
Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

070-2790-00

COMMITTED TO EXCELLENCE

Supplement to

8002A
µProcessor Lab Assembler Users Manual

070-3454-00

6500/1
ASSEMBLER SPECIFICS

Option 09 .

Serial Number-------

First Printing APR 1980

WARRANTY

Tektronix warrants that this product, excluding customer-supplied equipment, is free from
defects in materials and workmanship. The warranty period is ninety (90) days from the date
of shipment. Tektronix will, at its option, repair or replace the product if Tektronix determines
it is defective within the warranty period. CRTs are warranted for one (1) year. During the
nine (9) months following expiration of the product warranty, Tektronix will replace defective
CRTs at no charge for the material.

In the forty-eight (48) contiguous United States, the District of Columbia, and in other areas·
where Tektronix normally offers on-site service for this product, Tektronix will provide this
service at no charge during the product warranty period described above. In areas where
Tektronix does not offer on-site service for this product, warranty service will be provided at
no charge if the product is returned, freight prepaid, to a service center designated by
Tektronix.

Tektronix may use the original vendor's service organization to service any product that is
supplied but not manufactured by Tektronix.

Tektronix is not obligated to furnish service under this warranty

a. to repair damage resulting from attempts by personnel other than Tektronix
representatives to install, repair, or service the product;

b. to repair damage resulting from improper use or from connecting the product to
incompatible equipment;

c. if personnel other than Tektronix representatives modify the hardware or software.

There is no implied warranty of fitness for a particular purpose. Tektronix is not liable for
consequential damages.

Copyright© 1980 by Tektronix, Inc. All rights reserved. Contents of this publication
may not be reproduced in any form without the permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, TELEQUIPMENT, and ~ are registered
trademarks of Tektronix, Inc.

Printed in U.S.A. Specification and price change privileges are reserved.

8002A: Assembler Users Manual

@

Section 12A
6500/1 ASSEl'v'IBLER SPECIFICS

Page

Demonstration Run .. 12A-1
Introduction ... 12A-1
Preparation ... 12A-1
Examine the Sample Subroutine and Main Program 12A-2

Assembly Language Statements ... 12A-3
Explanation of the Subroutine Source Code 12A-4
Explanation of the Main Program Source Code 12A-5

Naming Files ... 12A-6
Create the Subroutine Source File .. 12A-6

How to Correct Typing Mistakes in the Editor 12A-6
Start Editing .. 12A-7

Assemble the Subroutine and Examine Any Errors 12A-8
Correct the Error in the Subroutine Source Code 12A-10
Re-Assemble the Subroutine .. 12A-10
Examine the Subroutine Listing . 12A-11

The Source Listing .. 12A-12
The Symbol Table. 12A-12

Create the Main Program Source File ... 12A-13
Assemble the Main Program .. 12A-14
Examine the Main Program Listing .. 12A-15

The Source Listing .. 12A-15
The Symbol Table. 12A-16

Link the Object Modules .. 12A-16
Examine the Linker Listing .. 12A-17

The Memory Map. 12A-18
The Module Map . 12A-18
The Global Symbols List .. 12A-18

Load the Executable Object Code into Memory . 12A-19
Summary of Demonstration Run .. 12A-20

12A-v

12A-vi

Content-8002A: Assembler Users Manual

Page

6500/1 Instruction Set .. 12A-21
Introduction . 12A-21
Notational Conventions .. 12A-21
Addressing Modes . 12A-22

Absolute Addressing . 12A-22
Accumulator Addressing. 12A-23
Implied Addressing . 12A-23
Immediate Addressing . 12A-23
Zero Page Addressing ... 12A-24
Relative Addressing ... 12A-24
Absolute Indexed Addressing . 12A-:25
Zero Page Indexed Addressing .. 12A-25
Indirect Addressing... 12A-26
Indexed Indirect Addressing . 12A-26
Indirect Indexed Addressing . 12A-27

Summary of 6500/1 Instructions .. 12A-28

Reserved Words . 12A-38
6500/1 Mnemonics ... 12A-38
6500/1 Register Names .. 12A-38
Tektronix Assembler Directives, Options and Operators 12A-38

Page Size . 12A-38

Error Messages ... 12A-39

Fig.
No.

12A-1

12A-2

12A-3

12A-4

ILLUSTRATIONS

Source code for sample subroutine and main program 12A-3

Assembler listing for the sample subroutine 12A-11

Assembler listing for the sample main program 12A-15

Linker listing ... 12A-17

@

8002A: Assembler Users Manual

Section 12A

6500/1 ASSEMBLER SPECIFICS

DEMONSTRATION RUN

Introduction
This Demonstration Run shows you how to enter, modify, assemble, link, and load a simple
program and subroutine.

The purpose of this demonstration is to give you the basic information and experience you
will need to begin using the assembler, linker, and library generator.

For your convenience, the sample program and subroutine are short. Only a few features of
the assembler and linker are demonstrated, and the library generator is not discussed.

This Demonstration Run uses the following conventions:

1. Underlined-Underlined characters in a command line must be entered from your
system terminal. Those characters not underlined are system output.

2. <CR>-Each command line ends with a carriage return. When a carriage return is to
be entered, the symbol <CR> is used.

Preparation
To do this Demonstration Run you should have a basic understanding of the 8002A
µProcessor Lab and the TEKDOS Text Editor. If you need to review how the 8002A and its
editor work, refer to the Learning Guide in the 8002A System User manual.

You will need about 60 minutes to complete this Demonstration Run.

Start up your 8002A system. Mbke sure your system disc has a write-enable tab and is
inserted into disc drive 0.

12A-1

Demonstration: Preparation 6500/1 Assembler Specifics-8002A: Assembler Users Manual

12A-2

Enter the LDIR command, so that you may examine your disc directory. Make sure you have
at least 10 blocks available for the files created during this demonstration:

> LDIR <CR>

FILE NAME BLKS

TEKDOS 16
173

COPY SYS 1
NEW DISC 1

TOTAL FILES 4
TOTAL BLOCKS USED 191
BLOCKS AVAILABLE 113 ~Must be at least 10 blocks
TOTAL BAD BLOCKS 0

>

If there are not at least 10 blocks available on your system disc, you must make some room
by copying some of your non-system files to another disc:

1. Insert another write-enabled disc into disc drive 1.

2. Repeat the following three commands until you have at least 10 blocks available.

> COPY filename/0 filename/1 <CR>
> DELETE filename/O <CR>
> LDIR 0 <CR>

(filename represents any non-system file.)

Examine the Sample Subroutine and Main Program
Figure 12A-1 lists the subroutine and program you will enter, assemble, link, and load in this
Demonstration Run.

The subroutine outputs the ASCII character stored in the accumulator to an 1/0 address
specified by the symbol PORTN. Note: The 6500/1 uses memory locations 80H to 83H for
1/0 ports.

The main program places a character in the accumulator, calls the subroutine to send the
character to the 1/0 address, and then waits forever.

You can think of the subroutine as a carefu!!y prepared component of a major programming
project. The main program can be viewed as a quickly written test for the subroutine.

6500/1 Assembler Specifics-8002A: Assembler Users Manual Demonstration: Examine Program

@

Subroutine OUTSUB:

TITLE ttSAMPLE SUBROUTINEtt
NAME SUBSMOD
GLOBAL PORTN,OUTSUB
SECTION SUBS1

; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER.
OUTSUB STA PORTN OUTSUB STARTS HERE.

RTS ; RETURN TO PROGRAM.
END

Main Program:

GLOBAL
PORTN EQU
START LDA

JSR
JMP
END

PORTN,OUTSUB
80H I/O ADDRESS = 80 (HEXADECIMAL)
#"?" CHARACTER = "?"
OUTSUB SEND"?" TO I/O ADDRESS 80 ...
$ ••• AND LOOP FOREVER.
START

Fig. 12A-1. Source code for sample subroutine and main program.

2790-1

Subroutine OUTSUB outputs a single ASCII character to an 1/0 address specified by PORTN. The main
program specifies a 1/0 address and a character and calls OUTSUB to send the character to that
address. The subroutine and main program are discussed in more detail later in this section.

Assembly Language Statements

An assembler source module is made up of assembly language statements. There are three
types of assembly language statements:

•An assembly language instruction is translated by the assembler into a 6500/1
machine instruction.

•An assembler directive indicates a special action to be taken by the assembler.
Assembler directives define data items, constants, and variables; provide information to
the linker; control macros and conditional assembly; and specify options for the
assembler and linker listings.

•A macro invocation is replaced by the statements of the macro it invokes. (Macro
invocations are not discussed in this demonstration.)

Each assembly language statement has four fields. Each field may vary in width and certain
fields may be blank. However, the fields always occur in the following order:

1. The label field. The label field always begins in column 1 of the statement. The label
allows the statement to be referenced by other statements. The label usually
represents the address of the instruction or data item represented by the statement.

2. The operation field. The word in the operation field indicates the type of action to be
taken by the assembler. The word may be an assembler directive word, a 6500/1
mnemonic, or the name of a macro. If the word is a 6500/1 mnemonic, the assembler
translates the statement into a machine instruction.

3. The operand field. The operand field completes the assembly language statement.
Most assembler directives and 6500/1 instructions contain one or more operand
expressions. The type and number of operands depend on the operation.

