
The
Connection Machine
System

Paris Reference Manual

Version 5.0
February 1989

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, February, 1989

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines
Corporation reserves the right to make changes to any products described herein to
improve functioning or design. Although the information in this document has been
reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking
Machines Corporation does not assume any liability arising from the application or use of
any information or product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.
CM-I, CM-2. CM, and DataVault are trademarks of Thinking Machines Corporation.
Paris. "'Lisp. C*, and CM Fortran are trademarks of Thinking Machines Corporation.
VAX and ULTRIX are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.
Sun and Sun-4 are trademarks of Sun Microsystems, Inc.
UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1989 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge. Massachusetts 02142-1214
(617) 876-1111

Contents

1 Introduction

2 Virtual Machine Architecture
2.1 Virtual Processors and Virtual Processor Sets
2.2 Mapping VP Sets to the Physical Machine.
2.3 VP Ratios
2.4 Fields
2.5 Processor Addresses
2.6 Send Addresses . . .
2.7 NEWS Addresses . .
2.8 Communication across VP Sets
2.9 Geometries
2.10 Flags

3 Data Formats
3.1 Bit Fields .
3.2 Signed Integers . .
3.3 Unsigned Integers.
3.4 Floating-Point Numbers
3.5 Send Addresses
3.6 Configuration Variables

4 Operation Formats
4.1 Field Id's
4.2 Constant Operands
4.3 Unconditional Operations
4.4 Naming Conventions
4.5 Argument Order

5 Instruction Set Overview
5.1 VP Sets ..
5.2 Geometries ..
5.3 Fields
5.4 Copying Fields
5.5 Bitwise Boolean Operations

i

. ' .

1

3
5
5
5
6
7
7
8
8
8

10

13
14
14
14
15
16
16

19
19
20
20
21
22

23
23
23
24
24
25

Contents

5.6 Operations on Flags .•...
5.7 Operations on Single Bits . .
5.8 Unary Arithmetic Operations
5.9 Binary Arithmetic Operations
5.10 Optimized Floating-Point Computations .
5.11 Arithmetic Comparisons
5.12 Pseudo-Random Number Generation ..
5.13 Arrays
5.14 General Communication .•......•
5.15 NEWS Communication
5.16 Scan, Reduce, Spread, and Multispread
5.17 Global Reduction Operations
5.18 Memory Data Transfers . . .
5.19 The LEDS
5.20 Front End Operations .
5.21 Environmental Interface

6 The C/Paris Interface
6.1 C /Paris Header Files .
6.2 C /Paris Instruction Names and Argument Types

6.2.1 Id Types
6.2.2 Operand Field Addresses
6.2.3 Immediate Operands ...
6.2.4 Operand Field Lengths .
6.2.5 Miscellaneous Signed and Unsigned Values
6.2.6 Bit Sets and Masks. • . .
6.2.7 Vectors of Integers
6.2.8 Multi-dimensional Front-end Arrays
6.2.9 Symbolic Values

6.3 C/Paris Configuration Variables
6.4 Calling Paris from C

7 The Fortran/Paris Interface
7.1 Fortran/Paris Header Files••..
7.2 Fortran/Paris Instruction Names and Argument Types ..

7.2.1 Id Types
7.2.2 Operand Field Addresses ..•.......
7.2.3 Immediate Operands. •.••...
7.2.4 Operand Field Lengths
7.2.5 Miscellaneous Signed and Unsigned Values
7.2.6 Bit Sets and Masks.
7.2.7 Vectors of Integers •
7.2.8 Multi-dimensional Front-end Arrays
7.2.9 Symbolic Values•.

7.3 Fortran/Paris Configuration Variables••..

ii

.

25
26
27
28
30
30
31
31
32
33
34

38
39
39
39
40

41
41
41
42
42
43

43

44
44
44
44
44

45
45

47
47
47
48
48
49
49
50
50
50
50
50
51

Contents

7.4 Calling Paris from Fortran .

8 The Lisp/Paris Interface
8.1 Lisp/Paris Instruction Names and Argument Types

8.1.1 Id Types
8.1.2 Operand Field Addresses
8.1.3 Immediate Operands
8.1.4 Operand Field Lengths
8.1.5 Miscellaneous Signed and Unsigned Values
8.1.6 Bit Sets and Masks.
8.1.7 Vectors of Integers
8.1.8 Multi-dimensional Front-end Arrays
8.1.9 Symbolic Values

8.2 Lisp/Paris Configuration Variables
8.3 Calling Paris from Lisp

9 Dictionary of Paris Instructions
9.1 Conventions for Alphabetizing
9.2 Programming LangUage Syntax

9.2.1 Syntax of Names
9.2.2 Pseudocode Instruction Descriptions
F-ABS
S-ABS•......................
F-ACOS•...............
F-ACOSH•...........
F-ADD•.....•..
S-ADD •
U-ADD ...•.. ••.•..
S-ADD-CARRY•..
U-ADD-CARRY
S-ADD-FLAGS . • •
U-ADD-FLAGS • .•.•..
F-ADD-MULT•....

ADD-OFFSET-TO-FIELD-ID•...••••.......
ALLOCATE-HEAP-FIELD•..•.•...•..•
ALLOCATE-HEAP-FIELD-VP-SET•...••...........
ALLOCATE-STACK-FIELD •.....•....•..•.•......•..
ALLOCATE-STACK-FIELD-VP-SET ..•..................
ALLOCATE-VP-SET ..••...••••.......•.•.••.•..•.
AREF
AREF32•..............
AREF32-SHARED•...•..........
ASET•..................••..•••••....•.
ASET32•.......••..••••.
ASET32-SHARED•.•..••.•.••..•..•...••.

iii

51

53
53
53
54
54
55
55
55
56
56
56
56
57

59
59
60
60
60
63
64
65
66
67
69
71
73
75
77
78
79
81
82
83
84
85
86
87
89
91
93
95
97

Contents

F-ASIN ••.•...........•..••.•••••.•••...•.... 99
F-ASINH•.•.••.••.•....•••...•.•....•. 100
F-ATAN • 101
F-ATAN2 .•...........................•....... 102
F-ATANH . • . . .• 103

ATTACH•.. 104
ATTACHED•...•..•••........ 106

F-F-CEILING•......•..•••.•..••......•.•• 107
CLEAR-ALL-FLAGS•...•.••••. 108
CLEAR-BIT•.....•...•...••............•• 109
CLEAR-CONTEXT•...•....•.•.•.......... 110
CLEAR-flag . . • • . . • • . • . . • • • . .. 111
COLD-BOOT••.........•....•............ 112

F-COS 114
F-COSH .. 115

CREATE-DETAILED-GEOMETRY 116
CREATE-GEOMETRY . . • • . . • 118
DEALLOCATE-GEOMETRY•••.••...•.••••.. 119
DEALLOCATE-HEAP-FIELD .•.•..•.•.........•.•.... 120
DEALLOCATE-STACK-THROUGH • • 121
DEALLOCATE-VP-SET•...•.••...•. 122
DEPOSIT-NEWS-COORDINATE .•.....•............... 123

FE-DEPOSIT-NEWS-COORDINATE•......•• 124
DETACH•................•.......• 125

F-DIVIDE . • • • • . . . • • • . . • • • . • . .. 127
ENUMERATE••.•• 0 0 ••• 0 0 0 0 • 0 0 0 0 0 0 0 129

F-EQ . 0 0 0 0 •••••• 0 0 ••• 0 0 .- •• ' 0 •• 0 •• 0 0 0 0 0 • 0 0 0 0 0 0 0 130
S-EQ 0 0 0 0 0 0 0 •• 0 • 0 • 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •••• 0 0 • 0 0 131
U-EQ 0 ••• 0 0 0 0 0 0 0 0 • 0 •••• 0 • 0 0 0 0 0 0 0 •• 0 •• 0 •• 0 0 0 0 0 132
F-EXP 0 0 0 • 0 •• 0 •• 0 0 •••••••• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 133

EXTRACT-MULTI-COORDINATE ... 0 0 0 0 • 0 • 0 0 0 •• 0 0 • 0 • 0 0 134
FE-EXTRACT-MULTI-COORDINATE . 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 135

EXTRACT-NEWS-COORDINATE 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 136
FE-EXTRACT-NEWS-COORDINATE 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 • 0 0 0 0 0 137

FIELD-VP-SET ... 0 0 0 0 • 0 0 •••• 0 • 0 ••• 0 0 • 0 0 • 0 • • • • •• 139
F-S-FLOAT o. 0 0 0 0 0 0 ••••••••••• 0 0 0 0 0 0 0 0 •• 0 0 0 • 0 • 0 0 140
F-U-FLOAT 0 0 0 0 0 0 • 0 •• 0 0 0 • 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 141
F-F-FLOOR 0 • 0 • 0 0 0 0 • • 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 142
S-F-FLOOR 0 0 • 0 • 0 • 0 0 0 0 0 0 0 0 143
FE-FROM-GRAY-CODE ... 0 0 0 • 0 0 0 •• 0 0 • 0 0 • 0 0 0 0 ••• 0 0 0 0 0 144
U-FROM-GRAY-CODE . 0 0 ••• 0 • 0 0 • 0 •• 0 • 0 0 0 0 0 0 • 0 0 • 0 0 0 0 145
F-GE ... 0 0 •• 0 0 •• 0 0 0 ••• 0 •• 0 0 0 • 0 • 0 • 0 0 •• 0 0 •• 0 • 0 0 147
S-GE .. 148
U-GE .. 150

GEOMETRY-AXIS-LENGTH 0 0 0 0 00 152

iv

Contents

GEOMETRY-AXIS-ORDERING • • • • • • • • • . • • • • • • • .• 153
GEOMETRY-AXIS-VP-RATIO ...•.•.•.••••..••.••••.• 154
GEOMETRY-COORDINATE-LENGTH•. 155
GEOMETRY-RANK•.•.......•.. 156
GEOMETRY-SEND-ADDRESS-LENGTH . . • . • • • • . . • • •. 157
GEOMETRY-TOTAL-PROCESSORS • • • . • . • • . • . • . . • .• 158
GEOMETRY-TOTAL-VP-RATIO •••...••.••••..•.•....• 159
GET ..•.••••.•...•••••....••.••.....•..... 160
GET -AREF32 •.•.•...•.....•....•••.•.•••..•.• 161
GET-FROM-NEWS 163
GLOBAL-F-ADD • • • • . • • • • • • . • • • • . . • •• 164
GLOBAL-S-ADD • • . • . • . • . • . • • . • . . • • . •• 165
GLOBAL-U-ADD • . • • . • . • . . • • . . • • .• 166
GLOBAL-COUNT-BIT • • • • . . • • . . . • 167
GLOBAL-COUNT-CONTEXT . . • • • • • • . . • • . . . • .. 168
GLOBAL-COUNT-flag • • • . • . • • • • • • • . • • • • • •• 169
GLOBAL-LOGAND •.•................•.•.••••.•. 170
GLOBAL-LOGAND-BIT • • • • • • • • • • • • • • • • • • •• 171
GLOBAL-LOGAND-CONTEXT ••.•••••••••••.••••••••• 172
GLOBAL-LOGAND-flag ..•...•.••••••••••.••.•..•.. 173
GLOBAL-LOGIOR •.••....••...••.•.•.•..•....•.. 174
GLOBAL-LOGIOR-BIT••.•.....•.••.•.•..•.•.. 175
GLOBAL-LOGIOR-CONTEXT .••••..••••••••••••••••• 176
GLOBAL-LOGIOR-flag • • • . • . • • • . • • • • • • • • • • • • •• 177
GLOBAL-LOGXOR •••...•.••.•••••.••••••••••••. 178
GLOBAL-F-MAX • • . • • • • . • • • . . • . . . • . • • • . . • • • • • • •• 179
GLOBAL-S-MAX . • . . • • . • . • • • . . . • • • . • • • • • . • . . . • •• 180
GLOBAL-U-MAX •.....•.•.••...•.•.••.••..•...• 181
GLOBAL-U-MAX-S-INTLEN ••..••...........•..•••.• 182
GLOBAL-U-MAX-U-INTLEN••••.•••••..•••.••.. 184
GLOBAL-F-MIN .•..•••..••....•..••.••.•.•••••• 186
GLOBAL-S-MIN ••••••.••..•..••••••.•••••••.•.• 187
GLOBAL-U-MIN .•.•....•••••..•••....•.••.••••• 188

F-GT • • • • • . • . . • . . . • . • • • • • • . • • • • . • . • • • • • . • • • •• 189
S-GT • • . . . • . • • • . • • • . • • . • . • • . • • . • • • .• 190
U-GT. • . . . • • • . . . • • • . • • . • . . • . . . • • • • • • . • • .• 191

INIT ..••••.•.•••..•••••.••••••.••••.•••.•• 193
S-INTEGER-LENGTH ...•.•.•.••••••••••••••••.•••• 194
U-INTEGER-LENGTH ••.•••.•.•••••••.••.••.•.••••. 195

INITIALIZE-RANDOM-GENERATOR • • • • . • • . • . • • • • • • • • • .• 196
INVERT-CONTEXT ••. . • . • . • . . • . . . • • • • • • . • . • • • • •• 197
INVERT-flag .••••••..•..•.•...••••••••••..••.. 198
IS-FIELD-IN-HEAP ...•.••••••..•••••.••••••••••• 199
IS-FIELD-IN-STACK • • • . . • • • • • . • • • . • • • • • • . • • • • • • •• 200
IS-STACK-FIELD-NEWER • . • • . • . • • • • • • . • • • • • • • • • • • .• 201

v

Contents

S-ISQ RT 202
U-ISQRT •.•..•••...•....•..••.•...•.•...•..•• 204

LATCH-LEDS •...•............••.•..•.••.••.•. 205
F-LE . . • • • • • . . . • . • 206
S-LE . • • . . . • • . . . • • . . • • • .. 207
U-LE . . • • • • • . . • . . • • . . . • .• 208
F-LN .. 210

LOAD-CONTEXT .•..•.....•..•....•.••..•••••.• 211
LOAD-flag •..•.••••....••••..•.•..••.•.•.•... 212
LOGAND • • . • • . • . . • . . . • • . • . • . • . • • . •. 213
LOGAND-CONTEXT•.•..•.......•••.•••... 214
LOGAND-CONTEXT-WITH-TEST • . . • • • • • • • . • . . • .. 215
LOGAND-flag •.........•.....••..•.•••.•...... 216
LOGANDC1 ..•...•...•........•........••••.• 217
LOGANDC2•...•...•.. 218

S-LOGCOUNT•..........•.••.•••..•.•.... 219
U-LOGCOUNT .•.....•..•..•...............••..• 220

LOGEQV . • . . . • • • . • . • • • . . • . . • . . • • .. 221
LOGIOR •••..•.•..•..........•.•.....•.•..•• 222
LOG lOR-CONTEXT • . . . • . • • • 223
LOGIOR-flag••.......•.....••.....•.... 224
LOGNAND •.............••... . . • . • • •. 225
LOGNOR • • • . . • • • • . . • • . . • • . • • .. 226
LOGNOT . . • • • . • . . • • . • . • . . • • • . • • .. 227
LOGORC1•........••..••.•.•••.••.•.. 228
LOGORC2 •.••.••.••..........•.•••••.•...•.. 229
LOGXOR •• • . • • • • . • • • • . • • • • • . . • . . • .. 230

F-L T . • . . . • • • • . • • • . • .. 231
S-LT • • . • • • • • 232
U-LT . • . . . • • • . • • • • • . . • • 233

MAKE-NEWS-COORDINATE • • . • . • . • .. 235
FE-MAKE-NEWS-COORDINATE . . . • . . • • . • • • . . . • • • . .• 236

F-MAX ...•......•...•.•••...•.•••.•.•..••••• 237
S-MAX 239
U-MAX ...••..........•.............•.•..•••. 241
F-MIN • • . . • . . • • . • • . . • . • • . . • • • • • .. 243
S-MIN • • • . • • • • • • . • • . • • . . . • • . . • . . . • •. 245
U-MIN .. 247
S-MOD .•........•.•.•..••.......••..••••...• 249
U-MOD ••....•..•.....•.•.•.••..•.....•..•.•• 251
F-MOVE•....•...•..............•..... 253
S-MOVE •.....••.•......•.•.••.••...•..•.••.• 255
U-MOVE .•••••...•..•......•..•.•••...•..•.•. 257
F-MOVE-DECODED-CONSTANT •••..•..•••.••••••.•••• 259

MOVE-REVERSED •...••.•••.•...•••.••.•••.•.•. 260

vi

Contents

F-MULT-ADD ...•.......••........•••••••...••. 261
F-MULT-SUB•..•.................. 263
F-MULTIPLY . . . • • • • • • . • 265
S-MULTIPLY . • 267
U-MULTIPLY•...•......•...•.. 269

MULTISPREAD-F-ADD•..•••.•.......• 271
MULTISPREAD-S-ADD•....••••.••..•••. 273
MULTISPREAD-U-ADD • . . • • • . • . • • • • . . . • • • •. 274
MULTISPREAD-COPY•.•.•..............••.• 275
MULTISPREAD-LOGAND • • • 276
MULTISPREAD-LOGIOR••.•...•....•.......••• 277
MULTISPREAD-LOGXOR • 278
MULTISPREAD-F-MAX • . . • • • .. 279
MULTISPREAD-S-MAX . . . • • • . • . . . • • • .. 280
MULTISPREAD-U-MAX . . . • . • . • . . . • • . • • . • . . . •• 281
MULTISPREAD-F-MIN•...........•.••....•.. 282
MULTISPREAD-S-MIN•.•.••....••.•....•.••• 283
MULTISPREAD-U-MIN••.......••.•.•••••.•••• 284
MY-NEWS-COORDINATE ..•••.•.••••.••...•......• 285
MY-SEND-ADDRESS •..........•..••••••••••••••. 286

F-NE • . • • • • . . . • • . • • • •. 287
S-NE • . . • . • • • . • . • • . • •• 288
U-NE • . • • • . . • • . . . • . . • • . •• 289
F-NEGATE ••.•••.....•.••••..••••...•.•....... 290
S-NEGATE •.•••.•......••••...•.••••..•....... 291
U-NEGATE •..•.......•.••.•..•.••••.•..•...••. 292

NEXT-STACK-FIELD-ID •...••....•............•... 293
PHYSICAL-VP-SET•..........•..•..•.•... 295

F-F-POWER ••................•••.•.......•.•.•. 296
F-S-POWER•.....••..•.•.......•......•.•. 298
F-U-POWER ••••.•......•....••..••.•.•......... 300
S-S-POWER •...•..•.......•...••.•...•.•••••••. 302

POWER-UP ..•••..........•.•••••....•.•...• :. 304
F-RANDOM ...••..•.••...•....••.....••.•••••• 305
U-RANDOM ..•.•..•........••...•••.•.••••.... 306
F-RANK•••••..•...•....•.•••••••.••.••.. 307
S-RANK••..••..•....••••.•.•••.•...•... 309
U-RANK•.•..•.•••••.•••••••••.•••.•.•••• 311
F-READ-FROM-NEWS-ARRAY •. • • . • • • . . • . • • . • . • • • • • • •• 313
S-READ-FROM-NEWS-ARRAY . • • . . • • • • • • • • • • • • • • • • • • •• 315
U-READ-FROM-NEWS-ARRAY • • 317
F-READ-FROM-PROCESSOR . . • . • . • • • • . • • . • • • . •. 319
S-READ-FROM-PROCESSOR . . • • • • . . • • • • • • • • • • • • .. 320
U-READ-FROM-PROCESSOR . . • • . • • . • • • . • • • • • • . • • • • • •. 321

REDUCE-WITH-F-ADD ..•...••••••••••..••••••••.• 322

vii

Contents

REDUCE-WITH-S-ADD••.•.••.•..•.••••.•.... 323
REDUCE-WITH-U-ADD . • • 324
REDUCE-WITH-COPY 325
REDUCE-WITH-LOGAND 326
REDUCE-WITH-LOGIOR 327
REDUCE-WITH-LOGXOR . • • •. 328
REDUCE-WITH-F-MAX •• 329
REDUCE-WITH-S-MAX • . . . • 330
REDUCE-WITH-U-MAX • . . • • • • • .. 331
REDUCE-WITH-F-MIN •...•......••......•........ 332
REDUCE-WITH-S-MIN•.•....•. 333
REDUCE-WITH-U-MIN•............. 334

F-REM •..........•.•........................ 335
S-REM•........... 337
U-REM •...........................•......... 339

RESET-TIMER • . . • 341
SCAN-WITH-F-ADD .. 343
SCAN-WITH-S-ADD . • • • . • • • . • • . . • • • .. 345
SCAN-WITH-U-ADD•........... 347
SCAN-WITH-COPY •...................••....•..• 349
SCAN-WITH-LOGAND•....•.....•....... 351
SCAN-WITH-LOGIOR • • 353
SCAN-WITH-LOGXOR ...•.............•.......... 355
SCAN-WITH-F-MAX•..•.....••......••. 357
SCAN-WITH-S-MAX•.•..•..•..•....... 359
SCAN-WITH-U-MAX .•.....•.•......•..•..•...•... 361
SCAN-WITH-F-MIN ..•...............•........... 363
SCAN-WITH-S-MIN ...•.....•...•.......••...•... 365
SCAN-WITH-U-MIN .. 367
SCAN-WITH-F-MULTIPLY 369
SEND • • • 371
SEND-ASET32-U-ADD••..•....•.•..•..•.... 373
SEND-ASET32-LOGIOR • . . • • . • . . • . . • • . .. 375
SEND-ASET32-0VERWRITE • . • . • . . • . . • . • . • • • • . •• 377
SEND-TO-NEWS•..•...•..•...•..•.•• 379
SEND-WITH-F-ADD•..........••.•......... 380
SEND-WITH-S-ADD • . . . • . . . • . . • 382
SEND-WITH-U-ADD ...•.....•••..••...•....•..•• 384
SEND-WITH-LOGAND•......••••..•••. 386
SEND-WITH-LOGIOR • . . . • • • • • • • .. 388
SEND-WITH-LOGXOR•................... 390
SEND-WITH-F-MAX 392
SEND-WITH-S-MAX•..•......•• 394
SEND-WITH-U-MAX ...•.••••....•••.....••..•.•. 396
SEND-WITH-F-MIN•.•...•...•..•.....•• 398

viii

Contents

SEND-WITH-S-MIN •..••.••.••.••••••••••.••••••• 400
SEND-WITH-U-MIN • • • . • • . • • • • • • . • . . . •• 402
SEND-WITH-OVERWRITE•••..•...•...... 404
SET-BIT•......•..........•• 406
SET-CONTEXT•....•••......•...... 407
SET-SAFETY-MODE 408
SET-SYSTEM-LEDS-MODE•......•.•..• 409
SET-VP-SET . . . • • . . . • . . • . . • . • • • . • • • • • • • • •• 410
SET-VP-SET-GEOMETRY•....•••....•.••...... 411
SET-flag•...••.••••••....... 412

F-F-SIGNUM ..•..•••....••..•...••.•.•..•.•••.•. 413
S-F-SIGNUM••••.••.•..••••....•....•.••••• 414
S-S-SIGNUM•......••.•••••.••••.•.•..•.••• 415

F-SIN•.•..••••.••.•.••...••.••...•.••. 416
F-SINH•.•.•.•.....•....••..•.•••.... 417

SPREAD-WITH-F-ADD •.....••..••........•.••.... 418
SPREAD-WITH-S-ADD •••.••....•••...•.••..•••... 419
SPREAD-WITH-U-ADD . • • . . • • • . • • • • . • . • • • • . • • • • . .. 420
SPREAD-WITH-COPY ..••••.••.•.•.••••••.•...•.. 421
SPREAD-WITH-LOGAND • • • • . • • . . . • • • . • • • • • • • . • • • •• 422
SPREAD-WITH-LOGIOR ••.....•....••.....••....•• 423
SPREAD-WITH-LOGXOR . • • • . • . . . • • . . • . .. 424
SPREAD-WITH-F-MAX . • • • . . • . . . • . . . • . • • . • . . .• 425
SPREAD-WITH-S-MAX •• . . • . . • . . . • • • . . . • • • • • 426
SPREAD-WITH-U-MAX . . . • . • . • • . • . • • . • • • . . . •. 427
SPREAD-WITH-F-MIN ••..••.•.••••••••.••••.•.•.• 428
SPREAD-WITH-S-MIN •.•.••.•.•.....••••.•....•.. 429
SPREAD-WITH-U-MIN .•••.•..•......•••••...•.•.. 430

F-SQRT • • • • • • • • • • •. 431
START-TIMER••.•.•••••.•••••.••••••• 432
STOP-TIMER ..•.••...•....••.......••..••.••. 433
STORE-CONTEXT .••.....•••.•.••.•.•••••••..•• 434
STORE-flag•.•••••...••.•.•••••••.••••••• 435

F-SUB-MULT • • • • • • . • . .. 436
F-SUBTRACT ...••.•••..•.....•••••.•.......••• 438
S-SUBTRACT •......•.....••.•••••.•••••..•..•• 440
U-SUBTRACT •..••.•.•.•....•.•...•••.•...•.... 442

SWAP •.....•••.•••.••••..••••••••••.••.•.. 444
F-TAN ...•••.•••.•.••...•.••.•.••.•.••.••.•• 445
F-TANH ..•..•••••••...•...••..••.•....••.... 446

TIME • • • . . . • • • • . . . • • • • • • • • • • . • . . •.•. 447
FE-TO-GRAY-CODE .•.....•.•....••.•••.•••....••. 448
U-TO-GRAY-CODE ••••.•..••....•••••••••••••.••• 449

F-F-TRUNCATE •.•••..•••••.•••••••••••••..•••••• 450
S-F-TRUNCATE .••••.••••••.••••••••••••••••••••. 451

ix

Contents

S-TRUNCATE
U-TRUNCATE

VP-SET-GEOMETRY
WARM-BOOT

F-WRITE-TO-N EWS-ARRAY
S-WRITE-TO-NEWS-ARRAY
U-WRITE-TO-NEWS-ARRAY
F-WRITE-TO-PROCESSOR
S-WRITE-TO-PROCESSOR
U-WRITE-TO-PROCESSOR

A Changes from Version 4.3 Paris
A.I All names are alphabetic and limited in length
A.2 New capitalization conventions accommodate C and Fortran .
A.3 Optional arguments have been eliminated
A.4 New naming conventions reflect new orthogonal attributes.
A.5 More instructions have -constant forms
A.6 Different instructions have -always forms
A.7 Special instructions operate on the context and flag bits
A.8 Irrational and transcendental functions are supported
A.9 New arithmetic operations have been added
A.I0 Two-result operations have been eliminated
A.ll Special compound floating-point operations improve performance
A.12 SEND operations no longer accept a time limit
A.13 Cube addresses are now called send addresses
A.14 Generalized NEWS operations support multidimensional grids.
A.15 SCAN and GLOBAL now permit new combining functions
A.16 SCAN operations may be applied along NEWS dimensions
A.17 SCAN operations may be partitioned
A.18 SPREAD operations replicate data efficiently .. .
A.19 REDUCE operations perform reductions efficiently
A.20 New array instructions allow faster indexing
A.2I STORE operations have been eliminated
A.22 Most version 4.3 operations have version 5.0 equivalents

x

452
454
457
459
460
462
464
466
467
468

469
469
469
470
470
470
470
471
471
471
471
471
471
472
472
472
472
472
472
473
473
473
473

List of Figures

2.1 65,536 processors .. 4

xi

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection
Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a
backtrace, or other such information can greatly reduce the time it takes Thinking Machines to
respond to the report.

To contact Thinking Machines Customer Support:

U.S. Mail:

Internet
Electronic Mail:

Usenet
Electronic Mail:

Telephone:

For Symbolics users only:

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1214

customer-support@think.com

harvard! think!customer-support

(617) 876-1111

The Symbolics Usp machine, when connected to the Internet network, provides a special mail
facility for automatic reporting of Connection Machine system errors. When such an error oc­

curs, simply press Ctrl-M to create a report. In the mail window that appears, the To: field
should be addressed as follows:

To: bug-connection-machine@think.com

Please supplement the automatic report with any further pertinent information.

xiii

Chapter 1

Introduction

Paris is a low-level instruction set for programming the Connection Machine computer sys­
tem. It is the lowest-level protocol by which the actions of Connection Machine processors
are directed by the front-end computer. Paris is sometimes referred to as a "macroinstruc­
tion set" for the Connection Machine system because 'it is comparable in power to the
(macro)instruction sets of typical sequential processors such as the VAX, and to distinguish
it from the "microinstruction set" (microcode) that is executed by the Connection Machine
system sequencer and the "nanoinstruction set" that is directly executed by the individual
hardware Connection Machine processors.

Paris is intended primarily as a base upon which to build higher-level languages for
the Connection Machine system. It provides a large number of operations similar to the
machine-level instruction set of an ordinary computer. Paris supports primitive operations
on signed and unsigned integers and floating-point numbers, as well as message-passing
operations and facilities for transferring data between the Connection Machine processors
and the front-end computer.

The Paris user interface consists of a set of macros, functions, and variables to be called
from user code. The macros and functions direct the actions of the Connection Machine
system by sending macroinstructions to the Connection Machine sequencer, and the vari­
ables allow the user program to find out information about the Connection Machine system
such as the number of processors available.

Several different versions of the user interface are provided: one for the Lisp programming
language, one for C, and one for Fortran. These interfaces are functionally identical; they
differ only in conforming to the syntax and data types of one language or the other.

1

Chapter 2

Virtual Machine Architecture

An important property of the Connection Machine architecture is scalability. At present, a
single Connection Machine system can have 16,384 or 32,768 or 65,536 physical (hardware)
processors, of which any single user can use a portion containing 8,192 or 16,384 or 32,768
or 65,536 processors. (See figure 2.1 for an illustration of 65,536 processors.) In most cases
the same software can be executed unchanged on Connection Machine systems (or portions)
with different numbers of physical processors; the number of processors affects only the size
of the problem that can be handled.

Paris enhances this scalability by presenting to the user an abstract version of the Con­
nection Machine hardware. The most important feature is the virtual processor facility,
whereby each physical processor is used to simulate some number of virtual processors. A
program can be written assuming any appropriate number of processors (but not fewer than
the number of physical processors); these virtual processors are then mapped onto physical
processors. In this way a program can be executed unchanged on Connection Machine sys­
tems with different numbers of physical processors, even if it requires a certain minimum
number of processors, with an essentially linear trade-off between number of physical pro­
cessors and execution time. (There is a memory trade-off as well: the memory of a physical
processor is divided among the virtual processors it supports:)

For the remainder of this chapter, when we refer to "the Connection Machine" or "'the
machine" we mean that portion of a Connection Machine system to which the user is
attached. For example, if a user is attached to a 16,384 processor portion of a 65,536
processor Connection Machine, the expression "the machine" refers only to the user's 16,384
processors.

The Connection Machine hardware supports two mechanisms for interprocessor commu­
nication. The more general mechanism is the router, which allows data to be sent from any
processor directly to any other processor; indeed, many processors can send data to many
other processors simultaneously. The less general mechanism is redundant, but optimizes
an important case for speed. It organizes the processors as an n-dimensional grid and al­
lows every processor to send data to its immediate neighbors in the grid. This mechanism
is called the NEWS grid, from the initials of the four directions in a two-dimensional grid:
North, East, West, and South. Using these hardware mechanisms, Paris provides identical
virtual mechanisms within the virtual processor framework.

3

Chapter 2. Virtual Machine Architecture

Figure 2.1: 65,536 processors

4

Chapter 2. Virtual Machine Architecture

2.1 Virtual Processors and Virtual Processor Sets

The data parallel programming method associates one processor with each element of a
data set. In the virtual processor abstraction provided by Paris, we associate one virtual
processor, or VP, with each element of a data set. The set of all virtual processors associated
with a data set is called a virtual processor set, or VP set. For example, consider an image­
processing problem that deals with an image of 65,536 pixels, shaped in a 512 X 128 rectangle.
Each pixel is an element of the data set that makes up the image. Thus we would write a
program using one VP set of size 65,536: one VP for each pixel.

Because a single problem may be composed of more than one data set, Paris allows for
the simultaneous existence of more than one VP set. For example, a text retrieval program
might wish to deal with articles at some times, and with words in the articles at other times.
This problem is most conveniently modeled with two VP sets, the first corresponding to
the data set of all articles (one VP per article) and the second corresponding to the data
set of all words (one VP per word).

VP sets are created and deleted through function calls to Paris. The size of a VP set (the
number of virtual processors in the VP set) is fixed at the time of the VP set's creation.

Although multiple VP sets may co-exist, only one VP set may be active at any time.
This VP set is known as the current VP set. All VP sets other than the current VP set are
latent; that is, they can not execute any instructions. We say that Paris operates within
the current VP set. Paris provides a function CM:set-vp-set for setting the current VP set.

2.2 Mapping VP Sets to the Physical Machine

When a Paris program is run, the virtual processors in the user's program are mapped onto
the machine's physical processors. The size of the VP set(s) and the size of the physical
machine determine how many virtual processors are assigned to each physical processor. In
effect, each Connection Machine processor and its memory are shared among the virtual
processors they support.

These concepts are further elaborated in the following sections. The time-slicing of the
Connection Machine processors is covered in the section "VP Ratios"; the sharing of physical
memory among virtual processors is covered in the section "Fields." Communication and
related concepts follow.

2.3 VP Ratios

Let p denote the number of Connection Machine physical processors, and let IXI denote
the number of virtual processors in a VP set X.

For each VP set X, each physical processor is assigned the task of simulating IXl/p
virtual processors. This number IXI Ip is called the virtual processor ratio, or VP ratio, of
VP set X. We denote the VP ratio of VP set X as vpr(X). The virtual processor ratio
must always be a power of two.

What exactly does this mean? When the machine is operating within VP set X, each
instruction in the user's program is executed vpr(X) times by each physical processor, that
is, once for every virtual processor. This is completely transparent to the user. A change of

5

Chapter 2. Virtual Machine Architecture

VP set changes the VP ratio to be that of the newly current VP set; if the program changes
from VP set X to VP set Y, each instruction after that will be executed vpr(Y) times.

This method of assigning virtual processors to physical processors "spreads out" a VP
set as much as possible; the VP ratio for each VP set is as low as possible. The burden of
handling a VP set is shared by the entire physical machine.

As an example, suppose we have two VP sets A and B, where IAI = 64K and IBI =
256K. Suppose we run our program on a Connection Machine system with 64K physical
processors (p = 64K). Then vpr(a) = 64K/64K = 1, and vpr(b) = 256K/64K = 4. When
executing within VP set A, each instruction is executed once by each physical processor.
When executing within VP set B, each instruction is executed four times by each physical
processor.

If the same program were to be run on a Connection Machine system with only 16K
physical processors (p = 16K), then we would have vpr(a) = 64K/16K = 4, and vpr(b) =
256K/16K = 16. When executing within VP set A, each instruction would be executed
four times by each physical processor. When executing within VP set B, each instruction
would be executed 16 times by each physical processor.

This description of "execute once for each virtual processor" applies most accurately to op­
erations such as arithmetic that can take place within each virtual processor independently
of other virtual processors. Operations that perform communication are more complicated,
but the idea is the same: each physical processor performs all necessary execution steps on
behalf of each virtual processor that is to participate in the operation.

As far as the user is concerned, physical processors are hardly visible. Paris is designed
to allow the programmer to think entirely in terms of the virtual processo;r as the basic unit
of computational power.

2.4 Fields

At the time of its creation, a VP set has no associated memory (except for its flags). This
is the same as saying that no VP in the VP set has any memory, because the memories of
all virtual processors in a VP set are always of the same size and layout. Paris provides
functions to allocate and deallocate memory to a VP set.

Memory is handled in units called fields. Conceptually, a field is simply some number of
consecutive bits. A field can be of any size greater than zero bits. When a field is allocated,
it has an initial size specified by the user. When we speak of allocating a field to a VP set,
we mean allocating a field to each VP in the VP set.

A field is referenced through a field-id. Paris returns a unique field-id for each new field
that is allocated, and all Paris calls that require a reference to a field take a field-id as a
parameter.

How does this abstraction of fields get mapped into physical Connection Machine mem­
ory? Again, the concept of VP ratios is important. Just as a Connection Machine physical
processor takes responsibility for vpr(X) virtual processors for each VP set X in the user's
program, those same physical processors (more precisely, their memories) take responsibility
for the fields of those same virtual processors. A single physical memory contains vpr(X)
copies of every field in VP set X, vpr(Y) copies of every field in VP set Y, and so on for
every VP set in the user's program.

6

Chapter 2. Virtual Machine Architecture

There are two types of fields: heap fields and stack fields. The distinction between
them has to do with the storage management strategy employed in the physical memory
supporting the virtual processors. Heap fields are the more flexible of the two, but they
also have the higher overhead. Heap fields may be allocated and deallocated in any order.
Allocation of heap fields to VP set X may be freely intermixed with allocations to VP set
Y, and so on. Deallocations need pay no attention to the VP set to which a field belongs,
nor to the order in which other allocations and deallocations were done.

Stack fields may be allocated in any order, without regard to VP set. However, stack
fields must be deallocated in the reverse order in which they were allocated. This rule
applies globally to all fields in all VP sets. Thus, if a program allocates a field II in VP set
A, and then allocates a field h in VP set B, and then allocates a field h in VP set A, they
must be deallocated in the order /3, h, II.

2.5 Processor Addresses

Paris supports two different sorts of addresses for virtual processors: the send address, which
is used for general purpose communication among virtual processors, and the NEWS address,
which describes a VP's position in the n-dimensional grid used to optimize nearest-neighbor
communication.

A virtual processor has one send address and one NEWS address at all times. Send
addresses and NEWS addresses are specific to a VP set; that is, every VP in a VP set has a
unique send address and a unique NEWS address, but it is possible for a VP in another VP set
to have the same send address or NEWS address. Since Paris always operates within a single
VP set, there is normally no ambiguity as to which VP is meant by a given address. For
communication across VP sets, Paris has other means of uniquely identifying the intended
destination VP.

2.6 Send Addresses

Send addresses are used as arguments to Paris communication operations to identify virtual
processors that are to supply or receieve data. The Paris operation eM: my-send-address
allows every VP in a VP set to find out its own send address.

The send address for a VP is composed of two parts, the physical part and the virtual part.
The physical part indicates the location in the CM of the physical processor supporting that
VP. The virtual part indicates which VP in that VP set on that physical processor is being
addressed. The virtual part is in the less significant bits of the send address.

The size (in bits) of a send address for a VP set depends on two things. The physical size
of the machine determines the size of the physical part of the send address. The VP ratio
for the VP set determines the size of the virtual part.

For example, in a 64K = 216 Connection Machine, the send addresses for VP set Q with
vpr(Q) = 64 = 26 require 22 bits: 16 bits for the physical part, and 6 bits for the virtual
part. In this example, send addresses range from 0 to 222 - 1.

7

Chapter 2. Virtual Machine Architecture

2120191817161514131211109 8 7 6 5 4 3 2 1 0

SEND ADDRESS I PHYSICAL PROCESSOR VP

In this release of Paris, VP ratios must be a power of two. This results in a contiguous
address space for send addresses (that is, there are no "holes"). However, this feature is
likely to change in the future (thereby allowing a VP ratio to be any integer, not just a
power of two). We recommend that no Paris program be written so as to require send
addresses to occupy a contiguous range. In particular, we discourage arithmetic on send
addresses. Paris provides functions for manipulating send addresses in a "safe" manner.
Arithmetic is better done on NEWS addresses; if a total order on all processors is required,
please note that a NEWS grid may be one-dimensional.

2.7 NEWS Addresses

A NEWS address is an n-tuple of coordinates zo, Z1, ••• ,:z: N -1, which specifies a VP's position
in an n-dimensional Cartesian-grid geometry. The number of bits required to specify each
coordinate depends on the size of that dimension in the geometry. NEWS addresses are
treated in more detail below when we discuss geometries.

The Paris operation eM: my-news-coordinate-1L allows every VP in a VP set to find out
its own NEWS coordinate along a given axis. Paris also provides functions for producing a
send address from a NEWS address, and vice versa. There are a number of variations on
these functions to handle o~y specific dimensions. All addresses are interpreted within the
current VP set.

2.8 Conununication across VP Sets

Communication across VP sets takes place via the Paris send and get operations and their
variants. These operations each accept only a send address as the indicator of the remote
VPj NEWS addresses are not allowed. The send address must be of the proper size for the
remote VP setj that is, it must have as many bits as are necessary to specify a send address
in that VP set, which may be different from the number of bits needed to specify a send
address in the current VP set.

We have noted that send addresses are not unique across all VP sets in a program, but
that communication across VP sets is unambiguous anyway. This is because every call to
a Paris send or get operation also takes a field in a remote VP set as an argument. A field
is always associated with exactly one VP set, and this fact allows Paris to determine the
remote VP intended as a send destination or a get source.

2.9 Geometries

A geometry is an abstract description of an n-dimensional grid of elements. It specifies n,
the number of dimensions (also known as the rank of the geometry), and it specifies the
length of each dimension. There are other aspects of a geometry that may be specified by
the Paris user, but we first elaborate on the more basic issues.

8

Chapter 2. Virtual Machine Architecture

The rank of a geometry is an integer between 1 and 31, inClusive. This is the same as
saying that a geometry can describe anything from a I-dimensional grid to a 31-dimensional
grid. We number the dimensions of a grid from 0 to the rank minus 1, so we say that a
I-dimensional grid has only dimension 0, a two-dimensional grid has dimensions 0 and 1,
etc.

The size of a dimension must be a power of two. The product of the sizes of all dimensions
of a geometry specifies the total number of elements in the geometry. For example, a three­
dimensional geometry of size 16 X 512 X 2 contains 16,384 elements in all.

Paris provides functions for defining geometries. See section 5.2. A geometry is defined
in the abstract, but it has no use until it is associated with a VP set, via another Paris
function. Associating a geometry with a VP set defines a "shape," or organization, for the
virtual processors of the VP set.

At the time of a VP set's creation, it is associated with some geometry. The geometry
specifies the size of the VP set and its conceptual organization in n-space. A VP set is always
associated with exactly one geometry, but it may be associated with different geometries
over time. Paris provides a function for associating a geometry with a VP set (and implicitly
dis-associating the previous one). See section 5.1. In this way, the user can "reshape" a
VP set. The only restriction is that all geometries associated with a VP set be of the same
total size, since a VP set is not allowed to change size. For example, a VP set originally
associated with a 16 X 512 x 2 geometry can later be associated with a 64 X 256 geometry,
since the total number of virtual processors described by both of these geometries is the
same (16,384 in this example).

The NEWS address of a virtual processor depends completely on the geometry currently
associated with its VP set. Thus, while the send addresses of virtual processors remain
constant for the life of a VP set, the NEWS addresses of those same virtual processors can
vary as the geometry is changed. When a VP set has a three-dimensional geometry, NEWS

addresses for that VP set have three coordinates: 2:0, 2:}, 2:2' When that VP set changes to
a two-dimensional geometry, NEWS addresses for that VP set have two coordinates: :CO,2:1'

Given a VP set and given a geometry as we have described it so far (a rank and the size
of each dimension), there are many ways for Paris to assign virtual processors to physical
processors. However, not all mappings will provide equally efficient communication among
the virtual processors of a VP set. Paris allows the user to specify more information than
just rank and size of dimensions when creating a geometry. These additional pieces of
geometry information we call ordering and weight, and we discuss them in more detail
below.

It should be said, however, that the specification of these properties of a geometry af­
fects only the efficiency of inter-VP communication, and therefore the performance of the
program. Choosing suboptimal values will never cause an otherwise correct program to
execute in an erroneous manner. Also, for some problems (those involving little or no com­
munication among virtual processors of a VP set) it does not matter how the user specifies
these properties. Paris provides a function for creating geometries that does not require
specification of ordering or weight information.

Each dimension of a geometry is given an ordering. The ordering of a dimension specifies
how NEWS coordinates for that dimension are mapped onto physical processors. There are
currently two possible orderings: NEWS ordering and send-address ordering. (There may be

9

Chapter 2. Virtual Machine Architecture

more in the future.) Different dimensions of a geometry may be given different orderings.
The NEWS ordering specifies the embedding of the grid into the physical (hardware) n­

dimensional grid such that processors with adjacent NEWS coordinates are in fact neighbors
within the physical grid. The send-address ordering specifies that if processor A has a
smaller NEWS coordinate than processor B (in the specified dimension), then A also has a
smaller send address than B. Paris functions that provide nearest-neighbor communication
(the CM:get-from-news family of functions, for example) perform best with NEWS ordering.
Send ordering is useful for applications such as Fast Fourier Transform; under the send
ordering, processors that are nearest neighbors within the physical grid have grid coordinates
that differ by various powers of two.

What is the weight of a dimension for? Whenever the VP ratio of a VP set is greater
than 1, some number of virtual processors are co-resident on a physical processor. IT these
virtual processors happen to all be in the same dimension of their geometry, communi­
cation among them will be even faster than if they were neighbors in the physical NEWS

grid. Communication among virtual processors assigned to the 16 physical processors on
a Connection Machine chip is also faster than communication between chips, even if the
processors concerned are neighbors in the physical NEWS grid.

Paris can layout virtual processors on physical processors in such a way as to take advan­
tage of intra-processor and intra-chip communication, provided the Paris user knows which
dimension(s) of the geometry will sustain the heaviest communication. (By communica­
tion, we mean also operations such as scan and spread). Thus, Paris provides an operation
for creating geometries with an indication (the weight) of which dimension will have the
heaviest communication, which will be second heaviest, etc. Paris then maps the virtual
processors onto the physical processors in such a way as to favor the dimensions with the
heaviest communication.

2.10 Flags

Each Paris virtual processor has an assortment of one-bit flags. These flags are represented
as fields that are specially associated with VP sets. These fields are automatically created
when the VP set is created by CM: allocate-vp-set.

Many Paris operations store into these flags rather than, or in addition to, storing results
into explicitly supplied argument fields. For example, the CM: s-add-2-1L operation adds one
signed integer to another, but also stores information into the carry flag and the overflow
flag.

The entire set of flags for each virtual processor is as follows.

• The context-flag indicates which virtual processors are active within the current VP
set. Nearly all Paris operations are conditional; the operation is effectively carried out
only in those processors whose context-flag is 1, and processors whose context-flag is
o are unaffected. Some operations are always unconditional.

• The test-flag holds the result of numeric comparisons and other tests, or indicates
which operations failed because of bad operands.

• The carry-flag holds the carry in and carry out for some integer arithmetic operations.
A few operations use the carry-flag as an implicit input.

10

Chapter 2. Virtual Machine Architecture

• The overflow-flag indicates which operations produced results that the destination
field was too small to contain. Many Paris operations can affect the overflow-flag.

11

Chapter 3

Data Formats

A data item always consists of a string of bits having consecutive addresses. Such a bit
string is called a field. The term field is also used to refer to a collection of fields, one for
each virtual processor.

Many Paris operations may be regarded as interpreting bit fields as being of particular
data types or formats. Currently Paris provides operations that regard the contents of bit
fields as structured according to the following data types:

• signed integers, represented in two's-complement format

• llllsigned integers, represented in straight binary format

• floating-point numbers, represented in a format close to that specified by IEEE stan­
dard 754 for floating-point arithmetic

• send-addresses, which are unsigned integers that label virtual processors for commu­
nication purposes

• NEWS coordinates, which are unsigned integers, tuples of which label virtual processors
within a Cartesian grid for communication purposes

The Connection Machine system allows llllusUal flexibility in that the hardware does not en­
force any particular length or alignment requirements. Paris supports integers and floating­
point numbers of almost any size. (However, certain sizes of floating-point number allow
particularly efficient execution by the hardware floating-point accelerator, and certain sizes
of integer allow certain other operations to be particularly efficient.)

Most Paris operations operate on fields within a virtual processor, delivering results to
other fields within that virtual processor. Frequently we speak of one data item, but really
mean to speak of many instances of that data item, one for each selected processor, to be
considered or operated on in parallel. For example, when we say that an operation sets a
flag when a field has such-and-so value, we mean that a separate decision is made within
each processor whether to set that processor's flag, based on the value of the field within
that processor.

13

Chapter 3. Data Formats

3.1 Bit Fields

A bit field is specified by a bit address a and a positive length nj the field consists of the
bits with addresses a through a + n - 1, inclusive. Therefore the address of a field is the
same as that of the lowest-addressed bit.

3.2 Signed Integers

A signed integer is specified in the same way as a simple bit field, by a bit address a and
a positive length n. The signed integer is represented in two's-complement form, and so
a signed integer of length n can take on values in the range _(2(n-l» through 2(n-l) - 1,
inclusive. The least significant bit has address a, and the most significant (sign) bit has
address a + n - 1.

All arithmetic on signed integers is performed in a strict wraparound mode. As a rule,
if the result of an operation overflows the destination field, the overflow-flag is set, and the
destination receives as many low-order bits of the true result as will fit. For example, using
4-bit signed arithmetic, multiplying 4 by -7 will produce the 4-bit result 4 (and also set the
overflow-flag), because the two's-complement representation of -28 is ..• 111111100100, of
which the four low-order bits are 0100, or 4. Signed-integer operations that do not overflow
leave the overflow-flag unchanged.

In order to simplify the Connection Machine microcode, this arbitrary restriction is im­
posed: the length n may not be zero or one. In addition, certain operations on signed
integers cannot handle operands whose length is greater than the value of the variable
CM: *maximum-integer-Iength*j see section 3.6.

3.3 Unsigned Integers

An unsigned integer is specified in the same way as a simple bit field: by a bit address a
and a positive length n. The unsigned integer is represented in stright binary form, and so
an unsigned integer of length n can take on values in the range 0 through 2n - 1, inclusive.
The least significant bit has address a, and the most significant bit has address a + n - 1.

All arithmetic on unsigned integers is performed in a strict wraparound mode, modulo
2n. As a rule, if the result of an operation overflows the destination field, the overflow-flag
is set, and the destination receives as many low-order bits of the true result as will fit.
For example, using 4-bit unsigned arithmetic, multiplying 4 by 7 will produce the 4-bit
result 12 (and also set the overflow-flag), because the two's-complement representation of
28 is ... 00000011100, of which the four low-order bits are 1100, or 12. Unsigned-integer
operations that do not overflow clear the overflow-flag.

Unsigned integers, unlike signed integers, may be oflength zero or one as well as of larger
sizes. (Note that an unsigned integer of length zero is considered to have the value 0.)
However, certain operations on unsigned integers cannot handle operands whose length is
greater than the value of the variable CM:*maximum-integer-length*j see section 3.6~

14

Chapter 3. Data Formats

3.4 Floating-Point Numbers

A floating-point data item is specified by three parameters: a bit address a, a significand
length 5, and an exponent length e. The total number of bits in the representation is
5 + e + 1, and the data item occupies the bits with addresses a through a + 5 + e, inclusive.

The significand occupies bits a through a + s - 1, with the least significant bit at address
a. A hidden-bit representation is used, and so the significand is normally interpreted as
having a I-bit as its most significant bit implicitly just above the bit at address a + s - 1.
If the exponent field is all zero-bits, however, then the hidden bit is taken to be O.

The exponent occupies bits a + 5 through a + s + e - 1, with the least significant bit at
address a + s. An excess-(2e- 1 - 1) representation is used.

The sign bit occupies bit a + s + e, and is 1 for a negative number and 0 for a positive
number. Overall, a sign-magnitude representation is used, so inverting the sign of a floating­
point number merely involves flipping the sign bit. Note that there is both a plus zero and
a minus zero.

When 5 = 23 and e = 8, this is equivalent to the IEEE standard 754 single-precision
format, which looks like this:

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

lsi exponent I significand I

When s = 52 and e = 11, the Paris floating-point format is equivalent to IEEE standard 754
double-precision format. The IEEE standard single-extended and double-extended formats
can also be accommodated by suitable choices of s and e.

While the Paris floating-point format is equivalent to the IEEE standard format, it must
be emphasized that the Paris implementation does not support equivalent operations at
this time.1 "Soft" underflow (using denormalized numbers for the result) is not supported.
Rounding is performed correctly in all cases, using the round-to-nearest mode; the several
rounding modes are not supported. The not-a-number (NAN) values are not supported. The
standard exceptions and flags are not all supported. It is strongly recommended that a user
of Paris always use the IEEE standard formats unless careful analysis of the application
(such as a need for speed or additional exponent range) indicates that another format is
required and adequate.

The format of a floating-point operand must obey certain restrictions. The length s must
be greater than 0 and not greater than CM:*maximum-significand-length*. The length e
must be greater than 1 and not greater than CM: *maximum-exponent-Iength*. See section
3.6. These restrictions are additionally imposed: e ~ 2, 5 ~ 1, and 2e- 1 ~ s + 1. Values for
s and e not satisfying these restrictions will cause unpredictable results.

1 Thinking Machines Corporation does intend to support all standard IEEE arithmetic operations in a
future software release.

15

Chapter 3. Data Fermats

3.5 Send Addresses

Every virtual processor in a VP set has an identmying send address, a kind of serial number
that distinguishes it from all other virtual processors in that VP set. These addresses are
used to perform general interprocessor communication. For example, in the CM:send-ll
operation, each virtual processor provides a message and the send address of some other
processor, and that message is sent to the specified processor (all such messages effectively
being sent in parallel).

The number of bits in a send address depends on the VP set, or rather upon the geometry
of that VP set. The function CM:geometry-send-address-length may be used to determine
the length in bits of a send address for a given geometry. Suppose that for geometry G this
function returns m; then a send address a for a virtual processor in a VP set with geometry
G is an unsigned integer such that 0 :::; a < 2m. (Programs should not, however, rely on
the fact that every integer k such that 0 :::; k < 2m is a valid send address. In a future
release of Paris the space of send addresses may contain "holes"; this could occur when the
total number of virtual processors in the geometry is not a power of two, an extension that
Thinking Machines is contemplating for the future.)

3.6 Configuration Variables

The current configuration of the machine is reflected in a few global variables. Programs may
refer to these so they can adapt to various sizes of machine. These variables are set by the
cold boot procedure. They should never be set by the user, as there are dependencies among
them, which, if violated, will result in errors. Some variables are fixed by the hardware,
while others depend on the arrangement of virtual processors set up by the attach or cold
boot process. Some variables represent implementation restrictions.

CM: *current-vp-set*

The VP-set-id for the current VP set is always available in this variable. For example,
to determine the total number of processors in the current VP set, one might say (in
Lisp syntax)

(CM:geometry-total-processors
(CM:vp-set-geometry CM:*current-vp-set*»

or (in C syntax)

or (in Fortran syntax)

CM: *physical-processors-limit*

The total number of physical processors available for use.

16

Chapter 3. Data Formats

CM: *physical-processors-Iength*

The base-2 logarithm of the total number of physical processors, that is, the minimum
length in bits for an unsigned integer field that can contain the number of any physical
processor.

CM: *physical-memory-limit*

The amount of physical memory per physical processor, including memory that is set
aside for system use.

CM: *physical-memory-Iength*

The base-2 logarithm of the amount of physical memory per physical processor.

