

symbolics

7 Programming the
User Interface

Cambridge, Massachusetts

Programming the User Interface
996075

March 1985

This document corresponds to Release 6.0 and later releases.

The software. data. and information contained herein are proprietary to. and comprise
valuabia trade secrets of. Symbolics. Inc. They are given in confidence by Symbolics
pursuant to a written license agreement. and may be used. copied. transmitted. and
stored only in accordance with the terms of such license.

This document may not be reproduced in whole or in part without the prior written
consent of Symbollcs. Inc.

Copyright c> 1985. 1984. 1983. 1982. 1981. 1980 Symbolics. Inc. All Rights Reserved.
Font Library Copyright C 1984 Bltstream Inc. All Rights Reserved.

Symbolics. Symbolics 3600. Symbolics 3670. Symbolics 3640. SYMBOLlCS-LiSP.
ZETALISP. MACSYMA. S-GEOMETRY, S-PAINT, and S-RENDER are trademarks of
Symbolics, Inc.

Restricted Rights Legend
Use, duplication, or disclosure by the government is subject to restrictions as set forth
In subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software Clause
at FAR 52.227-7013.

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symbolics, Inc.

Text typography: Century Schoolbook and Helvetica produced on Symbolics 3600-
family computers from Bitstream, Inc., outlines; text masters printed on Symbolics LGP-1
Laser Graphics Printers.
Cover design: Schafer/laCasse
Cover printer: W.E. Andrews Co., Inc.
Text printer: ZBR Publications, Inc.

Printed in the USA.

Printing year and number: 87 86 85 9 8 7 6 5 4 3 2 1

iii

March 1985 Programming the User Interface

Table of Contents

I. Interactive Streams

1. Introduction to Interactive Streams

2. Input Functions for Interactive Streams

3. Messages for Input From Interactive Streams

4. Intercepted Characters

5. Interactive-stream Operations for Asynchronous Characters

6. Interactive Streams and Mouse-sensitive Items

7. The Input Editor Program Interface

7.1 How the Input Editor Works
7.2 Invoking the Input Editor
7.3 Input Editor Options
7.4 Displaying Prompts in the Input Editor
7.5 Displaying Help Messages in the Input Editor
7.6 Examples of Use of the Input Editor
7.7 Input Editor Messages to Interactive Streams

8. The Command Processor Program Interface

8.1 The Command Processor Reader
8.2 Defining a Command Processor Command
8.3 Command Processor Argument Types
8.4 Command Processor Command Tables

9. Querying the User

II. Using the Window System

10. Introduction to Using the Window System

lL Concepts

11.1 Purpose of the Window System
11.2 Windows
11.3 Hierarchy of Windows

Page

1

3

5

11

15

17

19

21

21
22
27
33
34
34
38

41

41
44
48
52

55

71

73

75

75
75
76

iv

Programming the User Interface March 1985

11.4 Pixels and Bit-save Arrays 78
11.5 Screen Arrays and Exposure 79
11.6 Window Exposure and Output 82
11.7 Temporary Windows 84
11.8 The Screen Manager 86
11.9 Window Graying 90

11.9.1 Window Graying Specifications 91
11.9.2 Functions, Flavors, and Messages for Window Graying 92

11.10 Windows and Processes 94
11.11 Activities and Window Selection 94

11.11.1 The Selected Window and the Selected Activity 94
11.11.2 Frames and Panes 95
11.11.3 Messages About Window Selection 96
11.11.4 Flavors Related to Window Selection 99
11.11.5 Selecting a Window Temporarily 100

12. Window Flavors and Messages 103

12.1 Overview of Window Flavors and Messages 103
12.2 Getting a Window to Use 105

12.2.1 Flavors of Basic Windows 105
12.2.2 Creating a Window 106

12.3 Character Output to Windows 108
12.3.1 How Windows Display Characters 108
12.3.2 Messages to Display Characters on Windows ill
12.3.3 Messages to Read or Set Cursor Position 113
12.3.4 Messages to Remove Characters From Windows 113
12.3.5 Messages About Character Width and Cursor Motion 114
12.3.6 Window Attributes for Character Output 115
12.3.7 Line-truncating Windows 117

12.4 Graphic Output to Windows 118
12.4.1 How Windows Display Graphic Output 118
12.4.2 Alu Functions 119
12.4.3 Drawing Points on Windows 120
12.4.4 Copying Bit Rectangles to and From Windows 120
12.4.5 DraWing Characters and Strings on Windows 121
12.4.6 Drawing Lines on Windows 122
12.4.7 Drawing Polygons and Circles on Windows 124
12.4.8 Drawing Splines on Windows 125
12.4.9 Primitives for Drawing Onto Arrays 126

12.5 Notifications 126
12.5.1 Overview of Notifications 126
12.5.2 Notifying the User 127
12.5.3 Receiving and Displaying Notifications 127

12.6 Input From Windows 132
12.6.1 Windows as Input Streams 132

v

March 1985 Programming the User Interface

12.6.2 Messages for Input From Windows 134
12.6.3 SELECT and FUNCTION Keys 135
12.6.4 Asynchronous Characters 139

12.7 TV Fonts 140
12.7.1 Using TV Fonts 140
12.7.2 Font Messages to Windows 141
12.7.3 Standard TV Fonts 142
12.7.4 Attributes of TV Fonts 143
12.7.5 Format of TV Fonts 145

12.8 Blinkers 146
12.8.1 General Blinker Operations 147
12.8.2 Specialized Blinkers 149

12.9 Mouse Input 151
12.9.1 Handling the Mouse 151
12.9.2 Mouse Clicks 152
12.9.3 Grabbing the Mouse 154
12.9.4 Usurping the Mouse 157
12.9.5 Controlling the Mouse Outside a Window 158
12.9.6 Scaling Mouse Motion 159

12.10 The Keyboard 160
12.11 Window Sizes and Positions 162

12.11.1 Initializing Window Size and Position 163
12.11.2 Messages for Window Size and Position 165

12.12 Window Margins, Borders, and Labels 168
12.12.1 Window Borders 170
12.12.2 Window Labels 171

12.13 Text Scroll Windows 174
12.14 Typeout Windows 174
12.15 Scrolling Windows 175
12.16 Frames 175

12.16.1 Flavors for Panes and Frames 176
12.16.2 Specifying Panes and Constraints 179
12.16.3 Examples of Specifications of Panes and Constraints 185
12.16.4 Messages to Frames 187
12.16.5 Specifying Panes and Constraints Before Release 6.0 188
12.16.6 Examples of Specifications of Panes and Constraints Before 196

Release 6.0

m. Window System Choice Facilities 201

13. The Choice Facilities 203

13.1 Overview of the Choice Facilities 203
13.1.1 List of Choice Facilities 203

13.2 Standard and Customizable Facilities 205

vi

Programming the User Interface March 1985

13.3 Choice Facilities Use the Flavor System 205
13.3.1 Combining Choice Facilities 205
13.3.2 Instantiable, Basic, and Mixin Flavors 205
13.3.3 Modifying the Choice Facilities 206

13.4 The User's Process and the Mouse Process 206

14. Introduction to the Menu Facilities 207

14.1 Components of a Menu 208
14.2 Menu Items 208
14.3 The Form of a Menu Item 208

14.3.1 Types of Menu Items 210
14.3.2 The "General List" Form of Item 210
14.3.3 Menu Item Options 211

14.4 Choosing and Executing 212

15. The Geometry of a Menu 213

15.1 Geometry Init-plist Options 213
15.2 Geometry Messages 214
15.3 Geometry Example 1: a Multicolumned Menu 215
15.4 Geometry Example 2: Retrieving Geometry Information 216

16. Momentary and Pop-up Menus 219

16.1 The Standard Momentary Menu Interface 219
16.2 Standard Momentary Menu Example 219
16.3 The tv:mouse-y-or-n-p Facility 220
16.4 Basic and Moon Pop-up and Momentary Menus 220
16.5 Instantiable Pop-up and Momentary Menus 221
16.6 Useful tv:menu Init-plist Options 222
16.7 Useful tv:menu Messages 223
16.8 tv:momentary-menu Example 1: Simple Momentary Menu 223
16.9 tv:momentary-menu Example 2: Item List as Init-plist Option 224
16.10 tv:momentary-menu Example 3: Centered Label and Use of 224

General List Items
16.11 tv:momentary-menu Example 4: Using the Mouse Buttons 225
16.12 tv:pop-up-menu Example 226

17. Command Menus 229

17.1 Menu Items and Menu Values 229
17.2 Command Blips 229
17.3 Responsibilities of Your Program 230
17.4 Command Menu Mixins 230
17.5 Instantiable Command Menus 231
17.6 tv:command-menu Init-plist Options 231

vii

March 1985 Programming the User Interface

17.7 tv:command-menu Messages 231
17.8 tv:command-menu Example 231

18. Dynamic Item List Menus 235

18.1 Dynamic Item List Mixins 235
18.2 Instantiable Dynamic Item List Menus 236
18.3 Init-plist Option for Dynamic Menus 237
18.4 Messages to Dynamic Menus 237
18.5 Dynamic Menu Example 237
18.6 Adding an Item to the System Menu 238

18.6.1 Adding an Item to the Programs Column 239
18.6.2 Adding an Item to the Create Column 239
18.6.3 tv:select-or-create-window-of-flavor Function 240

19. Multiple Menus 241

19.1 Multiple Menu Mixins 241
19.2 Instantiable Multiple Menus 242
19.3 tv:multiple-menu-mixin Init-plist Options 242
19.4 tv:multiple-menu-mixin Messages 243
19.5 tv:momentary-multiple-menu Example 243

20. The Multiple Menu Choose Facility 247

20.1 The Standard Multiple Menu Choose Function 247
20.2 tv:multiple-menu-choose Example 248
20.3 Multiple Menu Choose Mixin and Resource 248
20.4 Instantiable Multiple Menu Choose Flavors 249
20.5 tv:multiple-menu-choose-menu Example 249

21. The Multiple Choice Facility 251

21.1 The Standard Multiple Choice Function 252
21.2 tv:multiple-choose Menu Example 253
21.3 The Basic Multiple Choice Flavor 254
21.4 Instantiable Multiple Choice Menu Flavors 254
21.5 tv:multiple-choice Menu Messages 255
21.6 tv:multiple-choice Example 255

22. The Choose Variable Values Facility 257

22.1 Variables and Types 257
22.2 Predefined tv:choose-variable-values Variable Types 259

22.2.1 The Optional Constraint Function 262
22.3 The Standard Choose Variable Values Function 262
22.4 tv:choose-variable-values Options 263
22.5 tv:choose-variable-values Examples 264

viii

Programming the User Interface March 1985

22.6 The User Option Facility 266
22.6.1 Functions for Defming User Option Variables 267
22.6.2 Functions for Altering User Option Variables 267

22.7 User Options Example 268
22.8 Defining Choose Variable Values Types 269

22.8.1 Adding a Type Keyword Property 269
22.8.2 Adding a Type Decoding Method 269

22.9 Type Decoding Message 270
22.9.1 Elements of the tv:choose-variable-values-keyword 270

Property
22.10 tv:cboose-variable-values Type Definition Example 271
22.11 Defining a Choose Variable Values Window 272
22.12 The Basic Choose Variable Values Flavor 272

22.12.1 Instantiable Choose Variable Values Flavors 272
22.12.2 110 Buffers for Choose Variable Values Windows 273

22.13 tv:basic-choose-variable-values Init-plist Options 274
22.14 tv:cboose-variable-values-window Messages 275
22.15 tv:cboose-variable-values-window Example 276

23. The Mouse-sensitive Items Facility 279

23.1 Attributes of a Mouse-sensitive Item 280
23.2 Associating Actions with Mouse-sensitive Items 280

23.2.1 Mouse Behavior 281
23.3 tv:basic-mouse-sensitive-items Init-plist Options 283
23.4 tv:basic-mouse-sensitive-items Messages and Functions 283
23.5 tv:basic-mouse-sensitive-items Example 284
23.6 Mouse-sensitive Areas Example 286

24. The Margin Choice Facility

24.1 The tv:margin-cboice-mixin Flavor
24.2 tv:margin-choice-mixin Init-plist Option
24.3 tv:margin-choice-mixin Messages
24.4 tv:margin-choice-mixin Example

25. The Flavor Network of tv:menu

26. Init-plist Options for tv:menu

27. Messages Accepted by tv:menu

IV. Scroll Windows

28. Introduction to Scroll Windows

29. Basics of Scroll Windows

289

289
290
290
290

293

295

299

301

303

305

March 1985 Programming the User Interface

30. Constructing Items 307

30.1 Constructing Line Items 307
30.1.1 Line Item Entries 308
30.1.2 Mouse Sensitivity 311
30.1.3 Line Item Array Leaders 313

30.2 Constructing List Items 313

31. Virtual List Maintenance 315

V. Digital Audio Facilities 317

32. Introduction to the Digital Audio Facilities 319

33. Microcode Support for the Digital Audio Facilities 321

33.1 The Audio Microtask 321
33.2 Sample Format 322
33.3 Audio Command Format 322

33.3.1 Audio Command Opcodes 323
33.4 The Polyphony Feature 324

33.4.1 Operation of Polyphony 325
33.5 The Beep Feature sys:%beep 327
33.6 Notes on Wired Structures 327

33.6.1 Lisp Primitives for Wiring Memory 328

34. Lisp Primitives for the Digital Audio Facilities 329

34.1 Functions, Variables, and Macros for Digital Audio 329
34.2 Digital Audio Parameters 329
34.3 Testing for the Existence of Audio 330
34.4 The Audio Wrapping Form 330
34.5 Building Audio Command Lists 330
34.6 Storing Samples 333
34.7 Looping Through Audio Command Lists 334
34.8 Synchron~zation Flags 334
34.9 Starting and Stopping the Audio Microtask 335
34.10 Conversions Between Sample Formats 335
34.11 Conversions for the Polyphony Feature 337
34.12 Computing Polyphonic Increments 337

35. Examples of Using the Audio Facilities 339

35.1 Sine Wave Example 339
35.2 Sawtooth Wave Example 341
35.3 Square Wave Example 341
35.4 Beep Example 342
35.5 Non-real-time Synthesis Example 343

x

Programming the User Interface March 1985

35.6 Playing Large Pieces Example 344
35.7 Polyphony Example 347

VI. Dates and Times 351

36. Representation of Dates and Times 353

37. Getting and Setting the Time 355

37.1 The 3600-family Calendar Clock 355
37.2 Elapsed Time in 60ths of a Second 356
37.3 Elapsed Time in Microseconds 357

38. Printing Dates and Times 359

39. Reading Dates and Times 361

40. Reading and Printing Time Intervals 365

41. Time Conversions 367

42. Internal Time Functions 369

VII. Zwei Internals 373

43. Introduction to Zwei Internals 375

44. Stream Facility for Editor Buffers 377

44.1 The zwei:with-editor-stream Macro 377
44.2 The zwei:open-editor-stream Function 377
44.3 Keyword Options 378

45. Making Standalone Editor Windows 381

Index 383

March 1985

Figure 1.
Figure 2.
Figure 3.

Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.

xi

Programming the User Interface

List of Figures

System menu.
Components of a menu.
Adjusting a menu's column geometry. (a) One column (b) Three
columns
Simple menu from which geometry information is obtained.
Momentary menu example.
Pop-up menu example.
Command menu example.
Select menu, an example of a dynamic item list menu.
Dynamic menu example.
Hardcopy multiple menu.
Momentary multiple menu.
Multiple menu choose facility in Zmail.
A standard multiple-menu-choose menu.
Momentary multiple-menu-choose menu.
Multiple choice facility in the Zmacs menu.
Multiple choice menu example.
Choose-variable-values window accessed via the System menu.
Choose-variable-values example 1.
Choose-variable-values example 2: better formatting.
Choose-variable-values window: grocery store example.
User options window example.
Example of making a choose-variable-values menu.
Mouse-sensitive items.
Mouse-sensitive items example.
Result of selecting a mouse-sensitive item.
Mouse-sensitive areas example.
Example of a margin choice facility added to a window.

207
209
215

216
223
226
232
235
238

·241
244
247
248
249
251
253
257
264
264
265
268
277
279
284
284
287
291

xii

Programming the User Interface March 1985

1

March 1985 Interactive Streams

PART I.

Interactive Streams

2

Programming the User Interface March 1985

3

March 1985 Interactive Streams

1. Introduction to Interactive Streams

An interactive stream is a bidirectional stream designed for interaction with human
users. It supports input editing, which lets the user edit input before a function
that reads from the stream sees it. Interactive streams are built on the flavor
si:interactive-stream.

si:interactive-stream Flavor
A stream that includes this flavor is interactive, or designed for interaction
with a human user. The stream supports input editing. To fins out
whether or not a stream is interactive, send the stream an :interactive
message.

:interactive Message
The :interactive message to a stream returns t if the stream is interactive
and nil if it is not. Interactive streams, built on si:interactive-stream, are
streams designed for interaction with human users. They support input
editing. Use the :interactive message to find out whether a stream
supports the :input-editor message.

Interactive streams are generally connected to a terminal of some kind. Windows
built on tv:stream-mixin are one kind of interactive stream: See the section "Input
From Windows", page 132. Remote terminals are another: See the section "Remote
Login" in Networks.

Some reading functions can be used to get input from both interactive and
noninteractive streams; others are designed to read only from interactive streams.
See the section "Input Functions for Interactive Streams", page 5.

Interactive streams support general operations on input and output streams. For
more information on these operations: See the section "110 Streams" in Reference
Guide to Streams, Files, and 110. Interactive streams also have specialized input
operations, mainly to handle interactions with the input editor: See the section
"Messages for Input From Interactive Streams", page 11. They also intercept some
characters when read and maintain a list of characters to be ·handled
asynchronously: See the section "Intercepted Characters", page 15. See the section
"Interactive-stream Operations for Asynchronous Characters", page 17. (Remote
terminals do not handle asynchronous characters.)

Some interactive streams can display mouse-sensitive items. See the section
"Interactive Streams and Mouse-sensitive Items", page 19.

For information on the program interface to the input editor: See the section "The
Input Editor Program Interface", page 21.

The command processor is a utility that reads commands from an interactive stream.

4

Programming the User Interface March 1985

For more information: See the section "The Command Processor User Interface".
See the section "The Command Processor Program Interface", page 41.

One common use for interactive streams is to ask a question of the user: See the
section "Querying the User", page 55.

5

March 1985 Interactive Streams

2. Input Functions for Interactive Streams

The general reading functions like read, readline, and read-delimited-string can
be used to read from either interactive or noninteractive streams. See the section
"Input Functions" in Reference Guide to Streams, Files, and liD. The functions
described here are designed to read only from interactive streams. The functions
that read command processor commands, read-command and
read-command-or-form, are described elsewhere: See the section "The Command
Processor Reader", page 41.

sys:read-character &optional stream &key (fresh-line t) (any-tyi nil) Function
(eof nil) (notification t) (prompt nil) (help nil)
(refresh t) (suspend t) (abort t) (status nil)

Reads and returns a single character from stream. This function displays
notifications and help messages and reprompts at appropriate times. It is
used by fquery and the :character option for prompt-and-read.

stream must be interactive. It defaults to query-io.

Following are the permissible keywords:

:fresh-line

:any-tyi

:eof

:notification

:prompt

:help

If not nil, the function sends the stream a :fresh-line
message before displaying the prompt. If nil, it does not
send a :fresh-line message. The default is t.

If not nil, the function returns blips. If nil, blips are
treated as the :tyi message to an interactive stream treats
them. The default is nil.

If not nil and the function encounters end-of-file, it
returns nil. If nil and the function encounters end-of-file,
it beeps and waits for more input. The default is nil.

If not nil and a notification is received, the function
displays the notification and reprompts. If nil and a
notification is received, the notification is ignored. The
default is t.

If nil, no prompt is displayed. Otherwise, the value should
be a prompt option to be displayed at appropriate times.
See the section "Displaying Prompts in the Input Editor",
page 33. The default is nil.

If not nil, the value should be a help option. See the
section "Displaying Help Messages in the Input Editor",
page 34. Then, when the user presses HELP, the function
displays the help option and reprompts. If nil and the
user presses HELP, the function just returns #\help. The
default is nil.

6

Programming the User Interface March 1985

: refresh

: suspend

:abort

: status

If not nil and the user presses REFRESH, the function sends
the stream a :clear-window message and reprompts. If
nil and the user presses REFRESH, the function just returns
#\refresh. The default is t.

If not nil and the user types one of the
sys:kbd-standard-suspend-characters, a break loop is
entered. If nil and the user types a suspend character,
the function just returns the character. The default is t.

If not nil and the user types one of the
sys:kbd-standard-abort-characters, sys:abort is
signalled. If nil and the user types an abort character,
the function just returns the character. The default is t.

This option takes effect only if the stream is a window. If
the value is :selected and the window is no longer
selected, the function returns :status. If the value is
:exposed and the window is no longer exposed or selected,
the function returns :status. If the value is nil, the
function continues to wait for input when the window is
deexposed or deselected. The default is nil.

read-expression &optional stream &key (completion-alist nil) Function
(completion-delimiters nil)

This is like read-for-top-level, except that if it encounters a top-level end-of­
file it just beeps and waits for more input. This function is used by the
:expression option for prompt-and-read.

stream defaults to standard-input. This function is intended to read only
from interactive streams.

If completion-alist is not nil, this function also sets up COMPLETE and c-? as
input editor commands. When the user presses COMPLETE, the input editor
tries to complete the current symbol over the set of possibilities defined by
completion-alist. When the user presses c-?, the input editor displays the
possible completions of the current symbol.

The style of completion is the same as that offered by Zwei. completion-alist
can be nil, an alist, an art-q-Iist array, or a keyword:

nil

alist

array

keyword

No completion is offered.

The car of each alist element is a string representing one
possible completion.

Each element is a list whose car is a string representing
one possible completion. The array must be sorted
alphabetically on the cars of the elements.

If the symbol is :zmacs, completion is offered over the

7

March 1985 Interactive Streams

definitions in Zmacs buffers. If the symbol is :flavors,
completion is offered over all flavor names.

The default for completion-alist is nil.

completion-delimiters is nil or a list of characters that delimit "chunks" for
completion. As in Zwei, completion works by matching initial substrings of
"chunks" of text. If completion-delimiters is nil, the entire text of the
current symbol is a single "chunk". The default is nil.

read-form &optional stream &key (edit-trivial-errors-p Function
read-form-edit-trivial-errors-p)
(completion-alist *read-form-completion-alist*)
(completion-delimiters
*read-form-completion-delimitersO)

This function is like read-expression, except that it assumes that the
returned value will be given immediately to eval. This function is used by
the Lisp command loop and by the :eval-form and :eval-form-or-end
options for prompt-and-read.

stream defaults to standard-input. This function is intended to read only
from interactive streams.

If edit-trivial-errors-p is not nil, the function checks for two kinds of errors.
If a symbol is read, it checks whether the symbol is bound. If a list whose
first element is a symbol is read, it checks whether the symbol has a function
definition. If it finds an unbound symbol or undefined function, it offers to
use a lookalike symbol in another package or calls parse-ferror to let the
user correct the input. edit-trivial-errors-p defaults to the value of
read-form-edit-trivial-errors-p. The default value is t.

If completion-alist is not nil, this function also sets up COMPLETE and c-? as
input editor commands. When the user presses COMPLETE, the input editor
tries to complete the current symbol over the set of possibilities defmed by
completion-alist. When the user presses c-?, the input editor displays the
possible completions of the current symbol.

The style of completion is the same as that offered by Zwei. completion-alist
can be nil, an alist, an art-q-list array, or a keyword:

nil

alist

array

keyword

No completion is offered.

The car of each alist element is a string representing one
possible completion.

Each element is a list whose car is a string representing
one possible completion. The array must be sorted
alphabetically on the cars of the elements.

If the symbol is :zmacs, completion is offered over the

8

Programming the User Interface March 1985

definitions in Zmacs buffers. If the symbol is :t1avors,
completion is offered over all flavor names.

The default for completion-alist is the value of
read-form-completion-alist. The default value is :zmacs.

completion-delimiters is nil or a list of characters that delimit "chunks" for
completion. As in Zwei, completion works by matching initial substrings of
"chunks" of text. If completion-delimiters is nil, the entire text of the
current symbol is a single "chunk". The default is the value of
read-form-completion-delimiters. The default value is
(#/- #/: #\space).

read-form-edit-trivial-errors-p Variable
If not nil, read-form checks for two kinds of errors. If a symbol is read, it
checks whether the symbol is bound. If a list whose frrst element is a
symbol is read, it checks whether the symbol has a function definition. If it
finds an unbound symbol or undefined function, it offers to use a lookalike
symbol in another package or calls parse-ferror to let the user correct the
input. The default is t.

read-form-completion-alist Variable
If not nil, read-form sets up COMPLETE and c-? as input editor commands.
When the user presses COMPLETE, the input editor tries to complete the
current symbol over the set of possibilities defined by completion-alist. When
the user presses c-?, the input editor displays the possible completions of the
current symbol.

The style of completion is the same as that offered by Zwei.
read-form-completion-alist can be nil, an alist, an art-q-list array, or a
keyword:

nil

alist

array

keyword

No completion is offered.

The car of each alist element is a string representing one
possible completion.

Each element is a list whose car is a string representing
one possible completion. The array must be sorted
alphabetically on the cars of the elements.

If the symbol is :zmacs, completion is offered over the
definitions in Zmacs buffers. If the symbol is :t1avors,
completion is offered over all flavor names.

The default value is :zmacs.

9

March 1985 Interactive Streams

read-fonn-completion-delimiters Variable
The value is nil or a list of characters that delimit "chunks" for completion in
read-fonn. As in Zwei, completion works by matching initial substrings of
"chunks" of text. If *read-form-comi:1'letion-delimiters* is nil, the entire
text of the current symbol is a single "chunk". The default value is
(#/- #/: #\space).

read-or-end &optional (stream standard-input) reader Function
This function is like read-expression, except that if it is reading from an
interactive stream and the user presses END as the first character or the first
character after only whitespace characters, it returns two values, nil and
:end. If it encounters any nonwhitespace characters, it calls the reader
function with an argument of stream to read the input. reader defaults to
read-expression. stream defaults to standard-input.

The :expression-or-end and :eval-form-or-end options for
prompt-and-read invoke read-or-end.

This function is intended to read only from interactive streams.

read-or-character &optional delimiters stream reader Function
This function is like read-expression, except that if it is reading from an
interactive stream and the user types one of the delimiters as the first
character or the first character after only whitespace characters, it returns
four values: nil, :character, the character code of the delimiter, and any
numeric argument to the delimiter. If it encounters any nonwhitespace
characters, it calls the reader function with an argument of stream to read
the input.

delimiters is a character, a list of characters, or nil. The default is nil.
reader defaults to read-expression. stream defaults to standard-input.
This function is intended to read only from interactive streams.

read-and-eval &optional stream (catch-errors t) Function
This function calls read-expression to read a form, without completion. It
then evaluates the form and returns the result. If catch-errors is not nil, it
calls parse-ferror if an error occurs during the evaluation (but not the
reading) so that the input editor catches the error.

stream defaults to standard-input. This function is intended to read only
from interactive streams.

readline-no-echo &optional stream &key (terminators Function
'(#\return #\line #\end» (full-rubout nil)
(notification t) (prompt nil) (help nil)

Reads a line of input from stream without echoing the input, and returns the
input as a string, without the terminating character. This function is used
to read passwords and encryption keys. It does not use the input editor but
does allow input to be edited using RUBOUT.

10

Programming the User Interface March 1985

stream must be interactive. It defaults to query-io.

Following are the permissible keywords:

: terminators

:full-rubout

:notification

:prompt

:help

A list of characters that terminate the input. If the user
types #\return, #\line, or #\end as a terminator, the
function echoes a Newline. If the user types any other
character as a terminator, the function echoes that
character. The default is (#\return #\line #\end).

If not nil and the user rubs out all characters on the line,
the function returns nil. If nil and the user rubs out all
characters on the line, the function waits for more input.
The default is nil.

If not nil and a notification is received, the function
displays the notification and reprompts. If nil and a
notification is received, the notification is ignored. The
default is t.

If nil, no prompt is displayed. Otherwise, the value should
be a prompt option to be displayed at appropriate times.
See the section "Displaying Prompts in the Input Editor",
page 33. The default is nil.

If not nil, the value should be a help option. See the
section "Displaying Help Messages in the Input Editor",
page 34. Then, when the user presses HELP, the function
displays the help option and reprompts. If nil and the
user presses HELP, the function just returns #\help. The
default is nil.

11

March 1985 Interactive Streams

3. Messages for Input From Interactive Streams

All interactive streams support these input operations. Some streams have
specialized versions of some operations, partly because different kinds of streams have
different sources of input when input is to come from the stream instead of the
input buffer. Windows, for example, take input from an 110 buffer. See the section
"Messages for Input From Windows", page 134.

:any-tyi &optional eot-action of si:interactive-stream Method
Read and return the next character of input from the stream, waiting if
there is none, Where the character comes from depends on the value of the
variable mbout-handler. Following is a summary of actions for each
possible value of rubout-handler:

nil

:read

:tyi

If the input buffer contains un scanned input, take the
next character from there. Otherwise, take the next
character from the stream.

If the input buffer contains un scanned input, take the
next character from there. Otherwise, if an activation blip
or character is present, return that. Otherwise, enter the
input editor.

Take the next character from the stream.

If eot-action is not nil, an error is signalled when an end-of-file is
encountered. Otherwise, the method returns nil when an end-of-file is
encountered. The default for eot-action is nil.

:any-tyi-no-hang &optional eot-action of si:interactive-stream Method
Return the next character from the stream if it is immediately available. If
no characters are immediately available, return nil. It is an error to call this
method from inside the input editor (that is, if the value of rubout-handler
is not nil). eot-action is ignored. This is used by programs that continuously
do something until a key is typed, then look at the key and decide what to
do next.

:tyi &optional eot-action of si:interactive-stream Method
If called from outside the input editor, this is the same as :any-tyi, except
that only integers and nil can be returned. Blips are discarded, unless the
first element of the blip is :mouse-button and the second element is
#\mouse-r-l; in this case, the method pops up a system menu. If called
from inside the input editor with :full-mbout specified and if an activation
blip is read when the input buffer is empty, the method causes control to be
returned from the input editor.

12

Programming the User Interface March 1985

:tyi-no-hang &optional eor-action of si:interactive-stream Method
This is like :any-tyi-no-hang, except that only integers and nil can be
returned. Blips are discarded, unless the first element of the blip is
:mouse-button and the second element is #\mouse-r-l; in this case, the
method pops up a system menu.

:Iist-tyi of si:interactive-stream Method
This is like :any-tyi except that it only returns blips and never returns
integers. If it encounters any integers in the input stream, it discards them
entirely (they are removed from the stream and the program never sees
them).

:untyi ch of si:interactive-stream Method
Return ch to the input buffer or the stream so that it will be the next
character returned by :any-tyi or :tyi. ch must be the last character that
was :tyi'ed, and it is illegal to do two :untyi's in a row. Where ch is put
depends on the value of the variable rubout-handler. Following is a
summary of actions for each possible value of rubout-handler:

nil

: read

:tyi

If the input buffer contains scanned input, decrement the
scan pointer. Otherwise, give ch back to the stream.

Decrement the input editor scan pointer.

Give ch back to the stream.

This method is used by parsers that look ahead one character, such as read.

:listen of si:interactive-stream Method
Return t if there are any characters available to :any-tyi or :tyi, or nil if
there are not. For example, the editor uses this to defer redisplay until it
has caught up with all of the characters that have been typed in.

:clear-input of si:interactive-stream Method
Clear the input buffer and any input buffered by the stream. This flushes
all the characters that have been typed at this stream, but have not yet been
read.

:line-in &optionalleader of si:interactive-stream Method
Reads characters from the stream and returns them as a string. If called
from outside the input editor, reads characters until a #\return, #\line, or
#\end activation character is encountered. If called from inside the input
editor, reads characters until a #\return delimiter is encountered. The
activation or delimiter character is not part of the returned string.

The method returns two values: the string and an eor flag. If the stream
reaches end-of-file while reading characters, it returns the characters read as
a string and returns a second value of t. Otherwise, the second returned
value is nil.

13

March 1985 Interactive Streams

If leader is an integer, the returned string has an array leader of length
leader, and the fill pointer is set to the location in the string following the
last one read. Otherwise, the string has no array leader.

Example:

This feature is useful for debugging programs that read from noninteractive
streams. For example, the following function reads a single line-oriented
record, in which the first line is a decimal number saying how many lines are
in the rest of the record.

(defun read-record (&optional (stream standard-input»
(loop repeat (parse-number (send stream :line-in) 0 nil 10.)

collect (send stream :line-in»)

If this function is invoked on an interactive stream, the input editor is
enabled automatically each time the :1ine-in message is sent, but it is not
possible to edit across line boundaries. For example, once the number of lines
in the record is typed, it isn't possible to change it.

(defun read-record (&optiona1 (stream standard-input»
(with-input-editing (stream)

(loop repeat (parse-number (send stream :line-in) 0 nil 10.)
collect (send stream :line-in»»

Wrapping a with-input-editing form around the body establishes a single
input editing context for each record. with-input-editing has no effect
when stream is a noninteractive stream, so this same function may used for
reading from a file or reading from an interactive stream.

:string-in eof string &optional (start 0) end of Method
si:interactive-stream

Reads characters from the stream into string, using the substring delimited
by start and end. start defaults to 0, and end defaults to the length of the
string.

eof specifies stopping actions:

Value

nil

not nil

Action

Reading characters into the string stops either when it has
transferred the specified character count or when end-of­
file is reached, whichever comes fIrSt. For a string with a
fill pointer, sets the fill pointer to the location one greater
than the last location into which a character was stored.

If end-of-flle is encountered while trying to transfer a
specific number of characters, signals sys:end-of-tlle, with
the value of eof as the report string. If eof is t, a default
report string is used.

14

Programming the User Interface March 1985

The method returns two values. The first is the location in the string that
is one greater than the last one into which a character was stored. The
second value is t if end-of-file was reached, nil otherwise. .

:string-line-in eot string &optional (start 0) end of Method
si:interactive-stream

:string-line-in is a combination of :string-in and :line-in. It reads a line of
characters from the stream into string, using the substring delimited by start
and end. start defaults to 0 and end to the length of string. If called from
outside the input editor, reads characters until a #\return, #\line, or
#\end activation character is encountered. If called from inside the input
editor, reads characters until a #\return delimiter is encountered. The
activation or delimiter character is not stored into string.

eDt specifies stopping actions:

Value

nil

not nil

Action

Reading characters into the string stops when a delimiter
is encountered, when the string is full, or when end-of-file
is reached, whichever comes first. For a string with a fill
pointer, sets the fill pointer to the location one greater
than the last location into which a character was stored.

If end-of-file is encountered, signals sys:end-of-file, with
the value of eot as the report string. If eDt is t, a default
report string is used.

The method returns three values:

• The location in string that is one greater than the last location into
which a character was stored.

• t if end-of-file was reached, nil otherwise.

• nil if the entire contents of the line fit into the string or end-of-file
was reached, otherwise t. If this value is t, as much of the line as
possible was stored into the string and more is waiting to be read.

If the second and third values are both nil, a delimiter was read. If either is
t, no delimiter was read.

15

March 1985 Interactive Streams

4. Intercepted Characters

Interactive streams specially intercept some characters. Some are intercepted when
some user process is about to read the character from a stream; others are
intercepted as soon as they are typed. This section describes the first kind of
interception. For information on asynchronously intercepted characters: See the
section "Asynchronous Characters''t page 139. See the section "Interactive-stream
Operations for Asynchronous Characters", page 17.

The value of the variable sys:kbd-intercepted-characters is a list of characters
that are intercepted and not returned as input from the stream. These characters
default to #\abort, #\m-abort, #\suspend, and #\m-suspend. Following are
the standard actions to be taken when these characters are intercepted:

#\abort

#\m-abort

#\suspend

#\m-suspend

Signal sys:abort

Reset the current process

Call the break function

Break to the Debugger

By convention, programs are all expected to use the ABORT key as a command to
abort things in some appropriate sense for that program. If you don't do anything
special, ABORT is intercepted automatically. Most interactive programs just set up
restart handlers for sys:abort. But some programs may want to do something
specific when the user presses ABORT (or SUSPEND).

You can replace the system default action by binding the variable
sys:kbd-intercepted-characters. By default, this variable is bound to the value of
sys:kbd-standard-intercepted-characters. If you want the system to intercept
only the standard abort characters, you can bind this variable to the value of
sys:kbd-standard-abort-characters. If you want the system to intercept only the
standard break characters, you can bind this variable to the value of
sys:kbd-standard-suspend-characters.

sys:kbd-intercepted-characters Variable
The value is a list of characters that are intercepted when they are read
from an interactive stream.

Bind this variable when you want to change the characters that the system
intercepts. The default value is the value of
sys:kbd-standard-intercepted-characters:
(#\abort #\m-abort #\suspend #\m-suspend).
sys:kbd-intercepted-characters is reset to this value on warm booting.
You can bind sys:kbd-intercepted-characters to any subset of the default
value, but you cannot include any characters that are not members of the

16

Programming the User Interface March 1985

default value. If you want the system to intercept only the standard abort
characters, bind sys:kbd-intercepted-characters to the value of
sys:kbd-standard-abort-characters. If you want the system to intercept
only the standard break characters, bind sys:kbd-intercepted-characters
to the value of sys:kbd-standard-suspend-characters.

sys:kbd-standard-intercepted-characters Variable
The value is a list of characters that is the default value of
sys:kbd-intercepted-characters. The default value is
(#\abort #\m-abort #\suspend #\m-suspend). This is a constant. If
you want to change the characters that the system intercepts, bind
sys:kbd-intercepted-characters, not
sys:kbd-standard-intercepted-characters.

sys:kbd-standard-abort-characters Variable
The value is a list of characters that are the default abort characters
intercepted by the system. The default value is (#\abort #\m-abort).
This is a constant. If you want the system to intercept only the standard
abort characters, bind sys:kbd-intercepted-characters to the value of
sys:kbd-standard-abort-characters.

sys:kbd-standard-suspend-characters Variable
The value is a list of characters that are the default suspend characters
intercepted by the system. The default value is
(#\suspend #\m-suspend). This is a constant. If you want the system to
intercept only the standard suspend characters, bind
sys:kbd-intercepted-characters to the value of
sys:kbd-standard-suspend-characters.

17

March 1985 Interactive Streams

5. Interactive-stream Operations for Asynchronous
Characters

The keyboard process intercepts some characters as soon as they are typed: See the
section "Asynchronous Characters", page 139. All interactive streams maintain a list
of characters to be handled asynchronously. Remote terminals, however, do not
handle asynchronous characters.

You can set up your own handling of asynchronous characters by using the
:asynchronous-character-p, :handle-asynchronous-character,
:add-asynchronous-character, and :remove-asynchronous-character messages
and the :asynchronous-characters init option for si:interactive-stream.

:asynchronous-characters spec-list (for si:interactive-stream) lnit Option
Specifies the asynchronous characters for the stream. spec-pUst is a list of
specs, each of which is a list containing a character name and a function
spec. The following default asynchronous characters are dermed for
si:interactive-stream:

(:default-init-plist
: asynchronous-characters
'«I\c-abort tV:kbd-asynchronous-intercept-character)

(I\c-m-abort tv:kbd-asynchronous-intercept-character)
('\c-suspend tV:kbd-asynchronous-intercept-character)
('\c-m-suspend tv:kbd-asynchronous-intercept-character»)

:asynchronous-character-p character of si:interactive-stream Method
Returns non-null when character is an asynchronous character for this
stream.

:handle-asynchronous-character character of Method
/

si:interactive-stream
Finds the function associated with character in the asynchronous characters
list. It calls the function with two arguments, character and self. This is
mainly for use by the Keyboard Process although user processes can use it
also.

:add-asynchronous-character character handler of Method
si:interactive-stream

Dermes a new asynchronous character for the stream. character is the
character to be treated asynchronously and handler is the function to be
called (with two arguments, character and self). It checks the types of the
arguments.

18

Programming the User Interface March 1985

:remove-asynchronous-character character of Method
si:interactive-stream

Removes an asynchronous character from the list for the stream.

19

March 1985 Interactive Streams

6. Interactive Streams and Mouse-sensitive Items

Some windows support mouse sensitivity. They can display representations of items
in such a way that moving the mouse onto the item causes it to be highlighted, and
clicking the mouse on the item does something with the item. One example is the
basic mouse-sensitive items facility: See the section "The Mouse-sensitive Items
Facility", page 279.

The fundamental message that creates and displays a mouse-sensitive item is :item.
All interactive streams support this message, whether or not they support mouse
sensitivity. If they do not support mouse sensitivity, they just display a printed
representation of the item.

Any interactive stream can also display an ordered list of items, using the function
si:display-item-list. This displays each item by sending an :item message to the
stream.

:item type item &rest format-args of si:interaetive-stream Method
Creates and displays a (possibly mouse-sensitive) item of type type on the
stream. If the stream does not support mouse-sensitivity, this just ignores
type and displays item on the stream. If format-args are supplied, they are a
format control string and control args to be used to display the item.
Otherwise, the item is displayed by calling prine with a ftrst argument of
item.

si:display-item-list stream type list &optional item-string Function
(order-columnwise t)

Displays a list of items on stream in evenly spaced columns. stream must be
interactive. If it supports mouse sensitivity, the items displayed are also
made mouse sensitive.

list is a list of items to be displayed. Each item in the list is displayed by
sending the stream an :item message with type as the ftrst argument. If
the item is not itself a list, the item is the second argument to the :item
message.

If the item to be displayed is a list, the arguments to the :item message
depend on item-string. If item-string is not nil, the second argument to the
:item message is the ftrst element of the item. If item-string is nil, the item
should be an alist whose car is a string to be displayed and whose cdr is the
item itself. In this case, the second argument to the :item message is the
cdr of the item, the third argument is "-A", and the fourth argument is the
car of the item. The default for item-string is nil.

If order-columnwise is not nil, the items are ordered down columns. If
order-columnwise is nil, the items are ordered across rows. The default is t.

20

Programming the User Interface March 1985

21

March 1985 Interactive Streams

7. The Input Editor Program Interface

7.1 How the Input Editor Works

The input editor is a feature of all interactive streams, that is, streams that connect
to terminals. Its purpose is to let you edit minor mistakes in typein. At the same
time, it is not supposed to get in the way; Lisp is to see the input as soon as you
have typed a syntactically complete form. The defmition of "syntactically complete
form" depends on the function that is reading from the stream; for read, it is a
Lisp expression. This section describes the general protocol used for communication
between the input editor and reading functions such as read and readline.

By reading {unction we mean a function that reads a number of characters from a
stream and translates them into an object. For example, read reads a Lisp
expression and returns an object. readline reads a line of characters and returns a
string as its first value. Reading functions do not include the more primitive :tyi
and :any-tyi stream operations, which take and return one character or blip from
the stream.

The tricky thing about the input editor is the need for it to figure out when you are
all done. The idea of an input editor is that as you type in characters, the input
editor saves them up in an input buffer so that if you change your mind, you can
edit them and replace them with different characters. However, at some point the
input editor has to decide that the time has come to stop putting characters into the
input buffer and let the reading function start processing the characters. This is
called "activating".

The right time to activate depends on the function calling the input editor, and
determining it may be very complicated. If the function is read, figuring out when
one Lisp expression has been typed requires knowledge of all the various printed
representations, what all currently defined reader macros do, and so on. The input
editor should not have to know how to parse the characters in the input buffer to
figure out what the caller is reading and when to activate; only the caller should
have to know this. The input editor interface is organized so that the calling
function can do all the parsing, while the input editor does all the handling of
editing commands, and the two are kept completely separate.

Following is a summary of how the input editor works. The input editor used to be
called the rubout handler, and some operations and variables still have "rubout­
handler" in their names.

When a reading function is called to read from a stream that supports the
:input-editor operation, that function "enters" the input editor. It then goes ahead
:tyi'ing characters from the stream. Because control is inside the input editor, the
stream echoes these characters so the user can see the input. (Normally echoing is

22

Programming the User Interface March 1985

considered to be a higher-level function outside of the province of streams, but when
the higher-level function tells the stream to enter the input editor it is also handing
it the responsibility for echoing). The input editor is also saving all these characters
in the input buffer, for reasons disclosed in the following paragraph. When the
reading function decides it has enough input, it returns and control "leaves" the
input editor. That was the easy case.

If you press RUBOUT or a keystroke that represents another editing command, the
input editor processes the command and lets you insert characters before the last
one in the line. The input editor modifies the input buffer and the screen
accordingly. Then, when you type the next nonediting character at the end of the
line, a throw is done, out of all recursive levels of read, reader macros, and so
forth, back to the point where the input editor was entered. Now the read is tried
over again, rereading all the characters you had typed and not rubbed out, but not
echoing them this time. When the saved characters have been exhausted, additional
input is read from you in the usual fashion.

The input editor has options that can cause the throw to occur at other times as
well. With the :activation option, when you type an activation character a throw
occurs, a rescan is done if necessary, and a final blip is returned to the reading
function. With the :preemptable and :command options, a blip or special
character in the input stream causes control to be returned from the input editor
immediately, without a rescan. These options let you process mouse clicks or special
keystroke commands as soon as they are read.

The effect of all this is a complete separation of the functions of input editing and
parsing, while at the same time mingling the execution of these two functions in
such a way that input is always "activated" at just the right time. It does mean
that the parsing function (in the usual case, read and all macro-character
definitions) must be prepared to be thrown through at any time and should not
have nontrivial side-effects, since it may be called multiple times.

If an error occurs while inside the input editor, the error message is printed and
then additional characters are read. When you press RUBOUT, it rubs out the error
message as well as the last character. You can then proceed to type the corrected
expression; the input is reparsed from the beginning in the usual fashion.

7.2 Invoking the Input Editor

The variable rubout-handler indicates the current state of input editing. This
variable is not nil if the current process is already inside the input editor.

rubout-handler Variable
Indicates the status of input editing within a process.

This variable is used internally by the :input-editor method and the input

23

March 1985 Interactive Streams

editor. It should not be necessary for user programs to examine its value
since the with-input-editing special form is provided for this purpose.

The possible values for this variable are:

Value

nil

:read

:tyi

Meaning

The process is outside the input editor.

The process is inside the :input-editor method.

The process is inside the editing portion of the :tyi
method.

The input editor is invoked on a stream when the stream receives an :input-editor
message. The :input-editor and :tyi methods of si:interactive-stream contain
the code of the input editor. The :input-editor method initializes the input editor,
establishes its catch, and then calls back to the reading function with
rubout-handler bound to :read. When the reading function sends the :tyi or
:any-tyi message, input is taken from the input buffer. If no input is available, the
editing or :tyi portion of the input editor is invoked, and rubout-handler is bound
to :tyi.

The first argument to the :input-editor message is the function that the input
editor should call to do the reading, and the rest of the arguments are passed to
that function. If the reading function returns normally, the values returned by the
:input-editor message are just those returned by the reading function. If the input
editor returns by throwing out of the reading function, the return values depend on
which option caused the input editor to throw: See the option :full-rubout, page
27. See the option :preemptable, page 31. See the option :command, page 32.

The input editor can take a series of options. These are specified dynamically by the
special forms with-input-editing-options and with-input-editing-options-if. For
a description of the options: See the section "Input Editor Options", page 27.

with-input-editing-options options &body body Special Form
Specifies input editing options and executes body with those options in effect.
The scope of the option specifications is dynamic.

options is a list of input editor option specifications. Each element is a list
whose car is an option-name specification and whose cdr is a list of forms to
be evaluated to yield "arguments" for the option. The option-name
specification is a keyword symbol or a list whose car is a keyword symbol.
The symbol is the name of the option.

If the option-name specification is a list and if the symbol :override is an
element of the cdr of the list, this option specification overrides any higher­
level specifications for this option. Otherwise, the specification for each option
that is dynamically outermost (that is, the specification from the highest-level
caller) is in effect during the execution of body.

24

Programming the User Interface March 1985

with-input-editing-options returns whatever values body returns.

In the following example, the user is prompted for a Lisp expression. Two
input editor options are specified. The fIrst says that the caller is also willing
to receive mouse or menu blips. The second specifies a prompt.

(with-input-editing-options «:preemptable :blip)
(:prompt "Form: H»

(read»

In the following example, the user is prompted for a line of text. The text
may be activated by any of the characters RETURN, END, or TRIANGLE. This
might be useful if activating with TRIANGLE meant something different from
activating with RETURN. This example also demonstrates the use of :override
to make this :activation specification override any higher-level :activation
specifications.

(with-input-editing-options
«(:activation :override) 'memq '('\return I\end '\triangle»)

(prompt-and-read :string "Name: H»

For a list of input editor options: See the section "Input Editor Options",
page 27. See the special form with-input-editing-options-if, page 24.

with-input-editing-options-if cond options &body body Special Form
Executes body, possibly with specified input editing options in effect. The
scope of the option specifications is dynamic.

cond is a form to be evaluated at run-time. If cond returns non-nil, the
specified input editor options are in effect during the execution of body.

options is a list of input editor option specifications. Each element is a list
whose car is an option-name specification and whose cdr is a list of forms to
be evaluated to yield "arguments" for the option. The option-name
specification is a keyword symbol or a list whose car is a keyword symbol.
The symbol is the name of the option.

If the option-name specification is a list and if the symbol :override is an
element of the cdr of the list, this option specification overrides any higher­
level specifications for this option. Otherwise, the specification for each option
that is dynamically outermost (that is, the specification from the highest-level
caller) is in effect during the execution of body.

with-input-editing-options-if returns whatever values body returns.

For a list of input editor options: See the section "Input Editor Options",
page 27. See the special form with-input-editing-options, page 23.

This example illustrates the use of the :command, :preemptable, and :prompt
input editor options. It is a simple command loop that reads different kinds of
commands - typed Lisp expressions, single-keystroke commands, and mouse clicks.

25

March 1985 Interactive Streams

The Lisp expressions are read using the read-or-end function. You can provide
four kinds of input:

Input

END

Action

Lisp form

Exit the command loop

Print form on next line

Mouse click

Single-key command

Display type of click and mouse coordinates

Display keystroke

The predicate for detecting a single-keystroke command simply checks for the Super
bit. In a more complex program, it might look up the character in a command
table.

(defun comrnand-char-p (c) (char-bit c :super»

(defun command-loop ()
(loop

do (multiple-value-bind (value flag)
(with-input-editing-options

«:command 'comrnand-char-p)
(:preemptable :blip)
(:prompt HCommand loop input: H»

(read-or-end»
(selectq flag

(:end
(format t NDoneN)
(return t»

(:blip
(selectq (car value)

(:mouse-button
(destructuring-bind (click nil x y) (cdr value)

(format t N-C click at -0, -ON click x y»)
(otherwise (format t "Random blip -- -5" value»»

(:comrnand
(format t "Execute -:C command" (second value»)

(otherwise
(format t N-&Value is -5" value»»»

To write a reading function that invokes the input editor, you should use the
with-input-editing special form instead of sending the :input-editor message
directly. Such funetions as read and readline use this special form to provide input
editing~

with-input-editing (&optional stream keyword) &body body Special Form
This special form provides a convenient way of invoking the input editor for
use by a reading function. It establishes a context in which input editing
should be provided. Use with-input-editing instead of sending an
:input-editor'message directly.

26

Programming the User Interface March 1985

Both "arguments" are optional. stream is the stream from which characters
are read; if stream is not provided or is nil, standard-input is used.

keyword determines the activation characters for the input editor:

Value

nil

Activation characters

None (unless specified at a higher level). This is the
default.

:end-activation #\end

:line-activation #\end, #\return, and #\line

:line #\end, #\return, and #\line. In addition, a Newline is
echoed after the reading function returns.

To supply other input editor options: See the special form
with-input-editing-options, page 23. See the special form
with-input-editing-options-if, page 24.

with-input-editing defines an internal lexical closure with body as its body.
When the with-input-editing form is evaluated from outside the input
editor, the stream is sent an :input-editor message if it handles it. The
argument to the :input-editor message is the lexical closure, except that if
the :line keyword is supplied, with-input-editing also arranges to echo a
Newline after the lexical closure returns. If the with-input-editing form is
evaluated from inside the input editor or if the stream does not handle the
:input-editor message, the lexical closure is called instead.

with-input-editing returns whatever values body returns.

The following example defines a simple sentence parser.

27

March 1985 Interactive Streams

(defun read-sentence (&optiona1 (stream standard-input»
(with-input-editing-options «:prompt "Type a sentence: H»~

(with-input-editing (stream)
(loop named sentence

with sentence = nil
for word = (make-array 20. :type art-string :fi11-pointer 0)
do (loop for char = (send stream :tyi)

7.3 Input Editor Options

do
(cond «memq char '(#\space #\return #1. #I? #1,»

(if (not (equal word "H»~

(push word sentence»
(se1ectq char

«#\space #\return #1,)
(return»

(#\.
(push :period sentence)
(return-from sentence (nreverse sentence»)

(#\?
(push :question-mark sentence)
(return-from sentence (nreverse sentence»»)

(t (array-push-extend word char»»»»

The input editor can take a series of options, specified by the special forms
with-input-editing-options and with-input-editing-options-if. Following are
descriptions of the options.

:full-rubout token Option
If the user rubs out all the characters that were typed, control is returned
from the input editor immediately. Two values are returned: nil and token.
If the user doesn't rub out all the characters, the input editor propagates
mUltiple values back from the function that it. calls, as usual. In the absence
of this option, the input editor simply waits for more characters to be typed
and ignores any additional rubouts.

:pass-through &rest characters Option
The characters in characters are not to be treated as special by the input
editor. This option is used to pass format effectors (such as HELP or
CLEAR-INPUT) through to the reading function instead of interpreting them as
input editor commands. :pass-through is allowed only for characters with
no modifier bits set, that is, for character codes 0 through 377 (octal). For
characters that have modifier bits set and must be visible to the reading
function, use :do-not-echo or :activation.

28

Programming the User Interface March 1985

:prompt &rest prompt-option Option
When it is time for the user to be prompted, the input editor displays
prompt-option. prompt-option can have one element, which can be nil, a
string, a function, or a symbol other than nil; or it can have more than one
element: See the section "Displaying Prompts in the Input Editor", page 33.

The difference between :prompt and :reprompt is that the latter does not
display the prompt when the input editor is first entered, but only. when the
input is redisplayed (for example, after a screen clear). If both options are
specified, :reprompt overrides :prompt except when the input editor is first
entered.

:reprompt &rest prompt-option Option
When it is time for the user to be reprompted, the input editor displays
prompt-option. prompt-option can have one element, which can be nil, a
string, a function, or a symbol other than nil; or it can have more than one
element: See the section "Displaying Prompts in the Input Editor", page 33.

Unlike :prompt, :reprompt displays the prompt only when input is
redisplayed (for example, after a screen clear), not when the input editor is
first entered. If both :prompt and :reprompt are specified, :reprompt
overrides :prompt except when the input editor is first entered.

:complete-help &rest help-option Option
When the user presses HELP, the input editor types out a message determined
by help-option. None of the standard input editor help is displayed. If a
:brief-help option has been specified, it overrides :complete-help.
:complete-help overrides :merged-help and :partial-help.

help-option can have one element, which can be a string, a function, or a
symbol; or it can have more than one element. For an explanation: See the
section "Displaying Help Messages in the Input Editor", page 34.

This option is intended for programs that supply their own input editor help
messages.

:partial-help &rest help-option Option
When the user presses HELP, the input editor first types out a message
determined by help-option. It then types out a message describing how to
invoke input editor commands and other information about the stream. If a
:brief-help, :complete-help, or :merged-help option has been specified, it
overrides :partial-help.

help-option can have one element, which can be a string, a function, or a
symbol; or it can have more than one element. For an explanation: See the
section "Displaying Help Messages in the Input Editor", page 34.

This option is intended for use when inexperienced users might be typing to

29

March 1985 Interactive Streams

the input editor. Often help-option gives some information about which
program the user is typing to and what the user can do to exit from it.

:merged-help function &rest arguments Option
When the user presses HELP, the input editor types out a message determined
by the arguments. function is a function that takes at least two arguments.
The input editor calls the function to print the help message. The first
argument is the stream. The second argument is a continuation (a list) to
print a standard message describing how to invoke input editor commands
and other information about the stream. When the function wants to print
this message, it should apply the car of the continuation to the cdr. If any
arguments are supplied, they are the remaining arguments to the function.

If a :brief-help or :complete-help option has been specified, it overrides
:merged-help. :merged-help overrides :partiaI-help.

This option is intended for programs that want to decide when and where to
display their own help messages and the standard help message.

:brief-help &rest help-option Option
When the user presses HELP, the input editor displays a message determined
by help-option on the same line as the typein. The message is· displayed in
the default typeout font, and none of the usual conventions about input
editor typeout apply. :brief-help overrides :complete-help, :merged-help,
and :partiaI-help.

help-option can have one element, which can be a string, a function, or a
symbol; or it can have more than one element. For an explanation: See the
section "Displaying Help Messages in the Input Editor", page 34.

This option is intended for programs like fquery that need to supply only a
brief help message, usually about expected typein.

:initiaI-input string &optional begin end cursor-position Option
When the input editor is entered, string is inserted into the input buffer as if
the user had typed it. The user can edit the string before activating. begin
and end are indices into string and mark the portion of the string to be
copied into the input buffer. begin defaults to 0; end defaults to
<array-active-Iength string). cursor-position is an index into the string
where the cursor should initially be placed. The default is to place the cursor
at the end of the portion of the string copied into the input buffer. string
can be nil, which is the same as not specifying the option.

In the following example, the user is prompted for a line of text. The input
buffer initially contains the name of the user, and the cursor is placed at the
beginning of the input buffer.

30

Programming the User Interface March 1985

(with-input-editing-options
«:initial-input fs:user-personal-name nil nil 0»

(prompt-and-read :string "Full name: "»

Placing a string in the input buffer is one style of input defaulting. Another
style leaves the input buffer empty but allows a default to be yanked with
C-M-V. See the option :input-hiBtory-default, page 30.

:input-history-default string Option
Specifies string as the default to be yanked by C-M-V. string is temporarily
placed at the head of the input history. If the user types C-M-V M-V, the
true first element of the input history is yanked. c-M-0 C-M-V shows string
at the head of the input history, and the entries in the input history are
shifted down by one.

In the following example, the user is prompted for a line of text. The input
buffer is initially empty, but the C-M-V command yanks a default, which is
the name of the user.

(with-input-editing-options
«:input-history-default fs:user-personal-name»

(prompt-and-read :string "Full name: "»

This option is used by the :pathname option for prompt-and-read

:bIip-handler function Option
Specifies a function to handle blips received while inside the input editor.
function must be a function of two arguments. The first argument is the
blip; the second argument is the stream that received the blip. The handler
is invoked when the input editor receives a blip. If the handler returns
non-nil, no further action is taken. If it returns nil and a :preemptable
option is in effect, the actions specified by that option are taken. Otherwise,
the default blip handler is invoked.

In the following example, the user is prompted for a line of text. While
entering this text, the user may also click the left or middle mouse buttons.
If the left mouse button is clicked, the coordinates of the mouse with respect
to the window are inserted into the input buffer. If the middle button is
clicked, the name of the window is inserted.

(defun example-blip-handler (blip ignore)
(destructuring-bind (type click window x y) blip

(and (eq type :mouse-button)
(selectq click

(#\mouse-l-l
(si:ie-insert-string (format nil" -0 -0" x y»
t)

(#\mouse-m-l
(si:ie-insert-string (format nil " -A" window»
t»»)

31

March 1985 Interactive Streams

(with-input-editing-options «:blip-handler 'example-blip-handler»
(prompt-and-read :string "Blip handler test: H»~

si:ie-insert-string is an internal function for inserting a string into the
input buffer. Since the language for writing input editor commands has not
been formalized, this example might not work in a later release.

:do-not-echo &rest characters Option
The characters in characters are interpreted as activation characters and are
not echoed. The comparison is done with char=, not char-equal, so that
the control and meta bits are not masked off. The characters are not
inserted into the input buffer and are not interpreted as input editor
commands. When one of these characters is typed, the fmal :tyi value
returned is the character, not a blip.

This option exists only for compatibility with earlier releases. New programs
should use the :activation option.

:activation function &rest arguments Option
For each character typed, the input editor invokes function with the
character as the first argument and arguments as the remaining arguments.
If the function returns nil, the input editor processes the character as it
normally would. Otherwise, the cursor is moved to the end of the input
buffer, a rescan of the input is forced (if one is pending), and the blip
(:activation character numeric-arg) is returned by the fmal sending of the
:any-tyi message to the stream. Activation characters are not inserted into
the input buffer, nor are they echoed by the input editor. It is the
responsibility of the reading function to do any echoing. For instance,
readline, not the input editor, types a Newline at the end of the input
buffer when RETURN, END, or LINE is pressed.

:preemptable token Option
A blip in the input stream causes control to be returned from the input
editor immediately. Two values are returned: the blip and token, which is
usually a keyword symbol. Any un scanned input typed before the blip
remains in the input buffer, available to the next read operation from the
stream.

:no-input-save Option
The input editor does not save the scanned contents of the input buffer on
the input history when returning from the reading function. This is
intended for use by functions such as fquery that use the input editor to
ask simple questions whose responses are not worth saving. yes-or-no-p
uses :no-input-save by default.

32

Programming the User Interface March 1985

:command {unction &rest arguments Option
This option is used to implement nonediting single-keystroke commands. For
each character typed, the input editor invokes {unction with the character as
the first argument and arguments as the remaining arguments. If the
function returns nil, the input editor processes the character as it normally
would. Otherwise, control is returned from the input editor immediately.
Two values are returned: a blip of the form (:command character
numenc-arg) and the keyword :command. Any un scanned input typed
before the command character remains in the input buffer, available to the
next read operation from the stream.

:editor-command &rest command-alist Option
This option lets you specify your own input editor editing commands. Each
element of command-alist is a cons whose car is a character and whose cdr is
a symbol or a list. If the cdr is a symbol, it is a function to be called with
no arguments when the user types the associated character. If the cdr is a
list, the car of the list is a function to be applied to the cdr of the list when
the user types the associated character. The function can examine the
internal special variables that describe the state of the input editor.

If :editor-command specifies a command that is invoked by the same
character as one of the standard input editor editing commands, the
command specified by :editor-command overrides the standard command.

:input-wait &optional whostate {unction &rest arguments Option
When the input editor waits for input, it sends the stream an :input-wait
message with the arguments to the :input-wait option as arguments. In
addition, unless the :suppress-notifications option has been specified,
:input-wait returns when a notification is received. See the message
:input-wait in Reference Guide to Streams, Files, and 110.

:input-wait-handler {unction &rest arguments Option
When the input editor is waiting for input it sends the stream an
:input-wait message. After :input-wait returns, the input editor applies
{unction to arguments. The input editor does not process the input or
display the notification until {unction returns.

:suppress-notifications flag Option
If flag is not nil, notifications received while in the input editor are ignored.

:notification-handler {unction &rest arguments Option
If a notification is received while in the input editor, {unction is called to
handle it. {unction should take at least one argument, the notification (as
returned by the :receive-notification message to the stream). arguments
are the remaining arguments to {unction. {unction can do anything it wants
with the notification. To display the notification, {unction would usually call
sys:display-notification.

33

March 1985 Interactive Streams

If this option is not specified, notifications appear one after the other using
:insert-style typeout.

Following are two simple examples of notification handlers. The first handler
assumes that you want each notification to overwrite the previous one. The
second handler assumes that you want them to appear one after another.
window should be bound to a window and *stream* to a stream where
you want the notifications to appear.

(defun my-notification-handler-l (notification)
(send *Window* :clear-window)
(sys:display-notification *Window* notification :window»

(defun my-notification-handler-2 (notification)
(sys:display-notification *stream* notification :stream»

7.4 Displaying Prompts in the Input Editor

The input editor options :prompt and :reprompt and the functions
readline-no-echo and sys:read-character take prompt arguments that let you
specify an input editor prompt. prompt can be nil, a string, a function, a symbol
other than nil, or a list (for the input editor options, the list is an &rest argument):

nil No prompt is displayed.

string A format control string to be passed to format with one
argument, the stream on which the prompt is displayed.

function or symbol other than nil

list

A function to display the prompt. The function should take two
arguments: the first is the stream on which the prompt is
displayed, and the' second is a keyword that indicates the origin of
the function call.

If the first element is nil, no prompt is displayed. If the first
element is a string, it is a format control string to be passed to
format with the remaining elements of the list as arguments. If
the first element is a function or a symbol other than nil, it is a
function to display the prompt. The first argument to the
function is the stream on which the prompt is displayed. The
second argument is a keyword that indicates the origin of the
function call. The remaining arguments are the remaining
elements of the list.

When a function is called to display the prompt, the second argument to the
function is a keyword that indicates the origin of the function call:

34

Programming the User Interface March 1985

Keyword Function called from

:prompt :input-editor method of si:interactive-stream, when the input
editor is entered

:restore :restore-input-buffer method of si:interactive-stream

:finish-typeout :finish-typeout method of si:interactive-stream

: refresh Body of the input editor, when the user presses REFRESH

:erase-typeout Body of the input editor, when the user presses PAGE

7.5 Displaying Help Messages in the Input Editor

The input editor options :brief-help, :partial-help, and :complete-help and the
functions readline-no-echo and sys:read-character take help arguments that let
you specify input editor help messages. help can be a string, a function, a symbol,
or a list (for the input editor options, the list is an &rest argument):

string A format control string to be passed to format with one
argument, the stream on which the help message is displayed.

function or symbol A function to display the help message. The function should
take one argument, the stream on which the help message is
displayed.

list If the first element is a string, it is a format control string to
be passed to format with the remaining elements of the list
as arguments. If the first element is a function or a symbol,
it is a function to display the help message. The first
argument to the function is the stream on which the help
message is displayed, and the remaining arguments are the
remaining elements of the list.

7.6 Examples of Use of the Input Editor

This series of examples shows several different ways of using the input editor,
gradually increasing in complexity. The examples are also available in the file
sys: examples; interaction.lisp.

We refer to functions whose names begin with "read-" as "reading functions" or
"readers", since they read individual characters and construct a Lisp object as a
returned value. Examples of readers the Lisp system provides are read, readline, - - - _. - -. -.
anu reuu-ueumneu-sLrlng. reuu reLurnB LlBp OUJeCLS 01 many LypeS. reaWlne
and read-delimited-string return strings.

read-two-lines-l reads two lines of input from the console. You type each line in
its own editing context. After you enter the first line by pressing RETURN, LINE, or

35

March 1985 Interactive Streams

END, you can no longer rub out or otherwise edit any of the characters in the first
line. You can type and edit only the second line at that point.

(defun read-two-lines-l () (list (readline) (readline»)

read-two-lines-2 lets you edit both lines in a single context by using the
with-input-editing special form. Even after entering the first line you can edit it.
For example, the M- < input editor command moves the cursor to the first character
of the first line. read-two-lines-2 also adds a stream parameter so that you can
read from different streams without having to bind standard-input. You can also
use this function for reading from noninteractive streams, such as file streams.

(defun read-two-lines-2 (&optional (stream standard-input»
(with-input-editing (stream) (list (readline stream) (readline stream»»

read-two-lines-3 demonstrates the use of the :prompt input editor option and the
:end-activation option for with-input-editing. When you invoke this function on
an interactive stream you receive a prompt. This prompt is redisplayed if typeout to
the stream occurs. This might happen if you press HELP or the window receives a
notification.

The :end-activation option defines #\end as an activation character. This lets
you activate previous input to read-two-lines-3, after yanking and editing it, by
pressing END. The :prompt and :end-activation options have no effect on the
behavior of the function for noninteractive streams.

(defun read-two-lines-3 (&optional (stream standard-input»
(with-input-editing-options « :prompt "Type two lines: "»

(with-input-editing (stream :end-activation)
(list (readline stream) (readline stream»»)

read-n-lines is like read-two-lines except that you specify the number of lines to
be read using the n-lines argument. It also uses a prompt function instead of a
string to generate the prompt.

(defun read-n-lines-prompt (stream ignore n-lines)
(format stream "Type -R line-:P:-~" n-lines»

(defun read-n-lines (n-lines &optional (stream standard-input»
(with-input-editing-options «:prompt 'read-n-lines-prompt n-lines»

(with-input-editing (stream :end-activation)
(loop repeat n-lines collect (readline stream»»)

Next is an example of a simple sentence parser. It builds a list of strings and
symbols that represent the words and punctuation marks of the sentence. A
sentence may be any number of lines long. It is delimited by a period or a question
mark. Words are delimited by a space, newline, or punctuation mark. This is also
an example of a reading function written entirely in terms of :tyi as the primitive
input operation.

36

Programming the User Interface March 1985

(defun read-sentence-' (&optional (stream standard-input»
(with-input-editing-options «:prompt NType a sentence: N»

(with-input-editing (stream)
(loop named sentence

with sentence = nil
for word = (make-array 20. :type art-string :fi11-pointer 0)
do (loop for char = (send stream :tyi)

do
(cond «memq char '('\space I\return II. II? II,»

(if (not (equal word UN»
(push word sentence»

(se1ectq char
«'\space I\return II,)
(return»

(1\.
(push :period sentence)
<return-from sentence (nreverse sentence»)

<I\?
(push :question-mark sentence)
<return-from sentence (nreverse sentence»»)

(t (array-push-extend word char»»»»

Following is a different sentence parser that calls read-delimited-string to
accumulate characters into a string. It uses the :end-activation option for
with-input-editing so that previous input to read-sentence-2 can be yanked,
edited, and activated using the END key. When it detects incorrect uses of
punctuation, it calls &ys:parse-ferror to signal an error caught by the input editor.

37

March 1985 Interactive Streams

(defun read-sentence-2 (&optional (stream standard-input»
(with-input-editing-options «:prompt "Type a sentence: H»~

(with-input-editing (stream :end-activation)
(loop with sentence = nil

do (mu1tip1e-va1ue-bind (word nil delimiter)
(read-de1imited-string

'(I\space I\return II. II? II, II: II;) stream)
(if (not (equal word HH»

(push word sentence»
(cond «memq delimiter '(I\space I\return»)

«null sentence)
(if (eq delimiter I\end)

(return n i1)
(sys:parse-ferror

"The punctuation mark I"-CIH occurred at the -
beginning of the sentence."
delimiter»)

«symbo1p (car sentence»
(sys:parse-ferror

"The punctuation mark I"-C/N was typed after a _@A.N
delimiter (car sentence»)

(t (se1ectq delimiter
(II,
(push ':comma sentence»

(#1:
(push ':co1on sentence»

(II;
(push ':semico1on sentence»

(II.
(push ':period sentence)
(return (nreverse sentence»)

(II?
(push ':question-mark sentence)
(return (nreverse sentence»»»»»)

Sometimes an error in parsing is detected not by the function that invokes the input
editor, but by some function that it calls. In the next example, read-time invokes
time:parse-universal-time to do its parsing. If we did not use the
condition-case form in read-time, we would enter the Debugger when
time:parse-universal-time encountered incorrect input. The condition-case form
encapsulates the original error in one of flavor sys:parse-ferror so that the input
editor catches it. Alternately, we could define time:parse-error to be a subflavor of
sys:parse-error.

38

Programming the User Interface March 1985

(defun read-time (&optional (stream standard-input»
(with-input-editing (stream :line)

(let «string (readline-or-nil stream»)
(when string

(condition-case (error)
(time:parse-universal-time string)

(time:parse-error
(sys:parse-ferror "_A" error»»»)

7.7 Input Editor Messages to Interactive Streams

:input-editor read-function &rest read-args of Method
si:interactive-stream

Apply read-function to read-args after invoking the input editor. For more
information: See the section "The Input Editor Program Interface", page 21.

Normally a program does not send this message itself; it uses the special form
with-input-editing. See the special form with-input-editing, page 25.

:start-typeout type &optional spacing of si:interactive-stream Method
Informs the input editor that typeout to the window will follow. The word
"typeout" is used in the name of this message because this is very similar to
typeout in the editor, even though typeout windows are not actually used.
type can be one of the following keywords:

1\ejnVord Action

:insert Typeout is inserted before the current input, as is done
with notifications or input editor documentation.

:overwrite Like :insert, but the next time :insert or :overwrite
typeout is performed, this typeout is overwritten.

: append Typeout appears after the current input, which remains
visible before the typeout. This is the style used by
break.

:temporary Typeout appears after the current input and is erased
after the user types a character.

:clear-window The window is cleared, and typeout appears at the top.

spacing can be one of the following keywords:

1(P-V7l1nrrl

:none

:fresh-line

Artinn

No spacing before typeout.

Typeout begins at the beginning of a line.

39

March 1985 Interactive Streams

:blank-line A blank line precedes typeout.

If spacing is not specified, a default that depends on type is cOlnputed.

si:*typeout-default* Variable
Controls the style of typeout performed by the input editor. Permissible
values are the keywords acceptable as the type argument to the
:start-typeout method of si:interactive-stream. These are :insert,
:overwrite, :append, :temporary, and :clear-window. The default value
is : overwrite.

:finish-typeout &optional spacing erase? of Method
si:interactive-stream

Completes typeout to the window and causes the input buffer to be
refreshed. In the case of :temporary typeout, the erase? parameter is used
to indicate whether or not the typeout overwrote part of the current input
by wrapping around the screen. It is the responsibility of the program doing
the typeout to keep track of how much is output.

spacing can be one of the following keywords:

Keyword

:none

:fresh-line

:blank-line

Action

No spacing before typeout.

Typeout begins at the beginning of a line.

A blank line precedes typeout.

If spacing is not specified, a default that depends on the type argument to
the :start-typeout method is comput~d.

:rescanning-p of si:interactive-stream Method
This message can be sent by a read function that uses the input editor to
determine whether the next character returned by :tyi will come from the
input buffer or from the keyboard. If t is returned, the input is being
rescanned and the next character will come from the input buffer. If nil is
returned, the next character will come from the keyboard.

:force-rescan of si:interactive-stream Method
This message can be sent by a read function that uses the input editor to
force a rescan of the current input. Before this message is sent, usually
some global state has changed and the contents of the input buffer are
in terpreted differently.

:replace-input n-chars string &optional (begin 0) end (rescan-mode Method
:ignore) of si:interactive-stream

This message can be sent by a read function that uses the input editor to
provide completion of the current input.

40

Programming the User Interface March 1985

n-chars specifies the number of characters to be removed from the end of the
input buffer and erased from the screen. It can be an integer, a string, or
nil:

integer

string

nil

Remove n-chars characters from immediately before the
scan pointer

Remove as many characters as the string contains

Remove characters from the beginning of the input buffer
to the scan pointer

The substring of string determined by begin and end is then displayed on the
screen. end defaults to (string-length string). The scan pointer is left after
the string, and a rescan does not take place. If a rescan takes place at some
later time, the characters in string are seen as input.

rescan-mode specifies what action to take if the :replace-input message is
sent when the scan pointer is not at the end of the input buffer:

:ignore

:enable

:error

Don't perform. the :replace-input operation. This is the
default.

Perform. the operation.

Signal an error.

:read-bp of si:interactive-stream Method
Returns the value of the scan pointer. This is for the benefit of read
functions that might want to return a pointer into the input buffer when
signalling an error of type sys:parse-error.

:noise-string-out string &optional (rescan-mode :ignore) of Method
si:interactive-stream

This message can be sent by a read function to display a string that is not to
be treated as input. For example, the string might prompt the user for a
particular kind of input. string is displayed on the screen without changing
the scan pointer, and a rescan does not take place. If a rescan takes place at
some later time, the characters in string are ignored.

rescan-mode specifies what action to take if the :noise-string-out message is
sent when the scan pointer is not at the end of the input buffer:

:ignore

:enUDle

:error

Don't perform. the :noise-string-out operation. This is
the default.

- ..
renorm -.;ne operauon.

Signal an error.

41

March 1985 Interactive Streams

8. The Command Processor Program Interface

8.1 The Command Processor Reader

read-command-or-form &optional (stream standard-input) &key Function
(command-table si:*cp-comtab*)
(dispatch-mode si:*cp-default-dispatch-mode*)
(blank-line-mode '
si:*cp-default-blank-line-mode*) (prompt
si:*cp-default-prompt*)

Reads' a form or a command processor command from stream. This is an
appropriate function to use at top level in a command loop that uses the
command processor.

If stream is not supplied or is nil, it defaults to standard-input.

If :dispatch-mode is specified, it is a keyword that indicates the command
processor dispatch mode. The default is the value of
si:*cp-default-dispatch-mode*. The initial default is
:command-preferred.

The actions that read-command-or-form takes depend on dispatch-mode:

:form-only Calls read-form to read a form from stream.

:command-only Calls read-command to read a command from stream.

:form-preferred Calls read-form unless the first character typed is a
command dispatch character (by default, a colon). In that
case calls read-command

:command-preferred
If the first character typed is a command dispatch
character or an alphabetic character, calls read-command;
otherwise, calls read-form. The user can evaluate a form
that begins with an alphabetic character by first typing a
form dispatch character (by default, a comma).

For a general description of how the user enters a command: See the section
"Entering a Command" in User's Guide to Symbolics Computers.

If :command-table is supplied, it is a command table of the acceptable
commands. The default command table is the value of si:*cp-comtab*.
The initial default is the "User" command table. See the section "Command
Processor Command Tables", page 52.

If :blank-Iine-mode is supplied, it is a keyword that determines what action
the command, processor takes when the user types a blank line:

42

Programming the User Interface March 1985

: reprompt

:beep

:ignore

Redisplay the prompt, if any.

Beep.

Do nothing.

The default blank-line-mode is the value of
si:*cp-default-blank-line-mode*. The initial default is : reprompt.

If :prompt is supplied, it is a prompt option for the input editor to display at
appropriate times. prompt can be nil, a string, a function, or a symbol other
than nil (but not a list): See the section "Displaying Prompts in the Input
Editor", page 33. The default prompt is the value of
si:*cp-defauIt-prompt*. The initial default is "Command: ".

read-command-or-form returns a form. If read-command-or-form calls
read-form to read from stream, it returns the form that read-form returns.
If it calls read-command, it returns a list whose first element is a symbol,
the name of the command, which is defined as a function. The remaining
elements of the list are the arguments to the command, coerced to the
appropriate types, Usually you execute the command by evaluating the
returned list.

read-command &optional (stream standard-input) &key Function
(command-table si:*cp-comtab*)
(blank-tine-mode
si:*cp-default-blank-line-mode*) (prompt
si:*cp-default-prompt*)

Reads a command processor command from stream, terminated by RETURN or
END.

If stream is not supplied or is nil, it defaults to standard-input.

From the user's point of view, a command consists of a command name,
positional arguments, and keyword arguments: See the section "Parts of a
Command" in User's Guide to Symbolics Computers. read-command offers
completion over command names, keyword argument names, and some
argument values, and it completes any unspecified command components
when the command is terminated: See the section "Completion in the
Command Processor" in User's Guide to Symbolics Computers.
read-command prompts for arguments and gives information about what
sort of values are expected. Some arguments have default values. The user
can press HELP to see documentation appropriate to the current stage of
entering the command: See the section "Help in the Command Processor" in
TTC10.,.'Q nJlino t~ .~'VJ'YJh~liI'Q r.~J'YJn7lto"'Q ~nl" tlI C1Dnol"al ilOC!I'Mntinn nf hnuT tho - --- - - -. __ .. -- -.,._-- ----- - --.-~------ -- - -- -- ~-------- -------.a,------ -- --- .. ----

user enters a command: See the section "Entering a Command" in User's
Guide to Symbolics Computers.

If :command-table is supplied, it is a command table of the acceptable

43

March 1985 Interactive Streams

commands. The default command table is the value of si:*cp-comtab*.
The initial default is the "User" command table. See the section "Command
Processor Command Tables", page 52.

If :blank-line-mode is supplied, it is a keyword that determines what action
the command processor takes when the user types a blank line:

:reprompt

:beep

:ignore

Redisplay the prompt, if any.

Beep.

Do nothing.

The default blank-Line-mode is the value of
si:*cp-defaUIt-blank-line-mode*. The initial default is :reprompt.

If :prompt is supplied, it is a prompt option for the input editor to display at
appropriate times. prompt can be nil, a string, a function, or a symbol other
than nil (but not a list): See the section "Displaying Prompts in the Input
Editor", page 33. The default prompt is the value of
si:*cp-default-prompt*. The initial default is "Command: ".

read-command returns two values. The first is a symbol, the name of the
command, which is defined as a function. The second is a list of the
arguments, converted to the appropriate types. Usually you execute the
command by applying the first value (the function) to the second (the
arguments).

si:*cp-default-dispatch-mode* Variable
The default command processor dispatch mode for read-command-or-form;
a keyword. Possible values are :form-only, :form-preferred,
: command-only, and : command-preferred. For the meanings of these
values: See the section "Setting the Command Processor Mode" in User's
Guide to Symbolics Computers. The default is :command-preferred.

The dispatch mode used in Lisp Listeners and break loops is the value of
si:*cp-dispatch-mode* .

si:*cp-default-blank-line-mode* Variable
The default command processor blank line mode for read-command and
read-command-or-form. This is a keyword that determines what action
the command processor takes when you type a blank line:

: reprompt

:beep

:ignore

Redisplay the prompt, if any. This is the default.

Beep.

Do nothing.

The blank line mode used in Lisp Listeners and break loops is the value of
si:*cp-blank-line-mode* .

44

Programming the User Interface March 1985

si:·cp-default-prompt· Variable
The default command processor prompt option for read-command and
read-command-or-form. The value of this variable is passed to the input
editor as the value of the :prompt option. The value can be nil, a string, a
function, or a symbol other than nil (but not a list): See the section
"Displaying Prompts in the Input Editor", page 33. The default is
"Command: ".

The prompt used in Lisp Listeners and break loops is the value of
si:·cp-prompt· .

8.2 Defining a Command Processor Command

define-cp-command name args &body body Special Form
Defines a command processor command. name is a specification for the
command name. args is a specification for the command arguments.
define-cp-command defines a function that executes the command, with
body as the body of the function. The name of the function is derived from
name and the arguments from args.

name is a symbol or a list. If name is a symbol, it is the name of the
function that executes the command. By convention, the first four
characters of the symbol's print name are usually "COM-".

If name is a list, the first element is a symbol, the name of the function that
executes the command. The remaining elements are alternating keywords
and values. Each keyword-value pair is optional. Following are the
permissible keywords and values:

:name

:comtab

A string that represents the command name that the user
types. If this option is not specified, the name is the
result of calling string-capitalize-words on the symbol's
print name, except that if the symbol's print name begins
with "COM-", those characters are omitted from the
command name. This option is useful for special
capitalization of words, as in "Start GC".

A command table or a string naming a command table in
which to install the command. For example, to install a
command in the "User" command table, you might specify
"User" or the result of <si:find-comtab "User"). This
option is evaluated. If it is not specified, the command is
not installed in any command table and cannot be read.
See the section "Command Processor Command Tables",
page 52.

45

March 1985 Interactive Streams

args is nil or a list of argument specifications for the arguments to the
command and the function that executes the command. One element of
args can be the symbol &key instead of an argument specification. All
argument specifications preceding &key denote positional arguments to the
command. All argument specifications following &key denote keyword
arguments to both the command and the function that executes the
command.

An argument specification is a list that describes one argument to the
command.

The first element of an argument specification is a symbol. This symbol
names a parameter in the arglist of the function that executes the command.
This parameter is bound to the value of the argument when the function is
called to execute the command. body can refer to the parameter. Unless a
:name option is supplied later in the argument specification, the user-visible
name of the argument is the result of calling string-capitalize-words on
the symbol's print name.

The second element of an argument specification is an argument type
specification. This is a keyword or a list. If it is a keyword, it is the name
of this argument's type. If it is a list, the first element is a keyword that is
the name of this argument's type. The remaining elements supply
information specific to the argument type. See the section "Command
Processor Argument Types", page 48.

The remaining elements of an argument specification are alternating
keywords and values. Each keyword-value pair is optional. None of the
values is evaluated. Following are the permissible keywords and values:

:allow-multiple t if the argument can have multiple values; nil if the
argument can have only one value. The user enters
mUltiple values as a series separated by commas. These
are passed to the command function as a list of values.
The default is nil.

:confinn t if the argument requires confirmation by the user; nil if
it does not. The default is nil.

: default A form to be evaluated when the argument is read to
return the default value for the argument. If
:allow-multiple is specified with a value of t, the form
must return a list of values. The form can refer to
parameters dermed for any positional arguments (but not
keyword arguments) specified in args before this argument
specification. At the time the form is evaluated, these
parameters are bound to the values of arguments already
read.

46

Programming the User Interface March 1985

For a positional argument, if :default is not supplied the
argument has no default value. When the command is
read, the user is forced to supply a value.

For a keyword argument, the default used depends on
what combination of :default and :mentioned-default
options is supplied:

Both Use the :mentioned-default default if
the user types the name of the
argument; otherwise use the :default
default.

:mentioned-default only

:default only

Neither

:mentioned-default

Use the :mentioned-default default.

Use the :default default.

If the user does not type the name of
the argument, the default is nil. If the
user types the name of the argument,
the argument has no default value, and
the user is forced to supply a value.

For a keyword argument, a form to be evaluated when the
argument is read to return the default value if the user
types the name of the argument. If :allow-multiple is
specified with a value of t, the form must return a list of
values. The form can refer to parameters defined for any
positional arguments (but not keyword arguments) specified
in args before this argument specification. At the time the
form is evaluated, these parameters are bound to the
values of arguments already read.

The default used depends on what combination of :default
and :mentioned-default options is supplied:

Both Use the :mentioned-default default if
the user types the name of the
argument; otherwise use the :default
default.

:mentioned-default only

:default only

Neither

Use the :mentioned-default default.

Use the :default default.

If the user does not type the name of
the argument, the default is nil. If the
user types the name of the argument,

March 1985

47

Interactive Streams

the argument has no default value, and
the user is forced to supply a value.

Use this option when you want the default to depend on
whether or not the user types the argument name. For
example, the Delete File command has an Expunge
keyword argument whose :default default is No and
whose :mentioned-default default is Yes.

:documentation A string, usually short, that documents the meaning of the
argument. The string is displayed after the argument
name if the user presses HELP while entering the
argument. For example, the string for the argument to
the Show Hosts command is "Hosts about which to display
status information". The default HELP display depends on
the argument type.

:name A string that represents the user-visible name of the
argument. The default name is the result of calling
string-capitalize-words on the print name of the symbol
that is the first element of the argument specification.
This option is useful when you want the user-visible name
of the argument to differ from the parameter bound to the
argument value. For example, you might want the user­
visible name to be Base without binding the special variable
base.

:prompt A string that represents a prompt for the argument, or a
form to be evaluated when the command is read to return
a prompt string. The form is evaluated with the symbol
=default= bound to the argument default. =default= is
interned in the package that is the value of package
when the define-cp-command form is evaluated. The
default prompt depends on the argument type. See the
section "Command Processor Argument Types", page 48.

Example:

(define-cp-command (com-edit-file :comtab "Global")
«file :pathname

:allow-multiple t

(ed file)

:default '(,(fs:default-pathname»
:prompt
(format nil "file to edit [default -A]" (first =default=»
:documentation "Files to edit"»

(send standard-output :fresh-line)
(send standard-output :tyo '\newline)
(values»

48

Programming the User Interface March 1985

8.3 Command Processor Argument Types

Following is a description of each command processor argument type. When you use
define-cp-command to define a command, the argument type keyword is the
second element of an argument specification, or the car of the second element. If
the second element is a list, the elements of its cdr are the type-specific infonnation
described for each argument type. See the special form define-cp-command, page
44.

The default prompt and help message for each type provide information about the
kind of values expected. In general, when the possible values are members of a
restricted set, the default help message lists the possible values. The default prompt
sometimes lists the possible values. For some types completion is provided over the
set of possible values.

:boolean The value is t if the user types ''Yes'' and nil if the user types
"No" . Completion is provided over these choices.

Type-specific infonnation: None.

:enumeration The value is one of a restricted set of strings or objects that can
be coerced to strings, specified by the type-specific information.
The user must type a string associated with one of the elements
of the set. Completion is provided over this set.

:number

:integer

Type-specific information: The strings or objects that can be
coerced to strings that make up the set of permissible values for
the argument. Often these are keyword symbols. For example:

(:enumeration :yes :no :ask)

The default prompt lists strings formed by calling
string-capitalize-words (but keeping hyphens) on each element
of the set of permissible values.

The value is a number.

Type-specific information: The symbol :base followed by an
integer, the base in which the number is read. If :base is not
supplied the number is read in decimal.