12A-3

Demonstration: Examine Program 6500/1 Assembler Specifics-8002A: Assembler Users Manual

12A-4

4. The comment field. Comments are used for program documentation only; they are
ignored by the assembler. A semicolon (;) indicates that the remainder of the line is a
comment. A comment may follow the operand field, or may begin with a semicolon in
column 1 and take up an entire source line.

Explanation of the Subroutine Source Code

The following text explains each statement in the sample subroutine. (shown in Fig. 12A-1).
The two statements preceding the END statement are 6500/1 instructions. The remaining
statements are assembler directives.

TITLE "SAMPLE SUBROUTINE"

The phrase "SAMPLE SUBRO~TINE" will appear in the heading on each page of the
assembler source listing.

NAME SUBSMOD
When the subroutine is assembled, the resulting object module will be named "SUBSMOD".

GLOBAL PORTN,OUTSUB

PORTN and OUTSUB are declared as global symbols, since each symbol is given a value in
one module and referred to in another module. For example, OUTSUB is defined in the
subroutine and referred to in the main program. PORTN is called an unbound global because
it is not defined anywhere in this module. OUTSUB is a bound global.

SECTION SUBS 1

Each object module is composed of one or more sections. The linker treats each section as a
separate unit: sections from the same module may be placed in different ends of memory.
The one section in object module SUBSMOD will be called SUBS1. (If you were to add more
sections to this source module, they might be called SUBS2, SUBS3, and so on.)

The assembler directives SECTION, COMMON, and RESERVE each declare a different type of
section, and may also specify restrictions on the relocatability of the section. When no
restriction is specified, the section is byte-relocatable; that is, the section may begin at any
byte in memory. The Linker section of this manual contains an explanation of the five
attributes of a section: name, section type, relocation type, size, and memory location.

; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER.

This is a comment.

OUTSUB STA PORTN ; OUTSUB STARTS HERE.

This 6500/1 instruction outputs the contents of the accumulator to an 1/0 address specified
by PORTN. The symbol OUTSUB becomes defined as the address of this instruction, which is
the first instruction in the subroutine. A program that contains the instruction JSR OUTSUB
can execute this subroutine.

6500/1 Assembler Specifics-8002A: Assembler Users Manual Demonstration: Examine Program

@

RTS ; RETURN TO PROGRAM.

This 6500/1 instruction returns control to the calling prograrrL

END

This assembler directive marks the end of the source module.

Explanation of the Main Program Source Code

The following text explains each statement in the sample main program. The program
contains three assembler directives (GLOBAL, EQU, and END) and three 6500/1 instructions
(LOA, JSR, and JMP).

GLOBAL PORTN,OUTSUB

As in the subroutine, PORTN and OUTSUB are global symbols. However, in this module,
PORTN is a bound (defined) global while OUTSUB is an unbound (undefined) global. The
GLOBAL statements allow the two modules to share the 1/0 address and the address of the
subroutine.

. PORTN EQU 80H ; I/O ADDRESS = 80 (HEXADECIMAL)

This assembler directive assigns the hexadecimal value 80 to the symbol PORTN. "PORTN"
becomes synonymous with the constant "80H".

START LDA II"?" ; CHARACTER = "?"

This 6500/1 instruction loads the hexadecimal value 3F (the ASCII code for question mark)
into the accumulator. This statement is given a label, "START", so that the END statement
may refer to it. The "#" specifies immediate addressing: the operand contains the value to be
operated on.

JSR OUTSUB ; SEND"?" TO I/O ADDRESS 80 ...

This 6500/1 instruction transfers control to the instruction labeled OUTSUB in the
subroutine module. The subroutine sends the question mark to the 1/0 address 80H.

JMP $; ... AND LOOP FOREVER.
Control returns from the subroutine to this 6500/1 instruction. The $ represents the current
value of the program counter: this instruction directs the 6500/1 to continue to reexecute
this instruction indefinitely.

END START

This assembler directive terminates the source module and indicates that program execution
should begin with the instruction labeled "START". START is called the transfer address.
The transfer address is passed through the assembler and linker to the TEKDOS commands
LOAD and GO.

12A-5

Demonstration: Naming Files 6500/1 Assembler Specifics-8002A: Assembler Users Manual

12A-6

Notice that this program source module does not contain a TITLE, NAME, or SECTION
directive. The following default conditions result:

•There will be no special title in the page heading of the source listing.

•The object module will be called *NONAME*.

•The one section in *NONAME* will be given a default name, section type, and
relocation type.

Naming Files
This Demonstration Run produces several files. To give each file a name that reflects. its
contents and importance, we will use the file naming standards described in the File
Management section of the 8002A System Users Manual:

•The last character of the file name is a letter that represents'the type of file.

•The next-to-last character is either a percent sign (%) or a semicolon(;). The percent
sign signifies a file that cannot be readily replaced. The semicolon signifies a temporary
or readily replaced file.

•The first part of the file name is a descriptive name.

The following files will be produced:

File Name

DEMSUB%S
DEMSUB;O
DEMSUB;A
DEMPRO%S
DEMPRO;O
DEMPRO;A
DEMPRO;L
DEMPRO;K

Ex_l!lanation

DEMonstration SUBroutine Source file
DEMonstration SUBroutine Object file
DEMonstration SUBroutine Assembler listing
DEMonstration PROgram Source file
DEMonstration PROgram Object file
DEMonstration PROgram Assembler listing
DEMonstration PROgram Load file
DEMonstration PROgram linKer listing

Create the Subroutine Source File

How Created

by you
by assembler
by assembler
by you
by assembler
by assembler
by linker
by linker

The TEKDOS Editor helps create and modify source files. The Editor Dictionary section of the
8002A System Users Manual contains a complete explanation of the editor.

How to Correct Typing Mistakes in the Editor
To delete the last character typed, use the BACKSPACE, RUBOUT, or DELETE key:

•The BACKSPACE key on a CRT terminal cancels the character and backs the cursor over
it.

•The RUBOUT key on a CRT terminal cancels the character and echoes the cancelled
character on the terminal.

• The DELETE key on a hard-copy terminal cancels the character and echoes the
cancelled character on the terminal.

@

6500/1 Assembler Specifics-8002A: Assembler Users Manual Demonstration: Create Subroutine

@

To delete the entire line being typed:

• Press the ESC (escape) key once. You may then re-enter the line.

Start Editing
The EDIT command invokes the TEKDOS Editor. The file name in the EDIT command
indicates the file to be edited. Enter the following line to begin the editing session that
creates DEMSU8%S, the subroutine source fiie:

> EDIT DEMSUBis <CR>

** EDIT VER x.x **
NEW FILE

*
The asterisk (*) is the editor prompt character. When you see the asterisk, you may enter the
next editor command.

An assembly language program is easier to read if the statement fields are aligned as in Fig.
12A-1. The editor has tab stops at columns 8, 16, 24, 32, 40, 48, 56, and 64, which are
convenient for aligning assembly language text. For example, in Fig. 12A-1, the operation
field begins in column 8, the operand field begins in column 16, and the comment field
begins in column 24.

Enter the following command to declare the backslash (\) as the editor tab character:

*TAB \ <CR>

The editor will interpret every backslash you enter as a skip to the next tab stop.

Enter input mode and type in the subroutine. Be sure to misspell "GLOBAL" in the third line
of text. This deliberate typing error will be used to illustrate features of the assembler and
editor.

*INPUT <CR>
INPUT:
\TITLE\"SAMPLE SUBROUTINE" <CR>
\NAME\SUBSMOD <CR>
\GLOABL\PORTN,OUTSUB <CR>
\SECTION\SUBS1 <CR>
; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER. <CR>
OUTSUB\STA\PORTN\; OUTSUB STARTS HERE. (CR>
\RTS\\; RETURN TO PROGRAM. <CR>
\END <CR>
<CR>
*

When you enter the carriage return on the empty line, input mode is terminated and the
editor prompt (*) appears.

12A-7

Demonstration: Assemble Subroutine 6500/1 Assembler Specifics-8002A: Assembler Users Manual

12A-8

The text you entered is stored in the editor workspace. Each backslash you entered has been
replaced by spaces up to the next tab stop. To display the workspace contents from beginning
to end, enter the following command:

*TYPE B-E <CR>
TITLE "SAMPLE SUBROUTINE"
NAME SUBSMOD
GLOABL PORTN,OUTSUB
SECTION SUBS 1

; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER.
OUTSUB STA PORTN ; OUTSUB STARTS HERE.

RTS ; RETURN TO PROGRAM.
END

*
Now enter the FILE command to copy the text in the workspace out to the new source file
and end the editing session:

*FILE <CR>
•oos• EOJ

>

The TEKDOS prompt (>) indicates that you are out of the editor and may enter another
TEKDOS command.

Assemble the Subroutine and Examine Any Errors
The TEKDOS command ASM invokes the assembler and specifies the source file(s) to be
assembled and the object and listing files to be produced. The ASM command has the
following format:

ASM,objfile,lisfile,soufile[,soufile]; ••

objfile-name of object file to be produced

lisfile-name of listing file to be produced
soufile-name(s) of source file(s) to be assembled

To scan source file DEMSUB%S for errors, enter the following command:

> ASM,,,DEMSUBSS <CR>

Omitting the names of the object and listing files has two advantages:

1. The assembler runs faster because it produces no object code or listing.

2. The ASM command line is shorter.

You may want to omit the object and listing files from your ASM command line whenever
you suspect that your source code contains errors.