CM: *maximum-integer-Iength*

Because of implementation restrictions, a few operations on signed and unsigned inte­
gers cannot handle operands longer than the ,value of CM: *maximum-integer-Iength*.

Experimentation might reveal that in certain cases some of these operations succeed
when applied to operands that are longer than this variable, but that fact is not
guaranteed in succeeding software releases.

The value of CM: *maximum-integer-Iength* is never smaller than 128.

CM: *maximum-significand-Iength*

Because of implementation restrictions, a few operations on floating-point numbers
cannot handle operands with significands longer than a certain size.

Experimentation might reveal that in certain cases some of these operations succeed
when applied to operands that are longer than specified by these variables, but that
fact is not guaranteed in succeeding software releases.

The value of CM: *maximum-significand-Iength* is never smaller than 96.

CM: *maximum-exponent-Iength*

Because of implementation restrictions, a few operations on floating-point numbers
cannot handle operands with exponents longer than a certain size.

Experimentation might reveal that in certain cases some of these operations succeed
when applied to operands that are longer than specified by these variables, but that
fact is not guaranteed in succeeding software releases.

The value of CM: *maximum-exponent-Iength* is never smaller than 32.

CM: .no-field*

The value of this variable is a dununy field-id suitable for use as an argument to
CM:send-lL and related instructions to indicate that no notify field is to be used, or
to CM:scan-with- ... operations to indicate an unused sbit argument when the smode
argument is : none.

17

Chapter 4

Operation Formats

Paris operations are executed at the direction of a program running in the front-end machine.
For each operation there is a function or macro that, when called, causes the Connection
Machine hardware to perform the operation.

4.1 Field Id's

Most Paris operations operate on bit fields in the memories of the data processors. A bit
field is specified by a field id, a data object that serves to identify the field. A Paris operation
that allocates memory for a new field will generate and return a new field idj this field id
may then be used as an argument to other Paris operations.

For example, in Lisp one might create a new heap field and then unconditionally initialize
its contents to 6.0 in the following manner:

(let «fld (CM:allocate-heap-field 32)))
(CM:f-move-const-always-1L fld 6.0 23 8)

; Allocate
; Initialize

...)
In C the same operation would look like this:

{

}

CM_field_id_t fld = CM_allocate_heap_field(32);
CM_f_move_const_always_1L(fld. 6.0. 23. 8);

And in Fortran:

C Declare the variable
INTEGER FLD

C Allocate and initialize
FLD = CM_ALLOCATE_HEAP_FIELD(32)
CM_F_MOVE_CONST_ALWAYS_1L(FLD. 6.0. 23. 8)

19

1* Allocate *1
1* Initialize *1

Chapter .I. Operation Formats

4.2 Constant Operands

Certain operations accept as an operand a single datum computed within the front end
that is broadcast to all of the Connection Machine processors as part of the operation.
Such operations have -constant in their names (or -const, in the case of certain compound
operations). As a rule, every operation with -constant in its name has a counterpart without
-constant in its name.

For example, to CM:f-add-constant-2-1L there corresponds CM:f-add-2-1L. These opera­
tions do exactly the same thing except that the first two operands to CM:f-add-2-1L are
field id's for fields containing floating-point numbers, whereas CM:f-add-constant-2-1L takes
a field id and a front-end floating-point number. This latter value is broadcast to all (active)
processors and then used in the same way that a second field would be used by CM:f-add-
2-1L. Here are examples of their use in Lisp:

(CM:f-add-2-1L x y 23 8)
(CM:f-add-constant-2-1L x 2.7 23 8)

The same examples in C:

CM_f_add_2_1L(x. y. 23. 8);
CM_f_add_constant_2_1L(x. 2.7. 23. 8);

The same examples in Fortran:

C Add field y into field x
CM_F_ADD_2_1L(X. Y. 23. 8)

;Add field y into field x
;Add 2.7 into field x

1* Add field y into field x *1
1* Add 2.7 into field x *1

C Add 2.7 into field x
CM_F_ADD_CONSTANT_2_1L(X. 2.7. 23. 8)

4.3 Unconditional Operations

Most Paris operations are conditional: they take place only in processors that have a 1 in
the context-flag. But sometimes it is necessary to perform operations unconditionally (that
is, without respect to the context-flag). A number of Paris operations have unconditional
versions, generally named by inserting -always in the name of the conditional function. For
example, CM:s-move-always-lL is the unconditional equivalent of CM:s-move-lL.

Paris operations that deal directly with the context-flag are inherently unconditional. For
the sake of brevity, the names of these operations do not contain -always. Any Paris opera­
tion that has -context in its name deals with the context-flag and is implicitly unconditional
despite the fact that -always does not also appear in its name. One example is CM:set­
context.

A few other Paris operations also have only unconditional forms but do not have names
containing -always. These are typically specialized communications operations whose names
are already so long that inserting -always would exceed the limit on the length of a name.
One example is eM: u-read-from-news-array-lL.

20

Chapter 4. Operation Formats

4.4 N aIDing Conventions

Lisp, C, and Fortran impose different sets orrules and conventions on how functions and
variables are to be named. The description of Paris in this document strikes a compromise
among these languages. All names in this document are presented in Lisp syntax, but
carefully observing capitalization, to which C is sensitive even though Fortran and Lisp are
not. The Paris Dictionary contains a simple set of rules for converting a Lisp name into the
corresponding C or Fortran name.

The rest of this section describes the general rules that were used to achieve a regular
naming system for Paris operations. It is not necessary to know these rules to use Paris, but
a passing familiarity may help you to remember an exact operation name without having
to look it up, or to recognize the argument format from the operation name.

The name of every Paris operation begins with CM: (in Lisp) or CM_ (in C and Fortran).
It also contains one or more words that are the "main description" of the operation, such
as add or send or read-from-news-array.

Between the leading CM: or CM_ and the main operation may be one or more prefixes. The
prefix fe- indicates an operation performed entirely on the front end (often such an operation
has a parallel counterpart without the fe- prefix). Examples of this correspondence are
CM:extract-news-coordinate and CM:fe-extract-news-coordinate. If an fe- . prefix is present, it
appears before all other prefixes.

Other prefixes indicate the type of data to be operated upon:

f- floating-point number
s- signed integer
u- unsigned integer

For example, CM:f-add-2-1l adds floating-point numbers, whereas CM:s-add-2-11 add signed
integers.

If there is more than one type prefix, then the first type applies to the result of the
operation, and the other(s) apply to certain source operands, usually the last one(s). For
example, CM: s-f-truncate-2-2l produces a signed integer result from a floating-point source.

Some operations include in their names the name of another operation. In this case the
embedded operation may have a type prefix. An example is CM:spread-with-f-add-ll. (The
name of such an embedded operation is usually preceded by with-, but exceptions occur
when this would make names too long, as in CM: multispread-f-multiply-ll, an operation that
is not yet implemented but may be in the future.)

There are four groups of suffixes for operation names: -constant, -always, number of fields,
and number of lengths. They always appear (if at all) in this order.

A number-of-fields suffix is simply a digit (preceded by a hyphen or underscore), such as
-3. In many cases there are sets of similar operations differing primarily in their argument
format. For example, CM:f-multiply-3-1l takes three fields and stores the floating-point
product of the second and third fields into the first field, whereas CM:f-multiply-2-1l takes
only two fields, and stores their product back into the first field (thereby overwriting one
source value). These two formats are distinguished by a suffix indicating the number of
arguments that are fields (in this case -3 or -2). As a rule, this suffix is supplied only if it
is necessary to distinguish two or more possible formats.

21

Chapter .I. Operation FOMnats

A number-of-lengths suffix is simply a digit (preceded by a hyphen or underscore) followed
by a capital L, such as -3L. This suffix indicates how many length arguments are required.
Such arguments indicate the lengths of field arguments. For example, CM: s-add-3-3L takes
three field arguments followed by three corresponding length arguments; but CM:s-add-3-
1 L takes three field arguments and a single length argument that describes the length of all
three fields. Note that the format of a floating-point field is described by two arguments
(significand length and exponent length), but these two arguments are lumped together and
counted as a single length. As a rule this suffix always appears in the name of any operation
that takes one or more field length arguments.

To summarize, the name of a Paris operation is more or less of this form:

CM:[fe-]{f- 1 s-I u-}*(main name)[(embedded name)][-constant][-always][-m][-nL]

An effort has been made to use full English· words in the names of Paris operations. The
limitation on the total length of names has made it necessary to use certain abbreviations
universally:

divinto divide into
fe- front end
f- floating-point
max maximum
min minimum
mod modulo
rem remainder
s- signed integer
subfrom subtract from
u- unsigned integer

Some of these are standard abbreviations, of course, used in many programming languages.
Paris also uses standard abbreviated names for mathematical operations (tan for the tangent
function, for example).

Paris uses certain additional abbreviations in the names of compound operations:

mult multiply
const constant
sub subtract

An example is CM:f-mult-const-sub-const-lL.

4.5 Argument Order

An attempt has been made to keep argument order consistent. The following rules of thumb
apply.

Arguments that are fields come first. If there is a destination field it always comes first.
Length fields usually come last. They appear in the same order as the fields to which they

apply, but if both integer and floating-point fields appear then the floating-point length ar­
guments appear last. For some complex communication operations, such as scan operations,
certain control arguments follow the lengths.

22

Chapter 5

Instruction Set Overview

This chapter provides a quick guided tour of the entire Paris instruction set, organized by
categories of functionally related operations. The names of the operations are presented
in the form of charts that bring out the combinatorial structure of the instruction set.
Alternatives are stacked vertically between braces, and the symbol '" indicates a choice
that adds no characters to' the operation name.

The next chapter, the Paris Dictionary, is organized alphabetically by operation name,
and provides detailed descriptions of all the operations.

5.1 VP Sets

These operations create, destroy, and otherwise manipulate VP sets.

CM:

allocate-vp-set
deallocate-vp-set
physical-vp-set
set-vp-set
set-vp-set-geometry
vp-set-geometry

The operation CM: allocate-vp-set creates a new VP set having a specified geometry (which
must be created first). The operation CM:deallocate-vp-set may be used to inform the Paris
interface that the user program will not use a VP set any longer.

Of particular importance is CM:set-vp-set, which selects a given VP set as the current VP
set.

Given a VP set, the operation CM: vp-set-geometry returns the geometry associated with
that VP set.

5.2 Geometries

These operations create, destroy, and otherwise manipulate geometries.

23

Chapter 5. Instruction Set Overview

create-detailed-geometry
create-geometry
deallocate-geometry
geometry-axis-Iength
geometry-axis-ordering

CM: geometry-axis-vp-ratio
geometry-coordinate-Iength
geometry-ran k
geometry-send-address-Iength
geometry-total-processors
geometry-total-vp-ratio

Note the many operations that inquire about the shape of the geometry and various axis
attributes.

5.3 Fields

These operations create, destroy, and otherwise manipulate fields.

add-offset-to-field-id
allocate-heap-field
allocate-heap-field-vp-set
allocate-stack-field
allocate-stack-field-vp-set

CM: deallocate-heap-field
deallocate-stack-through
is-field-in-heap
is-field-in-stack
is-stack-field-newer
next-stack-field-id

Fields are used to contain data to be operated upon in parallel. Most Paris operations
require one or more fields as arguments.

5.4 Copying Fields

These operations simply copy data from one place to another.

{
-2L } s-

CM: {; __ } move {::::,on,} { .• I:OY,} .Il

The two-length versions of the move operations allow for sign-extension (or truncation) of
signed integers, zero-extension (or truncation) of unsigned integers, and changes of range
or precision for floating-point numbers.

24

CM: {move-reversed} -IL
swap-2

Chapter 5. Instruction Set OveMliew

The move-reversed operation reverses the order of the bits in a field as it copies them. The
swap operation exchanges the contents of two fields.

5.5 Bitwise Boolean Operations

These operations treat fields bit by bit.

CM:

logand
logior
logxor
logeqv
lognand
lognor
logandcl
logandc2
logorcl
logorc2

{ '" }{-2-1L}
-constant -3-1L

, {-l-lL} CM:lognot L
-2-1

Paris provides all ten non-trivial bitwise boolean operations on two operands, as well as the
logical NOT operation that inverts all bits.

5.6 Operations on Flags

Special operations are provided for operating on the flags.

CM:

load-
store-
clear-
set-
invert­
logand-
logior­
global-Iogand­
global-Iogior­
global-count-

{ test }
overflow

Flags can be loaded from or stored into another field; cleared to zero or set to one; inverted;
or combined with another field via logical AND or OR. One may also determine whether any

25

Chapter 5. Instruction Set Overview

processor, or all processors, have a flag set, or count the number of processors that have a
flag set.

CM:clear-all-flags { I'" }
-a ways

For convenience, a. special compound operation is provided for clearing all the fla.gs except
the context.

CM:

load­
store­
clear­
set-
invert­
logand­
logior-
global-Iogand­
global-Iogior­
global-coun t-

context

logand-context-with-test

The context flag is distinguished from the others, in that operations on the context flag
are always unconditional, while most operations on the other flags are conditional (that is,
depend on the state of the context flag).

5.7 Operations on Single Bits

Each of these operations takes exactly one one-bit field as its operand.

CM:

clear-
set-
invert­
global-Iogand­
global-Iogior­
global-count-

bit { '" }
-always

These operations on single-bit fields are provided purely for the sake of efficiency. For
example,

CM:clear-bit x

has the same effect as

CM:u-move-constant-1L x, 0, 1

but requires only one operand to be processed instead of three. Paris also provides uncon­
ditional forms of all these operations.

26

Chapter 5. Instruction Set Overview

5.8 Unary Arithmetic Operations

Paris supports most of the unary arithmetic operations one might expect to find in a
computer instruction set, as well as a number that are unusual. Most of them are provided in
both one-operand and two-operand formats. The one-operand format treats the destination
field as also the source operand; the result replaces the input. The two-operand format has
a separate source operand, and ignores the previous contents of the destination field. (As a
rule, the two-operand format operates correctly if the two operands are the same field, but
may be slower than using the one-operand format.)

l{ s_}{negate})
eM: u- isqrt {~~~~~}

5- {abs } -2-2L
s-slgnum

For signed and unsigned integers there are negation and integer square root. Absolute value
and signum are provided for signed operands only, as these operations are degenerate in the
unsigned case.

eM: {s- } {integer-length} -2-2L
u- logcount

The integer-length operation is a modified base-2 logarithm, useful for determining the
minimum number of bits required to represent an integer in signed or unsigned form. The
logcount operation counts the number of I-bits in a binary representation (or, in the signed
case, it counts the bits that differ from the sign bit).

{ from} {-l-ll} eM: u- -gray-code l
to -2-1

Operations are provided for converting to and from a Gray code representation of binary
integers.

eM: 1 f- {:~} {float }) { -2-2l }

5- f- floor
truncate

Some unary operations take a floating-point operand and produce an integer result, or vice
versa. The float operations convert an integer to a floating-point representation. There are
several different ways to convert a floating-point number to an integer, reflecting different
possible choices for rounding or truncation; floor and truncate provide two such cases.

27

Chapter 5. Instruction Set Overview

CM:f-

abs
negate
sqrt
f-floor
f-ceiling
f-truncate
f-signum

{-I-IL}
-2-IL

Floating-point absolute value, negation, and square root are provided, as well as truncating ,
and signum operations.

exp

In
Sin

CM:f- cos { -I-IL }
{:} tan -2-IL

sinh
cosh
tanh

Paris provides a complete set of transcendental and trigonometric functions, including hy­
perbolic functions and their inverses.

5.9 Binary Arithmetic Operations

Paris includes most of the binary arithmetic operations one might expect to find in a com­
puter instruction set, as well as a number that are unusual. Most of them are provided
in both two-operand and three-operand formats. The two-operand format treats the desti­
nation field as also one of source operands; the result replaces the first input. The three­
operand format has two separate source operands, and ignores the previous contents of the
destination field. (As a rule, the three-operand format operates correctly if the destination
field is the same as one or both source fields, but may be slower than using a two-operand
format.)

add
subtract
multiply
max
min

truncate
round

{ {:~n~ant } { :~::~ } }
{ s-} {rem }{ ""' }{-2-IL}

CM: u- mod -constant -3-lL

For signed and unsigned integers, the usual addition, subtraction, and multiplication op-

28

Chapter 5. Instruction Set Overview

erations are provided, as well as max and min operations that store the larger or smaller
of the two inputs. There is no single integer division operation; four are provided, with
names that reflect the rounding or truncation that must occur when the division is not
exact. Conceptually there are four corresponding remainder operations, but only the two
most commonly used are provided in Paris.: rem, which corresponds to truncate division;
and mod, which corresponds to floor division.

{ } {
-2-1L }

CM: s- subfrom {-2-1L} u- -constant
-3-1L

Subtraction is not commutative, and so for efficiency the special case of reverse subtraction
is provided. (Division is not commutative, either, but is a sufficiently expensive operation
that the relative cost of a separate instruction to copy a constant into a temporary field
first is small. Paris therefore does not provide integer reverse division operations.)

{ } {
-3-3L}

CM: :-_ add-carry -2-1L
-3-1L

Paris allows addition and subtraction on integers hundreds of bits long; but in case that is
not enough, the usual add-carry and subtract-borrow operations, which use the carry flag as
an implicit input, are provided to allow efficient programming of very high precision integer
arithmetic.

CM: { :-_} add-flags -2-1L

The add-flags operation performs an addition and sets the flags but stores no sum. This is
useful in a few specialized situations, such as CORDlc-type calculations.

{
rv }{-2-1L} CM: s-s- ower

p -constant -3-1L

Integer exponentiation operations are provided for signed operands.

CM:f-

{
add } { '" } subtract -constant
multiply -always
divide -const-always

{
max }

:~ {-con:,an,}
f-power

{ -2-1L}
-3-1L

For floating-point numbers, the usual addition, subtraction, multiplication, and division

29

Chapter 5. Instruction Set OveMJiew

operations are provided. Note that there are unconditional versions of these operations in
Paris; they can be much faster than the conditional versions when floating-point hardware
is used. Also provided are max and min operations that store the larger or smaller of the
two inputs, a floating-point remainder operation, and an exponentiation operation.

!{ ~ }) -2-1l
. subfrom -always

CM.f-{divinto} {-constant }{-2-1l}
-const-always -3-1l

Subtraction and division are not commutative, and so for efficiency special cases of re­
verse subtraction and reverse division are provided. (Unlike the integer case, floating-point
division is sufficiently fast and sufficiently common that these special cases are worthwhile.)

{
-2-2l }

s -3-2l
CM:f- ower { u } p -constant-2-1l

-constant-3-1L

Other useful operations include exponentiating to an integer power.

CM:f-atan2-3-1l

A two-input arctangent operation is provided.

5.10 Optimized Floating-Point Computations

Paris supports compound floating-point operations that are functionally identical to se­
quences of simpler floating-point operations. The compound operations are provided purely
for the sake of efficiency; they can be implemented so to exploit floating-point hardware
more cleverly.

These compound operations perform calculations of the following forms: :r:a + b, :r:a - b,
(:r: + a)b, and (:r: - a)b, where:r: is always a field in memory, and a and b may each be either
a field or a constant.

5.11 Arithmetic Comparisons

Paris supports the usual six comparison operations =, ,#, <, :S;, >, and ;:::: for integers and
floating-point numbers.

30

Chapter 5. Instruction Set Overview

eq

ne { -2L }

CM: { :-_}:: {-con:tant} -lL

gt -zero
ge

eq
ne

CM:f-
It {-con:'.n!} -ll Ie

-zero
gt
ge

Each is available in three forms: compare two fields, compare a field to a constant, and
compare a field to zero. The integer operations also allow integer fields of differing length
to be compared.

5.12 Pseudo-Random Number Generation

Paris provides a built-in generator of uniformly distributed pseudo-random numbers.

eM: {~_-} random -lL

CM: initialize-random-generator

One may generate unsigned integers over a specified range, or floating-point numbers in the
range from 0.0 (inclusive) to 1.0 (exclusive).

5.13 Arrays

Often it is convenient to treat a large field as an array of smaller fields. These operations
allows each virtual processor to index independently into its own array.

CM:

aref

aref32 { '" } { '" } -shared -always

aset

aset32 { h"" d} -s are

-2L

Three kinds of arrays are supported. An ordinary array is laid out in memory exactly as

31

Chapter 5. Instruction Set Overview

one would expect: each processor contains its own array elements, concatenated end-to-end
to form one large field.

A so-called "fast" array is laid out in such a way that an array element logically belonging
to one processor is actually stored in memory belonging to 32 processors. The total amount
of memory involved is the same, of course, but because the data is laid out in this peculiar
manner ordinary Paris operations (such as CM:f-add-2-1L, for example) cannot properly
operate on array elements directly. Only special operations designed to operate on fast
arrays can properly fetch or store array elements; however, these special operations are
much faster than the corresponding operations on ordinary arrays.

A shared array is shared among all the virtual processors occupying a group of 32 physical
processors. This can save a great deal of memory, and is useful for lookup tables that are
the same for all processors. Of course, care is required when storing into such arrays. In
principle this sharing concept could be supported in both ordinary and fast versions, but
in fact Paris provides special operations only for fast shared arrays.

Paris also provides, for efficiency, certain compound operations that combine communi­
cation with access to a fast array.

5.14 General Conununication

The router functions (send and get) transmit data in a general fashion that allows any
processor to communicate directly with any other processor.

-overwrite
-Iogand

CM:send
-Iogior

-with -Iogxor
-IL

{ ~:--} {:~ }
-f- max

CM:send-aset32 -Iogior -2L {
-overwrite }

-u- add

{ -IL }
CM:get -aref32-2L

CM: my-send-address

Every processor within a VP set is identified by an unsigned binary integer called its
send-address. If processor A is to send a message M to processor B, then procesor A must
contain the send-address of processor B as well as the data M to be sent.

32

Chapter 5. Instruction Set Overview

For efficiency, Paris includes compound operations that combine general communication
with a fast array reference (aref32 or aset32) within the addressed processor.

5.15 NEWS Communication

The NEWS functions (send-to-nevs and get-from-nevs) organize the processors into a
multidimensional rectangular grid, and transmit data from every processor to its neighbor
along a specified grid axis. The NEWS operations are considerably more efficient, when
applicable, than using the general router mechanism.

CM: news -IL { get-from-} {"'}
send-to- -always

These operations copy data from each processor to the adjacent processor along any NEWS

axis.

my-news-coordinate
extract-news-coordinate

CM: deposit-news-coordinate -IL
deposit-news-constant
make-news-coordinate

The operation my-news-coordinate stores the NEWS coordinate of each selected processor
along a specified NEWS axis into a destination field within that processor.

The operation extract-news-coordinate defines the mapping between send-addresses and
NEWS coordinates. If 9 is a geometry, a is an axis number, and 8 is a send-address, then
extract-news-coordinate(g, a, s) is the coordinate within geometry 9 of processor 8 along the
NEWS axis described by a.

A related operation, deposit-news-coordinate, may be used to construct a send-address
given a set of coordinates by incrementally modifying a send-address one coordinate at a
time. If 9 is a geometry, s is a send-address (for a processor in that geometry), a is an axis
number, and c is a coordinate along that axis, then deposit-news-coordinate(g, s, a, c) is a
new send address 8' such that

. "{ c, if a' = a extract-news-coordmate(g, a ,8) = t t rd' t (') ·f' ..J. ex rac -news-coo zna e g, a, 8, 1 a .,. a

In other words, deposit-news-coordinate(g, s, a, c) computes a new send-address that has
exactly the same NEWS coordinates as 8 except for the coordinate on axis a, which is altered
to be c.

Another related operation, make-news-coordinate, constructs, within each selected pro­
cessor, the send-address of a processor that has a specified coordinate along a specified
NEWS axis, with all other coordinates zero. If 9 is a geometry, a is an axis number, and
c is a coordinate along a, then make-news-coordinate(g, a,c) is 8, the send-address of the
processor with coordinate c along the NEWS axis a within geometry 9 and with all other
coordinates held at zero. Thus, given a set of zero coordinates of rank(g), s',

make-news-coordinate(g, a, c) = deposit-news-coordinate(g, s', a, c) = 8

33

Chapter 5. Instruction Set Overview

In other words, make-news-coordinate is the same as deposit. new-coordinate except that it
does not need a send-address operand.

Frequently it is useful to represent several NEWS coordinate values in a single integer called
a multi-coordinate. Certain Paris operations, notably the multispread series, take a multi­
coordinate as one operand. A multi-coordinate requires no more bits for its representation
than a send address.

There are two abstract operations, extract-multi-coordinate and deposit-multi-coordinate,
for accessing and altering multi-coordinates. They are analogous to extract-news-coordinate
and deposit-news-coordinate, the difference being simply that a multi-coordinate contains
values for several news coordinates.

Suppose that 9 is a geometry, A is an axis-set, and s and t are send-addresses, and let

s' = deposit-multi-coordinate(g, s, A, extract-multi-coordinate(g, A, t»

Then s' is the same as s except that coordinates for axes in A have been replaced by
corresponding coordinates extracted from t. More formally,

t t rd' t (') {extract-newS-Coordinate(g, a, s), if a ¢ A
ex rac -news-coo ma e g, a, s = extract-news-coordinate(g, a, t), if a E A

Certain Paris instructions, most notably eM: multispread-copy-lL, require a multi-coordinate
as an argument. The simplest way to construct such an argument is to construct a send­
address and then use eM: fe-extract-multi-coordinate.

The following routines define the relationship between a processor whose send-address is
k and its neighbors in a NEWS grid.

function news-neighbor(g, k, axis, direction) is
return news-relative(g, k, axis, direction, 1)

function news-relative(g, k, axis, direction, distance) is
case direction of

: upward: let x = (extract-news-coordinate(g, axis, k) + distance)
: downward: let x = (extract-news-coordinate(g, axis, k) - distance)

let x' = x mod geometry-axis-length(g, axis)
return deposit-news-coordinate(g, k, axis, x')

5.16 Scan, Reduce, Spread, and Multispread

These operations provide extremely powerful combinations of communication and compu­
tation in regular patterns on multidimensional grids.

{
scan-with }

eM: reduce-w~th
spread-With
multispread

-copy
-Iogand
-Iogior
-Iogxor -ll

{
-s- } {a~d } -u- min
-f- max

34

Chapter 5. Instruction Set Overview

CM:scan-with-f-multiply -IL

CM:enumerate -IL

In a scan operation, every selected processor receives the result of combining source fields
from many processors. The reduce and spread operations are special cases of scans that
are particularly useful and can be made especially fast. The multispread operations are a
generalization of spread operations.

A scan operation requires that a NEWS axis be specified. The processors are thereby
divided into disjoint ordered sets of processors called scan classes. Two processors belong
to the same scan class if their NEWS coordinates differ only along that axis, and they are
ordered by their coordinates along that axis. Only active processors participate in a scan
operation; the active processors within a scan class are referred to as the scan subclass
within that scan class.

Not all the processors in a scan class contribute to the result computed for a given
processor. A scan class may be taken whole, or it may be divided into pieces in one of two
ways. Each such piece is called a scan set, and every processor belongs to just one scan
set. The scan set chosen for each processor is controlled by the smode operand and by the
purpose it assigns to the sbit operand.

• If smode is :none, then there is no one-bit field, and the sbit operand is ignored. The
scan set for a processor k is the entire scan subclass for k.

• If smode is : segment-bit, then the sbit field is a "segment bit." Operationally speaking,
a processor (selected or not) is the lowest-addressed processor in a segment if either it
is the lowest-addressed processor in its scan class or if its sbit field is 1. The segment
bit therefore divides a scan class unconditionally (that is, without respect to context)
into segments, and a scan operation is done within each segment. There are two
remarkable points here. First, the way in which a segment bit divides a scan class
does not depend on either the contezt-jlag or the direction of the scan. Second, values
from one segment never contribute to the result for any processor in another segment.

• If smode is : start-bit, then the sbit field is a "start bit." Operationally speaking, in
each selected processor in which this bit is 1, the scan operation will start over again.
The start bit therefore divides a scan subclass into pieces, and a scan operation is done
within each piece. These pieces differ from the segments determined by a segment
bit. There are three remarkable points here. First, the start bit is examined only
in selected processors. Second, the way in which a start bit divides a scan subclass
depends on the direction of the scan. Third, for an exclusive scan, a selected processor
whose start bit is 1 will receive the identity for the combining operation only ifno other
selected processor in the same scan subclass precedes it in the ordering; otherwise, it
will receive the combined values from all processors in the piece preceding it in the
ordering.

A scan operation furthermore behaves as if all the processors were passed over ("scanned")
in linear order; therefore the result computed for a given processor may depend only on

35

Chapter 5. Instruction Set Ovemew

processors below it in the ordering t or only on processors above it, depending on the direction
of the scan. For each processor k, the direction and inclusion operands determine which
processors within the scan set for k can potentially contribute to the result for k. This final,
most narrowed set of potential contributors is called the scan subset for k.

H direction is : upward, then the scan set for processor k will contain only processors
below k in the ordering. If direction is : downward, then the scan set for k will contain only
processors above k in the ordering.

H inclusion is :exclusive, then the scan set for processor k will not contain k itself. If
inclusion is : inclusive, then the scan set for k will contain k itself.

The set of processors whose source fields actually do contribute to the dest field of pro­
cessor k is called the scan subset for k. This will be a subset of the scan set for k (possibly
the entire scan set).

These concepts are embodied in the following pseudo-code routines, which are used in
the Paris Dictionary to describe the behavior of scan and other operations. These routines
define scan classes in terms of the more general concept of a hyperplane, which is any
subset of the processors obtained by holding some NEWS coordinates fixed while letting the
others range freely over their respective axes. (The hyperplane routine is also used in the
pseudo-code descriptions of the multispread operations.)

function hyperplane(g, k, axis-set) is
let other-axes = {a I 0 ~ a < rank(g)} \ axis-set
let c = extract-multi-coordinate(g, other-axes, k)
return { m I m E current-vp-set A extract-multi-coordinate(g, other-axes, m) = c}

function scan-class(g, k, axis) is
return hyperplane(g, k, { axis})

function scan-subclass(g, k, axis) is
return { m I m E scan-class(g, k, axis) A context-ftag[m] = I}

36

function scan-set(g, k, axis, direction, smode, sbit) is
let C = scan-subclass(g, k, axis)

Chapter 5. Inst1'1.£ction Set OveMJiew

function coord (s) = extract-news-coordinate(g, axis, s)
case (smode) of

(:none) :
return C

(: segment-bit) :
let Q = {m 1m E hyperplane(g,k, { axis}) /\ (sbit[m] = 1}
return {m I mE C /\ -,3j: (j E Q /\ coord(m) < coord(j) ~ coord(k))}

(: start-bit) :
let Q = {m I mE hyperplane(g, k, {axis}) /\ (sbit[m] = 1}
case (direction) of

(:upward) :
return {m I m E C /\ -,3j: (j E (C n Q) /\ coord(m) < coord(j) ~ coord(k))}

(:downward) :
return {m I m E C /\ -,3j : (j E (C n Q) /\ coord(k) ~ coord(j) < coord(m))}

function scan-subset(g, k, axis, direction, inclusion, smode, sbit) is
let S = scan-subset(g, k, axis, direction, smode, sbit)
function coord (s) = extract-news-coordinate(g, axis, s)
case (direction, inclusion) of

(:upward, :exclusive) : return {m 1m E S /\ coord(m) < coord(k)}
(:upward, :inclusive) : return {m I mE S /\ coord(m) ~ coord(k)}
(:downward, :exclusive) : return {m 1m E S /\ coord(m) > coord(k)}
(:downward, :inclusive) : return {m 1m E S /\ coord(m) ~ coord(k)}

The following table shows the results computed for various operand combinations for a
scan with unsigned addition over a set of values all of which are 1.

37

Chapter 5. Instruction Set Overview

scan-vith-u-add context-flag 1 1 1 1 0 0 0 0 1 1 0 o 1 1 1 0
sbit 0'0 1 o 0 0 1 0 0 0 o 0 0 1 0 0

source 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
direction inclusion smode

: upward : exclusive :none o 1 2 3 4 5 678
I

: downward : exclusive :none 8 7 6 5 4 3 2 1 0
E

: upward : inclusive :none 123 4 6 6 789
I

: downward : inclusive :none 9 8 7 6 6 4 321
E

: upward : exclusive : segment-bit o 1 0 1 0 1 201 - I I --: downward : exclusive : segment-bit 1 0 1 0 2 1 010 - I (-: upward : inclusive : segment-bit 1 2 1 2 1 2 312 - I) --: downward : inclusive : segment-bit 2 1 2 1 3 2 121 - E E -: upward : exclusive : start-bit o 1 2 1 2 3 451 -) --: downward : exclusive : start-bit 2 1 6 4 3 2 1 1 0 - E -: upward : inclusive : start-bit 1 2 1 2 3 4 5 1 2 - I --: downward : inclusive : start-bit 3 2 1 Q 4 3 2 1 1 - ~

A spread operation is like a scan, except that rather than producing "intermediate" or
"running" results by using scan subsets, every processor gets the result of combining the
values from every processor in the scan subclass.

A reduce operation is like a spread, except that instead of storing the result in every
processor in the scan subclass, it stores the result into only one specified processor of the
scan class.

A multispread operation is like a spread, but allows hyperplanes of any rank, not just of
rank 1, to serve as the scan classes. In this manner, for example, a single value within each
hyperplane can be replicated throughout its hyperplane.

5.17 Global Reduction Operations

A global operation combines a number of values in much the same manner as a scan or reduce
operation, but delivers the result to the front end rather than storing it in a processor field.

-Iogand
-Iogior
-Iogxor

CM:global {-s-} {a~d } -u- min
-f- max

-IL

{ -s- } u-max -intlen
-u-

All the usual combining operations are provided. In addition, the compound operation
max-intlen is provided for efficiency; it is much faster than than a separate integer-length
operation followed by a global-max operation.

38

Chapter 5. Instruction Set Overview

5.18 Memory Data Transfers

These operations simply transfer data between a field in the processor array and the front
end.

CM: {:-_} {re~d-from} {-processor} -IL
f- write-to -news-array

The operations read-from-processor and write-to-processor each transfer a single datum
(integer or floating-point).

The operations read-from-news-array and write-to-news-array can transfer entire arrays or
subarrays. Their implementation is optimized for relatively high throughput.

5.19 The LEDS

One of the most attractive features of a Connection Machine system is the array of blinking
lights on the faces of its cabinet.

CM: set-system-Ieds-mode

This operation specifies whether the lights are to be blinked automatically, or turned on
and off under user program control.

CM:latch-leds{ I'" } -a ways

These operations turn lights on and off according to the contents of a one-bit data field.

5.20 Front End Operations

Programs that use Paris operations frequently need to perform certain calculations on the
front end that are not easily expressed in the host programming language. These operations
are provided as part of the Paris library interface.

CM:fe-

from-gray-code
to-gray-code
extract -news-coord i na te
extract-multi-coordinate
deposit-news-coordinate
rna k e-news-coord in a te

These operations deal primarily with Gray codes and NEWS coordinates.

39

Chapter 5. Instruction Set Overview

5.21 Environmental Interface

These operations pertain to allocating, deallocating, initializing, and debugging the Con­
nection Machine.

eM:

attach
attached
cold-boot
detach
init
power-up
reset-timer
set-safety-mode
start-timer
stop-timer
time
warm-boot

The attach operation is used to attach the front end process to a specified portion of all
Connection Machine processors.

The attached operation returns true if the front end process actually has Connection
Machine processors attached for use.

The cold-boot operation is used to initialize the Connection Machine hardware allocated
to the executing front end.

The detach operation frees attached Connection Machine processors from the currect
front end process.

The init operation is used by the CjParis and Fortran/Paris interfaces to initialize the
Connection Machine hardware.

The power-up operation resets the Nexus, causing all front-end computers to become
logically detached from the Connection Machine system.

The set-safety-mode operation allows the user to specify the level of run-time error check­
ing to be performed by the Paris interface.

The time family of operations are used to measure both the execution and the elapsed
time taken by other operations.

The warm-boot operation is used by the Lisp/Paris interface to reinitialize the Connection
Machine system without disturbing user memory.

40

Chapter 6

The C /Paris Interface

Paris is used as a set of variables, subroutines, and macros within a program that may
be written in anyone of a number of languages. This chapter explains how to call Paris
instructions from C programs.

6.1 C/Paris Header Files

Type specification statements required for programs that access the CjParis interface are
given in the header file named

/usr/include/cm/paris.h

This header file contains four kinds of declarations that provide an environment for calling
Paris instructions from C.

• Type declarations define new data types (struct types, for example) needed for com­
munication with certain Paris operations.

• Function declarations define the result types of all CjParis function subprograms.

• Variable declarations define configuration variables that provide access to the state of
the Connection Machine system.

• #define statements define symbolic numeric constants to be used as arguments to
certain CjParis subprogram calls.

These declarations are discussed in more detail in the following sections.

6.2 C/Paris Instruction Names and Argument Types

This section describes how to call these instructions from C and what types of arguments
to pass them.

The instruction names and other names that appear in this document are spelled in a
form acceptable to Lisp (an arbitrary choice in order to have some common denominator
for the dictionary). Each name is easily converted to the corresponding C name using the
following two-part rule:

41

Chapter 6. The C/Paris Interface

• If the Lisp name begins with a colon, add "CM" to the front.

• Drop all asterisks, and convert all colons and hyphens to underscores.

This usually results in a name written in mixed case (some letters uppercase and some
lowercase). The name must be written in exactly that way, for C identifiers are case­
sensitive. (Although Lisp is not case-sensitive, all identifiers appearing in Lisp form in this
document are written in mixed case so as to produce the correct C name after applying the
conversion rules.)

Chapter 9 describes each of the Paris instructions in terms of its arguments, its effect
on operand fields residing in Connection Machine memory, and the result (if any) that
it returns to the front end. The same argument name is often used in several different
instruction definitions, but arguments with the same name always have the same type (as
viewed by the front-end C program). For example, dest is used throughout to represent the
field-id of a destination field; the field itself may be a floating-point or an integer field, the
width of which is specified by other arguments to the instruction, but to the C program the
argument is always simply a field-id.

Following is a brief description of the major classes of arguments that can be passed to
subprograms of the C/Paris interface.

6.2.1 Id Types

These are values that should be treated as abstract entities, or "black boxes." They are
created using special Paris instructions, and their actual values have no significance to the
calling C program; they are simply tokens that may be passed to other Paris routines.

vp-set-id

A value representing a virtual processor set. Its C type is CM_vp..setJd..t.

geometry-id

A value representing a geometry with a particular shape.
CM..geometry jd _to

field-id

Its C type is

A value representing a field allocated on the CM. Its C type is CMJieldjd..t.

6.2.2 Operand Field Addresses

Most Paris operations require one or more field-id's to indicate one or more regions of
Connection Machine memory to be processed. Such field-id's are obtained from memory
allocation calls. Their C type is CM_fieldjd_t.

dest, source, souTcel, souTce2

These field-ids specify fields to be used as source or destination operands of an in­
struction.

42

Chapter 6. The C/Paris Interface

send-address

This argument specifies a field that itself contains, within each processor, the send
address of a processor (possibly the same one, possibly another).

news-coordinate

This argument specifies a field that itself contains, within each processor, the NEWS

coordinate of a processor (possibly the same one, possibly another).

notify

shit

A field-id for a I-bit field to hold a result indicating receipt of a message by a send
instruction.

A field-id for a I-bit field that indicates how Paris scan operations should divide
processors into logical groups.

6.2.3 Immediate Operands

These arguments are scalar values that participate in Paris operations as if they were first
copied to every Connection Machine processor and then operated upon as if a field-id had
been supplied. Paris operations that take "immediaten operand values of this sort usually
have "constant" or "const" in their names.

source-value, source2-value

A (front-end) value or variable to be supplied as input to an instruction on the CM.
The type of value passed depends on the instruction to which it is passed. The C type
of such an immediate operand is long for a signed integer value, unsigned long for a
signed integer value, or double for a floating-point value.

send-address-value

An integer, the send address of a single particular processor. The C type of such an
immediate operand is CM..sendaddr _to

news-coordinate-value An integer, the NEWS coordinate of a single particular processor.
The C type of such an immediate operand is unsigned long.

6.2.4 Operand Field Lengths

These are integer values that specify the widths of source and destination operand fields on
the CM. Their C type is unsigned.

len, sien, slenl, slen2, dlen

An integer value designating the length (in bits) of a source field that will be treated
by the operation as a bit field, a signed integer, or an unsigned integer. It is not
unusual for this value to be 32 to match the size of C long variables on the front end,
but other lengths may be used as well-longer ones for additional precision, shorter
ones for improved speed.

43

Chapter 6. The C/Paris Interface

s, ds, 8S

An integer value designating the significand length of a floating-point field. For single­
precision (C type float) fields, this value should be 23; for double-precision (C type
double) fields, the value should be 52.

e, de, se

An integer value designating the exponent length of a floating-point field. For single­
precision (C type float) fields, this value should be 8; for double-precision (C type
double) fields, the value should be 11.

6.2.5 Miscellaneous Signed and Unsigned Values

Both signed and unsigned Paris quantities are represented in C by variables and values
whose C type is unsigned long. These are variously referred to, depending on their roles
within particular operati,ons, under the following names:
offset, axis, axis-length, coordinate, rank, multi-coordinate

6.2.6 Bit Sets and Masks

Arguments representing sets taken from universes of up to 31 elements are represented as
integer values, where the bit whose value is 2i is 1 to indicate that element j is in the set.
Their C type is unsigned long.

At present, the only universe of interest in Paris is axis-mask, the set of axes for a given
geometry.

6.2.7 Vectors of Integers

These arguments should be represented as C one-dimensional arrays whose elements are of
C type unsigned. The maximum size of these vectors is 31.
axis-vector, start-vector, offset-vector, end-vector, dimension-vector

6.2.8 Multi-dimensional Front-end Arrays

Multi-dimensional front-end arrays of any C integer or floating-point type can be transferred
to and from CM memory using a single instruction (see section 5.18).
front-end-array

Such an array is passed simply by mentioning the name of the array.

6.2.9 Symbolic Values

The symbolic constants defined in #define statements in the C/Paris header file should be
used when supplying values for these arguments:

direction

One of the values CM-upward or CM.downward, indicating the direction of a scan,
NEWS, or other instruction.

44

Chapter 6. The C/Paris Interface
.•..•.•.•.•........••........•....•.... ' ..•. .:.: ... : ..• -.:-:->

inclusion

One of the values CM_exciusive or CMjnclusive, indicating the boundaries of a scan
instruction.

smode

One of the values CMJlone, CMJtart..bit, or CMJegment..bit, indicating how a scan
operation is to be partitioned.

There are other symbolic values as well, but these are the most important. All names
are formed by the standard rule: starting from a Lisp name such as : start-bit, add "eM" to
the front and then convert colons and hyphens to underscores, yielding CM-start..bit.

6.3 C/Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section?? for a list. The C/Paris interface makes
these variables accessible through variables declared in the C/Paris header file. They are
initialized in an application program by a call to the subroutine CMjnit and should not be
changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM-physicaLprocessorsJimit is a value that depends
upon the size of the Connection Machine to which the application is attached.

Numeric values that are constant for a given release of the CM System Software are given
in #define statements.

6.4 Calling Paris from C

This section describes how to build C programs that access the Paris instruction set using
the C/Paris interface. Such programs must manage the dynamic allocation and deallocation
of Connection Machine fields directly. This section describes the form of C main programs
and subprograms that call the C/Paris interface, as well as the steps involved in compiling
and linking such programs.

The following code fragment illustrates the structure of a C main program that calls Paris
instructions.

#include <cm/paris.h>

mainO {
CM_initO;

if (CM_configuration_variable > limit) ...

45

Chapter 6. The C/Paris Interface

}

Note that the call to CMjnit is required prior to any other calls to Paris instructions.
The following code fragment illustrates the structure of a C subroutine subprogram that

calls Paris instructions.

#include <cm/paris.h>

float test() {

if (CM_configuration_variable > limit) ...

}

It looks exactly like a main program in its use of Paris, except that a subprogram should
not call CMjnit.

Use the following command to compile and link these program units:

Yo cc main.c test.c -lparis

To compile and link these program units for execution under the simulator, use the following
cc command:

Yo cc main.c test.c -lparissim

Note that there should be no space between the -I option and its argument.

46

Chapter 7

The Fortran/Paris Interface

Paris is used as a set of variables and subroutines within a program that may be written
in anyone of a number of languages. This chapter explains how to call Paris instructions
from Fortran programs, especially those compiled by VAX Fortran and Sun Fortran.

The Fortran/Paris interface is itself an interface to C/Paris (see chapter 6).

7.1 Fortran/Paris Header Files

Type specification statements required for programs that access the Fortran/Paris interface
are given in the header file named

/usr/include/cm/paris-configuration-fort.h

This header file contains three kinds of declarations that provide an environment for calling
Paris instructions from Fortran.

• Type specification statements define the result types of all Fortran/Paris function
subprograms.

• A declaration of a conunon block named cmval defines configuration variables that
provide access to the state of the Connection Machine system.

• PARAMETER statements define symbolic numeric constants to be used as arguments
to certain Fortran/Paris subprogram calls.

These declarations are discussed in more detail in the following sections.

7.2 Fortran/Paris Instruction Names and Argument Types

This section describes how to call these instructions from Fortran and what types of argu­
ments to pass them.

The instruction names and other names that appear in this document are spelled in a
form acceptable to Lisp (an arbitrary choice in order to have some conunon denominator
for the dictionary). Each name is easily converted to the corresponding Fortran name using
the following two-part rule:

47

Chapter 7. The Fortran/Paris Interface

• If the Lisp name begins with a colon, add "CM" to the front.

• Drop all asterisks, and convert all colons and hyphens to underscores.

It is also permissible to convert names to entirely uppercase letters if desired, as Fortran
identifiers are not case-sensitive.

Chapter 9 describes each of the Paris instructions in terms of its arguments, its effect on
operand fields residing in Connection Machine memory, and the result (if any) that it returns
to the front end. The same argument name is often used in several different instruction
definitions, but arguments with the same name always have the same type (as viewed by the
front-end Fortran program). For example, dest is used throughout to represent the field-id
of a destination field; the field itself may be a floating-point or an integer field, the width
of which is specified by other arguments to the instruction, but to the Fortran program the
argument is always simply a field-id.

Following is a brief description of the major classes of arguments that can be passed to
subprograms of the Fortran/Paris interface.

7.2.1 Id Types

These are integer values that should be treated as abstract entities; or "black boxes." They
are created using special Paris instructions, and their actual values have no significance
to the calling Fortran program; they are simply tokens that may be passed to other Paris
routines. Their Fortran type is INTEGER.

vp-set-id

An integer value representing a virtual processor set.

geometry-id

An integer value representing a geometry with a particular shape.

field-id

An integer value representing a field allocated on the CM.

7.2.2 Operand Field Addresses

Most Paris operations require one or more field-id's to indicate one or more regions of
Connection Machine memory to be processed. Such field-id's are obtained from memory
allocation calls. Their Fortran type is INTEGER.

dest, source, source1, source2

These field-ids specify fields to be used as source or destination operands of an in­
struction.

send-address

This argument specifies a field that itself contains, within each processor, the send
address of a processor (possibly the same one, possibly another).

48

Chapter 7. The Fortran/Paris Interface

news-coordinate

This argument specifies a field that itself contains, within each processor, the NEWS

coordinate of a processor (possibly the same one, possibly another).

notify

sbit

A field-id for a I-bit field to hold a result indicating receipt of a message by a send
instruction.

A field-id for a I-bit field that indicates how Paris scan operations should divide
processors into logical groups.

7.2.3 Immediate Operands

These arguments are scalar values that participate in Paris operations as if they were first
copied to every Connection Machine processor and then operated upon as if a field-id had
been supplied. Paris operations that take "immediate" operand values of this sort usually
have "constant" or "const" in their names.

The Fortran type of such an inunediate operand is INTEGER for an integer value, or
DOUBLE-PRECISION for a floating-point value.

source-value, source2-value

A (front-end) value or variable to be supplied as input to an instruction on the CM.
The type of value passed depends on the instruction to which it is passed.

send-address-value

An integer, the send address of a single particular processor.

news-coordinate-value An integer, the NEWS coordinate of a single particular processor.

7.2.4 Operand Field Lengths

These are integer values that specify the widths of source and destination operand fields on
the CM. Their Fortran type is INTEGER.

len, sIen, slenl, slen2, dlen

An integer value designating the length (in bits) of a source field that will be treated
by the operation as a bit field, a signed integer, or an unsigned integer. It is not
unusual for this value to be 32 to match the size of Fortran INTEGER variables on the
front end, but other lengths may be used as well-longer ones for additional precision,
shorter ones for improved speed.

s, ds, ss

An integer value designating the significand length of a floating-point field. For single­
precision (Fortran type REAL) fields, this value should be 23; for double-precision
(Fortran type DOUBLE PRECISION) fields, the value should be 52.

49

Chapter 7. The Fortran/Paris Interface
::::.::=::::::::::::.: ... '.:.' ••..

e, de, se

An integer value designating the exponent length of a floating-point field. For single­
precision (Fortran type REAL) fields, this value should be 8; for double-precision (For­
tran type DOUBLE PRECISION) fields, the value should be 11.

7.2.5 Miscellaneous Signed and Unsigned Values

Both signed and unsigned Paris quantities are represented in Fortran by variables and values
whose Fortran type is INTEGER. These are variously referred to, depending on their roles
within particular operations, under the following names:
offset, azis, azis-length, coordinate, rank, multi-coordinate

7.2.6 Bit Sets and Masks

Arguments representing sets taken from universes of up to 31 elements are represented as
integer values, where the bit whose value is 2j is 1 to indicate that element j is in the set.
Their Fortran type is INTEGER.

At present, the only universe of interest in Paris is azis-mask, the set of axes for a given
. geometry.

7.2.7 Vectors of Integers

These arguments should be represented as Fortran one-dimensional INTEGER arrays. The
maximum size of these vectors is 31.
azis-vector, start-vector, offset-vector, end-vector, dimension-vector

7.2.8 Multi-dimensional Front-end Arrays

Multi-dimensional front-end arrays of Fortran type LOGICAL, INTEGER, REAL, or DOUBLE
PRECISION can be transferred to and from eM memory using a single instruction (see section
5.18).
front-end-array

Such an array is passed simply by mentioning the name of the array.

7.2.9 Symbolic Values

The symbolic constants defined in PARAMETER statements in the Fortran/Paris header file
should be used when supplying values for these arguments:

direction

One of the values CM..upward or CM_downward, indicating the direction of a scan,
NEWS, or other instruction.

inclusion

One of the values CM_exciusive or CMjnclusive, indicating the boundaries of a scan
instruction.

50

Chapter 7. The Fortran/Paris Interface

smode

One of the values CM../lone, CM..start..bit, or CM..segment..bit, indicating how a scan
operation is to be partitioned.

There are other symbolic values as well, but these are the most important. All names
are formed by the standard rule: starting from a Lisp name such as :start-bit, add "eM" to
the front and then convert colons and hyphens to underscores, yielding CM..start..bit.

7.3 Fortran/Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section ?? for a list. The Fortran/Paris interface makes
these variables accessible through variables declared in the common block named cmval,
defined by the Fortran/Paris header file. They are initialized in an application program by
a call to the subroutine CMJnit and should not be changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM..physicaLprocessorsJimit is a value that depends
upon the size of the Connection Machine to which the application is attached. Most of
these configuration variables are declared to be of Fortran type INTEGER.

Numeric values that are constant for a given release of the CM System Software are also
given in PARAMETER statements.

7.4 Calling Paris from Fortran

This section describes how to build Fortran programs that access the Paris instruction set
using the Fortran/Paris interface. Such programs must manage the dynamic allocation
and deallocation of Connection Machine fields directly. This section describes the fonn of
Fortran main programs and subprograms that call the Fortran/Paris interface, as well as
the steps involved in compiling and linking such programs.

The following code fragment illustrates the structure of a Fortran main program that
calls Paris instructions.

PROGRAM main
C VAX Fortran or Sun Fortran

INCLUDE '/usr/include/cm/paris-configuration-fort.h'
CALL CM_ini to

CALL CM_paris_instruction(. ..)

IF (CM_configuration_variable .GT. limit)

END

51

Chapter 7. The Fortran/Paris Interface

Note that the call to CMjnit is required prior to any other calls to Paris instructions.
The following code fragment illustrates the structure of a Fortran subroutine subprogram

that calls Paris instructions.

SUBROUTINE test
C VAX Fortran or Sun Fortran

INCLUDE '/usr/include/cm/paris-configuration-fort.h'

IF (CM_configuration_variable .GT. limit)

END

It looks exactly like a main program in its use of Paris, except that a subprogram should
not call CMjnit.

Using VAX Fortran, the following command compiles and links these program units to
run on the Connection Machine Model 2:

1. fort main. for test.for -lparis

To compile and link these program units for execution under the simulator, use the following
fort command:

1. fort main. for test.for -lparissim

Note that there should be no space between the -I option and its argument.
The command to compile and link these program units using the Sun Fortran compiler

is quite similar:

1. f77 main.f test.f -lparis

To compile and link these VAX Fortran program units for execution under the simulator,
use the following f77 command:

1. f77 main.f test.f -lparissim

Note that there should be no space between the -I option and its argument.

52

Chapter 8

The Lisp /Paris Interface

Paris is used as a set of variables, subroutines, and macros within a program that may
be written in anyone of a number of languages. This chapter explains how to call Paris
instructions from Lisp programs.

S.l Lisp/Paris Instruction Names and Argument Types

This section describes how to call these instructions from Lisp and what types of arguments
to pass them.

The instruction names and other names that appear in this document are spelled in a
form acceptable to Lisp (an arbitrary choice in order to have some common denominator
for the dictionary).

Although Lisp is not case-sensitive, all identifiers appearing in Lisp form in this document
are written in mixed case so as to produce the correct C name after applying certain
conversion rules. The Lisp programmer may write names entirely in uppercase letters or
entirely lowercase letters, if desired.

Chapter 9 describes each of the Paris instructions in terms of its arguments, its effect on
operand fields residing in Connection Machine memory, and the result (if any) that it returns
to the front end. The same argument name is often used in several different instruction
definitions, but arguments with the same name always have the same type (as viewed by
the front-end Lisp program). For example, dest is used throughout to represent the field-id
of a destination field; the field itself may be a floating-point or an integer field, the width
of which is specified by other arguments to the instruction, but to the Lisp program the
argument is always simply a field-id.

Following is a brief description of the major classes of arguments that can be passed to
subprograms of the Lisp/Paris interface.

S.1.1 Id Types

These are values that should be treated as abstract entities, or "black boxes." They are
created using special Paris instructions, and their actual values have no significance to the
calling Lisp program; they are simply tokens that may be passed to other Paris routines.

vp-set-id

53

Chapter 8. The Lisp/Paris Interface

An integer value representing a virtual processor set.

geometry-id

A structure of type eM: geometry-id representing a geometry with a particular shape.

field-id

An integer value representing a field allocated on the CM.

