52
8-52 Vector Replace Boolean Instructions. 8-54
8-53 Vector Map Boolean Instructions 8-56
8-54 Vector Maximum/Minimum Instructions «+.. . 8-58
8-55 Vector Compare Boolean Instructions 8-60

8-56 Vector Compare and/or Boolean Instructions 8-61
8-57 Vector Select . .. v v v v v i v i i i i e e e . 8-62
8-58 Vector Replace v . v i i i it i it i ii e e .. 8-63

TABLE OF CONTENTS xiv

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

APPENDIXES

Appendix

Figure

1-1
5-1
5-2
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9

SCALAR INSTRUCTIONS BY LOGICAL GROUPING .
SCALAR INSTRUCTIONS IN ALPHABETICAL ORDER

BY ASSEMBLER CODE

SCALAR INSTRUCTIONS IN NUMERIC ORDER BY

MACHINE CODE

VECTOR INSTRUCTIONS BY LOGICAL GROUPING

VECTOR INSTRUCTIONS IN ALPHABETICAL ORDER
BY ASSEMBLER CODE.

VECTOR INSTRUCTIONS IN NUMERIC ORDER BY

MACHINE CODE
SCALAR INSTRUCTION TIME REQUIREMENTS
G-1 Scalar Instruction Timing Groups .

VECTOR INSTRUCTION TIME REQUIREMENTS

H-1 Time Requirements for Complete Vector Operation

LIST OF ILLUSTRATIONS

Title
Coding Form. L] L] . . L o o L] . . e o
Sample Source Program Listing . . « ¢« v v v v v 0 o v 0 00 00 o
Cross-Reference Listing Example c e e e o oo

Assembler Statement Translations into Machine Code . .
Register File Specifications. « . . o ¢ e v v e v e v 0o o0 v .
Development of Singleword Effective Addresses
Development of Halfword Effective Addresses.
Development of Doubleword Effective Addresses

Indirect Address Cell FOrmat . ¢« « ¢ o ¢ ¢ ¢ o o ¢« o o 0 o 0 o o

Development of Singleword Effective Immediate Operands.

Development of Halfword Effective Immediate Operands .

Development of Singleword Logical Immediate Operands. . .

TABLE OF CONTENTS XV

A-1

Page

1-4
5-2
5-6
6-2
6-9
6-17
6-20
6-23
6-28
6-33
6-34
6-36

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
6-10 Program Counter Relative Branch Address Development 6-40
6-11 Development of Base Relative Branch Addresses. « « v v v o 0o v 0o oo . 6-42

6"12 Algebl‘aiCDataFOI‘matS...........................-. 6-43

8-1 The Vector Parameter File « c e c c 0 s s e s s s s 006 000ssssessses 8=3
8-2 Flow of Execution of a Vector Parameter File ¢ e e eceoeeeeeeos 8=7
8-3 Flow of Execution with B Single-valved ¢« ¢ ¢ e e o co00ecooeese. 8-10
8-4 Flow of Execution with B Single-valved « ¢ e s s 6 6 e e s s s 0666 ces. 8-13

LIST OF TABLES

Table Title Page
2-1 Printable Characters 2-2
2-2 Special Characters. . v o v v v v o v v o v o ot oo ot oo v oo noeueas 2-2
2-3 Operator Hierarchies and Descriptions . « v o . v v v vt v e v v v s s 2-8
2-4 Use Oof Operators v o v o v o v v o o o v o v o0 o oo o o o o oo s o oeeoensse 2-9
2-5 Results of Operations on Absolute and Relocatable Items in

EXPTreSSIiONS « o o o o o o o o s o s o o s s s o o o oo oo osesesosos 2-19
5-1 Assembler Generated Messages . v v ¢ o v ¢ v 0 o0 o v oo 0 o0 0 0 o 5-4
5-2 Procedure Processing Message Symbols e e e e e 5-5
6-1 General Forms and Variations of the Operand Lists. . .+ 6-4
6-2 Register Addressing Symbols. « . v vt vt e et s e v et v seesees. 6-10
6-3 Development of Singleword Addresses (Direct) + .o v v oo ... «c.. 6-18
6-4 Development of Branch Addresses (Direct). . « v v 0o v v v v v e v 0. 6-41
6-5 Value Ranges of Fixed Point Data « v « s ¢ ¢+ ¢ o ¢ ¢ s 0o 00 000 e.seo. b6-44
6-6 Specifications for Arithmetic Exception Mask Data Constants ... 6-54
8-1 Specifications of the SV Field. s v o o o o o ¢ o e e e o oo oeesssess 8=9
8-2 Specifications of the HS Field Valves. « v v v ¢ ¢ ¢ e o e s eeveese. 8=-17
8-3 Specifications of the VIField Valves ¢« v v o e ot e oo oo oo v o oses 8=17
8-4 Specifications of the VI, HS, and ALCT FieldS ¢ ¢ ¢ o ¢ ¢ ¢ o 6 o« « « 8-37
8-5 Specifications of the ALCT Valves + ¢ v oot eececesoeeeess 8=37
H-1 Vector Execution Rates in Clocks/Element. « « « v v v v v o v v H-1

LIST OF TABLES xvi

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SECTION 1
GENERAL DESCRIPTION

1-1. THE CENTRAL PROCESSOR

The Central Processor is that unit of the ASC dedicated to processing the
user's raw data. It is particularly oriented toward the processing of numerical

data that is typical of scientific data processing.

1-2. CENTRAL PROCESSOR-PERIPHERAIL PROCESSOR RELATIONSHIP

The Central Processor operates under control of the Peripheral Processor in
which the operating system resides. The resources of the Central Processor are
time-shared among users through this system which can cause a current program's
status to be saved, the program to be removed from the Central Processor, and

another program to be given control of the Central Processor.

All communication, either to or from the Central Processor, takes place
through the Peripheral Processor.
1-3. CENTRAL PROCESSOR RESOURCES

Once a program is given control of the Central Processor, both program and
data are streamed directly from central memory to the Central Processor and re-
sults streamed back. Streaming is accomplished by double buffering of both pro-

gram and data.

1-4. Pipeline Instruction Processing

The instructions fetched from memory are decoded in a pipeline made of four
levels. This method permits four instructions to be in the process of decoding at
any given time, and, unless a branch instruction requires the discard of some of
the instructions, each instruction is ready for execution in the arithmetic unit as

soon as its resources are available.

GENERAL DESCRIPTION 1-1

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

1-5. Vector Operations

The Central Processor performs operations on ordered sets of data without re-
quiring additional instruction decoding. Once a vector operation has been initiated,
the data upon which it operates is streamed directly to the arithmetic unit from

central memory, and the results streamed back to central memory.

1-6., Instruction Set

The Central Processor has 177 scalar instructions and 70 vector instructions

that provide a large range of programming ploys.

1-7. Data Formats

The Central Processor performs operations on fixed point, floating point, or

binary logical data.

Fixed point data may be either 32-bit singlewords or 16-bit halfwords, and in
either case the values are represented with any negative numbers in two's comple-

ment notation.

Floating point data may be either 32-bit singlewords or 64-bit doublewords. In

either case, the biased hexadecimal exponent method of representation is used.

1-8. THE ASSEMBLER

The assembler as implemented for the Central Processor provides for symbolic

coding of programs to be executed in the Central Processor.

There are directives which are commands to the assembler itself. These di-
rectives are used to inform the assembler of conditions to be expected at assembly
time, of conditions to be expected at object program execution time, and of the nature

of the syvmbols used by the programmer.

The assembler mnemonics for actual machine codes are the names of proce-
dures built into the assembler. These procedures translate the mnemonics and

the operands associated with them into object code that the machine can execute.

GENERAL DESCRIPTION 1-2

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

There are also procedures built into the assembler which translate data *hat
is in a form more convenient to the programmer into the object data forms usable

by the machine.

1-9. CODING MEDIA

A source program is a seguence of source statements that are punched into
cards and entered into the computer by a card reader.
1-10. PUNCHED CARD

The card format is a standard 80-column punched card.

1-11. CODING FORM

Assembler source statements may be written on the standard coding form,
shown in Figure 1-1. One line of code on the form is punched into one card;

vertical columns on the form correspond to card columns.

Space is provided for program identification and for instructions to keypunch
operators. The body of the coding form consists of the statement field, columns

1 through 72, and the identification sequence field, columns 73 through 80.

GENERAL DESCRIPTION 1-3

NOILdIIDSHA TVIINID

V-1

CODING FORM

PROGRAM

B o
PROGRAMMER [DATE N CTION PUNCH
STATEMENT
ABEL COMMAND GPERAND REMARKS IDENTIFICATION]
L 8 10 15 17 20 25 30 3s 40 45 50 S5 60 65 71 _}73 SEQUENCE g

Figure 1-1.

Coding Form

dOSSHDOYUd TVILNHED HHL OL HAIND SIdHNINVIDOYd

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SECTION II
LANGUAGE ELEMENTS

2-1. CHARACTER SET FOR THE ASC

The ASC Assembler recognizes the EBCDIC character set as standard nota-
tion. That is, characters are-interpreted as punched on the IBM 029 keypunch.
References in this manual are made to alphabetic characters (A through Z), numeric

characters (0 through 9), and special characters (all the rest).

All characters except the double quotation mark (') and the semicolon (;) may
be used in character strings, and these also may be used freely in the remark field
and in comments. The period (or decimal point), dollar sign ($), and question mark
(?) may be used in symbols along with alphabetic and numeric characters. Most of

the special characters have unique meanings to the assembler.

The double quotation mark ('') inside a character string will terminate the string.
The semicolon (;) when used inside character strings will terminate the card image,
and the string will be continued on the next line beginning with the first non-blank
character.
2-2. PRINTABLE CHARACTERS

Table 2-1 contains a list of the non-alphanumeric printable characters and
_their names without regard to their special meanings to the assembler.

2-3. SPECIAL CHARACTERS

Table 2-2 lists the special characters which have unique meaning to the ASC

Assembler.
2-4. ITEMS

Any item consists of a combination of one or more characters. An item may be
a symbol, decimal integer, character string, hexadecimal integer, location counter,

floating point item, fixed point item, literal, or intrinsic function.

LANGUAGE ELEMENTS 2-1

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Table 2-1. Printable Characters
e R R e NAME CopE
blank blank - hyphen, or 11
minus sign
¢ cent sign 12-8-2 / slash (virgule) 0-1
period 12-8-3 , comma 0-8-3
< less than 12-8-4 %o percent sign 0-8-4
(left 12-8-5 - horizontal 0-8-5
parenthesis bar
+ plus sign 12-8-6 > greater than 0-8-6
| vertical bar 12-8-7 ? question mark 0-8-7
& ampersand 12 T vertical arrow 8-1
! exclamation 11-8-2 colon 8-2
point # number 8-3
$ dollar sign 11-8-3 @ at 8_4
asterisk 11-8-4 . apostrophe 8.5
) ;;gr};tnthesis Hoee - equals 8=6
; semicolon 11-8-6 ' gil::izion 8-7
/ not sign 11-8-7
Table 2-2. Special Characters
CHARACTER MEANING u CHARACTER MEANING
=
hexadecimal) right parenthesis
@ indirect addressing ¢ augment indicator
, separator > greater than
$ location counter ; continuation
multiply and comments 1 not
period or decimal point " EBCDIC string indicator
< less than = equals or literal
_ subtract indicator
/ divide (left parenthesis
+ add blank separator or space

LANGUAGE ELEMENTS

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR
2-5. SYMBOL

A symbol is represented as a string of from one to eight EBCDIC characters,
the first of which must be alphabetic. The remaining characters may be alphabetic,
numeric, . , $, # , or any other special characters not used by the Assembler for
unique purposes. (See Table 2-2 for characters having unique meaning to the

Assembler.)

VALUE: The value of a symbol is the value of the item to which the symbol is

assigned.
Examples: AABBCCDD

Q. J$P?

2-6. CHARACTER STRING

A character string is any string of characters surrounded by double quotation
marks (not to be confused with two single quotation marks). Semicolons (;) or
double quotation marks (") cannot be parts of a character string because they oper-
ate on the string. Character strings which are assigned to symbols as values can-

not exceed 8 characters in length. Other character strings are restricted to

256 characters.

VALUE: The value of a character string is the EBCDIC representation of the char-
acters found between the quotation marks. Each character string is converted into
an even multiple of 4 characters (32 bits). Strings which do not contain a multiple

of 4 characters are filled to the right with blanks.
. Example: "AB*C"
2-7. DECIMAL INTEGER

A decimal integer is a string of unsigned decimal digits (0 through 9).

VALUE: The value of a decimal integer is the 32-bit (binary representation) base
10 value of the string of digits.

Examples: 19 ’ ;
5440
LANGUAGE ELEMENTS 2-3

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

2-8. HEXADECIMAL INTEGER

A hexadecimal integer is a string of unsigned hexadecimal digits (0 through F)

preceded by a #. The maximum number of characters after the # is 16.

VALUE: The value of a hexadecimal integer is the 32 or 64-bit (binary representa-

tion) base 16 value of the string of digits.

Example: #3B8FE5

2-9. FLOATING POINT ITEM

A floating point item is a string of decimal digits with a decimal point and op-
tionally followed by a decimal exponent. The exponent is written as the letter E or
the letter D followed by an integer constant. The item may be positive, zero, or
negative. If either the initial string of decimal digits or the integral exponent are
unsigned, the assembler assumes the respective part to be positive. If a decimal
exponent is given, the decimal point is not required in the initial string of digits.

The item may assume one of three forms:

1. A string of decimal digits with a decimal point, and without an exponent.
This form is assumed by the assembler, to be single precision represen-

tation.

2. A string of decimal digits, optionally with a decimal point, followed by the
letter E and an integral decimal exponent. The E specifies single preci-

sion representation.

3. A string of decimal digits, optionally with a decimal point, followed by the
letter D and an integral decimal exponent. The D specifies double preci-

sion representation.

For both single and double precision representation, the value of the exponent,

n, has the range : -64<n < +63. The ;'ange of values M, a floating point item,

65 6

=SM=(1-16)
-65

may have is: (1) in single precision (32-bit representation), 16~

x 1663 and true zero; and (2) in double precision (64-bit representation), 16

=M= (1 - 16_14) b4 1663 and true zero; or, approximately, 5.4 x 10-795 M=sT7.2

5 .
x 107 . The number of bits used in the representation of the fractional part of a

LANGUAGE ELEMENTS 2-4

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

floating point item does not significantly affect its range of values, but affects the

precision of the values that may be represented.

If the maximum exponent value is exceeded, a syntax error is returned; but, if
the significance is exceeded, truncation of the least significant bits occurs and no

error message is returned.

VALUE: The value of a floating point item is the 32 or 64-bit binary representation
of the string of digits with 8 bits reserved for the exponent and with the remaining
24 or 56 bits left for the fraction. The exponent is represented in excess 64 nota-

tion. The fraction is normalized in its area.

Examples: 5.321E+6
6D-26
5.3
-5.2E6
2.718

2-10. FIXED POINT DECIMAL ITEM

A fixed point cecimal item is a string of decimal digits, which may have a
decimal point, followed by (1) a B or a BB, and by (2) a binary scale factor. The
item may be positive, zero, or negative. If either the initial string of decimal
digits or the binary scale factor is unsigned, the assembler assumes the respec-
tive part to be positive. A positive binary scale factor shifts the binary represen-
tation of the quantity to the left by the specified number of binary units, and a nega-
tive binary scale factor shifts the binary representation of the quantity to the right
By the specified number of binary units. Any part of the decimal numeral which
would result in a binary fraction, when converted to binary and scaled, will be
truncated. A single B specifies single precision, and a double B (i.e., BB)
specifies double precision.

The range of values of a fixed point item, F, is restricted to:

31
-2,147, 483,648 < F < +2, 147, 483, 647 (i. e., -231 sF=<2 -1).

LANGUAGE ELEMENTS 2-5

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

VALUE: The value of a fixed point decimal item is the 32 or 64-bit binary repre-
sentation of the stri‘ng of digits with the representation determined by converting
integer and fraction portions of the string separately and placing the result in either

32 or 64 bits as determined by the precision designator, B or BB, respectively.
Examples: 3.21B+5 3.21BB+5
6B2 6BB2
2-11. LOCATION COUNTER
The coding symbol for the value of the location counter is $.

VALUE: The value of $ is the 32-bit current value at assembly time of the location

counter.

Example: $+6

2-12. LITERAL
A literal is a constant which is the relative location of the start of one or more
words of data. A literal is expressed in the form of an equals sign followed by the

data to be contained in the relative location (see Topic 2-19).

VALUE: The value of a literal is the location of a constant.

ExamEIes: =A
=6
. =A+6

2-13. INTRINSIC FUNCTION

An intrinsic function is an item used to produce substitution of another item,

expression, or list in its place. See Topic 2-21.

VALUE: The value of an intrinsic function is the identity of the particular param-
eter operated on by the function, or is the value assigned to the condition of the

parameter operated on by the function.

Example: T(RHO)

LANGUAGE ELEMENTS 2-6

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

2-14. OPERATORS

Items may be combined using the special character operators defined in Table
2-3. The table also gives hierarchy numbers for determining the sequence in which
the value of an expression is computed. Operations with higher hierarchies are
performed before operations having lower hierarchies. Operations with the same

hierarchy are performed from left to right.

2-15. OPERATOR TYPES

Each operator falls under two type classifications: every operator is either a
unary operator or a binary operator, and every operator is one of the following:
an arithmetic operator, a relational operator, or a logical operator. See Tables

2-3 and 2-4 for the operator symbols and their uses.

UNARY OPERATION: A unary operation is one that involves only one operand.

BINARY OPERATION: A binary operation is one that involves two operands.

ARITHMETIC OPERATION: An arithmetic operation is one that yields algebraic

quantities.

RELATIONAL OPERATION: A relational operation is one that yields a "TRUE'" or

"FALSE' quantity; i.e., 1 or 0, respectively.

LOGICAL OPERATION: A logical operation is one that yields a Boolean quantity.

2-16. EXPRESSIONS

An expression is an item, or it is a series of items, connected by operators.
The sequence of operations performed in evaluating an expression is determined by
the hierarchy of the operators in the expression. The hierarchy of operators is
shown in Table 2-3. Operations with higher hierarchy numbers are performed

first; operations with the same hierarchy are performed from left to right.

LANGUAGE ELEMENTS 2-7

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Table 2-3. Operator Hierarchies and Descriptions
HIER-
ARCHY SYMBOL TYPE DESCRIPTION
=
7 + Unary Arithmetic Plus
7 - Unary Arithmetic Minus (two's complement)
7 = Unary Arithmetic Not (one's complement)
6 // Binary ngical Logical Binary Operator
5 % Binary Arithmetic Arithmetic Product
5 / Binary Arithmetic Arithmetic Quotient
4 + Binary Arithmetic Arithmetic Sum .
4 - Binary Arithmetic Arithmetic Difference
3 < Binary Relational Arithmetic Less Than
3 1< Binary Relational Not Less Than
3 = Binary Relational Arithmetic Equals
3 = Binary Relational Not Equals
3 <= Binary Relational Less Than or Equal
3 > Binary Relational Arithmetic Greater Than
3 1> Binary Relational Not Greater Than
3 >= Binary Relational Greater Than or Equal
2 Sk Binary Logical Logical Product (AND)
1 ++ Binary Logical Logical Sum (OR)
1 -- " Binary Logical Logical Difference (Exclusive OR)
1 == Binary Logical Logical Equivalence

The length of an expression is limited by the number of continuation lines over

The value of an arithmetic expression, E, is re-

-2315E < 23l - 1).

which the statement may extend.
stricted to the range: -2,147,483, 648 <E = +2,147, 483, 647 (
The value of an expression, E, containing an external symbol or symbols is re-

2 23
stricted to the range: -8,388,608<E = +8, 388, 617, (-2 35 E<?2 -1).