@

6500/1 Assembler Specifics-8002A: Assembler Users Manual Demonstration: Assemble Subroutine

@

The assembler responds as follows on your system terminal:

Tektronix 6500/1 ASM Vx.x
**** Pass 2
00003 0000 000000 GLOABL PORTN,OUTSUB
***** ERROR 039: Invalid operation code
00006 0000 8DOOOO OUTSUB STA PORTN ; OUTSUB STARTS HERE.
***** ERROR 074: Undefined symbol

8 Source Lines 8 Assembled Lines 47038 Bytes available
2 ERRORS 2 UNDEFINED SY~BOLS

ASM EOJ

>

The assembler's response can be interpreted as follows:

Tektronix 6500/1 ASM Vx.x

The assembler announces itself as it begins executing. The assembler reads through your
source file twice. The first time through (Pass 1), the assembler makes a list of symbols that
appear in the source code and tries to assign an address or value to each symbol.

**** Pass 2

The assembler begins its second pass through your source file. During Pass 2 the assembler
produces the object and listing files and displays error messages and statistics.

00003 0000 000000 GLOABL PORTN,OUTSUB
***** ERROR 039: Invalid operation code

The assembler cannot translate the above statement because "GLOABL" is not a 6500/1
mnemonic, an assembler directive word, or the name of a macro. The erroneous source line
and the error message would appear in the listing (if any) just as they appear on the system
terminal. The three numbers to the left of the statement will be explained when you examine
an assembler listing later in this Demonstration Run.

00006 0000 8DOOOO OUTSUB STA PORTN ; OUTSUB STARTS HERE.
***** ERROR 074: Undefined symbol
Because the assembler did not understand the GLOBAL statement, it does not know that
PORTN is a global symbol. The assembler expects PORTN to be defined in this module.

8 Source Lines
2 ERRORS

8 Assembled Lines 47038 Bytes available
2 UNDEFINED SYMBOLS

These lines summarize the assembler's activities. There are eight lines of code in your
source fiie. The number of assembled lines differs from the number of source iines only in
programs that contain macros or conditional assembly.

The "Bytes available" message indicates the amount of Program Memory not used by the
assembler. If the "Bytes available" figure is ever less than 1000 or so, you may need to divide
your source module into smaller modules before you add any more statements.

The two errors, already discussed, produced the two undefined symbols GLOABL and
PORTN.

12A-9

Demonstration: Correct Subroutine 6500/1 Assembler Specifics-8002A: Assembler Users Manual

12A-10

Correct the Error in the Subroutine Source Code
Both errors detected by the assembler arose from the misspelling of "GLOBAL" in line 3 of
the source file, DEMSUB%S. Invoke the editor so that you may correct the misspelling:

> EDIT DEMSUB%S <CR>

** EDIT VER x.x **
*

The editor command GET brings text into the workspace from the file being edited. Specify a
large number of lines (99) to assure that the entire file is brought into the workspace:

*GET 99 <CR>
*'EOFll

The message **EOF** indicates that the end of the input file has been reached.

Enter the following command line. The BEGIN cqmmand moves the workspace pointer to line
1. Starting at that line, the FIND command searches for the character string "GLO" and
moves the pointer to the first line that contains the string.

*BEGIN.:FIND /GLO/ <CR>
GLOABL PORTN,OUTSUB

Now the workspace pointer is at the line you want to modify. Use the SUBSTITUTE command
to reverse the letters "A" and "B" in "GLOABL":

*SUB /AB/BA/ <CR>
GLOBAL PORTN,OUTSUB

The modified line is displayed.

As before, the FILE command copies the edited source code to the source file and closes the
editing session:

*FILE <CR>
HEOF**
DOS EOJ

>

Re-Assemble the Subroutine
Enter the following command to create an object file (DEMSUB;O) and an assembler listing
file (DEMSUB;A) from the subroutine source file:

> ASM DEMSUB;O DEMSUB;A DEMSUBjS <CR>
Tektronix 6500/1 ASM Vx.x
•••• Pass 2

8 Source Lines 8 Assembled Lines 47038 Bytes available
>>> No assembly errors detected <<<

ASH EOJ

>

This time the assembler finds no errors.

6500/1 Assembler Specifics-8002A: Assembler Users Manual Demonstration: Subroutine Listing

@

Examine the Subroutine listing
!n order to examine the assembler listing stored on file DEMSUB;A, copy the file to your line
printer:

> COPY DEMSUB;A LPT1 <CR>

If you have no line printer, enter the following command to list the file on your system
terminal. (Remember that you may use the space bar to suspend or resume display on a CRT
terminal.)

> COPY DEMSUB;A <CR>

Figure 12A-2 shows the listing of the sample subroutine.

Tektronix 6500 ASM Vx.x SAMPLE SUBROUTINE Page

00002
00003
00004
00005

NAME SUBSMOD
GLOBAL PORTN,OUTSUB
SECTION SUBS 1

; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER.
00006 0000 800000
00007 0003 60
00008

> OUTSUB STA PORTN ; OUTSUB STARTS HERE.
RTS ; RETURN TO PROGRAM.
END

Tektronix 6500 ASM Vx.x Symbol Table Page

SUBS1 Section (0004)

OUTSUB - 0000 G

PORTN Unbound Global

8 Source Lines 8 Assembled Lines 47038 Bytes available

2

>>> No assembly errors detected <<< 2790-2

Fig. 12A-2. Assembler listing for the sample subroutine.

The command ASM DEMSUB;O DEMSUB;A DEMSU8%S produces this listing file from the subroutine
source file. The command COPY DEMSUB;A LPT1 copies the listing fi!e to the !ine printer.

Every assembler listing has two parts: the source listing and the symbol table. Each page of
the listing begins with a standard page heading.

12A-11

Demonstration: Subroutine Listing 6500/1 Assembler Specifics-8002A: Assembler Users Manual

The Source Listing
Page 1 of your listing contains the source listing. The heading includes the words "SAMPLE
SUBROUTINE", which you supplied with the TITLE directive.

Each line of the source listing contains the following information:

1. the line number (decimal);

2. the memory location (hexadecimal) of the object code generated (if any);

3. the assembled object code (hexadecimal);

4. a relocation indicator (>) if the object code may be adjusted by the linker;

5. a text substitution indicator (+) if the assembler has modified the source statement
(this demonstration gives no examples of text substitution);

6. the source statement.

If any statement contains an error, the appropriate error message appears directly after the
statement.

Examine each line of your source listing:

• Line 1 (the TITLE directive) is not printed because it is a listing control directive.

• Lines 2, 3, 4, and 8 are assembler directives that produce no object code. The
information they provide is stored in special areas of the object module.

• Line 5 is a comment.

• Lines 6 and 7 are 6500/1 assembly language instructions:

The 6500/1 instruction STA PORTN produces the three-byte machine instruction
800000. 80 is the hexadecimal operation code for the STA instruction. The dummy
value 0000 will be used for the 1/0 address until the linker supplies a value for
PORTN.

The machine instruction 800000 is stored in bytes 0000 through 0002 of section
SUBS1.

The 6500/1 instruction RTS produces the one-byte machine instruction 60, which is
stored in byte 0003 of section SUBS1.

The Symbol Table
Page 2 of your listing contains the symbol table, which indicates the value and type of each
symbol in your source code.

The assembler symbol table is divided into the following categories:

1. Strings and macros

2. Scalars (numeric values other than addresses; includes undefined symbols)

3. Sections (and addresses within each section)

4. Unbound globals

12A-12

6500/1 Assembler Specifics-8002A: Assembler Users Manual Demonstration: Create Program

Examine the symbol table in your listing:

1. The strings and macros tabie is omitted, since the sample subroutine uses neither
string variables nor macros.

2. The scalars table is omitted since the sample subroutine defines no scalars.

3. SUBS1 is the only section in the sample subroutine. The line

SUBS1 Section (0004)

tells you the following attributes of section SUBS1:

• its name: SBUS1;

• its section type: SECTION (as opposed to COMMON or RESERVE);

• its relocation type: byte-relocatable (the default relocation type is implied when no
other relocation type is specified);

• its length: 4 bytes.

OUTSUB has the value 0000 because OUTSUB is the address of the first byte in
section SUBS1. The letter "G" indicates that OUTSUB is a global symbol.

4. PORTN is the only unbound (undefined) global symbol in the subroutine.

The statistics at the bottom of the symbol table are the same statistics that appeared on the
system terminal when the assembler finished execution.

When there are errors in your source code, the two most useful parts of your listing are the
source listing and the scalars table. The source listing contains the error messages and
shows the erroneous lines in context with the rest of the program. The scalars table flags
undefined symbols with the value "****"

Create the Main Program Source File
Now that you have created, corrected, and assembled the sample subroutine, it is time to
create the main program that uses the subroutine. Enter the following command to begin the
editing session that creates the main program source file, DEMPRO%S:

> EDIT DEMPRO%S <CR>

** EDIT VER x.x **
NEW FILE
*

12A-13

Demonstration: Assemble Program 6500/1 Assembler Specifics-8002A: Assembler Users Manual

Declare the editor tab character and type in the source code, just as you did for the
subroutine: (This time, however, don't include any typing errors.)