The default prompt displays the input base (if other than decimal)
and the default.

The value is an integer.

Type-specific information: Alternating keywords and values:

:base An integer, the base in which the integer is
read. If :base is not supplied the integer is
read in decimal.

March 1985

: string

:pathname

:from

:to

49

Interactive Streams

A number. The integer must be greater than
or equal to this. If :from is not supplied the
integer has no lower limit.

A number. The integer must be less than or
equal to this. If :to is not supplied the integer
has no upper limit.

The default prompt displays the input base (if other than decimal)
and the default.

The value is a string.

Type-specific-information: None.

If no type-specific information is supplied, the value is a pathname
derived from merging the string the user types with the default
and a default version of :newest. Completion is provided 'using
the system pathname-eompletion facility.

Type-specific information: Alternating keywords and values:

:pathname-default
A form to be evaluated when the command is
read to return a default for pathname merging.
The form can return anything suitable as the
second argument to fs:merge-pathnames.
This is used as the default only if the
argument default is not a pathname; if the
argument default is a pathname, that
pathname is used as the default for merging.
If the argument default is not a pathname and
if :pathname-default is not supplied, the
default is the result of (fs:default-pathname).

:default-version A number or symbol suitable as the third
argument to fs:merge-pathnames, to be used
as the default version for the merged
pathname.

:or-none

:or-no

:or-query

:raw

If t and the user types "none", the value of the
argument is :none.

If t and the user types "no", the value of the
argument is :no.

If t and the user types "query", the value of
the argument is :query.

The value of the argument is the result of
calling fs:parse-pathname with arguments of
the string the user types, nil, and the default.

50

Programming the User Interface March 1985

:host

:printer

: date

:package

:font

The default prompt displays the default pathname.

The value is the network host whose name the user types, unless
the user types "Local", "All", or "None":

"Local"

"All"

"None"

The local host

:all

nil

Type-specifi,c-information: None.

The value is the printer object whose name the user types, unless
the user types "None". In that case the value is nil. The value
can be any printer accessible from the user's site. Completion is
provided over the set of printers at the user's site.

Type-specifi,c-information: None.

The value is a universal time integer. When the user's input is
parsed, missing components are defaulted to the beginning of the
smallest unsupplied unit of time. Thus, "5 pm" is the same as "5
pm today", whether typed before or after 5 pm.

Type-specific-information: None.

If no type-specific information is supplied, the value is the package
whose name the user types. Completion is provided over the set
of existing packages.

Type-specific information: The keyword : all-allowed. If this is
supplied and the user types "All", the value of the argument is
:all.

If no type-specific information is supplied, the value depends on
what the user types:

Nothing If no default exists, the value is nil.

Name of a loaded font
The value is the font.

Name of a known but not loaded font
The value is the print name of the symbol in
the fonts package.

Name of an unknown font
The value is the string the user types.

Cnmnlp.t.inn i~ nrnviflp.fI nvp.r t.hp. ~P.t. nf knnwn fnnt.~ - -
Type-specific information: Alternating keywords and values:

March 1985

:system

:activity

:or-default

:lmown-only

:loaded-only

51

Interactive Streams

If t and the user types "Default-Font", the
value of the argument is :default-font.

If t and the user types the name of an
unknown font, an error is signalled and caught
by the input editor.

If t and the user types the name of a font that
is unknown or is not loaded, an error is
signalled and caught by the input editor.

If no type-specific information is supplied, the value is the system
whose name the user types if the system is loaded, or the string
the user types if it is not the name of a loaded system.
Completion is provided over the set of loaded systems.

Type-specific information: Keywords:

:loaded-only If the user types "All", the value of the
argument is :all. Otherwise, unless the user
types the name of a loaded system, an error is
signalled and caught by the input editor.

:patchable-only If the user types the name of a system that is
loaded but not patchable, the value of the
argument is the string the user types, unless
:loaded-only is also specified. In that case an
error is signalled and caught by the input
editor.

The value is an element of the list that is the value of
tv:*select-keys*. This is a list of four elements, the third of
which is the string that the user types naming the activity. For
some activities, the user can also type a nickname for the name of
the activity. In that case the string the user types is not the
same as the third element of the returned list.

The elements of the returned list correspond to the fIrst four
arguments to tv: add-select-key. For information: See the
function tv:add-select-key, page 137.

Completion is provided over the set of existing activities.

Type-specific information: None.

:documentation-topic
The value is an element of the completion aarray used by the
Document Examiner. This is a list determined by the string the
user types. The fIrst element of the list is the string, and the'
remaining elements are associated function specs that have
documentation available to the Document Examiner. Completion
is provided over the set of defined documentation topics.

52

Programming the User Interface March 1985

Type-specific information: None.

:make-system-version
The value is an integer, symbol, or string suitable as an argument
to the :version make-system option. If the user types a
nonnegative integer, the value is that integer, unless :no-number
is specified in the type-specific information. If the user types a
string associated with one of the elements specified by the type­
specific information, the value is that element. Otherwise, the
value is the string the user types. Completion is provided over
the set of values specified by the type-specific information.

Type-specific information: Strings or objects that can be coerced
to strings that make up the set of permissible values for the
argument. Usually this includes symbols like :newest or
:released. If :no-number is one of these, integers (and
:no-number) are not permissible values.

The default prompt lists strings formed by calling
string-capitalize-words (but keeping hyphens) on each element
of the set of permissible values.

8.4 Command Processor Command Tables

A command table is an object that identifies a set of commands that are permissible
in some context. Command tables can be arranged in a hierarchy, so that
subordinate command tables inherit commands from their superiors. The set of
permissible commands for a command table includes the commands in that command
table and the commands in all superior command tables.

When a command is read, using read-command or read-command-or-form, the
set of permissible commands is determined by the command table that is the value
of the :command-table argument to the reading function. Only commands in that
command table or a superior can be read. You install a command in a command
table at the time you define the command, using the :comtab option in the
command-name specification for define-cp-command See the special form
detine-cp-command, page 44.

The command processor maintains a global registry of all command tables. You fmd
a command table by using the function si:'-md-comtab. This function is especially
useful in supplying the :command-table argument to read-command or
read-command-or-form. Use si:create-comtab to create a command table, and
si:delete-comtab to delete one. Two useful existing command tables are the
1.""'_'-_". __ .."I LL _ .~ ... __ . •• .. • ... _. • •• - - .. • - -

'U1Vaxu CU.lU IJ.l.lC VDC.l \;VJllJlltll..lU W:1Ult::l:S. ~ 1lt:: Vi:t.C'lUU1e SI:~cp-commD'" IS DOUDa to
the current command table in Lisp Listeners and break loops, and it is also the
default command table for read-command and read-command-or-form.

53

March 1985 Interactive Streams

si:find-comtab name Function
Returns a command processor command table if it exists in the command
table registry, or nil if the command table cannot be found.

name can be a command table, a string, or an object that can be coerced to a
string. If name is a command table, si:f'md-command returns name. If
name is a string or an object that can be coerced to a string, si:find-comtab
returns the command table whose name is that string.

si:create-comtab name &optional (superior Function
(si:find-comtab "Global"» &rest init-options

Creates and returns a command processor command table, and installs the
command table in the command table registry.

name is a string or an object that can be coerced to a string. The string is
the name of the command table, to be used as the argument to
si:f'md-comtab.

superior is a command table, or a string or an object that can be coerced to a
string that names a command table. superior is the superior of the
command table to be created. The set of permissible commands includes the
commands in the command table and the commands in all superior command
tables. The default superior is the "Global" command table.

in it-options are optional alternating keywords and values:

: command-table-size
The expected number of commands in the command table.
The default is 25 (decimal). If the number of commands
exceeds this figure, the command table is expanded
automatically.

:command-table-delims
A list of characters used to delimit words for completion of
the names of commands. The default is (#\space).

si:delete-comtab name Function
Removes a command processor command table from the command table
registry. The returned value is not defined.

name is a command table, or a string or an object that can be coerced to a
string that names a command table.

si:*cp-comtab* Variable
The command processor command table that specifies the acceptable
commands in Lisp Listeners and break loops. The value of this variable is
also the default command table for read-command and
read-command-or-form. The default is the result of
(si:find-comtab "User"), the "User" command table.

54

Programming the User Interface March 1985

55

March 1985 Interactive Streams

9. Querying the User

The following functions provide a convenient and consistent interface for asking
questions of the user. Questions are printed and the answers are read on the
stream query-io, which normally is synonymous with terminal-io but can be
rebound to another stream for special applications.

y-or-n-p &optional message (query-io query-io) Function
This is used for asking the user a question whose answer is either "yes" or
"no". It types out message (if any), reads a one-character answer, echoes it
as 'ryes" or "No", and returns t if the answer is "yes" or nil if the answer is
"no". The characters that mean "yes" are #/Y, #/T, and #\space. The
characters that mean "no" are #/N and #\rubout. If any other character
is typed, the function beeps and demand a '"{ or N" answer.

If the message argument is supplied, it is printed on a fresh line (using the
:fresh-line stream operation). Otherwise the caller is assumed to have
printed the message already. If you want a question mark and/or a space at
the end of the message, you must put it there yourself; y-or-n-p does not
add it. query-io defaults to the value of query-io.

y-or-n-p should only be used for questions that the user knows are coming.
If the user is not going to be anticipating the question (for example, if the
question is "Do you really want to delete all of your flIes?" out of the blue)
then y-or-n-p should not be used, because the user might type ahead a T, Y,
N, space, or rubout, and therefore accidentally answer the question. In such
cases, use yes-or-no-p.

y-or-n-p supplies a prompt that indicates which form of answer (single letter
or full word plus RETURN) is required. This prompt is appended to any
message that you supply with the function.

(y-or-n-p "Hore? ") =>
Hore? (Y or N) Yes.

yes-or-no-p &optional message (query-io query-io) Function
This is used for asking the user a question whose answer is either '"{ es" or
"No". It types out message (if any), beeps, and reads in a line from the
keyboard. If the line is the string '"{es", it returns t. If the line is "No", it
returns nil. (Case is ignored, as are leading and trailing spaces and tabs.) If
the input line is anything else, yes-or-no-p beeps and demands a "yes" or
"no" answer.

If the message argument is supplied, it is printed on a fresh line (using the
:fresh-line stream operation). Otherwise the caller is assumed to have
printed the message already. If you want a question mark and/or a space at

56

Programming the User Interface March 1985

the end of the message, you must put it there yourself; yes-or-no-p does not
add it. query-io defaults to the value of query-io.

To allow the user to answer a yes-or-no question with a single character, use
y-or-n-p. yes-or-no-p should be used for unanticipated or momentous
questions; this is why it beeps and why it requires several keystrokes to
answer it.

yes-or-no-p supplies a prompt that indicates which form of answer (single
letter or full word plus RETURN) is required. This prompt is appended to any
message that you supply with the function.

(yes-or-no-p HDetonate terminal? H) =>
Detonate terminal? (Ves or No) no

fquery options &optional fquery-fonnat-string &rest Function
fquery-fonnat-args

Asks a question, printed by (format query-io !onnat-string !onnat-args •••),
and returns the answer. fquery takes care of checking for valid answers,
reprinting the question when the user clears the screen, giving help, and so
forth.

options is a list of alternating keywords and values, used to select among a
variety of features. Most callers have a constant list that they pass as
options (rather than con sing up a list whose contents varies). The keywords
allowed are:

:type What type of answer is expected. The currently defined types are
:tyi (a single character), :readline (a line terminated by a carriage
return), and :mini-buffer-or-readline. :tyi is the default.

:mini-buffer-or-readline is like the :readline value. The
exception is that if fquery is called from inside Zwei or Zmail, the
line of text is read from the minibuffer instead of from the
query-io stream. The idea of this feature is to let you write
things that work equally well inside Zwei or on their own; if you
use this value, you make it easier for your code to be integrated
into a Zwei extension.

:choices Defines the allowed answers. The allowed forms of choices are
complicated and explained below. The default is the same set of
choices as the y-or-n-p function. Note that the :type and
:choices options should be consistent with each other.

:list-choices
If t, the allowed choices are listed (in parentheses) after the
4.u~i:)~~vi.l. 7lu:: ~t:ri:1U~i. ii:) ~; i:)Ullll~.Yi.ul:; uii \;i:lU~~ LIlt:: \;UUl\;t::~ UUL LU

be listed unless the user tries to give an answer that is not one of
the allowed choices.

57

March 1985 Interactive Streams

:help-function
Specifies a function to be called if the user presses the HELP key.
The default help function simply lists the available choices.
Specifying nil disables special treatment of HELP. If you specify a
help function, it should take one argument, the stream on which
to display the help message. The function can get the list of
available choices from the value of the special variable
format:fquery-choices.

:signaI-condition
Basically a way to intervene and provide an answer to a query
without asking the user.

The default for :signaI-condition is nil. When its value is t, the
fquery function signals an fquery condition with proceed type of
:choice before prompting the user. Any handler can invoke the
:choice proceed type in order to return a value from fquery.
When no handler handles the condition, fquery proceeds normally
and queries the user.

fquery Flavor
fquery is a simple condition built on condition. It is
signalled by the fquery function when its
:signaI-condition option is t. The messages examine the
arguments given to the fquery function.

Message
: options

:format-string

:format-args

Value returned
Returns the first argument to the
fquery function.
Returns the second argument to the
fquery function (its format control string
or prompt).
Returns the rest of the arguments to the
fquery function (the arguments to its
format control string).

The :choice proceed type is provided. It has one
argument, which is a value to be returned from the call to
the fquery function.

The following example answers "yes" to every "Delete this entry?"
query occurring inside do-it that has :signaI-condition t:

58

Programming the User Interface March 1985

(condition-bind
«fquery ,'(lambda (condition)

(do-it»

(and (send condition ':proceed-type-p ':choice)
(equal (send condition ':format-string)

"Delete this entry? ")
(values ':choice t»»)

:fresh-line

:beep

If t, query-io is advanced to a fresh line before asking the
question. If nil, the question is printed wherever the cursor was
left by previous typeout. The default is t.

If t, fquery beeps to attract the user's attention to the question.
The default is nil, which means not to beep unless the user tries
to give an answer that is not one of the allowed choices.

: clear-input
If t, fquery throws away typeahead before reading the user's
response to the question. Use this for unexpected questions. The
default is nil, which means not to throwaway typeahead unless
the user tries to give an answer that is not one of the allowed
choices. In that case, typeahead is discarded since the user
probably wasn't expecting the question.

: select If t and query-io is a visible window, that window is temporarily
selected while the question is being asked. The default is nil.

:make-complete
If t and query-io is a typeout-window, the window is "made
complete" ~ter the question has been answered. This tells the
system that the contents of the window are no longer useful. The
default is t.

:stream Has as its value the stream to use for both input and output. The
default value is the value of the global variable query-io.

:no-input-save
If t, tells the input editor not to put the response to the question
into its history. The default is nil.

:status This option takes effect only if query-io is a window and :type is
:tyi. If the value is :selected and the window becomes deselected
while fquery is waiting for input, fquery returns :status. If the
value is :exposed and the window becomes deexposed or deselected
while fquery is waiting for input, fquery returns :status. If the
value is nil, fquery continues to wait for input when the window ,~ .. - ...
10 Ut:X.A.}JVO~ VI" Ut::ot:U:X~. .I.11t:: Ut::li:lUlL 1::; Ill ••

This option is intended for queries that appear in temporary
windows that might become deexposed or deselected before the
user responds.

59

March 1985 Interactive Streams

The argument to the :choices option is a list each of whose elements is a
choice (with one exception, described in the next paragraph). A choice is a
list whose cdr is a list of the user inputs that correspond to that choice.
These should be characters for :type :tyi or strings for :type :readline.
The car of a choice is either a symbol that fquery should return if the user
answers with that choice, or a list whose first element is such a symbol and
whose second element is the string to be echoed when the user selects the
choice. In the former case nothing is echoed. In most cases :type :readline
would use the first format, since the user's input has already been echoed,
and :type :tyi would use the second format, since the input has not been
echoed and furthermore is a single character, which would not be meaningful
to see on the display.

The last element in the list of choices can be the symbol :any (instead of
being a list, like all other choices). Then if the user gives some response that
is not one of the other choices, fquery does not complain and reprompt the
user, but instead returns what the user typed (a single character or a string,
depending on the :type option).

For example, the yes-or-no-p function uses this list of choices:
«t HYes H) (nil HNo H»

and the y-or-n-p function uses this list:

«(t HYes. H) 'IY lIT *\space)
«n11 HNo.") lIN I\rubout»

If you want to use the formatted output functions instead of fonnat to
produce the prompting message, write:

(fquery options (format:outfmt exp-or-string exp-or-string ... »

fonnat:outfmt puts the output into a list of a string, which makes format
print it exactly as is. There is no need to supply additional arguments to the
fquery unless it signals a condition. In that case the arguments might be
passed so that the condition handler can see them.

prompt-and-read type &optional format-string &rest format-args Function
prompt-and-read prompts the user, with format-string and its arguments as
the prompt. It uses fonnat to query-io to produce the prompt; it reads
from the query-io stream, calling the reading function associated with the
type keyword. If format-string is not specified, it generates a prompt
appropriate to type. The type argument can be a list in which the flrSt
element is the type keyword and the rest are keyword/value pairs to serve as
arguments to the reading function. (For the :object and :object-list types,
type must be a list with the :class keyword supplied.) prompt-and-read
returns whatever the reading function returns.

This is an appropriate function to call for collecting input from the user. Its

60

Programming the User Interface March 1985

main advantages are that it does type checking on the input the user types
and that it takes care of redisplaying the prompt at appropriate times (for
example, after the screen has been refreshed or after a notification arrives).

(prompt-and-read :number "Please enter a number: ") =>
Please enter a number: 4
4
(prompt-and-read :string "Please enter a string: ") =>
Please enter a string: 4
"4"

It expects to collect input of type type, where type is a keyword. It handles
the following types of input:

Option

:eval-form

Action

Reads a Lisp form. Evaluates it and returns the fIrSt
value. Asks for confirmation of nonconstant values. The
Debugger uses this to prompt for a form to evaluate.

:eval-form-or-end

:expression

Reads a Lisp form or just END. Evaluates it and returns
the first value for a form. Returns two values, nil and
:end, for END. Asks for confIrmation of nonconstant
values. The Debugger uses this to prompt for a form to
evaluate.

Reads a Lisp expression and returns the expression
without evaluating it.

:expression-or-end
Reads a Lisp expression or just END. It returns the
expression without evaluating it. If the user just presses
END, it returns two values, nil and :end.

:character Reads and returns a character. The returned value is a
character code (an integer).

: symbol Reads and returns a symbol.

(:function-spec :defined-p defined-p)

:string

: string-trim

Reads and returns a function spec. If :defined-p is
specified with a value other than nil, the function spec
must be defined as a function. The default for defined-p
is nil.

Reads a string terminated by RETURN, LINE, or END. It
't"Otll'tO?1c:! t'ho o~nh .. to+~ ,.,. YTT'h"' +'h +-: : _+ ••
- ------ --- --r-J ----0 ---- -.... - -,., 1:) .. u "".&.&.&t""'J.

Reads a string terminated by RETURN, LINE, or END. It
trims any leading or trailing white space. It returns the
empty string when the string is empty.

61

March 1985 Interactive Streams

:string-or-nil Reads a string terminated by RETURN, LINE, or END. It
trims any leading or trailing white space. It returns nil
when the string is empty.

(:string-list :or-nil or-nil)
Reads a series of strings separated by commas and
terminated by RETURN, LINE, or END. It returns a list of
the strings, unless or-nil is not nil and the user just
presses RETURN, LINE, or END. In that case it returns nil.
The default for or-nil is t.

(:delimited-string :delimiter delimiter :visible-delimiter visible-delimiter
:buffer-size size :or-nil or-nil>
Reads characters until the user types a delimiter, then
returns the input as a string without the delimiter.

:delimiter and :visible-delimiter are mutually exclusive.
If one of them is specified, it must be nil or a list of
characters that delimit the string. If neither is specified,
or if one is specified with a value of nil, the only delimiter
is #\end.

The difference between :delimiter and :visible-delimiter
is that if a prompt is supplied as the second argument to
prompt-and-read, the :visible-delimiter characters are
displayed to the user after the prompt, but the :delimiter
characters is not. If a prompt is supplied and neither
:delimiter nor :visible-delimiter is specified, the
delimiting character is not displayed. If no prompt is
supplied, the delimiting characters are always displayed,
whether they come from :delimiter, :visible-delimiter,
or the default delimiter.

If :buffer-size is specified, an initial buffer of size size
characters is allocated; otherwise, the initial size is
100. characters. It returns the empty string when the
string is empty, unless :or-nil is specified with a value
other than nil. In that case it returns nil when the
string is empty. The default for or-nil is nil.

(:delimited-string-or-nil :delimiter delimiter :visible-delimiter
visible-delimiter :buffer-size size)
The same as (delimited-string :delimiter delimiter
:visible-delimiter visible-delimiter :buffer-size size
:or-nil t). This option is obsolete.

(:complete-string :aIist alist :deIimiters delimiters :impossible-is-ok
impossible-is-ok :or-nil or-nil :complete-on-space
complete-on-space)
Reads and returns a (possibly completed) string, terminated
by RETURN, LINE, or END.

62

Programming the User Interface March 1985

If the user presses COMPLETE, the input so far is completed
over the set of possibilities determined by alist. If
complete-on-space is not nil, the input is also completed
when the user presses SPACE at the end of the input
buffer. The default for complete-on-space is t.

If the user presses c-?, the possible completions of the
input are displayed. If the user presses HELP, the possible
completions are displayed unless many exist; in that case a
general help message is displayed.

The style of completion is the same as that offered by
Zwei. alist can be nil, an alist, an art-q-list array, or a
keyword:

nil

alist

array

keyword

No completion is offered. This is the
default.

The car of each alist element is a string
representing one possible completion.

Each element is a list whose car is a
string representing one possible
completion. The array must be sorted
alphabetically on the cars of the
elements.

If the symbol is :zmacs, completion is
offered over the defmitions in Zmacs
buffers. If the symbol is :f1avors,
completion is offered over all flavor
names.

delimiters is nil or a list of characters that delimit
"chunks" for completion. As in Zwei, completion works by
matching initial substrings of "chunks" of text. If
delimiters is nil, the entire text of the input is a single
"chunk". The default is nil.

If or-nil is nil and the user just presses RETURN, LINE, or
END, :complete-string waits for more input. If or-nil is
not nil and the user just presses RETURN, LINE, or END, it
returns nil. The default for or-nil is t.

If the user presses RETURN, LINE, or END and the input
buffer is not empty, the input is completed as far as
posslOle. 11 tne completea strIng IS tne car or an WISt
element, the completed string is returned. Otherwise, if
the user pressed END or if impossible-is-ok is nil,
:complete-string waits for more input. If the user

March 1985

63

Interactive Streams

pressed RETURN or LINE or if impossible-is-ok is not nil, the
completed string is returned. The default for
impossible-is-ok is t.

Unless :complete-string returns nil, it also returns a
second value, a list of the alist elements that represent
possible completions of the returned string.

(:flavor-name :impossible-is-ok impossible-is-ok)
Reads and returns the name of a flavor, terminated by
RETURN, LINE, or END. The user can type the flavor name
with or without a package prefix.

If the user presses COMPLETE, the input so far is completed
over the set of defined flavors. If the user presses c-?, the
possible completions of the input are displayed. If the user
presses HELP, the possible completions are displayed unless
many exist; in that case a general help message is
displayed.

If the user presses RETURN, LINE, or END and the input
buffer is not empty, the input is completed as far as
possible. If the completed input is the name of a flavor,
the flavor name (a symbol in the appropriate package) is
returned. Otherwise, if the user pressed END,
:f1avor-name waits for more input. If the user pressed
RETURN or LINE and if impossible-is-ok is not nil, the
completed input is returned as a symbol. If the user
pressed RETURN or LINE and if impossible-is-ok is nil, an
error is signalled and caught by the input editor. The
default for impossible-is-ok is t.

(:number :base input-base :or-nil or-nil)
Reads and returns a number, terminated by RETURN, LINE,
or END. If :base is specified, the number is read in base
input-base; otherwise, it is read as a decimal number. If
:or-nil is specified with a value other than nil, it returns
nil if the user just presses RETURN, LINE, or END. The
default for or-nil is nil.

(:number-or-nil :base input-base)
The same as (:number :base input-base :or-nil t). This
option is obsolete.

(:decimal-number :or-nil or-nil)
The same as (:number :base 10. :or-nilor-nil). This
option is obsolete.

:decimal-number-or-nil
The same as (:number :base 10. :or-nil t). This option
is obsolete.

64

Programming the User Interface March 1985

(:integer :base input-base :or-nil or-nil :from from :to to)
Reads and returns an integer, terminated by RETURN, LINE,
or END. If :base is specified, the integer is read in base
input-base; otherwise, it is read as a decimal number. If
:or-nil is specified with a value other than nil, it returns
nil if the user just presses RETURN, LINE, or END. The
default for or-nil is nil. If :from is specified, the integer
must be greater than or equal to from. If:to is specified,
the integer must be less than or equal to to. The default
for from and to is to place no limits on the integer.

(:date :past-p past-p :never-p never-p :base-time base-time :or-nil or-nil)
Reads and returns a date, terminated by RETURN,. LINE, or
END. The returned date is a universal-time integer of the
form returned by time:parse-universal-time. If :past-p
is specified with a value other than nil, an ambiguous date
is interpreted as being in the past, relative to the base
time; otherwise, it is interpreted as being in the future.
The default for past-p is nil. If :never-p is specified with
a value other than nil, it returns nil if the user types
"never". The default for never-p is nil. If :base-time is
specified, it must be a universal-time integer that is used
to fill in components that the user omits. If :base-time is
not specified, the time when the user's input is read is
used as the base time.

(:past-date :never-p never-p :base-time base-time :or-nil or-nil)
The same as (:date :past-p t :never-p never-p
:base-time base-time :or-nil or-nil). This option is
obsolete.

(:date-or-never :past-p past-p :base-time base-time :or-nil or-nil)
The same as (:date :past-p past-p :never-p t :base-time
base-time :or-nil or-nil). This option is obsolete.

(:past-date-or-never :base-time base-time :or-nil or-nil)
The same as (:date :past-p t :never-p t :base-time
base-time :or-nil or-nil). This option is obsolete.

:time-interval-or-never
Reads a time interval, terminated by RETURN, LINE, or END.
The interval must be either "never" or alternating
numbers and units of time; the units can include seconds,
minutes, hours, days, weeks, or years. It returns nil if
the user types "never". Otherwise, it returns an integer
representing the number of seconds in the time interval.

Example:

March 1985

65

Interactive Streams

(prompt-and-read :time-interval-or-never)
Enter a time interval, or "never": 1 day 2 hrs 13 min =>
94380.

(:pathname :default default :visible-default visible-default
:default-version version :or-nil or-nil)
Reads a pathname, terminated by RETURN, LINE, or END,
merging it with a default.

:default and :visible-default are mutually exclusive. If
either is specified, its value can be nil, a pathname, a
pathname string, or an alist of hosts and pathnames of
the sort that is the value of
fs:·default-pathname-defaults·. If the value is nil or a
defaults alist, the default used is the result of calling
fs:default-pathname on the value. If the value is a
pathname or a pathname string, the default used is the
result of calling fs:parse-pathname on the value. If
neither :default nor :visible-default is specified, the
default used is the result of (fs:default-pathname).

The difference between :default and :visible-default is
that if a prompt is supplied as the second argument to
prompt-and-read, the :visible-default pathname is
displayed to the user after the prompt, but the :default
pathname is not. If a prompt is supplied and neither
:default nor :visible-default is specified, the default
pathname is not displayed. If no prompt is supplied, the
default pathname is always displayed, whether it comes
from : default, :visible-default, or the default default.

If :default-version is not specified, the default version is
nil. If :default-version is specified, its value should be
an integer or keyword suitable as the third argument to
fs:merge-pathnames.

If the user just presses RETURN or LINE this option returns
the default pathname. If the user just presses END this
option returns the default pathname, unless :or-ni1 is
specified with a value other than nil. In that case it
returns nil. Otherwise this option returns the pathname
the user typed, merged against the default and the default
version. The default for or-nil is nil.

If the user presses COMPLETE an attempt is made to
complete the pathname string typed so far. If the user
presses END after typing some text, an attempt is made to
complete the pathname string, and if completion is
successful the merged pathname is returned.

66

Programming the User Interface March 1985

Example:

(prompt-and-read
'(:pathname :visible-default ,my-defaults-alist)
"Enter a name"»

(:pathname-or-nil :default default :visible-default visible-default
:default-version version)
The same as (:pathname :default default
:visible-default visible-default :default-version version
:or-nil t). This option is obsolete.

(:pathname-list :default default :visible-default visible-default :or-nil
or-nil)
Reads a series of pathnames, separated by commas and
terminated by RETURN, LINE, or END. The meaning of
:default and :visible-default is the same as for the
:pathname option. :pathname-list merges the
pathnames with the default and with a default version of
:newest. It returns a list of the merged pathnames,
unless or-nil is not nil and the user just presses RETURN,
LINE, or END. In that case it returns nil. The default for
or-nil is t.

(:host :host-type type :default default :or-nil or-nil)
Reads the name of a host, terminated by RETURN, LINE, or
END.

:host-type is a keyword that determines what kind of
input is acceptable:

:pbysical The name of a network host. This is
the default.

: chaos-only The name of a network host on the
chaosnet.

: or-local The name of a network host or "local",
meaning the local host.

:pathname The name of a pathname host or "local",
meaning the local host.

:or-pathname The name of a network host, a
pathname host, or "local", meaning the
local host.

If :default is specified, it should be a network host or the
name of a host as a symbol or string. If :default is
specified and the user just presses RETURN, LINE, or END, it
returns the host specified by :default.

March 1985

67

Interactive Streams

If :default is not specified or is nil, :or-nil is specified
with a value other than nil, and the user just presses
RETURN, LINE, or END, it returns nil. Otherwise, it returns
the host object whose name the user types. The default
for or-nil is nil.

(:host-or-Iocal :default default :or-nil or-nil)
The same as (:host :host-type :or-Iocal :default default
:or-nil or-nil). This option is obsolete.

(:pathname-host :default default :or-nil or-nil)
The same as (:host :host-type :pathname :default
default :or-nil or-nil). This option is obsolete.

(:host-Iist :host-type host-type :or-nil or-nil)
Reads a series of names of network hosts, separated by
spaces or commas, and terminated by RETURN, LINE, or END.
:host-type has the same meaning as for the :host option.
:host-list returns a list of the host objects whose names
the user types, unless or-nil is not nil and the user just
presses RETURN, LINE, or END. In that case it returns nil.
The default for or-nil is t.

(:keyword :or-nil or-nil)
Reads the name of a symbol to be interned in the
keyword package; terminated by RETURN, LINE, or END.
The symbol name should not have a package prefix (that
is, it should not be preceded by a colon). Lower-case
letters in the name are converted to upper case.
:keyword returns the keyword symbol whose name the
user types, unless :or-nil is specified with a value other
than nil and the user just presses RETURN, LINE, or END.
In that case it returns nil. The default for or-nil is nil.

(:keyword-Iist :or-nil or-nil)
Reads a series of names of symbols to be interned in the
keyword package, separated by spaces or commas, and
terminated by RETURN, LINE, or END. The symbol names
should not have package prefixes (that is, they should not
be preceded by colons). Lower-case letters in the names
are converted to upper case. :keyword-Iist returns a list
of keyword symbols whose names the user types, unless
or-nil is not nil and the user just presses RETURN, LINE, or
END. In that case it returns nil. The default for or-nil is
t.

(:font :or-nil or-nil)
Reads the name of a font, terminated by RETURN, LINE, or
END. The font name should not have a package prefIX

68

Programming the Usef Interface March 1985

(that is, it should not be preceded by fonts:), and it must
be the name of a known font. :font returns the font (not
the symbol) whose name the user types, unless :or-nil is
specified with a value other than nil and the user just
presses RETURN, LINE, or END. In that case it returns nil.
The default for or-nil is nil.

(:font-list :or-nil or-nil)
Reads a series of names of fonts, separated by spaces or
commas, and terminated by RETURN, LINE, or END. The
font names should not have package prefixes (that is, they
should not be preceded by fonts:), and they must be
names of known fonts. :font-list returns a list of the
fonts (not the symbols) whose names the user types,
unless or-nil is not nil and the user just presses RETURN,
LINE, or END. In that case it returns nil. The default for
or-nil is t.

(:object :class class :or-nil or-nil)
Reads the name of an object in the network namespace,
terminated by RETURN, LINE, or END. class is a keyword
representing a namespace class or a string that is the print
name of a class keyword. You must supply this argument.
:object returns the namespace object whose name the
user types, unless :or-nil is specified with a value other
than nil and the user just presses RETURN, LINE, or END.
In that case it returns nil. The default for or-nil is nil.

(:object-list :class class :or-nil or-nil)
Reads a series of names of objects in the network
namespace, separated by spaces or commas, and terminated
by RETURN, LINE, or END. class is a keyword representing a
namespace class or a string that is the print name of a
class keyword. You must supply this argument.
:object-list returns a list of the namespace objects whose
names the user types, unless or-nil is not nil and the user
just presses RETURN, LINE, or END. In that case it returns
nil. The default for or-nil is t.

(:class :or-nil or-nil)
Reads the name of a network namespace class, terminated
by RETURN, LINE, or END. The name should not contain a
package prefix (that is, it should not be preceded by a
colon). It returns the keyword representing the class

.. I ... • .,., - .. ,

w J.1u::st: J.1Wll~ Ll1~ U::st:.l" Ly }Jt::1), U.lU~I':)1) ;UJ.--u..11 11) l':)~lUt::U W lL..l.l

a value other than nil and the user just presses RETURN,
LINE, or END. In that case it returns nil. The default for
or-nil is nil.

69

March 1985 Interactive Streams

Streams are permitted to have a handler for :prompt-and-read messages.
The prompt-and-read function first determines whether the query-io
stream handles the :prompt-and-read message. If so, it sends a
:prompt-and-read message with its own arguments on to the stream. The
stream returns several values. The first value the stream returns says
whether or not it wants to handle the interaction with the user itself. It
returns nil to indicate that it declines to handle the message, in which case
the prompt-and-read function continues its normal action of prompting the
user. When the first value is not nil, the prompt-and-read function
returns the rest of the values to its caller.

define-prompt-and-read-type keyword parameter-list description Special Form
&bodybody

Defines a new type keyword for prompt-and-read Defines a dispatch
function to be called to get input from the user when prompt-and-read is
called with a type keyword of keyword. The dispatch function is defined as
the prompt-and-read property of keyword, which can be a symbol in any
package. Its parameter list is derived from parameter-list, and its body is
body. prompt-and-read returns whatever the dispatch function returns.

If the first argument to prompt-and-read is just keyword, the dispatch
function is called with no arguments. If the first argument to
prompt-and-read is (keyword. type-args), the arguments to the dispatch
function are the elements of type-args. These are a series of alternating
keywords and values.

parameter-list is nil if no type-args are allowed, or else a list of &key
elements for the dispatch function's parameter list.
define-prompt-and-read-type inserts &key in the parameter list itself;
&key should not appear in parameter-list.

description can be nil, a format control string, a list of a format control
string and format control args, or a form to be evaluated. description is
used to generate input-type in the default prompt, "Enter input-type: If:

description input-type

nil "a " followed by the print name of the type keyword.

format control string
Generated by calling format with arguments of t and the
control string when it is time to display the prompt.

list of format control string and args
Generated by calling format with arguments of t, the
control string, and the control args when it is time to
display the prompt. The control args can examine any of
the parameters in parameter-list.

70

Programming the User Interface March 1985

form Generated by evaluating the form when it is time to
display the prompt. The form can examine any of the
parameters in parameter-list. It should send output to
standard-output.

body is the body of the dispatch function. Often the body is· a call to a more
primitive reading function, such as read or readline. It is the responsibility
of the body or' a function it calls to provide input editing if needed.

Example:

(define-prompt-and-read-type :flavor-name
«impossible-is-ok t»
"the name of a flavor"

(sys:read-flavor-name query-io impossible-is-ok»

sys:read-ftavor-name is a function that reads a flavor name with
completion over the set of defined flavors.

71

March 1985 Using the Window System

PART II.

Using the Window System

72

Programming the User Interface March 1985

73

March 1985 Using the Window System

10. Introduction to Using the Window System

"Using the Window System" is intended to explain how you, as a programmer, can
use the set of facilities in the Lisp Machine known collectively as the window
system. Specifically, this document explains how to create windows, and what
operations can be performed on them. It also explains how you can customize the
windows you produce, by mixing together existing flavors to produce a window with
the combination of functionality that your program requires. This document does
not explain how to extend the window system by defining your own flavors.

You should have a working familiarity with Symbolics-Lisp. You should also have
some experience with the user interface of the Symbolics Lisp Machine, including the
ways of manipUlating windows, such as the [Edit Screen], [Split Screen], and
[Create] commands from the System menu. Furthermore, you must understand
something about flavors. While you need not be familiar with how methods are
defined and combined, you should understand what message passing is, how it is
used on the Lisp Machine, what a flavor is, what a "moon" flavor is, and how to
define a new flavor by mixing existing flavors. See the section "Flavors" in Reference
Guide to Symbolics-Lisp.

74

Programming the User Interface March 1985

75

March 1985 Using the Window System

11. Concepts

11.1 Purpose of the Window System

The term window system refers to a large body of software used to manage
communications between programs in the Lisp Machine and the user, via the Lisp
Machine console. The console consists of a keyboard, a mouse, and one or more
screens.

The window system controls the keyboard, encoding the shifting keys, interpreting
special commands such as the FUNCTION and SELECT keys, and directing input to the
right place. The window system also controls the mouse, tracking it on the screen,
interpreting clicks on the buttons, and routing its effects to the right places. The
most important part of the window system is its control of the screens, which it
subdivides into windows so that many programs can co-exist, and even run
simultaneously, without getting in each other's way, sharing the screens according to
a set of established rules.

11.2 Windows

When you use the Lisp Machine, you can run many programs at once. You can
have a Lisp Listener, an editor, a mail reader, and a network connection program
(you can even have many of each of these) all running at the same time, and you
can switch from one to the other conveniently. Interactive programs get input from
the keyboard and the mouse, and send output to a screen. Since there is only one
keyboard, it can only talk to one program at a time. However, each screen can be
divided into regions, and one program can use one region while another uses another
region. Furthermore, this division into regions can control which program the mouse
talks to; if the mouse blinker (the thing on the screen that tracks the mouse) is in
a region associated with a certain program, this can be interpreted as meaning that
the mouse is talking to that program. Allowing many programs to share the input
and output devices is the most important function of the window system.

The regions into which the screen is divided are known as windows. In your use of
the Lisp Machine, you have encountered windows many times. Sometimes there is
only one window visible on the screen; for example, when you cold boot a Lisp
Machine, it initially has only one window showing, and it is the size of the entire
screen. If you start using the System menu's [Create], [Edit Screen], or [Split
Screen] commands, you can make windows in various places of various sizes and
flavors. Usually windows have a border around them (a thin black rectangle around
the edges' of the window), and they also frequently have a label in the lower left­
hand comer or on top. This is to help the user see where all the windows are,
what parts of the screen they are taking up, and what kind of windows they are.

76

Programming the User Interface March 1985

Sometimes windows overlap; two windows may occupy some of the same space.
While the [Split Screen] command will never do this, you can make it happen by
creating two windows and simply placing them so that they partially overlap, by
using [Edit Screen]. If you have never done so, you should try it. The window
system is forced to make a choice here: Only one of those two windows can be the
rightful owner of that piece of the screen. If both of the windows were allowed to
use it, then they would get in each other's way. Of these two windows, only one
can be visible at a time; the other one has to be not fully visible, but either partially
visible or not visible at all. Only the visible window has an area of the screen to
use.

If you play around with this, you will see that it looks as if one window is on top of
the other, as if they were two overlapping pieces of paper on a desk and one were
on top. Create two Lisp Listeners using the [Create] command of the System menu
or the [Edit Screen] menu, so that they partially overlap, and then single-click-Ieft
on the one that is on the bottom. It will come to the top. Now single-click-Ieft on
the other one; it will come back up to the top. The one on top is fully visible, and
the other one is not. We will return to the concepts of visible and not-fully-visible
windows later in more detail.

From the point of view of the Lisp world, each window is a Lisp object. A window
is an instance of some flavor of window. There are many different window flavors
available; some of them are described in this document.

Windows can function as streams by accepting all the messages that streams accept.
If you do input operations on windows, they read from the keyboard; if you do
output operations on windows, they type out characters on the screen. The value of
tenninal-io is normally a window, and so input/output functions on the Lisp
Machine do their 110 to windows by default.

Windows have internal state, contained in instance variables, that indicate which
screen the window is on, where on the screen it is, where its cursor is, what
blinkers it has, how it fits into the window hierarchy, and much more. You can get
windows to do things by sending them messages; they accept a wide variety of
messages, telling them to do such things as changing their position and size, writing
characters and graphics, changing their labels and borders, changing status in
various ways, redrawing themselves, and much more. The main business of this
document is to explain the meaning of the internal state of windows, and to explain
what messages you can send and what those messages do.

11.3 Hierarchy of Windows

Several Lisp Machine system programs and application programs present the user
with a window that is split up into several sections, which are usually called window
panes or panes. For example, the Inspector has six panes in its default

77

March 1985 Using the Window System

configuration: the one you type forms into at the top, the menu, the history list,
and the three inspection panes below the first three. The window Debugger and
Zmail also use elaborate windows with panes. These panes are not exactly the same
as the other windows we have discussed, because instead of serving to split up the
screen, they serve to split up the program's window itself. Sometimes you don't see
this, because often the program's window is taking up the whole screen itself. Try
going into the [Edit Screen] system and reshaping a whole Inspector or Zmail
window. You will see that the panes serve to divide this window up into smaller
areas.

In fact, the same window system functionality is used to split up a paned window
into panes as is used to split up a screen into windows. Each pane is, in fact, a
window in its own right. Windows are arranged in a hierarchy, each window having
a superior and a list of inferiors. Usually the top of the hierarchy is a screen. In
the example above, the Inspector window is an inferior of the screen, and the panes
of the window are inferiors of the Inspector window. The screen itself has no
superior (if you were to ask for its superior, you would get nil).

The position of a window is remembered in terms of its relative position with respect
to the its superior; that is, what we remember about each window is where it is
within its superior. To figure out where a window is on the screen, we add this
relative position to the absolute position of the superior (which is computed the same
way, recursively; the recursion terminates when we finally get to a screen). The
important thing about this is that when a superior window is moved, all its inferiors
are moved the same amount; they keep their relative position within the superior
the same. You can see this if you play with the [Move Window] command in [Edit
Screen].

One effect of the hierarchical arrangement is that you can use [Edit Screen] to edit
the configuration of panes in a frame as well as to edit the configuration of windows
on the screen, by clicking right on [Edit Screen]. If you have ever clicked right on
[Edit Screen] while the mouse was on top of a window with inferiors, such as an
editor, you will have noticed that you get a menu asking which of these two things
you want to do. In fact, that menu can have more than two items; the number of
items grows as the height of the hierarchy.

So, what [Edit Screen] really does is to manipulate a set of inferiors of some specific
superior window, which mayor may not be a screen. The set of inferiors that you
are manipulating is called the active inferiors set; each inferior in this set is said to
be active. Windows can be activated and deactivated. The active inferiors are all
fighting it out for a chance to be visible on their superior. If no two active inferiors
overlap, there is no problem; they can all be uncovered. However, whenever two
overlap, only one of them can be on top. [Edit Screen] lets you change which active
inferiors get to be on top. There is also a part of the window system called the
screen manager whose basic job is to keep this competition straight. For example, it
notices that a window that used to be covering up part of a second window has been
reshaped, and so the second window is no longer covered and can be brought to the

78

Programming the User Interface March 1985

top. Inactive windows are never visible until they become active; when a window is
inactive, it is out of the picture altogether. For more on the screen manager: See
the section "The Screen Manager", page 86.

Each superior window keeps track of all of its active inferiors, and each inferior
window keeps track of its superior, in internal state variables. Superior windows do
not keep track of their inactive inferiors; this is a purposeful design decision, in order
to allow unused windows to be reclaimed by the garbage collector. So, when a
window is deactivated, the window system doesn't touch it until it is activated again.

11.4 Pixels and Bit-save Arrays

A screen displays an array of pixels. Each pixel is a little dot of some brightness
and color; a screen displays a big array of these dots to form a picture. On regular
black-and-white screens, each pixel can have only two values: lit up, and not lit up.
The way the display of pixels is produced is that inside the Lisp Machine, there is a
special memory associated with each physical screen that has some number of bits
assigned to each pixel of the screen; those bits say, for each pixel, what brightness
and color it should display. For regular black-and-white screens, since a pixel can
have only two values, only a single bit is stored for each pixel. If the bit is a one,
the pixel is not lit up; if it is a zero, the pixel is lit up. (Actually, this sense can be
inverted if you want.) Everything you see on the screen, including borders, graphics,
characters, and blinkers, is made up out of pixels.

When a window is fully visible, its contents are displayed on a screen so that they
can be seen. What happens to the contents when the window ceases to be fully
visible? There are two possibilities. A window may have a bit-save array. A bit­
save array is a Lisp array in which the contents of the window can be saved away
when the window loses its visibility; if a window has a bit-save array, then the
window system will copy its contents out of the screen and into the bit-save array
when the window ceases to be fully visible. If the window does not have a bit-save
array, then there is no place to put the bits, and they are lost. When the window
becomes visible again, if there is a bit-save array, the window system will copy the
contents out of the bit-save array and back onto the screen. If there is no bit-save
array, the window will try to redraw its contents; that is, to regenerate the contents
from some state information in the window. Some windows can do this; for
example, editor windows can regenerate their contents by looking at the editor
buffer they are displaying. Lisp Listener windows cannot regenerate their contents,
since they do not remember what has been typed on them. In lieu of regenerating
their contents, such windows just leave their contents blank, except for the
d~orAt.ionR in t.hp mArginR of th9 window~ which they are able to regenerate.

The advantage of having a bit-save array is that losing and regaining visibility does
not require the contents to be regenerated; this is desirable since regeneration may
be computationally expensive, or even impossible. The disadvantage is that the bit-

79

March 1985 Using the Window System

save array uses up storage in the Lisp world, and since it can be pretty big, it may
need to be paged in from the disk in order to be referenced (depending on how hard
the virtual memory system is being strained). If the paging overhead for the bit­
save array is very high, it might have been faster not to have one in the first place
(although the system goes through some special trouble to try to keep the bit-array
out of main memory when it is not being used).

The other important use of bit-save arrays is for windows that have inferiors. If the
superior window is not visible, the inferiors can use the bit-save array of the superior
as if it were a screen, and they can draw on it and become exposed on it. See the
section "Screen Arrays and Exposure", page 79.

An additional benefit of having a bit-save array is that the screen manager can do
useful things for partially visible windows when those windows have bit-save arrays;
at certain times it can copy some of the pixels from the bit-save array onto the part
of the screen in which the window is partially visible, so that when a window is only
partially visible, you can see whatever part is visible. See the section "The Screen
Manager", page 86.

11.5 Screen Arrays and Exposure

This section discusses the concepts of screen arrays and of exposed windows. These
have to do with how the system decides where to put a window's contents (its
pixels), how the notion of visibility on the screen is extended into a hierarchy of
windows, and how this interacts with the desire of a program or of the user to have
some windows visible and other windows not visible at a particular time. These are
complex concepts, which you don't have to understand completely to make use of the
window system. You probably do need to· understand these ideas thoroughly only if
you plan to make advanced use of the window system, such as creating your own
frame or customizing very basic aspects of the system's behavior.

The following discussion attempts to explain what it means for a window to be
exposed. It will be necessary for us to refer to the concept of a window being
exposed before we explain exactly what that means. For the time being, the
approximate meaning of "exposed" is that a window is exposed if it has somewhere
for its typeout to go. A window that is fully visible on a screen is exposed, because
its typeout can go on the screen. A window might be exposed even if it is not fully
visible, because its typeout might be able to go to a bit-save array somewhere.

Each window has in it a set of all those inferiors that are "ready to be exposed".
This set is a subset of the set of active inferiors, discussed above. When you send a
window an :expose message, it becomes "ready to be exposed" and is added to the
set; when you send a window a :deexpose message, it ceases being ready to be
exposed and is removed from the set. These are the only ways anything ever gets
into or out of the set. The meaning of "ready" to be exposed will be cleared up

80

Programming the User Interface March 1985

soon; for the time being, we will just say that either all the windows on that list
are, in fact, exposed, or else none of them are exposed but they are all still "ready"
to become exposed.

Each window has an internal state variable called its screen-array. The value of the
screen-array variable is where output to the window should go; if a program draws a
character "on a window" or draws a triangle "on a window", that means it is
changing the values of pixels in the window's screen-array. The value of the screen­
array variable is used in figuring out whether a window is exposed.

The screen-array of a screen (remember, a screen is a window itself) is the special
memory that gets displayed on the physical screen. For any other window, if the
window is exposed, then its screen-array is an indirect array that points into a
section of the superior's screen-array; namely, it points into the area of the
superior's screen-array where the inferior gets displayed on the superior. For
example, consider a window whose superior is a screen, which is exposed, and whose
upper-left-hand corner is at location (100,100) in the screen. Then the window's
screen-array would be an indirect array whose (0,0) element is the same as the
(100,100) element of the screen. If you were to set a pixel in the window's screen­
array, the corresponding pixel in the screen (found by adding 100 to each coordinate>
would be set to that value.

What happens to the screen-array variable if the window is not exposed? That
depends on whether the window has a bit-save array or not. If there is a bit-save
array, then the screen-array becomes the bit-save array. If there is no bit-save
array, the screen-array becomes nil.

The most important thing to understand about the value of screen-array is that it is
defined recursively, in terms of the superior's screen-array. Consider a window
which is exposed, and all of whose ancestors are exposed: The superior is exposed,
the superior's superior is exposed, and so on all the way back to the screen. Then
each window has a screen-array that points into the middle of its superior's screen­
array, all the way up the hierarchy, through the window whose screen-array points
into the middle of the screen. When typeout is done on the window, it will appear
on the screen, offset by the combined offsets of all the superiors, so that it will
appear in the correct absolute position on the screen.

Now, suppose one of those ancestors becomes deexposed. There are two alternative
things that might happen. First, consider the case in which that ancestor (the one
that got deexposed) has a bit-save array. That ancestor's screen-array will no longer
point to its own superior; its screen-array will be its bit-save array. That means
that our window's screen-array will be pointing, perhaps through several levels of
indirection, into that ancestor's bit-save array. The ancestor window is not exposed,
but our window is still exposed. If typeout is done on our window, it will appear on
the bit-save array of the ancestor. This won't actually be visible to the user, since it
is only a bit-save array and not an actual screen, but the typeout can proceed and
the bits can be drawn into the bit-save array. Later, if and when the ancestor is

B1

March 1985 Using the Window System

exposed again, the window system will copy the bit-save array onto the screen, and
the drawing that had been done will become visible.

There is another case: Suppose the ancestor is deexposed, and it does not have a
bit-save array. Then the ancestor's screen-array becomes nil. Well, now we have a
problem. The ancestor's inferior is exposed, and so its screen-array is supposed to
point into the screen-array of its superior. However, there is no way to point into
the middle of a nil. There just isn't anywhere for the screen-array to point to; the
window doesn't have anywhere to type out. Since it has nowhere to type out, it
gets deexposed too. In general: When a window is deexposed, and it has no bit-save
array, all of its inferiors that are ready to be exposed (all of which are, in fact,
exposed) become deexposed. They continue to be "ready to be exposed", though.

In fact, this is the distinction between "ready to be exposed" and actually being
exposed. The rule is: A window is exposed when and only when it is "ready to be
exposed" and its superior has a screen-array. That is what "exposed" means.

When a window is sent an :expose message, it always becomes "ready to be
exposed". If the superior has a screen-array, then it immediately becomes exposed.
If the superior does not have a screen array, then the window just stays "ready",
and when the window's superior finally gets its screen array, the window itself is
exposed. If a window is "ready to be exposed" but is not exposed yet, then it is
waiting for its superior to acquire a screen-array; when the superior gets one, the
window becomes exposed. The usual way that the superior gets a screen array is
for it to get exposed itself; when this happens, the inferiors that are "ready to be
exposed" will all get exposed.

Also, if the superior has no screen-array then obviously it has no bit-save array; it
can be given one by the :set-save-bits message, which can change a· window that
doesn't have a bit-save array into a window that does have a bit-save array. You
can dynamically change which windows have and don't have bit-save arrays, and
windows that are affected will be exposed and deexposed accordingly. This is much
less common, though; usually whether a window has a bit-save array or not is
specified when the window is created, and it doesn't change.

So, the important point is that when a window is sent an :expose message, it may
not become exposed then and there. If the superior has a screen-array, then the
window will be exposed immediately. But if the superior does not have a screen
array, then making the window exposed is delayed until the superior acquires a
screen array. When the superior gets its screen array, then the window itself
becomes exposed. So what the :expose always does is to add the window to the set
of windows that are "ready to be exposed"; a window is exposed precisely when it is
"ready to be exposed" and the window's superior has a screen-array. The
:deexpose message always removes a window from the set of windows "ready to be
exposed", and therefore is always stops the window from being exposed.

Note well that "exposed" does not mean "visible". A window can be exposed by
virtue of being able to type out on a bit-save array, and not be visible at all. A

82

Programming the User Interface March 1985

window is fully visible if and only if all its ancestors are exposed, and the top level
ancestor is a screen.

(A detail: If a window is top-level (if it has no superior) then it is as if "its superior
has a screen array"; sending a top-level window an :expose message always exposes
it immediately. You usually don't deexpose top-level windows anyway.)

(Another detail: It is possible for a screen to be deexposed. In particular, if a Lisp
Machine does not have a color display physically attached to it, there is still a "color
screen" Lisp object in the Lisp world, but it is deexposed (and so are all its inferiors).
This is so saved Lisp environments can be moved easily between machines with
different hardware configurations. The screen object is left deexposed so that
programs will not try to output to it.}

In order to maintain the model that windows are like pieces of paper on a desk, it is
important that no two windows that both occupy some piece of screen space be
exposed at the same time. To make sure that this is true, whenever a window
becomes exposed, the system deexposes any of its exposed siblings that it overlaps.
(Note: This is not true for temporary windows).

The window system uses conformal indirect arrays for its screen arrays. This means
that on 3600-family-computers the bit-array in which a window saves its bits when it
is not visible does not have to be the full width of the screen; it is just the width of
the window, rounded up to the next multiple of 32 bits. Screen arrays do not use
multilevel indirection; the screen array of a nonscreen sheet always indirects either
to a bit-save array or to the screen array of its screen. The screen array of a screen
is always a displaced array to the hardware screen buffer.

11.6 Window Exposure and Output

The main reason for worrying about whether a window is exposed or not is in order
to figure out whether it should be allowed to type out. If a window is not exposed,
either its superior has no screen-array (so there is no place for its output to go), or
it is not ready to be exposed at all (so it is supposed to be hidden). Normally, when
a process tries to do output to a window that is not exposed, by sending stream
messages (such as :tyo and :string-out), the process waits in a state called
Output Hold; the process continues to wait until the window becomes exposed
again, at which time it proceeds with its typeout. The term "typeout" refers not
only to character output, but to any form of modification of the window's contents,
including drawing of graphics.

This is the normal case that you run into most of the time. However, there are
_______ ...L! ____ _ ..L'-! ____ ,_

OV.lUt:: t::.A.~t::}J&llVUO &IV ".1.110 .L Ule.

A process trying to output to a window does not actually decide to wait in the
Output Hold state ba...~ on whether or not the window is exposed. There is

83

March 1985 Using the Window System

actually a flag in each window, called the output hold /lag, that is really being
checked to see whether output can go ahead. The output hold flag is cleared when
the window is exposed and set when the window is deexposed, and output is held
when this flag is set. The complexity comes from other things besides exposing that
clear this flag.

When a process attempts to type out on a window which is deexposed and has its
output hold flag set, what happens depends on the window's deexposed typeout
action. The deexposed typeout action can be any of certain keyword symbols, or it
can be a list; it indicates an action that should be taken when there is an attempt
to type out to a deexposed window. Mter the action is taken, if the output hold flag
is still set, the process will wait for it to clear. The interesting thing is that the
action may affect the value of the output hold flag.

By default, the deexposed typeout action is :normal, which means that no special
action should be taken; hence the process will wait for the window to become
exposed.

If the deexposed typeout action is : expose, however, then the action will be to send
the window an :expose message. This may expose the window (if the superior has
a screen-array), and if it does expose the window then the output hold flag will be
cleared and typeout will be able to proceed immediately. If the superior is the
screen, the :expose option provides a very different user interface from the :normal
option.

If the deexposed typeout action is :permit, that means that typeout should be
permitted even though the window is not exposed, as long as the window has a
screen array; that is, it may type out on its own bit-save array even though it is not
exposed. The next time the window is exposed the updated contents will be
retrieved from the bit-save array. The action for :permit is to turn off the output
hold flag if the window has a screen array. This mode has the disadvantage that
output can appear on the window without anything being visible to the user, who
might never see what is going on, and might miss something interesting.

The deexposed typeout action may also be :notify, which means that the user
should be notified when there is an attempt to do output on the window. The
action taken is to send the :notice message to the window with the argument
:output. The default response to this is to notify the user that the window wants
to type out and to make the window "interestint' so that FUNCTION 0 S can select it.
Windows in the Terminal program have :notify deexposed typeout action by default.

Another permissible value is :error, which means that an error should be signalled.

If the deexposed typeout action is not any of these keywords, then it should be a
list; the action will be to send the message specified by the first element of the list
to the window, passing the rest of the elements of the list as arguments.

There is another exception to the rule that you can only type out on exposed
windows: The special form tv:sheet-force-access allows you to do typeout on a

84

Proarammina the User Interface March 1985

window that has a screen array even if its output hold flag is set. Note that the
screen array must be this window's bit-save array (since the window is not exposed).
What tv:sheet-force-access does is to temporarily tum off the output hold flag
while executing its body. This is useful for drawing things on a window while the
window is not visible on the screen. It is better to do it this way than to use a
deexposed typeout action of :permit, in most cases, since the effect of
tv:sheet-force-access is local to the program, while the deexposed typeout action
affects anything that types out on the window. If the window does not have a
screen-array, tv:sheet-force-access doesn't do anything at all; it just returns
without evaluating its body.

Another way that typeout can be held up is if the window is locked. Locking is
independent of the output hold flag and is not affected by the deexposed typeout
action or by tv:sheet-force-access. There are two ways that a window can be
locked. The normal form of locking is a mutual exclusion that guarantees that only
one process at a time operates on the window's contents and attributes. If one
process is working on the window and another tries to do so, the second process will
wait until the first one is finished. In the absence of program bugs, this wait is for
a very short time and should not be noticeable.

The other form of locking is called temp-locking. If a window is temp-locked, then
any attempt to type out on it will wait, regardless of everything else. Temp-locking
has to do with temporary windows: See the section "Temporary Windows", page 84.

tv:sheet-force-access (sheet don't-prepare-sheet) body... Special Fonn
Allows typeout on sheet if it has a screen array (that is, if it is exposed or
has a bit-save array). If don't-prepare-sheet is nil, prepares the sheet before
executing body. If sheet does not have a screen array, tv:sheet-force-access
just returns without executing body. Use this to put output onto a
deexposed window that has a bit-save array.

tv:prepare-sheet (sheet) body... Special Fonn
Prepares sheet for input or output. Ensures that sheet is not locked or in
output-hold. Opens blinkers on inferiors and exposed superiors.

11.7 Temporary Windows

Normally, when a window is exposed in an area of the screen where there are
already some other exposed windows, the windows that used to be there are
deexposed automatically by the window system. This is because the window system
normally doesn't leave two windows both exposed if they overlap. (In the absence of
----r---J _-- -, -.......... - -- ----...... .., ""'----, - -J-.,-.a _ .. """ .. -.. .. .,.", • ..., ,., ••,

overlapping windows to both be exposed.)

But sometimes there are windows that only get put up on the screen for a very

85

March 1985 Using the Window System

short time. The most obvious examples of such windows are the momentary menus
that only appear for long enough for you to select an item. It would be unfortunate
if every time a momentary menu appeared, the windows under it had to be
deexposed. The ones without bit-save arrays would have their screen image
destroyed, forcing them to regenerate it or to reappear empty. The ones with bit­
save arrays would not be damaged in this way, but they would have to be deexposed,
and deexposure is a relatively expensive operation.

This problem is solved for momentary menus by making them out of temporary
windows. In general, when you create a window, you can specify that you want it
to be a temporary window. Temporary windows work differently from other
windows in the following way: When a temporary window is exposed, it saves away
the pixels that it covers up. It restores these pixels when it is deexposed. These
pixels may come from several different windows. This way it doesn't mess up the
area of the screen that it uses, even if it covers up some windows that don't have
bit-save arrays.

Also, a temporary window, unlike a normal window, does not deexpose the windows
that it covers up. This way the covered windows need not try to save their bits
away in their bit-save arrays (if they have them) or ever have to try to regenerate
their contents (if they don't). They never notice that the temporary window was
(temporarily) there.

There would be some problems if temporary windows were this simple. Suppose
there is a normal window, and a temporary window has appeared over it; some of
the contents of the normal window are being saved in an array inside the temporary
window . Now, if the normal window is moved somewhere else, and possibly becomes
deexposed or is overlapped by other windows or something, and then the temporary
window is deexposed, the temporary window will dump back its saved bits where the
normal window used to be, even though the normal window isn't there any more,
and so some innocent bystander will be clobbered. Furthermore, suppose typeout
were done on the normal window; we have not deexposed it, so nothing would
prevent the typeout from overwriting the temporary window, nor prevent the
typeout from being overwritten in return when the temporary window is deexposed.
Because of problems like these, when a temporary window gets exposed on top of
some other windows, all the windows that it covers up (fully or partially) are
temp-locked. When a window is temp-locked, any attempt to type out on it will wait
until it is no longer temp-locked. Furthermore, any attempt to deexpose, deactivate,
move, or reposition a temp-locked window will wait until the window is no longer
temp-locked.

Because of temp-locking, you should never write a program that will put a temporary
window up on the screen for a "long" time. There should be some action by the
user, such as moving the mouse, which will make the temporary window deexpose
itself. It is best if any attempt by the user to get the system to do something
makes the temporary window go away. While the temporary window is in place, it
blocks many important ·window system operations over its area of the screen. The

86

Programming the User Interface March 1985

windows it covers cannot be manipulated, and programs that tty to manipulate them
will end up waiting until the temporary window goes away. Temporary windows
should only be used when you want the user to see something for a little while and
then have the window disappear. The temp-locking is undone when the temporary
window is deexposed.

It works fine to have two or more temporary windows exposed at a time. If you
expose temporary window a and then expose temporary window b, and they don't
overlap each other, they can be deexposed in either order, and any windows that
both of them cover up will be temp-locked until both of them are deexposed. If b
covers up a, then a will be. temp-locked just like any other window, and so ·it will
not be possible to deexpose a until b has been deexposed.

11.8 The Screen Manager

The screen manager is a subsystem of the window system that does various
background jobs involved with keeping things straight in the window system. It has
several responsibilities. One job of the screen manager is to find any window that is
active and deexposed, but not covered up by any windows. There is no reasOn for
such a window not to be exposed, so the screen manager exposes it. This is called
autoexposure.

Another job of the screen manager is to manage those parts of the screen that are
not currently part of any exposed window. When you first start using the Lisp
Machine, the entire screen is covered by a big Lisp Listener window, and the initially
created windows for Zmacs, Zmail, and so on, are all as large as the entire screen, so
this issue does not arise. Similarly, if you use [Split Screen] to divide the screen up
into windows, the windows will use up all of the area of the screen. However, if you
use the [Create] or [Edit Screen] commands, you can make windows of arbitrary
shapes and sizes, and you can leave parts of the screen where there is no exposed
window.

When the screen manager sees that there is such an area of the screen, it considers
all of the active windows that aren't exposed. If it finds such a window, and that
windows has a bit-save array, then the screen manager displays the contents of the
bit-save array for the corresponding portion of the screen. This gives the visual
impression of overlapping pieces of paper on a desktop; the deexposed window is
partially covered up by the exposed windows, but you can still see those parts that
aren't covered.

If there is more than one active deexposed window that might be displayed in a
given area of the screen, then the screen manager uses its priority ordering to decide
which one to display.

Usually the screen manager only displays partially visible windows that have bit-save
arrays. But if you want to make a window that doesn't have a bit-save array and

87

March 1985 Using the Window System

you want the screen manager to try to display it when it is only partially exposed,
use the following moon:

tv:show-partially-visible-mixin Flavor
If a window has this flavor mixed in, then the screen manager will attempt
to show it to the user when it is partially visible even if it doesn't have a bit­
save array. The screen manager cannot display the contents of the window,
since there is no bit-save array to hold them, but it does give the wil!9oW a
screen array temporarily, tells it to refresh itself, and then shows whatever
the window displays. Often this means that you will see the label and
borders of the window, but no contents.

The screen manager not only manages screens; it can manage any window that has
inferiors. Windows with panes are split up into windows just the same way screens
are split up into windows, and so the screen manager can do the same thing to
panes of paned windows that it does with windows directly on screens. The action
of the screen manager on the inferiors of a window is controlled by that window's
response to the :screen-manage message; the default is to do screen management
in the same way as it is done on a screen.

tv:no-screen-managing-mixin Flavor
Prevents the screen manager from dealing with the inferiors of a window.

Suppose there is a section of the screen in which there are no exposed windows, and
more than one active, deexposed window could be exposed to fill this area, but the
two could not both be exposed (because they overlap). Which one gets to be
exposed? Here's another issue: When the screen manager wants to display pieces of
partially visible windows, there might be more than one deexposed window that
might be displayed in a given area of the screen. Somehow the screen manager
must decide which window to display.

The way it decides is on the basis of a priority ordering. All of the active inferiors of
a window are maintained in a specific order, from highest to lowest priority. When
there is a section of the screen on which more than one active inferior might be
displayed, the inferior that is earliest in the ordering, and so has the highest
priority, is the one that gets displayed. This ordering is like the relative heights of
pieces of paper on a desk; the highest piece of paper at any point on the desk is the
one that you see, and all the rest are covered up.

The screen manager has a somewhat complicated algorithm for keeping track of this
ordering. Part of the algorithm involves a value kept for each window called its
priority, which may be a flXDum or nil. The general idea is that windows with
higher numerical priority values have higher priority to appear on the screen. If a
window has priority nil, then its priority is less than that of any window with
numerical priority; that is, nil acts like the lowest possible number. The default
value for priority is nil.

88

Programming the User Interface March 1985

The ordering itself is not based on just the priorities. Instead, the way it works is
that the ordering is remembered, and at various times, the windows are resorted
according to the following set of rules:

1. Exposed windows go in front of nonexposed windows.

2. If two windows are both exposed or both have the same value of priority, their
order is not changed by the sorting.

3. If two nonexposed windows have different values of priority, then the one with
the higher value goes in front of the one with the lower value.

So not only the priority values make a difference; the relative positions of windows
before the resorting matters too.

The resorting happens whenever some event occurs that might change the ordering.
For example, when a window is exposed or deexposed, or when a window's priority
changes, the ordering it is on must be resorted. Note that the sort is stable; that is,
if we don't have any preference for one window over another then they keep their
previous ordering. Since most of the time numerical priorities are not used anyway
(the priorities of most windows are nil), this is generally what determines the
ordering. When a window is exposed, it gets pulled up to the front of the ordering,
and then as other windows later get exposed on top of it, it sinks back down. More
recently exposed windows will be closer to the front.

There is also an operation called burying a window, which first deexposes the
window, then moves it to the end of the ordering, and finally (since something
interesting has happened) causes the ordering to be resorted. So burying a window
essentially makes it be the farthest from the front of the ordering of all windows
with the same priority as it. A program usually buries its window when it thinks
that the user is not interested in that window and would prefer to see some other
windows. The [Bury] command in [Edit Screen] is a way for the user to bury a
window.

Negative priorities have a special meaning. If the value of a window's priority is -1,
then the window will not ever be visible at all even if it is only partially covered;
however, it will still get autoexposed. If the value of priority is -2 or less, then the
window will not even be autoexposed, and so it will simply not become exposed
unless sent an explicit :expose message.

(Another minor point: Windows whose area of the screen does not lie within the
boundaries of their superior cannot be exposed at all, and so the screen manager
does not try to autoexpose such windows. However, they can be partially visible.)
V"'" .. ~ft .. .,. h,.,.,.,.ft I"\.+,,.~ '"' 'r'\. ... l"\hl"'~ +hft+ rt.ft_I'V"'II."" ,.,. ,.,.,.,.,.","""""',..., + ,.""' ,.,.,. n'" C! "" "'f""II"tt. .Y""'I"
--- "--J _"'- _w. ___ - 1" .. __ ._ ,., _w -_ .. _-- --.. -0-.. -._ - ~ ----.--1:'1:',...., J"'-"

send a :deexpose message to an exposed window. The window is no longer
exposed, but since it is closer to the front of the ordering, and especially if numerical
priorities are not being used much, then it may end up being the foremost window

89

March 1985 Using the Window System

in the ordering that occupies its area of the superior, and so autoexposure is likely to
expose it again immediately! If you want to do a series of deexposing and exposing
operations, they can get messed up this way by the screen manager. In order to
prevent this from happening, you can use the tv:delaying-screen-management
special form to delay the actions of the screen manager until all of your operations
have been done. In simple applications, you should not need to send your own
:deexpose messages anyway (most deexposure is done automatically when new
windows are exposed), and you should not need tv:delaying-screen-management;
explicit deexposure and delaying of screen management is mostly used in advanced
applications, and if you use these for something simple then you are probably doing
something wrong.

While screen management is delayed, notes to the screen manager telling what areas
of the screen have been played with are put on a queue. When the
tv:delayjng-screen-management form is returned from, all of the entries on the
queue are examined, and the screen manager figures out all the things that need to
be done and does them all at once. So, by delaying screen management, you
prevent the screen manager from seeing various intermediate states and doing
unnecessary work, which would consume computation time and make the windows
on the screen visibly undergo unnecessary contortions.

When a tv:delaying-screen-management form is exited, normally or abnormally
(that is, thrown through), the screen manager tries to run and empty the queue,
using an unwind-protect. However, under some circumstances it cannot do screen
management at this time. In these cases, it leaves the requests on the queue.
There is a background process that runs all the time, called
Screen Manager Background, that wakes up to do the screen management that
these queue entries specify, when screen management stops being delayed. So the
screen management does eventually happen, when the special form is exited and the
background process wakes up. When tv:delaying-screen-management forms are
nested, only the outermost one will do any screen management when it is exited.

tv:delaying-screen-management Special Form
The tv:delaying-screen-management special form just has a body:

(tv:delaying-screen-management
form-l
form-2
...)

The forms are evaluated sequentially with screen management delayed. The
value of the last form is returned.

This background process has another useful function, which is optional. Recall that
if a window has its deexposed typeout action set to :permit, processes can type out
on the window, but the typeout goes to the bit-save array rather than to the screen.
The screen manager background process can be told to fmd any such windows on
which some typeout has happened, and copy their partially visible parts to the screen

90

Programming the User Interface March 1985

so that they can be seen. This way, you get to see the typeout that happens on
the part of the window that isn't being covered by any other windows.

tv:screen-manage-update-permitted-windows Variable
This variable controls whether the screen manager looks for partially visible
windows with deexposed typeout actions of :permit and updates the visible
portion of their contents on the screen. If the value is nil, which it is
initially, the screen manager does not do this. Otherwise the value should be
the interval between screen updates, in 60ths of a second.

The screen manager also has another job. At the same time that it does
autoexposing, it can also select a window if there isn't any selected window at the
time.

The screen manager has a facility for graying areas of the screen that contain no
windows or windows that are not fully exposed. See the section "Window Graying',
page 90.

11.9 Window Graying

Screens and frames can gray areas that contain no windows or that contain
windows that are not fully exposed. To gray an area of the screen is to cover it
with a semitransparent texture pattern. There are two kinds of graying:

• Background gray is used to fill in areas of the screen that don't contain any
windows. Normally this is just the borders around the screen, but if you
reshape all the full-screen windows to be smaller, so that there is some area of
the screen that doesn't have a window on it, the background gray appears
there, also. The background gray in the two areas (the part of the screen
where you can put windows and the part of the screen where you cannot put
windows) joins smoothly.

• Deexposed gray is used to fill in the visible portion of a window that is not
fully exposed. It tells you that you aren't seeing all of this window, because
another window is covering part of it. Deexposed graying does not occur when
a window is covered by a temporary window (like a momentary menu) because
such a window isn't considered to be really deexposed and is often still a focus
of the user's attention.

These concepts generalize to any window that has inferiors, not just the screen.
You can make a flavor of frame that fills in any empty spots with gray or grays over
~nv n~rti~nv tlYnn~tlrl n~ntl~

01 4 .

Both kinds of graying are implemented by the screen manager, but affected by
messages to the screen and to the deexposed windows.

91

March 1985 Using the Window System

To disable both background and deexposed gray on the main screen:

(tv:set-screen-background-gray nil)
(tv:set-screen-deexposed-gray nil)

To get a light gray on both unused areas and deexposed windows:

(tv:set-screen-background-gray tV:6%-gray)
(tv:set-screen-deexposed-gray tv:6%-gray)

To get a light gray over deexposed windows and a darker gray in the background:

(tv:set-screen-background-gray tv:33%-gray)
(tv:set-screen-deexposed-gray tv:6%-gray)

11.9.1 Window Graying Specifications

A graying specification determines what pattern to use in graying areas of the
screen that contain no windows or that contain windows that are not fully exposed.
These specifications are used as arguments to functions and messages that deal with
graying. See the section "Functions, Flavors, and Messages for Window Graying",
page 92.

Following are the possible values of a specification and their meanings:

nil Disable graying. Background gray is white (in black-on-white
mode); deexposed gray is completely transparent.

Two-dimensional bit array

:white

:black

Instance

Function

List

A stipple pattern to be replicated by bitblt.

Opaque white.

Opaque black.

An object that must handle the :d.raw-blank-rectangle message
to draw a gray rectangle.

A function to be called with standard arguments to draw a gray
rectangle.

The first element is a function to be called, and the remaining
elements are arguments to the function to be supplied after the
standard arguments.

Following are the arguments to the :d.raw-blank-rectangle message and to a
function to be called:

x-size

y-size

x-pos

y-pos

Horizontal size of the rectangle in pixels.

Vertical size of the rectangle in pixels.

X-position of the top left comer of the rectangle on sheet.

Y -position of the top left comer of the rectangle on sheet.

92

Programming the User Interface March 1985

x-phase

y-phase

alu

sheet

Starting x-coordinate of the source array.

Starting y-coordinate of the source array.

Alu function for drawing the rectangle.

Sheet or array on which to draw the rectangle.

The variable tv:·gray-arrays· contains a list of variables that are bound to available
predefined graying specifications.

tv:·gray-arrays· Variable
A list of variables bound to predefmed graying specifications. You can use
one of these as the source of a pattern for background or deexposed window
graying. You can also make your own graying specifications and add them to
this list. See the section ''Window Graying Specifications", page 91.

11.9.2 Functions, Flavors, and Messages for Window Graying

tv:set-screen-background-gray gray &optional (screen Function
tv:main-screen)

Specifies what pattern should be used to gray areas of a screen or frame that
contain no windows. gray is a graying specification: See the section
"Window Graying Specifications", page 91. Give an argument of nil to disable
graying.

screen can be a screen or frame. It defaults to the main monochrome screen.

tv:set-screen-deexposed-gray gray &optional (screen Function
tv:main-screen)

Specifies what pattern should be used to gray areas of a screen or frame that
contain windows that are not fully exposed. gray is a graying specification:
See the section "Window Graying Specifications", page 91. Give an argument
of nil to disable graying.

screen can be a screen or frame. It defaults to the main monochrome screen.

:screen-manage-deexposed-gray-array Message
The screen manager sends this message to deexposed windows to give them
an opportunity to override the kind of graying that their superior (or the
screen) wants to provide. This message should return two values. Following
are the possible pairs of values and their meanings:

graying specification and nil

nil and nil

nil and t

Use graying specification to gray the window.

Let the superior decide how to gray the window.

Disable graying of the window.

93

March 1985 Using the Window System

See the section "Window Graying Specifications", page 91.

tv:gray-unused-areas-mixin Flavor
This flavor, mixed into a screen or a frame, gives it the ability to gray areas
within it that contain no windows.

:gray-array-for-unused-areas gray (for Init Option
tv:gray-unused-areas-mixin)

Specifies gray as the graying specification to use in graying areas of this
screen or frame that contain no windows. See the section ''Window Graying
Specifications", page 91.

:gray-array-for-unused-areas of tv:gray-unused-areas-mixin Method
Returns the graying specification that this frame or window uses in graying
areas that contain no windows. See the section ''Window Graying
Specifications", page 91.

:set-gray-array-for-unused-areas gray of Method
tv:gray-unused-areas-mmn

Sets gray as the graying specification to use in graying areas of this screen or
frame that contain no windows. See the section ''Window Graying
Specifications", page 91.

tv:gray-deexposed-inferiors-mixin Flavor
This flavor, mixed into a screen or a frame, gives it the ability to gray areas
within it that contain windows that are not fully exposed.

:gray-array-for-inferiors gray (for Init Option
tv:gray-deexposed-inferiors-mixin)

Specifies gray as the graying specification to use in graying areas of this
screen or frame that contain no windows. See the section ''Window Graying
Specifications", page 91.

:gray-array-for-inferiors of tv:gray-deexposed-inferiors-mixin Method
Returns the graying specification that this frame or window uses in graying
areas that contain no windows. See the section ''Window Graying
Specifications", page 91.

:set-gray-array-for-inferiors gray of Method
tv:gray-deexposed-inferiors-mixin

Sets gray as the graying specification to use in graying areas of this screen or
frame that contain no windows. See the section ''Window Graying
Specifications", page 91.

94

Programming the User Interface March 1985

11.10 Windows and Processes

tv:process-mixin Flavor
Creates a new process associated with each window of the dependent flavor.

:process <initial-function. options) (for tv:process-mixin)
options are options to make-process.

11.11 Activities and Window Selection

11.11.1 The Selected Window and the Selected Activity

[nit Option

When you type characters on the keyboard, they must be directed to some window.
The window that receives keyboard input is the selected window. No more than one
window can be selected at a time. Sometimes no window is selected, but usually
this is a brief transitional state.

tv:selected-window Variable
The value of this variable is the currently selected window.

tv:cold-Ioad-stream-old-selected-window Variable
At a cold-load-stream break, the value of this variable is the value of
tv:selected-window at the time you entered the cold-load stream.

A window is selectable only if it has tv:select-mixin and tv:stream-mixin as
components. tv:select-mixin allows the window to handle messages that select it.
tv:stream-mixin provides the window an I/O buffer, which accumulates keyboard
characters, and lets the window handle messages to get input. tv:stream-mixin
also provides the window with input editing. When input editing is enabled and a
reading function tries to get input from the window, the user can edit typein before
the reading function sees it. See the section "Input From Windows", page 132.

An activity is a group of windows that the user regards as a single unit. Typically
an activity consists of a top-level window - one that is a direct inferior of a screen
- and all its direct and indirect inferior windows. An example of an activity is a
top-level Lisp Listener. Sometimes an activity consists of a non-top-Ievel window and
all its direct and indirect inferior windows. One example is a Lisp Listener inside a
Split Screen frame.

The concept of activity is only partially implemented in the window system. No
separate object represents an activity. Instead, an activity is designated by a
representative window from that. activity. In the usual case, where the windows in
an activity form a tree, the root of the tree serves as the representative.

The system contains several generic tools for selecting among activities: These

95

March 1985 Using the Window System

include the SELECT key, FUNCTION S, and the [Select] menu in the System Menu.
The selected activity is the activity that contains the selected window. When you
change the selected activity, you also change the selected window.

You usually select an activity by selecting the representative window of the activity.
But this window might or might not be selectable itself; sometimes only its inferiors,
or only some of its inferiors, can become the selected window. When you select an
activity, the representative window of the activity usually decides which window
within the activity should become the selected window.

We say that this window - the one that is to become the selected window when
the activity is selected - is selected relative to its activity. When you select a
window relative to its activity, you do not change the selected activity. If an activity
happens to be the selected activity, then selecting a window relative to that activity
also makes that window the new selected window. If an activity is not the selected
activity, then selecting a window relative to that activity changes neither the selected
activity nor the selected window.

Whenever you select a window that is part of an activity, that window is selected
relative to its activity, and that activity becomes the selected activity.

11.11.2 Frames and Panes

A frame is a window that is designed to contain other windows inside it. A direct
inferior window of a frame is called a pane. Many activities consist of a frame and
its direct and indirect inferior windows. The frame is the representative window of
this kind of activity.

A window that is a direct or indirect inferior of a frame can be the selected-pane of
the frame. The selected-pane is the window that is selected relative to the frame.
A frame usually cannot become the selected window. Instead, when you select a
frame, its selected-pane becomes the selected window, unless the selected-pane is
itself a frame. In that case the selected-pane of the selected-pane becomes the
selected window.

You can change the selected-pane of a frame without selecting the activity that the
frame represents. The next time that activity is selected, the new selected-pane
becomes the selected window. If that activity happens to be the selected activity,
then changing the selected-pane of the frame causes the iJ.ew selected-pane to
become the selected window.

If you select a window that is a pane of a frame, that window becomes the selected­
pane of the frame, and the activity that the frame represents becomes the selected
activity.

For more about panes and frames, including constraint frames: See the section
"Frames", page 175.

96

Programming the User Interface March 1985

11.11.3 Messages About Window Selection

:alias-for-selected-window8 Message
When the :alias-for-selected-windows message. is sent to a window, it
returns the representative window of the receiver's activity. If two windows
have the same alias-for-selected-windows, they belong to the same activity.

This message is sent by both the system and the user and may be received
by either, although usually the system-supplied methods suffice. The default
method (of tv:sheet) returns the window to which the message is sent,
declaring the window to be in an activity by itself. tv:select-relative-mixin
supplies a method that returns the superior's alias, unless the window to
which the message is sent is a top-level window (that is, its superior is a
screen); in that case it returns the window itself. tv:pane-mixin and
tv:basic-typeout-window supply methods that return the superior's alias.

:name-for-selection Message
The :name-for-selection message to a window returns nil if the window is
not supposed to be selected. Otherwise, it returns a string that serves as the
name of the window in menus of selectable windows.

This message is sent by many parts of the user interface. Some use it just
as a predicate; others put the returned string into a menu.

This message is usually received by the user. The default method (of
tv:sheet) returns nil. tv:select-mixin provides a method that computes a
name based on the window's label, if it has one, or else on the window's
name. Many application programs shadow this method and supply their own.

:selectable-windows Message
The :selectable-windows message to a window returns a menu item-list of
activities containing or inferior to the window. The :name-for-selection and
:alias-for-selected-windows messages are used to discover the available
activities. When sent to a screen, this message returns a menu item-list of
all the activities that screen contains.

This message is sent by [Select] in the System Menu and is received by the
system. Users shouldn't need to send this message or to define methods for
it.

:select-relative Message
The :select-relative message to a selectable window selects the window
relative to its activity, but doesn't select a different activity.
T~ '1... ___ -=_..1 ____ '1..._ _____ ! ____ 'L.! __________ '1..._1 ___ _ '1... _______ ! __ ! ____ '1..._

.L.l lI.l.lC YVl.l.lUVYV lI.l.lali .lC,",Cl\'CO lI.lUO lllCOoaOC UC1V.l.lOO lIV lIU.C OQ.lllC a,",lI1YlllJ' ao lI.l.lC

currently selected window, the receiver becomes the new selected window.
Otherwise, the window that receives this message sends the :inferior-select
message to its superior to select the receiver relative to its activity.

97

March 1985 Using the Window System

User programs should send the :select-relative message rather than :select
or :mouse-select, unless they are really responding to a user command to
switch activities. Using :select-relative rather than :select to change
windows within an activity ensures that the right thing happens when that
activity is not the selected one and avoids suddenly changing the selected .
activity without the consent of the user.

This message returns no significant values. It is sent by the user and
received by the system. Users should not need to defme methods for it.

:interior-select sheet Message
The :interior-select message to a window returns non-nil if it is okay to
select sheet, or nil if it is not okay. If the message returns nil, presumably
some appropriate action such as selecting a different window has already been
performed.

ThIs message is sent and received by the system. It is normally sent under
two circumstances:

• If a window is selected, and if the window includes a flavor that makes
it participate in its superior's activity, the window sends its superior an
:interior-select message with itself as the argument. Flavors that
make windows participate in their superiors' activities include
tv:select-relative-mixin, tv:pane-mixin, and
tv:basic-typeout-window.

• If a window receives a :select-relative message and the window's
activity is not the currently selected activity, it sends its superior an
:interior-select message with itself as the argument.

The :interior-select message is propagated upwards through all levels of the
window hierarchy until it reaches a screen. This informs the direct and
indirect superiors of window that it has been selected (or selected relative to
its activity). When a frame receives an :inferior-select message, it saves
sheet as its selected-pane and passes the message on, substituting itself for
sheet.

All currently extant methods return a non-nil value. Only panes look at the
returned value; they don't allow themselves to be selected if the returned
value is nil. This permits a frame to refuse to allow its selected-pane to be
changed.

:select-pane pane Message
The :select-pane message to a frame makes pane the selected-pane of the
frame. pane must be either an exposed inferior of the frame or nil, which
means to set the selected-pane to nil. This message also deselects the
current selected-pane if it is a window different from pane. Unless pane is
nil, this message sends pane a :select-relative message.

98

Programming the User Interface March 1985

:selected-pane Message
The :selected-pane message to a frame returns the selected-pane of the
frame. This message is sent by users and received by the system.

:selected-pane pane (for tv:basic-constraint-frame) lnit Option
Makes pane the selected-pane of this frame. pane can be the symbol used in
the :panes init option to name the pane.

:mouse-select &optional (save-selected t) Message
. The :mouse-select message to a window selects the window as a result of a
user command, usually clicking the mouse on it. This takes care of various
window system issues, such as making sure that typeahead goes to the
correct activity and getting rid of any temporary windows that are covering
this window, preventing it from being exposed.

The operation fails and returns nil if this window is not contained inside its
superior (it might be too large), which prevents it from being exposed. The
operation can also fail and return nil if the message is sent to a frame whose
selected-pane is nil. If the operation succeeds, the message returns t.

If save-selected is not nil, the previously selected activity is saved for restoring
by the FUNCT I ON S command and the :deselect message.

The :mouse-select message to a pane (a window with tv:pane-mixin)
selects the activity of which the pane is a part, without changing its selected­
pane. Thus, the message does not necessarily select the window to which it
is sent; it might select some other window in the same activity.
:mouse-select is intended to be a command for switching activities.

User programs should send the :select-relative message rather than :select
or :mouse-select, unless they are really responding to a user command to
switch activities. Using :select-relative rather than :mouse-select or
:select to change windows within an activity ensures that the right thing
happens when that activity is not the selected one and avoids suddenly
changing the selected activity without the consent of the user.

This message is sent by many parts of the user interface.

This message is usually received by the system, although users could define
methods for it: either a method that returns nil to prevent a window from
being selected, or a daemon. The default method is defined on
tv:essential-window.

:select &optional (save-selected t) Message
The :select messa~ is sent to a selectable window by a user program or by
a part of the user interface to change the selected activity. It is also sent by
the system to notify a window when it becomes the selected window, either
because of a change of activities or because of selection of this window instead
of a different window within the same activity.

99

March 1985 Using the Window System

This message is received by the system and is also received by user daemons
that wish to be notified when a window becomes selected.

If save-selected is not nil, the previously selected activity is saved for restoring
by the FUNCTION S command and the :deselect message.

The message returns t if it works, nil if it fails. It can fail when sent to a
pane if the :inferior-select message that the pane sends to the frame
returns nil. It can also fail when sent to a frame that has no selected-pane.

User programs should send the :select-relative message rather than :select
or :mouse-select, unless they are really responding to a user command to
switch activities. Using :select-relative rather than :select to change
windows within an activity ensures that the right thing happens when that
activity is not the selected one and avoids suddenly changing the selected
activity without the consent of the user.

:deselect &optional <restore-selected t) Message
The :deselect message is sent to a selectable window by a user program or
by a part of the user interface to change the selected activity. It is also sent
by the system to notify a window when it ceases to be the selected window,
either because of a change of activities or because of selection of a different
window within the same activity. When sent by the system as a notification
of deselection, restore-selected is always nil.