Floating point numbers are not valid in expressions which contain more than

one item. That is, floating point arithmetic will not be performed at assembly

LANGUAGE ELEMENTS 2-8

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Table 2-4. Use of Operators
GENERAL
w
SYMBOL FORM HERE RESULTS
+ +a a is an algebraic expression a
- -a a is an algebraic expression two's complement of a
—/ —a a is an algebraic or logical one's complement of a
expression
// a//i a is a logical expression; shift a left i binary digits if i
i is an integer expression is positive; shift a right i bi-
nary digits if i is negative
a*b a and b are algebraic the product of a and b
expressions
/ a/b the numerator a is an the quotient of a divided by b
algebraic expression; the
denominator b is an alge-
braic expression
+ a+b a and b are algebraic the sum of a and b
expressions
- a-b a and b are algebraic the difference of a and b
expressions
< a<b a and b are algebraic true if a is less than b
expressions
< a—1<b a and b are algebraic true if a is not less than b
expressions
= a=b a and b are algebraic true if a is equal to b
expressions
1= a—1=b a and b are algebraic true if a is not equal to b
expressions
<= a<=b a and b are algebraic true if a is less than or equal
expressions tob
> a>b a and b are algebraic true if a is greater than b
expressions
- > a—1>b a and b are algebraic true if a is not greater than b
expressions
>= a>=b a and b are algebraic true if a is greater than or
expressions equal to b
aih a and b are logical expres- logical product of a and b
sions (AND)
++ a++b a and b are logical expres- logical sum of a and b (OR)
sions
-- a--b a and b are logical expres- logical difference of a and b
sions (exclusive OR)
== a==b a and b are logical expres- logical equivalence of a and b
sions

LANGUAGE ELEMENTS

2-9

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

time. The assembler will denote as an error any attempts to do arithmetic opera-

tions on double length floating point numbers in expressions, or on character strings

longer than four characters.

Certain logical operations (*%, ++, --, and ==) and all relational operations may
be performed on values that require more than four characters (32 bits) to repre-

sent them.

2-17. SUBEXPRESSIONS

An expression may contain subexpressions, and subexpressions may contain
other subexpressions. A subexpression is an expression enclosed in parentheses,
and it may appear wherever an item is valid. Subexpressions are evaluated before

other items in an expression, and the innermost subexpression is evaluated first.

The value of an item or expression is right-justified in its generated result field,
and unspecified leading bit positions will contain zeros; character strings are left-

justified with blanks filled to the right in the last word for unjustified characters.

Note: Character strings used in immediate operands (see Topic 6-32) are not left-
justified in a fullword, but justified in the 16-bit N field. Thus, a character string
immediate operand has a maximum of two characterters, and the rightmost byte is

blank filled if there is only one character in the string.

The value of the part of the expression or subexpres sion containing and affected
by a relational operator (e.g.,>,<, or =) is equated to one if the relation is true
and equated to zero if the relation is false. For example, if E is an expression of
the form:

X>Y
then, E is evaluated as a one (1) if the relation is true, or zero (0) if the relation is
false. Also, if the assigned section of expression X is not the same as the assigned

section of expression Y, then the expression E cannot be completed and is evaluated

as false (zero).

LANGUAGE ELEMENTS 2-10

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Examgle S:

1. The following expression is evaluated as zero if R is a relocatable item:

R-4 >37

2. The following expression is evaluated as zero if the subexpression (X>Y)

is false and equal to A if the subexpression (X >Y) is true:

AR(X>Y)

2-18. ASSUMED PARENTHESES

The following examples denote how parentheses are assumed, the results being

governed by the hierarchies in Table 2-3.

Expression: A/ -T%2

Method:

Assumes:

ExEression:

Method:

Assumes:

ExEression:

Method:

Assumes:

1. Two's complement A

2. Two's complemenf I

3. Shift two's complement of A by value of two's complement of I

4. Multiply result by two

((-A)//(-T))*2

-A//(-1%2)

1. Two's complement I

2. Multiply result of two's complement of I by two

3. Two's complement A

4. Shift result of two's complement of A by result obtained in step 2

(-A)//((-1)*2)

-A//-(1%2)

1. Multiply I by two

2. Two's complement A

3. Two's complement the result of I multiplied by two

4. Shift the result of the two's complement of A by the result obtained
in step 3.

(-A)//(-(1%2))

LANGUAGE ELEMENTS 2-11

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

2-19. LITERALS

The value of a literal is a constant. The constant is the relative location of the
start of one or more words of data. The relative location is reserved by the assemb
and the contents of the location are set to the value of the expression which specifieé
the data. An expression which is to be a literal is identified by being preceded by an

equal sign (=). The assembler reserves sufficient contiguous words to contain the

value of the expression., The number of words reserved for expressions which do

not contain forward references is determined by the number of bit positions required

to specify the value. Expressions that contain forward references are assumed to

require no more than one word to specify their respective values.

Literals which have the same value are stored only once, whenever possible.
Reaching the end of an assembly or using the LITORG directive (see Topic 4-13)
causes all literals identified, since the last LITORG directive or since the start of
the assembly, to be assigned locations and to be output. Literals appearing after a
LITORG directive that are duplicates of values‘ occurring before that LITORG direc-
tive will be assigned at least two separate locations. Further duplication will occur
if the expression composing the literal is not a single item and all of the quantities

composing the expression are not defined prior to their appearance in the expression.

The literal table is adjusted so that multiple-word literals are output first.

Limitations and Restrictions: The initial literal location assignment occurring after

a LITORG directive or at the end of an assembly will always start at an even-word

boundary (a location whose value is a multiple of two).

Multiple word literal values will be assigned locations beginning on even-word
boundaries. Words that are skipped to achieve even-word alignment will not be

cleared.

The value of an expression that identifies a literal is restricted to 28 characters

in length.

Subexpressions and lists (see Topic 2-20) will not be made into literals.

LANGUAGE ELEMENTS 2-12

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Creation of Address Constants: Address constants will be placed in the literal table

when symbols with relocatable values are used as literals. See Topics 2-27 and

2-28.

Examples:
LITERAL VALUE
=ETA Address of a word that contains the address of symbol ETA,
if ETA is relocatable; address of a word that contains the
value of ETA, if ETA is absolute
=50 Address of a word that contains the absolute value 50
=ETA+50 Address of a word that contains the value of the expression

ETA+50. If this literal is used before ETA is defined, more

than one constant with this value will be allocated.

=TAU+50=RHO Address of a constant that contains zero or one (the value of

the expression TAU+50=RHO)
NU+=PI Error

=(MU, NU, XI) Error

2-20. LISTS

A list is a set of items, expressions, or sublists separated by commas. In the
most trivial case a list may be a single item. A sublist is a list enclosed in paren-

theses. Lists are used in the operand field of a statement.

If a list of parameters is enclosed by a single set of parentheses, these param-

eters are considered to be second level parameters. In the list
A, (B,C), D

B and C are second level parameters, whereas A and D are first level. Param-

eter 2 (at first level) is a sublist.

Restrictions: The maximum number of expressions in a list at one level is 15.

The maximum number of levels of parentheses in a list is five.

LANGUAGE ELEMENTS 2-13

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

The value of a parameter which is nonexistent or uncoded is always zero; e. g.,
for a general list: expa,(expd, expb), expx that is coded: Al, (A4,) the expb and expx

would both be evaluated as zero.

2-21. INTRINSIC FUNCTIONS

An intrinsic function is an operation performed on or applied to an expression
or a list. Some intrinsic functions (global intrinsic functions) inay be used outside
or inside procedures, whereas others (local intrinsic functions) may be used only

in procedures. (This manual does not include procedure programming.)

Intrinsic function usages may be nested.

2-22. GLOBAL ATTRIBUTE FUNCTIONS

A global intrinsic function is one that may be used either outside or inside pro-

cedures.

An attribute of a parameter is the characteristic, or the value of the character-
istic of the parameter; e.g., the fact that the parameter is a literal is a character-

istic, or the value of the base of the parameter is the value of a characteristic.

An attribute function either determines the value of the characteristic of a
specified parameter or determines on a true or false basis whether a specified

parameter has a certain characteristic.

Some attribute functions are global and others are local. All global functions

are also attribute functions.

A global attribute function is one that may be used either inside or outside pro-
cedure definitions and that determines the value of some characteristic of the speci-

fied parameter.

When using an assembler directive that produces multiple code (e.g., the DO

directive), the argument (exp) of the intrinsic function cannot be a forward reference

LANGUAGE ELEMENTS 2-14

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

2-23. Base Function - B(exp)

The base intrinsic function, B(exp), is replaced by the number of the base
which yields the smallest non-negative result (displacement) when the value of that

base is subtracted from the value of the expression, exp.

If two or more bases yield the same least result, the highest numbered base is

selected to replace B(exp). See Topic 6-15.

Limits and Restrictions: If all bases yield a displacement greater than 4095, an

error message is generated by the assembler.

The base function is replaced by:

Ex_pres sion (exp) B(exp)

external reference error message generated by
assembler

absolute Zero

relocatable absolute

Example: RSRU ST B(TOTAL), BSV, X2

2-24. Displacement Function-D(exp)

The displacement intrinsic function, D(exp), is replaced by the displacement

value of the expression, exp.

The displacement value of exp is the smallest non-negative difference between
the value of the expression and the values of the bases (if any) in the table of appli-

cable bases. See Topic 6-15.

If all bases have a value of zero, the displacement of the expression is the dis-

placement of the expression relative to the beginning of the control section.

Limits and Restrictions: If a displacement is greater than 4095, an error message

is generated by the assembler.

LANGUAGE ELEMENTS 2-15

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

The displacement function is replaced by:

Expression (exp) D(exp)
external reference error message generated by
assembler
absolute Zero
relocatable absolute

Example: INX L X2, D(RHO)

2-25. Section Function-T(exp)

The section intrinsic function is replaced by the section number of symbol exp,

if a section number is valid. See Topic 2-27.

Limits and Restrictions: If exp is an external reference, T(exp) is greater than 256

and the value of T(exp) is the sum of 256 plus the external symbol number. See
Topic 4-5.

If (exp) is absolute, T(exp) is replaced by zero. If (exp) is relocatable, T(exp)
is replaced by an absolute value. If (exp) is in a dummy section (see Topic 4-17),
T (exp) is replaced by the negative of the dummy section number.

2-26. LOCATION INTRINSIC FUNCTION

The location counter symbol, $, when it is processed during evaluation of ex-
pressions, causes the current relative location in the assembly of the instruction
procedure call to be inserted in place of the symbol. In this sense, it acts some-

what like an intrinsic function. See paragraph 2-32.

2-27. PROGRAM SECTIONS

An assembly may be divided into logical subdivisions called sections. Each-
section has a protection key for use in regrouping the various sections of an assem-

bly at link edit time. A section is defined by the SEC directive; see Topic 4-15.

Sections provide the basis for addressing memory locations during an assembly.
Memory locations are identified in the assembler as relative locations from the

start of the section.

LANGUAGE ELEMENTS 2-16

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Section numbers are assigned to each section by the assembler. Section num-

bers 1 through 63 may be assigned in one assembly; i.e., any given assembly may

have a maximum of 63 sections.

2-28. RELOCATION

Since the assembler does not actually place object statements in fixed Central
Memory locations, the relative locations assigned by the assembler must be re-
locatable to available memory locations. Thus the relative location of a statement
within a section is a relocatable value, and the value of a symbol, or an expression

that refers to a relative location, is a section identification and the relative location

within that section.

2-29. CONSTANTS

Two types of constants are identifiable during an assembly: (1) the actual value
of a numeral, and (2) the relative location of a symbol within its section. The rel-

ative location of a symbol in its section is referred to as an address constant.

2-30., Address Constants

There are two classifications of address constants: (1) an a.dciress constant
that is an internally relocatable value; 1i.e., a value whose section and relative
location within its section is defined in the current assembly; and (2) an address
constant that is an externally relocatable value; i.e., a value whose section and

whose relative location within that section is defined in another assembly.

2-31. Numeral Constants

The value of a numeral is not relocatable. An absolute value cannot be defined
as belonging to a section or to a relative location within a section. An absolute
value may result from the use of relocatable items in an expression which produces

loss of identity of the items within their sections (see Table 2-5).

LANGUAGE ELEMENTS 2-17

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

2-32. LOCATION COUNTER

The location counter is a relocatable variable whose value is the current sec-
tion number and current relative location within that section. The value of the loca-
tion counter is positioned at the statement being assembled. The character, $, re-

presents the value of the location counter symbolically. Use of $ in the operand of

various control directives (see Topic 4-12) permits the value of the location
counter to be changed so that assembly control may be changed to different sections

or to other positions within the same section.

2-33. RELOCATABILITY OF SYMBOLS

The section to which a symbol belongs is determined by either of the following:
(1) the symbol may be equated to a procedure reference statement, or, (2) it may
be equated to the value in the location counter. Such symbols are relocatable since
the statement's location will be relocated with the section itself. Symbols defined
in other assemblies and identified by use of the EXTRN directive (see Topic 4-5)

are relocatable.

Symbols which are equated to absolute expressions or items are absolute.

Symbols equated to the T(a) intrinsic function are absolute.

2-34. RELOCATABILITY OF EXPRESSIONS

Expressions, because they contain symbols, may be evaluated as absolute or
relocatable. An expression that would be relocatable to more than one section be-
cause the symbols in the expression are defined in different sections is illegal;

e. g., A+B where A and B are relocatable and belong to separate sections.

- Table 2-5 shows, for each type of operator, the relocatability of the result.
The result may be relocatable, absolute, or illegal. If the result is relocatable,

its section is the section of the relocatable item or items.

LANGUAGE ELEMENTS 2-18

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

2-35. Effect of Relational Operators

The effect of relational operations (i.e., initiated by the operators:

<,7<, =,71=,<=5,>, 71>, >=) is as follows:

A B A REL B
ABS ABS will compare, if same length
ABS RELOC will not compare, evaluated as false
RELOC ABS will not compare, evaluated as false
RELOC RELOC will compare if in same section

Note: Since the result of a relational operation is always zero (false) or one (true),

the result is always absolute.

Table 2-5. Results of Operations on Absolute and Relocatable Items
in Expressions

A B A+B A-B A*B A/B
F — ' = o |

ABS ABS ABS ABS ABS ABS(B#0)
ABS RELOC RELOC illegal Notel illegal
RELOC | ABS RELOC RELOC Note2 Note3
RELOC | RELOC illegal Note4 illegal illegal

A B A++B A--B AxxB A==B
ABS ABS ABS ABS ABS ABS
ABS RELOC illegal illegal illegal illegal
RELOC | ABS illegal illegal illegal illegal
RELOC | RELOC illegal illegal illegal illegal

_Note 1: Illegal unless A equals zero or one. If A is one, the result is relocatable;

if A is zero the result is an absolute zero.

Note 2: Illegal unless B equals zero or one. If B is one, the result is relocatable;

if B is zero, the result is an absolute zero.

LANGUAGE ELEMENTS 2-19

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Note 3: Illegal unless B equals one, If B equals one, the result is relocatable.

Note 4: Illegal unless A and B are in the same section. If A and B are in the same

section, the result is absolute,

LANGUAGE ELEMENTS 2-20

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SECTION III
LANGUAGE STRUCTURE

3-1. STATEMENT FORMAT

A program consists of a sequence of coded lines, each line containing from
1 to 80 characters. However, only the first 72 characters of a line are processed
by the assembler. A line may contain a statement or a comment. Statement col-

umns 73 through 80 can be used for program identification or for sequencing.

A statement generally consists of three coding fields: a label field, a command
field, and an operand field. These three fields are of variable length and are termi-
nated by one or more blanks; i. e., no embedded blanks are permitted in these
fields. Any statement columns to the right of the operand field may be used as a

remark field which contains text.

GENERAL FORM: The general form of an assembler statement is:

T T T T
LABEL | | COMMAND | ! OPERANDS | | REMARKS
[symbol] E BE symbol ! BT:[expl[,epo[, -«.,expn]]] E%E [text]
TEST SEC 0
START LF #10, INIT, X1

3-2. CONVENTIONS FOR DESCRIBING LANGUAGE STATEMENTS
The following conventions are used to illustrate the language statements:

1. Upper case letters and punctuation marks (except those explained in items

3 and 4 below) represent information that must be coded exactly as shown.

2. Lower case letters and words are generic terms that represent informa-
tion that must be supplied; i. e., a substitution must be made when coding

a parameter or option so represented.

LANGUAGE STRUCTURE 3-1

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

3. Information within brackets | | is optional. It may be included or omitted

entirely, depending upon program requirements.

4. When several choices are enclosed in braces { } , one of the enclosed
alternatives must be selected by the programmer. If one of the alterna-
tives is underlined, the parameter may be omitted and the system assumes
the underlined alternative.

5. Mandatory blanks are represented by a slashed, lower-case letter

"b'" (B). This symbol is not used to represent permissible blanks.

3-3. CONTINUATION LINES

A semicolon (;) appearing in the operand field is a line terminator which signals
that the following line is to be treated as a continuation of the current one. That is,
the semicolon is considered to be followed immediately by the first non-blank on
the following line, and the information following a semicolon on the line on which

the semicolon appeared is ignored.

Restrictions: No more than two continuation lines are permitted for each statement

A semicolon (;) cannot be used to terminate an item; such usage will be treated

as an error.

Character strings and intrinsic functions are the only types of items that can
be divided by a semicolon. Character strings can be divided anywhere within the
string, but leading blanks on the continuation line are not treated as part of the
character string. Intrinsic functions can be divided by a semicolon only after the

open parenthesis.
Examples: The following lines of code illustrate use of continuation lines:

CMPREG L (A1%(SUM1=SUM2))++(A2%(SUML>SUM2))++(A3%(SUM1< SUM2)), (D(;
SUM1), B2), X5 COMPUTE REGISTER TO LOAD

MSSG DATA "THIS COMPUTATION EXTENDS INTO AN UN;
DEFINED REGION, "

LANGUAGE STRUCTURE 3-2

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

3-4., LABEL FIELD

A statement may be given a name by the programmer to permit references to
be made to the statement from other points within the program. The use of a name
is normally optional, but some directives do require a symbol in the label field.

The label must start in column 1. If no label is used, column 1 must be blank. The

symbol is normally equated to the current value of the Assembler's location counter.