*TAB \ <CR>
*I'FfPUT <CR>
Im>ITr:
\GLOBAL\PORTN,OUTSUB <CR>
PORTN\EQU\BOH\· I/O ADDRESS = 80 (HEXADECIMAL) <CR>
START\LDA\h"?"{; CHARACTER = "?" (CR>
\JSR\OUTSUB\; SEND"?" TO I/O ADDRESS 80 ... <CR>
\JMP\$\; ... AND LOOP FOREVER. <CR>
\END\START <CR>
<CR>
*

Inspect the text you have entered to be sure there are no errors:

*TYPE B-E <CR>
GLOBAL

PORTN EQU
START LOA

JSR
JMP
END

*

PORTN,OUTSUB
80H I/O ADDRESS = 80 (HEXADECIMAL)
#"?" CHARACTER = ~?"
OUTSUB SEND"?" TO r/o ADDRESS 80 ...
$ ••• AND LOOP FOREVER.
START

Enter the FILE command to save the text onto the source file and return to TEKDOS:

*FILE <CR>
•oos• EOJ

>

Assemble the Main Program
Enter the following command line to create an object file (DEMPRO;O) and a listing file
(DEMPRO;A) from the main program source file:

> ASM DEMPRO;O DEMPRO;A DEMPROSS <CR>

Tektronix 6500/1 ASM Vx.x
**** Pass 2

6 Source Lines 6 Assembled Lines 47061 Bytes available
>>> No assembly errors detected <<<

ASM EOJ

>

The main program contains no errors.

12A-14 @

6500/1 Assembler Specifics-8002A: Assembler Users Manual Demonstration: Program Listing

@

Examine the Main Program Listing
Copy the assembler listing to the !ine printer or to the system terminal:

> COPY DEMPRO;A LPT1 <CR>

or

> COPY DEMPRO;A <CR>

Tektronix 6500 ASM Vx. x Page

00001 GLOBAL PORTN,OUTSUB
00002 0080 PORTN EQU 80H I/0 ADDRESS = 80 (HEXADECIMAL)
00003 0000 A93F START LDA II"?" CHARACTER = "?"
00004 0002 200000 > JSR OUTSUB SEND "?" TO I/O ADDRESS 80 ...
00005 0005 4C0500 > JMP $... AND LOOP FOREVER.
00006 0000 > END START

Tektronix 6500 ASM Vx.x Symbol Table Page 2

Scalars

PORTN -- 0080 G

~DEMPRO (default) Section (0008)

START -- 0000

OUTSUB Unbound Global

6 Source Lines 6 Assembled Lines 47061 Bytes available

>>> No assembly errors detected <<<

Fig. 12A-3. Assembler listing for the sample main program.

The command ASM DEMPRO;O DEMPRO;A DEMPRO%S produces this listing file from the main
program source file. The command COPY DEMPRO;A LPT1 copies the listing file to the line printer.

2790-3

Compare the listing of the sample main program (Fig. 12A-3) with the listing of the sample
subroutine (Fig. 12A-2).

The Source Listing
Page 1 of your assembler listing contains the source listing. Notice that there is no user­
defined title for the program listing: the source code contains no TITLE directive.

Examine each line of the program source listing:

1. As in the subroutine, the GLOBAL statement produces no object code.

2. The EQU statement assigns the value 80 (hexadecimal) to the symbol PORTN. The
symboi PORTN and its value are stored in the global symbol block of the progrnm
object module. At link time the value of PORTN will be substituted into the STA
instruction in the subroutine.

12A-15

Demonstration: Program Listing 6500/1 Assembler Specifics-8002A: Assembler Users Manual

3. The 6500/1 assembly language instruction LOA #''?" generates the machine
instruction A93F. A9 is the operation code for "LOA immediate" and 3F is the ASCII
code for the question mark. The machine instruction A93F is stored in bytes 0000 and
0001 of the main program.

4. The 6500/1 assembly language instruction JSR OUTSUB generates the machine
instruction 200000 in bytes 0002 through 0004. 20 is the operation code for the JSR
instruction. 0000 is a dummy value: the address of OUTSUB will be provided at link
time.

5. The 6500/1 assembly language instruction JMP $ produces the three-byte machine
instruction 4C0500 in bytes 0005 through 0007 of the main program. 4C is the
operation code for the JMP instruction. 0500 is the address of the JMP instruction
(low-byte first).

6. The END statement specifies that the transfer address is 0000, the address of the LDA
instruction. The transfer address will be adjusted if this section of object code is not
loaded at the beginning of memory.

The Symbol Table
1. The strings and macros table is again omitted because it is empty.

2. The scalars table lists the usual pre-defined scalars, plus the symbol PORTN. The
value of PORTN is 0080 hexadecimal. The "G" indicates that PORTN is a global
symbol.

3. Because the main program source code contains no SECTION directive, the section
produced by this assembler run is given the following default attributes:

• name: %0EMPRO (derived from the name of the object file);

• section type: SECTION;
• relocation type: byte-relocatable.

Section %0EMPRO contains eight bytes of code. START is the address of the first byte
of the section.

4. OUTSUB is the only unbound (undefined) global symbol in the main program.

The statistics at the bottom of the symbol table are the same statistics that appeared on the
system terminal when the assembler finished execution.

Link the Object Modules
Now both the subroutine and the main program have been translated into machine language.
In order for the subroutine and main program object modules to communicate with each
other, they must be linked. The linker performs the following tasks in creating a load file of
executable object code:

• It finds a block of memory for each section in the specified object files.

• It adjusts addresses to reflect relocation of sections.

• It provides values for unbound globals.

12A-16

6500/1 Assembler Specifics-8002A: Assembler Users Manual Demonstration: Linker Listing

@

Enter the following command to create a load file (DEMPRO;L) and a linker listing file
(DEMPRO;K) from your two object files:

> LINK DEMPRO;L DEMPRO;K DEMPRO;O DEMSUB;O <CR>

The linker responds as follows:

NO ERRORS NO UNDEFINED SYMBOLS
2 MODULES 2 SECTIONS
TRANSFER ADDRESS IS 0000

LINK EOJ

>

Examine the Linker Listing
Copy the linker listing file to the line printer or system terminal:

> COPY DEMPRO;K LPT1 <CR>

or

> COPY DEMPRO;K <CR>

Figure 12A-4 shows the linker listing.

Tektronix 6500 LINKER Vx.x

%DEMPRO 0000 OUTSUB 0008 PORTN

Tektronix 6500 LINKER Vx. x

FILE: DEMPRO;O

MODULE: *NONAME*
%DEMPRO SECTION BYTE 0000-0007

FILE: DEMSUB;O

MODULE:
SUBS1
OUTSUB

Tektronix

SUBSMOD
SECTION BYTE 0008-000B
0008

6500 LINKER Vx. x

0000-0007 %DEMPRO
0008-000B SUBS1

SECTION BYTE
SE CT ION BYTE

NO ERRORS NO UNDEFINED SYMBOLS
2 MODULES 2 SECTIONS

GLOBAL SYMBOL LIST

0080 SUBS1

MODULE MAP

MEMORY MAP

Page

0008

Page 2

Page 3

TRANSFER ADDRESS IS 0000 2790-4

Fig. 12A-4. Linker listing.

The command LINK DEMPRO;L DEMPRO;K DEMPRO;O DEMSUB;O produces this linker listing file. The
command COPY DEMPRO;K LPT1 copies the listing file to the line printer.

12A-17

Demonstration: Linker Listing 6500/1 Assembler Specifics-8002A: Assembler Users Manual

12A-18

The standard linker listing contains three parts:

1. The global symbol list (page 1 of your listing) lists the value assigned to each global
symbol. The name and starting address of each section are included. Undefined
globals are flagged with the value "****".

2. The module map (page 2) provides the following information for each object module
being linked:

•I the name of the object file or library file supplying the object module;

• i the name and attributes of each section in the module. Any entry points

1
(addresses declared as global symbols) for each section are also listed.

The module map allows you to verify that each section of your program has been
assigned a place in memory. ·

3. The memory map (page 3) lists the sections in the order they occur in memory.
Conflicting (overlapping) memory allocations are indicated with an asterisk (*).

Linker statistics appear at the bottom of the memory map.

An optional feature of the linker listing, the internal symbol list, is useful for program
debugging. The internal symbol list is not demonstrated here but is discussed in the Linker
section.

The Memory Map
The memory map (page 3 of your listing) provides the most concise summary of the load file
produced by the linker.

The memory map shows that bytes 0000 through 0007 of memory will contain section
%DEMPRO (the main program) and that bytes 0008 through OOOB will contain section
SUBS 1 (the subroutine).

The memory map also gives the section type (SECTION) and relocation type (byte-relocatable)
for each section.

Notice that the transfer address remains unchanged because the section containing the
transfer address is located at the beginning of memory.

The Module Map
The module map (page 2) shows much the same information as the memory map. The
module map, however, reports the sections by module rather than by memory location.

The first object file, DEMPRO;O, contains the object module called *NONAME*. (Recall that
the main program source code contains no NAME directive.) The main program consists of
the single section %DEMPRO, whose attributes you already know from the memory map.

The second object file, DEMSUB;O, contains the subroutine object module, SUBSMOD.
SUBSMOD consists of the single section SUBS 1. The single entry point to SUBS 1 is
OUTSUB, whose adjusted address (after relocation) is 0008.

The Global Symbols List
The global symbols list (page 1) shows the two symbols declared in GLOBAL statements
(OUTSUB and PORTN) and the two section names (%DEMPRO and SUBS1).

