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.‘.Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection
Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a
backtrace, or other such information can greatly reduce the time it takes Thinking Machines to
respond to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1214

Internet

Electronic Mail: customer-support@think.com
Usenet

Electronic Mail: harvard!think!customer-support
Telephone: (617) 876-1111

For Symbolics users only:

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail
facility for automatic reporting of Connection Machine system errors. When such an error oc-

curs, simply press Ctrl-M to create a report. In the mail window that appears, the To : field
should be addressed as follows:

To: bug-connection-machine@think.com

Please supplement the automatic report with any further pertinent information.
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Chapter 1

Introduction

Paris is a low-level instruction set for programming the Connection Machine computer sys-
tem. It is the lowest-level protocol by which the actions of Connection Machine processors
are directed by the front-end computer. Paris is sometimes referred to as a “macroinstruc-
tion set” for the Connection Machine system because it is comparable in power to the
(macro)instruction sets of typical sequential processors such as the vaXx, and to distinguish
it from the “microinstruction set” (microcode) that is executed by the Connection Machine
system sequencer and the “nanoinstruction set” that is directly executed by the individual
hardware Connection Machine processors.

Paris is intended primarily as a base upon which to build higher-level languages for
the Connection Machine system. It provides a large number of operations similar to the
machine-level instruction set of an ordinary computer. Paris supports primitive operations
on signed and unsigned integers and floating-point numbers, as well as message-passing
operations and facilities for transferring data between the Connection Machine processors
and the front-end computer.

The Paris user interface consists of a set of macros, functions, and variables to be called
from user code. The macros and functions direct the actions of the Connection Machine
system by sending macroinstructions to the Connection Machine sequencer, and the vari-
ables allow the user program to find out information about the Connection Machine system
such as the number of processors available.

Several different versions of the user interface are provided: one for the Lisp programming
language, one for C, and one for Fortran. These interfaces are functionally identical; they
differ only in conforming to the syntax and data types of one language or the other.






Chapter 2

Virtual Machine Architecture

An important property of the Connection Machine architecture is scalability. At present, a
single Connection Machine system can have 16,384 or 32,768 or 65,536 physical (hardware)
processors, of which any single user can use a portion containing 8,192 or 16,384 or 32,768
or 65,536 processors. (See figure 2.1 for an illustration of 65,536 processors.) In most cases
the same software can be executed unchanged on Connection Machine systems (or portions)
with different numbers of physical processors; the number of processors affects only the size
of the problem that can be handled.

Paris enhances this scalability by presenting to the user an abstract version of the Con-
nection Machine hardware. The most important feature is the wvirtual processor facility,
whereby each physical processor is used to simulate some number of virtual processors. A
program can be written assuming any appropriate number of processors (but not fewer than
the number of physical processors); these virtual processors are then mapped onto physical
processors. In this way a program can be executed unchanged on Connection Machine sys-
tems with different numbers of physical processors, even if it requires a certain minimum
number of processors, with an essentially linear trade-off between number of physical pro-
cessors and execution time. (There is a memory trade-off as well: the memory of a physical
processor is divided among the virtual processors it supports.)

For the remainder of this chapter, when we refer to “the Connection Machine” or “the
machine” we mean that portion of a Connection Machine system to which the user is
attached. For example, if a user is attached to a 16,384 processor portion of a 65,536
processor Connection Machine, the expression “the machine” refers only to the user’s 16,384
Processors.

The Connection Machine hardware supports two mechanisms for interprocessor commu-
nication. The more general mechanism is the router, which allows data to be sent from any
processor directly to any other processor; indeed, many processors can send data to many
other processors simultaneously. The less general mechanism is redundant, but optimizes
an important case for speed. It organizes the processors as an n-dimensional grid and al-
lows every processor to send data to its immediate neighbors in the grid. This mechanism
is called the NEWS grid, from the initials of the four directions in a two-dimensional grid:
North, East, West, and South. Using these hardware mechanisms, Paris provides identical
virtual mechanisms within the virtual processor framework.
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Figure 2.1: 65,536 processors
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2.1 Virtual Processors and Virtual Processor Sets

The data parallel programming method associates one processor with each element of a
data set. In the virtual processor abstraction provided by Paris, we associate one virtual
processor, or VP, with each element of a data set. The set of all virtual processors associated
with a data set is called a virtual processor set, or VP set. For example, consider an image-
processing problem that deals with an image of 65,536 pixels, shaped in a 512 x 128 rectangle.
Each pixel is an element of the data set that makes up the image. Thus we would write a
program using one VP set of size 65,536: one VP for each pixel.

Because a single problem may be composed of more than one data set, Paris allows for
the simultaneous existence of more than one VP set. For example, a text retrieval program
might wish to deal with articles at some times, and with words in the articles at other times.
This problem is most conveniently modeled with two VP sets, the first corresponding to
the data set of all articles (one VP per article) and the second corresponding to the data
set of all words (one VP per word).

VP sets are created and deleted through function calls to Paris. The size of a VP set (the
number of virtual processors in the VP set) is fixed at the time of the VP set’s creation.

Although multiple VP sets may co-exist, only one VP set may be active at any time.
This VP set is known as the current VP set. All VP sets other than the current VP set are
latent; that is, they can not execute any instructions. We say that Paris operates within
the current VP set. Paris provides a function CM: set-vp-set for setting the current VP set.

2.2 Mapping VP Sets to the Physical Machine

When a Paris program is run, the virtual processors in the user’s program are mapped onto
the machine’s physical processors. The size of the VP set(s) and the size of the physical
machine determine how many virtual processors are assigned to each physical processor. In
effect, each Connection Machine processor and its memory are shared among the virtual
processors they support.

These concepts are further elaborated in the following sections. The time-slicing of the
Connection Machine processors is covered in the section “VP Ratios”; the sharing of physical
memory among virtual processors is covered in the section “Fields.” Communication and
related concepts follow.

2.3 VP Ratios

Let p denote the number of Connection Machine physical processors, and let |X| denote
the number of virtual processors in a VP set X.

For each VP set X, each physical processor is assigned the task of simulating |X|/p
virtual processors. This number |X|/p is called the virtual processor ratio, or VP ratio, of
VP set X. We denote the VP ratio of VP set X as vpr(X). The virtual processor ratio
must always be a power of two.

What exactly does this mean? When the machine is operating within VP set X, each
instruction in the user’s program is executed vpr(X) times by each physical processor, that
is, once for every virtual processor. This is completely transparent to the user. A change of
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VP set changes the VP ratio to be that of the newly current VP set; if the program changes
from VP set X to VP set Y, each instruction after that will be executed vpr(Y) times.

This method of assigning virtual processors to physical processors “spreads out” a VP
set as much as possible; the VP ratio for each VP set is as low as possible. The burden of
handling a VP set is shared by the entire physical machine.

As an example, suppose we have two VP sets A and B, where |4] = 64K and |B| =
256K. Suppose we run our program on a Connection Machine system with 64K physical
processors (p = 64K). Then vpr(a) = 64K/64K = 1, and vpr(b) = 256K/64K = 4. When
executing within VP set A, each instruction is executed once by each physical processor.
When executing within VP set B, each instruction is executed four times by each physical
processor.

If the same program were to be run on a Connection Machine system with only 16K
physical processors (p = 16K), then we would have vpr(a) = 64K/16K = 4, and vpr(b) =
256K/16K = 16. When executing within VP set A, each instruction would be executed
four times by each physical processor. When executing within VP set B, each instruction
would be executed 16 times by each physical processor.

This description of “execute once for each virtual processor” applies most accurately to op-
erations such as arithmetic that can take place within each virtual processor independently
of other virtual processors. Operations that perform communication are more complicated,
but the idea is the same: each physical processor performs all necessary execution steps on
behalf of each virtual processor that is to participate in the operation.

As far as the user is concerned, physical processors are hardly visible. Paris is designed
to allow the programmer to think entirely in terms of the virtual processor as the basic unit
of computational power.

2.4 Fields

At the time of its creation, a VP set has no associated memory (except for its flags). This
is the same as saying that no VP in the VP set has any memory, because the memories of
all virtual processors in a VP set are always of the same size and layout. Paris provides
functions to allocate and deallocate memory to a VP set.

Memory is handled in units called fields. Conceptually, a field is simply some number of
consecutive bits. A field can be of any size greater than zero bits. When a field is allocated,
it has an initial size specified by the user. When we speak of allocating a field to a VP set,
we mean allocating a field to each VP in the VP set.

A field is referenced through a field-id. Paris returns a unique field-id for each new field
that is allocated, and all Paris calls that require a reference to a field take a field-id as a
parameter.

How does this abstraction of fields get mapped into physical Connection Machine mem-
ory? Again, the concept of VP ratios is important. Just as a Connection Machine physical
processor takes responsibility for vpr(X) virtual processors for each VP set X in the user’s
program, those same physical processors (more precisely, their memories) take responsibility
for the fields of those same virtual processors. A single physical memory contains vpr(X)
copies of every field in VP set X, vpr(Y’) copies of every field in VP set Y, and so on for
every VP set in the user’s program.
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There are two types of fields: heap fields and stack fields. The distinction between
them has to do with the storage management strategy employed in the physical memory
supporting the virtual processors. Heap fields are the more flexible of the two, but they
also have the higher overhead. Heap fields may be allocated and deallocated in any order.
Allocation of heap fields to VP set X may be freely intermixed with allocations to VP set
Y, and so on. Deallocations need pay no attention to the VP set to which a field belongs,
nor to the order in which other allocations and deallocations were done.

Stack fields may be allocated in any order, without regard to VP set. However, stack
fields must be deallocated in the reverse order in which they were allocated. This rule
applies globally to all fields in all VP sets. Thus, if a program allocates a field f; in VP set
A, and then allocates a field f, in VP set B, and then allocates a field f3 in VP set A, they
must be deallocated in the order fs, f2, fi.

2.5 Processor Addresses

Paris supports two different sorts of addresses for virtual processors: the send address, which
is used for general purpose communication among virtual processors, and the NEWS address,
which describes a VP’s position in the n-dimensional grid used to optimize nearest-neighbor
communication.

A virtual processor has one send address and one NEws address at all times. Send
addresses and NEWs addresses are specific to a VP set; that is, every VP in a VP set has a
unique send address and a unique NEWs address, but it is possible for a VP in another VP set
to have the same send address or NEWs address. Since Paris always operates within a single
VP set, there is normally no ambiguity as to which VP is meant by a given address. For
communication across VP sets, Paris has other means of uniquely identifying the intended
destination VP.

2.6 Send Addresses

Send addresses are used as arguments to Paris communication operations to identify virtual
processors that are to supply or receieve data. The Paris operation CM:my-send-address
allows every VP in a VP set to find out its own send address.

The send address for a VP is composed of two parts, the physical part and the virtual part.
The physical part indicates the location in the CM of the physical processor supporting that
VP. The virtual part indicates which VP in that VP set on that physical processor is being
addressed. The virtual part is in the less significant bits of the send address.

The size (in bits) of a send address for a VP set depends on two things. The physical size
of the machine determines the size of the physical part of the send address. The VP ratio
for the VP set determines the size of the virtual part.

For example, in a 64K = 2!¢ Connection Machine, the send addresses for VP set Q with
vpr(Q) = 64 = 2° require 22 bits: 16 bits for the physical part, and 6 bits for the virtual
part. In this example, send addresses range from 0 to 222 — 1.
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2120191817161514131211109 8 7 6 56 4 3 2 1 0
SEND ADDRESS PHYSICAL PROCESSOR VP

In this release of Paris, VP ratios must be a power of two. This results in a contiguous
address space for send addresses (that is, there are no “holes”). However, this feature is
likely to change in the future (thereby allowing a VP ratio to be any integer, not just a
power of two). We recommend that no Paris program be written so as to require send
addresses to occupy a contiguous range. In particular, we discourage arithmetic on send
addresses. Paris provides functions for manipulating send addresses in a “safe” manner.
Arithmetic is better done on NEWs addresses; if a total order on all processors is required,
please note that a NEws grid may be one-dimensional.

2.7 NEWS Addresses

A NEws address is an n-tuple of coordinates z¢, 21,...,2nN-1, Which specifies a VP’s position
in an n-dimensional Cartesian-grid geometry. The number of bits required to specify each
coordinate depends on the size of that dimension in the geometry. NEWs addresses are
treated in more detail below when we discuss geometries.

The Paris operation CM: my-news-coordinate-1L allows every VP in a VP set to find out
its own NEWS coordinate along a given axis. Paris also provides functions for producing a
send address from a NEWs address, and vice versa. There are a number of variations on
these functions to handle only specific dimensions. All addresses are interpreted within the
current VP set.

2.8 Communication across VP Sets

Communication across VP sets takes place via the Paris send and get operations and their
variants. These operations each accept only a send address as the indicator of the remote
VP; NEws addresses are not allowed. The send address must be of the proper size for the
remote VP set; that is, it must have as many bits as are necessary to specify a send address
in that VP set, which may be different from the number of bits needed to specify a send
address in the current VP set.

We have noted that send addresses are not unique across all VP sets in a program, but
that communication across VP sets is unambiguous anyway. This is because every call to
a Paris send or get operation also takes a field in a remote VP set as an argument. A field
is always associated with exactly one VP set, and this fact allows Paris to determine the
remote VP intended as a send destination or a get source.

2.9 Geometries

A geometry is an abstract description of an n-dimensional grid of elements. It specifies n,
the number of dimensions (also known as the rank of the geometry), and it specifies the
length of each dimension. There are other aspects of a geometry that may be specified by
the Paris user, but we first elaborate on the more basic issues.
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The rank of a geometry is an integer between 1 and 31, inclusive. This is the same as
saying that a geometry can describe anything from a 1-dimensional grid to a 31-dimensional
grid. We number the dimensions of a grid from 0 to the rank minus 1, so we say that a
1-dimensional grid has only dimension 0, a two-dimensional grid has dimensions 0 and 1,
etc.

The size of a dimension must be a power of two. The product of the sizes of all dimensions
of a geometry specifies the total number of elements in the geometry. For example, a three-
dimensional geometry of size 16 X 512 X 2 contains 16,384 elements in all.

Paris provides functions for defining geometries. See section 5.2. A geometry is defined
in the abstract, but it has no use until it is associated with a VP set, via another Paris
function. Associating a geometry with a VP set defines a “shape,” or organization, for the
virtual processors of the VP set.

At the time of a VP set’s creation, it is associated with some geometry. The geometry
specifies the size of the VP set and its conceptual organization in n-space. A VP set is always
associated with exactly one geometry, but it may be associated with different geometries
over time. Paris provides a function for associating a geometry with a VP set (and implicitly
dis-associating the previous one). See section 5.1. In this way, the user can “reshape” a
VP set. The only restriction is that all geometries associated with a VP set be of the same
total size, since a VP set is not allowed to change size. For example, a VP set originally
associated with a 16 x 512 x 2 geometry can later be associated with a 64 x 256 geometry,
since the total number of virtual processors described by both of these geometries is the
same (16,384 in this example).

The NEwWs address of a virtual processor depends completely on the geometry currently
associated with its VP set. Thus, while the send addresses of virtual processors remain
constant for the life of a VP set, the NEWs addresses of those same virtual processors can
vary as the geometry is changed. When a VP set has a three-dimensional geometry, NEWS
addresses for that VP set have three coordinates: zg,2;,z,. When that VP set changes to
a two-dimensional geometry, NEWS addresses for that VP set have two coordinates: zg, z;.

Given a VP set and given a geometry as we have described it so far (a rank and the size
of each dimension), there are many ways for Paris to assign virtual processors to physical
processors. However, not all mappings will provide equally efficient communication among
the virtual processors of a VP set. Paris allows the user to specify more information than
just rank and size of dimensions when creating a geometry. These additional pieces of
geometry information we call ordering and weight, and we discuss them in more detail
below.

It should be said, however, that the specification of these properties of a geometry af-
fects only the efficiency of inter-VP communication, and therefore the performance of the
program. Choosing suboptimal values will never cause an otherwise correct program to
execute in an erroneous manner. Also, for some problems (those involving little or no com-
munication among virtual processors of a VP set) it does not matter how the user specifies
these properties. Paris provides a function for creating geometries that does not require
specification of ordering or weight information.

Each dimension of a geometry is given an ordering. The ordering of a dimension specifies
how NEWs coordinates for that dimension are mapped onto physical processors. There are
currently two possible orderings: NEWs ordering and send-address ordering. (There may be
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more in the future.) Different dimensions of a geometry may be given different orderings.

The NEWs ordering specifies the embedding of the grid into the physical (hardware) n-
dimensional grid such that processors with adjacent NEWS coordinates are in fact neighbors
within the physical grid. The send-address ordering specifies that if processor A has a
smaller NEWS coordinate than processor B (in the specified dimension), then A also has a
smaller send address than B. Paris functions that provide nearest-neighbor communication
(the CM:get-from-news family of functions, for example) perform best with NEws ordering.
Send ordering is useful for applications such as Fast Fourier Transform; under the send
ordering, processors that are nearest neighbors within the physmal grid have grid coordinates
that differ by various powers of two.

What is the weight of a dimension for? Whenever the VP ratio of a VP set is greater
than 1, some number of virtual processors are co-resident on a physical processor. If these
virtual processors happen to all be in the same dimension of their geometry, communi-
cation among them will be even faster than if they were neighbors in the physical NEWs
grid. Communication among virtual processors assigned to the 16 physical processors on
a Connection Machine chip is also faster than communication between chips, even if the
processors concerned are neighbors in the physical NEWSs grid.

Paris can lay out virtual processors on physical processors in such a way as to take advan-
tage of intra-processor and intra-chip communication, provided the Paris user knows which
dimension(s) of the geometry will sustain the heaviest communication. (By communica-
tion, we mean also operations such as scan and spread). Thus, Paris provides an operation
for creating geometries with an indication (the weight) of which dimension will have the
heaviest communication, which will be second heaviest, etc. Paris then maps the virtual
processors onto the physical processors in such a way as to favor the dimensions with the
heaviest communication. '

2.10 Flags

Each Paris virtual processor has an assortment of one-bit flags. These flags are represented
as fields that are specially associated with VP sets. These fields are automatically created
when the VP set is created by CM:allocate-vp-set.

Many Paris operations store into these flags rather than, or in addition to, storing results
into explicitly supplied argument fields. For example, the CM:s-add-2-1L operation adds one
signed integer to another, but also stores information into the carry flag and the overflow
flag.

The entire set of flags for each virtual processor is as follows.

e The contezt-flag indicates which virtual processors are active within the current VP
set. Nearly all Paris operations are conditional; the operation is effectively carried out
only in those processors whose contezxt-flag is 1, and processors whose contezt-flag is
0 are unaffected. Some operations are always unconditional.

e The test-flag holds the result of numeric comparisons and other tests, or indicates
which operations failed because of bad operands.

e The carry-flag holds the carry in and carry out for some integer arithmetic operations.
A few operations use the carry-flag as an implicit input.