8.1.2 Operand Field Addresses

Most Paris operations require one or more field-id's to indicate one or more regions of
Connection Machine memory to be processed. Such field-id's are obtained from memory
allocation calls. Their Lisp type is integer.

dest, source, source1, source2

These field-ids specify fields to be used as source or destination operands of an in­
struction.

send-address

This argument specifies a field that itself contains, within each processor, the send
address of a processor (possibly the same one, possibly another).

news-coordinate

This argument specifies a field that itself contains, within each processor, the NEWS

coordinate of a processor (possibly' the same one, possibly another).

notify

sbit

A field-id for a I-bit field to hold a result indicating receipt of a message by a send
instruction.

A field-id for a I-bit field that indicates how Paris scan operations should divide
processors into logical groups.

8.1.3 Immediate Operands

These arguments are scalar values that participate in Paris operations as if they were first
copied to every Connection Machine processor and then operated upon as if a field-id had
been supplied. Paris operations that take "immediate" operand values of this sort usually
have "constant" or "const" in their names.

The Lisp type of such an immediate operand is integer for an integer value, or float for a
floating-point value (any of the several kinds of Common Lisp floating-point numbers may
be supplied).

source-value, source2-value

A (front-end) value or variable to be supplied as input to an instruction on the CM.
The type of value passed depends on the instruction to which it is passed.

54

Chapter 8. The Lisp/Paris Interface
:'::':"::::::'"

send-address-value

An integer, the send address of a single particular processor.

news-coordinate-value An integer, the NEWS coordinate of a single particular processor.

8.1.4 Operand Field Lengths

These are integer values that specify the widths of source and destination operand fields on
the OM. Their Lisp type is integer.

len, slen, slenl, slen2, dlen

An integer value designating the length (in bits) of a source field that will be treated
by the operation as a bit field, a signed integer, or an unsigned integer. It is not
unusual for the programmer to choose this value to match the size of Lisp fixnum
variables on the front end, but other lengths may be used as well-longer ones for
additional precision, shorter ones for improved speed.

s, ds, ss

An integer value designating the significand length of a floating-point field. Floating­
point numbers of any size are supported, but certain values must be used for good
performance on the hardware floating-point accelerator. For single-precision (Lisp
type single-float) fields, this value should be 23; for double-precision (Lisp type double­
float) fields, the value should be 52.

e, de, se

An integer value designating the exponent length of a floating-point field. Floating­
point numbers of any size are supported, but certain values must be used for good
performance on the hardware floating-point accelerator. For single-precision (Lisp
type single-float) fields, this value should be 8; for double-precision (Lisp type double­
float) fields, the value should be 11.

8.1.5 Miscellaneous Signed and Unsigned Values

Both signed and unsigned Paris quantities are represented in Lisp by variables and values
whose Lisp type is integer. These are variously referred to, depending on their roles within
particular operations, under the following names:
offset, axis, axis-length, coordinate, rank, multi-coordinate

8.1.6 Bit Sets and Masks

Arguments representing sets taken from universes of up to 31 elements are represented as
integer values, where the bit whose value is 2; is 1 to indicate that element j is in the set.
Their Lisp type is integer.

At present, the only universe of interest in Paris is axis-mask, the set of axes for a given
geometry.

55

Chapter 8. The Lisp/Paris Interface

8.1.1 Vectors of Integers

These arguments should be represented as Lisp vectors (one-dimensional arrays)i they may
be specialized vectors, capable of holding integers only, or general vectors, capable of holding
any Lisp objects but into which only integers happen to have been stored. The maximum
size of these vectors is 31.
axis-vector, start-vector, offset-vector, end-vector, dimension-vector

8.1.8 Multi-dimensional Front-end Arrays

Multi-dimensional front-end arrays, whether specialized or general, can be transferred to
and from CM memory using a single instruction (see section 5.18).
front-end-array

Such an array is passed simply by mentioning the name of the array.

8.1.9 Symbolic Values

These symbolic constants should be used when supplying values for these arguments:

direction

One of the values: upward or : downward, indicating the direction of a scan, NEWS, or
other instruction.

inclusion

One of the values : exclusive or : inclusive, indicating the boundaries of a scan instruc­
tion.

smode

One of the values: none, : start-bit, or : segment-bit, indicating how a scan operation is
to be partitioned.

There are other symbolic values as well, but these are the most important.

8.2 Lisp/Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section 11 for a list. The Lisp/Paris interface makes these
variables available. They are initialized in an application program by a call to subroutine
CM:cold-boot and should not be changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM: *pysical-processors-limit* is a value that depends
upon the size of the Connection Machine to which the application is attached.

56

Chapter 8. The Lisp/Paris Interface

8.3 Calling Paris from Lisp

This section describes how to build Lisp programs that access the Paris instruction set
using the Lisp/Paris interface. Such programs must manage the dynamic allocation and
deallocation of Connection Machine fields directly. This section describes the form of Lisp
main programs and subprograms that call the Lisp/Paris interface, as well as the steps
involved in compiling and linking such programs.

The following code fragment illustrates the structure of a Lisp function program that
calls Paris instructions.

(defun test (...)

(CM:paris-instruction ...)

(if (> CM:configuration-variable limit) ...)

)

Remember that CM:cold-boot should be called once before beginning a computation that
uses Paris; it is not appropriate to call CM: cold-boot on entrance to every function.

57

Chapter 9

Dictionary of Paris Instructions

9.1 Conventions for Alphabetizing

The operations and variables in this dictionary are ordered alphabetically, but with certain
conventions that cause parts ofthe names to be ignored. The purpose is to ignore "prefixes"
and "suffixes" in the name so as to group instructions that have the same main operation
name.

• If the name contains a colon (and most do), the colon and any characters preceding
it (usually "CM") are ignored.

• If the name begins with "fe-" then those three characters are dropped.

• Similarly, if the name begin with a single letter followed by a hyphen, those two
characters are dropped.

• Similarly, if the name contains a single letter (or digit) surrounded by hyphens, each
such letter (or digit) and the hyphen following it are dropped.

• .AJ.t.y occurrence of the modifier subsequence "-constant-" or "-const-" or "-always-" is
replaced by a single hyphen.

• If the name ends in a hyphen, a digit, and the letter "L" then those three characters
are dropped.

• .AJ.t.y asterisks in the name are dropped.

These rules are to be applied repeatedly and in any order until a name is reduced to a
form where none of the rules apply.

The running heads on the top outside corners of the dictionary pages show the names
with characters dropped according to these rules. Any ties in the ordering are broken by
reconsidering letters dropped by the preceding rules.

As an example, CM:s-logcount-2-2L and CM:u-logcount-2-2L appear together (and in
that order). As another example, CM: extract-news-coordinate-ll and CM: fe-extrac:t-news­
coordinate appear together (and in that order).

59

Chapter 9. Dictionary of Paris In.structions

9.2 Programming Language Syntax

Paris is not a single language, but rather a library to be used within any of several program­
ming languages, including C, Fortran, and Lisp. These languages have different syntactic
conventions for names, operations, and procedure calls. This dictionary strikes a compro­
mise among these conventions that a.llows straightforward transformations into the specific
syntax of any of these languages. See chapters 6, 7, and 8 for information about language­
specific aspects of the Paris interface.

9.2.1 Syntax of Names

All names in this dictionary are presented in Lisp syntax (specifica.lly, that of Common
Lisp). A simple rule is given below for converting such names to C or Fortran syntax.

Lisp a.llows names to contain hyphens, asterisks, and colons, among other characters. For
the Lisp interface, Paris follows Common Lisp conventions for names:

• Words in a multi word name are separated with hyphens.

• The name of a global variable is surrounded with asterisks.

• Related names are grouped into a single package, indicated by a common prefix ending
with a colon. Paris uses the prefix CM: for this purpose. Certain names used as
constants, ca.lled keywords, have a null prefix, and therefore begin with a colon.

These rules are applied in the order given. Examples of names are CM:set-system-leds-mode,
CM: s-add-2-1L, : news-order (a keyword), and CM: *maximum-exponent-Iength* (a global vari­
able).

Lisp and Fortran are not case-sensitive, but C is. In this dictionary the Lisp names are
written with both upper-case and lower-case letters, as appropriate, to a.llow easy translation
into C syntax. Lisp also a.llows names of any length, but Paris names have been limited to
30 characters to satisfy C and Fortran conventions.

The rule for translating a Lisp name to a C or Fortran name has two parts.

• IT the Lisp name begins with a colon, first add "CM" to the front.

• Then drop a.ll asterisks, and convert a.ll colons and hyphens to underscores.

Thus the example Lisp names shown above become CM..set..systemJeds.mode,
CM..s....add.2J.L, CM..news..order, and CM_maximum_exponentJength in C syntax.

For Fortran, this assumes a compiler that accepts 31-character names and permits un­
derscores in names.

9.2.2 Pseudocode Instruction Descriptions

For most of the instructions two descriptions of the operation are given. One is in English,
and the other is in pseudocode. The pseudocode is written in an ad hoc combination
of programming constructs, mathematical notation, and occasional dabs of English. For
the most part the notation should be self-explanatory, but several features deserve special
remarks.

60

Chapter 9. Dictionary of Paris Instructions

The constructs "let z = y" and "z ~ y" are superficially similar; each causes z to have
the value y. There are two differences, however. First, a "let" statement merely defines a
temporary variable for later use in the pseudocode description of that instruction, whereas
an arrow assignment represents an actual effect on the eM machine state (usually in the
processor memories) that may be detected by subsequent Paris operations. Second, a "let"
statement is assumed to give z the precise mathematical value computed for y, whereas
an arrow assignment may have to truncate, round, or otherwise approximate the infinitely
precise mathematical result before storing it.

When referring to actual machine state, square brackets are used to indicate a particular
processor. For example, if dest names a field, then dest [k J refers to the contents of that field
within processor k. Actual subscripts are used rather than square brackets for temporary
quantities; thus one has "dest[kJ ~ I" but "let Sk = I" because the latter does not involve
machine state.

Angle brackets are used to select bits within a field (or sometimes within an integer value,
to be regarded as a field of bits in binary representation). For example, dest[kJ(O) is the
least significant bit of the field dest within processor k, and dest[kJ(O : 3) is the four least
significant bits.

Multiplication is always indicated explicitly by the symbol x, never by juxtaposition. The
notation L z J means the floor of z, the largest integer that is not greater than:l:; L 3.5 J = 3
and l-3.5 J = - 4. The notation r z 1 means the ceiling of z, the smallest integer that is not
less than z; r3.51 = 4 and r -3.51 = -3.

The symbols" 1\, V, and EEl respectively represent logical (or bitwise, if appropriate)
NOT, AND, inclusive OR, and exclusive OR.

The symbols n represents set intersection; U is set union; \ is set difference (thus A \ B
is the set of elements of A that are not in B); and E is the set inclusion predicate (and so
z E A is true if z is an element of A).

Other mathematical notations are used freely, including square roots, summation signs,
and set notation. The purpose of the pseudocode is to provide a clear explanation of the
results of an operation, not to provide clues to performance; the particular algorithm shown
is not necessarily the one used in the implementation.

61

ABS

F-ABS

Computes, in each selected processor, the absolute value of a floating-point source field and
stores it in the destination field.

Formats CM:f-abs-l-lL
CM:f-abs-2-1L

dest / source, s, e
dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same forInat.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-Jlag[k] = 1 then

if source[k] ~ 0 then dest[k] +- source[k]
else dest[k] +- -source[k]

The absolute value of the source operand is placed in the dest operand. If the source operand
is a NaN, then it is. copied unchanged.

63

ASS

S-ABS

Computes the absolute value of a signed integer source field and stores it in the destination
field.

Formats CM: s-abs-l-ll dest/ source, len
CM:s-abs-2-1l dest, source, len
CM:s-abs-2-2l dest, source, dIen, slen

Operands dest The signed integer destination field.

The signed integer source field. source

len

dlen

slen

The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

The length of the source field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-Iength*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] ;::: 0 then dest[k] - source[k]
else dest[k] - -source[k]
if (overflow occurred in processor k) then overftow-flag[k] - 1
else overflow-flag[k] - 0

The absolute value of the source operand is placed in the dest operand. (If the length of
the dest field equals the length n of the source field, overflow can occur only if the source
field contains _2R. If the length of the dest field is greater than the length of the source
field, then overflow cannot occur.)

64'

i
\

ACOS

F-ACOS

Computes, in each selected processor, the arc cosine of the floating-point source field and
stores it in the floating-point destination field.

Formats CM:f-acos-l-lL dest/source, s, e
CM:f-acos-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is less than -1 or greater than 1; otherwise it is
cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +-- cos-1 source[k]
if source[k] < -1 or source[k] > 1 then

test-flag[k] +-- 1
else

test-flag[k] +-- 0

The arc cosine of the value of the source field is stored into the dest field.

65

ACOSH

F-ACOSH

Computes, in each selected processor, the arc hyperbolic cosine of the floating-point source
field and stores it in the floating-point destination field.

Formats CM:f-acosh-l-ll dest/source, s, e
CM:f-acosh-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field.

Overlap

Flags

source

s, e The significand and exponent lengths for the dest and source fields.
The total ~ength of an operand in this format is s + e + 1.

The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

test-flag is set if the source is less than 1; otherwise it is cleared.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- cosh-1 source[k]
if source < 1 then test-flag[k] +- 1
else test-flag[k] +- 0
if (overflow occurred in processor k) then overflow-flag[k] +- 1

The arc hyperbolic cosine of the value of the source field is stored into the dest field.

66

ADD

F-ADD

The sum of two floating-point SOUIce values is placed in the destination field.

Formats CM:f-add-2-1L
CM :f-add-always-2-1L
CM:f-add-3-1L
CM: f-ad d-always-3-1L
CM: f-add-constant-2-1L
CM: f-add-const-always-2-1L
CM :f-add-constant-3-1L

dest/ souree1, souree2, s, e
dest/soureel, souree2, s, e
dest, souree1, souree2, s, e
dest, souree1, souree2, s, e
dest/ soureel, souree2-value, s, e
dest! souree1, souree2-value, s, e
dest, souree1, souree2-value, s, e

CM:f-add-const-always-3-1L dest, soureel, source2-value, s, e

Operands dest The floating-point destination field.

The floating-point first SOUIce field.

The floating-point second SOUIce field.

soureel

souree2

souree2-value A floating-point inunediate operand to be used as the second
SOUIce.

s, e The significand and exponent lengths for the dest, so uree1 , and
souree2 fields. The total length of an operand in this format is
s+e+1.

Overlap The fields souree1 and souree2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set iffloating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the eurrent-vp-set do
if (always or eontext-flag[k] = 1) then

dest[k] +- sourcel[k] + souree2[k]
if (overflow occUIred in processor k) then overftow-ftag[k] +- 1

Two operands, souree1 and souree2, are added as floating-point numbers. The result is
stored into memory. The various operand formats allow operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.

67

ADD

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.

68

ADD

S-ADD

The sum of two signed integer source values is placed in the destination field. Carry-out
and overflow are also computed.

Formats CM:s-add-3-3L dest, source1, source2, dlen, slen1, slen2
CM:s-add-2-1L dest/source1, source2, len
CM:s-add-3-1L dest, souree1, source2, len
CM:s-add-constant-2-1L dest/source1, source2-value, len
CM:s-add-constant-3-1L dest, source1, source2-value, len

Operands dest The signed integer destination field.

The signed integer first source field.

The signed integer second source field.

Overlap

Flags

Context

source1

source2

source2-value A signed integer immediate operand to be used as the second

len

dlen

slen1

slen2

source.

The length of the dest, souree1, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length*.

For CM: s-add-3-3L, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

For CM: s-add-3-3L, the length of the source1 field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

For CM: s-add-3-3L, the length ofthe source2 field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

The fields souree1 and souree2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth­
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

69

ADO

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- source1[k] + source2[k]
carry-flag[k] +- (carry out in processor k)
if (overflow occurred in processor k) then overflow-flag[k] +- 1
else overflow-flag[k] +- 0

Two operands, source1 and source2, are added as signed integers. The result is stored into
the memory field dest. The various operand formats allow operands to be either memory
fields are constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag may be affected by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

The constant operand source2-value should be a signed integer front-end value. The op­
eration is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

70

ADD

U-ADD

The sum of two unsigned integer source values is placed in the destination field. Carry-out
and overflow are also computed.

Formats CM: u-add-3-3L
CM: u-add-2-1L
CM: u-add-3-1L
eM: u-add-constant-2-1L
CM: u-add-constant-3-1L

dest, souree1, souree2, dlen, slen1, slen2
destlsouree1, souree2, len
dest, souree1, souree2, len
dest I souree1, souree2-value, len
dest, souree1, souree2-value, len

Operands dest The unsigned integer destination field.

The unsigned integer first source field.

The unsigned integer second source field.

Overlap

Flags

Context

souree1

souree2

souree2-value An unsigned integer inunediate operand to be used as the

len

dlen

slen1

slen2

second source.

The length of the dest, souree1, and souree2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

For CM: u:-add-3-3L, the length of the dest field. This must be non­
negative and no greater than CM: *maximum-integer-Iength*.

For CM: u-add-3-3L, the length of the souree1 field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

For CM: u-add-3-3L, the length of the souree2 field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

The fields souree1 and souree2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth­
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

71

ADD

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- sourcel[k] + source2[k]
carry-flag[k] +- (carry out in processor k)
if (overflow occurred in processor k) then overfLow-flag[k] +- 1
else overflow-flag[k] +- 0

Two operands, sourcel and source2, are added as unsigned integers. The result is stored into
the memory field dest. The various operand formats allow operands to be either memory
fields are constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag are altered by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. The
operation is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

72

ADD-CARRY

S-AD D-CARRY

The sum of the carry-flag and two signed integer source values is placed in the destination
field. Carry-out and overflow are also computed.

Formats CM:s-add-carry-3-3L dest, souree1, source2, dlen, slenl, slen2
CM:s-add-carrY-2-1L destlsourcel, source2, len
CM:s-add-carry-3-1L dest, souree1, source2, len

Operands dest The signed integer destination field.

The signed integer first source field.

The signed integer second source field.

Overlap

Flags

Context

sourcel

source2

len

dlen

slen1

slen2

The length of the dest, source1, and source2 fields. This must
be no smaller than 2 but no greater than CM:.maximum-integer­
length •.

For CM: s-add-carry, the length of the dest field. This must be no
smaller than 2 but no greater than CM: .maximum-integer-Iength •.

For CM:s-add-carry, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM: .maximum-integer­
length •.

For CM:s-add-carry, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:.maximum-integer­
length •.

The fields source1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth­
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flags· may be altered only
in processors whose context-flag is 1.

73

ADO-CARRY

Definition For every virtual processor k in the current-vp-set do
if context-flag[k) = 1 then

dest[k) +- source1[k) + source2[k] + carry-flag[k]
carry-flag[k] +- (carry out in processor k)
if (overflow occurred in processor k) then overjlow-flag[k] +- 1
else overflow-flag{ k] +- 0

Two operands, sourcel and source2, are added as signed integers. The carry-flag is used as
the carry-in to the low-order bits; the net effect is to compute the sum of source1, source2,
and carry-flag. The various operand formats allow operands to be either memory fields are
constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag may be affected by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

74

ADD-CARRY

U-ADD-CARRY

The sum of the carry-flag and two unsigned integer source values is placed in the destination
field. Carry-out and overflow are also computed.

Formats CM: u-add-carry-3-3L
CM: u-add-carry-2-1L
CM: u-add-carry-3-1 L

dest, souree1, source:!, dlen, slen1, slen:!
dest! source1, source:!, len
dest, source1, source:!, len

Operands dest The unsigned integer destination field.

Overlap

Flags

Context

source1

source:!

len

dlen

slen1

slen:!

The unsigned integer first source field.

The unsigned integer second source field.

The length of the dest, source1, and source:! fields. This must be
non-negative and no greater than CM:-*maximum-integer-Iength*.

For CM:u-add-carry-3-3L, the length of the dest field. This must be
non-negative and no greater than CM: *maximum-integer-Iength*.

For CM: u-add-carry-3-3L, the length of the souree1 field. This
must be non-negative and no greater than CM: *maximum-integer­
length •.

For CM: u-add-carry-3-3L, the length of the souree:! field. This
must be non-negative and no greater than CM: *maximum-integer­
length ••

The fields source1 and source:! may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Twointeger
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth­
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

75

ADD-CARRY

Definition For every virtual processor k in the current-vp-set do
if context-fiag[k] = 1 then

dest[k] to- sourcel[k] + source2[k] + carry-flag[k]
carry-flag[k] to- (carry out in processor k)
if (overflow occurred in processor k) then overfiow-flag[k] to- 1
else overflow-flag[k] to- 0

Two operands, source1 and source2, are added as unsigned integers. The carry-flag is used
as the carry-in to the low-order bits; the net effect is to compute the sum of source1, source2,
and carry-flag. The various operand formats allow operands to be either memory fields are
constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag may be affected by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

76

ADD-FLAGS

S-ADD-FLAGS

The carry-out and overflow are computed for the sum of two signed integer source values.
The sum itself is not stored.

Formats CM:s-add-flags-2-1L souree1, source2, len

Operands dest The signed integer destination field.

The signed integer first source field.

The signed integer second source field.

Overlap

Flags

source1

source2

len The length of the dest, souree1, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length •.

The fields source1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth­
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The flags may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

Compute source1[k] + source2[k]
carry-flag[k] +- (carry out in processor k)
if (overflow occurred in processor k) then overflow-flag[k] +- 1
else overflow-flag[k] +- 0

Two operands, source1 and source2, are added as signed integers. The sum is not stored;
only the carry-flag and overflow-flag are affected.

17

ADD-FLAGS

U-AD D-FLAGS

The carry-out and overflow are computed for the sum of two unsigned integer source values.
The sum itself is not stored.

Formats CM:u-add-flags-2-11 souree1, source2, len

Operands dest The unsigned integer destination field.

The unsigned integer first source field.

The unsigned integer second source field.

sourcel

soufce2

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there is a carry-out from the high-order bit position; oth-
. erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The flags may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

Compute sourcel[k] + source2[k]
carry-flag[k] +- (carry out in processor k)
if (overflow occurred in processor k) then overflow-flag[k] +- 1
else overflow-flag[k] +- 0

Two operands, sourcel and source2, are added as unsigned integers. The sum is not stored;
only the carry-flag and overflow-flag are affected.

78

ADD-MULT

F-ADD-MULT

Calculates a value (a + x)b and places it in the destination.

Formats CM: f-add-muit-IL
CM: f-add-const-muit-IL
CM :f-add-muit-const-IL
CM:f-add-const-mult-const-lL

dest, source1, source2, source3, s, e
dest, sourcel, source2-value, source3, s, e
dest, sourcel, source2, source3-value, s, e
dest, source1, source2-value, source3-value, s, e

Operands dest The floating-point destination field.

source1

source2

The floating-point first source (addend) field.

The floating-point second source (augend) field.

source2-value A floating-point inunediate operand to be used as the second
source (augend).

source3 The floating-point third source (multiplier) field.

source3-value A floating-point inunediate operand to be used as the third
source (multiplier).

s, e The significand and exponent lengths for the dest, source1, source2,
and source3 fields. The total length of an operand in this format
iss+e+1.

Overlap The fields source1, source2, and source3 may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set iffloating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-fiag[k] = 1 then

dest[k] +- (sourcel[k] + source2[k]) X source3[k]
if (overflow occurred in processor k) then overfiow-flag[k] +- 1

Two operands source1 and source2 are added as floating-point numbers, and then the sum
is multiplied by a third operand source3. The result is stored into memory. The various
operand formats allow operands to be either memory fields or constants.

79

ADD-MUlT

The constant operand sourcd~-'Value should be a double-precision front-end value (in Lisp,
automatic coercion is perfonned if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.

A call to CM:f-add-mult-ll is equivalent to the sequence

CM:f-add-3-ll temp, source1, source2, s, e
CM:f-multiply-3-1L dest, temp, sourceS, s, e

but may be faster.

80

ADD-OFFSET -TO-FIELD-ID

ADD-OFFSET -TO-FIELD-ID

Returns a new field-id that specifies the same field but possibly a different offset within that
field.

Formats result +- CM:add-offset-to-field-id field-id, offset

Operands field-id A field-id.

offset A signed integer, the number of bits by which to offset the field-id.

Result A field-id, the newly offset field-id.

Context This operation is unconditional. It does not depend on context-flag.

Associates a new field-id with the portion of the specified field that begins at the specified bit
offset. The size of the field referenced by the new field-id is equal to the size of the original
field minus the offset. The offset must be smaller than the size in bits of the original field.
Offset fields may themselves have offset fields formed from them.

81

ALLOCATE-HEAP-FIELD

ALLOCATE-HEAP-FIELD

Allocates a heap field of specified length in the current VP set and returns a unique identifier.

Formats result - CM:allocate-heap-field len

Operands len An unsigned integer, the length in bits of the field to be allocated.

Result An unsigned integer, the new field-id.

Context This operation is unconditional. It does not depend on context-flag.

A new field of length len is allocated in the heap within the current VP set. A field-id for
the newly created field is returned.

82

ALLOCATE-HEAP-FIELD-VP-SET

ALLOCATE-HEAP-FIELD-VP-SET

Allocates a new heap field of specified length in the specified VP set and returns a unique
identifier.

Formats result - CM:allocate-heap-field-vp-set vp-set-id, len

Operands len An unsigned integer, the length in bits of the field to be allocated.

vp-set-id A vp-set-id.

Result An unsigned integer, the new field-id.

Context This operation is unconditional. It does not depend on context-flag.

A new field of length len is allocated in the heap within the specified VP set. A field-id ~or
the newly created field is returned.

83

ALLOCATE-STACK-FIELD

ALLOCATE-STACK-FIELD

Allocates a new stack field of specified length in the current VP set and returns a unique
identifier.

Formats result - eM: allocate-stack-field len

Operands len An unsigned integer, the length, in bits, of the field to be allocated.

Result An unsigned integer, the new field-id.

Context This operation is unconditional. It does not depend on context-flag.

A new field of length len is allocated on the stack within the current VP set. A field-id for
the newly created field is returned.

84

ALLOCATE-STACK-FIELD-VP-SET

ALLO CATE-STACK-FI ELD-VP-SET

Allocates a new stack field of specified length in the specified VP set and returns a unique
identifier.

Formats result +- eM: allocate-stack-field-vp-set vp-set-id, len

Operands len An unsigned integer, the length in bits of the field to be allocated.

vp-set-id A vp-set-id.

Result An unsigned integer, the new field-id.

Context This operation is unconditional. It does not depend on contezt-fiag.

A new field of length len is allocated on tp.e stack within the specified VP set. A field-id
for the newly created field is returned.

85

ALLOCATE-VP-SET

ALLOCATE-VP-SET

Create a new VP set, within which fields may be allocated.

Formats result +- CM: allocate-vp-set geometry-id

Operands geometry-id A geometry-id.

Result A vp-set-id, identifying the newly allocated VP set.

Context This operation is unconditional. It does not depend on conte:ct-flag.

This operation returns a vp-set-id for a newly created VP set. This may be given to other
Paris operations in order to create memory fields in which data may be stored. The size
and shape of the VP set is determined by the geometry specified by the geometry-id. It is
possible to alter the geometry later (by using CM:set-vp-set-geometry), but the total number
of virtual processors in the VP set remains forever fixed. .

86

AREF

AREF

Fetches an array element specified by a per-processor index and copies it to a fixed desti­
nation.

Formats CM:aref-2L dest, array, index, dlen, index-len, index-limit, element-len

Operands dest The destination field.

The source array field. array

index

dlen

The unsigned integer index into the array field.

The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

index-len The length of the index field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index.

element-len An unsigned integer immediate operand to be used as the
. length of an array element.

Overlap The fields array and index may overlap in any manner. However, the aN'ay
and index fields must not overlap the dest field.

Flags test-flag is set if the value in the index field is less than the index-limit;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if index[k] < index-limit then
let p = index[k] X element-len
dest[k] - array[k](p: p + dlen - 1)
test-flag[k] - 1

else
test-flag[k] - 0

This is a simple form of array reference, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field index. This is used to

87

AREF

index into an array, whose length in bits should be index-limit X element-len. The element
indexed (or a portion of it) is copied into dest in all selected processors. Thus different
processors may access different elements of their arrays.

More precisely, a field of length dlen and starting at address array + i x element-len, where
i is the unsigned number stored at index, is copied to dest in all selected processors.

The argument index-limit is one greater than the largest allowed value of the index. Those
processors that have index values greater than or equal to index-limit do not alter the value
of the destination fieldj they also clear test-flag. All processors in which the index field is less
than index-limit set test-flag. The argument element-len is the length of individual elements
of the array. Usually this will be the same as dest-length, but for certain applications it is
worthwhile for it to differ. For example, from an array of 128·bit records one may fetch just
one 16-bit component of an indexed record by letting dlen be 32, letting element-len be 128,
and by offsetting the array address by the offset within each record of the 16·bit quantity
to be fetched. As another example, to extract a 4-character substring from a string of 8·bit
characters, one may let dlen be 32 and element-len be 8.

88

AREF32

AREF32

Fetches an array element specified by a per-processor index and copies it to a fixed desti­
nation. The array is stored in a special format that allows fast access.

Formats CM:aref32-2L dest, array, index, dlen, index-len, index-limit
CM:aref32-always-2L dest, array, index, dlen, index-len, index-limit

Operands dest The destination field.

The source array field. array

index

dlen

The unsigned integer index field. This is used as the per-processor
index into the array.

The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*. This must be a mul­
tiple of 32.

index-len The length of the index field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index.

Overlap The fields array and index may overlap in any manner. However, the array
and index fields must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

if index [k] < index-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))

let m = l~J mod 32
let i = index[k]
for all j such that 0 :::; j < dlen do

dest[k](j) - array[k - mx r+ (jmod32) X r](32 X (i+ l,J))
else

(error)

This is a simple form of array reference, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field index. This is used to

89

AREF32

index into an array, whose length in bits should be at least

(. d 1·· r dlen 1) tn ex- zmzt + 32 - 1 x 32

The argument index-limit is one greater than the largest allowed value of the index. It is
an error for any index value to equal or exceed this limit.

The element indexed (or a portion of it) is copied into dest in all selected processors. Thus
different processors may access different elements of their arrays.

More precisely, a field of length dlen and starting at address array + i x 32, where i is the
unsigned number stored at index, is copied to dest in all selected processors. Even this is
not quite accurate, because the array data is organized in a strange way for fast access.
The data within the array area is not organized in the same manner as for CM:arefj instead,
the memory of one processor contains data belonging to several other processors, and data
belonging to one processor is spread over the memories of several processors. This allows
the special indexing hardware to operate more efficiently.

A region of memory set aside for an array of the format required by CM: aref32 should be
accessed only through the operations CM: aref32 and CM: aset32, related operations such as
CM:get-aref32, or operations that copy the array as a whole from all processors (such as
I/O operations).

90

AREF32-SHARED

AREF32-S HARED

Fetches an array element specified by a per-processor index and copies it to a fixed destina­
tion. The array is stored in a special format that allows fast access, and accessed in such a
way that all the virtual processors within a group of 32 physical processors share the same
array.

Formats CM: aref32-shared-2L dest, array, index, dlen, index-len, index-limit
CM:aref32-shared-always-2L dest, array, index, dlen, index-len, index-limit

Operands dest The destination field.

The source array field. array

index

dlen

The unsigned integer index field. This is used as the per-processor
index into the array.

The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*. This must be a mul­
tiple of 32.

index-len The length of the index field. This must be non-negative and no
greater than eM: *maximum-integer-Iength*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index.

Overlap The fields array and index may overlap in any manner. However, the array
and index fields must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

if index[k] < index-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))
let m = k mod (r X 32)
let i = index[k]
let a = field-length (array)
for all j such that 0 ~ j < dlen do

let z = i + l i2 J
let q = k - m + (j mod 32) x r + l~J
let b = z mod a
dest[k Hj) +- array[q](b)

91

AREF32-SHARED

else
(error)

This is a simple form of array reference, for arrays stored in the memory of individual
processors but accessed in such a way that many processor appear to share a single array.
Each processor has an array index stored in the field index. This is used to index into an
array. The length of the array in bits should be at least

r index-limit 1
geometry-total-vp-ratio(geometry(current-tip-set))

The argument index-limit is one greater than the largest allowed value of the index. It is
an error for any index value to equal or exceed this limit.

The element indexed (or a portion of it) is copied into dest in all selected processors. Thus
different processors may access different elements of the shared array.

A region of memory set aside for an array of the format required by CM:aref32-shared
should be accessed only through the operations CM: aref32-shared and CM: aset32-shared, or
operations that copy the array as a whole from all processors (such as I/O operations).

92

ASET

ASET

Stores into an array element specified by a per-processor index a value copied from a fixed
source field.

Formats eM: aset-2L source, array, index, slen, index-len, index-limit, element-len

Operands source The source field.

array

index

slen

The destination array field.

The unsigned integer index into the array field.

The length of the dest field. This must be non-negative and no
greater than eM: *maximum-integer-Iength*.

index-len The length of the index field. This must be non-negative and no
greater than eM: *maximum-integer-Iength*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index.

element-len An unsigned integer immediate operand to be used as the
length of an array element.

Overlap The fields source and index may overlap in any manner. However, the source
and index fields must not overlap the array field.

Flags test-flag is set if the value in the index field is less than the index-limit;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if index [k] < index-limit then
let p = index [k] X element-len
array[k](p : p + sIen - 1} - source[k]
test-flag[k] - 1

else
test-flag[k] - 0

This is a simple form of array modification, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field index. This is used to

93

ASET

index into an array, whose length in bits should be index-limit X element-len. The source
field is copied into the element indexed (or a portion of it) in all selected processors. Thus
different processors may modify different elements of their arrays.

More precisely, the source field is copied to a field of length slen and starting at address
array + i x element-len, where i is the unsigned number stored at index, in all selected
processors.

The argument index-limit is one greater than the largest allowed value of the index. Those
processors that have index values greater than or equal to index-limit do not alter the value
of the destination field; they also clear test-flag. All processors in which the index field is less
than index-limit set test-flag. The argument element-len is the length of individual elements
of the array. Usually this will be the same as dest-Iength, but for certain applications it
is worthwhile for it to differ. For example, within an array of 128-bit records one may
store into just one 16-bit component of an indexed record by letting slen be 32, letting
element-len be 128, and by offsetting the array address by the offset within each record of
the 16-bit quantity to be modified. As another example, to modify a 4-character substring
of a string of 8-bit characters, one may let slen be 32 and element-len be 8.

94

ASET32

ASET32

Fetches an array element from a fixed source and copies it to a destination specified by a
per-processor index. The array is stored in a special format that allows fast access.

Formats eM: aset32-2L source, array, indez, slen, indez-len, indez-limit

Operands source The source field.

array The destination array field.

indez The unsigned integer index field. This is used as the per-processor
index into the array.

slen The length of the source field. This must be non-negative and
no greater than eM: *maximum-integer-Iength*. This must be a
multiple of 32.

index-len The length of the indez field. This must be non-negative and no
greater than eM: *maximum-integer-Iength*.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index.

Overlap The fields source and index may overlap in any manner. However, the source
and index fields must not overlap the array field.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if index [k] < index-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))

let m = l ~ J mod 32
let i = index[k]
for all j such that 0 ::; j < dlen do

array[k - m X r + (j mod 32) X r](32 X (i + li2J)} +- source[k](j)

else
(error)

This is a simple form of array modification, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field indez. This is used to

95

ASET32

index into an a'T'1'ay, whose length in bits should be at least

(, d 1" r dlen 1) zn ex- zmzt + 32 - 1 x 32

The argument index-limit is one greater than the largest allowed value of the index. It is
an error for any index value to equal or exceed this limit.

The source field is copied into the element indexed (or a portion of it) in all selected
processors. Thus different processors may modify different elements of their arrays.

More precisely, the source field is copied to a field of length slen and starting at address
a'T'1'ay + i x 32, where i is the unsigned number stored at index, in all selected processors.
Even this is not quite accurate, because the array data is organized in a strange way for fast
access. The data within the array area is not organized in the same manner as for CM:aref;
instead, the memory of one processor contains data belonging to several other processors,
and data belonging to one processor is spread over the memories of several processors. This
allows the special indexing hardware to operate more efficiently.

A region of memory set aside for an array of the format required by CM: aset32 should be
accessed only through the operations CM: aref32 and CM: aset32, related operations such as
CM:get-aref32, or operations that copy the array as a whole from all processors (such as
I/O operations).

96

ASET32-SHARED

ASET32-S HARED

Fetches an array element from a fixed source and copies it to a destination specified by a
per-processor index. The array is stored in a special format that allows fast access, and is
accessed in such a way that all the virtual processors within a group of 32 physical processors
share the same array.

Formats eM: aset32-shared-2L source, array, index, slen, index-len, index-limit

Operands source The source field.

array

index

The des tination array field.

The unsigned integer index field. This is used as the per-processor
index into the array.

slen The length of the source field. This must be non-negative and
no greater than eM: *maximum-integer-Iength*. This must be a
multiple of 32.

index-len The length of the index field. This must be non-negative and no
greater than eM: *maximum-integer-Iength*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index.

Overlap The fields source and index may overlap in any manner. However, the source
and index fields must not overlap the array field.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if index [k] < index-limit then
let r = geometry-total-vp-ratio(geometry(current-tip-set))
let m = k mod (r X 32)
let i = index[k]
let a = field-length (array)
for all j such that 0 ::; j < dlen do

let z = i + l i2 J
let q = k - m + (j mod 32) x r + l ~ J
let b = z mod a
array[q](b) +-- dest[k](j)

else
(error)

97

ASET32-SHARED

This is a simple form of array modification, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field index. This is used to
index into an array. The length of the array in bits should be at least

r index-limit 1
geometry-total-vp-ratio(geometry(current-vp-set»

The argument index-limit is one greater than the largest allowed value of the index. It is
an error for any index value to equal or exceed this limit.

The source field is copied into the element indexed (or a portion of it) in all selected
processors. Thus different processors may modify different elements of the shared array. If
several processors sharing the same array attempt to modify the same element in a single
CM:aset32-shared operation, then one of the values is stored and the rest are discarded.

A region of memory set aside for an array of the format required by CM:aset32-shared
should be accessed only through the operations CM:aref32-shared and CM:aset32-shared, or
operations that copy the array as a whole from all processors (such as I/O operations).

98

ASIN

F-ASIN

Calculates the arc sine of the floating-point source field values and stores the result in the
floating-point destination field.

Formats CM:f-asin-l-lL destlsource, s, e
CM:f-asin-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is less than -1 or greater than 1; otherwise it is
cleared.

Context This operation is conditional. The destination and flag may be altered only
in pro,cessors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] __ sin-1 source[k]
if source[k] < -1 or source[k] > 1 then

test-flag[k] -- 1
otherwise test-flag[k] -- 0

The arc sine of the value of the source field is stored into the dest field.

99

ASINH

F-ASINH

Calculates the arc hyperbolic sine of the floating-point source field values and stores the
result in the floating-point destination field.

Formats CM: f-asin h-l-lL dest / source, s, e
CM:f-asinh-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

dest[k] _ sinh-1 source[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

The arc hyperbolic sine of the value of the source field is stored into the dest field.

100

ATAN

F-ATAN

Calculates the arc tangent of the floating-point source field values and stores the result in
the floating-point destination field.

Formats CM: faa tan -l-ll dest I source,s, e
CM:f-atan-2-ll dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

5, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

dest[k] +- tan-1 source[k]

The arc tangent of the value of the source field is stored into the dest field.

101

ATAN2

F-ATAN2

Calculates the arc tangent of the quotient of two floating-point source fields and stores the
result in the floating-point destination field.

Formats CM:f-atan2-3-1l dest, souree1, souree2, s, e

Operands dest The floating-point destination field.

souree1 The floating-point y source field.

souree2 The floating-point x source field.

s, e The significand and exponent lengths for the dest, souree1, and
source2 fields. The total length of an operand in this format is
s+e+1.

Overlap The fields source1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to ~e identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

if souree2[k] > 0 then
dest[k] +- tan-1 ,ouf"cel k

'OUf"ce.l!

else if souree2 [k] < 0 then

dest[k] +- sign(souree1[k)) X (11" _ tan-ll:~::~:; k /)

else if source1[k] = 0 A sign(source2[k)) > 0 then
dest[k] +- sign(source1[k]) X 0

else if source1[k] = 0 A sign(source2[kJ) < 0 then
dest[k] +- sign(souree1[k)) X 11"

else
dest[k] +- sign(souree1[k)) X !

if (overflow occurred in processor k) then overftow-flag[k) +- 1

The arc tangent of the quotient of the souree1 and source2 fields is stored into the dest
field. The signs of the source fields are taken into account to produce a result in the correct
quadrant of the Cartesian plane.

102

ATANH

F-ATANH

Calculates the arc hyperbolic tangent of the floating-point source field values and stores the
result in the floating-point destination field.

Formats CM:f-atanh-l-lL
CM:f-atanh-2-1L

dest / source, s, e
dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field.

Overlap

Flags

source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

test-flag is set if the source is greater than 1; otherwise it is cleared.

overflow-flag is set iffloating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- tanh-1 source[k]
if (overflow occurred in processor k) then overftow-flag[k] +- 1
if source[k] > 1 then test-flag[k] +- 1
otherwise test-flag[k] +- 0

The arc hyperbolic tangent of the value of the source field is stored into the dest field.

103

ATTACH

ATTACH

Returns the number of physical processors attached.

Formats result +- CM: attach

Operands physical-size The number of physical processors to be attached. This ar-
gument is optional.

interface The particular bus interface to be used. This argument is optional
(actually a keyword argument in the Lisp interface).

Result An unsigned integer, the exact number of physical processors allocated.

Context This operation is unconditional. It does not depend on contezt-ftag.

This function is responsible for allocating Connection Machine processors for use by the
front end. (To deallocate them, use CM:detach.)

The facility for attaching Connection Machine hardware is provided in different ways in the
Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces (on
the other hand).

In the Lisp/Paris interface, CM:attach is a function of several arguments. The first argument
is optional, while the second is a keyword argument (against the possibility that more
keyword arguments may be introduced in the future).

If the physical-size argument is not specified, then the smallest possible amount of hardware
will be allocated; this will be either 8,192 or 16,384 physical processors. Otherwise the
physical-size argument must be one of the following:,

: 8kp or 8192 Exactly 8,192 physical processors are to be allocated.

: 16kp or 16384 Exactly 16,384 physical processors are to be allocated.

: 32kp or 32768 Exactly 32,768 physical processors are to be allocated.

: 64kp or 65536 Exactly 65,536 physical processors are to be allocated.

:uccO, :uee1, :uee2, or :uec3 Exactly the specified micro controller port is to be attached,
regardless of whether that port controls 8,192 or 16,384 physical processors. (This
option is useful primarily for hard ware diagnostic procedures.)

:ueeO-1, :uee2-3, or :uceO-3 Exactly the specified microcontroller ports (0 and 1, 2 and
3, or all four) are to be attached, regardless of the number of physical processors
involved. (This option is useful primarily for hardware diagnostic procedures.)

104

ATTACH

(Note: the Lisp/Paris interface on a Symbolics Lisp Machine will also accept :8k, :16k,
: 32k, and : 64k as physical-size specifications. However, these are not valid symbols in all
Common Lisp implementations-technically speaking, they have the syntax of "potential
numbers" in Common Lisp-and therefore users are encouraged to use the new forms: 8kp,
: 16kp, : 32kp, and : 64kp in code to ensure portability. The old forms will continue to be
available for convenience in those Lisp implementations that will support them.)

An error is signalled if the required number of physical processors or the required set of
microcontroller ports is not available.

The value returned by CM: attach is the number of physical processors that were attached.

The
variable eM: *before-attach-initializations* and the variable CM: *after-attach-initializations*
contain sets of initialization forms that are respectively evaluated before and after anything
else occurs.

In the C/Paris and Fortran/Paris interfaces, the detaching operation is performed by a user
command cmattach at shell level. See the Front End Subsystems manual or the cmattach
man page.

105

ATTACHED

ATTACHED
Returns true if the front end process has Connection Machine processors attached for use.

Formats

Result

Context

result - eM: attached

True if the front end process has Connection Machine processors attached for
use, and false otherwise.

This operation is unconditional. It does not depend on contezt-flag.

This predicate allows a program to determine whether there are any Connection Machine
processors attached (whether actual hardware or simulated) before it issues other Paris
operations.

106

CEILING

F-F-CEILIN G

Determines the smallest integral value that is not less than the floating-point source field
value in each selected processor and stores it in the floating-point destination field.

Formats CM: f-f-ceiling-l-IL
CM :f-f-ceiling-2-1L

dest/ source, s, e
dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. .

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- fsource[kll

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of +00, which is stored into the dest field as a floating-point-number.

Note that overflow cannot occur.

107

CLEAR-ALL-FLAGS

CLEAR-ALL-FLAGS

Clears all flags (but not the context bit).

Formats

Context

CM: clear-all-flags
CM: c1ear-all-flags-always

The non-always operations are conditional.

The always operations are Wlconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

test-flag[k] +- 0
overflow-flag[k] +- 0

Within each processor, all flags for that processor are cleared (but not the context bit).

108

CLEAR-BIT

CLEAR-BIT

Clears a specified memory bit.

Formats

Context

CM: clear-bit dest
CM: clear-bit-always dest

The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flag[k] = 1) then

dest[k] - 0 .

The destination memory bit is cleared within each selected processor.

109

CLEAR-CONTEXT

CLEAR-CONTEXT

Unconditionally makes all processors inactive.

Formats CM:clear-context

Context This operation is unconditional.

Definition For every virtual processor k in the current-up-set do
context-fiag[k] ~ 0

Within each processor, the context bit for that processor is unconditionally cleared.

110

CLEAR-flag

Clears a specified flag bit.

Formats CM: clear-test
CM: clear-overflow

Context This operation is conditional.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

flag[k] ~ 0

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, the indicated flag for that processor is cleared.

111

CLEAR-FLAG

COLD-BOOT

COLD-BOOT

This operation completely resets the state of the hardware allocated to the executing front
end, loads microcode, initializes system tables, and clears user memory.

Formats result 4- CM: cold-boot microcode-version, dimensions

Operands microcode-version Either: paris or : diagnostics. This specifies which ver-

Result

Context

sion of the microcode is to be used. This argument is optional
(actually a keyword argument in the Lisp interface).

dimensions The dimension information for initializing the NEWS grid.
This argument is optional (actually a keyword argument in the
Lisp interface).

In the Lisp/Paris interface three results are returned (as Common Lisp "mul­
tiple values"):

An unsigned integer, the number of virtual processors.

An unsigned integer, the number of physical processors.

An unsigned integer, the number of bits available per virtual processor.

This operation is unconditional. It does not depend on context-flag.

The facility for cold-booting Connection Machine hardware is provided in different ways in
the Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces
(on the other hand).

In the Lisp/Paris interface, CM:cold-boot is a function that accepts optional keyword argu­
ments.

The :microcode-version argument specifies what set of microcode is to be loaded into the
microcontroller(s). There are two choices for this argument: : paris (the default) specifies
microcode that interprets the macroinstruction set, and :diagnostics specifies special
microcode used for hardware maintenance.

The : dimensions argument is largely obsolete now that multiple VP sets may be allocated,
but it is still supported for the sake of compatibility with previous releases of Paris. The
: dimensions argument must be an integer, a list of 1 or 2 integers, or unsupplied. (Passing
nil as the value is the same as not supplying a value.) An integer or a list of one integer
specifies the total number of virtual processors desired. A list of two integers specifies the
desired size of the virtual NEWS grid. Each dimension must be a power of two.

If the : dimensions argument is unsupplied, then the configuration of virtual processors
depends on the most recent CM:cold-boot or CM:attach operation preceding this one. If the

112

COLD-BOOT

most recent such operation was CM: cold-boot, then the same virtual processor configuration
set up then will be used this thne. IT the most recent such operation was CM:attach, then
the number of virtual processors will be equal to the number of physical processors, and
the virtual NEWS grid will have the same shape as the physical NEWS grid.

Bootstrapping a Connection Machine system includes the following actions:

• Evaluating all initialization forms stored in the variable CM:*before-cold-boot­
initializations*. This is done before anything else.

• Loading microcode into the Connection Machine microcontroller and initiating mi­
crocontroller execution.

• Clearing and initializing the memory of allocated Connection Machine processors.

• Initializing all of the global configuration variables described in section 3.6.

• Initializing the pseudo-random number generator by effectively invoking the operation
CM:initialize-random-number-generator with no seed.

• Initializing the system lights-display mode by effectively invoking the operation
CM:set-system-leds-mode with an argument of t.

• Evaluating all initialization forms stored in the variable CM: *after-cold-boot­
initializations*. This is done after everything else.

H the cold-booting operation fails, then an error is signalled. IT it succeeds, then three
values are returned: the number of virtual processors, the number of physical processors,
and the number of bits available for the user in each virtual processor. (These are exactly
the values of the configuration variables CM: *user-cube-address-limit*, CM: *physical-cube­
address-limit*, and CM: *user-memory-address-limit*.

In the C/Paris and Fortran/Paris interfaces, the cold-booting operation is performed by a
user command cmcoldboot at shell level. See the Front End Subsystems manual.

113

cos

F-COS

Calculates, in each selected processor, the cosine of the floating-point source field value and
stores it in the floating-point destination field.

Formats CM:f-cos-l-lL dest/source, s, e
CM:f-cos-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1. .

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- cos source[k]

The cosine of the value of the source field is stored into the dest field.

114

COSH

F-COSH

Calculates, in each selected processor, the hyperbolic cosine of the floating-point source field
value and stores it in the floating-point destination field.

Formats CM:f-cosh-l-1L dest/source, s, e
CM:f-cosh-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set iffloating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The desti!lation and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- coshsource[k]
if (overflow occurred in processor k) then overflow-flag[k] +- 1

The hyperbolic cosine of the value of the source field is stored into the dest field.

115

CREATE-DETAILED-GEOM ETRY

CREATE-DETAILED-GEOMETRY

Creates a new geometry given detailed information about how the grid is to be laid out.

Formats result +- CM: create-detailed-geometry axis-descriptor-array; rank

Operands axis-descriptor-array A front-end vector (one-dimensional array) of descrip­
tors for the grid axes. In the Lisp interface, this may be a list of
descriptors instead of an array of descriptors, at the user's option.

rank An unsigned integer, the rank (number of dimensions) of the
axis-descriptor-array.

Result A geometry-id, identifying the newly created geometry.

Context This operation is unconditional. It does not depend on context-flag.

CM:c:reate-detailed-geometry takes an array of descriptors. Each descriptor describes one
NEWS axis in some detail. Most of the components are unsigned integers, but the value of
the ordering component must be either: news-order or : send-orde·r.

The Lisp definitions of the type of the ordering component and of the descriptor are

(deftype cm:axis-order () '(member :news-order :send-order»

(defstruct CM:axis-descriptor
(length 0) (weight 0) (ordering :news-order)
(on-chip-bits 0) (off-chip-bits 0»

The C definitions of the type of the ordering component and of the descriptor are
shown below. The elements of the axis_descriptor_array should be pointers to type
CM..axis_descriptor _to

typedef enum {CM_news_order. CM_send_order} CM_axis_order_t;

typedef struct CM_axis_descriptor {
unsigned long length;
unsigned long weight;
CM_news_order_t ordering;
unsigned long on_chip_bits;
unsigned long off_chip_bits;

} * CM_axis_descriptor_t;

116

CREATE-DETAILED-GEOM ETRY

(Actually, this structure has other components as well. Code should use the definition of
CM.axis_descriptor_t from the cmtypes include file.)

The length component specifies the length of the axis; it must be a power of two. (This
restriction may be removed in a future software release.)

The "on-chip-bits" and "off-chip-bits" components for an axis indicate how many physical
hypercube dimensions should be used in laying out that axis of the grid. The physical
hypercube dimensions are of two kinds: the four that are on-chip, connecting physical
processors that are part of the same physical integerated circuit chip, and the rest, which
are off-chip. The distinction matters when you're fine-tuning code for speed.

There are implementation restrictions (for the sake of speed) that all the on-chip hyper­
cube dimensions for a given axis must be contiguous and that all the off-chip hypercube
dimensions for a given axis must be contiguous. These restrictions are enforced by create­
detailed-geometry as it lays out the axes.

If the "bits" components are zero, then values for them are calculated automatically. Such
calculations take the specified weights into account. It is assumed that the frequencies of
operations along a given axis are proportional to the weight of that axis. (If all weights
are zero, it is assumed that all axes are used equally frequently.) For example, if in a given
program, for a given geometry, North-South operations occur four times as frequently as
East-West operations, then the North-South axis might be assigned a weight of 4 and the
East-West axis a weight of 1 (or the weights might equally well be 12 and 3). These weights
serve as 'only a rough but conveniently specified guide to the creation of geometries tuned
for performance. For absolutely best tuning of performance, the user should specify all the
"bits" component's explicitly.

The ordering component specifies how NEWS coordinates are mapped onto physical pro­
cessors for that axis. The value: news-order specifies the usual embedding of the grid into
the hypercube such that processors with adjacent NEWS coordinates are in fact neighbors
within the hypercube. The value : send-order specifies that if processor A has a smaller
NEWS coordinate than processor B then A also has a smaller send-address than B. This
ordering is useful for specific applications such as FFT. Most operations are about as fast
with either ordering, but get-from-news and send-to-news are significantly faster with: news­
order. (In the future, other orderings may also be implemented if warranted by performance
improvements.)

This operation returns a geometry-id for a newly created geometry. The length of axis j of
the resulting geometry will be equal to the length component ofaxis-descriptor-array[j]).
Such a geometry-id may then be used to create a VP set, or to respecify the geometry of
an existing VP set.

Once the geometry has been created, the user may destroy the structures used to provide
the information and the array containing them. All necessary information is copied out of
these structures as the geometry is created.

117

CREATE-GEOMETRY

CREATE-GEOMETRY

Creates a new geometry given the grid axis lengths.

Formats result .- CM: create-geometry dimension-array; rank

Operands dimension-array A front-end vector (one-dimensional array) of unsigned

Result

Context

integer'lengths of the grid axes. In the Lisp interface, this may
be a list of dimension lengths instead of an array of dimension
lengths, at the user's option.

rank An unsigned integer, the rank (number of dimensions) of the
dimension-array.

A geometry-id, identifying the newly created geometry.

This operation is unconditional. It does not depend on context-flag.

The dimension-array must be a one-dimensional array of nonnegative integers; each must
be a power of two. The product of all these integers must be a multiple of the number of
physical processors attached for use by this process.

This operation returns a geometry-id for a newly created geometry whose dimensions are
specified by the dimension-array. The length of axis j of the resulting geometry will be
equal to dimension-array[j]. Such a geometry-id may then be used to create a VP set, or
to respecify the geometry of an existing VP set.

The geometry will be laid out so as to optimize performance under the assumption that
the axes are used equally frequently for NEWS communication. The operation CM:create­
detailed-geometry may be used instead to get more precise control over layout for perfor­
mance tuning.