@

6500/1 Assembler Specifics-8002A: Assembler Users Manual Demonstration: Load

load the Executable Object Code into Memory
Use the FILL command to fill program memory with zeros before you load your object
program. Later, when you examine memory, the zeros make it easy to identify the beginning
and end of your code. Fill memory from addresses 0000 through OOOF with zeros using the
following command line:

> FILL 0 F 00 <CR>

Enter the following command to copy the executable object code from the load file into
program memory:

> LOAD DEMPRO;L <CR>
TRANSFER ADDRESS: 0000
LOAD EOJ

)

Bytes 0000 through 0008 of program memory now contain the 12 bytes of machine
language that form the executable program.

The TEKDOS command DUMP displays the contents of a specified section of memory. Each
byte is displayed as a two-digit hexadecimal number and as the ASCII character it represents
(if any). Enter the following command to display the contents of memory locations 0000
through OOOF: 9

> DUMP 0 F <CR>

OOOO=A9 3F 20 08 00 4C 05 00 8D 80 00 60 00 00 00 00 • ? •• L

"-1 " ..._,. J ~ ~
\..._ ___ ____)

....._,,..
address of main
first byte
displayed program

subroutine memory not
affected by
LOAD command

corresponding
ASCII characters

Compare the relocatable object code produced by the assembler with the executable object
code produced by the linker. (The addresses and object bytes adjusted by the linker are
underlined.)

Relocatable Object Code Executable Object Code
(from assembler listings) (from DUMP output)

object source object source

address code code address code code

0000 A93F LOA #"?" 0000 A93F LOA #"?"

0002 200000 JSR OUTSUB 0002 200800 JSR OUTSUB

0005 4C0500 JMP $ 0005 4C0500 JMP $

0000 800000 STA PORTN QQQB 808000 STA PORTN

0003 60 RTS 0008 60 RTS

Note the adjustments made by the linker:

•The subroutine is relocated from byte 0000 to byte 0008.

• The address of the subroutine is substituted into the JSR instruction.

•The 1/0 address is substituted into the STA instruction.

12A-19

Demonstration: Summary 6500/1 Assembler Specifics-8002A: Assembler Users Manual

Summary of Demonstration Run
Enter the following command to list the files on your system disc:

> LDIR <CR>

FILE NAME BLKS

TEKDOS 16
173

COPYSYS 1
NEW DISC 1
DEMSUB;O 1
DEMSUB;A 1
DEMPRO~S 1
DEMPRO ;O 1
DEM PRO; A 1
DEM PRO ;L 1
DEM PRO ;K 1
DEMSUB~S 1

TOTAL FILES 12
TOTAL BLOCKS USED 199
BLOCKS AVAILABLE 105
TOTAL BAD BLOCKS 0

>

Recall the eight files you have created in this Demonstration Run:

• the two source files (DEMSUB%S and DEMPRO%S) you created using the editor;

•the two object files (DEMSUB;O and DEMPRO;O) and the two listing files (DEMSUB;A
and DEMPRO;A) generated by the assembler;

•the load file (DEMPRO;L) and the listing file (DEMPRO;K) generated by the linker.

You have now finished the Demonstration Run. It emphasized how to:

• create a source file using the editor;

• create an object file from a source file using the assembler;

•create a load file from object files using the linker;

• copy the load file into memory using the LOAD command;

• interpret listings generated by the assembler and linker.

Because the 6500/1 does not execute instructions from the first 800H bytes of its
addressing space, the program you have loaded below 800H will not run on the 6500/1
Emulator Processor. However, the linker allows you to relocate the object code to a more
suitable part of memory (for example, bytes 0800-0808) without changing your source code.
This feature of the linker is beyond the scope of this Demonstration Run; see the linker
command LOCATE in the Linker section of this manual.

The 6500/1 Demonstration Run in the Emulator Specifics section of the 8002A System
Users Manual shows you how to execute and monitor a program you have loaded into
memory.

12A-20

6500/1 Assembler Specifics-8002A: Assembler Users Manual 6500/1 Instruction Set

@

6500/1 INSTRUCTION SET
introduction
All 6500/1 instructions are summarized in this subsection. The following topics are covered
in this subsection:

• Notational Conventions-Describes each symbol used in this subsection.

•Addressing Modes-The methods by which the 6500/1 microprocessor accesses and
manipulates data.

• Summary of 6500/1 Instruction Set-Explains the syntax and effects of each
instruction, including the operation code, addressing mode, status bits affected, and
number of cycles.

Notational Conventions
The following notational conventions are used in the description of the Addressing Modes
and 6500/1 Instruction Set.

Symbol

+

&

!!
()

(())

@

0
1

6
7
A

addr

B
c
D
data8

disp
FFFE
FFFF

I

Description

addition operator
subtraction operator

logical AND operator
logical inclusive OR operator

logical exclusive OR operator

contents of an address, register, or status bit

contents of a location whose address is contained in the specified register
(indirect addressing)

indicates "is transferred to"

specifies immediate addressing mode
specifies zero page addressing mode

reset to 0
set to 1
status bit is set to reflect bit 6 of memory location
status bit is set to reflect bit 7 of memory location

accumulator
a 16-bit immediate address value (0 to 65535)

break status
carry bit

decimal mode bit
one-byte data

an 8-bit signed address displacement (-128 to +127)
address FFFE (hexadecimal) in memory
address FFFF (hexadecimal) in memory
interrupt disable bit

12A-21

Addressing Modes 6500/1 Assembler Specifics-8002A: Assembler Users Manual

Symbol

(IND,X)

(IND),Y

N
PC
PCH
PCL
SP

SR

u
v
x
x
y

z
zasm

zlink

Zpage

Description

indexed indirect addressing mode

indirect indexed addressing mode

negative

program counter

the high byte of the program counter

the low byte of the program counter

stack pointer

status register (includes the status bits N, Z, C, I, D, V)

unaffected by operation

overflow bit

index register X

set or reset, depending on operation result

index register Y

zero resu It bit

a zero page address at assembly time

a zero page address at link time

zero page addressing mode

Addressing Modes
The following addressing modes are used by the 6500/1 Instructions.

Absolute Addressing. Instructions using absolute addressing have three bytes. The first byte
contains the op code. The second and third bytes are the low-order and high-order bytes of
the operand address.

--~o-P_c_o_o_e~--~-A-D_o_R_e_s_s~~~~--.. ..-tl OPERAND

Example:

LDA ADDR

ADDR BYTE DATA

Loads DATA from memory location ADDR into accumulator.

12A-22

6500/1 Assembler Specifics-8002A: Assembler Users Manual Addressing Modes

Accumulator Addressing. lnstrnctions using accumulatOi addressing have one byte; that
byte contains the op code. The operand of the instruction (the accumulator) is implicit in the
op code. The following shift and rotate instructions use the accumulator addressing mode:
ASL, LSR, and ROR.

OP CODE

Example:

ROR A

To specify the accumulator as opposed to a byte of memory enter "A" in the operand field
instead of the address of the operand.

Implied Addressing. Instructions using implied addressing have one byte. The op code
completely defines the operation to be done. Instructions utilizing this type of addressing
include operations that clear or set bits in the processor status register, increment or
decrement registers, or transfer contents of one register to another.

OP CODE

Example:

TAX

The operands of TAX (index register A and X) are implied in the mnemonic.

Immediate Addressing. Instructions using immediate addressing have two bytes. The first
byte contains the op code. The second byte contains the operand.

OP CODE OPERAND

Example:

LOA #5

Loads the value 5 into the accumulator. The '#' specifies immediate addressing.

12A-23

Addressing Modes 6500/1 Assembler Specifics-8002A: Assembler Users Manual

Zero Page Addressing. Instructions using zero page addressing have two bytes. The first
byte contains the op code, while the second byte contains the address of the operand. The
address must be within the range 0 to 255 (page zero) .

...
__ o_P __ c_o_o_E ______ A_

0
__

0
_R_E_s_s __ t--~~--.. ~1 OPERAND page zero •

Example:

LOA @TEMP

TEMP is the address of the byte to be loaded into the accumulator. The @ sign forces zero
page addressing. If TEMP is already defined in an absolute section, in range 0-255, ·the
assembler will use zero page addressing even if the @ sign is omitted.

Relative Addressing. Instructions using relative address have two bytes. The first byte
contains the op code, while the second byte contains the offset to be added to the program
counter. All conditional branch instructions use relative addressing. The offset must be
within the range -128 to +127.

OP CODE OFFSET

NEW PC

OLD PC

If the operand is a scalar value, the assembler uses this value as the actual offset.

Example:

BM! 100

Branches forward 100 bytes if negative-result bit is set.

If the operand is an address, the assembler computes the offset necessary to branch to this
address.

12A-24

Example:

BM! ADDR

Branches (forward or backward, as necessary) to ADDR if negative-result bit is set. (ADDR
must be within 128 bytes of current location.)

6500/1 Assembler Specifics-8002A: Assembler Users Manual Addressing Modes

@

Absolute Indexed Addressing. Instructions using absolute indexed addressing have three
bytes. The first byte contains the op code. The second and third bytes contain an address that
is added to the index register X or Y to produce the address of the operand.

OP CODE ADDRESS

OPERAND

INDEX XOR Y

Example:
LDA TEMP, X

TEMP + (X) ADDR OPERAND

If TEMP = 100 and index register X = 5, then the byte in memory location 105 is loaded into
the accumulator.

Zero Page Indexed Addressing. Instructions using zero page indexed addressing have two
bytes. The first byte contains the op code. The contents of index register X or Y is added to
the second byte of the instruction to produce the address of the operand (a zero page
address). Note that index register Y is allowed only in the instructions LOX and STX.