10
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e The overflow-flag indicates which operations produced results that the destination
field was too small to contain. Many Paris operations can affect the overflow-flag.

11
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Data Formats

A data item always consists of a string of bits having consecutive addresses. Such a bit
string is called a field. The term field is also used to refer to a collection of fields, one for
each virtual processor.

Many Paris operations may be regarded as interpreting bit fields as being of particular
data types or formats. Currently Paris provides operations that regard the contents of bit
fields as structured according to the following data types:

e signed integers, represented in two’s-complement format
e unsigned integers, represented in straight binary format

o floating-point numbers, represented in a format close to that specified by IEEE stan-
dard 754 for floating-point arithmetic

e send-addresses, which are unsigned integers that label virtual processors for commu-
nication purposes

e NEWS coordinates, which are unsigned integers, tuples of which label virtual processors
within a Cartesian grid for communication purposes

The Connection Machine system allows unusual flexibility in that the hard ware does not en-
force any particular length or alignment requirements. Paris supports integers and floating-
point numbers of almost any size. (However, certain sizes of floating-point number allow
particularly efficient execution by the hardware floating-point accelerator, and certain sizes
of integer allow certain other operations to be particularly efficient.)

Most Paris operations operate on fields within a virtual processor, delivering results to
other fields within that virtual processor. Frequently we speak of one data item, but really
mean to speak of many instances of that data item, one for each selected processor, to be
considered or operated on in parallel. For example, when we say that an operation sets a
flag when a field has such-and-so value, we mean that a separate decision is made within
each processor whether to set that processor’s flag, based on the value of the field within
that processor.

13
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3.1 Bit Fields

A bit field is specified by a bit address a and a positive length n; the field consists of the
bits with addresses a through a + n — 1, inclusive. Therefore the address of a field is the
same as that of the lowest-addressed bit.

3.2 Signed Integers

A signed integer is specified in the same way as a simple bit field, by a bit address a and
a positive length n. The signed integer is represented in two’s-complement form, and so
a signed integer of length n can take on values in the range —(2(®~1)) through 2(»~1) — 1,
inclusive. The least significant bit has address a, and the most significant (sign) bit has
address a + n — 1.

All arithmetic on signed integers is performed in a strict wraparound mode. As a rule,
if the result of an operation overflows the destination field, the overflow-flag is set, and the
destination receives as many low-order bits of the true result as will fit. For example, using
4-bit signed arithmetic, multiplying 4 by —7 will produce the 4-bit result 4 (and also set the
overflow-flag), because the two’s-complement representation of —28 is ...111111100100, of
which the four low-order bits are 0100, or 4. Signed-integer operations that do not overflow
leave the overflow-flag unchanged.

In order to simplify the Connection Machine microcode, this arbitrary restriction is im-
posed: the length n may not be zero or one. In addition, certain operations on signed
integers cannot handle operands whose length is greater than the value of the variable
CM: *maximume-integer-length*; see section 3.6.

3.3 Unsigned Integers

An unsigned integer is specified in the same way as a simple bit field: by a bit address a
and a positive length n. The unsigned integer is represented in stright binary form, and so
an unsigned integer of length n can take on values in the range 0 through 2" — 1, inclusive.
The least significant bit has address a, and the most significant bit has address a + n — 1.

All arithmetic on unsigned integers is performed in a strict wraparound mode, modulo
2". As a rule, if the result of an operation overflows the destination field, the overflow-flag
is set, and the destination receives as many low-order bits of the true result as will fit.
For example, using 4-bit unsigned arithmetic, multiplying 4 by 7 will produce the 4-bit
result 12 (and also set the overflow-flag), because the two’s-complement representation of
28 is ...00000011100, of which the four low-order bits are 1100, or 12. Unsigned-integer
operations that do not overflow clear the overflow-flag.

Unsigned integers, unlike signed integers, may be of length zero or one as well as of larger
sizes. (Note that an unsigned integer of length zero is considered to have the value 0.)
However, certain operations on unsigned integers cannot handle operands whose length is
greater than the value of the variable CM: *maximum-integer-length*; see section 3.6.
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3.4 Floating-Point Numbers

A floating-point data item is specified by three parameters: a bit address a, a significand
length s, and an exponent length e. The total number of bits in the representation is
s+ e+ 1, and the data item occupies the bits with addresses a through a + s + e, inclusive.

The significand occupies bits a through a + s — 1, with the least significant bit at address
a. A hidden-bit representation is used, and so the significand is normally interpreted as
having a 1-bit as its most significant bit implicitly just above the bit at address a + s — 1.
If the exponent field is all zero-bits, however, then the hidden bit is taken to be 0.

The exponent occupies bits a + s through a + s + e — 1, with the least significant bit at
address a + s. An excess-(2°"! — 1) representation is used.

The sign bit occupies bit a + s + e, and is 1 for a negative number and 0 for a positive
number. Overall, a sign-magnitude representation is used, so inverting the sign of a floating-
point number merely involves flipping the sign bit. Note that there is both a plus zero and
a minus zero.

When s = 23 and e = 8, this is equivalent to the IEEE standard 754 single-precision
format, which looks like this:

313029282726252423222120191817161514131211109 8 7 6 6 4 3 2 1 0

S exponent significand

When s = 52 and e = 11, the Paris floating-point format is equivalent to IEEE standard 754
double-precision format. The IEEE standard single-extended and double-extended formats
can also be accommodated by suitable choices of s and e.

While the Paris floating-point format is equivalent to the IEEE standard format, it must
be emphasized that the Paris implementation does not support equivalent operations at
this time.! “Soft” underflow (using denormalized numbers for the result) is not supported.
Rounding is performed correctly in all cases, using the round-to-nearest mode; the several
rounding modes are not supported. The not-a-number (NAN) values are not supported. The
standard exceptions and flags are not all supported. It is strongly recommended that a user
of Paris always use the IEEE standard formats unless careful analysis of the application
(such as a need for speed or additional exponent range) indicates that another format is
required and adequate.

The format of a floating-point operand must obey certain restrictions. The length s must
be greater than 0 and not greater than CM:*maximum-significand-length*. The length e
must be greater than 1 and not greater than CM:*maximum-exponent-length*. See section
3.6. These restrictions are additionally imposed: e > 2, s > 1, and 27! > s + 1. Values for
s and e not satisfying these restrictions will cause unpredictable results.

! Thinking Machines Corporation does intend to support all standard IEEE arithmetic operations in a
future software release.
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3.5 Send Addresses

Every virtual processor in a VP set has an identifiying send address, a kind of serial number
that distinguishes it from all other virtual processors in that VP set. These addresses are
used to perform general interprocessor communication. For example, in the CM:send-1L
operation, each virtual processor provides a message and the send address of some other
processor, and that message is sent to the specified processor (all such messages effectively
being sent in parallel).

The number of bits in a send address depends on the VP set, or rather upon the geometry
of that VP set. The function CM: geometry-send-address-length may be used to determine
the length in bits of a send address for a given geometry. Suppose that for geometry G this
function returns m; then a send address a for a virtual processor in a VP set with geometry
G is an unsigned integer such that 0 < a < 2™. (Programs should not, however, rely on
the fact that every integer k£ such that 0 < k < 2™ is a valid send address. In a future
release of Paris the space of send addresses may contain “holes”; this could occur when the
total number of virtual processors in the geometry is not a power of two, an extension that
Thinking Machines is contemplating for the future.)

3.6 Configuration Variables

The current configuration of the machine is reflected in a few global variables. Programs may
refer to these so they can adapt to various sizes of machine. These variables are set by the
cold boot procedure. They should never be set by the user, as there are dependencies among
them, which, if violated, will result in errors. Some variables are fixed by the hardware,
while others depend on the arrangement of virtual processors set up by the attach or cold
boot process. Some variables represent implementation restrictions.

CM: *current-vp-set*

The VP-set-id for the current VP set is always available in this variable. For example,
to determine the total number of processors in the current VP set, one might say (in
Lisp syntax)

(CM:geometry-total-processors
(CM:vp-set-geometry CM:*current-vp-set*))

or (in C syntax)
CM_geometry_total_processors(CM_vp_set_geometry(CM_current_vp_set))
or (in Fortran syntax)
CM_GEOMETRY_TOTAL_PROCESSORS(CM_VP_SET_GEOMETRY(CM_CURRENT_VP_SET))

CM: *physical-processors-limit*

The total number of physical processors available for use.
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CM: *physical-processors-length*
The base-2 logarithm of the total number of physical processors, that is, the minimum
length in bits for an unsigned integer field that can contain the number of any physical
processor.

CM: *physical-memory-limit*
The amount of physical memory per physical processor, including memory that is set
aside for system use.

CM: *physical-memory-length*
The base-2 logarithm of the amount of physical memory per physical processor.

CM:*maximume-integer-length*

Because of implementation restrictions, a few operations on signed and unsigned inte-
gers cannot handle operands longer than the value of CM:*maximum-integer-length*.

Experimentation might reveal that in certain cases some of these operations succeed
when applied to operands that are longer than this variable, but that fact is not
guaranteed in succeeding software releases.

The value of CM:*maximum-integer-length* is never smaller than 128.

CM: *maximume-significand-length*

Because of implementation restrictions, a few operations on floating-point numbers
cannot handle operands with significands longer than a certain size.

Experimentation might reveal that in certain cases some of these operations succeed
when applied to operands that are longer than specified by these variables, but that
fact is not guaranteed in succeeding software releases.

The value of CM:*maximum-significand-length* is never smaller than 96.

CM: *maximum-exponent-lengthx

Because of implementation restrictions, a few operations on floating-point numbers
cannot handle operands with exponents longer than a certain size.

Experimentation might reveal that in certain cases some of these operations succeed
when applied to operands that are longer than specified by these variables, but that
fact is not guaranteed in succeeding software releases.

The value of CM:*maximum-exponent-length* is never smaller than 32.

CM: *no-field*

The value of this variable is a dummy field-id suitable for use as an argument to
CM:send-1L and related instructions to indicate that no notify field is to be used, or
to CM:scan-with-... operations to indicate an unused sbit argument when the smode
argument is :none.
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Chapter 4

Operation Formats

Paris operations are executed at the direction of a program running in the front-end machine.
For each operation there is a function or macro that, when called, causes the Connection
Machine hardware to perform the operation.

4.1 Field Id’s

Most Paris operations operate on bit fields in the memories of the data processors. A bit
field is specified by a field id, a data object that serves to identify the field. A Paris operation
that allocates memory for a new field will generate and return a new field id; this field id
may then be used as an argument to other Paris operations.

For example, in Lisp one might create a new heap field and then unconditionally initialize
its contents to 5.0 in the following manner:

(let ((£f1d (CM:allocate-heap-field 32))) ;Allocate
(CM:f-move-const-always-1L f1d 5.0 23 8) ;Initialize
)

In C the same operation would look like this:

{

CM_field_id_t fld = CM_allocate_heap_field(32); /* Allocate */
CM_f_move_const_always_1L(fld, 5.0, 23, 8); /* Initialize */

}

And in Fortran:

C Declare the variable
INTEGER FLD

C Allocate and initialize

FLD = CM_ALLOCATE_HEAP_FIELD(32)
CM_F_MOVE_CONST_ALWAYS_1L(FLD, 5.0, 23, 8)
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4.2 Constant Operands

Certain operations accept as an operand a single datum computed within the front end
that is broadcast to all of the Connection Machine processors as part of the operation.
Such operations have -constant in their names (or -const, in the case of certain compound
operations). As a rule, every operation with -constant in its name has a counterpart without
-constant in its name.

For example, to CM:f-add-constant-2-1L there corresponds CM:f-add-2-1L. These opera-
tions do exactly the same thing except that the first two operands to CM:f-add-2-1L are
field id’s for fields containing floating-point numbers, whereas CM:f-add-constant-2-1L takes
a field id and a front-end floating-point number. This latter value is broadcast to all (active)
processors and then used in the same way that a second field would be used by CM:f-add-
2-1L. Here are examples of their use in Lisp:

(CM:f-add-2-1L x y 23 8) ;Add field y into field x
(CM:f-add-constant-2-1L x 2.7 23 8) ;Add 2.7 into field x

The same examples in C:

CM_f_add_2_1L(x, y, 23, 8); /* Add field y into field x */
CM_f_add_constant_2_1L(x, 2.7, 23, 8); /* Add 2.7 into field x */

The same examples in Fortran:

C Add field y into field x
CM_F_ADD_2_1L(X, Y, 23, 8)

C Add 2.7 into field x
CM_F_ADD_CONSTANT_2_iL(X, 2.7, 23, 8)

4.3 Unconditional Operations

Most Paris operations are conditional: they take place only in processors that have a 1 in
the contezt-flag. But sometimes it is necessary to perform operations unconditionally (that
is, without respect to the contezt-flag). A number of Paris operations have unconditional
versions, generally named by inserting -always in the name of the conditional function. For
example, CM:s-move-always-1L is the unconditional equivalent of CM:s-move-1L.

Paris operations that deal directly with the contezt-flag are inherently unconditional. For
the sake of brevity, the names of these operations do not contain -always. Any Paris opera-
tion that has -context in its name deals with the contezt-flag and is implicitly unconditional
despite the fact that -always does not also appear in its name. One example is CM:set-
context.

A few other Paris operations also have only unconditional forms but do not have names
containing -always. These are typically specialized communications operations whose names
are already so long that inserting -always would exceed the limit on the length of a name.
One example is CM: u-read-from-news-array-1L.

20



Chapter 4. Operation Format

4.4 Naming Conventions

Lisp, C, and Fortran impose different sets of rules and conventions on how functions and
variables are to be named. The description of Paris in this document strikes a compromise
among these languages. All names in this document are presented in Lisp syntax, but
carefully observing capitalization, to which C is sensitive even though Fortran and Lisp are
not. The Paris Dictionary contains a simple set of rules for converting a Lisp name into the
corresponding C or Fortran name.

The rest of this section describes the general rules that were used to achieve a regular
naming system for Paris operations. It is not necessary to know these rules to use Paris, but
a passing familiarity may help you to remember an exact operation name without having
to look it up, or to recognize the argument format from the operation name.

The name of every Paris operation begins with CM: (in Lisp) or CM_ (in C and Fortran).
It also contains one or more words that are the “main description” of the operation, such
as add or send or read-from-news-array.

Between the leading CM: or CM_and the main operation may be one or more prefixes. The
prefix fe- indicates an operation performed entirely on the front end (often such an operation
has a parallel counterpart without the fe- prefix). Examples of this correspondence are
CM:extract-news-coordinate and CM:fe-extract-news-coordinate. If an fe- prefix is present, it
appears before all other prefixes.

Other prefixes indicate the type of data to be operated upon:

f-  floating-point number
s- signed integer
u- unsigned integer

For example, CM:f-add-2-1L adds floating-point numbers, whereas CM:s-add-2-1L add signed
integers.

If there is more than one type prefix, then the first type applies to the result of the
operation, and the other(s) apply to certain source operands, usually the last one(s). For
example, CM:s-f-truncate-2-2L produces a signed integer result from a floating-point source.

Some operations include in their names the name of another operation. In this case the
embedded operation may have a type prefix. An example is CM:spread-with-f-add-1L. (The
name of such an embedded operation is usually preceded by with-, but exceptions occur
when this would make names too long, as in CM: multispread-f-multiply-1L, an operation that
is not yet implemented but may be in the future.)

There are four groups of suffizes for operation names: -constant, -always, number of fields,
and number of lengths. They always appear (if at all) in this order.

A number-of-fields suffix is simply a digit (preceded by a hyphen or underscore), such as
-3. In many cases there are sets of similar operations differing primarily in their argument
format. For example, CM:f-multiply-3-1L takes three fields and stores the floating-point
product of the second and third fields into the first field, whereas CM:f-multiply-2-1L takes
only two fields, and stores their product back into the first field (thereby overwriting one
source value). These two formats are distinguished by a suffix indicating the number of
arguments that are fields (in this case -3 or -2). As a rule, this suffix is supplied only if it
is necessary to distinguish two or more possible formats.
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A number-of-lengths suffix is simply a digit (preceded by a hyphen or underscore) followed
by a capital L, such as -3L. This suffix indicates how many length arguments are required.
Such arguments indicate the lengths of field arguments. For example, CM:s-add-3-3L takes
three field arguments followed by three corresponding length arguments; but CM:s-add-3-
1L takes three field arguments and a single length argument that describes the length of all
three fields. Note that the format of a floating-point field is described by two arguments
(significand length and exponent length), but these two arguments are lumped together and
counted as a single length. As a rule this suffix always appears in the name of any operation
that takes one or more field length arguments.

To summarize, the name of a Paris operation is more or less of this form:

CM:[fe-]{f- | s- | u-}*(main name)[(embedded name)][-constant][-always][-m][-nL]

An effort has been made to use full English words in the names of Paris operations. The
limitation on the total length of names has made it necessary to use certain abbreviations
universally:

divinto  divide into

fe- front end

f- floating-point
max maximum

min minimum

mod modulo

rem remainder

s- signed integer
subfrom subtract from
u- unsigned integer

Some of these are standard abbreviations, of course, used in many programming languages.
Paris also uses standard abbreviated names for mathematical operations (tan for the tangent
function, for example).

Paris uses certain additional abbreviations in the names of compound operations:

mult  multiply
const constant
sub subtract

An example is CM:f-mult-const-sub-const-1L.

4.5 Argument Order

An attempt has been made to keep argument order consistent. The following rules of thumb
apply.
Arguments that are fields come first. If there is a destination field it always comes first.
Length fields usually come last. They appear in the same order as the fields to which they
apply, but if both integer and floating-point fields appear then the floating-point length ar-
guments appear last. For some complex communication operations, such as scan operations,
certain control arguments follow the lengths.
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Instruction Set Overview

This chapter provides a quick guided tour of the entire Paris instruction set, organized by
categories of functionally related operations. The names of the operations are presented
in the form of charts that bring out the combinatorial structure of the instruction set.
Alternatives are stacked vertically between braces, and the symbol ~ indicates a choice
that adds no characters to the operation name.

The next chapter, the Paris Dictionary, is organized alphabetically by operation name,
and provides detailed descriptions of all the operations.

5.1 VP Sets
These operations create, destroy, and otherwise manipulate VP sets.

allocate-vp-set )
deallocate-vp-set
physical-vp-set
set-vp-set
set-vp-set-geometry
vp-set-geometry )

CM:

The operation CM:allocate-vp-set creates a new VP set having a specified geometry (which
must be created first). The operation CM:deallocate-vp-set may be used to inform the Paris
interface that the user program will not use a VP set any longer.

Of particular importance is CM:set-vp-set, which selects a given VP set as the current VP
set.

Given a VP set, the operation CM: vp-set-geometry returns the geometry associated with
that VP set.

5.2 Geometries

These operations create, destroy, and otherwise manipulate geometries.
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 create-detailed-geometry
create-geometry
deallocate-geometry
geometry-axis-length
geometry-axis-ordering
CM: { geometry-axis-vp-ratio >
geometry-coordinate-length
‘geometry-rank
geometry-send-address-length
geometry-total-processors

L geometry-total-vp-ratio

/

Note the many operations that inquire about the shape of the geometry and various axis
attributes.