Once the geometry has been created, the user may destroy the array used to provide the
dimension information. All necessary information is copied out of this array as the geometry
is created.

118

DEALLOCATE-GEOMETRY

DEALLOCATE-GEOMETRY

Declare that a geometry will no longer be used.

Formats eM: deallocate-geometry geometry-id

Operands geometry-id A geometry-id.

Context This operation is unconditional. It does not depend on conte:ct-flag.

By this operation a user program declares that a geometry will no longer be used. The
system is permitted to reclaim any and all resources associated with that geometry. It is
an error for the user program to give the specified geometry-id as an argument to any Paris
operation once it has been deallocated.

It is an error to deallocate a geometry that is still in use by some VP set.

119

DEALLOCATE-HEAP-FIELD

DEALLOCATE-HEAP-FIELD

Declare that a heap field will no longer be used.

Formats eM: deallocate-heap-field heap-field-id

Operands heap-jield-id A field-id.

Context This operation is unconditional. It does not depend on context-flag.

By this operation a user program declares that a field will no longer be used. The system
is permitted to reclaim any and all resources associated with that field, in particular the
memory that it occupied. It is an error for the user program to give the specified field-id
as an argument to any Paris operation once it has been deallocated.

120

DEALLOCATE-STACK-THROUGH

DEALLOCATE-STACK-THROUGH

Declare that a stack field and all fields allocated more recently than it will no longer be
used.

Formats eM: deallocate·stack·through stack-field.id

Operands stack-field-id

Context This operation is unconditional. It does not depend on context-flag.

By this operation a user program declares that the specified field on the stack, and all fields
allocated more recently than it, will no longer be used. (Note that any fields allocated more
recently than the specified field are necessarily closer to the top of the stack.) The system
is permitted to reclaim any and all resources associated with those fields, in particular the
memory that they occupied. It is an error for the user program to give the field·id of a
deallocated field as an argument to any Paris operation.

121

DEALLOCATE-VP-SET

DEALLOCATE-VP-SET

Declare that a VP set will no longer be used.

Formats eM: deallocate-vp-set vp-set-id

Operands vp-set-id A vp-set-id.

Context This operation is unconditional. It does not depend on contezt-flag.

By this operation a user program declares that a VP set will no longer be used. The system
is permitted to reclaim any and all resources associated with that VP set. It is an error for
the user program to give the specified vp-set-id as an argument to any Paris operation once
it has been deallocated.

It is an error to deallocate a VP set for which there are still fields that have not yet been
deallocated. The user should first deallocate all fields belonging to that VP set, except the
flags, which are deallocated automatically when the VP set is deallocated.

122

DEPOSIT -N EWS-COORDINATE

DEPOSIT-NEWS-COORDINATE

Modifies a send address to reflect a specific NEWS coordinate.

Formats CM: deposit-news-coordinate-IL geometry, dest/ send-address,
axis, coordinate, slen

CM: deposit-news-constant-IL geometry, dest/ send-address,
axis, coordinate-value, slen

Operands geometry A geometry-id. This geometry determines the NEWS dimensions
to be used.

dest The unsigned integer destination field. (In the instruction for­
mats currently provided, the dest field is always the same as the
send-address source field. The length of this field is implicitly the
same as geometry-send-address-length(geometry).)

send-address The unsigned integer send-address field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

coordinate The unsigned integer NEWS coordinate along the specified
axis field.

coordinate-value An unsigned integer immediate operand to be used as
the NEWS coordinate along the specified axis.

slen The length of the coordinate field. This must be non-negative and
no greater than CM:*maximum-integer-length*.

Overlap For CM: deposit-news-coordinate-lL, the coordinate field must not overlap the
dest field.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - deposit-news-coordinate(geometry, send-address, axis, coordinate)

where deposit-news-coordinate is as defined on page 33.

This function calculates, within each selected processor, the send-address of a processor
that has a specified coordinate along a specified NEWS axis, with all other coordinates equal
to those for the processor identified by send-address.

123

DEPOSIT-NEWS-COORDINATE

FE-DEPOSIT -NEWS-COORDINATE

Calculates on the front end the modification of a send address to reflect a specific NEWS
coordinate.

Formats result - CM:fe-deposit-news-c:oordinate geometry, send-address,
a:tis, coordinate

Operands geometry A geometry-id. This geometry determines the NEWS dimensions
to be used.

send-address An unsigned integer immediate operand to be used as the
send address of some processor.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along the specified axis.

Result An, unsigned integer, the send address of the processor whose coordinate along
the specified axis is coordinate and whose coordinate along all other axes
equals those of send-address.

Context This operation is unconditional. It does not depend on context-jla.g.

Definition Return deposit-news-coordinate(geometry, send-address, axis, coordinate)

where deposit-news-coordinate is as defined on page 33.

This function calculates, entirely on the front end, the send-address of a processor that has
a specified coordinate along a specified NEWS axis, with all other coordinates equal to those
for the processor identified by send-address.

124

DETACH

DETACH

Detaches the specified front-end computer from the Connection Machine hardware previ­
ously allocated for and attached to it.

Formats CM: detach front-end-name, suppress-confirmation

Operands front-end-name The name of a front end, or a list of a front end name and a
bus-interface specifier. This argument is optional.

Context

suppress-confirmation The confirmation suppression flag. This argu-
ment is optional. If supplied and not false, then the interactive
query and prompt requesting confirmation of the detach opera­
tion is suppressed.

This operation is unconditional. It does not depend on context-flag.

The facility for detaching Connection Machine hard ware is provided in different ways in the
Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces (on
the other hand).

In the Lisp/Paris interface, CM:detach is a function of two arguments. The arguments are
optional.

In most normal use no argument is specified. In this case the front end executing the call to
CM:detach releases all Connection Machine hardware to which it had been attached, reset­
ting relevant parts of the Nexus so that the front end can no longer issue macroinstructions
to the Connection Machine system. (An error is signalled if in fact no hardware had been
attached in the first place.) This use of CM: detach is the normal way of releasing attached
hardware and will not disrupt users on other front ends.

If a front-end-name argument is specified, it must be the name of a front end that is con­
nected to the same Connection Machine system (that is, Nexus) as the front end executing
the call, or perhaps a list of a front end name and a small integer identifying a bus interface
on that front end. A front end name may be either a string or a symbol. Examples (assum­
ing, for the sake of exposition, that front end computers are named after Shakespearean
characters):

(detach 'hamlet)
(detach "lear" t)
(detach ~(desdemona 1»

;Detach front end named Hamlet
;Detach front end named Lear. and don't confirm
;Detach bus interface 1 of front end Desdemona

Specifying the name of the front end that is executing the call has the same effect as
specifying no argument; the front end is gracefully detached. But specifying the name of

125

DETACH

some other front end forcibly detaches that other front end, possibly disrupting any ongoing
interaction with the Connection Machine system. The external communications network is
used to send a message to the detached front end to inform its user that it has been forcibly
detached.

There are two sets of initialization forms, kept in the variables CM: *before-detach­
initializations* and CM: *after-detach-initializations*, that are evaluated before and after any­
thing else occurs.

In the C/Paris and Fortran/Paris interfaces, the detaching operation is performed by a user
command cmdetach at shell level. See the Front End Subsystems manual or the cmdetach
man page.

126

DIVIDE

F-DIVIDE

The quotient of two floating-point source values is placed in the destination field.

Formats CM: f-divide-2-1 L
CM:f-divide-always-2-1l
CM: f-divide-3-1L
CM: f-divide-always-3-1L
CM: f-divide-constant-2-1L
CM: f-divide-const-always-2-1 L
CM: f-divide-constant-3-1l
CM:f-divide-const-always-3-1L
CM:f-divinto-2-1l
CM:f-divinto-always-2-1L
CM:f-divinto-constant-2-1L
CM: f-divinto-const-always-2-1L
CM: f-divinto-constant-3-1 L
CM: f-divinto-const-always-3-1 L

dest/ source 1, source2, s, e
dest/ source1, source2, s, e
dest, source1, source2, s, e
dest, source1, source2, s, e
dest/ source1, source2-value, s, e
dest / source 1, source2-value, s, e
dest, source1, source2-value, s, e
dest, source1, source2-value, s, e
dest/ source2, source1, s, e
dest / source2, source1, s, e
dest/source2, sourcel-value, s, e
dest/source2, sourcel-value, s, e
dest, source2, sourcel-value, s, e
dest, source2, source1-value, s, e

Operands dest The floating-point destination field. This is the quotient.

The floating-point first source field. This is the dividend.

The floating-point second source field. This is the divisor.

Overlap

Flags

Context

source 1

source2

sourcel-value A floating-point immediate operand to be used as the first
source.

source2-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, source1, and
source2 fields. The total length of an operand in this format is
s+e+1.

The fields source1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

test-flag is set if division by zero occurs; otherwise it is unaffected.

overflow-flag is set iffloating-point overflow occurs; otherwise it is unaffected.

The non-always operations are conditional. The destination and flags may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flags may be
altered regardless of the value of the context-flag.

127

DIVIDE

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] - sourcel[k]jsource2[k]
if source2[k] = 0 then test-flag - 1
if (overflow occurred in processor k) then overftow-flag[k] - 1

The sourcel operand is divided by the source2 operand, treating both as floating-point
numbers. The result is stored into memory. The various operand formats allow operands to
be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.

128

ENUMERATE

ENUMERATE

The destination field in every selected processor receives the number of processors below or
above it in some ordering of the processors.

Formats CM:enumerate-1L dest, axis, len, direction, inclusion, smode, sbit

Operands dest The Wlsigned integer destination field.

ax,s An Wlsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

direction Either : upward or :downward.

inclusion Either: exclusive or : inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The segment bit or start bit (a one-bit field).

Overlap The sbit field must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

let Sk = scan-subset(k, axis, len, direction, inclusion, smode, sbit)
dest[k] - ISkl

where scan-subset is as defined on page 37.

See section 5.16 on page 34 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The CM:enumerate-1L operation stores into the dest field of each selected processor the size
of the scan subset for that processor. This means that every processor within a scan set of
size N will receive a different integer in the range 0 to N -1 (for an exclusive enumeration)
or in the range 1 to N (for an inclusive enumeration).

A call to CM: enumerate-1L is equivalent to the sequence below, but may be faster.

CM: u-move-constant-1L temp, 1, len
CM:scan-with-u-add-1L dest, temp, axis, len, direction, inclusion, smode, sbit
CM: u-subtract-constant-1L dest, 1, len

129

EQ

F-EQ

Compares two floating-point source values. The test-flag is set if they are equal, and other­
wise is cleared.

Formats CM:f-eq-1L
CM :f-eq-constant-l L
CM:f-eq-zero-1L

sourcel, source2, s, e
sourcel, source2-value, s, e
source1, s, e

Operands source1 The floating-point first source field.

The floating-point second source field. source2

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-eq-zero-1L, this implicitly has the value zero.

s, e The significand and exponent lengths for the source1 and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields source1 and source2 may overlap in any manner.

Flags test-flag is set if source1 is equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

if sourcel[k] = source2[k]
test-ftag[k] -- 1

else
test-flag[k] -- 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is equal to the second operand, and is cleared otherwise. Note that comparisons ignore the
sign of zero; +0 and -0 are considered to be equal.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.

130

EQ

S-EQ

Compares two signed integer source values. The test-flag is set if they are equal, and
otherwise is cleared.

Formats CM:s-eq-1L
CM:s-eq-2L
CM:s-eq-constant-1L
CM:s-eq-zero-lL

source1, source:~, len
soured, source2, slen1, slen2
source1, source2-value, len
source1, len

Operands soured The signed integer first source field.

The signed integer second source field. source2

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-eq-zero-1L, this implicitly has the value zero.

len The length of the source1 and source2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

slen1 The length of the soured field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

slen2 The length of the source:~ field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields source1 and souree2 may overlap in any manner.

Flags test-flag is set if source1 is equal to souree2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source1[k] = source2[k] then
test-flag[k] ~ 1

else
test-flag[k] ~ 0

Two operands are compared as signed integers. Operand souree1 is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is equal to the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. The op­
eration is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

131

EQ

U-EQ

Compares two unsigned integer source values. The test-flag is set if they are equal, and
otherwise is cleared.

Formats CM:u-eq-lL
CM: u-eq-2L.
CM: u-eq-constant-ll
CM:u-eq-zero-lL

source1, source2, len
source1, source2, slen1, slen2
source1, source2-value, len
source1, len

Operands source1 The unsigned integer first source field.

The unsigned integer second source field. source2

source2-value An unsigned integer immediate operand to be used as the.
second source. For CM: u-eq-zero-lL, this implicitly has the value
zero.

len

slen1

slen2

The length of the source1 and source~ fields. This must be non­
negative and no greater than CM:*maximum-integer-length*.

The length of the source1 field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Overlap The fields source1 and source2 may overlap in any manner.

Flags test-flag is set if source1 is equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source1 [k] = source2[k] then
test-flag[k] +- 1

else
test-flag[k] +- 0

Two operands are compared as unsigned integers. Operand source1 is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is equal to the second operand, and is cleared otherwise.

The constant operand source2-value should be an unsigned integer front-end value. The
operation is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

132

EXP

F-EXP

Calculates, in each selected processor, the exponential function elt of the floating-point
source field and stores it in the floating-point destination field.

Formats CM:f-exp-l-1L dest/source, s, e
CM:f-exp-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurSj otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] = +00 then
dest[k] ~ +00

else if source[k] = -00 then
dest[k] ~ +0

else
dest[k] ~ exp source[k]

if (overflow occurred in processor k) then overflow-flag[k] ~ 1

Call the value of the source field Sj the value e6 is stored into the dest field, where e ~
2.718281828 ... is the base of the natural logarithms.

133

EXTRACT -M U LTI-COORDINATE

EXTRACT-MULTI-COORDINATE

Determines the NEWS multi-coordinate of a processor specified by send-address.

Formats CM:extract-multi-coordinate-1L geometry, dest, axis-mask, send-address, dlen

Operands geometry A geometry-id. This geometry determines the NEWS dimensions
tobe used.

dest The unsigned integer destination field.

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

send-address An unsigned integer immediate operand to be used as the
send address of some processor.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

let axis-set = {m I 0 ~ m < r A (axis-mask(m) = 1)}
dest[k] - extract-multi-coordinate(geometry, axis-set, send-address)

where extract-muLti-coordinate is as defined on page 34.

This function calculates, within each selected processor, the NEWS multi-coordinate of a
processor along specified NEWS axes. The axes are indicated by the axis-mask argument;
the processor is identified by its send-address.

134

EXTRACT -M U LTI-COORDINATE

FE-EXTRACT -M ULTI-COO RDINATE

Calculates, on the front end, the NEWS multi-coordinate of a processor specified by send­
address.

Formats result - CM:fe-extract-multi-coordinate geometry, a:zis-mask, send-address

Operands geometry A geometry-id. This geometry determines the NEWS dimensions
to be used.

a:zis-mask An unsigned integer, the mask indicating a set of NEWS axes.

send-address An unsigned integer inunediate operand to be used as the
send address of some processor.

Result An unsigned integer, the NEWS multi-coordinate of the specified processor
along the specified axes.

Context This operation is unconditional. It does not depend on conte:zt-jlag.

Definition Let a:zis-set = {m 10::; m < r A (a:zis-mask(m) = 1)}
Return e:ztract-multi-coordinate(geometry, a:zis-set, send-address)

where e:ztract-multi-coordinate is as defined on page 34.

This function calculates, entirely on the front end, the NEWS multi-coordinate of a processor
along specified NEWS axes. The axes are indicated by the a:zis-mask argument; the processor
is identified by its send-address.

135

EXTRACT -N EWS-COORDINATE

EXTRACT -NEWS-COORDINATE

Determines the NEWS coordinate of a processor specified by send-address.

Formats CM:extract-news-coordinate-1L geometry, dest, axis, send-address, dlen

Operands geometry A geometry-id. This geometry determines the NEWS dimensioIUl
to be used.

dest The unsigned integer destination field.

a:r:,s An unsigned integer immediate operand to be used as the number
of a NEWS axis.

send-address An unsigned integer immediate operand to be used as the
send address of some processor.

dlen The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if conte:r:t-ftag[k] = 1 then

dest[k] +- e:r:tract-news-coordinate(geometry, a:r:is, send-address)

where e:r:tract-news-coordinate is as defined on page 33.

This function calculates, within each selected processor, the NEWS coordinate of a processor
along a specified NEWS axis. The axis is indicated by the axis argument; the processor is
identified by its send-address.

136

EXTRACT -N EWS-COORDINATE

FE-EXTRACT -N EWS-COO RD IN ATE

Calculates, on the front end, the NEWS coordinate of a processor specified by send-address.

Formats result - CM:fe-extract-news-coordinate geometry, axis, send-address

Operands geometry A geometry-id. This geometry determines the NEWS dimensions
to be used.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

send-address An unsigned integer immediate operand to be used as the
send address of some processor.

Result An unsigned integer, the NEWS coordinate of the specified processor along the
specified axis.

Context This operation is unconditional. It does not depend on context-flag.

Definition Return extract-news-coordinate(geometry, axis, send-address)

where extract-news-coordinate is.as defined on page 33.

This function calculates, entirely on the front end, the NEWS coordinate of a processor along
a specified NEWS axis. The axis is indicated by the axis argument; the processor is identified
by its send-address.

137

FIElD-VP-SET

FIELD-VP-SET

Returns the VP set associated with a field.

Formats result +- CM:field-vp-set field

Operands field The field.

Result A vp-set-id, identifying the VP set to which the field belongs.

Context This operation is unconditional. It does not depend on context-flag.

Definition Return vp-set(field)

This operation may be used to determine the VP set with which any given field is associated.
The field need not belong to the current VP set.

139

FLOAT

F-S-FLOAT

Converts a signed integer field into a floating-point number field.

Formats CM:f-s-float-2-2L dest, source, slen, s, e

Operands dest The floating-point destination field.

The signed integer source field. source

slen

s, e

The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor "k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - source[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

The source field, treated as a signed integer, is converted to a floating-point number, which
is stored into the dest field.

140

F-U-FLOAT

Converts an unsigned integer field into a floating-point number field.

Formats CM: f-u-float-2-2L dest, source, sien, s, e

Operands dest

source

The floating-point destination field.

The unsigned integer source field.

FLOAT

sien The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This 'operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - source[k]
if (overflow occurred in processor k) then overfiow-flag[k]- 1

The source field, treated as an unsigned integer, is converted to a floating-point number,
which is stored into the dest field.

141

FLOOR

F-F-FLOOR

In each selected processor, calculates the largest integer that is not greater than a specified
floating-point value and stores the result as a floating-point field.

Formats CM:f-f-floor-l-lL dest/source, s, e
CM:f-f-floor-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

dest[k] - Lsource[k]J

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of -00, which is stored into the dest field as a floating-point number.

Note that overflow cannot occur.

142

/

FLOOR

S-F-FLOOR

Calculates, in each selected processsor, the largest integer that is not greater than a specified
floating-point value and stores the result as a signed integer field.

Formats CM:s-f-floor-2-2L dest, source, dlen, s, e

Operands dest The signed integer destination field.

The floating-point source field. source

len

s, e

The length of the dest field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-Iength*.

The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other­
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- lsource[k]J
if (overflow occurred in processor k) then overflow-flag[k] +- 1
else overflow-flag[k] +- 0

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of -00, which is stored into the dest field as a signed integer.

143

FE-FROM-GRAY-CODE

Calculates, on the front end, the Gray code representation of a specified integer.

Formats result +- CM:fe-from-gray-code code

Operands code An unsigned integer immediate operand to be used as the Gray
encoding, represented as a nonnegative integer.

Result An unsigned integer, the nonnegative integer represented by code.

Context This operation is unconditional. It does not depend on context-flag.

Definition Let n = integer-Iength(code)

Return 191 l code J
j=o 23

This function calculates, entirely on the front end, the integer represented by a bit-string
encoding code in a p~ticular reflected binary Gray code.

Note that the binary value 0 is always equivalent to a Gray code string that is all O-bits.

144

FROM-GRAY-CODE

U-FROM-GRAY-CODE

Converts a bit string representing a Gray-coded integer value to the usual unsigned binary
represen tation.

Formats CM: u-from-gray-code-l-1L
CM: u-from-gray-code-2-1L

dest / source, len
dest, source, len

Operands dest The unsigned integer destination field.

The source field. source

len The length of the dest and source fields. This must be non-negative
and no· greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

for j from len - 1 to 0 do

dest[k]U) +- Cei~l sOUrCe[k]{i))

The source operand is considered to be a value in a particular reflected binary Gray code.
The position of that value in the standard Gray code sequence is calculated as an unsigned
binary integer. This is done as follows: bit i of the result is 1 if and only if all the bit
positions of the source to the left of (and including) bit i contain an odd number of 1 'so

Note that a Gray code string that is all O-bits is always equivalent to the binary value O.

145

GE

F-GE

Compares two floating-point source values. The test-flag is set if the first is greater than or
equal to the second, and otherwise is cleared.

Formats CM:f-ge-ll
CM: f-ge-constant-ll
CM: f-ge-zero-ll

soureel, souree2, S, e
souree1, souree2-value, s, e
soureel, s, e

Operands soureel The floating-point first source field.

The floating-point second source field. souree2

souree2-value A floating-point immediate operand to be used as the second
source. For CM :f-ge-zero-ll, this implicitly has the value zero.

s, e The significand and exponent lengths for the souree1 and souree2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields souree1 and souree2 may overlap in any manner.

Flags test-flag is set if souree1 is greater than or equal to souree2; otherwise it is
cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the eurrent-vp-set do
if context-flag[k 1 = 1 then

if sourcel[k] ;::: souree2[k]
test-flag[k] +- 1

else
test-flag[k] +- 0

Two operands are compared as floating-point numbers. The first operand is a memory
field; the second is a memory field or an immediate value. The test-flag is set if the first
operand is greater than or equal to the second oper,and, and is cleared otherwise. Note that
comparisons ignore the sign of zero; +0 and -0 are considered to be equal.

The constant operand souree2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.

147

GE

S-GE

Compares two signed integer source values. The test-flag is set if the first is greater than or
equal to the second, and otherwise is cleared.

Formats CM:s-ge-ll
CM:s-ge-2l
CM:s-ge-constant-ll
CM: s-ge-zero-ll

souree1, source2, len
source1, souree2, slen1, slen2
souree1, souree2-value, len
souree1, len

Operands source 1 The signed integer first source field.

The signed integer second source field. souree2

source2-value A signed integer immediate operand to be used as the second
source. For CM: s-ge-zero-ll, this implicitly has the value zero.

len The length of the source1 and source2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

slen1 The length of the souree1 field. This must be no smaller than 2
but no greater than CM: *maximum-integer-Iength*.

slen2 The length of the souTce2 field. This must be no smaller than 2
but no greater than CM: *maximum-integer-Iength*.

Overlap The fields source1 and souTce2 may overlap in any manner.

Flags test-flag is set if SOUTce1 is greater than or equal to souTce2; otherwise it is
cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-fiag[kJ = 1 then

if source1[kJ ~ source2[k] then
test-fiag[k) ~ 1

else
test-flag[k] +- 0

Two operands are compared as signed integers. Operand SOUTCe1 is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is greater than or equal to the second operand, and is cleared otherwise.

148

GE

The constant operand source2-value should be a signed integer front-end value. The op­
eration is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

149

GE

U-GE

Compares two unsigned integer source values. The test-flag is set if the first is greater than
or equal to the second, and otherwise is cleared.

Formats CM:u-ge-lL
CM:u-ge-2L
CM: u-ge-constant-IL
CM: u-ge-zero-IL

sourcel, source2, len
source1, source2, slenl, slen2
source1, source2-value, len
source1, len

Operands so urce 1

source2

The unsigned integer first source field.

The unsigned integer second source field.

source2-value An unsigned integer inunediate operand to be used as the
second source. For CM: u-ge-zero-lL, this implicitly has the value
zero.

len The length of the source1 and source2 fields. This must be non­
negative and no greater than CM: *maximum-integer-Iength*.

slen1 The length of the source1 field. This must be non-negative and no .
greater than CM: *maximum-integer-Iength*.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Overlap The fields source1 and source2 may overlap in any manner.

Flags test-flag is set if sourcel is greater than or equal to source2; otherwise it is
cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] :: 1 then

if source1[k] ~ source2[k] then
test-flag[k] +- 1

else
test-flag[k] +- 0

Two operands are compared as unsigned integers. Operand source1 is always a memory
field; operand source2 is a memory field or an inunediate value. The test-flag is set if the
first operand is greater than or equal to the second operand, and is cleared otherwise.

150

GE

The constant operand source2-value should be an unsigned integer front-end value. The
operation is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

151

GEOM ETRY-AXIS .. LENGTH

GEOMETRY-AXIS-LENGTH

Returns the length of one axis of a geometry.

Formats result +- eM: geometry-axis-Iength geometry-id, axis

Operands geometry-id A geometry-id.

axis An unsigned integer, the number of the axis whose length is de­
sired.

Result An unsigned integer, the length of the indicated axis.

Context This operation is unconditional. It does not depend on context-flag.

Definition Return axis-descriptors (geometry-id) [axis].length

This operation returns the length of the specified axis of the geometry specified by the
geometry-id.

152

GEOMETRY-AXIS-ORDERING

GEOMETRY-AXIS-ORDERING

Returns the ordering of one axis of a geometry.

Formats result - eM: geometry-axis-ordering geometry-id, axis

Operands geometry-id A geometry-id.

axzs An unsigned integer, the number of the axis whose ordering is
desired.

Result The ordering of the specified axis (either : news-order or :send-order).

Context This operation is unconditional. It does not depend on context-flag.

Definition Return axis-descriptors (geometry-id) [axis]. ordering

This operation returns the ordering of the specified axis of the geometry specified by the
geometry-id.

153

GEOMETRY-AXIS-VP .. RATIO

GEO M ETRY -AXIS-VP-RATIO

Returns the VP ratio of one axis of a geometry.

Formats result +- eM: geometry-axis-vp-ratio geometry-id, axis

Operands geometry-id A geometry-id.

axis An unsigned integer, the number of the axis whose vp-ratio is
desired.

Result An unsigned integer, the vp-ratio of the indicated axis.

Context This operation is unconditional. It does not depend on context-flag.

Definition Return axis-descriptors (geometry-id)[axis]. vp-ratio

This operation returns the vp-ratio of the specified axis of the geometry specified by the
. geometry-id.

154

GEOMETRY-COORDINATE-LENGTH

GEOMETRY-COORDINATE-LENGTH

Returns the number of bits needed to represent a NEWS coordinate.

Formats result +- eM: geometry-coordinate-Iength geometry-id, axis

Operands geometry-id A geometry-id.

axis An unsigned integer, the number of the axis whose coordinate
length is desired.

Result An unsigned integer, the number of bits required to represent a coordinate
for the indicated axis.

Context This operation is unconditional. It does not depend on context-flag.

Definition Return integer-Iength(axis-descriptors (geometry-id) [axis).length - 1)

This operation returns the number of bits required to represent (as an unsigned integer) a
NEWS coordinate for the specified axis of the geometry specified by the geometry-id.

155

GEOMETRY-RANK

GEOMETRY-RANK

Returns the number of axes for a geometry.

Formats result +- eM: geometry-rank geometry-id

Operands geometry-id A geometry-id.

Result An unsigned integer, the rank (number of axes) of the specified geometry.

Context This operation is unconditional. It does not depend on conte:xt-ftag.

Definition Return rank(geometry)

This operation returns the number of grid axes for the geometry specified by the
geometry-id.

156

GEOMETRY-SEND-ADDRESS-LENGTH

GEOMETRY-SEND-ADDRESS-LENGTH

Returns the number of bits needed to represent a send-address.

Formats result 01- eM: geometry-send-add ress-Iength geometry-id

Operands geometry-id A geometry-id.

Result An unsigned integer, the number of bits required to represent a send-address
for a processor in the specified geometry.

Context This operation is unconditional. It does not depend on context-flag.

Definition Let n = rank(geometry-id)
n-l

Return L: integer-Iength(axis-descriptors (geometry-id)rj).length - 1)
;=0

This operation returns the number of bits required to represent a send-address for a virtual
processor in any VP set whose geometry is the one specified by the geometry-id. This will
be equal to the sum of the numbers of bits needed to represent NEWS coordinates for all
the axes.

157

GEOMETRY-TOTAL-PROCESSORS

GEOMETRY-TOTAL-PROCESSORS

Returns the number of virtual processors for a geometry.

Formats result +- eM: geometry-total-processors geometry-id

Operands geometry-id A geometry-id.

Result An unsigned integer, the total number of processors in the specified geometry.

Context This operation is unconditional. It does not depend on context-flag.

Definition Let n = rank(geometry-id)
n-l

Return IT axis-descriptors(geometry-id)[j).length
;=0

This operation returns the total number of virtual processors in any VP set whose geometry
is the one specified by the geometry-id. This will be equal to the product of the lengths of
all the axes.

158

GEOMETRY-TOTAL-VP-RATIO

GEOMETRY-TOTAL-VP-RATIO

Returns the total VP ratio for a specified geometry.

Formats result +- eM: geometry-total-vp-ratio geometry-id

Operands geometry-id A geometry-id.

Result An unsigned integer, the number of virtual processors represented within each
physical processor for the specified geometry.

Context This operation is unconditional. It does not depend on context-flag.

Definition Let n = rank(geometry-id)
n-1

Return n azis-descriptor(geometry-id)[j).vp-ratio
;=0

This operation returns the total VP ratio for a specified geometry. This is equal to the
total number of virtual processors for the geometry, divided by the total number of physical
processors.

159

GET

GET
Each selected processor gets a message from a specified source processor, possibly itself. A
source processor may supply messages even if it is not selected. Messages are all retrieved
from the same address within each source processor, and all the source processors may be
in a VP set different from the VP set of the destination processors.

Formats CM:get-1L dest, send-address, source, len

Operands dest The destination field.

send-address The field containing a send-address that indicates which pro-
cessor is to receive the message.

source The source field.

len The length of the dest and source fields.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-up-set do
if context-jlag[k] = 1 then

dest[k] +- source[send-address[k]]

For every selected processor Pd, a message length bits long is sent to Pd from the processor P.

whose send-address is in the field send-address in the memory of processor Pd. The message
is taken from the source field within processor P. and is stored into the field at location
dest within processor Pd. Although the send-address operand is a field in the VP set of the
destination processors, its value must specify a valid send address for source, which may
belong to a different VP set.

Note that more than one selected processor may request data from the same source processor
P., in which case the same data is sent to each of the requesting processors.

160

GET-AREF32

GET-AREF32

Each selected processor gets a message from a specified array field witin any specified source
processor (possibly itself). A source processor may supply messages even if it is not selected.
Messages are all retrieved from the same address within each source processor.

Formats CM:get-aref32-2L dest, send-address, array, index, dlen, index-len, index-limit

Operands dest The destination field.

send-address The field containing a send-address that indicates which pro-

array

index

dlen

cessor is to receive the message.

The source array field.

The unsigned integer index into the array field. This must be a
multiple of 32.

The length of the dest field.

index-len The length of the index field. This must be non-negative and no
greater than CM:-*maximum-integer-Iength*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index.

Overlap The send-address and array may overlap in any manner. The dest field may
overlap with send-address or array, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or array only if within each processor at most one of them will
be used.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if index [k] < index-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set»

let m = l ~ J mod 32
let i = index[k]
for all j such that 0 ::; j < dlen do

let q = send-address[k] - m X r + (j mod 32) x r

let b = i + l i2 J
dest[k](j) +- array[q](b)

161

GET-AREF32

else
(error)

For every selected processor Pd, a message length bits long is sent to Pd from the processor P.
whose send-address is in the field send-address in the memory of processor Pd. The message
is taken from the array field within processor P. as if by the operation aref32 and is stored
into the field at location dest within processor Pd-

Note that more than one selected processor may request data from the same source processor
P., possibly from different locations within the array. Note also that in each case the array
element to be sent from processor p, to processor Pd is determined by the value of index
within Pd, not the value within P •.

162

GET-fROM-NEWS

GET-FROM-NEWS

Each processor gets a message from a specified neighbor processor.

Formats CM: get-from-news-lL
CM: get-from-n ews-a Iways-l L

dest, source, axis, direction, len
dest, source, axis, direction, len

Operands dest The destination field.

Overlap

Context

source The source field.

ax,s An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either: upward or :downward.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Note that in the conditional case the storing of data depends only on the
context-flag of the processor receiving the data, not on the context-flag of the
processor from which the data is obtained.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

let 9 = geometry(current-vp-set)
dest[k] - source [news-neighbor(g, k, axis, direction)]

where news-neighbor is as defined on page 34.

The dest field in each processor receives the contents of the source field of that processor's
neighbor along the NEWS axis specified by axis in the direction specified by direction.

IT direction is : upward then each processor retrieves data from the neighbor whose NEWS

coordinate is one greater, with the processor whose coordinate is greatest retrieving data
from the processor whose coordinate is zero.

IT direction is : downward then each processor retrieves data from the neighbor whose NEWS

coordinate is one less, with the processor whose coordinate is zero retrieving data from the
processor whose coordinate is greatest.

163

GLOBAL-ADD

GLOBAL-F-ADD

One floating-point number is examined in every selected processor, and the sum of all these
fields is returned to the front end as a floating-point number.

Formats result +- CM:global-f-add-lL source, s, e

Operands source The floating-point source field.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Result A floating-point number, the sum of the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces­
sors whose context-flag is 1.

Definition Let S = { m I mE current-vp-set A context-flag[m] = 1 }
If 181 = 0 then

return +0 to front end
else

return (~ source[m]) to front end
mES

The CM: global-f-add operation sums the source fields, treated as floating-point numbers,
in all selected processors. The sum is sent to .the front-end computer as a floating-point
number and returned as the result of the operation. If there are no selected processors,
then the value +0 is returned.

164

GLOBAL-ADD

GLOBAL-S-ADD

One signed integer is examined in every selected processor, and the sum of all these fields
is returned to the front end as a signed integer.

Formats result +- CM:global-s-add-lL source, len

Operands source The signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-Iength*.

Result A signed integer, the sum of the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces­
sors whose context-flag is 1.

Definition ·Let 8 = {m I mE current-vp-set 1\ context-flag[m] = 1 }
If 181 = 0 then

return 0 to front end
else

return (2: source[m]) to front end
mES

The CM: global-s-add operation sums the source fields, treated as signed integers, in all
selected processors. The sum is sent to the front-end computer as a signed integer and
returned as the result of the operation. If there are no selected processors, then the value
o is returned.

165

GLOBAL-ADD

GLOBAL-U-ADD

One unsigned integer is examined in every selected processor, and the sum of all these fields
is returned to the front end as an unsigned integer.

Formats result +- CM:global-u-add-lL source, len

Operands source The unsigned integer source field.

len The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Result An unsigned integer, the sum of the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces­
sors whose context-flag is 1.

Definition Let 8 = {m I m E current-vp-set A context-flag[m] = 1 }
If 181 = 0 then

return 0 to front end
else

return (L: source[m]) to front end
mES

The CM: global-u-add operation sums the source fields, treated as unsigned integers, in all
selected processors. The sum is sent to the front-end computer as an unsigned integer and
returned as the result of the operation. If there are no selected processors, then the value
o is returned.

166

GLOBAL-COUNT -BIT

GLOBAL-COUNT -BIT

One bit is examined in every selected processor, and the count of bits that are 1 is delivered
to the front end.

Formats result .- CM:global-count-bit source
result .- CM:global-count-bit-always source

Operands source The source bit (a one-bit field).

Result

Overlap

Context

An unsigned integer, the number of 1 bits.

There are no constraints, because overlap is not possible.

The non-always operations are conditional The result returned depends only
upon processors whose context-flag is 1.

The always operations are unconditional. The result returned does not depend
on the context-flag.

Definition If always then
let S = { m I m E current-vp-set /\ source[m] = 1}

else
let S = {m I mE current-vp-set /\ context-flag[m] = 1/\ source[m] = 1}

return lSI to front end

The CM: global-count-bit operation sums the one-bit bit-source fields in all selected proces­
sors; in other words, it returns a count of how many processors have a 1-bit in that field.
The count is then sent to the front-end computer as an unsigned integer and returned as
the result of the operation. If there are no selected processors, then the value 0 is returned.

Using CM: global-count-bit is identical in effect to using CM: global-unsigned-add on a one-bit
field, but may be faster.

167

GLOBAL-COUNT -CONTEXT

GLOBAL-CO UNT -CONTEXT

Returns the number of active processors.

Formats result +-- CM:global-count-context

Context This operation is unconditional.

Definition Let S = {m I m E current-vp-set 1\ context-ftag[mJ = 1 }
Return lSI to front end

The number of processors whose context bit is 1 is returned to the front end.

168

GLOBAL-COUNT -flag

GLOBAL-CO UNT -flag

Returns the number of processors that have a specified flag set.

Formats CM:global-count-test
CM: global-count-overflow

Context This operation is conditional.

Definition Let S = {m I mE current-vp-set /\ context-flag[m] = 1/\ flag[m] = I}
Return lSI to front end

where flag is test-flag or overflow-flag, as appropriate.

The number of processors for which the specified flag is 1 is returned to the front end.

169

GLOBAL·LOGAND

GLOBAL-LOGAND

One field is examined in every selected processor, and the bitwise logical AND of all these
fields is returned to the front end as an unsigned integer.

Formats result ~ CM:global-logand-ll source, len

Operands source The source field.

len The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical AND

of all the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces­
sors whose context-flag is 1.

Definition Let S = {m I mE current-vp-set A context-flag[m) = 1 }
H lSI = 0 then

return 2'en -- 1 to front end
else

return (A source[m)) to front end
mES

The CM: global-Iogand operation combines the source fields in all selected processors by
performing bitwise logical AND operations. A bit is 1 in the result field if the corresponding
bit is a 1 in all of the fields to be combined. The resulting combined field is then sent to
the front-end computer as an unsigned integer and returned as the result of the operation.
H there are no selected processors, then the value __ 21en -- 1 is returned, representing a field
of length len containing all ones.

170

GLOBAL-LOGAND-BIT

GLO BAL-LO GAN D-B IT

One memory bit is examined in each processor; 1 is returned if they are all 1, 0 if any is
zero.

Formats result +- CM: global-Iogand-bit source
result +- CM: global-Iogand-bit-always source

Operands source The source field.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical AND

of all the source bits.

Overlap There are no constraints, because overlap is not possible.

Context The non-always operations are conditional. The result returned depends only
upon processors whose context-flag is 1.

The always operations are unconditional. The result returned does not depend
on the context-flag.

Definition If always then
let 8 = current-vp-set

else
let 8 = {m I mE current-vp-set A context-flag[m] = I}

If 181 = 0 then
return 1 to front end

else

return (A source[m]) to front end
mES

The CM:global-logand-bit operation combines the source bits in all selected processors by
performing a bitwise logical AND operation. The result is 1 if all the examined bits are 1;
otherwise the result is O. The result is sent to the front-end computer as an unsigned integer
and returned as the result of the operation. If there are no selected processors, then the
value 1 is returned.

Using CM: global-Iogand-bit is identical in effect to using CM: global-Iogand on a one-bit field,
but may be faster.

171

GLOBAL-LOGAND-CONTEXT

GLOBAL-LOGAND-CONTEXT

Return 1 if all processors are active, 0 if any processor is inactive.

Formats result - CM:global-logand-context

Context This operation is unconditional.

Definition Return (A conte:ct-ftag[mJ) to front end
mE eurrent-lIp-,et

If all processors are active, then 1 is returned to the front end; otherwise 0 is returned.

172

GLOBAL-LOGAN D-f1ag

GLOBAL-LOGAND-flag

Return 1 if a specified flag is set in all processors, 0 if it is clear in any processor.

Formats CM: global-Iogand-test
CM:global-logand-overflow

Context This operation is conditional:

Definition Let S = {m I mE current-vp-set A context-flag[m] = 1 A flag[m] = 1}
If lSI = 0 then

return 0 to front end
else

return (A flag[m]) to front end
mES

where flag is test-flag or overflow-flag, as appropriate.

If all processors have the indicated flag set, then 1 is returned to the front end; otherwise 0
is returned.

173

GLOBAL-LOGIOR

GLOBAL-LOGIOR

One field is examined in every selected processor, and the bitwise logical inclusive OR. of all
these fields is returned to the front end as an unsigned integer.

Formats result - CM:global-logior-lL source, len

Operands source The source field.

len The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical
INCLUSIVE OR of all the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces­
sors whose context-flag is 1.

Definition Let S = {m I mE current-vp-set A context-flag[m] = 1 }
If lSI = 0 then

return 0 to front end
else

return (V source[m]) to front end
mES

The CM:global-logior operation combines the source fields in all selected processors by per­
forming bitwise logical INCLUSIVE OR operations. A bit is 1 in the result field if the cor­
responding bit is a 1 in any of the fields to be combined. The resulting combined field is
then sent to the front-end computer as an unsigned integer and returned as the result of
the operation. If there are no selected processors, then the value 0 is returned, representing
a field of length len containing all zeros.

174

GLOBAL·LOGIOR·BIT

GlOBAl-lOGIOR-BIT

One memory bit is examined in each processor; 1 is returned if any is 1, 0 if they are all
zero.

Formats result - eM: globa I-Iogior-bit source
result - eM: global-Iogior-bit-always source

Operands source The source field.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical OR

of all the source bits.

Overlap There are no constraints, because overlap is not possible.

Context The non-always operations are conditional. The result returned depends only
upon processors whose context-flag is 1.

The always operations are unconditional. The result returned does not depend
on the context-flag.

Definition If always then
let 5 = current-vp-set

else
let 5 = {m I mE current-vp-set A context-flag[m) = I}

If 151 = 0 then
return 0 to front end

else

return (V source[m)) to front end
mES

The eM: global-Iogior-bit operation combines the source bits in all selected processors by
performing a bitwise logical inclusive OR operation. The result is 1 if any examined bit is
1; otherwise the result is o. The result is sent to the front-end computer as an unsigned
integer and returned as the result of the operation. If there are no selected processors, then
the value 0 is returned.

Using eM: global-Iogior-bit is identical in effect to using eM: global-Iogior on a one-bit field,
but may be faster.

175

GLOBAL·LOGIOR-CONTEXT

GLOBAL-LOGIOR-CONTEXT

Return 1 if any processor is active, 0 if no processors are active.

Formats result +- CM:global-logior-context

Context This operation is unconditional.

Definition Return (V context-flag[m1) to front end
mE cu,.,.ent-lIp •• et

If any processor has its context bit set, then 1 is returned to the front end; otherwise 0 is
returned.

176

GLOBAL-LOGIOR-flag

GLOBAL-LOGIOR-flag

Return 1 if a specified flag is set in any processor, 0 if it is clear in all processors.

Formats CM: global-Iogior-test
CM: global-Iogior-overflow

Context This operation is conditional.

Definition Let S = {m I mE current-vp-set" context-flag[m) = 1" flag[m) = 1}
IT lSI = 0 then

return 0 to front end
else

return (V flag[m)) to front end
mES

where flag is test-flag or overflow-flag, as appropriate.

IT any processor has the indicated flag set, then 1 is returned to the front end; otherwise 0
is returned.

177

GLOBAL-LOGXOR

GLOBAL-LOGXOR

One field is examined in every selected processor, and the bitwise exclusive OR of all these
fields is returned to the front end as an unsigned integer.

Formats result +- CM:global-logxor-1L source, len

Operands source The source field.

len The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical
exclusive OR of all the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces­
sors whose context-flag is 1.

Definition Let S = { m I m E current-vp-set A context-flag[m] = 1 }

If lSI = 0 then
return - 2'en - 1 to front end

else

return (E9 source[m]) to front end
mES .

The CM: global-Iogxor operation combines the source fields in all selected processors by per­
forming bitwise logical EXCLUSIVE OR operations. A bit is 1 in the result field if the
corresponding bit is a 1 in an odd number of the fields to be combined. The resulting com­
bined field is then sent to the front-end computer as an unsigned integer and returned as
the result of the operation. If there are no selected processors, then the value 0 is returned,
representing a field of length len containing all zeros.

178

GLOBAL-MAX

GLOBAL-F-MAX

One floating-point number is examined in every selected processor, and the largest of all
these integers (that is, the one closest to +00) is returned to the front end as a floating-point
number.

Formats result - CM:global-f-max-lL source, s, e

Operands source The floating-point source field.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Result A floating-point number, the largest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the maximum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces­
sors whose context-flag is 1.

Definition Let 8 = {m I mE current-vp-set A context-flag[m) = 1}
If 181 = 0 then

return -00 to front end
else

let R = (maxsource[m))
mES

For every virtual processor k in the current-vp-set do
if context-flag[k) = 1 then

if source[k) = R then
test-flag[k) - 1

else
test-flag[k) - 0

return R to front end

The CM: global-f-max operation returns the largest (that is, closest to +00) of the floating­
point source fields of all selected processors. This largest value is sent to the front-end
computer as a floating-point number and returned as the result of the operation. In addition,
the test-flag is set in every selected processor whose field is equal to the finally computed
value, and is cleared in all other selected processors. If there are no selected processors,
then the value - 00 is returned.

179

GLOBAL-MAX

GLOBAL-S-MAX

One signed integer is examined in every selected processor, and the largest of all these
integers (that is, the one closest to +(0) is returned to the front end as a signed integer.

Formats result +- CM:global-s-max-lL source, len

Operands source The signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Result A signed integer, the largest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the maximum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces­
sors whose context-flag is 1.

Definition Let S = { m I mE current-vp-set 1\ context-ftag[m] = 1 }
IT lSI = 0 then

return _2'en- 1 to front end
else

let R = (maxsource[mJ)
mES

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] = R then
test-ftag[k] +- 1

else
test-ftag[k] +- 0

return R to front end

The CM:global-s-max operation returns the largest (that is, closest to +(0) of the signed­
integer source fields of all selected processors. This largest value is sent to the front-end
computer as a signed integer and returned as the result of the operation. In addition, the
test-flag is set in every selected processor whose field is equal to the finally computed value,
and is cleared in all other selected processors. IT there are no selected processors, then the
value _2'en- 1 is returned.

180

GLOBAL-MAX

GLOBAL-U-MAX

One unsigned integer is examined in every selected processor, and the largest of all these
integers is returned to the front end as an unsigned integer.

Formats result +- CM:global-u-max-lL source, len

Operands source The unsigned integer source field.

len The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Result An unsigned integer, the largest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the maximum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces­
sors whose context-flag is 1.

Definition Let 5 = {m I mE current-vp-set 1\ context-flag[m] = 1 }
If 151 = 0 then

return 2'en - 1 to front end
else

let R = (maxsource[m])
mES

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] = R then
test-flag[k] +- 1

else
test-flag[k] +- 0

return R to front end

The CM: global-u-max operation returns the largest of the unsigned-integer source fields of
all selected processors. This largest value is sent to the front-end computer as an unsigned
integer and returned as the result of the operation. In addition, the test-flag is set in every
selected processor whose field is equal to the finally computed value, and is cleared in all
other selected processors. If there are no selected processors, then the value 2'en - 1 is
returned.

181

GLOBAL-MAX-INTLEN

GLOBAL-U-MAX-S-INTLEN

One signed integer is examined in every selected processor, and the largest length of all
these integers is returned to the front end as an unsigned integer.

Formats result +- CM:global-u-max-s-intlen-1L source, len

Operands source The signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Result An unsigned integer, the length of the source field value of greatest length.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor has a length equal to the
maximum; otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces­
sors whose contezt-jlag is 1.

Definition Let S = { m I mE current-vp-set 1\ contezt-ftag(m] = 1 }
IT lSI = 0 then

return _2 len- 1 to front end
else

let R = (~rIOg2 (~+ It + source(m]l)l)

For every virtual processor k in the current-vp-set do
if contezt-jlag(k] = 1 then

if source[k] = R then
test-flag[k] +- 1

else
test-flag[k] +- 0

return R to front end

The CM: global-u-max-s-intlen operation computes the integer-length of each signed integer
source value. The largest length is sent to the front-end computer as an unsigned integer
and returned as the result of the operation. In addition, the test-flag is set in every selected
processor whose field is equal to the finally computed value, and is cleared in all other
selected processors. If there are no selected processors, then the value 0 is returned.

A call to CM: globai-u-max-s-intlen-1L is equivalent to the sequence

182

CM:s-integer-length-1L temp, source, len, len
CM:global-u-max-lL temp, len

but may be faster.

183

GlOBAL-MAX-INTlEN

GLOBAL-MAX-INTLEN

GLOBAL-U-MAX-U-INTLEN

One unsigned integer is examined in every selected processor, and the largest length of all
these integers is returned to the front end as an unsigned integer.

Formats result +- CM:global-u-max-u-intien-lL source, len

Operands source The unsigned integer source field.

len The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Result An unsigned integer, the length of the source field value of greatest length.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor has a length equal to the
maximum.; otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces­
sors whose contezt-flag is 1.

Definition Let S = {m I mE current-vp-set /\ contezt-flag[m] = 1 }
If lSI = 0 then

return _21en- 1 to front end
else

let R = (max rlog2 (1 + source[mDl)
mES

For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if source[k] = R then
test-flag[k] +- 1

else
- test-flag[k] +- 0

return R to front end

The CM: global-u-max-u-intlen operation computes the integer-length of each unsigned in­
teger source value. The largest length is sent to the front-end computer as an unsigned
integer and returned as the result of the operation. In addition, the test-flag is set in every
selected processor whose field is equal to the finally computed value, and is cleared in all
other selected processors. If there are no selected processors, then the value 0 is returned.

A call to CM: giobal-u-max-u-intlen-IL is equivalent to the sequence

184

CM: u-integer-length-1L temp, source, len, len
CM:global-u-max-lL temp, len

but may be faster.

185

GLOBAL-MAX-INTLEN

GLOBAL-MIN

GLOBAL-F-MIN

One floating-point number is examined in every selected processor, and the smallest of all
these integers (that is, the one closest to -00) is returned to the front end as a floating-point
number.

Formats result ~ CM:global-f-min-lL source, s, e

Operands source The floating-point source field.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Result A floating-point number, the smallest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the minimum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces­
sors whose context-flag is 1.

Definition Let S = {m I m E current-vp-set 1\ context-flag[m] = 1 }
If lSI = 0 then

return +00 to front end
else

let R = (min source[m])
m€S

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] = R then
test-flag[k] ~ 1

else
test-flag[k] ~ 0

return R to front end

The CM: global-f-min operation returns the largest (that is, closest to -00) of the floating­
point source fields of all selected processors. This largest value is sent to the front-end
computer as a floating-point number and returned as the result of the operation. In addition,
the test-flag is set in every selected processor whose field is equal to the finally computed
value, and is cleared in all other selected processors. If there are no selected processors,
then the value +00 is returned.

186

GLOBAL-MIN

GLOBAL-S-MIN

One signed integer is examined in every selected processor, and the smallest of all these
integers (that is, the one closest to -00) is returned to the front end as a signed integer.

Formats result +- CM: global-s-min-1L source, len

Operands source The signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Result A signed integer, the smallest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the minimum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces­
sors whose context-flag is 1.

Definition Let S = {m I mE current-vp-set A context-flag[m] = 1}
If lSI = 0 then

return _2 'en- 1 to front end
else

let R = (min source[m]) to front end
mES

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] = R then
test-flag[k] +- 1

else
test-flag[k] +- 0

return R to front end

The CM:global-s-min operation returns the largest (that is, closest to -00) of the signed­
integer source fields of all selected processors. This largest value is sent to the front-end
computer as a signed integer and returned as the result of the operation. In addition, the
test-flag is set in every selected processor whose field is equal to the finally computed value,
and is cleared in all other selected processors. If there are no selected processors, then the
value 2'en- 1 - 1 is returned.

187

GLOBAL-MIN

GLOBAL-U-MIN

One unsigned integer is examined in every selected processor, and the smallest of all these
integers is returned to the front end as an unsigned integer.

Formats result +- CM:global-u-min-lL source, len

Operands source The unsigned integer source field.

len The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Result An unsigned integer, the smallest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the minimum;
otherwise it is cleared.

Cont~xt This operation is conditional. The result returned depends only upon proces­
sors whose contezt-flag is 1.

Definition Let S = {m I mE current-vp-set A contezt-flag[m] = I}
If lSI = 0 then

return 0 to front end
else

let R = (min source[m])
meS

For every virtual processor k in the current-vp-set do
if contezt-jlag[k] = 1 then

if source[k] = R then
test-flag[k] +- 1

else
test-flag[k] +- 0

return R to front end

The CM: global-u-min operation returns the largest (that is, closest to -00) of the unsigned­
integer source fields of all selected processors. This largest value is sent to the front-end
computer as an unsigned integer and returned as the result of the operation. In addition,
the test-flag is set in every selected processor whose field is equal to the finally computed
value, and is cleared in all other selected processors. If there are no selected processors,
then the value 0 is returned.

188

GT

F-GT

Compares two floating-point source values. The test-flag is set if the first is strictly greater
than the second, and otherwise is cleared.

Formats CM:f-gt-lL
CM:f-gt-constant-lL
CM:f-gt-zero-lL

source1, source2, s, e
source1, source2-value, s, e
source1, s, e

Operands source1 The floating-point first source field.

The floating-point second source field. source2

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-gt-zero-lL, this implicitly has the value zero.

s, e The significand and· exponent lengths for the source1 and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields source1 and source2 may overlap in any manner.

Flags test-flag is set if source1 is greater than source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source1[k] > source2[k]
test-flag[k] ~ 1

else
test-flag[k] ~ 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is greater than the second operand, and is cleared otherwise. Note that comparisons ignore
the sign of zero; +0 is not greater than -0.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.

189

GT

S-GT

Compares two signed integer source values. The test-flag is set if the first is strictly greater
than the second, and otherwise is cleared.

Formats CM:s-gt-1L
CM:s-gt-2L
CM: s-gt-constan t-l L
CM:s-gt-zero-1L

sourcel, souTce2, len
sourcel, souTce2, slenl, slen2
souTcel, souTce2-value, len
SOUTCe1, len

Operands souTcel The signed integer first source field.

The signed integer second source field. souTce2

souTce2-value A signed integer immediate operand to be used as the second
source. For CM:s-gt-zero-1L, this implicitly has the value zero.

len The length of the souTcel and souTce2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

slenl The length of the souTcel field. This must be no smaller than 2
but no greater than CM:*ma)(imum-integer-length*.

slen2 The length of the souTce2 field. This must be no smaller than 2·
but no greater than CM:*maximum-integer-length*.

Overlap The fields souTcel and source2 may overlap in any manner.

Flags test-flag is set if souTcel is greater than source2j otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag(k] = 1 then

if souTcel[k] > source2[k] then
test-flag[k] +- 1

else
test-ftag(k] +- 0

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is greater than the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. The op­
eration is performed properly in all caseSj the constant need not be representable in the
number of bits specified by len.