OP CODE

INDEX XOR Y

Example:

TEMP + (X)

ADDRESS
page zero

LDA TEMP,X

BYTE OPERAND

OPERAND

If index register X = 100 and TEMP = 50, then the byte in memory location 150 is loaded into
the accumulator.

LDX @TEMP, X

The @ forces zero page addressing. If TEMP is already defined in an absolute section and in
range 0-255, the assembler will use zero page addressing even if the @ sign is omitted.

12A-25

Addressing Modes 6500/1 Assembler Specifics-8002A: Assembler Users Manual

Indirect Addressing. Only the three-byte JMP instruction uses indirect addressing. The first
byte contains the op code. The second and third bytes contain a pointer to the next
instruction to be executed.

__ o_P_c_o_D_E_:----~~1 __ Po_1N_T_E_R_;----..-~l 1Ns:RE~10N I
Example:

JMP (POINTER)

POINTER WORD ADDR

ADDR [NEXT INSTRUCTION]

Indexed Indirect Addressing. Instructions using indexed indirect addressing have two bytes.
The first byte contains the op code. The second byte contains the address of a table of
pointers on page zero. Index register X selects a 16-bit address (pointer) from this table and
that address points to the operand.

OP CODE

INDEX X

Example:

TABLE + (X)

ADDR

12A-26

TABLE
page zero

LDA (TABLE,X)

WORD ADDR

OPERAND

ADDRESS OPERAND

6500/1 Assembler Specifics-8002A: Assembler Users Manual Addressing Modes

Indirect Indexed Addressing. Instructions using indirect indexed addressing have two bytes.
The first byte contains the op code, while the second byte contains the address of a pointer
on page zero. The pointer is the address of a table. Index register Y selects which byte in this
table is the operand.

INSTRUCTION t-----1~

INDEX Y

Example:

POINTER

TABLE + (Y)

POINTER
page zero

LDA (POINTER),Y

WORD TABLE

OPERAND

TABLE

OPERAND

12A-27

Arithmetic Instructions 6500/1 Assembler Specifics-8002A: Assembler Users Manual

SUMMARY OF 6500/1 INSTRUCTIONS
OP No. No.

Mnemonic Operand Addr Mode Operation NZ CI DV Code Bytes Cycles

Arithmetic Instructions

ADC #data8 Immediate (A)-(A)+data8+(C) x x x u u x 69 2 2

ADC zasm Z page (A)-(A)+(zasm)+(C) x x x u u x 65 2 3

ADC @zlink Z page (A)-(A)+(zlink)+(C) x x x u u x 65 2 3

ADC zasm,X Z page,X (A)-(A)+(zasm+(X))+(C) x x x u u x 75 2 4

ADC @zlink,X Z page,X (A)-(A)+(zlink+(X))+(C) x x x u u x 75 2 4

ADC addr Absolute (A)-(A)+(addr)+(C) x x x u u x 60 3 4

ADC addr,X Absolute,X (A)-(A)+(addr+(X))+(C) x x x u u x 70 3 4a

ADC addr,Y Absolute,Y (A)-(A)+(addr+(Y))+(C) x x x u u x 79 3 4a

ADC (zlink,X) IND,X) (A)-(A)+((zlink+(X)))+(C) x x x u u x 61 2 6

ADC (zlink),Y (IND),Y (A)-(A)+((zlink)+(Y))+(C) x x x u u x 71 2 5a

Add memory to accumulator with carry.
Zero bit is not valid in decimal mode.

CLC Implied (C)--0 u u 0 u u u 18 2

Clear carry bit.

CLO Implied (D)--0 u u u u 0 u 08 2

Clear decimal mode.

CLV Implied (V)--0 u u u u u 0 88 2

Clear overflow bit.

SBC #data8 Immediate (A)-(A)-data8-C x x x u u x E9 2 2

SBC zasm Z page (A)-(A)-(zasm)-C x x x u u x E5 2 3

SBC @zlink Z page (A)-(A)-(zlink)-C x x x u u x E5 2 3

SBC zasm,X Z page,X (A)-(A)-(zasm+(X))-C x x x u u x F5 2 4

SBC @zlink,X Z page,X (A)-(A)-(zlink+(X))-C x x x u u x F5 2 4

SBC addr Absolute (A)-(A)-(addr)-C x x x u u x ED 3 4

SBC addr,X Absolute,X (A)-(A)-(addr+(X))-C x x x u u x FD 3 4a

SBC addr,Y Absolute,Y (A)-(A)-(addr+(Y))-C x x x u u x F9 3 4a

SBC (zlink,X) (IND,X) (A)-(A)-((zlink+(X)))-C x x x u u x E1 2 6

SBC (zlink),Y (IND),Y (A)-(A)-((zl ink)+(Y))-C x x x u u x F1 2 5a

Subtract memory from accumulator with borrow.
The carry bit reflects the complement of the borrow

SEC Implied (C)-1 Li u u u u 38 2

Set carry bit.

SEO Implied (D)-1 u u u u 1 u F8 2

Set decimal mode.

12A-28 (CL·

6500/1 Assembler Specifics-8002A: Assembler Users Manual Branch Instructions

UP No. No.
Mnemonic Operand Addr Mode Operation NZ CI DV Code Bytes Cycles

Branch Instructions

BCC disp Relative if C=O then(PC)-(PC)+disp u u u u u u 90 2 2b

BCC addr Relative if C=O then(PC)-addr u u u u u u 90 2 2b

Branch if carry bit is clear.

BCS disp Relative if C=1 then(PC)-(PC)+disp u u u u u u BO 2 2b

BCS addr Relative if C=1 then (PC)-addr u u u u u u BO 2 2b

Branch if carry bit is set.

BEQ disp Relative if Z=1 then(PC)-(PC)+disp u u u u u u FO 2 2b

BEQ addr Relative if Z=1 then(PC)-addr u u u u u u FO 2 2b

Branch on zero result.

BMI disp Relative if N=1 then(PC)-(PC)+disp u u u u u u 30 2 2b

BMI addr Relative if N=1 then(PC)-addr u u u u u u 30 2 2b

Branch on negative result.

BNE disp Relative if Z=O then(PC)-(PC)+disp u u u u u u DO 2 2b

BNE addr Relative if Z=O then(PC)-addr u u u u u u DO 2 2b

Branch on non-zero result.

BPL disp Relative if N=O then(PC)-(PC)+disp u u u u u u 10 2 2b

BPL addr Relative if N=O then(PC)-addr u u u u u u 10 2 2b

Branch on non-negative result.

BVC disp Relative if V=O then(PC)-(PC)+disp u u u u u u 50 2 2b

BVC addr Relative if V=O then(PC)-addr u u u u u u 50 2 2b

Branch if overflow bit is clear.

BVS disp Relative if V=1 then(PC)-(PC)+disp u u u u u u 70 2 2b

BVS addr Relative if V=1 then(PC)-addr u u u u u u 70 2 2b
Branch if overflow bit is set.

JMP addr Absolute (PC)-addr u u u u u u 4C 3 3

JMP (addr) Indirect (PC)-(addr) u u u u u u 6C 3 5
Jump.

12A-29

Comparison Instructions 6500/1 Assembler Specifics-8002A: Assembler Users Manual

OP No. No.

Mnemonic Operand Addr Mode Operation NZ CI DV Code Bytes Cycles

Comparison Instruction

BIT zasm Z page (A)&(zasm) 7 x u u u 6 24 2 4

BIT @zlink Z page (A)&(zlink) 7 x u u u 6 24 2 4

BIT addr Absolute (A)&(addr) 7 x u u u 6 2C 3 4

Compare accumulator bits with memory.
Only the status bits are affected.

CMP #data8 Immediate (A)-data8 x x x u u u C9 2 2

CMP zasm z page (A)-(zasm) x x x u u u C5 2 3

CMP @zlink Z page (A)-(zlink) x x x u u u C5 2 3

CMP zasm,X Z page,X (A)-(zasm+(X)) x x x u u u D5 2 4

CMP @zlink,X Z page,X (A)-(zlink+(X)) x x x u u u D5 2 4

CMP addr Absolute (A)-(addr) x x x u u u CD 3 4

CMP addr,X Absolute,X (A)-(addr+(X)) x x x u u u DD 3 4a

CMP addr,Y Absolute,Y (A)-(addr+(Y)) x x x u u u D9 3 4a

CMP (zlink.X) (IND,X) (A)-((zlink+(X))) x x x u u u C1 2 6

CMP (zlink),Y (IND).Y (A)-((zlink)+(Y)) x x x u u u D1 2 5a

Compare memory and accumulator.
Only the status bits are affected.

CPX #data8 Immediate (X)-data8 x x x u u u EO 2 2

CPX zasm Z page (X)-(zasm) x x x u u u E4 2 3

CPX @zlink Z page (X)-(zlink) x x x u u u E4 2 3

CPX addr Absolute (X)-(addr) x x x u u u EC 3 4

Compare memory and index register X.
Only the status bits are affected.

CPY #data8 Immediate (Y)-data8 x x x u u u co 2 2

CPY zasm Z page (Y)-(zasm) x x x u u u C4 2 3

CPY @zlink Z page (Y)-(zlink) x x x u u u C4 2 3

CPY addr Absolute (Y)-(addr) x x x u u u cc 3 4

Compare memory and index register Y.
Only status bits are affected.

12A-30

6500/1 Assembler Specifics-8002A: Assembler Users Manual Increment and Decrement Instructions

OP No. No.