This message is received by the system and is also received by user daemons
that wish to be notified when a window becomes deselected. Note that this
message can be sent to a window that is not the selected window; in that
case it is supposed to do nothing.

If :deselect is sent to the. selected window and restore-selected is not nil, the
previously selected activity is selected.

11.11.4 Flavors Related to Window Selection

tv:select-mixin Flavor
This flavor allows a window to be selectable. It provides methods for the
:select, :deselect, :select-relative, and :name-for-selection messages.

tv:select-relative-mixin Flavor
This flavor makes a window participate in the same activity as its superior.
It provides a method for the :alias-for-selected-windows message that
returns the window if its superior is a screen, or the superior's alias
otherwise. It also provides a daemon for the :select message that sends an
:inferior-select message to the superior with an argument of the window.

This flavor does not provide a method for the :select-relative message; that
is handled by tv:select-mixin.

100

Programming the User Interface March 1985

tv:dont-select-with-mouse-mixin Flavor
This flavor provides a :name-for-selection message that returns nil, so that
the user interface does not treat the window as a candidate for selection.

tv:basic-frame Flavor
This flavor provides methods that allow the frame to serve as the
representative window of its activity. Usually a frame cannot become the
selected window, but this flavor provides methods that handle messages about
selection, typically by operating on the selected-pane instead of the frame.
The :select, :deselect, and :select-relative methods just pass these
messages on to the selected-pane when one exists; otherwise they return nil.

This flavor provides a handler for the :select-pane message that decides
which pane should be selected when the activity is selected. The
:inferior-select method saves the argument as the selected-pane and sends
the message on to the frame's superior with the frame as argument. The
:name-tor-selection method returns the name-for-selection of the selected­
pane if a selected-pane exists and has a name-for-selection; otherwise, the
method returns the name of the frame.

tv:pane-mixin Flavor
The flavor of any window used as a pane of a frame must have
tv:pane-mixin as one of its components. For example, the flavor
tv:window-pane, used when you want a pane of a frame that understands
everything that tv:window does, is defined as follows:

(defflavor tv:window-pane () (tv:pane-mixin tv:window»

Among other things, tv:pane-mixin provides methods that let the pane
participate in its superior's activity. The :alias-for-selected-windows
method returns the superior's alias. When a window of this flavor receives a
:select message, it first sends its superior an :inferior-select message. If
the :inferior-select message returns nil, the :select message fails and just
returns nil. When a window of this flavor receives a :mouse-select
message, it passes the message on to its superior.

tv:pane-no-mouse-select-mixin Flavor
A mixin flavor to make a window a pane of a frame and ensure that it
cannot be selected from a system menu. This flavor includes tv:pane-mixin
and tv:dont-select-with-mouse-mixin.

11.11.5 Selecting a Window Temporarily

",v:winaow-caii-reiative (winciow &optlonaJ f7,nat-acnon &rest Special Form
final-action-args) &body body

Temporarily selects a window relative to its activity, executes the body, then
(in an unwind-protect) restores the previous selected-pane of that activity.
This uses the :select-relative message.

101

March 1985 Using the Window System

window is a variable that is bound to the window to be selected. If
final-action is specified, it is a message to be sent to window when done with
it, and final-action-args are forms supplying arguments to that message.
final-action is often :deactivate.

tv:window-call-relative is preferred over tv:window-call for use by
application programs that are not responding to an explicit user command to
switch activities.

tv:window-call (window &optional final-action &rest Special Form
final-action-args) &body body

Temporarily selects a window - selecting a new activity if the window is not
part of the currently selected activity - executes the body, then (in an
unwind-protect) usually restores the previously selected activity. The
previously selected activity is not restored if at that time the selected window
is not window or a direct or indirect inferior of it. This heuristic deals with
the case where the user has switched activities explicitly during the execution
of body.

This uses the :select message but is different from using the save-selected
and restore-selected arguments to :select and :deselect: tv:window-caI1
restores the activity that was current when its execution began, not the
second most recently selected activity, as sending a :deselect message with
an argument of t would.

window is a variable that is bound to the window to be selected. If
final-action is specified, it is a message to be sent to window when done with
it, and final-action-args are forms supplying arguments to that message.
final-action is often :deactivate.

tv:window-call-relative is preferred over tv:window-call for use by
application programs that are not responding to an explicit user command to
switch activities.

tv:window-mouse-call (window &optional final-action &rest Special Form
final-action-args) &body body

This is similar to tv:window-call but uses :mouse-select instead of :select
to select window. It is used by parts of the user interface that want the
temporary-window-clearing features of :mouse-select.

102

Programming the User Interface March 1985

103

March 1985 Using the Window System

12. Window Flavors and Messages

12.1 Overview of Window Flavors and Messages

In this section we present the actual messages that can be sent to windows to
examine and alter their state and to get them to do things. Just how a window
reacts to a message depends on what flavor it is an instance of, and so we will also
explain the various flavors that exist. This section also explains how to create new
windows, and how to compose new flavors of windows by mixing together existing
flavors.

Windows have a wide variety of functions, and can respond to any of a large set of
messages. To help you find your way around among all the messages, this chapter
groups together messages that deal with the same facet of the functionality of
windows. Here is a summary of the various groups of messages that are
documented.

First of all, a window can be used as if it were the screen of a display computer
terminal. You can output characters at a cursor position, move the cursor around,
selectively clear parts of the window, insert and delete lines and characters, and so
on, by sending stream messages to the window. This way, windows can act as
output streams, and any function that takes a stream for its argument (such as
print or format) can be passed a window. Characters can be drawn in any of a
large set of fonts (typefaces), and you can switch from one to another within a single
window. Windows do useful things when you try to run the cursor off the right or
bottom edges; they also have a facility called more processing to stop characters from
coming out faster than you can read them.

In addition to characters from fonts, you can also display graphics (pictures) on
windows. There are functions to draw lines, circles, triangles, rectangles, arbitrary
polygons, circle sectors, and cubic splines.

A window can also be used for reading in characters from the keyboard; you do this
by sending it stream input messages (such as :tyi and :listen). This way, windows
can act as input streams, and any function that takes a stream for its argument
(such as read or readline) can be passed a window. Each window has an 110
buffer holding characters that have been typed at the window but not read yet, and
there are messages that deal with these buffered characters. You can force keyboard
input into a window's 110 buffer; frequently two processes communicate by one
process's forcing keyboard input into an 110 buffer which another process is reading
characters from.

Each window can have any number of blinkers. The kind of blinker that you see
most often is a blinking rectangle the same size as the characters you are typing;
this blinker shows you the cursor position of the window. In fact, a window can

104

Programming the User Interface March 1985

have any number of blinkers; they need not follow the cursor (some do and some
don't) and they need not actually blink (some do and some don't). For example, the
editor shows you what character the mouse is pointing at; this blinker looks like a
hollow rectangle. The arrow that follows the mouse is a blinker, too. Blinkers are
used to add visible ornaments to a window; a blinker is visible to the user, but while
programs are examining and altering the contents of a window the blinkers all go
away. This means that blinkers do not affect the contents of the window as seen
from programs; whenever a program looks at a window, the blinkers are all turned
off. The reason for this is so that you can draw characters and graphics on the
window without having to worry whether the flashing blinker will overwrite them.
If you have anything that should appear to the user but not be visible to the
program, then it should be a blinker. The window system provides a few kinds of
blinkers, and you can define your own kinds. Blinkers are instances of flavors, too,
and have their own set of messages that they understand.

Any program can use the mouse as an input device. The window system provides
many ways for you to get at the mouse. Some of them are very easy to use, but
don't have all the power you might want; others are somewhat more difficult to use
but give you a great deal of control. The window system also takes responsibility for
figuring out which of many programs have control over the mouse at any time.

There are a large number of messages for manipulating the size and position of a
window. You can specify these numerically, ask for the user to tell you (using the
mouse), ask for a window to be near some point or some other window, and so on.

A window's area of the screen is divided into two parts. Around the edges of the
window are the four margins; while the margins can have zero size, usually there is
a margin on each edge of the window, holding a border and sometimes other things,
such as a label. The rest of the window is called the inside; regular character
drawing and graphics drawing all occur on the inside part of the window. You have
a great deal of control over what goes in the margins of a window. Control can be
exercised either by mixing in different flavors that put different things in the
margins or by specifying parameters such as the width of the borders or the text to
appear in the label.

You can create windows with several panes (inferior windows). These are called
frames, and there are messages that deal specifically with frames, their configuration,
and their inferiors.

Sometimes a background process wants to tell the user something, but it does not
have any window on which to display the information, and it does not want to pop
one up just for one little message. A facility is provided wherein the process can
send such notification messages to the selected window, and it will find some way to
get the message to the user. Different windows do different things when someone
tries to use them for notification.

Screens are windows themselves; they also have extra functions that windows don't
have, since they do not have superiors and since they correspond to actual pieces of

105

March 1985 Using the Window System

display hardware. Screens can be either black-and-white or color. Color screens
have more than one bit for each pixel, and most operations on windows do
something reasonable on color screens. But the extra bits give you extra flexibility,
and so there are some more powerful things you can do to manipulate colors. Color
screens also have a color map, that specifies which values of the pixels display which
colors.

There are also messages for changing the status of windows: whether they are
active, exposed, or selected. There are several options to exactly how exposure and
deexposure should affect the screen. You can also ask windows to refresh their
contents, kill them, and so on. There are also ways to deal with the screen
manager, including messages to examine and alter priorities, and other functions and
variables and flavors for affecting what the screen manager does.

You can define your own fonts, and/or convert fonts from other formats to the Lisp
Machine's format. Font characters have various attributes such as their height,
baseline, left kern, and so on.

The status line at the bottom of the screen shows the user something about the
state of the Lisp Machine. There are several functions for controlling just what it
does and for getting things to be displayed in it.

The window system provides a facility called liD buffers. An 110 buffer is a general
purpose first-in first-out ring buffer, with various useful features. Programs can use
110 buffers for anything else, too; it need not even have anything to do with the
window system.

There are some interrelationships between windows and processes. Exactly how
processes and windows relate depends on the flavor of the window, and, as usual,
there are several messages to manipulate the connections.

12.2 Getting a Window to Use

12.2.1 Flavors of Basic Windows

Many programs never need to create any new windows. Often, all you are
interested in doing is sending messages to standard-output and standard-input
and performing the extended stream operations offered by windows to read and type
characters, position the cursor (and other things that you do on display terminals),
and draw graphics. Other programs want to create their own windows for various
reasons; a common way to organize an interactive system on the Lisp Machine is to
create a process that runs the command loop of the system, and have it use its own
window or suite of windows to communicate with the user. This kind of system is
what the editor and Zmail use, and it is very convenient to deal with.

Whichever of these you use, it is important for you to know what flavor of window
you are getting. Some flavors accept certain messages that are not handled by

106

Programming the User Interface March 1985

others. The details of different flavors' responses to the same message may vary in
accordance with what those flavors are supposed to be for. The following is a
discussion of window flavors.

The most primitive flavor of window is called tv:minimum-window; it is the basic
flavor on which all other window flavors are built, and it contains the absolute
minimum amount of functionality that a window must have to work.
tv:minimum-window itself is built on a number of other flavors that provide the
"essential" attributes of windows. For reference, tv:minimum-window is defined as
follows (ignoring deffiavor options):

(defflavor tv:minimum-window ()
(tv:essential-expose tv:essential-activate
tv:essential-set-edges tv:essential-mouse
tv:essential-window»

tv:essential-window, in tum, is built on the base flavor for all windows, tv:sheet.

There is another flavor called. tv:window, which is built on tv:minimum-window
and has about six mixins that do a variety of useful things. When you cold boot a
Lisp Machine, the window you are talking to is of flavor tv:lisp-listener, which is
built on tv:window and has three more mixins. tv:window has what you need. to
do the normal things that are done with windows; tv:minimum-window is missing
messages for character output and input, selection, borders, labels, and graphics, and
so there isn't much you can do with it. Anything built on tv:window, including
Lisp Listeners, will be able to accept all the basic messages.

Some programs may benefit from more carefully tailored. mixings of flavors. For the
benefit of programmers who want to do this, we specify below, with each message
and init option, which flavor actually handles it. If you are just using tv:window
then you don't really care exactly what mixin specific features are in; you just need
to know which ones are in tv:window. With the discussion of each flavor or group
of messages, we will say which relevant flavors are in tv:window and which are
not. For reference, tv:window is defined (ignoring deffiavor options) as follows:

(defflavor tv:window ()
(tv:stream-mixin tv:borders-mixin tv:label-mixin
tv:select-mixin tv:graphics-mixin tv:minimum-window»

So if you use tv:window then you have all the above mixins, and can take
advantage of their features.

12.2.2 Creating a Window

If you want to create your own window, you use the tv:make-window function.
Never try to instantiate a window flavor yourself with make-instance or
instantiate-flavor; always use tv:make-window which takes care of a number of
internal system issues.

107

March 1985 Using the Window System

tv:make-window flavor-name &rest in it-options Function
Create, initialize, and return a new window of the specified flavor. The
in it-options argument is the init-plist (it is just like the &rest argument of
make-instance). The allowed initialization options depend on what flavor of
window you are making. Each window flavor handles some init options; the
options and what they mean are documented with the documentation of the
flavor.

Example:

(tv:make-window 'tv:lisp-listener
':borders 4
':font-map (list fonts:bigfnt)
':vsp 6
':edges-from ':mouse
':expose-p t)

creates an exposed Lisp Listener with big characters and lots of vertical space
between lines.

:init in it-p list of tv:sheet Method
Sets initial characteristics of the window, processing options in init-plist.
This message is sent by the system; you might need to supply an :after
daemon for it.

:superior superior (for tv:sheet) [nit Option
Makes superior the superior window of the window being created.

:activate-p t-or-nil (for tv:essential-window) [nit Option
If this option is specified non-nil, the window is activated after it is created.
The default is to leave it deactivated.

:expose-p t-or-nil (for tv:essential-window) [nit Option
If this option is specified non-nil, the window is exposed after it is created.
The default is to leave it deexposed. If the value of the option is not t, it is
used as the first argument to the :expose message (the tum-on-blinkers
option).

defwindow-resource name parameters &rest options Special Form
Defines a resource of windows. name is the name of the resource.
parameters is a lambda-list of parameters to defresource. options are
alternating keywords and values:

Keyword

:initial-copies

:superior

Value

Number of windows to be created during evaluation of
defresource form. Default: 1.

A form to be evaluated when the resource is allocated

108

Programming the User Interface

:make-window

:constructor

: reusable-when

March 1985

to return the superior window of the desired window.
If this is not supplied, the superior is the value of
tv:mouse-sheet.

List of flavor name and options to tv:make-window,
which will be called to make new windows. One of the
options can be :superior.

A form or the name of a function to make new
windows. You must supply either :make-window or
:constructor.

Either :deexposed or :deactivated. Specifies when a
window can be reused. Supply this when you use
allocate-resource instead of using-resource to
allocate resources. Default: reusable when not locked
and not in use.

12.3 Character Output to Windows

12.3.1 How Windows Display Characters

A window can be used as if it were the screen of a display computer terminal, and it
can act as an output stream. The flavor tv:sheet implements the messages of the
Lisp Machine output stream protocol. It implements a large number of optional
messages of that protocol, such as :insert-line. The tv:sheet flavor is a component
of all windows. Every window has a current cursor position; its main use is to say
where to put characters that are drawn. The way a window handles the messages
asking it to type out is by drawing that character at the cursor position, and moving
the cursor position forward past the just-drawn character.

In the messages below, the cursor position is always expressed in "inside"
coordinates; that is, its coordinates are always relative to the top-left corner of the
inside part of the window, and so the margins don't count in cursor positioning.
The cursor position always stays in the inside portion of the window-never in the
margins. The point (0,0) is at the top-left comer of the window; increasing x
coordinates are further to the right and increasing y coordinates are further towards
the bottom. (Note that y increases in the down direction, not the up direction!)

To draw a character "at" the cursor position basically means that the top-left corner
of the character will appear at the cursor position; so if the cursor position is at
position (0,0) and you draw a character, it will appear at the top-left corner of the
window. (Things can actually get more complicated when fonts with left-kerns are
used.)

When a character is drawn, it is combined with the existing contents of the / pixels of
the window according to an alu (unction. For a description of the different alu

109

March 1985 Using the Window System

functions: See the section "Graphic Output to Windows", page 118. When
characters are drawn, the value of the window's char-aluf is the alu function used.
Normally, the char-aluf says that the bits of the character should be bit-wise logically
ored with the existing contents of the window. This means that if you type a
character, then set the cursor position back to where it was and type out a second
character, the two characters will both appear, ored together one on top of the
other. This is called overstriking.

Every window has a font map. A font map is an array of fonts in which characters
on the window can be typed. At any time, one of these is the window's current
font; the messages that type out characters always type in the current font. Details
of fonts and the font map are gone into later in detail: See the section "Fonts:
Flavors and Messages". For now, it is only important to understand fonts in order
to understand what the character-width and line-height of the window are; these
two units are used by many of the messages documented in this section. The
character-width is the char-width attribute-the width of a "typical" character-of the
first font in the font map. The line-height is the sum of the vsp of the window and
the maximum of the char-heights of all the fonts. The vsp is an attribute of the
window that controls how much vertical spacing there is between successive lines of
text. That is, each line is as tall as the tallest font is, and also you can add vertical
spacing between lines by controlling the vsp of the window.

Every window has a current font, which the messages use to figure out what font to
type in. If you are not interested in fonts, you can ignore this and something
reasonable will happen. In some fonts, all characters have the same width; these
are called fixed-width fonts, the default font is an example. In other fonts, each
character has its own width; these are called variable-width fonts. In a variable­
width font, expressing horizontal positions in numbers of characters is not
meaningful, since different characters have different widths. Some of the functions
below do use numbers of characters to designate widths; there are warnings along
with each such use explaining that the results may not be meaningful if the current
font has variable width.

Typing out a character does more than just drawing the character on the screen.
The cursor position is moved to the right place; nonprinting characters are dealt
with reasonably; if there is an attempt to move off the right or bottom edges of the
screen, the typeout wraps around appropriately; more breaks are caused at the right
time if more processing is enabled. Here is the complete explanation of what typing
out a character does. You may want to remind yourself how the Lisp Machine
character set works. See the section "The Character Set" in Reference Guide to
Streams, Files, and I/O. You don't have to worry much about the details here, but
in case you ever need to know, here they are. If you aren't interested, skip ahead
to the definitions of the messages.

First of all, as was explained earlier, before doing any typeout the process must wait
until it has the ability to output. See the section ''Window Exposure and Output",
page 82. The output hold flag must be off and the window must not be temp­
locked.

110

Programming the User Interface March 1985

Before actually typing anything, various exceptional conditions are checked for. If an
exceptional condition is discovered, a message is sent to the window; the message
keyword is the name of the condition. Different flavors handle the various
exceptions different ways; you can control how exceptions are handled by what
flavors your window is made of. First, if the y-position of the cursor is less than one
line-height above the inside bottom edge of the window, an :end-of-page-exception
happens. The handler for this exception in the tv:sheet flavor moves the cursor
position to the upper-left-hand comer of the window and erases the first line, doing
the equivalent of a :clear-rest-of-line operation.

Next, if the window's more flag is set, a :more-exception happens. The more flag
gets set when the cursor is moved to a new line (for example, when a #\return is
typed) and the cursor position is thus made to be below the more vpos of the
window. (If tv:more-processing-gIobal-enable is nil, this exception is suppressed
and the more flag is turned off.) The :more-exception handler in the tv:sheet
flavor does a :clear-rest-of-line operation, types out **MORE**, waits for any
character to be typed, restores the cursor position to where it originally was when
the :more-exception was detected, does another :clear-rest-of-line to wipe out the
MORE, and resets the more vpos. The character read in is ignored.

Note that the more flag is only set when the cursor moves to the next line, because
a #\return is typed, after a :line-out, or by the :end-of-line-exception handler
described below. It is not set when the cursor position of the window is explicitly
set (for example, with :set-cursorpos); in fact, explicitly setting the cursor position
clears the more flag. The idea is that when typeout is being streamed out
sequentially to the window, :more-exceptions happen at the right times to give the
user a pause in which to read the text that is being typed, but when cursor
positioning is being used the system cannot guess what order the user is reading
things in and when (if ever) is the right time to stop. In this case it is up to the
application program to provide any necessary pauses.

The algorithm for setting the more vpos is too complicated to go into here in all its
detail, and you don't need to know exactly how it works, anyway. It is careful
never to overwrite something before you have had a chance to read it, and it tries to
do a **MORE** only if a lot of output is happening. But if output starts happening
near the bottom of the window, there is no way to tell whether it will just be a
little output or a lot of output. If there's just a little, you would not want to be
bothered by a **MORE**. So it doesn't do one immediately. This may make it
necessary to cause a **MORE** break somewhere other than at the bottom of the
window. But as more output happens, the position of successive **MORE**s is
migrated and eventually it ends up at the bottom.

Finally, if there is not enough room left in the line for the character to be typed
out, an :end-of-line-exception happens. The handler for this exception in the
tv:sheet flavor advances the cursor to the next line just as typing a #\return
character does normally. This may, in tum, cause an :end-of-page-exception or a
:more-exception to happen. Furthermore, if the right margin character flag is on,

111

March 1985 Using the Window System

then before going to the next line,. an exclamation point in font zero is typed at the
cursor position. When this flag is on, :endooOf-line-exceptions are caused a little bit
earlier, to make room for the exclamation point.

The way the cursor position goes to the next line when it reaches the right edge of
the window is called horizontal wraparound. You can make windows that truncate
lines instead of wrapping them around by using tv:truncating-lines-mixin.

After checking for all these exceptions, the character fmally gets typed out. If it is a
printing character, it is typed in the current font at the cursor position, and the
cursor position is moved to the right by the width of the character. If it is one of
the format effectors #\return, #\tab, and #\backspace, it is handled in a special
way to be described in a moment. All other special characters have their names
typed out in tiny letters surrounded by a lozenge, and the cursor position is moved
right by the width of the lozenge. If an undefmed character code is typed out, it is
treated like a special character; its code number is displayed in a lozenge.

#\tab moves the cursor position to the right to the next tab stop, moving at least
one character-width. Tab stops are equally spaced across the window. The distance
between tab stops is tab-nchars times the character-width of the window. tab-nchars
defaults to 8 but can be changed.

Normally #\return moves the cursor position to the inside left edge of the window
and down by one line-height, and clears the line. It also deals with more processing
and the end-of-page condition as described above. However, if the window's
cr-not-newline-flag is on, the #\return character is not regarded as a format
effector and is displayed as "return" in a lozenge, like other special characters.

If the character being typed out is a #\backspace, the result depends on the value
of the window's backspace-not-overprinting-f7,ag. If the flag is 0, as is the default,
the cursor position is moved left by one character-width (or to the inside left edge,
whichever is closer). If the flag is 1, #\backspaces are treated like all other special
characters.

12.3.2 Messages to Display Characters on Windows

:tyo ch of tv:sheet Method
Type ch on the window, as described above. Basically, type the character ch
in the current font at the cursor position, and advance the cursor position.

:stringooOut string &optional (start 0) (end nil) of tv:sheet Method
Type string on the window, starting at the character start and ending with
the character end. If end is nil, continue to the end of the string; if neither
optional argument is given, the entire string is typed. This behaves exactly
as if each character in the string (or the specified substring) were sent to the
window with a :tyo message, but it is much faster.

112

Programming the User Interface March 1985

:line-out string &optional (start 0) (end nil) of tv:sheet Method
Do the same thing as :string-out, and then advance to the next line (like
typing a #\return character). The main reason that this message exists is
so that the stream-copy-until-eof function can, under some conditions,
move whole lines from one stream to another; this is more efficient than
moving characters singly. The behavior of this operation is not affected. by
the :cr-not-newline-ftag init option.

:tresh-line of tv:sheet Method
Get the cursor position to the beginning of a blank line. Do this in one of
two ways. If the cursor is already at the beginning of a line (that is, at the
inside left edge of the window), clear the line to make sure it is blank and
leave the cursor where it was. Otherwise, advance the cursor to the next
line and clear the line just as if a #\return had been output. The behavior
of this operation is not affected by the :cr-not-newline-ftag init option.

:insert-char &optional (n 1) (unit ':character) of tv:sheet Method
Open up a space the width of n units in the current line at the current
cursor position. Shift the characters to the right of the cursor further to the
right to make room. Characters pushed past the right-hand edge of the
window are lost. If unit is :character, n is interpreted as the number of
character-widths to insert; if unit is :pixel, n is interpreted as the number of
pixels to insert.

:insert-string string &optional (start 0) (end nil) (type-too t) of
tv:sheet

Method

Insert a string at the current cursor position, moving the rest of the line to
the right to make room for it.

The string to insert is specified by string; a substring thereof may be
specified with start and end, as with :string-out.

string may also be a number, in which case the character with that code is
inserted.

If type-too is specified as nil, suppress the actual display of the string, and
the space that was opened is left blank.

:insert-line &optional (n 1) (unit ':character) of tv:sheet Method
Take the line containing the cursor and all the lines below it, and move
them down by n units. The line containing the cursor is moved in its
entirety, not broken, no matter where the cursor is on the line. A blank line
is created at the cursor. Lines pushed off the bottom of the window are lost.
If unit is :character, n is interpreted as the number of lines to insert; if
unit is :pixel, n is interpreted as the number of pixels to insert.

113

March 1985 Using the Window System

12.3.3 Messages to Read or Set Cursor Position

:read-cursorpos &optional (units ':pixe1) of tv:sheet Method
Return two values: the x and y coordinates of the cursor position. These
coordinates are in pixels by default, but if units is :character, the
coordinates are given in character-widths and line-heights. (Note that
character-widths don't mean much when you are using variable-width fonts.)

:set-cursorpos x y &optional (units ':pixelJ of tv:sheet Method
Move the cursor position to the specified coordinates. The units may be
specified as with :read-cursorpos. If the coordinates are outside the
window, move the cursor position to the nearest place to the specified
coordinates that is in the window.

:home-cursor of tv:sheet Method
Move the cursor to the upper left corner of the window.

:home-down of tv:sheet Method
Move the cursor to the lower left comer of the window.

12.3.4 Messages to Remove Characters From Windows

:refresh &optional type of tv:sheet Method
Redisplays the window. Depending on type and the existence of a bit-save
array, clears the window or restores the image from the bit-save array. This
message is usually sent by the system. You might need to provide an :after
daemon to reconstruct the contents of the window.

:clear-char &optional char· of tv:sheet Method
Erase the character at the current cursor position. When using variable­
width fonts, you teU it the character code of the character you are erasing, so
that it will know how wide the character is (it assumes the character is in
the current font). If you don't pass the char argument, it simply erases a
character-width, which is fine for fixed-width fonts.

:clear-rest-Gf-line of tv:sheet Method
Erase from the current cursor position to the end of the current line; that is,
erase a rectangle horizontally from the cursor position to the inside right edge
of the window, and vertically from the cursor position to one line-height
below the cursor position.

:clear-rest-Gf-window of tv:sheet Method
Erase from the current cursor position to the bottom of the window. In
more detail, fIrst do a :clear-rest-of-line, and then clear all of the window
past the current line.

114

Programming the User Interface March 1985

:clear-window of tv:sheet Method
Erase the whole window and move the cursor position to the upper left
corner of the window.

:delete-char &optional (n 1) (unit ':character) of tv:sheet Method
Without an argument, delete the character at the current cursor position.
Otherwise, delete n units, starting at the current cursor position. Move the
display of the part of the current line that is to the right of the deleted
section leftwards to close the resultant gap. If unit is :character, n is
interpreted as the number of characters to delete; if unit is :pixel, n is
interpreted as the number of pixels to delete.

:delete-string string &optional (start 0) (end nil) of tv:sheet Method
This is for deleting specific strings in the current font. It is one of the
things to use when dealing with variable-width fonts.

If string is a number, it is considered to be a character code. Excise a region
exactly as wide as that character at the current cursor position, and move
the display of the part of the current line that is to the right of the excised
region leftwards to close the gap.

If string is a string, excise a region exactly as wide as that string, or a
substring specified by start and end, and close the gap as in the single­
character case.

:delete-line &optional (n 1) (unit ':character) of tv:sheet Method
Without an argument, delete the line that the cursor is on. Otherwise delete
n units, starting with the one the cursor is on. Move up the display below
the deleted section to close the resulting gap. If unit is :character, n is
interpreted as the number of lines to delete; if unit is :pixel, n is interpreted
as the number of pixels to delete.

12.3.5 Messages About Character Width and Cursor Motion

:character-width char &optional (font current-font) of tv:sheet Method
Return the width of the character char, in pixels. The current font is used
if font is not specified. If char is a backspace, :character-width can return
a negative number. For tab, the number returned depends on the current
cursor position. If char is return, the result is dermed to be zero.

:compute-motion string &optional (start 0) (end nil) (x Method
cursor-x) (y cursor-y) (cr-at-end-p nil)
(stop-x 0) stop-y of tv:sheet

This is used to figure out where the cursor would end up if you were to
output string using :string-out. It does the right thing if you give it just
the string as an argument. start and end can be used to specify a substring
as with :string-out. x and y can be used to start your imaginary cursor at

115

March 1985 Using the Window System

some point other than the present position of the real cursor. If you specify
cr-at-end-p as t, it pretends to do a :line-out instead of a :string-out. stop-x
and stop-y define the size of the imaginary window in which the string is
being printed; the printing stops if the cursor becomes simultaneously ~ both
of them. These default to the lower left-hand corner of the window.

The method does a triple-value return of the x and y coordinates you ended
up at and an indication of how far down the string you got. This indication
is nil if the whole string (or the part specified by start and end) was
exhausted, or the index of the next character to be processed when the
stopping point (end of window) was reached, or t if the stopping point was
reached only because of an extra carriage return due to cr-at-end-p being t.

All coordinates for this message are in pixels.

:string-Iength string &optional (start 0) (end nil) stop-x (font Method
current-font) (start-x 0) of tv:sheet

This is very much like :compute-motion, but works in only one dimension.
It tells you how far the cursor would move if string were to be displayed in
the current font starting at the left margin, or at start-x if that is specified.
start and end work as with :string-out to specify a substring of string. If
stop-x is not specified or nil, the window is assumed to have infinite width;
otherwise the simulated display will stop when a position stop-x pixels from
the left edge is reached. The font can be specified.

:string-Iength returns three values: where the imaginary cursor ended up,
the index of the next character in the string (the length of the string if the
whole string was processed, or the index of the character which would have
moved the cursor past stop-x), and the maximum x-coordinate reached by the
cursor (this is the same as the first value unless there are #\return
characters in the string).

12.3.6 Window Attributes for Character Output

The following messages and initialization options initialize, get, and set various
window attributes which are relevant to the typing out of characters. For messages
to manipulate the current font: See the section "Font Messages to Windows", page
141.

:more-p t-or-nil (for tv:sheet) Init Option
Initialize whether the window should have more processing. It defaults to t.

:more-p of tv:sheet Method
Return t if more processing is enabled; otherwise, return nil.

116

Programming the User Interface March 1985

:set-more-p more-p of tv:sheet Method
If more-p is nil, tum off more processing; otherwise tum it on.

tv:autoexposing-more-mixin Flavor
If you mix in this flavor, when a :more-exception happens, the window will
be exposed (a :expose message will be sent to it). This is intended to be
used in conjunction with having a deexposed typeout action of :permit, so
that a process can type out on a deexposed window and then have the
window expose itself when a **MORE** break happens.

:vsp n-pixels (for tv:sheet) 1nit Option
Initialize the window's vsp. It defaults to 2.

:vsp of tv:sheet Method
Return the value of vsp for this window.

:set-vsp new-vsp of tv:sheet Method
Set the value of vsp for this window to new-vsp.

:reverse-video-p of tv:sheet Method
Return nil normally or t if the window displays in white on black rather
than black on white. This is separate from the whole screen's inverse video
mode (set by FUNCTION C).

:set-reverse-video-p t-or-nil of tv:sheet Method
Enable or disable reverse-video display. Changing this mode inverts all of the
bits in the window.

:deexposed-typeout-action action (for tv:sheet) 1nit Option
Initialize the deexposed typeout action of the window to action. It defaults to
:normal.

:deexposed-typeout-action of tv:sheet Method
Return the deexposed typeout action of the window.

:set-deexposed-typeout-action action of tv:sheet Method
Set the deexposed typeout action of the window to action.

:deexposed-typein-action action (for tv:sheet) 1nit Option
Initialize the deexposed typein action of the window to action. It defaults to
:normaI.

:deexposed-typein-action of tv:sheet Method
Return the deexposed typein action of the window.

:set-deexposed-typein-action action of tv:sheet Method
Set the deexposed typein action of the window to action.

117

March 1985 Using the Window System

:right-margin-character-flag X (for tv:sheet) lnit Option
If x is 1, print an exclamation point in the right margin when
:end-of-line-exception happens; if x is 0, don't. It defaults to O.

:backspace-not-overprinting-flag x (for tv:sheet) lnit Option
If x is 0, typing #\backspace will move the cursor position backward; if it is
1, typing #\backspace will display "overstrike" in a lozenge (that is,
#\backspace will be just like other special characters). It defaults to O.

:cr-not-newline-flag x (for tv:sheet) lnit Option
If x is 0, typing #\return will move the cursor position to the beginning of
the next line and clear that line; if it is 1, typing #\return will display
"return" in a lozenge (that is, #\return will be just like other special
characters). It defaults to 0. This flag does not affect the behavior of the
:line-out nor the :fresh-line messages.

:tab-nchars n (for tv:sheet) lnit Option
n is the separation of tab stops on this window, in units of the window's
char-width. This controls how the #\tab character prints. n defaults to 8.

12.3.7 Line-truncating Windows

tv:truncatable-lines-mixin Flavor
If you mix in this flavor and the window's truncate line out flag is on,
typeout does not wrap around when lines are too long. That is, when the
cursor is near the right-hand edge of the window and an attempt is made to
type out a character, the character is not typed out; text is truncated at the
edge of the window.· When the truncate line out flag is turned off, this
flavor has no effect.

tv:line-truncating-mmn Flavor
An obsolete flavor that is the same as tv:truncatable-lines-mmn. The
name is confusing; when this flavor is mixed in, truncation is enabled only if
the window's truncate line out flag is on. Otherwise, it has no effect.
tv:truncatable-lines-mixin is built on this flavor for the sake of two­
argument typep.

tv:truncating-Iines-mmn Flavor
When this flavor is mixed in, lines of output that are too long to fit inside
the window do not wrap around but are truncated at the edge of the
window. This flavor is built on tv:truncatable-Iines-mixin It initializes
the window's truncate line out flag to be on.

tv:truncating-window Flavor
This flavor is built on tv:window with tv:truncating-lines-mixin mixed in.
If you instantiate a window of this flavor, it will be like regular windows of

118

Programming the User Interface March 1985

flavor tv:window except that lines will be truncated instead of wrapping
around.

:truncate-line-out of tv:sheet Method
Returns t if the window's truncate line out flag is set, or nil if it is not.

:set-truncate-line-out new-value of tv:sheet Method
Sets the value of the window's truncate line out flag. If new-value is t the
flag is turned on; if nil, it is turned off.

12.4 Graphic Output to Windows

12.4.1 How Windows Display Graphic Output

A window can be used to draw graphics (pictures). There is a set of messages for
drawing lines, circles, sectors, polygons, cubic splines, and so on, implemented by the
flavor tv:graphics-mixin. The tv:graphics-mixin flavor is a component of the
tv:window flavor, and so the messages documented below will work on windows of
flavor (or flavors built on) tv:window.

There are also some messages in this section that are in tv:sheet or
tv:stream-mixin rather than tv:graphics-mixin, because they are likely to be
useful to any window that can draw characters, but such windows might not want
the full functionality of tv:graphics-mixin. These messages are :draw-rectangle,
and the :bitblt message and its relatives. (If you are building on tv:window
anyway, this doesn't affect you, since tv:window includes both of these flavors.)

The cursor position is not used by graphics messages; the messages explicitly specify
all relevant coordinates. All coordinates are in terms of the inside size of the
window, just like coordinates for typing characters; the margins don't count.
Remember that the point (0,0) is in the upper left; increasing y coordinates are
lower on the screen, not higher. Coordinates are always integers.

As with typing out text, before any graphics are typed the process must wait until it
has the ability to output. The output hold flag must be off and the window must
not be temp-locked. The other exception conditions of typing out are not relevant to
graphics.

All graphics functions clip to the inside portion of the window. This means that
when you specify-positions for graphic items, they need not be inside the window;
they can be anywhere. Only the portion of the graphic that is inside the inside part
of the window will actually be drawn. Any attempt to write outside the inside part
of the window simply won't happen.

There are a few simple microcoded primitives for drawing graphics. They can be
used for drawing pictures into Lisp arrays. However, when drawing on windows you

119

March 1985 Using the Window System

should send the documented messages rather than directly calling the microcode
primitives because these messages provide several essential services which are too
complex for the microcode, such as protecting blinkers from being affected from
drawing, and locking out other processes.

12.4.2 Alu Functions

Most of the messages that produce graphic output on windows take an alu
argument, which controls how the bits of the graphic object being drawn are
combined with the bits already present in the window. In most cases this argument
is optional and defaults to the window's char-aIuf, the same alu function as is used
to draw characters, which is normally inclusive-or. The following variables have the
most useful alu functions as their values:

tv:aIu-ior Variable
Inclusive-or alu function. Bits in the object being drawn are turned on and
other bits are left alone. This is the char-aluf of most windows. If you
draw several things with this alu function, they will write on top of each
other, just as if you had used a pen on paper.

tv:aIu-andca Variable
And-with-complement alu function. Bits in the object being drawn are
turned off and other bits are left alone. This is the erase-aIuf of most
windows. It is useful for erasing areas of the window or for erasing
particular characters or graphics.

tv:aIu-xor Variable
Exclusive-or alu function. Bits in the object being drawn are complemented
and other bits are left alone. Many graphics programs use this. The
graphics messages take quite a bit of care to do "the right thing" when an
exclusive-or alu function is used, drawing each point exactly once and
including or excluding boundary points so that adjacent objects fit together
nicely. The useful thing about exclusive-or is that if you draw the same
thing twice with this alu function, the window's contents are left just as
they were when you started; so this is good for drawing objects if you want
to erase them afterwards.

tv:alu-seta Variable
Set all bits in the affected region. This is not useful with the drawing
operations, because the exact size and shape of the affected region depend on
the implementation details of the microcode. The seta function is useful with
the bitblt operations, where it causes the source rectangle to be transferred
to the destination rectangle with no dependency on the previous contents of
the destination.

120

Programming the User Interface March 1985

tv:aIu-and Variable
And alu function. Like tv:a1u-seta, this is not useful with the drawing
operations, but can be useful with the bitblt operations. 1 bits in the input
leave the corresponding output bit alone, and 0 bits in the input clear the
corresponding output bit.

12.4.3 Drawing Points on Windows

:point x y . of tv:graphics-mixin Method
Return the numerical value of the picture element at the specified
coordinates. The result is 0 or 1 on a black-and-white TV. Clipping is
performed; if the coordinates are outside the window, the result will be O.

:draw-point x y &optional alu value of tv:grapbics-mixin Method
Draw value into the picture element at the specified coordinates, combining it
with the previous contents according to the specified alu function (value is
the first argument to the operation, and the previous contents is the second
argument.) value should be 0 or 1 on a black-and-white TV. Clipping is
performed; that is, this message will have no effect if the coordinates are
outside the window. value defaults to -1, that is, a number with as many I's
as the number of bits in a pixel.

12.4.4 Copying Bit Rectangles to and From Windows

:bitblt alu width height from-array from-x from-y to-x to-y of Method
tv: sheet

Copy a rectangle of bits from from-array onto the window. The rectangle
has dimensions width by height, and its upper left corner has coordinates
(from-x, from-y). It is transferred onto the window so that its upper left
corner will have coordinates (to-x, to-y). The bits of the transferred rectangle
are combined with the bits on the display according to the Boolean function
specified by alu. As in the bitblt function, if from-array is too small it is
automatically replicated.

For complete details: See the function bitblt in Reference Guide to
Symbolics-Lisp. Note that to-array is constrained as described in the the
description of the bitblt function. See the function
tv:make-sheet-bit-array, page 121.

:bitbIt-from-sheet alu width height from-x from-y to-array to-x Method
to-y of tv:sheet

Copy a rectangle of bits from the window to to-array. All the other
arguments have the same significance as in the :bitbIt method of tv:sheet.
Note that to-array is constrained as described in the the description of the
bitblt function. See the function tv:make-sheet-bit-array, page 121.

121

March 1985 Using the Window System

:bitblt-within-sheet alu width height from-x from-y to-x to-y Method
of tv:sheet

Copy a rectangle of bits from the window to some other place in the window.
All the other arguments have the same significance as in the :bitblt method
of tv:sheet.

The following function is useful for creating arrays that are bitblt'ed into and out of
windows.

tv:make-sheet-bit-array window x y &rest make-array-options Function
This function creates a two-dimensional bit-array useful for bitblting to and
from windows. It makes an array whose fIrst dimension is at least x but is
rounded. up so that bitblt's restriction regarding multiples of 32. is met,
whose second dimension is y, and whose type is the same type as that of the
screen array of window (or the type it would be if window had a screen
array). make-array-options are passed. along to make-array when the array
is created, so you can control other parameters such as the area.

12.4.5 Drawing Characters and Strings on Windows

:draw-char font char x y &optional alu of tv:sheet Method
Display the character with code char from font font on the window with its
upper left corner at coordinates (x, y). This lets you draw characters in any
font (not just the ones in the font map), and it lets you put them at any
position without affecting the cursor position of the window.

:draw-string string from-x from-y &optional (toward-x (1+ Method
from-x») (toward-y from-y) (stretch-p nil)
(font current-font) (alu tv:char-aIuf) of
tv:graphics-mixin

:draw-string draws a character string between two points. It returns the
location of the last character printed.

The string can contain either normal printing characters or art-fat-string
characters with font change codes. The left baseline point of each character
lies on the line between the two points defined by from-x, from-y and
toward-x, toward-yo It uses the baseline rather than the upper-left comer to
ensure that strings with mixed. fonts line up properly.

The string is always written from left to right, starting at the leftmost point,
regardless of whether that is the fIrst point or the second point. When the
string is longer than the line between the points, the full string appears
anyhow.

toward-x, toward-y Controls the direction in which printing takes place.
The default values specify ordinary horizontal output.

122

Programming the User Interface March 1985

stretch-p

font

alu

(send (tv:window-under-mouse) ':draw-string
"hi there" 600 50)

Controls the spacing of the characters. When it is nil
(the default), the characters appear literally, with no
change to the spacing. Otherwise, the distance
between the characters is adjusted so that the string
starts and ends as close to the two points as possible.

Specifies the font to use. The default is the current
font for the window.

Controls how the pixels being drawn combine with
pixels already in the window. The default is the
tv:char-aluf for the window.

This message is useful for placing text at absolute screen positions (as

opposed to treating the window as a stream), for labelling graphs, or for
putting text into pictures.

12.4.6 Drawing Lines on Windows

:draw-line xl y1 x2 y2 &optional alu (draw-end-point t) of Method
tv:graphics-mixin

Draw a line on the window with endpoints (xl, y1) and (x2, y2). If
draw-end-point is specified as nil, do not draw the last point. This is useful
in cases such as xoring a polygon made up of several connected line
segments.

:draw-lines alu xO yO xl y1 ... xn yn of tv:graphics-mixin Method
Draw n lines on the screen, the first with endpoints (xO, yO) and (xl, y1), the
second with endpoints (xl, y1) and (x2, y2), and so on. The points between
lines are drawn exactly once and the last endpoint, at (xn, yn), is not drawn.

:draw-dashed-line from-x from-y to-x to-y &optional (alu Method
tv:char-aluf) (dash-spacing 20.)
space-literaUy-p (offset 0) dash-length of
tv:graphics-mixin

:draw-dashed-line draws a dashed line along the line lying between two
points. All the dashes are the same length; all the spaces between the
dashes are the same length. (The spaces, however, need not be the same
length as the dashes). The spacing and lengths of the dashes are controlled
by separate arguments.

alu Controls how the pixels being drawn combine with pixels
already in the window. The default is the tv:char-aluf
for the window.

123

March 1985 Using the Window System

dash-spacing Specifies the distance from the beginning of one dash to
the beginning of the next dash. It is expressed in pixels.
The default is 20. (The spacing between dashes is
dash-spacing minus dash-length.) This specifies the
"frequency" of the line.

space-literaUy-p Controls what happens when the distance between the
points, given the specified spacings, would not produce a
full-size dash connected to the endpoint.

offset

The default value, nil, allows the size of dash-spacing to
be adjusted slightly so that the dashes are all of equal size
and both endpoints look the same, as far as dash length
goes. In this case, the dash-length is always exactly half
of the dash-spacing; any values for offset and dash-length
are ignored.

The value t means to use dash-spacing exactly, with no
adjustment. The endpoint might or might not have a
dash connected to it, depending on the exact distances
involved.

Specifies a distance (in pixels) from the starting point
(from-x, (rom-y) for the beginning of the first dash. This
lets you control the "phase" of the dashed line.

dash-length Specifies the length of the line segments, in pixels. It
must be less than dash-spacing. This lets you control the
"duty cycle" of the line. The default is half the value of
dash-spacing.

You can make complex dashing by using :draw-dashed-line many times
with space-literaUy-p as t. For example:

(progn
(send terminal-io ':draw-dashed-line 0 0 200. 200. tv:alu-ior 25. t 0 10.)
(send terminal-io ':draw-dashed-line 0 0200. 200. tv:alu-ior 25. t 15. 5.»

This gives you alternating long and short dashes. Because the nil value for
space-literaUy-p changes the spacing, this technique does not work well when
space-literaUy-p is nil.

:draw-curve x-array y-array &optional end alu of Method
tv:graphics-mixin

Draw a sequence of connected line segments. The x and y coordinates of the
points at the ends of the segments are in the arrays x-array and y-array.
The points between line segments are drawn exactly once and the point at
the end of the last line is not drawn at all; this is especially useful when alu
is tv:alu-xor. The number of line segments drawn is 1 less than the length
of the arrays, unless a nil is found in one of the arrays frrst in which case

124

Programming the User Interface March 1985

the lines stop being drawn. If end is specified it is used in place of the
actual length of the arrays.

:draw-closed-curve x-array y-array &optional end (alu Method
tv:char-aIuf) of tv:graphics-mixin

:draw-closed-curve draws a sequence of connected line segments, using the
points in x-array and y-array as the x and y coordinates for the end-points of
the lines. It ensures that each particular point is drawn only once, which is
necessary for producing a connected line with tv:aIu-xor. It plots the points
in the arrays until end elements or until it encounters nil in either of the
arrays. The default for end is the length of x-array. alu specifies how the
pixels being drawn combine with those already there. It plots the points in
the arrays until end elements or until it encounters nil in either of the
arrays.

:draw-closed-curve is the same as :draw-curve except that it closes the
figure by joining the first and last points.

:draw-wide-curve x-array y-array width &optional end alu of
tv:graphics-mixin

Like :draw-curve but width is how wide to make the lines.

12.4.7 Drawing Polygons and Circles on Windows

Method

:draw-rectangle width height x y &optional alu of tv:sheet Method
Draw a filled-in rectangle with dimensions width by height on the window
with its upper left corner at coordinates (x, y).

:draw-triangIe xl yl x2 y2 x3 y3 &optional alu of Method
tv:graphics-mixin

Draw a filled-in triangle with its corners at (xl, yl), (x2, y2), and (x3, y3).

:draw-circle center-x center-y radius &optional alu of
tv:graphics-mixin

Draw the outline of a circle specified by its center and radius.

Method

:draw-circular-arc center-x center-y radius start-theta end-theta Method
&optional (alu tv:char-aIuf) of
tv:graphics-mixin

Draws a circular arc for the circle centered at center-x, center-y with radius
radius. It draws the part of the circle swept counterclockwise from the
starting angle to the finishing angle. The angles are assumed to be in
radians and are reduced mod 2pi before drawing. For example, drawing from
pil4 to -pil4 draws a "C". The same "C" appears when you draw from pil4 to
7pil4.

For tv:aIu-xor, the behavior with respect to points that would fallon the
same pixel is not defined.

125

March 1985 Using the Window System

:draw-filled-in-circle center-x center-y radius &optional alu of
tv:graphicsMmixin

Method

Draw a filled-in circle specified by its center and radius.

:draw-filled-in-sector center-x center-y radius theta-l theta-2 Method
&optional alu of tv:graphics-mixin

Draw a "triangular" section of a filled-in circle, bounded by an arc of the
circle and the two radii at theta-l and theta-2. These angles are in radians;
an angle of zero is the positive-X direction, and angles increase counter­
clockwise.

:draw-regular-polygon xl yl x2 y2 n &optional alu of Method
tv:graphics-mixin

Draw a filled-in, closed, convex, regular polygon of (abs n) sides, where the
line from (xl, yl) to (x2, y2) is one of the sides. If n is positive then the
interior of the polygon is on the right-hand side of the edge (that is, if you
were walking from (xl, yl) to (x2, y2), you would see the interior of the
polygon on your right-hand side; this does not mean "toward the right-hand
edge of the window").

12.4.8 Drawing Splines on Windows

:draw-cubic-spline px py Z &optional curve-width alu cl c2 Method
pl-prime-x pl-prime-y pn-prime-x pn-prime-y
of tv:graphics-mixin

Draw a cubic spline curve that passes through a sequence of points. The
arrays px and py hold the x and y coordinates of the sequence of points; the
number of points is determined from the active length of px. Through each
successive pair of points, a parametric cubic curve is drawn with the
:draw-curve message, using z points for each such curve. If curve-width is
provided, the :draw-wide-curve message is used instead, with the given
width. The cubics are computed so that they match in position and frrst
derivative at each of the points. At the end points, there are no derivatives
to be matched, so the caller must specify the boundary conditions. cl is the
boundary condition for the starting point, and it defaults to :relaxed; c2 is
the boundary condition for the ending point, and it defaults to the value of
cl. The possible values of boundary conditions are:

: relaxed
Make the derivative zero at this end.

: clamped
Allow the caller to specify the derivative. The arguments pl-prime-x
and pl-prime-y specify the derivative at the starting point, and are
only used if cl is :clamped; likewise, pn-prime-x and pn-prime-y
specify the derivative at the ending point, and are only used if c2 is
:clamped.

126

Programming the User Interface March 1985

:cyclic Make the derivative at the starting point and the ending point be
equal. If c1 is :cyclic then c2 is ignored. To draw a closed curve
through n points, in addition to using : cyclic , you must pass in px
and py with one more than n entries, since you must pass in the first
point twice, once at the beginning and once at the end.

: anti-cyclic
Make the derivative at the starting point be the negative of the
derivative at the ending point. If c1 is :anticyclic then c2 is ignored.

12.4.9 Primitives for Drawing Onto Arrays

The following functions are primitives for drawing pictures onto arrays. You should
only use them on arrays and not directly on windows.

sys:%draw-rectangle width height x y alu sheet-or-array Function
This is analogous to the :draw-rectangle message to tv:stream-mixin.

sys:%draw-line xl y1 x2 y2 alu draw-end-point sheet-or-array Function
This is analogous to the :draw-line message to tv:graphics-mixin.

sys:%draw-triangle xl y1 x2 y2 x3 y3 alu sheet-or-array Function
This is analogous to the :draw-triangle message to tv:graphics-mixin.

12.5 Notifications

12.5.1 Overview of Notifications

Notifications are messages that a process sends to the user asynchronously to inform
the user of some change in the state of the process. Some examples:

• By default the garbage collector notifies the user as storage is used up and
when the dynamic garbage collector flips and flushes oldspace.

• If a window's deexposed typeout action is :notify, the user is notified when an
attempt is made to type out on that window.

• Converse messages can be received as notifications.

A process uses tv:notify to notify the user. This function constructs a notification
and saves it on a queue. A central delivery process takes notifications from the
queue and delivers them to the user. This process first gives the process associated
with the selected window a chance to accept the notification itself. If the process
associated with the selected window does not accept the notification within a short
time, the delivery process usually tries to display the notification itself, in either the
selected window or a pop-up window.

127

March 1985 Using the Window System

The notification delivery process tries to give the user process a chance to accept the
notification by storing the notification in a locative obtained by sending the
:notification-cell message to the selected window. If the user process wants to
accept notifications, it usually checks the contents of this cell as part of the
:input-wait wait function. The user process sends the :receive-notification
message to accept the notification. When it wants to display a notification it usually
calls sys:display-notification. By default, if the user process doesn't accept a
notification, the notification delivery process displays the notification in a pop-up
window. The user process can use the with-notification-mode special form to
control what happens to notifications it doesn't accept.

All notifications received since cold booting are displayed in a scroll window obtained
by pressing SELECT N or by calling display-notifications. You can display some or
all notifications by using the Show Notifications command.

display-notifications Function
Selects a scroll window that displays all notifications received since cold
booting.

12.5.2 Notifying the User

tv:notify window-of-interest format-control &rest format-args Function
Issues an asynchronous notification to the user. Constructs a notification
and pushes it onto a queue. A central notification delivery process delivers
the notification to the user. The text of the notification is constructed from
format-control and format-args. If window-of-interest is not nil, it is a
window to be made available via FUNCT I ON 0 S.

12.5.3 Receiving and Displaying Notifications

When a process notifies the user, the central notification delivery process gives the
process associated with the selected window a chance to accept the notification before
the delivery process tries to display the notification itself. The notification delivery
process stores the notification in a locative obtained by sending the
:notification-cell message to the selected window, unless a notification is already
there. In that case the notification delivery process usually tries to display the
notification itself.

A user process that wants to accept notifications should send the selected window a
:notification-cell message to find the locative that might contain a notification.
The process should wait (usually in an :input-wait wait function) until the locative
contains something other than nil.

When a notification cell contains a notification, a process can accept the notification
by sending the selected window a :receive-notification message. If the process
wants to display the notification, it usually passes it on to the function
sys:display-notifications.

128

Programming the User Interface March 1985

:notification-cell Message
This message to an interactive stream returns the locative in which the
notification delivery process stores notifications. If some process notifies the
user, the notification delivery process gives the process associated with the
selected window a chance to accept the notification. It does this by trying to
store the notification in the locative returned by the :notification-cell
message to the selected window, unless the locative contains a notification
already. In that case the notification delivery process usually tries to display
the notification itself.

A user process that wants to accept notifications should find this locative by
sending the :notification-cell message to the selected window. It should
wait (usually in an :input-wait wait function) for the locative to contain
something other than nil. The user process can receive the notification by
sending the selected window a :receive-notification message.

:receive-notification Message
This message to an interactive stream returns a notification when one exists
in the stream's notification cell. The message checks the contents of the
locative returned by the :notification-cell message to the stream. When
the locative contains a notification, :receive-notification returns the
notification and stores nil in the locative. When the locative does not contain
a notification, :receive-notification returns nil.

sys:display-notification stream note &optional style window-width Function
Displays a notification on stream. note is the notification, returned by the
:receive-notification message to an interactive stream. The display
includes the time and the text of the message as specified in the arguments
to tv:notify.

style is nil or a keyword determining the style of the display:

nil

: stream

:window

Displays the time and the text of the message at the
current cursor position, with indentation. This is the
default.

Sends a :fresh-line message, then displays the time and
the text of the message, with indentation, in square
brackets, then displays a Newline. This style is for
merging the notification display with other output to the
stream.

Sends a :fresh-line message, then displays the time and
the text of the message, with indentation, in square
brackets. This style is for using the entire window to
display the notification. It assumes the window has been
cleared first.

March 1985

:pop-up

129

Using the Window System

Displays the time and the text of the message at the
current cursor position, with indentation, then sends a
:fresb-line message. This style is used by the notification
delivery process to display notifications in a pop-up window.

window-width is nil or the number of characters available on a line to display
the notification. If window-width is nil or not supplied, the default is the
result of sending the stream a :size-in-cbaracters message. This is used
only to determine how much to indent lines other than the first in the
notification. If window-width is about 110 or more, lines are indented to the
beginning of the text of the message (following the time). If window-width
is about 100 or less, lines are indented only one character. You can supply a
large window-width to increase the indentation in a narrow window, or
supply a small window-width to decrease the indentation in a wide window.

If style is :stream, :window, or :pop-up and if a "window of interest" was
supplied as the first argument to tv:notify, a message is displayed that
informs the user that FUNCTION 0 S selects the window of interest.

sys:display-notification does not return any interesting values, unless style
is :pop-up. In that case it returns the X and Y coordinates, in pixels, of the
beginning of the line following the text of the notification.

Following is a simple example of a command loop that waits for input, a notification,
or a new selected-pane. When a notification arrives, it displays it in a pane reserved
for notifications. When input arrives, it just displays a representation of the input
in the selected pane.

130

Programming the User Interface March 1985

(defun my-top-level (frame)
(let «notification-pane (send frame :get-pane 'notification-pane»)

(error-restart-1oop «error sys:abort) "Hy top level")
(let «selected-pane (send frame :selected-pane»

(note»
(when selected-pane

(send selected-pane :input-wait nil
"(lambda (note-cell)

(declare (sys:downward-function»
(or (neq selected-pane (send frame :se1ected-pane»

(not (null (location-contents note-cell»»)
(send selected-pane :notification-ce11»

(cond «neq selected-pane (send frame :selected-pane»)
«setq note (send selected-pane :receive-notification»
(sys:disp1ay-notification notification-pane note :stream»

(t
(let «char (send selected-pane :any-tyi-no-hang»)

(cond «null char»
«fixp char)
(format selected-pane "-&Character: -C" char»

«listp char)
(format selected-pane "-&B1ip: -S" char»

(t (format selected-pane "-&Unknown object: -S" char»»»»»)

After storing a notification in the selected window's notification cell, the notification
delivery process gives the process associated with the selected window some time to
accept the notification. The amount of time is determined by the variable
tv:*notification-deliver-timeout* .

tv:*notification-deliver-timeout* Variable
The length of time, in sixtieths of a second, that the notification delivery
process waits for the process associated with the selected window to accept a
notification. If the selected window's process does not accept the notification
during this time, the delivery process takes the notification back and usually
tries to display it itself. Default: 180. (three seconds).

If the process associated with the selected window does not accept a notification
within the specified time, or if the window's notification cell already contains a
notification, the window's notification mode determines what the delivery process
does with the notification. You can use the :notification-mode message to get the
notification mode and the :set-notification-mode message to set it.

:notification-mode _Message
This message to an interactive stream returns the stream's notification mode.
The notification mode determines what the notificatiorr clelivery process does
with a notification when the process associated with the stream doesn't
accept it:

March 1985

:pop-up

:blast

:ignore

nil

131

Using the Window System

The notification is displayed in a pop-up window. This is
the default.

The notification is displayed on the stream.

The notification is ignored but is added to the notification
history for SELECT N and the Show Notifications command.

The same as :pop-up.

:set-notification-mode new-mode Message
This message to an interactive stream sets the stream's notification mode.
The notification mode determines what the notification delivery process does
with a notification when the process associated with the stream doesn't
accept it. new-mode can be a keyword or nil:

:pop-up

:blast

: ignore

nil

The notification is displayed in a pop-up window. This is
the default.

The notification is displayed on the stream.

The notification is ignored but is added to the notification
history for SELECT N and the Show Notifications command.

The same as :pop-up.

If you want to execute some code with a stream's notification mode bound to some
value, use the special form with-notification-mode.

with-notification-mode <new-mode &optional stream) &body body Special Form
Executes body with the notification mode of stream bound to new-mode.
stream defaults to standard-output. The notification mode determines what
the notification delivery process does with a notification when the proces.s
associated with stream doesn't accept it. new-mode can be a keyword or nil:

:pop-up

:blast

: ignore

nil

The notification is displayed in a pop-up window. This is
the default.

The notification is displayed on the stream.

The notification is ignored but is added to the notification
history for SELECT N and the Show Notifications command.

The same as :pop-up.

12.5.3.1 Pop-up Notifications

When a notification is displayed in a pop-up window, the user is alerted with a beep
and given some time to notice the beep and stop typing. Until that time elapses, all
typein is directed to the previously selected window, except that the user can press
ABORT to deexpose the pop-up window immediately. The amount of time is
determined by the variable tv:unexpected-select-delay.

132

Programming the User Interface March 1985

tv:unexpected-select-delay Variable
The amount of time, in sixtieths of a second, that a user is given to notice a
pop-up notification and stop typing. Until that time has elapsed, all typein is
directed to the previously selected window. During this time the user can
press ABORT to deexpose the pop-up window. A value of nil means no delay
time and no display of the message that typing any character deexposes the
pop-up window. Default: 180. (three seconds).

After the select delay, typing any character or selecting another window deexposes
the pop-up window. If a "window of interest" was supplied as the first argument to
tv:notify, a message is displayed that informs the user that FUNCTION 0 S or a
mouse click on the pop-up window selects the window of interest. If another
notification arrives while the pop-up window is exposed, the notification is displayed
on the window. If after a time the user has typed nothing, the pop-up window is
deexposed automatically. The amount of time the pop-up window remains exposed is
determined by the variable tv:*notification-pop-down-delay*.

tv:*notification-pop-down-delay* Variable
The amount of time, in sixtieths of a second, that a notification pop-up
window remains exposed if the user types no characters to the window. A
value of nil means that the window remains exposed indefmitely. Default:
54000. (15 minutes).

12.6 Input From Windows

12.6.1 Windows as Input Streams

A window can be used as if it were the keyboard of a computer terminal, and it can
act as an input stream. The flavor tv:stream-mmn implements the messages of
the Lisp Machine input stream protocol. The tv:stream-mmn flavor is a
component of the tv:window flavor.

tv:stream-mixin Flavor
This flavor allows a window to function as an interactive stream. It should
be mixed into any window that can be used for interacting with a user, and
particularly into any window that can become the value of terminal-io. It
gives the window an 110 buffer, allows the window to handle input messages,
and provides the window with input editing.

tv:stream-mmn includes si:interactive-stream, and windows support all the
operations that interactive streams in general do: See the section "Interactive
Streams", page 1. Windows have specialized versions of some input operations: See
the section "Messages for Input From Windows", page 134.

The reason you do input from windows rather than just from the keyboard is so

133

March 1985 Using the Window System

that many programs can share the keyboard without getting in each other's way. If
two processes try to read from the keyboard at the same time, they can do it by
going through windows. Characters from the keyboard go only to the selected
window, and not to any of the others; this way, you can control which process you
are typing at, by selecting the window you are interested in.

If a process tries to do input from a window that does not have any characters in its
input buffer, what happens depends on the window's deexposed typein action. It
may be either :normal or :notify. If the deexposed typein action is :normal,
and/or the window is exposed, then the process just waits until something appears in
the input buffer. If the deexposed typein action is :notify and the window is not
exposed, then the user is notified with a message like "Process X wants typein", and
the window is "made interesting" so that FUNCTION (3 S can select it.

Reading characters from a window normally returns an integer that represents a
character in the Lisp Machine character set, possibly with extra bits that correspond
to the CONTROL, META, SUPER, and HYPER keys. For information on the format of such
integers and the symbolic names of the bit fields: See the section "The Character
Set" in Reference Guide to Streams, Files, and 110.

Note that reading characters from a window does not echo the characters; it does
not type them out. If you want echoing, you can echo the characters yourself, or
call the higher-level functions such as tyi, read, and readline; these functions
accept a window as their stream argument and will echo the characters they read.

Every window (that has tv:stream-mixin as a component) has an 110 buffer that
holds characters that are typed by the user before any program reads the characters.
When you type a character, it enters this buffer, and stays there until a program
tries to read characters from. this window. There are some messages below that deal
with the 110 buffer, letting you clear it and ask whether there is anything in it.

Normally, integers get into the 110 buffer because characters were typed on the
keyboard. However, you can also get any Lisp object into a window's 110 buffer
under program control, by sending a :force-kbd-input messa~ to the window.
One common use of this feature is for the mouse process to tell a user process about
activity on the mouse buttons. That is how characters with the %%kbd-mouse bit
can get read from the window. It is possible to put Lisp objects other than integers
into an IJO buffer; by convention, such objects are usually lists whose first element
is a symbol saying what kind of a "message" this object is. (Such lists are
sometimes called blips.) You can also get the mouse to send blips instead of
integers, in order to find out the mouse position at the time of the click. Using the
mouse is explained later on.

You can explicitly manipulate 110 buffers in order to get certain advanced
functionality, by using the :io-buffer init option and the :io-buffer and
:set-io-buffer messages. One thing you can do is to make several windows use the
same 110 buffer; this is often used to make panes of a paned window all share the
same 110 buffer. Another thing you can do is put properties on the IJO buffer's
property list; this lets you request various special features.

134

Programming the User Interface March 1985

The console hardware actually sends codes to the Lisp Machine whenever a key is
depressed or lifted; thus, the Lisp Machine knows at all times which keys are
depressed and which are not. You can use the tv:key-state function to ask
whether a key is down or up. Also, you can arrange for reading from a window to
read the raw hardware codes exactly as they are sent, by putting a non-nil value of
the :raw property on the property list of the 110 buffer; however, the format of the
raw codes is complicated and dependent on the hardware implementation. It is not
documented here.

The window system intercepts some characters specially. Some are intercepted when
the user process is about to read the character from a window; others are
intercepted as soon as they are typed. In the first category, the
io-buffer-output-function of the 110 buffer defaults to
tv:kbd-default-output-function, which intercepts certain characters when they are
read. The value of the variable sys:kbd-intercepted-characters is a list of
characters that are intercepted and not returned as input from the window. These
characters default to #\abort, #\m-abort, #\suspend, and #\m-suspend For
more information: See the section "Intercepted Characters", page 15.

The second category of specially handled characters is those handled asynchronously.
See the section "Asynchronous Characters", page 139.

12.6.2 Messages for Input From Windows

Windows support all the input operations that interactive streams in general do: See
the section "Messages for Input From Interactive Streams", page 11. Windows have
specialized versions of some of these operations, mainly involved in reading characters
from 110 buffers.

:any-tyi &optional eot-action of tv:stream-mixin Method
Read and return the next character of input from the window, waiting if
there is none. Where the character comes from depends on the value of the
variable rubout-handler. Following is a summary of actions for each
possible value of rub out-handler:

nil

:read

:tyi

If the input buffer contains un scanned input, take the
next character from there. Otherwise, take the next
character from the window's 110 buffer.

If the input buffer contains un scanned input, take the
next character from there. Otherwise, if an activation blip
or character is present, return that. Otherwise, enter the
input editor.

Take the next character from the window's 110 buffer.

If eot-action is not nil, an error is signalled when an end-of-file is
encountered. Otherwise, the method returns nil when an end-of-file is
encountered. The default for eot-action is nil.

135

March 1985 Using the Window System

:any-tyi-no-hang &optional eot-action of tv:stream-mixin Method
Check the window's I/O buffer and return the next character if it is
immediately available. If no characters are immediately available, return nil.
It is an error to call this method from inside the input editor (that is, if the
value of rubout-handler is not nil). eot-action is ignored. This is used by
programs that continuously do something until a key is typed, then look at
the key and decide what to do next.

:untyi ch of tv:stream-mixin Method
Return ch to the proper buffer so that it will be the next character returned
by :any-tyi or :tyi. ch must be the last character that was :tyi'ed, and it is
illegal to do two :untyi's in a row. Where ch is put depends on the value of
the variable rubout-handler. Following is a summary of actions for each
possible value of rub out-handler:

nil

:read

:tyi

If the input buffer contains scanned input, decrement the
scan pointer. Otherwise, put ch back into the window's
I/O buffer.

Decrement the input editor scan pointer.

Put ch back into the window's I/O buffer.

This method is used by parsers that look ahead one character, such as read.

:listen of tv:stream-mixin Method
Return t if there are any characters available to :any-tyi or :tyi, or nil if
there are not. For example, the editor uses this to defer redisplay until it
has caught up with all of the characters that have been typed in.

:clear-input of tv:stream-mixin Method
Clear this window's input and I/O buffers. This flushes all the characters
that have been typed at this window, but have not yet been read.

12.6.3 SELECT and FUNCTION Keys

tv:add-function-key char function documentation &rest options Function
Adds char to the list of keys that can follow the FUNCTION key. Following is
an explanation of the arguments:

char

function

The character (an integer) that should be typed after
FUNC"TION to get the new command. Lower-case letters are
converted to upper case.

A specification for the action to be taken when the user
presses FUNCTION char. function can be a symbol or a list:

• Symbol: The name of a function to be applied to one

136

Programming the User Interface March 1985

documentation

options

argument. The argument is the numeric argument
to FUNCTION char (an integer) or nil if the user
supplied none.

• List: A form to be evaluated.

{unction is applied or evaluated in a newly created process
unless you supply the :keyboard-process option (see
below).

A form to be evaluated when the user presses
FUNCTION HELP to produce documentation for the command.
The form should return a string, a list of strings, or nil
(of course, documentation can just be a string or nil):

• String: One line of text describing this command for
FUNCTION HELP.

• List of strings: Each string is a line of text for
FUNCTION HELP to print successively in describing this
command. Usually documentation is a Lisp form that
looks like '("line I" "line 2" •••).

• nil
FUNCTION HELP prints nothing describing this
command.

A series of alternating keywords and values. Possible
options are :keyboard-process, :process-name,
:process, and :typeahead:

• :keyboard-process
{unction is applied or evaluated in the keyboard
process instead of a newly created process. This
option exists because certain built-in commands must
run in the keyboard process. You should not use
this option for new commands. The cost of creating
a new process is quite low.

• :process-name string
string is the 1. '\llle of the newly created process in
which {unction IS applied or evaluated. If you don't
supply this option or the :process option, the name
of the process is "Function Key".

• :process list
list is a list to be used as the first argument to

March 1985

137

Using the Window System

process-run-function, called to create a new process
in which function is applied or evaluated. This
option takes precedence over :process-name.

• :typeahead
Everything the user types before pressing the
FUNCTION key is treated as typeahead to the currently
selected window. Use this option with commands
that change windows to ensure that the user's typed
input goes to the 110 buffer of the expected window.

Here is an example of a call to tv:add-function-key:

(tv:add-function-key #\refresh 'tv:kbd-screen-redisplay
"Clear and redisplay all windows.")

See the variable tv:*function-keys*, page 137.

tv:*function-keys* Variable
The value of this variable is an alist, each entry of which describes a
subcommand of the FUNCTION key. Entries are of the form:

(char function documentation optionl option2 ...)

For an explanation of the components of the entries: See the function
tv:add-function-key, page 135. Use tv:add-function-key to add a new
entry or redefine an existing one rather than changing the value ot
tv:*function-keys· yourself.

tv:add-select-key char flavor name &optional (create-p t) Function
Adds char to the list of keys that can follow the SELECT key. Following is an
explanation of the arguments:

char

flavor

The character (an integer) that should be typed after
SELECT to get the new command. Lowet-case characters
are converted to upper case.

A specification for the window to be selected when the
user presses SELECT char. flavor can be a symbol, an
instance, or a list:

• Symbol: The name of a flavor. The SELECT
command searches the list of previously selected
windows and selects a window of flavor flavor if it
finds one. <flavor can be the name of a component
flavor of the window, not just the instantiated
flavor.} Otherwise, if the currently selected window
is of flavor flavor, it beeps. Otherwise, it takes the
actions specified by create-p.

138

Programming the User Interface March 1985

name

create-p

• Instance: A window. The SELECT command selects
that window.

• List: A form to be evaluated (in the SELECT
command's newly created process). The form should
return a window to be selected or a symbol that is
the name of a flavor of window to be selected.

A string giving the colloquial name of the program to be
selected. name is printed by SELECT HELP.

A specification for actions that the SELECT command should
take if it cannot find a previously selected window of flavor
flavor and if the currently selected window is not of flavor
flavor. create-p can be nil, t, another symbol, or a list:

• nil: Beeps.

• t: Calls tv:make-window with no options to create
a window of flavor flavor. Selects that window.

• Another symbol: The name of a flavor. Calls
tv:make-window with no options to create a
window of flavor create-po Selects that window.

flavor and create-p can be names of different flavors.
For example, flavor might be the name of a moon
that is a component of several flavors, all of which
are suitable flavors of window to select.

• List: A form to be evaluated (in the SELECT
command's newly created process). The form
presumably selects a window.

If the user presses char with the c- modifier (after pressing SELECT), and if
flavor is a symbol that names a flavor or is a form that returns the name of
a flavor, the SELECT command does not search for previously selected windows
of flavor flavor. Instead, it takes the actions specified by create-po But if
flavor is a window, the SELECT command selects that window even if the user
presses char with the c- modifier.

Here is an example of a call to tv:add-select-key:

(tv:add-select-key lIE 'zwei:zmacs-frame "Editor")

See the variable tv:*select-keys*, page 139.

139

March 1985 Using the Window System

tv:*select-keys* Variable
The value of this variable is an alist, each entry of which describes a
subcommand of the SELECT key. Entries are of the form:

(char flavor name create-p)

For an explanation of the components of the entries: See the function
tv:add-select-key, page 137. Use tv:add-select-key to add a new entry or
redefine an existing one rather than changing the value of tv:*select-keys*
yourself.

12.6.4 Asynchronous Characters

The FUNCTION and SELECT keys are always intercepted as soon as they are typed;
they cause the Keyboard process to take special action to handle the command that
the user is giving. You can add your own FUNCTION and SELECT commands, using
the functions tv:add-function-key and tv: add-select-key. See the section "SELECT

and FUNCTION Keys", page 135.

Other characters can also be intercepted as soon as they are typed. A special system
process called the keyboard process calls a user-defined function as soon as the key is
pressed. The main process of the program is left undisturbed. This function runs
in parallel with the main program and could communicate with it.

Asynchronous character handling is available to any window that includes
tv:stream-mixin. The window has a list that associates keyboard characters with
functions. The default list contains c-ABORT, c-SUSPEND, c-M-ABORT, and
C-M-SUSPEND. The default actions are the same as those of the corresponding keys
without c- modifiers, except that the window's process is sent an :interrupt
message so that the actions take place immediately.

The keyboard process checks each character coming in to see if it is defined as an
asynchronous character for the selected window. When it is, the keyboard process
calls the associated function in the context of the keyboard process.

The function that runs as a result of an asynchronous character is running in the
keyboard process. It is called with two arguments, the character and self. It
should be very short and must not do any 110. An error in one of these functions
would break the keyboard process and the keyboard along with it and you would
have to warm boot. To avoid any possibility of errors, you can have the function
create a new process with process-ron-function and make the new process handle
the real work.

You can set up your own handling of asynchronous characters by using the
:asynchronous-character-p, :handle-asynchronous-character,
:add-asynchronous-character, and :remove-asynchronous-character messages
and the :asynchronous-characters init option for si:interactive-stream. See the
section "Interactive-stream Operations for Asynchronous Characters", page 17.

140

Programming the User Interface March 1985

12.7 TV Fonts

12.7.1 Using TV Fonts

On the Symbolics Lisp Machine, characters can be typed out in any of a number of
different typefaces. Some text is printed in characters that are small or large,
boldface or italic, or in different styles altogether. Each such typeface is called a
font. A font is conceptually an array, indexed by character code, of pictures showing
how each character should be drawn on the screen. The Font Editor (FED) is a
program that allows you to create, modify, and extend fonts.

A font is represented inside the Lisp Machine as a Lisp object. Each font has a
name. The name of a font is a symbol, usually in the fonts package, and the
symbol is bound to the font. A typical font name is tr8. In the initial Lisp
environment, the symbol fonts:trS is bound to a font object whose printed
representation is something like:

#

The initial Lisp environment includes many fonts. Usually there are more fonts
stored in BFD files in file computers. New fonts can be created, saved in BFD files,
and loaded into the Lisp environment; they can also simply be created inside the
environment.

Drawing of characters in fonts is done by microcode and is very fast. The internal
format of fonts is arranged to make this drawing as fast as possible. This format is
described later, but you almost certainly do not need to worry about it.

You can control which font is used when output is done to a window. Every
window has a font map and a current font. The font map is conceptually an array
of fonts; with a small nonnegative number, the font map associates a font. The
current font of a window is always one of the fonts in the window's font map.
Whenever output is done to a window, the characters are printed in the current
font. You can change the font map and the current font of a window at any time
by sending the appropriate messages~

Before we go into the details of these messages, there is a little issue to clear up.
Different kinds of screen require different kinds of fonts. The two kinds of screens
currently supported are black-and-white screens with one bit per pixel, and color
screens with four bits per pixel. Color screens with eight bits per pixel will certainly
be supported in the near future, and other kinds of screen may appear. However, it
is nice to be able to write programs that will work no matter what screen their
window is created on. The problem is that if you write a program that specifies
which fonts to use by actually naming specific fonts, then the program will only
work if the window that you are using is on the same kind of screen that the fonts
you are using has been designed for.

To solve this problem, a program does not have to specify the actual font to be used.

141

March 1985 Using the Window System

Instead, it specifies a certain symbol that stands for a whole collection of fonts. All
of these fonts are the same except that they work on different kinds of screens.
The symbol that you use is the name of the member of the collection that works on
the black-and-white screen. In other words, when you want to specify a font,
always use the name of a black-and-white font rather than a font itself. Every
screen knows how to understand these symbols and find an appropriate font to use.
This symbol is called a font descriptor, because it describes a font rather than
actually being a font.

In the messages below, where the message expects to be passed a font descriptor,
you normally pass a symbol as explained above. You may also pass in a font, in
which case the symbol that names that font will be used as the font descriptor. In
other words, if you pass in a font explicitly, that font itself might not be used; if you
pass in a black-and-white font to a window on a color screen, the name of the black­
and-white font will be used as a font descriptor and a color version of the font will
be found.

The functions that understand font descriptors have some cleverness in order to
make life easier for you. If you pass in the name of a font that is not loaded into
the Lisp environment, an attempt will be made to load it from the file server, using
the name of the font as the name of the fue, leaving the version and type
unspecified, using the load function. Also, the color screen knows how to create
color versions of fonts on the fly if they do not already exist. Either of these things
may make your program run slowly the fIrst time you run it, and so, if you care,
you can load the file yourself, and create a color version of the font yourself.

Every screen has a default font. When a window is created, by default, all elements
of its font map are this default font, and the current font is this font.

12.7.2 Font Messages to Windows

:font-map of tv:sheet Method
Returns the font map of the window. The object revlrned is the array that
is actually being used to represent the font map inside the window. You
should not alter anything about this array, since the window depends on it in
order to function correctly. To change the font map, use the :set-font-map
message.

:set-font-map new-map of tv:sheet Method
Set the font map to contain the fonts given in new-map. Return the array
of fonts that actually represents the font map inside the window (don't mess
with this array!). new-map may be an array of font descriptors, in which
case this array is installed as the new internal array of the window, and the
font descriptors are replaced by fonts. new-map may also be a list of font
descriptors, in which case the array is created from the list in the style of
fill array, with the last element of the list filling in the remaining elements

142

Programming the User Interface March 1985

of the array if any (the array is made at least 26. elements long, or long
enough to hold all the elements of the list). If new-map is nil, all the
elements of the map are set to the default font of the screen. The current
font is set to zero (the first font in the list or array). The line height and
baseline of the window are adjusted appropriately.

:set-font-map-and-vsp new-map new-vsp of tv:sheet
Changes the font map and vsp of the window.

Method

new-map can be an array of font descriptors or a list of font descriptors, as
with the argument to the :set-font-map message. However, if the new-map
argument to :set-font-map-and-vsp is nil, the font map is not changed.

new-vsp is an integer representing the new vsp, or nil, meaning not to
change the vsp.

:font-map new-map (for tv:sheet) 1nit Option
This option lets you initialize the font map. new-map is interpreted the
same way it is interpreted by the :set-font-map message.

:current-font of tv:sheet Method
Returns the current font, as a font object.

:set-current-font new-font of tv:sheet Method
Set the current font of the window. new-font may be a number, in which
case that element of the font map becomes the current font. It may also be
a font descriptor, in which case the font that the descriptor describes is used,
unless that font is not in the font map, in which case an error is signalled.
You may only select a font that is already in the font map.

:baseIine of tv:sheet Method
Returns the maximum baseline of all the fonts in the font map. The bases
of all characters will be so aligned as to be this many pixels below the top of
the line on which the characters are printed. In other words, when a
character is drawn, it will be drawn below the cursor position, by an amount
equal to the difference between this number and the baseline of the font of
the character.

12.7.3 Standard TV Fonts

You can use Show Font HELP in the Lisp Listener or the List Fonts (M-X) command in
Zmacs to get a list of all the fonts that are currently loaded into the Lisp
environment. The fonts package contains the names of all fonts. Here is a list of
some of the useful fonts:

fonts:cptfont

fonts:jess14

This is the default font, used for almost everything.

This is the default font in menus. It is a variable-

March 1985

fonts:cptfonti

fonts:cptfontcb

fonts:medfnt

fonts:medfnb

fonts:hl12i

fonts:trlOi

fonts:hllO

fonts:hllOb

143

Using the Window System

width rounded font, slightly larger and more attractive
than medfnt.

This is a fIxed-width italic font of the same width and
shape as fonts:cptfont, the default screen font. It is
most useful for italicizing running text along with
fonts:cptfont.

This is a fixed-width bold font of the same width and
shape as fonts:cptfont, the default screen font.

This is a fixed-width font with characters somewhat
larger than those of cptfont.

This is a bold version of medfnt. When you use Split
Screen, for example, the [Do It] and [Abort] items are
in this font.

This is a variable-width italic font. It is useful for italic
items in menus; Zmail uses it for this in several menus.

This is a very small italic font. It is the one used by
the Inspector to say "More above" and "More below".

This is a very small font used for non selected items in
Choose Variable Values windows.

This is a bold version of hllO, used for selected items in
Choose Variable Values windows.

12.7.4 Attributes of TV Fonts

Fonts, and characters in fonts, have several interesting attributes.

Character Height Font Attribute

One attribute of each font is its character height. This is a nonnegative integer
used to figure out how tall to make the lines in a window. Each window has a
certain line height. The line height is computed by examining each font in the font
map, and finding the one with the largest character height. This largest character
height is added to the vertical spacing (in pixels) between the text lines (vsp)
specified for the window, and the sum is the line height of the window. The line
height, therefore, is recomputed every time the font map is changed or the vsp is
set. This ensures that any line has enough room to display the largest character of
the largest font and still leave the specified vertical spacing between lines. One
effect of this is that if you have a window that has two fonts, one large and one
small, and you do output in only the small font, the lines are still spaced far enough
apart to accommodate characters from the large font. This is because the window
system cannot predict when you might, in the middle of a line, suddenly switch to
the large font.

144

Programming the User Interface March 1985

Baseline Font Attribute

Another attribute of a font is its baseline. The baseline is a nonnegative integer
that is the number of raster lines between the top of each character and the base of
the character. (The base is usually the lowest point in the character, except for
letters that descend below the baseline, such as lowercase p and g.) This number is
stored so that when you are using several different fonts side-by-side, they are
aligned at their bases rather than at their tops or bottoms. So when you output a
character at· a certain cursor position, the window system first examines the baseline
of the current font, then draws the character in a position adjusted vertically to
make the bases of the characters all line up.

Character Width Font Attribute

The character width can be an attribute either of the font as a whole, or of each
character separately. If there is a character width for the whole font, it is as if each
character had that character width separately. The character width is the amount
by which the cursor position should be moved to the right when a character is
output on the window. This can be different for different characters if the font is a
variable-width font, in which a W might be much wider than an i. Note that the
character width does not necessarily have anything to do with the actual width of
the bits of the character (although it usually does); it is merely defined to be the
amount by which the cursor should be moved.

Left Kern Font Attribute

The left kem is an attribute of each character separately. Usually it is zero, but it
can also be a positive or negative integer. When the window system draws a
character at a given cursor position, and the left kern is nonzero, the character is
drawn to the left of the cursor position by the amount of the left kern, instead of
being drawn exactly at the cursor position. In other words, the cursor position is
adjusted to the left by the amount of the left kern of a character when that
character is drawn, but only temporarily; the left kern only affects where the single
character is drawn and does not have any cumulative effect on the cursor position.

Fixed-width Font Attribute

A font that does not have separate character widths for each character and does not
have any nonzero left kerns is called a fixed-width font. The characters are all the
same width and so they line up in columns, as in typewritten text. Other fonts are
called variable-width because different characters have different widths and things do
not line up in columns. Fixed-width fonts are typically used for programs, where
columnar indentation is used, while variable-width fonts are typically used for
English text, because they tend to be easier to read and to take less space on the
screen.

145

March 1985 Using the Window System

Blinker Width and Blinker Height Font Attributes

The blinker width and blinker height are two nonnegative integers that tell the
window system an attractive width and height to· make a rectangular blinker for
characters in this font. These attributes are completely independent of all other
attributes and are only used for making blinkers. Using a fixed width blinker for a
variable-width font causes problems; the editor actually readjusts its blinker width as
a function of what character it is on top of, making a wide blinker for wide
>characters and a narrow blinker for narrow characters. The easiest thing to do is
to use the blinker width as the width of the blinker. This works well with a flXed­
width font.

Chars-exist-tab/e Font Attribute

The chars-exist-table is nil if all characters exist in a font, or an art-boolean array.
This table is not used by the character-drawing software; it is for informational
purposes. Characters that do not exist have pictures with no bits "on" in them, just
like the Space character. Most fonts implement most of the printing characters in
the character set, but some are missing some characters.

12.7.5 Format of TV Fonts

The array leader of a font is a structure defined by defstruct. Here are the names
of the accessors for the elements of the array leader of a font.

font-name font Function
. The name of the font. This is a symbol whose binding is this font, and

which serves to name the font. The print-name of this symbol appears in
the printed representation of the font.

font-char-height font Function
The character height of the font; a nonnegative integer.

font-char-width font Function
The character width of the characters of the font; a nonnegative integer. If
the font-char-width-table of this font is non-nil, then this element is
ignored except that it is used to compute the distance between horizontal tab
stops; it would typically be the width of a lower-case "m".

font-baseline font Function
The baseline of this font; a nonnegative integer.

font-char-width-table font Function
If this is nil then all the characters of the font have the same width, and
that width is given by the font-char-width of the font. Otherwise, this is
an array of nonnegative integers, one for each logical character of the font,
giving the character width for that character.

146

Programming the User Interface March 1985

font-left-kern-table font Function
If this is nil then all characters of the font have zero left kern. Otherwise,
this is an array of integers, one for each logical character of the font, giving
the left kern for that character.

font-blinker-width font Function
The blinker width of the font.

font-blinker-height font Function
The blinker height of the font.

font-chars-exist-table font Function
This is nil if all characters exist in the font, or an art-boolean array with
one element for each character of the file. The element is t if the character
exists and nil if the character does not exist.

font-raster-height font Function
The raster height of the font; a positive integer.

font-raster-width font Function
The raster width of the font; a positive integer.

font-indexing-table font Function
If this is nil, then no characters of this font are wider than thirty-two bits.
Otherwise, this is the font indexing table of the font, an array with one
element for each logical character plus one more at the end (to show where
the last character stops) containing physical character numbers.

12.8 Blinkers

Each window can have any number of blinkers. The kind of blinker that you see
most often is a blinking rectangle the same size as the characters you are typing;
this blinker shows you the cursor position of the window. In fact, a window can
have any number of blinkers. They need not follow the cursor (some do and some
don't); the ones that do are called following blinkers; the others have their position
set by explicit messages.

Also, blinkers need not actually blink; for example, the mouse arrow does not blink.
A blinker's visibility may be any of the following:

:blink

:on or t

The blinker should blink on and off periodically. The rate at which it
blinks is called the half-period, and is an integer giving the number of
60ths of a second between when the blinker turns on and when it
turns off.

The blinker should be visible but not blink; it should just stay on.

147

March 1985 Using the Window System

:off or nil The blinker should be invisible.

Usually only the blinkers of the selected window actually blink; this is to show you
where your typein will go if you type on the keyboard. The way this behavior is
obtained is that selection and deselection of a window have an effect on the visibility
of the window's blinkers.

When the window is selected, any of its blinkers whose visibility is :OD or :off has
its visibility set to :blink. Blinkers whose visibility is t or nil are unaffected (that is
the difference between t and :OD, and between nil and :off); blinkers whose
visibility is :blink continue to blink.

Each blinker has a deselected visibility, which should be one of the symbols above;
when a window is deselected, the visibilities of all blinkers that are blinking (whose
visibility is currently :blink) are set to the deselected visibility.

Most often, blinkers have visibility :OD when their window is not selected, and
visibility :blink when their window is selected. In this case, the deselected visibility
is :OD.