5.3 Fields
These operations create, destroy, and otherwise manipulate fields.

(add-offset-to-field-id )
allocate-heap-field
allocate-heap-field-vp-set
allocate-stack-field
allocate-stack-field-vp-set
CM: { deallocate-heap-field
deallocate-stack-through
is-field-in-heap
is-field-in-stack
is-stack-field-newer

| next-stack-field-id

Fields are used to contain data to be operated upon in parallel. Most Paris operations
require one or more fields as arguments.

5.4 Copying Fields
These operations simply copy data from one place to another.

-2L
S-

CM: < u- ) move ~
-constant -1L
f- -always

-zero

The two-length versions of the move operations allow for sign-extension (or truncation) of
signed integers, zero-extension (or truncation) of unsigned integers, and changes of range
or precision for floating-point numbers.
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swap-2

CM: { move-reversed } AL

The move-reversed operation reverses the order of the bits in a field as it copies them. The
swap operation exchanges the contents of two fields.

5.5 Bitwise Boolean Operations

These operations treat fields bit by bit.

CM:

\

(logand
logior
logxor
logeqv
lognand
lognor
logandcl
logandc2
logorcl

\logorc2 )

. )-1-1L
CM:lognot {~2~1L}

Paris provides all ten non-trivial bitwise boolean operations on two operands, as well as the
logical NOT operation that inverts all bits.

5.6 Operations on Flags

~v

-2-1L
-constant -3-1L

}

Special operations are provided for operating on the flags.

CM:

(load- )
store-

clear-

set-

invert-

logand-

logior-
global-logand-
global-logior-

global-count- )

{

test
overflow

}

Flags can be loaded from or stored into another field; cleared to zero or set to one; inverted;
or combined with another field via logical AND or OR. One may also determine whether any
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processor, or all processors, have a flag set, or count the number of processors that have a
flag set.

CM:clear-alI-flags{ ~ }
-always

For convenience, a special compound operation is provided for clearing all the flags except
the context.

~

(load- A )
store-
clear-
set-
invert-
CM: ¢ | logand-
logior-
global-logand-
global-logior-
| global-count- )
logand-context-with-test

context

7

The context flag is distinguished from the others, in that operations on the context flag
are always unconditional, while most operations on the other flags are conditional (that is,
depend on the state of the context flag).

5.7 Operations on Single Bits

Each of these operations takes exactly one one-bit field as its operand.

( clear- )

set-

invert- . ~
CM: global-logand- blt{-always}
global-logior-
. global-count- }

These operations on single-bit fields are provided purely for the sake of efficiency. For
example,

CM:clear-bit =z
has the same effect as
CM:u-move-constant-1L z,0, 1

but requires only one operand to be processed instead of three. Paris also provides uncon-
ditional forms of all these operations.
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5.8 Unary Arithmetic Operations

Paris supports most of the unary arithmetic operations one might expect to find in a
computer instruction set, as well as a number that are unusual. Most of them are provided in
both one-operand and two-operand formats. The one-operand format treats the destination
field as also the source operand; the result replaces the input. The two-operand format has
a separate source operand, and ignores the previous contents of the destination field. (As a
rule, the two-operand format operates correctly if the two operands are the same field, but
may be slower than using the one-operand format.)

s- negate
u-| |isqrt -1-1L
CM: -2-1L

.. Jabs -2-2L
s-signum

For signed and unsigned integers there are negation and integer square root. Absolute value
and signum are provided for signed operands only, as these operations are degenerate in the

unsigned case.
CM: {s- } {mteger-length} 2L
u- | | logcount

The integer-length operation is a modified base-2 logarithm, useful for determining the
minimum number of bits required to represent an integer in signed or unsigned form. The
logcount operation counts the number of 1-bits in a binary representation (or, in the signed
case, it counts the bits that differ from the sign bit).

from -1-1L
CM:u- {to } -gray-code {-2-1L}

Operations are provided for converting to and from a Gray code representation of binary

integers.
f. {" } float
u-
CM:

floor {22t}
e

truncate

Some unary operations take a floating-point operand and produce an integer result, or vice
versa. The float operations convert an integer to a floating-point representation. There are
several different ways to convert a floating-point number to an integer, reflecting different
possible choices for rounding or truncation; floor and truncate provide two such cases.
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negate

sqrt
CM:f- { f-floor {-1-1"}

f-ceiling
f-truncate
 f-signum

/

Floating-point absolute value, negation, and square root are provided, as well as truncating
and signum operations.

4 exp 3

In
(sin )
cos -1-1L
cM:f- {~} tan | {-Z-IL}
sinh
cosh
\ \tathJ

Paris provides a complete set of transcendental and trigonometric functions, including hy-
perbolic functions and their inverses.

5.9 Binary Arithmetic Operations

Paris includes most of the binary arithmetic operations one might expect to find in a com-
puter instruction set, as well as a number that are unusual. Most of them are provided
in both two-operand and three-operand formats. The two-operand format treats the desti-
nation field as also one of source operands; the result replaces the first input. The three-
operand format has two separate source operands, and ignores the previous contents of the
destination field. (As a rule, the three-operand format operates correctly if the destination
field is the same as one or both source fields, but may be slower than using a two-operand
format.)

(add )
subtract
multiply | [-3-3L
CM: {s- }4 max > ~ -2-1L
“J | min -constant | | -3-1L
truncate
(round |

s- rem ~ -2-1L
CM: {u—} {mod} {-constant} {-3-1L}
For signed and unsigned integers, the usual addition, subtraction, and multiplication op-
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erations are provided, as well as max and min operations that store the larger or smaller
of the two inputs. There is no single integer division operation; four are provided, with
names that reflect the rounding or truncation that must occur when the division is not
exact. Conceptually there are four corresponding remainder operations, but only the two
most commonly used are provided in Paris: rem, which corresponds to truncate division;
and mod, which corresponds to floor division.

-2-1L
CM: {3_} subfrom constant -2-1L
onstan 3L

Subtraction is not commutative, and so for efficiency the special case of reverse subtraction
is provided. (Division is not commutative, either, but is a sufficiently expensive operation
that the relative cost of a separate instruction to copy a constant into a temporary field
first is small. Paris therefore does not provide integer reverse division operations.)

-3-3L
CM: {: }add-carry -2-1L
-3-1L

Paris allows addition and subtraction on integers hundreds of bits long; but in case that is
not enough, the usual add-carry and subtract-borrow operations, which use the carry flag as
an implicit input, are provided to allow efficient programming of very high precision integer
arithmetic.

CM: {i:} add-flags -2-1L

The add-flags operation performs an addition and sets the flags but stores no sum. This is
useful in a few specialized situations, such as CORDIC-type calculations.

~ -2-1L
CM:s-s-power {~constant} { -3-1L}

Integer exponentiation operations are provided for signed operands.

((add ~ )
subtract -constant
multiply -always
divide -const-always -2-1L

M- Y y

max -3-1L
min ~
rem -constant

_ | f-power J

For floating-point numbers, the usual addition, subtraction, multiplication, and division
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operations are provided. Note that there are unconditional versions of these operations in
Paris; they can be much faster than the conditional versions when floating-point hardware
is used. Also provided are max and min operations that store the larger or smaller of the
two inputs, a floating-point remainder operation, and an exponentiation operation.

bfi -al;ays 1L
CM:f- {su rom

divinto } -constant -2-1L
-const-always | | -3-1L

Subtraction and division are not commutative, and so for efficiency special cases of re-
verse subtraction and reverse division are provided. (Unlike the integer case, floating-point
division is sufficiently fast and sufficiently common that these special cases are worthwhile.)

-2-2L

s -3-2L
CM:- {u} power -constant-2-1L

-constant-3-1L
Other useful operations include exponentiating to an integer power.
CM:f-atan2-3-1L

A two-input arctangent operation is provided.

5.10 Optimized Floating-Point Computations

Paris supports compound floating-point operations that are functionally identical to se-
quences of simpler floating-point operations. The compound operations are provided purely
for the sake of efficiency; they can be implemented so to exploit floating-point hardware

more cleverly.
mult
-const [ | -sub -const
CM:f- -1L
-mult
sub -const -const

These compound operations perform calculations of the following forms: za + b, za — b,
(z + a)b, and (z — a)b, where z is always a field in memory, and a and b may each be either
a field or a constant.

5.11 Arithmetic Comparisons

Paris supports the usual six comparison operations =, #, <, <, >, and > for integers and
floating-point numbers.
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eq
ne -2L
CM: {s-} It ~
u-| |le -constant  -1L
gt -zero
\ ge )
eq)
ne
It ~
CM:f-J le -constant ) -1L
gt -zero
(ge )

Each is available in three forms: compare two fields, compare a field to a constant, and
compare a field to zero. The integer operations also allow integer fields of differing length
to be compared.

5.12 Pseudo-Random Number Generation

Paris provides a built-in generator of uniformly distributed pseudo-random numbers.

CM: {:-} random -1L

CM:initialize-random-generator

One may generate unsigned integers over a specified range, or floating-point numbers in the
range from 0.0 (inclusive) to 1.0 (exclusive).

5.13 Arrays

Often it is convenient to treat a large field as an array of smaller fields. These operations
allows each virtual processor to index independently into its own array.

(aref )

aref32 {-shared} {-always}
CM: » -2L

aset

aset32 {-shared} J

Three kinds of arrays are supported. An ordinary array is laid out in memory exactly as
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one would expect: each processor contains its own array elements, concatenated end-to-end
to form one large field.

A so-called “fast” array is laid out in such a way that an array element logically belonging
to one processor is actually stored in memory belonging to 32 processors. The total amount
of memory involved is the same, of course, but because the data is laid out in this peculiar
manner ordinary Paris operations (such as CM:f-add-2-1L, for example) cannot properly
operate on array elements directly. Only special operations designed to operate on fast
arrays can properly fetch or store array elements; however, these special operations are
much faster than the corresponding operations on ordinary arrays.

A shared array is shared among all the virtual processors occupying a group of 32 physical
processors. This can save a great deal of memory, and is useful for lookup tables that are
the same for all processors. Of course, care is required when storing into such arrays. In
principle this sharing concept could be supported in both ordinary and fast versions, but
in fact Paris provides special operations only for fast shared arrays.

Paris also provides, for efficiency, certain compound operations that combine communi-
cation with access to a fast array.

5.14 General Communication

The router functions (send and get) transmit data in a general fashion that allows any
processor to communicate directly with any other processor.

( ~ 3

(-overwrite
-logand
-logior
-with ¢ -logxor
-s- add
-u- »< min
L L -f- max J |
-overwrite
CM:send-aset32 < -logior -2L
-u-  add

CM:send < > =1L

-1L
CM: get {-aref32-2L}

CM:my-send-address
Every processor within a VP set is identified by an unsigned binary integer called its

send-address. If processor A is to send a message M to processor B, then procesor A must
contain the send-address of processor B as well as the data M to be sent.
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For efficiency, Paris includes compound operations that combine general communication
with a fast array reference (aref32 or aset32) within the addressed processor.

5.15 NEWS Communication

The NEWs functions (send-to-news and get-from-news) organize the processors into a
multidimensional rectangular grid, and transmit data from every processor to its neighbor
along a specified grid axis. The NEWS operations are considerably more efficient, when
applicable, than using the general router mechanism.

M: get-from- news ~ -1L
send-to- -always

These operations copy data from each processor to the adjacent processor along any NEWS
axis.

my-news-coordinate
extract-news-coordinate

CM: { deposit-news-coordinate 3 -1L
deposit-news-constant
make-news-coordinate

The operation my-news-coordinate stores the NEWS coordinate of each selected processor
along a specified NEWs axis into a destination field within that processor.

The operation eztract-news-coordinate defines the mapping between send-addresses and
NEWS coordinates. If g is a geometry, a is an axis number, and s is a send-address, then
eztract-news-coordinate(g, a, s) is the coordinate within geometry g of processor s along the
NEWS axis described by a.

A related operation, deposit-news-coordinate, may be used to construct a send-address
given a set of coordinates by incrementally modifying a send-address one coordinate at a
time. If g is a geometry, s is a send-address (for a processor in that geometry), a is an axis
number, and ¢ is a coordinate along that axis, then deposit-news-coordinate(g,s,a,c) is a
new send address s’ such that
c, ifa'=a

eztract-news-coordinate(g,a’, s') = . .
ziract-news-coordar (9,0’ eztract-news-coordinate(g, a’, s), ifa' # a

In other words, deposit-news-coordinate(g, s,a,c) computes a new send-address that has
exactly the same NEWS coordinates as s ezcept for the coordinate on axis a, which is altered
to be c.

Another related operation, make-news-coordinate, constructs, within each selected pro-
cessor, the send-address of a processor that has a specified coordinate along a specified
NEWS axis, with all other coordinates zero. If g is a geometry, a is an axis number, and
¢ is a coordinate along a, then make-news-coordinate(g, a,c) is s, the send-address of the
processor with coordinate ¢ along the NEWs axis a within geometry ¢ and with all other
coordinates held at zero. Thus, given a set of zero coordinates of rank(g), s',

make-news-coordinate(g,a,c) = deposit-news-coordinate(g,s’,a,c) = s
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In other words, make-news-coordinate is the same as deposit-new-coordinate except that it
does not need a send-address operand.

Frequently it is useful to represent several NEWS coordinate values in a single integer called
a multi-coordinate. Certain Paris operations, notably the multispread series, take a multi-
coordinate as one operand. A multi- coordmate requires no more bits for its representation
than a send address.

There are two abstract operations, eztract-multi-coordinate and deposit-multi-coordinate,
for accessing and altering multi-coordinates. They are analogous to eztract-news-coordinate
and deposit-news-coordinate, the difference being simply that a multi-coordinate contains
values for several news coordinates.

Suppose that ¢ is a geometry, A is an axis-set, and s and t are send-addresses, and let

s’ = deposit-multi-coordinate(g, s, A, extract-multi-coordinate(g, 4, t))

Then s’ is the same as s except that coordinates for axes in A have been replaced by
corresponding coordinates extracted from t. More formally,

eztract-news-coordinate(g,a,s), ifag A

- - inat N = . .
eatract-news-coordinate(g, a, s') { extract-news-coordinate(g,a,t), ifa € A

Certain Paris instructions, most notably CM: multispread-copy-1L, require a multi-coordinate
as an argument. The simplest way to construct such an argument is to construct a send-
address and then use CM:fe-extract-multi-coordinate.

The following routines define the relationship between a processor whose send-address is
k and its neighbors in a NEWS grid.

function news-neighbor(g, k, azis, direction) is
return news-relative(g, k, azis, direction, 1)

function news-relative(g, k, azis, direction, distance) is
case direction of
:upward : let z = (eztract-news-coordinate(g, azis, k) + distance)
:downward : let z = (extract-news-coordinate(g, azis, k) — distance)
let ' = z mod geometry-azis-length(g, azis)
return deposit-news-coordinate(g, k, aris,z’)

5.16 Scan, Reduce, Spread, and Multispread

These operations provide extremely powerful combinations of communication and compu-
tation in regular patterns on multidimensional grids.

(-copy )
-logand
scan-with | g.
duce-with | | &
cm: "¢ . -logxor 1L
spread-with dd
multispread s ac
-u- < min
- max } |
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CM:scan-with-f-multiply -1L

CM:enumerate -1L

In a scan operation, every selected processor receives the result of combining source fields
from many processors. The reduce and spread operations are special cases of scans that
are particularly useful and can be made especially fast. The multispread operations are a
generalization of spread operations.

A scan operation requires that a NEWs axis be specified. The processors are thereby
divided into disjoint ordered sets of processors called scan classes. Two processors belong
to the same scan class if their NEWs coordinates differ only along that axis, and they are
ordered by their coordinates along that axis. Only active processors participate in a scan
operation; the active processors within a scan class are referred to as the scan subclass
within that scan class.

Not all the processors in a scan class contribute to the result computed for a given
processor. A scan class may be taken whole, or it may be divided into pieces in one of two
ways. Each such piece is called a scan set, and every processor belongs to just one scan
set. The scan set chosen for each processor is controlled by the smode operand and by the
purpose it assigns to the sbit operand.

e If smode is :none, then there is no one-bit field, and the sbit operand is ignored. The
scan set for a processor k is the entire scan subclass for k.

e If smode is :segment-bit, then the sbit field is a “segment bit.” Operationally speaking,
a processor (selected or not) is the lowest-addressed processor in a segment if either it
is the lowest-addressed processor in its scan class or if its sbit field is 1. The segment
bit therefore divides a scan class unconditionally (that is, without respect to context)
into segments, and a scan operation is done within each segment. There are two
remarkable points here. First, the way in which a segment bit divides a scan class
does not depend on either the contezt-flag or the direction of the scan. Second, values
from one segment never contribute to the result for any processor in another segment.

e If smode is :start-bit, then the sbit field is a “start bit.” Operationally speaking, in
each selected processor in which this bit is 1, the scan operation will start over again.
The start bit therefore divides a scan subclass into pieces, and a scan operation is done
within each piece. These pieces differ from the segments determined by a segment
bit. There are three remarkable points here. First, the start bit is examined only
in selected processors. Second, the way in which a start bit divides a scan subclass
depends on the direction of the scan. Third, for an exclusive scan, a selected processor
whose start bit is 1 will receive the identity for the combining operation only if no other
selected processor in the same scan subclass precedes it in the ordering; otherwise, it
will receive the combined values from all processors in the piece preceding it in the
ordering.

A scan operation furthermore behaves as if all the processors were passed over (“scanned”)
in linear order; therefore the result computed for a given processor may depend only on
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processors below it in the ordering, or only on processors above it, depending on the direction
of the scan. For each processor k, the direction and inclusion operands determine which
processors within the scan set for k can potentially contribute to the result for k. This final,
most narrowed set of potential contributors is called the scan subset for k.

If direction is :upward, then the scan set for processor k will contain only processors
below k in the ordering. If direction is :downward, then the scan set for ¥ will contain only
processors above k in the ordering.

If inclusion is :exclusive, then the scan set for processor k£ will not contain k itself. If
inclusion is :inclusive, then the scan set for k£ will contain & itself.

The set of processors whose source fields actually do contribute to the dest field of pro-
cessor k is called the scan subset for k. This will be a subset of the scan set for k (possibly
the entire scan set).