190

GT

U-GT

Compares two unsigned integer source values. The test-flag is set if the first is strictly
greater than the second, and otherwise is cleared.

Formats CM:u-gt-lL
CM:u-gt-2L
CM: u-gt-constant-IL
CM: u-gt-zero-IL

sourcel, source2, len
sourcel, source2, slenl, slen2
soureel, souree2-value, len
sourcel, len

Operands soureel The unsigned integer first source field.

The unsigned integer second source field. souree2

souree2-value An unsigned integer immediate operand to be used as the

len

second source. For CM: u-gt-zero-lL, this implicitly has the value.
zero.

The length of the souree1 and source2 fields. This must be non­
negative and no greater than CM: *maximum-integer-Iength*.

slenl The length of the souree1 field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

slen2 The length of the souree2 field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Overlap The fields soureel and source2 may overlap in any manner.

Flags test-flag is set if souree1 is greater than souree2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the eurrent-vp-set do
if context-flag[k] = 1 then

if sourcel [k] > souree2[k] then
test-flag[k] 1

else
test-flag[k] 0

Two operands are compared as unsigned integers. Operand souree1 is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is greater than the second operand and is cleared otherwise.

191

GT

The constant operand source2-1Jalue should be an unsigned integer front-end value. The
operation is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

192

INIT

INIT

For the C/Paris and Fortran/Paris interfaces only. Makes various machine parameters
available and performs a warm boot operation.

Formats CM:init

Context This operation is unconditional. It does not depend on context-flag.

The facility for initializing Connection Machine hardware is provided in different ways in
the Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces
(on the other hand).

In the Lisp/Paris interface, there is no CM: init operation. Part of the work done by CM: init
is performed by CM:cold-boot, and the remainder by CM:warm-boot.

In the C/Paris and Fortran/Paris interfaces, CM:init makes available to the user program
various machine parameters that are initialized by the em attach and cmcoldboot shell com­
mands. It also performs all the functions of CM: warm-boot.

Every C or Fortran program that uses Paris should call CM:init before invoking any other
Paris operations.

193

INTEGER-LENGTH

S-INTEGER-LEN GTH

The minimum number of bits, minus one, needed to represent a signed integer value is
placed in the destination field.

Formats CM: s-integer-length-2-2L dest, source, dIen, slen

Operands dest The unsigned integer destination field.

The signed integer source field. source

dlen

sIen

The "length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

The length of the source field. This must be no smaller than 2 but
no greater than eM: *maximum-integer-Iength*.

Overlap The fields dest and source must not overlap in any manner.

Flags O1Jerflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

if source[k] ~ 0 then dest[k] +- rlog2(source[k] + 1)1
else dest[k] +- rlog2(-source[k])1
if (overflow occurred in processor k) then overflow-fiag[k] +- 1
else overfiow-ftag{k] +- 0

The dest field receives, as an unsigned integer, the result of the computation

flog2(s + 1)1 if s ~ 0
rlog2(-s)l if s < 0

where s is the source value. This quantity is one less than the minimum number of bits
required to represent s as a signed number, and will therefore be strictly less than sien.

194

INTEGER-LENGTH

U-INTEGER-LEN GTH

The minimum number of bits needed to represent an unsigned integer value is placed in the
destination field.

Formats eM: u-integer-length-2-2l dest, source, dlen, slen

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

dlen

slen

The length of the dest field. This must be non-negative and no·
greater than eM: *maximum-integer-Iength*.

The length of the source field. This must be non-negative and no
greater than eM: *maximum-integer-Iength*.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- rlog2(source[k] + 1)1
if {overflow occurred in processor k) then overflow-flag[k] +- 1
else overflow-flag[k 1 ~ 0

The dest field receives, as an unsigned integer, the value rlog2 (s + 1)1, where s is the source
value. This quantity is the minimum number of bits required to represent s as an unsigned
number, and will therefore be no greater than slen.

195

INITIALIZE-RANDOM-GENERATOR

INITIALIZE-RAN DO M-GEN ERATO R

Formats CM: initialize-rand om-generator seed

Operands seed An unsigned integer immediate operand to be used as the seed
value for initializing the pseudo-random number generator.

Context This operation is unconditional. It does not depend on context-flag.

The pseudo-random generator of numbers used by the operations CM: f-random-l L and em: u­
random-lL is initialized. The seed (a front-end integer, which must be non-zero) determines
the initial state.

Note that CM:eold-boot effectively calls CM: initialize-rand om-generator with a seed based on
the date and time of day.

In the Lisp/Paris interface, the seed argument is optional; if it is omitted, then a value
similarly based on the date and time of day is used.

196

INVERT-CONTEXT

Unconditionally makes all active processors inactive and vice versa.

Formats CM:invert-context

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
context-fiag[k] +- ,context-fiag[k]

INVERT-CONTEXT

Within each processor, the context bit for that processor is unconditionally inverted.

197

INVERT -FLAG

INVERT -flag

Inverts a specified flag hit.

Formats CM: invert-test
CM: invert-test-always
CM: invert-overflow
C M: in vert-overflow-always

Context The non-always operations are conditional.

The always operations are unconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

flag[k] to- -,flag[k]

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, the indicated flag for that processor is inverted.

198

IS-FIELO-IN-H EAP

IS-FIELD-IN-HEAP

Returns true if the specified field is a heap field, false otherwise.

Formats result +- eM: is-field-in-heap field-id

Operands field-id A field-id.

Result True if the field-id indicates a field allocated in the heap, and false otherwise.

Context This operation is unconditional. It does not depend on context-flag.

This predicate allows a program to determine whether a given field has been allocated in
the heap (as opposed to the stack).

199

IS-FIELD-IN-STACK

IS-FIELD-IN-STACK

Returns true if the specified field is a stack field, false otherwise.

Formats result +- eM: is-field-in-stack field-id

Operands field-id A field-id.

Result True if the field-id indicates a field allocated on the stack, and false otherwise.

Context This operation is unconditional. It does not depend on context-flag.

This predicate allows a program to determine whether a given field has been allocated on
the stack (as opposed to the heap).

200

IS-STACK-FIELO-N EWER

IS-STACK-FIELD-NEWER

Formats result +- eM: is-stack-field-newer stack-query-field, stack-base-field

Operands stack-query-field A field-id. The field must be in the stack.

Result

Context

stack-base-field A field-id. The field must be in the stack.

True if the stack-query-field has been allocated more recently than the
stack-base-field, and false otherwise.

This operation is unconditional. It does not depend on context-flag.

This operation compares two stack fields and returns true if the second has been allocated
more recently than the first.

201

ISQRT

S-ISQRT

The integer square root of a signed integer source field is placed in the destination field.
This is the largest integer not larger than the true mathematical square root.

Formats CM: s-isqrt-l-IL
CM:s-isqrt-2-1L
CM: s-isqrt-2-2L

dest/ source, len
dest, source, len
dest, source, dlen, sIen

Operands dest The signed integer destination field.

The signed integer source field. source

len

dlen

slen

The length of the dest and SOUTce fields. This must be no smaller
than 2 but no greater than CM: *maximum-integer-Iength*.

The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Overlap 'The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length. .

Flags test-flag is set if the source value is negative; otherwise it is cleared.

overflow-flag is set if the result cannot be 'represented in the destination field;
otherwise it is cleared. This can occur only for CM:s-isqrt-2-2L.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] ~ 0 then
dest[k] +- LJsouTceJ
test-flag[k] +- 0

else
dest[k] +- (unpredictable)
test-flag[k] +- 1

if (overflow occurred in processor k) then overflow-flag[k] +- 1
else overflow-flag[k] +- 0

as appropriate.

202

ISQRT

If the source value is non-negative, then the integer square root of that value (the largest
integer not greater than the mathematical square root) is placed in the destination, and
test-flag is cleared. Otherwise the test-flag is set and an unpredictable value is placed in the
dest field.

203

ISQRT

U-ISQRT·

The integer square root of an unsigned integer source field is placed in the destination field.
This is the largest integer not larger than the true mathematical square root. .

Formats CM:u-isqrt-l-lL
CM: u-isqrt-2-1L
CM: u-isqrt-2-2L

dest/ source, len
dest, source, len
dest, source, dlen, slen

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

len

dlen

slen

The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-Iength*.

The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Overlap The source field must be either disjoint froIh or identical to the dest field.
Two integer fields are identical if they have the same address and the same
~~ .

Flags overflow-flag is set if.the result cannot be represented in the destination field;
otherwise it is cleared. This can occur only for CM: u-isqrt-2-2L.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-fiag(k] = 1 then

dest[k] +- L v' sourceJ
if (overflow occurred in processor k) then overflow-flag[k] +- 1
else overflow-flag(k] +- 0

as appropriate.

The integer square root of the sonrce value (the largest integer not greater than the math­
ematical square root) is placed in the destination.

204

LATCH-LEOS

Uses a one-bit field to turn the front-panel lights on or off.

Formats eM: latch-Ieds source
eM: latch-Ieds-always source

Operands source The source bit (a one-bit field).

Context The non-always operations are conditional.

The always operations are unconditional.

Definition Let 9 = geometry(current-vp-set)
Let r = geometry-total-vp-ratio(g) X 16
Let n = geometry-total-processors/r
For all m such that 0 ~ m < n do

if always then
turn on led m if and only if

(~\l source[m X n + j])
;=0

=0

else
turn on led m if and only if

LATCH-LEOS

(~\./ (source[m X n + j] A context-ftag[m X n + jn) = 0
;=0

The specified I-bit field is read from every selected processor (or every processor, for the
always version) and used to determine which LEOS should be illuminated. There is one
LED associated with each group of 16 physical processors; each physical processor has some
number of virtual processors. Two virtual processors belong to the same group if their
virtual processor numbers agree in their log2 n most significant bits, where n is the total
number of LEOS. A LED is illuminated if every selected virtual processor in the group has
a 0 in the selected source field (that is, the fields are combined for each group by a logical
NOR. operation).

Note that the pattern will actually persist in the lights only if eM: set-system-Ieds-mode
has been called with the argument nil (in the Lisp/Paris interface) or 0 (in the C/Paris or
Fortran/Paris interface); otherwise the Connection Machine system software will present
other patterns in the lights.

205

LE

F-LE

Compares two floating-point source values. The test-flag is set if the first is less than or
equal to the second, and otherwise is cleared.

Formats CM:f-le-1L
CM:f-le-constant-1L
CM:f-le-zero-1L

source1, source2, s, e
source1, source2-value, s, e
source1, s, e

Operands source1 The floating-point first source field.

The floating-point second source field. source2

source2-value A floating-point inunediate operand to be used as the second
source. For CM:f-le-zero-1L, this implicitly has the value zero.

s, e The significand and exponent lengths for the source1 and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields source1 and source2 may overlap in any manner.

Flags test-flag is set if sourcel is less than or equal to source2j otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source1[k] $ source2[k]
test-flag[k] f- 1

else
test-flag[k] f- 0

Two operands are compared as floating-point numbers. The first operand is a memory fieldj
the second is a memory field or an immediate value. The test-flag is set if the first operand
is less than or equal to the second operand, and is cleared otherwise. Note that comparisons
ignore the sign of zerOj +0 and -0 are considered to be equal.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.

206

LE

S-LE

Compares two signed integer source values. The test-flag is set if the first is less than or
equal to the second, and otherwise is cleared.

Formats CM:s-le-1L
CM:s-le-2L
CM:s-le-constant-1L
CM: s-le-zero-1L

sourcel, source2, len
sourcel, source2, slenl, slen2
sourcel, source2-value, len
source1, len

Operands sourcel The signed integer first source field.

The signed integer second source field. source2

source2-value A signed integer immediate operand to be used as the second
source. For CM: s-le-zero-lL, this implicitly has the value zero.

len The length of the source1 and source2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

slenl The length of the sourcel field. This must be no smaller than 2
but no greater than CM: *maximum-integer-Iength*.

slen2 The length of the source2 field. rr:his must be no smaller than 2
but no greater than CM: *maximum-integer-Iength*.

Overlap The fields sourcel and source2 may overlap in any manner.

FI~gs test-flag is set if sourcel is less than or equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] ~ source2[k] then
test-flag[k] .- 1

else
test-flag[k] .- 0

Two operands are compared as signed integers. Operand source1 is always a memory field;
operand source2 is a memory field or an immediate value, The test-flag is set if the first
operand is less than or equal to the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. The op­
eration is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

207

LE

U-LE

Compares two unsigned integer source values. The test-flag is set if the first is less than or
equal to the second, and otherwise is cleared.

Formats CM:u-le-lL
CM:u-le-2L
CM: u-Ie-constant-IL
CM: u-Ie-zero-IL

source1, source2, len
sourcel, source2, slenl, slen2
sourcel, source2-value, len
source1, len

Operands sourcel The unsigned integer first source field.

The unsigned integer second source field. source2

source2-value An unsigned integer immediate operand to be used as the

len

second source. For CM: u-le-zero-lL, this implicitly has the value
zero.

The length of the sourcel and source2 fields. This must be non­
negative and no greater than CM: *maximum-integer-Iength*.

slenl The length of the sourcel field. This must be non-negative and no
greater than CM: *niaximum-integer-Iength*.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if source1 is less than or equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel[k] ::; source2[k] then
test-flag[k 1 +- 1

else
test-flag[k] +- 0

Two operands are compared as unsigned integers. Operand source1 is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is less than or equal to the second operand, and is cleared otherwise.

208

LE

The constant operand souTce2-value should be an unsigned integer front-end value. The
operation is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

209

LN

F-LN

The natural logarithm of the floating-point source field values are placed in the floating­
point destination field.

Formats CM:f-ln-l-ll dest/source, s, e
CM:f-ln-2-1l dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is non-positive; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contea:t-fiag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-fiag[k] = 1'then

dest[k] - Insource[k]

Call the value of the source field 8. The value In s is stored into the dest field; this is the
natural logarithm to the base e ~ 2.718281828 ...

210

LOAD-CONTEXT

LOAD-CONTEXT

Unconditionally reads a bit from memory and loads it into the context bit.

Formats eM: load-con text source

Operands source The source bit (a one-bit field).

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
context-fiag[k] ~ source[k]

Within each processor, a bit is read from memory and unconditionally loaded into the
context bit for that processor.

211

LOAD-FLAG

LOAD-flag

Reads a bit from memory and loads it into a flag.

Formats CM: load-test source
CM: load-overflow source

Operands source The source bit (a one-bit field).

Context This operation is conditional.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

flag[k] - source[k]

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, a bit is read from memory and loaded into the indicated flag for
that processor.

212

LOGAND

LOGAND
Combines two source values with a bitwise logical AND operation, and places the result in
the destination field.

Formats CM:logand-2-1L
CM:logand-3-1L
CM: logand-constant-2-1L
CM: logand-constant-3-1 L

dest/ sourcel, source2, len
dest, sourcel, source2, len
dest/ sourcel, source2-value, len
dest, sourcel, source2-value, len

Operands dest The des tination field.

The first source field. sourcel

source2 The second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, source1, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-Iength*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- sourcel[k] A source2[k]

Each bit of the dest field is set if both of the corresponding bits of the source1 and source2
fields are 1, and is cleared if either of the corresponding bits of the source1 and source2
fields is O.

213

lOGAND-CONTEXT

LOGAND-CONTEXT

Reads a bit from memory; if it is zero, the context bit is cleared, unconditionally.

Formats eM: logand-context source

Operands source The source bit (a one-bit field).

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
context-flag[k] f- context-flag[kJ A source[kJ

Within each processor, a bit is read from memory and is "anded" into the context bit for
that processor.

214

LOGANO-CONTEXT-WITH-TEST

LOGAND-CONTEXT-WITH-TEST

If the test flag is zero, the context bit is cleared.

Formats eM: logand-context-with-test

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
context-fiag[k] ~ context-fiag[k] A test-fiag[k]

Within each processor, the test flag is "anded" into the context bit for that processor.

215

LOGAND-FLAG

LOGAND-flag

Reads a bit from memory; if it is zero, a specified flag is cleared.

Formats CM:logand-test source
CM: logand-test-always source
CM:logand-overflow source
CM: logand-overflow-always source

Operands source The source bit (a one-bit field).

Context The non-always operations are conditional.

The always operations are unconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

flag[k] to- flag[k] 1\ source[k]

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, a bit is read from memory and is "anded" into the indicated flag
for that processor. .

216

LOGANDCl

lOGANDCl

Combines the second source and the bitwise logical NOT of the first source with a bitwise
logical AND operation, and places the result in the destination field.

Formats CM:logandc1-2-1L
CM: logandc1-3-1L
CM: logandc1-constant-2-1L
CM: logandc1-constant-3-1L

dest/ souree1, souree2, len
dest, souree1, souree2, len
dest/ sourcel, souree2-value, len
dest, souree1, souree2-value, len

Operands dest The destination field.

The first source field.

The second source field.

souree1

souree2

souree2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, souree1, and souree2 fields. This must be
non-negative and no greater than CM: *maximum-integer-Iength*.

Overlap The fields souree1 and souree2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if eontext-fiag[k] = 1 then

dest[k] +- (.soureel[k]) 1\ souree2[k]

Each bit of the dest field is set if the corresponding bit of the sourcel field is 0 and the
corresponding bit of the source2 field is 1; otherwise it is cleared.

217

LOGANDC2

LOGANDC2

Combines the first source and the bitwise logical NOT of the second source with a bitwise
logical AND operation, and places the result in the destination field.

Formats eM: logandc2-2-1L
eM: logandc2-3-1L
eM: logandc2-constant-2-1L
eM: logandc2-constant-3-1L

dest I souTcel, souTce2, len
dest, souTce1, souTce2, len
destl souTce1, souTce2-value, len
dest, souTcel, souTce2-value, len

Operands dest The destination field.

The first source field.

The second source field.

souTcel

souTce2

souTce2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, SOUTCe1, and souTce2 fields. This must be
non-negative and no greater than eM: *maximum-integer-Iength*.

Overlap The fields souTce1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and. the same length. It is
permissible for all the fields to be identical.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- SOUTCe1 [k] A (-.source2 [k])

Each bit of the dest field is set if the corresponding bit of the SOUTCe1 field is 1 and the
corresponding bit of the source2 field is OJ otherwise it is cleared.

218

LOGCOUNT

S-LOGCOUNT

The destination field receives a count of the number of bits that differ from the sign bit in
a two's-complement binary representation of a signed integer source value. For nonnegative
values, this is a count of 1 bits.

Formats CM: s-logcount-2-2L dest, source, dIen, slen

Operands dest The unsigned integer destination field.

The signed integer source field. source

dlen

slen

The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] :2: 0 then dest[k] ~ count-of-one-bits(source[k])
else dest[k] ~ count-of-one-bits(-,source[k])
if (overflow occurred in processor k) then overflow-flag[k] ~ 1
else overflow-flag(k] ~ 0

The dest field receives, as an unsigned integer, a count of the number of bits in the two's­
complement representation of the signed source value that are different from the sign bit of
that value.

219

LOGCOUNT

U-LOGCOUNT

The destination field receives a count of the number of 1 bits in the binary represenation of
an unsigned integer source value.

Formats eM: u-logcount-2-2L dest, source, dlen, slen

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

dlen

slen

The length of the dest field. This must be non-negative and no
greater than eM: *maximum-integer-Iength*.

The length of the source field. This must be non-negative and no
greater than eM: *maximum-integer-Iength*.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose conte:ct'-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if conte:ct-flag[k] = 1 then

dest[k] +- count-of-one-bits(source[k])
if (overflow occurred in processor k) then overflow-flag[k] +- 1
else overflow-flag[k] +- 0

The dest field receives, as an unsigned integer, a count of the number of bits in the binary
representation of the unsigned source value.

220

LOGEQV

LOGEQV

Combines two source values with a bitwise logical EQUIVALENCE operation, and places the
result in the destination field.

Formats CM: logeqv-2-1l
CM: logeqv-3-1l
CM: logeqv-constant-2-1l
CM: logeqv-constant-3-1L

dest/ source1, source2, len
dest, source1, source2, len
dest/ source1, source2-value, len
dest, source1, source2-value, len

Operands dest The destination field.

The first source field.

The second source field.

source1

source2

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, source1, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields source1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k]-,(source1[k] 63 source2[k])

Each bit of the dest field is set where corresponding bits of the source1 and source2 fields
are alike, and is cleared where corresponding bits of the source1 and source2 fields differ.

221

LOGIOR

LOGIOR

Combines two source values with a bitwise logical inclusive OR operation, and places the
result in the destination field.

Formats CM: logior-2-1L
CM: logior-3-1L
CMilogior-constant-2-1L
CM: logior-constant-3-1L

dest/ sourcel, source2, len
dest, sourcel, source2, len
dest/ sourcel, source2-1Jalue, len
dest, sourcel, source2-1Jalue, len

Operands dest The destination field.

The first source field.

The second source field.

source1

source2

source2-1Jalue An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields source1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - sourcel[k] V source2[k]

Each bit of the dest field is set if either of the corresponding bits of the sourcel and source2
fields is 1, and is cleared if both of the corresponding bits of the source1 and source2 fields
are o.

222

LOGIOR-CONTEXT

LOGIOR-CONTEXT

Reads a bit from memory; if it is one, the context bit is set, unconditionally.

Formats eM: logior-context source

Operands source The source bit (a one-bit field).

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
context-fiag[k] ~ context-fiag[k] V source[k]

Within each processor, a bit is read from memory and is "ored" into the context bit for
that processor.

223

LOG lOR-FLAG

LOGIOR-flag

Reads a bit from memory; if it is 1, a specified flag is set.

Formats CM: logior-test source
CM: logior-test-always source
CM:logior-overflow source
CM: logior-overflow-always source

Operands source The source bit (a one-bit field).

Context The non-always operations are conditional.

The always operations are unconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

flag[k] ~ flag[k] V source[k]

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, a bit is read from memory and is "ored" into the indicated flag for
that processor.

224

LOGNAND

LOGNAND
Combines two source values with a bitwise logical NAND operation, and places the result in
the destination field.

Formats CM: lognand-2-1L
CM: lognand-3-1L
CM: lognand-constant-2-1L
CM: lognand-constant-3-1L

dest/source1, source2, len
dest, souree1, source2, len
dest/source1, source2-value, len
dest, souree1, source2-value, len

Operands dest The destination field.

The first source field.

The second source field.

source1

source2

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, source1, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields source1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] -,(source1[k] A source2[k])

Each bit of the dest field is set if either of the corresponding bits of the source1 and souree2
fields is 0, and is cleared if both of the corresponding bits of the source1 and source2 fields
are!.

225

LOGNOR

LOGNOR

Combines two source values with a bitwise logical NOR. operation, and places the result in
the destination field.

Formats CM: lognor-2-ll
CM: lognor-3-ll
CM: lognor-constant-2-ll
CM: lognor-constant-3-ll

dest / source 1, source2, len
dest, sourcel, source2, len
dest/ sourcel, source2-value, len
dest, sourcel, source2-value, len

Operands dest The destination field.

The first source field.

The second source field.

sourcel

source2

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit'
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- -.(sourcel[k] V source2[k])

Each bit of the dest field is set if both of the corresponding bits of the sourcel and source2
fields are 0, and is cleared if either of the corresponding bits of the source1 and source2
fields is 1.

226

LOGNOT

LOGNOT

Copies a source field, inverts all the bits, and places them in the destination field.

Formats CM: lognot-l-1L

CM: lognot-2-1L

dest/ source, len
dest, source, len

Operands dest The destination field.

The source field. source

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual.processor k in' the current-vp-set do
if context-flag[k] = 1 then

dest[k] ~ -, source [k]

Each bit of the dest field is set to the inverse of the corresponding bit of the source field.

227

LOGORel

LOGORCI

Combines the second source and the bitwise logical NOT of the first source with a bitwise
logical inclusive OR. operation, and places the result in the destination field.

Formats CM:logorc1-2-1L
CM: logorc1-3-1L
CM: logorc1-constant-2-1L
CM: logorcl-constant-3-1L

dest/ sourcel, source2, len
dest, sourcel, source2, len
dest/ sourcel, source2-value, len
dest, sourcel, source2-value, len

Operands dest The destination field.

The first source field.

The second source field.

source 1

source2

source2-value An unsigned integer inunediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, source1, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-Iength*.

Overlap The fields source.l and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if eontext-flag[k] = 1 then

dest[k] +- (-,sourcel[k]) V source2[k]

Ea~h bit of the dest field is cleared if the corresponding bit of the souree1 field is 1 and the
corresponding bit of the souree2 field is OJ otherwise it is set.

228

LOGORC2

LOGORC2

Combines the first source and the bitwise logical NOT of the second source with a bitwise
logical inclusive OR operation, and places the result in the destination field.

Formats CM: logorc2-2-1l
CM:logorc2-3-1l
CM: logorc2-constant-2-1l
CM: logorc2-constant-3-1L

destl souree1, souree2, len
dest, souree1, souree2, len
destl soureel, souree2-value, len
dest, souree1, souree2-value, len

Operands dest The destination field.

The first source field.

The second source field.

soureel

souree2

souree2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, soureel, and souree2 fields. This must be
non-negative and no greater than CM: *maximum-integer-Iength*.

Overlap The fields souree1 and souree2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the eurrent-vp-set do
if eontext-flag[k] = 1 then

dest[kJ ~ soureel[k] V (-.souree2[kJ)

Each bit of the dest field is cleared if the corresponding bit of the souree1 field is 0 and the
corresponding bit of the source2 field is 1; otherwise it is set.

229

LOGXOR

LOGXOR

Combines two source values with a bitwise logical exclusive OR. operation, and places the
result in the destination field.

Formats CM:logxor-2-1L
CM:logxor-3-1L
CM: logxor-constant-2-1L
CM: logxor-constant-3-1L

destl sourcel, source2, len
dest, sourcel, source2, len
destl sourcel, source2-value, len
dest, sourcel, source2-value, len

Operands dest The destination field.

The first source field. source 1

source2 The second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- sourcel[k] E9 source2[k]

Each bit of the dest field is set where corresponding bits of the source1 and source2 fields
differ, and is cleared where corresponding bits of the source1 and source2 fields are alike.

230

LT

F-LT

Compares two floating-point source values. The test-flag is set if the first is strictly less
than the second, and otherwise is cleared.

Formats CM:f-lt-1L
CM: f-lt-constant-lL
CM: f-lt-zero-1L

sourcel, source2, s, e
sourcel, source2-value, s, e
sourcel, s, e

Operands sourcel The floating-point first source field.

The floating-point second source field. source2

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-lt-zero-1L, this implicitly has the value zero.

s, e The significand and exponent lengths for the source1 and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if source1 is less than source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel[k] < source2[k]
test-flag[k] .- 1

else
test-flag[k] .- 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is less than the second operand, and is cleared otherwise. Note that comparisons ignore the
sign of zero; -0 is not less than +0.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.

231

LT

S-LT

Compares two signed integer source values. The test-flag is set if the first is strictly less
than the second, and otherwise is cleared.

Formats CM:s-lt-lL souree1, souTee2, len
CM:s-lt-2L souree1, souTee2, slen1, slen2
CM:s-lt-constant-lL SOUTCe1, souTee2-value, len
CM:s-lt-zero-lL source1, len

Op erands SO uree 1

source2

The signed integer first source field.

The signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-lt-zero-lL, this implicitly has the value zero.

len The length of the souree1 and souTce2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

slen1 The length of the source1 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

slen2 The length of the souTee2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields souTee1 and souree2 may overlap in any manner.

Flags test-flag is set if souTee1 is less than souTce2j otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source1[k] < source2[k] then
test-flag[k] - 1

else
test-flag[k] - 0

Two operands are compared as signed integers. Operand source1 is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is less than the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. The op­
eration is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

232

LT

U-lT

Compares two unsigned integer source values. The test-flag is set if the first is strictly less
than the second, and otherwise is cleared.

Formats CM:u-lt-1L
CM:u-lt-2L
CM: u-lt-constant-1L
CM: u-lt-zero-1L

source1, source2, len
source1, source2, slen1, slen2
source1, source2-value, len
source1, len

Operands source1 The unsigned integer first source field.

The unsigned integer second source field. source2

source2-value An unsigned integer immediate operand to be used as the

len

second source. For CM: u-lt-zero-1L, this implicitly has the value
zero.

The length of the source1 and source2 fields. This must be non­
negative and no greater than CM: *maximum-integer-Iength*.

slen1 The length of the source1 field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Overlap The fields source1 and source2 may overlap in any manner.

Flags test-flag is set if source1 is less than source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source1 [k] < source2 [k] then
test-flag[k] - 1

else
test-flag[k] - 0

Two operands are compared as unsigned integers. Operand source1 is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is less than the second operand, and is cleared otherwise.

233

LT

The constant operand source2-value'should be an unsigned integer front-end value. The
operation is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

234

MAKE-NEWS-COORDINATE

MAKE-NEWS-COORDINATE

Determine the send-address of a processor with the specified NEWS coordinate.

Formats CM: make-news-coordinate-1L geometry, dest, axis, news-coordinate, slen

Operands geometry A geometry-id. This determines the NEWS dimensions to be used.

dest The unsigned integer destination, to receive the send address of
the processor whose coordinate along the specified axis is news­
coordinate and whose coordinate along all other axes is a zero
field.

ax~s An unsigned integer immediate operand to be used as the number
of a NEWS axis.

news-coordinate The unsigned integer NEWS coordinate along the specified
axis field.

slen The length of the news-coordinate field. This must be non-negative
and no greater than CM: *maximum-integer-Iength*.

Context .This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- make-news-coordinate(axis, news-coordinate)

where make-news-coordinate is as defined on page 33.

This function calculates, within each selected processor, the send-address of a processor
that has a specified coordinate along a specified NEWS axis, with all other coordinates zero.

235

MAKE-NEWS-COORDINATE

FE-MAKE-NEWS-COORDINATE

Calculates, entirely on the front end, the send-address of the processor with the specified
coordinate along the specified NEWS axis and with all other coordinates zero.

Formats result +- CM:fe-make-news-coordinate geometry, axis, news-coordinate

Operands geometry A geometry-id. This determines the NEWS dimensions to be used.

Result

ax,s An unsigned integer immediate operand to be used as the number
of a NEWS axis.

news-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along the specified axis.

An unsigned integer, the send address of the processor whose coordinate along
the specified axis is news-coordinate and whose co'ordinate along all other axes
is zero.

Context This operation is unconditional. It does not depend on context-flag.

Definition Return make-news-coordinate(axis, news-coordinate)

where make-news-coordinate is as defined on page 33.

This function calculates, entirely on the front end, the send-address of a processor that has
a specified coordinate along a specified NEWS axis, with all other coordinates zero.

236

MAX

F-MAX

Two floating-point values are compared. The larger is placed in the destination field.

Formats CM:f-max-2-1L dest/sourcel, souree2, s, e
CM:f-max-3-1L dest, souree1, souree2, s, e
CM: f-max-constant-2-1L dest/ sourcel, source2-value, s, e
CM:f-max-constant-3-1L dest, source1, source2-value, s, e

Operands dest The floating-point destination field.

The floating-point first source field.

The floating-point second source field.

Overlap

Flags

Context

sourcel

source2

source2-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+1.

The fields souree1 and source2 may overlap i~ any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identicaL

test-flag is set if the value placed in the dest field is not equal to souree1;
otherwise it is cleared.

This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if soureel [k] ~ souree2[k] then
dest[k] +- sourcel [k]
test-flag[k] +- 0

else
dest[k] +- source2[k]
test-flag[k] +- 1

Two operands are compared as floating-point numbers. Operand source1 is always a mem­
ory field; operand source2 is a memory field or an immediate value. The larger of the two

237

MAX

values is copied to the dest field. The test-flag is set or cleared to indicate which operand
was copied; if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by sand e before the operation is performed.

238

MAX

S-MAX

Two signed integer values are compared. The larger (the one closer to +00) is placed in the
destination field.

Formats CM: s-max-3-3L
CM:s-max-2-1L

dest, soureel, souree2, dlen, slenl, slen2
destlsoureel, souree2, len

CM:s-max-3-1L dest, souree1, souree2, len
CM: s-max-constant-2-1L dest I soureel, souree2-value, len
CM:s-max-constant-3-1L dest, souree1, souree2-value, len

Operands dest The signed integer destination field.

Overlap

Flags

Context

soureel

souree2

The signed integer first source field.

The signed integer second source field.

souree2-value A signed integer immediate operand to be used as the second

len

dlen

slenl

slen2

source.

The length of the dest, souree1, and souree2 fields. This must
be no smaller th~ 2 but no greater than CM: *maximum-integer­
length*.

For CM:s-max-3-3L, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

For CM: s-max-3-3L, the length of the soureel field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

For CM:s-max-3-3L, the length of the source2field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

The fields soureel and souree2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical

test-flag is set if the value placed in the dest field is not equal to souree1;
otherwise it is cleared.

This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

239

MAX

Definition For every virtual processor k in the eurrent-vp-set do
if eontext-flag[k] = 1 then

if souree1[k] ~ souree2[k] then
dest[k] - souree1 [k]
test-flag[k] - 0

else
dest[k] - souree2[k]
test-flag[k 1 - 1

Two operands are compared as signed integers. Operand souree1 is always a memory field;
operand souree2 is a memory field or an immediate value. The larger of the two values is
copied to the dest field. The test-flag is set or cleared to indicate which operand was copied;
if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be a signed integer front-end value. The op­
eration is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

240

MAX

U-MAX

Two unsigned integer values are compared. The larger is placed in the destination field.

Formats CM:u-max-3-3L dest, SOUTCe1, souTce2, dlen, slen1, slen2
CM:u-max-2-1L destlsouTce1, souTce2, len
CM:u-max-3-1L dest, souTCe1, souTce2, len
CM: u-max-constant-2-1L dest I souTce1, souTce2-va[ue, len
CM:u-max-constant-3-1L dest, souree1, souTce2-value, len

Operands dest The unsigned integer destination field.

The unsigned integer first source field.

The unsigned integer second source field.

souTce1

souTce2

souTce2-value An unsigned integer immediate operand to be used as the

len

dlen

slen1

slen2

second source.

The length of the dest, souTce1, and souTce2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

For CM:u-max-3-3L, the length of the dest field. This must be
non-negative and no greater than CM:*maximum-integer-length:".

For CM: u-max-3-3L, the length of the SOUTCe1 field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

For CM: u-max-3-3L, the length of the souTce2 field. This must be
non-negative and no greater than CM: *maximum-integer-Iength*.

Overlap The fields SOUTCe1 and souTce2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags test-flag is set if the value placed in the dest field is not equal to souTce1j
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k 1 = 1 then

if SOUTCe1 [k] 2: souTce2[k] then
dest[k] +- SOUTCe1 [k]

241

MAX

test-flag[k] +- 0
else

dest[k] +- source2[k]
test-flag[k 1 +- 1

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The larger of the two
values is copied to the dest field. The test-flag is set or cleared to indicate which operand
was copied; if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be an unsigned integer front-end value. The
operation is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

242

MIN

F-MIN

Two floating-point values· are compared. The smaller is placed in the destination field.

Formats CM:f-min-2-1L dest/soureel, souree2, s, e
CM:f-min-3-1L dest, soureel, souree2, s, e
CM:f-min-constant-2-1L dest/soureel, souree2-value, s, e
CM:f-min-constant-3-1L dest, souree1, souree2-value, s, e

Operands dest The floating-point destination field.

The floating-point first source field.

The floating-point second source field.

soureel

souree2

souree2-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, soureel, and
souree2 fields. The total length of an operand in this format is
s+e+1.

Overlap The fields souree1 and souree2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags test-flag is set if the value placed in the dest field is not equal to soureel;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the eurrent-vp-set do
if eontext-flag[k] = 1 then

if source 1 [k] ~ souree2 [k] then
dest[k] f- souree1 [k]
test-flag[k 1 f- 0

else
dest [k 1 f- souree2 [k 1
test-flag[k 1 f- 1

Two operands are compared as floating-point numbers. Operand soured is always a mem­
ory field; operand souree2 is a memory field or an immediate value. The smaller of the two

243

MIN

values is copied to the dest field. The test-flag is set or cleared to indicate which operand
was copied; if the two source operands are equal, then the test-flag is cleared.

The const~nt operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is perfonned if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.

244

MIN

S-MIN

Two signed integer values are compared. The smaller (the one closer to -(0) is placed in
the destination field.

Formats CM:s-min-3-3L
CM:s-min-2-1L

dest, source1, source2, dlen, slen1, slen2
dest/ sourcel, source2, len

CM:s-min-3-1L dest, source1, source2, len
CM: s-min-constant-2-1L dest/ source1, source2-value, len
CM:s-min-constant-3-1L dest, source1, source2-value, len

Operands dest The signed integer destination field.

Overlap

Flags

Context

source1 The signed integer first source field.

source2 The signed integer second source field.

source2-value A signed integer immediate operand to be used as the second

Ie'(/,

dlen

slen1

slen2

source.

The length of the dest, source1, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length*.

For CM: s-min-3-3L, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

For CM:s-min-3-3L, the length of the source1 field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

For CM: s-min-3-3L, the length of the source2 field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

The fields source1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

test-flag is set if the value placed in the dest field is not equal to source1;
otherwise it is cleared.

This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

245

MIN

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if souTcel [k] ::; source2[k] then
dest[k] +- sourcel[k]
test-ftag[k] +- 0

else
dest[k] +- source2[k]
test-flag[k] +- 1

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an inunediate value. The smaller of the two values is
copied to the dest field. The test-flag is set or cleared to indicate which operand was copied;
if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be a signed integer front-end value. The op­
eration is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

246

MIN

U-MIN

Two unsigned integer values are compared. The smaller is placed in the destination field.

Formats CM: u-min-3-3L dest, souree1, souree2, dlen, slenl, slen2
CM:u-min-2-1L destlsoureel, source2, len
CM:u-min-3-1L dest, sourcel, souree2, len
CM: u-min-constant-2-1L destl sourcel, souree2-value, len
CM:u-min-constant-3-1L dest, souree1, souree2-value, len

Operands dest The unsigned integer destination field.

The unsigned integer first source field.

The unsigned integer second source field.

soureel

souree2

souree2-value An unsigned integer immediate operand to be used as the

len

dlen

slenl

slen2

second source.

The length of the dest, souree1, and souree2 fields. This must be
non-negative and no greater than CM: *maximum-integer-Iength*.

For CM: u-min-3-3L, the length of the dest field. This must be non­
negative and no greater than CM: *maximum-integer-Iength*.

For CM: u-min-3-3L, the length of the soureel field: This must be
non-negative and no greater than CM: *maximum-integer-Iength*.

For CM: u-min'-3-3L, the length of the souree2 field. This must be
non-negative and no greater than CM: *maximum-integer-Iength*.

Overlap The fields soureel and souree2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags test-flag is set if the value placed in the dest field is not equal to souree1;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if eontext-flag[k] = 1 then

if sourcel [k] :S souree2[k] then
dest[k] +-- soureel [k]

247

MIN

test-flag[k] +- 0
else

dest[k] +- source2[k]
test-flag[k] +- 1

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The smaller of the two
values is copied to the dest field. The test-flag is set or cleared to indicate which operand
was copied; if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be an unsigned integer front-end value. The
operation is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

248

MOD

S-MOD

The residue of one signed integer modulo another is placed in the destination field. Overflow
is also computed.

Formats CM:s-mod-2-1L
CM:s-mod-3-1L
CM: s-mod-constant-2-1L
CM:s-mod-constant-3-1L

dest / source1, source2, len
dest, source 1 , source2, len
dest/ source1, source2-value, len
dest, sourcel, source2-value, len

Operands dest The signed integer residue field.

The signed integer dividend field. source 1

source2 The signed integer modulus (divisor) field.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, source1, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length . .It is
permissible for all the fields to be identical.

Flags overflow-flag is set if either the result cannot be represented in the destination
field or the modulus is zerOj otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source2[k] = 0 then
dest[k] f- (unpredictable)

else

lsourCe1 k J
dest [k 1 f- sourcel [k 1 - source2 [k 1 X source2 [k

if (overflow occurred in processor k) then overflow-flag[k] f- 1
else overflow-flag(k] f- 0

249

MOD

The residue resulting from t.he reduction of the signed integer souree1 modulo the signed
integer souree2 operand is stored into the dest field. The result always has the same sign
as the souree2 operand. The various operand formats allow operands to be either memory
fields are constants; in some cases the destination field initially contains one source operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti­
nation field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. The op­
eration is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

250

MOD

U-MOD

The residue of one unsigned integer modulo another is placed in the destination field.
Overflow is also computed.

Formats CM:u-mod-2-1L dest/sourcel, source2, len
CM:u-mod-3-1L dest, sourcel, source2, len
CM: u-mod-constant-2-1L dest/ sourcel, source2-value, len
CM:u-mod-constant-3-1L dest, sourcel, source2-value, len

Operands dest The unsigned integer residue field.

The unsigned integer dividend field. sourcel

source2 The unsigned integer modulus (divisor) field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, source1, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields source1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical

Flags overflow-flag is set if the modulus is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source2[k] = 0 then
dest[k] +- (unpredictable)

else

lsourcel k J dest[k] +- sourcel[k]- source2[k] X source2 k

if (overflow occurred in processor k) then overflow-flag[k] +- 1
else overflow-flag[k] +- 0

The residue resulting from the reduction of the unsigned integer sourcel modulo the un­
signed integer source2 operand is stored into the dest field. The various operand formats

251

MOD

allow operands to be either memory fields are constants; in some cases the destination field
initially contains one source operand.

The overflow-flag may be affected by these operations.

The value of the destination is unpredictable if the divisor is zero.

The constant operand source2-value should be an unsigned integer front-end value. The
operation is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

252

MOVE

F-MOVE

Copies a floating-point source value into the destination field.

Formats CM: f-move-2L
CM:f-move-lL
CM:f-move-always-lL
CM:f-move-constant-lL
CM: f-move-const-always-l L
CM:f-move-zero-lL

dest, source, ds, de, ss, se
dest, source, s, e
dest, source, s, e
dest, source-value, s, e
dest, source-value, s, e
dest, s, e

CM:f-move-zero-always-lL dest, s, e

Operands dest The floating-point destination field.

The floating-point source field.

Overlap

Flags

source

source-value The floating-point source field. For CM:f-move-zero-lL and

s, e

ds, de

ss, se

CM:f-move-zero-always-lL, this implicitly has the value zero.

The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

For CM:f-move-2L, the significand and exponent lengths for the dest
field. The total length of an operand in this format is ds + de + 1.

For CM:f-move-2L, the significand and exponent lengths for the
source field. The total length of an operand in this format is
ss + se + 1.

The fields dest and source may overlap in any manner.

overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared. This can occur only for CM: f-move-2L.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] f- source[k]
if (overflow occurred in processor k) then overflow-flag[k] f- 1
else overflow-flag(k 1 f- 0

as appropriate.

253

MOVE

The source field or value is copied into the dest field.

Overlapping fields are handled carefully. The operation behaves as if the entire source field
were first copied to a temporary buffer not overlapping either the source or dest field, and
then the temporary buffer copied to the dest field.

254

MOVE

S-MOVE

Copies a signed integer source value into the destination field.

Formats CM:s-move-2L
CM:s-move-1L
CM: s-move-always-IL
CM:s-move-constant-1L
CM: s-move-const-always-1L
CM: s-move-zero-1L
CM: s-move-zero-always-IL

dest, source, dlen, slen
dest, source, len
dest, source, len
dest, source-value, len
dest, source-value, len
dest, len
dest, len

Operands dest The signed integer destination field.

The signed integer source field.

Overlap

Flags

source

source-value A signed integer immediate operand to be used as the source.
For CM: s-move-zero-1L and CM: s-move-zero-always-IL, this implic­
itly has the value zero.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

dlen For CM:s-move-1L, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

slen For CM:s-move-1L, the length of the source field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iengtho*.

The fields dest and source may overlap in any manner.

overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[kJ = 1) then

dest[k] .- source[k]
if (overflow occurred in processor k) then overflow-flag[k] .- 1
else overflow-flag(k] .- 0

255

MOVE

The SOUTce field or value is copied into the dest field. For eM: s-move-2L, if slen is less than
dlen then the source value, regarded as a bit field, is padded at the most significent end
with <:opies of the most significant source bit (sign extension), and if sien is greater than
dlen then truncation occurs and overflow may be detected.

Overlapping fields are handled carefully. The operation behaves as if the entire SOUTce field
were first copied to a temporary buffer not overlapping either the source or dest field, and
then the temporary buffer copied to the dest field.

256

MOVE

U-MOVE

Copies an unsigned integer source value into the destination field.

Formats CM:u-move-2L
CM:u-move-lL
CM: u-move-always-IL
CM: u-move-constant-IL
CM:u-move-const-always-lL
CM: u-move-zero-IL
CM: u-move-zero-always-IL

dest, source, dlen, slen
dest, source, len
dest, source, len
dest, source-value, len
dest, source-value, len
dest, len
dest, len

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

source-value _ An unsigned integer inunediate operand to be used as the
source. For CM: u-move-zero-IL and CM: u-move-zero-always-IL, this
implicitly has the value zero.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

dlen For CM: u-move-lL, the length of t~e dest field. This must be non­
negative and no greater than CM: *maximum-integer-Iength*.

slen For CM:u-move-lL, the length of the source field. This must be
non-negative and no greater than CM: *maximum-integer-Iength*.

Overlap The fields dest and source may overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k 1 = 1) then

dest[k] - source[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag(k] - 0

257

MOVE

The source field or value is copied into the dest field. For eM: u-move-2L, if slen is less than
dlen then the source value, regarded as a bit field, is padded at the most significent end
with zero bits, and if slen is greater than dlen then t~uncation occurs and overflow may be
detected.

Overlapping fields are handled carefully. The operation behaves as if the entire source field
were first copied to a temporary buffer not overlapping either the source or dest field, and
then the temporary buffer copied to the dest field.

258

MOVE-DECODED-CONSTANT

F-MOVE-DECODED-CONSTANT

Copies a decoded immediate floating-point source value into the destination field.

Formats eM: f-move-decoded-constant-IL dest, low-s-value, high-s-value, e-value, sign-value,

Operands dest The floating-point destination field.

low-s-value An unsigned integer immediate operand to be used as the
low 32 bits of the integer significand.

high-s-value An unsigned integer immediate operand to be used as the

e-value

high bits of the integer significand.

A signed integer immediate operand to be used as the integer
exponent.

sign-value A signed integer immediate operand to be used as the integer sign.
This must be either 1 or -1.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

Overlap The fields dest and source may overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k 1 = 1 then

dest[k 1 +- sign-value X (low-s-value + 232 X high-s-value) X 2e-value

The three quantities low-s-value + 232 X high-s-value, e-value, and sign-value are three
integers that together describe a floating-point value. (This is the same decoded form that
is used by such Common Lisp operations as integer-decode-float.) This floating-point value
is copied into the dest field.

In the Lisp interfa(;e one may use a "bignum" as the low-s-value and always pass zero for
the high-s-value. In the C interface, however, it is not possible to pass an integer of more
than 32 bits. The high-s-value operand provides a way around this difficulty that works
compatibly in either language.

259

MOVE-REVERSED

MOVE-REVERSED

Copies a source value into the destination field, reversing the order of the bits.

Formats CM : move-reversed-! L dest, source, len

Operands dest The destination field.

The source field. source

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-Iength*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-Jlag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

for j from'O to len - 1 do
dest[k](j} 4- source[k](len - j - 1}

The source field or value is copied into the dest field, with the order of the bits reversed;
that is, the least significant bit of the source field is copied into the most significant bit of
the dest field, and so on.

260

MULT-ADD

F-MULT-ADD

Calculates a value za + b and places it in the destination.

Formats CM:f-mult-add-lL dest, source1, source:?, sourceS, s, e
CM:f-mult-const-add-lL dest, sourcel, source:?-value, sourceS, s, e
CM:f-mult-add-const-lL dest, sourcel, source:?, sourceS-value, s, e
CM:f-mult-const-add-const-lL dest, sourcel, source:?-value, sourceS-value, s, e

Operands dest The floating-point destination field.

The floating-point first source field. sourcel

source2 The floating-point second source (multiplier) field.

source2-value A floating-point immediate operand to be used as the second
source (multiplier).

sourceS The floating-point third source (augend) field.

sourceS-value A floating-point immediate operand to be used as the third
source (augend).

s, e The significand and exponent lengths for the dest, sourcel, source:?,
and sourceS fields. The total length of an operand in this format
iss+e+1.

Overlap The fields sourcel, source2, and sourceS may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag(k] = 1 then

dest[k] - (sourcel[k] X source2[k]) + sourceS[k]
if (overflow occurred in processor k) then overflow-flag[k] - 1

Two operands, source1 and source:?, are multiplied as floating-point numbers and then a
third operand, sourceS, is added to the product. The result is stored into memory. The
various operand formats allow operands to be either memory fields or constants.

261

MULT-ADD

The constant operand source2-value should be a double-precision front-end value. (in Lisp,
automatic coercion is perfonned if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.

A call to CM:f-mult-add-ll is equivalent to the sequence

CM:f-multiply-3-1l temp, sourcel, souTce2, s, e
CM:f-add-3-1l dest, temp, sourceS, s, e

but may be faster.

262

MULT-SUB

F-MULT-SUB

Calculates a value za - b and places it in the destination.

Formats CM:f-mult-sub-1L dest, souree1, souree2, souree3, s, e
CM:f-mult-const-sub-1L dest, souree1, souree2-value, souree3, s, e
CM:f-mult-sub-const-1L dest, soureel, souree2,souree3-value, s, e
CM:f-mult-const-sub-const-1L dest, souree1, souree2-value, souree3-value, s, e

Operands dest The floating-point destination field.

The floating-point first source field. soureel

souree2 The floating-point second source (multiplier) field.

souree2-value A floating-point immediate operand to be used as the second
source (multiplier).

souree3 The floating-point third source (subtrahend) field.

souree3-value A floating-point immediate operand to be used as the third
source (subtrahend).

s, e The significand and exponent lengths for the dest, soureel, souree2,
and souree3 fields. The total length of an operand in this format
iss+e+1.

Overlap The fields souree1, souree2, and souree3 may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set iffloating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose eontezt-flag is 1.

Definition For every virtual processor k in the eurrent-vp-set do
if eontezt-ftag[k] = 1 then

dest[k] +- (soureel[k] x souree2[k]) - souree3[k]
if (overflow occurred in processor k) then overftow-flag[k] +- 1

Two operands, souree1 and souree2, are multiplied as floating-point numbers and then a
third operand, souree3, is subtracted from the product. The result is stored into memory.
The various operand formats allow operands to be either memory fields or constants.

263

MULT-SUB

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by sand e before the operation is performed.

A call to CM:f-mult-sub-lL is equivalent to the sequence

CM: f-multiply-3-1L
CM:f-subtract-3-1L

but may be faster.

temp, source1, source2, s, e
dest, temp, source3, s, e

264

MULTIPLY

F-MUlTIPlY

The product of two floating-point source values is placed in the destination field.

Formats CM:f-multiply-2-1L
CM: f-multiply-always-2-1L
CM:f-multiply-3-1L
CM:f-multiply-always-3-1L
CM: f-multiply-constant-2-1L
CM: f-multiply-const-always-2-1 L
CM: f-multiply-constant-3-1L
CM: f-multiply-const-always-3-1 L

dest/sourcel, source2, s, e
dest/ sourcel, source2, s, e
dest, sourcel, source2, s, e
dest, sourcel, source2, s, e
dest/ sourcel, source2-value, s, e
dest/ sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

Operands dest The floating-point destination field.

The floating-point first source field.

The floating-point second source field.

Overlap

Flags

Context

source1

source2

source2-value A floating-point inunediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, source1, and
source2 fields. The total length of an operand in this format is
s+e+1.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] +- sourcel [k] x source2[k]
if (overflow occurred in processor k) then overflow-flag[k] +- 1

265 .

MULTIPLY

Two operands, souTee1 and soured!, are multiplied as floating-point numbers. The result
is stored into memory. The various operand formats allow operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.

The constant operand souTee2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.

266

MULTIPLY

S-MULTIPLY

The product of two signed integer source values is placed in the destination field. Overflow
is also computed.

Formats CM: s-multiply-3-3L
CM:s-multiply-2-1L
CM:s-multiply-3-1L
CM: s-multiply-constant-2-1 L
CM: s-multiply-constant-3-1L

dest, source1, source2, dlen, slen1, slen2
dest / source 1, souree2, len
dest, source1, souTee2, len
dest/souTee1, souree2-value, len
dest, source1, souree2-value, len

Operands dest The signed integer destination field.

The signed integer first source field.

The signed integer second source field.

Overlap

Flags

Context

souTee1

souTce2

souree2-value A signed integer immediate operand to be used as the second

len

dlen

slen1

slen2

source.

The length of the dest, souree1, and souree2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer­

length*.

For CM: s-multiply-3-3L, the length of the dest field. This must
be no smaller than 2 but no greater than CM: *maximum-integer­

length*.

For CM: s-multiply-3-3L, the length of the souTee1 field. This must
be no smaller than 2 but no greater than CM: *maximum-integer­

length*.

For CM: s-multiply-3-3L, the length of the souree2 field. This must
be no smaller than 2 but no greater than CM: *maximum-integer­

length*.

The fields souree1 and souree2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the product cannot be represented in the destination
field; otherwise it is cleared.

This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

267

MULTIPLY

Definition For every virtual processor k in the current-vp-set do
if contezt-flag(k] = 1 then '

dest[k] .- sourcel [k] X source2[k]
if (overflow occurred in processor k) then overflow-flag[k] .- 1
else overflow-flag{ k] .- 0

Two operands, sourcel and souTce2, are multiplied as signed integers. The result is stored
into the memory field dest. The various operand formats allow operands to be either memory
fields are constants; in some cases the destination field initially contains one source operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti­
nation field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. The op­
eration is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

268

MULTIPLY

U-MULTIPLY

The product of two unsigned integer source values is placed in the destination field. Overflow
is also computed.

Formats CM: u-multiply-3-3L
CM: u-multiply-2-1L
CM: u-multiply-3-1L
CM: u-multiply-constant-2-1L
CM: u-multiply-constant-3-1L

dest, source 1, source2, dlen, slenl, slen2
dest/sourcel, source2, len
dest, sourcel, source2, len
dest / source1, source2-value, len
dest, sourcel, source2-value, len

Operands dest The unsigned integer destination field.

The unsigned integer first source field.

The unsigned integer second source field.

sourcel

source2

source2-value An unsigned integer immediate operand to be used as the

len

dlen

slen1

slen2

second source.

The length of the dest, source1, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

For CM: u-multiply-3-3L, the length of the dest field. This must be
non-negative and no greater than CM: *maximum-integer-Iength*.

For CM: u-multiply-3-3L, the length of the source1 field. This
must be non-negative and no greater than CM: *maximum-integer­
length*.

For CM: u-multiply-3-3L, the length of the source2 field. This
must be non-negative and no greater than CM: *maximum-integer­
length*.