Blinkers are used to add visible ornaments to a window; a blinker is visible to the
user, but while programs are examining and altering the contents of a window the
blinkers all go away. The way this works is that before characters are output or
graphics are drawn, the blinker gets turned off; it comes back later. This is called
opening the blinker. You can see this happening with the mouse blinker when you
type at a Lisp Machine. To make this work, blinkers are always drawn using
exclusive ORing. See the variable tv:alu-xor, page 119.

Every blinker is associated with a particular window. A blinker cannot leave the
area described by its window; its position is expressed relative to the window. When
characters are output or graphics are drawn on a window, only the blinkers of that
window and its ancestors are opened (since blinkers of other windows cannot possibly
be occupying screen space that might overlap this output or graphics). The mouse
blinker is free to move allover whatever screen it is on; it is therefore associated
with the screen itself, and so must be opened whenever anything is drawn on any
window of the screen.

The window system provides a few kinds of blinkers. Blinkers are implemented as
instances of flavors, too, and have their own set of messages that they understand,
which is distinct from the set that windows understand.

Positions of blinkers are always expressed in pixels, relative to the inside of the
window (that is, the part of the window that doesn't include the margins).

12.8.1 General Blinker Operations

tv:make-blinker window &optional (flavor Function
'tv:rectanguIar-blinker) &rest options

Create and return a new blinker. The new blinker is associated 'with the

148

Programming the User Interface March 1985

given window, and is of the given flavor. Other useful flavors of blinker are
documented. below. The options are initialization-options to the blinker flavor.
All blinkers include the tv:blinker flavor, and so init options taken by
tv:blinker will work for any flavor of blinker. Other init options may only
work for particular flavors.

:x-pos x (for tv:blinker> lnit Option
Along with the :y-pos init option, set the initial position of the blinker within
the window. This init option is irrelevant for blinkers that follow the cursor.
The initial position for nonfollowing blinkers defaults to the current cursor
position.

:y-pos y (for tv:blinker> lnit Option
Along with the :x-pos init option, set the initial position of the blinker within
the window. This init option is irrelevant for blinkers that follow the cursor.
The initial position for nonfollowing blinkers defaults to the current cursor
position.

:read-cursorpos of tv:blinker Method
Returns two values: the x and y components of the position of the blinker
within the inside of the window.

:set-cursorpos x y of tv:blinker Method
Set the position of the blinker within the inside of the window. If the
blinker had been following the cursor, it stops doing so, and stays where you
put it.

:follow-p t-or-nil (for tv:blinker> lnit Option
Set whether the blinker follows the cursor; if this option is non-nil, it does.
By default, this is nil, and so the blinker's position gets set explicitly.

:set-follow-p new-follow-p of tv:blinker Method
Set whether the blinker follows the cursor. If this is nil, the blinker stops
following the cursor and stays where it is until explicitly moved. Otherwise,
the blinker starts following the cursor.

:visibility symbol (for tv:blinker) lnit Option
Set the initial visibility of the blinker. This defaults to :blink.

:set-visibility new-visibility of tv:blinker Method
Set the visibility of the blinker. new-visibility should be one of :OD, nil, :off,
t, or :blink. For the meaning of these values: See the section "Blinkers",
page 146.

:deselected-visibility symbol (for tv:blinker) lnit Option
Set the initial deselected visibility. By default, it is :on.

149

March 1985 Using the Window System

:deselected-visibility of tv:blinker
Examine the deselected visibility of the blinker.

:set-deselected-visibility new-visibility of tv:blinker
Change the deselected visibility of the blinker.

Method

Method

:half-period n-60ths (for tv:blinker) Init Option
Set the initial value of the half-period of the blinker. This defaults to 15.

:half-period of tv:blinker
Examine the half-period of the blinker.

:set-half-period new-half-period of tv:blinker
Change the half-period of the blinker.

Method

Method

:set-sheet new-window of tv:blinker Method
Set the window associated with the blinker to be new-window. If the old
window is an ancestor or descendant of new-window, adjust the (relative)
position of the blinker so that it does not move. Otherwise, move it to the
point (0,0).

tv:sheet-following-blinker window Function
Take a window and return a blinker that follows the window's cursor. If
there isn't any, it returns nil. If there is more than one, it returns the first
one it fmds (it is pretty useless to have more than one, anyway).

tv:turn-off-sheet-blinkers window Function
Set the visibility of all blinkers on window to :off.

12.8.2 Specialized Blinkers

tv: rectangular-blinker Flavor
This is one of the flavors of blinker provided for your use. A rectangular
blinker is displayed as a solid rectangle; this is the kind of blinker you see in
Lisp Listeners and Editor windows. The width and height of the rectangle
can be controlled.

:width n-pixels (for tv:rectangular-blinker) Init Option
Set the initial width of the blinker, in pixels. By default, it is set to the
font-blinker-width of the zeroth font of the window associated with the
blinker.

:height n-pixels (for tv:rectangular-blinker) Init Option
Set the initial height of the blinker, in pixels. By default, it is set to the
font-blinker-height of the zeroth font of the window associated with the
blinker.

150

Programming the User Interface March 1985

:set-size new-width new-height of tv:rectanguIar-blinker
Set the width and height of the blinker, in pixels.

Method

tv:hollow-rectanguIar-blinker Flavor
This flavor of blinker displays as a hollow rectangle; the editor uses such
blinkers to show you which character the mouse is pointing at. This flavor
includes tv:rectangular-blinker, and so all of tv:rectangular-blinker's init
options and messages work on this too.

tV:box-blinker Flavor
This flavor of blinker is like tv:hollow-rectanguIar-blinker except that it
draws a box two pixels thick, whereas the tv:hollow-rectangular-blinker
draws a box one pixel thick. This flavor includes tv:rectanguIar-blinker,
and so all of tv:rectangular-blinker's init options and messages work on
this too.

tv:ibeam-blinker Flavor
This flavor of blinker displays as an I-beam (like a capital!). Its height is
controllable. The lines are two pixels wide, and the two horizontal lines are
nine pixels wide.

:height n-pixels (for tv:ibeam-blinker) Init Option
Set the initial height of the blinker. It defaults to the line-height of the
window.

tv:character-blinker Flavor
This flavor of blinker draws itself as a character from a font. You can
control which font and which character within the font it uses.

:font font (for tv:character-blinker) Init Option
Set the font in which to find the character to display. This may be anything
acceptable to the :parse-font-descriptor message of the window's screen.
You must provide this.

:char ch (for tv:character-blinker) Init Option
Set the character of the font to display. You must provide this.

:set-character new-character &optional new-font of Method
tv: character-blinker

Set the character to be displayed to new-character. Also, if new-font is
provided, set the font to new-font. new-font may be anything acceptable to
the :parse-font-descriptor message of the window's screen.

151

March 1985 Using the Window System

12.9 Mouse Input

12.9.1 Handling the Mouse

Along with the keyboard, the mouse can be used by any program as an input device.
The functions, variables, and flavors described below allow you to use the mouse to
do some simple things. To get advanced mouse behavior in your own programs, like
the way the editor gets the mouse to put a box around the character being pointed
at, you have to extend the window system by writing your own methods, which is
beyond the scope of this manual. Of course, you can invoke the built-in choice
facilities, such as menus and multiple-choice windows and so on; these high-level
facilities are described elsewhere: See the section "Window System Choice Facilities",
page 20l.

The window system includes a process called Mouse that normally tracks the mouse.
To track the mouse means to examine the hardware mouse interface, noting how
the mouse is moving, and adjust Lisp variables and the mouse blinker to follow the
position being indicated by the user. The mouse process also keeps track of which
window owns the mouse at any time. For example, when the mouse enters an
Editor window, the editor window becomes the owner, and to indicate this, the
blinker changes to a northeast arrow instead of a northwest arrow; this is all done
by the mouse process.

In general, the window that owns the mouse is the window that is under the
mouse; but since the windows are arranged in a hierarchy, generally a window, its
superior, its superior's superior, and so on, are all under the mouse at the same
time. So the window that owns the mouse is really the lowest window in the
hierarchy (farthest in the hierarchy from the screen) that is visible (it and all its
ancestors are exposed). If you move the window to part of the screen occupied by a
partially visible window, then one of its ancestors (often the screen itself) becomes
the owner. The screen handles singie-clicking on the left button by selecting the
window under it; this is why you can select partially visible windows with the mouse.

In general, the mouse process decides how to handle the mouse based on the flavor
of the window that owns the mouse. Some flavors handle the mouse themselves,
running in the mouse process, in order to be able to put little boxes and such
around things, usually to indicate what would happen if you were to click a button.
The Editor, the Inspector, menus, and other system facilities do this. For you to do
it yourself, you must extend the window system, creating your own methods to be
run in the mouse process; that is beyond the scope of this document. The flavor of
the window owning the mouse is also what usually controls the effect of clicking the
mouse buttons.

There are three ways for you to use the mouse without writing your own methods.
First, you can mix in flavors to your window to tell the mouse process to let you
know when the mouse is clicked. Secondly, you can watch the mouse moving and

152

Programming the User Interface March 1985

watch the buttons, letting the mouse process do the tracking. Finally, you can tum
off the mouse process and do your own tracking. You have to choose one of these
three ways to use the mouse; you can't mix them. Note that you can also use
various high-level facilities to get certain specific mouse behavior: You can create
windows with mouse-sensitive items <like the List Buffers (..... -X) command in the
Editor), menus, multiple-choice windows, and more.

tv:mouse-sheet Variable
The superior window, usually the main screen, that contains the position of
the mouse.

:handle-mouse of tv:essential-mouse Method
The mouse overseer sends this message when the mouse enters the window.
The method calls the default mouse handler, which returns when the mouse
moves outside the window.

:mouse-moves x y of tv:essential-mouse Method
The default mouse handler sends this message to the window when the
mouse has moved or buttons have been pushed. x and y represent the
current position of the mouse if it has moved or its position at the time of
the click if buttons have been pushed. The arguments are in the window's
outside coordinate system. The method tracks the mouse blinker.

:who-line-documentation-string of tv:sheet Method
The Scheduler periodically sends this message to the window owning the
mouse. The returned value is displayed in the mouse documentation line.
The value should be a string or, for no documentation, nil. This method
returns nil; supply your own to provide mouse documentation.

tv:mouse-set-blinker-cursorpos Function
Positions the mouse blinker at point (tv:mouse-x, tv:mouse-y) on
tv:mouse-sheet.

tv:mouse-wakeup Function
Causes tv:mouse-input to return as if the mouse had moved. This causes
the default mouse handler to send the window owning the mouse a
:mouse-moves message.

12.9.2 Mouse Clicks

Clicks on the mouse are sometimes encoded into an integer. Such integers are
normally forced into 110 buffers of windows and so they are distinguished from
regular keyboard characters by having the %%kbd-mouse bit turned on. If this bit
is set in an integer in an 110 buffer, it is interpreted as a mouse click. The
%%kbd-mouse-button field tells you which button was clicked; 0, 1, and 2 mean
the left, middle, and right buttons, respectively. The value in the

153

March 1985 Using the Window System

%%kbd-mouse-n-clicks field is one less than the number of times the mouse was
clicked. These characters can be typed in symbolically as #\mouse-b-n, where b is a
letter for which button (I, m, or r) and n is one greater than the
%%kbd-mouse-n-clicks field. For example, #\mouse-r-2 means a double-click on
the right-hand button.

One way to use the mouse is to get mouse clicks sent to your 110 buffer. This is
the easiest thing to do, though it is insufficient if your application requires that you
know more than just when the mouse is clicked. Blips representing mouse clicks are
sent by the :mouse-click method of tv:essential-mouse, a component of
tv:minimum-window. You can receive mouse blips, along with other characters, by
sending the window an :any-tyi message.

:mouse-click buttons x y of tv:essential-mouse Method
This method is called by the :mouse-buttons method of
tv:essential-mouse, which is called by the default mouse handler when
mouse buttons are pushed. buttons is an encoded integer representing the
buttons pushed; use reader macros like #\mouse-r-l to handle these integers
in your program. x and y represent the position of the mouse at the time of
the click, in the window's outside coordinates.

If the click is #\mouse-r-2, the :mouse-buttons method pops up a system
menu. Otherwise, if the window has an 110 buffer, :mouse-click sends it a
blip of the form (:mouse-button buttons window x y). In addition, if the
click is #\mouse-l-l, the window is selected.

:mouse-click methods are combined using :or combination, so the
:mouse-click method of tv:essential-mouse runs only if no earlier method
handles the message (and all earlier methods return nil).

The following example illustrates the use of the :any-tyi message to receive both
mouse and keyboard input to windows. It is a simple dra\ving program whose
command loop accepts single keystroke or mouse click commands. This program does
not require any special flavor of window in order to run. It runs ul)ing any window
that can become the value of terminal-joe

(defun draw-help ()
(send terminal-io ':clear-window)
(format t "Click the left mouse button to draw a square.-@

Click the middle mouse button to draw a circle.-@
Click the right mouse button to draw a triangle.-@
Type REFRESH to clear the screen.-@
Type END to exit.-@
Type HELP for documentation.-%"»

154

Programming the User Interface March 1985

(defun draw ()
(draw-help)
(loop for command = (send terminal-i9 ':any-tyi)

do (cond «fixp command)
(selectq command

(#\refresh (send terminal-io ':clear-window»
(#\end (return»
(#\help (draw-help»
(t (beep»»

«eq (car command) ':mouse-button)
(destructuring-bind (click nil x y) (cdr command)

(selectq click
(#\mouse-l-l (send terminal-io ':draw-rectangle 20 20 x y»
(#\mouse-m-l (send terminal-io ':draw-circle x y 10»
(#\mouse-r-l (send terminal-io ':draw-triangle

x y (- x 10) (+ y 20) (+ x 10) (+ y 20»)
(t (beep»»)

(t (beep»»)

The following subtle point might explain some difficulties you might have with this
method. The characters (or blips) created by the method go straight into the
window's 110 buffer. Under some circumstances they can bypass pending characters
that have been typed ahead at the keyboard. So if you type something and then
click at something in rapid succession while your program is busy, the program
might see the click before it sees the character from the keyboard.

12.9.3 Grabbing the Mouse

When the mouse is grabbed, the mouse process gets told that no window owns the
mouse, and it changes the mouse blinker back to the default (a northeast arrow).
The mouse process continues to track the mouse, and your process can now watch
the position and the buttons by using the variables and functions described below.

tv:with-mouse-grabbed Special Form
A tv:with-mouse-grabbed special form just has a body:

(tv:with-mouse-grabbed
forml
form2)

The forms inside are evaluated with the mouse grabbed.

tv:with-mouse-grabbed-on-sheet (&optional (sheet 'self) &body Special Form
body

Evaluates body with the mouse grabbed and confined to sheet. During
execution the variables tv:mouse-x and tv:mouse-y are relative to the
window's outside coordinates. The default value of sheet is self, so if sheet is
not supplied, this form needs to appear inside a method or defun-method of a
window flavor.

155

March 1985 Using the Window System

tv:with-mouse-and-buttons-grabbed &body body Special Form
The forms in body are evaluated with the mouse and buttons grabbed.
When the buttons are grabbed, the mouse process does not maintain the
value of tv:mouse-Iast-buttons. Instead, the user process can read directly
from the mouse buttons, without losing clicks that the mouse process might
fail to notice. Within the body of this form, you can call the functions
tv:mouse-wait, tv:wait-for-mouse-button-down,
tv:wait-for-mouse-button-up, and tv:mouse-buttons.

tv:with-mouse-and-buttons-grabbed-on-sheet (&optional (sheet Special Form
'self» &body body

Like tv:with-mouse-and-buttons-grabbed, except that the mouse is
confined to sheet. During execution the variables tv:mouse-x and
tv:mouse-yare relative to the window's outside coordinates. The default
value of sheet is self, so if sheet is not supplied, this form needs to appear
inside a method or defun-method of a window flavor.

tv:mouse-x Variable
The value is the x-coordinate of the position of the mouse, in pixels,
measured from the upper-left corner of the screen the mouse is on (the value
of tv:mouse-sheet). This variable is maintained by the process handling the
mouse, normally the mouse process. It is in outside coordinates, since the
mouse might be in the margins somewhere.

tv:mouse-y Variable
The value is the y-coordinate of the position of the mouse, in pixels,
measured from the upper-left corner of the screen the mouse is on (the value
of tv:mouse-sheet). This variable is maintained by the process handling the
mouse, normally the mouse process. It is in outside coordinates, since the
mouse might be in the margins somewhere.

tv:mouse-Iast-buttons Variable
This variable contains the last setting of the mouse pushbuttons noticed by
the process handling the mouse, which is normally the mouse process. The
numbers 1, 2, and 4 represent the left, middle, and right buttons
respectively, and the value of tv:mouse-Iast-buttons is the sum of the
numbers representing the buttons that were being held down.

tv:mouse-wait &optional (old-x tv:mouse-x) (old-y tv:mouse-y) Function
(old-buttons tv:mouse-Iast-buttons) (whostate
'Mouse" (timeout nil)

This function waits until any of the variables tv:mouse-x, tv:mouse-y, or
tv:mouse-Iast-buttons to become different from the values passed as
arguments, or until timeout sixtieths of a second have elapsed. While
waiting, whostate is displayed in the status line. To avoid timing errors, your
program should examine the values of the variables, use them, and then pass

156

Programming the User Interface March 1985

in the values that it examined as arguments to tv:mouse-wait when it is
done using the values and wants to wait for them to change again. It is
important to do things in this order, or else you might fail to wake up if one
of the variables changed while you were using the old values and before you
called tv:mouse-wait.

tv:moUBe-wait returns three values:

• An integer representing the state of the mouse buttons, in the format
used by the variable tv:mouse-Iast-buttons

• The X-coordinate of the mouse

• The Y -coordinate of the mouse

tv:wait-for-mouse-button-down &optional (prompt 'Button', Function
If any buttons are down, waits until all the buttons are up, then waits for
any mouse button to be pushed. If no buttons are down, waits for any
button to be pushed. prompt is the who state to display while waiting.
Returns the same three values as tv:mouse-wait.

This must be called inside a tv:with-mouse-and-buttons-grabbed or a
tv:with-mouse-and-buttons-grabbed-on-sheet form.

tv:wait-for-mouse-button-up &optional (prompt 'Release Button" Function
(timeout nil)

Waits until all mouse buttons are up, or until timeout sixtieths of a second
have elapsed. prompt is the who state to display while waiting. Returns the
same three values as tv:mouse-wait.

This must be called inside a tv:with-mouse-and-buttons-grabbed or a
tv:with-mouse-and-buttons-grabbed-on-sheet form.

tv:mouse-button-encode bd Function
When a mouse button has been pushed, and you want to interpret this push
as a click, call this function. It watches the mouse button and figures out
whether a single-click or double-click is happening. It returns nil if no
button is pushed, or an encoded integer giving the click in the usual way.

You only call tv:mouse-button-encode when a button has just been pushed;
that is, when you see some button down that was not down before. You
have to pass in the argument, bd, which is a bit mask saying which buttons
were pressed down: which are down now that were not down "before". The
form (boole 2 old-buttons new-buttons> computes this mask.

tv:who-Iine-mouse-grabbed-documentation Variable
When grabbing or usurping the mouse, you should explain what is going on
in the mouse documentation line at the bottom of the screen.

157

March 1985 Using the Window System

tv:with-mouse-grabbed and tv:with-mouse-usurped bind this variable to
nil, which makes the mouse documentation line blank. Inside the body of
one of these special forms, you can setq this variable to a string to be
displayed in the mouse documentation line. If your program has "modes"
that affect how the click acts, each part of the program should setq this
variable to its own documentation.

12.9.4 Usurping the Mouse

You can tell the mouse process not to do anything, and track the mouse in your
own process. This is called usurping the mouse. The mouse blinker disappears, and
if you want any visual indication of the mouse to appear, you have to do it yourself.

tv:with-mouse-usurped Special Form
A tv:with-mouse-usurped special form just has a body:

(tv:with-mouse-usurped
forml
form2)

The forms inside are evaluated with the mouse usurped.

tv:mouse-input &optional (wait-flag t) Function
Wait until something happens with the mouse, and then return saying what
happened. Six values are returned. The first two are delta-x and delta-y,
which are the distance that the mouse has moved since the last time
tv:mouse-input was called. The second two are buttons-newly-pushed and
buttons-newly-raised, which are bit masks (using the bit assignment used by
tv:mouse-Iast-buttons) saying what buttons have changed since the last
time tv:mouse-input was called. The last two values are the current x- and
y-position of the mouse or, if any buttons changed, the position of the mouse
at that time.

You can only call this function with the mouse usurped; otherwise you will
get in the way of the mouse process, which calls it itself, and mouse tracking
will not work correctly.

The variables tv:mouse-x and tv:mouse-y are not maintained by this
function; you must do it yourself if you want to keep track of a cumulative
mouse position. tv:mouse-last-buttons is maintained.

The buttons-newly-pushed value is suitable for being passed as an argument
to tv:mouse-buttons-encode, which can be used with the mouse usurped as
well as with the mouse grabbed.

If wait-flag is nil, then the function does not wait; it can return with all
zeroes, indicating that nothing has changed.

158

Programming the User Interface March 1985

tv:mouse-buttons &optional peek Function
Return the current state of the mouse buttons. This function has no state
or anything; it just goes straight to the hardware and reads the current
state. If peek is not nil, it looks at the state without pulling anything out of
the buffer.

tv:mouse-buttons returns four values:

• An integer representing the state of the mouse buttons, in the format
used by the variable tv:mouse-Iast-buttons

• An integer representing the time when that state was true

• The X-coordinate of the mouse at that time

• The Y -coordinate of the mouse at that time

To use some parts of the mouse software, such as tv:mouse-button-encode,
you can store these four returned values into the variables
tv:mouse-Iast-buttons, tv:mouse-Iast-buttons-time,
tv:mouse-Iast-buttons-x, and tv:mouse-last-buttons-y, respectively. The
mouse process does this itself when the mouse is not usurped.

12.9.5 Controlling the Mouse Outside a Window

tv:hysteretic-window-mixin Flavor
By mixing this flavor into your window, you control the mouse for a small
area outside the window as well as the area inside the window. You can
control the hysteresis, which is the number of pixels away from the window
that the mouse has to get before this window ceases to own it. This mixin
is used by momentary menus, so that if you accidentally slip a bit outside the
menu, the menu won't vanish; you have to get well away from it before it
vanishes.

:hysteresis n-pixels (for tv:hysteretic-window-mixin) [nit Option
Set the initial value of the hysteresis, in pixels. It defaults to 25. (decimal).

:hysteresis of tv:hysteretic-window-mixin
Examine the hysteresis of the window, in pixels.

:set-hysteresis new-hysteresis of tv:hysteretic-window-mixin
Set the hysteresis of the window, in pixels.

Method

Method

159

March 1985 Using the Window System

12.9.6 Scaling Mouse Motion

tv:mouse-x-scale-array Variable
The value of this variable is an array that, along with the array that is the
value of tv:mouse-y-scale-array, can be used to control mouse scaling.
These arrays determine the relation between the rates of motion of the
mouse on the table and the mouse cursor on the screen. This relation can
be nonlinear and can vary with the speed of the mouse. For example, fast
mouse motion can move the cursor a distance that is proportionally greater
than slow mouse motion.

Scaling is computed as follows. The even-numbered elements of
tv:mouse-x-scaIe-array are compared with the value of tv:mouse-x-speed,
and the even-numbered elements of tv:mouse-y-scaIe-array are compared
with the value of tv:mouse-y-speed. tv:mouse-x-speed and
tv:mouse-y-speed are the x- and y-components of the mouse speed on the
table, typically in units of hundredths of an inch per second.

For each array, the first even array element that is greater than the mouse
speed causes its corresponding odd-numbered array element to be multiplied
by the mouse motion on the table and then divided by 1024 (decimal). The
result is the mouse motion on the screen. Appropriate care is taken to save
the fractions for the next computation.

The default array setup code is as follows:

;;; Use a scale of 2/3 in X, 3/5 in Y when moving at slow speed,
;;; double that at high speed
(aset 80. tv:mouse-x-scale-array D)
(aset (II (lsh 2 10.) 3) tv:mouse-x-scale-array 1)
(aset 80. tv:mouse-y-scale-array D)
(aset (II (lsh 3 10.) 5) tv:mouse-y-scale-array 1}
(aset #017777777777 tv:mouse-x-scale-array 2)
(aset (II (lsh 4 10.) 3) tv:mouse-x-scale-array 3)
(aset 1017777777777 tv:mouse-y-scale-array 2)
(aset (II (lsh 6 10.) 5) tv:mouse-y-scale-array 3»

The following code provides for simple scaling of motion for the Hawley
mouse. The microcode knows specially about each array. You can store into
each array, but you cannot replace it with a new array or use
adjust-array-size on it.

160

Programming the User Interface March 1985

;;; Aids to trying speed-dependent scaling
;;; Specs are scale-factor speed-break
iii No attempt to treat X and V differently
;;; Args of (1 80. 2) seem to be about right for the Hawley mouse
(defun mouse-speed-hack (&rest specs)

(loop for (scale speed) on specs by 'cddr
for i from 0 by 2
do (aset (or speed #037777777) tv:mouse-x-scale-array i)

(aset (or speed #037777777) tv:mouse-y-scale-array i)
(aset (II (fix (* 2 scale 1024.» 3)

tv:mouse-x-scale-array (1+ i»
(aset (II (fix (* 3 scale 1024.» 5)

tv:mouse-y-scale-array (1+ i»»

(defun hawley-mouse-hack ()
(mouse-speed-hack 1 80. 2»

tv:mouse-y-scaIe-array Variable
The value of this variable is an array that, along with the array that is the
value of tv:mouse-x-scaIe-array, can be used to control mouse scaling. See
the variable tv:mouse-x-scaIe-array, page 159.

12.10 The Keyboard

Another way of using the keyboard, different from reading a stream of input
characters from a window, is to treat it as a "random access" device and look at the
instantaneous state of particular keys.

One application for checking the state of keys is in user interfaces where the action
of mouse clicks is modified by the shift keys on the keyboard; you can have one
hand on the mouse and the other on the keyboard. You can use the variables
tv:mouse-double-click-time and tv:*mouse-incrementing-keystates* to augment
or replace double clicks with shifted clicks.

Mouse characters - characters with the %%kbd-mouse bit set to 1 - can be
modified with the modifier keys CONTROL, META, SUPER, and HYPER, just as keyboard
characters can. Which of these keys modify mouse characters depends on the value
of the variable tv:*mouse-moditying-keystates*.

The editor considers each modified mouse click to be a separate command. You can
bind commands to particular modified mouse clicks. You can also use Install Mouse
Macro (PI-x) with modified mouse clicks to increase the number of mouse macros
available.

You can use login-forms in an init file to set the variables
tv:mouse-double-click-time, tv:*mouse-incrementing-keystates*, and
tv:*mouse-modifying-keystates* and customize the behavior of the mouse.

161

March 1985 Using the Window System

tv:key-state key-name Function
Returns t if the keyboard key named key-name is currently depressed, nil if
it is not.

key-name may be the symbolic name of a modifier key, from the table below,
or the number of a nonmodifier key, which is the character you get when
you type that key without any modifiers: a lowercase letter, a digit, or a
special character. Modifier keys that come in pairs have three symbolic
names; one for the left-hand key, one for the right-hand key, and one for
both, which is considered to be depressed if either member of the pair is.

The modifier key names are:

:shift
: symbol
:control
:meta
:super
: hyper
:caps-lock

:left-shift
: left-symbol
: 1 eft-contro 1
: left-meta
: 1 eft-super
: 1 eft-hyper
:repeat

:right-shift
:right-symbol
:right-control
:right-meta
:right-super
:right-hyper
:mode-lock

tv:mouse-double-click-time Variable
The maximum period of time (in microseconds) between mouse clicks for
which the clicks are interpreted as a double click instead of two single clicks.
Default: 200000 (decimal). If you set this to nil, disabling double clicking
entirely, mouse response time improves slightly.

tv:·mouse-incrementing-keystates· Variable
A list of names of keys, acceptable to tv:key-state. If one or more of these
keys are pressed, single mouse clicks are interpreted as double clicks.
Default: (:shift).

tv:·mouse-moditying-keystates· Variable
A list of names of keys, acceptable to tv:key-state. If one or more of these
keys are pressed, sets the corresponding modifier bits in the mouse character.
Default: (:control :meta :super :hyper). If a key appears as an element
of both this list and the list that is the value of
tv:·mouse-incrementing-keystates·, the modifier bit is set and the click is
interpreted as a double click.

tv:key-test Function
tV:key-test allows you to check that your keyboard and mouse hardware are
functioning correctly. It displays a keyboard image and a mouse image. The
mouse image tracks the mouse when mouse tracking is functioning correctly.
Holding down a key or button causes the corresponding key or button on the
screen to go into inverse video. The END key returns. This function is not
loaded as part of the world load but is available:

162

Programming the User Interface

(load "sys:window;keytest")
(tv:key-test)

12.11 Window Sizes and Positions

March 1985

The messages and init options in this Section are used to examine and set the sizes
and positions of windows. There are many different messages, that let you express
things in different forms that are convenient in varying applications. Usually, sizes
are in units of pixels. However, sometimes we refer to widths in units of characters
and heights in units of lines. The number of horizontal pixels in one character is
called the character-width, and the number of vertical pixels in one line is called the
line-height. See the section "Character Output to Windows", page 108.

As has been mentioned before, a window has two parts: the inside and the margins.
The margins include borders, labels, and other things; the inside is used for drawing
characters and graphics. Some of the messages below deal with the outside size
(including the margins) and some deal with the inside size.

Since a window's size and position are usually established when the window is
created, we will begin by discussing the init options that let you specify the size and.
position of a new window. To make things as convenient as possible, there are
many ways to express what you want. The idea is that you specify various things,
and the window figures out whatever you leave unspecified. For example, you can
specify the right-hand edge and the width, and the position of the left-hand edge
will automatically be figured out. If you underspecify some parameters, defaults are
used. Each edge defaults to being the same as the corresponding inside edge of the
superior window; so, for example, if you specify the position of the left edge, but
don't specify the width or the position of the right edge, then the right edge will
line up with the inside right edge of the superior. If you specify the width but
neither edge position, the left edge will line up with the inside left edge of the
superior; the same goes for the height and the top edge.

In order for a window to be exposed, its position and size must be such that it fits
within the inside of the superior window. If a window is not exposed, then there
are no constraints on its position and size; it may overlap its superior's margins, or
even be outside the superior window altogether.

All positions are specified in pixels and are relative to the outside of the superior
window.

The following options set various position and size parameters. The size and position
of the window are computed from the parameters provided by these and other
options, and the set of defaults described above. Note that all edge parameters are
relative to the outside of the superior window.

163

March 1985 Using the Window System

12.11.1 Initializing Window Size and Position

:left lett-edge (for tv:sheet)
Specifies the x-coordinate of the left edge of the window.

:x lett-edge (for tv:sheet)
Specifies the x-coordinate of the left edge of the window.

:top top-edge (for tv:sheet)
Specifies the y-coordinate of the top edge of the window.

:y top-edge (for tv:sheet)
Specifies the y-coordinate of the top edge of the window.

Init Option

Init Option

Init Option

Init Option

:position (lett-edge top-edge) (for tv:sheet) Init Option
Specifies the x-coordinate of the left edge and the y-coordinate of the top
edge of the window.

:right right-edge (for tv:sheet)
Specifies the x-coordinate of the right edge of the window.

:bottom bottom-edge (for tv:sheet)
Specifies the y-coordinate of the bottom edge of the window.

:width outside-width (for tv:sheet) .
Specifies the outside width of the window.

:height outside-height (for tv:sheet)
Specifies the outside height of the window.

:size (outside-width outside-height) (for tv:sheet)
Specifies the outside width and height of the window.

:inside-width inside-width (for tv:sheet)
Specifies the inside width of the window.

:inside-height inside-height (for tv:sheet)
Specifies the inside height of the window.

: inside-size (inside-width inside-height) (for tv:sheet)
Specifies the inside width and height of the window.

Init Option

Init Option

Init Option

Init Option

Init Option

Init Option

Init Option

Init Option

: edges (lett-edge top-edge right-edge bottom-edge) (for tv:sheet) Init Option
Specifies the x-coordinates of the left and right edges and the y-coordinates of
the top and bottom edges of the window.

164

Programming the User Interface March 1985

:character-width spec (for tv:sheet) Init Option
This is another way of specifying the width. spec is either a number of
characters or a character string. The inside width of the window is made to
be wide enough to display those characters, or that many characters, in font
zero.

:character-height spec (for tv:sheet) Init Option
This is another way of specifying the height. spec is either a number of lines
or a character string containing a certain number of lines separated by
carriage returns. The inside height of the window is made to be that many
lines.

:integral-p t-or-nil (for tv:sheet) Init Option
The default is nil. If this is specified as t, the inside dimensions of the

. window are made to be an integral number of characters wide and lines high,
by making the bottom margin larger if necessary.

:edges-from source (for tv:essential-window) Init Option
Specifies that the window is to take its edges (position and size) from source,
which can be one of:

a string
The inside-size of the window is made large enough to display the
string, in font zero.

a list (left-edge top-edge right-edge bottom-edge)
Those edges, relative to the superior, are used, exactly as if you had
used the :edges init option.

:mouse
The user is asked to point the mouse to where the top-left and
bottom-right comers of the window should go. (This is what happens
when you use the [Create] command in the System menu, for
example.)

a window
That window's edges are copied.

:minimum-width n-pixels (for tv:essential-window) In it Option
In combination with the :edges-from :mouse init option, this option and
:minimum-height specify the minimum size of the rectangle accepted from
the user. If the user tries to specify a size smaller than one or both of these
minima, he will be beeped at, and prompted to start over again with a new
top-left corner.

:minimum-height n-pixels (for tv:essential-window) Init Option
In combination with the :edges-from :mouse init option, this option and
:minimum-width specify the minimum size of the rectangle accepted from

165

March 1985 Using the Window System

the user. If the user tries to specify a size smaller than one or both of these
minima, he will be beeped at, and prompted to start over again with a new
top-left comer.

tv:set-default-window-size flavor-name superior existing-windows Function
&rest options

tv:set-default-window-size allows you to modify the default size chosen by
the system when you create a window without specifying either a size or a
position for it. For example, when you create a Lisp Listener by pressing
SELECT c-L, the default size is the full size of the screen, unless you modify
it.

The arguments to tv:set-default-window-size are:

flavor-name The flavor of window to be affected.. Flavors built on top
of this do not inherit this flavor's default window size. nil
here means all windows.

superior The window whose direct inferiors are to be affected;
typically, the value of tv:main-screen.

existing-windows An indicator as to whether existing windows must conform
to these options. Any non-nil argument forces all existing
windows of the specified flavor-name and superior to
conform to the options.

options Alternating keywords and values that are used as defaults
in creating windows whose size or position is not specified.
Valid keywords are :width, :left, :right, :height, : top,
and :bottom. They have the same meaning as in
tv:make-window.

For example:

(tv:set-default-window-size
'zwei:zmacs-frame tv:main-screen t ':width 1400)

12.11.2 Messages for Window Size and Position

The group of messages below is used to examine or change the size or position of a
window. Many messages that change the window's size or position take an
argument called option. The reason that this argument exists is that certain new
sizes or positions are not valid. One reason that a size may not be valid is that it
may be so small that there is no room for the margins; for example, if the new
width is smaller than the sum of the sizes of the left and right margins, then the
new width is not valid. Another reason a new setting of the edges may be invalid is
that if the window is exposed, it is not valid to change its edges in such a way that
it is not enclosed inside its superior. In all of the messages that take the option
argument, option may be either nil or :verify. If it is nil, that means that you

166

Programming the User Interface March 1985

really want to set the edges, and if the new edges are not valid, an error should be
signalled. If it is :verify, that means that you only want to check whether the new
edges are valid or not, and you don't really want to change the edges. If the edges
are valid, the message will return t; otherwise it will return two values: nil and a
string explaining what is wrong with the edges. (Note that it is valid to set the
edges of a deexposed inferior window in such a way that the inferior is not enclosed
inside the superior; you just can't expose it until the situation is remedied. This
makes it more convenient to change the edges of a window and all of its inferiors
sequentially; you don't have to be careful about what order you do it in.)

:change-of-size-or-margiIis &rest options of tv:sheet Method
Changes window size or margins, processing options. This message is sent by
the system; you might need to provide an :after daemon for it.

:size of tv:sheet Method
Return two values: the outside width and outside height.

:set-size new-width new-height &optional option of Method
tv:essential-set-edges

Set the outside width and outside height of the window to new-height and
new-width, without changing the position of the upper-left comer.

:inside-size of tv:sheet Method
Return two values: the inside width and the inside height.

:set-inside-size new-inside-width new-inside-height &optional Method
option of tv:essential-set-edges

Set the inside width and inside height of the window to new-inside-height
and new-inside-width, without changing the position of the upper-left corner.

:size-in-characters of tv:sheet Method
Return two values: the inside size in characters, and the inside height in
lines.

:set-size-in-characters width-spec height-spec &optional option of Method
tv:sheet

Set the inside size of the window, according to the two specifications, without
changing the position of the upper-left comer. width-spec and height-spec are
interpreted the same way as arguments to the :character-width and
:character-height init options, respectively.

:position of tv:sheet Method
Return two values: the x and y positions of the upper-left comer of the
window, in pixels, relative to the superior window, respectively.

167

March 1985 Using the Window System

:set-position new-x new-y &optional option of Method
tv:essential-set-edges

Set the x and y position of the upper-left comer of the window, in pixels,
relative to the superior window, respectively.

:edges of tv:sheet Method
Return four values: the left, top, right, and bottom edges, in pixels, relative
to the superior window, respectively.

:set-edges new-left new-top new-right new-bottom &optional Method
option of tv:essential-set-edges

Set the edges of the window to new-left, new-top, new-right, and new-bottom,
in pixels, relative to the superior window, respectively.

:margins of tv:sheet Method
Return four values: the sizes of the left, top, right, and bottom margins,
respectively.

:left-margin-tlize of tV:Bhe~t Method
Returns the left margin size of the window in pixels.

:top-margin-size of tv:sheet Method
Returns the top margin size of the window in pixels.

:right-margin-size of tv:sheet Method
Returns the right margin size of the window in pixels.

: bottom-margin-size of tv:sheet Method
Returns the bottom margin size of the window in pixels.

:inside-edges of tv:sheet Method
Return four values: the left, top, right, and bottom inside edges, in pixels,
relative to the top-left corner of this window. This can be useful for clipping.
Note that this message is not analogous to the :edges message, which
returns the outside edges relative to the superior window.

:center-around x y of tv:essential-set-edges Method
Without changing the size of the window, position the window so that its
center is as close to the point (x,y), in pixels, relative to the superior window,
as is possible without hanging off an edge.

:expose-near mode &optional (warp-mouse-p t) of Method
tv:essential-set-edges

If the window is not exposed, change its position according to mode and
expose it (with the :expose message). If it is already exposed, do nothing.

mode should be a list; it may be any of the following:

168

Programming the User Interface March 1985

(:point x y)
Position the window so that its center is as close to the point (x,y), in
pixels, relative to the superior window, as is possible without hanging
off an edge of the superior.

(:mouse)
This is like the :point mode above, but the x and y come from the
current mouse position instead of the caller. This is like what pop-up
windows do. In addition, if warp-mouse-p is non-nil, the mouse is
warped to the center of the window. (The mouse only moves if the
window is near an edge of its superior; otherwise the mouse is already
at the center of the window.)

(:rectangle left top right bottom)
The four arguments specify a rectangle, in pixels, relative to the
superior window. The window is positioned somewhere next to but
not overlapping the rectangle. In addition, if warp-mouse-p is non-nil,
the mouse is warped to the center of the window.

(:window window-l window-2 window-3 ...)
Position the window somewhere next to but not overlapping the
rectangle that is the bounding box of all the window-ns. You must
provide at least one window. Usually you only give one, and this
means that the window is positioned touching one edge of that
window. In addition, if warp-mouse-p is non-nil, the mouse is warped
to the center of the window.

12.12 Window Margins, Borders, and Labels

There is a distinction between the inside and outside parts of the window. The part
of the window that is not the inside part is called the margins. There are four
margins, one for each edge. The margins sometimes contain a border, which is a
rectangular box drawn around the outside of the window. Borders help the user see
what part of the screen is occupied by which window. The margins also sometimes
contain a label, which is a text string. Labels help the user see what a window is
for.

A label can be inside the borders or outside the borders (usually it is inside). In
general, there can be lots of things in the margins; each one is called a margin item.
Borders and labels are two kinds of margin items. In any flavor of window, one of
the margin items is the innermost; it is right next to the inside part of the window.
Each successive margin item is outside the previous one; the last one is just inside
the edges of the window. Each margin item is created by a flavor'S being mixed in.
You can control which margin items your window has by which flavors you mix in,
and you can control their order by the order in which you mix in the flavors.
Margin item flavors closer to the front of the component flavor list are further

169

March 1985 Using the Window System

outside in the margins. The tv:window flavor has as components
tv:borders-mixin and tv:label-mixin, in that order, and so the label is inside the
border.

This section lists the margin item flavors that you can mix in, and explains some
messages and init options that you can use to control what the margin items do.

You can ask for the size of the margins with the :margins message.

tv:margin-space-mixin Flavor
This flavor provides a margin item that just leaves some blank space. It
might be useful if you're using scroll bars, and you want to leave a little
white space between the scroll bar and the inside of the window.

:space (for tv:margin-space-mixin) [nit Option
Initializes the amount of blank space in the margins of the window. Possible
values:

nil

t

No space

One pixel blank in each of the four margins

n n pixels of space in each of the four margins (n is an
integer)

(left top right bottom)
left pixels blank in the left margin, top pixels blank in the
top margin, and so on (values are integers)

:space of tv:margin-space-mixin Method
Returns a list of four elements, (left top right bottom). These are integers
representing the number of pixels of blank space in the four margins of the
window.

:set-space new-space of tv:margin-space-mixin Method
Specifies the amount of blank space to be left in the margins of the window.
Possible values of new-space:

nil

t

No space

One pixel blank in each of the four margins

n n pixels of space in each of the four margins (n is an
integer)

(left top right bottom)
left pixels blank in the left margin, top pixels blank in the
top margin, and so on (values are integers)

170

Programming the User Interface March 1985

12.12.1 Window Borders

tv:borders-mixin Flavor
The tv:borders-mixin margin item creates the borders around windows that
you often see when using the Lisp Machine. You can control the thickness
of each of the four borders separately, or of all of them together. You can
also specify your own function to draw the borders, if you want something
more elaborate than simple lines.

The borders also include some white space left between the borders and the
inside of the window. The thickness of this white space is called the border
margin width. The space is there so that characters and graphics that are
up against the edge of the inside of the window, or the next-innermost
margin item, do not "merge" with the border.

:borders argument (for tv:borders-mixin) [nit Option
This option initializes the parameters of the borders. argument may have
any of the following values:

nil There are no borders at all.

a symbol or a number
A specification which applies to each of the four borders.

a list (left top right bottom)
Specifications for each of the four borders of the window.

a list (keywordl specl keyword2 spec2 ..•)
Specifications for the borders at the edges selected by the keywords,
which may be among :left, :top, :right, :bottom.

Each specification for a particular border may be one of the following. It
specifies how thick the border is and the function to draw it.

nil This edge should not have any border.

t The border at this edge should be drawn by the default function with
the default thickness.

a number
The border at this edge should be drawn by the default function with
the specified thickness.

a symbol
The border at this edge should be drawn by the specified function
with the default thickness for that function.

a cons (function • thickness)
The border at this edge should be drawn by the specified function
with the specified thickness.

March 1985

The default (and currently only) border function is
tv:draw-rectangular-border. Its default width is 1.

171

Using the Window System

To define your own border function, you should create a Lisp function that
takes six arguments: the window on which to draw the label, the "alu
function" with which to draw it, and the left, top, right, and bottom edges of
the area that the border should occupy. The returned value is ignored. The
function runs inside a tv:sheet-force-access. You should place a
tv:default-border-size property on the name of the function, whose value is
the default thickness of the border; it will be used when a specification is a
non-nil symbol.

Note that setting border specifications to ask for a border width of zero is not
the same thing as giving nil as the argument to this option, because in the
former case the space for the border margin width is allocated, whereas in
the latter case it is not.

:set-borders new-borders of tv:borders-mixin Method
Redefine the borders. new-borders can be any of the things that can be used
for the :borders init option.

:border-margin-width n-pixels (for tv:borders-mixin) [nit Option
Set the width of the white space in the margins between the borders and
the inside of the window. The default is 1. If some edge does not have any
border (the specification for that border was nil) then that border won't have
any border margin either, regardless of the value of this option; that is the
difference between border specifications of 0 and nil.

:border-margin-width of tv:borders-mixin
Return the value of the border margin width.

:set-border-margin-width new-width of tv:borders-mixin
Set the value of the border margin width.

12.12.2 Window Labels

Method

Method

tv:label-mixin Flavor
The tv:label-mixin margin item creates the labels in the corner3 of windows
that you often see when using the Lisp Machine. You can control the text
of the label, the font in which it is displayed, and whether it appears at the
top of the window or the bottom.

:name name (for tv:sheet) [nit Option
The value is the name of the window, which should be a string. All windows
have names; note that this is an init option of tv:sheet. It is mentioned
here because the main use of the name is as the default string for the label,
if there is a label.

172

Programming the User Interface March 1985

:name of tv:sheet Method
Return the name of the window, which is a string.

:laOOI specification (for tv:label-mixin> Init Option
Set the string displayed as the label, the font in which the label is displayed,
and whether the label is at the top or the bottom of the window. Anything
you don't specify will default; by default, the string is the same as the name
of the window, the font is the default font for the screen, and the label is at
the bottom of the window.

specification may be any of:

nil There is no label at all.

t The label is given all the default characteristics.

: top The label is put at the top of the window.

:bottom
The label is put at the bottom of the window.

a string
The text displayed in the label is this string.

a font The label is displayed in the specified font.

a list (keywordl argl keyword2 ...)
The attributes corresponding to the keywords are set; the rest of the
attributes default. Some keywords take arguments, and some do not.
The following keywords may be given:

:top The label is put at the top of the window.

:bottom
The label is put at the bottom of the window.

:string string
The text displayed in the label is string.

:font font-descriptor
The label is displayed in the specified font. font-descriptor may
be any font descriptor.

:IabeI-size of tv:labeI-mixin Method
Return the width and height of the area occupied by the label.

:set-Iabel specification of tv:labeI-mixin Method
Change some attributes of the label. specification can be anything accepted
by the :IabeI init option. Any attribute that specification doesn't mention
retains its old value.

173

March 1985 Using the Window System

tv:top-Iabel-mixin Flavor
The tv:top-Iabel-mixin margin item is just like tv:label-mixin except that
the label is placed at the top of the window by default, instead of the
bottom.

tv:top-box-Iabel-mixin Flavor
The tv:top-box-Iabel-mixin is just like tv:top-Iabel-mixin except that in
addition to the label in the top margin, it also draws a line below the label in
the top margin. If you surround the label with borders, then the label will
appear inside a box. You have probably seen windows like this appear as
momentary menus, with a prompt at the top in a box.

tv:changeable-name-mixin Flavor
Mixing in this flavor defines a :set-name method, so that you can change
the name of the window, redrawing the label if appropriate. This flavor
includes tv:label-mixin, so one of the above kinds of label must be in the
margins of the window.

:set-name new-name of tv:changeable-name-mixin Method
Set the name of the window to new-name, which should be a string. If the
window is currently displaying the old name of the window as the label, then
redraw the label using the new name as the text to be displayed.

tv:delayed-redisplay-Iabel-mixin Flavor
This flavor adds the :delayed-set-Iabel and :update-Iabel messages to your
window. You send a :delayed-set-label message to change the label in such
a way that it will not actually be displayed until you send an :update-Iabel
message. This is especially useful for programs that suppress redisplay when
there is typeahead; the user's commands may change the label several times,
and you may want to suppress the redisplay of the changes in the label until
there isn't any typeahead.

:delayed-set-Iabel specification of Method
tv:delayed-redisplay-Iabel-mixin

This is like the :set-label method, except that nothing actually happens until
an :update-label message is sent.

:update-label of tv:delayed-redisplay-Iabel-mixin Method
Actually do the :set-label operation on the specification given by the most
recent :delayed-set-Iabel message.

174

Programming the User Interface March 1985

12.13 Text Scroll Windows

A window of flavor tv:text-scroll-window maintains an array of items. It displays
these items in the window, one item per line. When the window is not large
enough to display all the items, it provides a scroll bar. It also has methods for
inserting and deleting items.

Other flavors of text scroll window have additional features. One of the most useful
flavors is tv:mouse-sensitive-text-scroll-window, which makes displayed items
mouse sensitive.

tv: text-scroll-window Flavor
Maintains an array of items displayed in the window, one per line. Provides
scrolling when not all items fit in the window.

tv:mouse-sensitive-text-scroll-window Flavor
A text scroll window with mouse-sensitive items.

tv:text-scroll-window-empty-gray-hack Flavor
A moon flavor for text scroll windows. Makes the window gray when no
items are displayed.

12.14 Typeout Windows

tv:window-with-typeout-mixin Flavor
Flavor to mix into a superior window to provide an inferior typeout window.

:typeout-window <flavor-name. options) (for Init Option
tv:essential-window-with-typeout-mixin)

Provides a typeout window inferior to the window. flavor-name is the flavor
of typeout window to create; options are options to tv:make-window.

tv:typeout-window Flavor
Standard flavor of typeout window.

tv:typeout-window-with-mouse-sensitive-items Flavor
A typeout window with tv:basic-mouse-sensitive-items mixed in.

tv:temporary-typeout-window Flavor
A flavor of typeout window that saves and restores the bits of its superior.
When tv:with-terminal-io-on-typeout-window is used with a window that
has this kind of typeout window over it, the program does not have to take
any action to restore the display when the typeout window goes away.

175

March 1985 Using the Window System

tv:with-tenninal-io-on-typeout-window (window wait-for-space-p) Special Form
&body body

Binds tenninal-io to the typeout-window of window over the duration of the
body, taking care of exposing and deexposing the typeout window, selection,
etc. wait-for-space-p, if supplied and not nil, means that after executing the
body the user should be prompted to type a space to get rid of the typeout
window. Otherwise the typeout window goes away as soon as the body
returns. All values of the body are returned.

12.15 Scrolling Windows

tv:basic-scroll-bar Flavor
Flavor that provides basic scroll-bar scrolling.

tv:margin-scroll-mixin Flavor
Flavor that provides scrolling by clicking on margin regions.

tv:f1ashy-scrolling-mixin Flavor
Flavor that provides slow scrolling by moving the mouse through margin
regions.

12.16 Frames

A frame is a window that is divided into subwindows, using the hierarchical
structure of the window system. The sub windows are called panes. The panes are
the inferiors of the frame, and the frame is the superior of each pane. Several
heavily used systems programs use frames. For example, Inspector windows are
frames. The default Inspector window has six panes: the interaction pane on top,
the history pane and command menu pane below it, and three Inspect panes below
that. The Window Debugger and Zmacs also use frames. In Zmacs, each new
editor window is a pane of the Zmacs Frame. Zmail uses frames heavily.

From these examples, you can see some of the things that frames are good for. In
general, by using a frame as a user interface to an interactive subsystem, you get a
convenient way to put many different things on the screen, each in its own place.
Generally you can split up the frame into areas in which you can display text or
graphics, areas where you can put menus or other mouse-sensitive input areas, and
areas to interact with, in which keyboard input is echoed or otherwise acknowledged.

If you use [Edit Screen] to change the shape of an Inspector or Window Debugger
frame, the shapes of the panes are all changed so that the proportions come out
looking as they are supposed to. If you play around with [Edit Screen] enough, you
can even see the menus reformat themselves (changing their numbers of rows and

176

Programming the User Interface March 1985

columns) in order to keep all of their items visible. The way all this works is that
the positions and shapes of the panes, instead of being explicitly specified in units of
pixels, are specified symbolically. When the window changes shape, the symbolic
description is elaborated again in light of the new shape, and the panes are reshaped
appropriately.

This set of symbolic descriptions is called a set of constraints, and the kind of frame
that implements the constraint mechanism is a flavor called
tv:basic-constraint-frame. While there are other, more basic frame flavors, you
cannot use them alone; you must write a new flavor that includes the more basic
frame flavors in its components, and has new methods. Since writing new methods
is beyond the scope of this document, we will simply explain how to use constraint
frames.

When you make a constraint frame, you specify the configuration of panes within
the frame by creating list structure to represent the layout. The format of this list
structure is called the constraint language. It lets you say things like "give this
pane one third of the remaining room, then give that pane 17 pixels, and then divide
what remains between these two panes, evenly." The constraint language is fairly
complex. For full details: See the section "Specifying Panes and Constraints", page
179. In general, a frame can have many different configurations. Each
configuration is described in the constraint language, and each specifies one way of
splitting up the frame. While the program is running, it can switch a frame from
one configuration to another. Some panes may appear in more than one
configuration, but other panes may be left out of one configuration, and may only be
visible when the frame is switched to another configuration. For example, in Zmail,
when you click on [Mail], the frame changes to a new configuration showing the
Headers and Mail panes.

12.16.1 Flavors for Panes and Frames

To have a frame with panes, you must have a frame, which is a window, and you
must have panes, each of which is a window. The flavor of each pane of a frame
must have, as one of its components, the flavor tv:pane-mixin. Some system
facilities provide flavors for you that already have this flavor mixed in. For example,
the flavoJ;" tv:command-menu-pane is a flavor that consists of tv:command-menu
and tv:pane-mixin. (This is the kind of menu most often used in frames; menus
are a higher-level facility.) In general, you can take any flavor of window that you
might want to use in a pane, and make a new flavor suitable to actually be a pane
simply by mixing in tv:pane-mixin.

tv:pane-mixin Flavor
The flavor of any window used as a pane of a frame must have
tv:pane-mixin as one of its components. For example, the flavor
tv:window-pane, used when you want a pane of a frame that understands
everything that tv:window does, is defined as follows:

177

March 1985 Using the Window System

(defflavor tv:window-pane () (tv:pane-mixin tv:window»

Among other things, tv:pane-mixin provides methods that let the pane
participate in its superior's activity. The :alias-for-selected-windows
method returns the superior's alias. When a window of this flavor receives a
:select message, it first sends its superior an :inferior-select message. If
the :inferior-select message returns nil, the :select message fails and just
returns nil. When a window of this flavor receives a :mouse-select
message, it passes the message on to its superior.

tv:pane-no-mouse-select-mixin Flavor
A mixin flavor to make a window a pane of a frame and ensure that it
cannot be selected from a system menu. This flavor includes tv:pane-mixin
and tv:dont-select-with-mouse-mixin.

tv:window-pane Flavor
An instantiable flavor that includes tv:pane-mixin and tv:window.

The flavor of the frame itself might be any of several flavors. The simplest flavor of
constraint frame is tv:constraint-frame.

tv:basic-frame Flavor
This flavor provides methods that allow the frame to serve as the
representative window of its activity. Usually a frame cannot become the
selected window, but this flavor provides methods that handle messages about
selection, typically by operating on the selected-pane instead of the frame.
The :select, : deselect, and :select-relative methods just pass these
messages on to the selected-pane when one exists; otherwise they return nil.

This flavor provides a handler for the :select-pane message that decides
which pane should be selected when the activity is selected. The
:inferior-select method saves the argument as the selected-pane and sends
the message on to the frame's superior with the frame as argument. The
:name-for-selection method returns the name-for-selection of the selected­
pane if a selected-pane exists and has a name-for-selection; otherwise, the
method returns the name of the frame.

tv: constraint-frame Flavor
This flavor is the basic kind of constraint frame. A frame of this flavor is
built out of almost the same facilities as is tv:minimum-window; the frame
does not have all the mixins that go into the tv:window flavor. In
particular, it will not have any borders or a label. It also has
tv:pop-up-notification-mixin as a component.

tv:bordered-constraint-frame Flavor
This flavor is just tv:constraint-frame with tv:borders-mixin mixed in at
the right place. It will have a border around the edge. By default (using the

178

Programming the User Interface March 1985

:default-init-plist option of the flavor system), the :border-margin-width
is zero, so the panes at the edges of the frame are right next to the border
itself.

Bordered constraint frames are used most often. Usually, each of the panes has
borders, and the frame does too. A reason for this is that when two of the panes
are right next to each other, as they usually are, their borders are side by side, and
so look like a double-thick line. In order to make the edges of the panes that are at
the edge of the frame (rather than up against another pane) look as if they are the
same thickness, the frame has a border itself.

It is common in frame-oriented interactive subsystems for all of the panes to use the
same I/O buffer. The reason for this is that such subsystems are usually organized
as a single process that reads commands and executes them. But with a many­
paned frame, there may be many windows (each pane is a window) at which
characters might be typed or mouse-clicks might be clicked. When the process is
waiting for its next command, it would be inconvenient for it to have to wait for the
complex condition that any of these windows has input available in its I/O buffer.
Instead, since the command stream is only one serial stream of commands anyway,
it is common to have all the panes of a frame share the same I/O buffer.

What happens when many windows share an I/O buffer is that any characters typed
at any of them, or any mouse-clicks that generate forced keyboard input, are all put
into the same 110 buffer, in the chronological order in which they are generated.
The process then does successive :tyi stream operations from any pane of the frame,
and it receives anything that has been typed at any pane. When the I/O buffer is
shared like this, it doesn't matter which pane is selected: All the characters go to
the same place anyway, and the information as to which pane was typed at is lost.
However, the forced keyboard input generated by mouse clicks at a facility that is
designed to be used as a pane of a frame (tv:command-menu-pane for instance)
will return all useful and relevant information to the sender of the :tyi message,
including which pane the mouse was pointing at when it was clicked.

To have all of the panes share the same I/O buffer, use one of the following flavors:

tv:constraint-frame-with-shared-io-buffer Flavor
This is like tv:constraint-frame, but all the panes of the frame share the
same I/O buffer used by the frame itself. However, the frame does not have
tv:stream-mixin as a component, and it does not handle :any-tyi and :tyi
messages.

tv:bordered-constraint-frame-with-shared-io-buffer Flavor
This is just like tv:constraint-frame-with-shared-io-buffer except that it
has tv:borders-mixin mixed into it at the right place, so that the frame has
a border around it.

179

March 1985 Using the Window System

:io-buffer io-buffer (for Init Option
tv:constraint-frame-with-shared-io-buffer)

If this option is present, io-buffer is used as the 110 buffer for the frame and
the panes. Otherwise, a default I/O buffer is created.

12.16.2 Specifying Panes and Constraints

This section gives the complete rules for specifying the panes of a constraint frame
and for the constraint language.

When you create a constraint frame, you must supply two initialization options. The
:panes option specifies what panes you want the frame to have, and the
:configurations option specifies the set of constraints for each of the configurations
that the window may assume. For the purposes of these two options, windows are
given internal names, which are Lisp symbols, used only by the flavors and methods
that deal with constraint frames. These names are not used as the actual names of
the windows (as in the :name message).

:panes pane-descriptions (for tv:basic-constraint-frame) Init Option
This initialization option is required for all flavors of constraint frames. The
argument, pane-descriptions, is a list of pane descriptions. Every pane
description looks like this:

(name flavor • options)

name is the internal name (a symbol). flavor is the flavor of which the pane
should be an instance. options is a list to be appended to the initialization
plist for the pane when it is created. When the frame is first created, it will
create all of its panes, using the flavor and options. The frame will add some
of its own options to control the position and shape of the window; you
should not pass any such options in the options list.

:configurations configuration-specification-list (for Init Option
tv:basic-constraint-frame)

The :configurations init option to a constraint frame controls the sizes and
arrangement of the panes in each possible configuration of the frame. It is
required for all flavors of constraint frames.

In earlier releases, equivalent information was required to be specified under
the :constraints init option; it is still accepted for compatibility. See the
section "Specifying Panes and Constraints Before Release 6.0", page 188. To
convert a :constraints option to a :configurations option: See the function
tv:back-convert-constraints, page 195.

The value of the :configuratioDB init option is an alist that associates
configuration names with configuration specifications. Each configuration
specification consists of a list of layout specifications and a list of size
specifications. Thus the skeleton of a typical :configurations argument to
tv:make-window looks like:

180

Programming the User Interface March 1985

:configurations '«main-configuration
(: 1 ayout spec spec ...)
(: 5 i zes spec spec ... »

(alternate-configuration
(: 1 ayout spec spec ...)
(: 5 i zes spec spec ... »)

The :layout and :sizes clauses may appear in either order.

A configuration arranges entities within the frame. Each entity has a name
(a symbol). There are four kinds of entity:

pane

row

column

fill

A window inferior to the frame.

A linear arrangement of entities, side by side. All the
entities in a row are the same height.

A linear arrangement of entities, one above the other. All
the entities in a column are the same width.

An area that does not contain any windows, but is simply
filled with some pattern.

The entities in a row can be panes, fills, or columns. The entities in a
column can be panes, fills, or rows. Rows and columns are collectively
referred to as stacks. The subentities of a stack are referred to as the
members of the stack. Different types of members can be mixed.

Configuration specifications have certain restrictions. All names used in a
configuration specification must be defined as entities exactly once within that
specification. Each entity must be used as a member of a stack exactly once,
except for the entity with the same name as the configuration, which must
not be a member of any stack. No stack can contain itself, directly or
indirectly.

12.16.2.1 :Iayout Constraint Frame Specification

A configuration is itself a stack. Thus, the symbol that names a configuration must
appear in that configuration's :layout list as the name of either a row or a column.

A configuration specification includes a list of layout specifications, introduced by the
keyword :layout. Each layout specification defines one row, column, or flll. (The
panes are defined by the :panes init option to the frame. See the init option
(:method tv:basic-constraint-frame :panes), page 179.)

A layout specification for a row takes the following form:

(name :row namel name2 ...)

name is a symbol, the name of the row. namel, name2, and so on are symbols, the
names of the members of the row. The members are listed in left-to-right order.

A layout specification for a column takes the following form:

181

March 1985 Using the Window System

(name : co 1 urnn namel name2 ...)

name is a symbol, the name of the column. namel, name2, and so on are symbols,
the names of the members of the column. The members are listed in top-to-bottom
order.

A layout specification for a fill takes one of the following forms. In each of these
name is a symbol, the name of the fill.

(name :fill :white)
The area is filled with zero pixels (normally displayed as white).

(name :fill : black)
The area is filled with one pixels (normally displayed as black).

(name :fill array) The area is filled with the contents of the array, using bitbIt.
You probably want to use backquote (') to create the configuration
description and insert the array at the appropriate point.

(name :fill symbol)
The symbol should be the name of a function of six arguments.
The function is expected to fill the rectangle that has been
allocated to this part of the section with some pattern. The
following values are passed to the function:

constraint-node
This is an internal data structure. You should not need to
do anything with this argument.

x-position
X-coordinate of the top left comer of the rectangle to be
filled.

y-position
Y -coordinate of the top left comer of the rectangle to be
filled.

width Width in pixels of the rectangle to be filled.

height Height in pixels of the rectangle to be filled.

screen-array
This is a two-dimensional array into which the function
should write the pattern it wants to put into the window.

(name :fill list) This is similar to the case in which pattern is a symbol, but it lets
you pass extra arguments. The first element of the list is the
function to be called, and that function is passed all of the objects
in the rest of the list, after the six arguments enumerated above.

182

Programming the User Interface March 1985

12.16.2.2 :sizes Constraint Frame Specification

A configuration specification includes a list of size specifications, introduced by the
keyword :sizes. Each size specification defines how a stack is divided up among its
members; it controls the width of each member of a row, or the height of each
member of a column. No size specification exists for fills and panes.

A size specification is a list whose first element is the name of the relevant stack.
The remaining elements consist of groups of constraints separated by the keyword
: then. The groups are processed sequentially; all the constraints in a group are
processed in parallel. Each constraint allocates some of the space available in a stack
to a single member of that stack. (This space is width if the stack is a row, height
if the stack is a column). After one group has been processed, the amount of space
available is decreased by the sum of the space that was allocated, and then the next
group is processed. This is the meaning of the parallel versus sequential distinction.

The division of constraints into groups matters when a constraint specifies the size
of a member as some fraction of the space available. For example, suppose two
constraints each specify that a member is to receive 50% of the available space. If
these two constraints are in the same group (processed in parallel) they will allocate
100% of the space. If they are in separate groups (processed sequentially) they will
allocate 75% of the space, and the first member will be twice as large as the second
member. The first member gets 50% of the total space, then the second member
gets 50% of what remains, which is 25% of the total space.

Note that the order of the constraints in a size specification is unrelated to the
actual order of the members on the screen, which is controlled solely by the layout
specification.

A constraint can take any of several forms. In each case the constraint is a list
whose first element is the name of the member (a symbol).

(name integer)
integer is the number of pixels to allocate.

(name integer units)
integer is the number of characters of width or lines of height to allocate.
units must be :lines or :characters. This form is illegal if name is not the
name of a pane, since only panes have lines and characters. Use the
following form if name is a stack or a fill.

(name integer units pane)
integer is the number of characters of width or lines of height to allocate.
units must be :lines or :characters. pane is the name of a pane that
defines the units. Typically name is a stack and pane is a member, directly
or indirectly, of the stack.

(name fraction)
fraction, a floating-point number between 0.0 and 1.0, is the proportion of the
available space to allocate.

183

March 1985 Using the Window System

(name fraction units)
fraction, a floating-point number between 0.0 and 1.0, is the proportion of the
available space to allocate. The allocation is rounded down to an integral
number of lines or characters. units must be :lines or :characters.

(name fraction units pane)
fraction, a floating-point number between 0.0 and 1.0, is the proportion of the
available space to allocate. The allocation is rounded down to an integral
number of lines or characters. units must be :lines or :characters. pane is
the name of a pane that defines the units.

(name :even)
The space available is divided evenly among all the constraints in the group.
If any constraint in a group uses :even, every constraint in that group must
use :even. Such a group must be the last group in a size specification. If
the space available is not exactly divisible by the number of constraints in the
group, the division is slightly uneven so that exactly all of the space will be
used, leaving no unsightly gaps or overlaps.

It is usually a good idea to use :even for at least one pane in every
configuration, so that the entire frame will be taken up by panes that all fit
together and extend to the borders of the frame. :even is careful to choose
exactly the right number of pixels to fill the frame completely, avoiding
roundoff errors that might cause an unsightly line of one or a few extra
pixels somewhere.

Remember that just because the :evens must be in the last descriptor group
does not mean that the panes that they apply to must be at the bottom or
right-hand end of the frame! The ordering of the panes in the frame is
controlled by the ordering list, not by the order in which the descriptors
appear.

(name :ask message-name arg-l arg-2 ...)
This constraint lets you ask the window how much space it would like to
take up.

A message whose name is message-name and whose arguments are some
extra arguments passed by the constraint mechanism followed by arg-l,
arg-2, and so on, is sent to the pane; its answer says how much space the
pane should take up. Note that arg-l, and so on, are not forms: They are
the values of the arguments themselves (that is, they are not evaluated; if
you want to compute them, you must build the constraint language
description at run-time, which is usually written using a backquoted list).

The arguments that are actually sent along with the message are the same
as the arguments passed when you use the :funcall constraint except that
the constraint-node is not passed. You don't have to worry about these
unless you want to define your own methods to be used by :ask constraints,
and definition of new methods is not documented here.

184

Programming the User Interface March 1985

Various different flavors of windows accept some messages suitable for use
with : ask. By convention, several kinds of windows, such as menus, accept a
message called :pane-size. For example, the :pane-size method for menus
figures out how much space in the dimension controlled by the :ask
constraint is needed to display all the items of the menu, given the amount
of space available in the other dimension. No arguments are specified in the
constraint. Another useful message, handled by tv:pane-mixin (and
therefore by all panes) is :square-pane-size (also with no arguments), which
makes the window take up enough room to be square.

(name :ask-window pane-name message-name arg-l arg-2 ...)
This constraint works like :ask except that the message is sent to the pane
named pane-name instead of the pane being described. This is primarily used
for stacks, when the size of a stack should be controlled by the needs of a
pane inside it.

(name :funcall function arg-l arg-2 ...)
This constraint lets you supply a function to be called, which should compute
the amount of space to use. The :funcall constraint is rarely used and you
probably don't need to worry about it. The specified function is called. It is
first passed six arguments from inside the workings of constraint frames, and
then the arg-l, arg-2, and so on, values. The six arguments are:

constraint-node
This is an internal data structure. You should not need to do
anything with this argument.

remaining-width
The amount of width remaining to be used up at the time this
description is elaborated, after all of the panes in previous description
groups and all of the earlier panes in this description group are
allocated.

remaining-height
Like remaining-width, but in the height direction.

total-width
The amount of width remaining to be used up by all of the parts of
this description group. This is the amount of room left after all of
the panes in previous description groups have been allocated but none
of the panes in this description group have been allocated.

total-height
Like total-width, but in the height direction.

stacking
Either :vertical or :horizontal, depending on the current stacking.

(name :eval form)
This is like :funcall, but instead of providing a function and arguments, you

185

March 1985 Using the Window System

provide a form. The :eval constraint is rarely used and you probably don't
need to worry about it. The six special values that are passed as arguments
when the :funcall constraint-type is used can be accessed by form as the
values of the following special variables:

tv: * *constraint-node* *
tv: * *constraint-remaining-width* *
tv:**constraint-remaining-height**
tv: * *constraint-total-width* *
tv: * *constraint-total-height**
tv:**constraint-stacking**

(name :limit (min max) rest-of-the-constraint ...)
Any constraint may, optionally, be preceded by a :limit clause. The :limit
clause lets you set a minimum and a maximum value that will be applied to
the size computed by the constraint. If the constraint returns a value
smaller than the minimum, then the minimum value will be used; if it
returns a value larger than the maximum, then the maximum value will be
used. The limit-specification is normally a two-element list, whose elements
are integers giving the minimum and maximum values in pixels.

(name :limit (min max units) rest-of-the-constraint ...)
If the list has a third element, it should be one of the symbols :lines or
:characters, and it means that the integers are in units of lines or
characters, computed by mUltiplying by the line-height or char-width of the
pane.

(name :limit (min max units pane) rest-of-the-constraint ...)
If there is a fourth element, it should be the name of a pane, and that
pane's line-height or char-width is used instead of that of the pane being
constrained. (If this constraint applies to a stack instead of a pane, and the
third element of the list is present, then the fourth must be present as well,
since stacks do not have their own line-height or char-width.)

For example, to make a pane called interactor the same height as a pane
menu as long as that size is between 10 and 20 lines, you might use

(interactor :limit (10 20 :lines)
:ask-window menu :pane-size)

12.16.3 Examples of Specifications of Panes and Constraints

Following are examples of configuration definitions, slightly edited from the system
source code.

Here is how the Font Editor (FED) specifies its standard configuration. This code is
extracted from a source file with package fed and base 8.

186

Programming the User Interface March 1985

(defmethod (fed :before :init) (init-plist)

(setf (get init-plist :configurations)
'«:standard

(:layout
(:standard :column character-pane prompt-pane top-section)
(top-section :row fed-pane other-slab)
(other-slab :column

(:s izes

draw-mode-menu
command-menu-1
command-menu-2
command-menu-3
status-pane
alphabet-menu
param-chw
register-pane»

(other-slab (draw-mode-menu :ask :pane-size)
:then (command-menu-1 :ask :pane-size)
:then (command-menu-2 :ask :pane-size)
:then (command-menu-3 :ask :pane-size)
:then (status-pane 3 :lines)
:then (alphabet-menu :ask :pane-size)
:then (param-chw 5 :lines)
:then (register-pane :even»

(top-section (other-slab :limit (24 144 :characters prompt-pane)
0.3)

:then (fed-pane :even»
(:standard
(character-pane :ask :wanted-size)
:then (prompt-pane 4 :lines)
:then (top-section :even»»

(:wide ... »»
Here is how an early implementation of the Document Examiner specified its frame
configuration. This code is extracted from a source file with package sage and base
10.

187

March 1985 Using the Window System

(defconst *dex-frame-constraints*
'((rna in

(:layout
(main :column top-part bottom-part)
(top-part :row title&viewer-pane candidates-and-bookmarks)
(bottom-part :row command-pane menu-pane)
(title&viewer-pane :column title-pane viewer-pane)
(candidates-and-bookmarks :column candidate-pane bookmark-pane»

(:sizes
(main (bottom-part 4 :lines command-pane)

:then (top-part :even»
(bottom-part (command-pane 660)

:then (menu-pane :even»
(top-part (title&viewer-pane 660)

:then (candidates-and-bookmarks :even»
(title&viewer-pane (title-pane 0 :lines) ;label only

:then (viewer-pane :even»
(candidates-and-bookmarks (candidate-pane 0.5)

:then (bookmark-pane :even»»»

(defmethod (dex-frame :before :init) (plist)
(unless (variable-boundp tv:panes)

(setq tv:panes *dex-frame-panes*»
(unless (get plist :configurations)

(setf (get plist :configurations) *dex-frame-constraints*»
...)

12.16.4 Messages to Frames

:select-pane pane Message
The :select-pane m~ssage to a frame makes pane the selected-pane of the
frame. pane must be either an exposed inferior of the frame or nil, which
means to set the selected-pane to nil. This message also deselects the
current selected-pane if it is a window different from pane. Unless pane is
nil, this message sends pane a :select-relative message.

:selected-pane Message
The :selected-pane message to a frame returns the selected-pane of the
frame. This message is sent by users and received by the system.

:selected-pane pane (for tv:basic-constraint-frame) [nit Option
Makes pane the selected-pane of this frame. pane can be the symbol used in
the :panes init option to name the pane.

:get-pane pane-name of tv:basic-constraint-frame Method
Return the pane (the inferior window itself) that was named by the symbol
pane-name in the :panes specification of this frame.

188

Programming the User Interface March 1985

:pane-name pane of tv:basic-constraint-frame Method
Return the symbol that was used to name pane in the :panes specification of
this frame. If pane is not one of the panes, return nil.

:send-pane pane-name message &rest arguments of Method
tv:basic-constraint-frame

Send the specified message with the specified arguments to the pane that
was named by the symbol pane-name in the :panes specification of this
frame.

:send-aIl-panes message &rest arguments of Method
tv:basic-constraint-frame

Send the specified message with the specified arguments to all of the panes of
this frame, including the nonexposed ones.

:send-aIl-exposed-panes . message &rest arguments of Method
tv:basic-constraint-frame

Send the specified message with the specified arguments to all of the exposed
panes of this frame.

:configuration configuration-name (for Init Option
tv:basic-constraint-frame)

Make the initial configuration of the frame be the one named by the symbol
configuration-name.

:configuration of tv:basic-constraint-frame Method
Return the symbol naming the current configuration of the frame.

:set-configuration configuration-name of Method
tv:basic-constraint-frame

Set the configuration of the frame to the one named by the symbol
configuration-name.

12.16.5 Specifying Panes and Constraints Before Release 6.0

This section gives the complete rules for specifying the panes of a constraint frame,
and for the constraint language, in releases before 6.0. The specification method
described in this section is obsolete but supported in Release 6.0 for compatibility.
For a description of how to specify panes and constraints in Release 6.0: See the'
section "Specifying Panes and Constraints", page 179.

When you create a constraint frame, you must supply two initialization options. The
:panes option specifies what panes you want the frame to have, and the
:constraints option specifies the set of constraints for each of the configurations
that the window may assume. For the purposes of these two options, windows are
given internal names, which are Lisp symbols, used only by the flavors and methods
that deal with constraint frames. These names are not used as the actual names of
the windows (as in the :name message).

189

March 1985 Using the Window System

:panes pane-descriptions (for tv:basic-constraint-frame) Init Option
This initialization option is required for all flavors of constraint frames. The
argument, pane-descriptions, is a list of pane descriptions. Every pane
description looks like this:

(name flavor • options)

name is the internal name (a symbol). flavor is the flavor of which the pane
should be an instance. options is a list to be appended to the initialization
plist for the pane when it is created. When the frame is first created, it will
create all of its panes, using the flavor and options. The frame will add some
of its own options to control the position and shape of the window; you
should not pass any such options in the options list.

:constraints configuration-description-list (for Init Option
tv:basic-constraint-frame)

This initialization option was required for all flavors of constraint frames
before Release 6.0. It has been replaced by the :configurations init option.
See the init option (:method tv:basic-constraint-frame :configurations),
page 179. To convert a :constraints option to a :configurations option:
See the function tv:back-convert-constraints, page 195.

The argument, configuration-description-list, is a list of configuration
descriptions. For the format of configuration descriptions: See the section
"Specifying Panes and Constraints Before Release 6.0", page 188.

A configuration-de scription-list is a list of configuration-descriptions. There is one
configuration-description in the list for each of the possible configurations that the
frame can assume. Each configuration is named by a symbol, called the
configuration-name. A configuration-de scription-list is an alist that associates the
configuration-descriptions with the names. It looks like this:

((configuration-name-l • configuration-description-l)
(configuration-name-2 • configuration-description-2)
...)

Each configuration-description describes the layout of the panes in a single
configuration. The description has two parts. The first part specifies the order in
which the windows appear, and the second part specifies how the sizes are
computed. Actually, in addition to windows, there can also be dummies in the
configuration-descriptor. A dummy is used either to hold empty space that is not
used by any window, or it can reserve a region of space to be divided up by another
configuration-description.

A configuration-description splits up one of the dimensions of a rectangular area into
many parts. Such an area is called a section. Which of the two dimensions is being
split up is determined by the stacking. If the stacking is :vertical then the section
is being split up vertically; that is, the parts are stacked on top of each other. If the
stacking is :horizontal then the section is being split up horizontally; that is, the

190

Programming the User Interface March 1985

parts are side-by-side. The stacking of the top-level configuration-descriptions in the
:constraints option is always :verticaI, but there can be more configuration­
descriptions nested inside of them, and these can have either stacking.

Each part has a name, represented as a symbol. A part may either hold an actual
pane, or it may hold something else; if it holds something else, it is called a dummy
part. Dummy parts can be further subdivided into more panes and dummies using
another constraint-description, or their pixels can be blank or filled with some
pattern.

A configuration-description looks like this:

(ordering . description-groups)

ordering is a list of names of panes and of dummies, each represented by a symbol;
the order of this list is the order that the panes and dummies appear in the space
being split up by the configuration-description. For vertical stacking the list goes top
to bottom. For horizontal stacking the list goes left to right. A description-group is
a list of descriptions. Each description describes either exactly one pane or one
dummy. A configuration-description must have one description for each element of
the ordering list.

All of the descriptions in a description-group are processed together ("in parallel");
each of the description-groups is processed in turn, starting with the first one. By
grouping the descriptions this way, you can control which constraints are elaborated
together and which are elaborated at different times; when two constraints are
elaborated at different times you can control which one is elaborated first. The
reason that the ordering-list in the configuration-description is separate from the
description-groups is so that the order in which the panes and dummies appear in
the frame can be independent of the order in which their constraints are elaborated.

Each description describes one pane or one dummy. We'll get back to dummies
later. A description that describes a pane looks like this:

(pane-name. constraint)

pane-name is the name of the pane being described; constraint is the constraint that
describes the pane. We will return later to what descriptions of dummies look like.
The constraint will be elaborated, and will yield a size in pixels; this size will be used
for the width or height being computed.

Finally we get to constraints themselves. The basic form of a constraint is as
follows:

(key arg-l arg-2 ...)

key may be an integer, a flonum, or one of various keyword symbols. Each type of
constraint may take arguments, whose meaning depends on which kind of constraint
this argument is passed to.

While descriptions of panes do not have the same format as descriptions of dummies,
the same kind of constraints are used in both of them. So all the formats given
below may be used inside the descriptions of either panes or dummies.

191

March 1985 Using the Window System

Any constraint may, optionally, be preceded by a :limit clause. If a constraint has a
:limit clause, the constraint looks like:

(: 1 i mi t limit-specification key arg-l arg-2 ...)

The :limit clause lets you set a minimum and a maximum value that will be applied
to the size computed by the constraint. If the constraint returns a value smaller
than the minimum, then the minimum value will be used; if it returns a value
larger than the maximum, then the maximum value will be used. The
limit-specification is normally a two-element list, whose elements are integers giving
the minimum and maximum values in pixels. If the list has a third element, it
should be one of the symbols :lines or : characters , and it means that the integers
are in units of lines or characters, computed by mUltiplying by the line-height or
char-width of the pane. If there is a fourth element, it should be the name of a
pane, and that pane's line-height or char-width is used instead of that of the pane
being constrained. (If this constraint applies to a dummy instead of a pane, and the
third element of the list is present, then the fourth must be present as well, since
dummies do not have their own line-height or char-width.)

The following Lisp objects may be used as values of key in a constraint. Note: The
:funcall and :eval constraints are rarely used and you probably don't need to worry
about them. The other kinds are used frequently.

integer This lets you specify the absolute size. The value computed by the
constraint is simply this integer. Optionally, an argument may be given: it
may be the symbol :lines or the symbol :characters, meaning that the
integer is in units of lines or characters, and should be computed by
multiplying by the line-height or char-width of the window. If a second
argument is also present, it should be the name of a pane, and that pane's
line-height or char-width is used instead of that of the pane being
constrained. (If this constraint applies to a dummy instead of a pane, and
the first argument is given, then the second must be present as well, since
dummies do not have their own line-height or char-width.)

flonum This lets you specify that a certain fraction of the remaining space should be
taken up by this window. Optionally, an argument may be given: It may be
:lines or :characters, and it means to round down the size of the pane to
the nearest mUltiple of the pane's line-height or char-width. A second
argument may be given; it is just like the second argument when key is an
integer.

The distinction between descriptors in the same group and descriptors in
different groups is important when you use this kind of constraint. If you
have one descriptor group with two descriptors, both of which requests .2 of
the remaining space, then both panes will get the same amount of space.
However, if you have the same two descriptors but put them in successive
descriptor groups, then the first one will get .2 of the remaining space, and
then the second one will get .2 of what remains after the first one was

192

Programming the User Interface March 1985

allocated; thus, the second pane will be smaller than the first pane. In other
words, the amount of space remaining is recomputed at the end of each
descriptor group, but not at the end of each descriptor.

:even This constraint has a special restriction: You can only use it for descriptors
in the last descriptor group of a configuration. Furthermore, if any of the
descriptors in that group use :even, then all of the descriptors in the group
must use : even. The meaning is that all of the panes in the last descriptor
group evenly divide all of the remaining space.

It is usually a good idea to use :even for at least one pane in every
configuration, so that the entire frame will be taken up by panes that all fit
together and extend to the borders of the frame. :even is careful to choose
exactly the right number of pixels to fill the frame completely, avoiding
roundoff errors that might cause an unsightly line of one or a few extra
pixels somewhere.

Remember that just because the :evens must be in the last descriptor group
does not mean that the panes that they apply to must be at the bottom or
right-hand end of the frame! The ordering of the panes in the frame is
controlled by the ordering list, not by the order in which the descriptors
appear.

:ask This constraint lets you ask the window how much space it would like to
take up. The format of a constraint using :ask is as follows:

(: ask message-name arg-l arg-2 ...)

A message whose name is message-name and whose arguments are some
extra arguments passed by the constraint mechanism followed by arg-l,
arg-2, and so on, is sent to the pane; its answer says how much space the
pane should take up. Note that arg-l, and so on, are not forms: They are
the values of the arguments themselves (that is, they are not evaluated; if
you want to compute them, you must build the constraint language
description at run-time, which is usually written using a backquoted list).

The arguments that are actually sent along with the message are the same
as the arguments passed when you use the :funca11 option except that the
constraint-node is not passed; see below. You don't have to worry about
these unless you want to define your own methods to be used by :ask
constraints, and definition of new methods is generally beyond the scope of
this document anyway.

Various different flavors of windows accept some messages suitable for use
with :ask. By convention, several kinds of windows, such as menus, accept a
message called :pane-size. For example, the :pane-size method for menus
figures out how much space in the dimension controlled by the :ask
constraint is needed to display all the items of the menu, given the amount
of space available in the other dimension. No arguments are specified in the
constraint. Another useful message, handled by tv:pane-mixin (and
therefore by all panes) is :square-pane-size (also with no arguments), which
makes the window take up enough room to be square.

193

March 1985 Using the Window System

: ask-window
This constraint is a variation on :ask. Its format is:

(:ask pane-name message-name arg-l arg-2 ...)

It works like :ask except that the message is sent to the pane named
pane-name instead of the pane being described. This is primarily used for
dummies, when the size of a dummy should be controlled by the needs of a
pane inside it.

:funcall
This constraint lets you supply a function to be called, which should compute
the amount of space to use. The format is:

(: funca 11 (unction arg-l arg-2 ...)

The specified {unction is called. It is first passed six arguments from inside
the workings of constraint frames, and then the arg-l, arg-2, and so on,
values. The six arguments are:

constraint-node
This is an internal data structure. [Not yet documented; you should
not need to look at this anyway.]

remaining-width
The amount of width remaining to be used up at the time this
description is elaborated, after all of the panes in previous description
groups and all of the earlier panes in this description group are
allocated.

remaining-height
Like remaining-width, but in the height direction.

total-width
The amount of width remaining to be used up by all of the parts of
this description group. This is the amount of room left after all of
the panes in previous description groups have been allocated but none
of the panes in this description group have been allocated.

total-height
Like total-width, but in the height direction.

stacking
Either :vertical or :horizontal, depending on the current stacking.

:eval This is like :funcall, but instead of providing a function and arguments, you
provide a form. The format is:

(:eval form)

The six special values that are passed as arguments when the :funcall
constraint-type is used can be accessed by form as the values of the following
special variables:

194

Programming the User Interface March 1985

tv: * *constraint-node· *
tv:**constraint-remaining-width**
tv:**constraint-remaining-height·*
tv: * *constraint-total-width* *
tv: * *constraint-total-height* *
tv: * *constraint-stacking* *

This finishes the discussion of descriptions of panes. Descriptions of dummies are
different; they may be in any of several formats, identified by the following
keywords:

:blank This description is used if you want this part of the section to be filled up
with some constant pattern. The format of the description is:

(dummy-name :blank pattern. constraint)

The constraint is used to figure out the size of the part of the section, in the
usual way. pattern may be any of the following:

:white The part is filled with zeroes.

:black The part is filled with the maximum value that the pixels can hold (if
the pixels are one bit wide, as on a black-and-white TV, this value is
1).

an array
The part is filled with the contents of the array, using the bitblt
function.

a symbol
The symbol should be the name of a function of six arguments. The
function is expected to fill up the rectangle that has been allocated to
this part of the section with some pattern. The following values are
passed to the function:

constraint-node
This is an internal data structure. [Not yet documented; you
should not need to look at this anyway.]

x-position

y-position

width

height These four arguments tell the function the position and size of
the rectangle that it should fill.

screen-array
This is a two-dimensional array into which the function should
write the pattern it wants to put into the window.

195

March 1985 Using the Window System

a list This is similar to the case in which pattern is a symbol, but it lets you
pass extra arguments. The first element of the list is the function to
be called, and that function is passed all of the objects in the rest of
the list, after the six arguments enumerated above.

:horizontal or :vertical
This description is used if you want to subdivide the part into more panes
and dummies, using a configuration-description. If you use :vertical, it will
be split up with vertical stacking, and if you use :horizontal, it will be split
up with horizontal stacking. You must use only the opposite kind of stacking
from the kind currently happening; that is, successive levels of configuration­
description must use alternating kinds of stacking. The format is as follows:

(dummy-name :horizontal constraint. configuration-description)
or
(dummy-name : vert i ca 1 constraint • configuration-description)

constraint, as usual, specifies the size of this part; it can be in any of the
formats given above. Note that in this format, constraint appears as an
element of a list rather than as the tail of a list, and so the printed
representation of the list will include a pair of parentheses around the
constraint. configuration-description tells how this part is subdivided into
parts of its own.

tv:back-convert-constraints constraints Function
Converts a list used as the :constraints init option for
tv:basic-constraint-frame to a list suitable for the :configurations option.
The :configurations option replaced the :constraints option in Release 6.0.