These concepts are embodied in the following pseudo-code routines, which are used in
the Paris Dictionary to describe the behavior of scan and other operations. These routines
define scan classes in terms of the more general concept of a hyperplane, which is any
subset of the processors obtained by holding some NEWS coordinates fixed while letting the
others range freely over their respective axes. (The hyperplane routine is also used in the
pseudo-code descriptions of the multispread operations.)

function hyperplane(g, k, azis-set) is
let other-azes = {a |0 < a < rank(g)} \ azis-set
let ¢ = eztract-multi-coordinate(g, other-azes, k)
return { m | m € current-vp-set A eztract-multi-coordinate(g, other-azes,m) = c}

function scan-class(g, k, azis) is
return hyperplane(g, k, { azis })

function scan-subclass(g, k, azis) is
return { m | m € scan-class(g, k, azis) A contezt-flaglm] = 1}
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function scan-set(g, k, axis, direction, smode, sbit) is
let C = scan-subclass(g, k, azis)
function coord(s) = extract-news-coordinate(g, azis, s)
case (smode) of
(:none) :
return C
(:segment-bit) :
let @ = {m | m € hyperplane(g,k,{ azis}) A (sbit[m) =1}
return {m |m € C A =35 :(j € Q A coord(m) < coord(j) < coord(k))}
(:start-bit) :
let @ = {m | m € hyperplane(g,k,{ azis }) A (sbit[m] =1}
case (direction) of
(:upward) :
return {m |[m € C A-3j: (5 € (CNQ) A coord(m) < coord(j) < coord(k)) }
(:downward) :
return {m |m e C A-3j:(j € (CNQ) A coord(k) < coord(j) < coord(m)) }

function scan-subset(g, k, azis, direction, inclusion, smode, sbit) is

let S = scan-subset(g, k, axis, direction, smode, sbit)

function coord(s) = extract-news-coordinate(g, azis, s)

case (direction, inclusion) of
(:upward, :exclusive) : return {m | m € S A coord(m) < coord(k) }
(:upward, :inclusive) : return {m | m € § A coord(m) < coord(k) }
(:downward, :exclusive) : return {m | m € § A coord(m) > coord(k)}
(:downward, :inclusive) : return {m | m € S A coord(m) > coord(k) }

The following table shows the results computed for various operand combinations for a
scan with unsigned addition over a set of values all of which are 1.
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scan-with-u-add contezt-flag| 11 1100001100111 0
sbit{0010001000000100
source }]1111111111111111
direction  inclusion smode
:upward :exclusive :none 0123 45 678
:downward :exclusive :none 8765 4 3 21 Ov'
:upward :inclusive  :none 1234 5 6 789
:downward :inclusive :none 9876 5 4 321 i
:upward rexclusive :segment-bit | 0 1 01 01 201
:downward :exclusive :segment-bit 1010 21 010
:upward tinclusive  :segment-bit |1 212 12 312
:downward :inclusive :segment-bit | 2 1 2 1 32 121
:upward :exclusive :start-bit 0121 23 451 |
:downward :exclusive :start-bit 2154 32 110
:upward tinclusive  :start-bit 1212 34 512
:downward :inclusive :start-bit 321 5 4 3 211

A spread operation is like a scan, except that rather than producing “intermediate” or
“running” results by using scan subsets, every processor gets the result of combining the
values from every processor in the scan subclass.

A reduce operation is like a spread, except that instead of storing the result in every
processor in the scan subclass, it stores the result into only one specified processor of the
scan class.

A multispread operation is like a spread, but allows hyperplanes of any rank, not just of
rank 1, to serve as the scan classes. In this manner, for example, a single value within each
hyperplane can be replicated throughout its hyperplane.

5.17 Global Reduction Operations

A global operation combines a number of values in much the same manner as a scan or reduce
operation, but delivers the result to the front end rather than storing it in a processor field.

(-logand )
-logior
-logxor
-s- add
CM:global . -1L
-u- p ¢ min
-f- max
-s- | .
u-max { } -intlen
-u- )

All the usual combining operations are provided. In addition, the compound operation
max-intlen is provided for efficiency; it is much faster than than a separate integer-length
operation followed by a global-max operation.

38



Chapter 5. Instruction Set Overview

5.18 Memory Data Transfers

These operations simply transfer data between a field in the processor array and the front
end.

s read from rocessor
cM: { u- : P AL
‘. write-to -news-array

The operations read-from-processor and write-to-processor each transfer a single datum
(integer or floating-point).

The operations read-from-news-array and write-to-news-array can transfer entire arrays or
subarrays. Their implementation is optimized for relatively high throughput.

5.19 The LEDS

One of the most attractive features of a Connection Machine system is the array of blinking
lights on the faces of its cabinet.

CM:set-system-leds-mode

This operation specifies whether the lights are to be blinked automatically, or turned on
and off under user program control.

CM: Iatch-leds{ ~ }
-always

These operations turn lights on and off according to the contents of a one-bit data field.

5.20 Front End Operations

Programs that use Paris operations frequently need to perform certain calculations on the
front end that are not easily expressed in the host programming language. These operations
are provided as part of the Paris library interface.

(from-gray-code )
to-gray-code
extract-news-coordinate
extract-multi-coordinate
deposit-news-coordinate
make-news-coordinate )

CM:fe-

These operations deal primarily with Gray codes and NEWs coordinates.

39



Chapter 5. Instruction Set Overview

5.21 Environmental Interface

These operations pertain to allocating, deallocating, initializing, and debugging the Con-
nection Machine.

attach

attached
cold-boot
detach

init

power-up
reset-timer
set-safety-mode
start-timer
stop-timer

time

| warm-boot J

CM:

The attach operation is used to attach the front end process to a specified portion of all
Connection Machine processors.

The attached operation returns true if the front end process actually has Connection
Machine processors attached for use.

The cold-boot operation is used to initialize the Connection Machine hardware allocated
to the executing front end.

The detach operation frees attached Connection Machine processors from the currect
front end process.

The init operation is used by the C/Paris and Fortran/Paris interfaces to initialize the
Connection Machine hardware.

The power-up operation resets the Nexus, causing all front-end computers to become
logically detached from the Connection Machine system.

The set-safety-mode operation allows the user to specify the level of run-time error check-
ing to be performed by the Paris interface.

The time family of operations are used to measure both the execution and the elapsed
time taken by other operations.

The warm-boot operation is used by the Lisp/Paris interface to reinitialize the Connection
Machine system without disturbing user memory.
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The C/Paris Interface

Paris is used as a set of variables, subroutines, and macros within a program that may
be written in any one of a number of languages. This chapter explains how to call Paris
instructions from C programs.

6.1 C/Paris Header Files

Type specification statements required for programs that access the C/Paris interface are
given in the header file named

/usr/include/cm/paris.h

This header file contains four kinds of declarations that provide an environment for calling
Paris instructions from C. )

e Type declarations define new data types (struct types, for example) needed for com-
munication with certain Paris operations.

e Function declarations define the result types of all C/Paris function subprograms.

e Variable declarations define configuration variables that provide access to the state of
the Connection Machine system.

o #define statements define symbolic numeric constants to be used as arguments to
certain C/Paris subprogram calls.

These declarations are discussed in more detail in the following sections.

6.2 C/Paris Instruction Names and Argument Types

This section describes how to call these instructions from C and what types of arguments
to pass them.

The instruction names and other names that appear in this document are spelled in a
form acceptable to Lisp (an arbitrary choice in order to have some common denominator
for the dictionary). Each name is easily converted to the corresponding C name using the
following two-part rule:
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o If the Lisp name begins with a colon, add ”CM” to the front.

e Drop all asterisks, and convert all colons and hyphens to underscores.

This usually results in a name written in mixed case (some letters uppercase and some
lowercase). The name must be written in exactly that way, for C identifiers are case-
sensitive. (Although Lisp is not case-sensitive, all identifiers appearing in Lisp form in this
document are written in mixed case so as to produce the correct C name after applying the
conversion rules.)

Chapter 9 describes each of the Paris instructions in terms of its arguments, its effect
on operand fields residing in Connection Machine memory, and the result (if any) that
it returns to the front end. The same argument name is often used in several different
instruction definitions, but arguments with the same name always have the same type (as
viewed by the front-end C program). For example, dest is used throughout to represent the
field-id of a destination field; the field itself may be a floating-point or an integer field, the
width of which is specified by other arguments to the instruction, but to the C program the
argument is always simply a field-id.

Following is a brief description of the major classes of arguments that can be passed to
subprograms of the C/Paris interface.

6.2.1 Id Types

These are values that should be treated as abstract entities, or “black boxes.” They are
created using special Paris instructions, and their actual values have no significance to the
calling C program; they are simply tokens that may be passed to other Paris routines.

vp-set-id
A value representing a virtual processor set. Its C type is CM_vp_set_id_t.

geometry-id

A value representing a geometry with a particular shape. Its C type is
CM_geometry_id_t.

field-id
A value representing a field allocated on the CM. Its C type is CM _field_id_t.

6.2.2 Operand Field Addresses

Most Paris operations require one or more field-id’s to indicate one or more regions of
Connection Machine memory to be processed. Such field-id’s are obtained from memory
allocation calls. Their C type is CM_field_id_t.

dest, source, sourcel, source2

These field-ids specify fields to be used as source or destination operands of an in-
struction.
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send-address
This argument specifies a field that itself contains, within each processor, the send
address of a processor (possibly the same one, possibly another).

news-coordinate

This argument specifies a field that itself contains, within each processor, the NEWS
coordinate of a processor (possibly the same one, possibly another).

notify
A field-id for a 1-bit field to hold a result indicating receipt of a message by a send
instruction.

sbit

A field-id for a 1-bit field that indicates how Paris scan operations should divide
processors into logical groups.

6.2.3 Immediate Operands

These arguments are scalar values that participate in Paris operations as if they were first
copied to every Connection Machine processor and then operated upon as if a field-id had
been supplied. Paris operations that take “immediate” operand values of this sort usually
have “constant” or “const” in their names.

source-value, source2-value

A (front-end) value or variable to be supplied as input to an instruction on the CM.
The type of value passed depends on the instruction to which it is passed. The C type
of such an immediate operand is long for a signed integer value, unsigned long for a
signed integer value, or double for a floating-point value.

send-address-value
An integer, the send address of a single particular processor. The C type of such an

immediate operand is CM_sendaddr_t.

news-coordinate-value An integer, the NEWS coordinate of a single particular processor.
The C type of such an immediate operand is unsigned long.

6.2.4 Operand Field Lengths

These are integer values that specify the widths of source and destination operand fields on
the CM. Their C type is unsigned.

len, slen, slenl, slen2, dlen

An integer value designating the length (in bits) of a source field that will be treated
by the operation as a bit field, a signed integer, or an unsigned integer. It is not
unusual for this value to be 32 to match the size of C long variables on the front end,
but other lengths may be used as well—longer ones for additional precision, shorter
ones for improved speed.
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s, ds, ss

An integer value designating the significand length of a floating-point field. For single-
precision (C type float) fields, this value should be 23; for double-precision (C type
double) fields, the value should be 52.

e, de, se
An integer value designating the exponent length of a floating-point field. For single-

precision (C type float) fields, this value should be 8; for double-precision (C type
double) fields, the value should be 11.

6.2.5 Miscellaneous Signed and Unsigned Values

Both signed and unsigned Paris quantities are represented in C by variables and values
whose C type is unsigned long. These are variously referred to, depending on their roles
within particular operations, under the following names:

offset, azis, azis-length, coordinate, rank, multi-coordinate

6.2.6 Bit Sets and Masks

Arguments representing sets taken from universes of up to 31 elements are represented as
integer values, where the bit whose value is 27 is 1 to indicate that element j is in the set.
Their C type is unsigned long.

At present, the only universe of interest in Paris is azis-mask, the set of axes for a given
geometry.

6.2.7 Vectors of Integers

These arguments should be represented as C one-dimensional arrays whose elements are of
C type unsigned. The maximum size of these vectors is 31.
azis-vector, start-vector, offset-vector, end-vector, dimension-vector

6.2.8 Multi-dimensional Front-end Arrays

Multi-dimensional front-end arrays of any C integer or floating-point type can be transferred
to and from CM memory using a single instruction (see section 5.18).
front-end-array

Such an array is passed simply by mentioning the name of the array.

6.2.9 Symbolic Values
The symbolic constants defined in #define statements in the C/Paris header file should be

used when supplying values for these arguments:

direction

One of the values CM_upward or CM_downward, indicating the direction of a scan,
NEWS, or other instruction.
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inclusion

One of the values CM_exclusive or CM_nclusive, indicating the boundaries of a scan
instruction.

smode

One of the values CM_none, CM_start_bit, or CM_segment_bit, indicating how a scan
operation is to be partitioned.

There are other symbolic values as well, but these are the most important. All names
are formed by the standard rule: starting from a Lisp name such as :start-bit, add “CM” to
the front and then convert colons and hyphens to underscores, yielding CM_start_bit.

6.3 C/Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section ?? for a list. The C/Paris interface makes
these variables accessible through variables declared in the C/Paris header file. They are
initialized in an application program by a call to the subroutine CM_init and should not be
changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM _physical_processors_limit is a value that depends
upon the size of the Connection Machine to which the application is attached.

Numeric values that are constant for a given release of the CM System Software are given
in #define statements.

6.4 Calling Paris from C

This section describes how to build C programs that access the Paris instruction set using
the C/Paris interface. Such programs must manage the dynamic allocation and deallocation
of Connection Machine fields directly. This section describes the form of C main programs
and subprograms that call the C/Paris interface, as well as the steps involved in compiling
and linking such programs.

The following code fragment illustrates the structure of a C main program that calls Paris
instructions.

#include <cm/paris.h>

x;xain() {
CM_init();

CM_paris_instruction(...);

if ( CM_configuration_variable > limit ) ...
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Note that the call to CM.init is required prior to any other calls to Paris instructions.
The following code fragment illustrates the structure of a C subroutine subprogram that
calls Paris instructions.

#include <cm/paris.h>
float test() {
CM_paris_instruction(...);

if ( CM_configuration_variable > limit ) ...

}

It looks exactly like a main program in its use of Paris, ezcept that a subprogram should
not call CM_init.
Use the following command to compile and link these program units:

% cc main.c test.c -lparis

To compile and link these program units for execution under the simulator, use the following
cc command:

% cc main.c test.c -lparissim

Note that there should be no space between the -l option and its argument.
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Chapter 7

The Fortran/Paris Interface

Paris is used as a set of variables and subroutines within a program that may be written
in any one of a number of languages. This chapter explains how to call Paris instructions
from Fortran programs, especially those compiled by VAX Fortran and Sun Fortran.

The Fortran/Paris interface is itself an interface to C/Paris (see chapter 6).

7.1 Fortran/Paris Header Files

Type specification statements required for programs that access the Fortran/Paris interface
are given in the header file named

/usr/include/cm/paris-configuration-fort.h

This header file contains three kinds of declarations that provide an environment for calling
Paris instructions from Fortran.

e Type specification statements define the result types of all Fortran/Paris function
subprograms.

¢ A declaration of a common block named cmval defines configuration variables that
provide access to the state of the Connection Machine system.

o PARAMETER statements define symbolic numeric constants to be used as arguments
to certain Fortran/Paris subprogram calls.

These declarations are discussed in more detail in the following sections.

7.2 Fortran/Paris Instruction Names and Argument Types

This section describes how to call these instructions from Fortran and what types of argu-
ments to pass them.

The instruction names and other names that appear in this document are spelled in a
form acceptable to Lisp (an arbitrary choice in order to have some common denominator
for the dictionary). Each name is easily converted to the corresponding Fortran name using
the following two-part rule:
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e If the Lisp name begins with a colon, add "CM?” to the front.

e Drop all asterisks, and convert all colons and hyphens to underscores.

It is also permissible to convert names to entirely uppercase letters if desired, as Fortran
identifiers are not case-sensitive.

Chapter 9 describes each of the Paris instructions in terms of its arguments, its effect on
operand fields residing in Connection Machine memory, and the result (if any) that it returns
to the front end. The same argument name is often used in several different instruction
definitions, but arguments with the same name always have the same type (as viewed by the
front-end Fortran program). For example, dest is used throughout to represent the field-id
of a destination field; the field itself may be a floating-point or an integer field, the width
of which is specified by other arguments to the instruction, but to the Fortran program the
argument is always simply a field-id.

Following is a brief description of the major classes of arguments that can be passed to
subprograms of the Fortran/Paris interface.

7.2.1 Id Types

These are integer values that should be treated as abstract entities; or “black boxes.” They
are created using special Paris instructions, and their actual values have no significance
to the calling Fortran program; they are simply tokens that may be passed to other Paris
routines. Their Fortran type is INTEGER.

vp-set-id

An integer value representing a virtual processor set.
geometry-id

An integer value representing a geometry with a particular shape.
field-id

An integer value representing a field allocated on the CM.

7.2.2 Operand Field Addresses

Most Paris operations require one or more field-id’s to indicate one or more regions of
Connection Machine memory to be processed. Such field-id’s are obtained from memory
allocation calls. Their Fortran type is INTEGER.

dest, source, sourcel, source2

These field-ids specify fields to be used as source or destination operands of an in-
struction.

send-address

This argument specifies a field that itself contains, within each processor, the send
address of a processor (possibly the same one, possibly another).
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news-coordinate

This argument specifies a field that itself contains, within each processor, the NEWS
coordinate of a processor (possibly the same one, possibly another).

notify

A field-id for a 1-bit field to hold a result indicating receipt of a message by a send
instruction.

sbit
A field-id for a 1-bit field that indicates how Paris scan operations should divide
processors into logical groups.

7.2.3 Immediate Operands

These arguments are scalar values that participate in Paris operations as if they were first
copied to every Connection Machine processor and then operated upon as if a field-id had
been supplied. Paris operations that take “immediate” operand values of this sort usually
have “constant” or “const” in their names.

The Fortran type of such an immediate operand is INTEGER for an integer value, or
DOUBLE-PRECISION for a floating-point value.

source-value, source2-value

A (front-end) value or variable to be supplied as input to an instruction on the CM.
The type of value passed depends on the instruction to which it is passed.

send-address-value

An integer, the send address of a single particular processor.

news-coordinate-value An integer, the NEWS coordinate of a single particular processor.

7.2.4 Operand Field Lengths

These are integer values that specify the widths of source and destination operand fields on
the CM. Their Fortran type is INTEGER.

len, slen, slenl, slen2, dlen

An integer value designating the length (in bits) of a source field that will be treated
by the operation as a bit field, a signed integer, or an unsigned integer. It is not
unusual for this value to be 32 to match the size of Fortran INTEGER variables on the
front end, but other lengths may be used as well—longer ones for additional precision,
shorter ones for improved speed.

sy ds, s

An integer value designating the significand length of a floating-point field. For single-
precision (Fortran type REAL) fields, this value should be 23; for double-precision
(Fortran type DOUBLE PRECISION) fields, the value should be 52.
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e, de, se

An integer value designating the exponent length of a floating-point field. For single-
precision (Fortran type REAL) fields, this value should be 8; for double-precision (For-
tran type DOUBLE PRECISION) fields, the value should be 11.

7.2.5 Miscellaneous Signed and Unsigned Values

Both signed and unsigned Paris quantities are represented in Fortran by variables and values
whose Fortran type is INTEGER. These are variously referred to, depending on their roles
within particular operations, under the following names:

offset, azis, azis-length, coordinate, rank, multi-coordinate

7.2.6 Bit Sets and Masks

Arguments representing sets taken from universes of up to 31 elements are represented as
integer values, where the bit whose value is 27 is 1 to indicate that element j is in the set.
Their Fortran type is INTEGER.