Overlap The fields source1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do

269

MULTIPLY

if contezt-flag[k] = 1 then
dest[k] +- sourcel [k] X source2[k]
if (overflow occurred in processor k) then overflow-flag[k] +- 1
else overflow-flag(k] +- 0

Two operands, sourcel and source2, are multiplied as unsigned integers. The result is
stored into the memory field dest. The various operand formats allow operands to be either
memory fields or constants; in some cases the destination field initially contains one source
operand.

The overflow-flag may be affected by these operations. IT overflow occurs, then the desti­
nation field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. The
operation is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

270

MULTISPREAD-ADD

MULTISPREAD-F-ADD

The destination field in every selected processor receives the Smn of the floating-point source
fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-f-add-lL dest, source, axis-mask, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rank ()
let axis-set = {m 10 $ m < r 1\ (axis-mask(m) = 1)}
let Cle = {m I mE hyperplane(g, k, axis-set) 1\ context-flag[m] = 1 }

dest[k] +- (E source[m])
mEC.

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM: multispread-f-add operation combines source fields by performing floating-point addi­
tion.

A call to CM: mUltispread-f-add-lL is equivalent to the sequence

CM:f-move-zero-always-lL temp, s, e
CM:f-move-lL temp, source, s, e
CM: store-context ctemp
CM: set-context

271

MUlTISPRt:AP-ADD

for all integers j, 0 :5 j < rank(geometry(current-vp-set)) , in any sequential order, do
ifaxis-mask(j) = 1 then

CM:spread-with-f-add-lL temp, temp, j, s, e
CM:load-context ctemp
CM:f-move-lL dest, temp, s, e

but may be faster.

272

M UL TISPR£'Am .. AD 0

MULTISPREAD-S-ADD

The destination field in every selected processor receives the sum of the signed integer source
fields from all processors in the same hyperplane through the NEWS grid.

Formats CM: muitispread-s-add-IL dest, source, a~£is-mask, len

Operands dest The signed integer destination field.

The signed integer source field. source

a:tis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rankO
let axis-set = {m I 0 ~ m < r" (axis-mask(m) = 1)}
let Cle = { m I mE hyperplane(g, k, axis-set) " context-flag[m] = 1}

dest[k] +- (L: source[m])
mEC ..

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM:multispread-s-add operation combines source fields by performing signed integer addi­
tion.

273

MULTISPREAD-ADD

MUL TISPREAD-U-ADD

The destination field in every selected processor receives the sum of the unsigned integer
source fields from all processors in the same hyperplane through the NEWS grid.

Formats eM: muitispread-u-add-IL dest, source, azis-mask, len

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than eM: *maximum-integer-Iength*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-Jlag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-jlag[k] = 1 then

let 9 = geometry(current-vp-set)
let l' = rankO
let azis-set = {m 10:5 m < l' A (azis-mask(m} = 1)}
let Ole = {m I mE hyperplane(g, k, azis-set) A contezt-Jlag[m] = 1}

dest[k] +- (1: source[m])
mEC"

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
eM: multispread-u-add operation combines source fields by performing unsigned integer ad­
dition.

274

MULTISPREAD-COPY

MULTISPREAD-COPY

The destination field in every selected processor receives a copy of the source value from a
particular value within its scan subclass.

Formats CM:multispread-copy-lL dest, source, axis-mask, len, multi-coordinate

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-Iength*.

multi-coordinate An unsigned integer, the multi-coordinate indicating
which element of each hyperplane is to be replicated throughout
that hyperplane.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rank(g)
let a:tis-set = {m I 0 ~ m < r A (a:tis-mask(m) = 1)}
let c = deposit-multi-coordinate(g, k, axis-set, multi-coordinate)
dest[k] ~ source[c]

where deposit-multi-coordinate is as defined on page 11.

See section 5.16 on page 34 for a general description of multispread operations.

275

MUL TISPREAD-LOGAND

MULTISPREAD-LOGAND

The destination field in every selected processor receives the bitwise logical AND of the
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-logand-1L dest, source, axis-mask, len

Operands dest The destination field.

The source field. source

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k. in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rankO
let axis-set = {m 10::; m < r A (axis-mask(m) = 1)}
let Cle = {m I mE hyperplane(g, k, axis-set) A context-flag[m] = 1 }

dest[k] +- (A source[m])
mEC.

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM: multispread-Iogand operation combines source fields by performing bitwise logical AND

operations.

276

MULTISPREAD-LOGIOR

MULTISPREAD-LOGIOR

The destination field in every selected processor receives the bitwise logical inclusive OR of
the source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM: multispread-logior-1L dest, source, axis-mask, len

Operands dest The destination field.

The source field. source

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rankO
let axis-set = {m 10 $ m < r 1\ (axis-mask(m) = 1)}
let Cle = {m I mE hyperplane(g, k, axis-set) /\ context-flag[m] = 1}

dest[k] +- (V source[m])
mEG,

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
eM: multispread-Iogior operation combines source fields by performing bitwise logical inclu­
sive OR operations.

277

MULTISPREAD-LOGXOR

MULTISPREAD-LOGXOR

The destination field in every selected processor receives the bitwise logical exclusive OR. of
the source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-logxor-lL dest, source, azis-mask, len

Operands dest The destination field.

The source field. source

azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-jlag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-jlag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rankO
let azis-set = {m I 0 ~ m < r" (azis-mask(m) = 1)}
let Cle = {m I mE hyperplane(g, k, azis-set) " contezt-ftag[m] = 1}

dest[k] +- (e SOUTCe[m))
mEC"

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM: multispread-Iogxor operation combines source fields by performing bitwise logical ex­
clusive OR. operations.

278

MULTISPREAD-MAX

MULTISPREAD-F-MAX

The destination field in every selected processor receives the largest of the floating-point
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-f-max-lL dest, source, axis-mask, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag(k] = 1 then

let g = geometry(current-vp-set)
let r = rankO
let axis-set = {m 10 :5 m < r A (axis-mask(m) = 1)}
let CIc = {m I mE hyperplane(g, k, axis-set) A context-flag[m] = 1}

dest[k] +- (max source[m])
mEC.

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM: multispread-f-max operation combines source fields by performing a floating-point max­
imum operation.

279

MULTISPREAD-MAX

MUl TISPREAD-S-MAX

The destination field in every selected processor receives the largest of the signed integer
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-s-max-IL dest, source, axis-mask, len

. Operands . dest The signed integer destination field .

The signed integer source field. source

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM: *maximum-integer-Iength*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rankO
let axis-set = {m I 0 ::::; m < r 1\ (axis-mask(m) = 1)}
let C le = {m I mE hyperplane(g, k, axis-set) 1\ context-fiag[m] = 1 }

dest[k] +- (max source[m])
mEC ..

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM: multispread-s-max operation combines source fields by performing a signed integer max­
imum operation.

280

MUlTISPREAD-MAX

MULTISPREAD-U-MAX

The destination field in every selected processor receives the largest of the unsigned integer
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM: multispread-u-max-1L dest, source, axis-mask, len

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length ofthe dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[kJ = 1 then

let 9 = geometry(current-vp-set)
let r = rankO
let axis-set = {m 10:::; m < r /\ (axis-mask(m) = 1)}
let C le = {m I mE hyperplane(g, k, axis-set) /\ context-flag[mJ = 1}

dest[kJ +- (max source[mJ)
mEC,

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM: multispread-u-max operation combines source fields by performing an unsigned integer
maximum operation.

281

MULTISPREAD-MIN

MUL TISPREAD-F-MIN

The destination field in every selected processor receives the smallest of the floating-point
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM: muitispread-f-min-IL dest, source, axis-mask, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

let g = geometry(current-vp-set)
let r = rankO
let axis-set = {m 10 ::; m < r A (axis-mask(m) = 1)}
let Cle = {m I mE hyperplane(g, k, axis-set) A context-flag[m] = 1}

dest[k] - (min source[m])
mEG.

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM:multispread-f-min operation combines source fields by performing a floating-point mini­
mum operation.

282

M Ul TISPREAO-MIN

MUl TISPREAD-S-MIN

The destination field in every selected processor receives the smallest of the signed integer
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-s-min-lL dest, source, axis-mask, len

Operands dest The signed integer destination field.

The signed integer source field. source

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag(k] = 1 then

let 9 = geometry(current-vp-set)
let r = rankO
let axis-set = {m I 0 ~ m < r A (axis-mask(m) = 1)}
let Cle = {m I mE hyperplane(g, k, axis-set) A context-flag[m] = 1 }

dest[k] +- (min source[m])
mEC.

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM: multispread-s-min operation combines source fields by performing a signed integer min­
imum operation.

283

MULTISPREAD-MIN

MULTISPREAD-U-MIN

The destination field in every selected processor receives the smallest of the unsigned integer
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM: multispread-u-min-1L dest, source, aris-mask, len

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rankO
let axis-set = {m 10:$ m < r A (axis-mask(m) = 1)}
let Cle = {m I mE hyperplane(g, k, axis-set) A context-flag[m] = 1 }

dest[kJ +- (min source[mJ)
mEC.

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM: multispread-u-min operation combines source fields by performing an unsigned integer
minimum operation.

284

MY-N EWS-COORDINATE

MY-NEWS-COORDINATE

Stores the NEWS coordinate of each selected processor along a specified NEWS axis into
a destination field within that processor.

Formats CM: my-news-coordinate-IL dest, axis, dlen

Operands dest The unsigned integer destination field.

aXls An unsigned integer inunediate operand to be used as the number
of a NEWS axis.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

let 9 = geometry(current-vp-set)
dest[k] f,- extract-news-coordinate(g, axis, k)

where extract-news-coordinate is as defined on page 33.

This function calculates, within each selected processor, the NEWS coordinate of that pro­
cessor along a specified NEWS axis.

285

MY-SEND-ADDRESS

MY-SEND-ADDRESS

Stores the send-address of each selected processor into a destination field in that processor.

Formats eM: my-send-address dest

Operands dest The unsigned integer destination field.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- k

This function stores into the dest field, within each selected processor, the send-address of
that processor.

286

NE

F-NE

Compares two floating-point source values. The test-flag is set if they are not equal, and
otherwise is cleared.

Formats CM:f-ne-lL
CM:f-ne-constant-lL
CM:f-ne-zero-lL

source 1, source2, s, e
source1, source2-value, s, e
source1, s, e

Operands so urce 1

source2

The floating-point first source field.

The floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-ne-zero-lL, this implicitly has the value zero.

s, e The significand and exponent lengths for the source1 and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields source1 and source2 may overlap in any manner.

Flags test-flag is set if source1 is not equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source1 [k] =J: source2[k]
test-flag[k] +- 1

else
test-flag[k] +- 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is not equal to the second operand, and is cleared otherwise. Note that comparisons ignore
the sign of zero; +0 and -0 are considered to be equal.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.

287

NE

S-NE

Compares two signed integer source values. The test-flag is set if they are not equal, and
otherwise is cleared.

Formats CM:s-ne-lL soureel, souree2, len
CM:s-ne-2L sourcel, source2, slenl, slen2
CM:s-ne-constant-lL soureel, souree2-value, len
CM:s-ne-zero-lL souree1, len

Operands soureel The signed integer first source field.

The signed integer second source field. souree2

souree2-value A signed integer immediate operand to be used as the second
source. For CM:s-ne-zero-lL, this implicitly has the value zero.

len The length of the soureel and souree2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

slenl The length of the soureel field. This must be no smaller than 2
but no greater than CM: *maximum-integer-Iength*.

slen2 The length of the souree2 field. This must be no smaller than 2
but no greater than CM: *maximum-iriteger-Iength*.

Overlap The fields souree1 and souree2 may overlap in any manner.

Flags test-flag is set if soureel is not equal to souree2j otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel[k] ~ souree2[k] then
test-flag[k] t- 1

else .
test-flag[k] t- 0

Two operands are compared as signed integers. Operand souree1 is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is not equal to the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. The op­
eration is performed properly in all caseSj the constant need not be representable in the
number of bits specified by len.

288

NE

U-NE

Compares two unsigned integer source values. The test-flag is set if they are not equal, and
otherwise is cleared.

Formats CM:u-ne-lL sourcel, source2, len
CM:u-ne-2L source1, source2, slenl, slen2
CM:u-ne-constant-lL sourcel, source2-value, len
CM:u-ne-zero-lL sourcel, len

Op erands sourcel

source2

The unsigned integer first source field.

The unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the

len

second source. For CM: u-ne-zero-lL, this implicitly has the value
zero.

The length of the source1 and source2 fields. This must be non­
negative and no greater than CM: *maximum-integer-Iength*.

slenl The length of the sourcel field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is not equal to source2j otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel[k] ::j:. source2[k] then
test-flag[k] ~ 1

else
test-flag[k] ~ 0

Two operands are compared as unsigned integers. Operand source1 is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is not equal to the second operand, and is cleared otherwise.

The constant operand source2-value should be an unsigned integer front-end value. The
operation is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

289

NEGATE

F-NEGATE

Copies a floating-point number with its sign inverted.

Formats CM:f-negate-l-lL dest/source, s, e
CM:f-negate-2-1l dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] ~ -source[k]

A copy of the source operand, with its sign bit inverted, is placed in the dest operand. This
is done even if the operand is a NaN, whether a signalling NaN or a quiet NaN.

This operation therefore differs from the operation of subtracting a floating-point number
from the constant zero when the operand is ±O or a NaN.

290

NEGATE

S-NEGATE

Computes the negative (that is, the additive inverse) of a signed integer source field and
places it in the destination field.

Formats CM: s-negate-l-lL dest/ source, len
CM:s-negate-2-1L dest, source, len
CM:s-negate-2-2L dest, source, dlen, sien

Operands dest The signed integer destination field.

The signed integer source field. source

len

dien

sien

The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

The length of the dest field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-Iength*.

The length of the source field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-Iength*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- -source[k]
if (overflow occurred in processor k) then overflow-flag[k] +- 1
else overflow-flag(k] +- 0

The negative of the source operand is placed in the dest operand. If overflow occurs, then
the overflow-flag is set. (If the length of the dest field equals the length n of the source
field, overflow can occur only if the source field contains - 2n. If the length of the dest field
is greater than the length of the source field, then overflow cannot occur.)

291

NEGATE

U-NEGATE

The "negative" (that is, the unsigned additive inverse) of an unsigned integer source field is
placed in the destination field. This is an unsigned value that, when added to the original
source field, will produce zero (possibly with overflow).

Formats CM: u-negate-l-IL dest! source, len
CM:u-negate-2-1L dest, source, len
CM:u-negate-2-2L dest, source, dlen, sien

Operands dest The unsigned integer destination field.

The unsigned integer source field.

Overlap

Flags

source

len

dlen

slen

The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared. Overflow occurs whenever the source value is non­
zero.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual proceS.flor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] ~ -source[k]
if (overflow occurred in processor k) then overflow-flag[k] ~ 1
else overflow-flag(k] ~ 0

The negative of the source operand is placed in the dest operand. If overflow occurs, then
the dest field will contain a value equal to 2len - source. This operation matches the
functionality of the unary "-" operator on unsigned integers in the C language.

292

NEXT-STACK-FIELO-IO

NEXT -STACK-FIElD-ID

Determines the next stack field id that would be returned by a call to CM:allocate-stack­
field.

Formats

Result

Context

result i- CM:next-stack-field-id

Operands None.

An unsigned integer, the field-id that will be returned by the next invocation
of CM: allocate-stack-field.

This operation is unconditional. It does not depend on context-flag.

This function returns the next stack field id to be allocated.

293

PHYSICAL-VP-SET

PHYSICAL-VP-SET

Returns a VP set that has one virtual processor for each physical processor.

Formats

Result

Context

result +- eM: physical-vp-set

Operands None.

A vp-set-id, identifying the VP set whose VP-ratio is 1.

This operation is unconditional. It does not depend on context-flag.

295

POWER

F-F-POWER

Raises a floating-point number to a floating-point power.

Formats CM:f-f-power-2-1L
CM:f-f-power-3-1L
CM:f-f-power-constant-2-1L
CM:f-f-power-constant-3-1L

dest! sourcel, source2, s, e
dest, sourcel, source2, s, e
dest/ sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

Operands dest The floating-point destination field.

The floating-point base field.

Overlap

Flags

sourcel

source2 The floating-point exponent field.

source2-value A floating-point immediate operand to be used as the expo-
nent.

s, e The significand and exponent lengths for the dest, source1, and
source2 fields. The total length of an operand in this fonnat is
s+e+1.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must· be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
fonnat. It is permissible for all the fields to be identical.

test-flag is set if the base is negative, or the base is zero and the exponent is
non-positive; otherwise it is cleared.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sourcel [k] = 0 then
if source2[k] :::; 0 then

dest[k] +- 0
test-flag[k] +- 1

else
dest(k] +- 0
test-flag[k 1 +- 0

else if sourcel [k] < 0 then

296

dest[k] +- (undefined)
test-ftag[k] +- 1

else
dest[k] +- exp(souree2[k] X In soureel [k])
test-ftag[k] +- 0

POWER

if (overflow occurred in processor k) then overftow-ftag[k] +- 1

The souree1 field (the base) is raised to the power souree2 (the exponent).

The result is stored into the memory field dest.. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The constant operand souree2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.

297

. POWER

F-S-POWER

Raises a floating-point number to a signed integer power.

Formats CM: f-s-power-3-2L
CM: f-s-power-2-2L
CM:f-s-power-constant-2-1L
CM:f-s-power-constant-3-1L

dest, source1, source2, slen2, s, e
dest/ sourcel, source2, slen2, s, e
dest / sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

Operands dest The floating-point destination field.

The floating-point base field. sourcel

source2 The signed integer exponent field.

source2-value A signed integer immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest and source1
fields. The total length of an operand in this format is s + e + 1.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner.' However, the
source2 field must not overlap the dest field, and the field sourcel must be
either disjoint from or identical to the dest field. Two floating-point fields are
identical if they have the same address and the same format.

Flags overflow-flag is set iffloating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source2[k] < 0 then
lettempl Ie = 1.0/ source 1 [k]
lettemp21e = -source2[k]

else
lettempl Ie = sourcel [k]
Zettemp2k = source2[kJ

if temp21e(0} = 0 then
dest[k]- 1.0

else

298

POWER

dest[k] - temp11e
for j from 1 to slen2 - 1 do

if temp21e(i : slen2 - 1) '# 0 then let temp11e = temp11e X temp11e
if temp21e(i) then dest[kl- dest[k] X temp1 Ie

if (overflow occurred in processor k) then overfiow-fiag[k] - 1

The source1 field (the base) is raised to the power source2 (the exponent).

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

299

POWER

F-U-POWER

Raises a floating-point number to an unsigned integer power.

Formats CM: f-u-power-3-2L
CM :f-u-power-2-2L
CM: f-u-power-con stant-2-1 L
CM:f-u-power-constant-3-1L

dest, source1, source2, slen2, s, e
dest/ source 1, source2, slen2, s, e
dest/source1, source2-value, s, e
dest, source1, source2-value, s, e

Operands dest The floating-point destination field.

The floating-point base field. source1

source2 The unsigned integer exponent field.

source2-value An unsigned integer inunediate operand to be used as the
second source.

s, e The significand and exponent lengths for the dest and source1
fields. The total length of an operand in this format is s + e + 1.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Overlap The fields source1 and source2 may overlap in any manner. However, the
source2 field must not overlap the dest field, and the field source1 must be
either disjoint from or identical to the dest field. Two floating-point fields are
identical if they have the same address and the same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

iettempk = source1 [k]
if (slen2 = 0) V (source2[kJ(0) = 0) then

dest[kJ 1.0
else

dest[kJ tempk
for j from 1 to slen2 - 1 do

if source2[k](j : slen2 - 1) i- 0 then let tempk = tempk X tempk
if source2[kJ(j) then dest[kJ dest[kJ x tempk

if (overflow occurred in processor k) then overflow-flag[k] 1

300

POWER

The source1 field (the base) is raised to the power source2 (the exponent).

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

301

POWER

S-S-POWER

Raises a signed integer to a signed integer power.

Formats eM: s-s-power-3-3L
eM: s-s-power-2-1L
eM: s-s-power-3-1L
eM: s-s-power-constant-2-1L
eM: s-s-power-constant-3-1L

dest, sourcel, souree2, dlen, slenl, slen2
destl sourcel, source2, len
dest, sourcel, souree2, len
destl sourcel, souree2-value, len
dest, souree1, souree2-value, len

Operands dest The signed integer destmation field.

The signed integer base field. sourcel

souree2 The signed integer exponent field.

source2-value A signed integer inunediate operand to be used as the second

len

dlen

slenl

slen2

source.

The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than eM: *maximum-integer­
length*.

For eM: s-s-power-3-3L, the length of the dest field. This'must be no
smaller than 2 but no greater than eM: *maximum-integer-Iength*.

For eM: s-s-power-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than eM: *maximum-integer­
length*.

For eM: s-s-power-3-3L, the length of the souree2 field. This must
be no smaller than 2 but no greater than eM: *maximum-integer­
length*.

Overlap The fields souree1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the eurrent-vp-set do

302

if context-flag[k] = 1 then
if source2[k] < 0 then

dest[k] ~ 0

else if sou1'ce2 [k] = 0 then
dest[k] ~ 1

else
dest[k] ~ (sourcel[k]),ource.2[kj
if (overflow occurred in processor k) then overflow-flag[k] ~ 1
else overflow-flag(k] ~ 0

POWER

The sou1'ce1 field (the base) is raised to the power sou1'ce2 (the exponent). If the exponent
is negative, the result is always OJ if the exponent is zero, the result is always 1.

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields are constants; in some cases the destination field initially contains
one source operand.

The overflow-flag may be altered by these operations. If overflow occurs, then the destina­
tion field will contain as many of the low-order bits of the true result as will fit.

The constant operand source1-value or source2-value should be a signed integer front-end
value. The operation is performed properly in all cases; the constant need not be repre­
sentable in the number of bits specified by len.

303

POWER-UP

POWER-UP

This operation resets the Nexus, causing all front-end computers to become logically de­
tached from the Connection Machine system.

Formats CM: p ower-u p

Context This operation is unconditional. It does not depend on context-flag.

This function resets the state of the Nexus, causing all front-end computers to become
logically detached from the Connection Machine system. When a Connection Machine
system is first powered up or is to be completely reset for other reasons, this is the first
operation to perform. Any of the front-end computers may be used to do it.

If users on other front-end computers are actively using the Connection Machine system,
their computations will be disrupted. Normally all the front-end computers are connected
not only through the Connection Machine Nexus but also through some sort of commu­
nications network; a front end that executes CM: power-up will attempt to send messages
through this network to the other front-end computers on the same Nexus indicating that
a CM:power-up operation is being performed.

304

RANDOM

F-RANDOM

Stores a pseudo-randomly generated floating-point number into the destination field.

Formats CM:f-random-lL dest, s, e

Operands dest The floating-point destination field.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- pseudo-random choice of some j, +0 < j < 21en

2 en

Into the destination field of each selected processor is stored a floating-point number pseudo­
randomly chosen from a uniform distribution between zero (inclusive) and one (exclusive).

305

RANDOM

U-RANDOM

Stores a pseudo-randomly generated unsigned integer into the destination field.

Formats CM: u-random-lL dest, len, limit

Operands dest The unsigned integer destination field.

len The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

limit An unsigned integer immediate operand to be used as the exclusive
upper bound on values to be generated.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-up-set do
if context-flag[k] = 1 then

dest[k] - (pseudo-random choice of some j, 0 :$ j < limit)

The dest field in each selected processor receives a pseudo-randomly chosen from a uniform
distribution ranging from zero (inclusive) to the specified limit (exclusive).

306

RANK

F-RANK

The destination field in every selected processor receives the rank of that processor's key
among all keys in the scan set for that processor.

Formats CM:f-rank-2L dest, source, axis, dlen, s, e,
direction, smode, sbit

Operands dest The unsigned integer destination field.

source The floating-point source field. This is the sort key.

aXlS An unsigned integer immediate operand to be used as the number
of a NEWS axis.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

direction Either : upward or :downward.

smode Either :none, :start-bit, or :segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is : none
then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the source
and sbit fields must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Sk = scan-set(g, k, axis, direction, smode, sbit)
case direction of

: upward:
let Lk = {m 1m E Sk /\ ((source[m] < source[k]) V (source[m] = source[k

: downward:

let Lk = {m I mE Sk /\ ((source[m] > source[k]) V (source[m] = source[k
dest[k] ~ ILkl

where scan-subset is as defined on page 37.

307

RANK

See section 5.16 on page 34 for a general description of scan sets and the effect of the axis,
direction, smode, and sbit operands.

This operation determines the ordering necessary to sort the source fields within each scan
set. It does not not actually move the data so as to sort it, but merely indicates where the
data should be moved so as to sort it.

In more detail: The dest field in each selected processor receives, as an unsigned integer,
the rank of that processor's key within the set of keys in the scan set for that processor.
The smallest key has rank 0, the next smallest has rank 1, and so on; the largest key has
rank n - 1 where n is the number of processors in the scan set. This rank may be used to
calculate a send address a eM: send operation may then be used to put the data into sorted
order. (An ad vantage of decoupling the rank determination from the reordering process is
that the data to be moved may be much larger than the key that determines the ordering,
and indeed it may be desirable to reorder the other data but not the key itself. In this way
ranking and reordering each need operate only on the relevant data.)

308

RANK

S-RANK

The destination field in every selected processor receives the rank of that processor's key
among all keys in the scan set for that processor.

Formats CM:s-rank-2l dest, source, axis, dlen, slen,
direction, smode, sbit

Operands dest The unsigned integer destination field.

source The signed integer source field. This is the sort key.

axzs An unsigned integer immediate operand to be used as the number
of a NEWS axis.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-Iength*.

direction Either: upward or : downward.

smode Either :none, :start-bit, or : segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is : none
then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the source
and sbit fields must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Sk = scan-set(g, k, axis, direction, smode, sbit)
case direction of

: upward:
let Lk = {m 1m E Sk /\ ((source[m] < source[k]) V (source[m] = source[k

: downward:

let Lk = {m 1m E Sk /\ ((source[m] > source[k]) V (source[m] = source[k
dest[k] ;- ILkl

where scan-subset is as defined on page 37.

309

RANK

See section 5.16 on page 34 for a general description of scan sets and the effect of the axis,
direction, smode, and sbit operands.

This operation determines the ordering necessary to sort the source fields within each scan
set. It does not not actually move the data so as to sort it, but merely indicates where the
data should be moved so as to sort it.

In more detail: The dest field in each selected processor receives, as an unsigned integer,
the rank of that processor's key within the set of keys in the scan set for that processor.
The smallest key has rank 0, the next smallest has rank 1, and so on; the largest key has
rank n - 1 where n is the number of processors in the scan set. This rank may be used to
calculate a send address a CM:send operation may then be used to put the data into sorted
order. (An advantage of decoupling the rank detennination from the reordering process is
that the data to be moved may be much larger than the key that determines the ordering,
and indeed it may be desirable to reorder the other data but not the key itself. In this way
ranking and reordering each need operate only on the relevant data.)

310

RANK

U-RANK

The destination field in every selected processor receives the rank of that processor's key
among all keys in the scan set for that processor.

Formats CM: u-rank-2L dest, source, axis, dlen, sien,
direction, smode, sbit

Operands dest The unsigned integer destination field.

source The unsigned integer source field. This is the sort key.

ax~s An unsigned integer immediate operand to be used as the number
of a NEWS axis.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

sien The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

direction Either: upward or : downward.

smode Either :none, :start-bit, or :segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is :ndne
then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Sk = scan-set(g, k, axis, direction, smode, sbit)
case direction of

: upward:
let Lk = {m I mE Sk 1\ ((source[m] < source[k]) V (source[m] = source[k

: downward:
let Lk = {m 1m E Sk 1\ ((souTce[m] > souTce[k]) V (souTce[m] = source[k

dest[k] - ILkl

where scan-subset is as defined on page 37.

311

RANK

See section 5.16 on page 34 for a general description of scan sets and the effect of the axis,
direction, smode, and sbit operaIids.

This operation determines the ordering necessary to sort the source fields within each scan
set. It does not not actually move the data so as to sort it, but merely indicates where the
data should be moved so as to sort it.

In more detail: The dest field in each selected processor receives, as an unsigned integer,
the rank of that processor's key within the set of keys in the scan set for that processor.
The smallest key has rank 0, the next smallest has rank 1, and so on; the largest key has
rank n - 1 where n is the number of processors in the scan set. This rank may be used to
calculate a send address a CM:send operation may then be used to put the data into sorted
order. (An advantage of decoupling the rank determination from the reordering process is
that the data to be moved may be much larger than the key that determines the ordering,
and indeed it may be desirable to reorder the other data but not the key itself. In this way
ranking and reordering each need operate only on the relevant data.)

312

READ-FROM-NEWS-ARRAY

F-READ-FROM-NEWS-ARRAY

Copies a field within a set of processors forming a subarray of the NEWS grid into a subarray
(of the same shape) of an array in the memory of the front end.

Formats eM: f-read-from-news-array-1L front-end-array, offset-vector, start-vector,
end-vector, axis-vector, source, s, ej

rank, dimension-vector, element-len

Operands front-end-array A front-end array (possibly multidimensional) of floating­
point data.

offset-vector A front-end vector (one-dimensional array) of signed integer
subscript offsets for the front-end-array.

start-vector A front-end vector (one-dimensional array) of unsigned inte-
ger inclusive lower bounds for NEWS indices.

end-vector A front-end vector (one-dimensional array) of unsigned inte-
ger exclusive upper bounds for NEWS indices.

axis-vector A front-end vector (one-dimensional array) of unsigned inte-

source

s, e

rank

ger numbers indicating NEWS axes.

The floating-point source field. .

The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

An unsigned integer, the rank (number of dimensions) of the
front-end-array.

dimension-vector A front-end vector (one-dimensional array) of unsigned
integer dimensions of the front-end-array.

element-len An unsigned integer, the size of an element front-end-array,
measured in bytes. This must be 4 or 8.

Context This operation is unconditional. It does not depend on context-flag.

rank-l
Definition For all i such that 0 ::; i < n (end j - start j) do

j=O

for all m such that 0 ::; m < rank do

let S(i,m) = [rank_1 'l j mod (end m - StaTt m)

. n (endj-.tartj)
)=",+1

313

READ-FROM-N EWS-ARRAY

,.ank-1
let ki = V make-news-coordinate(axis j, start j + Si.j)

j=O

jront-end-arraY.(i,O),.(i,1)' 8(i,,,,, .. ,._1) +- source[ki]

Another formulation:

For all So such that 0 $ So < (end o - starto) do
for all 81 such that 0 $ 81 < (endl - startd do

for all 82 such that 0 $ 82 < (end 2 - 8tart2) do

for all 8,.ank-1 such that 0 $ 8,.ank-l < (end,.ank-l - start,.ank_l.) do
,.ank-l

let k.O,81 •••••• ,.ank_l = .v make-news-coordinate(azi8j,8tartj + Sj)
)=0

jront-end-arraYojJ,eto+'o,ojJ,et1 +'1 , ... ,ojJset,.ank_l +B"ank_l
+- source[k.O,Bl,. ..• B"ank_l]

This operation copies a rectangular sub block of the NEWS grid into a similarly shaped
subblock of an array in the front end.

Floating-point number values are transferred from the Connection Machine processors to
the specified array. When this operation is invoked from C code, the element-len parameter
should be the number of bytes in an array element, as determined by the C sizeof operator.

The source parameter specifies the memory. address within each processor of the field to be
copied.

The five vector arguments are one-dimensional front-end arrays of length rank. For
descriptive purposes let there be a number of indices kj (0 $ j < rank) such that
o $ kj < (endj - startj). Then for all possible combinations of values for these indices, the
data in the source field of the processor whose send address is

n-l

V make-news-coordinate(start j + k j, axis j)

j=O

is copied into the array element whose indices are offsetj + kj ($ j < n). The total number
of values transferred is therefore

n-1
II (end j - start j)

j=O

The dimension-vector specifies the dimensions of the front end array.

314

REAO-FROM-N EWS-ARRAY

S-READ-FROM-NEWS-ARRAY

Copies a field within a set of processors forming a sub array of the NEWS grid into a subarray
(of the same shape) of an array in the memory of the front end.

Formats CM: s-read-from-news-array-1L front-end-array, offset-vector, start-vector,
end-vector, axis-vector, source, len;
rank, dimension-vector, element-len

Operands front-end-array A front-end array (possibly multidimensional) of signed in­
teger data.

offset-vector A front-end vector (one·dimensional array) of signed integer
subscript offsets for the front-end-array.

start-vector A front-end vector (one-dimensional array) of unsigned inte-
ger inclusive lower bounds for NEWS indices.

end-vector A front-end vector (one-dimensional array) of unsigned inte-
ger exclusive upper bounds for NEWS indices.

axis-vector A front-end vector (one-dimensional array) of unsigned inte-

source

len

rank

ger numbers indicating NEWS axes.

The signed integer source field.

The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

An unsigned integer, the rank (number of dimensions) of the
front-end-array.

dimension-vector A front-end vector (one-dimensional array) of unsigned
integer dimensions of the front-end-array.

element-len An unsigned integer, the size of an element front-end-array,
measured in bytes. This must be 1, 2, or 4.

Context This operation is unconditional. It does not depend on context-flag.

rank-l
Definition For all i such that 0::; i < IT (endj - startj) do

j=O

for all m such that 0 ::; m < rank do

let S(i,m) = lrank_l t j mod (end m - StaTtm)
. IT (endj-,tartj)
J=",+1

315

READ-FROM-NEWS-ARRAY

"4nk-1
let ki = V make-news-coordinate(axis j, start j + Si.j)

j=O

front-end-arrayS(i.O).II(i.l) •.... II(i k_l) ~ source[ki]

Another formulation:

For all So such that 0 :::; So < (endo - starto) do
for all 81 such that 0 :::; 81 < (end1 - startt) do

for all 82 such that 0 :::; S2 < (end 2 - start2) do

for all 8"4nk-1 such that 0 :::; S"4nk-1 < (end,.4nk-1 - start,.4nk_l) do
"4nk-l

let kSO , .. l, ,.4nk_l = .v make-news-coordinate(axisj,startj + 8j)
)=0

front-end-arraYoff8eto +.0. off.et1 +.1 off8et,.4nk_l +S,.4nk_l
~ source[k,,0 .• 1 'S,.4nk_l]

This operation copies a rectangular sub block of the NEWS grid into a similarly shaped
sub block of an array in the front end.

Signed integer values are transferred from the Connection Machine processors to the spec­
ified array. When calling Paris from Lisp the array may be a general S-expression array
containing signed integers, or may be a specialized integer-element array (such as the kind
called art-8b on the Symbolics 3600). When this operation is invoked from C code, the
element-len parameter should be the number of bytes in an array element, as determined
by the C sizeof operator.

The source parameter specifies the memory address within each processor of the field to be
copied.

The five vector arguments are one-dimensional front-end arrays of length rank. For
descriptive purposes let there be a number of indices kj (0 :::; j < rank) such that
0:::; k j < (end j - startj). Then for all possible combinations of values for these indices, the
data in the source field of the processor whose send address is

n-l

V make-news-coordinate(start j + kj, axis j)
j=O

is copied into the array element whose indices are offsetj + kj (:::; j < n). The total number
of values transferred is therefore

n-l

II (endj - startj)
j=O

The dimension-vector specifies the dimensions of the front end array.

316

READ-FROM-N EWS-ARRAY

U-READ-FROM-NEWS-ARRAY

Copies a field within a set of processors forming a subarray ofthe NEWS grid into a subarray
(of the same shape) of an array in the memory of the front end.

Formats CM: u-read-from- news-a rray-l L front-end-array, offset-vector, start-vector,
end-vector, axis-vector, source, len;
rank, dimension-vector, element-len

Operands front-end-array A front-end array (possibly multidimensional) of floating­
point data.

offset-vector A front-end vector (one-dimensional array) of signed integer
subscript offsets for the front-end-array.

start-vector A front-end vector (one-dimensional array) of unsigned inte-
ger inclusive lower bounds for NEWS indices.

end-vector A front-end vector (one-dimensional array) of unsigned inte-
ger exclusive upper bounds for NEWS indices.

axis-vector A front-end vector (one-dimensional array) of unsigned inte-
ger numbers indicating NEWS axes.

len The length of the source field. This must be non-negative and no
greater than CM~ *maximum-integer-Iength*.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

rank An unsigned integer, the rank (number of dimensions) of the
front-end-array.

dimension-vector A front-end vector (one-dimensional array) of unsigned
integer dimensions of the front-end-array.

element-len An unsigned integer, the size of an element front-end-array,
measured in bytes. This must be 1, 2, or 4.

Context This operation is unconditional. It does not depend on context-flag.

rank-l
Definition For all i such that 0 ::; i < n (end j - start j) do

j==O

for all m such that 0 ::; m < rank do

let S(i,m) = lrank_l t j mod (end m - startm)

. n (endj-dartj)
J=m+l

317

READ~FROM-N EWS-ARRAY

rank-1 .
let ki = V make-news-coordinate(axis j, startj + Si,j)

j=o
front-end-arraY.(i,O),.(i,1), ... ,II(i, I&_l) +- source[kd

Another formulation:

For all 50 such that 0 :::; 50 < (end o - starto) do
for all 51 such that 0 :::; 51 < (end1 - start1) do

for all 52 such that 0 :::; 52 < (end 2 - start2) do

for all 5 rank-l such that 0 :::; 5 rank-l < (end rank-1 - startrank-1) do
rank-1

let k.O,.l'''',.rank_l = .v make-news-coordinate(axisj,startj + 5j)
3=0

front-end-arraYOjJ4eto+40,OjJ.etl +Sl, ... ,ojJlletrank_l +lIrank_l
+- source[k'O,81, ... ,lIrank_l]

This operation copies a rectangular subblock of the NEWS grid into a similarly shaped
sub block of an array in the front end.

Floating-point number values are transferred from the Connection Machine processors to
the specified array. When this operation is invoked from C code, the element-len parameter
should be the number of bytes in an array element, as determined by the C sizeof operator.

The source parameter specifies the memory address within each processor of the field to be
copied.

The five vector arguments are one-dimensional front-end arrays of length rank. For
descriptive purposes let there be a number of indices kj (0 :S j < rank) such that
o :::; kj < (end j - startj). Then for all possible combinations of values for these indices, the
data in the source field of the processor whose send address is

n-l

V make-news-coordinate(start j + kj, axis j)

j=O

is copied into the array element whose indices are offsetj + kj (:S j < n). The total number
of values transferred is therefore

n-l

II (end j - startj)
j=O

The dimension-vector specifies the dimensions of the front end array.

318

READ-FROM-PROCESSOR

F-READ-FROM-P RO CESSO R

Reads the source field of a single specified processor as a floating-point number and returns
it to the front end.

Formats result +- eM: f-read-from-processor-IL send-address-value, source, s, e

Operands send-address-value An immediate operand, the send address of a single

Result

source

s, e

particular processor.

The floating-point source field.

The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

A floating-point number, the contents of the source field in the specified virtual
processor.

Context This operation is unconditional. It does not depend on context-flag.

Definition Return source[send-address-value] to front end

The source field of the processor whose send address is the immediate· operand
send-address-value is read and returned as a floating-point number to the front end.

319

READ-fROM-PROCESSOR

S-READ-FROM-PROCESSOR

Reads the source field of a single specified processor as a signed integer and returns it to
the front end.

Formats result ...- CM:s-read-from-processor-1L send-address-value, source, len

Operands send-address-value An immediate operand, the send address of a single

source

len

particular processor.

The signed integer source field.

The length of the source .field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-Iength*.

Context This operation is unconditional. It does not depend on context-flag.

Definition Return source [send-address-value] to front end

The source field of the processor whose send address is the immediate operand
send-address-value is read and returned as a signed integer to the front end.

320

READ-fROM-PROCESSOR

U-READ-FROM-PROCESSO R

Reads the source field of a single specified processor as an unsigned integer and returns it
to the front end.

Formats result +- CM: u-read-from-processor-IL send-address-value, source, len

Operands send-address-value An inunediate operand, the send address of a single

source

len

particular processor.

The unsigned integer source field.

The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Context This operation is unconditional. It does not depend on context-flag.

Definition Return source[send-address-value] to front end

The source field of the processor whose send address is the inunediate operand
send-address-value is read and returned as an unsigned integer to the front end.

321

REDUCE-WiTH-ADD

REDUCE-WITH-F-ADD

Within each scan class one particular processor (if it is selected) receives the sum of the
floating-point source fields from all the selected processors in that scan class.

Formats CM: reduce-with-f-add-1L dest, source, axis, s, e, to-coordinate

Operands dest The floating-point destination field.

The floating-point source field. source

axzs An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-/lag[k] = 1 then

let 9 = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] t- (1: source[m])
. mEek

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of reduce operations. The CM: reduce­
with-f-add operation combines source fields by performing floating-point addition.

The operation CM: reduce-with-f-add-IL differs from CM:spread-with-f-add-lL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

322

REDUCE-WITH-ADD

REDUCE-WITH-S-ADD

Within each scan class one particular processor (if it is selected) receives the sum of the
signed integer source fields from all the selected processors in that scan class.

Formats CM:reduce-with-s-add-lL dest, source, axis, len, to-coordinate

Operands dest The signed integer destination field.

The signed integer source field. source

axis

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length. .

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[kJ = 1 then

let 9 = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[kJ ~ (2:: source[mJ)
mEG"

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of reduce operations. The CM: reduce­
with-s-add operation combines source fields by performing signed integer addition.

The operation CM: reduce-with-s-add-IL differs from CM: spread-with-s-add-IL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

323

REDUCE-WITH-ADD

REDUCE-WITH-U-ADD

Within each scan class one particular processor (if it is selected) receives the sum of the
unsigned integer source fields from all the selected processors in that scan class.

Formats CM:reduce-with-u-add-1L dest, source, axis, len, to-coordinate

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

axzs

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-Iength*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] - (2: source[m])
mECII

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of reduce operations. The eM: reduce­
with-u-add operation combines source fields by performing unsigned integer addition.

The operation eM: reduce-with-u-add-IL differs from eM: spread-with-u-add-IL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

324

REDUCE-WITH-COPY

REDUCE-WITH-COPY

Within each scan class one particular processor (if it is selected) receives a copy of the
source value from a particular value within its scan subclass.

Formats CM: reduce-with-copy-l L dest, source, axis, len, to-coordinate, from-coordinate

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

axzs

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

from-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class is to be read.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let c = deposit-news-coordinate(g, k, axis, from-coordinate)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] +- source[c]

where deposit~news-coordinate is as defined on page 33.

See section 5.16 on page 34 for a general description of reduce operations.

325

REDUCE-WITH-LOGAN D

REDUCE-WITH-LOGAND

Within each scan class one particular processor (if it is selected) receives the bitwise logical
AND of the source fields from all the selected processors in that scan class.

Formats CM:reduce-with-logand-1L dest, source, axis, len, to-coordinate

Operands dest The destination field.

The source field. source

axzs

len

An unsigned integer inunediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-Iength*.

to-coordinate An unsigned integer inunediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let GTe = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] - (/\ source[m])'
mECA:

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of reduce operations. The CM: reduce­
with-Iogand operation combines source fields by performing bitwise logical AND operations.

The operation CM: reduce-with-logand-1L differs from CM: spread-with-logand-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

326

REDUCE-WITH-LOGIOR

REDUCE-WITH-LOGIOR

Within each scan class one particular processor (if it is selected) receives the bitwise logical
inclusive OR. of the source fields from all the selected processors in that scan class.

Formats CM:reduce-with-logior-lL dest, source, axis, len, to-coordinate

Operands dest The destination field.

The source field. source

ax~s

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-Iength*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors ·whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k) = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k) +- (V source[m))
mEG ..

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of reduce operations. The CM: reduce­
with-Iogior operation combines source fields by performing bitwise logical inclusive OR. op­
erations.

The operation CM: reduce-with-iogior-IL differs from CM: spread-with-iogior-IL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

327

REDUCE-WITH-LOGXOR

REDUCE-WITH-LOGXOR

Within each scan class one particular processor (if it is selected) receives the bitwise logical
exclusive OR of the source fields from all the selected processors in that scan class.

Formats CM: reduce-with-Iogxor-IL dest, source, axis, len, to-coordinate

Operands dest The destination field.

The source field. source

axis

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-fiag[kJ = 1 then

let 9 = geometry(current-vp-set)
let Cle = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[kJ - (E9 source[mJ)
mEG"

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of reduce operations. The CM: reduce­
with-Iogxor operation combines source fields by performing bitwise logical exclusive OR op­
erations.

The operation CM: reduce-with-Iogxor-IL differs from CM: spread-with-Iogxor-IL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

328

REDUCE-WITH-MAX

REDUCE-WITH-F-MAX

Within each scan class one particular processor (if it is selected) receives the largest of the
floating-point source fields from all the selected processors in that scan class.

Formats CM:reduce-with-f-max-lL dest, source, axis, s, e, to-coordinate

Operands dest The floating-point destination field.

The floating-point source field. source

axts

s, e

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context . This operation is conditional. The destination may"be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] +- (max source[m])
mEG"

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of reduce operations. The CM: reduce­
with-f-max operation combines source fields by performing an floating-point maximum op­
eration.

The operation CM:reduce-with-f-max-lL differs from CM:spread-with-f-max-lL only in that
the result is stored in (at mos t) one processor of the scan class rather than in all selected
processors of the scan class.

329

REDUCE-WITH-MAX

REDUCE-WITH-S-MAX

Within each scan class one particular processor (if it is selected) receives the largest of the
signed integer source fields from all the selected processors in that scan class.

Formats CM: reduce-with-s-max-IL dest, source, axis, len, to-coordinate

Operands dest The signed integer destination field.

The signed integer source field. source

ax~s

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM: *maximum-integer-Iength*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors ~hose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

let 9 = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] +- (max source[m])
mEC"

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of reduce operations. The CM:reduce­
with-s-max operation combines source fields by performing a signed integer maximum oper­
ation.

The operation CM: reduce-with-s-max-IL differs from CM: spread-with-s-max-IL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

330

REDUCE-WITH-MAX

REDUCE-WITH-U-MAX

Within each scan class one particular processor (if it is selected) receives the largest of the
unsigned integer source fields from all the selected processors in that scan class.

Formats CM:reduce-with-u-max-IL dest, source, axis, len, to-coordinate

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

aX1S

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[kJ = 1 then

let 9 = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[kJ +- (max source(mJ)
mEG"

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of reduce operations. The CM: reduce­
with-u-max operation combines source fields by performing an unsigned integer maximum
operation.

The operation CM: reduce-with-u-max-IL differs from CM: spread-with-u-max-IL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

331

REDUCE-WITH-MIN

REDUCE-WITH-F-MIN

Within each scan class one particular processor (if it is selected) receives the smallest of the
floating-point source fields from all the selected processors in that scan class.

Formats CM:reduce-with-f-min-lL dest, source, axis, s, e, to-coordinate

Operands dest The floating-point destination field.

The floating-point source field. source

axzs An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[k] +- (min source[m])
mEC,

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of reduce operations. The CM: reduce­
with-f-min operation combines source fields by performing an floating-point minimum oper­
ation.

The operation CM: reduce-with-f-min-IL differs from CM:spread-with-f-min-lL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

332

REDUCE-WITH-M IN

RED UCE-WITH-S-M IN

Within each scan class one particular processor (if it is selected) receives the smallest of the
signed integer source fields from all the selected processors in that scan class.

Formats eM: reduce-with-s-min-IL dest, source, axis, len, to-coordinate

Operands dest The signed integer destination field.

The signed integer source field. source

axzs

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be no smaller
than 2 but no greater than eM: *maximum-integer-Iength*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[kJ = 1 then

let g = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[kJ f- (min source[mJ)
mEG"

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of reduce operations. The CM: reduce­
with-s-min operation combines source fields by performing a signed integer minimum oper­
ation.

The operation eM: reduce-with-s-min-IL differs from CM:spread-with-s-min-lL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

333

REDUCE-WITH-MIN

RED UCE-WITH-U-M IN

Within each,scan class one particular processor (if it is selected) receives the smallest of the
unsigned integer source fields from all the selected processors in that scan class.

Formats CM:reduce-with-u-min-lL dest, source, axis, len, to-coordinate

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

axis

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-Iength*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[kJ = 1 then

let 9 = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)
if extract-news-coordinate(g, axis, k) = to-coordinate then

dest[kJ - (min source[mJ)
mEC ...

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of reduce operations. The CM: reduce­
with-u-min operation combines source fields by performing an unsigned integer minimum
operation.

The operation CM:reduce-with-u-min-lL differs from CM:spread-with-u-min-lL only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

334

REM

F-REM

The remainder from dividing one floating-point source value by another is placed in the
destination field.

Formats CM:f-rem-2-1L destl soureel, souree2, s, e
CM:f-rem-3-1L dest, sourcel, souree2, s, e
CM: f-rem-constant-2-1L destl soureel, souree2-value, s, e
CM:f-rem-constant-3-1L dest, souree1, souree2-value, s, e

Operands dest The floating-point destination field. This is the quotient.

The floating-point first source field. This is the dividend.

The floating-point second source field. This is the divisor.

Overlap

Flags

soureel

souree2

source2-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, so urce1 , and
source2 fields. The total length of an operand in this format is
s+e+1.

The fields souree1 and souree2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

test-flag is set if unafi'ecteddivision by zero occurs; otherwise it is cleared.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if souree2[k] ::j:. 0 then
let v = sourcel[k]/souree2[k]

if v > l v + ~ J then

let n = l vJ

else if v < l v + ~ J then

let n = r v 1
else if even(l v J) then

let n = l vJ

335

REM

else
let n = rvl

dest[k] +- soureel[k] - souree2[k] X n
else

dest[k] +- (unpredictable)
test-flag[k] +- 1

if (overflow occurred in processor k) then overflow-flag[k] +- 1

The remainder from the souree1 operand when divided by the souree2 operand is calculated
treating both as floating-point numbers. The result is stored into memory. The various
operand formats allow operands to be either memory fields or constants; in some cases the
destination field initially contains one source operand.

The constant operand souree2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by sand e before the operation is performed.

336

REM

S-REM

The remainder from the truncating division of one signed integer by another is placed in
the destination field. Overflow is also computed.

Formats CM:s-rem-2-1L destlsourcel, source2, len
CM:s-rem-3-1L dest, sourcel, source2, len
CM: s-rem-constant-2-1L dest I sourcel, source2-value, len
CM:s-rem-constant-3-1L dest, sourcel, source2-value, len

Operands dest The signed integer remainder field.

The signed integer dividend field.

The signed integer divisor field.

sourcel

source2

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length*.

Overlap The fields source1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if either the result cannot be represented in the destination
field or the divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

if source2[k] = 0 then
dest[k] - (unpredictable)

else

dest[kJ- sign(source1[k]) X (lsourcel[kJI-lsource2[kJI X ll:~:~~:~t~llJ)
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[kJ - 0

337

REM

The remainder resulting from the truncating division of the signed integer source1 by the
signed integer source2 operand is stored into the dest field. The result always has the same
sign as the souree1 operand. The various operand formats allow operands to be either
memory fields or constants; in some cases the destination field initially contains one source
operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti­
nation field will contain as many of the low-order bits of the true result as will fit.

The value of the destination is unpredictalbe if the divisor is zero.

The constant operand source2-value should be a signed integer front-end value. The op­
eration is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

338

REM

U-REM

The remainder from the truncating division of one unsigned integer by another is placed in
the destination field. Overflow is also computed.

Formats CM:u-rem-2-1L destlsource1, source2, len
CM: u-rem-3-1L dest, source1, source2, len
C M: u -rem-con sta n t-2-1 L dest I source1, source2-value, len
CM:u-rem-constant-3-1L dest, source1, source2-value, len

Operands dest The unsigned integer remainder field.

The unsigned integer dividend field.

The unsigned integer divisor field.

source1

source2

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, source1, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-Iength*.

Overlap The fields source1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[kJ = 1 then

if source2[kJ = 0 then
dest[kJ +- (unpredictable)

else

lsourCe1 k J dest[kJ +- source1[kJ - source2[kJ X souree2 k

if (overflow occurred in processor k) then overflow-flag[k] +- 1
else overflow-flag(kJ +- 0

The remainder resulting from the truncating division of the unsigned integer souree1 by
the unsigned integer souree2 operand is stored into the dest field. For unsigned integers
this is of course the same as the mod operation.

339

REM

The various operand formats allow operands to be either memory fields or constants; in
some cases the destination field initially contains one source operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti­
nation field will contain as many of the low-order bits of the true result as will fit.

The value of the destination is unpredictable if the divisor is zero.

The constant operand source2-value should be a signed integer front-end value. The op­
eration is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

340

RESET-TIMER

RESET-TIMER

For the C/Paris and Fortran/Paris interfaces, resets the timing facility before timing other
operations.

Formats CM: reset-timer

Context This operation is unconditional. It does not depend on context-flag.

The function CM: reset-timer is used in the C /Paris and Fortran/Paris interfaces to reset the
facility for timing the execution of other operations on the Connection Machine system.

One should first call CM: reset-timer to clear the timing counters. Subsequently one may
alternately call CM: start-timer and CM: stop-timer. The amounts of real time and run time
between a start and a stop are accumulated into the counters. One may start and stop
the clocks repeatedly. Every time CM:stop-timer is called, it returns a structure of type
CM_timevaU that contains time accumulated between all start/stop call pairs since the last
call to CM: reset-timer.

The timing facility is provided in the Lisp/Paris interfaces through the CM: time macro.

341

SCAN-WITH-ADD

SCAN-WITH-F-ADD

The destination field in every selected processor receives the sum of the floating-point source
fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-f-add-lL dest, source, axis, s, e,
direction, inclusion, smode, sbit

Operands dest The floating-point destination field.

source The floating-point source field.

axts An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

direction Either : upward or :downward.

inclusion Either: exclusive or : inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is : none
then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g,k, axis, direction, inclusion, smode, sbit)
if ISkl = 0 then

dest[kJ f- 0
else

dest[kJ f- (2:: source[mJ)
mESIio

where scan-subset is as defined on page 37.

343

SCAN-WITH-ADD

See section 5.16 on page 34 for a general description of scan operations and the effect of the
a;r;is, direction, inclusion, smode, and sbit operands.

The CM:scan-with-f-add operation combines source fields by performing floating-point ad­
dition. If the scan subset for a selected processor is empty, then the floating-point value
+0.0 is stored in the dest field for that processor. Note that this can occur only when the
inclusion argument is : exclusive.

344

SCAN-WITH-ADD

SCAN-WITH-S-ADD

The destination field in every selected processor receives the sum of the signed integer source
fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-s-add-lL dest, source, axis, len,
direction, inclusion, smode, sbit

Operands dest The signed integer destination field.

source The signed integer source field.

axis An unsigned integer irrunediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

direction Either: upward or : downward.

inclusion Either: exclusive or : inclusive.

smode Either: none, : start-bit, or : segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is :none
then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k J = 1 then

let 9 = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISkl = 0 then

dest[kJ f- 0
else

dest[kJ f- (I: source[mJ)
mES.

where scan-subset is as defined on page 37.