The function returns two values: a list suitable for use as the argument to
the :configurations option, and a list of symbols naming the panes
encountered in the list:

Example:

(tv:back-convert-constraints
'«first-config . «top-strip main-pane)

«top-strip :horizontal (.3)
(huey dewey louie)
«huey :even)
(dewey :even)
(louie :even»»

«main-pane :even»»
(second-config . «main-pane bottom-strip)

«bottom-strip :horizontal (.2)
(random-pane menu)
«menu :ask :pane-size»
«random-pane :even»»

«main-pane :even»»»

196

Programming the User Interface March 1985

=> «first-config (:layout
(first-config :column top-strip main-pane)
(top-strip :row huey dewey louie»

(:sizes
(top-strip (huey :even) (dewey :even) (louie :even»
(first-config (top-strip 0.3)

:then (main-pane :even»»
(second-config (:layout

(second-config :column main-pane bottom-strip)
(bottom-strip :row random-pane menu»

(:sizes
(bottom-strip (menu :ask :pane-size)

:then (random-pane :even»
(second-config (bottom-strip 0.2)

:then (main-pane :even»»)

(random-pane menu main-pane louie dewey huey)

12.16.6 Examples of Specifications of Panes and Constraints Before Release 6.0

This section gives some examples of specifications of panes and constraints in the
constraint language used before Release 6.0. The full description of how to use
constraint frames, including the full constraint language, is rather complicated. For
complete specifications of the pre-Release 6.0 language: See the section "Specifying
Panes and Constraints Before Release 6.0", page 188. For the constraint language
used in Release 6.0: See the section "Specifying Panes and Constraints", page 179.

The following form creates a constraint frame with two panes, one on top of the
other, each of which takes up half of the frame.

(tv:make-window 'tv:constraint-frame
, :panes

'«top-pane tv:window-pane)
(bottom-pane tv:window-pane»

':constraints
'«main. «top-pane bottom-pane)

((top-pane 0.5»
«bottom-pane :even»»»

Two initialization options were given to the tv:constraint-frame flavor: the :panes
option and the :constraints option. The meaning of the :panes specification is:
"This frame is made of the following panes. Call the first one top-pane; its flavor is
tv:window. Call the second one bottom-pane; its flavor is tv:window". The
meaning of the :constraints specification is: "There is just one configuration
defined for this pane; call it main. In this configuration, the panes that appear are,
in order from top to bottom, top-pane and bottom-pane. top-pane should use up
0.5 of the room. bottom-pane should use up all the rest of the room."

197

March 1985 Using the Window System

This example demonstrates some more features:

(tv:make-window
'tv:bordered-constraint-frame
, :panes

'«graphics-pane tv:window-pane
:labe1 nil :b1inker-p nil)

(message-pane tv:window-pane
:labe1 "Hessage Pane" :b1inker-p nil)

(interaction-pane tv:window-pane»
, :constraints

'«main. «interaction-pane graphics-pane message-pane)
«message-pane 4 :lines»
«graphics-pane 400»
«interaction-pane :even»»»

This frame has a border around the edges (because of the flavor of the frame itself),
and it has three panes. The panes are given some initialization options themselves.
The topmost pane is interaction-pane, graphics-pane is in the middle, and
message-pane is on the bottom. message-pane is four lines high, graphics-pane
is 400 pixels high, and interaction-pane uses up all remaining space.

Here is a window that has two possible configurations. In the first one, there are
three little windows across the top of the frame and a big window beneath them; in
the second one, the same big window is at the top of the frame, and underneath it
is a strip split between a menu and another window.

198

Programming the User Interface

(tv:make-window
'tv:bordered-constraint-frame
':panes

'«huey tv:window-pane)
(dewey tv:window-pane)
(louie tv:window-pane)
(main-pane tv:window-pane)
(random-pane tv:window-pane)
(menu tv:command-menu-pane

:item-list ("Foo" "Bar" "Baz"»)
, :constraints

'«first-config . «top-strip main-pane)
«top-strip :horizontal (.3)

(huey dewey louie)
«huey :even)
(dewey :even)
(louie :even»»

«main-pane :even»»
(second-config . «main-pane bottom-strip)

«bottom-strip :horizontal (.2)
(random-pane menu)
«menu :ask :pane-size»
«random-pane :even»»

«main-pane :even»»»

March 1985

In this example, the frame has two different configurations. When the frame is
first created, it will be in the first of the configurations listed, namely first-config.
In this configuration, the top three-tenths of the frame are split equally,
horizontally, between three windows, and the rest of the frame is occupied by
main-pane. The frame can be switched to a new configuration using the
:set-configuration message. If we switch it to second-config, then main-frame
will appear on top of a strip one-fifth of the height of the window. This strip will
contain a menu on the right that is just wide enough to display the strings in the
menu's item list, and another pane using up the rest of the strip. When the
configuration of the window is switched, main-pane must be reshaped.

Another thing to notice is that the list of items in the menu was present in the
:panes option, rather than a form to be evaluated. If the list had been in a
variable, it would have been necessary to write the :panes option using backquote,
like this:

, :panes
'«huey tv:window-pane)

(dewey tv:window-pane)
(louie tv:window-pane)
(main-pane tv:window-pane)
(random-pane tv:window-pane)
(menu tv:command-menu-pane

:item-list ,the-list-of-items»

199

March 1985 Using the Window System

For an explanation of how to use menus: See the section ''Window System Choice
Facilities", page 201.

Following is the last example, using the :configurations init option instead of the
:constraints option used before Release 6.0:

(tv:make-window
'tv:bordered-constraint-frame
, :panes

'«huey tv:window-pane)
(dewey tv:window-pane)
(louie tv:window-pane)
(main-pane tv:window-pane)
(random-pane tv:window-pane)
(menu tv:command-menu-pane

:item-list ("Foo" "Bar" "Baz"»)
':configurations

'«first-config (:layout
(first-config :column top-strip main-pane)
(top-strip :row huey dewey louie»

(:sizes
(top-strip (huey :even) (dewey :even) (louie :even»
(first-config (top-strip 0.3)

:then (main-pane :even»»
(second-config (:layout

(second-config :column main-pane bottom-strip)
(bottom-strip :row random-pane menu»

(:sizes
(bottom-strip (menu :ask :pane-size)

:then (random-pane :even»
(second-config (bottom-strip 0.2)

:then (main-pane :even»»»

For a description of the constraint language used in Release 6.0: See the section
"Specifying Panes and Constraints", page 179.

In this example, the window is divided into two windows, side by side.

(tv:make-window
'tv:bordered-constraint-frame
':edges '(100 100 600 600)
, :panes

'«left tv:window-pane)
(right tv:window-pane»

, :constraints
'«main. «whole-thing)

«whole-thing :horizontal (:even)
(left right)
«left :even)
(right :even»»»»

200

Programming the User Interface March 1985

This example also points out that constraint frames are windows too, and you can
use init options acceptable to tv:minimum-window with them. In this case, we
give the" edges of the frame as a whole, in absolute numbers. Remember that
frames are not built out of tv:window.

201

March 1985 Window System Choice Facilities

PART III.

Window System Choice Facilities

202

Programming the User Interface March 1985

203

March 1985 Window System Choice Facilities

13. The Choice Facilities

The window system for the Lisp Machine contains a variety of facilities to allow the
user to make choices interactively. These all work by displaying some arrangement
of items in a window. By pointing to an item with the mouse and pressing a mouse
button, the user selects the item. The choice facilities are implemented in and
accessed with the Flavors feature of Lisp.

13.1 Overview of the Choice Facilities

This section is a capsule description of the choice facilities. This should familiarize
you with the possibilities, thereby helping you to decide which facility is appropriate
to your application, without reading through each detailed description.

13.1.1 List of Choice Facilities

Here is a brief explanation of each of the choice facilities.

Pop-up Menus
This facility puts a menu with items on the screen. The user is forced to
make a choice among the items. (The menu does not disappear until a choice
has been made.) See the section "Instantiable Pop-up and Momentary
Menus", page 221.

Momentary Menus
Momentary menus appear on the screen with a list of choices. The user does
not have to make a choice, however. By moving the mouse outside of the
menu, the user can make the menu disappear. See the section "Basic and
Mixin Pop-up and Momentary Menus", page 220.

Command Menus
Command menus are used when you want to pass a command to your own
controlling process from a menu. The command is sent to the process via an
input buffer that can be shared with other windows or processes. This way,
the controlling process can be looking in the buffer for commands from
several windows as well as for keyboard input. See the section "Command
Menus", page 229.

Dynamic Item List Menus
A dynamic item list menu is provided for menus whose items change over
time. The item list is updated whenever the menu is displayed. Both
momentary and pop-up dynamic item list menus are available. See the section
"Dynamic Item List Menus", page 235.

204

Programming the User Interface March 1985

Multiple Menus
Multiple menus are provided for situations in which the user can select
several items at a time. The selected items are displayed in inverse video.
Special choices allow the user to specify operations on all the items selected.
Both momentary and pop-up multiple menus are available. See the section
"Multiple Menus", page 241.

Multiple Menu Choose Menus
This facility provides for menus with several columns. The user picks one

. item from each column. Special choices [Do It] and [Abort] are used to
execute the choices and and deactivate the menu, respectively. See the
section "The Multiple Menu Choose Facility", page 247.

Multiple Choice Menus
This facility displays a menu in which each item is displayed on a separate
line. Each item is associated with several yes/no choices, in choice boxes. By
pointing to a box and pressing the left mouse button, the user complements
the yes/no state of the choice box for that item. Constraints can be imposed
among the choices for an item, ensuring, for example, that if one box is
selected, the others are automatically deselected. See the section "The
Multiple Choice Facility", page 251.

Choose Variable Values
Each item is associated with a value printed next to it. Many different types
of values can be specified, or the programmer can create new types. In
operation, users select items and then alter the values associated with the
item. See the section "The Choose Variable Values Facility", page 257.

User Options
The user option facility is based on the choose variable values facility. It is
used to keep track of options to a program of the sort that users would want
to specify once and then save. The option list can be associated with
particular programs. See the section "The User Option Facility", page 266.

Mouse-sensitive Items and Areas
Mouse-sensitive behavior underlies all of the choice facilities. This mixin
facility lets areas of the screen be sensitive to the mouse. Moving the mouse
into such an area causes a box to be drawn around it. At this point, clicking
the mouse invokes a user-defined operation. See the section "The Mouse­
sensitive Items Facility", page 279.

Margin Choices
Windows can be augmented with choice boxes in their margins. Choice boxes
give the user a few mouse-sensitive points that are independent of anything
else in the window. Margin choices can be added to any flavor of window in
a modular fashion. See the section "The Margin Choice Facility", page 289.

205

March 1985 Window System Choice Facilities

13.2 Standard and Customizable Facilities

From the programmer's viewpoint, there are two ways of invoking the choice
facilities.

• Standard facilities are provided with a reasonable set of defaults predefined in
the system code. They are invoked with a simple function call.

• Customizable facilities require you to provide more specifications, but they allow
more flexibility in the layout and behavior of the facilities. Customizable
facilities are manipulated by the Flavor system, and include instantiable, basic,
and mixin flavors.

Many of the documented choice facilities are provided in both standard and
customizable forms.

13.3 Choice Facilities Use the Flavor System

The window system and the choice facilities are implemented using the Flavor
system in Lisp. When a menu is instantiated, users communicate with it by
pressing mouse buttons (sometimes called "mouse-clicking"), or by typing in values.
Internally, programs communicate with a menu by sending it a message using the
send function of Lisp.

Useful initialization property-list options (hereafter called init-plist options) and
messages associated with each flavor are specified in this document.

13.3.1 Combining Choice Facilities

Since the choice facilities are implemented with the Flavor system, many of the
behaviors listed previously can be integrated into one menu by means of flavor
combination.

For example, one menu might include both of these features:

• Pop-up behavior, meaning that the window does not disappear until a choice
has been made.

• Multiple menu behavior, allowing several menu items to be selected.

13.3.2 Instantiable, Basic, and Mixin Flavors

Each choice facility is based on either an instantiable, a basic, or a mixin flavor.
Even the standard choice facilities (invoked by simple Lisp function calls) are based
on these flavors.

206

Programming the User Interface March 1985

Instantiable flavors are self-contained objects that are ready to be invoked.
Instantiable facilities are built out of the basic and mixin facilities. An example of
an instantiable facility is the tv:momentary-menu flavor.

Basic flavors (often denoted by the prefIX basic- in the code) define a whole family
of related flavors. Most of the basic flavors are noninstantiable and merely serve as
a base on which to build other flavors. An example of a noninstantiable basic facility
is the tv:basic-mouse-sensitive-items flavor.

Mixin flavors (often denoted by the suffIX -moon in the code) defme a particular
feature of an object. A mixin flavor cannot be instantiated, because it is not a
complete object. An example of a mixin flavor is tv:dynamic-multicolumn-mOOn.

In the descriptions of the different choice facilities that follow, the instantiable
flavors will be discussed first, followed by the basic and moon flavors.

13.3.3 Modifying the Choice Facilities

Although this document explains how to combine the features of the different choice
facilities to suit different applications, it does not tell you how to modify the facilities
provided with the system, except in the simplest of ways. In order to change the
basic behavior of the choice facilities you will need to read some of the code that
implements the facility in question. (For example, you should study window instance
variables and internal messages that you might want to put daemons on or
redefine.)

13.4 The User's Process and the Mouse Process

An asynchronous process called the mouse process handles interaction with the
mouse. Some portions of these choice facilities execute in the process that calls
them, while other portions execute in the mouse process. For example, when menu
items are displayed on the screen and the mouse points to them, a box is drawn
around the items. This drawing is performed by the mouse process.

This document does not attempt to explain the details of how the mouse and the
window system interact. Indeed, the choice facilities are supposed to shield the user
from such details, and they can be used effectively with no knowledge of how they
are implemented internally.

However, the cases in which a portion of a facility runs in the mouse process are
noted where they occur in this text. Excepting these cases, you can freely use side­
effects (both special variables and throw), and not worry about errors in your
program corrupting the system.

The choice facilities described in this document respond to messages sent by the
mouse process. For example, :mouse-buttons, :mouse-click, and :mouse-select are
all handled by any flavor built on tv:menu.

207

March 1985 Window System Choice Facilities

14. Introduction to the Menu Facilities

From the user's point of view, a menu is a group of choices, each identified by a
word or short phrase. To see an example of a menu, click the right mouse button
while in a Lisp Listener; this should cause the System menu to appear (Figure 1).

Windows
Create
Select

Split Screen
Layouts

Edit Screen
Set Mouse Screen

x

Figure 1. System menu.

This window
Attributes
Refresh

Bury
Kill

Reset
Arrest

Un-Arrest

PrC?!lrams
LIsp
Edit

Inspect'
Mail

Font Edit
Trace

Emergency Break
Flavor Examiner

Hardcopy
File System

You can select one of the choices by moving the mouse near it, which causes it to be
highlighted. (a box appears around it), and then clicking any mouse button. What
happens when you select one of the choices depends on the particular type of menu.
Typically the choices in a menu might be commands to some program or choices on
which a command should operate.

The window system software automatically chooses the arrangement of the choices
and the size and shape of the window. Naturally, there are ways for programmers
to control these parameters if they desire. See the section "Init-plist Options for
tv:menu", page 295.

The inverse-video mouse documentation line is provided near the bottom of the
screen in order to convey the meaning of the mouse buttons at a given time. For
example, in the System menu, with the mouse positioned over the "Create" item,
the mouse documentation line normally displays the following text:

Create a new window. Flavor of window selected from a menu.

The abbreviations L, M, and R stand for the left, middle, and right mouse buttons,
respectively. The numeral 2 indicates a quick double click of the mouse button.
(Note that the "double-click" effect can also be obtained by clicking once on the
mouse while holding down the SHIFT key.)

208

Programming the User Interface March 1985

14.1 Components of a Menu

It is important to understand the terminology for describing a menu. The
components of a menu are shown in Figure 2.

14.2 Menu Items

From the viewpoint of the programmer, a menu has a list of items; each item
represents one of the displayed choices. The user chooses an item, and then the
program executes it.

An item, then, has three parts:

• A representation in the item list

• A displayed representation

• A specified action when it is executed; this can include a value (or values) to
return as well as side-effects

14.3 The Form of a Menu Item

Generally speaking, a menu item can take any of several forms, noted in the list
below. In practice, you find these forms in the specification of particular item types,
described in the next section.

a string or a symbol
The string or symbol is both what is displayed and what is returned. There
are no side-effects when the item is executed. (Note: nil is not a valid menu
item.)

a cons This is like an alist entry. The car is a string or symbol to display and the
cdr is what to return. The cdr must be atomic to distinguish this case
from the remaining ones. There are no side-effects.

a list (name value)
Another form of alist entry. name is a string or a symbol to display, and
value is any arbitrary object to return. There are no side-effects when the
item is executed.

a list (name type arg optionl argl option2 arg2 ...)
This is the "general list" form, described in more detail below. name is a
string or a symbol to display. type is a keyword symbol specifying what to do
when the item is executed, and arg is an argument to it. The options are

March 1985

menu item

menu item

menu item

Label

menu item

menu item

menu item

menu item

menu item

menu item

yes no

D D
D D
D D
f t
choice boxes

margin choice boxes

l !
D Doit D Abort

209

Window System Choice Facilities

j ~ Multiple-choice menu

)

attaches to a menu

~--------------------------------~

} Margin

Mouse Documentation .

Figure 2. Components of a menu.

At the bottom of
the screen

210

Programming the User Interface March 1985

keyword symbols specifying additional features desired, and the args following
them are arguments to those options.

14.3.1 Types of Menu Items

Each menu item is an instance of a particular type. In most menus, you may not
want to explicitly specify the type of the menu item. This is because in simple
menus all the menu items are of the same type. Your code (which processes the
selected items) presumably knows this type.

It is possible to specify the type of the menu items, however. This provides another
dimension of flexibility in menu design. Since items of different types can be
intermingled in a single menu, selecting different items can generate a variety of
interesting effects. For example, some items can return a value, while others can
generate new menus or perform other computations.

14.3.2 The "General List" Form of Item

To specify the type of an item, use the "general list" form of item.

(name type arg optionl argl option2 arg2 ... J

As described, an arg (argument) field follows each type specification. The predefined
types of menu items and the meaning of their arguments are listed here.

:value arg is what to return when the item is executed. There are no side-effects.

:eval arg is a form to be evaluated. Its value is returned.

:funca11
arg is a function of no arguments to be called. Its value is returned.

:funca1l-with-self
Like the :funcall item type, :funca1l-with-self calls a function. However, the
specified function is called with one argument: self, that is, the menu itself.

An example demonstrates its use:

:no-select

;;; Specify the item list

;;; Specify the :funcall-with-self item
("Option '" :funcall-with-self do-option-')

(defun do-option-, (menu)
;; send the :option-, message
(send menu ':option-'»

This item cannot be selected. Moving the mouse near it does not cause it to

211

March 1985 Window System Choice Facilities

be highlighted. This is useful for putting comments, headings, and blank
spaces into menus. arg is ignored, but it must be present for syntactic
consistency.

:kbd arg is sent to the selected window via the :force-kbd-input message.
Typically it is either a character code that is to be treated as if it were typed
in from the keyboard, or a list that is a command to the program. It is
almost always preferable to use a command menu rather than :kbd menu
items. See the section "Command Menus", page 229.

:menu arg is a new menu to choose from; it is sent a :choose message and the
result is returned. Normallyarg would be a momentary menu. If arg is a
symbol it gets evaluated.

:buttons
arg is a list of three menu items. The item actually chosen (that is, the
item to be executed) is one of these three, depending on which mouse button
was clicked. The order in the list is (left middle right).

:window-op
arg is a function of one argument. The argument is a list of three elements:
the window the mouse was in before this menu was exposed and the X and
Y coordinates of the mouse at that time. For a description of the
tv:window-hacking-menu-mixin: See the section "Basic and Mixin Pop-up
and Momentary Menus", page 220. This type is not useful unless the
tv:window-hacking-menu-mixin is present in the window flavor.

14.3.3 Menu Item Options

Menu item options follow the arguments in the "general list" form of item. They
have two purposes:

• Specifying the font of a menu item

• Specifying the mouse line documentation string associated with an item

The menu item option keywords are as follows:

:font This keyword is followed by a font or a symbol that is the name of a font.
The item is displayed in that font instead of the menu's default font.

:documentation
This keyword is followed by a string that briefly describes this menu item.
When the mouse is pointing at this item, so that it is highlighted, the
documentation string is displayed in the documentation line at the bottom of
the screen. It is considered good practice to include documentation for all
menu items.

An example of the use of menu item options is shown here:

212

Programming the User Interface March 1985

("Item 2" :value 1.5 :documentation "Costs $1.50" :font fonts:trl0)

14.4 Choosing and Executing

After an item has been chosen, it is executed. Executing a menu item does what the
item type tells it to do. Depending on the type of item being executed, executing
produces a value, performs a side-effect, or both.

Execution always takes place in the user process (rather than the mouse process).
Thus, execution can depend on the special-variable environment and can perform
actions that take a long time, interact with the user, or depend on being able to use
the mouse.

The responsibility for executing the chosen menu item rests with either the system
or the programmer, depending on how the menu is used. The tv:menu-choose
function and the :choose message execute the chosen item and return its value, or
they return nil if no item was chosen. When using command menus the chosen
item is returned to the user program. See the section "Command Menus", page 229.
The user program can execute it by sending the :execute message. See the section
"Useful tv:menu Messages", page 223.

The importance of executing menu items depends on the function of the menu.
Some menus contain items that act as "nouns". The user simply chooses one out of
a group of similar items. In this case, executing the item serves only to translate
from the item list. The item list contains the printed representation displayed in the
menu and the documentation displayed in the mouse documentation line. For this
kind of item, the :value item type is often used.

Other menus contain items that act more like "verbs". The program operating the
menu might not be aware of the details of each item; it simply allows the user to
choose one and then executes it. In this case, most of the complicated behavior is
within the menu item. Typically, the :eval or :funcall item type is used.

213

March 1985 Window System Choice Facilities

15. The Geometry of a Menu

A menu has a geometry that controls its size, its shape, and the arrangement of
displayed choices. The creator of a menu may specify some aspects of the geometry
explicitly, leaving other aspects to be given by the system according to default
specifications.

There are two ways the choices can be displayed. They can be shown in an array
of rows and columns, or they can be in a "filled" format with as many to a line as
will reasonably fit. Filled format is specified by giving zero as the number of columns.

The geometry of a menu is represented by a list of six elements:

columns
The number of columns (0 for filled format).

rows The number of rows.

inside width
The inside width of the window, in units of the screen (pixels). If you set
the size or edges of the window the inside width is remembered here and
acts as a constraint on the menu afterwards.

inside height
The inside height of the window, in pixels. If you set the size or edges of
the window the inside height is remembered here and acts as a constraint on
the menu afterwards.

maximum width
The maximum width of a window, in pixels. The window system prefers to

. choose a tall skinny shape rather than exceed this limit.

maximum height
The maximum height of a window, in pixels. The system prefers to choose a
short fat shape rather than exceed this limit. If both the maximum width
and the maximum height are reached, the system displays only some of the
menu items and enables scrolling to make the rest accessible.

Values of nil for parts of the geometry can be specified to leave that part
unconstrained.

15.1 Geometry Init-plist Options

The init-plist options listed below initialize the geometry of any menu built on the
tv:menu flavor.

214

Programming the User Interface March 1985

:geometry list (for tv:menu) Init Option
Sets up the complete menu geometry, using a list to specify the columns,
rows, inside-width, inside-height, max-width, and max-height. See the section
"The Geometry of a Menu", page 213.

: rows n-rows (for tv:menu)
Sets the number of rows.

:columns n-columns (for tv:menu)
Sets the number of columns in a menu.

:fill-p t-or-nil (for tv:menu)
Specifies whether to use filled format or columnar format.

15.2 Geometry Messages

Init Option

Init Option

Init Option

The following messages may be sent to any flavor of menu to access and manipulate
its geometry:

:geometry of tv:menu Method
This message returns a list of six elements, which constitute the menu's
geometry. These are the menu's default constraints, with nil in unspecified
positions; contrast this with the :current-geometry message.

:current-geometry of tv:menu Method
Returns a list of six elements that constitute the geometry corresponding to
the actual current state of the menu. This contrasts with the :geometry
message, which returns the specified default geometry. Only the maximum
width and maximum height can be nil.

:set-geometry &optional columns rows inside-width inside-height Method
max-width max-height of tv:menu

Note that this message takes six arguments rather than a list of six things
as you might expect. This is because you frequently want to omit most of
the arguments. The geometry is set from the arguments, which can cause
the menu to change its shape and redisplay. An argument of nil means to
make that aspect of the geometry unconstrained. An omitted argument or
an argument of t means to leave that aspect of the geometry the way it is.

:fill-p of tv:menu Method

:set-fill-p t-or-nil of tv:menu Method
Get (:fill-p) or set (:set-fill-p) the menu's fill mode. t is returned from :fill-p
if the menu displays in filled form rather than columnar form. Thus, use t
to set the fill characteristic. These messages are a special case of the
:geometry j:set-geometry messages.

215

March 1985 Window System Choice Facilities

Note that the messages :set-default-font and :set-item-list (which do what they
say) also cause the geometry of a menu to be recomputed.

15.3 Geometry Example 1: a Multicolumned Menu

It is not necessary to explicitly specify all six values for the geometry list. In the
following example, only the columns value is supplied, and a one-column menu is
specified. The rest of the geometry values are computed by using the column value
to constrain the system-default settings.

(setq geometry-list (list 1»

Figures 3a and 3b show the result of setting the geometry of a menu first to a one­
column form (3a), then a multicolumn format (3b, using the three-column code
example below). In the example, the variable result holds the value of the item
selected by the mouse.

Selection
First

Second
Third

fourtbV'l
fifth
Sixth
None

(a)
(b)

Figure 3. Adjusting a menu's column geometry. (a) One column (b) Three columns

The code used to generate Figure 3b is next.

;;; Geometry Example 1

;;; First element in the geometry list specifies three columns
(setq geometry-list (list 3»

216

Programming the User Interface

;;; Hake the menu
(setq my-menu Ctv:make-window 'tv:momentary-menu

t:label '(:font fonts:hl12b :string " Selection")
':geometry geometry-list
':borders 3
':item-list '«"First" :value 100)

("Second" :value 200)
("ThirdH :value 300)
("Fourth" :value 400)
("Fifth" :value 500)
("Sixth" :value 600)
("None" :value 0»»

;;; Expose the window, make a choice,
'" and leave the value in the variable "result"
(setq result (send my-menu ':choose»

15.4 Geometry Example 2: Retrieving Geometry Information

March 1985

Figure 4 is an example of a simple menu from which we would like to retrieve
geometry information.

Select Color of Issue
Blue
Red

Ve II ow
Green

IOrangij x

Figure 4. Simple menu from which geometry information is obtained.

The code that produced Figure 4 uses the :current-geometry message, which
retrieves a description of a menu's geometry. Border and font specifications are used
to customize the menu. (A list of the loaded screen fonts is accessible by using List
Fonts (M-X) in the Zmacs editor.)

217

March 1985 Window System Choice Facilities

;;; Menu Geometry Example 2

'" z is an instance of a momentary window created
'" by the make-window function
(setq z (tv:make-window 'tv:momentary-menu

':borders 6
':font-map '(fonts:bigfnt fonts:h112i)
': label ' (: font fonts :hl 12i :string " Select Color of Issue"»)

;;; item-list is a list of menu items
(setq item-list '("Blue" "Red" "Yellow" "Green" "Orange"»

;;; This sends a message to set up an item list
(send Z ':set-item-list item-list)

The next expression interrogates the menu and returns a list that describes its
geometry. The list is returned in geometry-facts. (Nothing in particular is done
with geometry-facts in this example).

(setq geometry-facts (send Z ':current-geometry»

The final expression exposes the menu, allows a choice to be made, and returns the
selected string in the variable result.

(setq result (send Z ':choose»

218

Programming the User Interface March 1985

219

March 1985 Window System Choice Facilities

16. Momentary and Pop-up Menus

A momentary menu appears on the screen with a list of items. The user does not
have to make a choice, however. By moving the mouse outside the menu, the menu
is made to disappear.

By contrast, a pop-up menu forces the user to make a choice. The menu does not
disappear until an item has been selected.

16.1 The Standard Momentary Menu Interface

The standard form of a choice facility provides a simple function-call mechanism for
invoking it without specifying its details. The standard momentary menu interface
is based on the function tv:menu-choose.

tv:menu-choose item-list &optional label near-mode default-item Function
item-list is a list of menu items. See the section "Types of Menu Items",
page 210. This function pops up a menu and allows the user to make a
choice with the mouse. When the choice is made, the menu disappears and
the chosen item is executed. The value of that item is returned. If the user
moves the mouse out of the menu and far away, it pops down without
making any choice and nil is returned.

label is a string to be displayed at the top of the menu, or nil (the default)
to specify the absence of a label.

near-mode specifies where to put the menu on the screen. It defaults to the
list (:mouse) and must be an acceptable argument to
tv:expose-window-near.

default-item is the item over which the mouse should be positioned initially.
This allows the user to select that item without moving the mouse. If
default-item is nil or unspecified, the mouse is initially positioned in the
center of the menu.

16.2 Standard Momentary Menu Example

The following code is an example of how to instantiate a simple momentary menu.
Once the menu pops up, the user can make a choice with the mouse. (Any mouse
button selects the chosen item.) The item-list is a list of menu items in the
"general list" form. The price variable is set to the value of the selected item,
specified in the item list.

220

Programming the User Interface March 1985

(setq item-list
'(("Heat and potatoesH :value 3.49 :documentation HCosts $3.49 H

)

(HFish and chipsH :value 3.79 :documentation "Costs $3.79H
)

("HashH :value 1.49 :documentation HCosts $1.49")
("Chicken stew" :value 2.99 :documentation "Costs $2.99 H »)

(setq price (tv:menu-choose item-list "F & T Diner H»~

16.3 The tv:mouse-y-or-n-p Facility

One of the simplest choice facilities in the system is based on the tv:menu-choose
function. This is the tv:mouse-y-or-n-p function, which is useful for quick yes-or-no
queries in a user interface.

tv:mouse-y-or-n-p item Function
Takes an item as its argument and displays it in a one-item menu. item is
usually a string. If the user clicks on this menu with the mouse button, the
value of the item is returned. If the user moves the mouse out of the menu,
nil is returned.

16.4 Basic and Mixin Pop-up and Momentary Menus

The basic and mixin flavors for ordinary kinds of menus are explained in this
section. They cannot be instantiated themselves but they are the building blocks of
the instantiable menus.

tv:basic-menu Flavor
All the other menus in the standard menu facility are built on this flavor.
The basic menu handles an item list, it remembers the last item selected,
and it knows about its geometry. See the section "The Geometry of a
Menu", page 213.

tv:basic-momentary-menu Flavor
When this flavor is mixed with a window, it creates a kind of menu that is
only momentarily on the screen. A :choose operation on a deexposed menu
of this flavor causes it to position itself where the mouse is and expose itself.
When the user selects an item in the menu, or alternatively moves the
mouse far away from the menu, the menu disappears and deactivates.

tv:window-hacking-menu-mmn Flavor
This menu flavor mixin provides for the :window-op item type. The
window that the menu is exposed over is remembered. The remembered
window is used if an item of type :window-op is selected. See the section
"Types of Menu Items", page 210.

221

March 1985 Window System Choice Facilities

16.5 Instantiable Pop-up and Momentary Menus

The instantiable menu flavors are listed below, followed by an example of how to
instantiate one of them. Two of the most important menu flavors are tv:menu and
tv:momentary-menu, since many other menu flavors are built on them. For a
diagram of the flavor network on which tv:menu and tv:momentary-menu are
built: See the section "The Flavor Network of tv:menu", page 293. For an
enumeration of many of tv:menu's init-plist options and messages: See the section
"Init-plist Options for tv:menu", page 295. See the section "Messages Accepted by
tv:menu", page 299.

tv:menu Flavor
This is tv:basic-menu with borders and an optional label on top. By
default, there is no label, but you can specify one with the :label init-plist
option or the :set-label message. tv:menu is built on the tv:basic-menu,
tv:borders-mixin, tv:top-box-label-mixin, tv:basic-scroll-bar, and
tv:minimum-window flavors.

tv:momentary-menu Flavor
This is built on tv:basic-momentary-menu mixed with tv:menu. See the
section "The Flavor Network of tv:menu", page 293.

Momentary menus display a list of items. The user can avoid making a choice
by moving the mouse outside the menu. In this case, the menu disappears.

tv:pop-up-menu Flavor
This menu is a combination of tv:menu and tv:temporary-window-mixin,
but does not have the. automatic expose and deexpose features of
tv:momentary-menu. See the section "Temporary Windows", page 84. It is
appropriate to use a pop-up menu rather than a momentary menu when you
want to pop a menu up and make several choices from it before popping it
back down. Another use is if you· want to force the user to make a choice.
Moving the mouse outside of the menu boundary does not deexpose the
menu.

tv:momentary-window-hacking-menu Flavor
This is a momentary menu combined with tv:window-hacking-menu­
mixin. The window that the menu is exposed over is remembered when the
:choose message is sent. The remembered· window is used if a :window-op
type item is selected.

tv:momentary-menu &optional (superior tv:mouse-sheet) Resource
This is a resource of momentary menus. tv:menu-choose allocates a
window from this resource.

222

Programming the User Interface March 1985

16.6 Useful tv:menu Init-pHst Options

This is a list of some of the most frequently used init-plist options for the tv:menu
flavor and menu flavors built on it, such as tv:momentary-menu and
tv:pop-up-menu. For a list of more window-related init-plist options associated with
any flavor built on tv:menu: See the section "Init-plist Options for tv:menu", page
295.

:borders argument (for tv:menu) Init Option
This option initializes the parameters of the borders. The argument can be
nil, which specifies no borders, t, which specifies default borders, or it can be
a specification of a border. The specification indicates which function is used
to draw the border and how thick the border is, in pixels.

If the specification is a number, the border is drawn by the default function
at the specified thickness. The default function is
tv:draw-rectangular-border.

If the specification is a symbol, the border is drawn by the specified function
at a default thickness. For more details on creating a function: See the
section "Using the Window System", page 7l.

If the specification is a cons in the form (function. thickness), the borders
are drawn by the specified function at a specified thickness.

The specification can also be a list of locations on the screen: (left top right
bottom).

: default-font font (for tv:menu) Init Option
Sets the default font. Items whose font is otherwise unspecified are displayed
in the default font.

:font-map list (for tv:menu) Init Option
Specifies a list of fonts associated with the window.

:item-list list (for tv:menu) Init Option
Specifies the item list associated with a menu.

:label specification (for tv:menu) Init Option
Specifies the menu's label. The specification is usually a list in the following
form:

(:string "Foo" :font font-specification)

:vsp n-pixels (for tv:menu) [nit Option
Sets the vertical spacing between lines in the menu. The default is 2 pixels.

See the section "Geometry Init-plist Options", page 213.

223

March 1985 Window System Choice Facilities

16.7 Useful tv:menu Messages

This is a list of some useful window and menu-related messages associated with the
tv:menu flavor and any flavor built on it. For a list of more window-related
messages to tv:menu: See the section "Messages Accepted by tv:menu'\ page 299.

:choose of tv:menu Method
This message exposes the window and allows the user to make a choice with
the mouse. It sends :execute to the window and performs the action
specified by the item's type.

:execute item of tv:menu Method
This message extracts the value from a chosen item and returns it, or it
performs a side-effect, or both. It decides what to return based on the item's
type. See the section "Types of Menu Items", page 210.

In a program that uses command menus, the :any-tyi message can return a
blip containing the menu and. an item. The program sends the :execute
message to the menu to execute the item. See the section "Command
Menus", page 229.

:execute is sent by the system for other kinds of menus. For example, the
:choose message, which returns a value and not an item, uses the :execute
message to retrieve the value from the chosen menu item.

:deactivate of tv:menu Method
This message deactivates a window, deexposing it. In momentary menus, it is
sent when the mouse is moved outside the borders of the menu.

16.8 tv:momentary-menu Example 1: Simple Momentary Menu

An example of a simple momentary window with three items in it from which to
select is shown in Figure 5.

Select one
Montmorlilom te

Hectorite
Beidellite

Figure 5. Momentary menu example.

The code to produce such a menu is given next. (In the example, there are no
actions specified when an item is selected.)

224

Programming the User Interface

;;; Momentary Menu Example 1

••• z is an instance of a momentary menu created by the
;;; make-window function
(setq z (tv:make-window 'tv:momentary-menu

':label '(:string "Select one" :font :fonts:hl12b»)

;;; item-list is a list of menu items
(setq item-list '("Montmorillonite" "Hectorite" "Beidellite"»

;;; This passes a message to set up an item list
(send z ':set-item-list item-list)

;;; The :choose message exposes the window and allows the mouse
;;; to select an item. choice holds the result.
(setq choice (send z ':choose»

March 1985

16.9 tv:momentary-menu Example 2: Item List as Init-plist Option

Another way to set up the item list is to specify it as an init-plist option.

;;; Example 2
;;; Shows use of the init-plist to specify items

(setq z (tv:make-window 'tv:momentary-menu
':label " New Selection"
':item-list '("First" "Second" "Third"»)

(setq choice (send z ':choose»

16.10 tv:momentary-menu Example 3: Centered Label and Use of
General List Items

In Example 3, two new principles are shown. First, in order to have a centered label
for the menu, the new flavor momentary-menu-with-centered-Iabel is created.

Second, the "general list" form of item list is used. See the section "The "General
List" Form of Item", page 210. This allows your program to invoke an operation or
return a value when an item is selected. In the example, the variable choice is set
to nil or one of the numbers 1.0, 2.0, or 3.0, depending upon the action taken by
the user.

The :font option keyword specifies the font of the displayed item.

The :documentation option keyword has the following effect. When an item with
the :documentation keyword is pointed at by the mouse, the specified

225

March 1985 Window System Choice Facilities

documentation string appears in the inverse-video mouse documentation line at the
bottom of the screen.

" , Example 3
; ; ; Shows use of flavor mixing and "general list" menu items

'" Define a flavor with the centered-label-mixin
(defflavor momentary-menu-with-centered-label ()

(tv:centered-label-mixin tv:momentary-menu»

;;; Create an instance of the window
(setq z (tv:make-window

'momentary-menu-with-centered-label
':label "Se1ection"
':item-1ist '«"Orange" :value 1.0 :font fonts:tr12b

:documentation "Select orange.")
("Red" :va1ue 2.0 :font fonts:h112b

:documentation "Select red.")
("Yellow" :value 3.0 :font fonts:prt12b

:documentation "Se1ect yellow."»»

(setq choice (send z ':choose»

16.11 tv:momentary-menu Example 4: Using the Mouse Buttons

The general list form can include choices that depend on the three mouse buttons.
:buttons is a menu itemtype that takes three arguments (left middle right), each of
which specifies what to do if a particular button is pressed. If any argument to
:buttons is nil, a click on that button is ignored. See the section "Types of Menu
Items", page 210. An example demonstrates its use.

;;; Example 4, shows the use of different mouse buttons

;;; Specify the item list
(setq button-list

'«"One Item, Three Ways"
:buttons «1 :eval (print "left"»

(m :eval (print "middle"»
(r :eval (print "right"»)

: documentati on
"L: Print left, H: Print middle, R: Print right"»)

;;; Hake the menu •
(setq menu-l (tv:make-window 'tv:momentary-menu

':labe1 "Test Buttons"
':item-1ist button-list»

226

Programming the User Interface

;;; Expose the window and choose
(setq choice (send menu-l ':choose»

16.12 tv:pop-up-menu Example

March 1985

Since a pop-up menu does not operate as automatically as a momentary menu, it
requires a slightly different treatment. The normal mode of operation is to allow
:choose to activate and expose it, and then send it a :deactivate message when
done. This does not "destroy" the menu, it just makes sure it does not appear on
the screen.

Figure 6 shows a simple example of a pop-up menu. We use the "general list" form
of item to invoke a function that exposes a second menu and stores the results of
the two selections in the variables drink and price.

Figure 6. Pop-up menu example.

The code that generated Figure 6 follows on the next pages.

;;; Pop-up menu example

(defvar drink nil)
(defvar grapefruit "Grapefruit Juice")
(defvar orange "Orange Juice")
(defvar apple "Apple Juice")

;;; This function dispatches according to the kind of
;;; juice selected, and calls the second menu
(defun juice (fruit)

(selectq fruit
(gr (setq drink grapefruit»
(oj (setq drink orange»
(ap (setq drink apple»)

(setq price (send two ':choose»)

227

March 1985 Window System Choice Facilities

;;; This function handles the no-juice item
(defun no-juice ()

(setq drink nil»

;;; This the first menu, a pop-up menu that allows the user
;;; to select a juice
(setq one (tv:make-window

'tv:pop-up-menu
':labe1 "Juice selection"
':borders 3
':item-1ist '«"Grapefruit" :eva1 (juice 'gr»

("Orange" :eva1 (juice 'oj»
("Apple" :eva1 (juice 'ap»
("None" :funca11 no-juice»»

;;; This is the second menu, a momentary menu that allows the user
;;; to select a size of drink
(setq two (tv:make-window

'tv:momentary-menu
':labe1 "What size please?"
':borders 3
': item-1 ist

'«"Dinky" :va1ue .5
: documentation "Sma 11 est size costs 50 cents.")
("large" :va1ue 1.0
:documentation "Actually medium size, costs $1.")
("Jumbo" :va1ue 1.5
:documentation "Big, costs $1.50.")
("None" :va1ue 0
:documentation "Cheapest selection by far."»»

;;; Operate the menu; explicit exposing and
;;; deactivating are necessary for pop-up menus
(defun operate ()

(send one ':expose-near '(:mouse»
(send one ':choose)
(send one ':deactivate»

;;; Invoke the juice selection menu
(operate)

Another way to implement this example would have been to use the :menu item
type to invoke the second menu. See the section "Types of Menu Items", page 210.

228

Programming the User Interface March 1985

229

March 1985 Window System Choice Facilities

17. Command Menus

Command menus are used when a menu does not stand alone but is part of a frame
of several window panes, which can include other menus. The entire frame is
controlled by a single process; each frame sends commands (or blips) to the
controlling process from a menu.

In order to understand the operation of a command menu, it is necessary to
understand the difference between a menu item and a menu item's value.

17.1 Menu Items and Menu Values

A menu item consists of a list supplied by the programmer in the item list of a
menu specification. In most menus, your program rarely receives menu items back
from the window system; usually the values of the items are returned. There are
two exceptions to this situation:

• Certain messages deal explicitly with items, such as the :item-list message,
which returns the list of items associated with a menu.

• In command menus, your program receives a command (or blip) back from the
window system. The blip contains an entire item as well as other information
(explained in the next section). You send the :execute message to the menu
to extract the item's value and perform side-effects.

17.2 Command Blips

Since the :choose message (which gets a value and not an item) does not operate
on a command menu, the command is sent to the user process through an I/O
buffer associated with the menu. (Many windows have an 110 buffer associated with
them. See the section "Overview of Window Flavors and Messages", page 103.)
Your controlling process can be looking in its 110 buffer for commands from several
windows as well as for keyboard input.

The command chosen by the user is sent to the 110 buffer as a list in the following
form:

(:menu chosen-item button-mask window)

Note: The button-mask is a bit mask with a bit for each button on the mouse.
This provides the option of taking different actions depending on which mouse
button was pressed. The bit assignments are as follows:

230

Programming the User Interface March 1985

1 Left button
2 Middle button
4 Right button

17.3 Responsibilities of Your Program

Your program is responsible for performing each of the actions that the :choose
message would normally do, including the following:

• Deciding where to put the menu. Usually this is specified in the definition of
the frame, via :panes and :constraints specifications in a
tv: bordered-constraint-frame-with-shared-io-buffer flavor.

• Exposing the menu. Usually the command menu is part of a frame and the
entire frame is exposed.

• Receiving a choice from the mouse. This is received via an 110 operation like
the :any-tyi message.

• Executing the choice. Example: (send window ':execute chosen-item)

• Deciding whether to deactivate the frame. This is not normally performed on
an individual command menu pane.

17.4 Command Menu Mixins

tv:command-menu-mixin Flavor
This is the basic mixin version of the command menu flavor. It is not
instantiable on its own.

tv:command-menu-abort-on-deexpose-mixin Flavor
When a command menu built on this flavor receives the :deexpose message,
it searches its item list for an item whose displayed representation is [Abort].
If such an item is found, a mouse blip is sent to the 110 buffer indicating
that the [Abort] item was clicked on. See the flavor
tv:dynamic-pop-up-abort-on-deexpose-command-menu, page 236.

231

March 1985 Window System Choice Facilities

17.5 Instantiable Command Menus

tv:command-menu
This is tv:command-menu-mixin mixed with tv:menu to make it
instan tiable.

Flavor

tv:command-menu-pane Flavor
This version of the command menu flavor is meant to be used within a
window frame. See the section "Frames", page 175.

17.6 tv:command-menu Init-plist Options

:io-buffer bur (for tv:command-menu) Init Option
The 110 buffer to be used by a command menu is usually specified when it is
created. It can be shared with the 110 buffer of another window. 110
buffers are created with the tv:make-io-buffer function.

Note: By making a command-menu to be a pane in a a tv:bordered-constraint-frame­
with-shared-io-buffer, you are supplied with an 110 buffer automatically. The frame
puts an :io-buffer option into the init-plist of each pane. See the section "Frames",
page 175.

17.7 tv:command-menu Messages

:io-buffer of tv:command-menu Method
This message gets the 110 buffer to which a command menu sends a
command when an item is chosen.

:set-io-buffer io-buffer of tv:command-menu Method
This message sets the 110 buffer to which a command-menu sends a
command when an item is chosen.

17.8 tv:command-menu Example

Figure 7 shows a simple command menu. The top pane contains a command menu
that allows the user to draw an object on the screen. The middle pane is the
drawing surface. The bottom pane is another command menu that allows the user
to refresh the drawing surface or exit.

The Lisp code to produce the window in Figure 7 is shown next.

232

Programming the User Interface

riang e

e resh

Figure 7. Command menu example.

;;; Define the frame and its panes
(setq *test-frame*

QUare

xit

(tv:make-window
'tv:bordered-constraint-frame-with-shared-io-buffer
;; Select the graphics pane when it is exposed
':se1ected-pane 'graphics-pane
;; Specify the panes
':panes
'«lower-menu-pane

tv:command-menu-pane
: item-1 ist
«"Refresh" :va1ue :refresh

:documentation "Refresh graphics pane")
("Exit" :va1ue :exit

:documentation "Exit this frame."»)
(graphics-pane tv:window :labe1 nil :b1inker-p nil)
(upper-menu-pane

tv:command-menu-pane
: item-1 ist
«"Triang1e" :va1ue :triang1e

:documentation "Draw a triangle.")
("Circ1e" :va1ue :circ1e

:documentation "Draw circle.")
("Square" :va1ue :square

: documentat i on "Draw square."»»

March 1985

233

March 1985 Window System Choice Facilities

, , ,
, , ,

;; Specify the size constraints and ordering
, :constraints
'«main. «upper-menu-pane graphics-pane lower-menu-pane)

;; Big enough for the menu
«upper-menu-pane :ask :pane-size»
;; Big enough for graphics pane
«graphics-pane :400.»
;; Big enough for the menu
«lower-menu-pane :ask :pane-size»»»)

This function accesses the panes and looks for a blip
in the 1/0 buffer. It then draws, refreshes the

", graphics pane, or exits
(defun work ()

;; Get access to the panes
(let «graphics-pane

(send *test-frame* ':get-pane 'graphics-pane»
(upper-menu-pane

(send *test-frame* ':get-pane 'upper-menu-pane»
(lower-menu-pane

(send *test-frame* ':get-pane 'lower-menu-pane»)
(send *test-frame* ':expose)
;; blip holds the list returned by :any-tyi
(loop as blip = (send graphics-pane ':any-tyi)

(work)

as result-value =

do

(cond «and (listp blip) (eq (car blip) ':menu»
(send (fourth blip) ':execute (second blip»)

(t nil» ;just ignore keyboard input

;; Check the value and draw the appropriate object
(selectq result-value

(:square
(send graphics-pane ':draw-rectang1e 180. 180. 800. 110.»

(:circ1e
(send graphics-pane ':draw-fi11ed-in-circle 530. 200. 94.»

(:triang1e
(send graphics-pane ':draw-regu1ar-polygon

82. 120. 282. 120. 3»
(:refresh
(send graphics-pane ':refresh»

(:exit
(send *test-frame* ':deactivate)
(return»»»

234

Programming the User Interface March 1985

235

March 1985 Window System Choice Facilities

18. Dynamic Item List Menus

A dynamic item list menu is a menu in which the items change in between
exposures. You see an example of a dynamic item list menu when you click on the
[Select] item on the System menu (Figure 8). At different times, a different item
list appears, depending upon how many different processes were activated by the
user.

ess oc roa s c olce
Converse

Peek
Terminal 1 (SUPDUP) -- VIXEN on CHAOS

Main Zmail Window
file System (fS Edit)

U sp U stener 1
Flavor Examined x

Figure 8. Select menu, an example of a dynamic item list menu.

You can add an item to the menu by changing the value of the variable supplied as
the :item-list-pointer init-plist option. At appropriate times the menu checks to
see if this variable has been changed. If it has, the menu automatically updates the
item list. (Do not directly modify the item list yourself, as it is part of the menu.)
For a description of the times when the menu checks the state of
:item-list-pointer option, See the section "Messages to Dynamic Menus", page 237.

The dynamic item list feature is provided only for momentary and pop-up menus; it
is not available for use in menus within fIxed frames.

18.1 Dynamic Item List Mixins

tv:abstract-dynamic-item-list-mixin Flavor
This is a noninstantiable mixin flavor that implements the general notion of
dynamically changing the item list. It causes the menu's item list to be
updated at appropriate times. The actual item list is computed via the
:update-item-list message.

tv:dynamic-item-list-mwn Flavor
This is a noninstantiable mixin flavor, built on
tv:abstract-dynamic-item-list-mixin used as a building block to make

236

Programming the User Interface March 1985

instantiable versions listed later. This flavor provides a specific means of
getting the latest item list, by evaluating a Lisp form, and provides the
:item-list-pointer instance variable.

In the operation of this flavor, the old result of evaluating the value of
:item-list-pointer is saved; if the new result of evaluating the value of
:item-list-pointer is not the same (compared with the equal function), then
the item list is considered changed and the menu is updated.
:item-list-pointer is evaluated when the :choose message is sent.

tv:dynamic-multicolumn-mixin Flavor
This is a noninstantiable mixin flavor. It makes a menu have multiple
"dynamic" columns. Each column comes from a separate item list that is
recomputed at appropriate times. The instance variable tv:column-spec-list
is a list of columns. Each column list is in the form:

(heading item-list-form . options)

Heading is a string to go at the top of the column, and options are menu
item options for it (typically a font specification). item-list-form is a form to
be evaluated (without side-effects) to get the item list for that column.

18.2 Instantiable Dynamic Item List Menus

tv:dynamic-momentary-menu Flavor
This is a momentary menu with the tv:dynamic-item-list-mixin and the
tv:abstract-dynamic-item-list-mixin.

tv:dynamic-momentary-window-hacking-menu Flavor
This is a momentary menu with both the tv:dynamic-item-list-mixin and
the tv:window-hacking-mixin.

tV:dynamic-pop-up-menu Flavor
This is a pop-up menu with the dynamic item-list mixin.

tV:dynamic-pop-up-command-menu Flavor
Specifies a command menu with the temporary-menu and dynamic item-list
mixins. It is mixed in to form the hardcopy menu flavor press:hardcopy­
dynamic-pop-up-command-menu-with-highlighting.

tv:dynamic-pop-up-abort-on-deexpose-command-menu Flavor
This is a command menu with the tv:dynamic-pop-up-command-menu
and tv:abort-on-deexpose mixins.

237

March 1985 Window System Choice Facilities

18.3 Init-plist Option for Dynamic Menus

:column-spec-list form (for tv:dynamic-multicolumn-mixin)
Specified as a list of columns in the form:

(heading item-list-form . options)

Init Option

Heading is a string to go at the top of the column, and options are menu
item options for it (typically a font specification). item-list-form is a form to
be evaluated (without side-effects) to get the item list for that column.

:item-list-pointer form (for tv:dynamic-... -menu) Init Option
The ellipses in the name (. ..) indicate that this option works with several
flavors of dynamic menus. The form is saved and evaluated periodically to
get the item-list for the menu. form is usually a special variable but any Lisp
form is valid. The evaluation may occur in any process, so only global
variables should be accessed. If the result of evaluating form is not equal to
the item list, the message :set-item-list is sent to the menu to update the
new list. Note that the Lisp function equal is used for comparison, not eq.
(Do not directly and destructively modify a menu's item list yourself; the
system will do this automatically.)

18.4 Messages to Dynamic Menus

:update-item-list of tv:dynamic-... -menu Method
Updates the item list if it needs to change; this message is accepted by
menus with the dynamic item-list mixin. The :update-item-list message
sends a :set-item-list if one is necessary. The dynamic menu sends itself
this message automatically at appropriate times. The appropriate times are
before :choose, :move-near-window, :center-around, :size, and
:pane-size messages.

18.5 Dynamic Menu Example

A graphic example of a dynamic-momentary-menu is given in Figure 9. The menu is
shown in its state before updating (a) and after updating (b). This is followed by a
listing of the code that produces it.

238

Programming the User Interface

oOf.(Number
Door Number 3

Figure 9. Dynamic menu example.
;;; Dynamic Menu Example

:HOI(:ES
Door Number t
Door Number 2.
Door Number 3
Door).."Jumber 4
Door Number S

", Set up the initial item list and define the
", dynamic-item-list pointer.
(defvar pointer

'("Door Number 1"
"Door Number 2H
HDoor Number 3"»

;;; Hake the dynamic menu
(defvar doors (tv:make-window 'tv:dynamic-momentary-menu

':borders 4
':default-font 'fonts:tr12b
':label "CHOICESH
':item-list-pointer 'pointer»

;;; Expose the menu, allowing a choice to be made
(send doors ':choose)

(In the example, nothing is being done with the result.)

March 1985

Here is an example of dynamically updating the item list. The :update-item-Iist
message is sent automatically and transparently by the menu to itself. The user
does not have to explicitly send it.

;;; Add entries to the item list
(setq pointer

(append pointer (list "Door Number 4" "Door Number 5"»)

;;; Expose the menu with the new choices added
(send doors ':choose)

18.6 Adding an Item to the System Menu

Although they are not specifically a part of the dynamic item list facility, two
functions exist for adding an item (such as the name of a program) to the System
menu.

239

March 1985 Window System Choice Facilities

18.6.1 Adding an Item to the Programs Column

To add an item to the Programs column of the System menu, use the following
function:

tv:add-to-system-menu-programs-column name form Function
documentation &optional after

Adds a program to the Programs column of the system menu. name is a
string, the name to appear in the menu. form is a form to evaluate, in its
own process, when the program is selected; often this is a call to
tv:select-or-create-window-of-flavor. documentation is mouse
documentation for the menu item. after determines the position of the new
program name in the Programs column:

nil

t

string

Bottom of the column

Top of the column

After the program named string that is now in the menu

Example:

(tv:add-to-system-menu-programs-column
"Concept Editor" 'crl:concept-editor
HEdit the representation of a concept in the CRl systemH)

18.6.2 Adding an Item to the Create Column

To add an item to the Create menu used in the System Menu and the Screen
Editor, use the following function:

tv:add-to-system-menu-create-menu name flavor documentation Function
&optional after

Adds an entry- to the menu that appears when you click on [Create] in the
System Menu or in the Edit Screen menu. name is a string, the name of
the menu item. flavor, a flavor name, is the flavor of window that is created
when the menu item is selected. documentation is mouse documentation for
the menu item. after determines where in the [Create] menu the item
should appear:

nil

t

string

Bottom of the menu

Top of the menu

After the item named string that is now in the menu

240

Programming the User Interface

Example:

(tv:add-to-system-menu-create-menu
"Concept Editor" 'crl:concept-editor
"Edit the representation of a concept in the CRl system")

18.6.3 tv:select-or-create-window-of-flavor Function

March 1985

tv:select-or-create-window-of-flavor find-flavor &optional Function
{create-flavor find-flavor>

Selects the most recently selected window of flavor find-flavor. If no window
of that flavor exists, makes a window of flavor create-flavor and selects it.

241

March 1985 Window System Choice Facilities

19. Multiple Menus

Multiple menus allow several items to be selected at a time. The selected items are
highlighted in inverse video. Clicking the mouse on an item complements its selected
state. Clicking the default special choice [Do It] associated with a multiple· menu
completes the selection, and returns the result of executing all the highlighted
choices. The lower portion of Figure 10 is an example of a hardcopy multiple menu
with several items selected.

Click on fields to ~odify theM, or use the ~enu.
eborts, ~ sterts printin9.

Device: Echo Leke
File: a:)rel-6)sys)doc)~enus)~enusl.ser.7
File ~ode is TEXT, Font ne~e FIX, SiEe 9, Stenderd fece.
One copy.
Stenderd pege heedin9s.
Portreit for~et.

Herdco

SUDS Plot
Font Size
LandBCapB

XGP File
Other Path
Font Menu

Delete

Figure 10. Hardcopy multiple menu.

19.1 Multiple Menu Mixins

LGP File
Font Name
~
~

PreBa File
Font Face

Pa e Headin :-;
Abort

These are the noninstantiable flavors that add multiple menu behavior to a window.

tv:menu-highlighting-mmn Flavor
This moon flavor allows some of the menu items to be highlighted with
inverse video. This is typically used with menus of options, where the
options currently in effect are highlighted. The menu items corresponding to
modes are typically set up so that when executed, they adjust the
highlighting to reflect the enabling or disabling of a mode.

tv:multiple-menu-mmn Flavor
This moon flavor gives a menu the ability to have multiple items "selected".
Selected items are highlighted with inverse video, using the

242

Programming the User Interface March 1985

tv:menu-highlighting-mixin. Clicking on an item merely complements its
selected state and does not execute it or return from the :choose message.

Normally (but not in the example above) at the top of the menu, in italics,
are displayed some "special choices" (for example, [Do It] or [Abort]) that
cannot be highlighted. Clicking on one of these behaves the same as clicking
on an item of an ordinary menu.

By default, the only special choice is [Do It], which returns (from the
:choose message) a list of the results of executing all the highlighted choices
(that is, the result of the :highlighted-values message). You can define
your own special choices with the :special-choices init-plist option, or get rid
of them entirely by giving nil as the argument to this option.

19.2 Instantiable Multiple Menus

tv:multiple-menu Flavor
This instantiable menu flavor is a combination of tv:multiple-menu-mixin
with tv:menu. It must be explicitly deactivated by the user program.

tv:momentary-multiple-menu Flavor
This instantiable flavor is built on tv:multiple-menu-mixin and tv:menu­
highlighting-mixin with tv:momentary-menu. The menu is exposed near the
mouse, and like any momentary menu, the menu disappears once the user
has made a choice.

19.3 tv:multiple-menu-mixin Init-plist Options

:highlighted-items items (for tv:menu-highlighting-mixin) Init Option
When a menu with the menu-highlighting mixin is created, the list of items
to be initially highlighted may be specified. The default is nil

:special-choices choice-list (for tv:multiple-menu-mixin) Init Option
Each element of choice-list specifies a menu item for a multiple menu.
These are the items that behave like normal menu items; the items from the
:item-list init option behave as on/off switches as described above. An
element of choice-list may be any form of menu item.

243

March 1985 Window System Choice Facilities

19.4 tv:multiple-menu-mixin Messages

:highlighted-items of tv:menu-highlighting-mixin
Get the list of highlighted items.

:set-highlighted-items list of tv:menu-highlighting-mixin
Set the list of items to be highlighted.

:add-highlighted-item item of tv:menu-highlighting-mixin
Add an item to the list of items to be highlighted.

:remove-highlighted-item item of tv:menu-highlighting-mixin
Remove an item from the list of highlighted items.

:highlighted-values of tv:menu-highlighting-mixin

:set-highlighted-values list of tv:menu-highlighting-mixin

:add-highlighted-value value of tv:menu-highlighting-mixin

Method

Method

Method

Method

Method

Method

Method

:remove-highlighted-value value of tv:menu-highlighting-mixin Method
These messages are similar to the preceding four, except that instead of
referring to items directly you refer to their values, that is, the result of
executing them. For instance, if your item-list is an association list, with
elements (string. symbol), these messages use symbol. This only works for
menu items that can be executed without side-effects, not, for example, the
:eval and :funcall kinds.

19.5 tv:momentary-multiple-menu Example

A simple example of defining a momentary multiple menu is given in Figure 11. The
example of a Thai restaurant is used to illustrate the situation where more than one
choice is appropriate.

The Lisp code used to generate Figure 11 is given in this example of setting up and
using a multiple menu. The variable selections is used to contain the selected
items.

244

Programming the User Interface

Do It
None
All

Yurn Hed ,Koonq
Nur Pud Nor-rna I

IIWiyml Wg
Nam Sod

Gal Pud Gra- rao

Pud Thai

Figure 11. Momentary multiple menu.

;;; Multiple Menu Example
;;; Set up the item list. Each of the dishes has a name and
;;; a number. When selected, the names are highlighted.
(setq items '«"Vum Hed Koong" 1)

("Nur Pud Nor-mai" 2)
("Nur Pud Pek" 3)
("Nam Sod" 4)
("Gai Pud Gra-prao" 4)
("Pla Preow Warn" 5)
("Pud Thai" 6»)

;;; This handles the "Do It" special item
(de fun do- i t ()

;; Get the names of the selected dishes
(setq names

(mapcar 'car (send Thai-menu ':highlighted-items»)
;; Get the numbers of the selected dishes
(setq selections

(send Thai-menu ':highlighted-values»)

;;; This handles the "None" special item
(defun none ()

(send Thai-menu ':set-highlighted-items nil)
(setq selections nil)
(setq names nil»

March 1985

245

March 1985 Window System Choice Facilities

;;; This handles the "All" special item
(defun all ()

;; Hake all the items selected
(send Thai-menu':set-highlighted-items items)
;; Get the names of the selected dishes
(setq names (mapcar 'car (send Thai-menu ':highlighted-items»)
;; Get the numbers of the selected dishes
(setq selections (send Thai-menu ':highlighted-values»)

;;; This sets up the special choice list.
;;; When one of these is selected, the menu exits.
(setq choices '«"00 it" :eval (do-it»

("None" :eval (none»
("All" :eval (all»»

;;; This instantiates the menu
(setq Thai-menu (tv:make-window

'tv:momentary-multiple-menu
':item-list items
':special-choices choices»

;;; This exposes the menu, allowing choices to be made.
(send Thai-menu ':choose)

246

Programming the User Interface March 1985

247

March 1985 Window System Choice Facilities

20. The Multiple Menu Choose Facility

The multiple menu choose facility provides menus with several columns. The user
may choose one item from each cohimn. The selected choice in each column is
highlighted with inverse video. At the bottom of the leftmost two columns are two
special choices, in italics. The [Do It] choice selects all· the highlighted choices.
[Abort] deactivates the menu with no further action.

An example of the multiple menu choose facility can be displayed by clicking right on
the [Reply] item in the main Zmail window, as in Figure 12 below.

AII-Cc
Cc-AII

To
To-Cc
Cc-To
Sender

Do It

T wo-w i ndows·
One-window

Yank
x

Abort

Figure 12. Multiple menu choose facility in Zmail.

Menus of this type are operated by the :multiple-choose message rather than the
:choose message.

20.1 The Standard Multiple Menu Choose Function

This function provides all the default values necessary for a simple multiple-menu­
choose menu.

tv:muItiple-menu-choose item-list defaults &optional near-mode Function
item-list is a list of lists of menu items. Each sublist corresponds to a
column. defaults is a list of menu items, one for each column, which are
initially highlighted.

The function pops up a menu and allows the user to make choices with the
mouse. The special choices [Do It] and [Abort] are supplied automatically.
The function returns the list of selected menu items or nil if the user aborts.
Note: The tv:multiple-menu-choose function executes items when they are
chosen, not when the [Do It] choice is made. The menu items should not
have any side-effects when executing.

248

Programming the User Interface March 1985

tv:defaulted-multiple-menu-choose item-list defaults &optional Function
near-mode

item-list is a list of lists of menu items. Each sublist corresponds to a
column.

defaults is a list of menu values, one for each column, which are initially
highlighted.

This function is similar to tv:multiple-menu-choose but the defaults
received by it and the values returned by it are values, not items.

20.2 tv:multiple-menu-choose Example

An example of a simple multiple-menu-choose menu is shown in Figure 13 .

. .
ITEM-AB ITEM-BB ITEM-CB
ITEM-AC ITEM-BC ITEM-CC

Do It Abort X

Figure 13. A standard multiple-menu-choose menu.

The code to produce the menu in Figure 13 follows.

;;;This sets up the three-row item list
(setq possibilities

'«Item-AA Item-AB Item-AC)
(Item-BA Item-BB Item-BC)
(Item-CA Item-CB Item-CC»)

;;; This instantiates the menu
(setq new-menu (tv:multiple-menu-choose

possibilities '(Item-AA Item-BA Item-CA»)

20.3 Multiple Menu Choose Mixin and Resource

tv:multiple-menu-cboose-menu-mixin Flavor
This is the basic flavor that makes a window exhibit multiple-menu-choose
behavior.

tv:pop-up-multiple-menu-cboose-resource Resource
This is a resource of multiple-menu-choose menus.

249

March 1985 Window System Choice Facilities

20.4 Instantiable Multiple Menu Choose Flavors

tv:multiple-menu-choose-menu Flavor
This is the instantiable version of the multiple-menu-choose flavor,
constructed by mixing tv:multiple-menu-choose-menu-mixin with
tv:menu. It accepts the :multiple-choose message.

tv:pop-up-multiple-menu-choose-menu Flavor
This is a combination of tv:multiple-menu-choose-menu-mixin and tv:pop­
up-menu. The arguments are the same as tv:multiple-menu-choose-menu
It accepts the :multiple-choose message.

20.5 tv:multiple-menu-choose-menu Example

Figure 14 shows an example of a momentary-multiple-item-list menu generated using
the flavor tv:multiple-menu-choose-menu. The figure is followed by the code that
generated the menu.

ITEM-CA
ITEM-AB "'amo=W ITEM-CB
ITEM-AC ITEM-BC lID __

Do It Abort X

Figure 14. Momentruy multiple-menu-choose menu.

;;; Hultiple-menu-choose-menu Example

;;; Define the item list of lists
(setq items-3x3

'((Item-AA Item-AS Item-AC)
(Item-BA Item-BB Item-BC)
(Item-CA Item-CS Item-CC»)

;;; Specify the default, highlighted items
(setq default-items '(Item-AA Item-SS Item-CC»

;;; Hake the menu
(setq newer-menu

(tv:make-window
'tv:multiple-menu-choose-menu
':label
'(:font fonts:hl12b :string "Pick Any Three")
':borders 2»

250

Programming the User Interface

;;; Choose an item from each column; resultat holds result
(setq resultat

(send newer-menu
':multiple-choose items-3x3 default-items»

March 1985

251

March 1985 Window System Choice Facilities

21. The Multiple Choice Facility

The Multiple Choice facility produces a window containing several items, one per
text line. For each item, there can be several yes/no choices for the user to make.
For an example of a multiple-choice window, try selecting the [Kill or Save Buffers]
operation in the Zmacs editor menu (see Fig. 15).

++ choi1 .mss
cho i 11.mss
++Buffer-1++
++Definitions-1++
choi8.mss /dess/doc/roads/choice/ VIXEN:
choi9.mss /dess/doc/roads/choice/ VIXEN:
LISPM-INIT.LISP DSK:<ROADS> SeRe:

o IJ a EJ a IJ
Il a
Il []
C [J

Figure 15. Multiple choice facility in the Zmacs menu.

Note that the window is arranged in columns, with headings at the top. The
leftmost column contains the text naming each item. The remaining columns
contain small boxes (called choice boxes). A "no" box has a blank center, while a
"yes" box contains an "X".

Pointing the mouse at a choice box and clicking the left button complements its
yes/no state. Each choice can be initialized by the program to yes or no as
appropriate for a default set-up. Note that some items cannot allow some choices, so
there can be blank places in the array of choice boxes.

There can be constraints among the choices for an item. For example, if they are
mutually exclusive then clicking one choice box to ''yes'' automatically sets the other
choice boxes on the same line to "no".

Several parameters are associated with a multiple-choice window:

• Item-name - a string which is the column heading for the leftmost column.

• Item-list - a list of representations of items. Each element is a list,
(item name choices). item is any arbitrary object. name is a string which
names that object; it is displayed on the left on the line of the display devoted
to this item. choices is a list of keywords representing the choices the user
can make for this item. Each element of choices is either a symbol, keyword,
or a list, (keyword default). If default is present and non-nil, the choice is
initially "yes"; otherwise it is initially "no".

• Keyword-alist is a list defining all the choice keywords allowed. Each element
takes the form (keyword name). keyword is a symbol, the same as in the

252

Programming the User Interface March 1985

choices field of an item-list element. name is a string used to name that
keyword. It is used as the column heading for the associated column of choice
boxes.

• An element of keyword-alist can have up to four additional list elements, called
implications. These control what happens to other choices for the same item
when this choice is selected by the user. Each implication can be nil, meaning
no implication, a list of choice keywords, or t meaning all other choices.

The first implication is on-positive; it specifies what other choices are also set
to "yes" when the user sets this one to "yes."

The second implication is on-negative; it specifies what other choices are set to
"no" when the user sets this one to "yes."

The third and fourth implications are off-positive and off-negative; they take
effect when the user sets this choice to "no."

The default implications are nil t nil nil, respectively. In other words the
default is for the choices to be mutually exclusive. (If the implications
are not specified, the defaults are rplacd'ed into the keyword-alist
element by the system.)

• Finishing-choices - the choices displayed in the bottom margin. When users
click on one of these they are done. The variable
tv:default-finishing-choices contains a reasonable pair of default finishing
choices: [Do It] and [Abort].

21.1 The Standard Multiple Choice Function

This function interface to the multiple choice facility provides all the default values
needed for a simple multiple choice menu.

tv:multiple-choose item-name item-list keyword-alist &optional Function
near-mode maxlines

This function pops up a multiple-choice window and allows the user to make
choices with the mouse. The dimensions of the window are automatically
chosen for the best presentation of the specified choices. If there are too
many choices, scrolling of the window is enabled.

item-name, item-list, and keyword-alist are as described previously: See the
section "The Multiple Choice Facility", page 251. The finishing-choices, [Do
It] and [Abort], are prespecified by the system and cannot be changed by the
user.

When the user clicks on one of the two fmishing choices in the bottom

253

March 1985 Window System Choice Facilities

margin ([Do It] and [Abort]), the window disappears and tv:multiple-choose
returns. Two cases obtain:

• If the user finishes by choosing [Abort] the returned value is nil.

• If the user chooses [Do It], the returned value is a list with one
element for each item. Each element is a list whose car is the item
(that arbitrary object which the user passed in the item-list argument)
and whose cdr is a list of the keywords for the "yes" choices selected
for that item.

near-mode tells the window where to pop up. It is a suitable argument for
tv:expose-window-near. The default is the list (:mouse). maxlines, which
defaults to twenty, is the maximum number of choices allowed before
scrolling is used.

21.2 tv:multiple-choose Menu Example

An example of a multiple-choice menu is shown in Fig. 16.

Figure 16. Multiple choice menu example.

The code to produce the multiple-choice menu in Fig. 16 follows.

iii Multiple Choice Example

'" These are the possible choices the user can make
(setq choices 'eVes No Explain»

(setq selection-item-list
(list (list 1 " Selection 1" choices)

(list 2 " Selection 2M choices)
(list 3 " Selection 3" choices)
(list 4 " Selection 4" choices)
(list 5 " Selection 5" choices»)

254

Programming the User Interface March 1985

;;; Set the choice boxes
(setq selection-keyword-alist

(list 'eVes "Ves, please. ")
'(No "No, thanks. ")
'(Explain "What is it? H»~)

'" Expose the menu,
(setq appetizer-order-list

(tv:multiple-choose
" Today's selections" selection-item-list
selection-keyword-alist»

If a selection is made for each item, an example of the values assigned to the
variable appetizer-order-list is the following:

« 1 VES) (2 NO) (3 EXPLAIN) (4 NO) (5 NO»

If only one selection is made, the values assigned to the appetizer-order-list might
look like this:

«1 VES) (2) (3) (4) (5»

21.3 The Basic Multiple Choice Flavor

The default multiple-choice facility described previously is useful for many
applications, but sometimes more customization is desirable. The basic facilities
provide many options, allowing you to tailor a multiple-choice menu to specific needs.

tv:basic-multiple-choice Flavor
The basic flavor that makes a window implement the multiple-choice facility.
Like other basic flavors, it is not instantiable on its own but it does commit
any window that incorporates it to being a multiple-choice window.
tv:basic-multiple-choice is built out of tv:text-scroll-window.

21.4 Instantiable Multiple Choice Menu Flavors

tv:multiple-choice Flavor
An instantiable window flavor with the multiple-choice facility in it. It has
borders and a label area on top which is used for the column headings.

tv:temporary-multiple-choice-window Flavor
This is a mixture of tv:multiple-choice and tv:temporary-window-mixin.
Its behavior is that of a multiple-choice window that can be exposed and
deexposed without deexposing the windows it covers up.

255

March 1985 Window System Choice Facilities

tv:temporary-multiple-choice-window &optional (superior Resource
tv:mouse-sheet)

This is a resource of temporary multiple-choice windows. It is used by the
tv:multiple-choose function.

21.5 tv:multiple-choice Menu Messages

The following messages are useful to send to a multiple-choice window.

:setup item-name keyword-alist finishing-choices item-list &optional Method
maxlines of tv:multiple-choice

This message sets up all the various parameters of the window. Usually one
sends this message while the window is deexposed. The window decides
what size it should be and whether all the items will fit or scrolling is
required, then draws the display into its bit-array. Thus, when the window
is exposed, the display appears instantaneously.

For an explanation of item-name, keyword-alist, and finishing-choices, See the
section "The Multiple Choice Facility", page 251.

maxlines is the maximum number of lines the window can have; if there are
more items than this only some of them are displayed and scrolling is
enabled. maxlines defaults to 20.

:choose &optional near-mode of tv:multiple-choice Method
This message allows menu selection by the mouse. It first moves the window
to the place specified by near-mode, which defaults to the list (:mouse), (i.e.,
over the current mouse position) and exposes it. Then it waits for the user
to make a finishing choice and returns the window to its original
activate/expose status before the :choose operation. When it is sent to a
multiple-choice menu, this message returns the same value as the function
tv:multiple-choose. See the section "The Standard Multiple Choice
Function", page 252.

21.6 tv:multiple-choice Example

This example shows how the tv:multiple-choice flavor can be used to define a
multiple-choice menu.

;;; Specify the choice keywords
(setq choices 'eVes No»

256

Programming the User Interface

;;; Set the choice boxes
(setq x-keyword-alist

(list '(Yes HYes H)
'(No "No"»)

;;; Specify the item list
(setq x-item-list

(list (list HBlue" HBlueH choices)
(list "Red" HRed" choices)

, , ,

(l ist "Yellow" "Yellow" choices)
(list "Green" "GreenH choices»)

Hake the window
(setq x (tv:make-window 'tv:multiple-choice»

;;; Setup the window
(send p ':setup "Select Hode " x-keyword-alist

tv:default-finishing-choices x-item-list)

;;; Expose the window and make a choice
(setq result (send p ':choose»

March 1985

257

March 1985 Window System Choice Facilities

22. The Choose Variable Values Facility

The choose-variable-values facility is used throughout the Lisp Machine system
software. The basic idea of choose-variable-values is to allow the user to interactively
adjust the value of variables used in a program.

More specifically, this facility displays a menu of names (standing for Lisp variables),
followed by colons, and their values. After selecting a value with the left mouse
button, users can interactively modify the value of the variable. Pressing the middle
button preloads the input editor with the value of the variable, allowing the user to
edit it. After the values are modified, the user can exit the menu.

For an example of a choose-variable-values window, try the [Edit Attributes] option
of the System menu (see Fig. 17).

Current font: MEDFNT
More processing enebled: Ye,No
Reverse video: Ya,NQ
Verticel specing: 2.
Deexposed type in ecti on: W&Jt until expose!; Notify u,ar
Deexposed typeout ect ion: W&Jt until exposed Notify u,er Lot It happen Signal error Othor
(IOther l velue of ebove): NIL
ALU function for drewing: Ones Zeroe, Complement
ALU function for eresing: One, Zeroe. Complement
Screen ~eneger priority: NIL
Seve bits: Ya, No
Lebel: NIL
~idth of borders: 1.
~idth of border ~ergins: 1.
Do It Abort

Figure 17. Choose-variable-values window accessed via the System menu.

22.1 Variables and Types

Each variable has a type that limits the values it can assume. The way the value is
displayed and the way the user enters a new value depend on the type. The types
fall into two categories:

Those with a small number of valid values.

Those with a large or infInite number of valid values.

The first category displays all the choices, with the current value of the variable in
boldface. The second category displays the current value until it is selected, at
which point the value disappears until the user types in a new value. If the user
rubs out more characters than were typed in, the original value is restored.

258

Programming the User Interface March 1985

Note that the type definition mechanism is extensible. You can derme new types at
any time. See the section "Defining Choose Variable Values Types", page 269.

All variables whose values are to be chosen must be declared special, so that they
are represented by Lisp symbols and can be accessed non-locally to your program.
(Note that the compiler automatically declares certain variables to be special. Good
programming practice mandates that this should be done explicitly by the
programmer~)

In most cases, the syntax for input and output is controlled by the binding of the
Lisp system variables base, ibase, *nopoint, prinlevel, prinlength, package, and
readtable, as usual. However, the :number, :number-or-nil, : integer, and
:integer-or-nil types take a :base parameter to specify the base for input and
output. The default base is decimal.

Each line of the display is represented by an item, which can be one of the
following:

String The string is displayed; strings are useful for putting headings and
blank separating lines into the display.

Symbol The symbol is a variable whose type is :sexp; that is, its value can be
any Lisp object. The name of the variable on the display is simply its
print-name.

List in the form: (variable name type args ...)

• variable is the object whose value is being chosen.

• name is optional; if it is omitted it defaults to the print-name of
variable. If name is supplied it can be a string, which is
displayed as the name of the variable, or it can be nil, meaning
that this line should have no variable name, but only a value.

• type is an optional keyword giving the type of variable; if omitted
it defaults to :expression.

• args are possible additional specifications dependent on type.

A list is the most general form of item. It is possible to omit name
and supply type since name is always a string and type is always a
symbol. For example, both of the following forms are valid item lists:

(base "Output Base" :integer)

and

(base :integer)

It is also possible to specify a locative in place of a variable. The value
displayed and modified is the contents of the cell designated by the
locative.

259

March 1985 Window System Choice Facilities

22.2 Predefined tv:choose-variable-values Variable Types

The following are the types of variables supported by default, along with any args
that can be put in the item after the type keyword:

:boolean
The value of the variable is either t or nil. The choices are displayed as
''Yes" for t and liN Oil for nil.

:inverted-boolean
The value of the variable is either t or nil. The choices are displayed as
''Yes" for nil and liN Oil for t.

:expression
The value is any Lisp expression, read with read and printed with print.

:sexp The same as :expression. This type is obsolete.

:prine The value is any Lisp expression, read with read and printed with prine.

:eval-form
The value is the result of evaluating a Lisp form, read and evaluated with
read-and-eval and printed with print.

:ehoose values-list print-function
The value of the variable must be one of the elements of the list values-list.
Comparison is by equal rather than eq. All the choices are displayed, with
the current value in boldface. A new value is entered by pointing to it with
the mouse and clicking. print-function is the function to print a value; it is
optional and defaults to prine.

:assoe values-list print-function
The displayed object is the car of one of the elements of values-list, while
the cdr of the element is the value that' goes in the variable. print-function
is the function to print a value; it is optional and defaults to prine.

:ehoose-multiple values-list print-function
This type takes arguments like the :assoc type, but permits the user to
choose more than one element in the values list. The variable is set to a list
of all the values chosen.

:menu-alist item-list
The items are specified in an item-list. See the section "Types of Menu
Items", page 210. The usual menu mechanisms for specifying the string to
display, the value to return, the function to call, and the mouse
documentation work with this. :menu-alist is often used for its mouse
documentation feature.

:eharaeter
. The value is an integer that is a character code. It is printed as the

character name (using the -:@C format operator), and it is read as a single
keystroke.

260

Programming the User Interface March 1985

:eharaeter-or-nil
This is an integer like :eharaeter, but nil is also allowed as the value. nil
displays as "none" and can be entered by pressing CLEAR-INPUT.

:stringThis value is a string, printed with prine and read with readline.

:string-list
. This value is a list of strings, whose printed representation for input and
output consists of the strings separated by commas and optional spaces.

:string-or-nil
This value is a string or nil if the user just presses RETURN, LINE, or END.

:number :base base :or-nil or-nil
This value is a number. It is printed with prinl and read with
sys:read-number. If :base is specified, the number is read and printed in
base base. By default, the number is read and printed in decimal. If :or-nil
is specified with a value other than nil, a value of nil is accepted when the
user just presses RETURN, LINE, or END. nil displays as "none". The default
for or-nil is nil.

:number-or-nil :base base
The same as :number :base base :or-nil t. This type is obsolete.

:deeimal-number
The same as :number :base 10. This type is obsolete.

:deeimal-number-or-nil
The same as :number :base 10. :or-nil t. This type is obsolete.

:integer :base base :or-nil or-nil
This value is an integer. It is printed with prinl and read with
sys:read-integer. If :base is specified, the integer is read and printed in
base base. By default, the integer is read and printed in decimal. If :or-nil
is specified with a value other than nil, a value of nil is accepted when the
user just presses RETURN, LINE, or END. nil displays as "none". The default
for or-nil is nil.

:date This value is a universal date-time. An ambiguous date is interpreted as
being in the future. (Compare this with :past-date.)

:date-or-never
This value is a universal date-time or nil if the user types "never". An
ambiguous date is interpreted as being in the future.

:past-date
The value is a universal date-time. An ambiguous date is interpreted as
being in the past.

:past-date-or-never
This value is a universal date-time or nil if the user types "never". An
ambiguous date is interpreted as being in the past.

261

March 1985 Window System Choice Facilities

:time-interval-or-never
The value is an integer representing the number of seconds in a time
in terval, or nil if the user types "never". The interval is read and printed as
either "never" or alternating numbers and units of time; the units can
include seconds, minutes, hours, days, weeks, or years.

:time-interval-60ths
The value is an integer representing the number of sixtieths of a second in a
time interval. The interval is read and printed as alternating numbers and
units of time; the units can include seconds, minutes, hours, days, weeks, or
years. The smallest unit read or displayed is second.

:pathname
The value is a pathname, represented as a string. The pathname read is
merged with the result of (fs:default-pathname) and has a default version
of :newest.

:pathname-or-nil
The value is a pathname, represented as a string, or nil if the user just
presses RETURN, LINE, or END. The pathname read is merged with the result
of (fs:default-pathname) and has a default version of :newest.

:pathname-list
The value is a list of pathnames, read as a series of pathnames separated by
commas and optional spaces, and merged with the result of
(fs:default-pathname). The default version is :newest. The list is printed
as a series of pathnames separated by commas and spaces.

:host The value is a network host, read and printed as the name of the host.

:host-or-local
The value is a network host. It is read as the name of a host or the string
"local" to represent the local host. If the host is the local host, it is printed
as "Local"; otherwise, it is printed as the name of the host.

:host-list
The value is a list of network hosts, read as a series of host names separated
by commas or spaces, and printed as a series of host names separated by
commas and spaces.

:pathname-host
The value is a pathname host, read and printed as the name of the host.
The name can be "local", "sys", or the name of another logical host as well as
the name of a physical host.

:keyword-list
The value is a list of symbols in the keyword package, read as a series of
symbol names separated by commas or spaces, and printed as a series of
symbol names separated by spaces. Symbol names are read and printed
without package prefIXes (that is, not preceded by colons).

262

Programming the User Interface March 1985

:font-list
The value is a list of fonts, read as a series of font names separated by
commas or spaces, and printed as a series of font names separated by
commas and spaces. Font names are read and printed without package
preflxes (that is, not preceded by fonts:).

A :documentation speciflcation can be inserted where a variable type would
normally be expected.

:documentation doc type args ...
The actual type of the variable is type. doc is a string that is
displayed in the mouse documentation line when the mouse is
pointing at this item. The default, if no documentation is
supplied using the :documentation speciflcation, depends on the
variable type. It is generally something like "Click left to input a
new value from the keyboard".

22.2.1 The Optional Constraint Function

It sometimes is necessary to ensure that when one variable's value is changed, one
or more of the others is changed as well. As an init-plist option, a choose-variable­
values window can have an associated function, which is called whenever a variable's
value is changed. This function can implement constraints among the variables.

The constraint function is specifled by the :function init-plist option. See the
section "tv:choose-variable-values Options", page 263. It is called with arguments
window, variable, old-value, and new-value. The function should return nil if just
the original variable needs to be redisplayed, or t if no redisplay is required; in this
case it would usually setq several of the variables then send a :refresh message to
the window to redisplay everything.

22.3 The Standard Choose Variable Values Function

The standard function interface to the choose-variable-values feature chooses the
dimensions of the window and enables scrolling if there are too many variables to flt
in the chosen height.

tv:choose-variable-values variables &rest options Function
This function exposes a window and displays the values of the specified
variables, permitting the user to alter them. One or more choice boxes (as in
the multiple-choice facility) appear in the bottom margin of the window.
When the user clicks on the [Exit] choice box the window disappears and this
function returns. The value returned is not meaningful; the result is
expressed in the values of the variables.

variables is a list whose elements can be special variables or the more general
items described above.

263

March 1985 Window System Choice Facilities

options is a list of alternating init-plist option keywords and values: See the
section "tv:choose-variable-values Options", page 263.

22.4 tv:choose-variable-values Options

The following option keywords can be specified.

:label string (for tv:choose-variable-values) Init Option
The argument is a string that is the label displayed at the top of the
window. The default is "Choose Variable Values".

:function arg (for tv:choose-variable-values) Init Option
Specifies the function to be called if the user changes the value of a variable.
The default is nil (no function). See the section "The Optional Constraint
Function", page 262.

:near-mode arg (for tv:choose-variable-values) Init Option
Specifies where to position the window. The default is the list (:mouse). See
the section "Input From Windows", page 132.

:width arg (for tv:choose-variable-values) Init Option
Specifies how wide to make the window. This can be a number of
characters, or a string (it is made just wide enough to display that string).
The default is to make it wide enough to display the current values of all the
variables, provided that is not too wide to fit in the superior window.

:extra-width arg (for tv:choose-variable-values) Init Option
When :width is not specified, this specifies the amount of extra space to
leave after the current value of each variable of the kind that displays its
current value (rather than a menu of all possible values). This extra space
allows for changing the value to something bigger. The extra space is
specified as either a number of characters or a character string. The default
is ten characters. If :width is specified, then :extra-width is ignored.

:margin-choices &list (for tv:choose-variable-values) Init Option
The argument is a list of specifications for choice boxes to appear in the
bottom margin. Each element can be a string, which is the label for the box
that means "done," or a list containing a label string and a form to be
evaluated if that choice box is clicked on. Since this form is evaluated in the
user process it can do such things as alter the values of variables or *throw
out. With this facility, the default for :margin-choices is [Exit]. For an
explanation of margin choices and their use: See the section "The Margin
Choice Facility", page 289.

264

Programming the User Interface March 1985

: superior window (for tv:choose-variable-vaIues> Init Option
The argument is the window to which the pop-up choose-variable-values
window should be inferior. The default is the value of tv:mouse-sheet, or
the superior of w if the :near-mode option is already set to (:window w).

22.5 tv:choose-variable-values Examples

Here are some examples of how to call tv:choose-variable-vaIues. The simplest
kind of example is to display some variable names and values and let the user
change them, as in Fig. 18. To see how it works, point at one of the variables, press
the left mouse button, and then type in a new value and press Return. Recall that
*nopoint is a Lisp variable.

BASE: Ie
IBASE: Ie
*NOPOINT: NIL
Exit

Figure 18. Choose-variable-values example 1.

The Lisp code used to produce Fig. 18 is shown here.

;;; Choose Variable Values Example 1

; Invoke the window
(tv:choose-variable-values '(base ibase *nopoint)

':label "Number format parameters")

The same example can be done with better menu formatting in the next example
(shown in Fig. 19).

IN •• " for~~t

Output B85e: Ie
Input 885e: 19
Declft81 Point: Vel No
Exit D

Figure 19. Choose-variable-values example 2: better formatting.

The Lisp code used to produce Fig. 19 is given here.