Mnemonic Operand Addr Mode Operation NZ CI DV Code Bytes Cycles

Increment and Decrement Instructions

DEC zasm z page (zasm)-(zasm)-1 x x u u u u C6 2 5

DEC @zlink z page (zl i nk)-(zl in k)-1 x x u u u u C6 2 5

DEC zasm,X z page,X (zasm+(X))-(zasm+(X))-1 x x u u u u D6 2 6

DEC @zlink,X z page,X (zl i nk+(X))-(zl in k+(X))-1 x x u u u u D6 2 6

DEC addr Absolute (addr)-(addr)-1 x x u u u u CE 3 6

DEC addr,X Absolute,X (addr+(X))-(addr+(X))-1 x x u u u u DE 3 7

Decrement memory.

DEX Implied (X)-(X)-1 x x u u u u CA 2
Decrement index register X.

DEY Implied (Y)-(Y)-1 x x u u u u 88 2

Decrement index register Y.

INC zasm z page (zams)-(zasm)+1 x x u u u u E6 2 5

INC @zlink z page (zl i nk)-(zl ink)+ 1 x x u u u u E6 2 5

INC zasm,X z page,X (zasm+(X))-(zasm+(X))+ 1 x x u u u u F6 2 6

INC @zlink,X Z page,X (zlink+(X))-(zlink+(X))+1 x x u u u u F6 2 6

INC addr Absolute (addr)-(addr)+ 1 x x u u u u EE 3 6

INC addr,X Absolute,X (addr+(X))-(addr+(X))+1 x x u u u u FE 3 7

Increment memory.

INX Implied (X)-(X)+1 x x u u u u E8 2

Increment index register X.

INY Implied (Y)-(Y)+1 x x u u u u ca 2

Increment index register Y.

@ 12A-31

Interrupt and Control Instructions

Mnemonic Operand Addr Mode

Interrupt and Control Instructions

BRK Implied

6500/1 Assembler Specifics-8002A: Assembler Users Manual

Operation

((SP))-(PCH)

((SP)-1)-(PCL)
((SP)-2)-(SR)

(SP)-(SP)-3

(PCL)-(FFFE) (PCH)-(FFFF)

1-1 B-1

Op No. No.

N Z C I D V Code Bytes Cycles

uuuluu 00 7

Break, interrupt program: push PC and SR on stack, and jump indirect through addresses FFFE and FFFF.

CLI

Clear interrupt disable bit.

NOP

No operation.

RTI

Implied

Implied

Implied

(1)-0

no operation

(SR)-((SP)+1)

(PCL)-((SP)+2)

(PCH)-((SP)+3)

(SP)-(SP)+3

(PC)-(PC)+1

Return from interrupt: pull SR and return address from stack.

SEI Implied (1)-1

Set interrupt disable status.

12A-32

u u u 0 u u 58 2

u u u u u u EA 2

xxxxxx 40 6

u u u 1 u u 78 2

@

6500/1 Assembler Specifics-8002A: Assembler Users Manual

Mnemonic Operand Addr Mode

Load, Store, and Transfer Instructions

LDA

LDA

LDA

LDA

LDA

LDA

LDA

LDA

LDA

LDA

#data8

zasm

@zlink

zasm,X

@zlink,X

addr

addr,X

addr,Y

(zlink,X)

(zlink),Y

Immediate

Z page

Z page

Z page,X

Z page,X

Absolute

Absolute,X

Absolute,Y

(IND,X)

(IND),Y

Load accumulator with value.

LDX

LDX

LDX

LDX

LDX

LDX

LDX

#data8

zasm

@xi ink

zasm,Y

@zlink,Y

addr

addr,Y

Immediate

Z page

Z page

Z page,Y

Z page,Y

Absolute

Absolute,Y

Load index register X with value.

LDY

LDY

LDY

LDY

LDY

LDY

LDY

#data8

zasm

@zlink

zasm,X

@zlink,X

addr

addr,X

Immediate

Z page

Z page

Z page,X

Z page,X

Absolute

Absolute,X

Load index register Y with value.

STA

STA

STA

STA

STA

STA

STA

STA

STA

zasm

@zlink

zasm,X

@zlink,X

addr

addr,X

addr,Y

(zlink,X)

(zlink),Y

Z page

Z page

Z page,X

Z page,X

Absolute

Absolute,X

Absolute,Y

(IND,X)

(IND),Y

Store accumulator in memory.

@

Operation

(A)-data8

(A)-(zasm)

(A)-(zlink)

(A)-(zasm+(X))

(A)-(zl i nk+(X))

(A)-(addr)

(A)-(addr+(X))

(A)-(addr+(Y))

(A)-((zlink+(X)))

(A)-((zlink)+(X))

(X)-data8

(X)-(zasm)

(X)-(zlink)

(X)-(zasm+(Y))

(X)-(zl i nk+(Y))

(X)-(addr)

(X)-(addr+(Y))

(Y)-data8

(Y)-(zasm)

(Y)-(zl ink)

(Y)-(zasm+(X))

(y}-(zlink+(X))

(Y)-(addr)

(Y)-(addr+(X))

(zasm)-(A)

(zlink)-(A)

(zasm+(X))-(A)

(zlink+(X))-(A)

(addr)-(A)

(addr+(X))-(A)

(addr+(Y))-(A)

((zlink+(X)))-(A)

((zlink)+(Y))-(A)

Lo~d. Store. and Transfer Instructions

Op No.

NZCI DV Code Bytes

No.

Cycle

x x u u u u A9 2

x x u u u u A5 2
x x u u u u A5 2
x x u u u u B5 2
x x u u u u B5 2
x x u u u u AD 3
x x u u u u BD 3
x x u u u u 89 3
x x u u u u A1 2

x x u u u u B1 2

x x u u u u A2

x x u u u u A6

x x u u u u A6

x x u u u u B6

x x u u u u B6

x x u u u u AE

x x u u u u BE

x x u u u u AO
x x u u u u A4

x x u u u u A4

xxuuuu 84

x x u u u u B4

x x u u u u AC

x x u u u u BC

u u u u u u 85

u u u u u u 85

u u u u u u 95

u u u u· u u 95

U U U II U U 80

u u u u u u 90
. u u u u u u 99

u u u u u u 81

u u u u u u 91

2

2
2

2

2
3
3

2
2

2
2

2

3
3

2

2
2
2
3
3
3
2
2

2

3
3
4
4
4
4a

4a

6
5a

2
3
3
4
4

4
4a

2

3
3
4
4
4
4a

3
3
4
4

4

5
5
6
6

12A-33

Load, Store, and Transfer Instructions 6500/1 Assembler Specifics-8002A: Assembler Users Manual

Op No. No.

Mnemonic Operand Addr Mode Operation NZ CI DV Code Bytes Cycles

Load, Store, and Transfer Instructions

STX zasm Z page (zasm)-{X) u u u u u u 86 2 3

STX @zlink Z page (zlink)-{X) u u u u u u 86 2 3

STX zasm,Y Z page,Y (zasm+(Y))-(X) u u u u u u 96 2 4

STX @zlink,Y Z page,Y (zl ink+(Y))-{X) u u u u u u 96 2 4

STX addr Absolute (addr)-{X) u u u u u u BE 3 4

Store index register X in memory.

STY zasm z page (zasm)-(Y) u u u u u u 84 2 3

STY @zlink z page (zlink)-{Y) u u u u u u 84 2 3

STY zasm,X z page,X (zasm+(X))-{Y) u u u u u u 94 2 4

STY zlink,X Z page,X (zl i nk+(X))-(Y) u u u u u u 94 2 4

STY addr Absolute (addr)-(Y) u u u u u u SC 3 4

Store index register Y in memory.

TAX Implied (X)-(A) x x u u u u AA 2

Transfer accumulator to index register X.

TAY Implied (Y)-(A) x x u u u u AB 2

Transfer accumulator to index register Y.

TXA Implied (A)-(X) x x u u u u SA 2

Transfer index register x to accumulator.

TVA Implied (A)-(Y) x x u u u u 98 2

Transfer index register Y to accumulator.

12A-34

6500/1 Assembler Specifics-8002A: Assembler Users Manual Logical Instructions

OP 1u~ No. v.

Mnemonic Operand Addr Mode Operation NZ CI DV Code Bytes Cycles

Logical Instructions

AND #data8 Immediate (A)-(A)&data8 x x u u u u 29 2 2

AND zasm Z page (A)-(A)&(zasm) x x u u u u 25 2 3

AND @zlink Z page (A)-(A)&(zlink) x x u u u u 25 2 3

AND zasm,X Z page,X (A)-(A)&(zasm+(X)) x x u u u u 35 2 4

AND @zlink,X Z page,X (A)-(A)&(zlink+(X)) x x u u u u 35 2 4

AND addr Absolute (A)-(A)&(addr) x x u u u u 2D 3 4

AND addr,X Absolute,X (A)-(A)&(addr+(X)) x x u u u u 3D 3 4a

AND addr,Y Absolute,Y (A)-(A)&(addr+(Y)) x x u u u u 39 3 4a

AND (zlink,X) (IND,X) (A)-(A)&((zl ink+(X))) x x u u u u 21 2 6

AND (zlink),Y (IND),Y (A)-(A)&((zlink)+(Y)) x x u u u u 31 2 5

AND memory with accumulator.