Examples: The following are valid labels:

A$QED
BCD345
AABBCCDD
Y

3-5. Reserved Symbols

The following symbols are reserved and may not be used as labels:

1. Symbolic register names; viz., BO through B15, AO through A15, X0
through X7, and VO through V7.

2. The names of any of the directives; e.g., DATA, FORM, etc.
3. The names of any of the built-in procedures for the machine instructions,
i. e., the assembler mnemonics for the machine operations.
3-6. COMMAND FIELD

Each statement has a command. The command begins with the first non-blank

following the label field and is terminated by one or more blanks., The command

must be a symbol,

LANGUAGE STRUCTURE 3-3

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

The command field dictates the operation to be performed and may call an as-
sembler directive or a previously defined or built-in procedure. Thus the command
field contains a mnemonic which is the name of a directive or a label of a procedure.
New operations may be introduced by defining new procedures. (The ASC Central

Processor instruction set is represented by built-in procedures.)

Any error occurring in the command field will result in an illegal instruction.
The assembler will generate one word of zeros (absolute) of loader text and will

process the operand field for general syntax errors only.

Examples: DATA, SET, LR, and BLB are representative commands.

3-7. OPERAND FIELD

Most commands require operands. If a line is to include operands, the operand

field begins with the first non-blank following the command field.

The operand field is composed of a list of elements. Elements are composed
of one or more expressions (often referred to as parameters). The last element
in the operand list is terminated by a blank; all other elements in lists are termi-
nated by a comma. Sublists, which are elements in the form of lists enclosed in

parentheses, may exist. Intrinsic functions may also be elements in an operand.

Elements omitted from the right end of an operand list are assumed to have a
value of zero, (0, 0, 0 may be written as 0). If the operand field is left vacant, the
remark field must also be left vacant (blank). The number of blanks between fields

is not limited.

The assembler will check each expression in the operand field for valid syntax.
If a syntax error is found, the assembler will print a diagnostic flag and supply
zero in place of the expression found to be in error. The object code generated for
the remainder of the statement depends upon the use of the expression; i. e., the
command produced may or may not be correct. In some cases, a word of zeros is

generated.

LANGUAGE STRUCTURE 3-4

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

3-8. REMARK FIELD

The optional remark field is allowed as a convenience for documentation and
has no effect upon the nature of the assembled object code. A remark must be
isolated from the end of the operand field by at least one blank. The remark field

may not be continued to the next line. It cannot be used if the operand field is

omitted.

3-9. COMMENT LINES

A line (which is not a statement continuation line) whose first column contains

an asterisk (%) is treated as entirely commentary. No loader text is generated.

The line will be listed in context.

3-10. BLANK LINES

A line consisting of only spaces (blanks) in character positions 1 through 71 is

treated as commentary. A blank line will be printed on the assembly listing as a

result.

LANGUAGE STRUCTURE 3-5

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SECTION IV
DIRECTIVES

4-1. INTRODUCTION

Assembler directives supply special types of information to the assembler. A
reference to any symbolic item in an expression on a directive line must have pre-
viously appeared as a label: e.g., it must be possible to immediately evaluate the
expression(s) in the operand field of the directive. If the operand expression can
not be evaluated, it will be assigned a value of zero, and an error message will be

printed.

Exceptions to this rule are the symbols in the operands of the EXTRN, the
ENTRY, the DATA, and the USING directives, symbols which may be forward

references. The SET directive has conditional exceptions. All forward references

may be satisfied with values which do not exceed one word. The value of a forward

reference may be relocatable or absolute, and, if n is the value, -23l < nc< 231.

Note: In the general forms of the directive statements, items enclosed in brackets

are optional.

4-2. DEFINITION DIRECTIVES

4-3. EQUATE DIRECTIVE (EQU)

The EQU directive is used to assign a permanent value to its symbolic label.

GENERAL FORM:

LABEL COMMAND OPERANDS

B

LI
[
|
{ 1
] |
1 i

symbol EQU exp

The symbolic label is defined to have the value of the expression, exp.

DIRECTIVES 4-1

PROGRAMMER'S GUIDE TO THE CENTRAIL PROCESSOR

The value of exp may be absolute or relocatable, positive or negative, and is

expanded to an integral multiple of fullwords.

Restrictions: An EQU statement must have a label.

Symbols in the expression must be defined prior to their use in the EQU direc-

tive; i.e., the expression cannot be a forward reference.
Symbols defined in the label of this directive cannot be redefined.

Limitations: The maximum number of characters in a character string named by

an EQU statement is 28.

Examples: — I
LABEL :)KIL COMMAND :kf : OPERANDS -
ALPHA EQU $+3
BETA EQU ALPHA
NO EQU 0

4-4, SET DIRECTIVE (SET)
The SET directive is used to assign a temporary value to its symbolic label.

GENERAL FORM:

LABEL COMMAND OPERANDS

SET

symbol ¥ ¥ exp

I
|
1
!

WP | SR
i | g
b — |} — —

The symbolic label is defined to have the value of the expression, exp.

The value of the symbol can be changed by redefining it as the label of another

SET directive.

The value of exp which may be absolute or relocatable, positive or negative,
is expanded to an integral multiple of fullwords, and the expression may contain

a symbol that is a forward reference.

DIRECTIVES 4-2

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Restrictions: A SET statement must have a label.

If the value of the symbolic label is changed by being used as the label of an-
other SET directive, no subsequent values can exceed the length of the first.

Limitations: If exp contains a forward reference, n, the value of n is within the
31
<

range: -2 < n< 231 -1.

The maximum number of characters in a character string named by a SET

statement is 28.

AL |
Examples: LABEL :){l COMMAND l}fE OPERANDS ¢
ALPHA SET 3
YES SET BETA-ALPHA
BETA SET $

4-5., EXTERNAL NAME DIRECTIVE (EXTRN)

The EXTRN directive is used to identify every symbol that is used but not de-

fined in the current assembly.

GENERAL FORM:

LABEL OPERANDS

|
COMMAND |E
blank 61

B EXTRN B

B symbol[,...[, symbol]]

Each name appearing in the operand field of the EXTRN directive will be output

to the Link Editor, provided that reference to that name is within the current
" assembly. Any declared external names to which references are not made will
not be output to the Link Editor. Reference to an external name requires the use

of an address constant.

WARNING: Any reference within the current assembly to an external name not de-
clared by an EXTRN directive will be treated as being undefined and an error flag

will appear on the assembly listing.

Restrictions: An EXTRN statement cannot have a label.

DIRECTIVES 4-3

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Limitations: A limit of 255 external symbols may be declared for a module.

A limit of 15 external symbols may be listed in the operand field of one EXTRN

statement.
Examples: I]
LABEL ! X | COMMAND ! OPERANDS"
EXTRN ALPHA
EXTRN SQRT, SIN

4-6. ENTRY NAME DIRECTIVE (ENTRY)

The ENTRY directive is used to establish linkages between programs that have

been assembled separately but that are to be loaded and executed together.

GENERAL FORM:

OPERANDS

symbol[, . ..[, symbol]]

Each name appearing in the operand field of the ENTRY directive declares an
entry point into the current assembly to which external programs may refer. Any
name declared to be an entry point that is not defined within the assembly will cause

an error message to be output in the assembly listing.

Control section names can be used as entry points. Entry points are generated

automatically for them.

Restrictions: An ENTRY statement cannot have a label.

Each name appearing in the operand field of the ENTRY directive must also
appear as the label of a statement in the body of the assembly and must have a re-

locatable value defined in a control section.
Limitations: A limit of 255 entry names may be declared for a module.

A limit of 15 entry names may be listed in the operand field of one ENTRY

statement.

DIRECTIVES 4-4

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Examgle S:

|
¥ OPERANDS

—

1
LABEL }%{ COMMAND

ENTRY ALPHA
ENTRY SQRT, SIN

4-7. DATA DIRECTIVE (DATA)

The DATA directive generates enough fullword data units to contain the infor-

mation in the operand field.

GENERAL FORM:

LABEL OPERANDS

[symbol] ' B DATA

T
X
| exp[,...[, exp]]

|
|
1
|
1
1

The label symbol is the location of the first expression in the operand list. The

symbol is given the current value of the location counter.
Each expression is expanded to a multiple of fullword units.
An address constant is generated for any expression that is not absolute.

If a generated address constant refers to an external symbol, the output module
indicates that the value of the external is to be added, at link edit (or simulation)
time, to the constant displacement derived from the expression in which the external

symbol is used; e.g., for the statement:
DATA EXTRNI] + 10, EXTRNZ2+(T< S)

in which EXTRNI1 and EXTRNZ are the first and second external symbols defined in
 the assembly, ten will be added to the location of EXTRNI1 at link edit time, and
either zero or one will be added to the location of EXTRN2, depending upon whether

(T< S) is false or true, respectively.

Limitations: A limit of 15 expressions may be listed in the operand field of one

DATA statement.

A symbol in the operand field of the data statement that is defined by an EQU or

SET statement is assumed to have a singleword value. If a symbol is set (EQU or

DIRECTIVES 4-5

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SET) to a value (e.g., a character string) greater than one word in length, only the

rightmost word of the value will be generated as data.

Examples: T T 1
LABEL :,})’: COMMAND })5: OPERANDS
DATA BETA
ALPHA DATA 0
FLTPNT DATA 1.0,2.0
DATA "LITERAL"
DATA 1.0DO

4-8. FORMAT DIRECTIVE (FORM)

The FORM directive is used to specify arbitrary data formats.

GENERAL FORM:

LABEL COMMAND OPERANDS

symbol FORM

¥

¥ expl, exp2[, exp3, -+ -, expn]

R | SEp——

|
[
1
r
1

The values of the absolute expressions in the operand field of the FORM direc-

tive give the bit lengths of successive fields in the resultant data word.

Reference may be made to a format definition by using its label as the com-
mand in any succeeding statement with an operand field composed of values to be

placed in the object word fields defined in the FORM statement.

Restrictions: A FORM statement must have a label.

The sum of the values of the expressions must be a multiple of fullword (32-bit)

units.

Limitations: A limit of 15 fields may be defined in the operand list of a FORM state-

ment.
Examples: T —
LABEIL 'L){: COMMAND '.'51 OPERANDS
FSTART FORM 8,4,4,4,12
FSTART #C4,2,8,#E, 31

DIRECTIVES 4-6

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

produces the hexadecimal code:

BYTE 0 1 2 3

HEX 0 1 2 3 4 5 6 7

4-9. USING DIRECTIVE (USING)

The USING directive indicates to the assembler that the specified base register

contains the value of the relocatable expression.

GENERAL FORM:

LABEL COMMAND OPERANDS

blank

T
[
11
I T
1 |
1

|
!
1
|
|
|

B USING

¥

exp, register

The assembler will select a base and compute a displacement from the speci-
fied base value for each relocatable expression that follows the USING statement.

The base selected will be that base (for the section) which produces the smallest

displacement.

WARNING: Failure to specify a base register or registers for each section of an
assembly will result in addressability errors. All relocatable values in the reloca-

table expression following the using directive must be previously defined or be the

relocatable value.

Restrictions: A USING statement cannot have a label.

Base register zero (symbol, BO) cannot be specified as the register operand

of the USING directive.

The USING directive does not produce code to place the value of exp in the base

register. The programmer must include code to actually place the value in the

base register.

Note: Refer to Topics 2-23, 2-24, and 6-16.

DIRECTIVES 4-7

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Examgles: . —
LABEL :)f'L COMMAND !)5. OPERANDS -
USING ALPHA, B2
USING $+1,Bl4

4-10. DROP DIRECTIVE (DROP)

The DROP directive indicates to the assembler that the specified base register
is no longer available for base selection. The base will not be considered available

until another USING directive declares it to be available.

GENERAL FORM:

LABEL OPERANDS

I
COMMAND |
1
[

blank DROP i B

T
|
|
T
|
1

B

W § SR ———

register

Restrictions: A DROP statement cannot have a label. A DROP of a register for

which no previous USING directive was encountered will generate an error flag.

Examgle S:

LABEL B COMMAND OPERANDS

— — —

B
1
DROP Bl4

4-11. ORIGIN DIRECTIVE (ORG)

The ORG directive is used to set or reset the location of the origin for all or a

portion of the section being assembled.

GENERAL FORM: '

LABEL COMMAND OPERANDS

[
|
1
ORG n

T
o
|
I [
] i
L

|
|
exp

H

[symbol] ¥

The location counter is set to the value of the expression, exp. All code gen-
erated following the ORG directive will begin at the location whose value is that of

the expression.

DIRECTIVES 4-8

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

If the expression is blank, it directs the assembler to use the highest value
previously assigned to the location counter of the section being assembled as the

present value of the location counter.

The label, if present, is assigned the value of the location counter before the

location counter is reset.

Restrictions: The expression must have a relocatable value which must be within the

same control section as the ORG statement.

Examples:
™1 T
LABEL :)5’: COMMAND l)d:L OPERANDS
1
ALPHA ORG $+50
ORG ALPHA

4-12. CONTROL DIRECTIVES

4-13. LITERAL ORIGIN DIRECTIVE (LITORG)

The LITORG directive sets the location of the origin for all literals (regardless
of the referring section) defined since the previous LITORG or the beginning of the

assembly directive and places the locations of the literals in their respective object

code statements.

GENERAL FORM:

LABEL COMMAND OPERANDS

[symbol] B

- - < -

i
| !

| [

! LITORG sBJI [exp]

The origin is determined by incrementing the value of the expression, if nec-
essary, to a doubleword boundary. The literals will be generated beginning at the

aligned location.

The label, if present, is assigned the value of the location counter before the

location counter is reset.

After the literals have been generated, the location counter will remain set to

the first location following the last generated literal.

DIRECTIVES 4-9

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

If the expression is blank, the current location counter value becomes the liter-

al origin before alignment.

Restrictions: The expression must have a relocatable value and must be within the

same control section as the LITORG statement.

Examples:
»

ALPHA LITORG $+10
LITORG

T
LABEL ’1)51 COMMAND OPERANDS

|
|
A

- -

4-14. END ASSEMBLY DIRECTIVE (END)
The END directive signals termination of the assembly.

GENERAL FORM:

—

OPERANDS

L
!BE [exp]

The value of the expression represents the beginning execution address of the
assembly when it is loaded and run (unless otherwise overridden). If the operand
field is blank, no address for bheginning execution of the program is output to the

loader.

Whenever an END statement is encountered, it will be recognized as the end of

the assembly.

Restrictions: An END statement cannot have a label.

The END directive cannot be used in a procedure.

The expression, exp, must be relocatable.

. AL [
Examples: LABEL !'¥i COMMAND 1§! OPERANDS
END FIRST
END

DIRECTIVES 4-10

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

4-15. SECTION DIRECTIVE (SEC)

The SEC directive defines a control section and asserts assembly control to
that section for the generation of any subsequent code that is to have the same pro-

tection conditions.

GENERAL FORM: T
LABEL ; :
T
!

[symbol] ! B
|

OPERANDS

[expl][, exp2]

The label is the symbolic name applied to the control section. Subsequent uses
of a SEC statement with the same label will return control to the section at the loca-
tion immediately following the highest location count used previously within the sec-

tion. Sections may be resumed as desired.

The assembler assigns a control section number to the section when the defin-

ing statement is used for the first time. Section numbers are assigned sequentially.

Initially, the location counter is set to zero. An ORG directive (see Topic 4-11)

may be used to adjust the location counter values.

The first operand expression, expl, specifies the hardware protection of all
code generated under control of the defined section. Expressionl need not be used
in subsequent returns to a defined section; the original protection will be assumed.
Expression 1 must be absolute with a value of 0, 1,2, or 3. An expl value of 0
specifies read, write, or execute (i.e., no protection); an expl value of 1 specifies
read only; an expl value of 2 specifies read or write; and an expl value of 3 speci-

 fies execute only. If expl is blank, the value 0 is assumed.

The second operand expression, exp2, specifies the memory alignment for the
beginning of the section. Expression2 must be absolute and the value is considered
2 .
to be an exponent of 2, i.e., 2°%Pe . if exp2 is not present, a value of 3 is assumed,

and, thus, the section will be aligned on an octet boundary.

The assembler will assign a control section to the module name if no SEC
directive is used. No protection (i.e., read, write, or execute) will be assumed

for such a section.

DIRECTIVES 4-11

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Restrictions: Both expressions must be absolute.

The protection condition cannot be changed after the initial defining SEC state-

ment; i.e., a given section has only one protection condition.
Limitations: Only one unlabeled SEC statement is allowed.

WARNING: The assembler will create absolute literals in a section with execute

only protection even though they cannot be read and, therefore, cannot be used.

ExamEIes: T 1 1
LABEL :){J! COMMAND 1)5: OPERANDS
ALPHA SEC 1,2
BETA SEC 0
SEC 3,3

4-16. COMMON MODULE DIRECTIVE (COM)

The COM directive defines a common module.

GENERAL FORM:

LABEL COMMAND OPERANDS

B COM

¥

- - —{ = —
- - = —

1
1
!
]
]

[symbol] [expl][, exp2]

The label is the symbolic name applied to the common section. Subsequent
uses of a COM statement with the same label will return control to the common
section at the location immediately following the highest location count used pre-
viously within the section. Common sections may be resumed as desired. If no
label is present, ''blank' common is defined; i.e., it is an unlabeled common sec-

tion.

The protection condition of the common section is specified by expl. The ab-
solute value of expl may be 0, 1,2, or 3 with the same protection interpretation as
for the SEC directive; viz., no protection, read only, read or write only, and exe-

cute only, respectively. If expl is blank, zero is assumed.

DIRECTIVES 4-12

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

The beginning boundary alignment is specified by exp2 where exp2 is an expo-

exp’

nent of 2; i.e., the alignment will be 2 If exp2 is blank, three (an octet bound-

ary) is assumed.

The module definition output generated for a COM statement has the same for-
mat as that for a SEC statement; the setting of a reserved bit within the format

distinguishes the defined module as a common module.

Restrictions: Both expressions must be absolute.

The protection condition cannot be changed after the initial defining COM state-

ment.
A T
Examples: LABEL :){: COMMAND }bl OPERANDS
ALPHA COM 0,3
BETA COM
COM 1

4-17. DUMMY SECTION DIRECTIVE (DUM)

The DUM directive defines an absolute dummy section.

GENERAL FORM:

OPERANDS

[expl][, exp2]

Any reference to the absolute dummy section name or to any symbol defined
within the dummy section is treated as an absolute reference to a section. The
symbolic name has a value of zero since it is the first location in the dummy sec-
tion. The values of any other symbols defined (as labels of statements) within the
section have the values of their respective displacements from the beginning of the

dummy section.

A dummy section produces no object text output and no evidence will exist in

the object ""deck'' that the DUM statement appeared in the source file.

DIRECTIVES 4-13

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

The operand expressions have no significance other than as a comment for the

protection and boundary conditions of the actual section for which the dummy section

substitutes.
. T 1 L
Examples: LABEL !¥! COMMAND 1! OPERANDS"
A
ALPHA DUM 2,3
BETA DUM 0,0
DUM

4-18. DUMMY COMMON MODULE DIRECTIVE (COMD)

The COMD directive defines a relocatable dummy section.

T

. 1l
|
i

H OPERANDS

ki COMD '
i M|

N | SR

[

!