265

March 1985 Window System Choice Facilities

"~, Choose Variable Values Example 2

(tv:choose-variab1e-va1ues
'«base "Output Base" :number)

(ibase "Input Base" :number)
(*nopoint "Decimal Point"

:assoc «"Yes" . nil)
("No" • t»»

':labe1 "Number format parameters")

If we had not wanted to reverse the sense of t and nil the entry for *nopoint
would have been the following:

(*nopoint "No Decimal Point" :boo1ean)

If we wanted to use the name of the variable as the menu item, rather than
spelling it out, we could have used the following expression:

(*nopoint :boo1ean)

As another example, we consider shopping for groceries via Lisp Machine. We have
variables fish, crustaceans, seafood-specialties, lettuce, and apples. Many
stores accept coupons for discounts on purchases, so the Coupon-value variable (a
floating-point number) allows users to enter a dollar value representing the value of
the coupons they are redeeming.

As mentioned, clicking [Middle] on the mouse puts the variable in the input editor,
allowing you to make changes in it. In Fig. 20 we display this situation and allow it
to be modified, using several different kinds of items:

PRODUCE STORE
Lettuce: aa.tan Aad ICQbQrg
App 1 es: MacintOSh Jonathan PIppIn

VALUE OF YOUR COUPONS
Coupons: 9.
Exit

Figure 20. Choose-variable-values window: grocery store example.

The Lisp code used to produce Fig. 20 is provided next. Each "STORE" in the
example is implemented with a different variation of the choose variable value
facility. Note the use of strings to provide labels for the sections, and null strings to
separate the sections with blank lines.

266

Programming the User Interface

;;; Choose Variable Values Example 3

;;; Set up the variables
(setq fish '("Salmon"»
(setq crustaceans '("Clams"»
(setq seafood-specialties '("Flying-fish roe"»
(setq lettuce "Boston")
(setq apples "Pippin")
(setq Coupon-value 0)

(setq result (tv:choose-variable-values
'("FISH STORE"

(fish "Fish" :string-list)
(crustaceans "Shellfish" :string-list)
(seafood-specialties "Other Seafood" :string-list)
""
"PRODUCE STORE"
(lettuce "Lettuce" :choose ("Boston" "Red" "Iceberg"»
(apples "Apples" :choose ("Macintosh" "Jonathan" "Pippin"»
"H

"VALUE OF YOUR COUPONS"
(Coupon-value "Coupons"

:documentation
"Click left to enter the value of your coupons."
:number»

':label "Today's Food Selections"»

22.6 The User Option Facility

March 1985

The user option facility provides a simple window interface that allows you to set
parameter options to your programs. The user option facility is based on the choose­
variable-values facility.

A typical use would be in a program that requires several variables to be set before
it is run. In a conventional system, a standard way to alter these values would be to
alter the code, recompile the program, and then run it. By contrast, the user option
facility generates a window with the names and default values of the variables. This
gives you the option of resetting these variables before execution of the program.
When the window is exited, the rest of the program runs.

For an example of a user option window, type the following function at a Lisp
Listener window:

(choose-user-options zwei:*zmail-user-option-alist*)

The choose-user-options function is also used by the Zmail Profile mode, and
elsewhere throughout the system.

Special forms are proyided for defining options, and the choose-user-options

267

March 1985 Window System Choice Facilities

function exists for putting all the options into a choose-variable-values window so
that the user can alter them. In addition, the current state of the options can be
written into an initialization file, or all the options can be set to their default initial
values.

22.6.1 Functions for Defining User Option Variables

define-user-option-alist name [constructor] Special Form
(define-user-option-alist name) defines name to be a global variable whose
value is a "user option alist", something which may be used by the other
functions below. This alist keeps track of all of the option variables for a
particular program.

(define-user-option-alist name constructor) also specifies the name of a
constructor macro to be defined, which provides a slightly different way of
defining an option variable from def"me-user-option. The form
(constructor option default type name) defines an option in this user-option­
alist. The arguments are the same as to define-user-option.

define-user-option (option alist) default [type] [name] Special Form
(define-user-option (option alist) default type name) defines the special
variable option to be an option in the alist, which must have been previously
defined with define-user-option-alist. The variable is declared and
initialized via (defvar option default). The value of the form default is
remembered so that the variable can be reset back to it later.

type is the type of the variable for purposes of the choose-variable-values
facility. It is optional and defaults to :sexp.

name is the name of the variable to be displayed in the choose-variable-values
window. It is optional and defaults to a string that is the print-name of the
variable except with hyphens changed to spaces and each word changed from
all-upper-case to first-letter-capitalized. If the first and last characters of the
print-name are asterisks, they are removed. For example, the default name
for so:·sunny-side-up· would be "Sunny Side Up".

22.6.2 Functions for Altering User Option Variables

choose-user-options alist &rest options Function
This function displays the values of the option variables in alist to the user
and allows them to be altered. The options are passed along to
tv:choose-variable-values.

reset-user-options alist Function
This function resets each of the option variables in alist to its default initial
value.

268

Programming the User Interface March 1985

write-user-options alist stream Function
This function specifies that for each option variable in alist whose current
value is not equal to its default initial value, a form is printed to stream
which sets the variable to its current value. The form uses login-setq so it
is appropriate for putting into an initialization file.

22.7 User Options Example

Fig. 21 is an example of a user option window that sets three variables of a simple
graphics program.

Figure 21. User options window example.

The Lisp code used to produce Fig. 21 is shown between the asterisk-marked (****)
lines. The rest of the code generates the graphics.

;;; User Option Example

; ; ; ****
;;; This names the user option alist
(define-user-option-alist options)

;;; These expressions set of the options
(define-user-option (alu-function options)

tv:alu-ior :decimal-number "AlU Function")
(define-user-option (range options) 768. :decimal-number "Range")
(define-user-option (density options) 100. :decimal-number "Density")

;;; Expose the choose-option window
(choose-user-options options)
;; ;****

269

March 1985 Window System Choice Facilities

;;; This is a random line-drawing function
(defun image (alu-function range density)
(setq x (tv:make-window 'tv:window»
;; Temporarily select a window; the arguments
;; are the window x and the final action on it
(tv:window-call (x :deactivate)
(setq n range)
(loop for i below density do

(send x ':draw-lines alu-function
(random n) (random n) (random n) (random n)
(random n) (random n) (random n) (random n»

(send x ':draw-circle
(random n) (random n) (random n»)

(send x ':tyi»)

;;; Draw the image
(image alu-function range density)

22.8 Defining Choose Variable Values Types

The standard choose-variable-values facility supplies programmers with a range of
predefined types. See the section "Predefined tv:choose-variable-values Variable
Types", page 259. However, this list is extensible through two mechanisms:

1. Adding a type keyword property to a new type name

2. Adding a type decoding method

22.8.1 Adding a Type Keyword Property

The basic type definition mechanism is simple: put a
tv:choose-variable-values-keyword property on the type name. In the following
example, the new type is called new-type, the property value is type-list, and the
property name is tv:choose-variable-values-keyword

(defprop new-type type-list tv:choose-variable-values-keyword)

For a discussion of the contents of type-list: See the section "Elements of the
tv:choose-variable-values-keyword Property", page 270. See the section "Type
Decoding Message", page 270.

22.8.2 Adding a Type Decoding Method

The second way to extend the range of standard types is to defme a new flavor of
choose-variable-values window and give it a :decode-variable-type method

270

Programming the User Interface March 1985

- circumventing the use of the standard variable types. This method must be
careful to implement the :documentation keyword, which can appear in an item
where a variable type would normally appear.

22.9 Type Decoding Message

:decode-variable-type kwd-and-args of Method
tv:basic-choose-variable-values

The system sends this message to a choose-variable-values window when it
needs to understand an item. kwd-and-args is a list whose car is the
keyword for the item and whose remaining elements, if any, are the
arguments to that keyword. Six values are returned. The default method
for :decode-variable-type looks for two properties on the keyword's
property list:

• tv:choose-variable-values-keyword - The value of this property is a
list of six values: See the section "Elements of the
tv:choose-variable-values-keyword Property", page 270.
Unnecessary values of nil may be omitted at the end.

• tv:choose-variable-values-keyword-function - The value of this
property is a function that is called with one argument, kwd-and-args.
The function must return the six values.

22.9.1 Elements of the tv:choose-variable-values-keyword Property

The six elements of the tv:choose-variable-values-keyword property are listed
below. Note that if the specified list is shorter than six elements, the others default
to nil.

print-function
A function of two arguments, object and stream, to be used to print the
value. prinl is acceptable.

read-function
A function of one argument, a stream, to be used to read a new value. read
is acceptable. If nil is specified, there is no read-function and instead new
values are specified by pointing at one choice from a list. If the read-function
is a symbol, it is called inside an input editor, and over-rubout automatically
leaves the variable with its original value. If read-function is a list, its car is
the function, and it is called directly rather than inside an input editor.

choices A list of the choices to be printed, or nil if just the current value is to be
printed.

271

March 1985 Window System Choice Facilities

print-translate
If there are choices, and this function is supplied non-nil, it is given an
element of the choice list and must return the value to be printed (for
example, car for :assoc type items).

value-translate
If there are choices, and this function is supplied non-nil, it is given an
element of the choice list and must return the value to be stored in the
variable (for example, cdr for :assoc type items).

documentation
A string to display in the mouse documentation line when the mouse is
pointing at this item. This string should tell the user that clicking the
mouse changes the value of this variable, and any special information (for
example, that the value must be a number).

Alternatively, the documentation element can be a symbol that is the name
of a function. It is called with one argument, which is the current element
of choices or the current value of the variable if choices is nil. It should
return a documentation string or nil if the default documentation is desired.
This can be useful when you want to document the meaning of a particular
choice, rather than simply saying that clicking on this choice selects it.

Note that the function should return a constant string, rather than building
one with fonnat or other string operations. This is because it will be called
over and over as long as the mouse is pointing at an item of this type. (The
function is called by the mouse documentation line updating in the scheduler,
not in the user process.)

22.10 tv:choose-variable-values Type Definition Example

'" Defining a Choose Variable Values Type Example
;;; Adding the type keyword property

(defvar eandidate-l nil)
(defvar eandidate-2 nil)
(defvar eandidate-3 nil)

;;; Set up the type list
(setq type-list '(prine nil ("Ves" "No" "Abstain") nil nil nil»

;;; Put the type-list value on the
;;; tv:ehoose-variab1e-va1ues-keyword property
(putprop 'mytype type-list

'tv:ehoose-variab1e-values-keyword)

272

Programming the User Interface March 1985

;;; Use the newly created type
<tv:choose-variable-values

'«candidate-1 H John Q. Public H mytype)
(candidate-2 H Jane Doe H mytype)
(candidate-3 " John Blevins H mytype»

':label "*** Select One Candidate ***")

22.11 Defining a Choose Variable Values Window

Up to this point, an easy-to-use but limited form of the choose-variable-values facility
has been discussed, namely, the standard tv:choose-variable-values function.

In order to create a new flavor of window with choose-variable-values behavior, the
basic and instantiable choose-variable-values window flavors are needed. These are
described in this section. The basic flavor requires more parameter specifications
from the programmer, but it is also the most flexible. The use of choose-variable­
values windows as panes in a frame and as pop-up windows is also discussed.

22.12 The Basic Choose Variable Values Flavor

tv:basic-choose-variable-values Flavor
This is the basic flavor which makes a window implement the choose­
variable-values facility. It is built out of tv:text-scroll-window. There are
two ways to use this. In the first way, the programmer creates a window
giving all of the parameters· in the init-plist. In the second way one can
create a window without specifying the parameters, then send the :setup
message to start the display.

22.12.1 Instantiable Choose Variable Values Flavors

tv:choose-variable-vaIues-window Flavor
This is a choose-variable-values window with a reasonable set of features,
including borders, a label at the top, stream input/output, the ability to be
scrolled if there are too many variables to fit in the window, and the ability
to have choice boxes in the bottom margin.

tv:choose-variable-values-pane Flavor
This is a tv:choose-variable-vaIues-window that can be a pane of a
constraint-frame. For more on constraint frames: See the section "Specifying
Panes and Constraints", page 179. It does not change its size automatically;
the size is assumed to be controlled by the superior.

273

March 1985 Window System Choice Facilities

tv:temporru.~-choose-variable-values-window Flavor
This is. a tv:choose-variable-values-window that is exposed temporarily.
For an explanation of temporary windows: See the section "Temporary
Windows", page 84.

22.12.2 1/0 Buffers for Choose Variable Values Windows

IJO buffers can be associated with choose-variable-values windows. See the section
"Menu Items and Menu Values", page 229. A choose-variable-values window has an
IJO buffer, which the window uses to send commands (also known as blips) back to
its controlling process. As usual these commands are lists, to distinguish them from
keyboard characters that are numbers. If all panes send commands to the same 110
buffer, then when one of these commands arrives it can be processed in the
appropriate pane. At the same time, the controlling process can be looking in the
IJO buffer for other commands from other panes and for input from the keyboard.
A choose-variable-values window uses the same IJO buffer to read a new value from
the keyboard as it uses to send blips to the controlling process.

The following IJO buffer commands (blips) are sent by the choose-variable-values
window to the user process.

(:variable-choice window item value line-number)
This indicates that the user clicked on the value of a variable, expressing a
desire to change it. window is the choose-variable-values window instance,
item is the complete item specification, value is the value that was clicked on,
and line-number is the line on which the item appears in the menu. The
lines are numbered starting at o.

(:choice-box window box)
This indicates that the user clicked on one of the choice boxes in the bottom
margin. window is the window instance, and box is the choice box
specification.

The following sequence of events is a typical model for implementing a choose­
variable-values window.

1. Set up and expose the window.

2. Loop within an :any-tyi, or tv:io-buffer-get loop, checking to see if a
variable-choice or a choice-box selection has been made.

3. If a choice-box selection has been made, your "choice-box handler" routine is
called. This routine returns the choice-box descriptor. If the choice-box was an
[Abort] item, your process typically sends the window the :deactivate
message.

274

Programming the User Interface March 1985

tv:choose-variable-values-process-message window command Function
This function implements the proper response to the above commands. It
should be called in the process and stack-group in which the variables being
chosen are bound. The function returns t if the command indicates that the
choice operation is "done", otherwise it performs the appropriate special action
and returns nil. If command is a character, it is ignored unless it is
#\refresh, in which case the choose-variable-values window is refreshed.

tv:temporary-choose-variable-values-window &optional (superior Resource
tv:mouse-sheet)

A resource of windows, from which tv:choose-variable-values gets a
window to use.

22.13 tv:basic-choose-variable-values Init-plist Options

The following init-plist options are relevant to choose-variable-values windows. Note
that if no dimensions are specified in the init-plist, the width and height are
automatically chosen according to the other init-plist parameters. The height is
dictated by the number of elements in the item-list. Specifying a height in the init­
plist, using any of the standard dimension-specifying init-plist options, overrides the
automatic choice of height. Note: the :stack-group option is required, unless the
:setup message is used to initialize the window. See the section
"tv:choose-variable-values-window Messages", page 275.

:function {unction (for tv:basic-choose-variable-values) Init Option
Specifies the function called when the value of a variable is changed. See the
section "The Optional Constraint Function", page 262. The default is nil (no
function).

:variables item-list (for tv:basic-choose-variable-values) Init Option
Specifies the list of variables whose values are to be chosen. These can be
either symbols that are variables, or the more general items defined
previously. See the section "Variables and Types", page 257.

:stack-group sg (for tv:basic-choose-variable-values) Init Option
This option specifies the stack group in which the variables whose values are
to be chosen are bound. The window needs to know this so that it can get
the values while running in another process, for instance the mouse process,
in order to update the window display when it is refreshed or scrolled. This
option is required, unless you use the :setup message.

:name-font font (for tv:basic-choose-variable-values) Init Option
This specifies the font in which names of variables are displayed. The
default is the system default font.

275

March 1985 Window System Choice Facilities

:value-font font (for tv:basic-choose-variable-values) Init Option
This is the font in which values of variables are displayed. The default is the
system default font.

:string-font font (for tv:basic-choose-variable-values) Init Option
This is the font in which items that are just strings (typically heading lines)
are displayed. The default is the system default font.

:unselected-choice-font font (for Init Option
tv: basic-choose-variable-values)

This option determines the font in which choices for a value, other than the
current value, are displayed. The default is a small distinctive font.

:selected-choice-font font (for tv:basic-choose-variable-values) Init Option
This specifies the font in which the current value of a variable is displayed,
when there is a finite set of choices. This should be a bold-face version of
the preceding font. The default is the bold-face version of the default
un selected-choice font.

:margin-choices choice-list (for Init Option
tv:choose-variable-values-window)

The default is a single choice box, labelled [Done]. For an explanation of the
choice-box descriptors: See the section "The Margin Choice Facility", page
289. Note that specifying nil for this option suppresses the margin-choices
entirely.

:io-buffer buf (for tv:choose-variable-values-window) Init Option
This specifies the I/O buffer to be used. The buffer can be associated with
another window or it can be explicitly created for this window with the
tv:make-io-buffer function. The I/O buffer is used both for reading
keyboard input (new values) and for sending blips to the controlling process.

22.14 tv:choose-variable-values-window Messages

The following messages are useful to send to a choose-variable-values window.

:setup items label function margin-choices of Method
tv:choose-variable-values-window

This changes the list of items (variables), the window label, the constraint
function, and the choices in the bottom margin and sets up the display.
This message remembers the current stack-group as the stack-group in which
the variables are bound. If the window is not exposed this chooses a good
size for it.

276

Programming the User Interface March 1985

:set-variables item-list &optional dont-set-height of Method
tv:choose-variable-values-window

This changes the list of items (variables) and redisplays. Unless
dont-set-height is supplied non-nil, the height of the window is adjusted
according to the number of lines required. If more than 25. lines would be
required, 25. lines are used and scrolling is enabled. The :setup message
uses :set-variables to do part of its work.

:appropriate-width &optional extra-space of Method
tv:choose-variable-values-window

This returns the inside-width appropriate for this window to accommodate
the current set of variables and their current values. Send this message
after a :setup and before a :expose, and use the result to send an
:adjust-geometry-for-new-variables message. The returned width is not
larger than the maximum that fits inside the superior.

If extra-space is supplied, it specifies the amount of extra space to leave after
the current value of each variable of the kind that displays its current value
(rather than a menu of all possible values). This extra space allows for
changing the value to something bigger. The extra space is specified as
either a number of characters or a character string. The default is to leave
no extra space.

:adjust-geometry-for-new-variables width of Method
tv:choose-variable-values-window

The variable width is specified as nil if the size is not to be adjusted,
otherwise the inside-width and height are also adjusted. The
:adjust-geometry-for-new-variables message is normally sent after sending
a :setup message. (It is not necessary to send it after a :set-variables
message.)

:redisplay-variable variable of
tv:choose-variable-values-window

This redisplays just the value of the specified variable.

22.15 tv:choose-variable-values-window Example

Method

As we have discussed, in the simplest mode of operation, the
tv:choose-variable-values function takes care of creating the window and
establishes all necessary communication with it. When you make a choose-variable­
values window (as in the example below), you need to handle the communication
yourself, using the information given below. An example of a situation in which this
is necessary is when you have a frame, some panes of which are choose-variable­
values windows.

277

March 1985 Window System Choice Facilities

Controboss:
Cello: 4.
Viole: 4.
Violin: 4.
Flute: 4.
TruMpet: 4.
Herp: 1-
Percussion: 2.
Done

Figure 22. Example of making a choose-variable-values menu.

The Lisp code used to generate Fig. 22 is given next.

; ; j

Choose Variable Values Example 4

In this example. the user specifies the number of
instrumentalists of each kind needed to define an orchestra.

(defvar contrabass 2)
(defvar cello 2)
(defvar viola 4)
(defvar violin 4)
(defvar fl ute 4)
(defvar trumpet 2)
(defvar harp 1)
(defvar percussion 2)

;;;; Define the variable list
(defvar instrument-list

'((contrabass "Contrabass" :number)
(cello "Cello" :number)
(viola "Vio1aH :number)
(violin "ViolinH :number)
(flute "FluteH :number)
(trumpet "Trumpet" :number)
(harp "HarpH :number)
(percussion HPercussion H :number»)

iii Define the margin choice list
(defvar margin-list '(("DoneH nil

tv:choose-variable-values-choice-box-handler nil nil»)

Hake the window
(defvar choix

(tv:make-window 'tv:choose-variable-values-window»

278

Programming the User Interface

;;; This function sets up the window, exposes it,
;;; and calls appropriate routines
(defun display ()

(let ((base 10.) (ibase 10.» ; Set the base to 10
(send choix ':setup

instrument-list
"Define Orchestra"
nil
margin-list)

" The :setup message is normally followed by the
:adjust-geometry-for-new-variables message in order ; ;

, ,
; ;

; ;

to coordinate the size of the window with the number
of variables. The numerical argument (laO.) tells
it to adjust the width of the window to the precise
size I want it to be. I could also have sent

;; the :appropriate-width message.
(send choix ':adjust-geometry-for-new-variables laO.)
(send choix ':set-position 200. 200.)
(tv:window-call (choix :deactivate)

;; blip holds the list returned by :any-tyi
" Look for a :choice-box blip
(loop as blip = (send choix ':any-tyi)

until (eq (car blip) ':choice-box)
do (tv:choose-variable-values-process-message

choix bl ip»»)

March 1985

In order to invoke this menu, type the following form at the Lisp input editor:

(display)

The results are stored in contrabass, cello, viola, and the other instrument
variables.

279

March 1985 Window System Choice Facilities

23. The Mouse-sensitive Items Facility

The mouse-sensitive items facility is related to certain choice facilities such as the
pop-up menus described previously. Like these facilities, the mouse is used to point at
an object on the screen, and a box is drawn around an object when the mouse is
over it.

In contrast to a menu, in which mouse-sensitive behavior is limited to a relatively
permanent item list, mouse-sensitive items are not a permanent part of a window.
They disappear if the screen is cleared, for example. A main feature of a mouse­
sensitive window is that graphical objects and text can be intermingled. The
graphical objects themselves can be made mouse-sensitive. See the section "Mouse­
sensitive Areas Example", page 286.

For an example of mouse-sensitive items, try the [List Buffers] command in the
Zmacs editor command menu (Figure 23). Move the mouse over the list of buffers
and click the right-hand button. Another menu, keyed from a mouse-sensitive-item,
is exposed.

Fi Ie Version:

[1 line]

Figure 23. Mouse-sensitive items.

Major mode:

ext
(Text)
(Text)
(Text)
(Text)
(Text)
(LISP)
(Fundamental)

Mixing tv:basic-mouse-sensitive-items into a window flavor equips the window
with mouse-handling according to the paradigm described in this section. Mouse­
sensitive items are something you add in when defining your own window, rather
than a complete facility. Consequently, there is no instantiable version.

Note: The word "typeout" appears here and there in the mouse-sensitive items
facility for historical reasons. Often mouse-sensitive items are typed out on top of
some other display, such as an editor buffer. However, the mouse-sensitive-item
facility has nothing to do with the typeout-window facility. See the section "Typeout
Windows", page 174.

280

Programming the User Interface March 1985

tv:basic-mouse-sensitive-items Flavor
Mixing this flavor into a window provides for areas of the screen that are
sensitive to the mouse. Moving the mouse into such an area highlights the
area by drawing a box around it. At this point clicking the mouse performs
a user-defined operation. This flavor is called basic because it usurps the
handling of the mouse by the window; do not mix it with another flavor that
also expects to use the mouse. However it is less basic than many basic
flavors in that it does not do anything special with the displayed image of the
window.

23.1 Attributes of a Mouse-sensitive Item

A mouse-sensitive item has three main attributes:

• A type - a keyword that controls what you can do to it

• An item - an arbitrary Lisp object associated with it

• A rectangular area of the window - typically something is displayed in that
area at the same time as a mouse-sensitive item is created, using normal
stream output to the window.

Unlike things such as menu items, mouse-sensitive items are not a permanent
property of the window. They are just as ephemeral as the displayed text. This
means they go away if you clear the window or if typeout wraps around and types
over them.

23.2 Associating Actions with Mouse-sensitive Items

The :item-type-alist init-plist option specifies an alist that associates actions with
types of items. Each element of the list contains the following elements:

• A type keyword -- for example, :value

• A default operation - for example, a function name

• A documentation string - displayed in the mouse documentation line when the
mouse is pointing at an object of this type

• A list of all the operations - (the default doesn't necessarily have to be a
member of this list) This list is in the form of menu items, so typically each
element is (name. operation) where the user sees the string name but the
program identifies the operation by the symbol operation. In most cases
operation is a function to be called, but it can be any atom.

281

March 1985 Window System Choice Facilities

Here is an example of an item-type-alist:

«zwei: fi le
zwei:find-defaulted-file
"Left: Find file this file. Right: menu of Load, Find, Compare."
(" Load" : va 1 ue zwei: 1 oad-defau 1 ted- fil e

:documentation "load this file.")
("Find" :value zwei:find-defaulted-file

:documentation "Find file this file.")
("Compare" :value zwei :srccom-file

:documentation "Compare file with newest version (srccom)."»
(zwei:function-name

zwei:edit-definition
"Left: Edit function. Right: menu (Arglist, Edit, Disassemble, Document.)."
("Arglist" :value zwei:typeout-menu-arglist

:documentation "Print arglist for this function.")
("Edit" :value zwei:edit-definition

:documentation "Edit this function.")
("Disassemble" :value zwei:do-disassemble

:documentation "Disassemble this function.")
("Documentation" :value zwei:typeout-long-documentation

:documentation "Print long documentation for this function."»)

The tv:item-type-alist instance-variable can be initialized via the init-plist when the
window is created. Normally, you do not create this alist directly. Instead, you use
tv:add-typeout-item-type to build it up incrementally. See the section
"tv:basic-mouse-sensitive-items Messages and Functions", page 283.

23.2.1 Mouse Behavior

The mouse works with a mouse-sensitive item in the following manner:

• Mouse-left - Perform the default operation

• Mouse-right - Pop up a menu of all the operations. Selecting one of these
items performs it.

• Mouse-right-twice -- Call the System menu.

• Other mouse clicks and clicking on an item whose type is not in the type alist
- Cause a beep (the screen flashes) and generate an error.

Performing an operation means that a command (also known as a blip)is sent to the
controlling process through the :force-kbd-input message to the window. This
command is a list (:typeout-execute operation item), where operation is the
operation and item is the arbitrruy object remembered by the mouse-sensitive item.
The ramifications of this, and how the operation is performed, are up to the
application program.

282

Programming the User Interface March 1985

tv:add-typeout-item-type Special Form
The following special form is used to declare information about a mouse­
sensitive type by adding an entry to an alist kept in a special variable.

(tv:add-typeout-item-type
alist type name operation default-p documentation)

This alist can be put into the item-type alist of a mouse-sensitive window,
using, for instance, the :item-type-alist init-plist option. Note that each
possible operation on a particular mouse-sensitive item type is defined with a
separate tv:add-typeout-item-type form; this allows each operation to be
defined at the place in the program where it is implemented, rather than
collecting all the operations in to a separate table. It also allows new
operations to be added in a modular fashion.

alist is the special variable that contains the alist. You should declare it nil
with defvar before defining the first item type. Each program that uses
mouse-sensitive items has its own alist of item types, so that there is no
conflict in the names of the types.

type is the keyword symbol for the type being defined.

name is the string that names the operation.

operation is the action to be taken, for instance, the function to be called.

default-p is optional; if it is supplied and non-nil, it means that this operation
is the default performed when you click the left button on an item of this
type.

documentation is optional but highly recommended; it is a string that
documents what operation does. When the user points the mouse at an item
of this type, the documentation line at the bottom of the screen displays the
documentation for the default operation (reachable by the left button) and a
list of the operations in the menu (reachable by the right button). If the
user clicks right, calling for a menu, then the screen displays documentation
for the operation pointed at.

alist, type, and operation are not evaluated. name, default-p, and
documentation are evaluated.

When operation is a function, the tv:add-typeout-item-type form is
typically placed near the definition of the function in the program source file.

283

March 1985 Window System Choice Facilities

23.3 tV:basic-mouse-sensitive-items Init-plist Options

:item-type-alist alist (for tv:basic-mouse-sensitive-items) [nit Option
Remembers alist as the set of item types allowed in this window. alist
should be created by tv:add-typeout-item-type.

23.4 tV:basic-mouse-sensitive-items Messages and Functions

The following messages are useful to send to a window with mouse-sensitive items.
To create and display a list of mouse-sensitive items, use the function
si:display-item-list.

:item type item &rest format-args of Method
tv:basic-mouse-sensitive-items

This creates and displays a mouse-sensitive item of type type with associated
object item. If format-args are supplied, they are a format control-string and
arguments used to generate the display for this item. If format-args are not
supplied, the display is generated with prine.

:primitive-item type item left top right bottom of Method
tv:basic-mouse-sensitive-items

This is the primary means for creating a mouse-sensitive-area of the screen.
It creates a mouse-sensitive item of type type with associated object item.
When the mouse moves into the area, a box is overlaid around it. left, top,
right, and bottom are the coordinates of a rectangular area of the window
assumed to contain the display. The coordinates are "inside" coordinates.
This is the same coordinate system that :read-cursorpos uses.

si:display-item-list stream type list &optional item-string Function
(order-column wise t)

Displays a list of items on stream in evenly spaced columns. stream must be
interactive. If it supports mouse sensitivity, the items displayed are also
made mouse sensitive.

list is a list of items to be displayed. Each item in the list is displayed by
sending the stream an :item message with type as the first argument. If
the item is not itself a list, the item is the second argument to the :item
message.

If the item to be displayed is a list, the arguments to the :item message
depend on item-string. If item-string is not nil, the second argument to the
:item message is the first element of the item. If item-string is nil, the item
should be an alist whose car is a string to be displayed and whose cdr is the
item itself. In this case, the second argument to the :item message is the

284

Programming the User Interface March 1985

cdr of the item, the third argument is "-A", and the fourth argument is the
car of the item. The default for item-string is nil.

If order-columnwise is not nil, the items are ordered down columns. If
order-columnwise is nil, the items are ordered across rows. The default is t.

23.5 tv:basic-mouse-sensitive-items Example

An example of a mouse-sensitive items window is shown in Figure 24. It shows four
mouse-sensitive items in a window. One of the items has been selected. Some
graphic figures (not mouse-sensitive) have also been drawn in the window. For a
description of the graphics operations: See the section "Graphic Output to
Windows", page 118.

The point of this figure is to show how in mouse-sensitive windows (unlike in
regular menus) graphics and text can be intermingled. Notice the technique of
combining the mixin flavors tv:borders-mixin and tv:top-box-Iabel-mixin before
tv:window to generate the boxed-in label at the top of the window.

SHAPES
Circle I Triangle.! Rectangle Polygon

'\ ••••
Figure 24. Mouse-sensitive items example.

In Figure 25 one of the items [Triangle] has been selected, causing a menu of
alternative actions to the the default action (default function) to appear next to it.

Circle Triangle
~~;..;.;.;;n

Polygon

•• •
Figure 25. Result of selecting a mouse-sensitive item.

The Lisp code used to produce Figure 25 is listed next.

285

March 1985 Window System Choice Faciiities

House-sensitive Example

; ; ;

; ; ;

; ; ;

The functions called by the menus do nothing except increment
some values. Check their values after instantiating the
window to verify that the values were incremented. Also

, , , look at the value of the variable Hb1i pH.

;;; Initialize variables
(defconst cl 0)
(defconst c2 0)
(defconst default 0)
(defvar a1ist-a1pha nil)

;;; Define a new flavor of window, with a
'" centered top-label and a mouse-sensitive-item mixin
(deff1avor new ()

(tv:centered-1abe1-mixin
tv:borders-mixin tv:top-box-1abe1-mixin
tv:basic-mouse-sensitive-items
tv:window»

,., These define mouse-sensitive items
(tv:add-typeout-item-type a1ist-a1pha

:new-type HExitH (exit)
nil HExit and kill window")

(tv:add-typeout-item-type a1ist-a1pha

(defun function2 ()
(setq c2 (+ 1 c2»)

:new-type HFunction2" (function2)
t "Add one to C2H)

(tv:add-typeout-item-type a1ist-a1pha

(defun functionl ()
(setq cl (+ 1 cl»)

:new-type HFunctionl H (functionl)
nil ~Add one to cl H)

286

Programming the User Interface

;;; Make the mouse-sensitive window
(defvar sensitive-window

(tv:make-window
'new; This is the flavor specification
':borders 2
':top 200.
':bottom 310.
':right 488.
':width 316.
':bl inker-p nil
':label '(;string HSHAPES" :font fonts:bigfnt)
':item-type-alist alist-alpha
':font-map '(fonts:hl12»)

;;; Expose the window and draw the objects
(defun set-up ()

(tv:window-call (sensitive-window :deactivate)
(send sensitive-window ':item ':new-type H Circle H)
(send sensitive-window ':item ':new-type H Triangle H)
(send sensitive-window ':item ':new-type" Rectangle")
(send sensitive-window ':item ':new-type" PolygonH)

March 1985

(send sensitive-window ':draw-filled-in-circle 30. 50. 18.)
(send sensitive-window ':draw-triangle 79. 36. 116. 36. 97. 68.)
(send sensitive-window ':draw-rectangle 32~ 32. 164. 36.)
(send sensitive-window

':draw-regular-polygon 265. 34. 288. 40. 5.)
;; blip holds the list returned by :any-tyi
(loop as blip = (send sensitive-window ':any-tyi)

;; Invoke the operation returned by the blip
;; unless the operation is (exit)

; Do it
(set-up)

until (equal (cadr blip) '(exit»
do (eval (cadr blip»»)

23.6 Mouse-sensitive Areas Example

In Figure 26, we show how areas of the screen can be made mouse-sensitive,
allowing the mouse to be used to select graphical entities, as well as text items.

To make the shapes mouse-sensitive, within the function set-up, add several lines of
Lisp code after the following line:

(send sensitive-window ':draw-regular-polygon 250. 34. 272. 40. 5.)

Next is the code to add to set-up.

287

March 1985 Window System Choice Facilities

SHAPES
Circle Triangle Rectangle Polygon

• lYJ • -
Figure 26. Mouse-sensitive areas example.

(defun set-up ()

;; The boxes are associated with the graphic area
(send sensitive-window

':primitive-item ':new-type 'box-1 10. 30. 52. 74.)
(send sensitive-window

':primitive-item ':new-type 'box-277. 31. 120. 72.)
(send sensitive-window

':primitive-item ':new-type 'box-3 160. 31. 201. 72.)
(send sensitive-window

':primitive-item ':new-type 'box-4 250. 31. 295. 75.)

288

Programming the User Interface March 1985

289

March 1985 Window System Choice Facilities

24. The Margin Choice Facility

A window can be augmented with choice boxes in its bottom margin using the flavor
tv:margin-choice-mixin. See the section "The Multiple Choice Facility", page 251.
Margin choice boxes give the user a few labelled mouse-sensitive points that are

independent of anything else in the window. Thus margin-choices can be added to
any flavor of window in a modular fashion. They are commonly used to implement
"confirmation" choices (for example, [Do It] and [Abort]) following another selection.

Margin choices are not a complete choice facility and consequently do not come
supplied in an instantiable version. The margin choice facility must be combined
with another window flavor. For an example of a window with margin choices (as
well as choice boxes in its interior), try the [Kill or Save Buffers] operation in the
Zmacs editor menu (refer to Figure 15 shown previously, page 251.)

24.1 The tv:margln-choice-mixin Flavor

tv:margin-choice-mixin Flavor
This moon flavor puts choice boxes in the bottom margin, according to a list
of choice-box descriptors that can be specified with the :margin-choices init­
plist option or the :set-margin-choices message. The choice boxes are
spread evenly across the bottom margin.

A choice-box descriptor is a list, dermed as follows:

(name state function xl x2)

You can use a longer list as a choice-box descriptor and store your own data
in the additional elements.

name is a string that labels the box. state is t if the box has an "X" in it, or
nil if it is empty.

function is a function called by the system in a separate process if the user
clicks on the choice box. It receives three arguments: the choice-box descriptor
for the choice box, the "margin region" that contains the choice boxes, and
the Y position of the mouse relative to this window. (The last two arguments
are usually ignored.) When function is called, the special variable self is
bound to the window and all its instance variables are bound to special
variables. Place (declare (special self) inside the function since self is not
normally special. The structure access functions tv:choice-box-name and
tv:choice-box-state may be of use inside (unction (they are just more
specific names for car and cam). If function changes the state of the choice
box, it should refresh the choice boxes in the following way:

290

Programming the User Interface March 1985

(send (tv:margin-region-function region) ':refresh region)

where region is its second argument. This is why the region argument is
passed. Note that automatic implications of a choice (things that happen to
the other choice boxes when one choice box is selected), such as in the
multiple choice facility are not implemented in the margin-choice facility. See
the section "The Multiple Choice Facility", page 251. Programmers must
write their own implication routines.

xl and x2 are used internally to remember the location of the choice boxes.

tv:margin-choice-mixin is built on the non-instantiable flavor tv:margin­
region-moon; the' position of the latter in the list of component flavors
controls where in the margins the choice boxes appear. The default puts
tv:margin-region-mixin right after tv:margin-choice-mixin To place the
choice boxes inside the borders, use the following model:

(defflavor bordered-window-with-margin-choices ()
tv:(borders-mixin margin-choice-mixin window»

24.2 tv:margin-choice-mixin Init-plist Option

:margin-choices choices (for tv:margin-choice-mixin) [nit Option
This causes a line of choice-boxes to appear in the bottom margin of the
window. choices is a list of choice-box descriptors, described previously. If
choices is nil, there are no choice boxes and no space for them in the bottom
margin; however, the window is still capable of accepting the
:set-margin-choices message to create a line of choice boxes later.

24.3 tv:margin-choice-mixin Messages

:set-margin-choices choices of tv:margin-choice-mixin Method
This message changes the set of margin choices according to choices, which is
nil to tum them off or a list of choice-box descriptors. If the choice boxes are
turned on or off, the size of the window's bottom margin changes
accordingly.

24.4 tv:margin-choice-mixin Example

A simple example of the margin choice facility is shown in Fig 27. In the example,
the user can select one of three actions to be taken within a graphics window.

291

March 1985 Window System Choice Facilities

Circle Rectangle

Figure 27. Example of a margin choice facility added to a window.

The Lisp code used to produce Figure 27 is listed below.

;;; Margin Choice Facility Example
;;; Draws shapes or aborts based on the margin-choice selection.

;;; Specify the margin choice-box descriptors

(defvar choice-box-l '(" Circle H nil shape-handler x y
:draw-filled-in-circle 70. 75. 38.»

(defvar choice-box-2 '("Rectangle" nil shape-handler x y
:draw-rectangle 70. 70. 170. 50.»

(defvar choice-box-3 '(" Abort" nil Abort-handler x y»
(defvar margin-list (list choice-box-l choice-box-2 choice-box-3»

;;; Name of the window we create

(defvar test-window)

;;; Mixin the margin-choice facility with a window
(defflavor window-with-margin-choices ()

(tv:borders-mixin tv:margin-choice-mixin tv:window»

292

Programming the User Interface

;;; Define a handler for the choice boxes that draw shapes
(defun shape-handler (choice-box region y-pos)

;; The special variable self will be the window
(declare (special self»
y-pos ;not used, suppress compiler warning
;; Hake just this box be lit
(clear-other-choice-boxes choice-box)
;; Erase the window
(send self ':clear-screen)
;;Refresh the margin so new choice box X's are displayed
(send (tv:margin-region-function region) ':refresh region)
;; Draw the shape the user requested
(apply self (nthcdr 5 choice-box»)

;;; Define a handler for the HAbortH box
(defun Abort-handler (choice-box region y-pos)

;; The special variable self will be the window
(declare (special self»
y-pos ;not used, suppress compiler warning
;j Hake just this box be lit
(clear-other-choice-boxes choice-box)
;; Refresh the margin so new choice box X's are displayed
(send (tv:margin-region-function region) ':refresh region)
;; Remove the window from the screen
(send self ':deactivate»

;j; This function clears the non-selected choice boxes
;j; and sets the selected one
(defun clear-other-choice-boxes (selected-box)

(dolist (box margin-list)
(setf <tv:choice-box-state box) (eq box selected-box»»

, •• Set up and expose the window
(setq test-window (tv:make-window

'window-with-margin-choices
':borders 2
':label nil
':vsp 2 ; vertical spacing
':font-map '(fonts:cptfont)
':top 200.
':bottom 500.
':right 650.
':width 410.
':margin-choices margin-list
':blinker-p nil
, : expose-p t»

March 1985

293

March 1985 Window System Choice Facilities

25. The Flavor Network of tv:menu

tv:menu is the basis of many of the choice facilities described in this text. tv:menu
is itself built on a network of flavors, shown in this diagram. tv:momentary-menu
has a different network, which gives the flavor its own behavior.
tv:command-menu is based on both tv:menu and the tv:command-menu-mixin.
Knowing the derivation of these flavors can be useful in investigating all the
available options and in modifying them for special applications.

menu-execute-mixin sheet

I
essential-window

I
I ..

margin-hacker-nuxm

I
essential-Iabel-mixin

basic-menu I
label-1l1lXlll

__ --borders-mixin

~ top-box-Iabel-mixin

essential­
expose

essential-
mouse

essential­
activate

I essential­
set-edges

, __ --------- minimum-wind oJ
_--- basic-scrolI-bar

menu

294

Programming the User Interface March 1985

sheet

essential-expose

essential-activate

essential-set-edges

essential-mouse

essential-window

menu-execute-mixin essential-label

I
basic-menu

margin-hacker-mixin

hysteretic-window-mixin label

minimum-window temporary-window-mixin basic-scroll-bar

basic-momentary-menu borders-mixin top-box-Iabel-mixin

I I
momentary-menu

menu-execute-mixin

basic-menu (See flavor network of menu)

command-menu-mixin menu

command-menu

295

March 1985 Window System Choice Facilities

26. Init-plist Options for tv:menu

This is a list of some useful window-oriented init-plist options accepted by the
tv:menu flavor and flavors built on it. It is not meant to be a comprehensive list.
Use the Flavor Examiner to find out all the init-plist options of a particular flavor.
Most of these options are also documented elsewhere: See the section "Using the
Window System", page 71.

:activate-p t-or-nil (for tv:menu) Init Option
If this option is specified non-nil, the window is activated after it is created.
The default is to leave it deactivated.

:borders argument (for tv:menu) Init Option
This option initializes the parameters of the borders. The argument can be
nil, which specifies no borders, t, which specifies default borders, or it can be
a specification of a border. The specification indicates which function is used
to draw the border and how thick the border is, in pixels.

If the specification is a number, the border is drawn by the default function
at the specified thickness. The default function is
tv:draw-rectangular-border.

If the specification is a symbol, the border is drawn by the specified function
at a default thickness. For more details on creating a function: See the
section "Using the Window System", page 71.

If the specification is a cons in the form (function. thickness), the borders
are drawn by the specified function at a specified thickness.

The specification can also be a list of locations on the screen: (left top right
bottom).

:bottom bottom-edge (for tv:menu) Init Option
This is specified in pixels and is relative to the outside of the superior
window.

:character-height spec (for tv:menu) Init Option
This is a way of specifying the height of the window. The inside height of
the window is made large enough to display spec number of lines in font zero
(the first font in the font map). If the spec is a string containing carriage
returns, then it is made tall enough to accommodate the string.

:character-width spec (for tv:menu) Init Option
The spec is either an integer or a character string. This is one way to
specify the width of the window. The inside width of the window is made
large enough to display spec number of characters in font zero (the fIrSt font

296

Programming the User Interface March 1985

in the font map). If the spec is a string, then it is made wide enough to
display the string.

:columns n-columns (for tv:menu) [nit Option
Sets the number of columns in a menu.

: default-font font (for tv:menu) [nit Option
Sets the default font. Items whose font is otherwise unspecified are displayed
in the default font.

:edges (left-edge top-edge right-edge bottom-edge) (for tv:menu) [nit Option
Sets various position and size parameters. All the edge parameters are set
relative to the outside of the superior window.

:edges-from source (for tv:menu) [nit Option
Specifies that the window gets its edge information from the source. If the
source is a string, the inside of the window is made large enough to display
the string in font o. If the Source is a list: (left-edge top-edge right-edge
bottom-edge) it is the same as the :edges option. If the source is :mouse,
the user is asked to point to where the left-top and right-bottom corners
should go. If the source is a window, the window's edges are copied.

:expose-p t-or-nil (for tv:menu) [nit Option
When this option is set to t the window is immediately exposed. Otherwise, it
must be explicitly exposed with an :expose message.

:fill-p t-or-nil (for tv:menu) [nit Option
Specifies whether to use filled format or columnar format.

:font-map list (for tv:menu) [nit Option
Specifies a list of fonts associated with the window.

:geometry list (for tv:menu) [nit Option
Sets up the complete menu geometry, using a list to specify the columns,
rows, inside-width, inside-height, max-width, and max-height. See the section
"The Geometry of a Menu", page 213.

:height arg (for tv:menu) [nit Option
Height in pixels. Includes margins, as opposed to :inside-height, which does
not include margins.

:inside-height arg (for tv:menu)
Inside height specified in pixels. Excludes margins.

:inside-size (inside-width inside-height) (for tv:menu)
Inside size parameters specified in pixels.

[nit Option

[nit Option

297

March 1985 Window System Choice Facilities

:inside-width arg (for tv:menu) [nit Option
Inside width of window specified in pixels.

: item-list list (for tv:menu) [nit Option
Specifies the item list associated with a menu.

:label specification (for tv:menu) [nit Option
Specifies the menu's label. The specification is usually a list in the following
form:

(:string "Foo" : font font-specification)

:left arg (for tv:menu) [nit Option
Specifies the left edge of the menu, defined in pixels relative to the outside of
the superior window.

:minimum-height arg (for tv:menu) [nit Option

:minimum-width arg (for tv:menu) [nit Option
In combination with the :edges-from :mouse init option,
:minimum-height and :minimum-width specify the minimum size (in
pixels) of the rectangle accepted from the user. If the user tries to specify a
size smaller than one or both of these minimums, the screen beeps and the
system prompts the user with a new left-corner.

:name string (for tv:menu) [nit Option
This names the window. The name appears in such places as the list of
windows generated by [Select] in the System Menu and in the window
display option of Peek. The name is the default string for the label if another
label string is not specified.

:position (left-edge top-edge) (for tv:menu) [nit Option
Specifies the left and top edges of the window. All specifications are given
with respect to the outside of the superior window.

:reverse-video-p t-or-nil (for tv:menu) [nit Option
If this option is set to t the menu is displayed in reverse video, that is,
white-on-black instead of black-on-white.

:right right-edge (for tv:menu) [nit Option
Right edge of the window specified in pixels, relative to the outside of the
superior window.

:rows n-rows (for tv:menu)
Sets the number of rows.

[nit Option

298

Programming the User Interface March 1985

:screen screen (for tv:menu) Init Option
In a system with multiple screens, sets the screen on which the menu
appears.

:top top-edge (for tv:menu) Init Option
Top edge of the window specified in pixels, relative to the outside of the
superior window.

:vsp n-pixels (for tv:menu) Init Option
Sets the vertical spacing between lines in the menu. The default is 2 pixels.

:width arg (for tv:menu) . Init Option
Specifies the width of the window in pixels.

:x arg (for tv:menu) Init Option
Specifies the left edge of the menu in pixels, relative to the outside of the
superior window.

:y arg (for tv:menu) Init Option
Specifies the top edge of the menu in pixels, relative to the outside of the
superior window.

299

March 1985 Window System Choice Facilities

27. Messages Accepted by tv:menu

These are some of the messages (arranged in alphabetical order) accepted by menu
flavors built on tv:menu. The list is not meant to be comprehensive. Use the
Flavor Examiner to find out all the messages accepted by a particular flavor. Most
of these messages are also documented elsewhere: See the section "Using the
Window System", page 71.

:deactivate of tv:menu Method
This message deactivates a window, deexposing it. In momentary menus, it is
sent when the mouse is moved outside the borders of the menu.

:deexpose of tv:menu Method
Causes a menu to be deexposed. The window remains activated. This
message is normally sent only by the system. It usually is meaningless if sent
by a user program, because the window is exposed again immediately.

:expose of tv:menu Method
Causes a menu to be exposed, that is, displayed on the screen.

:refresh &optional type of tv:menu Method
Redraws the menu. The system sends this message with different type
symbols depending on the event that caused redrawing. You can also send it;
in this case the type argument is usually not supplied and is allowed to take
on a default value. The menu refreshes itself from a bit-save array or
redraws itself from scratch, as appropriate. If the bit-save array is invalid, or
type is :complete-redisplay (this is the default), or the size of the menu
has changed, it redraws from scratch.

:set-default-font font of tv:menu Method
Sets the default font of a menu. It accepts a font specification, such as
fonts:tr12, as its argument. All text in a menu whose font is not otherwise
specified is set in the default font.

:set-edges new-left new-top new-right new-bottom of tv:rnenu Method
This message sets the edges of the window to the four values supplied as
arguments, in pixels relative to the superior window.

:set-item-list list of tv:menu
Sets the item list of a menu.

: set-label label of tv:menu
Sets the label of a menu.

Method

Method

300

Programming the User Interface March 1985

301

March 1985 Scroll Windows

PART IV.

Scroll Windows

302

Programming the User Interface March 1985

303

March 1985 Scroll Windows

28. Introduction to Scroll Windows

Scroll windows are a flavor of window provided by the Lisp Machine window system
to facilitate building programs that display information that updates itself, changes
its format, responds to the mouse, and shows other evidences of "live" behavior. To
see many examples of this type of window, press SELECT p to invoke the Peek
subsystem, and observe the behavior of its various displays as the objects they
represent change state.

The basic service performed by scroll windows is that of redisplay. You provide a
scroll window with a data structure defining what is to be displayed and how to
display it. This is very different from other windows that you simply instruct to
display text (and sometimes graphics) by telling them what to display. While a
normal window simply draws what it has been asked to display, a scroll window
remembers how to display again what it is now displaying, when instructed to do so.
Also, a scroll window knows how to update its display, changing only those portions
of the display that need changing. This is very much like what a real-time editor
does when you change text.

A typical use of scroll windows is to display a structured representation of some data
structure in your program. By clicking on mouse-sensitive items, you can ask to
"display more detail" about some item on display. Your program and the scroll
window would negotiate to display the more detailed items under the selected item,
and move other items around. The file system editor and the Window hierarchy
display in Peek do this. Another typical use is to display data about activity in the
Lisp Machine going on simultaneously in other processes, while you watch the
display. Such a display might have lines consisting of fixed text followed by numbers
or strings that are the "values" of the quantities being "watched". For instance,
some lines of such a display might read as follows:

Total polyhedra measured 603
Global eccentricity (av.) .82%

while you watched; the numbers change (update) as the program measures new
polyhedra.

Note tnat "scroll windows" have nothing, in particular, to do with the concepts of
scrolling of windows in general and of mouse scrolling commands in particular. The
name "scroll window" is something of a misnomer and a historical accident. Scrolling
is not really what is important about scroll windows: the important thing that they
provide is a convenient mechanism for getting information to redisplay.

Scroll window displays are exciting and enjoyable to watch and use, and add a touch
of class to any program that uses them.

304

Programming the User Interface March 1985

305

March 1985 Scroll Windows

29. Basics of Scroll Windows

The flavor of scroll window most often used is tv:scroll-window. You can call
tv:make-window to make a scroll window. There is also tv:basic-scroll-window
that contains nothing more than the feature of being a scroll window, and can be
used to build more highly specialized flavors. You might also be interested in
tv:scroll-window-with-typeout. It provides an inferior typeout window should
random program output occur directed at it.

The various fields to be displayed are described by items. Each item corresponds to
some logical portion of the display, always an integral number of lines. Items often
contain other items (in a hierarchical fashion), and items can be added and removed
from items dynamically (which, as is the whole point of scroll windows, causes the
objects on display to appear and reappear when the scroll window's display is
redisplayed).

A scroll window displays exactly one top-level item. The top-level item is simply an
item corresponding to all the data to be displayed in in the scroll window. When
you have constructed the top-level item, you hand it to the scroll window via the
:set-display-item message. You normally create and set the top-level item just
once, when you create and initialize the scroll window.

:set-display-item item of tv:basic-scroll-window Method
Set the top-level item of the scroll window to item.

The display created by the items given to a scroll window may well be larger than
the physical dimensions of the window. Scroll windows handle this elegantly by
showing only a portion of. the total display, and allowing the user to scroll the data
of the display in the window by using the mouse scrolling commands.

You cause a redisplay by sending the window a :redisplay message.

:redisplay of tv:basic-scroll-window Method
When a scroll window is sent the :redisplay message, it examines all parts
of the top-level item, including all items contained in it and all items
contained in them and so on. It adds new lines to the display as they are
found, removes ones no longer found, and updates ones still found, that are
in need of updating.

There are two types of items: .line items and list items. A line item describes
information to be displayed on exactly one line of the display; that is, if the portion
of the display controlled by a certain line item is visible in the window, then it uses
up exactly one line of the window, and all of the information of the line item must
fit in that line. Drawing a line item must not ever try to move to the next line
(you shouldn't use RETURN characters).

306

Programming the User Interface March 1985

A line item is built up of a sequence of entries. Each entry is responsible for
controlling how one field of the line is drawn. The entries in a line item can be any
mixture of constant strings or dynamically updated quantities. The descriptions of
the dynamic quantities provide instructions for obtaining and displaying their values.
The formats of these descriptions are given below. When the window is asked to
redisplay, all of the dynamic entries of the line items on display are computed
according to these instructions, and the fields of the line to which they correspond
are dynamically and incrementally updated if they need to be.

List items describe multiple-line objects to be displayed. A list item is little more
than a list of other items, themselves line items or list items. A list item is
displayed by displaying all of the elements in it, in the order in which they appear in
the list. The way you insert and remove lines of the display is by adding elements
to and deleting elements from list items.

A list item is simply a Lisp list. Its first element is a list item plist, specifying some
advanced options to be discussed below, and its remaining elements are the items
logically comprising the list item. In most cases, the list item plist may be left
empty (that is, nil).

307

March 1985 Scroll Windows

30. Constructing Items

Line items are constructed 'by a specialized function, described below. List items are
constructed by the standard Lisp list-building functions.

30.1 Constructing Line Items

Line items are constructed with the following function:

tv:scroll-parse-item &rest line-item-spec Function
This function receives its arguments as a single &rest argument that is a
line item spec. It constructs and returns a line item. For the format of line
item specs: See the section "Constructing Line Items", page 307.

The line item spec consists of two portions: global line attributes that are optional,
and entries, specifying the fields to be displayed, in the order they are to be displayed
on the line. The global line attributes are keyword/value pairs of elements. The
first even-numbered element of the line item spec that is not a symbol is the first
entry (all keywords are symbols). nils are ignored in any position of the line item
spec; this sometimes makes the specs easier to construct. Every occurrence of nil is
deleted from the spec before further processing.

Here is a simple call to tv:scroll-parse-item.

(tv:scro11-parse-item
':mouse '(DOUGHNUTS)
"Number of doughnuts: "
'(:symeva1 food:doughnut-ho1es nil ("-0"»)

Here the global line attributes are present, and consist of the following:

':mouse '(DOUGHNUTS)

There are two entries:

"Number of doughnuts: II

(:symeva1 food:doughnut-ho1es nil ("-0"»

In the above example, the :mouse global line attribute makes the line displayed by
this line item be mouse-sensitive, and the data item (DOUGHNUTS) will be encoded
in the blip fed to the window's input buffer when this line is clicked upon. The
meanings of the various global line attributes will be discussed. in detail later.

There will be two fields displayed on this line: the fixed string
"Number of Doughnuts: ", and the value of the global variable

308

Programming the User Interface March 1985

food:doughnut-holes. The latter value will be displayed as a decimal number (the
"-n" is a format control string), immediately after the ''Number of doughnuts: "
string, on the same line.

Whenever the window displaying this item is asked to redisplay, the displayed value
of food:doughnut-holes will be updated if the value of that variable has changed.

30.1.1 Line Item Entries

An entry in a line item spec can either specify a constant string to be displayed, or it
can specify how to fmd a value to be displayed. There are four types of entries:
string, symeval, function, and value. An entry is ordinarily represented as a list,
whose first element is one of the keywords :string, :symeval, :function, or
:vaIue.

There are two exceptions. First, when an entry is to be made mouse-sensitive, two
extra elements are included at the front of the list. See the section "Mouse
Sensitivity", page 311. Secondly, there are shorthand forms for some of the formats;
they are listed in the table below.

Here are the four types of entries, and their respective formats:

:string

Format: (:string string)
Shorthand format: string

where string is a string. This entry will display as the string, occupying as
much of the line as it takes up.

:symevaI

Format: (:symeval symbol width (format-etl base *nopoint»
Shorthand format: symbol

where symbol is a symbol to be evaluated to produce the value to be
displayed. The syntax symbol is equivalent to

(:symeval symbol nil ("_A" base *nopoint»

The third and fourth elements of the entry are optional. width specifies the
field width in characters, on the line, to be allocated to the displayed data. If
omitted, or given as nil, as much space as needed will be allocated. If a
value is given, it must be a positive number that must fit in the window's
line length. The printed representation of the value should not use more
than this many characters.

The value is printed using the format function. The fourth element of the

309

March 1985 Scroll Windows

entry is a list, whose first element specifies the format control string to be
used. If there is no fourth element, "-A" is used. The second and third
elements of this last element of the entry (which are also optional) give the
values of the global variables base and *nopoint to be set up when format
is called. If not given, the current values of these variables at redisplay time
will be used.

Note that if you use the shorthand form of the :symeval entry type as the
first entry in the line item spec, it will be mistaken for a keyword in the
global line attributes. If you want the first entry to be a :symeval entry,
you must use the longer syntax.

Here are some examples of :symeval entries:

(:symeval number-of-dogs) ; Just display the value.
number-of-dogs ; (The same.)
(:symeval number-of-dogs 6 ("-S"» ; Use six columns and

use slashification.

:function

Format: (:function function arglist width (format-ctl base *nopoint»
Shorthand format: (lambda)
Shorthand format: (named-lambda)
Shorthand format: <an actual compiled code object>

This is the most general type of entry. It specifies a function to be called at
redisplay time, and the actual arguments to which it is to be applied. If
obtaining the data to be displayed for an entry involves any action more
complicated than the evaluation of a variable, you will need a :function
entry. function specifies the function to be called. It may be a symbol,
lambda expression, or named-lambda expression, or compiled code object. It
will be applied to arglist at redisplay time to produce the value to be
displayed. Keep in mind that arglist is a list of actual values, not a list of
forms to be evaluated. If arglist is not given, it is assumed to be nil. It is
often useful to use the backquote list-templating facility to create :function
entries whose argument lists contain actual data objects obtained at the time
tv:scroll-parse-item is called. See the section "Backquote" in Reference
Guide to Symbolics-Lisp,

width, format-ctl, base, and *nopoint are optional, and have the same
meaning as they do with :symeval entries.

In the shorthand forms, in which only a function is supplied, arglist is
assumed nil and default assumptions about the printing format are made as
for :symeval entries.

Here are some examples of :function entries:

310

Programming the User Interface March 1985

:value

(:function I'compute-number-of-items '(dogs»
(:function I'compute-number-of-items '(dogs) 6 ("_5"»
(lambda () (compute-number-of-cats»

Format: (:value index width (format-etl base *nopoint»

:value entries are a. trick to obtain multiple results or decompose structured
results from functions. Since :function entries can return only one value to
be displayed, it is more difficult to display a complicated result, or mUltiple
values returned by a function, than to display a single result. Scroll windows
provide a one-hundred element array in which functions called by :function
entries may store extra results. :value accesses elements of this array for
display: index is a number that specifies what element of the array to access.
By using this array as a temporary holding place, values computed by a
:function entry early in the line item can be accessed by :value and
:function entries later in the line item.

The array can also be accessed via the accessor tv:vaIue from functions in
:function entries. This accessor is applied to the array element index into
the array tv:value in question. setf may be used to store values into this
array.

width, format-etl, base, and *nopoint are optional, and have the same
meaning as they do with :symeval entries.

Here is an example of the use of a :value entry. We wish to display a line
item that contains two constant strings and two variable fields. The line will
represent the result of calling a function, current-horse-lister, that returns
lists such as:

(Seabiscuit Silver Horace)

This function interrogates the state of some horse-processing system that is
assumed to be running and continually processing horses. We wish to display
on one line the number of horses currently being processed, and the actual
list of their names.

A first attempt might look like

(tv:scroll-parse-item
"Number of horses ."
'(:function (lambda ()

(length (current-horse-lister»)
5
("-50"»

"Their names: "
'(:function #'current-horse-lister»

311

March 1985 Scroll Windows

Although this will produce a display of the right format, it is inadequate
because it calls current-horse-lister twice. It is possible that between the
two calls to current-horse-lister the set of horses may have changed. Or
we could be dealing with a function that has side effects, and must not be
called twice if we really only want one answer. :value solves this problem.
Here is the correct code.

(tv:scroll-parse-item
"Number of horses .N

'(:function
(lambda ()

(setf (tv:value 0)
(current-horse-lister»

(length (tv:value 0»)
5 ("-50"»

"Their names:
'(:value 0»

"

In this example, element 0 of the array is used to save the horse list
between the display of the second and fourth entries in this item.

You should not use tv:value except for this purpose, and you should only
expect its values to be saved during the display of one line item. It cannot
be counted on to retain values between displays of different items, or
repetitive displays of one item.

30.1.2 Mouse Sensitivity

Entire line items or individual entries in a line item may be made mouse-sensitive.
This means that the display corresponding to the item or entry will be highlighted
as the user moves the mouse over it, and if the user clicks on it, the program
controlling the scroll window will be notified.

If you want to use any of the mouse sensitivity features, you must include the flavor
tv:scroll-mouse-mixin in the flavor of window to be used. This moon is not
included in tv:scroll-window. (Note: this has nothing to do with mouse scrolling;
the name means that it is the flavor of the scroll facility that deals with the mouse.)

To make a line item mouse-sensitive, put a specification of the form

:mouse action

or

:mouse-self action

in the global line attributes of the line item spec when constructing the line item.
action must be a list (actually, a cons). When a mouse-sensitive item is clicked on,
the scroll window's handler, running in the mouse process, does one of the things
described below, depending on the car of action.

If the car of action is nil, action is interpreted as a menu item. Clicking causes an

312

Programming the User Interface March 1985

:execute message is sent to the window, with action as its argument. Only those
menu item types that produce side effects are meaningful here (that is, :funcall,
:evaI, :kbd, :menu, and :buttons). You can also use :documentation to provide a
string to be displayed in the mouse documentation window in the who-line. Note
that the car of action is not significant to :execute. For example:

(tv:scroll-parse-item
':mouse '(nil :eval (set-balance 0)

:documentation "Set the balance to zero.")
·Current balance: • balance)

When you move the mouse over this line of the display, the entire line is
highlighted, and the documentation string appears in the who line. If you click on
the line, the function set-balance is applied to O.

If the car of action is a symbol other than nil, that symbol is looked up in the type
alist, which is an association list. If the car is found, an :execute message is sent
to the window. The argument to the message is the list

(ni 1 op . action)

where op is the cadr of the entry found in the type alist for the car of action. The
type alist can be set with the :set-type-alist message, or initialized with the
:type-alist init option.

If the car of action is not found in the type alist (which will happen if you aren't
using the alist feature) and is not nil, a blip of the form

(type action window button)

is forced into the window's input buffer. Here, type is the car of action, window is
the window itself, and button is a mouse button encoding. See the section "The
Character Set" in Reference Guide to Streams, Files, and 1/0. This is the standard
way to "read" the event of clicking on a sensitive item. The doughnut example
above used this technique, putting blips of type DOUGHNUT in its input stream.

:mouse-self is just like :mouse, except that before returning the line item,
tv:scroll-parse-item walks over action, and substitutes the actual line item that it
constructed for all occurrences of the symbol self in action, so you can access its
array leader. See the section "Line Item Array Leaders", page 313.

Individual entries in a line item can be made mouse-sensitive, as well. To make an
entry mouse-sensitive, express it in the standard form, that is, (as opposed to the
shorthand form), as follows:

(:string HDifferential AmplifiersH)

Then pla~e either of the following at the head of the list:

:mouse action

or

:mouse-item action

The new entry will precede what was there before. For example:

313

March 1985 Scroll Windows

(:mouse (nil :menu parts-menu
:documentation "Pop up a menu of parts.")

:string "Differential Amplifiers")

:mouse acts just like it does for entire line items, and action has precisely the same
interpretation. Instead of :mouse-self, use :mouse-item to get the substitution
feature: for mouse-sensitive entries, the item (that is, the item for the whole line) is
substituted for all occurrences of the symbol item in action if :mouse-item is
employed.

30.1.3 Line Item Array Leaders

You can use the array leader of a line item for arbitrary data storage. You can use
:mouse-self or :mouse-item to get the items back at mousing time. Scroll windows
use the first few entries in the array leader of a line item for its own purposes.
The index of the first item available for your use is stored in the variable
tv:scroll-item-Ieader-offset.

To specify that you want array leader space to be reserved at line item creation
time, you must use the :leader global line attribute. Its formats are

: 1 eader size

: 1 eader in it-list

size is the amount of array leader to be reserved for your purposes, and in it-list is a
list of elements to be placed at line item creation time in as many array leader
elements as they require.

30.2 Constructing List Items

List items are normally constructed with the function list. The first element of a
list item is the list item plist, and the rest of the elements are items that make up
the list item.

Here is an example of constructing a list item for a three-line display:

(1 is t () ;list item plist
(tv:scro11-parse-item ••.)
(tv:scro11-parse-item •..)
(tv:scro11-parse-item ... »

The list item plist is a list of alternating keyword symbols and values. There are
two defmed keywords, as follows:

:pre-process-function
The :pre-process-function keyword takes any function object as an
argument. This function is called at redisplay time, with the entire list item
as as its one argument. Its returned value is ignored. The idea of this is to

314

Programming the User Interface March 1985

allow you to compute, at redisplay time, whether or not you still want all the
items currently in the list item to remain in it, or want to add new ones and
so on. Your "pre-process function" will have to walk over the cdr of the list
item, and be aware that lists therein are list items and arrays are line items
in whose array leader you may have stored identifying information
meaningful to you.

:function
(Not to be confused with the :function entry type in line items.) The
:function keyword takes any function object as an argument. When it is
time to redisplay this list item, the function is called to process every item of
this list item, and the returned value of the function is rplaca'ed back into
the list item before the redisplay is done. This processing occurs after the
pre-process function, if any, has been called.

The idea of the :function list item property is to allow scroll window
redisplay to actually cause your subsystem to update its own data. Some
subsystems might want or require this, although it is very uncommon.

The function is called on three arguments: inferior-item, position, and plist.
inferior-item is the particular constituent item of the list item, position is an
internal item index, and plist is a locative to the list item plist of the current
list item. The result of function is rplaca'ed back into the list item when
function returns.

315

March 1985 Scroll Windows

31. Virtual List Maintenance

An elegant facility to construct and maintain list items is provided by
tv:scroll-maintain-list. If you intend to construct displays in which lines and
subdisplays dynamically appear and disappear, you probably want to use this facility
to construct and update list items. It uses the list item plist facilities described above
for its implementation.

The function tv:scroll-maintain-list constructs (and returns to you) a list item that
updates itself to represent some object of yours and its inferior objects every time
the scroll window is asked to redisplay. You provide tv:scroll-maintain-list with
two functions, one (the init function) that will be called at redisplay time to produce
some object of yours corresponding to a set of your objects that require associated
displays, and a second (the item function) that, given an object of yours, produces
the display item (line or list) representing it.

As just described, the set of objects is expected to be a list of your objects.
tv:scroll-maintain-list will ask for it at each redisplay, and cdr down it, applying
your item function to get display items. It is also possible to return a set of your
objects in some other form than a list; in this case, you must provide a stepper
function that knows how to extract the next object, the "rest" of the set, and tell
whether the end has been reached.

tv:scroll-maintain-list init-fun item-fun &optional per-element-fun Function
stepper-fun compact-p pre-proc-fun &rest
init-args

Constructs and returns a list item that updates itself when the scroll window
is asked to redisplay. Takes the following arguments:

in it-fun The init function that will be called at redisplay time to
provide a representation of the set of objects to be
displayed.

init-args Arguments to be passed to init-fun when called at
redisplay time.

item-fun The item function, to be applied to each object of yours to
produce a display item.

per-element-fun A function to be put in the list item plist of the list item
as the :function function.

stepper-fun The function that is called on the set of objects and all
"rest"s of the set. It is expected to return three values:
the next element, the "rest" of the set, and t if it has
returned the last element of the set. If not given,
stepper-fun defaults to tv:scroll-maintain-list-stepper, a
function that handles ordinary lists.

316

Programming the User Interface March 1985

compact-p

pre-proc-fun

An optional flag that causes tv:scroll-maintain-list to
copy the list it builds at each redisplay into a special area
for such lists, in order to optimize paging performance.
The list so constructed will be stored in compact (that is,
cdr-coded) form.

A function to be put in the list item plist of the list item
as the :pre-process-function function. If not given,
pre-proc-fun defaults to
tv:scroll-maintain-list-update-function.

Following is a simple example:

(tv:scro11-maintain-1ist "(lambda (instance) ;The init function
(send instance ':va1ue-list»

#'(lambda (value) ;The item function
(tv:scro1l-parse-item

'(:string ,(format nil "-S" value»»
nil nil nil nil
self) ;Argument to init function

Here is an example of code to construct a list item that displays the contents of a
Lisp list on separate lines. The variable *important-data* contains the list.

(tv:scrol1-maintain-list
#'(lambda () *important-data*) ; The init-fun.
#'(lambda (list-element) ; The item-fun.

;; Create an item from the list element.
(tv:scro11-parse-item

'(:string ,(format nil "-S" list-element»»)

317

March 1985 Digital Audio Facilities

PART V.

Digital Audio Facilities

318

Programming the User Interface March 1985

319

March 1985 Digital Audio Facilities

32. Introduction to the Digital Audio Facilities

The 3600 audio facilities consist of two I6-bit digital audio channels and supporting
microcode. The facilities read arrays of samples from 3600 memory and feed them
to the console at a rate of 50,000 pairs of samples per second. This rate is controlled
in hardware by a crystal. When active, the audio microcode reads a pair of samples
from 3600 main memory every 20 microseconds, supplying one I6-bit value to each
channel.

In the standard console, the samples are sent to a 12-bit digital-to-analog converter
(DAC). The signal emanating from the DAC is routed to a small speaker and an 8-
ohm headphone jack, as well as a low-level analog output compatible with standard
"auxiliary" inputs to consumer audio equipment. In the standard console, the
monoraul output sound is produced by combining the two DAC channels and routing
the signal through a simple two-pole low-pass filter at 8 KHz.

The 3600 audio microcode also supports a polyphony feature. The polyphony feature
allows the use of the audio facility for the performance of music, obviating the need
to generate samples for an entire performance. The polyphony feature is
experimental in release 6.0; it may be radically altered or removed in future releases.

Use the online tools described. elsewhere to find out more about a given object in the
audio facility: See the section "Program Development Tools and Techniques" in
Program Development Utilities. For practical examples of programming with flavors:
See the section "Window System Program Examples".

The digital audio facilities are demonstrated through several code examples. See the
section "Examples of Using the Audio Facilities", page 339. The code examples are
distributed in the following file:

SVS:EXAHPLES;AUDIO-EXAHPLES.LISP.

Note: the digital audio facility works only on 3600-family Lisp Machines running
System 5.2 (or later), with the Revision 6 (or later) 110 board (l0-REV.6) installed.

320

Programming the User Interface March 1985

321

March 1985 Digital Audio Facilities

33. Microcode Support for the Digital Audio Facilities

33.1 The Audio Microtask

This section discusses the microcode interface, that is, the formats of commands and
samples interpreted by the audio microcode. This is the lowest-level interface to this
facility, and only the barest primitives are described here. The formats and
commands given here might change in future versions of the hardware, microcode,
and software.

The audio microcode runs in its own microtask and thus operates parallel with the
execution of Lisp. The audio microtask is either active or stopped at any time.
Since the micro task scheduler works according to a priority queue, when the audio
task is active, it "wakes up" every 20 microseconds, and executes, preempting Lisp,
until it either outputs an audio sample pair or stops. The generation of audio
samples is not affected by the behavior of Lisp programs, including the masking of
interrupts, and so forth.

When active, the audio microtask follows a command list, or program of its own,
consisting of audio commands, stored by the programmer in main memory before
the audio microcode is started. The command list is stored in sequential physical
memory locations (although it can contain '~umps"). Each command occupies one or
more 3600 words. The words are expected to be flXIlums. The 32 data bits of each
flXllum contain the data interpreted by the audio microtask. The commands include
directives to control the flow of the command list as well as directives to output data
to the console DAC. The audio microcode also maintains a repeat counter to facilitate
generation of repetitive or continuous waveforms. See the section "Looping Through
Audio Command Lists", page 334.

The audio microtask is started by the execution of the %audio-start instruction by
Lisp; the evaluation of the form (sys:%audio-start) effects this. When this
instruction is executed, the audio microtask fetches the physical address of the
beginning of the command list from the variable Sys:%audio-command-pointer.
Therefore, this variable must be set to the physical address of the beginning of the
command list prior to the execution of the form (sys:%audio-start). The audio
microcode stops when it encounters an explicit command to this effect in its
command list.

The audio microtask is coded for real-time performance; it does no validity checking,
and issues no diagnostics. If you program the audio microtask via the techniques
described in this document, it is your responsibility, as always, to create valid
programs. In the case of the digital audio facilities, however, the result of an invalid
program could be a machine halt or destruction of the integrity of virtual memory,
or both. If certain bit patterns are interpreted as audio commands, they can modify

322

Programming the User Interface March 1985

storage locations. Save your editor buffers often when debugging code for the audio
microcode.

33.2 Sample Format

Each sample pair is expected to be a flXllum. The 32 data bits of each flXllum
include two samples, one for each channel. The sample pair is read by the audio
microtask in one operation, and the samples are sent to each channel in parallel.
Each sample is a IS-bit unsigned integer, one in the lower (bits 0-15) half word
(channel 0), and one in the upper (bits 16-31) half word (channell).

A sample value of 0 produces the lowest analog output voltage, and a sample value of
all Is (65535, octal 177777) produces the highest. A voltage of zero is represented by
the midpoint value, 32768 (octal 100000).

Channel 0 is currently supplied with analog output hardware in the console; Channel
1 is not. The digital-to-analog converter in the console is only of 12-bit precision, and
thus, it ignores the low 4 bits of Channel 0 samples.

33.3 Audio Command Format

Audio commands occupy one or more words of sequential physical memory. The
command words are expected to be flXllums. The flXIlum data (32 bits) for each
command is described in this section.

The format of the first word of each command is as follows, described by byte
specifiers in the sys package:

%%audio-command-op
A 4-bit opcode selecting the action to be performed by the audio
microcode. Each of the currently assigned opcodes is described
elsewhere. See the section "Audio Command Opcodes", page 323.
See the section "Polyphony Command Opcodes", page 326.

%%audio-eommand-arg
A 28-bit quantity, whose meaning differs for each opcode. When
the contents of this field, known as the operand, is described as
an address, it must be a physical address. The usual way to
obtain such a physical address is via the function
si:%vma-to-pma (which does a virtual-to-physical translation).
This function is given a flXIlum virtual memory address. The
usual way to derive such addresses, which are usually references
to array element cells, is via the %pointer and aloe functions. A
physical address computed from a virtual address in this way
cannot be validly used unless the relevant virtual address has been

March 1985

323

Digital Audio Facilities

wired in advance. See the section "Notes on Wired Structures",
page 327.

33.3.1 Audio Command Opcodes

These are the valid opcodes of audio commands, with the exception of those
commands associated with the polyphony feature. See the section "The Polyphony
Feature", page 324. The descriptions tell what action is performed by the audio
microtask when a command having this opcode is encountered by the microtask.
The opcodes are listed under the the name of the system constant (also in the sys
package) that gives the opcode value.

%audio-command-stop
Causes the audio microtask to halt execution. No more commands
are fetched, or samples sent to the console, until the next
execution of the sys:%audio-start instruction. The operand is
ignored.

%audio-command-jump
Causes the audio microtask to fetch its next instruction not from
the next sequential location, but from the physical address that is
the value of the operand. Sequential execution of commands
continues at that physical address.

%audio-command-Ioad-repeat
Loads the repeat register with the value of the operand. The
operand is an unsigned 28-bit number to be loaded into the repeat
register, not an address. See the description of the
%audio-command-Ioop opcode for the use of this register.

%audio-command-Ioop
Decrements the repeat register by 1. If the result is greater than
zero, the operand is interpreted as a jump address, and execution
of commands continues at that address, as with
%audio-command-jump. Otherwise, if the result is less than or
equal to zero, command execution continues with the next
sequential command.

%audio-command-samples
Designates a vector of sample pairs to be sent to the console. The
operand is the physical address of the frrst sample pair; the
remaining samples are fetched from successive words of physical
memory. The word in the command stream after the
%audio-command-samples command contains a flXIlum that is
the count of the number of sample pairs to be fetched and sent to
the console before the execution of %audio-command-sampJes
terminates, and the microtask proceeds to the next sequential
command. The %audio-command-samples command is thus a
two-word command.

324

Programming the User Interface March 1985

%audio-command-zero
A synchronization primitive. The operand is the physical address
of a cell, usually an array element. The audio microcode stores a
flXllum zero in that cell as the result of executing the command
having the opcode %audio-command-zero. The software can
use this facility to test if the audio microtask has passed a given
point in its command list. This enables the software to ascertain
when it is safe to unwire or reuse data structures containing
audio commands and/or samples. It is important to remember
that the audio task, when active, locks out Lisp execution until it
either sends a sample or goes idle. For example, if
%audio-command-zero is immediately followed by
%audio-command-stop, the observation of the zeroed cell by
Lisp software implies that the micro task has already read,
interpreted, and executed the %audio-command-stop.

%audio-command-immediate
Designates a vector of sample pairs to be sent to the console.
Unlike %audio-command-samples, the sample pairs appear in
the command list, in consecutive physical memory locations
immediately following the the %audio-command-immediate
command word. The operand of %audio-command-immediate
is a number, which is the count of sample pairs. That number of
sample pairs is fetched from the command list and sent to the
console, one every 20 microseconds (at a 50 KHz sampling rate).
Execution of the command list proceeds with the next command
after the vector of sample pairs, after all samples have been sent
to the console.

It is critically important that the operand is equal to the number
of samples provided, lest commands be interpreted as samples or
vice versa.

33.4 The Polyphony Feature

Note: The polyphony feature is experimental in Release 6.0. It might be radically
altered in function and/or interface in future releases, or might be removed entirely.

The polyphony feature of the 3600 audio microcode provides a way to generate
polyphonic music in real time. There is no need to precompute the samples and
store them before playback from disk. The polyphony feature can produce six voices,
where a voice is a rhythmically independent sequence of musical notes. Each voice
can be assigned a predefined, programmer-specified waveform, which determines the
spectrum and the amplitude of the notes that appear in that voice, regardless of
their pitch (frequency). The waveform specification determines the shape and
amplitude of one cycle only of the waveform. This waveform is repeated at different
frequencies to produce musical tones.

325

March 1985 Digital Audio Facilities

The polyphony feature is not intended as a general-purpose music synthesis facility.
For example, no control over the amplitude envelopes (attack, decay, and so forth) of
the sounds produced is provided. The polyphony feature is intended for use in music
system prototyping, that is, composition research, music editing programs, and so
forth. Nevertheless, the square-envelope notes it produces are not very different
from those produced by some electronic organs. When properly programmed and
amplified, the digital audio facility is capable of reasonably authentic performance of
much of the organ literature.

33.4.1 Operation of Polyphony

The basic function of the polyphony feature is to generate, in parallel, six separate
wave signals, usually of different frequencies, and sum them, at the sampling times
of the audio facility. The audio microcode accomplishes this by maintaining, for each
voice, a wavetable, a wavetable cursor, and an increment.

The wavetable for each voice consists of 1024 [OOlums stored in consecutive locations
in physical memory, defining the waveform for notes in that voice. (Note: the size
of the wavetables might change in a future release.) The [OOlums constitute wave
values, which digitally describe the waveform of the voice.

The detailed interpretation of the wave values is as follows: Each [OOlum wavetable
element is interpreted as the algebraic sum of the wave values for the channels 0
and 1, channell having been shifted 16 bits left. In detail, the value for channel 0
is a 32-bit signed (31 bits and sign, 2's complement) value between -2**15 and
2**15-1, inclusive. The value for channell, also in the range -2**15 to 2**15-1, is
shifted left 16 bits and added algebraically to the value for channel o. The resulting
number (which is always a [OOlum) is the value of the wavetable entry. Note that
this is not the same format as that of audio samples used by other parts of the
audio facility.

When polyphony is running (that is, when the audio microtask is interpreting the
command %audio-command-polypbony), one value from each of the six tables is
extracted, and these values are added algebraically. The resulting value is then
offset by 2**15 in each halfword, and the resulting two halfwords are sent as audio
samples to the two audio channels.

You must ensure that the sum of the values from each table never exceeds the
range -2**15 to 2**15-1 for either channel. The audio microcode clips or overflows
into the other channel if this range is exceeded.

Associated with each voice is. also a counter/pointer called the wavetable cursor. This
quantity is a 32-bit unsigned number. The high-order ten bits of the wavetable
cursor for each voice constitute an index, which selects the entry of its wavetable to
be summed into the audio sample to be produced. The low bits are used to measure
the passage of time, overflowing into the high bits 1024 times per cycle of that voice.

Also associated with each voice is a quantity called an increment. The increment is

326

Programming the User Interface March 1985

a 32-bit flXIlum. It controls the frequency, or pitch, of the note in each voice, by
controlling the rate of incrementing of the wavetable cursor for that voice. When
the command %audio-command-polypbony is being interpreted by the audio
microtask, the increment for each voice is added to the wavetable cursor for that
voice, and the resulting quantity is made the new wavetable cursor. (This addition
is performed after the wave table sample is extracted). Thus, when this repeated
addition produces enough change in the value of the wavetable cursor such that the
top ten bits are affected, a different wavetable entry for that voice is fetched at the
next sampling time. Note that continued incrementing in this manner "wraps
around". In this way, the wavetable cursor is way reset to the beginning of the
wavetable, after the last entry in the wavetable has been used.

The following function (available in the audio package) computes the increment for
a voice from the frequency:

(defun frequency-polyphonic-increment (frequency)
(round (* frequency (float '_32.» audio:*sample-rate*»

You simultaneously establish the increment and wavetable location for a voice by the
audio command %audio-command-load-voice. You instruct the polyphony facility
to output samples by the audio command %audio-command-polypbony. This
command uses all of the wavetables and increments previously established by
%audio-command-Ioad-voice, and outputs as many samples as requested, one
every 20 microseconds, generated by summing entries from the six wavetables,
incrementing the six wavetable cursors by the six associated increments as each
sample is generated.

Note: changing the wavetable and/or increment for a voice does not affect any other
voice in any way. Since the audio microtask is awakened by an external timer, and
runs until it either outputs a sample pair or stops, no discontinuity in notes played
by other voices is observed when %audio-command-load-voice is interpreted to
change the note in one voice.

33.4.1.1 Polyphony Command Opcodes

%audio-command-load-voice
Establishes a wavetable and increment for one voice of the
polyphony feature The operand is the physical address of the base
of the wavetable for the voice. The word in the command stream
after %audio-command-load-voice is, in its 32 data bits, the
increment for the voice. The low three (that is, the least
significant) bits of this increment are the binary number of the
voice whose wavetable and increment are to be established.
%audio-command-load-voice is effectively a two-word command.

When polyphony is being performed, the audio microcode uses, for
each voice, the wavetable and increment established for that voice.
There is no way to assert that a voice does not exist, or has no
wavetable, or no increment. A valid wavetable and increment

March 1985

327

Digital Audio Facilities

must be established for each of the polyphonic voices before
%audio-command-polypbony is executed by the audio
microcode, regardless of whether that voice is needed for the
performance of the particular composition.

%audio-command-load-voice does not affect the value of the
wavetable cursor for the voice involved.

%audio-command-polypbony
The operand is an unsigned 28-bit number. The audio microcode
sends out that many samples, one each 20 microseconds,
generated from the currently established wavetables of the
polyphony feature. The wavetable cursors of each voice used by
the polyphony feature are incremented by the increment
established for that voice as each sample is sent out. The values
of the increments and the wavetable cursors are not reset in any
way by either the start of %audio-command-polypbony, or its
completion.

33.5 The Beep Feature sys:%beep

sys:%beep now works on 3600-family consoles that support the digital audio
facilities. sys:%beep generates tones. The arguments, half-wavelength, (in
microseconds) and duration, are compatible with the version of sys:%beep that ran
on the Symbolics LM-2 computer. In the following example, a 440 Hz tone is
generated for 50 milliseconds.

(sys:Xbeep (II 1000000. 440. 2) 50000.)

33.6 Notes on Wired Structures

The audio microtask fetches commands from sequential locations of physical memory.
Branch addresses in the command list are physical addresses. Audio sample data
pointed to by the command list are also described by physical address. Wavetables
used by the polyphony feature are also described and accessed by physical address.

The audio microtask does not perform virtual address translation. Thus,. the
command list and sample data must be stored in data structures wired, or locked, in
main memory. That is, they must be prevented from being paged out or moved by
the Lisp Machine operating system. As a digital audio programmer, you must
therefore be aware of page boundaries.

Audio command lists and sample vectors must be stored in wired pages consecutive
in main memory, or scattered throughout main memory. If commands are stored in
pages scattered throughout main memory, jumps must be programmed at the end of

328

Programming the User Interface March 1985

each page, to send the audio microcode on to the next page. If sample vectors are
stored in pa~s scattered throughout main memory, you must use a separate
%audio-command-samples command to describe the samples on each page.
Wavetables for the polyphony feature must be in consecutive locations in main
memory.

It is conventional to use Lisp arrays as the data structure containing audio
commands, samples, and wavetables. Any type of array is usable for this purpose.
art-q arrays allow one audio command or sample pair per element, and are also the
only type of array whose elements can validly be addressed by the aloe function.

33.6.1 Lisp Primitives for Wiring Memory

The relevant Lisp primitives to wire data structures for the digital audio facility are
si:wire-structure, si:wire-words, and si:wire-consecutive-words.
si:wire-words wires any extent of virtual memory into physical memory, although
the page frames into which successive pages are wired cannot be contiguous.
si:wire-consecutive-words also wires any extent of virtual memory into physical
memory, but successive pages are guaranteed to be stored in successive page frames
in physical memory. si:wire-structure wires an entire structure (a convenience
device to avoid having to calculate the location and extent of the virtual memory
occupied by a structure) in the manner of si:wire-words.

Since commands must be stored in consecutive locations in physical memory,
si:wire-consecutive-words suggests itself as the natural primitive for this
application. However, success of this primitive depends on the availability of
consecutive page frames of main memory not already containing wired pages, and it
is thus less likely to succeed as more pages are wired. Use of si:wire-structure and
si:wire-words for audio data does not encounter this problem, but requires explicit
programmer handling of page boundaries, as outlined previously.

%find-structure-beader and %structure-total-size are used to find the virtual
memory location and extent of whole arrays or other structures to be wired.
si:page-array-calculate-bounds can be used to calculate the virtual memory
location and extent of portions of array that are to be be wired, when
si:wire-words or si:wire-consecutive-words is used. %pointer-difference can
also be used to determine the length of the extent, in words, between two addresses
obtained via these primitives or the aloe function.

Structures, or portions thereof, wired by any of these primitives, should be unwired
by si:unwire-structure or si:unwire-words (as appropriate) only after it has been
ensured (via the techniques described) that the audio microtask is not fetching
commands or samples from these structures.

329

March 1985 Digital Audio Facilities

34. Lisp Primitives for the Digital Audio Facilities

34.1 Functions, Variables, and Macros for Digital Audio

This section describes the functions, variables, and macros available to the Lisp
Machine programmer to aid in programming the 3600 Digital Audio Facilities. All of
these objects are tools for programming the audio microtask. Therefore, this section
assumes that you already understand the microcode capabilities. See the section
"Microcode Support for the Digital Audio Facilities", page 321.

All of the digital audio functions, variables, and macros appear in the audio package.
Several comprehensive examples of their use are provided in the file
sys:examples;audio-examples.lisp. See the section "Examples of Using the Audio
Facilities", page 339.

These Lisp tools assume the existence of an audio command array, in which audio
microtask commands are placed, and out of which they are executed by the audio
microtask. A macro (audio:with-audio) manages the wiring and unwiring of
command arrays within the scope of a program.