At present, the only universe of interest in Paris is azis-mask, the set of axes for a given
' geometry.

7.2.7 Vectors of Integers

These arguments should be represented as Fortran one-dimensional INTEGER arrays. The
maximum size of these vectors is 31.
azis-vector, start-vector, offset-vector, end-vector, dimension-vector

7.2.8 Multi-dimensional Front-end Arrays

Multi-dimensional front-end arrays of Fortran type LOGICAL, INTEGER, REAL, or DOUBLE
PRECISION can be transferred to and from CM memory using a single instruction (see section
5.18).
front-end-array

Such an array is passed simply by mentioning the name of the array.

7.2.9 Symbolic Values
The symbolic constants defined in PARAMETER statements in the Fortran/Paris header file

should be used when supplying values for these arguments:

direction

One of the values CM_upward or CM_downward, indicating the direction of a scan,
NEWS, or other instruction.

inclusion

One of the values CM _exclusive or CM_inclusive, indicating the boundaries of a scan
instruction. ’
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smode

One of the values CM_none, CM_start_bit, or CM_segment_bit, indicating how a scan
operation is to be partitioned.

There are other symbolic values as well, but these are the most important. All names
are formed by the standard rule: starting from a Lisp name such as :start-bit, add “CM” to
the front and then convert colons and hyphens to underscores, yielding CM_start_bit.

7.3 Fortran/Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section ??7 for a list. The Fortran/Paris interface makes
these variables accessible through variables declared in the common block named emval,
defined by the Fortran/Paris header file. They are initialized in an application program by
a call to the subroutine CM_init and should not be changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM_physical_processorsJimit is a value that depends
upon the size of the Connection Machine to which the application is attached. Most of
these configuration variables are declared to be of Fortran type INTEGER.

Numeric values that are constant for a given release of the CM System Software are also
given in PARAMETER statements.

7.4 Calling Paris from Fortran

This section describes how to build Fortran programs that access the Paris instruction set
using the Fortran/Paris interface. Such programs must manage the dynamic allocation
and deallocation of Connection Machine fields directly. This section describes the form of
Fortran main programs and subprograms that call the Fortran/Paris interface, as well as
the steps involved in compiling and linking such programs.

The following code fragment illustrates the structure of a Fortran main program that
calls Paris instructions.

PROGRAM main
C VAX Fortran or Sun Fortran

INCLUDE ’/usr/include/cm/paris-configuration-fort.h’
CALL CM_init()

CALL CM_paris_instruction(...)
IF ( CM_configuration_variable .GT. limit ) ...
END
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Note that the call to CM_init is required prior to any other calls to Paris instructions.
The following code fragment illustrates the structure of a Fortran subroutine subprogram
that calls Paris instructions.

SUBROUTINE test
C VAX Fortran or Sun Fortran

INCLUDE °’/usr/include/cm/paris-configuration-fort.h’

CALL CM_paris_instruction(...)

IF ( CM_configuration_variable .GT. limit ) ...

END
It looks exactly like a main program in its use of Paris, ezcept that a subprogram should
not call CM.init.

Using VAX Fortran, the following command compiles and links these program units to
run on the Connection Machine Model 2:

% fort main.for test.for -lparis

To compile and link these program units for execution under the simulator, use the following
fort command:

% fort main.for test.for -lparissim

Note that there should be no space between the -l option and its argument.
The command to compile and link these program units using the Sun Fortran compiler
is quite similar:

% £77 main.f test.f -lparis

To compile and link these VAX Fortran program units for execution under the simulator,
use the following f77 command:

% £77 main.f test.f -lparissim

Note that there should be no space between the - option and its argument.
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The Lisp/Paris Interface

Paris is used as a set of variables, subroutines, and macros within a program that may
be written in any one of a number of languages. This chapter explains how to call Paris
instructions from Lisp programs.

8.1 Lisp/Paris Instruction Names and Argument Types

This section describes how to call these instructions from Lisp and what types of arguments
to pass them.

The instruction names and other names that appear in this document are spelled in a
form acceptable to Lisp (an arbitrary choice in order to have some common denominator
for the dictionary).

Although Lisp is not case-sensitive, all identifiers appearing in Lisp form in this document
are written in mixed case so as to produce the correct C name after applying certain
conversion rules. The Lisp programmer may write names entirely in uppercase letters or
entirely lowercase letters, if desired.

Chapter 9 describes each of the Paris instructions in terms of its arguments, its effect on
operand fields residing in Connection Machine memory, and the result (if any) that it returns
to the front end. The same argument name is often used in several different instruction
definitions, but arguments with the same name always have the same type (as viewed by
the front-end Lisp program). For example, dest is used throughout to represent the field-id
of a destination field; the field itself may be a floating-point or an integer field, the width
of which is specified by other arguments to the instruction, but to the Lisp program the
argument is always simply a field-id.

Following is a brief description of the major classes of arguments that can be passed to
subprograms of the Lisp/Paris interface.

8.1.1 1Id Types

These are values that should be treated as abstract entities, or “black boxes.” They are
created using special Paris instructions, and their actual values have no significance to the
calling Lisp program; they are simply tokens that may be passed to other Paris routines.

vp-set-id
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An integer value representing a virtual processor set.

geometry-id

A structure of type CM: geometry-id representing a geometry with a particular shape.

field-id
An integer value representing a field allocated on the CM.

8.1.2 Operand Field Addresses

Most Paris operations require one or more field-id’s to indicate one or more regions of
Connection Machine memory to be processed. Such field-id’s are obtained from memory
allocation calls. Their Lisp type is integer.

dest, source, sourcel, source2

These field-ids specify fields to be used as source or destination operands of an in-
struction.

send-address

This argument specifies a field that itself contains, within each processor, the send
address of a processor (possibly the same one, possibly another).

news-coordinate

This argument specifies a field that itself contains, within each processor, the NEWS
coordinate of a processor (possibly the same one, possibly another).

notify

A field-id for a 1-bit field to hold a result indicating receipt of a message by a send
instruction.

sbat
A field-id for a 1-bit field that indicates how Paris scan operations should divide
processors into logical groups.

8.1.3 Immediate Operands

These arguments are scalar values that participate in Paris operations as if they were first
copied to every Connection Machine processor and then operated upon as if a field-id had
been supplied. Paris operations that take “immediate” operand values of this sort usually
have “constant” or “const” in their names.

The Lisp type of such an immediate operand is integer for an integer value, or float for a
floating-point value (any of the several kinds of Common Lisp floating-point numbers may
be supplied).

source-value, source2-value

A (front-end) value or variable to be supplied as input to an instruction on the CM.
The type of value passed depends on the instruction to which it is passed.

54



Chapter 8. The Lisp/Paris Interface

send-address-value

An integer, the send address of a single particular processor.

news-coordinate-value An integer, the NEWS coordinate of a single particular processor.

8.1.4 Operand Field Lengths

These are integer values that specify the widths of source and destination operand fields on
the CM. Their Lisp type is integer.

len, slen, sleni, slen2, dlen

An integer value designating the length (in bits) of a source field that will be treated
by the operation as a bit field, a signed integer, or an unsigned integer. It is not
unusual for the programmer to choose this value to match the size of Lisp fixnum
variables on the front end, but other lengths may be used as well—longer ones for
additional precision, shorter ones for improved speed.

s, ds, ss

An integer value designating the significand length of a floating-point field. Floating-
point numbers of any size are supported, but certain values must be used for good
performance on the hardware floating-point accelerator. For single-precision (Lisp
type single-float) fields, this value should be 23; for double-precision (Lisp type double-
float) fields, the value should be 52.

e, de, se
An integer value designating the exponent length of a floating-point field. Floating-
point numbers of any size are supported, but certain values must be used for good
performance on the hardware floating-point accelerator. For single-precision (Lisp
type single-float) fields, this value should be 8; for double-precision (Lisp type double-
float) fields, the value should be 11.

8.1.5 Miscellaneous Signed and Unsigned Values

Both signed and unsigned Paris quantities are represented in Lisp by variables and values
whose Lisp type is integer. These are variously referred to, depending on their roles within
particular operations, under the following names:

offset, axis, azis-length, coordinate, rank, multi-coordinate

8.1.6 Bit Sets and Masks

Arguments representing sets taken from universes of up to 31 elements are represented as
integer values, where the bit whose value is 27 is 1 to indicate that element 7 is in the set.
Their Lisp type is integer.

At present, the only universe of interest in Paris is azis-mask, the set of axes for a given
geometry.
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8.1.7 Vectors of Integers

These arguments should be represented as Lisp vectors (one-dimensional arrays); they may
be specialized vectors, capable of holding integers only, or general vectors, capable of holding
any Lisp objects but into which only integers happen to have been stored. The maximum
size of these vectors is 31.

azis-vector, start-vector, offset-vector, end-vector, dimension-vector

8.1.8 Multi-dimensional Front-end Arrays

Multi-dimensional front-end arrays, whether specialized or general, can be transferred to
and from CM memory using a single instruction (see section 5.18).
front-end-array

Such an array is passed simply by mentioning the name of the array.

8.1.9 Symbolic Values

These symbolic constants should be used when supplying values for these arguments:

direction

One of the values :upward or :downward, indicating the direction of a scan, NEWS, or
other instruction.

inclusion

One of the values :exclusive or :inclusive, indicating the boundaries of a scan instruc-
tion.

smode

One of the values :none, :start-bit, or :segment-bit, indicating how a scan operation is
to be partitioned.

There are other symbolic values as well, but these are the most important.

8.2 Lisp/Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section ?? for a list. The Lisp/Paris interface makes these
variables available. They are initialized in an application program by a call to subroutine
CM:cold-boot and should not be changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM: *pysical-processors-limit* is a value that depends
upon the size of the Connection Machine to which the application is attached.
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8.3 Calling Paris from Lisp

This section describes how to build Lisp programs that access the Paris instruction set
using the Lisp/Paris interface. Such programs must manage the dynamic allocation and
deallocation of Connection Machine fields directly. This section describes the form of Lisp
main programs and subprograms that call the Lisp/Paris interface, as well as the steps
involved in compiling and linking such programs.

The following code fragment illustrates the structure of a Lisp function program that
calls Paris instructions.

(defun test (...)
&CM:paris-instruction .
&if (> CM:configuration-variable limit) ...)
)

Remember that CM:cold-boot should be called once before beginning a computation that
uses Paris; it is not appropriate to call CM:cold-boot on entrance to every function.
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Chapter 9

Dictionary of Paris Instructions

9.1 Conventions for Alphabetizing

The operations and variables in this dictionary are ordered alphabetically, but with certain
conventions that cause parts of the names to be ignored. The purpose is to ignore “prefixes”
and “suffixes” in the name so as to group instructions that have the same main operation
name.

e If the name contains a colon (and most do), the colon and any characters preceding
it (usually “CM”) are ignored.

e If the name begins with “fe-” then those three characters are dropped.

e Similarly, if the name begin with a single letter followed by a hyphen, those two
characters are dropped.

e Similarly, if the name contains a single letter (or digit) surrounded by hyphens, each
such letter (or digit) and the hyphen following it are dropped.

e Any occurrence of the modifier subsequence “-constant-” or “-const-” or “-always-” is
replaced by a single hyphen.

e If the name ends in a hyphen, a digit, and the letter “L” then those three characters
are dropped.

e Any asterisks in the name are dropped.

These rules are to be applied repeatedly and in any order until a name is reduced to a
form where none of the rules apply.

The running heads on the top outside corners of the dictionary pages show the names
with characters dropped according to these rules. Any ties in the ordering are broken by
reconsidering letters dropped by the preceding rules.

As an example, CM:s-logcount-2-2L and CM:u-logcount-2-2L appear together (and in
that order). As another example, CM:extract-news-coordinate-1L and CM:fe-extract-news-
coordinate appear together (and in that order).
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9.2 Programming Language Syntax

Paris is not a single language, but rather a library to be used within any of several program-
ming languages, including C, Fortran, and Lisp. These languages have different syntactic
conventions for names, operations, and procedure calls. This dictionary strikes a compro-
mise among these conventions that allows straightforward transformations into the specific
syntax of any of these languages. See chapters 6, 7, and 8 for information about language-
specific aspects of the Paris interface.

9.2.1 Syntax of Names

All names in this dictionary are presented in Lisp syntax (specifically, that of Common
Lisp). A simple rule is given below for converting such names to C or Fortran syntax.

Lisp allows names to contain hyphens, asterisks, and colons, among other characters. For
the Lisp interface, Paris follows Common Lisp conventions for names:

e Words in a multiword name are separated with hyphens.
e The name of a global variable is surrounded with asterisks.

¢ Related names are grouped into a single package, indicated by a common prefix ending
with a colon. Paris uses the prefix CM: for this purpose. Certain names used as
constants, called keywords, have a null prefix, and therefore begin with a colon.

These rules are applied in the order given. Examples of names are CM: set-system-leds-mode,
CM:s-add-2-1L, :news-order (a keyword), and CM: *maximum-exponent-length* (a global vari-
able).

Lisp and Fortran are not case-sensitive, but C is. In this dictionary the Lisp names are
written with both upper-case and lower-case letters, as appropriate, to allow easy translation
into C syntax. Lisp also allows names of any length, but Paris names have been limited to
30 characters to satisfy C and Fortran conventions.

The rule for translating a Lisp name to a C or Fortran name has two parts.

e If the Lisp name begins with a colon, first add “CM” to the front.
e Then drop all asterisks, and convert all colons and hyphens to underscores.

Thus the example Lisp names shown above become CM_set_system_.eds.mode,
CM_s_add 2_1L, CM_news_order, and CM_maximum_exponent_Jength in C syntax.

For Fortran, this assumes a compiler that accepts 31-character names and permits un-
derscores in names.

9.2.2 Pseudocode Instruction Descriptions

For most of the instructions two descriptions of the operation are given. One is in English,
and the other is in pseudocode. The pseudocode is written in an ad hoc combination
of programming constructs, mathematical notation, and occasional dabs of English. For
the most part the notation should be self-explanatory, but several features deserve special
remarks.
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The constructs “let z = y” and “z « y” are superficially similar; each causes z to have
the value y. There are two differences, however. First, a “let” statement merely defines a
temporary variable for later use in the pseudocode description of that instruction, whereas
an arrow assignment represents an actual effect on the CM machine state (usually in the
processor memories) that may be detected by subsequent Paris operations. Second, a “let”
statement is assumed to give z the precise mathematical value computed for y, whereas
an arrow assignment may have to truncate, round, or otherwise approximate the infinitely
precise mathematical result before storing it.

When referring to actual machine state, square brackets are used to indicate a particular
processor. For example, if dest names a field, then dest[k] refers to the contents of that field
within processor k. Actual subscripts are used rather than square brackets for temporary
quantities; thus one has “dest[k] — 1” but “let S, = 1” because the latter does not involve
machine state.

Angle brackets are used to select bits within a field (or sometimes within an integer value,
to be regarded as a field of bits in binary representation). For example, dest[k](0) is the
least significant bit of the field dest within processor k, and dest[k](0 : 3) is the four least
significant bits.

Multiplication is always indicated explicitly by the symbol X, never by juxtaposition. The
notation |z| means the floor of z, the largest integer that is not greater than z; |3.5] = 3
and |-3.5] = —4. The notation [z] means the ceiling of , the smallest integer that is not
less than z; [3.5] = 4 and [-3.5] = -3.

The symbols =, A, V, and @ respectively represent logical (or bitwise, if appropriate)
NOT, AND, inclusive OR, and exclusive OR.

The symbols N represents set intersection; U is set union; \ is set difference (thus 4 \ B
is the set of elements of A that are not in B); and € is the set inclusion predicate (and so
z € A is true if z is an element of A).

Other mathematical notations are used freely, including square roots, summation signs,
and set notation. The purpose of the pseudocode is to provide a clear explanation of the
results of an operation, not to provide clues to performance; the particular algorithm shown
is not necessarily the one used in the implementation.
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ABS

F-ABS

Computes, in each selected processor, the absolute value of a floating-point source field and
stores it in the destination field.

Formats CM:f-abs-1-1L  dest/source, s, e
CM:f-abs-2-1L  dest, source, s, €

Operands dest The floating-point destination field.
source The floating-point source field.
s, € The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contexzt-flaglk] = 1 then
if source[k] > 0 then dest[k] « source[k]
else dest[k] «— —source[k]

The absolute value of the source operand is placed in the dest operand. If the source operand
is a NaN, then it is copied unchanged.
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S-ABS

Computes the absolute value of a signed integer source field and stores it in the destination

field.

Formats CM:s-abs-1-1L  dest/source, len
CM:s-abs-2-1L  dest, source, len
CM:s-abs-2-2L dest, source, dlen, slen

Operands dest The signed integer destination field.
source The signed integer source field.
len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.
dlen The length of the dest field. This must be no smaller than 2 but

no greater than CM:*maximum-integer-length*.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same

length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if source(k] > 0 then dest[k] — source[k]
else dest[k] — —source[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

else overflow-flaglk] — 0

The absolute value of the source operand is placed in the dest operand. (If the length of
the dest field equals the length n of the source field, overflow can occur only if the source
field contains —2™. If the length of the dest field is greater than the length of the source
field, then overflow cannot occur.)
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Computes, in each selected processor, the arc cosine of the floating-point source field and
stores it in the floating-point destination field.

Formats CM:f-acos-1-1L  dest/source, s, €
CM:f-acos-2-1L dest, source, s, €

Operands dest The floating-point destination field.
source The floating-point source field.
s, € The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is less than —1 or greater than 1; otherwise it is
cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contexzt-flaglk] = 1 then
dest[k] « cos™! source[k]
if source[k] < —1 or source[k] > 1 then
test-flaglk] — 1
else
test-flaglk] — 0

The arc cosine of the value of the source field is stored into the dest field.
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F-ACOSH

Computes, in each selected processor, the arc hyperbolic cosine of the floating-point source
field and stores it in the floating-point destination field.

Formats CM:f-acosh-1-1L  dest/source, s, e
CM:f-acosh-2-1L  dest, source, s, €

Operands dest The floating-point destination field.
source The floating-point source field.
s, € The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is less than 1; otherwise it is cleared.

overflow-flagis set if floating-point overflow occurs; otherwise it is unaffected.

Context = This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — cosh™! source[k]
if source < 1 then test-flaglk] « 1
else test-flaglk] — 0
if (overflow occurred in processor k) then overflow-flaglk] « 1

The arc hyperbolic cosine of the value of the source field is stored into the dest field.
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F-ADD

The sum of two floating-point source values is placed in the destination field.