1

symbol :

[expl]l, exp2]

Any reference to the dummy common module name or to any symbol defined
within the dummy common section is treated as a relocatable value to which the
value of the symbolic label is to be added at link-edit time. At assembly time the
symbolic label has the value of relative zero and symbols defined (as labels of state-
ments) within the dummy common section have values that are the relocatable dis-

placements relative to the beginning of the module.
The symbolic label is assumed to be the name of a common section.
A dummy common module produces no object text output.

The operand expressions have no significance other than as a comment for the
protection and boundary conditions of the actual common section for which the dum-

my common section substitutes.

Restrictions: A COMD statement must have a label.

DIRECTIVES 4-14

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Examples: — l

Lxamp’es T
LABEL 'L,K: COMMAND !ﬁi OPERANDS -
ALPHA COMD 0,3
BETA COMD 1,1

4-19. COPY DIRECTIVE (COPY)

The COPY directive causes the specified file, ''sourcefilename, ' to be copied

inline as source text to the assembler.

GENERAL FORM:

LABEL COMMAND OPERANDS

blank Bi COPY sourcefilename

B

i |
|

! !
J |
[i
i i

1
. !
| 1
I 1
' |
| I

The source statements from the file, sourcefilename, are merged into the as-
sembly after the COPY statement and before any later source statements in the as-
sembly. The file may exist on an indicated user library or on the system procedure

library.

The COPY function is processed during PASS 1 of the Assembler without re-

gard to level of assembly.

Restrictions: A COPY statement cannot have a label.

The occurrence of an END statement in the copied file will cause termination

of the assembly.

Limitations: The COPY function cannot be used to copy part of a source file; all

card images in the file will be copied.

1 T 1
. } .
Examples: LABEL l,Ki COMMAND !ﬁ ! OPERANDS
COPY SOURCE
COPY PROC1

o~
DIRECTIVES 4-15

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

4-20. RESERVE DIRECTIVE (RES)

The RES directive is used to reserve space within the assembly.

GENERAL FORM:

LABEL OPERANDS

i
|
1
RES ; Bi exp

[symbol]

The present value of the current location counter is modified by the value of
the expression, exp. The expression may be positive or negative, but must be ab-

solute.

The value of the symbolic label is the value of the current location counter be-

fore it is modified.

Restrictions: The expression, exp, must be absolute.

Limitations: The maximum value of exp is 65536.

Examples: T T
LABEL ! X ! COMMAND 1! OPERANDS
ALPHA RES 10
BETA RES #16
RES 100

4-21. ALIGN DIRECTIVE (ALIGN)

The ALIGN directive causes the location counter value to be incremented, if

necessary, to place the next statement on a specified word boundary.

GENERAL FORM: LABEL

COMMAND OPERANDS

1
|
]
I
1
{

el || S

[
b
| |
1
b1 ALIGN 13

blank expl, exp2

The second operand expression, exp2, specifies a basic boundary alignment
and the first operand specifies a number of words past that basic alignment; e.g.,

ALIGN 2, 8 would specify the second word past an octet boundary.

DIRECTIVES 4-16

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

If the current value of the location counter is not on a word boundary as speci-
fied by exp2 and expl, the location counter value will be incremented by the least
value sufficient to place the new location count on the specified boundary. The con-

tents of any locations skipped are not modified.

Mathematically, the location count must meet the criterion: C = x mod (y),
where C is the location count, x is the value of expl, and y is the value of exp?2.
I1lustratively, this means that ALIGN 2, 8 will force the location counter value to a

member of the set {2, 10, 18, 26, + - }

Restrictions: An ALIGN statement cannot have a label.

The expressions, expl and exp2, must be absolute.

Expl must be less than exp2.

Examples: T 1 T 1

=RETpes LABEL ! COMMAND 1§/ OPERANDS
ALIGN 0,8
ALIGN 1,2
ALIGN 0,16

4-22. DO DIRECTIVE (DO)

The DO directive provides control of assembly by including, excluding, or re-
peating a variable number of statements. The result in the assembly is the same
as if the ""DO-controlled' statements had been included, excluded or repeated in the

source input stream.

GENERAL FORM:

LABEL COMMAND OPERANDS

8] [expl]l, [exp2][, [exp3]]]

[symbol] DO

- — == —

DIRECTIVES 4-17

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

ACTION SUMMARY: The DO directive is restricted in its interpretation when used

outside of procedures. It does, however, have limited use. Letting the DO param-
eters, expl, exp2, exp3, be represented by x, y, and z, respectively, the action
of the DO directive outside of procedures may be summarized as:

1. If x>1, assemble the next statement x times; ignore y and z.

2. Ifx=1, assemble the next y statements once, and skip z statements.

3. If x <1, skip the next y statements; ignore z.

Note: See PROGRAMMERS' GUIDE TO PROCEDURE PROGRAMMING for the inter-

pretation of the DO directive when it is used within procedures.

Restrictions: Of the intrinsic functions only B(exp), D(exp), and T(exp) are valid

as parameters of a DO statement used outside of a procedure.

Outside of procedures, DO directives can be nested only to exclude the nested
DO statement; they cannot be used to cause repetition of the nested DO statement's

control range.

Outside of procedures, no statements within the range of a given DO statement

other than a nested DO statement or a SET statement may have labels.

Default Values for Parameters: The following table illustrates the Assembler's

interpretation of the DO parameters for the various cases of coding:

expl <1 expl =1 expl >1
CODED ASSUMES ASSUMES ASSUMES
DO x DO x,1,0 DO 1,1,0 DO x,1,0
DO x, DO x,1,0 Do 1,1,0 DO x,1,0
DO x,, DO x,0,0 Do 1,0,0 DO x,1,0
DO x,,z DO x,0,0 DO 1,0,z DO x,1,0
DO x,y DO x,vy,0 DO 1,vy,0 DO x,1,0
DO x,vy, DO x,v,0 DO 1,vy,0 DO x,1,0
DO x,v,z DO x,vy,0 DO 1,vy,z DO x,1,0

Note: If expl is defaulted, it will be assumed to be zero.

DIRECTIVES 4-18

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

ITERATION COUNT: The value of expl specifies the number of times the iteration

group is to be assembled. This value is called the iteration count.

An expl value of less than one causes the iteration group to be skipped without
action. An expl value of n, where n is greater than or equal to one, causes the

iteration group to be assembled n consecutive times.

Restrictions: Outside of procedures, if expl is greater than one, exp2 defaults to

one; if expl is equal to or less than one, exp2 may be greater than one.

Limitations: The effective value of expl is limited to the range: 0 < expl £ 255,

ITERATION GROUP: The value of exp2 specifies the number of statements to be

assembled as a group. This group, called the iteration group, begins with the state-

ment immediately following the DO statement.

Restrictions: Outside of procedures, if expl is greater than one, exp2 defaults to

one.

Note: Commentary lines are not statements and are, therefore, ignored in DO

directive iterations,

SKIP COUNT: The value of exp3 specifies the number of contiguous statements in

the source stream that are to be excluded when the iterations are complete. This

value is called the skip count.

The statements skipped are those that immediately follow the last statement

iterated.

If expl is less than one, the DO execution is complete after the iteration group
is skipped and exp3 is ignored; 1i.e., only the number of statements equal to exp2

will be skipped.

Restrictions: Outside of procedures, exp3 is defaulted to zero for all cases other

than those in which expl is equal to one.

SATISFACTION OF PARAMETERS: When a number of statements equal to (or

greater than) the value of exp2 have been assembled in one iteration, exp2 is said

to be satisfied for that iteration.

DIRECTIVES 4-19

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

When a number of iterations equal to the value of expl has been completed,

expl is said to be satisfied for that DO statement.

The DO directive is said to be satisfied when the iterations and/or skips spe-

cified by all three parameters have been completed.

DO LABEL: A label on the DO directive provides symbolic access to the number
of the iteration the DO directive is performing (or has performed) at the time refer-

ence is made to the label.

When the DO statement has been encountered in the source stream, the label
is initially given a value of one; thus, if the DO label is used as one of the param-
eters of its own DO statement, that parameter will always be evaluated as one.
This initial assignment of the label value overrides any previous assignment of a

value to that symbol by a previous SET or DO statement.

The value of the DO label is incremented at the beginning of each iteration of
the DO directive; thus, the value of the label is always the number of the iteration
being performed, or is the number of the last iteration performed once the DO
directive is satisfied. Any attempts to modify the value of the DO label by a SET

statement or as the label of a nested DO statement within the range of the DO direc-
tive will cause an anomalous assembly. In summary, if a DO statement has an
iteration count, (value of expl) of n and has a label, the value of the label will be

incremented through the series {1, 2,3,..., n} in successive iterations. If the

value of expl is less than one, the label will always have the value of one.

Once the DO directive is satisfied, the label retains its last value unless or
until its value is modified by a SET statement or it is used as the label of another
DO statement, or the DO statement is reaccessed. Such modifications must occur

outside the range of the subject DO directive.

Restrictions: The value of a DO label cannot be preset to a value other than one.

The value of a DO label cannot be modified within the range of the subject DO

directive, other than by its own iteration incrementation.

DIRECTIVES 4-20

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

NESTED DO DIRECTIVES: A DO directive is said to be nested when it is one of

the statements included in the iteration group of another DO directive which is

called the parent DO directive. DO directives may be nested up to 32 levels.

Restrictions: An error message will be returned if the range of a nested DO

lirective exceeds the range of its parent DO directive even through the resultant

assembly may be the desired result.

Nested DO directives are not permitted outside of procedures. The only ex-
ception is a parent DO directive which never assembles its ite ration group and thus
always excludes the nested DO directive from the assembly. All other attempts to

nest DO directives outside of procedures will produce errors.

4-23. PSEUDO DIRECTIVES

4-24, INDIRECT ADDRESS CONSTANT DIRECTIVE (IND)

The IND directive is used to generate an indirect address constant.

GENERAL FORM:

LABEL COMMAND OPERANDS

IR
|
1 1
IND ?Bi

1
|
L
|
)
1

b - - —

[symbol] ¥ expl[, exp2]

Expressionl represents the address value and expressionZ represents the
second level index. Expressionl may be preceded by an at sign (@) to indicate

wnother level of indirectness.

A . T 0
txamples: LABEL : X ! COMMAND 16 OPERANDS
GAMMA IND @BETA
IND SIGMA

lestrictions: Access to indirect address constants are execute requests; there-

ore, indirect address constants must be in control sections with execute permit-

ed protection codes.

JIRECTIVES 4-21

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

4-25. BRANCH ADDRESS CONSTANT DIRECTIVE (BCON)

The BCON directive is used to generate a branch address constant to be use
by the link editor for automatic overlaying. Indirect branches thru BCON addre
constants will be trapped by the link editor to invoke the overlay supervisor to o

lay the segment containing the target address.

GENERAL FORM:

LABEL COMMAND OPERANDS
T
|
|

L 1
[symbol] L | BCON 18 expl

EXPI represents the address value to be trapped.

. | 1 T 1
Examples: LABEL 1p! COMMAND !p! OPERANDS
CALL SCAN BCON SCANENT
BCON OVLY3

Restrictions: Access to branch constants are execution requests and therefore

must be in execute permit control sections.

4-26. DATA HALFWORD DIRECTIVE (DATAH)

The DATAH directive will place the values of expressionl and expression2
into the left and right halves, respectively, of the word generated by the statemen

Both expressions must be absolute.

GENERAIL FORM:

T 1
LABEL : 1 COMMAND Lo OPERANDS
T
[symbol] ! B DATAH : b’i expl, exp?2
Examples: T T 1
LABEL :){i COMMAND 1 ! OPERANDS -
ALPHA DATAH 0,1
DATAH -3,2

4-27. LISTING DIRECTIVES

DIRECTIVES 4-22

ROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

-28. SKIP DIRECTIVE (SKIP)

The SKIP directive permits control of the assembly listing. This directive
auses the assembler to skip print lines or to eject the page of the assembly listing.
he contents of the operand field also control the printing of the heading at the top

f the new page. The directive itself is not printed on the listing.

ENERAL FORM: LABEL

COMMAND OPERANDS

T
!
1
!
1
1

-~ — - — —

|
!
1
]
|
i

I | S

blank b SKIP b1 [exp[,character string]j]

If the expression is zero or blank, the page will be ejected. Otherwise, a

amber of print lines equal to the value of the expression will be skipped. The ex-

ression must be absolute.

SKIP directives are ignored if the NOLIST directive is used.

The operand field of the SKIP directive may have any of the following formats:

FORMAT FUNCTION

SKIP Eject the page; new page number equals old page
number plus one; print previous title.

SKIP n Skip n lines; if this causes page ejection, start at
top of page as in previous format.

SKIP 0, "TITLE" Eject the old page; new page number equals old
page number plus one; new title is the character

string, TITLE.

SKIP n, "TITLE" Skip n lines; this causes page ejection, start

at top of new page; new title for the next page is
the character string, TITLE, regardless of
whether page is ejected now; new page number
equals old page number plus one.

lestrictions: No label is allowed with the SKIP directive.

The expression must be absolute.

DIRECTIVES 4-23

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Limitations: The character string may not exceed 100 positions.

. moT T
Examples: LABEL J‘)fi COMMAND |)6i OPERANDS
1
SKIP 3
SKIP
SKIP 0,"TITLE"
SKIP 6,"TITLE"

4-29. LIST DIRECTIVE (LIST)

The LIST directive is used to cause the object code listing to resume.

GENERAL FORM: LABEL

COMMAND OPERANDS

blank B LIST B blank

T]
|

. !
T |
| i
1 i

T
|
|
T
'
|

The combination of NOLIST and LIST directives can be used when only a po

tion of the assembly listing is desired. The directive is not printed on the listiz

Restrictions: No label is allowed with the LIST directive.

-

Examgle : T

I
LABEL 1))’; COMMAND })5'1 OPERANDS ¢

LIST

4-30. NOLIST DIRECTIVE (NOLIST)

The NOLIST directive is used to suppress the listing.

GENERAL FORM: LABEL COMMAND

OPERANDS

blank [NOLIST blank

. | S

|
|
1
1
|
I

¥

When the assembler encounters this directive, it stops the listing. The dir«

tive is not printed on the listing.

Restrictions: No label is allowed with the NOLIST directive.

DIRECTIVES 4-24

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Example:

DIRECTIVES

T 1 I
LABEL '¥! COMMAND I§!

OPERANDS

NOLIST

4-25

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SECTION V
ASSEMBLER OUTPUT

5-1. ASSEMBLER OUTPUT

The Assembler output consists of object modules and a listing with messages.

5-2. SOURCE PROGRAM LISTING

An assembly listing will be output in the format shown in Figure 5-1. A double
space listing may be requested by CPSTEP option, or listing may be suppressed by
CPSTEP option.

Columns with headings are provided for error flags, the location of each state-
ment, the object text generated, the statement number, and each source statement.
If program sequencing has been requested, an unheaded column of sequence numbers

will be printed.

Error Column (ERRORS): The ERROR column contains the flags for assembler

error messages and procedure processing error messages. These error flags and

their meanings are described in the section on Messages.

Statement Location Column (LOCATION): The LOCATION column contains the

location (in hexadecimal numerals) relative to the beginning of its section for each

source statement.

Object Code Column (OBJECT TEXT GENERATED): The OBJECT TEXT GENER-

ATED column contains the hexadecimal object code generated by each statement in

the source program.

Statement Number Column (STMT): The STMT column contains decimal statement

numbers for each source statement in an assembly.

Note: The user should note that the Central Processor Procedure Library state-
ments which precede each program are not listed; therefore, statement numbers

begin at some number greater than zero.

ASSEMBLER OUTPUT 5-1

LOdLNO dATINESSY

(2]

TFXAS INSTRUMENTS -- CPU ASSFMBLER LISTING

FRRNRS LOCATION OBJECT TEXT GENERATFED STMT

404040
00N0NF
lalelalo] U]
nnootl
00012
O000NF
0NNRAN
nndR AN
NONAL Y
INNALS

ASSFHMRLY COMDLETFE,

SOURCE STATEMENT

669

670 BRCHTST SEC 0

671 USING BRCHTST,R1
672 0ORrRG BRCHTST+#F
42 1. 0.0 0 015 €73 SUM AF Al, (AS)
‘86 1 & 0 FFF 674 RCLF X1,A6,SUM
A1 000012 675 CF Alys(A2)
S1 2 0 0 1 BAO 676 ARG TOTAL
677 ORG BRCHTST+#RAO
24 1 05 1 A10 67R TOTAL ST Al,0UT,X5
679 0ORG BRCHTST+#A10
680 OUT RES 5
nnneocno] 681 END BRCHTST

FNTRY N AMEF S

BRCHTST 01 n00Nnnn

NN STATEMFENTS HAVF FRRNORS.,

PAGE 1

02705770

Figure 5-1. Example Source Program Listing

dOSSIO0dd "TVILNID HHL OL HAIND SIdININVEDO dd

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Source Statement Column (SOURCE STATEMENT): The SOURCE STATEMENT

column contains each symbolic source statement in the assembly input.

SUMMARY OF SPECIAL LISTS: Following the listing of source statements for an

assembly is a summary of special lists and the number of statements in error for

each section. The format is as follows:
LITERALS ASSIGNED TO SECTION hh
location counter value literal
ENTRY NAMES
entry name location counter value
EXTERNAL NAMES
external name

ASSEMBLY COMPLETE xxxx STATEMENTS IN ERROR .

5-3. MESSAGES

An assembly listing line consists of the hexadecimal representation of the lo-
cation counter and machine language instruction followed by the number and image
of the original source statement. Message flags are indicated to the left of the lo-

cation counter value.

For each line upon which an error condition is discovered (which results in a
message flag being listed) a word containing an error count will be incremented
by one. At the end of the assembly run, this count is set in the specified word on
the listing. A maximum of six flags will appear on the listing for each line of

generated listing.

ASSEMBLER OUTPUT 5-3

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Table 5-1. Assembler Generated Messages

FLAG

ERROR CONDITION

N < X & < agH+d ® D WO ZgHEXN< " o QdH"mgUuawE»

Addressability Error

Invalid Use of Base Intrinsic

Too Many Continuation Cardsh
Duplicate Label Assignment
General Syntax Error

Intrinsic Function Invalidly Used
Invalid Use of a List

Invalid Use of a Directive
Undefined Instruction

Invalid Use of Displacement Intrinsic
Invalid Use of Control Section Intrinsic
Error in the Label Field
Magnitude Error

No END Card on Deck

Too Many Operands on Statement
Parentheses Are Unbalanced
Invalid Arithmetic Operation
Relocation Error

Truncation Has Occurred
Assembler Table Overflow
Undefined Symbol

Invalid Forward Reference
Warning, Possible Error
Reserved for Future Use
Reserved for Future Use

Disagreement in Location Counter between Pass One and Pass Two.

ASSEMBLER OUTPUT 5-4

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

5-4., Procedure Processing Generated Messages

The message flags following are generated by the Central Processor and the
Peripheral Processor procedures that the assembler processes. User generated

ﬁrocedures may generate additional flags, or the same flag with a different meaning.