EOR #data8 Immediate (A)-(A)!! data8 x x u u u u 49 2 2

EOR zasm Z page (A)-(A)! !(zasm) x x u u u u 45 2 3

EOR @zlink Z page (A)-(A)!!(zlink) x x u u u u 45 2 3

EOR zasm,X Z page,X (A)-(A)!!(zasm+(X)) x x u u u u 55 2 4

EOR @zlink,X Z page,X (A)-(A)! !(zlink+(X)) x x u u u u 55 2 4

EOR addr Absolute (A)-(A)! !(addr) x x u u u u 4D 3 4

EOR addr,X Absolute,X (A)-(A)! !(addr+(X)) x x u u u u 5D 3 4a

EOR addr,Y Absolute,Y (A)-(A)!!(addr+(Y)) x x u u u u 59 3 4a

EOR (zlink,X) (IND,X) (A)-(A)!!((zlink+(X))) x x u u u u 41 2 6

EOR (zlink),Y (IND),Y (A)-(A)! !((zlink)+(Y)) x x u u u u 51 2 5a

Exclusive OR memory with accumulator.

ORA #data8 Immediate (A)-(A)!data8 x x u u u u 09 2 2

ORA zasm Z page (A)-(A)!(zasm) x x u u u u 05 2 3

ORA @zlink Z page (A)-(A)!(zlink) x x u u u u 05 2 3

ORA zasm,X Z page,X (A)-(A)!(zasm+(X)) x x u u u u 15 2 4

ORA @zlink,X Z page,X (A)-(A)!(zl ink+(X)) x x u u u u 15 2 4

ORA addr Absolute (A)-(A)!(addr) x x u u u u OD 3 4

ORA addr,X Absolute,X (A)-(A)!(addr+(X)) x x u u u u 10 3 4a

ORA addr,Y Absolute,Y (A)-(A)!(addr+(Y)) x x u u u u 19 3 4a

ORA (zlink,X) (IND,X) (A)-(A)!((zlink+(X))) x x u u u u 01 2 6

ORA (zlink),Y (IND),Y (A)-(A)!((zlink)+(Y)) x x u u u u 11 2 5

OR memory with accumulator.

@ 12A-35

Shift and Rotate Instructions 6500/1 Assembler Specifics-8002A: Assembler Users Manual

OP No. No.

Mnemonic Operand Addr Mode Operation NZ CI DV Code Bytes Cycles

Shift and Rotate Instructions

ASL (C)-(data7)

(data7 to data1)-(data6 to dataO)

(data0)-0

where data is:

ASL Accumulator (A) x x x u u u QA 1 2

ASL zasm Z page (zasm) x x x u u u 06 2 5

ASL @zlink Z page (zlink) x x x u u u 06 2 5

ASL zasm,X Z page,X (zasm+(X)) x x x u u u 16 2 6

ASL @zlink,X Z page,X (zlink+(X)) x x x u u u 16 2 6

ASL addr Absolute (addr) x x x u u u OE 3 6

ASL addr,X Absolute,X (addr+(X)) x x x u u u 1E 3 7

Arithmetic shift left.

LSR (c)-(dataO)

(data6 to data0)-(data7 to datal)

(data7)-0

where data is:

LSR Accumulator (A) 0 x x u u u 4A 1 2

LSR zasm Z page (zasm) 0 x x u u u 46 2 5

LSR @zlink Z page (zlink) 0 x x u u u 46 2 5

LSR zasm,X Z page,X (zasm+(X)) 0 x x u u u 56 2 6

LSR @zlink,X Z page,X (zlink+(X)) 0 x x u u u 56 2 6

LSR addr Absolute (addr) 0 x x u u u 4E 3 6

LSR addr,X Absolute,X (addr+(X)) 0 x x u u u 5E 3 7

Logical shift right.

ROL (C)-(data7)

(data7 to datal)-(data6 to dataO)

(dataO)-(C)

where data is:

ROL Accumulator (A) x x x u u u 2A 1 2

ROL zasm Z page (zasm) x x x u u u 26 2 5
ROL @zasm Z page (zlink) x x x u u u 26 2 5

ROL zasm,X Z page,X (zasm+(X)) x x x u u u 36 2 6

ROL @zasm Z page,X (zlink+(X)) x x x u u u 36 2 6

ROL addr Absolute (addr) x x x u u u 2E 3 6

ROL addr,X Absolute,X (addr+(X)) x x x u u u 3E 3 7

Rotate left.

12A-36

6500/1 Assembler Specifics-8002A: Assembler Users Manual Stack Instructions

OP No. No.

Mnemonic Operand Addr Mode Operation NZ CI DV Code Bytes Cycles

Shift and Rotate Instruction

ROR (C)-(dataO)

(data6 to data0)-(data7 to data1)

(data7)-(C)

where data is:

ROR Accumulator (A) x x x u u u 6A 1 2

ROR zasm Z page (zasm) x x x u u u 66 2 5

ROR @zlink z page (zlink) x x x u u u 66 2 5

ROR zasm,X Z page,X (zasm+(X)) x x x u u u 76 2 6

ROR @zlink Z page,X (zlink+(X)) x x x u u u 76 2 6

ROR addr Absolute (addr) x x x u u u 6E 3 6

ROR addr Absolute,X (addr+(X)) x x x u u u 7E 3 7

Rotate right.

Stack Instructions

JSR addr Absolute ((SP))-(PCH) u u u u u u 20 3 6

((SP)-1)-(PCL)

(SP)-(SP)-2

(PC)-addr

Jump to subroutine: push current PC onto stack, and jump.

PHA Implied ((SP))-(A) u u u u u u 48 3

(SP)-(SP)-1

Push accumulator on stack.

PHP Implied ((SP))-(SR) u u u u u u 08 3

(SP)-(SP)-1

Push processor status on stack.

PLA Implied (A)-((SP)+1) x x u u u u 68 4

(SP)-(SP)+1

Pull accumulator from stack.

PLP Implied (SR)-((SP)+1) x x x x x x 28 4

(SP)-(SP)+1

Pull processor status from stack.

RTS Implied (PCL)-((SP)+1) u u u u u u 60 6

(PCH)-((SP)+2)

(SP)-(SP)+2

(PC)-(PC)+1

Return from subroutine: pull return address from stack.

TSX Implied (X)-(SP) x x u u u u BA 2

Transfer stack pointer to index register X.

TXS Implied (SP)-(X) u u u u u u 9A 2

Transfer index register X to stack pointer.

8 Add 1 if page boundary is crossed when index value is added.

bAdd 1 if branch to same page. Add 2 if branch to different page.

@
12A-37

Reserved Words 6500/1 Assembler Specifics-8002A: Assembler Users Manual

RESERVED WORDS
The following names may not be used to represent an address, data item, or variable.

6500/1 Mnemonics
ADC CLO JSR RTS
AND cu LOA SBC

ASL CLV LOX SEC
BCC CMP LOY SEO

BCS CPX LSR SEI
BEQ CPY NOP STA
BIT DEC ORA STX
BMI DEX PHA STY
BNE DEY PHP TAX
BPL EOR PLA TAY

BRK INC PLP TSX

BVC INX ROL TXA

BVS INY ROR TXS

CLC JMP RTI TYA

6500/1 Register Names
A x y

Tektronix Assembler Directives, Options and Operators
ABSOLUTE END INPAGE PAGE STITLE

ASCII ENDIF LIST REPEAT STRING

BASE ENDM LO RESERVE SYM

BLOCK ENDOF MACRO RESUME TITLE
BYTE ENDR ME SCALAR TRM
CND EQU MEG SECTION WARNING
COMMON EXITM MOD SEG WORD

CON GLOBAL NAME SET
DBG HI NCHR SHL
DEF IF NOLIST SHR
ELSE INCLUDE ORG SPACE

PAGE SiZE
Page size for the 6500/1 assembler is 256 bytes.

12A-38

6500/1 Assembler Specifics-8002A: Assembler Users Manual Error Messages

(ll'

ERROR MESSAGES
The following errm messages apply only to the 6500/1 assembler.

*****ERROR 247: Branch out of range. The address to be branched to is more than 126
bytes backward or 129 bytes foward from the current pointer location.

*****ERROR 248: Operand too complex. The value of the operand is too large, or a syntax
error exists in the current operand. An operand that starts with a left parenthesis may only
have 40 symbols and constants before the closing right parenthesis.

*****ERROR 249: Invalid Branch address. The address to be branched to is either out of
range or in another section, or the address expression contains a HI, LO, or ENDOF function.

*****ERROR 250: Address not page zero. The value is absolute and not in the range
0-255, but has been used in a context requiring a page zero address.

*****ERROR 251: Invalid operand. The operand is invalid for the given instruction.

*****ERROR 252: Missing zero page address. The value folowing the "@"is missing, too
large, or not an address.

*****ERROR 253: Invalid index register. The index register specified is invalid for the
given instruction.

*****ERROR 254: Invalid immediate value. The value following the # sign is either
missing or not in the range 0-255.

12A-39

	001
	002
	12A-005
	12A-006
	12A-01
	12A-02
	12A-03
	12A-04
	12A-05
	12A-06
	12A-07
	12A-08
	12A-09
	12A-10
	12A-11
	12A-12
	12A-13
	12A-14
	12A-15
	12A-16
	12A-17
	12A-18
	12A-19
	12A-20
	12A-21
	12A-22
	12A-23
	12A-24
	12A-25
	12A-26
	12A-27
	12A-28
	12A-29
	12A-30
	12A-31
	12A-32
	12A-33
	12A-34
	12A-35
	12A-36
	12A-37
	12A-38
	12A-39