Formats CM:f-add-2-1L dest/sourcel, source2, s, e
CM:f-add-always-2-1L dest/sourcel, source2, s, e
CM:f-add-3-1L dest, sourcel, source2, s, e
CM: f-add-always-3-1L dest, sourcel, source2, s, e
CM:f-add-constant-2-1L dest/sourcel, source2-value, s, e
CM:f-add-const-always-2-1L  dest/sourcel, source2-value, s, e
CM:f-add-constant-3-1L dest, sourcel, source2-value, s, e

CM:f-add-const-always-3-1L  dest, sourcel, source2-value, s, €

Operands dest The floating-point destination field.
sourcel  The floating-point first source field.
source?2  The floating-point second source field.

source2-value A floating-point immediate operand to be used as the second

source.

s, e The significand and exponent lengths for the dest, sourcel, and
source? fields. The total length of an operand in this format is
s+ e+ 1. :

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context  This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] «— sourcel[k] + source2|[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

Two operands, sourcel and source2, are added as floating-point numbers. The result is
stored into memory. The various operand formats allow operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.
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The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.
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S-ADD

The sum of two signed integer source values is placed in the destination field. Carry-out
and overflow are also computed.

Formats

Operands

Overlap

Flags

Context

CM:s-add-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-add-2-1L dest/sourcel, source2, len
CM:s-add-3-1L dest, sourcel, source2, len

CM:s-add-constant-2-1L  dest/sourcel, source2-value, len
CM:s-add-constant-3-1L  dest, sourcel, source2-value, len

dest The signed integer destination field.
sourcel  The signed integer first source field.
source2  The signed integer second source field.

source2-value A signed integer immediate operand to be used as the second

source.
len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*,
dlen For CM:s-add-3-3L, the length of the dest field. This must be no

smaller than 2 but no greater than CM: *maximume-integer-length*.

slent For CM:s-add-3-3L, the length of the source! field. This must be no
smaller than 2 but no greater than CM: *maximume-integer-length*.

slen2 For CM:s-add-3-3L, the length of the source2 field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.
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Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — sourcel[k] + source2(k]
carry-flaglk] «— (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] — 1
else overflow-flaglk] «— 0

Two operands, sourcel and source2, are added as signed integers. The result is stored into
the memory field dest. The various operand formats allow operands to be either memory
fields are constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag may be affected by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as

will fit.

The constant operand source2-value should be a signed integer front-end value. The op-
eration is performed properly in all cases; the constant need not be representable in the

number of bits specified by len.
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U-ADD

The sum of two unsigned integer source values is placed in the destination field. Carry-out
and overflow are also computed.

Formats

Operands

Overlap

Flags

Context

CM:u-add-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:u-add-2-1L dest/sourcel, source2, len
CM:u-add-3-1L dest, sourcel, source2, len

CM:u-add-constant-2-1L dest/sourcel, source2-value, len
CM:u-add-constant-3-1L dest, sourcel, source2-value, len

dest The unsigned integer destination field.
sourcel  The unsigned integer first source field.
source2  The unsigned integer second source field.

source2-value  An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source?2 fields. This must be
non-negative and no greater than CM:*maximume-integer-length*.

dlen For CM:u-add-3-3L, the length of the dest field. This must be non-
negative and no greater than CM:*maximume-integer-length*.

slent For CM:u-add-3-3L, the length of the source! field. This must be
non-negative and no greater than CM:*maximum-integer-length*,

slen2 For CM:u-add-3-3L, the length of the source2 field. This must be
non-negative and no greater than CM:*maximum-integer-length#.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.
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Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — sourcel k] + source2[k]
carry-flaglk] « (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] «— 1
else overflow-flaglk] — 0

Two operands, sourcel and source2, are added as unsigned integers. The result is stored into
the memory field dest. The various operand formats allow operands to be either memory
fields are constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag are altered by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. The
operation is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.
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S-ADD-CARRY

The sum of the carry-flag and two signed integer source values is placed in the destination
field. Carry-out and overflow are also computed.

Formats

Operands

Overlap

Flags

Context

CM:s-add-carry-3-3L  dest, sourcel, source2, dlen, slenl, slen2
CM:s-add-carry-2-1L dest/sourcel, source2, len
CM:s-add-carry-3-1L  dest, sourcel, source2, len

dest The signed integer destination field.
sourcel  The signed integer first source field.
source2  The signed integer second source field.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

dlen For CM:s-add-carry, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slent For CM:s-add-carry, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
lengthx, '

slen2 For CM:s-add-carry, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*. :

The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flags: may be altered only
in processors whose contezt-flag is 1.
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Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest|k] « sourcellk] + source2[k] + carry-flag[k]
carry-flaglk] «— (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] < 1

else overflow-flaglk] — 0

Two operands, sourcel and source2, are added as signed integers. The carry-flag is used as
the carry-in to the low-order bits; the net effect is to compute the sum of sourcel, source2,
and carry-flag. The various operand formats allow operands to be either memory fields are
constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag may be affected by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

74



ADD-CARRY

U-ADD-CARRY

The sum of the carry-flag and two unsigned integer source values is placed in the destination
field. Carry-out and overflow are also computed.

Formats

Operands

Overlap

Flags

Context

CM:u-add-carry-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:u-add-carry-2-1L  dest/sourcel, source2, len
CM:u-add-carry-3-1L dest, sourcel, source2, len

dest The unsigned integer destination field.
sourcel  The unsigned integer first source field.
source2  The unsigned integer second source field.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CMs*maximum-integer-length*.

dlen For CM:u-add-carry-3-3L, the length of the dest field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

slen1 For CM:u-add-carry-3-3L, the length of the sourcel field. This
must be non-negative and no greater than CM: *maximum-integer-
length*.

slen? For CM:u-add-carry-3-3L, the length of the source2 field. This
must be non-negative and no greater than CM: *maximume-integer-
length*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.
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Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest|k] « sourcel[k] + source2[k] + carry-flaglk]
carry-flaglk] «— (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] — 1

else overflow-flaglk] — 0

Two operands, sourcel and source2, are added as unsigned integers. The carry-flag is used
as the carry-in to the low-order bits; the net effect is to compute the sum of sourcel, source2,
and carry-flag. The various operand formats allow operands to be either memory fields are
constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag may be affected by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.
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S-ADD-FLAGS

The carry-out and overflow are computed for the sum of two signed integer source values.
The sum itself is not stored.

Formats CM:s-add-flags-2-1L  sourcel, source2, len

Operands dest The signed integer destination field.
sourcel  The signed integer first source field.
source2  The signed integer second source field.
len The length of the dest, sourcel, and source2 fields. This must

be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.
overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context  This operation is conditional. The flags may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
Compute sourcel [k] + source2|k]
carry-flaglk] — (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] « 1

else overflow-flaglk] — 0

Two operands, source! and source2, are added as signed integers. The sum is not stored;
only the carry-flag and overflow-flag are affected.
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U-ADD-FLAGS

The carry-out and overflow are computed for the sum of two unsigned integer source values.
The sum itself is not stored.

Formats CM:u-add-flags-2-1L  sourcel, source2, len
Operands dest The unsigned integer destination field.
sourcel  The unsigned integer first source field.
source?2  The unsigned integer second source field.
len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.
Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.
Flags carry-flag is set if there is a carry-out from the high-order bit position; oth-
. erwise it is cleared.
overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.
Context  This operation is conditional. The flags may be altered only in processors
whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
Compute sourcel[k] + source2|k]
carry-flaglk) «— (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] — 0

Two operands, sourcel and source2, are added as unsigned integers. The sum is not stored;
only the carry-flag and overflow-flag are affected.
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F-ADD-MULT

Calculates a value (a + z)b and places it in the destination.

Formats

Operands

Overlap

Flags

Context

CM:f-add-mult-1L dest, sourcel, source2, sourced, s, e
CM:f-add-const-mult-1L dest, sourcel, source2-value, sourced, s, e
CM:f-add-mult-const-1L dest, sourcel, source2, sourced-value, s, e
CM:f-add-const-mult-const-1L  dest, sourcel, source2-value, source3-value, s, e

dest The floating-point destination field.
sourcel  The floating-point first source (addend) field.

source2  The floating-point second source (augend) field.

source2-value A floating-point immediate operand to be used as the second
source (augend).

source3  The floating-point third source (multiplier) field.
source3-value A floating-point immediate operand to be used as the third
source (multiplier).

s, € The significand and exponent lengths for the dest, sourcel, source2,
and sourced fields. The total length of an operand in this format
iss+e+1.

The fields sourcel, source2, and sourced may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — (sourcel[k]+ source2(k]) X source3[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1

Two operands sourcel and source2 are added as floating-point numbers, and then the sum
is multiplied by a third operand source3. The result is stored into memory. The various
operand formats allow operands to be either memory fields or constants.
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The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.

A call to CM:f-add-mult-1L is equivalent to the sequence

CM:f-add-3-1L temp, sourcel, source2, s, e
CM:f-multiply-3-1L  dest, temp, sourced, s, e

but may be faster.
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ADD-OFFSET-TO-FIELD-ID

Returns a new field-id that specifies the same field but possibly a different offset within that
field. '

Formats result « CM:add-offset-to-field-id field-id, offset

Operands field-id A field-id.
offset A signed integer, the number of bits by which to offset the field-id.

Result A field-id, the newly offset field-id.

Context  This operation is unconditional. It does not depend on contezt-flag.

Associates a new field-id with the portion of the specified field that begins at the specified bit
offset. The size of the field referenced by the new field-id is equal to the size of the original
field minus the offset. The offset must be smaller than the size in bits of the original field.
Offset fields may themselves have offset fields formed from them.
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ALLOCATE-HEAP-FIELD

Allocates a heap field of specified length in the current VP set and returns a unique identifier.

Formats result « CM:allocate-heap-field len
Operands len An unsigned integer, the length in bits of the field to be allocated.
Result An unsigned integer, the new field-id.

Context  This operation is unconditional. It does not depend on contezt-flag.

A new field of length len is allocated in the heap within the current VP set. A field-id for
the newly created field is returned.
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ALLOCATE-HEAP-FIELD-VP-SET

Allocates a new heap field of specified length in the specified VP set and returns a unique
identifier. ‘

Formats result «— CM:allocate-heap-field-vp-set vp-set-id, len

Operands len An unsigned integer, the length in bits of the field to be allocated.

vp-set-id A vp-set-id.
Result An unsigned integer, the new field-id.

Context This operation is unconditional. It does not depend on contezt-flag.

A new field of length len is allocated in the heap within the specified VP set. A field-id for
the newly created field is returned.
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ALLOCATE-STACK-FIELD

Allocates a new stack field of specified length in the current VP set and returns a unique
identifier.

Formats  result « CM:allocate-stack-field len
Operands len An unsigned integer, the length, in bits, of the field to be allocated.
Result An unsigned integer, the new field-id.

Context  This operation is unconditional. It does not depend on contezt-flag.

A new field of length len is allocated on the stack within the current VP set. A field-id for
the newly created field is returned.
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ALLOCATE-STACK-FIELD-VP-SET

Allocates a new stack field of specified length in the specified VP set and returns a unique
identifier.

Formats result — CM:allocate-stack-field-vp-set wvp-set-id, len

Operands len An unsigned integer, the length in bits of the field to be allocated.
vp-set-id A vp-set-id.

Result An unsigned integer, the new field-id.

Context This operation is unconditional. It does not depend on contezt-flag.

A new field of length len is allocated on the stack within the specified VP set. A field-id
for the newly created field is returned.
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ALLOCATE-VP-SET

Create a new VP set, within which fields may be allocated.

Formats  result «— CM:allocate-vp-set geometry-id
Operands geometry-id A geometry-id.
Result A vp-set-id, identifying the newly allocated VP set.

Context  This operation is unconditional. It does not depend on contezi-flag.

This operation returns a vp-set-id for a newly created VP set. This may be given to other
Paris operations in order to create memory fields in which data may be stored. The size
and shape of the VP set is determined by the geometry specified by the geometry-id. It is
possible to alter the geometry later (by using CM: set-vp-set-geometry), but the total number
of virtual processors in the VP set remains forever fixed.
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Fetches an array element specified by a per-processor index and copies it to a fixed desti-
nation.

Formats CM:aref-2L  dest, array, indez, dlen, indez-len, indez-limit, element-len
Operands dest The destination field.
array The source array field.
index The unsigned integer index into the array field.
dilen The length of the dest field. This must be non-negative and no

greater than CM:*maximum-integer-length*.

indez-len The length of the indez field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez.

element-len An unsigned integer immediate operand to be used as the

- length of an array element.

Overlap The fields array and index may overlap in any manner. However, the array
and inder fields must not overlap the dest field.

Flags test-flag is set if the value in the inder field is less than the indez-limit;
otherwise it is cleared.

Context  This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then

if indez[k] < tndez-limit then
let p = indez[k] x element-len
dest[k] «— array[k)(p: p+ dlen — 1)
test-flaglk] — 1

else
test-flaglk] — 0

This is a simple form of array reference, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field indez. This is used to
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index into an array, whose length in bits should be indez-limit X element-len. The element
indexed (or a portion of it) is copied into dest in all selected processors. Thus different
processors may access different elements of their arrays.

More precisely, a field of length dlen and starting at address array + i X element-len, where
i is the unsigned number stored at indez, is copied to dest in all selected processors.

The argument indez-limit is one greater than the largest allowed value of the index. Those
processors that have index values greater than or equal to indez-limit do not alter the value
of the destination field; they also clear test-flag. All processors in which the index field is less
than indez-limit set test-flag. The argument element-len is the length of individual elements
of the array. Usually this will be the same as dest-length, but for certain applications it is
worthwhile for it to differ. For example, from an array of 128-bit records one may fetch just
one 16-bit component of an indexed record by letting dlen be 32, letting element-len be 128,
and by offsetting the array address by the offset within each record of the 16-bit quantity
to be fetched. As another example, to extract a 4-character substring from a string of 8-bit
characters, one may let dlen be 32 and element-len be 8.
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AREF32

Fetches an array element specified by a per-processor index and copies it to a fixed desti-
nation. The array is stored in a special format that allows fast access.

Formats CM:aref32-2L " dest, array, indez, dlen, indez-len, tndez-limit
CM:aref32-always-2L dest, array, indez, dlen, indez-len, indez-limit

Operands dest The destination field.
array The source array field.
indez The unsigned integer index field. This is used as the per-processor

index into the array.

dlen The length of the dest field. This must be non-negative and no
greater than CM:*maximume-integer-length*. This must be a mul-
tiple of 32.

indez-len The length of the indez field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

indez-limit An unsigned integer immediate operand to be used as the

exclusive upper bound for the indez.

Overlap  The fields array and indez may overlap in any manner. However, the array
and indez fields must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
if indez[k] < indez-limit then
let » = geometry-total-vp-ratio(geometry( current-vp-set))
let m= [%J mod 32
let ¢ = indez[k]
for all 7 such that 0 < j < dlen do
dest[k](j) — array[k — m X 7+ (7 mod 32) x r(32 x (i + lg’-fj))
else
(error)

This is a simple form of array reference, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field :ndez. This is used to
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index into an array, whose length in bits should be at least

(indem-limit + {ﬂf—?—.l - 1) X 32

32
The argument indez-limit is one greater than the largest allowed value of the index. It is
an error for any indez value to equal or exceed this limit.

The element indexed (or a portion of it) is copied into dest in all selected processors. Thus
different processors may access different elements of their arrays.

More precisely, a field of length dlen and starting at address array + 7 X 32, where ¢ is the
unsigned number stored at indez, is copied to dest in all selected processors. Even this is
not quite accurate, because the array data is organized in a strange way for fast access.
The data within the array area is not organized in the same manner as for CM: aref; instead,
the memory of one processor contains data belonging to several other processors, and data
belonging to one processor is spread over the memories of several processors. This allows
the special indexing hardware to operate more efficiently.

A region of memory set aside for an array of the format required by CM:aref32 should be
. accessed only through the operations CM:aref32 and CM:aset32, related operations such as
CM:get-aref32, or operations that copy the array as a whole from all processors (such as
I/O operations).

90



AREF32-SHARED

AREF32-SHARED

Fetches an array element specified by a per-processor index and copies it to a fixed destina-
tion. The array is stored in a special format that allows fast access, and accessed in such a
way that all the virtual processors within a group of 32 physical processors share the same

array.
Formats CM:aref32-shared-2L dest, array, indez, dlen, indez-len, indez-limit
CM:aref32-shared-always-2L  dest, array, indez, dlen, indez-len, indez-limit
Operands dest The destination field.
array The source array field.
indez The unsigned integer index field. This is used as the per-processor
index into the array.
dlen The length of the dest field. This must be non-negative and no
- greater than CM:*maximum-integer-length*. This must be a mul-
tiple of 32.
indez-len The length of the indez field. This must be non-negative and no
greater than CM:*maximum-integer-length*.
indez-limat An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez.
Overlap The fields array and indez may overlap in any manner. However, the array
and indez fields must not overlap the dest field.
Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if (always or context-flaglk] = 1) then
if indez[k] < tndez-limit then

let » = geometry-total-vp-ratio( geometry( current-vp-set))

let m = k mod (r x 32)

let i = indez[k]

let a = field-length(array)

for all j such that 0 < j < dlen do
let z=1+ [-3.22- J
let g =k —m+ (jmod 32) X r 4+ | ]
let b= 2mod a

dest[k](j) « array[q)(b)
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else
(error)

This is a simple form of array reference, for arrays stored in the memory of individual
processors but accessed in such a way that many processor appear to share a single array.
Each processor has an array index stored in the field indez. This is used to index into an
array. The length of the array in bits should be at least

l’ index-limit ]
geometry-total-vp-ratio( geometry( current-vp-set))

The argument indez-limit is one greater than the largest allowed value of the index. It is
an error for any indez value to equal or exceed this limit.

The element indexed (or a portion of it) is copied into dest in all selected processors. Thus
different processors may access different elements of the shared array.

A region of memory set aside for an array of the format required by CM:aref32-shared
should be accessed only through the operations CM: aref32-shared and CM:aset32-shared, or
operations that copy the array as a whole from all processors (such as I/O operations).
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Stores into an array element specified by a per-processor index a value copied from a fixed

source field.
Formats CM:aset-2L  source, array, indez, slen, indez-len, indez-limit, element-len
Operands source The source field.
array The destination array field.
tndex The unsigned integer index into the array field.
slen The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.
indez-len The length of the indez field. This must be non-negative and no
greater than CM:*maximum-integer-length*.
indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez.
element-len An unsigned integer immediate operand to be used as the
length of an array element.
Overlap The fields source and inder may overlap in any manner. However, the source
and indez fields must not overlap the array field.
Flags test-flag is set if the value in the indez field is less than the indez-limit;
otherwise it is cleared.
Context  This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
if indez[k] < tndez-limit then
let p = indez[k] x element-len
arraylk](p: p + slen — 1) « source[k]
test-flaglk] «— 1
else
test-flaglk] — 0

This is a simple form of array modification, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field index. This is used to
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index into an array, whose length in bits should be indez-limit X element-len. The source
field is copied into the element indexed (or a portion of it) in all selected processors. Thus
different processors may modify different elements of their arrays.