Table 5-2. Procedure Processing Message Symbols

FLAG ERROR CONDITION

1 Invalid use of a register, or insufficient number of parameters.

2 Questionable use of a register, or insufficient number of param-
eters.

Invalid use of a literal for the ASC.
4 Invalid use of an @ for the ASC.
Invalid use of a ¢ for the ASC.

5-5. CROSS-REFERENCE LISTING

A cross-reference listing will be output in the format appearing in Figure 5-2.

The cross-reference listing can be suppressed by control card option.

Each new symbol encountered is entered in the SYMBOL column and its defi-
nition and/or cross-references are listed to the right through the TYPE, SEC,
VALUE, DEFN, and REFERENCES columns. FEach new symbol will have a SYMBOL
and TYPE entry in the cross-reference listing. If the symbol is defined, the SEC,
VALUE, and DEFN fields will be filled; if the symbol is not defined, these three
fields will contain hyphens. A series of hyphens in any field indicates that, for

that symbol, the field is not applicable, not available, or not known.

Symbol Column (SYMBOL): The SYMBOL column contains the symbol whose cross-

references are listed in the succeeding columns and lines of the listing format. All

entries prior to the next entry in the SYMBOL column refer to the given symbol.

ASSEMBLER OUTPUT 5-5

ILOdLNO dHATIINESSV

9-¢

SymMsol TYPE

Al VAR
A2 VAR
AS VAR
A6 VAR
BRCHTST ENT
Bl VAR
TN -
our REL
SuM REL
TOTAL REL
X1 vaRe
x5 VAR
STEP-ASMC

SEC VALUF DEFN -
-- 0N00N011 29
-= 00NCI612 30
== 00000015 33
-~ 00000016 34
01 00000000 670
-- 0000Nn001 13
---------- UNDEF
01 230N0AL0 680
01 00000Q0F 673
01 O00008AQ0 678
-- 00000021 45
-- 00000025 49

NATE-N2/05/7D

REFERENCES

673
675
673
674
671
671
273
678
674

676

674
AT8

675

672

276

CROSS—REFERFNCE LISTING

678

677 679 6R1

120 3137 354 371 412 415 505

EXFCUTINN TIME-O00HRS NOMINS 52 .67SFCS

508

PAGE 2

02/05/70

‘Figure 5-2.

Cross-Reference Listing Example

d0SSHD0 dd "TVILNED HHL OL HJIND SidHNINV ED0 dd

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Type Column (TYPE): The TYPE column contains an abbreviation specifying the

type of the symbol being cross-referenced. The meanings of the abbreviations in

the TYPE column are as follows:

ABBREVIATION MEANING

REL internally relocatable

ABS absolute

EXT external

ENT entry point

VAR variable, section and value may change; the first section

and value is displayed

The VAR type symbol results from the definition of a SET or a DO directive
outside of all procedures. Symbols defined by SET and DO directives inside a

procedure have definition information only.

Section Column (SEC): The SEC column contains the number of the section to which

the symbol belongs and in which it is defined.

Value Column (VALUE): The VALUE column contains the value assigned to or the

evaluation of the symbol being cross-referenced. Depending upon the type of the
symbol, its value may be an address constant, a value set by the programmer, or
the evaluation of the symbol via operations. If the VALUE column contains eight

asterisks, the value of the symbol cannot be represented in eight hexadecimal digits.

Definition Column (DEFN): The DEFN column contains the number of the statement

in which the symbol is defined.

References Column (REFERENCES): The REFERENCES column contains a com-

plete listing of the statement numbers of all the statements in which the symbol
being cross-referenced appears. This will not include its definition statement

number that appears in the DEFN column.

ASSEMBLER OUTPUT 5-17

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SECTION VI
ASSEMBLER-CENTRAL PROCESSOR INTERFACE

6-1. INTRODUCTION

The assembler produces machine code statements by interpretation of symbolic
coding through procedures that are defined in the assembler. The names by which
the procedures may be called (i. e., the assembler mnemonics for the central pro-

cessor instructions) are described in Sections VII and VIII of this manual.

This section of the manual describes the modes of interpretation of symbolic
code into machine code for scalar instructions. Since the vector operations have
special characteristics, both in the assembler procedures and in the machine, they

are described in Section VIII, which is devoted entirely to the vector operations.

6-2. INSTRUCTION FORMATS

The machine instruction has an eight-bit operation code field, a four-bit R field
which either specifies a register whose contents are used or altered in the operation
or is a condition mask for the operation, a four-bit T field whose most significant bit
specifies indirect addressing and whose other three bits specify an index register,

a four-bit M field which specifies the base register to be used in address develop-
ment, and a 12-bit N field which specifies the displacement to be used in address
development. For instructions which use immediate operands, the M and N fields
compose alb-bit immediate operand field. For index, test, and branch instructions,
the T field addresses arithmetic registers. All three machine formats are illustrated

in Figure 6-1.

The assembler statement of a scalar instruction may have a label, must have

a command, and may have from one to three operands.

In general:
OPERANDS

[operandl, Joperand2[, operand3]

ASSEMBLER-MACHINE INTERFACE 6-1

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

OP CODE R FIELD T FIELD M FIELD N FIELD
T
| l ,
| - ’ {
| ,
1 | I I
31
/
OP CODE R FIELD T FIELD M FIELD N FIELD
| I i 0
|
| L1 1 b1 11) N 1 N I O I O O A P |
0 7 8 T1 12 1516 19520 31
< ’
A
/" MNEMONIC (@ =n, X
OP CODE RFIELD T FIELD M FIELD N FIELD
i [[T
|
|
| O I O L1
0 7 8 1112 31
7 MNnEMONIC 7T,
OP CODE R FIELD T FIELD M FIELD N FIELD
| [[I |
|
: IMMEDIATE
I T 1R N (T (N (I O Y A O O O
0 7 8 1112 1516 1920 31
== |
7 mNnemonic M i x
OP CODE RFIELD T FIELD M FIELD N FIELD
| | |
NN RN 1 11 I O O 1 O O O O
0 78 TT 12 T5 16 1520 37
100962 7 mnemonic M, r, n

Figure 6-1. Assembler Statement Translations into Machine Code

ASSEMBLER-MACHINE INTERFACE 6-2

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-3. LABEL

A label on an assembler instruction is optional. When it is present, it is a
symbol (see Topic 2-5) and it is assigned a relocatable value which is its relative
position in the assembly. If a label is not present, its field must be represented by

one or more blanks.

The label is not interpreted into any part of the machine instruction.

6-4. COMMAND

The command in the assembler instruction is mandatory. The command is one
of the mnemonics defined by procedures in the assembler. This mnemonic, in
conjunction with information from the operands, determines the operation code field
of the machine code instruction (see Figure 6-1). Note that the machine operation
code may not be determined from the command mnemonic alone; e. g., the mnemonic
L for load instructions may be translated into any one of three machine codes de-

pending upon the register operand included in the statement.

6-5. OPERANDS

The operand list varies in number of operands and in operand interpretation
from instruction to instruction, but there are only two basically different operand
lists. They may be called the R, N, X list and the R, R, N list, respectively. Table
6-1 is a definitive list of all operand combinations.

6-6. R,N,X OPERAND LIST

The R, N, X operand list is basic to all except two of the scalar instructions.

6-7. First Operand

The first operand is that operand which is translated into the R field of the
machine instruction and also helps determine the operation code for some instruc-

tions, See Figure 6-1.

ASSEMBLER-MACHINE INTERFACE 6-3

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Table 6-1. General Forms and Variations of the Operand Lists

GENERAL DEFINITIVE VARIATIONS
FORMS SYMBOLIC N EXPLICIT BASE AND DISP
R, N, X Lists:
r, [@[=]n[] r,@=n, X r,@=n
r,@n, X r,@n r,@(d, b), x r,@(d, b)
r,=n,x r,=n
r,n,x r,n r, (d, b), x r, (d, b)
r, [@[=]n[, x] r,@=n,x r,@=n
r,@n, x r,@n r,@(d, b), x r,@(d, b)
r,n,x r,n T, (d, b), x r, (d, b)
r, [@n], x] r,@n, x r,@n r,@(d, b), x r,@(d, b)
r,n,x r,n r,(d, b), x r, (d, b)
m, [@[=]n[, x] m,@=n, x m,@=n
m,@n, x m,@n m,@(d, b), x m,@(d, b)
m,n,x m,n m, (d, b), x m, (d, b)
m, [@]n[: X] m’@ns X ma@n m:@ (d7 b)’ X m:@(d: b)
m,n, X m,n m, (d, b), x m, (d, b)
[@[=]1n[x,] @=n, x)=h
@nsX @1‘1 @(d9b):x @(d’ b)
n, x n (d, b), x (d, b)
[@]n[, X] @n,x @1’1 @(d$ b),X @(d’ b)
n, x n (d, b), x (d, b)
T, i, x| r,i,x T, i — -
i[, x] i, x i — —
i i _ _
R, R, N Lists:
r,r,n r,r,n r, r,(d, b)

ASSEMBLER-MACHINE INTERFACE 6-4

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

The first operand may be a register symbol or value, a mask, or supplied
by the assembler. For those instructions where the assembler supplies the R field
of the object instruction, no ''first'" operand is coded; therefore, it is convenient to

refer to it as the register operand or the mask operand, as appropriate.

GENERAL FORM SYMBOLS: In general forms, the first operand, when present,

will be represented by symbols as follows:

SYMBOL MEANING
r replace r with a register symbol or register value
m replace m with an absolute expression
neither no ''first'" operand, the R field is supplied by the assembler

6-8. Second Operand

The second operand is that operand which is translated into the M and N fields
of the machine instruction and, also, specifies whether the most significant bit of
the T field is to be set to one or zero (i.e., indicates whether to use indirect

addressing.) See Figure 6-1.

The second operand may be a relocatable expression, a sublist specifying base
and displacement, or an absolute expression which is an immediate operand. In-
structions which use relocatable symbols also permit base and displacement sublists
and vice versa, but absolute expressions and relocatable values are not interchange-

able.

Since the ''first" operand is not always coded, it is convenient to refer to the
"second' operand as the address operand (when a relocatable symbol or a base and

displacement sublist) or as the immediate operand (when an absolute expression).

An address operand may be preceded by an @ sign to indicate indirect addressing
(see Topic 6-27), and its presence causes the most significant bit of the T field of

the object instruction to be set to one.

ASSEMBLER-MACHINE INTERFACE 6-5

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

BASE AND DISPLACEMENT SUBLIST: When a relocatable expression is coded in

the second operand, it is provided by the assembler with a base and displacement.
When it is desired to code the base and displacement explicitly, the address operand
is coded as a sublist (i. e., a list enclosed in parentheses) with the displacement
first, a comma, and then the base register symbol or value. The displacement is
translated into the N field and the base into the M field of the object instruction.

See Figure 6-1. Both the displacement and the base must be absolute expressions.

RESTRICTIONS ON LITERALS: In all instructions in which the data flow is from

the location specified by the address operand, a literal may be used as an address

operand since it is given a relocatable value.

In those instructions in which the data flow or the flow of contr.ol (i. e., a
branch) is to the location specified by the address operand, use of a literal is re-
stricted and may be prohibited. For some branch instructions a literal which will
create an indirect address is permitted in conjunction with the indirect address

symbol,

Note that, in any case where a literal is conjuncted with indirect addressing,

the literal must be assembled into an indirect address.
A base and displacement sublist, since it is a list, cannot be a literal.

GENERAL FORM SYMBOLS: In general forms, the second operand will be rep-

resented by symbols as follows:

BYMBOL MEANING

n replace n with a relocatable expression or a base and
displacement sublist (d, b)

@n use the indirect address cell at location n + index to develop a
terminal effective address

=n assembler give =n a relocatable value and store the value of n
at that location (n may be absolute)

@n assembler give =n a relocatable value and store the indirect
address, n, at that location

(d, b) explicit base and displacement address (Continued)

ASSEMBLER-MACHINE INTERFACE 6-6

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SYMBOL MEANING
d replace d with a positive absolute expression, or a register
symbol or value
b replace b with an absolute expression, or a base register symbol
or value
i replace i with an absolute expression

6-9. Third Operand

The third operand is that operand which is translated into the three least signif-

icant bits of the T field of the object instruction. See Figure 6-1.

The third operand will always be an index regisfer symbol or value. It is con-
venient to refer to it as the index operand. In general forms, the index operand will

be represented by the symbol x.

It is always optional to leave off the index operand, but there is one instruction,

LLA, in which an index operand is prohibited.

6-10. R, R,N OPERAND LIST

There are only two instructions, BCLE and BCG, which use the R, R, N operand
list. It differs from the R, N, X list in that it is the second operand that is translated

into the T field of the object instruction. See Figure 6-1.

The first operand is always an arithmetic register symbol or value, the second
operand is always an even arithmetic register symbol or value, and the third operanc
is always a relocatable address (branch) symbol. The third operand does not permit

use of indirect addressing or literals.
The algorithm of these two instructions is discussed in Topic 7-127.

For convenience, the first operand may be called the register operand, the
second operand may be called the test operand, and the third operand may be

called the address operand.

ASSEMBLER-MACHINE INTERFACE 6-7

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-11. REGISTER ADDRESSING

The bank of 48 registers in the Central Processor are separated into six eight-
word files: the two base register files, A and B, the two arithmetic files, C and D,

the index register file, X, and the vector register file, V.

Symbolic addressing of the registers may be performed by their reserved
symbols built into the assembler procedures, by their decimal positions in the reg-
ister bank, by their hexadecimal positions in the register bank, or by any absolute

expression which is equated to any of the previous addresses.

Figure 6-2 illustrates the division of the register bank into files, and Table 6-2

lists the symbols by which the individual registers may be addressed.

Note that all register addressing modes are absolute values.

6-12. REGISTER OPERAND - R FIELD ADDRESSES

Register operands are translated by the assembler into the R field of the object

code.

Since there are 48 registers but only four bits in the R field, the translation
is performed modulo 16. For those assembly instructions which may refer to any
register in the bank (e.g., L), the modulus number (i.e., first 16, second 16, third
16) or the symbol letter (i.e., Bx, Ax, Xx, or Vx) determines which object opera-
tion code is selected. In the object code, it is the operation code that specifies
which group of 16 registers is accessed, whereas in the assembler code the reg-
ister operand specifies which operation code to select. Note that the index and
vector register files are accessed in the same modulus, and, therefore, instruc-
tions whose names specify an index register in the R field also may use vector

registers.

ASSEMBLER-MACHINE INTERFACE 6-8

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

ASSEMBLER-MACHINE INTERFACE 6-9

SYMBOLIC | DECIMAL |HEXADECIMAL |REGISTER BANK | FILE
ADDRESS ADDRESS ADDRESS
BO 0 WIRED TO ZERO
e e . e . — —— -
Bl 1
A
B7 7 BASE
e — - = = — 4 REGISTERS
B8 8 #8 (BR)
B
B15 15 #F
AO 16 #10
C
A7 23 #17 ARITHMETIC
——————————— REGISTERS
A8 24 #18 (AR)
D
Al5 31 #1F
X0 32 #20
INDEX
X REGISTERS
(XR)
X7 39 #27
Vo 40 #28
VECTOR
v REGISTERS
(VR)
A4 47 #2F
Figure 6-2. Register File Specifications

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Table 6-2. Register Addressing Symbols

SYMBOLIC NUMERIC ADDRESS SYMBOLIC NUMERIC ADDRESS
ADDRESS ADDRESS
DECIMAL HEXADECIMAL DECIMAL |{HEXADECIMAL
BO* 0 #0 A8 24 # 18
B1 1 # 1 A9 25 # 19
B2 2 # 2 AlO 26 # 1A
B3 3 # 3 All 27 # 1B
B4 4 # 4 Al2 28 # 1C
B5 5 # 5 Al3 29 # 1D
B6 6 # 6 Al4 30 # 1E
B7 7 # 7 Al5 31 # 1F
B8 8 # 8 X 0okk 32 # 20
B9 9 # 9 X1 33 # 21
B10 10 # A X2 34 # 22
Bl1 11 # B X3 35 # 23
B12 12 # C X4 36 # 24
B13 13 # D X5 37 # 25
B14 14 # E X6 38 # 26
B15 15 # F X7 39 # 27
A0 16 # 10 A4 40 # 28
Al 17 # 11 V1 41 # 29
A2 18 # 12 A 42 # 2A
A3 19 # 13 V3 43 # 2B
A4 20 # 14 V4 44 # 2C
A5 21 # 15 V5 45 # 2D
Ab 22 # 16 V6 46 # 2E
A7 23 # 17 A\ 47 # 2F

#*When these values are used in the b parameter of the explicit address sub-
list, (d, b), they specify that there is no base.

**sWhen these values are used in the index operand, they specify that there
is no index.

ASSEMBLER-MACHINE INTERFACE 6-10

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Examples: The following assembler statements would translate into the illustrated

hexadecimal object code:

— T T T T T T T T

LABEL:b:CMMND;b'OPERANDS OP:%:R:%{T:B:M}B:N
L 2,(X1),x2 | 18 2 2 0 021
L A3 (A4) 14 3 0 0 014
L #13 (20) 14 3 0 0 014
L (3) 1C 2 0 0 023
L L (X1) 1C B 0 0 021

6-13. ADDRESS OPERAND REGISTER ADDRESSES

Registers may be addressed in the address operand (N field) of most instructions
by coding a base and displacement sublist with base register specification of zero

(implied or explicit).

Since the N field is 12 bits, references to registers in the N field are by their

hexadecimal positions from the beginning of the register bank. Refer to the example

in Topic 6-12.

Indexing address operand register references may produce effective addresses
in virtual memory since the index word sets are greater than 48 words. Refer to

Topic 6-23. Illustratively, the index word set for a register origin, x, is:

ASSEMBLER-MACHINE INTERFACE 6-11

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

VM ORIGIN-(223)
NEGATIVE 1 1 1 1] | |
WRAPAROUND
‘J
1 1 1 1 1 1
HIGH VM ORIGIN-(X+1)
1 1 1 1 1 1 1
BO ORIGIN=-X
1 1] 1 1 1 |
m
[~r"1 1 I 1 1
REGISTER SN SN S NS S —
BANK
Ry ORIGIN (X)
1 1 1 1 | 1 1
1 | 1 1 1 1 1
1 1 1 1L 1 | 1
2 ORIGIN+(47-X)
1 1 1 1 L 1 1
LOW VM ORIGIN+(48-X)
1 | 1 i 1] 1
POSITIVE o
OVERFL.OW
r\,_—-_-\—_\'a
1 1 i 1 1 1 1
VM| | ORIGIN+(223—1-X)
1 1 1 1 1 1 1

Note: VM = Virtual Memory

6-14. ADDRESS DEVELOPMENT

From the viewpoint of the user, address development occurs in two phases:
(1) the assembler's interpretation of symbolic addresses into object code, and (2)
the machine's interpretation of object code. The user must be able to anticipate
the final result of his coding. Table 6-3 gives the specifications for direct single-

word addresses.

6-15. ASSEMBLER TRANSLATION

The general translation of an assembler statement into an object statement is
described in Topics 6-6 through 6-10. Translation of an address operand into the

base and displacement fields is discussed in greater detail in the following topics.