345

SCAN-WITH-ADD

See section 5.16 on page 34 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The eM: scan-with-s-add operation combines source fields by performing signed integer addi­
tion. If the scan subset for a selected processor is empty, then the signed integer value 0 is
stored in the dest field for that processor. Note that this can occur only when the inclusion
argument is : exclusive.

346

SCAN-WITH-ADD

SCAN-WITH-U-ADD

The destination field in every selected processor receives the sum of the unsigned integer
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-u-add-lL dest, source, axis, len,
direction, inclusion, smode, sbit

Operands dest The unsigned integer destination field.

source The unsigned integer source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-Iength*.

direction Either : upward or :downward.

inclusion Either: exclusive or : inclusive.

smode Either: none, : start-bit, or : segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is : none
then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[kJ = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISkl = 0 then

dest[kJ ~ 0
else

dest[k] ~ (I: source[mJ)
mES~

where scan-subset is as defined on page 37.

347

SCAN-WITH-ADD

See section 5.16 on page 34 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The eM: scan-with-u-add operation combines source fields by performing unsigned integer
addition. If the scan subset for a selected processor is empty, then the unsigned integer
value 0 is stored in the dest field for that processor. Note that this can occur only when the
inclusion argument is : exclusive.

348

SCAN-WITH-COPY

SCAN-WITH-COPY

The destination field in every selected processor receives the first source field from the
processors below or above it in some ordering of the processors.

Formats CM:scan-with-copy-1L dest, source, azis, len,
direction, inclusion, smode, sbit

Operands dest The destination field.

source The source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

direction Either : upward or :downward.

inclusion Either: exclusive or : inclusive.

smode Either: none, : start-bit, or : segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is : none
then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two bit fields are identical if they have the
same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-jlag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-jlag[k] = 1 then

let 9 = geometry(current-vp-set)
let Sk = scan-subset(g, k, azis, direction, inclusion, smode, sbit)
if ISkl = 0 then

dest[k] To- 000 ..• 000

else
case direction of

: upward: let m' = min m
mESA:

: downward: let m' = max m
mESA:

dest[k] To- source[m']

where scan-subset is as defined on page 37.

349

SCAN-WITH-COPY

See section 5.16 on page 34 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The eM: scan-with-copy operation stores into each processor k the source field value from the
first processor in the scan subset for processor k (where "first" means the processor with
lowest address for an upward scan, or with highest address for a downward scan). Generally
speaking, the net effect is to propagate a value from the first processor in a group to all the
other processors in the group, although variations on this effect are provided by the various
possibilities for the inclusion and smode arguments.

If the scan subset for a selected processor is empty, then the dest field for that processor is
set to all zero bits. Note that this can occur only when the inclusion argument is : exclusive.

350

SCAN-WITH-LOGAND

SCAN-WITH-LOGAND

The destination field in every selected processor receives the bitwise logical AND of the
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-logand-lL dest, source, axis, len,
direction, inclusion, smode, sbit

Operands dest The destination field.

source The source field.

axzs An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-Iength*.

direction Either: upward or :downward.

inclusion Either: exclusive or : inclusive.

smode Either: none, : start-bit, or : segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is :none
then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two bit fields are identical if they have the
same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[kJ = 1 then

let 9 = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISkl = 0 then

dest[kJ +- 111. .. 111
else

dest[kJ +- (A source[mJ)
mES,.

where scan-subset is as defined on page 37.

351

SCAN-WITH-LOGAND

See section 5.16 on page 34 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The eM: scan-with-Iogand operation combines source fields by performing bitwise logical AND

operations. If the scan subset for a selected processor is empty, then the unsigned integer
value _21en - 1 (all ones) is stored in the dest field for that processor. Note that this can
occur only when the inclusion argument is : exclusive.

352

SCAN-WITH-LOGIOR

SCAN-WITH-LOGIOR

The destination field in every selected processor receives the bitwise logical inclusive OR of
the source fields from processors below or above it in some ordering of the processors.

Formats CM: scan-with-iogior-IL dest, source, axis, len,
direction, inclusion, smode, sbit

Operands dest The destination field.

source The source field.

ax~s An unsigned integer inunediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

direction Either: upward or :downward.

inclusion Either: exclusive or : inclusive.

smode Either: none, : start-bit, or : segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is :none
then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two bit fields are identical if they have the
same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Sic = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISlcl = 0 then

dest[k] ~ 000 ..• 000
else

dest[kJ ~ (V source[mJ)
rnES"

where scan-subset is as defined on page 37.

353

SCAN-WITH-LOGIOR

See section 5.16 on page 34 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The eM: scan-with-Iogior operation combines source fields by performing bitwise logical in­
clusive OR. operations. If the scan subset for a selected processor is empty, then the unsigned
integer value 0 (all zero bits) is stored in the dest field for that processor. Note that this
can occur only when the inclusion argument is : exclusive.

354

SCAN-WITH-LOGXOR

SCAN-WITH-LOGXOR

The destination field in every selected processor receives the bitwise logical exclusive OR. of
the source fields from processors below or above it in some ordering of the processors.

Formats CM: scan-with-logxor-lL dest, source, axis, len,
direction, inclusion, smode, sbit

Operands dest The destination field.

source The source field.

axzs An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-Iength*.

direction Either: upward or :downward.

inclusion Either: exclusive or : inclusive.

smode Either: none, : start-bit, or : segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is : none
then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two bit fields are identical if they have the
same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[kJ = 1 then

let g = geometry(current-vp-set)
let Sic = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISlcl = 0 then

dest[kJ f- 000 ... 000

else

dest[kJ f- (ffi source[mJ)
mESIo

where scan-subset is as defined on page 37.

355

SCAN-WITH-LOGXOR

See section 5.16 on page 34 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The eM: scan-with-Iogxor operation combines source fields by performing bitwise logical ex­
clusive OR. operations. If the scan subset for a selected processor is empty, then the unsigned
integer value 0 (all zero bits) is stored in the dest field for that processor. Note that this
can occur only when the inclusion argument is : exclusive.

356

SCAN-WITH-MAX

SCAN-WITH-F-MAX

The destination field in every selected processor receives the largest of the floating-point
SOUIce fields from processors below or above it in some ordering of the processors.

Formats CM: scan-with-f-max-IL dest, source, axis, s, e,
direction, inclusion, smode, sbit

Operands dest The floating-point destination field.

source The floating-point SOUIce field.

aXlS An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

direction Either : upward or :downward.

inclusion Either: exclusive or : inclusive.

smode Either: none, : start-bit, or : segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is :none
then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISkl = 0 then

dest[k] .- -00

else

dest[kJ .- (max source(mJ)
mES"

where scan-subset is as defined on page 37.

357

SCAN-WITH-MAX

See section 5.16 on page 34 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode; and sbit operands.

The eM: scan-with-f-max operation combines source fields by performing an floating-point
maximum operation. If the scan subset for a selected processor is empty, then the floating­
point value -00 is stored in the dest field for that processor. Note that this can occur only
when the inclusion argument is : exclusive.

358

SCAN-WITH-MAX

SCAN-WITH-S-MAX

The destination field in every selected processor receives the largest of the signed integer
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-s-max-lL dest, source, axis, len,
direction, inclusion, smode, sbit

Operands dest The signed integer destination field.

source The signed integer source field.

axzs An unsigned integer inunediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM: *maximum-integer-Iength*.

direction Either : upward or :downward.

inclusion Either: exclusive or : inclusive.

smode Either: none, : start-bit, or : segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is : none
then this may be CM: *no-field *.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISkl = 0 then

dest[kJ f- _2 1en- 1

else

dest[kJ f- (max source[mJ)
mESk

where scan-subset is as defined on page 37.

359

SCAN-WITH-MAX

See section 5.16 on page 34 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The eM: scan-with-s-max operation combines source fields by performing a signed integer
maximum operation. If the scan subset for a selected processor is empty, then the signed
integer value _21en- 1 is stored in the dest field for that processor. Note that this can occur
only when the inclusion argument is : exclusive.

360

SCAN-WITH-MAX

SCAN-WITH-U-MAX

The destination field in every selected processor receives the largest of the unsigned integer
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-u-max-ll dest, source, axis, len,
direction, inclusion, smode, sbit

Operands dest The unsigned integer destination field.

source The unsigned integer source field.

axzs An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

direction Either: upward or : downward.

inclusion Either: exclusive or : inclusive.

smode Either: none, : start-bit, or : segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is :none
then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISkl = 0 then

dest[k] ..- 0
else

dest[k] ..- (max source[m])
mESIc

where scan-subset is as defined on page 37.

361

SCAN-WITH-MAX

See section 5.16 on page 34 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The eM: scan-with-u-max operation combines source fields by performing an unsigned integer
maximum operation. If the scan subset for a selected processor is empty, then the unsigned
integer value 0 is stored in the dest field for that processor. Note that this can occur only
when the inclusion argument is : exclusive.

362

SCAN-WITH-MIN

SCAN-WITH-F-MIN

The destination field in every selected processor receives the smallest of the floating-point
source fields from processors below or above it in some ordering of the processors.

Formats CM: scan-with-f-min-IL dest, source, axis, s, e,
direction, inclusion, smode, sbit

Operands dest The floating-point destination field.

source The floating-point source field.

ax~s An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

direction Either :upward or :downward.

inclusion Either : exclusive or :inclusive.

smode Either :none, :start-bit, or : segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is : none
then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Sic = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISlcl = 0 then

dest(k] f- +00
else

dest(k] f- (min source(m])
mESIl

where scan-subset is as defined on page 37.

363

SCAN-WITH-MIN

See section 5.16 on page 34 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The eM: scan-with-f-min operation combines source fields by performing an floating-point
minimum operation. If the scan subset for a selected processor is empty, then the floating­
point value +00 is stored in the dest field for that processor. Note that this can occur only
when the inclusion argument is : exclusive.

364

SCAN-WITH-MIN

SCAN-WITH-S-M I N

The destination field in every selected processor receives the smallest of the signed integer
source fields from processors below or above it in some ordering of the processors.

Formats CM: scan-with-s-min-IL dest, source, axis, len,
direction, inclusion, smode, sbit

Operands dest The signed integer destination field.

source The signed integer source field.

axzs An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

direction Either: upward or :downward.

inclusion Either: exclusive or : inclusive.

smode Either: none, : start-bit, or : segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is :none

then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let S,. = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if IS,.I = 0 then

dest[kJ +- 21en- 1 - 1
else

dest[k] +- (min source[ml)
mESIo

where scan-subset is as defined on page 37.

365

SCAN-WITH-MIN

See section 5.16 on page 34 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and shit operands.

The eM: scan-with-s-min operation combines source fields by performing a signed integer
minimum operation. If the scan subset for a selected processor is empty, then the signed
integer value 21en- 1 - 1 is stored in the dest field for that processor. Note that this can
occur only when the inclusion argument is : exclusive.

366

SCAN-WITH-MIN

SCAN-WITH-U-MIN

The destination field in every selected processor receives the smallest of the unsigned integer
source fields from processors below or above it in some ordering of the processors.

Formats CM: scan-with-u-min-IL dest, source, axis, len,
direction, inclusion, smode, sbit

Operands dest The unsigned integer destination field.

source The unsigned integer source field.

aX1S An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

direction Either : upward or :downward.

inclusion Either: exclusive or : inclusive.

smode Either: none, : start-bit, or : segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is : none
then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k 1 = 1 then

let 9 = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, sbit)
if ISkl = 0 then

dest[k] <- 2ien - 1
else

dest[k] <- (min source[m1)
mES.

where scan-subset is as defined on page 37.

367

SCAN-WITH-MIN

See section 5.16 on page 34 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The eM: scan-with-u-min operation combines source fields by performing an unsigned integer
minimum operation. If the scan subset for a selected processor is empty, then the unsigned
integer value 21en - 1 is stored in the dest field for that processor. Note that this can occur
only when the inclusion argument is : exclusive.

368

SCAN-WITH-MULTIPLY

SCAN-WITH-F-MULTIPLY

The destination field in every selected processor receives the product of the floating-point
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-f-multiply-lL dest, source, axis, s, e,
direction, inclusion, smode, sbit

Operands dest The floating-point destination field.

source The floating-point source field.

axts An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

direction Either: upward or : downward.

inclusion Either: exclusive or : inclusive.

smode Either: none, : start-bit, or : segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is : none
then this maybe CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Sk = scan-subset(g, k, axis, direction, inclusion, smode, shit)
if ISkl = 0 then

dest[k] +- 1
else

dest[kJ +- (IT SOUTCe[mJ)
mESIo

where scan-subset is as defined on page 37.

369

SCAN-WiTH-MULTIPLY

See section 5.16 on page 34 for a general. description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The eM: scan-with-f-multiply operation combines source fields by performing floating-point
multiplication. If the scan subset for a selected processor is empty, then the floating-point
value 1.0 is stored in the dest field for that processor. Note that this can occur only when
the inclusion argument is : exclusive.

370

SEND

SEND

Sends a message from every selected processor to a specified destination processor. Each se­
lected processor may specify any processor as the destination, including itself. A destination
processor may receive messages even if it is not selected, and all the destination processors
may be in a VP set different from the VP set of the source processors. Messages are all
delivered to the same address within each receiving processor. If a processor receives more
than one message, then the message data received by that processor will be unpredictable.

Formats CM:send-lL dest, send-address, source, len, notify

Operands dest The destination field.

send-address The field containing a send-address that indicates which pro-

source

len

notify

cessor is to receive the message.

The source field.

The length of the dest and source fields.

The notification bit (a one-bit field). This argument may be
CM: *no-field* if no notification of message receipt is desired.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted to
the receiving processor, is stored into the dest field regardless of the context­
flag of the receiving processor. The notify bit may be altered in all processors
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sic = { m I mE current-vp-set 1\ context-flag[m] = 11\ send-address[m] = k}
if ISkl = 0 then

if notify[k] ¢. CM: *no-field* then notify[k] 0
else if ISkl = 1 then

if notify[k] ¢. CM: *no-field* then notify[k] 1
dest[k] source[choice(Sk)]

else
if notify[k] ¢. CM: *no-field* then notify[k] 1

371

SEND

dest[k] ~ (undefined)

where the choice function arbitrarily but detenninistically chooses an element
from a set.

For every selected processor p", a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor Fa' The message is taken from the source field within processor Fa and is stored
into the dest field within processor Pd. Note that, although the send-address operand is a
field in the current VP set, its value must specify a valid send address for dest, which may
belong to a different VP set.

The eM: send operation combines multiple incoming messages in an unpredictable manner.
This operation may be used when the programmer can guarantee that no processor will
receive more than one message. Using this operation when it is appropriate may speed
message delivery. The destination area need not be prepared.

372

SEN D-ASET32-ADD

SEND-ASET32-U-ADD

Sends a message from every selected processor to a specified destination processor and stores
it there, as if by aset32, in an array. Each selected processor may specify any processor as
the destination, including itself. A destination processor may receive messages even if it is
not selected. All incoming messages are combined with the destination array element using
unsigned integer addition.

Formats CM:send-aset32-u-add-2L array, send-address, source, index,
slen, index-len, index-limit

Operands array The destination array field.

send-address The field containing a send-address that indicates which pro-
cess or is to receive the message.

source The source field.

index The unsigned integer index into the array field.

slen The length of the source field. This must be a multiple of 32.

index-len The length of the index field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in all
processors regardless of the value of the context~flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I mE current-vp-set /\ context-flag[mJ = 1/\ send-address[mJ = k}
for every processor k' in S k do

if index[k'J < index-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))

373

SEND-ASET32-ADD

let m = l ~ J mod 32
let i = index[k']
for all j such that 0 :::; j < dlen do

let tempkU) = array[k - m X r + (j mod 32) x r](32 x (i + li2J))
let sumk = tempk + source[k']
for all i such that 0 :::; i < dlen do

array[k - m X r + (j mod 32) x r](32 x (i + liJ)} +- sumk(i)

else
(error)

For every selected processor P., a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor P.. The message is taken from the source field within processor P. and is stored
into an array element within processor Pd. Note that in each case the array element to be
modified in processor Pd is determined by the value of index within P., not the value within

Pd·

The eM: send-aset32-u-add operation combines incoming messages with unsigned integer
addition. To receive the sum of only the messages, the destination array should first be
cleared in all processors that might receive a message.

374

SEND-ASET32-LOGIOR

S END-ASET32-LOG 10 R

Sends a message from every selected processor to a specified destination processor and stores
it there, as if by aset32, in an array. Each selected processor may specify any processor as
the destination, including itself. A destination processor may receive messages even if it is
not selected. All incoming messages are combined with the destination array element using
bitwise logical inclusive OR..

Formats CM: send-aset32-logior-2l array, send-address, source, index,
slen, index-len, index-limit

Operands array The destination array field.

send-address The field containing a send-address that indicates which pro-
cessor is to receive the message.

source The source field.

index The unsigned integer index into the array field.

slen The length of the source field. This must be a multiple of 32.

index-len The length of the index field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in all
processors regardless of the value of the context-flag.

Definition For every virtual processor k in the current-tip-set do
let Sk = {m I mE current-tip-set /\ context-flag[m] = 1/\ send-address[mJ = k}
for every processor k' in S k do

if index[k'] < index-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))

375

SEN D-ASET32-LOGIOR

let m = l ~ J mod 32
let i = index [k']
for all j such that 0 :S j < dlen do

let q = k - m X r + (j mod 32) x r

let b = 32 X (i + l i2 J)
array[q]{b) array[q]{b) V source[k'](j)

else
(error)

For every selected processor P., a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor P. and is stored
into an array element within processor Pd. Note that in each case the array element to be
modified in processor Pd is determined by the value of index within PSI not the value within

Pd·

The eM: send-aset32-logior operation combines incoming messages with a bitwise logical in­
clusive OR. operation. To receive the logical inclusive OR. of only the messages, the destination
array should first be cleared in all processors that might receive a message.

376

SEND-ASET32-0VERWRITE

5 EN D-ASET32-0VERWRITE

Sends a message from every selected processor to a specified destination processor and stores
it there, as if by aset32, in an array. Each selected processor may specify any processor as
the destination, including itself. A destination processor may receive messages even if it is
not selected. If a processor receives more than one message destinated for the same array
element, then one is stored in that array element and the rest are discarded.

Formats CM: send-aset32-overwrite-2L array, send-address, source, index,
slen, index-len, index-limit

Operands array The destination array field.

send-address The field containing a send-address that indicates which pro-
cessor is to receive the message.

source The source field.

index The unsigned integer index into the array field.

slen The length of the source field. This must be a multiple of 32.

index-len The length of the index field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in all
processors regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I mE current-vp-set /\ context-flag[m] = 1/\ send-address[m] = k}
let k' = choice(S k)
if index [k'] < index-limit then

let r = geometry-total-vp-ratio(geometry(current-vp-set))

377

SEN O-ASET32-0VERWRITE

let m = l~J mod 32
let i = index [k'J
for all j such that 0 ::; j < dlen do

array[k - m X r + (j mod 32) x rJ(32 x (i + li2J)) ~ source[k'](j)

else
(error)

For every selected processor P., a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor P.. The message is taken from the source field within processor P. and is stored
into an array element within processor Pd. Note that in each case the array element to be
modified in processor Pd is determined by the value of index within Ps, not the value within

Pd·

The eM: send-aset32-overwrite operation will store one of the messages sent to a particular
array element, discarding all other messages as well as the original contents of that array
element in the receiving processor.

378

SEND-TO-NEWS

SEND-TO-NEWS

Each processor sends a message to a neighboring processor along a specified NEWS axis.

Formats CM:send-to-news-lL dest, source, axis, direction, len
CM:send-to-news-always-lL dest, source, axis, direction, len

Operands dest The destination field.

Overlap

Context

source The source field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either: upward or : downward.

len The length of the dest and source fields. This must be non-negative
and no greater than eM: *maximum-integer-Iength*.

The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Note that in the conditional case the storing of data depends only on the
context-flag of the processor sending the data, not on the context-flag of the
processor receiving the data.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

let g = geometry(current-vp-set)
dest[news-neighbor(g, k, axis, direction)] ~ source[k]

The SOUTce field in each processor is stored into the dest field of that processor's neighbor
along the NEWS axis specified by axis in the direction specified by direction.

If direction is : upward then each processor stores data into the neighbor whose NEWS coor­
dinate is one greater, with the processor whose coordinate is greatest storing data into the
processor whose coordinate is zero.

If direction is : downward then each processor stores data into the neighbor whose NEWS

coordinate is one less, with the processor whose coordinate is zero storing data into the
processor whose coordinate is greatest.

379

SEND-WITH-ADD

SEND-WITH-F-ADD

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des­
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using floating-point addition.

Formats CM:send-with-f-add-lL dest, send-address, source, s, e, notify

Operands dest The floating-point destination field.

send-address The field containing a send-address that indicates which pro-

source

s, e

notify

cessor is to receive the message.

The floating-point source field.

The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

The notification bit (a one-bit field). This argument may be
CM: *no-field* if no notification of message receipt is desired.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in all
processors regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = {m I m E current-vp-set A context-flag[mJ = 1 A send-address[mJ = k}
if ISkl = 0 then

if notify[kJ "¢ CM: *no-field* then noti.rj(k J +- 0
else

if notify[kJ "¢ CM: *no-field* then notify[k] +- 1

dest[kJ +- dest[kJ + (2: source[mJ)
mESIc

380

SEN O-WITH-AOO

For every selected processor Pa, a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor Pa. The message is taken from the source field within processor Pa and is stored
into the dest field within processor Pd.

The eM: send-with-f-add operation adds incoming messages together with the dest field as
floating-point numbers. To receive the sum of only the messages, the destination area should
first be set to zero in all processors that might receive a message.

381

SEND-WITH-ADD

SEND-WITH-S-ADD

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des­
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using signed integer addition.

Formats CM: send-with-s-add-IL dest, send-address, source, len, notify

Operands dest The signed integer destination field.

send-address The field containing a send-address that indicates which pro-

source

len

notify

cessor is to receive the message.

The signed integer source field.

The length of the dest and source fields.

The notification bit (a one-bit field). This argument may be
CM: *no-field* if no notification of message re~eipt is desired.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in all
processors regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I m E current-vp-set A context-flag[m] = 1 A send-address[m] = k}
if ISkl = 0 then

if notify[k] ¢. CM:*no-field* then notify[k] <- 0
else

if notify[k] ¢. CM: *no-field* then notify[k] <- 1

dest[k] <- dest[k] + (L source[m])
mES"

382

seN O-WITH-AOO

For every selected processor p" a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor PII. The message is taken from the source field within processor PII and is stored
into the dest field within processor Pa.

The eM: send-with-s-add operation adds incoming messages into the dest field as signed
integers. Carry-out and arithmetic overflow are not detected. To receive the sum of only
the messages, the destination area should first be cleared in all processors that might receive
a message.

383

SEND-WITH-ADD

SEND-WITH-U-ADD

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des­
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using unsigned integer addition.

Formats CM: send-with-u-add-1L dest, send-address, source, len, notify

Operands dest The unsigned integer destination field.

send-address The field containing a send-address that indicates which pro-

source

len

notify

cessor is to receive the message.

The unsigned integer source field.

The length of the dest and source fields.

The notification bit (a one-bit field). This argument may be
CM: *no-field* if no notification of message receipt is desired.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but iflt does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the ~essage, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in all
processors regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let 5,. = {m I mE current-vp-set /\ context-flag[m] = 1/\ send-address[m] = k}
if 15,.1 = 0 then

if notify[k] 1= CM: *no-field* then notify[k] +- 0
else

if notify[k] 1= CM:*no-field* then noti.fz;[k] +- 1

dest[kJ +- dest[kJ + (L: source[mJ)
mESk

384

SEN O-WITH-AOO

For every selected processor PII' a message length hits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor PII' The message is taken from the source field within processor PII and is stored
into the dest field within processor Pd'

The eM: send-with-u-add operation adds incoming messages into the dest field as unsigned
integers. Carry-out and arithmetic overflow are not detected. To receive the sum of only
the messages, the destination area should first he cleared in all processors that might receive
a message.

385

seN O-WITH-LOGANO

SEND-WITH-LOGAND

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des­
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using bitwise logical AND.

Formats CM:send-with-logand-lL dest, send-address, source, len, notify

Operands dest The destination field.

send-address The field containing a send-address that indicates which pro-

source

len

notify

cessor is to receive the message.

The source field.

The length of the dest and source fields.

The notification bit (a one-bit field). This argument may be
CM: *no-field* if no notification of message receipt is desired.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in all
processors regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I m E current-vp-set /\ context-flag[m] = 1/\ send-address[m] = k}
if ISkl = 0 then

if noti.fy[k] ¢ CM: *no-field* then notify[k] t- 0
else

if notify[k] ¢ CM:*no-field* then noti.fy[k] t- 1

dest[k] t- dest[k] /\ (/\ source[m])
mES.

386

SEND-WITH-LOGAND

For every selected processor P., a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor PII. The message is taken from the source field within processor P. and is stored
into the dest field within processor Pd.

The eM: send-with-Iogand operation will combine all messages and the original contents of
the destination field with a bitwise logical AND operation. To receive the logical AND of
only the messages, the destination area should first be set to all-ones in all processors that
might receive a message.

387

SEND-WITH-LOGIOR

SEND-WITH-LOGIOR

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des­
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using bitwise logical inclusive OR..

Formats CM: send-with-logior-lL dest, send-address, source, len, notify

Operands dest The destination field.

send-address The field containing a send-address that indicates which pro-

source

len

notify

cessor is to receive the message.

The source field.

The length of the dest and source fields.

The notification bit (a one-bit field). This argument may be
CM: *no-field* if no notification of message receipt is desired.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in all
processors regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I mE current-vp-set 1\ context-flag[m] = 11\ send-address[m] = k}
if ISkl = 0 then

if notify[k] ¢ CM: *no-field* then notify[kJ <- 0
else

ifnotify[k] ¢ CM:*no-field* then notify[kJ <- 1

dest[k] <- dest[k] V (V source[m])
mES.

388

SEND-WITH-LOGIOR

For every selected processor P., a message length bits long is sent from that processor to
the processor Pel whose send address is stored at location send-address in the memory of
processor P.. The message is taken from the source field within processor P. and is stored
into the dest field within processor Pd.

The eM: send-with-Iogior operation combines incoming messages with a bitwise logical inclu­
sive OR. operation. To receive the logical inclusive OR of only the messages, the destination
area should first be cleared in all processors that might receive a message.

389

SENO-WITH-LOGXOR

SEND-WITH-LOGXOR

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des­
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using bitwise logical exclusive OR..

Formats CM:send-with-logxor-1L dest, send-address, source, len, notify

Operands dest The destination field.

send-address The field containing a send-address that indicates which pro-

source

len

notify

cessor is to receive the message.

The source field.

The length of the dest and source fields.

The notification bit (a one-bit field). This argument may be
CM: *no-field* if no notification of message receipt is desired.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in all
processors regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sit = {m I mE current-vp-set /\ context-flag(m] = 1/\ send-address[m] = k}
if ISkl = 0 then

if notify[k] ~ CM: *no-field* then notify[k] t- 0
else

if notify[k] ~ eM: *no-field* then notify[k] t- 1

dest[k] t- dest[k] Ef) (EB source[m1)
mES.

390

SEND-WITH-LOGXOR

For every selected processor P., a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor P •. The message is taken from the source field within processor P. and is stored
into the dest field within processor Pd.

The eM: send-with-Iogxor operation is similar but combines incoming messages with a bitwise
logical EXCL USIVE OR operation. To receive the logical EXCL USIVE OR of only the messages,
the destination area should first be cleared in all processors that might receive a message.

391

SEND-WITH-MAX

SEND-WITH-F-MAX

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des­
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using a floating-point maximum operation.

Formats CM:send-with-f-max-IL dest, send-address, source, s, e, notify

Operands . dest The floating-point destination field.

send-address The field containing a send-address that indicates which pro-

source

s, e

notify

cessor is to receive the message.

The floating-point source field.

The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

The notification bit (a one-bit field). This argument may be
CM: *no-field* if no notification of message receipt is desired.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in all
processors regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sic = {m I mE current-vp-set A context-flag[m] = 1 A send-address[m] = k}
if ISkl = 0 then

if notify[k] ¢. CM:*no-field* then notify[kJ +- 0
else

if notify[k] ¢. CM: *no-field* then notify[k] +- 1

dest[k] +- max (dest[k], max source[m])
mESIJ

392

SEND-WITH-MAX

For every selected processor P., a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor Pd.

The eM: send-with-f-max operation combines incoming messages with the dest field using
floating-point maximum operations. The test-flag is not affected by the maximum operation.
To receive the maximum of only the messages, the destination area should first be set to
-00.

393

SEND-WITH-MAX

SEND-WITH-S-MAX

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des­
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using a signed integer maximum operation.

Formats CM:send-with-s-max-IL dest, send-address, source, len, notify

Operands dest The signed integer destination field.

send-address The field containing a send-address that indicates which pro-

source

len

notify

cessor is to receive the message.

The signed integer source field.

The length of the dest and source fields.

The notification bit (a one-bit field). This argument may be
CM: *no-field* if no notification of message receipt is desired.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in all
processors regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I mE current-vp-set /\ context-flag[m] = 1/\ send-address[m] = k}
if ISkl = 0 then

if notify[k] ¢ CM:*no-field* then notify[k] ~ 0
else

if notify[k] ¢ CM:*no-field* then notify[k] ~ 1

dest[k] ~ max (dest[k], max source[m])
mES.

394

SEN O-WITH-MAX

For every selected processor P., a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor P •. The message is taken from the source field within processor P. and is stored
into the dest field within processor Pd.

The eM: sen d-with-s-max operation combines incoming messages with the dest field using
signed integer maximum operations. The test-flag is not affected by the maximum operation.
To receive the maximum of only the messages, the destination area should first be set to
_21en- 1 •

395

SEND-WITH-MAX

SEND-WITH-U-MAX

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des­
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using an unsigned integer maximum operation.

Formats CM: send-with-u-max-1L dest, send-address, source, len, notify

Operands dest The unsigned integer destination field.

send-address The field containing a send-address that indicates which pro-

source

len

notify

cessor is to receive the message.

The unsigned integer source field.

The length of the dest and source fields.

The notification bit (a one-bit field). This argument may be
CM: *no-field* if no notification of message receipt is desired.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in all
processors regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sic = { m I mE current-vp-set /\ context-flag[m] = 1/\ send-address[m] = k}
if ISlel = 0 then

if notify[k] ¢ CM: *no-field* then notify[k] - 0
else

ifnotify[k] ¢ CM:*no-field* then notify[k]-l

dest[k] +- max (dest[k], max source[m1)
mESIo

396

SEN D-WITH-MAX

For every selected processor P., a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor PII. The message is taken from the source field within processor P. and is stored
into the dest field within processor Pd.

The eM: send-with-u-max operation combines incoming messages with the dest field using
unsigned integer maximum operations. The test-flag is not affected by the maximum oper­
ation. To receive the maximum of only the messages, the destination area should first be
set to 21e1l. - 1.

397

SEND-WITH-MIN

SEND-WITH-F-MIN

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des­
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using a floating-point minimum operation.

Formats CM: send-with-f-min-IL dest, send-address, source, s, e, notify

Operands dest The floating-point destination field.

send-address The field containing a send-address that indicates which pro-

source

s, e

notify

cessor is to receive the message.

The floating-point source field.

The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

The notification bit (a one-bit field). This argument may be
CM: *no-field* if no notification of message receipt is desired.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in all
processors regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I m E current-vp-set II context-flag[m] = 1 II send-address[m] = k}
if ISkl = 0 then

if notify[kJ ¢ CM: *no-field* then notify[kJ f- 0
else

if notify[kJ ¢ CM: *no-field* then notify[kJ f- 1

dest[k] ~ min (dest[k], min source[m])
mESIl

398

SEND-WITH-MIN

For every selected processor PII' a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor PII' The message is taken from the source field within processor PII and is stored
into the dest field within processor Pd'

The eM: send-with-f-min operation combines incoming messages with the dest field using
floating-point minimum operations. The test-flag is not affected by the maximum operation.
To receive the maximum of only the messages, the destination area should first be set to
+00.

399

SEND-WITH-MIN

SEND-WITH-S-MIN

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des­
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using a signed integer minimum. operation.

Formats CM:send-with-s-min-1L dest, send-address, source, len, notify

Operands dest The signed integer destination field.

send-address The field containing a send-address that indicates which pro-

source

len

notify

cessor is to receive the message.

The signed integer source field.

The length of the dest and source fields.

The notification bit (a one-bit field). This argument may be
CM: *no-field* if no notification of message receipt is desired.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in all
processors regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = {m I mE current-vp-set /\ context-flag[m] = 1/\ send-address[m] = k}
if ISkl = 0 then

if notify[k] ¢. CM: *no-field* then notify[k] f- 0
else

if notify[k] ¢. CM: *no-field* then notify[kJ f- 1

dest[k] f- min (dest[k], min source[mJ)
mESIo

400

SEND-WITH-MIN

For every selected processor P., a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor P.. The message is taken from the source field within processor P. and is stored
into the dest field within processor Pd.

The eM: send-with-s-min operation combines incoming messages with the dest field using
signed integer minimum operations. The test-flag is not affected by the maximum operation.
To receive the maximum of only the messages, the destination area should first be set to
21en- 1 - 1.

401

SEND-WITH-MIN

SEND-WITH-U-MIN

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des­
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using an unsigned integer minimum operation.

Formats eM: send-with-u-min-ll dest, send-address, source, len, notify

Operands dest The unsigned integer destination field.

send-address The field containing a send-address that indicates which pro-

source

len

notify

cessor is to receive the message.

The unsigned integer source field.

The length of the dest and source fields.

The notification bit (a one-bit field). This argument may be
eM: *no-field* if no notification of message receipt is desired.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in au
processors regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sic == {m I mE current-vp-set /\ context-flag[m] == 1/\ send-address[m] = k}
if ISIcI == 0 then

if notify[k] ¢ eM: *no-field* then noti.fy[k] ;- 0
else

if notify[k] ¢ eM: *no-field* then notify[k] ;- 1

dest[k] ;- min (dest[k], min sQurce[m])
m€SIo

402

SEND-WITH-MIN

For every selected processor P., a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor P •. The message is taken from the source field within processor P. and is stored
into the dest field within processor Pd'

The CM:send-with-u-min operation combines incoming messages with the dest field using
unsigned integer minimum operations. The test-flag is not affected by the maximum oper­
ation. To receive the minimum of only the messages, the destination area should first be
set to zero.

403

SEN D-WITH-OVERWRITE

SEND-WITH-OVERWRITE

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des­
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. If a processor receives
more than one message, then one is delivered and the rest are discarded.

Formats CM:send-with-overwrite-lL dest, send-address, source, len, notify

Operands dest The destination field.

send-address The field containing a send-address that indicates which pro-

source

len

notify

cessor is to receive the message.

The source field.

The length of the dest and source fields.

The notification bit (a one-bit field). This argument may be
CM: *no-field* if no notification of message receipt is desired.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with send-address or source, but if it does, then it is forbidden to send
a message to a selected processor. In other words, the dest may overlap with
send-address or source only if within each processor at most one of them will
be used.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted to
the receiving processor, is stored into the dest field regardless of the context­
flag of the receiving processor. The notify bit may be altered in all processors
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = { m I mE current-vp-set /\ context-flag[m] = 1/\ send-address[m] = k}
if ISkl = 0 then

if notify[k] :t CM: *no-field* then notify[k] +- 0
else

if notify[k] ¢. CM: *no-field* then notify[k] +- 1
dest[k] +- source[choice(Sk)]

For every selected processor P., a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of

404

SEND-WITH-OVERWRITE

processor PII. The message is taken from the source field within processor PII and is stored
into the dest field within processor Pd.

The eM: send-with-overwrite operation will store one of the messages sent, discarding all
other messages as well as the original contents of the dest field in the receiving processor.

405

SET-BIT

SET-BIT

Sets a specified memory bit.

Formats

Context

CM:set-bit dest
CM:set-bit-always dest

The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

dest[k] f- 1

The destination memory bit is set within each selected processor.

406

SET-CONTEXT

Unconditionally makes all processors active.

Formats CM:set-context

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
context-ftag[k] +- 1

SET-CONTEXT

Within each processor, the context bit for that processor is unconditionally set.

407

SET-SAfETY-MODE

SET-SAfETY-MODE

Formats CM:set-safety-mode safety-mode

Operands safety-mode An unsigned integer, the safety level. Currently only the
values 0 and 1 are meaningful.

Context This operation is unconditional. It does not depend on context-flag.

The safety mode is set to the specified value. A non-zero value indicates that the Paris
interface should perform various extra error checks and consis.tency checks that may be
helpful in detecting bugs in user programs. Of course, the price of these error checks is
reduced execution speed.

408

SET -SYSTEM-LEOS-MODE

SET -SYSTEM-LEOS-M ODE

Formats CM:set-system-leds-mode Zeds-mode

Op erands Zeds-mode Either : leds-ofF, : leds-on, : leds-throb, : leds-diagnostics, : leds­
perfmon, : leds-sync, or : leds-blink-sync.

Context This operation is unconditional. It does not depend on context-flag.

The lights on the front and back of the Connection Machine system cabinet can be controlled
in a variety of ways. The cm: set-system-leds-Illode operation selects what information
will be displayed in the lights. If the specified Zeds-mode is : leds-ofF, then all the lights are
tUl'ned off, and thereafter the user operations cm: latch-leds and cm: latch-leds-always
may be used to control the lights. Other values for Zeds-mode select one of the system­
supplied display modes. (The operations cm:latch-leds and cm:latch-leds-always may
still be used when in a system-supplied display mode, but the user-specified pattern is
unlikely to persist as it may be immediately altered by the system, depending on the mode.)

The names of the possible modes shown above are for the C/Paris and Fortran/Paris in­
terfaces. Through an accident of history, the names for the leds modes are different in the
Lisp /Paris interface:

C'est la vie.

C and Fortran
CMJeds_ofF
CMJeds_on
CMJeds_throb
CMJeds_diagnostics
CMJeds-perfmon
CMJeds..sync
CMJeds-blink...sync

Lisp
nil
t

: throb
: diagnostics
: performance-monitor
:synch
: blink-and-synch

409

SET-VP-SET

SET-VP-SET

Declares a specified VP set to be current.

Formats eM: set-vp-set vp-set-id

Operands vp-set-id A vp-set-id.

Context This operation is unconditional. It does not depend on context-flag.

Definition current-vp-set +- vp-set-id

The VP set specified by the vp-set-id becomes the current VP set. Most Paris operations
implicitly operate within the virtual processors of the current VP set.

410

SET-VP-SET-GEOM ETRY

SET-VP-SET-GEOMETRY

Alters the geometry of an existing VP set.

Formats eM: set-vp-set-geometry vp-set-id, geometry-id

Operands vp-set-id A vp-set-id.

geometry-id A geometry-id.

Context This operation is unconditional. It does not depend on context-flag.

The VP set specified by the vp-set-id is altered so that its geometry is that specified by the
geometry-id. The new geometry must have the same total number of elements (product of
axis lengths) as the old geometry.

411

SET-flag

SET-flag

Sets a specified flag bit.

Formats CM:set-test
CM: set-overflow

Context This operation is conditional.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

ftag[k] +- 1

where flag is test-flag or overftow-flag, as appropriate.

Within each processor, the indicated flag for that processor is set.

412

SIGNUM

F-F-SIGNUM

Determines whether the floating-point source field is negative, minus zero, plus zero, or
positive and places the value -1.0, +0.0, .:tl.0, or 1.0 in the destination field accordingly.

Formats CM:f-f-signum-l-ll dest/source, s, e
CM:f-f-signum-2-1l dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-fiag(k] = 1 then

if source(k] < 0 then dest[k] - -1.0
else if source[k] > 0 then dest[k] - 1.0
else dest[k] - source[kJ

The signum function of the source operand is placed in the dest operand. The result is -1.0,
-0.0, +0.0, or 1.0 thus indicating whether the source value is negative, minus zero, plus
zero, or positive, respectively. If the source operand is a NaN, then it is copied unchanged.

413

SIGNUM

S-F-SIGNUM

Determines whether the floating-point source field is negative, zero, or positive and places
the value -1, 0, or 1 in the destination field accordingly.

Formats CM:s-f-signum-2-2L dest, source, dlen, s, e

Operands dest The signed integer destination field.

The floating-point source field. source

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag(k] = 1 then

if source[k] < 0 then dest[k] +- -1
else if source[k] > 0 then dest[k] +- 1
else dest[k] +- 0

The signum function of the source operand is placed in the dest operand. The result is -1,
0, or 1 according to whether the source value is negative (but non-zero), zero (+0 or -0),
or positive (but non-zero), respectively.

414

SIGNUM

S-S-SIGNUM

Determines whether the signed integer source field is negative, zero, or positive and places
the value -1, 0, or 1 in the destination field accordingly.

Formats CM: s-s-signum-l-ll
CM:s-s-signum-2-1l
CM: s-s-signum-2-2l

dest/ source, len
dest, source, len
dest, source, dIen, slen

Operands dest The signed integer destination field.

The signed integer source field. source

len

dlen

slen

The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

The length of the source field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-Iength*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do-
if context-flag[k] = 1 then

if source[k] < 0 then dest[k] f- -1
else if source[k] > 0 then dest[k] f- 1
else dest[k] f- 0

The signum function of the source operand is placed in the dest operand. The result is -1,
0, or 1 according to whether the source value is negative, zero, or positive, respectively.

415

SIN

F-SIN

Calculates the floating-point sine of the source field values and stores the result in the
floating-point destination field.

Formats CM:f-sin-l-lL dest/source, s, e
CM:f-sin-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag(k] = 1 then

dest[k] +- sinsource[k]

The sine of the value of the source field is stored into the dest field.

416

SINH

F-SINH

Calculates the floating-point hyperbolic sine of the source field values and stores the result
in the floating-point destination field.

Formats CM:f-sinh-l-lL dest/source, s, e
CM:f-sinh-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest [k] f- sinh source[k]
if (overflow occurred in processor k) then overflow-flag[k] f- 1

The hyperbolic sine of the value of the source field is stored into the dest field.

417

SPREAD-WITH-ADD

SPREAD-WITH-F-ADD

The destination field in every selected processor receives the sum of the floating-point source
fields from all processors in its scan subclass.

Formats CM:spread-with-f-add-lL dest, source, a:cis, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

a:cis

s, e

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose conte:ct-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if conte:ct-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Cle = scan-subclass(g, k, a:cis)

dest[k] +- (2: source[m])
mEC ..

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of spread operations. The CM:spread­
with-f-add operation combines source fields by performing floating-point addition.

A call to CM: spread-with-f-add-IL is equivalent to the sequence

CM:scan-with-f-add-1L temp, source, a:cis, s, e, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-lL dest, temp, axis, s + e + 1, :downward, :inclusive, :none, doni-care

but may be faster.

418

SPREAD-WITH-ADD

SPREAD-WITH-S-ADD

The destination field in every selected processor receives the sum of the signed integer source
fields from all processors in its scan subclass.

Formats CM:spread-with-s-add-lL dest, source, axis, len

Operands dest The signed integer destination field.

The signed integer source field. source

ax,s

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Cle = scan-subclass{g, k, axis)

dest[k] f- (I: source[m])
mEC ...

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of spread operations. The CM:spread­
with-s-add operation combines source fields by performing signed integer addition.

A call to CM: spread-with-s-add-IL is equivalent to the sequence

CM: scan-with-s-add-IL temp, source, axis, len, : upward, : inclusive, : none, dont-care
CM: scan-with-copy-IL dest, temp, axis, len, : downward, : inclusive, : none, dont-care

but may be faster.

419

SPREAD-WITH-ADD

SPREAD-WITH-U-ADD

The destination field in every selected processor receives the sum of the unsigned integer
source fields from all processors in its scan subclass.

Formats CM:spread-with-u-add-lL dest, source, axis, len

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

axis

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do .
if context-flag(k] = 1 then

let 9 = geometry(current-vp-set)
let Cle = scan-subclass(g, k, axis)

dest[k] +- (2: source[m])
mEC ...

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of spread operations. The CM: spread­
with-u-add operation combines source fields by performing unsigned integer addition.

A call to CM: spread-with-u-add-IL is equivalent to the sequence

CM:scan-with-u-add-lL temp, source, axis, len, : upward, :inclusive, : none, dont-care
CM:scan-with-copy-lL dest, temp, axis, len, :downward, :inclusive, :none, dont-care

but may be faster.

420

SPREAD-WITH-COPY

SPREAD-WITH-COPY

The destination field in every selected processor receives a copy of the source value from a
particular value within its scan subclass.

Formats CM: spread-with-copy-IL dest, source, axis, len, coordinate

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-Iength*.

coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along axis indicating which element of the scan
class is to be replicated.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let c = deposit-news-coordinate(g, k, axis, coordinate)
dest[k] ~ source[c]

where deposit-news-coordinate is as defined on page 33.

See section 5.16 on page 34 for a general description of spread operations.

421

SPREAD-WITH-LOGAN D

SPREAD-WITH-LOGAND

The destination field in every selected processor receives the bitwise logical AND of the
source fields from all processors in its scan subclass.

Formats CM: spread-with-iogand-IL dest, source, azis, len

Operands dest The destination field.

The source field. source

azis

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current~vp-set do
if contezt-ftag[k] = 1 then

let 9 = geometry(current-vp-set)
let Cle = scan-subclass(g, k, axis)

dest[k] +- (A source[m])
mEC"

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of spread operations. The CM: spread­
with-Iogand operation combines source fields by performing bitwise logical AND operations.

A call to CM: spread-with-iogand-IL is equivalent to the sequence

CM:scan-with-logand-lL temp, source, azis, len, : upward, : inclusive, :none, dont-care
CM:scan-with-copy-lL dest, temp, azis, len, : downward, :inclusive, :none, dont-care

but may be faster.

422

SPREAD-WITH-LOGIOR

SPREAD-WITH-LOGIOR

The destination field in every selected processor receives the bitwise logical inclusive OR of
the source fields from all processors in its scan subclass.

Formats CM:spread-with-logior-lL dest, source, axis, len

Operands dest The destination field.

The source field. source

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Cle = scan-subclass(g, k, axis)

dest[k] - (V source[m])
mEC.

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of spread operations. The CM: spread­
with-Iogior operation combines source fields by performing bitwise logical inclusive OR op­
erations.

A call to CM:spread-with-logior-lL is equivalent to the sequence

CM: scan-with-logior-lL
CM: scan-with-copy-lL

but may be faster.

temp, source, axis, len, : upward, : inclusive, : none, dont-care
dest, temp, axis, len, : downward, : inclusive, : none, dont-care

423

SPREAD-WITH-LOGXOR

SPREAD-WITH-LOGXOR

The destination field in every selected processor receives the bitwise logical exclusive OR of
the source fields from all processors in its scan subclass.

Formats CM:spread-with-logxor-lL dest, source, axis, len

Operands dest The destination field.

The source field. source

ax~s

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-jlag[k] = 1 then

let 9 = geometry(current-vp-set)
let Gk = scan-subclass(g, k, axis)

dest[k] +- (EB source[m])
mEC"

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of spread operations. The CM:spread­
with-Iogxor operation combines source fields by performing bitwise logical exclusive OR op­
erations.

A call to CM: spread-with-Iogxor-IL is equivalent to the sequence

CM: scan-with-Iogxor-IL
CM: scan-with-copy-IL

but may be faster.

temp, source, axis, len, : upward, : inclusive, : none, dont-care
dest, temp, axis, len, : downward, : inclusive, : none, dont-care

424

SPREAD-WITH-MAX

SPREAD-WITH-F-MAX

The destination field in every selected processor receives the largest of the floating-point
source fields from all processors in its scan subclass.

Formats CM:spread-with-f-max-IL dest, source, axis, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

ax~s An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-fiag[k] = 1 then

let 9 = geometry(current-vp-set)
let Cle = scan-subclass(g, k, axis)

dest[k] +-- (max source[m])
mEG ...

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of spread operations. The CM: spread­
with-f-max operation combines source fields by performing an floating-point maximum op­
eration.

A call to CM: spread-with-f-max-IL is equivalent to the sequence

CM: scan-with-f-max-IL
CM: scan-with-copy-IL

but may be faster.

temp, source, axis, s, e, : upward, : inclusive, : none, dont-care
dest, temp, axis, s + e + 1, :downward, :inclusive, :none, dont-care

425

SPREAD-WITH-MAX

SPREAD-WITH-S-MAX

The destination field in every selected processor receives the largest of the signed integer
source fields from all processors in its scan subclass.

Formats CM: spread-with-s-max-l L dest, source, axis, len

Operands dest The signed integer destination field.

The signed integer source field. sOUTce

axzs

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

Overlap The SOUTce field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-fla g[k] = 1 then

let g = geometry(current-vp-set)
let Gle = scan-subclass(g, k, axis)

dest[k] - (max SOUTce[m])
mEek

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of spread operations. The CM: spread­
with-s-max operation combines SOUTce fields by performing a signed integer maximum oper­
ation.

A call to CM: spread-with-s-max-IL is equivalent to the sequence

CM: scan-with-s-max-IL
eM: scan-with-copy-1L

but may be faster.

temp, source, axis, len, : upward, : inclusive, : none, dont-care
dest, temp, axis, len, : downward, : inclusive, : none, dont-care

426

SPREAD-WITH-MAX

SPREAD-WITH-U-MAX

The destination field in every selected processor receives the largest of the unsigned integer
source fields from all processors in its scan subclass.

Formats CM:spread-with-u-max-IL dest, source, axis, len

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

axts

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Cle = scan-subclass(g, k, axis)

dest[k] +- (max source[m])
mEG.

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of spread operations. The CM:spread­
with-u-max operation combines source fields by performing an unsigned integer maximum
operation.

A call to CM: spread-with-u-max-l L is equivalent to the sequence

CM: scan-with-u-max-lL
CM: scan-with-copy-1L

but may be faster.

temp, source, axis, len, : upward, : inclusive, : none, dont-care
dest, temp, axis, len, : downward, : inclusive, : none, dont-care

427

SPREAD-WITH-MIN

SPREAD-WITH-F-MIN

The destination field in every selected processor receives the smallest of the floating-point
source fields from all processors in its scan subclass.

Formats eM: spread-with-f-min-1L dest, source, axis, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

ax~s An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
let GTc = scan-subclass(g, k, axis)

dest[k] - (min source[m1)
mEC.

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of spread operations. The eM: spread­
with-f-min operation combines source fields by performing an floating-point minimum oper­
ation.

A call to eM: spread-with-f-min-1L is equivalent to the sequence

eM: scan-with-f-min-1L temp, source, axis, s, e, : upward, : inclusive, : none, dont-care
eM: scan-with-copy-1L dest, temp, axis, s + e + 1, : downward, : inclusive, : none, dont-care

but may be faster.

428

SPREAD-WITH-MIN

SPREAD-WITH-S-MIN

The destination field in every selected processor receives the smallest of the signed integer
source fields from all processors in its scan subclass.

Formats CM:spread-with-s-min-lL dest, source, axis, len

Operands dest The signed integer destination field.

The signed integer source field. source

axzs

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[kJ = 1 then

let 9 = geometry(current-vp-set)
let Ck = scan-subclass(g, k, axis)

dest[kJ- (min source[mJ)
mEC ..

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of spread operations. The CM: spread­
with-s-min operation combines source fields by performing a signed integer minimum oper­
ation.

A call to CM: spread-with-s-min-IL is equivalent to the sequence

CM: scan-with-s-min-IL
CM: scan-with-copy-l L

but may be faster.

temp, source, axis, len, : upward, : inclusive, : none, dont-care
dest, temp, axis, len, : downward, : inclusive, : none, dont-care

429

SPREAD-WITH-MIN

SPREAD-WITH-U-MIN

The destination field in every selected processor receives the smallest of the unsigned integer
source fields from all processors in its scan subclass.

Formats CM:spread-with-u-min-1L dest, source, axis, len

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

ax~s

len

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than eM: *maximum-integer-Iength*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Cle = scan-subclass(g, k, axis)

dest[k] ~ (min source[m])
mEG ..

where scan-subclass is as defined on page 36.

See section 5.16 on page 34 for a general description of spread operations. The CM: spread­
with-u-min operation combines source fields by performing an unsigned integer minimum
operation.

A call to eM: spread-with-u-min-1L is equivalent to the sequence

eM: scan-with-u-min-1L
eM: scan-with-copy-IL

but may be faster.

temp, source, axis, len, : upward, : inclusive, : none, dont-care
dest, temp, axis, len, : downward, : inclusive, : none, dont-care

430

SQRT

F-SQRT

Calculates the floating-point square root of the source field values and stores the result in
the floating-point destination field.

Formats CM:f-sqrt-l-1L
CM:f-sqrt-2-1L

dest/ source, s, e
dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is negative and non-zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] > 0 then
dest[k] - v'source[k]

else if source[k] = ±O then
dest[k] - source[k]

else if: source: [k] < 0 then
dest[k] - (unpredictable)
test[k] - 1

If the source value is non-negative, then the square root of that value is placed in the
destination. The square root of -0 is defined to be -0.

If the source operand is a NaN, then it is copied to the dest field unchanged.

431

START-TIMER

START-TIMER

For the C /Paris and Fortran/Paris interfaces, starts the timer.

Formats CM: start-timer

Context This operation is unconditional. It does not depend on context-flag.

The function CM: start-timer is used in the C/Paris and Fortran/Paris interfaces as part of
the facility for timing the execution of other operations on the Connection Machine system.
This function starts the accumulation of measured real time and run time.

One should first call CM: reset-timer to clear the timing counters. Subsequently one may
alternately call CM:start-timer and CM:stop-timer. The amounts of real time and run time
between a start and a stop are accumulated into the counters. One may start and stop
the clocks repeatedly. Every time CM: stop-timer is called, it returns a structure of type
CM_timevaLt that contains time accumulated between all start/stop call pairs since the last
call to CM: reset-timer.

The timing facility is provided in the Lisp/Paris interfaces through the CM: time macro.

432

STOP-TIMER

STOP-TIMER

For the C/Paris and Fortran/Paris interfaces, stops the timer.

Formats

Result

Context

CM:stop-timer

The accumulated timings since the last call to CM: reset-timer. In the C/Paris
interface, this is a structure of type CM_timevaU. In the Fortran/Paris inter­
face, this is a DOUBLE PRECISION array of length 2.

This operation is unconditional. It does not depend on context-flag.

The function CM:stop-timer is used in the C/Paris and Fortran/Paris interfaces as part of
the facility for timing the execution of other operations on the Connection Machine system.
This function stops the accumulation of measured real time and run time.

One should call CM: reset-timer to clear the timing counters. Subsequently one may al­
ternately call CM:start-timer and CM:stop-timer. The amounts of real time and run time
between a start and a stop are accumulated into the counters. One may start and stop
the clocks repeatedly. Every ,time CM:stop-timer is called, it returns a structure of type
CM_timevaLt that contains time accumulated between all start/stop call pairs since the last
call to CM: reset-timer.