More precisely, the source field is copied to a field of length slen and starting at address
array + t X element-len, where ¢ is the unsigned number stored at indez, in all selected
processors.

The argument indez-limit is one greater than the largest allowed value of the index. Those
processors that have index values greater than or equal to indez-limit do not alter the value
of the destination field; they also clear test-flag. All processors in which the index field is less
than indez-limit set test-flag. The argument element-len is the length of individual elements
of the array. Usually this will be the same as dest-length, but for certain applications it
is worthwhile for it to differ. For example, within an array of 128-bit records one may
store into just one 16-bit component of an indexed record by letting slen be 32, letting
element-len be 128, and by offsetting the array address by the offset within each record of
the 16-bit quantity to be modified. As another example, to modify a 4-character substring
of a string of 8-bit characters, one may let slen be 32 and element-len be 8.
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ASET32

Fetches an array element from a fixed source and copies it to a destination specified by a
per-processor index. The array is stored in a special format that allows fast access.

Formats CM:aset32-2L source, array, indez, slen, indez-len, indez-limit

Operands source The source field.
array The destination array field.
index The unsigned integer index field. This is used as the per-processor

index into the array.

slen The length of the source field. This must be non-negative and

no greater than CM:*maximum-integer-length*. This must be a
multiple of 32.

indez-len The length of the indez field. This must be non-negative and no
greater than CM:*maximume-integer-length*.

indez-limat An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez.

Overlap The fields source and indez may overlap in any manner. However, the source
and indez fields must not overlap the array field.

Context  This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if tndez[k] < indez-limit then
let » = geometry-total-vp-ratio(geometry( current-vp-set))
let m = I.éJ mod 32
let ¢ = indez[k]
for all j such that 0 < j < dlen do
arraylk — m x r + (j mod 32) x (32 x (i 4+ léJ )) « source[k]{7)
else
(error)

This is a simple form of array modification, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field indez. This is used to
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index into an array, whose length in bits should be at least
(indez-limit + [%lf;] - 1) X 32

The argument indez-limit is one greater than the largest allowed value of the index. It is
an error for any indez value to equal or exceed this limit.

The source field is copied into the element indexed (or a portion of it) in all selected
processors. Thus different processors may modify different elements of their arrays.

More precisely, the source field is copied to a field of length slen and starting at address
array + 1 X 32, where ¢ is the unsigned number stored at :ndez, in all selected processors.
Even this is not quite accurate, because the array data is organized in a strange way for fast
access. The data within the array area is not organized in the same manner as for CM: aref;
instead, the memory of one processor contains data belonging to several other processors,
and data belonging to one processor is spread over the memories of several processors. This
allows the special indexing hardware to operate more efficiently.

A region of memory set aside for an array of the format required by CM:aset32 should be
accessed only through the operations CM:aref32 and CM:aset32, related operations such as
CM:get-aref32, or operations that copy the array as a whole from all processors (such as
I/O operations).
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ASET32-SHARED

Fetches an array element from a fixed source and copies it to a destination specified by a
per-processor index. The array is stored in a special format that allows fast access, and is
accessed in such a way that all the virtual processors within a group of 32 physical processors
share the same array.

Formats CM:aset32-shared-2L source, array, indez, slen, indez-len, indez-limit

Operands source The source field.
array The destination array field.
indez The unsigned integer index field. This is used as the per-processor

index into the array.

slen The length of the source field. This must be non-negative and
no greater than CM:*maximum-integer-length*. This must be a
multiple of 32.

indez-len The length of the indez field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

indez-limit An unsigned integer immediate operand to be used as the

exclusive upper bound for the indez.

Overlap The fields source and indez may overlap in any manner. However, the source
and indez fields must not overlap the array field.

Context  This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if indez[k] < indez-limit then
let » = geometry-total-vp-ratio( geometry( current-vp-set))
let m = k mod (r x 32)
let i = indez[k]
let a = field-length(array)
for all j such that 0 < j < dlen do
let z=17+ [E;JEJ
let ¢=k —m+ (j mod 32) X r + | £]
let b=z mod a
arraylgl(b) « destl)(7)
else

(error)
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This is a simple form of array modification, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field tndez. This is used to
index into an array. The length of the array in bits should be at least

[ indez-limit "l
geometry-total-vp-ratio( geometry( current-vp-set))

The argument indez-limit is one greater than the largest allowed value of the index. It is
an error for any indez value to equal or exceed this limit.

The source field is copied into the element indexed (or a portion of it) in all selected
processors. Thus different processors may modify different elements of the shared array. If
several processors sharing the same array attempt to modify the same element in a single
CM:aset32-shared operation, then one of the values is stored and the rest are discarded.

A region of memory set aside for an array of the format required by CM:aset32-shared
should be accessed only through the operations CM: aref32-shared and CM:aset32-shared, or
operations that copy the array as a whole from all processors (such as I/O operations).
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Calculates the arc sine of the floating-point source field values and stores the result in the
floating-point destination field.

Formats CM:f-asin-1-1L  dest/source, s, e
CM:f-asin-2-1L  dest, source, s, €

Operands dest The floating-point destination field.
source The floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is less than —1 or greater than 1; otherwise it is
cleared.

Context  This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] « sin~?! source[k]
if source[k] < —1 or source[k] > 1 then
test-flaglk] — 1
otherwise test-flaglk] « 0

The arc sine of the value of the source field is stored into the dest field.
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F-ASINH

Calculates the arc hyperbolic sine of the floating-point source field values and stores the
result in the floating-point destination field.

Formats CM:f-asinh-1-1L  dest/source, s, €
CM:f-asinh-2-1L dest, source, s, e

Operands dest The floating-point destination field.
source The floating-point source field.
s, € The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezi-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] « sinh™! source[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1

The arc hyperbolic sine of the value of the source field is stored into the dest field.
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Calculates the arc tangent of the floating-point source field values and stores the result in
the floating-point destination field.

Formats CM:f-atan-1-1L dest/source, s, €
CM:f-atan-2-1L dest, source, s, €

Operands dest The floating-point destination field.
source The floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. '

Context  This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] «— tan~?! source[k]

The arc tangent of the value of the source field is stored into the dest field.
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Calculates the arc tangent of the quotient of two floating-point source fields and stores the
result in the floating-point destination field.

Formats CM:f-atan2-3-1L dest, sourcel, source?, s, e

Operands dest The floating-point destination field.
sourcel  The floating-point y source field.

source2  The floating-point x source field.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+ 1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context  This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then

if source2[k] > 0 then
dest] o tan™ 2ot

else if source2[k] < 0 then
dest[k] «— sign(sourcel[k]) x (7r — tan™! %E%I)

else if sourcel[k] = 0 A sign(source2[k]) > 0 then
dest[k] « sign(sourcel[k]) x 0

else if sourcel[k] = 0 A sign(source2[k]) < 0 then
dest|k] — sign(sourcel[k]) X 7

else
dest[k] — sign(sourcel[k]) x

if (overflow occurred in processor k) then overflow-flaglk] — 1

The arc tangent of the quotient of the sourcel and source2 fields is stored into the dest
field. The signs of the source fields are taken into account to produce a result in the correct
quadrant of the Cartesian plane.
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Calculates the arc hyperbolic tangent of the floating-point source field values and stores the
result in the floating-point destination field.

Formats CM:f-atanh-1-1L  dest/source, s, e
CM:f-atanh-2-1L dest, source, s, e

Operands dest The floating-point destination field.
source The floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is greater than 1; otherwise it is cleared.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context  This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] «— tanh™! source[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1
if source[k] > 1 then test-flaglk] — 1
otherwise test-flaglk] — 0

The arc hyperbolic tangent of the value of the source field is stored into the dest field.
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ATTACH

Returns the number of physical processors attached.

Formats result «— CM:attach

Operands physical-size The number of physical processors to be attached. This ar-
gument is optional.

interface The particular bus interface to be used. This argument is optional
(actually a keyword argument in the Lisp interface).

Result An unsigned integer, the exact number of physical processors allocated.

Context  This operation is unconditional. It does not depend on contezt-flag.

This function is responsible for allocating Connection Machine processors for use by the
front end. (To deallocate them, use CM:detach.)

The facility for attaching Connection Machine hardware is provided in different ways in the
Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces (on
the other hand).

In the Lisp/Paris interface, CM:attach is a function of several arguments. The first argument
is optional, while the second is a keyword argument (against the possibility that more
keyword arguments may be introduced in the future).

If the physical-size argument is not specified, then the smallest possible amount of hard ware
will be allocated; this will be either 8,192 or 16,384 physical processors. Otherwise the
physical-size argument must be one of the following:

:8kp or 8192 Exactly 8,192 physical processors are to be allocated.

:16kp or 16384 Exactly 16,384 physical processors are to be allocated.

:32kp or 32768 Exactly 32,768 physical processors are to be allocated.

:64kp or 65536 Exactly 65,536 physical processors are to be allocated.

tucel, :ucel, :ucc2, or :ucc3 Exactly the specified microcontroller port is to be attached,
regardless of whether that port controls 8,192 or 16,384 physical processors. (This
option is useful primarily for hardware diagnostic procedures.)

tucc0-1, :ucc2-3, or :ucc0-3 Exactly the specified micrbcontro]ler ports (0 and 1, 2 and
3, or all four) are to be attached, regardless of the number of physical processors
involved. (This option is useful primarily for hardware diagnostic procedures.)
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(Note: the Lisp/Paris interface on a Symbolics Lisp Machine will also accept :8k, :16k,
:32k, and :64k as physical-size specifications. However, these are not valid symbols in all
Common Lisp implementations—technically speaking, they have the syntax of “potential
numbers” in Common Lisp—and therefore users are encouraged to use the new forms :8kp,
:16kp, :32kp, and :64kp in code to ensure portability. The old forms will continue to be
available for convenience in those Lisp implementations that will support them.)

An error is signalled if the required number of physical processors or the required set of
microcontroller ports is not available.

The value returned by CM:attach is the number of physical processors that were attached.

The

variable CM:*before-attach-initializations* and the variable CM: *after-attach-initializations*
contain sets of initialization forms that are respectively evaluated before and after anything
else occurs.

In the C/Paris and Fortran/Paris interfaces, the detaching operation is performed by a user
command cmattach at shell level. See the Front End Subsystems manual or the cmattach
man page.
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ATTACHED

Returns true if the front end process has Connection Machine processors attached for use.

Formats result — CM:attached

Result True if the front end process has Connection Machine processors attached for
use, and false otherwise.

Context  This operation is unconditional. It does not depend on contezi-flag.

This predicate allows a program to determine whether there are any Connection Machine
processors attached (whether actual hardware or simulated) before it issues other Paris
operations.
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F-F-CEILING

Determines the smallest integral value that is not less than the floating-point source field
value in each selected processor and stores it in the floating-point destination field.

Formats  CM:f-f-ceiling-1-1L  dest/source, s, e
CM:f-f-ceiling-2-1L  dest, source, s, e

Operands dest The floating-point destination field.
source The floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. '

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
' if context-flaglk] = 1 then
dest[k] — [source[k]]

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of 400, which is stored into the dest field as a floating-point-number.

Note that overflow cannot occur.
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CLEAR-ALL-FLAGS

Clears all flags (but not the context bit).

Formats CM:clear-all-flags
CM:clear-all-flags-always

Context  The non-always operations are conditional.

The always operations are unconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
test-flaglk] — 0
overflow-flaglk] — 0

Within each processor, all flags for that processor are cleared (but not the context bit).
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CLEAR-BIT

Clears a specified memory bit.

Formats CM:clear-bit dest
CM:clear-bit-always dest

Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.
The always operations are unconditional. The destination may be altered
regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] — 0 '

The destination memory bit is cleared within each selected processor. -
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CLEAR-CONTEXT

Unconditionally makes all processors inactive.

Formats CM:clear-context

Context  This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
contezt-flaglk] — 0

Within each processor, the context bit for that processor is unconditionally cleared.
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CLEAR-flag

Clears a specified flag bit.

Formats CM:clear-test
CM:clear-overflow

Context This operation is conditional.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then

flag[k] < 0
where flag is test-flag or overflow-flag, as appropriate.

Within each processor, the indicated flag for that processor is cleared.
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COLD-BOOT

This operation completely resets the state of the hardware allocated to the executing front
end, loads microcode, initializes system tables, and clears user memory.

Formats result «— CM:cold-boot microcode-version, dimensions

Operands microcode-version Either :paris or :diagnostics. This specifies which ver-
sion of the microcode is to be used. This argument is optional
(actually a keyword argument in the Lisp interface).

dimensions The dimension information for initializing the NEws grid.
This argument is optional (actually a keyword argument in the
Lisp interface).

Result In the Lisp/Paris interface three results are returned (as Common Lisp “mul-
tiple values”):
An unsigned integer, the number of virtual processors.
An unsigned integer, the number of physical processors.

An unsigned integer, the number of bits available per virtual processor.

Context  This operation is unconditional. It does not depend on context-flag.

The facility for cold-booting Connection Machine hardware is provided in different ways in
the Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces
(on the other hand).

In the Lisp/Paris interface, CM:cold-boot is a function that accepts optional keyword argu-
ments.

The :microcode-version argument specifies what set of microcode is to be loaded into the
microcontroller(s). There are two choices for this argument: :paris (the default) specifies
microcode that interprets the macroinstruction set, and :diagnostics specifies special
microcode used for hardware maintenance.

The :dimensions argument is largely obsolete now that multiple VP sets may be allocated,
but it is still supported for the sake of compatibility with previous releases of Paris. The
:dimensions argument must be an integer, a list of 1 or 2 integers, or unsupplied. (Passing
nil as the value is the same as not supplying a value.) An integer or a list of one integer
specifies the total number of virtual processors desired. A list of two integers specifies the
desired size of the virtual NEws grid. Each dimension must be a power of two.

If the :dimensions argument is unsupplied, then the configuration of virtual processors
depends on the most recent CM:cold-boot or CM:attach operation preceding this one. If the
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most recent such operation was CM: cold-boot, then the same virtual processor configuration
set up then will be used this time. If the most recent such operation was CM:attach, then
the number of virtual processors will be equal to the number of physical processors, and
the virtual NEws grid will have the same shape as the physical NEWs grid.

Bootstrapping a Connection Machine system includes the following actions:

e Evaluating all initialization forms stored in the variable CM:*before-cold-boot-
initializations*. This is done before anything else.

e Loading microcode into the Connection Machine microcontroller and initiating mi-
crocontroller execution.

e Clearing and initializing the memory of allocated Connection Machine processors.
e Initializing all of the global configuration variables described in section 3.6.

¢ Initializing the pseudo-random number generator by effectively invoking the operation
CM:initialize-random-number-generator with no seed.

e Initializing the system lights-display mode by effectively invoking the operation
CM: set-system-leds-mode with an argument of t.

e Evaluating all initialization forms stored in the variable CM:*after-cold-boot-
initializations*. This is done after everything else.

If the cold-booting operation fails, then an error is signalled. If it succeeds, then three
values are returned: the number of virtual processors, the number of physical processors,
and the number of bits available for the user in each virtual processor. (These are exactly
the values of the configuration variables CM:*user-cube-address-limit*x, CM: *physical-cube-
address-limit*, and CM:*user-memory-address-limit*.

In the C/Paris and Fortran/Paris interfaces, the cold-booting operation is performed by a
user command cmcoldboot at shell level. See the Front End Subsystems manual.
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F-COS

Calculates, in each selected processor, the cosine of the floating-point source field value and
stores it in the floating-point destination field.

Formats CM:f-cos-1-1L  dest/source, s, e
CM:f-cos-2-1L dest, source, s, e

Operands dest The floating-point destination field.
source The floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context  This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] «— cos source[k]

The cosine of the value of the source field is stored into the dest field.
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Calculates, in each selected processor, the hyperbolic cosine of the floating-point source field
value and stores it in the floating-point destination field.

Formats CM:f-cosh-1-1L dest/source, s, €
CM:f-cosh-2-1L dest, source, s, €

Operands dest The floating-point destination field.
source The floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — cosh source[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1

The hyperbolic cosine of the value of the source field is stored into the dest field.
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CREATE-DETAILED-GEOMETRY

Creates a new geometry given detailed information about how the grid is to be laid out.

Formats result « CM:create-detailed-geometry azis-descriptor-array; rank

Operands azis-descriptor-array A front-end vector (one-dimensional array) of descrip-
tors for the grid axes. In the Lisp interface, this may be a list of
descriptors instead of an array of descriptors, at the user’s option.

rank An unsigned integer, the rank (number of dimensions) of the
azis-descriptor-array.

Result A geometry-id, identifying the newly created geometry.

Context  This operation is unconditional. It does not depend on contezt-flag.

CM:create-detailed-geometry takes an array of descriptors. Each descriptor describes one
NEWS axis in some detail. Most of the components are unsigned integers, but the value of
the ordering component must be either :news-order or :send-order.

The Lisp definitions of the type of the ordering component and of the descriptor are

(deftype cm:axis-order () ’(member :news-order :send-order))

(defstruct CM:axis-descriptor
(length 0) (weight 0) (ordering :news-order)
(on-chip-bits 0) (off-chip-bits 0))

The C definitions of the type of the ordering component and of the descriptor are
shown below. The elements of the azis_descriptor.array should be pointers to type
CM_axis_descriptor_t.

typedef enum {CM_news_order, CM_send_order} CM_axis_order.t;

typedef struct CM_axis_descriptor {
unsigned long length;
unsigned long weight;
CM_news_order_t ordering;
unsigned long on_chip_bits;
unsigned long off_chip_bits;

} * CM_axis_descriptor_t;
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(Actually, this structure has other components as well. Code should use the definition of
CM_axis_descriptor_t from the cmtypes include file.)

The length component specifies the length of the axis; it must be a power of two. (This
restriction may be removed in a future software release.)

The “on-chip-bits” and “off-chip-bits” components for an axis indicate how many physical
hypercube dimensions should be used in laying out that axis of the grid. The physical
hypercube dimensions are of two kinds: the four that are on-chip, connecting physical
processors that are part of the same physical integerated circuit chip, and the rest, which
are off-chip. The distinction matters when you’re fine-tuning code for speed.

There are implementation restrictions (for the sake of speed) that all the on-chip hyper-
cube dimensions for a given axis must be contiguous and that all the off-chip hypercube
dimensions for a given axis must be contiguous. These restrictions are enforced by create-
detailed-geometry as it lays out the axes.

If the “bits” components are zero, then values for them are calculated automatically. Such
calculations take the specified weights into account. It is assumed that the frequencies of
operations along a given axis are proportional to the weight of that axis. (If all weights
are zero, it is assumed that all axes are used equally frequently.) For example, if in a given
program, for a given geometry, North-South operations occur four times as frequently as
East-West operations, then the North-South axis might be assigned a weight of 4 and the
East-West axis a weight of 1 (or the weights might equally well be 12 and 3). These weights
serve as only a rough but conveniently specified guide to the creation of geometries tuned
for performance. For absolutely best tuning of performance, the user should specify all the
“bits” components explicitly.