ASSEMBLER-MACHINE INTERFACE 6-12

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-16. Symbolic Addresses

Since Central Processor instructions use base and displacement addressing (M
and N fields), the programmer must provide the assembler with information about
the use of base registers. This is accomplished with the USING directive,

Topic 4-9.

In developing the base and displacement fields for a symbolic address, the
assembler determines which base registers are in use, and selects that base registe
whose contents when subtracted from the program counter relative displacement of
the symbol will give the smallest positive N field displacement. Then that base regi

ter's object address is assembled into the M field of the object instruction, and the

derived N displacement is assembled into the N field of the object instruction.
Limitations: The N displacement must be within the range: 0< N <4095. The N

displacement is translated into the 12-bit N field as a positive number.

Default: The base register addressed in the M field will be base register zero if
no base registers are specified by the USING directive to be in use. This produces
program counter relative displacements, and for 0 < N < 47 produces register

addressing in the address operand.

Note: Note that there are three distinct displacements involved in programming
the Central Processor in assembler language. First, there is the displacement of
a symbolic location from the beginning of the program (section) in which it is
named; this is called program counter relative displacement. Second, there is the
displacement of a symbolic location from some specified base position within the
program in which it is named; this, for convenience, will be called the N displace-
ment. Third, there is the index displacement specified by the contents of an in-

dex register addressed in the index operand.

Example: The following assembler code would produce the illustrated object code
(note that SUM is addressed by base register 2 because a smaller displacement is

possible) and results on execution:

ASSEMBLER-MACHINE INTERFACE 6-13

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

] T | | | 1 I T T | I |
LABELJ’lS: CMMND: bﬁll OPERANDS |COUNT OP: %{ R: : T: : M: ILN
EXAMP SEC 0

USING EXAMP, B1

USING EXAMP+50, B2

BLB B1,$+1 0 98 1 0 0 001

Al Bl, -1 1 70 1 0 F FFF

LI X1, 50 2 5C 1 0 0 032

L B2, (X1) 3 18 2 0 0 021

LI X1,2 (6) 5C i 0 0 002

ST A3,SUM, X1 (F) 24 3 1 2 00A

SUM DATA 0,0,0,0,0 (3C) 00 0 0 0 000

(3D) 00 0 0 0 000
(3E) 00 0 0 0 000
(3F) 00 0 0 0 000
(40) 00 0 0 0 000

On execution:

COUNT |REGISTER CONTENTS

VIRTUAL MEMORY CONTENTS

W N

LY

F

B1
B1
X1
B2

X1

A3

0000 0001
0000 0000
0000 0032
0000 0032

0000 0002

40E0 0000

3E

40E0 0000

6-17. Explicit Base and Displacement Addresses

Explicit base and displacement address interpretation is described in

Topic 6-8.

ASSEMBLER-MACHINE INTERFACE 6-14

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Base and displacement as calculated by the assembler can be avoided, whenever
desirable, by explicit base and displacement addressing in the address operand.
Use of explicit base and displacement requires that the programmer know both the
contents of the base register he specifies and the exact displacement from that

base location.

The principal use of the base and displacement sublist in the address operand

is to develop a register address in the M and N fields of the object code.

Limitations: Any expression used as the d parameter must have a value within the
range: 0<d £4095. Any expression used as the b parameter must have a value

within the range: 0< b <15.

Note: As within any list, an empty paramter is provided, by the assembler, with
the value of zero; thus, if (d,b) is coded (A2), the result is an M field of zero and
an N field of 12 (base 16).

Example: The following assembler code would translate into the illustrated hexa-

decimal object code:

1 ! I t |] | [[N I !
LABEL | $! CMMND ! 1 OPERANDS |OP ! B! RIB! T'h!MIBI N
1 | 1 |
L X5,(#7F,B1)| 1C 5 0 1 07F
AF A3, (A8),X5 | 42 3 5 0 018

6-18. MACHINE TRANSLATION

There are four factors that determine the mode by which the Central Processor
develops the effective address: first, the operation code specifies whether the
effective address is that of a singleword, halfword or doubleword; second, the
indirect (most significant) bit of the T field specifies whether the address is to be
obtained directly or indirectly; third the M field specifies whether a base value is
to be added to the N field displacement; and fourth, the three least significant bits

of the T field specify whether the address is to be modified by an index value.

ASSEMBLER-MACHINE INTERFACE 6-15

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-19. Direct Address Development

Direct addresses are those that are developed from the N field, the contents
of the base register addressed by the M field, and the contents of the index register
addressed by the T field.

Restrictions: An M field of zero specifies no base value and any effective address

obtained that is within the range: 0 < EA < 47, will be the address of a register.

If the M field is any value other than zero, effective addresses within the range
0 <EA <47 will address low virtual momory even though the contents of the base

register addressed might be zero.

The first index register (index register 0, X0) cannot be used for indexing.
It can be addressed in any other field of an instruction, but a value of zero in the T

field specifies no indexing.

6-20. Singleword Addresses

Singleword addressing is specified by the operation code (assembler mnemonic)

and the addresses are developed as follows:

1. Consider the 12-bit N field to be the positive N displacement.
2. Examine the M field and,

a. if it is not zero, find the base register it addresses and add the least
significant 24 bits of the contents (as a positive value) to the N deplace-
ment, or

b. if it is zero, treat an effective address within the range of the register
bank addresses as an indexable register address.

3. Examine the three least significant bits of the T field and,

a. if it is not zero, find the index register it addresses and add the least
significant 24 bits of the contents (as a two's complement value) to the
result of step 2, or

b, if it is zero, ignore the index unit.

4. Use the result of step 3 as the effective address of the instruction.

ASSEMBLER-MACHINE INTERFACE 6-16

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Figure 6-3 illustrates the full process, and Table 6-3 gives the full specification

for singleword addressing.

Note: This development takes place in the arithmetic unit; neither the instruction

nor the contents of the base and index registers are altered.

OP COUDLE R ~I1ELD i FIELD MO TELD N FIELD
| | l
>0 >0 >0
L1111 111 | 1 1 1 11 | I T T O I O Y T O
e} 7 13 15 16 19 20 31

AN s \ AN /
VS =
SINGLEWORD
OPERATION
Xy

| N N Y N O N N S S I |

| | | | |
//H/// v SASE VALUE
/& 1N I 1 I T T N T I O N Y I O
7/'//// :bi | + INDEX VALUE
/f// N N NN T T N (N T T A B B | I O I Y I |

// I T I I 1
I/ EFFECTIVE -~ DDRESS
lAlllllllllJlllllllllLlll

100959

Figure 6-3. Development of Singleword Effective Addresses

ASSEMBLER-MACHINE INTERFACE 6-17

HDOVATGHINI ANITHDVIN-dHTdINHISSY

81-9

Table 6-3. Development of Singleword Addresses (Direct)

ADDRESS AND INDEX OPERANDS 0sN<212_] EFFECTIVE
SYMBOLIC EXPLICIT M FIELD | (M)+N [ORIGIN |T FIELD |(M)+N+(T) | ADDRESS
expr (expa, expa) M=0 N<47 REG T=0 N/A REG
N>47 VM T=0 N/A VM
0<M=15 20 VM T=0 20 VM
expr, expa (expa, expa), expa M=0 N<47 REG T=0 N/A REG
0<T="7 BA<47 REG
EA>47 VM
N>47 VM T=0 N/A VM
0<T=7 EA<47 REG
EA>47 VM
0<M=15 =0 VM 0=sT=7 20 VM
(expa) M=0 N<47 REG T=0 N/A REG
\ N>47 VM T=0 N/A VM
(expa), expa M=0 N<47 REG T=0 N/A REG
0<T=7 EA<47 REG
EA>47 VM
N>47 VM T=0 N/A VM
0<T="7 EA<47 REG
EA>47 VM

Where expr is a relocatable expression (symbol), expa is an absolute expression (symbol), (M) is
the content of the base register, (T) is the content of the index register, REG is a register, and
VM is a virtual memory location.

dOSSHDOdd TVYILNHAD HHIL OL JAIND SIANWNVYIDOId

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Examples: Given that the assembler statement:
L A4,SUM, X5 translates into object code: 14 4 51 OFF, that Bl contains: 0000
1000, and X5 contains: 0000 000A; then the address will be developed as:

ispLACEMENT W N
/'Z 040, 1y g 0f0o

%
INDEX
/o.u.c,u,a,A
4
MEMORY EFFECTIVE /
2203031, 710419

Given that the assembler statement:

SASE

A X4, (#A,B2) translates into object code: 62 4 0 2 00A, and that B2 contains:
0000 2000; the address will be developed as:

BASE /
4010,210,0,0

MEMORY EFFECTIVE
/Zlo0,012,010A

6-21. Halfword Addresses

Halfword addressing is specified by the operation code (assembler mnemonic),
and the halfword specified may be either the left or the right halfword of a single-
word depending upon the code. In either case, the addresses are developed as
follows:

1. Consider the 12-bit N field to be the positive N-displacement.

2. Examine the M Field and,

a. if it is not zero, find the base register it addresses and add the least
significant 24 bits of the contents (as a positive value) to the N displace.
ment, or

b. if it is zero, treat any effective address within the range of the registes

bank addresses as an indexable register address.

ASSEMBLER-MACHINE INTERFACE 6-19

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

3. Examine the three least significant bits of the T field and,
a. if it is not zero, find the index register it addresses and,
(1) displace its 25 least significant bits to the right by one bit

(arithmetic shift) and,

(2) add the value as a two's complement signed number to the result
of step 2, or '
b. if it is zero, ignore the index unit.

4. Use the result of step 3 as the effective address of the instruction.

Figure 6-4 illustrates the full process.

OoP CODE R FIELD T FIELD M FIELD N FIELD
T 7/ T T
>0 > >0
I O I T O I A1 1 1 1 1 | I T T T I T O O |
(6] 7 13 1516 1920 31

OPERATION

// |] T 1 |
/R

// 1 T T T T
/ EFFECTIVE ADDRESS
1NN T N W T Y T N T T T N T Y T T T
o

100960

R o SNy T

~
©

w

-

e o

31

Figure 6-4. Development of Halfword Effective Addresses

ASSEMBLER-MACHINE INTERFACE 6-20

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Restrictions: The address developed from steps 1 and 2 is actually a word address;

it is the operation code that specifies the use of a halfword. Note then that any
symbolic address is a word address; e.g., in the following instructions LH X1,
IMMOD and LR X1,IMMOD is the same word, but one instruction accesses the
left half and the other accesses the right half.

It is only the index parameter that produces halfword displacements. See

Topic 6-25, for a description of halfword index word sets.

Note: This development takes place in the arithmetic unit; neither the instruction

nor the contents of the base and index registers are altered.

Note: Table 6-3 is valid for halfword addressing up to determination of the origin,

but when indexing is specified, the singleword displacement is only one-half the

index value; e. g., in an instruction with base register 0, an N displacement of 48

would be the first virtual memory address; but with an N displacement of 0 it would

require an index value of 96 to exit from the register bank (for H halfword operations).
| The register exit point for base register 0 addresses will be:

exit = N + X, where the index value X = 2(47-N) + 2 for "H" halfword instructions

and X = 2(47-N) + 1 for "L'" or "R" halfword instructions.

Examples: Given that the assembler statement:
LH A4, (#B, B2), X1 translates into: 154 1 2 00B, and that B2 contains: 0000
0000, and X1 contains: 0000 000B; then the address will be developed as:

[0) 31

BASE
/4101 ©,0010

V

SHIFTED INDEX /
/ /1o ,0,0 0,0,5h

% +
MEMORY EFFECTIVE RASHL
010,010]140

=3

and the contents of the right half of virtual memory location #10 would be loaded

into the left half of A4.

ASSEMBLER-MACHINE INTERFACE 6-21

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Given that the assembler statement:
LH A4, (A6),X]1 translates into: 154 1 0 016, and that X1 contains: 0000 0004;

then the address will be developed as:
20 31

7%

SHIFTED INDEX
OLOAO IO IOLZ O

REGISTER EFFECTIVE //é LEFT

040410 40 1,80l HALF

and the contents of the left half of A8 will be loaded into the left half of A4.

6-22. Doubleword Addresses

Doubleword addressing is specified by the operation code (assembler mnemonic)
and the addresses are developed as follows:

1. Consider the 12-bit N field to be the positive N displacement.

2. Examine the M field and,

a. if it is not zero, find the base register it addresses and add the least
significant 24 bits of the contents (as a positive value) to the N displace:
ment, or

b. if it is zero, treat any effective address within the range of the registez
bank addresses as an indexable register address.

3. Examine the three least significant bits of the T field and,
a. if it is not zero, find the index register it addresses and,
(1) displace its 23 least significant bits to the left by one bit and,
(2) add the value as a two's complement signed number to the result

of step 2, or
b. if it is zero, ignore the index unit.

4. Use the result of step 3 as the effective address of the instruction.

Figure 6-5 illustrates the full process.

ASSEMBLER-MACHINE INTERFACE ©-22

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

OP CODE R F1ELD I FIELD M FIELD NCOFIELR
T // % I T
/¢ >0 > >0
Ll Ll ///lllllllll[llllljl
(o] 7 13 15 1¢ 370 31

OPERATION

/ /.' \ |
bousLY WoRD \/_/ Y /

B Q——F-——z

B T T T

//// T | T T 1
v SASE VALUE

I/l// N T 1) T N N I A T I

////// / +: | *l INDEXT CALUE | |

~ /é : A 1 T N A O N T A T Y I T A O O O S O | l

£ 31

—
-
e
e

e e e e el e e c— c—

100958

Figure 6-5. Development of Doubleword Effective Addresses

Restrictions: The address developed from steps 1 and 2 must be an even number

so that the least significant bit will be zero; otherwise, the bit is zeroed automat-
ically. No doubleword instruction will accept as its first word of data an odd word

location; i.e., doubleword addressing is by even-odd word pairs only.

The index parameter, due to the register shift, produces automatic doubleword

displacements. See Topic 6-26.

Note: This development takes place in the arithmetic unit; neither the instruction

nor the contents of the base and index registers are altered.

ASSEMBLER-MACHINE INTERFACE 6-23

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Note: Table 6-3 is valid for doubleword addressing up to determination of the
origin, but when indexing is specified, the singleword displacement is twice the
index value; e. g., in an instruction with base register 0, an N displacement of 48
would be the first virtual memory address, but with an N displacement of 0 it would

require only an index value of 24 to exit from the register bank.

The register exit point for base register 0 addresses will be:

exit = N + X, where the index value X = 1/2 (48-N) and N must be even.

Example: Given that Assembler statement:
LD A6,SUMD, X1 translates into 17 6 1 1 0F0, and that B1 contains: 0000 0000,
and X1 contains: 0000 0004; then the address will be developed as:

0 20 31

.

%

4
B8ASE / |
01030710 ;0,0

7//10,0,0,0,0,8

) T
MEMORY EFFECTIVE /‘/ | LS8 ZEROED

40101010]F 8]

N

AN

SHIFTED INDEX

and the contents of the virtual memory location F8 and F9 will be loaded into regis-

ters A6 and AT7.

6-23. Index Word Sets

Symbolic addresses are all effectively singleword addresses as can be seen from
Topics 6-16 and 6-19 through 6-22. The index value is displaced left or right or
not at all to produce the proper index displacement units; viz., singleword units,
halfword units, and doubleword units. This produces a set of units which can be
accessed by a single symbol plus an index value; for convenience they are called

index word sets.

ASSEMBLER-MACHINE INTERFACE 6-24

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-24. Singleword Index Word Sets

Singleword index word sets are straightforward; all addressable locations with-

in the set fall within the interval:

223 23_1). Tllustratively

location -(), location + (2

LO_ATION (223,

B

LOCATION -1
L1 L1 1 1 L

LO AT IO
| I N N T T N |

LOCA TION+1
Lt 1 1t 1 ¢ 1

LOCATION+(223. 1)

Limitations: The index values (i. e., contents of the index register addressed by

the index operand) must be within the range: -2235 x < 223-1

6-25. Halfword Index Word Sets

There are two types of halfword index word sets: those with left halfword

origins and those with right halfword origins.

Those halfword instructions whose assembler mnemonics end with the letter

"H" (e.g., LH,STH) all access, without index, the left half of the location addressed;
i. e., they set left halfword origins. Even index values access left halfwords, and

odd index values access right halfwords.

Those halfword instructions whose assembler mnemonics end with the letter
"L'" or the letter "R" (e.g., LL, LR) all access, without index, the right half of
the location addressed; i. e., they set right halfword origins. Even index values

access right halfwords, and odd index values access left halfwords.

ASSEMBLER-MACHINE INTERFACE 6-25

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Limitations: The index values (i. e., contents of the index register addressed by

. 24 2
the index operand) must be within the range: -2 < x<2 4-1.

The fullword interval spanned by a left index word set is:

223-1). Note that the fullword interval of the set is the

location -(223), location +(
same as that for the singleword index word set, but that there are twice as many
addressable units,

The fullword interval spanned by a right halfword index word set is:
location -(223), location +(223). The right half displacement extends it one word

farther than any of the other index word sets.

Illustratively:
FULLWORD
LOCATION LEFT ORIGIN RIGHT OKIGIN
0
LOCATION-(223) X —224 X==22441 / X -224
L1 1 | | i 1 / | | |
~d —
1 1 1 | 1 1 1 |] |
LOCATION—1 X 2 X -1 X -3 X -2
1 1 | 1 1 1 | | | | i |
LOCATION ORIGIN X 41 X -1 ORIGIN
11 1 ' ' | 1 1
LOCATION+1 X-+2 X:=+3 X +1 X +2
L 1 L1 1 [L1 1
L— —
m
L 1 1 1 1 1 L]
LOCATION+(223-1) x 2232 | x=223_4 x-223-3 x-223.2
| L1 1 L1 /1 L1
LOCATION+(223) x 223 4 /////
L1 1]

6.26. Doubleword Index Word Sets

Doubleword index word sets originate at an even-odd doubleword location and

are indexed by doubleword incremental units.

Restrictions: The location name in the address operand must be the name of an

even numbered location.

ASSEMBLER-MACHINE INTERFACE 6-26

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Limitations: The index values (i.e., contents of the index register addressed by

] 22 22
the index operand) must be within the range: -2 < x<2 -1.

The singleword interval spanned by a doubleword index word set is:

. 23 . 2
location -(277), location + (2 3-1). Note that the singleword interval of the set
is the same as for the singleword index word set, but there are only half as many

addressable units.

Illustratively:
FULLWORD
LOCATION WORD SET
LOCATION-(223) x -222
| | | L1 | |
LOCATION - (223 .
1 I 1 1 1 L 1
_—\M’—\—\
1 L 1 I 1 3
LOCATION-2 X=—1
TR SR I N R | 1
LOCATION- 1
L 1 L L L 1
LOCATION X -0
'R B R N R |

LOCATION+1

LOCATION+(223-2) x 2221

LOCATION+(223-1)

6-27. Indirect Address Development

Indirect addresses are those that are developed from indirect address cells
which are originally addressed by the T, M, and N fields of the instruction. The
indirect address cells may or may not specify additional indirection and/or indexing

Figure 6-6 illustrates the indirect address cell format.