A default audio command array is provided as part of these audio support primitives.
All of these primitives, however, allow the specification of any suitable user-provided
array as a command array. Such an array must be a nonindirect, single-dimensional
art-q array, with a fill pointer, allocated in a static area (such as
audio:audio-area).

Command arrays, as all arrays, are finite in extent. Carefully planned
synchronization techniques must be utilized to allow uninterrupted sound to be
produced from a single command array that is being serially reused for sequences of
audio commands. See the section "Examples of Using the Audio Facilities", page
339.

34.2 Digital Audio Parameters

These are the critical constants of the audio facility. In programs these constants
should be used instead of the numbers that are their current values in order to
accommodate future modification of the audio facility.

audio:*sample-rate* Variable
The number of times per second that an audio sample is output when the
audio microtask is active. This is a single-precision floating-point number. Its
current value is 50e3, as determined by the hardware.

330

Programming the User Interface March 1985

audio:·number-of-polyphonic-voices· Variable
The number of polyphonic voices defined by the (experimental) polyphony
feature. See the section "The Polyphony Feature", page 324. This is a
flXllum, and its current value is 6.

34.3 Testing for the Existence of Audio

audio: audio-exists VariOhle
This variable has a value of other than nil if and only if the machine on
which it is evaluated has an operational audio facility.

34.4 The Audio Wrapping Form

audio:with-audio &optional command-array &body body Macro
Encases code that generates audio commands. It prepares a command array
for use by wiring it in an appropriate fashion and unwires it when the body
of the form is exited. When exited, it also unconditionally halts the audio
microtask, silencing the audio output.

If command-array is given as nil, the default command array is used.

When the scope of audio:with-audio is entered, it also zeroes the fill
pointer of the supplied command array. The various interface functions
described later utilize the fill pointer of the command array to keep track of
the current position in the audio command list being built.
audio:with-audio also globally binds scheduler parameters to allow the
process generating audio commands to gain control when necessary and more
rapidly than usual.

34.5 Building Audio Command Lists

The functions listed in this section prepare arguments for, build, and store audio
commands in a command array. They assume that the fill pointer of the array
describes the next available location in the array, and they update the fill pointer as
needed. The array must be wired, as some of these functions compute and store
physical addresses of locations in the command array. Calling these functions does
not produce sound. Sound is produced when the audio facility is directed (via
audio:audio-start) to a command list produced by calling these functions.

The fill pointer of the array defines a logical pointer called the audio index. The
function audio:audio-index (which defines a location accessible with setfl is used to
access this index (for example, for use as an argument to a later function call).

331

March 1985 Digital Audio Facilities

The current implementation uses command arrays that are wired into successive,
contiguous page frames of physical memory. (Note: This might change in the
future.) The exclusive use of these primitives hides this implementation detail. In
order to accommodate future changes in this strategy, do not perform calculations on
audio indices. Instead, request them whenever needed via audio:audio-index, and
use them only as arguments to the primitives provided.

Use of the macro audio:with-audio is the recommended way to establish the
proper context in which these functions can be validly used. Each of them takes an
optional argument, which specifies the command array in question. This argument
always defaults to the facility's default command array.

audio:audio-index &optional command-array Function
This function returns the audio index for the next command to be stored in
the command array in question. The form <audio:audio-index) is suitable
for use as the first operand of a setf form.

audio:audio-room &optional command-array Function
This function returns the amount of available (unallocated) space, in single
words, in the current command array.

audio:audio-limit &optional command-array Function
Returns a number one greater than the audio index of the last usable
location in the command array.

audio:audio-push-audio-stop &optional command-array Function
Pushes a %audio-command-stop onto the command list in the command
array. ("Push", as used in the names of these interfaces, means "add to the
end of, at the current audio index, and increment the audio index
appropriately. ").

audio:push-audio-jump target-index &optional command-array Function
Pushes a %audio-command-jump onto the command list in the command
array. The argument target-index is expected to be an audio index into the
same command array, obtained previously from audio:audio-index.

audio:push-audio-zero-flag flag-index &optional command-array Function
Pushes a %audio-command-zero onto the command list in the command
array. The argument flag-index is expected to be an audio index, into the
same command array, of a "flag". Such flags are allocated, and their indices
returned, by audio:reserve-audio-flags.

audio:push-audio-Ioad-voice voice-number wave-array . Function
wave-array-start-time
wave-array-index-increment &optional
command-array

Pushes a %audio-command-Ioad-voice onto the command list in the

332

Programming the User Interface March 1985

command array. voice-number is a number, zero or greater, below the value
of audio:*number-of-polyphonic-voices*, that specifies which polyphonic
voice is to have its wavetable and increment loaded by the command to be
built and stored. wave-array-index-increment is the value of that increment,
which can be computed from the frequency of the tone desired by use of the
function audio:frequency-polyphonic-increment. The wavetable for the
voice is expected to be in the art-q array wave-array. The argument
wave-array-start-index is the index into that array where the 1024-word,
wired, contiguous in physical memory, wavetable begins.

audio:push-audio-polyphony number-or-samples &optional Function
command-array

Pushes a %audio-command-polyphony onto the command list in the
command array. The argument number-or-samples specifies the sample count
for the command to be built and pushed.

audio:modify-audio-command-arg new-arg arg-type command-index Function
&optional command-array

Modifies an audio command that has already been pushed in the command
array specified. This function must be used with extreme care: it can easily
create invalid audio programs, which can destroy machine integrity. It
modifies the 28-bit argument in the first word of the command whose index
into the command array (command-index) is given. To be sure that this'
command can be validly used, read the description of the format of the
individual audio command. See the section "Microcode Support for the Digital
Audio Facilities", page 321. new-arg is the new value of the command whose
index is given. The argument arg-type describes' how it is converted to a 28-
bit value for insertion in the existing command:

:immediate
No processing)s done. new-arg is expected to be a non-negative flXIlum,
which must be a count.

: index
The argument is an audio index into the command array specified. The
location of the corresponding array cell is computed, verified to be wired, and
the physical address of that location stored in the command.

:location
The argument is a locative into a wired array of audio commands. The fact
that this location is wired is verified, and the corresponding physical address
stored in the command.

333

March 1985 Digital Audio Facilities

34.6 Storing Samples

The functions and macros described in this section place audio sample pairs into the
command program. These commands can be either immediate
(%audio-command-immediate) or stored elsewhere (%audio-command-samples).

audio:push-array-of-audio-samples array &optional from to Function
command-array immediate-p

Pushes appropriate commands onto the command list in the command array
specified, to output all the sample pairs in the array array between indices
from and (up to but not including) to. from defaults to 0, and to to the
active length of array. array must be an art-q array containing precomputed
sample pairs.

If immediate-p is non-nil, the data are copied into the command array, and
output by means of %audio-command-immediate.

If immediate-p is nil, array is assumed (and checked) to be wired, and as
many %audio-command-samples commands as necessary to describe the
data to be output are built and pushed. array need not be wired in
con tiguous page frames.

audio:computing-immediate-audio-samples (count &optional Macro
command-array) &body body

Facilitates the storing of immediate audio sample pairs. The code it wraps,
body, is responsible for generating immediate audio sample pairs: it does so by
calling the macro audio:push-immediate-audio-sample, within the scope of
the use of audio:computing-immediate-audio-samples. Each use of
audio:push-immediate-audio-sample stores one sample. The macro
audio:computing-immediate-audio-samples arranges for an appropriate
%audio-command-immediate to be constructed to describe all the samples
stored. If the argument count is non-nil (at run time), it is expected to be a
flXIlum, which is the number of values to be stored.
audio:computing-immediate-audio-samples checks, when it is exited, that
that is the actual number of values stored, and signal an error if not. If
count is nil, no checking is done, and
audio:computing-immediate-audio-samples assumes that the number of
samples that have been pushed is the correct number, and modifies the
commands it builds appropriately.

audio:push-immediate-audio-sample sample Macro
Stores one audio sample pair, which is the value of its argument. This macro
can be used validly within the scope of
audio:computing-immediate-audio-samples.

334

Programming the User Interface March 1985

34.7 Looping Through Audio Command Lists

These two macros facilitate the use of %audio-command-loop to create loops in
audio command lists. Keep in mind that the audio microcode does not support
nested loops.

audio:audio-loop (repeat-count-or-nil &optional command-array) Macro
&body body

This macro builds a loop (with %audio-command-loop and
%audio-command-load-repeat) in the audio command list in the command
array specified. The code, body, which is wrapped by this macro pushes
commands for the body of the loop. The macro generates the audio
command to loop back at the time its scope is exited. The argument
repeat-count-or-nil, when non-nil, specifies how many times the loop is to be
executed by the audio microtask. That is the number that is loaded into the
repeat register. If repeat-count-or-nil is nil (at run time), the wrapped code
must compute the number of loop repetitions, and invoke the macro
audio:set-audio-repeat-count, whose argument is that number, some time
before the scope of audio:audio-loop is exited. A diagnostic is issued (at
run time) if the macro's scope is exited without the repeat count having been
specified by one of these two means.

audio:set-audio-repeat-count count Macro
Sets the value count as the repeat count for an audio command list loop that
is currently being built by audio:audio-loop. This macro can be validly
used only within the scope of audio:audio-Ioop.

34.8 Synchronization Flags

These functions allocate, in the command array specified, locations to be used as
synchronization flags (for %audio-command-zero), and allow the flags to be waited
for and reset. The "reset", or "normal", state of these flags, is non-zero. The audio
microcode "sets" them, by setting them to zero, when a %audio-command-zero is
executed. By means of these flags, the real-time progress of the audio microtask can
be monitored.

audio:reserve-audio-flags count &optional command-array Function
Allocates, in the command list currently being built in the command array
specified, count locations to be used as audio flags. The flags are reset. A
%audio-command-jump is inserted in the command list being constructed,
so that the audio microtask jumps around the locations being used as flags.
The return value of this function is the index, in the command array given,
of the first of the flags allocated. You can assume, if more than one flag was

335

March 1985 Digital Audio Facilities

allocated by a call to audio:reserve-audio-flags, that the indices of flags
other than the first are the sequential integers above the value returned.

audio:wait-for-audio-flag flag-index &optional who-state audio Function
reset-flag t command-array

Waits for the audio flag specified by flag-index, in the command array
specified, to be set. Normally, it is the audio microtask that sets these flags,
by means of %audio-command-zero. whostate is the state to be displayed
in the status line. If reset-flag is given as nil (this is not the default), the
flag is not reset. The resetting, when requested, is performed after the flag
has been observed to be set. The indices given to audio:wait-for-audio-flag
should be those obtained from audio:reserve-audio-flags.

34.9 Starting and Stopping the Audio Microtask

These functions are used to start and stop the audio microtask.

audio:audio-start index &optional command-array Function
Starts the audio microtask, via the instruction sys:%audio-start, at the
audio command specified by index in the command array specified. The
array must be wired, and contain a valid, wired, audio command list.

audio:audio-stop &optional command-array Function
Stops the audio microtask immediately, causing immediate silence.
audio:audio-stop accomplishes this by storing a %audio-command-stop
instruction at location zero (0) of the command array given, and issuing
audio:audio-start at that command. Thus, audio:audio-stop is
destructive to the command array, and requires that it be wired.

34.10 Conversions Between Sample Formats

The following functions encode and decode sample pairs. They are provided to hide
the internal representation of sample pairs. Some of these "functions" are actually
implemented as macros to help make code that prepares audio samples as fast as
possible.

These functions convert between three formats of samples, float, {ixnum, and
sample. Float and flXllum formats describe channel values. Sample format is the
actual format of sample pairs stored in command arrays and sample arrays.

Fixnum format consists of integers in the range -1**15 ~ x < 1**15. Float format
consists of floating numbers and float channels are in the range -1.0 ~ x < 1.0.
You must ensure that a float format value is never +1.0.

336

Programming the User Interface March 1985

audio:float-channel-ilX float Function
Converts a float format value to flxnum format.

audio:ilX-channel-float fix Function
Converts a flXIlum format value to float format.

audio:ilX-sample right &optional lett right Function
Takes one or two flXIlum format values for the two channels and returns a
sample pair in sample format containing those two values.

audio:float-sample right &optional lett right Function
Takes one or two float format values for the two channels and returns a
sample pair in sample format containing those two values.

audio:sample-cbannels sample Function
Takes a sample pair in sample format and returns two values, the right and
left channel values of that sample, respectively, in flXIlum format.

audio:sample-add-ilX sample right-increment &optional left-increment Function
right-increment

Takes a sample pair and one or two increments, which are expected to be in
flXIlum format. The two channels of the sample pair are incremented by the
two increments, and a new sample pair so constructed is returned. If the
right channel goes out of range, it overflows into the left channel instead of
clipping.

audio:sample-add-float sample right-increment &optional Function
left-increment right-increment

Takes a sample pair and one or two increments, which are expected to be in
float format. The two channels of the sample pair are incremented by the
two increments, and a new sample pair so constructed is returned. If the
right channel goes out of range, it overflows into the left channel instead of
clipping.

audio:sample-add-sample samplel sample2 Function
Takes two sample pairs, in sample format, and produces a new sample pair
by adding them. The operation performed is the addition of the flXIlum
format values corresponding to the channel values in the sample pairs. In
other words, it is as if audio:sample-add-sample extracted the sample
values from the sample pairs using audio:sample-channels, then added the
channel values and reconstructed a sample pair using audio:ilX-sample.
The actual operation of audio:sample-add-sample is considerably more
efficient.

337

March 1985 Digital Audio Facilities

34.11 Conversions for the Polyphony Feature

These functions convert between flXIlum and float format channel values and the
values stored in wavetables used by the polyphony feature. See the section "The
Polyphony Feature'" page 324.

audio:ilX-polyphonic-wave-table-entry right &optional left right Function
Takes one or two channel values in flXIlum format and returns a flXIlum
representing those two values, in the format used in wavetables. This is not
the same as sample format.

audio:float-polyphonic-wave-table-entry right &optional left right Function
Takes one or two channel values in float format and returns a flXIlum
representing those two values, in the format used in wavetables. This is not
the same as sample format.

audio:polyphonic-wave-table-entry-channeIs entry Function
Takes as an argument an entry from a polyphonic wavetable, and returns
two values in flXIlum format, the right and left channel values encoded
therein, respectively.

34.12 Computing Polyphonic Increments

This function computes the appropriate wavetable increment to specify the
frequencies in polyphonic textures.

audio:frequency-polyphonic-increment frequency Function
Computes an increment value suitable for use with
%audio-command-Ioad-voice. The increment produced corresponds to a
frequency of frequency. That is, the increment returned causes the
wavetable for the voice with which it is used to be scanned frequency times
per second.

338

Programming the User Interface March 1985

339

March 1985 Digital Audio Facilities

35. Examples of Using the Audio Facilities

This chapter presents seven program examples that use the digital audio facilities, in
both real-time and non-real-time synthesis applications.

35.1 Sine Wave Example

This example generates a sine wave at a specified frequency.

340

Programming the User Interface March 1985

(defun sine-wave (frequency)
(audio:with-audio () ;Set up the audio environment

(let* «start (audio:audio-index» ;Get the current (starting) index
(samples-per-cycle (sys:round audio:*sample-rate* frequency»
;; Spread out several cycles to get a more accurate
;; frequency. Extra factor of 2 makes sure there is room.
(number-of-cycles (max 1 (II (audio:audio-limit) samples-per-cycle 2»)
;; Actual number of samples we are going to produce
(number-of-samples (* samples-per-cycle number-of-cycles»)

;; Hake sure we have room to play this frequency
(when (> (+ number-of-samples 2) (audio;audio-limit»

(ferror "Frequency too low"»
;; This form allows us to compute number-of-samples inline
" (as opposed to computing them in a separate array). If we
;; didn't know how many samples we were going to produce we could
;; supply NIL for number-of-samples and the form will keep track
;; and adjust the command array when the form is exited. Since we
;; do supply the number of samples, the form will check to make
;; sure we supply exactly that many. This helps us to avoid writing
" incorrect audio programs.
(audio:computing-immediate-audio-samples (number-of-samples)

(loop for sample-number below number-of-samples
as phase =

;; This is the phase (angle) that is passed to sin
;; to get the sine wave. (This will cons double-floats in
;; systems where si:pi is a double-float.)
(II (* 2 si:pi sample-number number-of-cycles)

number-of-samples)
as sample =

;; Take the sin of the phase. Also multiply it
;; by something less than 1 so we never get a
" value of 1.0 (a restriction, see
;; documentation). Take the resulting floating
" point number in the range [-1.0, +1.0) and
;; create a 'sample.'
(audio:float-sample (* (sin phase) 0.9»

do ;; Now actually push the sample into the command array.
(audio:push-immediate-audio-sample sample»)

;; All of the samples are computed and an appropriate command has
;; been generated to output them. Now we cause a jump back to the
;; beginning to keep the sound going.
(audio:push-audio-jump start)
;; The program is complete, we can now start the audio facility.
(audio:audio-start start)
;; When you've heard enough, just type anything. with-audio
;; supplies code to turn off the audio facility when exited and do
;; other bookkeeping.
(tyi» »

341

March 1985 Digital Audio Facilities

35.2 Sawtooth Wave Example

This is roughly the same as sine wave, but instead produces a sawtooth and only
generates one cycle for it.

(defun saw-wave (frequency)
(audio:with-audio ()

(let* «start (audio:audio-index»
(samples-per-cycle (sys:round audio:*sample-rate* frequency»)

(audio:computing-immediate-audio-samples (samples-per-cycle)
(loop for sample-number below samples-per-cycle

as value =
;; create a sawtooth value in the range [-1.0,1.0).
;; Note this can never be exactly 1.0 since
;; sample-number never quite gets as large as
" samples-per-cycle. v
(- (II (* 2.0 sample-number) samples-per-cycle) 1.0)

do (audio:push-immediate-audio-sample (audio:float-sample value»)
(audio:push-audio-jump start)
(audio:audio-start start)
(tyi»»)

35.3 Square Wave Example

This example demonstrates yet another type of waveform: a square wave. The
audio-loop form is also exemplified.

342

Programming the User Interface March 1985

(defun square-wave (frequency)
(audio:with-audio ()

(let* «start (audio:audio-index»
(samples-per-cycle (sys:round audio:*sample-rate* frequency»
;; Compute the number of samples for the high value and
;; low value. Divide them as evenly as possi:!le.
(samples-first-half (II samples-per-cycle 2»
(samples-second-half (- samples-per-cycle samples-first-half»)

;; Create a loop that will repeat samples-first-half times. If we
;; weren't sure how many times we want to repeat, we could specify
" NIL and then use set-audio-repeat-count to set the count.

(audio:audio-loop (samples-first-half)
;; Compute 1 value (the high value) for output.
(audio:computing-immediate-audio-samples (1)

(audio:push-immediate-audio-sample (audio:float-sample 0.9»»
;; 00 the same for the second half.
(audio:audio-loop (samples-second-half)

(audio:computing-immediate-audio-samples (1)
(audio:push-immediate-audio-sample (audio:float-sample -0.9»»

;; Jump back to the beginning so we get more than one cycle.
(audio:push-audio-jump start)
(aud;o:audio-start start)
(tyi»»

35.4 Beep Example

This is basically a modified square-wave.

(defun %beep-ignoring-most-issues (frequency duration)
(audio:with-audio ()

(let* «start (audio:audio-index»
(samples-per-cycle (sys:round audio:*sample-rate* frequency»
(samples-first-half (II samples-per-cycle 2»
(samples-second-half (- samples-per-cycle samples-first-half»)

;; Can't nest loops, so we have to do the outer loop with a jump
;; and bash the location when time has elapsed.
(audio:audio-loop (samples-first-half)

(audio:computing-immediate-audio-samples (1)
(audio:push-immediate-audio-sample (audio:float-sample 0.9»»

(audio:audio-loop (samples-second-half)
(audio:computing-immediate-audio-samples (1)

(audio:push-immediate-audio-sample (audio:float-sample -0.9»»

March 1985

343

Digital Audio Facilities

;; This is the tricky part. We need to put a jump to the
;; beginning. but we need to know where it is so we can cause it
., to fall through. We also need a flag so we know when the audio
;; has stopped so we can exit. If we simply exited without
;; waiting, the with-audio form could turn off the sound prematurely.
(let* (;; get the index that we will eventually bash and put in a

;; jump back to the start.
(jump-index (prog1 (audio:audio-index) (audio:push-audio-jump start»)
;; reserve (and reset) an audio flag.
(flag-index (audio:reserve-audio-flags 1»
;; reserve-audio-flags puts in a jump command around the
" flags it reserves, so we could have gotten the
,. fall-through index after pushing the jump command .
•• Anyway, get the index of the fall-through location.
(fall-through-index (audio:audio-index»)

;; When we bash the jump command the microcode will jump to here
;; instead, which will cause the flag to get zeroed and the
" audio facility to stop. Both events happen atomically as far
•• as Lisp can tell because no samples are output in the
;; intervening time.
(audio:push-audio-zero-flag flag-index)
(audio:push-audio-stop)
;; Start the audio
(audio:audio-start start)
;; Wait the appropriate number of microseconds.
(loop with start-time = (sys:Xmicrosecond-clock)

until
(~ (%32-bit-difference (sys:Xmicrosecond-clock) start~time) duration»

" Here is where we bash the argument of the jump command to
" instead jump to the fall-through code.
(audio:modify-audio-command-arg fall-through-index :index jump-index)
;; Wait for the microcode to get to the flag and stop before we exit.
(audio:wait-for-audio-flag flag-index "%BEEP"»»)

35.5 Non-real-time Synthesis Example

Certain kinds of very high quality sound cannot be generated in real time (one
sample computed every 20 microseconds). Small pieces (pieces that can fit in
physical memory) can be computed and then played later.

344

Programming the User Interface March 1985

(defun play-audio-sample-array
(array &optiona1 (from 0) (to (array-active-1ength array»)
(audio:with-audio ()

;; with-wi red-structure wires the structure on entry
;; and unwires on exit. External sample arrays must be wired.
(si:with-wired-structure array

(let* ((flag-index (audio:reserve-audio-flags 1»
(start (audio:audio-index»)

;; Cause the samples to be played. If we supplied a non-NIL
;; immediate-p argument, we wouldn't have to wire the
" structure, since the samples would be put in the command
;; array which is already wired. However, most command arrays
;; are not very large and probably couldn't hold all the
;; samples. It's a tradeoff.
(audio:push-array-of-audio-samp1es array from to)
;; When the microcode finishes the samples, cause it to clear
;; the flag and stop.
(audio:push-audio-zero-f1ag flag-index)
(audio:push-audio-stop)
;; Start it up and wait for it to finish.
(audio:audio-start start)
(audio:wait-for-audio-flag flag-index "Play samples"»»)

35.6 Playing Large Pieces Example

Larger pieces (those that are too big to fit in physical memory) can still be played.
This program plays data that is stored on the FEP fllesystem. Storage must be on
the FEP file system for several reasons. The digital audio system must produce data
at the rate of one sample every 20 microseconds (including all overhead). This is 1.6
megabits per second, which is a small factor away from raw disk speed. After
overhead, this is getting close to the limits of the system. The LMFS file system
incurs too much overhead. Also, we cannot copy (as LMFS would try to do if we
used :string-in into an array) and we cannot spend time wiring buffers (as we
would need to do with LMFS if we used :read-input-buffer).

The FEP file system allows us to do disk direct memory access (DMA) directly into a
buffer that we can keep wired. We can also setup the audio facility to point to
these buffers (using push-array-of-audio-samples) once so we do not have to do it
often.

The macro with-multi-disk-buffering takes care of multibuffering bookkeeping.
The user decides how many pages to devote to each buffer and the number of
buffers. Disk arrays (the buffers) are allocated and wired on entry and unwired on
exit.

345

March 1985 Digital Audio Facilities

(defmacro with-multi-disk-buffering
«npages nbuffers) (array-of-buffers size-of-each-buffer) &body body)

"npages and nbuffers are inputs, array-of-buffers and size-of-each-buffer are outputs"
'(let «,array-of-buffers (make-array ,nbuffers»

(,size-of-each-buffer (* ,npages 288.»)
(unwind-protect

(progn (loop for .idx. below ,nbuffers
as .buffer. = (allocate-resource 'si:disk-array

(+ ,size-of-each-buffer 288.»
do (setf (aref ,array-of-buffers .idx.) .buffer.)
(si:wire-structure .buffer.»

,@body)
(loop for .idx. below ,nbuffers

as .buffer. = (aref ,array-of-buffers .idx.)
do (when (si:structure-wired-p .buffer.)

(si:unwire-structure .buffer.»
(deallocate-resource 'si:disk-array .buffer.»»)

The function play-disk-file is the workhorse. There are many "if we are fast
enough" clauses in this example. As long as there is not much other activity
(especially paging activity) we usually are fast enough.

(defun play-disk-file (pathname)
(setq pathname (fs:merge-pathnames pathname "FEP:>*.mus.newest"»
;; get the FEP file opened.
(with-open-file (file pathname :direction :block

:if-exists :overwrite
:if-does-not-exist :error)

,. These numbers were picked after much experimentation and tuning.
(lett «npages 40.) (nbuffers 8»

(audio:with-audio ()
(with-multi-disk-buffering (npages nbuffers) (buffers buffer-size)

;; allocate a flag for each buffer for synchronization.
(lett «flags (audio:reserve-audio-flags nbuffers»

(start (audio:audio-index»)
;; build the audio program. Push each buffer as an array of
;; samples and then cause the flag associated with the
;; buffer to be zeroed.
(loop for buffer below nbuffers

do (audio:push-array-of-audio-samples (aref buffers buffer)
o buffer-size) (audio:push-audio-zero-flag
(+ flags buffer»)

346

Programming the User Interface March 1985

;; Loop back to the beginning. To play new data (if we are
;; fast enough, there Iwi111 be new data in the buffers).
(audio:push-audio-jump start)
;; n-queued is the number of buffers filled with valid data
" that the microcode can use. (The microcode will use
" all of them, but if we are fast enough we can keep them full.)
;; We fill up all the buffers and then start the audio facility.
" This is done by an interaction with need-to-start and n-queued.
;; (There is also provision for small files.) When all the buffers
;; are queued, we need to wait for the microcode to finish
" the next one before we can do disk dma into it.
(loop with n-queued = 0

with need-to-start = t
with n-fi1e-b10cks = (sys:cei1ing (send file :length) 1152.)
with current-fi1e-b10ck = 0
initially (format t "-&-F seconds-~"

(II (* n-fi1e-b10cks 288.) audio:*samp1e-rate*»
as b10cks-this-whack =

;; This is the number of blocks to do this time
;; around. It is at most the number of pages of
"buffering. It is also at most the number of
" blocks remaining in the file.
(min npages (- n-fi1e-b10cks current-fi1e-b10ck»

for buffer-number =
;; This is the current buffer number we are going
;; to try to fill. It is gets incremented modulo
;; the number of buffers.
o then (\ (1+ buffer-number) nbuffers)

as flag-index = (+ flags buffer-number)
do " If all the buffers are queued, or if the end of

;; the file has been reached, wait for the
;; microcode to finish the buffer and then count it
" as dequeued.
(when (or (= n-queued nbuffers) (zerop b10cks-this-whack»

(audio:wait-for-audio-f1ag flag-index "Play disk file")
(decf n-queued»

;; If we have some blocks to queue, make sure the
;; flag for this buffer is reset, read in the
;; blocks from the FEP file, increment the block
;; pointer into the file, and count another buffer
" as queued.
(when (not (zerop b1ocks-this-whack»

(audio:reset-audio-f1ag flag-index)
(send file :b1ock-in current-fi1e-b10ck b1ocks-this-whack

(aref buffers buffer-number»
(incf current-fi1e-b10ck b1ocks-this-whack)
(i ncf n-queued»

347

March 1985 Digital Audio Facilities

;; If the audio facility hasn't been started and
;; all buffers are filled, start the audio facility
" (and remember we did start it).
(when (and need-to-start

unti 1

(or (= n-queued nbuffers)
(~ current-file-block n-file-blocks»)

(audio:audio-start start)
(setq need-to-start nil»

;; We are finished when nothing is queued and we are
;; at the end of the file.
(and (zerop n-queued)

(~ current-file-block n-file-blocks»»»»)

35.7 Polyphony Example

This is a simple muse. It uses roughly the same multibuffering strategy as the disk
examplet so that portion will not be commented as heavily. (See the section "Playing
Large Pieces Example" t page 344.) The muse muses some number of voices (user
specified) between 1 and 6. All voices start at DO (C). Each step (approximately
every 114 second) causes each voice to wander randomly between 2 diatonic tones
below the previous value and 2 diatonic· tones above the previous value.

;;; Figure out how large wave tables are in this release.

(defconst *samples-per-polyphonic-wave-table*
(expt 2 (byte-size sys:%%audio-increment-integer»)

;; This is the wave-array for the muse.
;; It is big enough to ensure that there will be at least
;; *samples-per-polyphonic-wave-table* consecutive wired words.

(defvar *muse-wave-array*
(make-array (+ *samples-per-polyphonic-wave-table* sys:page-size -1)

:initial-value 0 :area audio:audio-area»

348

Programming the User Interface March 1985

(defun polyphonic-muse (&optional (n-voices 4) &aux address wired)
(check-arg n-voices (and (fixp n-voices)

(~ 1 n-voices audio:*number-of-polyphonic-voices*»
"an integer between 1 and 6")

(audio:with-audio ()
(unwind-protect

(let «offset-to-page
;; This is how one gets to the number of Qs
;; to the beginning of a page boundary
(ldb sys:XXvma-word-offset

(- sys:page-size
(ldb sys:XXvma-word-offset
(Xpointer (locf (aref *muse-wave-array* 0»»»»

;;; Wire words of the wave table, starting at
", the location computed above.
(setq address (locf (aref *muse-wave-array* offset-to-page»)
(si:wire-consecutive-words

address ;where
samples-per-polyphonic-wave-table)

(setq wired t)
;how many, one per word.
;Set a reminder to unwire it .••

March 1985

349

Digital Audio Facilities

;; Set up the muse wave array for a 1/6 (minus a bit) amplitude
" sinewave (sawtooth doesn't seem to sound good here). 1/6
;; allows all six voices to proceed without overflow. The
" "minus a bit" avoids clipping at 1.0.
(loop for index below *samples-per-polyphonic-wave-table~

do (setf (aref *muse-wave-array* (+ index offset-to-page»
(audio:float-polyphonic-wave-table-entry

(II (sin (II (* 2.0 si:pi index)
samples-per-polyphonic-wave-table» 6.2»»

" Initialize each voice to a reasonable value. It is essential
;; that each voice gets a proper wave-array pointer and
;; increment value. An increment value of 0 will cause the
" pointer never to be incremented. (This isn't strictly true,
" since the voice number is stored in the low 3 bits, but this
;; advances the pointer very slowly.)
(let «start (audio:audio-index»)

(loop for voice below audio:*number-of-polyphonic-voices*
do

(audio:push-audio-load-voice voice *muse-wave-array* offset-to-page 0»
(audio:push-audio-stop)
(audio:audio-start start)
;; put the audio index back to the start
(setf (audio:audio-index) start»

(loop with nbuffers = 4
with n-queued = 0
with need-to-start = t
with flags = (audio:reserve-audio-flags nbuffers)
with start = (audio:audio-index)
with chords-per-whack =

;;Take the room remaining, divide by the level of
;; buffering and then divide by the sum of [2 locations
" per voice for the push-audio-load-voice command, one
;; for the push-audio-polyphony command, and one for a
;; possible flag or jump].
(II (audio:audio-room) nbuffers (+ (* n-voices 2) 1 1»

with half-tone-offsets =
" 0 (and the multiples of 12) are DO. The other
;; numbers are offsets (from 0) to consecutive notes in
;; the diatonic scale.
'(-25. -24. -22. -20. -19. -17. -15. -13.

-12. -10. -OS. -07. -05. -03. -Ole
000. +02. +04. +05. +07. +09. +11.
+12. +14. +16. +17. +19. +21. +23.
+24. +26. +2S. +29. +31. +33. +35.>

with half-tone-offsets-length = (length half-tone-offsets)

350

Programming the User Interface March 1985

with voice-indices =
;; A list, one element for each voice, starting at middle DO.
(make-list n-voices

:initia1-va1ue (find-position-in-1ist 000. ha1f-tone-offsets»
for buffer-number = 0 then (\ (1+ buffer-number) nbuffers)
until (kbd-tyi-no-hang) ; Stop when user hits a key
do

(when (~ n-queued nbuffers)
;; this also resets the flag
(audio:wait-for-audio-f1ag (+ flags buffer-number) "Huse")
(decf n-queued»

;; If this is buffer zero, make sure we are back to the start.
(when (zerop buffer-number)

(setf (audio:audio-index) start»
;; setup the chords for this buffer
(loop repeat chords-per-whack

do ;; update each voice
(loop for voice-indices-scan on voice-indices

as old-index = (car voice-indices-scan)
as new-index =

(let «index (+ old-index (random 5) -2»)
;; clip at the boundaries of the list
(cond «< index 0) 1)

«~ index half-tone-offsets-length)
(- half-tone-offsets-1ength 2»

(T index»)
do (setf (car voice-indices-scan) new-index»

;; And queue the new values to polyphony facility
(loop for index in voice-indices

for voice-number upfrom 0
as ha1f-tone-offset = (nth index half-tone-offsets)
as octave-offset = (II ha1f-tone-offset 12.0)
as frequency-factor = (expt 2.0 octave-offset)
as frequency = (* 256.0 frequency-factor)
do (audio:push-audio-10ad-voice

voice-number *muse-wave-array* offset-to-page
(audio:frequency-po1yphonic-increment frequency»)

;; Do polyphony for 1/4 second
(audio:push-audio-polyphony (sys:round audio:*sample-rate* 4»)

" synchronize this buffer
(audio:push-audio-zero-flag (+ flags buffer-number»
(incf n-queued)
(when (and (~ n-queued nbuffers) need-to-start)

(audio:push-audio-jump start)
(audio:audio-start start)
(setq need-to-start nil»»

(when wired
(si:unwire-words address *samples-per-polyphonic-wave-tab1e*»»)

351

March 1985 Dates and Times

PART VI.

Dates and Times

352

Programming the Ussr Interface March 1985

353

March 1985 Dates and Times

36. Representation of Dates and Times

The time package contains a set of functions for manipulating dates and times:
finding the current time, reading and printing dates and times, converting between
formats, and other miscellany regarding peculiarities of the calendar system. It also
includes functions for accessing the Lisp Machine's microsecond timer.

Times are represented in two different formats by the functions in the time
package. One way is to represent a time by many numbers, indicating a year, a
month, a date, an hour, a minute, and a second (plus, sometimes, a day of the week
and time zone). The year is relative to 1900 (that is, if it is 1984, the year value
would be 84); however, the functions that take a year as an argument will accept
either form. The month is 1 for January, 2 for February, and so on. The date is 1
for the first day of a month. The hour is a number from 0 to 23. The minute and
second are numbers from 0 to 59. Days of the week are flXllums, where 0 means
Monday, 1 means Tuesday, and so on. A time zone is specified as the number of
hours west of GMT; thus in Massachusetts the time zone is 5. Any adjustment for
daylight saving time is separate from this.

This "decoded" format is convenient for printing out times in a readable notation,
but it is inconvenient for programs to make sense of these numbers, and pass them
around as arguments (since there are so many of them). So there is a second
representation, called Universal Time, which measures a time as the number of
seconds since January 1, 1900, at midnight GMT. This "encoded" format is easy to
deal with inside programs, although it doesn't make much sense to look at (it looks
like a huge integer). So both formats are provided; there are functions to convert
between the two formats; and many functions exist in two forms, one for each
format.

The Lisp Machine hardware includes a timer that counts once every microsecond. It
is controlled by a crystal and so is fairly accurate. The absolute value of this timer
doesn't mean anything useful, since it is initialized randomly; what you do with the
timer is to read it at the beginning and end of an interval, and subtract the two
values to get the length of the interval in microseconds. These relative times allow
you to time intervals of up to an hour (32 bits) with microsecond accuracy.

The Lisp Machine keeps track of the time of day by maintaining a "timebase", using
the microsecond clock to count off the seconds. When the machine first comes up,
the timebase is initialized by querying hosts on the local network to find out the
current time.

A similar timer counts in BOths of a second rather than microseconds; it is useful for
measuring intervals of a few seconds or minutes (or hours, which are longer than
the microsecond timer's range) with less accuracy. Periodic housekeeping functions
of the system are scheduled based on this timer. .

354

Programming the User Interface March 1985

355

March 1985 Dates and Times

37. Getting and Setting the Time

time:get-time Function
Get the current time, in decoded form. Return seconds, minutes, hours,
date, month, year, day-of-the-week, and daylight-savings-time-p, with the
same meanings as time:decode-universal-time.

time:get-universal-time Function
Returns the current time, in Universal Time form.

time:set-local-time &optional new-time Function
Set the local time to new-time. If new-time is supplied, it must be either a
universal time or a suitable argument to time:parse. If it is not supplied, or
if there is an error parsing the argument, you will be prompted for the new
time. Note that you will not normally need to call this function; it is mainly
useful when the timebase becomes unreliable for one reason or another.

37.1 The 3600-family Calendar Clock

Machines in the 3600 family have a calendar clock that operates independently of
the other Lisp Machine timers. When you cold boot and the machine fails to get
the time from the network, it asks you to type in the time. If the calendar clock
has been set, it uses the calendar clock reading as the default for the time you
specify. If the calendar clock has not been set, it offers to set it to the time you
type in. See the function time:initialize-timebase, page 369.

You can also set the calendar clock yourself using time:set-calendar-clock and read
it using time:read-calendar-clock

time:set-calendar-clock new-time Function
Sets the calendar clock to new-time, which must be either a universal time or
a suitable argument to time:parse. Returns t if the calendar clock is set
successfully, otherwise nil.

time:read-calendar-clock &optional even-if-bad Function
Attempts to read the calendar clock. If the attempt is unsuccessful, returns
nil. If the attempt is successful and the time appears to be valid, returns
the time in universal time form. If the attempt is successful but the time
appears to be invalid, takes action depending on the value of even-if-bad:

nil or unspecified

Not nil

Returns nil

Attempts to convert the internal format to universal

356

Programming the User Interface March 1985

time. If the conversion is successful, returns the time
in universal time form. Otherwise, signals an error.

37.2 Elapsed Time in60ths of a Second

Rather than calendrical date/times, the following functions deal with elapsed time in
60ths of a second. These times are used for many internal purposes where the idea
is to measure a small interval accurately, not to depend on the time of day or day of
month.

time Function
Returns a number that increases by 1 every 1160 of a second, and "wraps
around" less than once a day. Use the time-lessp and time-difference
functions to avoid getting in trouble due to the wraparound. time is
completely incompatible with the Maclisp function of the same name.

time-lessp timel time2 Function
t if timel is earlier than time2, compensating for wraparound, otherwise nil.
Also works for time:flxnum-microsecond-time values.

time-difference timel time2 Function
Assuming timel is later than time2, returns the number of 60ths of a second
difference between them, compensating for wraparound. Also works for
time:rlXllum-microsecond-time values.

time-increment time increment Function
Adds increment to time and returns the resulting time value, compensating
for wraparound. time should be a value of time, as returned by the time
function, and increment should be an amount of time expressed as a flXIlum
in units of 60ths of a second. Also works for
time:rlXllum-microsecond-time values.

time-elapsed-p increment initial-time &optional <final-time (time» Function
Returns t if at least increment 60ths of a second have elapsed between
initial-time and final-time. Otherwise, returns nil.

initial-time and final-time should be time values as returned by the time
function. final-time defaults to the result of (time).

Example:

(defun process-sleep (interval &optional (whostate "Sleep"»
(process-wait whostate #'time-elapsed-p interval (time»)

357

March 1985 Dates and Times

37.3 Elapsed Time in Microseconds

time:microsecond-time Function
Return the value of the microsecond timer, as a bignum. The values
returned by this function "wrap around" about once per hour.

time:flxnum-microsecond-time Function
Return the value of the low 31 bits of the microsecond timer, as a fIXnum.
This is like time:microsecond-time, with the advantage that it returns a
value in the same format as the time function, except in microseconds rather
than 60ths of a second. This means that you can compare fIXnum­
microsecond-times with time-Iessp and time-difference.
time:rlXDum-microsecond-time is also a bit faster, but has the
disadvantage that since you only see the low bits of the clock, the value can
"wrap around" more quickly (about every half hour).

358

Programming the User Interface March 1985

359

March 1985 Dates and Times

38. Printing Dates and Times

The functions in this section create printed representations of times and dates in
various formats, and send the characters to a stream. To any of these functions,
you may pass nil as the stream parameter, and the function will return a string
containing the printed representation of the time, instead of printing the characters
to any stream.

time:print-current-time &optional (stream standard-output) Function
Print the current time, formatted as in 11/25/83 14:50:02, to the specified
stream.

time:print-time seconds minutes hours day month year &optional Function
(stream standard-output)

Print the specified time, formatted as in 11/25/83 14:50:02, to the specified
stream.

time:print-universal-time ut &optional (stream standard-output) Function
timezone

Print the specified time, formatted as in 11/25/83 14:50:02, to the specified
stream.

time:print-current-date &optional (stream standard-output) Function
Print the current time, formatted as in
Friday the twenty-fifth of November, 1983; 3:50:41 pm, to the specified
stream.

time:print-date seconds minutes hours day month year Function
day-of-the-week &optional (stream
standard-output)

Print the specified time, formatted as in
Friday the twenty-fifth of November, 1983; 3:50:41 pm, to the specified
stream.

time:print-universal-date ut &optional (stream standard-output) Function
timezone

Print the specified time, formatted as in
Friday the twenty-fifth of November, 1983; 3:50:41 pm, to the specified
stream.

time:print-brief-universal-time ut &optional (stream Function
standard-output). (ref-ut
(time:get-universal-time »

This is like time:print-universal-time except that it omits seconds and only

360

Programming the User Interface March 1985

prints those parts of ut that differ from re{-ut, a universal time that defaults
to the current time. Thus the output will be in one, of the following three
forms:

02: 59 ; the same day
3/4 14: 01 ; a different day in the same year
8117/74 15:30 ;a different year

format accepts some directives for printing dates and times.

361

March 1985 Dates and Times

39. Reading Dates and Times

These functions accept most reasonable printed representations of date and time and
convert them to the standard internal forms. The following are representative
formats that are accepted by the parser:

"Harch 15, 1960" "15 Harch 1960" "31/151/60" "31/151/1960"
"3-15-60" "3-15" "15-Harch-60" "15-Har-60" "Harch-15-60"
"1960-3-15" "1960-Harch-15" "1960-Har-15"
"1130." "11:30" "11:30:17" "11:30 pm" "11:30 am" "1130" "113000"
"11.30" "11.30.00" "11.3" "11 pm" "12 noon"
"midnight" "m" "Friday, March 15, 1980" "6:00 gmt" "3:00 pdt"
"15 Harch 60" "15 Harch 60 seconds"
"fifteen Harch 60" "the fifteenth of Harch, 1960;"
"one minute after Harch 3, 1960"
"two days after Harch 3, 1960"
"Three minutes after 23:59:59 Dec 31, 1959"
"now" "today" "yesterday" "two days after tomorrow"
"one day before yesterday" "the day after tomorrow"
"five days ago"

The parsing functions accept date strings in ISO standard format. These strings are
of the form "yyyy-mm-dd", where:

yyyy

mm

dd

Four digits representing the year

The name of the month, an abbreviation for the month, or one or
two digits representing the month

One or two digits representing the day

Following are some restrictions on strings to be parsed:

• You cannot represent any year before 1900.

• A four-digit number alone is interpreted as a time of day, not a year. For
example, "1954" is the same as "19:54:00" or "7:54 pm", not the year 1954.

• The parser does not recognize dates in European format. For example,
~'31141185" or "3-4-85" is always the same as "Harch 4, 1985", never
"April 3, 1985". A string like "151131185" is an error. In such strings, the
first integer is always parsed as the month and the second integer as the day.

time:parse string &optional (start 0) end <fu,turep t) base-time Function
must-have-time date-must-have-year
time-must-have-second (day-must-be-valid t)

Interpret string as a date and/or time, and return seconds, minutes, hours,

362

Programming the User Interface March 1985

date, month, year, day-of-the-week, daylight-savings-time-p, and relative-po
start and end delimit a substring of the string; if end is nil, the end of the
string is used. must-have-time means that string must not be empty.
date-must-have-year means that a year must be explicitly specified.
time-must-have-second means that the second must be specified.
day-must-be-valid means that if a day of the week is given, then it must
actually be the day that corresponds to the date. base-time provides the
defaults for unspecified components; if it is nil, the current time is used.
futurep means that the time should be interpreted as being in the future; for
example, if the base time is 5:00 and the string refers to the time 3:00, that
means the next day if futurep is non-nil, but it means two hours ago if
futurep is nil. The relative-p returned value is t if the string included a
relative part, such as "one minute after" or "two days before" or "tomorrow"
or "now"; otherwise, it is nil.

time:parse-universal-time string &optional (start 0) end (futurep t) Function
base-time must-have-time date-must-have-year
time-must-have-second (day-must-be-valid t)

This is the same as time:parse except that it returns one integer,
representing the time in Universal Time, and the relative-p value. It also
returns a third value, which is t if hours, minutes, or seconds were specified
by string, or nil if they were not.

time:parse-universal-time-relative date-spec reference-date-spec Function
&optional (future-p t)

Like time:parse-universaI-time, except that date-spec is parsed relative to
reference-date-spec. The returned values are the same as those of
time:parse-universal-time.

date-spec is a string suitable as the first argument to
time:parse-universal-time. reference-date-spec is a universal-time integer or
a string that can be parsed as an unambiguous time. If future-p is nil, an
ambiguous date-spec is interpreted as being in the past relative to
reference-date-spec; otherwise, it is interpreted as being in the future. The
default for future-p is t.

For example:

(time:parse-universal-time-relative "5 pm" "today")

returns the same value when evaluated anytime today, whether or not the
current time is before or after 5 pm.

time:parse-present-based-universal-time time-being-parsed Function
Like time:parse-universal-time, except that missing components in
time-being-parsed are defaulted to the beginning of the smallest un supplied
unit of time. The returned values are the same as those of
time:parse-universaI-time. time-being-parsed is a string suitable as the
first argument to time:parse-universal-time.

363

March 1985 Dates and Times

For example, "5 pm" is parsed as 5 pm on the current day, whether the
current time is before or after 5 pm. "Thursday" is parsed as Thursday of
the current week, whether today is Wednesday or Friday. "1 June" is parsed
as June 1 of the current year, whether the date is before or after June 1.

364

Programming the User Interface March 1985

365

March 1985 Dates and Times

40. Reading and Printing Time Intervals

Several functions read and print time intervals. They convert between strings of the
form "3 minutes 23 seconds" and integers representing numbers of seconds.

time:print-intervaI-or-never interval &optional (stream Function
standard-output)

Prints the representation of interval as a time interval onto stream. If
interval is nil, it prints "Never". interval should be a nonnegative integer, or
nil.

time:parse-intervaI-or-never string &optional start end Function
string is the character-string representation of an interval of time. start and
end specify a substring of string to be parsed; they default to the beginning
and end of string, respectively. The function returns an integer if string
represented an interval, or nil if string represented "never". If string is
anything else, an error occurs. Examples of acceptable strings:

"4 seconds"
"5 mins 23 sees"
"never"
""

"4 sees"
"5 m 23 s"

"4 s"
"23 SECONDS 5 ti"

Hnot ever" HnoN
"3 yrs 1 week 1 hr 2 mins 1 sec"

Note that several abbreviations are understood, the components can be in any
order, and case (upper versus lower) is ignored. Also, "months" is not
acceptable, since months vary in length. This function accepts anything that
time:print-intervaI-or-never produces, and it returns the same integer (or
nil).

time:read-intervaI-or-never &optional (stream standard-input)
Reads a line of input from stream (using readline) and calls
time:parse-intervaI-or-never on the resulting string.

Function

366

Programming the User Interface March 1985

367

March 1985 Dates and Times

41. Time Conversions

time:decode-universal-time universal-time &optional timezone Function
Convert universal-time into its decoded representation. The following values
are returned: seconds, minutes, hours, date, month, year, day-of-the-week,
daylight-savings-time-p. daylight-savings-time-p tells you whether or not
daylight savings time is in effect; if so, the value of hour has been adjusted
accordingly. You can specify timezone explicitly if you want to know the
equivalent representation for this time in other parts of the world.

time:encode-universal-time seconds minutes hours day month year Function
&optional timezone

Convert the decoded time into Universal Time format, and return the
Universal Time as an integer. If you do not specify timezone, it defaults to
the current time zone adjusted for daylight saving time; if you provide it
explicitly, it is not adjusted for daylight saving time. year may be absolute, or
relative to 1900 (that is, 84 and 1984 both work).

time:*timezone* Variable
The value of time:*timezone* is the time zone in which this Lisp Machine
resides, expressed in terms of the number of hours west of GMT this time
zone is. This value does not change to reflect daylight saving time; it tells
you about standard time in your part of the world.

368

Programming the User Interface March 1985

369

March· 1985 Dates and Times

42. Internal Time Functions

These functions provide support for functions that deal with dates and time. Some
user programs may need to call them directly, so they are documented here.

For more information on functions that deal with dates and times:

See the section "Getting and Setting the Time", page 355.
See the section "Elapsed Time in 60ths of a Second", page 356.
See the section "Elapsed Time in Microseconds", page 357.
See the section "Printing Dates and Times", page 359.
See the section "Reading Dates and Times", page 361.
See the section "Reading and Printing Time Intervals", page 365.
See the section "Time Conversions", page 367.

time:initialize-timebase &optional ut (use-network t) Function
Initializes the timebase. If ut, a universal-time integer, is supplied, uses ut as
the current time. If ut is nil or unspecified and if use-network is not nil,
queries local network hosts to find out the current time. (use-network is t by
default.) If it cannot get the time from the network, or if ut and
use-network are both nil, prompts the user for a string to parse as the
current time. On machines in the 3600 family, if the calendar clock has
been set, uses the calendar clock reading as the default time for the user to
specify. If the calendar clock has not been set, offers to set it to the time
that the user specifies.

This is called. automatically during system initialization. You may want to
call it yourself to correct the time if it appears to be inaccurate or downright
wrong. See the function time:set-Iocal-time, page 355.

time:daylight-savings-time-p hours day month year Function
Return t if daylight saving time is in effect for the specified hour; otherwise,
return nil. year may be absolute, or relative to 1900 (that is, 84 and 1984
both work).

time:daylight-savings-p Function
Return t if daylight saving time is currently in effect; otherwise, return nil.

time:month-Iength month year Function
Return the number of days in the specified. month; you must supply a year in
case the month is February (which has a different length during leap years).
year may be absolute, or relative to 1900 (that is, 84 and 1984 both work).

time:leap-year-p year Function
Return t if year is a leap year; otherwise return nil. year may be absolute,
or relative to 1900 (that is, 84 and 1984 both work).

370

Programming the User Interface March 1985

time:verify-date day month year day-of-the-week Function
If the day of the week of the date specified by day, month, and year is the
same as day-of-the-week, return nil; otherwise, return a string that contains
a suitable error message. year may be absolute, or relative to 1900 (that is,
84 and 1984 both work).

time:day-of-the-week-string day-of-the-week &optional (mode Function
':long)

Return a string representing the day of the week. As usual, 0 means
Monday, 1 means Tuesday, and so on. Possible values of mode are:

:short

:long

Return a three-letter abbreviation, such as ''Mon'', "Tue", and so
on.

Return the full English name, such as "Monday", "Tuesday",
and so on. This is the default.

:medium Same as :short, but use "Tues" and "Tburs".

:french Return the French name, such as "Lundi", "Mardi", and so on.

:german Return the German name, such as "Montag", "Dienstag" , and
so on.

:italian Return the Italian name, such as "Lunedi", "Martedi", and so
on.

time:month-string month &optional (mode ':long) Function
Return a string representing the month of the year. As usual, 1 means
January, 2 means February, and so on. Possible values of mode are:

:short

:long

Return a three-letter abbreviation, such as "Jan", "Feb", and so
on.

Return the full English name, such as "January", "February",
and so on. This is the default.

:medium Same as :short, but use "Sept", "Novem", and "Decem".

:french Return the French name, such as "Janvier", "Fevrier", and so
on.

:roman Return the Roman numeral for month (this convention is used in
Europe).

:german Return the German name, such as "Januar", "Februar", and so
on.

:italian Return the Italian name, such as "Gennaio", "Febbraio", and so
on.

371

March 1985 Dates and Times

time:timezone-string &optional (timezone time:*timezone*) Function
(daylight-savings-p (time:dayllght-savings-p»

Return the three-letter abbreviation for this time zone. For example, if
timezone is 5, then either "EST" (Eastern Standard Time) or "CDT" (Central
Daylight Time) will be used, depending on daylight-savings-p.

372

Programming the User Interface March 1985

373

March 1985 Zwei Internals

PART VII.

Zwei Internals

374

Programming the User Interface March 1985

375

March 1985 Zwei Internals

43. Introduction to Zwei Internals

Zmacs, the Lisp machine editor, is built on a large and powerful system of text­
manipulation functions and data structures, called Zwei.

Zwei is not an editor itself, but rather a system on which other text editors are
implemented. For example, in addition to Zmacs, the Zmail mail reading system also
uses Zwei functions to allow editing of a mail message as it is being composed or
after it has been received. The subsystems that are established upon Zwei are:

• Zmacs, the editor that manipulates text in files

• Dired, the editor that manipulates directories represented as text in files

• Zmail, the editor that manipulates text in mailboxes

• Converse, the editor that manipulates text in messages

Since these subsystems share Zwei in the dynamically linked Lisp environment,
many of the commands available as Zmacs commands are available in other editing
contexts as well.

376

Programming the User Interface March 1985

377

March 1985 Zwei Internals

44. Stream Facility for Editor Buffers

zwei:open-editor-stream opens a stream to an editor butTer; it is analogous to
open for files. zwei:with-editor-stream also opens a stream to an editor butTer; it
is analogous to with-open-file for files.

44.1 The zwei :with-editor-stream Macro

zwei:with-editor-stream (name options) body... Macro
zwei:with-editor-stream opens a bidirectional stream called name to a
butTer, which is designated in one of the following ways:

an interval
a butTer name
a Zwei window
a pathname

It takes the same keyword options as zwei:open-editor-stream. See the
section "Keyword Options", page 378. On exit, it sends a :force-redisplay
message to the stream, which causes the editor to do any necessary redisplay.

44.2 The zwei :open-editor-stream Function

zwei:open-editor-stream options Function
zwei:open-editor-stream is used by zwei:with-editor-stream. You might
sometimes need to call it directly for doing operations that need not be in the
scope of a "with" form (for the same reasons that you would use open
instead of with-open-files for file 110). For example, you would use this in
conjunction with with-open-stream-case for appropriate error signalling.

It takes the same keyword options as zwei:with-editor-stream. See the
section "Keyword Options", page 378.

You can send a :force-redisplay message at any time while the stream is
open.

378

Programming the User Interface March 1985

44.3 Keyword Options

zwei:with-editor-stream and zwei:open-editor-stream both recognize the same
set of keyword options. Some of the options are mutually exclusive and some are
interdependent.

You specify where to find the text by using one of the following keywords, whichever
is appropriate to the situation. The keywords appear here in priority order. When
the options specify several of these, one from the top of the list overrides one from
further down in the list, regardless of what order the keywords appear in the
options list.

:interval
:buffer-name
:pathname
:window
:start

The options refer to an object called a bp. This is a Zwei data structure for
representing a particular position in a buffer.

Option

:buffer-name

:create-p

: defaults

Values and meaning

The full name of a buffer to use for the stream.
(zwei:with-editor-stream

(faa ':buffer-name (send zwei:*interval* ':name»
...)

The buffer does not need to exist (see:create-p). The following
example creates a Zmacs buffer named temp and opens the
stream foo to it.

(zwei:with-editor-stream (faa HtempH)
...)

Specifies what to do when the buffer does not exist. This applies
only in conjunction with :buffer-name or :pathname with
:load-p.
Value Meaning

:ask

:error

t

:warn

Queries the user before creating the buffer.

Signals an error and provides proceed types for
creating it or supplying an alternate.

Creates the buffer.

Notifies the user that a buffer is being created
(the default).

Specifies the pathname defaults against which a :pathname
option would be merged. These are necessary in case reprompting
needs to occur. The default is nil, meaning to use the default
defaults. This option applies only in conjunction with :pathname.

March 1985

:end

:hack-fonts

: interval

:kill

:load-p

:no-redisplay

:ordered-p

379

Zwe; Internals

Specifies the conditions for terminating the stream (the "end of
file" condition).
Value

bp

:end

:mark

:point

Meaning

Stops when this buffer bp is reached.

Stops at the end of the buffer (the default).
This applies only if :start was also a bp.

Stops when it reaches the mark. This option
requires that you use the :window option as
well.

Stops when it reaches point. This option
requires that you use the :window option as
well.

Specifies how to treat font shifts in the buffer.
Value Meaning

nil Ignores font shifts (the default).

t Provides full font support. Encodes font shifts
on both input and output using epsilons, as
would go to a file.

Specifies a Zwei interval to use for the stream.

Specifies what to do With the buffer before using it as a stream.
Value Meaning

nil No action (the default)

t Deletes all the text currently in the designated
part of the buffer.

Specifies whether to read the file specified by :pathname into the
editor before using the buffer as a stream. (This is analogous to
Find File in Zmacs.) This works only from within Zmacs.
Value Meaning

nil No action (the default)

t Loads the file into the editor.

Suppresses the redisplay of any windows associated with the
interval being written into.

(zwei:with-editor-stream
(standard-output :buffer-name "Herald" :no-redisplay t)
(print-herald»

States whether :start and :end are guaranteed to be in forward
order. The default is nil. This applies only when :start and
:end are bps or :point and :mark.

380

Programming the User Interface March 1985

:pathname

:start

:window

Specifies a pathname to use for the stream. This can be a
pathname object or any file spec that can be coerced to a
pathname by fs:parse-pathname.

Specifies where to start the stream with respect to the buffer
contents.
Value

:append

:beginning

bp

:end

:mark

:point

: region

Meaning

Starts at the end of the buffer. (Same as
:end.)

Starts at the beginning of the buffer.

Starts with this bp.

Starts at the end of the buffer (the default).
(Same as :append)

Starts at the mark, which does not move as a
result. This requires a Zmacs window.

Starts at point, which does not move as a
result. This requires that you use the
:window option as well.

Starts at point and ends at mark (or vice versa,
depending on the ordering). This requires that
you use the :window option as well. It ignores
any :end in this case.

Specifies a Zmacs window as the stream source.

zwei:with-editor-stream does not currently interlock to prevent simultaneous
access to a single buffer by multiple processes. Neither does anything else. Trying
to access the same buffer with several processes simultaneously is not guaranteed to
~~ .

381

March 1985 Zwei Internals

45. Making Standalone Editor Windows

You' can create an editor window with the following properties:

• Should be standalone (have its own process).
• Need not have the buffer structure of Zmacs.
• Need not even have minibuffers. If I must have one, I want the pop-up style.
• Needs a special comtab. That comtab will have commands that make the

window do something worthwhile.

To create such a window, follow this procedure:

Start with zwei:standalone-editor-frame. Send it an :edit message to make it .
edit. It does not have its own process by default; you can mix tv:process-mixin
with it and make that process send the :edit message if you want it to have its
own process.

Two other useful messages:

:set-interval-string
Inserts a string in the editor.

:interval-string Returns a string to the caller when :edit returns.

For providing a special comtab, you can initialize the instance variable
zwei:*comtab· by using the :*comtab* keyword in the init plist.

You can exit from this kind of editor by using END.

382

Programming the User Interface March 1985

March 1985

"

6

383

Index

Index

" "
The -General usr Form of Item 210

#\backspace 108
#\retum 108
#\tab 108

6 6
Examples of Specifications of Panes and Constraints Before Release

6.0 196
Specifying Panes and Constraints Before Release 6.0 188

A

Elapsed Time In 60ths of a Second 356

Messages
Messages

, tv:
Messages

Keyboard as random
Deexposed typeout

:error deexposed typeout
:expose deexposed typeout
:normal deexposed typeout

:notlfy deexposed typeout
:permlt deexposed typeout

Associating

The Selected Window and the Selected

:keyboard-process option for tv:
:process-name option for tv:

:typeahead option for tv:
tv:

tv:
tv:
tv:

A
[Abort] 247, 251
About Character Width and Cursor Motion 114
About Window Selection 96
abstract-dynamlc-Hem-list-mlxln flavor 235
Accepted by tv:menu 299
access device 160
action 86
action 82
action 82
action 82
action 82
action 82
Actions with Mouse-sensitive Items 280

A

:actlvate-p Init option for tv:essentlal-wlndow 107
:actlvate-p inlt option for tv:menu 295
Activate window 295
:actlvatlon option 31
Active inferiors of windows 76, 79, 86
Active windows 76
Activities and Window Selection 94
Activity 94
:actlvtty command processor argument type 48
:add-asynchronous-character method of

sl:lnteractlve-stream 17
add-functlon-key 135
add-functlon-key 135
add-functlon-key 135
add-functlon-key function 135
:8dd-hlghllghted-Hem method of

tv:menu-hlghllghtlng-mlxln 243
:add-hlghllghted-value method of

tv:menu-hlghllghtlng-mlxln 243
Adding an Item to the Create Column 239
Adding an Item to the Programs Column 239
Adding an Item to the System Menu 238
Adding a Type Decoding Method 269
Adding a Type Keyword Property 269
Adding Item to menu 235
add-select-key function 137
add-to-system-menu-create-menu function 239
add-to-system-menu-programs-column

384

Programming the User Interface

tv:

Set
Functions for

tv:
tv:

And
And-wlth-complement

Excluslve-or
Inclusive-or
Set all bits

tv:
tv:
tv:

Mouse-sensitive
Mouse-sensitive

:actlvlty command processor
:boolean command processor

:dale command processor
:documentatlon-toplc command processor

:enumeratlon command processor
:font command processor
:host command processor

:Integer command processor
:make-system-verslon command processor

. :number command processor
:package command processor

:pathname command processor
:prlnter command processor
:strlng command processor

:system command processor
Command Processor.

Bit-save
Command

Screen

Une Item
Command

Drawing pictures onto
Pixels and Bit-save

Primitives for Drawing Onto
Screen

Interactive-stream Operations for

March 1985

function 239
add-typeout-Item-type special form 282
:adjusl-geometry-for-new-varlables method at

tv:choose-varlable-values-wlndow 276
:allas-for-selected-wlndows message 96
all bits alu function 119
Altering User Option Variables 267
alu-andca variable 119
alu-and variable 120
alu function 120
alu function 119
alu function 119
alu function 119
alu function 119
Alu functions 108. 118. 119
alu-Ior variable 119
alu-seta variable 119
alu-xor variable 119. 124
Amplitude envelopes 324
And-wlth-complement alu function 119
:antlcycllc boundary condition for

:draw-cublc-spllne 125
:any-tyl method of sl:lnteractlve-stream 11
:any-tyl method of tv:stream-mlxln 134
:any-tyl-no-hang method of

sl:lnteractlve-stream 11
:any-tyl-no-hang method of tv:stream-mlxln 135
:approprlate-wldth method of

tv:choose-varlable-values-wlndow 276
Areas 203
Areas Example 286
argument type 48
argument type 48
argument type 48
argument type 48
argument type 48
argument type 48
argument type 48
argument type 48
argument type 48
argument type 48
argument type 48
argument type 48
argument type 48
argument type 48
argument type 48
Argument Types 48
array 78.79
array 330
array 79
Array as pattern In dummy description 188
Array leaders 313
arrays 329
arrays 118
Arrays 78
Arrays 126
Arrays and Exposure 79
:ask Constraint Size Specification 188
:ask-wlndow Constraint Size Specification 188
Associating Actions with Mouse-sensitive Items 280
:assoc tv:choose-varlable-values variable type 259
:asynchronous-character-p method of

sl:lnteractlve-stream 17
Asynchronous Characters 139
Asynchronous Characters 17
:asynchronous-characters Inlt option for

11:lnteractlve-stream 17

March 1985

Baseline Font
Character Height Font
Character Width Font

Char-height
Chars-exist-table Font

Char-width
Fixed-width Font

:Ieader global line
Left Kern Font

:mouse global line
:mouse-Hem line Item entry

:mouse line item entry
:mouse-self global line

Vsp
Blinker Width and Blinker Height Font

Character
Font

Global line
Window
Window

Functions. Variables. and Macros for Digital
Testing for the Existence of

Building
Looping Through

Format of
Opcodes for

audio:
Digital

Examples of Using the
Introduction to the Digital

Usp Primitives for the Digital
Microcode Support for the Digital

audio:
audio:
audio:

Starting and Stopping the
The

Digital

Attribute 144
Attribute 143
Attribute 144
attribute 108
Attribute 145
attribute 108
Attribute 144
attribute 313
Attribute 144
attribute 311
attribute 311
attribute 311
attribute 311
attribute 108. 116
Attributes 145
attributes 143
attributes 143
attributes 307
attributes 108
Attributes for Character Output 115
Attributes of a Mouse-sensitive Item 280
Attributes of TV Fonts 143
Audio 329
Audio 330
audlo:audlo-exlsts variable 330
audlo:audlo-Index function 331
audlo:audlo-lImH function 331
audlo:audlo-loop macro 334
audlo:audlo-push-audlo-stop function 331
audlo:audlo-room function 331
audlo:audlo-start function 335
audlo:audlo-stop function 335
Audio Command Format 322
Audio command lists 321. 327
AudiO Command Usts 330
Audio Command Usts 334
Audio Command Opcodes 323
audio commands 322
audio commands 323
audlo:computlng-Immedlate-audlo-samples

macro 333
audlo-exlsts variable 330
Audio Facilities 317
AudiO Facilities 339
Audio Facilities 319
AudiO Facilities 329
Audio Facilities 321

385

Index

audlo:flx-channel-float function 336
audlo:flx-polyphonlc-wave-table-entry function 337
audlo:flx-aample function 336
audlo:float-channel-flx function 336
audlo:float-polyphonlc-wav.table-entry

function 337
audlo:float-sample function 336
audlo:frequency-polyphonlc-Increment

function 337
audio-Index function 331
audlo-lImH function 331
audio-loop macro 334
Audio Mlcrotask 335
Audio Mlcrotask 321
audlo:modlfy-audlo-command-arg function 332
audlo:*number-of-polyphonlc-Yolces* variable 330
Audio Parameters 329
audlo:polyphonlc-wave-table-entry-channela

function 337
audlo:puah-array-of-audlo-aamples function 333

386

Programming the User Interface March 1985

audlo:push-audlo-Jump function 331
audlo:push-audlo-load-volce function 331
audlo:push-audlo-polyphony function 332

audio: audlo-push-audlo-stop function 331
audlo:push-audlo-zero-ftag function 331
audlo:push-Immedlate-audlo-sarnple macro 333
audlo:reserve-audlo-flags function 334

audio: audio-room function 331
audlo:sample-add-flx function 336
audlo:sample-add-ftoal function 336
audlo:sample-add-sample function 336
audlo:sample-channels function 336
audlo:*sample-rate* variable 329
audlo:set-audlo-repeat-count macro 334

audio: audio-start function 335
audio: audio-stop function 335

audlo:walt-for-audlo-flag function 335
audlo:wHh-audlo macro 330

The Audio Wrapping Form 330
tv: autoexposlng-more-mlxln flavor 116

AU1oexposure 86. 116

B B B
tv:

Screen Manager

Instantlable.

:decode-varlable-type method of tv:
:functlon Inlt option for tv:

:name-font Init option for tv:
:selected-cholce-font Inlt option for tv:

:stack-group Init option for tv:
:strlng-font Inlt option for tv:

:unselected-choice-font Inlt option for tv:
:value-font Inlt option for tv:
:varlable8 Inlt option for tv:

tv:
The
tv:

:configuratlon Inl1 option for tv:
:configuratlon method of tv:

:configuratlons Init option for tv:
:constralnts Inlt option for tv:

:get-pane method of tv:
:pane-name method of tv:

:panes Inlt option for tv:
:selected-pane Inlt option for tv:

:send-all-exposed-panes method of tv:
:send-all-panes method of tv:

:send-pane method of tv:
:set-configuratlon method of tv:

tv:

tv:
tv:
tv:

:Item method of tv:
:ltem-type-allst Init option for tv:

:primltlve-Item method of tv:

back-convert-constralnts function 195
Background Process 86
:backspace-not-overprlntlng-flag Init option for

tv:sheet 108. 117
Baseline 144. 145
Baseline Font Attribute 144
:basellne method of tv:sheet 142
base variable 257
BaSic. and Mlxln Flavors 205
BaSic and Mixin Pop-up and Momentary Menus 220
baslc-choose-varlable-values 270
baslc-choose-varlable-values 274
baslc-choose-varlable-values 274
baslc-choose-varlable-values 275
baslc-choose-varlable-values 274
baslc-choose-varlable-values 275
baslc-choose-varlable-values 275
baslc-choose-varlable-values 275
baslc-choose-varlable-values 274
baslc-choose-varlable-values flavor 272
Basic Choose Variable Values Flavor 272
baslc-choose-varlable-values Inl1-plist Options 274
baslc-constralnt-frame 188
baslc-constralnt-frame 188
baslc-constralnt-frame 179
baslc-constralnt-frame 189. 196
baslc-constralnt-frame 187
baslc-constralnt-frame 188
baslc-constralnt-frame 179. 189. 196
baslc-constralnt-frame 98. 187
baslc-constralnt-frame 188
baslc-constralnt-frame 188
baslc-constralnt-frame 188
baslc-constralnt-frame 188
baslc-constralnt-frame flavor 175
BaSic flavors 205
basic-frame flavor 100. 1n
basic-menu flavor 220
baslc-momentary-menu flavor 220
baslc-mouse-sensHlve-Hems 283
baslc-mouse-sensHlve-Hems 283
baslc-mouse-sensHlve-Hems 283

March 1985

tv:
tv:
tv:
tv:

The
tv:
tv:

:redlsplay method of tv:
:set-dlsplay-Hem method of tv:

tv:

Flavors of
The Beep Feature sys:

The

Examples of Specifications of Panes and Constraints
Specifying Panes and Constraints

Mouse

Opening a
%%kbd-mouse
Two-dImensional

Mouse buttons.
Copying

Set all

Pixels and

:deselected-vlslbility init option for tv:
:deselected-vlslbility method of tv:

:follow-p Inlt option for tv:
:half-perlod Inlt option for tv:

:half-perlod method of tv:
Half-period of a

Mouse
:read-cursorpoa method of tv:

:sel-cursorpos method of tv:
:set-deselected-vlslbility method of tv:

:sel-follow-p method of tv:
:sel-half-perlod method of tv:

:set-sheel method of tv:
:sel-vlslblllty method of tv:
:visibility init option for tv:

:x-poa init option for tv:
:y-poa Inlt option for tv:

Blinker Width and

General

Opening
Position of

Specialized
Visibility of

:blink

387

Index

baslc-mouse-sensHlve-Hems Example 284
baslc-mouse-sensHlve-Hems navor 280
baslc-mouse-sensHIve-Hema Inlt-pllst Options 283
baslc-mouse-sensHlve-Hems Messages and

Functions 283
Basic Multiple Choice Flavor 254
baslc-multlple-cholce navor 254
baslc-scroll-bar flavor 175
baslc-scroll-wlndow 305
baslc-scroll-wlndow 305
baslc-scroll-wlndow flavor 305
Basics of Scroll Windows 305
BasiC Windows 105
%beep 327
Beep Example 342
Beep Feature 327
Beep Feature sys:%beep 327
:beep option for fquery 56
Before Release 6.0 196
Before Release 6.0 188
Behavior 281
BFD files 140
bidirectional stream 3n
bit 132. 151
bit-array 121
:bHbIt-from-sheet method of tv:sheet 120
:bltblt message 118
:bHbIt method of tv:sheet 120
:bltblt-wlthln-sheet method of tv:sheet 121
bit mask 229
Bit Rectangles to and From Windows 120
bits aJu function 119
Bit-save array 78. 79
Bit-save Arrays 78
Black-and-white screens 140
:black pattern in dummy description 188
:blank dummy description 188
:bllnk blinker visibility 146
blinker 148
blinker 149
blinker 148
blinker 149
blinker 149
blinker 146
blinker 146
blinker 148
blinker 148
blinker 149
blinker 148
blinker 149
blinker 149
blinker 148
blinker 148
blinker 148
blinker 148
Blinker height 145
Blinker Height Font Attributes 145
Blinker messages 148
Blinker Operations 147
Blinkers 103. 146
blinkers 146
blinkers 146
Blinkers 149
blinkers 146
Blinker shape 150
Blinker size 150
blinker visibility 146

388

Prograinming the User Interface

nil
:off
:on

t

Command

Frame
Pane

tv:

tv:

Initialize

Window
Window Margins,

:border-margln-wldlh Inlt option for tv:
:border-margln-wldth method of tv:

:borders Inlt option for tv:
:set-border-margln-wldlh method of tv:

:set-borders method of tv:
tv:

Choice boxes In
:antlcycllc
:clamped

:cycllc
:relaxed

Exit choice
tv:

Choice
Choice
Choice

Get 110
:cholce-box 110

:varlable-cholce 110
110

:raw I/O .
I/O
I/O

I/O from editor
Sharing I/O

Stream Facility for Editor
I/O

blinker visibility 146
blinker visibility 146
blinker visibility 146
blinker visibility 146
Blinker width 145, 146
Blinker Width and Blinker Height Font

Attributes 145
Blink rate 146
:blip-handier option 30
Blips 11, 132, 134, 229, 273, 275, 281
Blips 229

March 1985

:boolean command processor argument type 48
:boolean tv:choou-varlable-values variable

type 259
border 176
border 176
bordered-constralnt-frame flavor 1n
Bordered constraint frames 176
bordered-constralnt-frame-wHh-shared-lo-butrer

flavor 178
Border margin width 170
:border-margln-wldth Inlt option for

tv:borders-mlxln 171
:border-margln-wldth method of

tv:borders-mlxln 171
border parameters 222, 295
Borders 103, 168
Borders 170
Borders, and labels 168
:borders Inlt option for tv:borders-mlxln 170
:borders Inlt option for tv:menu 222, 295
borders-mlxln 171
borders-mlxln 171
borders-mlxln 170
borders-mlxln 171
borders-mlxln 171
borders-mlxln flavor 170
:boHom Inlt option for tv:menu 295
:boHom Inlt option for tv:sheet 163
:boHom-margln-slze method of tv:sheet 167
bottom of margin 289
boundary condition for :draw-cublc-apllne 125
boundary condition for :draw-cublc-apllne 125
boundary condition for :draw-cublc-spllne 125
boundary condition for :draw-cublc-spllne 125
box 262
box-bllnker flavor 150
box deSCriptor 289
boxes 203, 251
boxes in bottom of margin 289
Bp Zwei data structure 378
:brlef-help option 29
buffer 231
buffer command 273
buffer command 273
buffer commands 273
:buffer-name option for

zwel:open-edltor-Btream 378
:buffer-name option for

zwel:wlth-edltor-stream 378
buffer property 132
buffer property list 132
buffers 103, 132, 151, 176, 275
buffers 3n
buffers 176
Buffers 3n
Buffers for Choose Variable Values Windows 273

March 1985

Editor

Mouse

Identifying mouse
tv:momentary-menu Example 4: Using the Mouse

Mouse

c
The 3600-famlly

tv:momentary-menu Example 3:
:set-name method of tv:

tv:

Delete
Erase

:char Inlt option for tv:
:font Inlt option for tv:

:cnt-ch:m:ctor method of tv:
tv:

Undefined
Right margin

Window Attributes for

Asynchronous
Drawing

Font
How Windows Display

Interactive-stream Operations for Asynchronous
Intercepted

RETURN
Special

Drawing
Reading

Messages to Remove
Messages to Display

Messages About

c

buffer streams 3IT
Building Audio Command Usts 330
[Bury] Edit Screen menu Item 86
Burying windows 86
bu1ton encoding 311
Bu1ton-mask 229
bu1tons 151, 156, 157
Bu1tons 225
bu1tons. bit mask 229
:buttons menu Item type 210. 225. 311

calendar Clock 355
:center-around method of

tv:essentlal-set-edges 167

389

Index

c

Centered Label and Use of General Ust hems 224
changeable-name-mlxln 173
changeable-name-mlxln flavor 173
Change In window shape 175
:change-of-slze-or-marglns method of tv:sheet 166
Changing the status of windows 103
character 113. 114
character 113. 114
Character attributes 143
character-bllnker 150
character-bllnker 150
chnn:cter-bllnttor 150
character-bllnker flavor 150
character code 108
character flag 108
Character height 143. 145. 146
Character Height Font Attribute 143
:character-helght Inlt option for tv:menu 295
:characler-helght Init option for tv:sheet 164
:character option for prompt-and-read 59
:character-or-nll tv:chooS8-variable-values variable

type 259
Character Output 115
Character Output to Windows 108
Characters 139
characters 108
characters 103
Characters 108
Characters 17
Characters 15
characters 305
characters 108
Characters and Strings on Windows 121
characters from the keyboard 103
Characters From Windows 113
Characters on Windows 111
:character tv:choose-varlable-values variable

type 259
Character-width 162
Character width 108. 144. 145
Character Width and Cursor Motion 114
Character Width Font Attribute 144
:character-wldth Inlt option for tv:menu 295
:character-wldth inlt option for tv:sheet 164
:character-wldth method of tv:aheet 114
Char-a1uf 108. 118
Char-height attribute 108
:char Inlt option for tv:character-bllnker 150
Chars-exlst-table 145
Chars-exist-table Font Attribute 145

390

Programming the User Interface

Exit

Combining
Ust of

Modifying the
Overview of the

The
Window System

The Margin
The Multiple

The Basic Multiple
The Standard Multiple

Multiple
Instantiable Multiple

Multiple
Margin
Special

Using the mouse with multiple
Multiple

Multiple menu
The Multiple Menu

Instantiable Multiple Menu
The Standard Multiple Menu

Multiple Menu

Multiple Menu

:documentatlon specification for tv:
:extra-wldth Inlt option for tv:

:functlon Inlt option for tv:
:Iabel Inlt option for tv:

:margln-cholces Inlt option for tv:
:near-mode Inlt option for tv:

:superlor init option for tv:
:wldth Init option for tv:

tv:
The

The Basic
Instantlable

tv:
The Standard

Elements of the tv:
tv:
tv:
tv:
tv:

tv:

Defining
:assoc tv:

:boolean tv:
:character-or-nll tv:

:character tv:
:choose tv:

:date-or-never tv:

Char-width attribute 108
choice box 262
Choice box deSCriptor 289
Choice boxes 203. 251
Choice boxes In bottom of margin 289
:cholce-box I/O buffer command 273
Choice Facilities 205
Choice Facilities 203
Choice Facilities 206
Choice Facilities 203
Choice Facilities 203
Choice Facilities 201

March 1985

Choice Facilities Use the Flavor System 205
Choice Facility 289
Choice Facility 251
Choice Flavor 254'
Choice Function 252
choice menu 251
Choice Menu Flavors 254
Choice Menus 203
Choices 203
Choices 203. 241. 247
:cholces option for fquery 56
choice window 251
choice window parameters 251. 255
choose 247
Choose Facility 247
Choose Flavors 249
Choose Function 247
Choose Menus 203
:choose message 212. 229
:choose method of tv:menu 223
:choose method of tv:muHlple-cholce 255
Choose Mlxin and Resource 248
:choose tv:choose-varlable-values variable

type 259
choose-user-optlons function 266, 267
choose-variable-values 259
choose-variable-values 263
choose-variable-values 263
choose-variable-values 263
Choose Variable Values 203
choose-variable-values 263
choose-variable-values 263
choose-variable-values 264
choose-variable-values 263
choose-variable-values Examples 264
Choose Variable Values Facility 257
Choose Variable Values Flavor 272
Choose Variable Values Flavors 272
choose-variable-values function 262
Choose Variable Values Function 262
choose-varlable-values-keyword Property 270
choose-varlable-values-keyword property 269
choose-variable-values Options 263
choose-varlable-values-pane flavor 272
choose-varlable-values-process-message

function 274
choose-variable-values Type Definition

Example 271
Choose Variable Values Types 269
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259

March 1985

:date tv:
:declmal-number-or-nll tv:

:declmal-number tv:
:eval-form tv:

:expresslon tv:
:font-list tv:
:host-list tv:

:host-or-Iocal tv:
:host tv:

:Integer tv:
:Inverted-boolean tv:

:keyword-list tv:
:menu-allst tv:

:number-or-nll tv:
:number tv:

:past-date-or-never tv:
:past-date tv:

:pathname-host tv:
:pathname-list tv:

:pathname-or-nll tv:
:pathname tv:

:prlnc tv:
:sexp tv:

:string-list tv:
:strlng-or-nll tv:

:strlng tv:
:llme-lnterval-6Oths tv:

:llme-lnterval-or-never tv:
Predefined tv:

:adjust-geometry-for-new-varlables method of tv:
:approprlate-wldth method of tv:

:Io-buffer Inlt option for tv:
:redlsplay-varlable method of tv:

:set-varlables method of tv:
Defining a

:margln-cholces Inlt option for tv:
:setup method of tv:

tv:
tv:
tv:

1/0 Buffers for

Extracting value from
Drawing Polygons and

Encoded mouse
Mouse

Reading mouse

The 3600-famlly calendar
Undefined character

Complied object
tv:

Adding an hem to the Create
Adding an hem to the Programs

Constraint frame configuration

391

Index

choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type ·259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values variable type 259
choose-variable-values Variable Types 259
choose-varlable-values-wlndow 276
choose-varlable-values-wlndow 276
choose-varlable-values-wlndow 275
choose-varlable-values-wlndow 276
choose-varlable-values-wlndow 276
Choose Variable Values Window 272
choose-varlable-values-wlndow 275
choose-varlable-values-wlndow 275
choose-varlable-values-wlndow Example 276
choose-varlable-values-wlndow flavor 272
choose-varlable-values-wlndow Messages 275
Choose Variable Values Windows 273
Choosing and executing 212
chosen Item 223
Circles on Windows 124
:clamped boundary condition for

:draw-cublc-spllne 125
:class option for prompt-and-read 59
:clear-char method of tv:sheet 113
:clear-Input method of sl:lnteractlve-stream 12
:clear-Input method of tv:stream-mlxln 135
:clear-Input option for fquery 56
:clear-rest-of-line method of tv:sheet 113
:clear-rest-of-wlndow method of tv:sheet 113
:clear-wlndow method of tv:sheet 114
clicks 151
clicks 151, 152
clicks 311
Clipping 118
Clock 355
code 108
code as line hem entry 308
cold-load-stream-old-selected-wlndow variable 94
Color map 103
Color screens 103, 140
Column 239
Column 239
column 179

392

Programming the User Interface

Manipulating

Menus wl1h several
MuHlple dynamic

Set number of

tv:

:cholce-box 110 buffer
Defining a Command Processor

Ust Fonts (m-X) Zmacs
:varlable-cholce 110 buffer

Audio
Audio

Building Audio
looping Through Audio

:Io-buffer Inl1 option for tv:
:Io-buffer method of tv:

:set-Io-buffer method of tv:
tv:

tv:
tv:
tv:
tv:
tv:

tv:

Instantlable

Audio
Polyphony

:actlvity
:boolean

:date
:documentatlon-toplc

:enumeratlon
:font
:host

:Integer
:make-ayltem-verslon

:number
:package

:pathname
:prlnter
:strlng

:system

Defining a

Creating a
Deleting a
Finding a

The
The

Columnar format 214. 296
column geometry 215
Columns 213
columns 203. 247
columns 236
columns 214. 296

March 1985

:columns Inl1 option for tv:menu 214. 296
:column-spec-lIst Inl1 option for

tv:dynamlc-muHlcolumn-mlxln 237
column-epee-list variable 236
Combining Choice Faclll1ies 205

. Command 281
command 273
Command 44
command 142
command 273
Command array 330
Command arrays 329
Command Blips 229
Command Format 322
command lists 321. 327
Command Usts 330
Command Usts 334
Command loop Input Edl10r Example 24
command-menu 231
command-menu 231
command-menu 231
command-menu-abort-on-deexpose-mlxln

flavor 230
command-menu Example 231
command-menu flavor 231,293
command-menu Inl1-pllst Options 231
command-menu Messages 231
command-menu-mixln flavor 230. 293
Command Menu Mlxins 230
command-menu-pane flavor 231
Command Menus 203, 229
Command Menus 231
Command menu wl1hln window frame 231
Command Opcodes 323
Command Opcodes 326
:command option 32
command processor argument type 48
command processor argument type 48
command processor argument type 48
command processor argument type 48
command processor argument type 48
command processor argument type 48
command processor argument type 48
command processor argument type 48
command processor argument type 48
command processor argument type 48
command processor argument type 48
command processor argument type 48
command processor argument type 48
command processor argument type 48
command processor argument type 48
Command Processor Argument Types 48
Command Processor Command 44
Command processor command table 53
command processor command table 53
command processor command table 53
command processor command table 53
Command Processor Command Tables 52
Command processor program Interface 41
Command Processor Program Interface 41
Command Processor Reader 41

March 1985

Format of audio
FUNCTION
1/0 buffer

Opcodes for audio
SELECT

Command processor
Creating a command processor
Deleting a command proc.essor
Finding a command processor

Command Processor
Sending

Pathname

audio:

zwel:
Window System

:antlcycllc boundary
:clamped boundary

:cycllc boundary
:relaxed boundary

Constraint frame

Constraint frame
Constraint frame

Constraint frame
Constraint frame

Frame

tv:

Bordered
Sections In
Stacking In

:Iayout
:8Ize.