The timing facility is provided in the Lisp/Paris interfaces through the CM:time macro.

433

STORE-CONTEXT

STORE-CONTEXT

Unconditionally stores the context bit into memory.

Formats eM: store-context dest

Operands dest The destination bit (a one-bit field).

Context This operation is unconditional. The destination may be altered regardless of
the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
dest [k] - context-flag[k]

Within each processor, the context bit for that processor is unconditionally stored into
memory.

434

STORE-FLAG

STORE-flag

Conditionally stores a flag bit into memory.

Formats CM: store-test dest
CM: store-overflow dest

Operands dest The destination bit (a one-bit field).

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] f- flag[k]

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, the indicated flag for that processor is stored into memory.

435

SUB-MULT

F-SUB-MULT

Calculates a value (:z: - alb and places it in the destination.

Formats CM: f-sub-mult-1L
CM:f-sub-const-mult-1L
CM: f-sub-mult-const-1L
CM: f-sub-const-mult-const-1L

dest, souree1, source2, source3, s, e
dest, sourcel, source2-value, source3, s, e
dest, source1, source2, source3-value, s, e
dest, soureel, source2-value, source3-value, s, e

Operands dest The floating-point destination field.

sourcel The floating-point first source (minuend) field.

source2 The floating-point second source (subtrahend) field.

source2-value A floating-point immediate operand to be used as the second
source (subtrahend).

source3 The floating-point third source (multiplier) field.

source3-value A floating-point immediate operand to be used as the third
source (multiplier).

s, e The significand and exponent lengths for the dest, source1, souree2,
and source3 fields. The total length of an operand in this format
iss+e+1.

Overlap The fields sourcel, source2, and source3 may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set iffloating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose conte:z:t-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if conte:z:t-flag[k] = 1 then

dest[k] +- (sourcel[k] - source2[k]) x source3[k]
if (overflow occurred in processor k) then over flow- flag[k 1 +- 1

The operand souree2 is subtracted from souree1, treating them as floating-point numbers,
and then the difference is multiplied by a third operand source3. The result is stored

436

SU8-MULT

into memory. The various operand formats allow operands to be either memory fields or
constants.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.

A call to CM:f-sub-mult-1L is equivalent to the sequence

CM:f-subtract-3-1L temp, sourcel, source2, s, e
CM:f-multiply-3-1L dest, temp, source3, s, e

but may be faster.

437

SUBTRACT

F-SUBTRACT

The difference of two floating-point source values is placed in the destination field.

Formats CM: f-subtract-2-1L
CM:f-subtract-always-2-1L
CM:f-subtract-3-1L
CM:f-subtract-always-3-1L
CM: f-subtract-constant- 2-1 L
CM: f-subtract-const-always-2-1 L
CM:f-subtract-constant-3-1L
CM: f-subtract-const-always-3-1L
CM:f-subfrom-2-1L
CM: f-subfrom-always-2-1L
CM:f-subfrom-constant-2-1L
CM: f-subfrom-const-always-2-1 L
CM:f-subfrom-constant-3-1L
CM:f-subfrom-const-always-3-1L

dest/ sourcel, souTce2, s, e
dest/ souTcel, souTce2, S, e
dest, sourcel, souTce2, S, e
dest, souTcel, souTee2, S, e
dest / source1, souTce2-value, s, e
dest/ souTeel, souTee2-value, S, e
dest, souTeel, souTee2-value, S, e
dest, souTeel, souTee2-value, S, e
dest/ souTce2, souTeel, S, e
dest/ souTee2, souTeel, S, e
dest/ souTee2, souTee1-value, S, e
dest/ source2, souTee1-value, s, e
dest, source2, souTee1-value, s, e
dest, souTee2, souTcel-value, s, e

Operands dest The floating-point destination field. This is the difference, the
result of the subtraction operation.

Overlap

Flags

Context

SOUTCe1 The floating-point first source field. This is the miriuend.

souTce2 The floating-point second source field. This is the subtrahend.

souTcel-value A floating-point inunediate operand to be used as the first
source.

souTce2-value A floating-point inunediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, SO uTee1 , and
souTee2 fields. The total length of an operand in this format is
s+e+1.

The fields souTeel and souTee2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical

oveTflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

438

Definition For every virtual processor k in the eurrent-vp-set do
if (always or eontext-flag[k] = 1) then

dest[k] +- soureel[k]- souree2[k]
if (overflow occurred in processor k) then overflow-flag[k] +- 1

SUBTRACT

The operand souree2 is subtracted from soureel, treated as as floating-point numbers. The
result is stored into the memory field dest. The various operand formats allow operands to
be either memory fields are constants; in some cases the destination field initially contains
one source operand. The "subfrom" operations allow for the destination to be subtracted
from the other operand, or for a memory field to be subtracted from an immediate value.

The constant operand souree1-value or souree2-value should be a double-precision front­
end value (in Lisp, automatic coercion is performed if necessary). The constant is then
converted, in effect, to the format specified by sand e before the operation is performed.

439

SUBTRACT

S-SUBTRACT

The difference of two signed integer source values is placed in the destination field. Carry­
out and overflow are also computed.

Formats eM: s-subtrac:t-3-3L
CM:s-subtract-2-1L
CM: s-subtrac:t-3-1L
CM:s-subtract-constant-2-1L
CM:s-subtrac:t-constant-3-1L
CM: s-su bfrom-2-1 L
CM: s-su bfrom-constant-2-1 L
CM:s-subfrom-constant-3-1L

dest, soureel, source2, dlen, slenl, slen2
dest/ soureel, souree2, len
dest, soureel, souree2, len
dest/sourcel, souree2-value, len
dest, souree1, source2-value, len
dest/source2, sourcel, len
dest / souree2, souree1-value, len
dest, souree2, souree1-value, len

Operands dest The signed integer destination field. This is the difference, the
result of the subtraction operation.

Overlap

soureel

souree2

The signed integer first source field. This is the minuend.

The signed integer second source field. This is the subtrahend.

source1.-value A signed integer immediate operand to be used as the first
source.

source2-value A signed integer immediate operand to be used as the second

len

dlen

slenl

slen2

source.

The length of the dest, sourcel, and souree2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer­
length*.

For CM:s-subtract-3-3L, the length of the dest field. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length*.

For CM: s-subtract-3-3L, the length of the soureel field. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length*.

For CM: s-subtract-3-3L, the length of the souree2 field. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length*.

The fields soureel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

440

SUBTRACT

Flags carry-flag is set if there is a carry-out from the high-order bit position; oth­
erwise it is cleared. For subtraction, "carry" is equivalent to "not borrow."

overflow-flag is set if the difference cannot be represented in the destination
field; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] f- sourcel [k] - source2[k]
carry-flag[k] f- (carry out in processor k)
if (overflow occurred in processor k) then overftow-flag[k] f- 1
else overflow-flag[k] f- 0

The operand source2 is subtracted from sourcel, treated as as signed integers. The result
is stored into the memory field dest. The various operand formats allow operands to be
either memory fields are constants; in some cases the destination field initially contains one
source operand. The "subfrom" operations allow for the destination to be subtracted from
the other operand, or for a memory field to be subtracted from an inunediate value.

The carry-flag and overflow-flag may be altered by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

The constant operand souree1-value or souree2-value should be a signed integer front-end
value. The operation is performed properly in all cases; the constant need not be repre­
sentable in the number of bits specified by len.

441

SUBTRACT

U-SUBTRACT

The difference of two unsigned integer source values is placed in the destination field. Carry­
out and overflow are also computed.

Formats CM: u-subtract-3-3L dest, sourcel, source2, dlen, sIenl, slen2
CM: u-subtract-2-1L dest/ sourcel, source2, len
CM:u-subfrom-2-1L dest/source2, sourcel, len
CM: u-subtract-3-1L dest, sourcel, source2, len
CM: u-subtract-constant-2-1L dest/ sourcel, source2-value, len
CM:u-subfrom-constant-2-1L dest/source2, sourcel-value, len
CM: u-subtract-constant-3-1L dest, sourcel, source2-value, len
CM: u-subfrom-constant-3-1L dest, source2, souree1-value, len

Operands dest The unsigned integer destination field. This is the difference, the
result of the subtraction operation.

Overlap

Flags

sourcel The unsigned integer first source field. This is the minuend.

source2 The unsigned integer second source field. This is the subtrahend.

sourcel-value An unsigned integer immediate operand to be used as the
first source.

source2-value An unsigned integer immediate operand to be used as the

len

dlen

slenl

slen2

second source.

The length of the dest, source1, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-Iength*.

For CM: u-subtract-3-3L, the length of the dest field. This must be
non-negative and no greater than CM: *maximum-integer-Iength*.

For CM: u-subtract-3-3L, the length of the source1 field. This
must be non-negative and no greater than CM: *maximum-integer­
length*.

For CM: u-subtract-3-3L, the length of the source2 field. This
must be non-negative and no greater than CM: *maximum-integer­
length*.

The fields sourcel and souree2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth­
erwise it is cleared. For subtraction, "carry" is equivalent to "not borrow."

442

SUBTRACT

overflow-flag is set if the difference cannot be represented in the destination
field; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] source1[k]- source2[k]
carry-flag[k] (carry out in processor k)
if (overflow occurred in processor k) then overflow-flag[k] 1
else overflow-flag[k] 0

The operand souree2 is subtracted from souree1, treated as as unsigned integers. The result
is stored into the memory field dest. The various operand formats allow operands to be
either memory fields are constants; in some cases the destination field initially contains one
source operand. The "subfrom" operations allow for the destination to be subtracted from
the other operand, or for a memory field to be subtracted from an immediate value.

The carry-flag and overflow-flag may be altered by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

The constant operand souree1-value or souree2-value should be an unsigned integer front­
end value. The operation is performed properly in all cases; the constant need not be
representable in the number of bits specified by len.

443

SWAP

SWAP

Swaps the contents of two bit fields.

Formats CM:swap-2-1L dest1/souTce1, dest2/souTce2, len

Operands dest1 The first destination field.

souTce1

dest2

souTce2

len

The first source (same as first destination) field.

The second destination field.

The second source (same as second destination) field.

The length of the dest1, source1, dest2, and source2 fields. This
must be non-negative and no greater than CM: *maximum-integer­
length*.

Overlap The fields dest1 and dest2 must not overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let temp11c = souTcel[k]
let temp21c = souTce2[k]
let destl [k] to- temp21c
let dest2[k] to- temp11c

Each of the two fields is copied into the other so as to exchange their contents.

444

TAN

F-TAN

Calculates the floating-point tangent of the source field values and stores the result in the
floating-point destination field.

Formats CM:f-tan-l-lL dest/source, s, e
CM:f-tan-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set iffloating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- tansource[k]
if (overflow occurred in processor k) then overflow-flag[k] +- 1

The tangent of the value of the source field is stored into the dest field.

445

TANH

F-TANH

Calculates the floating-point hyperbolic tangent of the source field values and stores the
result in the floating-point destination field.

Formats CM:f-tanh-l-lL dest/source, s, e
CM:f-tanh-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set iffloating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k 1 = 1 then

dest[k 1 +- tanh source
if (overflow occurred in processor k) then overflow-flag[k 1 +- 1

The hyperbolic tangent of the value of the source field is stored into the dest field.

446

TIME

TIME

Times other operations and reports both the total amount of time elapsed and the amount
of time spent executing on the Connection Machine system.

Formats CM:time expressions

Context This operation is unconditional. It does not depend on context-flag.

The CM: time facility is a Lisp macro, not a function. It is used in the Lisp/Paris interface
to time the execution of other operations on the Connection Machine system.

A call to the CM: time macro contains a Lisp expression; this is executed in the normal
manner, but before the value is returned, timing information is printed out as for the
Common Lisp time macro.

The first number reported is elapsed time during execution on both the front-end computer
and the Connection Machine system. In addition, timing information related to Connection
Machine system performance is printed. The second number reported is the amount of that
time that the Connection Machine system was actually executing instructions (not waiting
for the front end). For optimal performance, the programmer strives to obtain the maximum
percentage of Connection Machine utilization possible.

The timing facility is provided in the C/Paris and Fortran/Paris interfaces through a set of
functions CM:reset-timer, CM:start-timer, and CM:stop-timer.

447

TO-GRAY-COOE

FE-TO-GRAY-CODE

Converts, on the front end, a nonnegative integer into a bit string representing a Gray-coded
integer value.

Formats result +- eM: fe-to-gray-code integer

Operands integer An unsigned integer immediate operand to be used as the nonneg­
ative integer.

Result An unsigned integer, the Gray code equivalent of integer.

Context This operation is unconditional. It does not depend on context-flag.

Definition Return integer el int~gef' J

This function calculates, entirely on the front end, a bit-string encoding in a particular
reflected binary Gray code. The position of that value in the standard Gray code sequence
is equal to the specified integer.

Note that. the binary value 0 is always equivalent to a Gray code string that is all O-bits.

448

TO-GRAY-CODE

u-TO-GRAY-CODE

Converts an unsigned binary integer to a bit string representing a Gray-coded integer value.

Formats CM: u-to-gray-code-l-IL
C M: u-to-gray-code-2-1 L

dest / source, len
dest, source, len

Operands dest The destination field.

source The unsigned integer source field.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-Ien gth *.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k](len - 1) +- source[k](len - 1)
for j from len - 2 to 0 do

dest[k](j) +- source[k](j) EB source[k](j + 1)

The source operand is an unsigned binary integer, and is converted to a bit-string value in
a particular reflected binary Gray code. The position of that value in the standard Gray
code sequence is the source.

Note that the binary value 0 is always equivalent to a Gray code string that is all O-bits.

449

TRUNCATE

F-F-TRUNCATE

Rounds each source field value to the largest integral value not greater than that value and
stores the result as a floating-point number in the destination field.

Formats CM:f-f-truncate-l-1L dest/source, s, e
CM:f-f-truncate-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-up-set do
if context-flag[k] = 1 then

dest[k] i- sign(source) x Llsource[k]1J

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of zero, which is stored into the dest field as a floating-point number.

450

TRUNCATE

S-F-TRUNCATE

Rounds each source field value to the largest integer not greater than that value and stores
the result as a signed integer in the destination field.

Formats CM: s-f-truncate-2-2L dest, source, dlen, s, e

Operands dest The signed integer destination field.

The floating-point source field. source

len

s, e

The length of the dest field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-Iength*.

The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other­
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k J = 1 then

dest[k] ~ sign(source) X lIsource[kJIJ
if (overflow occurred in processor k) then overflow-flag[k J ~ 1 else overflow-flag[k]

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of zero, which is stored into the dest field as a signed integer.

451

TRUNCATE

S-TRUNCATE

The quotient of two signed integer source values, rounded toward zero to the nearest integer,
is placed in the destination field. Overflow is also computed.

Formats CM:s-truncate-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-truncate-2-1L destlsourcel, source2, len
CM:s-truncate-3-1L dest, soureel, source2, len
C M: s-trun ca te-constant-2-1 L dest / source 1 , source2-1Jalue, len
CM:s-truncate-constant-3-1L dest, souree1, source2-value, len

Operands dest The signed integer quotient field.

The signed integer dividend field.

The signed integer divisor field.

Overlap

Flags

Context

sourcel

source2

source2-value A signed integer immediate operand to be used as the second

len

dlen

slenl

slen2

source.

The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length*.

For CM: s-truncate-3-3L, the length of the dest field. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length*.

For CM: s-truncate-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length*.

For CM:s-truncate-3-3l, the length of the source2 field. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identicaL

overflow-flag is set if either the quotient cannot be represented in the desti­
nation field or the divisor is zero; otherwise it is cleared.

This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

452

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source2[k] = 0 then
dest[k] +- (unpredictable)

else

dest[k] +- sign(sourcel [k]) X sign(source2[k]) X

TRUNCATE

The signed integer source1 operand is divided by the signed integer source2 operand. The
mathematical quotient is truncated towards zero and stored into the signed integer memory
field dest. The various operand formats allow operands to be either memory fields are
constants; in some cases the destination field initially contains one source operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti­
nation field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. The op­
eration is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

453

TRUNCATE

U-TRUNCATE

The quotient of two unsigned integer source values, rounded toward zero to the nearest
integer, is placed in the destination field. Overflow is also computed.

Formats CM:u-truncate-3-3L dest, source1, source2, dlen, slen1, slen2
CM:u-truncate-2-1L dest/source1, source2, len
CM: u-truncate-3-1L dest, souree1, source2, len
CM: u-truncate-constant-2-1L dest/ source1, source2-value, len
CM: u-truncate-constant-3-1L dest, source1, source2-value, len

Operands dest The unsigned integer quotient field.

The unsigned integer dividend field.

The unsigned integer divisor field.

sourcel

source2

source2-value An unsigned integer immediate operand to be used as the

len

dlen

slen1

slen2

second source.

The length of the dest, source1, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

For CM: u-truncate-3-3L, the length of the dest field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

For CM: u-truncate-3-3L, the length of the source1 field. This
must be non-negative and no greater than CM: *maximum-integer­
length*.

For CM: u-truncate-3-3L, the length of the source2 field. This
must be non-negative and no greater than CM: *maximum-integer­
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-fiag(k] = 1 then

454

if source2 [k] = 0 then
dest[k] ~ (unpredictable)

else

dest[k] ~ lsourcel[k1J
source2[k]

TRUNCATE

if (overflow occurred in processor k) then overflow-flag[k] ~ 1
else overflow-flag[k] ~ 0

The unsigned integer sourcel operand is divided by the unsigned integer source2 operand.
The floor of the mathematical quotient is stored into the unsigned integer memory field
dest. The various operand formats allow operands to be either memory fields are constants;
in some cases the destination field initially contains one source operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti­
nation field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. The op­
eration is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.

455

VP-SET-GEOMETRY

VP-SET-GEOMETRY

Returns the geometry associated with a given VP set.

Formats result +- eM: vp-set-geometry vp-set-id

Operands vp-set-id A vp-set-id.

Result A geometry-id, identifying the current geometry of the specified vp-set.

Context This operation is unconditional. It does not depend on context-flag.

Definition Return geometry(vp-set-id)

The geometry associated with the specified VP set is returned.

457

WARM-BOOT

WARM-BOOT

This operation is used by the Lisp/Paris interface to reinitialize the Connection Machine
system without disturbing user memory.

Formats CM:warm-boot

Context This operation is unconditional. It does not depend on context-flag.

This operation clears error status indicators for the attached Connection Machine hardware.
It also clears the IFIFO and OFIFO in the bus interface and possibly loads fresh microcode
into the attached microcontroller(s). The user memory areas in the Connection Machine
system are not disturbed, but are checked for errors; any memory errors are reported.
Certain system memory areas in the Connection Machine system are reinitialized, but the
state of the pseudo-random number generator is not altered and the system lights-display
mode is not altered. The intent is to recover from an error condition while preserving as
much of the machine state as possible.

The facility for warm-booting Connection Machine hardware is provided in different ways
in the Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces
(on the other hand).

In the Lisp/Paris interface, CM:warm-boot is a function.

This operation takes no arguments and returns no values. It signals an error if the warm­
boot process was not successful.

There are two sets of initializations, kept in the variables CM: *before-warm-boot­
initializations* and CM: *after-warm-boot-initializations*, that are evaluated before and af­
ter anything else occurs.

In the C jParis and Fortran/Paris interfaces, there is no CM: warm-boot operation. Instead,
a related operation called CM:init is used.

459

WRITE-TO-NEWS-ARRAY

F-WRITE-TO-NEWS-ARRAY

Copies a sub array of an array in the memory of the front end into a field within a set of
processors forming a subarray (of the same shape) of the NEWS grid.

Formats eM: f-write-to-news-array-IL front-end-array, offset-vector, start-vector,
end-vector, axis-vector, dest, s, ej

rank, dimension-vector, element-len

Operands front-end-array A front-end array (possibly multidimensional) of floating­
point data.

offset-vector A front-end vector (one-dimensional array) of floating-point
subscript offsets for the front-end-array.

start-vector A front-end vector (one-dimensional array) of unsigned inte-
ger inclusive lower bounds for NEWS indices.

end-vector A front-end vector (one-dimensional array) of unsigned inte-
ger exclusive upper bounds for NEWS indices.

axis-vector A front-end vector (one-dimensional array) of unsigned inte-
ger numbers indicating NEWS axes.

dest The floating-point destination field.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

rank An unsigned integer, the rank (number of dimensions) of the
front-end-array.

dimension-vector A front-end vector (one-dimensional array) of unsigned
integer dimensions of the front-end-array.

element-len An unsigned integer, the size of an element front-end-array,
measured in bytes. This must be 4 or 8.

Context This operation is unconditional. It does not depend on context-flag.

rank-l
Definition For all i such that 0 ~ j < I1 (endj - startj) do

j=O

for all m such that 0 ~ m < rank do

let S(i,m) = lrank_ 1 z j mod (endm - staTtm)
n (endj-,tartj)

j= ... +l

460

WRITE-TO-NEWS-ARRAY

"ank-1
let k i = V make-news-coordinate(axis;, startj + Si,j)

j=O

dest[ki] +- front-end-arraYII(i,O),S(i,1) ,ooo,lI(i,,, _1)

Another formulation:

For all So such that 0 :::; So < (end o - starto) do
for all Sl such that 0 :::; Sl < (end1 - start!) do

for all S2 such that 0 :::; S2 < (end 2 - start2) do

for all S"ank-1 such that 0 :::; S"ank-1 < (end"ank-1 - start"ank_1) do
"ank-1

let kIlO,lIl1ooo,lI,.ank_l = .v make-news-coordinate(axis j, startj + 5j)
3=0

dest[k.o,81,ooo,lI,.ank_l] +-

front-end-arraYolJuto+SO,olJlletl +Sl,ooo,olJlletrank_l +8"ank_l

This operation copies a rectangular sub block of an array in the front end into a similarly
shaped subblock of the NEWS grid.

Floating-point number values are transferred from the specified array to the Connection
Machine processors. When this operation is invoked from C code, the element-len parameter
should be the number of bytes in an array element, as determined by the C sizeof operator.

The dest parameter specifies the memory address within each processor of the field into
which the data is to be stored.

The five vector arguments are one-dimensional front-end arrays of length rank. For
descriptive purposes let there be a number of indices kj (0 :::; j < rank) such that
o :::; kj < (endj - startj). Then for all possible combinations of values for these indices, the
array element whose indices are offsetj + k j (:::; j < n) is copied into the dest field of the
processor whose send address is

n-l

V make-news-coordinate(start j + k j, axis j)
j=O

The total number of values transferred is therefore

n-l

II (end j - startj)
j=O

The dimension-vector specifies the dimensions of the front end array.

461

WRITE-TO-N EWS-ARRAY

S-WRITE-TO-NEWS-ARRAY

Copies a subarray of an array in the memory of the front end into a field within a set of
processors forming a subarray (of the same shape) of the NE ws grid.

Formats CM: s-write-to-news-array-ll front-end-array, offset-vector, start-vector,
end-vector, axis-vector, dest, len;
rank, dimension-vector, element-len

Operands front-end-array A front-end array (possibly multidimensional) of signed in­
teger data.

Context

Definition

offset-vector A front-end vector (one-dimensional array) of signed integer
subscript offsets for the front-end-array.

start-vector A front-end vector (one-dimensional array) of unsigned inte-
ger inclusive lower bounds for NEWS indices.

end-vector A front-end vector (one-dimensional array) of unsigned inte-
ger exclusive upper bounds for NEWS indices.

axis-vector A front-end vector (one-dimensional array) of unsigned inte-
ger numbers indicating NEWS axes.

dest The signed integer destination field.

len The length of the dest field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-Iength*.

rank An unsigned integer, the rank (number of dimensions) of the
front-end-array.

dimension-vector A front-end vector (one-dimensional array) of unsigned
integer dimensions of the front-end-array.

element-len An unsigned integer, the size of an element front-end-array,
measured in bytes. This must be 1, 2, or 4.

This operation is unconditional. It does not depend on context-flag.

,.ank-l
For all i such that 0 :::; j < IT (end j - start j) do

j=O

for all m such that 0 :::; m < rank do

let S(i,m) = l,.ank_l 1, j mod (end m - staTt m)

. II (end j - .ta,.t j)
)= ... +1

462

WRITE-TO-N EWS-ARRAY

1'lInk-1
let ki = V make-news-coordinate(axisj, startj + Si.j)

j=O

dest[ki} +- front-end-arraY6(i.O).6(i.1) •.... 6(i . .,." ... Ie_l)

Another formulation:

For all So such that 0 ~ So < (end o - starto) do
for all S1 such that 0 ~ S1 < (end1 - start1) do

for all S2 such that 0 ~ S2 < (end 2 - start2) do

for all S"'lInk-1 such that 0 ~ S,.ank-1 < (end,.ank_1 - start.,.lInk_1) do
"lInk-1

let k.O •• 1, ...•• ,.lInk_l = .v make-news-coordinate(axisj,startj + Sj)
3=0

dest[k60 ,.1.···.·,.ank_l] +-

front-end-arraYojJ3efo+ao.ojJ.etl +.l •.... ojJ.etrank_l +·rank-l

This operation copies a rectangular sub block of an array in the front end into a similarly
shaped subblock of the NEWS grid.

Signed integer values are transferred from the specified array to the Connection Machine
processors. When calling Paris from Lisp the array may be a general S-expression array
containing signed integers, or may be a specialized integer-element array (such as the kind
called art.-8b on the Symbolics 3600). When this operation is invoked from C code, the
element-len parameter should be the number of bytes in an array element, as determined
by the C sizeof operator.

The dest parameter specifies the memory address within each processor of the field into
which the data is to be stored.

The five vector arguments are one-dimensional front-end arrays of length rank. For
descriptive purposes let there be a number of indices k j (0 ~ j < rank) such that
o ~ kj < (endj - startj). Then for all possible combinations of values for these indices, the
array element whose indices are offsetj + k j (~ j < n) is copied into the dest field of the
processor whose send address is

n-1
V make-news-coordinate(start; + k j, axis j)
;=0

The total number of values transferred is therefore

n-1
II (end j - start j)

j=O

The dimension-vector specifies the dimensions of the front end array.

463

WRITE-TO-NEWS-ARRAY

U-WRITE-TO-NEWS-ARRAY

Copies a subarray of an array in the memory of the front end into a field within a set of
processors forming a subarray (of the same shape) of the NE ws grid.

Formats CM: u-write-to-news-array-IL front-end-array, offset-vector, start-vector,
end-vector, axis-vector, dest, len;
rank, dimension-vector, element-len

Operands front-end-army A front-end array (possibly multidimensional) of unsigned
integer data.

offset-vector A front-end vector (one-dimensional array) of signed integer
subscript offsets for the front-end-array.

start-vector A front-end vector (one-dimensional array) of unsigned inte-
ger inclusive lower bounds for NEWS indices.

end-vector A front-end vector (one-dimensional array) of unsigned inte-
ger exclusive upper bounds for NEWS indices.

axis-vector A front-end vector (one-dimensional array) of unsigned inte-
ger numbers indicating NEWS axes.

dest The unsigned integer destination field.

len The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

rank An unsigned integer, the rank (number of dimensions) of the
front-end-army.

dimension-vector A front-end vector (one-dimensional array) of unsigned
integer dimensions of the front-end-array.

element-len An unsigned integer, the size of an element front-end-array,
measured in bytes. This must be 1, 2, or 4.

Context This operation is unconditional. It does not depend on context-flag.

rank-l
Definition For all i such that 0 ~ j < n (end j - start j) do

j=O

for all m such that 0 ~ m < rank do

let S(i,m) = lrank_l ~ j mod (endm - staTim)
. n (endj-.tartj)
J=m+l

464

WRITE-TO-N EWS-ARRAY

,.ank-1
let ki = V make-news-coordinate(axis;, start; + Si,;)

;=0
dest[kil - jront-end-array.(·O) .('1) ...• (. L 1)

I, I 't I t ',1'a." .. -

Another formulation:

For all So such that 0 5 So < (end o - starto) do
for all S1 such that 0 5 S1 < (end 1 - start 1) do

for all S2 such that 0 5 S2 < (end 2 - start2) do

for all S .. ank-1 such that 0 5 S .. ank-1 < (end,.ank-1 - start,.ank_1) do
.. ank-1

let k.O,.l"",.,.ank_l = V make-news-coordinate(axis;, start; + s;)
3=0

dest[k.o,.tl,···,.t,.ank_l] -
jront-end-arroYojJ.et.J +'0 , ojJ.etl + .. l ojJ.et,.ank_l +.t .. ank_l

This operation copies a rectangular subblock of an array in the front end into a similarly
shaped subblock of the NEWS grid.

Unsigned integer values are transferred from the specified array to the Connection Machine
processors. When calling Paris from Lisp the array may be a general S-expression array
containing unsigned integers, or may be a specialized integer-element array (such as the
kind called art-8b on the Symbolics 3600). When this opEM.'ation is invoked from C code, the
element-len parameter should be the number of bytes in an array element, as determined
by the C sizeof operator.

The dest parameter specifies the memory address within each processor of the field into
which the data is to be stored.

The five vector arguments are one-dimensional front-end arrays of length rank. For
descriptive purposes let there be a number of indices k; (0 5 j < rank) such that
o ::; k; < (end; - start;). Then for all possible combinations of values for these indices, the
array element whose indices are offset; + k; (5 j < n) is copied into the dest field of the
processor whose send address is

n-1

V make-news-coordinate(start; + k;, axis;)
;=0

The total number of values transferred is therefore

n-1

II (end; - start;)
;=0

The dimension-vector specifies the dimensions of the front end array.

465

WRITE-TO-PROCESSOR

F-WRITE-TO-PROCESSOR

Stores an immediate floating-point number operand value into the destination field of a
single specified processor.

Formats CM:f-write-to-processor-lL send-address-value, dest, source-value, s, e

Operanqs send-address-value An immediate operand, the send address of a single
particular processor.

dest The floating-point destination field.

source-value A floating-point immediate operand to be used as the source.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

Context This operation is unconditional. It does not depend on context-flag.

Definition dest[send-address-value] +- source-value

The specified source-value, a floating-point number, is stored into the dest field of the
processor whose send address is the immediate operand send-address-value.

466

WRITE-TO-PROCESSOR

S-WRITE-TO-PROCESSOR

Stores an inunediate signed integer operand value into the destination field of a single
specified processor.

Formats CM: s-write-to-processor-IL send-address-value, dest, source-value, len

Operands send-address-value An immediate operand, the send address of a single
particular processor.

dest The signed integer destination field.

source-value A signed integer immediate operand to be used as the source.

len The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Context This operation is unconditional. It does not depend on context-flag.

Definition dest[send-address-value] - source-value

The specified source-value, a signed integer, is stored into the dest field of the processor
whose send address is the immediate operand send-address-value.

467

WRITE-TO-PROCESSOR

U-WRITE-TO-PROCESSOR

Stores an hmnediate unsigned integer operand value into the destination field of a single
specified processor.

Formats CM:u-write-to-processor-lL send-address-value, dest, source-value, len

Operands send-address-value An inunediate operand, the send address of a single
particular processor.

dest The unsigned integer destination field.

source-value An unsigned integer hmnediate operand to be used as the
source.

len The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Context This operation is unconditional. It does not depend on context-flag.

Definition dest[send-address-value 1 +- source-value

The specified source-value, an unsigned integer, is stored into the dest field of the processor
whose send address is the inunediate operand send-address-value.

468

Appendix A

Changes from Version 4.3 Paris

The Paris instruction set released with Connection Machine System Software Version 5.0
is substantially different from that released with Version 4.3. Nearly all of the previous
functionality has been retained, sometimes in slightly altered form. A few operations have
been removed, and several categories of new operations have been added. The changes from
Version 4.3 to Version 5.0 are summarized here.

First a word about release and version numbers. In the past, Paris releases have born
version numbers different from those used for the Connection Machine System Software as
a whole. Beginning with Version 5.0, Paris release numbers now correspond to those of the
rest of the system software. Thus, when we refer to Paris Version 4.3, we are referring to
Paris software that was originally called Paris Release 2, version 7 and that was distributed
with Version 4.3 of the system software. The current Paris software is Version 5.0. In
conversation, Paris Version 5.0 may sometimes be referred to as Paris Release 3. This
should happen less as the new numbering system takes hold.

A.I All names are alphabetic and limited in length

To allow convenient use of Paris within many programming languages and environments,
nearly all Paris instructions have been renamed. Names do not contain any special char­
acters except for colon and hyphen (for the Lisp interface) or underscore (for the C and
Fortran interface). For example, what used to be called cm:+ in the Lisp interface is now
called CM:s-add-2-1L in the Lisp interface and CM..s..add.2_1L in the C and Fortran interface.

All names have been limited to thirty characters.
The new names have been chosen so as to allow the old and the new names to coexist.

A.2 New capitalization conventions accommodate C and Fortran

The prefix "CM" is consistently capitalized, as is the trailing "L" in length specifiers; all
other letters are lower case.

Capitalization matters in the C interface. It does not matter in the Lisp or Fortran
interface, but for expository consistency this document follows the capitalization conventions
even in presenting Lisp code.

469

Appendiz A. Changes from Version 4.3 Paris

A.3 Optional arguments have been eliminated

The Lisp language supports optional arguments, but C and Fortran do not. For the sake
of uniformity, operands that were optional in the Lisp interface for Paris Version 4.3 have
been made required arguments in the equivalent Paris Version 5.0 instructions.

A.4 New naming conventions reflect new orthogonal attributes

Many binary arithmetic operations now come in three-operand and two-operand forms,
according to whether the destination address is explicitly specified separately or is implicitly
the same as one source address. Similarly, many unary arithmetic operations now come in
two-operand and one-operand forms. In many cases using the form with fewer operands
provides a performance advantage; in a few cases the shorter form is provided merely for
the sake of symmetry in the instruction set.

Most Paris operations require one or more length arguments, indicating the lengths of
various memory fields. In most cases the new operation names carry an explicit indication
of the number oflength operands; this indication always comes last in the same, and consists
of the number followed by a capital "L". Sometimes two operations are identical except for
the number of length operands; for example, CM:s-add-3-3L takes three separate length
specifiers, one for each memory field, whereas CM: s-add-3-1L takes a single length operand
specifying the common length of the three memory fields.

Single letters are used to indicate the type of data to be operated upon:

s signed (two's-complement) integer
u unsigned integer
f floating-point

A.5 More instructions have -constant forms

In Version 4.3 not all arithmetic operations had "-constant" forms. In Paris Version 5.0
many more arithmetic operations have "-constant" forms, making the instruction set much
more symmetrical.

A.6 Different instructions have -always forms

A number of instructions with the word "always" in their names have been removed; one
example is CM: logand-always. Such unconditional instructions were intended primarily for
manipulating flag bits, expecially the context bit. They have been replaced by a series of
special instructions for operating on the flags (see below).

On the other hand, other unconditional operations have been introduced, especially for
floating-point arithmetic. When floating-point hardware is in use, unconditional operations
may be significantly faster than the correspondiong conditional versions.

470

Appendix A. Changes from Version 4.3 Paris

A.7 Special instructions operate on the context and flag bits

Paris Version 5.0 more distinctly separates the flag bits from ordinary memory operands.
In Paris Version 4.3, for example, it was possible to use the instruction CM: logand on either
a memory operand or a flag. In Version 5.0, CM: logand-2L and related instructions may
operate only on memory operands; separate instructions such as CM: logand-overflow are
provided to operate on the flags.

All instructions that operate on the context flag are unconditional (despite not having
"-always" in their names). All instructions that operate on other flag bits are conditional,
except for CM: clear-all-flags-always.

A.8 Irrational and transcendental functions are supported

Ordinary and hyperbolic sine, cosine, and tangent functions are provided, as well as their
inverses. The square root, exponential, power, and natural logarithm operations are also
provided.

A.9 New arithmetic operations have been added

New operations include integer exponentiation and generation of pseudo-random floating­
point numbers.

A.I0 Two-result operations have been eliminated

The following operations have been eliminated from the Paris instruction set in Version 5.0:

CM: floor-and-mod
CM:ceiling-and-remainder
CM: truncate-and-rem
CM: round-and-remainder
CM: unsigned-floor-and-mod
CM: unsigned-ceiling-and-remainder
CM: unsigned-truncate-and-rem
CM: unsigned-round-and-remainder

A.II Special compound floating-point operations improve performance

Special instructions have been added to compute expressions of the form xy±z and (x±y)z,
where y and z may each be a memory operand or a constant. Each such instruction is
functionally equivalent to a two-instruction sequence containing a multiply and an add
instruction, but provides improved performance.

A.12 SEND operations no longer accept a time limit

The optional time-limit operand has been removed from the send operations.

471

Appendiz A. Changes from Version 4.3 Paris

A.13 Cube addresses are now called send addresses

To emphasize that cube addresses really have little to do with the hypercube structure of
the router, but rather function primarily as addresses used by the send instructions, the
terminology send address has been introduced to replace the term cube address.

A.14 Generalized NEWS operations support multidimensional grids

Paris Version 4.3 supported a special two-dimensional communication structure called the
NEWS grid. Paris Version 5.0 generalizes this (using special hardware on the Connection
Machine Model 2) to any number of dimensions, including one dimension. The operations
CM:get-from-north, CM:get-from-east, CM:get-from-west, and CM:get-from-south are replaced
by a single operation CM: get-from-news. The direction in which to communicate is specified
by an additional axis operand.

A.1S SCAN and GLOBAL now permit new combining functions

Paris Version 4.3 supported scan operations only for the combining operations max (signed,
unsigned, and floating-point) and plus (signed and unsigned). A somewhat larger class of
global operations were supported as well.

Paris Version 5.0 rounds out this set of operations to support all the combining operations
that may be used with the send operations: add, max, and min for signed, unsigned, and
floating-point types; logand, logior, and logxor for bit strings.

In addition, there are the scan-with-copy and scan-with-f-multiply operations. The opti­
mized operations global-u-max-s-intlen and global-u-max-u-intlen are equivalent to an appro­
priate integer-length operation followed by a global-u-max, but are faster.

An entire set of new operations has been introduced to perform global computations on
flags.

A.16 SCAN operations may be applied along NEWS dimensions

In Paris Version 5.0, all scan operations may be applied along a NEWS dimension; the effect
is to do a separate scan operation on every row (or column, or whatever) of an array.

A.17 SCAN operations may be partitioned

In Paris Version 5.0, all scan operations allow the set of processors to be partitioned into
groups of varying size as indicated by a segment bit or start bit (these two kinds of indicators
have slightly different effects).

A.1S SPREAD operations replicate data efficiently

The new spread operations perform efficient replication of a subplane of a multidimensional
array to fill the entire array. The operation spread-with-copy can take anyone column of
a matrix, for example, and copy it into every column. Other versions of spread involve

472

Appendix A. Changes from Version 4.3 Paris

combining operations. For example, spread-with-f-add can replace every element of a matrix
with the sum of all elements in the same row; this is equivalent to performing a scan-with-f­
add to form the row sums in the last column, followed by a spread-with-copy (or a downward
scan-with-copy) to copy that column back into the other columns, but is faster. For every
scan instruction there is a corresponding spread instruction.

The multispread variants allow spreading along several NEWS axes at once.

A.19 REDUCE operations perform reductions efficiently

If the result of a spread operation need not be replicated, but instead may usefully be placed
into just one processor of the row or column, then a reduce operation is just the ticket.

A.20 New array instructions allow faster indexing

The new operations aref32 and aset32 allow an array to be stored within each virtual
processor and accessed in much the same way as for aref and aset. The new operations store
the data in a different manner ("slicewise")i data in such arrays should be accessed only
through these special instructions or their equivalent. The advantage is that data stored in
this special format can be stored and retrieved much more quickly.

Further variants aref32-shared and aset32-shared allow not only fast access but also mem­
ory savings by letting many virtual processors share the same array.

A.21 STORE operations have been eliminated

The store operations, which were complex variants of send, have been eliminated. However,
new operations that are a compound of of send and aset32 have been introduced; while
these do not provide quite as large a variety of combining operations, they are significantly
faster.

Similarly, fetch has been replaced by get-aref32.

A.22 Most version 4.3 operations have version 5.0 equivalents

The following table lists all Paris Version 4.3 operations in alphabetical (or rather, ASCII)

order, and gives the nearest equivalent in Version 5.0. In most cases the interface and
functionality are identical except that the operation has a new name.

cm:·
cm:+
cm:+carry
cm:+constant
cm:+flags

cm:­
cm:-borrow
cm: -constant
cm:/=

473

CM: s-multiply-2-1L
CM: s-add-2-1L
CM: s-add-carry-2-1L
CM: s-add-constant-2-1L
CM: s-add-flags-2-1L

CM: s-subtract-2-1L
CM: s-subtract-borrow-2-1L
CM: s-sub tract-con stan t-2-1 L
CM:s-ne-lL

Appendiz A. Changes from Version 4.3 Paris

em: /=eonstant

em:<
em:<=
em: <=eonstant
em: <eonstant
em:=

em:=eonstant
em:>
em:>=
em: >=constant
em:>eonstant

em:abs
em: add
em:aref
em:aset
cm:attaeh

cm:ceiling
cm:ceiling-and-remainder
em: ceiling-divide
em:eold-boot
cm:eompare

em:cube-from-x-y
cm:detaeh
cm:enumerate
cm:enumerate-and-eount
cm:enumerate-for-rendezvous

em:f*
cm:f+
em:f­
cm:f/
cm:f/=

cm:f<
em:f<=
em:f=
cm:f>
cm:f>=

cm:fetch
em: float
cm:float-abs
em: float-compare
cm:float-float-signum

em: float-max

474

CM: s-ne-constant-IL

CM:s-lt-lL
CM:s-le-lL
CM: s-ie-constant-IL
CM: s-it-constant-IL
CM: s-eq-lL

CM: s-eq-constant-IL
CM:s-gt-lL
CM:s-ge-lL
CM: s-ge-constant-IL
CM: s-gt-constant-IL

CM: s-abs-2-1L
CM: s-add-3-3L
CM:aref-2L
CM: aset-2L
No change.

CM: s-f-ceiling-2-2L
(No direct equivalent.)
CM: s-ceiling-3-3L
No change.
CM: s-compare-3-3L

CM: deposit-news-coordinate-IL
No change.
CM: enumerate-IL
(No direct equivalent.)
(No direct equivalent.)

CM: f-multiply-2-1L
CM: f-add-2-1L
CM: f-subtract-2-1L
eM: f-divide-2-1L
CM:f-ne-lL

CM:f-lt-lL
CM:f-le-lL
CM:f-eq-lL
CM:f-gt-lL
CM:f-ge-lL

CM: get-aref32-2L
CM: f-s-float-2-2L
CM:f-abs-2-1L
CM: f-compare-3-2L
CM: f-f-signum-2-1L

CM: f-max-2-1L

Appendiz A. Changes from Version 4.9 Paris

em:float-max-sean
em: float-min
em:float-minusp
em: float-move

em:float-move-eonstant
cm:float-move-decoded-eonstant
em: float-negate
cm:float-new-size
em:float-plusp

em: float-rank
cm:float-read-array-by-eube-addresses
em:float-read-array-by-news-addresses
em:float-read-from-proeessor
em: float-signum

cm:float-sqrt
cm:float-write-array-by-cube-addresses
cm:float-write-array-by-news-addresses
em:float-write-to-proeessor
cm:float-zerop

em: floor
em:floor-and-mod

-em:floor-divide
cm:front-end-eube-from-x-y
cm:front-end-gray-code-from-integer

cm:front-end-integer-from-gray-eode
em:front-end-x-from-eube
em:front-end-y-from-cube
em:get
em:get-from-east

em:get-from-east-always
em:get-from-north
cm:get-from-north-always
cm:get-from-south
cm:get-from-south-always

cm:get-from-west
cm:get-from-west-always
cm:get-staek-limit
cm:get-stack-pointer
cm:get-stack-upper-bound

em: global-add
em: global-count
cm:global-count-always
cm:global-float-max

475

CM: scan-with-f-max-IL
CM:f-min-2-1L
CM:f-lt-zero-lL
CM:f-move-lL

CM: f-move-constant-IL
CM: f-move-decoded-constant-IL
CM: f-negate-2-1L
CM:f-move-2L
CM: f-gt-zero-IL

CM:f-rank-2L
(No direct equivalent.)
CM:f-read-from-news-array-lL
CM: f-read-from-processor-IL
CM: s-f-signum-2-2L

CM: f-sqrt-2-1L
(N 0 direct equivalent.)
CM: f-write-to-news-array-l L
CM: f-write-to-processor-IL
CM: f-eq-zero-IL

CM: s-f-floor-2-2L
(No direct equivalent.)
CM: s-floor-3-3L
CM: fe-deposit-news-coordinate
C M: fe- to-gray-cod e

CM: fe-from-gray-code
CM: fe-extract-news-coordinate
CM: fe-extract-news-coordinate
CM:get-lL
CM: get-from-n ews-l L

CM: get-from-news-always-IL
CM: get-from-news-IL
CM: get-from-news-always-IL
CM: get-from-n ews-l L
CM: get-from-news-always-IL

CM: get-from-news-IL
CM: get-from-news-always-IL
No change.
No change.
No change.

CM: global-s-add-l L
CM: global-count-bit
CM: global-count-bit-always
CM: global-f-max-IL

Appendiz A. Changes from Version 4.3 Paris

cm:global-float-min

cm:global-logand
cm:global-logand-always
cm:global-logior
cm:global-logior-always
cm:global-max

cm:global-min
cm:global-unsigned-add
cm:global-unsigned-max
cm:global-unsigned-min
cm:gray-code-from-integer

cm:hardware-test-complete
cm:hardware-test-fast
cm:initialize-random-number-generator
cm:integer-from-gray-code
cm:integer-length

cm:isqrt
cm:latch-leds
cm:latch-leds-always
cm:logand
cm:logand-always

cm:logandc1
cm:logandc1-always
cm:logandc2
cm:logandc2-always
cm:logcount

cm:logeqv
cm:logeqv-always
cm:logior
cm:logior-always
cm:lognand

cm:lognand-always
cm:lognor
cm:lognor-always
cm:lognot
cm:lognot-always

cm:logorc1
cm:logorc1-always
cm:logorc2
cm:logorc2-always
cm:logxor

cm:logxor-always

476

CM: giobal-f-min-IL

CM: giobal-iogand-IL
(No direct equivalent.)
CM: giobal-iogior-IL
(No direct equivalent.)
CM: global-s-max-IL

CM: giobal~s-min-IL
CM: giobal-u-add-IL
CM: global-u-max-IL
CM: giobal-u-min-IL
CM: u-to-gray-code-2-1L

No change.
No change.
The argument is no longer optional.
CM: u-from-gray-code-2-1L
CM: s-integer-length-2-2L

CM: s-isqrt-2-1L
No change.
No change.
CM: logand-2-1L
(N 0 direct equivalent.)

CM: logaridcl-2-1L
(No direct equivalent.)
CM: logandc2-2-1L
(No direct equivalent.)
CM: s-logcount-2-2L

CM: logeqv-2-1L
(N 0 direct equivalent.)
CM:logior-2-1L
(No direct equivalent.)
CM: lognand-2-1L

(No direct equivalent.)
eM: lognor-2-1L
(N 0 direct equivalent.)
eM: lognot-2-1L
(N 0 direct equivalent.)

CM: logorcl-2-1L
(No direct equivalent.)
eM: logorc2-2-1L
(No direct equivalent.)
eM: logxor-2-1L

(No direct equivalent.)

cm:max
cm:max-constant
cm:max-sean
cm:min

em: min-constant
cm:minusp
cm:mod
cm:move
em: move-always

cm:move-constant
cm:move-constant-always
cm:move-reversed
cm:multiply
cm:my-cube-address

cm:my-x-address
cm:my-y-address
cm:negate
cm:new-size
cm:plus-scan

cm:plusp
em:pop-and-discard
cm:power-up
cm:processor-cons
cm:push-space

cm:rank
cm:read-array-by-cube-addresses
cm:read-array-by-news-addresses
em:read-from-processor
em: rem

cm:reset-stack-pointer
cm:round
em:round-and-remainder
cm:round-divide
cm:send

cm:send-with-add
em:send-with-logand
em:send-with-logior
em:send-with-logxor
cm:send-with-max

cm:send-with-min
em:send-with-overwrite
em:send-with-unsigned-max
cm:send-with-unsigned-min

Appendix A. Changes from Version 4.3 Paris

477

CM: s-max-2-1L
CM: s-max-constant-2-1 L
CM: scan-with-s-max-IL
CM: s-min-2-1L

CM: s-min-constant-2-1L
CM: s-It-zero-IL
CM: s-mod-2-1L

CM:s-move-lL

CM: s-move-always-IL

CM: s-move-constant-IL
CM: s-move-constant-always-l L

CM: move-reversed-IL

CM: s-multiply-3-3L
CM: my-send-address

CM: my-news-coordinate-IL

CM: my-news-coordinate-IL

CM: s-negate-2-1L
CM: s-move-2L
CM: scan-with-s-add-IL

CM: s-gt-zero-IL

No change.
No change.
(No direct equivalent.)
No change.

CM: s-ran k-2L

(No direct equivalent.)
CM: s-read-from-news-array-IL
CM: s-read-from-processor-IL

CM:s-rem-2-1L

No change.
CM: s-f-rou nd-2-2L

(No direct equivalent.)
CM: s-round-3-3L

CM: send-IL

CM: send-with-s-add-IL

CM: send-with-iogand-IL
CM: send-with-iogior-IL
CM: send-with-Iogxor-IL

CM: send-with-s-max-IL

CM: send-with-s-min-IL

CM: send-with-overwrite-IL

CM: send-with-u-max-IL

CM: send-with-u-min-IL

Appendiz A. Changes from Version 4.3 Paris

cm:set-stack-limit

cm:set-stack-pointer
em:set-stack-upper-bound
cm:set-system-leds-mode
cm:shift
cm:signum

cm:store
cm:store-with-add
em:store-with-logand
cm:store-with-logior
cm:store-with-logxor

cm:store-with-max
cm:store-with-min
cm:store-with-overwrite
cm:store-with-unsigned-max
cm:store-with-unsigned-min

cm:subtraet
em: truncate
cm:truncate-and-rem
cm:truncate-divide
cm:u*

cm:u+
cm:u+carry
cm:u+constant
cm:u+flags
cm:u-

cm:u-borrow
cm:u-constant
cm:u/=
cm:u/=constant
cm:u<

cm:u<=
cm:u<=constant
cm:u<constant
cm:u=
cm:u=constant

cm:u>
cm:u>=
cm:u>=constant
cm:u>constant
cm:unsigned-add

cm:unsigned-ceiling

478

No change.

No change.
No change.
No change.
eM: s-s-shift-3-3L
eM: s-signum-2-2L

eM: send-aset32-overwrite-2L
CM: send-aset32-u-add-2L
(No direct equivalent.)
CM: send-aset32-logior-2L
(No direct equivalent.)

(No direct equivalent.)
(No direct equivalent.)
CM: send-aset32-overwrite-2L
(No direct equivalent.)
(No direct equivalent.)

CM: s.subtract-3-3L
CM: s-f-truncate-2-2L
(No direct equivalent.)
CM: s-truncate-3-3L
CM: u-multiply-2-IL

eM: u-add-2-1L
eM: u-add-carry-2-1L
CM: u-add-constant-2-1L
CM: u-add-flags-2-1L
eM: u-subtract-2-1L

eM: u-subtract-borrow-2-1L
CM: u-subtract-constant-2-IL
CM: u-ne-IL
CM: u-ne-constant-IL
eM: u-It-IL

CM:u-le-IL
eM: u-Ie-constan toll
eM: u-It-constant-IL
CM: u-eq-lL
CM: u-eq-constant-IL

eM: u-gt-IL
eM: u-ge-IL
eM: u-ge-constant-IL
eM: u-gt-constant-IL
CM: u-add-3-3L

CM: u-f-ceiling-2-2L

Appendix A. Changes from Version 4.3 Paris

cm:unsigned-ceiling-and-remainder
cm:unsigned-ceiling-divide
em: unsigned-compare
cm:unsigned-float

cm:unsigned-floor
cm:unsigned-floor-and-mod
cm:unsigned-floor-divide
cm:unsigned-integer-length
cm:unsigned-isqrt

cm:unsigned-logcount
em: unsigned-max
cm:unsigned-max-constant
cm:unsigned-max-scan
cm:unsigned-min

cm:unsigned-min-constant
cm:unsigned-mod
em: unsigned-multiply
cm:unsigned-negate
cm:unsigned-new-size

cm:unsigned-plus-scan
cm:unsigned-plusp
cm:unsigned-random
cm:unsigned-rank

cm:unsigned-read-array-by-cube-addresses
cm:unsigned-read-array-by-news-addresses

'cm:unsigned-read-from-processor
em: unsigned-rem
em: unsigned-round

cm:unsigned-round-and-remainder
em:unsigned-round-divide
cm:unsigned-shift
em: unsigned-subtract
em: unsigned-truncate

cm:unsigned-truncate-and-rem
cm:unsigned-truncate-divide
cm:unsigned-write-array-by-cube-addresses
cm:unsigned-write-array-by-news-addresses
cm:unsigned-write-to-proeessor

cm:unsigned-zerop
cm:warm-boot
cm:write-array-by-eube-addresses
cm:write-array-by-news-addresses
cm:write-to-processor

479

(No direct equivalent.)
CM: u-ceiling-3-3L
CM: u-compare-3-3L
CM: f-u-float-2-2L

CM: u-f-floor-2-2L

(No direct equivalent.)
CM: u-floor-3-3L

CM: u-integer-length-2-2L

CM: u-isqrt-l-1L

CM: u-logcount-2-2L

CM:u-max-2-1L

CM: u-max-constant-2-1 L

CM: scan-with-u-max-IL
CM: u-min-2-1L

eM: u-min-constant-2-1L

CM: u-mod-2-1L

CM: u-multiply-3-3L

CM: u-negate-2-1L
CM: u-move-2-2L

CM: scan-with-u-add-1L

CM: u-gt-zero-1L
CM: u-random-1L

CM: u-rank-2L

(No direct equivalent.)
CM: u-read-from-news-array-1L
CM: u-read-from-processor-1L

CM: u-rem-2-1L
CM: u-f-round-2-2L

(No direct equivalent.)
CM: u-rou nd-3-3L
CM: u-s-shift-2-3L

CM: u-subtract-3-3L
CM: u-f-tru ncate-2-2L

(No direct equivalent.)
CM: u-truncate-3-3L
(No direct equivalent.)
CM: u-write-to-news-array-1L
CM: u-write-to-processor-1L

CM: u-eq-zero-1L

No change.
(N 0 direct equivalent.)
CM: s-write-to-news-array-l L
CM: s-write-to-processor-1L

Appendiz A. Changes from Version .{..a Paris

cm:x-from-cube
cm:y-from-cube
cm:zerop

480

CM: extract-news-coordinate-IL
CM: extract-news-coordinate-IL
CM:s-eq-zero-lL