The ordering component specifies how NEWs coordinates are mapped onto physical pro-
cessors for that axis. The value :news-order specifies the usual embedding of the grid into
the hypercube such that processors with adjacent NEWS coordinates are in fact neighbors
within the hypercube. The value :send-order specifies that if processor A has a smaller
NEWS coordinate than processor B then A also has a smaller send-address than B. This
ordering is useful for specific applications such as FFT. Most operations are about as fast
with either ordering, but get-from-news and send-to-news are significantly faster with : news-
order. (In the future, other orderings may also be implemented if warranted by performance
improvements.)

This operation returns a geometry-id for a newly created geometry. The length of axis j of
the resulting geometry will be equal to the length component of azis-descriptor-array[j]).
Such a geometry-id may then be used to create a VP set, or to respecify the geometry of
an existing VP set.

Once the geometry has been created, the user may destroy the structures used to provide
the information and the array containing them. All necessary information is copied out of
these structures as the geometry is created.
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CREATE-GEOMETRY

Creates a new geometry given the grid axis lengths.

Formats result « CM:create-geometry dimension-array; rank

Operands dimension-array A front-end vector (one-dimensional array) of unsigned
integer'lengths of the grid axes. In the Lisp interface, this may
be a list of dimension lengths instead of an array of dimension
lengths, at the user’s option.

rank An unsigned integer, the rank (number of dimensions) of the
dimension-array.

Result A geometry-id, identifying the newly created geometry.

Context  This operation is unconditional. It does not depend on contezt-flag.

The dimension-array must be a one-dimensional array of nonnegative integers; each must
be a power of two. The product of all these integers must be a multiple of the number of
physical processors attached for use by this process.

This operation returns a geometry-id for a newly created geometry whose dimensions are
specified by the dimension-array. The length of axis j of the resulting geometry will be
equal to dimension-array[j]. Such a geometry-id may then be used to create a VP set, or
to respecify the geometry of an existing VP set.

The geometry will be laid out so as to optimize performance under the assumption that
the axes are used equally frequently for NEWS communication. The operation CM:create-
detailed-geometry may be used instead to get more precise control over layout for perfor-
mance tuning.

Once the geometry has been created, the user may destroy the array used to provide the
dimension information. All necessary information is copied out of this array as the geometry
is created.
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DEALLOCATE-GEOMETRY

Declare that a geometry will no longer be used.

Formats CM:deallocate-geometry geometry-id
Operands geometry-id A geometry-id.

Context This operation is unconditional. It does not depend on contezt-flag.

By this operation a user program declares that a geometry will no longer be used. The
system is permitted to reclaim any and all resources associated with that geometry. It is
an error for the user program to give the specified geometry-id as an argument to any Paris
operation once it has been deallocated.

It is an error to deallocate a geometry that is still in use by some VP set.
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DEALLOCATE-HEAP-FIELD

Declare that a heap field will no longer be used.

Formats CM:deallocate-heap-field heap-field-id
Operands heap-field-id A field-id.

Context This operation is unconditional. It does not depend on contezt-flag.

By this operation a user program declares that a field will no longer be used. The system
is permitted to reclaim any and all resources associated with that field, in particular the
memory that it occupied. It is an error for the user program to give the specified field-id
as an argument to any Paris operation once it has been deallocated.
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DEALLOCATE-STACK-THROUGH

Declare that a stack field and all fields allocated more recently than it will no longer be
used.

Formats CM:deallocate-stack-through stack-field-id
Operands stack-field-id A field-id.

Context  This operation is unconditional. It does not depend on contezt-flag.

By this operation a user program declares that the specified field on the stack, and all fields
allocated more recently than it, will no longer be used. (Note that any fields allocated more
recently than the specified field are necessarily closer to the top of the stack.) The system
is permitted to reclaim any and all resources associated with those fields, in particular the
memory that they occupied. It is an error for the user program to give the field-id of a
deallocated field as an argument to any Paris operation.
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Declare that a VP set will no longer be used.

Formats CM:deallocate-vp-set vp-set-id
Operands wvp-set-id A vp-set-id.

Context  This operation is unconditional. It does not depend on contezt-flag.

By this operation a user program declares that a VP set will no longer be used. The system
is permitted to reclaim any and all resources associated with that VP set. It is an error for
the user program to give the specified vp-set-id as an argument to any Paris operation once
it has been deallocated.

It is an error to deallocate a VP set for which there are still fields that have not yet been
deallocated. The user should first deallocate all fields belonging to that VP set, except the
flags, which are deallocated automatically when the VP set is deallocated.
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DEPOSIT-NEWS-COORDINATE

Modifies a send address to reflect a specific NEWS coordinate.

Formats CM:deposit-news-coordinate-1L  geometry, dest/send-address,
azxis, coordinate, slen

CM:deposit-news-constant-1L geometry, dest/send-address,
azis, coordinate-value, slen

Operands geometry A geometry-id. This geometry determines the NEWs dimensions
to be used.

dest The unsigned integer destination field. (In the instruction for-
mats currently provided, the dest field is always the same as the
send-address source field. The length of this field is implicitly the
same as geometry-send-address-length(geometry).)

send-address ~ The unsigned integer send-address field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

coordinate The unsigned integer NEWS coordinate along the specified
axis field.

coordinate-value An unsigned integer immediate operand to be used as
the NEWs coordinate along the specified axis.

slen The length of the coordinate field. This must be non-negative and
no greater than CM:*maximum-integer-length*.

Overlap For CM:deposit-news-coordinate-1L, the coordinate field must not overlap the
dest field.

Context  This operation is conditional. The destination may be altered only in proces-
sors whose contezxt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if contexzt-flaglk] = 1 then
dest[k] « deposit-news-coordinate(geometry, send-address, azis, coordinate)

where deposit-news-coordinate is as defined on page 33.

This function calculates, within each selected processor, the send-address of a processor
that has a specified coordinate along a specified NEWs axis, with all other coordinates equal
to those for the processor identified by send-address.
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FE-DEPOSIT-NEWS-COORDINATE

Calculates on the front end the modification of a send address to reflect a specific NEWS

coordinate.

Formats

Operands

Result

Context

result « CM:fe-deposit-news-coordinate geometry, send-address,
azis, coordinate

geometry A geometry-id. This geometry determines the NEWs dimensions
to be used.

send-address ~ An unsigned integer immediate operand to be used as the
send address of some processor.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

coordinate An unsigned integer immediate operand to be used as the

NEWS coordinate along the specified axis.

An unsigned integer, the send address of the processor whose coordinate along
the specified axis is coordinate and whose coordinate along all other axes
equals those of send-address. '

This operation is unconditional. It does not depend on contezt-flag.

Definition

Return deposit-news-coordinate( geometry, send-address, azis, coordinate)

where deposit-news-coordinate is as defined on page 33.

This function calculates, entirely on the front end, the send-address of a processor that has
a specified coordinate along a specified NEWs axis, with all other coordinates equal to those
for the processor identified by send-address.
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DETACH

Detaches the specified front-end computer from the Connection Machine hardware previ-
ously allocated for and attached to it. :

Formats CM:detach front-end-name, suppress-confirmation

Operands front-end-name The name of a front end, or a list of a front end name and a
bus-interface specifier. This argument is optional.

suppress-confirmation The confirmation suppression flag. This argu-
ment is optional. If supplied and not false, then the interactive
query and prompt requesting confirmation of the detach opera-
tion is suppressed.

Context  This operation is unconditional. It does not depend on contezt-flag.

The facility for detaching Connection Machine hardware is provided in different ways in the
Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces (on
the other hand).

In the Lisp/Paris interface, CM:detach is a function of two arguments. The arguments are
optional.

In most normal use no argument is specified. In this case the front end executing the call to
CM:detach releases all Connection Machine hardware to which it had been attached, reset-
ting relevant parts of the Nexus so that the front end can no longer issue macroinstructions
to the Connection Machine system. (An error is signalled if in fact no hardware had been
attached in the first place.) This use of CM:detach is the normal way of releasing attached
hardware and will not disrupt users on other front ends.

If a front-end-name argument is specified, it must be the name of a front end that is con-
nected to the same Connection Machine system (that is, Nexus) as the front end executing
the call, or perhaps a list of a front end name and a small integer identifying a bus interface
on that front end. A front end name may be either a string or a symbol. Examples (assum-
ing, for the sake of exposition, that front end computers are named after Shakespearean
characters):

(detach ’hamlet) ;Detach front end named Hamlet

(detach "lear" t) ;Detach front end named Lear, and don’t confirm
(detach ”?(desdemona 1)) ;Detach bus interface 1 of front end Desdemona

Specifying the name of the front end that is executing the call has the same effect as
specifying no argument; the front end is gracefully detached. But specifying the name of
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some other front end forcibly detaches that other front end, possibly disrupting any ongoing
interaction with the Connection Machine system. The external communications network is
used to send a message to the detached front end to inform its user that it has been forcibly

detached.

There are two sets of initialization forms, kept in the variables CM:*before-detach-
initializations* and CM: *after-detach-initializations*, that are evaluated before and after any-

thing else occurs.
In the C/Paris and Fortran/Paris interfaces, the detaching operation is performed by a user

command cmdetach at shell level. See the Front End Subsystems manual or the emdetach
man page.
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F-DIVIDE

The quotient of two floating-point source values is placed in the destination field.

Formats

Operands

Overlap

Flags

Context

CM:f-divide-2-1L dest/sourcel, source2, s, e
CM:f-divide-always-2-1L dest/sourcel, source2, s, e
CM:{-divide-3-1L dest, sourcel, source, s, e

CM: f-divide-always-3-1L dest, sourcel, source2, s, e )
CM:f-divide-constant-2-1L dest/sourcel, source2-value, s, e
CM:{-divide-const-always-2-1L  dest/sourcel, source2-value, s, e
CM:f-divide-constant-3-1L dest, sourcel, source2-value, s, e
CM:f-divide-const-always-3-1L  dest, sourcel, source2-value, s, e
CM:f-divinto-2-1L dest/source2, sourcel, s, e
CM:f-divinto-always-2-1L dest/source2, sourcel, s, e
CM:f-divinto-constant-2-1L dest/source2, sourcel-value, s, e
CM:f-divinto-const-always-2-1L  dest/source2, sourcel-value, s, e
CM:f-divinto-constant-3-1L dest, source2, sourcel-value, s, e

CM:f-divinto-const-always-3-1L  dest, source2, sourcel-value, s, e

dest The floating-point destination field. This is the quotient.
sourcel  The floating-point first source field. This is the dividend.
source2  The floating-point second source field. This is the divisor.

sourcel-value A floating-point immediate operand to be used as the first
source.

source2-value A floating-point immediate operand to be used as the second

source.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+1.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

test-flag is set if division by zero occurs; otherwise it is unaffected.
overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.
The non-always operations are conditional. The destination and flags may be
altered only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination and flags may be
altered regardless of the value of the context-flag.
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Definition For every virtual processor k in the current-vp-set do
if (always or context-flaglk] = 1) then
dest|k] — sourcel[k]/source2[k]
if source2(k] = 0 then test-flag — 1
if (overflow occurred in processor k) then overflow-flaglk] — 1

The sourcel operand is divided by the source2 operand, treating both as floating-point
numbers. The result is stored into memory. The various operand formats allow operands to
be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.
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ENUMERATE

The destination field in every selected processor receives the number of processors below or
above it in some ordering of the processors.

Formats CM:enumerate-1L  dest, azis, len, direction, inclusion, smode, sbit

Operands dest The unsigned integer destination field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

direction Either :upward or :downward.
inclusion Either :exclusive or :inclusive.
smode Either :none, :start-bit, or :segment-bit.

sbit The segment bit or start bit (a one-bit field).
Overlap The sbit field must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let Si = scan-subset(k, azis, len, direction, inclusion, smode, sbit)
dest[k] — | S|

where scan-subset is as defined on page 37.

See section 5.16 on page 34 for a general description of scan operations and the effect of the
azis, direction, tnclusion, smode, and sbit operands.

The CM:enumerate-1L operation stores into the dest field of each selected processor the size
of the scan subset for that processor. This means that every processor within a scan set of
size N will receive a different integer in the range 0 to N — 1 (for an exclusive enumeration)
or in the range 1 to NV (for an inclusive enumeration).

A call to CM:enumerate-1L is equivalent to the sequence below, but may be faster.
CM:u-move-constant-1L  temp, 1, len

CM:scan-with-u-add-1L dest, temp, azis, len, direction, inclusion, smode, sbit
CM:u-subtract-constant-1L  dest, 1, len
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Compares two floating-point source values. The test-flag is set if they are equal, and other-
wise is cleared.

Formats CM:f-eq-1L sourcel, source2, s, e
CM:f-eq-constant-1L  sourcel, source2-value, s, e
CM:f-eq-zero-1L sourcel, s, e

Operands sourcel  The floating-point first source field.
source?2  The floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-eq-zero-1L, this implicitly has the value zero.

s, e The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields source! and source2 may overlap in any manner.
Flags test-flag is set if sourcel is equal to source2; otherwise it is cleared.

Context  This operation is conditional. The flag may be altered only in processors
whose contezi-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if sourcel[k] = source2[k]
test-flaglk] — 1
else
test-flaglk] — 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is equal to the second operand, and is cleared otherwise. Note that comparisons ignore the
sign of zero; +0 and —0 are considered to be equal.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). The constant is then converted, in effect, to
the format specified by s and e before the operation is performed.
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Compares two signed integer source values. The test-flag is set if they are equal, and
otherwise is cleared.

Formats CM:s-eq-1L sourcel, source2, len
CM:s-eq-2L sourcel, source2, slenl, slen2
CM:s-eq-constant-1L  sourcel, source2-value, len
CM:s-eq-zero-1L sourcel, len

Operands sourcel  The signed integer first source field.
source2  The signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-eq-zero-1L, this implicitly has the value zero.

len The length of the sourcel and source2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slen1 The length of the sourcel field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner.
Flags test-flag is set if sourcel is equal to source2; otherwise it is cleared.

Context  This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contexzt-flaglk] = 1 then
if sourcel[k] = source2[k] then
test-flaglk] — 1
else
test-flaglk] «— 0

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is equal to the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. The op-
eration is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.
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Compares two unsigned integer source values. The tesi-flag is set if they are equal, and
otherwise is cleared.

Formats CM:u-eq-1L sourcel, source2, len
CM:u-eq-2L. sourcel, source2, slenl, slen2
CM:u-eq-constant-1L  sourcel, source2-value, len
CM:u-eq-zero-1L sourcel, len

Operands sourcel  The unsigned integer first source field.
source2  The unsigned integer second source field.

source2-value  An unsigned integer immediate operand to be used as the
second source. For CM:u-eq-zero-1L, this implicitly has the value
zero.

len The length of the sourcel and source2 fields. This must be non-
negative and no greater than CM:*maximum-integer-length*.

slen1 The length of the source! field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-length*,

Overlap The fields source! and source2 may overlap in any manner.
Flags test-flag is set if sourcel is equal to source2; otherwise it is cleared.

Context  This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source1[k] = source2[k] then
test-flaglk] — 1
else
test-flaglk] — 0

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is equal to the second operand, and is cleared otherwise. :

The constant operand source2-value should be an unsigned integer front-end value. The
operation is performed properly in all cases; the constant need not be representable in the
number of bits specified by len.
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F-EXP

Calculates, in each selected processor, the exponential function e of the floating-point
source field and stores it in the floating-point destination field.

Formats CM:f-exp-1-1L dest/source, s, €
CM:f-exp-2-1L dest, source, s, €

Operands dest The floating-point destination field.
source The floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then

if source[k] = +oo then
dest[k] — +o0

else if sourcelk] = —oo then
dest[k] — +0

else
dest[k] — exp sourcelk]

if (overflow occurred in processor k) then overflow-flaglk] « 1

Call the value of the source field s; the value e® is stored into the dest field, where e =
2.718281828... is the base of the natural logarithms.
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EXTRACT-MULTI-COORDINATE

Determines the NEWs multi-coordinate of a processor specified by send-address.

Formats

Operands

Context

CM:extract-multi-coordinate-1L  geometry, dest, azis-mask, send-address, dlen

geometry A geometry-id. This geometry determines the NEws dimensions
to be used.

dest The unsigned integer destination field.

azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

send-address An unsigned integer immediate operand to be used as the
send address of some processor.

dlen The length of the dest field. This must be non-negative and no

greater than CM:*maximum-integer-length#.

This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let azis-set = {m |0 < m < r A (azis-mask(m) = 1)}
dest[k] « extract-multi-coordinate( geometry, azis-set, send-address)

where eztract-multi-coordinate is as defined on page 34.

This function calculates, within each selected processor, the NEWs multi-coordinate of a
processor along specified NEWs axes. The axes are indicated by the azis-mask argument;
the processor is identified by its send-address.
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FE-EXTRACT-MULTI-COORDINATE

Calculates, on the front end, the NEWs multi-coordinate of a processor specified by send-

address.
Formats result «— CM:fe-extract-multi-coordinate geometry, azis-mask, send-address
Operands geometry A geometry-id. This geometry determines the NEWs dimensions
to be used.
azis-mask An unsigned integer, the mask indicating a set of NEWS axes.
send-address An unsigned integer immediate operand to be used as the
send address of some processor.
Result An unsigned integer, the NEWSs multi-coordinate of the specified processor
along the specified axes.
Context  This operation is unconditional. It does not depend on contezt-flag.
Definition Let azis-set = {m |0 < m < r A (azis-mask(m) = 1)}

Return eztract-multi-coordinate( geometry, azis-set, send-address)

where eztract-multi-coordinate is as defined on page 34.

This function calculates, entirely on the front end, the NEWs multi-coordinate of a processor
along specified NEWS axes. The axes are indicated by the azis-mask argument; the processor
is identified by its send-address.
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EXTRACT-NEWS-COORDINATE

Determines the NEWs coordinate of a processor specified by send-address.

Formats CM:extract-news-coordinate-1L  geometry, dest, aztis, send-address, dlen
Operands geometry A geometry-id. This geometry determines the NEws dimensions
to be used.
dest The unsigned integer destination field.
azris An unsigned integer immediate operand to be used as the number
of a NEWS axis.
send-address ~ An unsigned integer immediate operand to be used as the
send address of some processor.
dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.
Context  This operation is conditional. The destination may be altered only in proces-
sors whose contexzt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
dest[k] — extract-news-coordinate( geometry, azis, send-address)

where eztract-news-coordinate is as defined on page 33.

This function calculates, within each selected processor, the NEWS coordinate of a processor
along a specified NEWs axis. The axis is indicated by the azis argument; the processor is
identified by its send-address.
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FE-EXTRACT-NEWS-COORDINATE

Calculates, on the front end, the NEWs coordinate of a processor specified by send-address.

Formats result «— CM:fe-extract-news-coordinate geometry, aris, send-address
Operands geometry A geometry-id. This geonietry determines the NEWs dimensions
to be used.
azis An unsigned integer immediate operand to be used as the numbe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>