ASSEMBLER-MACHINE INTERFACE 6-27

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

T FIELD ADDRESS FIELD

I I 1l I I I

7k
//éjlilIIIlIIIIIIIIlIlJlLIlIlI

0) 2 T8 31

1009737
Figure 6-6. Indirect Address Cell Format

The indirect addresses are developed as follows:
1. Examine the most significant bit of the T field and,
a. if it is not set to one, this is not an indirect address; develop the
appropriate direct address (Topic 6-19 through 6-22).
b. if it is set to one, proceed to step 2.
2. Develop a singleword address (Topic 6-20).
3. Examine the indirect address cell in the location found in step 2 and,
a. if the most significant bit (bit 4) of its T field is set to one,
(1) develop an address from its address field (a full 24-bit virtual
memory address) and the contents of the index register specified
(if any) in its T field, and
(2) use the contents of the location obtained to repeat step 3.
b. if the most significant bit of its T field is zero, develop an appropriate
24-bit singleword, halfword, or doubleword virtual memory address.
4, TUse the terminal address obtained as the location from which or to which

data is to be moved.

Restrictions: All initial addresses in the T, M, and N fields (address and index

operands) will be developed as singleword addresses.

Only the first level of indirection can refer to a register; there is no M field

in an indirect address cell and all addresses refer to virtual memory.

The terminal address index increment will always be appropriate to the word

size specified by the operation code.

Indirect address development is in the execute mode; indirect address cells

must be in execution permitted control sections.

ASSEMBLER-MACHINE INTERFACE 6-28

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Program Interruptions: If any intermediately accessed location contains a one

in any bit position zero through three, an illegal operation interrupt will occur.

Note: Indirect addressing will not be inadvertently introduced into immediate
operand instructions by introduction of a one into the most significant bit of the T

field because those instructions do not examine the indirect bit.

Note: Table 6-3 is valid for development of the first level of indirect address
development. The table need only be altered by coding the operands with an @
sign on the left as they are expressed in the table. The T field values would then

always be either: T =8, or 8 <T <15 in place of T = 0 and 0 < T< 7, respectively.

Example: Given that base register Bl is in use with contents of: 0000 0000, and
registers X1, X2, X3, X4, X5, X6, and X7 each contains: 0000 0000, and the following

assembler code transtated as illustrated:

LABEL b CMMND p OPERANDS COUNT|OP b R B T b M B N

L A2, @NODE10, X1 F 14 2 9 1 OFF

: - B T BADDRESS
NODE10 IND @NODEI11, X2 FF 0 A O000LFE

IND @NODE12, X3 100 0 B 0002FD
NODE!1 IND D111, X4 IFE | o 4 0003FC

IND D112,X5 IFF | o 5 0004FB
NODE12 IND D121,X6 2FD | 0 6 0005FA

IND D122, X7 2FE | 0 7 0006F9

WORD 1 WORD 2

D111 DATA 2,4 3FC | 0000 0002 0000 0004
D112 DATA 3,5 4FB | 0000 0003 0000 0005
D121 DATA 2,3 5FA | 0000 0002 0000 0003
D122 DATA 1,5 6F9 0000 0004 0000 0005

then on execution of instruction F the address will be developed as:

ASSEMBLER-MACHINE INTERFACE 6-29

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

BASE //
1/0|0|0.°|010

INDE X /
/0,0,0,0,0,0

” FF
FIRST LEVEL //) 0,0,0)0,%,%

\ E

ADDRESS /// 0,0y 0=, F &
INDEX

/Oiolonoloﬁ)

SECOND LEVEL / |

s
pooress 1 s ¢

/101040, %,F 2

INDEX 7/ 0,0,0,0,0,0

/F
3 C
TERMINAL / N

and 0000 0002 will be loaded into AZ. \/

6-28. Creating Indirect Address Cells

Indirect address cells with the full power of indirect addressing are normally
programmed with the IND directive (see Topic 4-24). This directive provides for
building T fields in the indirect address cells. This produces indirect address

indexing which is convenient for the creation of tree structures of addresses.

The load effective address instruction also creates effective address cells (in
the base, index or vector registers), but these cells will have no T field and, thus,

no intermediate or terminal indexing.

Refer to the example in Topic 6-27.

ASSEMBLER-MACHINE INTERFACE 6-30

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-29. IMMEDIATE OPERANDS

If the ""second' operand of an instruction is specified by the instruction to be
an immediate operand, it is developed by the assembler into a 16-bit absolute value

that occupies the M and N fields of the object instruction. See Figure 6-1.
All assembler mnemonics for instructions which treat the M-N field as imme-

diate data end with the letter '"I'', e.g., LI, AI, SI.

6-30. ASSEMBLER TRANSLATION

The assembler will translate either numeric expressions or character strings

into immediate M-N fields.

6-31. Numeric Immediate Operands

Numeric immediate operands are right-justified in the right half of the instruc-
tion word and unspecified bit positions are filled with zeros. Negative numbers

are expressed in two's complement form with the sign bit in bit 16 of the instruction

word.

Limitations: The value of an expression used as an immediate operand must be

within the range: -32, 768 < i<+ 32, 767 (-215 <ig 215-1).

6-32. Character String Immediate Operands

Character strings used as immediate operands are left justified in the right

half of the instruction word and unspecified bit positions are filled with zeros.

Restrictions: Since EBCDIC character representation is used in the ASC and

EBCDIC representation requires one byte per character, a character string imme-
diate operand is restricted to two characters in length. A single character operand

will have a blank represented in the right byte.

ASSEMBLER-MACHINE INTERFACE 6-31

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-33. MACHINE TRANSLATION

The Central Processor processes the object code representation of an imme-
diate operand as a numeric or as a logical value, depending upon the operation
code, and modifies the 16-bit immediate value by the appropriate index value, de-

pending upon the operation code and the presence of an index operand.

6-34. Numeric Immediate Development

Numeric immediate operands are developed as signed numbers with negative
values represented in two's complement form and may, if so specified or permitted,
be modified by an index value. The effective immediate operand will be of the word

size appropraite the operation code, i.e., will be a singleword or a halfword.

6-35. Singleword Numeric Immediates

Singleword immediates are specified by the operation code and the effective

immediate is developed as follows:

1. Extend the sign of the 16-bit value in the M-N field to the left to produce
a full 32-bit signed value.

2. Examine the T field of the instruction (ignoring the indirect bit) and,
a. if it is zero, ignore the index unit, or
b. if it is greater than zero,

(1) add the 24-bit signed value in the index register addressed to the
value obtained in step 1 (the index unit is only 24 bits in length),
and

(2) extend the sign of the result to a full 32-bit singleword.

3. Use the full singleword result as the effective immediate operand.
Figure 6-7 illustrates the full process.

Limitations: The index value in the index register addressed, if any, must be with-

2 2
in the range: -2 35 X<£2 3-1.

The effective immediate operand produced will be within the range:

2
223 i< 2%,

ASSEMBLER-MACHINE INTERFACE 6-32

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

op oD¥ R FILLL VELD IMMEDIATE

7

P 11 1 111 J/

_ N T T N T T T O O
N ~ s H/—/\ 3
SINGLEWORD T
GPERATION
| T] 1' | l |
EXTEND MME
- <Ton I IMMEDIATE

L1111 | L1l Ll ittt

|

|
/// i | 'l MODTFIF_R |
7 I/J//-lllllIllLJlllLlllllllJl

\

| | | |]

+| : EXTENDED
- I SIGN EFFECTIVE IMMEDIATE
|

N I T T T A T I O |

€ 31

1
L

100961
Figure 6-7. Development of Singleword Effective Immediate Operands

Note: The load look ahead (LLA) instruction does not permit modification of its
immediate operand, and the shift instructions place closer limitations on the pos-
sible values of the effective immediate operand. These instructions are described

in Section VII.

Note: The development of an effective immediate operand takes place in the arith-

metic unit; the original instruction word is not modified.

6-36. Halfword Numeric Immediates

Halfword immediates are specified by the operation code and the effective
halfword immediate value is developed as follows:
1. Consider the data in the M-N field to be a 16-bit signed value with negative
numbers in two's complement form.
2. Examine the T field of the instruction (ignoring the indirect bit) and,
a. if itis zero, ignore the index unit, or

b. if it is greater than zero,

ASSEMBLER-MACHINE INTERFACE 6-33

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

(1) extract the 16-bit signed value from the right half of the index
register addressed, and
(2) add it to the value obtained in step 1.

3. Use the value obtained in step 2 as an effective halfword immediate operand.

Figure 6-8 illustrates the full process.

OP CODE T FIELD IMMEDIATE.
|
/ ﬂ ..*i | | |
| I)///JIILIIIIIE L1111
0 7 13 1516 31
— — / __\r_/‘L /
ALFWO
OPERAT X+
/// /il T
W Zh ¥ e
A p, I T T T O I O I I L1
/////M/ | | | |
+1
/_AI MODIFIER
}//llllllillllllll
{F 31

iz imenEem

16 ; 31

100963

Figure 6«8. Development of Halfword Effective Immediate Operands

Restrictions: Only the right half of an index register is accessed by the index

operand (T field).

Limitations: The index value in the right half of the index register addressed, if

15 15
any, will be within the range: -2~ <X <2 "-1.

The effective immediate operand produced will be within the range:

1
2P0 < i< 20,

ASSEMBLER-MACHINE INTERFACE 6-34

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-37. Logical Immediate Development

Logical immediate operands are developed as pure binary values and may, if
so specified, be modified by an index value. The effective immediate operand will
be of the word size appropriate to the instruction; i.e., will be a singleword or

halfword.

6-38. Singleword Logical Immediates

Singleword immediates are specified by the operation code and the effective
immediate is developed as follows:
1. Extend zeros into the left of the logical value in the M-N field to produce
a full 32-bit logical value.
2. Examine the T field of the instruction (ignoring the indirect bit) and,
if it is zero, ignore the index unit, or
b. if it is greater than zero,
(1) add the 24-bit logical value in the index register addressed to
the value obtained in step 1 (the index unit is only 24 bits in

length), and

(2) extend zeros to the left to produce a full 32-bit logical value.

3. Use the full singleword result as the effective immediate operand.

Figure 6-9 illustrates the process.

Restrictions: Index modification is by one's complement addition only; there is no

overflow into the eight most significant bits of the singleword and no end-around-

carry.

ASSEMBLER-MACHINE INTERFACE 6-35

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

O ZODE R Vit LD S1ELRD IMMEDIATE
! 7 N] |]
O]lLJlll A/AJLJllllllllllljll
7 i3 12 1: 31
\ / N yd
noYwonro N T
OFERA TION ’
| | | [‘ |
- TERO) IMMEDIATE
I T N T T T O T T S T T T O O O O O O Y
7 [v | T | |
% MODIFIER
| U A T T T T T I T T T O O O
e 31
N\ T /
| |] ‘ | |
o — - 'RO > EFFECTIVE IMMt DIA TF
S T T T TN TN S T N A T T A I S I O O O I O B A R e
0] 7 R 31

Figure 6-9. Development of Singleword Logical Immediate Operands

6-39. Halfword Logical Immediates

Halfword immediates are specified by the operation code and are developed
under the same restrictions as singleword logical immediates; i. e., index modi-

fication is by one's complement addition only.

Halfword logical immediates are developed under the additional restraints that
index modification is restricted to the 16 bits of the right half of the index register,
and that the result is restricted to a 16-bit logical value. No extension of zeros is

required.

6-40. BRANCH ADDRESS DEVELOPMENT

Branch addresses may be either program counter relative or base relative.
The branch addresses developed are always singleword addresses. Table 6-4

gives the specifications for direct branch addresses.

ASSEMBLER-MACHINE INTERFACE 6-36

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-41. ASSEMBLER TRANSLATION

The assembler translates all symbolic addresses into program counter relative
branches if possible. Base relative branches can be forced by coding the address

operand as an explicit base and displacement sublist.

6-42. Symbolic Branch Addresses

A symbolic address, which in other types of instructions would be translated
into base and displacement fields, is translated into program counter relative
branches if the displacement from the current location counter is within the interval:

location -2048, location +2047.

For those branches which fall outside the program counter relative interval,
the assembler produces the typical base and displacement values on the basis of the

information supplied by the USING directive (see Topic 4-9).

Restrictions: Branch addresses will be program counter relative whenever possible.

Branch addresses never refer to the register bank.

Limitations: For branch addresses to be program counter relative, their displace-
ment from the current location must be within the range: -2048 < d < 2047 (i.e.,

-212 <dc< 212-1).

Example: Given that base register Bl is in use with contents of: 0000 0000, and

the following assembler statements translated as illustrated.

LI | | T T T | | I I |
LABEL B CMMND| b |OPERANDS |[COUNT |OPI BIRIBIT b M| B! N
- L 1 1 1 M — 1 bﬂ
SUM AF Al, (A5) F 42 1 0 0 015
BCLE X1,A6,SUM 10 86 1 6 0 FFF
CF Al, (A2) 11 CA 1 0 0 012
BG TOTAL 12 91 2 0 1 8A0
TOTAL ST Al,0UT,X5| 8AO0 24 1 5 1 Al0
ouT RES 5 Al0 five words reserved

ASSEMBLER-MACHINE INTERFACE 6-37

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

the BCLE branch is program counter relative with a negative displacement because
the location to which it branches, SUM, is within -2048 words of its own location,
whereas the BG branch is base relative because the location to which it branches

is greater than 2047 words from its own location (viz., 8A0 = 2208 base 10, 12=18
base 10, and 2208 - 18 = 2190).

6-43. Explicit Base and Displacement Branch Address

Either program counter relative or base relative branches can be coded explicitl
with a base and displacement sublist as the address operand.
6-44. Program Counter Relative Branch

Since a base register specification of zero specifies a program counter relative
branch, the sublist can be used to produce an explicit branch displacement by

coding a displacement only. This requires that the precise displacement be known.

Limitations: For an explicit program counter relative branch, the expression used

as the d parameter must have a value within the range: -2048 < d < 2047. If theb

parameter is coded, the expression used must have a value of zero: b = 0.

6-45. Base Relative Branch

When a branch address is coded explicitly with a base register other than zero,
the branch will be base relative. The contents of the base register and the precise
displacement from that base location must be known. The displacement in such an

instruction is always positive.

Limitations: To produce an explicit base relative branch, the expression used as

12
the d parameter must have a value within the range: 0 < d < 4095 (i.e., 0<d<2 -1
and the expression used as the b parameter must have a value within the range:

0<b £15.

6-46, Indirect Branch Addresses

When the assembler statement specifies that the branch address is to be develop

by indirect addressing, the address of the first level indirect address cell is

ASSEMBLER-MACHINE INTERFACE 6-38

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR
obtained by the standard direct address development as described in Topics 6-16,
6-20, and 6-24.

The indirect address cell format is the same as that for non-branch instructions
i.e., the terminal branch address will always be an absolute virtual memory address

and never program counter relative. Refer to Topic 6-27.

Restrictions: The first level of indirection cannot access the register bank; branch

address development, regardless of the T and M fields, will never address a

register.
6-47. MACHINE TRANSLATION

There are three factors that determine the mode by which the Central Processor
develops the effective branch address: first, the indirect (most significant) bit.of
the T field specifies whether the branch address is to be developed directly or
indirectly; second, the M field specifies whether a direct branch address is to be
program counter or base relative; and third, the three least significant bits of the

T field specify whether the address is to be modified by an index value.

6-48. Program Counter Relative Branch AddressDevelopment

Direct program counter relative branch addresses are developed when the
indirect bit of the T field and the M field are both zero. The address is developed
by the following procedure:

1. Consider the 12-bit N field to be a signed value with negative numbers in
two's complement form.

2. Add the value from step 1 to the current value of the program counter.
3. Examine the three least significant bits of the T field and,
a. if they are zero, ignore the index unit, or

b. if they are greater than zero, add the 24-bit signed value in the index
register addressed to the value obtained in step 2.

4., If the branch condition is true or if the instruction is an unconditional
branch, enter the result into the program counter; otherwise, go to the
next instruction.

Figure 6-10 illustrates the process and Table 6-4 gives the specifications for
branch addressing.

ASSEMBLER-MACHINE INTERFACE 6-39

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

OF CODE R FIELD T FIELD M FIELD N FIELLD
T 7T I T T
- *
/l ERO - DISPLACEMENT
I N T I | L1 1 N O N N N (SN T O N OO T Y S |
o] 7 13 1516 19 20 31
\ -/ \
BRANCH PC
OPERATION RELATIVE

DI!SFLACEMENTY
I A I T T T OO O

7/ [1 ‘ | L |
7

| i] | [

-] INDE X vAL e

A L1 L L bbbl L L

L/ ., I I T |]

100967 e

Figure 6-10. Program Counter Relative Branch Address Development

6-49. Base Relative Branch Address Development

Direct base relative branch addresses are developed when the indirect bit of
the T field is zero and the M field is not zero. The effective address is developed
by the following procedure:

1. Consider the 12-bit N field to be a positive value.

2. Add the value from step 1l to the positive 24-bit value in the base register
addressed by the M field

3. Examine the three least significant bits of the T field and,
a. if they are zero, ignore the index unit, or

b. if they are not zero, add the signed 24-bit value in the index register
addressed by the T field to the value from step 2.

ASSEMBLER-MACHINE INTERFACE 6-40

-9 IDOVAYHLINI INIHODVIN-dHTAINISSY

Table 6-4. Development of Branch Addresses (Direct)

ADDRESS & INDEX OPERANDS
SYMBOLIC EXPLICIT M FIELD N FIELD T FIELD DEVELOPMENT
| 11
expr (expa, expa) M=0 -2 SNSle-l T=0 (PC)+N
. 0<M=15 0=N<212.1 T=0 N+(M)
‘.
expr, expa (expa, expa), expa M=0 2llans211 g T=0 (PC)+N
| 0<Ts<7 (PC)+N+(T)
0<Ms=15 | osN=2!2.1 T=0 N+(M)
0<T="7 N+(M)+(T)
' 11 11 _
(expa) M=0 -27"SNs2" -1 T=0 (PC)+N
, _ Ilcg<oll -
(expa), expa M=0 -217°=sN=s2+11-1 T=0 (PC)+N
0<T=7 (PC)+N+(T)
0<M<15 0<Ns212.1 T=0 N+ (M)
0<T=T7 N+ (M)+(T)
Where expr is a relocatable expression (symbol), expa is an absolute expression (symbol),
(PC) is the present value of the program counter, (M) is the content of the base register, and
(T) is the content of the index register.
*expr will not be translated with M > 0 unless the value of N would fall outside the range:
11 11
27 sN<=s2 -1.

JOSSHDO0dd "TVILNID HHI OL JdIND SIdEININVIDOUd

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

4. If the branch condition is true or if the instruction is an unconditional

branch, enter the result into the program counter; otherwise go to the
next instruction,

Figure 6-11 illustrates the process.

OP CODE R FIELD T FIELD M FIELD N FIELD

V
BRANCH
OPERATION

1 T |
|

/ I | | | |
W ' BASE VALUE

&//Illllljlllllllllllll]ll
/] T T T]]
-/%/ f' ' INDEX VALUE

| .
‘)énlnnlnllullllnlLLlnlul
[

% |] * J T

| I I I I T T A I O O O O T R

R 31

31

100966

Figure 6-11, Development of Base Relative Branch Addresses

6-50. Indirect Branch Address Development

If the most significant bit of the T field is set to a one, the effective branch

address will be developed indirectly.

Indirect branch address development proceeds the same as that for other

instructions with the exception that an M field of zero at the first level will not

ASSEMB LER-MACHINE INTERFACE 6-42

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

produce a reference to a register when 0 < N< 47. Branch address development

never accesses the register bank. See Topic 6-27 for a description of the develop-

ment process.

6-51. DATA FORMATS

The ASC uses two algebraic data formats: fixed point with two's complement
representation for negative numbers, and floating point with excess 64 (biased)
exponent representation. Fixed point values may occur in either singleword or
halfword lengths. Floating point values may occur in either singleword or double-

word lengths. Figure 6-12 illustrates the machine formats of these data forms.

| | | | | I 1
f: INTEGER
) I 1 1 T 1 I T N T T T T T T T I O O |
0 1 FIXED POINT SINGLEWORD 31
LEFT HALFWORD RIGHT HALFWORD
| | | l | | | |
+| +1
| INTEGER | INTEGER
I 1 1 I T (T I T A | I [N O T T O O A O O |
FI XED POINT HALFWORDS
: | | | | I |
+ BIASED
| ExPONENT FRACTION
|
| I I I I A T T T T T e T T T I O N |
) 7 8 31
FLOATING POINT SINGLEWORD
(O 7 8 31
] | I | 1 | |
Even {+1 BIASED .
LOCATION |- | EXPONENT FRACTION
L1 11 111 | [T T I T T T T T (O T O O N |
| [[I [|
oDD
LOCATION FRAGTION
I S N (N T O N N T O N I I T T A O O O |
32 63
FLOATING POINT DOUBLEWORD
100967

Figure 6-12. Algebraic Data Formats

ASSEMBLER-MACHINE INTERFACE 6-43

PROGRAMMER S GUIDE TO THE CENTRAL PROCESSOR

6-52. FIXED POINT DATA
The assembler format for fixed point data is described in Topic 2-10.

The range of values that any given fixed point data constant may have depends

upon its proposed usage. Table 6-5 lists the ranges for some typical uses:

Table 6-5. Value Ranges of Fixed Point Data

PURPOSE VALUE RANGE
GENERAL ALGEBRAIC:
1
Singleword -23l < fx < 23 -1
15 15
Halfword -2 <sfx<2 -1
INDEXES:
23 23
Singleword -2 < fx<2 -1
24 24
Halfword -2 <L fx<£2 -1
22 22
Doubleword -2 <fx<2 -1
BASES:
24
Singleword 0<fx<2 -1

6-53. FLOATING POINT DATA

The assembler format for floating point data is described in Topic 2-9.

6-54. Normalized Floating Point Values

A normalized floating point value is one in which at least one of the four most
significant bits of the fraction is set to one. All floating point data created by the

assembler is normalized as is required by many floating point instructions.

WARNING: Although all floating point data constants created by the assembler will

be normalized, there is no guarantee that all input data will be normalized.

ASSEMBLER-MACHINE INTERFACE 6-44

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-55. Infinite and Indefinite Floating Point Values

Infinite (+wor -o) floating point values are output from the arithmetic unit
when a floating point operation would have a resultant value that, if normalized,
would require a biased exponent greater than 127. Such operations produce a
floating point overflow condition (see Topic 6-60), and attempts to use these values

in subsequent operations other than division will also cause the overflow condition.

Indefinite floating point values are output from the arithmetic unit when input
to the unit is either an indefinite form or a 'dirty zero'. A 'dirty zero' is a
floating point value with a zero fraction, but a non-zero exponent. Overflow also

occurs whenever an indefinite value is input to the arithmetic unit for any operation.

The hexadecimal representations of the infinite and indefinite forms are as

follows:
HEXADECIMAL FORM
VALUE
SINGLEWORD DOUBLEWORD
-
+ 7FFF FFFF 7FFF FFFF FFFF FFFF
- FFFF FFFF FFFF FFFF FFFF FFFF
IND 7TF00 0000 7F00 0000 0000 0000
DATA FORMS
INFINITE FORMS AND INDEFINITE FORMS: FLOATING
POINT
FLOATING ADD OUTPUT OVERFLOW
(+ @)+ (+ o) + @ Yes
(+ @)+ (- o) IND Yes
(- ©) + (+ 2) IND Yes
(- @)+ (- @) - ® Yes
(+ @)+ (£ N) + Yes
(-)+ (£ N) - ® Yes
(DZ)+ (£ N) IND Yes
(DZ) + (=) IND Yes

ASSEMBLER-MACHINE INTERFACE 6-45

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

FLOATING POINT SINGLE LENGTH FORMS ARE:

+ TFFF FFFF Positive infinite form.
-® FFFF FFFF Negative infinite form.
IND 7F00 0000 Indefinite form.

FLOATING POINT DOUBLE LENGTH FORMS ARE:

+ @ TFFF FFFF FFFFEF FFEFF

- @ FFFF FFEF FFFF FFFF

IND 7F00 0000 0000 0000

The indefinite form, 7F00 ~ °~ ° 00, is generated by the Arithmetic Unit when

an indefinite form or a ''dirty zero' appears as input to the Arithmetic Unit during

a floating point arithmetic operation.

A ''dirty zero' is a floating point form consisting of a zero mantissa and a
non-zero exponent. It has the form XXO00 "7 7 00, where at least one X is not

equal to zero.

FLOATING
POINT

FLOATING ADD MAGNITUDE OUTPUT OVERFLOW
(o) + |(x=)) + © Yes
(-o0)+ [z)| IND Yes
(+o)+ [(£N) + © Yes
(-)+ (£ N)] - @ Yes
(EN)+ [(£=) + o Yes
(DZ) + (£ N)| IND Yes
(DZ)+ l(x=)] IND Yes
(£ N) + |(DZ)] IND Yes
(o)+ |(DZ))] IND Yes

ASSEMBLER-MACHINE INTERFACE 6-46

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

FLOATING SUBTRACT

(to@)-(+ =)
(to)-(-=)
(o) - (+ =)
(-2) - (- =2)
(+o)- (£ N)
(-0) - (£ N)
(EN)-(+ =)
EN)- (- =)
(DZ) - (+ N)
(DZ) - (L =)
& N)-(DZ)
(=) - (DZ)
FLOATING

SUBTRACT MAGNITUDE

(+o) - J(£=)]
(-0) - Ht=)]
(+o) - HEN)j

(-o) - HxN))
(LN) - j(£=)]
(DZ) - [+ N)|
(DZ) - |(£=)]
(£N) - |(DZ)]
(t=)- |(DZ))

OUTPUT

IND
+ o
-
IND

+ o

+
IND
IND
IND
IND

OUTPUT

IND
-
+ o
- ®
-®
IND
IND
IND
IND

ASSEMBLER-MACHINE INTERFACE 6-47

FLOATING
POINT
OVERFLOW

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

FLOATING
POINT
OVERFLOW

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

FLOATING MULTIPLY FLOATING
OR FLOATING VECTOR POINT
DOT PRODUCT OUTPUT OVER FLOW
(+ ©) - (+) + © Yes
(+ @) (- =) - Yes
(- @) (+=) - ® Yes
(@) (-) +t © Yes
(+) (£N) te Yes
(-o) - (£N) t Yes
(o) (0) IND Yes
(xN)* (0) 0 No
(0) -(0) 0 No
(DZ) * (£ =) IND Yes
(DZ) - (£ N) IND Yes
(DZ) - (0) IND Yes
FLOATING
POINT DIVIDE
FLOATING DIVIDE OUTPUT OVERFLOW CHECK
(to) + (£=) IND Yes No
(+o)+(N) +© Yes No
(+o)+(-N) -® Yes No
(-o)+(N) -® Yes No
(-o0)+(-N) +® Yes No
(o)=(0) to Yes Yes
(LN)+ (L) 0 No No
(0)+(t=) 0 No No
(0)+(&N) 0 No No
(0)=(0) IND Yes Yes
(N)+(0) + @ Yes Yes
(-N)=+(0) - Yes Yes

ASSEMBLER-MACHINE INTERFACE 6-48

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR
(

FLOATING
POINT DIVIDE
FLOATING DIVIDE OUTPUT OVERFLOW CHECK
(DZ)+ (+=) IND Yes No
(DZ) + (£ N) IND Yes No
(DZ)+(0) IND Yes Yes
(o) +=(DZ) IND Yes No
(+N)+(DZz2) IND Yes No
(0)=(DZ) IND Yes No
6-56. PROGRAM STATUS DOUBLEWORD

The program status doubleword is a set of controls and registers internal to
the Central Processor. They are accessible only in part to the programmer
through the branch and load instructions, BLB and BLX, and the program status

instructions, LAM, LAC, and SPS.

For access purposes, the program status doubleword may be said to have the

following format:

0 15 16 19 20 23 24 27 28 31
I 1
NOT USED MEM ORY 3R COMPARE | RESULT
USAGE - CODE CODE
Ll 41 1 1 1 1 1 1 1 1 1 1 [1 1 L1 N 1 i 1 1 1
T |] | 1
AE AE
coND MASK PROGRAM COUNTER
L1 1 L1 1 | N N N A NN R (N N NN NN N N A O (O T W N A N N A |
32 35 36 39 40 63

The control state and Central Processor memory usage fields are of no inter-
est to the Central Processor programmier, but rather to the system programmer.
All the other fields are affected by and/or affect the result of one or more Central

Processor instructions.

ASSEMBLER-MACHINE INTERFACE 6-49

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-57. BRANCH OR SKIP REGISTER

The branch or skip register is a four-bit field in which only the two least

significant bits are used.

The least significant bit is set (to one) or reset (to zero) depending upon wheth-
er, when an execute instruction, XEC, executes a branch or skip instruction. the

condition for branching or skipping is true or false, respectively. See Topic 7-161.

The setting of this bit is used by the branch on execute condition instruction,
BXEC. The BXEC can be coded to branch on either condition true or condition
false. See Topics 7-135 and 7-131.

6-58. COMPARE CODE

The compare code is a four-bit field that is set upon execution of an arithmetic
or a logical compare instruction to indicate the nature of the comparison result.

Only the three least significant bits of the field are used.

The compare code is used by the branch on compare code true instructions to
determine whether a previously executed comparison meets the condition for

branching.

The specifications of the lists are as follows:

' OMPA
ARITHMETIC LOGICAL c CQDERE
COMPARISO COMPARISON
RESULT RESULT 0 ,cl,cg,ce
x<y mixsst ones and 0,1,0,0
all bits ones
x>y 0,0,1,0
x=y all bits zeros 0,0,0,1

ASSEMBLER-MACHINE INTERFACE 6-50

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-59. RESULT CODE

The result code is a four-bit field that is set according to the arithmetic or
logical properties of a result emerging from the arithmetic unit to be entered into
a register. The setting is changed only when a new result emerges from the
arithmetic unit; thus, the result code reflects the properties of the data in the
most recently modified register. Only the three least significant bits of the field

are used.

The result code is used by the branch on result code true instructions to deter-
mine whether the properties of the most recently acquired datum meets the conditio:

for branching.

The specifications of the bits are as follows:

RESULT
ARITHMETIC LOGICAL ‘ CODE
RESULT RESULT
0 rl rg,re
_ ——— ﬁ

x<0 ;r&goesd ones and 0,1,0,0

x>0 all bits are ones 0,0,!,0

x=0 all bits are zero 0,0 0,1

6-60. ARITHMETIC EXCEPTION CONDITION CODE

The arithmetic exception condition code is a four-bit field whose bits are set
whenever the arithmetic unit detects one of the arithmetic exceptions: divide check,
fixed point overflow, floating point exponent underflow, or floating point exponent

overflow. See Topic 6-62. Illustratively:
ARITHMETIC EXCEPTION CONDITION CODE| D, X ,0 , U}J.

Divide Check, D: The divide check bit, D, is set to one when the arithmetic unit

encounters an attempt to divide by zero in either fixed or floating point operations.

ASSEMBLER-MACHINE INTERFACE 6-51

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

Fixed Point Overflow, X: The fixed point overflow bit, X, is set to one when a

fixed point arithmetic or arithmetic shift operation produces a result in which a
high order bit or bits would be lost (i.e., move out the left end of the data word).

The operation will be completed by ignoring the lost bits.

Floating Point Exponent Overflow, O: The floating point exponent overflow bit,

O, will be set to one when a floating point operation produces a result in which the
biased exponent would exceed 127. The operation is completed by entering a result

of +wo for positive values and -« for negative values.

Floating Point Exponent Underflow, U: The floating point exponent underflow bit,

U, is set to one when a floating point operation produces a result in which the biased
exponent would be less than zero. The operation is completed by entering a result

of true zero.

6-61. Resetting the Arithmetic Exception Code

All bits set by detection of an arithmetic exception condition remain set until
reset by the execution of a branch on arithmetic exception condition (BAE) instruction
in which the corresponding bit of the R field (mask operand) of the instruction con-
tains a one. Thus, a branch on arithmetic exception of divide check will not remove

the record of a previous fixed point overflow, and so on.

Illustratively:
AE
COND [N J
I'l"L‘lI' ’I.Ij‘l:l’l "['Illlnlr :l’lllljll
I I " I I I T
[N | I N | | |11
R MASR. ece
* Liiojo0,0 0]1)0]0 o 11 41 g1 ARNENE
on ecoe
COND Lo 1 41 41 170 11 110 1010 010100

Refer to Topics 7-131 and 7-134.

The arithmetic exception condition code can be reset in its entirety by the

LAC instruction, Topic 7-167.

ASSEMBLER-MACHINE INTERFACE 6-52

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

6-62. ARITHMETIC EXCEPTION MASK

The arithmetic exception mask is a four-bit field that is used to specify whether
detection of any given arithmetic exception (or combination of exceptions) is to
cause a program interruption. When a given bit is set to a zero, detection of an
arithmetic exception condition corresponding to that bit will not cause program
interruption; when the bit is set to one, detection of the corresponding arithmetic

exception will cause program interruption.

The bits of the arithmetic exception mask correspond on a one-to-one basis

with those of the arithmetic exception condition code; illustratively:

AE
COND D X O U
1T 1T 1

|

L |
S
L1 1 1

AE
MASK D | X |0 | u

The arithmetic exception condition code and the arithmetic exception mask
are continuously compared (within the arithmetic unit), and, at any time a bit setting
of one occurs in both corresponding bits, a program interrupt signal is issued to the

peripheral processor for system action.

6-63. Setting the Arithmetic Exception Mask

The arithmetic exception mask is set by the load arithmetic exception mask

(LAM) instruction. Refer to Topic 7-166.

Since only bits four through seven of the word accessed by the LAM instruction
are loaded and all other bits of the word are ignored, the data constant which
specifies the desired interrupt conditions can be built as either a fullword or a
left halfword. Illustratively, the singleword accessed by LAM appears as if it

were:

ASSEMBLER-MACHINE INTERFACE 6-53

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7

15

31

Table 6-6. Specifications for Arithmetic Exception Mask Data Constants
INTERRUPTS HEXADECIMAL INTERRUPTS HEXADECIMAL
none #0000 0000

U #0100 0000

O #0200 0000

Oor U #0300 0000 D, O, or U #0B00 0000

X #0400 0000 D or X #0C00 0000
Xor U #0500 0000 D, X, or U #0DO00 0000

X or O #0600 0000 D, X, or O #0E00 0000

X, O, or U #0700 0000 D, X, O, or U #0F00 0000

6-64. PROGRAM COUNTER

The program counter is a 24-bit field which contains the current instruction

address.

The value in this field informs the Central Processor which instruction in the

program to begin processing when the signal from the Peripheral Processor

(system) starts processing.

The capability of the Central Processor to store the

program status doubleword and then reinstate it (both on signal from the Periph-

eral Processor) enables program interruptions by the system without destruction

of the currently executing program.

ASSEMBLER-MACHINE INTERFACE 6-54

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

SECTION VII
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

7-1. INTRODUCTION

This section describes the scalar instructions implemented in the Central Pro-
cessor. The assembler mnemonic for each instruction is given with the instruction
name, and then a description of the instruction with its operands, restrictions,

limitations, and other programming information follows.

7-1
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-2. LOAD REGISTER INSTRUCTIONS

Table 7-1 lists the load register instructions discussed on the following pages.

Table 7-1. Load Register Instructions

MNEMONIC INSTRUCTION NAME TOPIC
L Load, Word 7-3
LLL Load, Left Halfword from Left 7-4
LRR Load, Right Halfword from Right 7-5
LRL Load, Right Halfword from Left 7-5.1
LLR Load, Left Halfword from Right 7-6
LD Load, Doubleword T-7
LI Load Immediate, Word 7-8
LIH Load Immediate, Halfword 7-9
LN L.oad Negative, Fixed Point Word 7-10
LNH Load Negative, Fixed Point Halfword 7-11
LNF Load Negative, Floating Point Word ' 7-12
LND Load Negative, Floating Point Doubleword 7-13
LM - Load Magnitude, Fixed Point Word 7-14
LMH Load Magnitude. Fixed Point Halfword 7-15
LMF Load Magnitude, Floating Point Word 7-16
LMD Load Magnitude, Floating Point Doubleword 7-17
LNM Load Negative Magnitude, Fixed Point Word 7-18
LNMH Load Negative Magnitude, Fixed Point Halfword 7-19
LNMF Load Negative Magnitude, Floating Point Word 7-20
LNMD Load Negative Magnitude, Floating Point Doubleword 7-21
LO Load Ones Complement, Word 7-22
LF Load Register File 7-23
LFM Load Register Files, Multiple 7-24

7-2

THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-3. LOAD, WORD (L)

The instruction L causes the data in the effective address to replace the contents

of the register addressed by the register operand.

GENERAL FORM:

T 1 T
LABEL : : COMMAND Lo OPERANDS
7
[symbol] ;BL L zlﬁi r, [@][=]n[, x]
les:
Examples L B2, (A3) T)
L X1,@NUM, X3 'Qiv -
Addressing:
REGISTER ADDRESS INDEX EFFECTIVE
OPERAND OPERAND OPERAND ADDRESS
Zero or BR, AR, XR, VR,
XR or CM
Program Status’:
RESULT CODE REFLECTS PROGRAM INTERRUPTIONS

none

Note: If base register zero (B0) is addressed by the register operand, the result
code is set according to the algebraic value in the effective address although base

register zero remains set to zero.

7-3
THE SCALAR INSTRUCTIONS FOR THE CENTRAL PROCESSOR

PROGRAMMER'S GUIDE TO THE CENTRAL PROCESSOR

7-4, LOAD, LEFT HALFWORD FROM LEFT (LLL)

The instruction LH causes the data in the effective halfword address to replace
the contents of the left half of the arithmetic register addressed by the register

operand.

Terminal index displacement is by halfword increments beginning from the

initial left halfword of the index word set.

GENERAL FORM:

1 |
LABEL : : COMMAND P! OPERANDS
[symbol] \§1 LLL i r, [@][=]n[, x]
= 1 1 i1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>