:Io-buffer init option for tv:
tv:

The Optional

tv:
tv:
tv:

Examples of Specifications of Panes and
Set of

Specifying Panes and
Examples of Specifications of Panes and

Specifying Panes and

commands 322
commands 135. 137
commands 273
commands 323
commands 137. 139
command table 53
command table 53
command table 53
command table 53
Command Tables 52
command to user process 229
Complied object code as line Item entry 308
:complete-help option 28

393

Index

:complete-strlng option for prompt-and-read 59
completion with prompt-and-read 59
Components of a Menu 208
:compute-motlon method of tv:sheet 114
computlng-Immediate-audlo-samplel macro 333
Computing Polyphonic Increments 337
:*comtab* keyword 381
comtab variable 381
Concepts 75
condition for :draw-cublc-spllne 125
condition for :draw-cublc-spllne 125
condition for :draw-cublc-spllne 125
condition for :draw-cublc-spllne 125
configuration column 179
Configuration-descriptlon-list 188
configuration entity 179
configuration fill 179
:conflgurallon Inlt option for

tv:baslc-constralnt-frame 188
:conflgurallon method of

tv:baslc-constralnt-frame 188
configuration name 179
configuration row 179
configurations 175
:conflguratlons init option for

tv:baslc-constralnt-frame 179
Cons as menu Item 208
Constraint frame 175. 179. 188
Constraint frame configuration column 179
Constraint frame configuration entity 179
Constraint frame configuration fill 179
Constraint frame configuration name 179
Constraint frame configuration row 179
constraint-frame flavor 1n
Constraint frame pane 179
Constraint frames 179
constraint frames 176
constraint frames 188
constraint frames 188
Constraint Frame Specification 180
Constraint Frame Specification 182
constralnt-frame-wHh-shared-lo-buffer 179
constralnt-frame-wHh-shared-lo-buffer flavor 178
Constraint Function 262
Constraint language 175. 179. 188
**constralnt-node*'* variable 184. 188
*'*constralnt-remalnlng-helght*'* variable 184. 188
**constralnt-remalnlng-wldth*'* variable 184. 188
Constraints 185
constraints 175
Constraints 179
Constraints Before Release 6.0 196
Constraints Before Release 6.0 188
:conltralnts Inlt option for

394

Programming the User Interface

D

:ask
:ask-wlndow

:eval
:even

Fraction
:funcall

Integer
:lImH

tv:
tv:
tv:

Delete
Regenerating

Saving

Time

Graphics

al:
al:
&1:
al:

fonts:
Adding an Item to the

&1:

Wavetable
Messages About Character Width and

Messages to Read or Set

Standard and

Bp Zwei
Displaying

D

March 1985

tv:baslc-constralnt-frame 189. 196
Constraint Size Specification 188
Constraint Size Specification 188
Constraint Size Specification 188
Constraint Size Specification 188
Constraint Size Specification 188
Constraint Size Specification 188
Constraint Size Specification 188
Constraint Size Specification 188
constralnt-stacklng variable 184. 188
constralnt-Iotal-helghl variable 184. 188
constralnl-Iotal-wldth variable 184. 188
Constructing Items 307
Constructing Une Items 307
Constructing Ust Items 313
:constructor option for defwlndow-resource 107
contents of window 114
contents of windows 78
contents of windows 78
Controlling the Mouse Outside a Window 158
Conversions 367
Conversions Between Sample Formats 335
Conversions for the Polyphony Feature 337
coordinates 118
Copying Bit Rectangles to and From Windows 120
cp-comlab variable 53
cp-defauil-biank-line-mode variable 43
cp-defauH-dlspatch-mode variable 43
cp-defaull-prompt variable 44
cptfont font 142
Create Column 239
create-comtab function 53
:create-p option for zwel:open-edHor-stream 378
:create-p option for zwel:wHh-edHor-stream 378
[Create] System menu Item 75
Creating a command processor command table 53
Creating a Window 106
Creating mouse-sensltive-area of screen 283
Creating panes 176
:cr-not-newllne-nag Inlt option for tv:sheet 108. 117
Current font 108. 140
:current-font method of tv:sheel 142
:current-geometry message 216
:current-geometry method of tv:menu 214
cursor 325
Cursor Motion 114
Cursor poSition 103. 108. 113. 146
Cursor Position 113
Cursor position messages 112. 114
Cursors 325
Customizable facilities 205
Customizable Facilities 205
:cycllc boundary condition for

:draw-cublc-spllne 125

DAC 321
data structure 378
data structures 303
Date 353
:date command processor argument type 48
Date formats 353, 359, 361
:date option for prompt-and-read 59
:date-or-never option for prompt-and-read 59
:date-or-never tv:choose-varlable-values variable

D

March 1985

Printing
Reading

Representation of

Time of
time:
time:

:french
:german

:Hallan
:Iong

:medlum
:roman

:short
time:

time:

Type
Adding a Type

:error
:expose
:normal

:notlfy
:permlt

:permlt

tv:

Functions for
tv:choose-varlable-values Type

:constructor option for
:Inltlal-coples option for

:make-wlndow option for

395

Index

type 259
Dates and Times 351
Dates and Times 359
Dates and Times 361
Dates and Times 353
:date tv:choose-varlable-values variable type 259
day 353
dayllght-savlngs-p function 369
dayllght-savlngs-tlme-p function 369
day-of-the-week-representation 370
day-of-the-week-representatlon 370
day-of-the-week-representation 370
day-of-the-week-representation 370
day-of-the-week-representatlon 370
day-of-the-week-representatlon 370
day-of-the-week-representation 370
day-of-the-week-strlng function 370
Days of the week 353
:deactlvate method of tv:menu 223. 299
Deactivating menu window 223. 299
:declmal-number option for prompt-and-read 59
:declmal-number-or-nll option for

prompt-and-read 59
:declmal-number-or-nll tv:choose-varlable-values

variable type 259
:declmal-number tv:choose-varlable-values

variable type 259
decode-unlversal-tlme function 367
:decode-varlable-type method 269
:decode-varlable-type method of

tv:baslc-choose-varlable-values 270
Decoding Message 270
Decoding Method 269
:deexposed-typeln-actlon Init option for

tv:sheet 116
:deexposed-typeln-actlon method of tv:sheet 116
Deexposed typeout action 86
deexposed typeout action 82
deexposed typeout action 82
deexposed typeout action 82
deexposed typeout action 82
deexposed typeout action 82
:deexposed-typeout-actlon init option for

tv:sheet 116
:deexposed-typeout-actlon method of tv:sheet 116
deexposed typeout option 86
Deexposed windows 82. 86
:deexpose message to windows 79
:deexpose method of tv:menu 299
defaulted-multlple-menu-choose function 248
Default font 142
:default-font init option for tv:menu 222. 296
:default option for zwel:open-edHor-stream 378
:defaults option for zwel:wHh-edHor-stream 378
deflne-cp-command special form 44
deflne-prompt-and-read-type special form 69
deflne-user-opllon-allst special form 267
deflne-user-optlon special form 267
Defining a Choose Variable Values Window 272
Defining a Command Processor Command 44
Defining Choose Variable Values Types 269
Defining User Option Variables 267
Definition Example 271
defresource special form 107
defwlndow-resource 107
defwlndow-resource 107
defwlndow-resource 107

396

Programming the User Interface

:reusable-when option for
:superlor option for

:delayed-set-Iabel method of tv:
:update-Iabel method of tv:

tv:

tv:

sl:

Array as pattern In dummy
:black pattern In dummy

:blank dummy
:horizontal stacking

Ust as pattern In dummy
Symbol as pattern in dummy

:vertlcal stacking
:whHe pattern In dummy

Choice box
Font

Keyboard as random access
Mouse as an Input

Functions. Variables. and Macros for

Introduction to the
Usp Primitives for the

Microcode Support for the

Updating the
How Windows

Messages to
How Windows

Receiving and

sl:
eys:

Mouse
Mouse line

Mouse

March 1985

defwlndow-resource 107
defwlndow-resource 107
defwlndow-resource special form 107
delayed-redlsplay-Iabel-mlxln 173
delayed-redlsplay-Iabel-mlxln 173
delayed-redlsplay-Iabel-mlxln ffavor 173
:delayed-set-Iabel method of

tv:delayed-redlsplay-Iabel-mlxln 173
delaylng-screen-management special form 86. 89
Delete character 113. 114
:delete-char method of tv:sheet 114
delete-comtab function 53
Delete contents of window 114
Delete line 114
:delete-line method of tv:sheet 114
Delete string 114
:delete-strlng method of tv:sheet 114
Delete to end of line 113
Delete to end of window 113
Deleting a command processor command table 53
Deletion messages 113
:dellmlted-strlng option for prompt-and-read 59
:dellmlted-strlng-or-nll option for

prompt-and-read 59
description 188
description 188
description 188
description 188
description 188
description 188
description 188
description 188
Description group 188
deSCriptor 289
descriptor 140
Deselected visibility 146
:deselected-vlslbility Inlt option for tv:bllnker 148
:deselected-vlslbility method of tv:bllnker 149
:deselect message 99
device 160
device 103. 151
Digital Audio 329
Digital Audio Facilities 317
Digital Audio Facilities 319
Digital Audio Facilities 329
Digital Audio Facilities 321
Digital Audio Parameters 329
display 303
Display Characters 108
Display Characters on Windows 111
Display Graphic Output 118
Displaying data structures 303
Displaying Help Messages In the Input Editor 34
Displaying multiple values of a function 308
Displaying Notifications 127
Displaying Prompts In the Input Editor 33
dispiay-Item-list function 19. 283
display-notification function 128
display-notifications function 127
documentation 152
documentation 211
:documentatlon keyword 269
documentation line 156. 207. 259
:documentatlon menu item option 211. 224
:documentatlon menu item type 311
:documentatlon specification for

tv:choose-varlable-values 259

March 1985

Mouse

tv:

:antlcycllc boundary condition for
:cycllc boundary condition for

:relaxed boundary condition for
:clamped boundary condition for

Primitives for

sys:

sya:

sya:

Array as pattern In
:black pattern In

:blank
Us1 as pattern In

Symbol as pattern In
:whlte pattern In

:Item-list-pointer Inl1 option for tv:
:update-Hem-list method of tv:

Multiple

Instantlable
tv:

Inlt-plls1 Option for
Messages to

tv:
tv:

:column-spec-lIst Inl1 option for tv:
tv:
tv:

397

Index

:documentatlon-toplc command processor argument
type 48

documentation window 311
[Do It] 241. 247. 251
:do-not-echo option 31
dont-select-wHh-mouse-mlxln flavor 100
:draw-char method of tv:sheet 121
:draw-clrcle method of tv:graphlcs-mlxln 124
:draw-clrcular-arc method of tv:graphlcs-mlxln 124
:draw-closed-curve method of

tv:graphlcs-mlxln 124
:draw-cublc-spllne 125
:draw-cublc-spllne 125
:draw-cublc-spllne 125
:draw-cublc-spllne 125
:draw-cublc-spllne method of

tv:graphlcs-mlxln 125
:draw-curve method of tv:graphlcs-mlxln 123
:draw-dashed-line method of tv:graphlcs-mlxln 122
:draw-filled-in-circle method of

tv:graphlcs-mlxln 125
:draw-filled-in-sector method of

tv:graphlcs-mlxln 125
Drawing characters 108
Drawing Characters and Strings on Windows 121
Drawing Unes on Windows 122
Drawing Onto Arrays 126
Drawing pictures onto arrays 118
Drawing Points on Windows 120
Drawing Polygons and Circles on Windows 124
Drawing Splines on Windows 125
%draw-line function 126
:draw-ilne method of tv:graphlcs-mlxln 122
:draw-ilnes method of tv:graphlcs-mlxln 122
:draw-polnl method of tv:graphlcs-mlxln 120
%draw-reclangle function 126
:draw-rectangle message 118
:draw·rectangle method of tv:sheet 124
:draw·regular-polygon method of

tv:graphlcs-mlxln 125
:draw·ltrlng method of tv:graphlcs·mlxln 121
%draw·lrlangle function 126
:draw·trlangle method of tv:graphlcs-mlxln 124
:draw·wlde-curve method of tv:graphlca·mlxln 124
dummy description 188
dummy deSCription 188
dummy deSCription 188
dummy deSCription 188
dummy description 188
dummy description 188
Dummy parts 188
dynamlc· ••• ·menu 237
dynamlc· ••. ·menu 237
dynamic columns 236
DynamiC Item Us1 Menus 203. 235
Dynamic Item Us1 Menus 236
dynamlc-ltem·lIst·mlxln flavor 235
Dynamic Item Ust Mlxlns 235
Dynamic Menu Example 237
Dynamic Menus 2:37
Dynamic Menus 2:37
dynamlc·momentary·menu flavor 236
dynamlc·momentary·wlndow·hacklng·menu

flavor 236
dynamlc·muHlcolumn·mlxln 237
dynamlc·muHlcolumn·mlxln flavor 236
dynamlc-pop-up-abort-on-deexpose-command-

398

Programming the User Interface March 1985

E

menu ftavor 236
tv: dynamlc-pop-up-command-menu ftavor 236
tv: dynamlc-pop-up-menu ftavor 236

Left
Top
Set

Displaying Help Messages in the Input
Displaying Prompts in the Input

Examples of Use of the Input
Input

Invoking the Input
Reading function to use input

I/O from
Stream Facility for

Command Loop Input
Input
Input

The Input
Making Standalone

How the Input
[Bury]

[Move Window]

Format

time:
Mouse button

Delete to
Erase to

Delete to
Erase to

Constraint frame configuration
Line Item

Mouse-sensitive
Compiled object code as line item

:function line item
Lambda expression as line Item

Named-lambda expression as line item
:strlng line item
Symbol line item

:symeval line item
:value line item

:mouse-Item line 11em
:mouse line item

E
edge of menu 298
edge of menu 298
edge parameters 296

E

:edges-from init option for tv:essentlal-wlndow 164
:edges-from Init option for tv:menu 296
:edges Init option for tv:menu 296
:edges Init option for tv:sheet 163
:edges method of tv:sheet 167
Editing terminal input 21
:edlt message to zwel:ltandalone-edltor-frame 381
Editor 34
Editor 33
Editor 34
editor 21, 27, 28, 29, 30, 31, 32
Editor 22
editor 25
editor buffers 377
Editor Buffers 377
Editor buffer streams 377
:edltor-command option 32
Editor Example 24
Editor Messages to Interactive Streams 38
Editor Options 27
Editor Program Interface 21
Editor Windows 381
Editor Works 21
Edit Screen menu item 86
Edit Screen menu item 76
[Edit Screen] System menu item 75, 76, 175
effectors 108
Elapsed Time in 60ths of a Second 356
Elapsed Time In Microseconds 357
Elements of the tv:choose-variable-values-keyword

Property 270
Encoded mouse clicks 151
encode-unlversal-tlme function 367
encedi ng 311
end of line 113
end of line 113
:end-of-line-exception 108
:end-of-page-exceptlon 108
end of window 113
end of window 113
:end option for zwel:open-edltor-stream 378
:end option for zwel:wlth-edltor-stream 378
entity 179
entries 307, 308
entries 308
entry 308
entry 308
entry 308
entry 308
entry 308
entry 308
entry 308
entry 308
entry attribute 311
entry attribute 311
:enumeratlon command processor argument

type 48

March 1985

Amplitude

:handle-mouse method of tv:
:mouse-cllck method of tv:

:mouse-moves method of tv:
:center-around method of tv:

:expose-near method of tv:
:set-edges method of tv:

:set-Inslde-slze method of tv:
:set-posltlon method of tv:

:set-slze method of tv:
:actlvate-p Inlt option for tv:

:edges-from Inlt option for tv:
:expose-p Init option for tv:

:mlnlmum-helght Inlt option for tv:
:minlmum-wldth init option for tv:
:typeout-window init option for tv:

Beep
Command Loop Input Editor

Dynamic Menu
Mouse-sensitive Areas

Non-real-time Synthesis
Playing Large Pieces

Polyphony
Sawtooth Wave

Sine Wave
Squarewave

Square Wave
Standard Momentary Menu

tv:baslc-mouse-sensltlve-Hems
tv:choose-varfable-valuel Type Definition

tv:choose-varfable-values-wlndow
tv:command-menu

tv:margln-cholce-mlxln
tv:momentary-muHlple-menu

tv:multlple-cholce
tv:muHlple-choose Menu
tv:multlple-menu-choose

tv:muHlple-menu-choose-menu
tv:pop-up-menu

User Options
Geometry

tv:momentary-menu
tv:momentary-menu

Geometry
tv:momentary-menu

tv:momentary-menu
tv:choose-varfab Ie-val ues

envelopes 324
Erase character 113, 114
Erase line 114
Erase messages 113
Erase string 114
Erase to end of line 113
Erase to end of window 113
Erase window 114
:error deexposed typeout action 82
essential-mouse 152
essential-mouse 153
essential-mouse 152
essentlal-set-edges 167
essentlal-set-edges 167
essentlal-set-edges 167
essentlal-set-edges 166
essentlal-set-edges 167
essentlal-set-edges 166
essential-window 107
essential-window 164
essential-window 107
essential-window 164
essential-window 164
essentlal-wlndow-wHh-typeout-mlxln 174
:eval Constraint Size Specification 188

399

Index

:eval-form option for prompt-and-read 59
:eval-form-or-end option tor prompt-al'.d-read 59
:eval-form tv:choose-varfable-values variable

type 259'
:eval menu Item type 210, 311
:even Constraint Size Specification 188
Example 342
Example 24
Example 237
Example 286
Example 343
Example 344
Example 347
Example 341
Example 339
example 341
Example 341
Example 219
Example 284
Example 271
Example 276
Example 231
Example 290
Example 243
Example 255
Example 253
Example 248
Example 249
Example 226
Example 268
Example 1: a Multicolumned Menu 215
Example 1: Simple Momentary Menu 223
Example 2: Item Ust as Inlt-pl/st Option 224
Example 2: Retrieving Geometry Information 216
Example 3: Centered Label and Use of General Ust

Items 224
Example 4: Using the Mouse Buttons 225
Examples 264
Examples of Specifications of Panes and

Constraints 185
Examples of Specifications of Panes and ConstraInts

Before Release 6.0 196

400

Programming the User Interface

F

Choosing and

Testing for the

Screen Arrays and
Window
Lambda

Named-lambda

Combining Choice
Customizable
Digital Audio

Examples of Using the Audio
Introduction to the Digital Audio

Introduction to the Menu
Lisp Primitives for the Digital Audio

List of Choice
Microcode Support for the Digital Audio

Modifying the Choice
OVerview of the Choice

Standard
Standard and Customizable

The Choice
Window System Choice

Choice
The Choose Variable Values

The Margin Choice
The Mouse-sensitive Items

The Multiple Choice
The Multiple Menu Choose

The tv:mouse-y-or-n-p
The User Option

User option
Stream

Beep
Conversions for the Polyphony

Polyphony
The Polyphony

The Beep
%%kbd-mouse-button

BFD
Constraint frame configuration

F

March 1985

Examples of Use of the Input Editor 34
Examples of Using the Audio Facilities 339
Exclusive-or alu function 119
:execute message 212. 311
:execute method of tv:menu 223
Executing 212
Executing a menu item 212
Existence of Audio 330
Exit choice box 262
:expose deexposed typeout action 82
Exposed windows 79. 86
:expose message to windows 79
:expose method of tv:menu 299
:expose-near method of tv:essentlal-set-edges 167
:expose-p Inlt option for tv:essentlal-wlndow 107
:expose-p Inlt option for tv:menu 296
Expose window 296
Exposing menu window 223
Exposing windows 167
Exposure 79
Exposure and Output 82
expression as line Item entry 308
expression as line Item entry 308
:expresslon option for prompt-and-read 59
:expresslon-or-end option for prompt-and-read 59
:expresslon tv:choose-varlable-values variable

type 259
Extracting value from chosen item 223
:extra-wldth Init option for

tv:choose-varlable-values 263

Facilities 205
facilities 205
Facilities 317
Facilities 339
Facilities 319
Facilities 207
Facilities 329
Facilities 203
Facilities 321
Facilities 206
Facilities 203
facilities 205
Facilities 205
Facilities 203
Facilities 201
Facilities Use the Flavor System
Facility 257
Facility 289
Facility 279
Facility 251
Facility 247
Facility 220
Facility 266
facility 203
Facility for Editor Buffers 3n
Feature 327
Feature 337
feature 319
Feature 324
Feature sys:%beep 327
field 151
files 140
fill 179

205

F

March 1985

Filled format 213, 214, 296
:fI1I-p Inlt option for tv:menu 214, 296
:fI1I-p method of tv:menu 214
Fill pointer 330

al: flnd-comtab function 53

401

Index

Finding a command processor command table 53
Flnlshlng-cholces 251
:finish-typeout method of al:lnteractlve-stream 39

audio: flx-channel-float function 336
Fixed-width Font Attribute 144
Fixed-width fonts 108, 144

time: flxnum-mlcrosecond-tlme function 357
audio: flx-polyphonlc-wave-table-entry function 337
audio: fix-sample function 336

More flag 108
Output hold flag 82. 108, 118

Right margin character flag 108
Synchronization Flags 334

tv: ftashy-scrolllng-mlxln flavor 175
fquery flavor 57

al:lnteractlve-stream flavor 3
The Basic Choose Variable Values Flavor 272

The Basic Multiple Choice Flavor 254
The tv:margln-cholce-mlxln Flavor 289

tv:abstract-dynamlc-Hem-list-mlxln flavor 235
tv:autoexposlng-more-mlxln flavor 116

tv:baslc-choose-varlable-valuea flavor 272
tv:baslc-constralnt-frame flavor 175

tv:baslc-frame flavor 100, 1n
tv:baslc-menu flavor 220

tv:baslc-momentary-menu flavor 220
tv:baslc-mouse-sensHlve-Hema flavor 280

tv:baslc-multlple-cholce flavor 254
tv:baslc-scroll-bar flavor 175

tv:baslc-scroll-wlndow flavor 305
tv:bordered-con stral nt-frame flavor 1n

tv:bordered-constralnt-frame-with-ahared-Io-buffer flavor 178
tv:borders-mlxin flavor 170

tv:box-bllnker flavor 150
tv:changeable-name-mlxln flavor 173

tv:character-bllnker flavor 150
tv:choose-varlable-valuea-pane flavor 272

tv:choose-varlable-values-wlndow flavor 272
tv:command-menu flavor 231, 293

tv:command-menu-abort-on-deexpose-mlxln flavor 230
tv:command-menu-mlxln flavor 230, 293
tv:command-menu-pane flavor 231

tv:constralnt-frame flavor 1n
tv:constraint-frame-wlth-shared-io-buffer flavor 178

tv:delayed-redlsplay-Iabel-mlxln flavor 173
tv:dont-aelect-with-mouse-mlxln flavor 100

tv:dynamlc-Hem-IIBt-mlxln flavor 235
tv:dynamlc-momentary-menu flavor 236

tv:dynamlc-momentary-wlndow-hacklng-menu flavor 236
tv:dynamlc-muHicolumn-mlxln flavor 236

tv:dynamlc-pop-up-abort-on-deexpose-command-menu

tv:dynamlc-pop-up-command-menu
tv:dynamlc-pop-up-menu
tv:flashy-scroiling-mlxln

tv:graphlcs-mlxln
tv:gray-deexposed-inferlors-mlxln

tv:gray-unused-areas-mixln
tv:hollow-rectangular-bllnker

tv:hysteretlc-window-mlxln
tv:lbeam-bllnker

tv:label-mlxln

flavor 236
flavor 236
flavor 236
flavor 175
flavor 118
flavor 93
flavor 93
flavor 150
flavor 158
flavor 150
flavor 171

402

Programming the User Interface

tv:llne-truncatlng-mlxln
tv:margln-cholce-mlxln
tv:margln-scroll-mlxln
tv:margln-space-mlxln

tv:menu
tv:menu-hlghllghtlng-mlxln

tv:mlnlmum-wlndow
tv:momentary-menu

tv:momentary-muHlple-menu
tv:momentary-wlndow-hacklng-menu
tv:mouse-sensltlve-text-scroll-wlndow

tv:multlple-cholce
tv:multlple-menu

tv:muHlple-menu-choose-menu
tv:muHlple-menu-choose-menu-mlxln

tv:multlple-menu-mlxln
tv:no-screen-managlng-mlxln

tv:pane-mlxln
tv:pane-n~mouse-select-mlxln

tv:pop-up-menu
tv:pop-up-multiple-menu-choose-menu

tv:process-mlxln
tv:rectangular-bllnker
tv:scroll-mouse-mlxln

tv:scroll-wlndow
tv:scroll-wlndow-wlth-typeout

tv:select-mlxln
tv:select-relatlve-mlxln

tv:show-partlally-vlslble-mlxln
tv:stream-mlxln

tv:temporary-choose-varlable-values-wlndow
tv:temporary-multlple-cholce-wlndow

tv:temporary-typeout-wlndow
tv:text-scroll-wlndow

tv:text-scroll-wlndow-empty-gray-hack
tv:top-box-Iabel-mlxln

tv:top-Iabel-mlxln
tv:truncatable-lines-mlxin
tv:truncallng-Ilnes-mlxln

tv:truncatlng-wlndow
tv:typeout-wlndow

tv:typeout-wlndow-wlth-mouse-sensltlve-Hems
tv:wlndow

tv:wlndow-hacklng-menu-mlxln
tv:wlndow-pane

tv:window-wlth-typeout-mlxln
zwel :standalone-edltor-frame

The
Basic

Instantiable
Instantlable, Basic, and Mlxln

Instantiable Choose Variable Values
Instantiable Multiple Choice Menu

Instantiable Multiple Menu Choose
Margin item

Mixin
Functions,

OVerview of Window
Window

Choice Facilities Use the
audio:
audio:
audio:

flavor 117
flavor 289
flavor 175
flavor 169
flavor 213, 221. 293. 295. 299
flavor 241
flavor 105
flavor 221. 293
flavor 242
flavor 221
flavor 174
flavor 254
flavor 242
flavor 249
flavor 248
flavor 241
flavor 87
flavor 100. 176
flavor 100. 1n
flavor 221
flavor 249
flavor 94
flavor 149
flavor 311
flavor 305
flavor 305
flavor 99
flavor 99
flavor 87
flavor 108. 118. 132
flavor 273
flavor 254
flavor 174
flavor 174
flavor 174
flavor 173
flavor 173
flavor 117
flavor 108. 117
flavor 117
flavor 174
flavor 174
flavor 105
flavor 220
flavor 177
flavor 174
flavor 381

March 1985

:flavor-name option for prompt-and-read 59
Flavor Network of tv:menu 293
flavors 205
flavors 205
Flavors 205
Flavors 272
Flavors 254
Flavors 249
flavors 168
flavors 205
Flavors, and Messages for Window Graying 92
Flavors and Messages 103
Flavors and Messages 103
Flavors for Panes and Frames 176
Flavors of Basic Windows 105
Flavors Related to Window Selection 99
Flavor System 205
float-channel-flx function 336
float-polyphonlc-wave-table-entry function 337
float-sample function 336

March 1985

Current
Default

fonts:cptfont
fonts:hl10

fonts:hl10b
fonts:hl121

fonts:medfnb
fonts:medfnt

fonts:tr101
fonts:tr8
Baseline

Character Height
Character Width
Chars-exist-table

Fixed-width
Left Kern

Blinker Width and Blinker Height

Attributes of TV
Fixed-width

Format of TV
Introduction to

Standard TV
TV

Using TV
Variable-width

Ust

:follow-p Inlt option for tv:bllnker 14B
font lOB, 140
font 142
font 142
font 140
font 140
font 140
font 140
font 140
font 140
font 140
Font Attribute 144
Font Attribute 143
Font Attribute 144
Font Attribute 145
Font Attribute 144
Font Attribute 144
Font attributes 143
Font Attributes 145
font-basellne function 145
font-blinker-height function 146
font-bllnker-wldth function 146
Font characters 103
font-char-helght function 145
font-chars-exlst-table function 146
font-char-wldth function 145
font-char-wldth-table function 145
:font command processor argument type 48
Font descriptor 140
Font Indexing table 146
font-Indexlng-table function 146
:font Inlt option for tv:character-bllnker 150
font-Ieft-kem-table function 146
:font-list option for prompt-and-read 59
:font-list tv:choose-varlable-values variable

type 259
Font map lOB, 140
:font-map Inlt option for tv:menu 222, 296
:font-map inlt option for tv:sheet 142
:font-map method of tv:sheet 141
:font menu Item option 211, 224
Font Messages to Windows 141
font-name function 145
Font names 140, 145
:font option for prompt-and-read 59
font-raster-helght function 146
font-raster-wldth function 146
Fonts 103, . 216
Fonts 143
fonts 108, 144
Fonts 145
Fonts 140
Fonts 142
Fonts 140
Fonts 140
fonts 108, 144
fonts:cptfont font 142
fonts:h"Ob font 140
fonts:h"O font 140
fonts:h"21 font 140
fonts:medfnb font 140
fonts:medfnt font 140
Fonts (m-X) Zmacs command 142
fonts package 140
fonts:tr101 font 140
fonts:tr8 font 140
:force-kbd-Input message 132

403

Index

404

Programming the User Interface March 1985

:force-redisplay message 377
:force-rescan method of sl:lnteractlve-stream 39
Forcing keyboard Input 103

deflne-cp-command special form 44
deflne-prompt-and-read-type special form 69

deflne-user-optlon-allst special form 267
defln.user-optlon special form 267

defrelOufCe special form 107
defwlndow-resource special form 107

The Audio Wrapping Form 330
tv:add-typeout-Item-type special form 282

tv:delaylng-screen-management special form 86. 89
tv:prepare-sheet special form 84

tv:sheet-force-acceu special form 82. 84
tv:wlndow-call-relatlve special form 100

tv:wlndow-call special form 101
tv:wlndow-mouse-call special form 101

tv:wlth-mouse-and-buttons-grabbed-on-aheet special

tv:wlth-mouse-and-buttona-grabbed special
tv:wlth-mouse-grabbed-on-sheet special

tv:wlth-mouae-grabbed special
tv:wllh-mou .. usurped special

tv:wlth-termlnal-Io-on-typeout-wlndow special
wlth-Input-edltlng-optlona-If special

wlth-Input-edltlng-optlona special
wlth-Input-edltlng special

wlth-notlflcatlon-mode special
Audio Command·

Columnar
Filled

Sample

Conversions Between Sample
Date

Menu
Time
The

The -General Llsf
:beep option for

:cholces option for
:clear-Input option for
:fresh-line option for

:help-functlon option for
:lIst-cholces option for

:make-complete option for
:no-Input-save option for

:aelect option for
:slgnal-condilion option for

:atatua option for
:stream option for

:type option for

form 155
form 155
form 154
form 154
form 157
form 175
form 24
form 23
form 25
form 131
Format 322
format 214. 296
format 213. 214. 296
Format 322
Format effectors 108
Format of audio commands 322
Format of TV Fonts 145
Formats 335
formats 353. 359. 361
formats 213
formats 353. 359. 361
Form of a Menu Item 208
Form of Item 210
fquery 56
fquery 56
fquery 56
fquery 56
fquery 56
fquery 56
fquery 56
fquery 56
fquery 56
fquery 56
fquery 56
fquery 56
fquery 56
fquery flavor 57
fquery function 56
Fraction Constraint Size Specffication 188
Frame 175

Command menu within window frame 231
Constraint frame 175. 179. 188

Constraint
Constraint
Constraint
Constraint
Constraint

Frame border 176
frame configuration column 179
frame configuration entity 179
frame configuration fill 179
frame configuration name 179
frame configuration row 179
Frame configurations 175

March 1985

Constraint

Bordered constraint
Constraint

Flavors for Panes and
Messages to

Sections in constraint
Stacking In constraint

:Iayout Constraint
:slzes Constraint

audio:

Messages for Input
Copying Bit Rectangles to and

Input
Messages for Input

Messages to Remove Characters

And alu
And-with-complement alu

audlo:audlo-Index
audlo:audlo-lImlt

audlo:audlo-push-audlo-stop
audlo:audlo-room
audlo:audlo-start
audlo:audlo-stop

audlo:flx-channel-float
audlo:flx-polyphonlc-wave-table-entry

audlo:flx-sample
audlo:fJoat-channel-fix

audlo:float-polyphonlc-wave-table-entry
audlo:float-sample

audlo:frequency-polyphonlc-Increment
audlo:modlfy.audlo-command-arg

audlo:polyphonlc-wave-table-entry-channels
audlo:push-array-of-audlo-samples

audlo:push-audlo-Jump
audlo:push-audlo-load-volce
audlo:push-audlo-polyphony

audlo:push-audlo-zero-flag
audlo:reserve-audlo-flaga

audlo:sample-add-flx
audlo:sample-add-ftoal

audlo:sample-add-sample
audlo:sample-channela

audlo:walt-for-audlo-flag
choose-user-optlona

Displaying multiple values of a
display-notifications

Excluslve-or alu
font-basellne

font-bllnker-helght
font-bllnker-wldth

font-char-helght
font-chars-exlst-table

font-char-wldth
font-char-wldth-table

font-Indexlng-table
font-Ieft-kem-table

font-name

405

Index

Frame-oriented Interactive subsystems 176
frame pane 179
Frames 103. 175
frames 176
frames 179
Frames 176
Frames 187
frames 188
frames 188
Frames and Panes 95
Frame Specification 180
Frame Specification 182
:french day-of-the-week-representation 370
frequency-polyphonlc-Increment function 337
:fresh-line method of tv:stream-mlxln 112
:fresh-line option for fquery 56
From Interactive Streams 11
From Windows 120
From Windows 132
From Windows 134
From Windows 113
:fuU-rubout option 27
:funcaU Constraint Size Specification 188
:funcaU menu item type 210. 311
:funeaU-wlth-self menu item type 210
function 120
function 119
function 331
function 331
function 331
function 331
function 335
function 335
function 336
function 337
function 336
function 336
function 337
function 336
function 337
function 332
function 337
function 333
function 331
function 331
function 332
function 331
function 334
function 336
function 336
function 336
function 336
function 335
function 266. 267
function 308
function 127
function 119
function 145
function 146
function 146
function 145
function 146
function 145
function 145
function 146
function 146
function 145

406

Programming the User Interface

font-raster -height
font-raster-wldth

fquery
Incluslve-or alu

list
prompt-and-read

read-and-eval
read-command

read-command-or-form
read-expresslon

read-form
readllne-no-echo
read-or-character

read-or-end
reset-user -options

Set all bits alu
sl:create-comtab
sl:delete-comtab

sl:dlspiay-Hem-list
81 :find-comtab

Stepper
sys:dlsplay-notlflcatlon

sys:%draw-Ilne
sys:%draw-rectangle

sys:%draw-trlangle
sys:read-character

The Optional Constraint
The Standard Choose Variable Values

The Standard Multiple Choice
The Standard Multiple Menu Choose

The zwel:open-edltor-stream
time

tlme:dayllght-savlngs-p
tlme:dayllght-savlngs-tlme-p
tlme:day-of-the-week-strlng
tlme:decode-unlversal-tlme

tlme-dlfference
tlme-elapsed-p

tlme:encode-unlversal-tlme
tlme:fixnum-mlcrosecond-tlme

tlme:get-tlme
tlme:get-unlversal-tlme

time-Increment
tlme:lnltlallze-tlmebase

tlme:leap-year-p
tlme-Iessp

tlme:mlcrosecond-tlme
tlme:month-Iength
tlme:month-strlng

tlme:parse
time :parse-Interval-or -never

tlme:parse-present-based-unlversal-tlme
time:parse-unlversal-tlme

tlme:parse-unlversal-tlme-relatlve
tlme:prlnt-brlef-unlversal-tlme

tlme:prlnt-current-date
tlme:prlnt-current-tlme

tlme:prlnt-date
time:prlnt-Interval-or-never

tlme:prlnt-tlme
tlme:prlnt-unlversal-date
tlme:prlnt-unlversal-tlme
tlme:read-calendar-clock

tlme:read-Interval-or-never
tlme:set-calendar-clock

tlme:set-Iocal-tlme
tlme:tlmezone-strlng

function 146
function 146
function 56
function 119
function 313
function 59
function 9
function 42
function 41
function 6
function 7
function 9
function 9
function 9
function 267
function 119
function 53
function 53
function 19. 283
function 53
function 315
function 128
function 126
function 126
function 126
function 5
Function 262
Function 262
Function 252
Function 247
Function 3n
function 356
function 369
function 369
function 370
function 367
function 356
function 356
function 367
function 357
function 355
function 355
function 356
function 369
function 369
function 356
function 357
function 369
function 370
function 361
function 365
function 362
function 362
function 362
function 359
function 359
function 359
function 359
function 365
function 359
function 359
function 359
function 355
function 365
function 355
function 355
function 371

March 1985

March 1985

tlme:verlfy-date
tv:add-functlon-key

tv:add-select-key
tv:add-to-system-menu-create-menu

tv:add-to-system-menu-programs-column
tv:back-convert-constralnts

tv:choose-varlable-values
tv:choose-variable-values-process-message

tv:defaulted-multlple-menu-choose
tv: key-state
tv: key-test

tv:make-bllnker
tv:make-sheet-blt-array

tv:make-wlndow
tv:menu-choose

tv:mouse-button-encode
tv:mouse-buttons

tv:mouse-Input
tv:mouse-set-bllnker-cursorpos

tv: mouse-wait
tv:mouse-wakeup
tv:mouse-y-or-n-p

tv:multlple-choose
tv:multlple-menu-choose

tv:notlty
tv:scroil-maintain-ilst

tv:scroll-parse-item
tv:serect-or-create-wlndow-of-fJavor

tv:set-default-window-slze
tv:set-screen-background-gray
tv: set-sc reen-deexposed-g ray

tv:sheet-following-blinker
tv:tum-off-sheet-bllnkers

tv:walt-for-mouse-button-down
tv:wait-for-mouse-button-up

wrlte-user-optlona
yes-or-no-p

y-or-n-p
zwel:open-edltor-stream

SELECT and
tv:

Length of
Width of

Alu
Internal Time

tv:basic-mouse-sensltlve-itema Messages and

Input

Reading

function 370
function 135
function 137
function 239
function 239
function 195
function 262
functlcn 274
function 248
function 132, 161
function 161
function 147
function 121
function 107, 305
function 212, 219
function 156
function 158
function 157
function 152
function 155
function 152
function 220
function 252
function 247
function 127
function 315
function 307, 311
Function 240
function 165
function 92
function 92
function 149
function 149
function 156
function 156
function 268
function 55
function 55
function 3n
FUNCTION commands 135, 137
:function Inlt option for

tv:baslc-choose-varlable-values 274
:function Inlt option for

tv:choose-varlable-values 263
:function inlt-plist option 262
FUNCTION key 135, 137
FUNCTION Keys 135
*function-keys· variable 137
:function line Item 308
:function line Item 308
:function line Item entry 308
:function list Item keyword 313
functions 108, 118, 119
Functions 369
Functions 283
Functions, Flavors, and Messages for Window

Graying 92
Functions, Variables, and Macros for Digital

Audio 329

407

Index

Functions for Altering User Option Variables 267
Functions for Defining User Option Variables 267
Functions for Interactive Streams 5
:function-spec option for prompt-and-read 59
function to use Input editor 25

408

Programming the User Interface March 1985

G G
General Blinker Operations 147

tv:momentary-menu Example 3: Centered Label and Use of
General Ust Items 224

Manipulating column geometry 215
Geometry Example 1: a Multlcolumned Menu 215
Geometry Example 2: Retrieving Geometry

Information 216
Geometry Example 2: Retrieving Geometry Information 216

:geometry Inlt option for tv:menu 214, 296
Geometry Inlt-plist Options 213
Geometry Messages 214
:geometry method of tv:menu 214

The Geometry of a Menu 213
:gennan day-of-the-week-representatlon 370
Get 1/0 buffer 231

G

:get-pane method of tv:baslc-constralnt-frame 187
time: get-time function 355

Getting and Setting the 11me 355
Getting a Window to Use 105

time: get-unlversal-tlme function 355
:Ieader global line attribute 313

:mouse global line attribute 311
:mouse-self global line attribute 311

Global line attributes 307
Grabbing the mouse 151, 154
Graphical objects and text Intermingled 279

How Windows Display Graphic Output 118

:draw-clrcle method of tv:
:draw-clrcular-arc method of tv:

:draw-closed-curve method of tv:
:draw-cublc-spllne method of tv:

:draw-curve method of tv:
:draw-dashed-line method of tv:

:draw-filled-In-clrcle method of tv:
:draw-filled-In-sector method of tv:

:draw-ilne method of tv:
:draw-ilnes method of tv:
:draw-polnt method of tv:

:draw-regular-polygon method of tv:
:draw-strlng method of tv:

:draw-trlangle method of tv:
:draw-wlde-curve method of tv:

:polnt method of tv:
tv:

tv:
:gray-array-for-Inferlors Inlt option for tv:

:gray-array-for-Inferlors method of tv:
:set-gray-array-for-lnferlors method of tv:

tv:
Functions, Flavors, and Messages for Window

Window
Window

:gray-array-for-unused-areas Inlt option for tv:

Graphic Output to Windows 118
Graphics 103
Graphics coordinates 118
Graphics messages 118
graphlcs-mlxln 124
graphlcs-mlxln 124
graphlcs-mlxln 124
graphlcs-mlxln 125
graphlcs-mlxln 123
graphlcs-mlxln 122
graphlcs-mlxln 125
graphlcs-mlxln 125
graphlcs-mlxln 122
graphlcs-mlxln 122
graphlcs-mlxln 120
graphlcs-mlxln 125
graphlcs-mlxln 121
graphlcs-mlxln 124
graphlcs-mlxln 124
graphlcs-mlxln 120
graphlcs-mlxln flavor 118
:gray-array-for-Inferlors Inlt option for

tv:gray-deexposed-Inferlors-mlxln 93
:gray-array-for-Inferlors method of

tv:gnry-deexposed-Inferlors-mlxin 93
:gray-array-for-unused-areas Inlt option for

tv:gray-unused-areas-mlxln 93
:gray-array-for-unused-areas method of

tv:gray-unused-areas-mlxln 93
gray-arrays variable 92
gray-deexposed-Inferlors-mlxln 93
gray-deexposed-Inferlors-mlxln 93
gray-deexposed-Inferlors-mlxln 93
gray-cieexposed-Inferlors-mlxln flavor 93
Graying 92
Graying 90
Graying Specifications 91
gray-unused-areas-mlxln 93

March 1985

H

:gray-array-tor-unused-areas method of tv:
:set-gray-array-for-unused-areas method of tv:

tv:
Description

Blinker
Character

Inside
Une

Maximum
Raster

Character
Blinker Width and Blinker

Displaying

fonts:
fonts:
fonts:
Output
Output

tv:

:hysteresla Init option for tv:

H

409

Index

gray-unused-areas-mlxln 93
gray-unused-areas-mlxln 93
gray-unused-areas-mlxln flavor 93
group 188

H
:hack-tonts option for zwel:open-edltor-stream 378
:hack-fonts option for zwel:wHh-edltor-stream 378
:half-perlod Init option for tv:bllnker 149
:half-perlod method of tv:bllnker 149
Half-period of a blinker 146
Half-wavelength 327
:handle-asynchronous-characler method of

sl:lnteractlve-stream 17
:handle-mouse method of tv:essentlaJ-mouse 152
Handling the Mouse 151
height 145
height 143. 145. 146
height 213
height 108. 143. 162
height 213
height 146
Height Font Attribute 143
Height Font Attributes 145
:helght Inlt option for tv:lbeam-bllnker 150
:helght Init option for tv:menu 296
:helght init option for tv:rectnngular-bllnker 149
:helght init option for tv:sheet 163
:help.tunctlon option for fquery 56
Help Messages in the Input Editor 34
Hierarchy of Windows 76
:hlghllghted-Hems Init option for

tv:menu-hlghllghtlng-mlxln 242
:hlghllghted-Hems method of

Iv:menu-hlghllghtlng-mlxln 243
:hlghllghted-values method of

tv:menu-hlghllghtlng-mlxln 243
hnOb font 140
hnO font 140
hn21 font 140
hold flag 82. 108. 118
Hold state 82
hollow-reclangular-bllnker flavor 150
:home-cursor method of tv:sheet 113
:home-down method of tv:sheet 113
:horizontal stacking description 188
Horizontal wraparound 108
:host command processor argument type 48
:host-list option for prompt-and-read 59
:host-list tv:choose-variable-vaJues variable

type 259
:host option for prompt-and-read 59
:host-or-iocal option for prompt-and-read 59
:hoSl-ur-locaJ tv:choose-variable-vaJues variable

type 259
:host tv:choose-variable-vaJuea variable type 259
Hour 353
How the Input Editor Works 21
How Windows Display Characters 108
How Windows Display Graphic Output 118
:hysteresla Init option for

tv:hysteretlc-wfndow-mlxln 158
:hysteresls method of

tv:hysteretlc-wlndow-mlxln 158
hysteretlc-wlndow-mlxln 158

410

Programming the User Interface

I

:hysteresls method of tv:
:set-hysteresls method of tv:

tv:

Get
:cholce-box

:varlable-cholce

:raw

Sharing

:helght Inlt option for tv:
tv:

Off-negative
Off-positive

On-negative
On-positive

Left
Right

Computing Polyphonic
Polyphonic

Polyphonic wavetable
Font

Active

Geometry Example 2: Retrieving Geometry

time:

:Io-buffer
:stack-group

:asynchronous-characters
:function

:name-font
:selected-cholce-font

:stack-group
:string-font

:unselected-cholce-font
:value-font
:varlables

:configuratlon
:configuratlons

:constralnts
:panes

:selected-pane
:Item-type-allst

:deselected-vlslbility
:follow-p

I

March 1985

hysteretlc-window-mlxln 158
hysteretlc-wlndow-mlxln 158
hysteretlc-wlndow-mlxln flavor 158

110 buffer 231
110 buffer command 273
110 buffer command 273
110 buffer commands 273
110 buffer property 132
110 buffer property list 132
110 buffers 103, 132, 151, 176, 275
110 buffers 176
110 Buffers for Choose Variable Values

Windows 273
110 from editor buffers 3n
lbase variable 257
lbeam-bllnker 150
lbeam-bllnker flavor 150
Identifying mouse buttons 151, 156, 157
implication 251
Implication 251
implication 251
Implication 251
Implications 252
Inactive windows 76
Inclusive-or a1u function 119
Increment 325
Increment 335
increment 335
Increments 337
increments 337
Increments 337
Indexing table 146
:Inferlor-select message 97
inferiors of windows 76, 79, 86
Inferior typeout window 174
Inferior windows 78, 103
Information 216
:Inltlal-coples option for defwlndow-resource 107
:Inltlal-Input option 29
Initialize border parameters 222, 295
Inltlallze-tlmebase function 369
Initializing Window Size and Position 163
:Inlt method of tv:sheet 107
init option 132
init option 274
init option for sl:lnteractlve-stream 17
init option for tv:baslc-chooS8-variable-values 274
Init option for tv:baslc-choose-varlable-values 274
Inlt option for tv:baslc-choose-varlable-values 275
init option for tv:baslc-choose-varlable-values 274
init option for tv:baslc-choose-variable-values 275
init option for tv:baslc-choose-variable-values 275
init option for tv:baslc-choose-varlable-values 275
Init option for tv:baslc-choose-variable-values 274
init option for tv:baslc-constralnt-frame 188
Init option for tv:baslc-constralnt-frame 179
inlt option for tv:baslc-constralnt-frame 189, 196
Inlt option for tv:baslc-constralnt-frame 179, 189,

196
init option for tv:baslc-constralnt-frame 98, 187
inlt option for tv:baslc-mouse-sensltlve-Items 283
Init option for tv:bllnker 148
Init option for tv:bllnker 148

I

March 1985

:halt-perlod
:vlslblllty

:x-pos
:y-pos

:border-margln-wldth
:borders

:char
:font

:extra-wldth
:function

:Iabel
:margln-cholces

:near-mode
:8uperlor

:wldth
:Io-buffer

:margln-cholces

:lo-bu1Ter
:Io-buffer

:Hem-list-pointer
:column-spec-lIst

:actlvate-p
:edges-from

:expose-p
:mlnlmum-helght
:mlnlmum-wldth
:typeout-window

:gray-array-for-Inferlors
:gray-array-for-u n used-areas

:hysteresls
:helght

:Iabel
:margln-cholces

:space
:actlvate-p

:borders
:boHom

:character-helght
:character-wldth

:columns
:default-font

:edges
:edges-from

:expose-p
:fI1I-p

:font-map
:geometry

:helght
:Inslde-helght

:Inslde-size
:Inslde-wldth

: Hem-list
:Iabel

: 1 ell
:mlnlmum-helght
:mlnlmum-wldth

:name
:posltlon

:reverse-vldeo-p
:rlght
: rows

: screen
:top

411

Index

Inlt option for tv:bllnker 149
Inlt option for tv:bllnker 148
Inlt option for tv:bllnker 148
Inlt option for tv:bllnker 148
Inlt option for tv:borders-mlxln 171
Inlt option for tv:borders-mlxln 170
Inlt option for tv:character-bllnker150
Inlt option for tv:character-bllnker 150
Inlt option for tv:choo8e-varlable-values 263
Inlt option for tv:choose-varlable-values 263
Inlt option for tv:chooss-varlable-values 263
Inlt option for tv:choose-varlable-values 263
Inlt option for tv:choose-varlable-values 263
Inlt option for tv:chooss-varlable-valuea 264
Inlt option for tv:choose-varlable-values 263
Inlt option for

tv:chooss-varlable-values-wfndow 275
Inlt option for

tv:choose-varlable-values-wlndow 275
Inlt option for tv:command-menu 231
Inlt option for

tv:constralnt-trame-wHh-shared-lo-bu1Ter 179
Inlt option for tv:dynamic-•.. -menu 237
Inlt option for tv:dynamlc-muHlcolumn-mlxln 237
Inlt option for tv:essentlal-wlndow 107
Inlt option for tv:essentlal-wlndow 164
Inlt option for tv:essentlal-wlndow 107
Inlt option for tv:essentlal-wlndow 164
Inlt option for tv:essentlal-wlndow 164
Inlt option for

tv:essentlaJ-wlndow-wHh-typeout-mlxln 174
Inlt option for tv:gray-deexposed-Inferlors-mlxln 93
Inlt option for tv:gray-unused-areas-mlxln 93
Inlt option for tv:hysteretlc-wlndow-mlxln 158
Inlt option for tv:lbeam-bllnker 150
Inlt option for tv:label-mlxln 172
Inlt option for tv:margln-cholce-mlxln 290
Inlt option for tv:margln-space-mlxln 169
Inlt option for tv:menu 295
Inlt option for tv:menu 222. 295
Inlt option for tv:menu 295
Inlt option for tv:menu 295
Inlt option for tv:menu 295
Init option for tv:menu 214. 296
Inlt option for tv:menu 222. 296
Inlt option for tv:menu 296
init option for tv:menu 296
Init option for tv:m9l1u 296
Init option for tv:menu 214. 296
inlt option for tv:menu 222. 296
Inlt option for tv:menu 214. 296
Inlt option for tv:menu 296
Inlt option for tv:menu 296
Inlt option for tv:menu 296
Init option for tv:menu 297
inlt option for tv:menu 222. 297
Inlt option for tv:menu 222. 297
Inlt option for tv:menu 297
Inlt option for tv:menu 297
inlt option for tv:menu 297
init option for tv:menu 297
Inlt option for tv:menu 297
Inlt option for tv:menu 297
inlt option for tv:menu 297
Init option for tv:menu 214. 297
Init option for tv:menu 298
Inlt option for tv:menu 298

412

Programming the User Interface

:vap
:width

:x
:y

:hlghllghted-hems
:speclal-cholces

:process
:helght
:wldth

:type-allst
:backspace-not-overprlntlng-flag

:boHom
:characler-helght
:character-wldth

:cr-not-newllne-flag
:deexposed-typeln-actlon

:deexposed-typeout-actlon
:edges

:font-map
:helght

:Inslde-helght
:Inslde-slze

:Inslde-wldth
:Integral-p

:le1l
:more-p

:name
:poshlon

:rlght
:rlght-margln-character-flag

:slze
:superlor

:tab-nchars
:top
:vsp

:wldth
:x
:y

Window position
Window size

:function
:hem-type-allst

tv:margln-cholce-mlxln
tv:momentary-menu Example 2: Item Ust as

Geometry
tv:baslc-choose-varlable-values
tv:basic-mouse-sensltlve-hems

tv:command-menu
tv:muhlple-menu-mlxln

Useful tv:menu

Editing terminal
Forcing keyboard

Mouse
Mouse as an

Displaying Help Messages In the
Displaying Prompts In the

Examples of Use of the
Invoking the

Reading function to use
Command Loop

Inlt option for tv:menu 222. 298
Inlt option for tv:menu 298
Inlt option for tv:menu 298
Inlt option for tv:menu 298

March 1985

Inlt option for tv:menu-hlghllghtlng-mlxln 242
Init option for tv:muhlple-menu-mlxln 242
Inlt option for tv:proceas-mlxln 94
Inlt option for tv:reclangular-bllnker 149
Inlt option for tv:rectangular-bllnker 149
Inlt option for tv:scroll-mouse-mlxln 311
Inlt option for tv:sheet 108. 117
Inlt option for tv:sheet 163
Inlt option for tv:sheet 164
Inlt option for tv:sheet 164
Inlt option for tv:sheet 108. 117
Inlt option for tv:sheet 116
Inlt option for tv:sheet 116
Inlt option for tv:sheet 163
Inlt option for tv:sheet 142
Inlt option for tv:sheet 163
Inlt option for tv:sheet 163
Inlt option for tv:sheet 163
Inlt option for tv:sheet 163
Inlt option for tv:sheet 164
Inlt option for tv:sheet 163
Inlt option for tv:sheet 115
Inlt option for tv:sheet 171
Inlt option for tv:sheet 163
Inlt option for tv:sheet 163
Inlt option for tv:sheet 117
Inlt option for tv:sheet 163
Inlt option for tv:sheet 107
Inlt option for tv:sheet 108. 117
Inlt option for tv:sheet 163
Inlt option for tv:sheet 116
Inlt option for tv:sheet 163
Inlt option for tv:sheet 163
Inlt option for tv:sheet 163
Inlt options 162
Inlt options 162
Inlt-pllst option 262
Inlt-pllst option 280
Inlt-pllst Option 290
Inlt-pllst Option 224
Inlt-pllst Option for Dynamic Menus 227
Inlt-pllst Options 213
Init-pllst Options 274
Inlt-pllst Options 283
Inlt-pllst Options 231
Inlt-pllst Options 242
Inlt-pllst Options 222
Init-pllst Options for tv:menu 295
Input 21
Input 103
Input 151
Input device 103. 151
Input editor 21. 27. 28. 29. 30. 31. 32
Input Editor 34
Input Editor 33
Input Editor 34
Input Editor 22
Input editor 25
Input Editor Example 24
:Input-edhor message 22
Input Editor Messages to Interactive Streams 38
:Input-edltor method of sl:lnteractlvs-stream 38
Input Editor Options 27

March 1985

The
How the

Messages for
Prompting for

Messages for

Stream

Windows as

Window

tv: Hem-type-allst

:add-asynchronous-character method of sl:
:any-tyl method of sl:

:any-tyl-no-hang method of sl:
:asynchronous-character-p method of sl:

:asynchronous-characters Inlt option for sl:
:clear-Input method of sl:

:finish-typeout method of sl:
:force-rescan method of sl:

:handle-asyn~hronous-character method of sl:
:Input-edltor method of sl:

:Hem method of sl:
:lIne-ln method of sl:
:lIsten method of sl:
:lIst-tyl method of sl:

:nolse-strlng-out method of sl:
:read-bp method of sl:

:remove-asynchronous-character method of sl:
:replace-Input method of sl:
:rescannlng-p method of sl:
:start-typeout method of sl:

:Itrlng-In method of II:

413

Index

Input Editor Program Interface 21
Input Editor Works 21
Input From Interactive Streams 11
Input from user 59
Input From Windows 132
Input From Windows 134
Input Functions for Interactive Streams 5
:Input-hlstory-default option 30
Input messages 103
Input operations on windows 75
Input Streams 132
:lnput-waH-handler option 32
:lnput-waH option 32
:Insert-char method of tv:sheet 112
Insertion messages 112
:Insert-line method of tv:sheet 112
:Insert-strlng method of tv:sheet 112
Inside 103, 162, 168
:Inslde-edges method of tv:sheet 167
Inside height 213
:Inslde-helght Inlt option for tv:menu 296
:Inslde-helght Inlt option for tv:sheet 163
:Inslde-slze Inlt option for tv:menu 296
:Inslde-slze init option for tv:sheet 163
:Inslde-slze method of tv:sheet 166
Inside wld1h 213
:Inslde-wldth Inlt option for tv:menu 297
:lnsld9-~ldth Init option for tv:ahc:rt 163
Instance-variable 280
Instantlable, Basic, and Mixin Flavors 205
Instantlable Choose Variable Values Flavors 272
Instantiable Command Menus 231
Instantiable Dynamic Item Ust Menus 236
Instantiable flavors 205
Instantlable Multiple Choice Menu Flavors 254
Instantlable Multiple Menu Choose Flavors 249
Instantlable Multiple Menus 242
Instantlable Pop-up and Momentary Menus 221
:Integer command processor argument type 48
Integer Constraint Size Specification 188
:Integer option for prompt-and-read 59
Integers 132
:Integer tv:choose-varlable-values variable

type 259
:Integral-p Inlt option for tv:sheet 164
:Interactlve message 3
Interactive-stream 17
Interactive-stream 11
Interactive-stream 11
Interactive-stream 17
Interactive-stream 17
Interactive-stream 12
Interactive-stream 39
Interactive-stream 39
Interactive-stream 17
Interactive-stream 38
Interactive-stream 19
Interactive-stream 12
Interactive-stream 12
Interactive-stream 12
Interactive-stream 40
Interactive-stream 40
Interactive-stream 18
Interactive-stream 39
Interactive-stream 39
Interactive-stream 38
Intlractlv •• tream 13

414

Programming the User Interface

:strfng·llne-In method of sl:
:tyl method of sl:

:tyl·no-hang method of sl:
:untyl method of sl:

sl:

Input Editor Messages to
Input Functions for

Introduction to
Messages for Input From

Frame-oriented

Command processor program
The Command Processor Program

The Input Editor Program
The Standard Momentary Menu

Graphical objects and text
Introduction to lwei

lwei

Reading and Printing Time
Time

[Do

tv:

ASSOCiating Actions with Mouse-sensitive
Constructing

Constructing Une
Constructing Ust

Interactive Streams and Mouse-sensitive
Une
Ust

Menu
Mouse-sensitive

Mouse sensitivity and line
Selecting multiple menu

Interactive-stream 14
Interactive-stream 11
Interactive-stream 12
Interactive-stream 12
Interactive-stream flavor 3

March 1985

Interactive-stream Operations for Asynchronous
Characters 17

Interactive Streams 1. 21
Interactive Streams 38
Interactive Streams 5
Interactive Streams 3
Interactive Streams 11
Interactive Streams and Mouse-sensitive Items 19
Interactive subsystems 176
Intercepted Characters 15
Interface 41
Interface 41
Interface 21
Interface 219
Intermingled 279
Internals 375
Internals 373
Internal Time Functions 369
:Interval option for zwel:open-edltor·stream 378
:Interval option for zwel:wHh-edltor·stream 378
Intervals 365
Intervals 353
:Interval·strlng message to

zwel:standalone-edHor·frame 381
Introduction to Fonts 140
Introduction to Interactive Streams 3
Introduction to Scroll Windows 303
Introduction to the Digital Audio Facilities 319
Introduction to the Menu Facilities 207
Introduction to Using the Window System 73
Introduction to lwei Internals 375
:Inverted-boolean tv:choose-varlable-values

variable type 259
Invoking the Input Editor 22
:Io-buffer Inlt option 132
:Io-buffer init option for

tv:choose-varlable-values·wlndow 275
:Io-buffer init option for tv:command-menu 231
:Io-buffer Inlt option for

tv:constralnt·frame-wHh·shared-lo-buffer 179
:Io-buffer message 132
:Io-buffer method of tv:command-menu 231
It] 241. 247. 251
:Hallan day-of-the-week-representation 370
:Hem-list Init option for tv:menu 222. 297
:Hem-llst-pointer Inlt option for

tv:dynamlc· ••• ·menu 237
Hem-list-pointer variable 235
:Hem method of sl:lnteractlve·stream 19
:Item method of

tv:baslc·mouse·sensHlve·Hems 283
Items 280
Items 307
Items 307
Items 313
Items 19
items 305
Items 305
Items 208. 229. 311
Items 203
items 311
items 241

March 1985

K

L

415

Index

tv:momentary-menu Example 3: Centered Label and Use of General Ust

Types of Menu
Updating list

Using the mouse with mouse-sensitive
Menu

The Mouse-sensitive

Items 224
Items 210
Items 315
Items 281
Items and Menu Values 229
Items Facility 279
:ltem-type-allst Inlt option for

tv:baslc-mouse-sensltlve-Itema 283
:ltem-type-allst Inlt-pllst option 280

tv: ltem-type-aJlst Instance-variable 280

sys:

sys:
sys:
sys:
Left
Left

FUNCTION
SELECT

Reading characters from the
The

Forcing

SELECT and FUNCT ION
Symbolic names of shift

tv:
The Keyboard and

tv:
:*comtab*

:documentatlon
:function list Item

:pre-process-functlon list Item

Adding a Type

K

L

kbd-Intercepted-characters variable 15
:kbd menu Item type 210. 311
%%kbd-mouse bit 132.151
%%kbd-mouse-bur.on field 151
kbd-standard-abort-characters variable 16
kbd-standard-Intercepted-characters variable 16
kbd-standard-suspend-characters variable 16
kern 144. 146
Kern Font Attribute 144
key 135. 137
key 137. 139
keyboard 103
Keyboard and Key States 160
Keyboard as random access device 160
keyboard Input 103
Keyboard process 132
:keyboard-process option for

tv:add-functlon-key 135
Keys 135
keys 160
key-state function 132. 161
Key States 160
key-test function 161
keyword 381
keyword 269
keyword 313
keyword 313
:keyword-list option for prompt-and-read 59
:keyword-list tv:choose-varlable-values variable

type 259
:keyword option for prompt-and-read 59
Keyword Options 378
Keyword Property 269
:klll option for zwel:open-edltor-stream 378
:klil option for zwel:wlth-edltor-stream 378

K

L
tv:momentary-menu Example 3: Centered Label and Use of General Ust Items 224

:Iabel init option for tv:choose-varlable-values
: label init option for tv:label-mlxln 172

:Iabel init option for tv:
:Iabel-slze method of tv:
:set-Iabel method of tv:

tv:

Window
Window Margins. Borders. and

Constraint

:label init option for tv:menu 222. 297
label-mlxln 172
label-mlxln 172
label-mlxln 172
label-mlxln flavor 171
Labels 103. 168
Labels 171
Labels 168
:Iabel-slze method of tv:label-mlxln 172
Lambda expression as line item entry 308
language 175. 179. 188

263

416

Programming the User Interface

Playing

Une Item Array
time:

Delete
Delete to end of

Erase
Erase to end of

Mouse documentation
Status

:Ieader global
:mouse global

:mouse-self global
Global
Mouse

Length of :function
Length of :symeval
Width of :function
Width of :symeval

Complied object code as
:function

Lambda expression as
Named-lambda expression as

:strlng
Symbol

:symeval
:value

:mouse
:mouse-Item

Constructing
Mouse sensitivity and

Truncating
Vertical spacing between

Drawing
tv:

110 buffer property
Ordering

Updating menu Item
The -General

tv:momentary-menu Example 2: Item

March 1985

Large Pieces Example 344
:Iayout Constraint Frame Specification 180
:Ieader global line attribute 313
Leaders 313
leap-year-p function 369
Left edge of menu 298
Left Increment 335
:Ieft Inlt option for tv:menu 2537
:Ieft Inlt option for tv:lheet 163
Left kern 144. 146
Left Kern Font Attribute 144
:Ieft-margln-slze method of tv:sheet 167
Length of :function line Item 308
Length of :Iymeval line Item 308
:lImlt Constraint Size Specification 188
line 114
line 113
line 114
line 113
line 156. 207. 259
line 103. 311
line attribute 313
line attribute 311
line attribute 311
line attributes 307
line documentation 211
Une height 108. 143. 162
:lIne-ln method of 11:lnteractlve-stream 12
line Item 308
line Item 308
line Item 308
line Item 308
Une Item Array Leaders 313
Une Item entries 307. 308
line Item entry 308
line Item entry 308
line Item entry 308
line Item entry 308
line Item entry 308
line Item entry 308
line Item entry 308
line Item entry 308
line Item entry attribute 311
line Item entry attribute 311
Une Items 305
Une Items 307
line Items 311
:lIne-out method of tv:stream-mlxln 112
lines 108. 117. 119
lines In menu 222. 298
Unes on Windows 122
IIne-truncatlng-mlxln flavor 117
Una-truncating Windows 117
Usp Primitives for the Digital Audio Facilities 329
Usp Primitives for Wiring Memory 328
list 132
list 188
list 235
Us'- Form of Item 210
Ust as Init-plist Option 224
Ust as menu Item 208
Ust as pattern In dummy description 188
:lIst-cholces option for fquery 56
:lIsten method of 11:lnteractlve-stream 12
:lIsten method of tv:stream-mlxln 135
Ust Fonts (m-X) Zmacs command 142
list function 313

417

March 1985 Index

M

:function list Item keyword 313
:pr.process-functlon list Item keyword 313

Ust Item pllst 305. 313
Ust Items 305

Constructing Ust Hems 313
tv:momentary-menu Example 3: Centered Label and Use of General

Updating
Virtual

Dynamic Hem
Instantlable Dynamic Hem

Dynamic Hem

Ust Items 224
list Items 315
Ust Maintenance 315
Ust Menus 203. 235
Ust Menus 236
Ust Mlxlns 235
Ust of Choice Facilities 203

Audio command lists 321. 327
Building Audio Command Usts 330

Looping Through Audio Command Usts 334
:lIst-tyi method of sl:lnteractlve-stream 12
:Ioad-p option for zwel:open-edHor-stream 378
:Ioad-p option for zwel:wHh-edltor-atream 378
Locked windows 82
:Iong day-of-the-week-representatlon 370
Look-ahead 12. 135
Looping Through Audio Command Usts 334

Command Loop Input Edi10r Example 24

audlo:audlo-loop
audlo:computlng-Immedlate-audlo-samples

audlo:push-Immedlate-audlo-sample
audlo:set-audlo-repeat-count

audlo:wHh-audlo
aett

The zwel:wHh-edHor-stream
zwel:wlth-edltor-stream
Functions. Variables. and

Virtual Ust
tv:

tv:

tv:

Screen
The Screen

Screen

Color
Font

Choice boxes In bottom of
Window

Right
The

:margln-cholces Inlt option for tv:
:set-margln-cholces method of tv:

tv:
The tv:

tv:
tv:
tv:

M
macro 334
macro 333
macro 333
macro 334
macro 330
macro 308
Macro 3n
macro 3n
Macros for Digital Audio 329
Maintenance 315
make-bllnker function 147
:make-complete option for fquery 56
make-sheet-bH-array function 121
:make-system-veralon command processor

argument type 48
make-window function 107. 305
:make-window option for defwlndow-resource
Making Standalone Editor Windows 381
manager 76
Manager 86
Manager Background Process 86
Manipulating column geometry 215
map 103
map 108. 140
margin 289
margin 103. 162. 168
margin character nag 108
Margin Choice Facility 289
margln-cholce-mlxln 290
margln-cholce-mlxln 290
margln-cholce-mlxln Example 290
margln-cholce-mlxln Flavor 289
margln-cholce-mlxln flavor 289
margln-cholce-mlxln Inlt-pllst Option 290
margln-cholce-mlxln Messages 290
Margin Choices 203
:margln-cholces Inlt option for

tv:choose-vartable-valu8S 263
:margln-cholces inlt option for

M

107

418

Programming the User Interface March 1985

tv:choose-varlable-values-wlndow 275
:margln-cholces Inlt option for

tv:margln-cholce-mlxln 290
Margin Item 168
Margin Item flavors 168
Margin item messages 168
Margin region 289

Window Margins. Borders. and Labels 168
tv: margln-scroll-mlxln flavor 175

:marglns method of tv:sheet 167
:set-space method of tv: margln-space-mlxln 169
:space Inlt option for tv: margln-space-mlxln 169

:space' method of tv: margln-space-mlxln 169
tv: margln-space-mlxln flavor 169

Border margin width 170
Mouse buttons. bit mask 229

Maximum height 213
Maximum width 213

fonts: medfnb font 140
fonts: medfnt font 140

:medlum day-of-the-week-representatlon 370
Usp Primitives for WIring Memory 328

Unwired memory 327
Wired memory 327

Menu 207
:actlvate-p Inlt option for tv: menu 295

Adding an Item to the System Menu 238
Adding Item to menu 235

:borders Inlt option for tv: menu 222.295
:boHom Init option for tv: menu 295

:characler-helght init option for tv: menu 295
:character-wldth Inlt option for tv: menu 295

:ChOO88 method of tv: menu 223
:columns Inlt option for tv: menu 214. 296

Components of a Menu 208
:current-geometry method of tv: menu 214

:deactlvate method of tv: menu 223.299
:deexpose method of tv: menu 299

:defauH-font Inlt option for tv: menu 222.296
:edges-from init option for tv: menu 296

:edges Init option for tv: menu 296
:execute method of tv: menu 223
:expose method of tv: menu 299

:expose-p init option for tv: menu 296
:fill-p init option for tv: menu 214.296

:fill-p method of tv: menu 214
:font-map inlt option for tv: menu 222. 296

Geometry Example 1: a Multicolumned Menu 215
:geometry Init option for tv: menu 214. 296

:geometry method of tv: menu 214
:helght init option for tv: menu 296

Init-plist Options for tv: menu 295
:Inslde-helght Inlt option for tv: menu 296

:Inside-slze Init option for tv: menu 296
:Inslde-wldth Inlt option for tv: menu 297

:item-list Init option for tv: menu 222.297
:Iabel Inlt option for tv: menu 222. 297

Left edge of menu 298
:Ieft Init option for tv: menu 297

Messages Accepted by tv: menu 299
:mlnlmum-helght Init option for tv: menu 297
:mlnlmum-wldth Inlt option for tv: menu 297

Momentary menu 219. 223
Multlcolumn menu 215

Multiple choice menu 251
:name Inlt option for tv: menu 297

:posltlon Inlt option for tv: menu 297

March 1985

Redraw
:refresh method of tv:

:reverse-vldeo-p Init option for tv:
:rlght Init option for tv:
:rowa Init option for tv:

:screen Inlt option for tv:
:set-default-font method of tv:

:set-edges method of tv:
:set-fill-p method of tv:

:set-geometry method of tv:
:set-Item-list method of tv:

:set-Iabel method of tv:
The Flavor Network of tv:

The Geometry of a
Top edge of

:top Inlt option for tv:
tv:momentary-menu Example 1: Simple Momentary

Vertical spacing between lines in
:vsp init option for tv:

:wldth init option for tv:
:x init option for tv:
:y init option for tv:

Multiple
The Multiple

Instantiable Multiple
tv:

The Standard Multiple
Multiple
Multiple

Dynamic
Standard Momentary
tv:multlpls-choose

Introduction to the
tv:

Instantlable Multiple Choice

:add-hlghllghted-Hem method of tv:
:add-highllghted-value method of tv:
:hlghllghted-Items Inlt option for tv:

:hlghllghted-Iteml method of tv:
:hlghllghted-valuel method of tv:

:remove-hlghllghted-Item method of tv:
:remove-hlghllghted-value method of tv:

:set-highllghted-Iteml method of tv:
:set-hlghllghted-valuel method of tv:

tv:
Useful tv:

The Standard Momentary
[Bury] Edit Screen

Cons as
[Create] System

[Edit Screen] System
Executing a

Ustas
[Move Window] Edit Screen

Nil as a
String as

Symbol as
The Form of a

Updating
:documentatlon

:font

Selecting multiple

menu 299
menu 299
menu 297
menu 297
menu 214, 297
menu 298
menu 299
menu 299
menu 214
menu 214
menu 299
menu 299
menu 293
Menu 213
menu 298
menu 298
Menu 223
menu 222, 298
menu 222, 298
menu 298
menu 298
menu 298

419

Index

:menu-allst tv:choose-varlable-valuel variable
type 259

menu choose 247
Menu Choose Facility 247
Menu Choose Flavors 249
menu-choose function 212, 219
Menu Choose Function 247
Menu Choose Menus 203
Menu Choose Mixln and Resource 248
Menu Example 237
Menu Example 219
Menu Example 253
Menu Facilities 207
menu flavor 213, 221, 293, 295, 299
Menu Flavors 254
Menu formats 213
menu-hlghllghtlng-mlxln 243
menu-hlghllghtlng-mlxln 243
menu-hlghllghtlng-mlxln 242
menu-hlghllghtlng-mlxln 243
menu-hlghllghtlng-mlxln 243
menu-hlghllghtlng-mlxln 243
menu-hlghllghtlng-mlxln 243
menu-hlghllghtlng-mlxln 243
menu-hlghllghtlng-mlxln 243
menu-hlghllghtlng-mlxln flavor 241
menu Inlt-plist Options 222
Menu Interface 219
menu Item 86
menu Item 208
menu l1em 75
menu Item 75, 76, 175
menu item 212
menu item 208
menu Item 76
menu item 208
menu Item 208
menu item 208
Menu item 208
menu item list 235
menu item option 211, 224
menu item option 211, 224
Menu item Options 211
Menu items 208, 229, 311
menu items 241

420

Programming the User Interface

Types of

:buttons
:documentatlon

:eval
:Juneall

:Juncall-wHh-self
:kbd

:menu
:no-select

:value
:wlndow-op

tv:muHlple-cholce
Useful tv:
Command

Muhlple
Basic and Mixin Pop-up and Momentary

Command
Dynamic hem Ust

Init-pllst Option for Dynamic
Instantlable Command

Instantiable Dynamic hem Ust
Instantiable Muhiple

Instantiable Pop-up and Momentary
Messages to Dynamic

Momentary
Momentary and Pop-up

Multiple
Muhiple Choice

Muhiple Menu Choose
Pop-up

Using the mouse whh
Using the mouse whh momentary

Using the mouse with muhiple

Menu hems and
Deactivating

Exposing
Command

:alias-for-selected-wlndows
:bltbH

:choose
:current-geometry

:deselect
:draw-rectangle

:execute
:force-kbd-Input
:force-redisplay
:Inferlor -select

:Input-edltor
:Interactlve

:Io-buffer
:mouse-select

:muHlple-choose
:name-for-selectlon

:notlce
:notlficatlon-cell

:notlflcatlon-mode
:recelve-notlflcatlon

:redlsplay
:screen-manage-deexposed-gray-array

:select
:selectable-wlndows

Menu Hems 210
Menu hems and Menu Values 229
menu hem type 210. 225. 311
menu hem type 311
menu hem type 210. 311
menu hem type 210. 311
menu hem type 210
menu hem type 210. 311
menu hem type 210. 311
menu hem type 210
menu hem type 210. 212
menu hem type 210. 220
:menu menu hem type 210. 311
Menu Messages 255
menu Messages 223
Menu Mlxlns 230
Menu Mlxlns 241
Menus 220
Menus 203. 229
Menus 203. 235
Menus 237
Menus 231
Menus 236
Menus 242
Menus 221
Menus 237
menus 84. 203. 235
Menus 219
Menus 203. 241
Menus 203
Menus 203
menus 203. 219. 235
menus 207
menus 219
menus 241
Menu size parameter 213
Menus with several columns 203. 247
Menu Values 229
Menu Values 229
menu window 223. 299
menu window 223
menu within window frame 231
:merged-help option 29
message 96
message 118
message 212. 229
message 216
message 99
message 118
message 212. 311
message 132
message 3n
message 97
message 22
message 3
message 132
message 98
message 247
message 96
message 82
message 128
message 130
message 128
message 305
message 92
message 98
message 96

March 1985

March 1985

:selected-pane
:Ielect-pane

:select-relatlve
:sel-dlsplay-Item

:set-lo-bu1Ter
:set-notlflcatlon-mode

:set-type-allst
:tyI

:lyo
Type Decoding

Blinker
Cursor posl1lon

Deletion
Erase

Geometry
Graphics
Insertion

Margin l1em
nil option for window size and posl1lon

Notification
OVerview of Window Flavors and

Stream Input
tv:choose-varlable-values-wlndow

tv:command-menu
Iv:margln-cholce-mlxln

Iv:multlple-cholce Menu
tv:multlple-menu-mlxln

Useful tv:menu
:verlfy option for window size and position

Window Flavors and
Window posl1lon

Window size

tv:baslc-mouse-sensltlve-Items

Functions, Flavors, and

Displaying Help

Input Edl10r

Font
:prompt-and-read

:deexpose
:expose

:screen-manage
:set-save-blta

:edH
:Interval-strlng

:set-Interval-strlng
Adding a Type Decoding

:decode-varlable-type
:add-asynchronous-character

:any-tyl
:any-tyl-no-hang

:asynchronous-characler-p
:clear-Input

:finish-typeout
:force-resean

:handle-asynchronoul-character

421

Index

message 98, 187
message 97, 187
message 96
message 305
message 132
message 131
message 311
message 176
message 111
Message 270
messages 148
messages 112, 114
messages 113
messages 113
Messages 214
messages 118
messages 112
messages 168
messages 162
messages 103
Messages 103
messages 103
Messages 275
Messages 231
Messages 290
Messages 255
Messages 243
Messages 223
messages 162
Messages 103
messages 162
messages 162
Messages About Character Width and Cursor

Motion 114
Messages About Window Selection 96
Messages Accepted by tv:menu 299
Messages and Functions 283
Messages for Input From Interactive Streams 11
Messages for Input From Windows 134
Messages for Window Graying 92
Messages for Window Size and Posl1lon 165
Messages In the Input Editor 34
Messages to Display Characters on Windows 111
Messages to Dynamic Menus 237
Messages to Frames 187
Messages to Interactive Streams 38
Messages to Read or Set Cursor Posl1lon 113
Messages to Remove Characters From Windows 113
Messages to Windows 141
message to streams 59
message to windows 79
message to windows 79
message to windows 86
message to windows 79
message to zwel:standalone-edltor-frame 381
message to zwel:standalone-edltor-frame 381
message to zwel:standalone-edltor-frame 381
Method 269
method 269
method of sl:lnteractlve-stream 17
method of 11:lnteractlve-stream 11
method of 11:lnteractlve-stream 11
method of 11:lnteractive-stream 17
method of 11:lnteractlve-stream 12
method of 11:lnteractlve-stream 39
method of ai:lnteractlve-atream 39
method of 11:lnteractlve-stream 17

422

Programming the User Interface

:Input-edltor
:ltem

:lIne-ln
:lIsten
:lIst·tyI

:nolse-strlng-out
:read-bp

:remove·asynchronous-character
:replace-Input
:rescannlng-p
:start·typeout

:strlng·ln
:strlng·llne-In

:tyl
:tyl·no-hang

:untyl
:decode·varlable-type

:conflguratlon
:get-pane

:pane-name
:send-all-exposed-panea

:send·all-panes
:send-pane

:set-conflguratlon
:ltem

:prlmltlve·ltem
: redlsp lay

:set-dlsplay·ltem
:deselected-vlslbility

:half·perlod
:read-cursorpos

:set-cursorpos
:set-deselected-vlslbility

:set·follow·p
:set·half-perlod

:set·sheet
:set·vlslblllty

:border·margln·wldth
:set-border·margln·wldth

:set-bordera
:set·name

:set-character
:adjust-geometry·for·new·varlables

:approprlate·wldth
:redlsplay·varlable

:setup
:set·varlables

:Io·buffer
:set·lo-buffer

:delayed-set·label
:update·label

:update-ltem·lIst
:handle-mouse

:mouse-cllck
:mouse-moves
:center·around

:expose·near
:set-edges

:set·lnslde-slze
:set-posltlon

:set·slze
:draw-clrcle

:draw-clrcular·arc
:draw-closed-culVe
:draw·cublc·spllne

:draw-culVe
:draw-dashed-llne

method of sl:lnteractlve-stream 38
method of sl:lnteractlve-stream 19
method of sl:lnteractlve-stream 12
method of 11:lnteractlve-stream 12
method of sl:lnteractlve-stream 12
method of sl:lnteractlve-stream 40
method of sl:lnteractlve-stream 40
method of sl:lnteractlve-stream 18
method of sl:lnteractlve-stream 39
method of sl:lnteractlve-stream 39
method of sl:lnteractlve-stream 38
method of sl:lnteractlve-stream 13
method of sl:lnteractlve-stream 14
method of sl:lnteractlve-stream 11
method of sl:lnteractlve-stream 12
method of sl:lnteractlve·stream 12

March 1985

method of tv:baslc-choose-varlable-values 270
method of tv:baslc-constralnt·frame 188
method of tv:baslc-constralnt·frame 187
method of tv:baslc-constralnt·frame 188
method of tv:baslc-constralnt·frame 188
method of tv:baslc-constralnt·frame 188
method of tv:baslc-constralnt·frame 188
method of tv:baslc-constralnt·frame 188
method of tv:baslc·mouse-sensltlve-Items 283
method of tv:baslc·mouse-sensltlve-Items 283
method of tv:baslc·scroll·wlndow 305
method of tv:baslc·scroll·wlndow 305
method of tv:bllnker 149
method of tv:bllnker 149
method of tv:bllnker 148
method of tv:bllnker 148
method of tv:bllnker 149
method of tv:bllnker 148
method of tv:bllnker 149
method of tv:bllnker 149
method of tv:bllnker 148
method of tv:borders-mlxln 171
method of tv:borders·mlxln 171
method of tv:borders·mlxln 171
method of tv:changeable-name-mlxln 173
method of tv:character-bllnker 150
method of tv:choose-varlable-values-wlndow 276
method of tv:choose-varlable-values·wlndow 276
method of tv:choose-varlable-values·wlndow 276
method of tv:choose-varlable-values·wlndow 275
method of tv:choose-varlable-values·wlndow 276
method of tv:command·menu 231
method of tv:command-menu 231
method of tv:delayed-redlsplay·label·mlxln 173
method of tv:delayed-redlsplay·label·mlxln 173
method of tv:dynamlc· ... ·menu 237
method of tv:essentlal·mouse 152
method of tv:essentlal·mouse 153
method of tv:essentlal·mouse 152
method of tv:essentlal·set-edges 167
method of tv:essentlal·set-edges 167
method of tv:essentlal·set-edges 167
method of tv:essential·set-edges 166
method of tv:essentlal·set-edges 167
method of tv:essential·set-edges 166
method of tv:graphlcs·mlxln 124
method of tv:graphlcs·mlxln 124
method of tv:graphlcs·mlxln 124
method of tv:graphlcs·mlxln 125
method of tv:graphlcs-mlxln 123
method of tv:graphlcs·mlxln 122

March 1985

:draw-filled-in-circle
:draw-filled-in-sector

:draw-Ilne
:draw-Ilnes
:draw-polnt

:draw-regular-polygon
:draw-strlng

:draw-trlangle
:draw-wlde-curve

:polnt
:gray-array-for-Inferlors

:set-gray-array-for-Inferlors
:gray-array-for-unused-areas

:set-gray-array-for-u n used-areas
:hysteresls

:set-hysteresls
:Iabel-slze
:set-Iabel

:set-margln-cholces
:set-space

:space
:choose

:current-geometry
:deactivate
:deexpose

:execute
:expose

:fI1I-p
:geometry

: refresh
:set-default-font

:set-edges
:set-fllI-p

:aet-geometry
:set-Hem-list

:set-Iabel
:add-hlghlightect.Hem

:add-hlghllghted-value
:hlghllghted-Hems

:hlghllghted-values
:remove-hlghllghted-Hem

:remove-hlghllghted-value
:set-hlghllghted-Hems

:set-hlghllghted-values
:choose

:setup
:Iet-slze

:basellne
:bltbtt

:bltblt-from-sheet
:bltbH-wlthln-sheet

:botlom-margln-slze
:change-of-slze-or-marglnl

:character-wldth
:clear-char

:clear-rest-of-line
:clear-rest-of-wlndow

:clear-wlndow
:computa-motlon

:current-font
:deexposed-typeln-actlon

:deexposed-typeout-actlon
:delete-char
:delete-llne

:deleta-strlng
:draw-char

:draw-reclangle

method of tv:graphlcs-mlxln 125
method of tv:graphlcs-mlxln 125
method of tv:graphlcs-mlxln 122
method of tv:graphlcs-mlxln 122
method of tv:graphlcs-mlxln 120
method of tv:graphlcs-mlxln 125
method of tv:graphlcs-mlxln 121
method of tv:graphlcs-mlxln 124
method of tv:graphlcs-mlxln 124
method of tv:graphlcs-mlxln 120

423

Index

method of tv:gray-deexposed-lnferlorB-mlxln 93
method of tv:gray-deexposed-Inferlors-mlxln 93
method of tv:gray-unused-areas-mlxln 93
method of tv:gray-unused-areas-mlxln 93
method of tv:hysteretlc-wlndow-mlxln 158
method of tv:hysteretlc-wlndow-mlxln 158
method of tv:label-mlxln 172
method of tv:label-mlxln 172
method of tv:margln-cholce-mlxln 290
method of tv:margln-space-mlxln 169
method of tv:margln-space-mlxln 169
method of tv:menu 223
method of tv:menu 214
method of tv:menu 223, 299
method of tv:menu 299
method of tv:menu 223
method of tv:menu 299
method of tv:menu 214
method of tv:menu 214
method of tv:menu 299
method of tv:menu 299
method of tv:menu 299
method of tv:menu 214
method of tv:menu 214
method of tv:menu 299
method of tv:menu 299
method of tv:menu-hlghllghtlng-mlxln 243
method of tv:menu-hlghllghtlng-mlxln 243
method of tv:menu-hlghllghtlng-mlxln 243
method of tv:menu-hlghllghtlng-mlxln 243
method of tv:menu-hlghllghtlng-mlxln 243
method of tv:menu-hlghllghtlng-mlxln 243
method of tv:menu-hlghllghtlng-mlxln 243
method of tv:menu-hlghllghtlng-mlxln 243
method of tv:multlple-cholce 255
method of tv:multlple-cholce 255
method of tv:rectangular-bllnker 150
method of tv:sheet 142
method of tv:sheet 120
method of tv:sheet 120
method of tv:sheet 121
method of tv:sheet 167
method of tv:sheet 166
method of tv:sheet 114
method of tv:sheet 113
method of tv:sheet 113
method of tv:sheet 113
method of tv:sheet 114
method of tv:sheet 114
method of tv:sheet 142
method of tv:sheet 116
method of tv:sheet 116
method of tv:sheet 114
method of tv:sheet 114
method of tv:sheet 114
method of tv:sheet 121
method of tv:sheel 124

424

Programming the User Interface

:edges
:font-map

:home-cursor
:home-down

:Inlt
:Insert-char
:Insert-line

:Insert-strlng
:Inslde-edges

:Inslde-slze
:Ieft-margln-slze

:marglna
:more-p

:name
:posltlon

:read-cursorpoa
:refresh

:reverse-vldeo-p
:rlght-margln-slze

:set-current-font
:sel-cursorpos

:set-deexposed-typeln-actlon
:set-deexposed-typeout-actlon

:set-font-mcip
:set-font-map-and-vsp

:set-more-p
:set-reverse-vldeo-p

:set-slze-In-characters
:set-truncate-Ilne-out

:set-vsp
:slze

:slze-In-characters
:strlng-Ienath

:strlng-out
:top-margln-slze

:truncate-line-out
:lyo
:vsp

:who-Ilne-documentatlon-strlng
:any-tyl

:any-tyl-no-hang
:clear-Input
:fresh-line

:lIne-out
:lIsten
:untyl

Elapsed Time In
time:

Starting and Stopping the Audio
The Audio

tv:

Multiple Menu Choose

Instantiable, Basic, and
Basic and

Command Menu
Dynamic Item Ust

Multiple Menu
:mouse window-positioning

method of tv:sheet 167
method of tv:sheet 141
method of tv:lheel 113
method of tv:lheel 113
method of tv:lheet 107
method of tv:lheet 112
method of tv:sheet 112
method of tv:lheet 112
method of tv:lheet 167
method of tv:sheet 166
method of tv:sheet 167
method of tv:lheet 167
method of tv:lheet 115
method of tv:lheet 172
method of tv:lheet 166
method of tv:sheet 113
method of tv:sheet 113
method of tv:sheet 116
method of tv:sheet 167
method of tv:sheet 142
method of tv:lheet 113
method of tv:sheet 116
method of tv:sheet 116
method of tv:sheet 141
method of tv:sheet 142
method of tv:sheet 116
method of tv:sheet 116
method of tv:sheet 166
method of tv:sheet 118
method of tv:sheet 116
method of tv:8heet 166
method of tv:sheet 166
method of tv:sheet 115
method of tv:sheet 111
method of tv:sheet 167
method of tv:sheet 118
method of tv:sheet 111
method of tv:sheet 116
method of tv:8heet 152
method of tv:8tream-mlxln 134
method of tv:stream-mlxln 135
method of tv:stream-mlxln 135
method of tv:stream-mlxln 112
method of tv:stream-mlxln 112
method of tv:8tream-mlxln 135
method of tv:stream-mlxln 135

March 1985

Microcode Support for the Digital Audio Facilities 321
Microseconds 357
microsecond-time function 357
Mlcrotask 335
M Icrotask 321
:mlnlmum-helght Inlt option for

tv:essentlal-wlndow 164
:mlnlmum-helght init option for tv:menu 2537
:mlnlmum-wldth Init option for

tv:essentlal-wlndow 164
:mlnlmum-wldth Init option for tv:menu 2537
minimum-window flavor 105
Minute 353
Mlxln and Resource 248
Mlxln flavors 205
Mixin Flavors 205
Mlxln Pop-up and Momentary Menus 220
Mlxlns 230
Mlxlns 235
Mlxlns 241
mode 167

March 1985

:polnt window-positioning
:rectangle window-positioning

:wlndow window-positioning
audio:

tv:momentary-menu Example 1: Simple
Standard

tv:

tv:

tv:

tv:

tv:
The Standard

tv:

Basic and Mlxin Pop-up and
Instantlable Pop-up and

Using the mouse with
tv:
tv:

Simple
tv:

time:
time:

Messages About Character Width and Cursor
Scaling Mouse

Grabbing the
Handling the

Owning of a window by the
Tracking the
Usurping the

tv:

Identifying
tv:momentary-menu Example 4: Using the

tv:

Encoded
Reading

tv:

tv:

tv:

425

Index

mode 167
mode 167
mode 167
modlfy-audlo-command-arg function 332
Modifying the Choice Facilities 206
Modifying values of variables 257
Momentary and Pop-up Menus 219
Momentary menu 219, 223
Momentary-menu 242
Momentary Menu 223
Momentary Menu Example 219
momentary-menu Example 1: Simple Momentary

Menu 223
momentary-menu Example 2: Item Ust as Inlt-pl/st

Option 224
momentary-menu Example 3: Centered Label and

Use of General Ust Items 224
momentary-menu Example 4: USing the Mouse

Buttons 225
momentary-menu flavor 221, 293
Momentary Menu Interface 219
momentary-menu resource 221
Momentary menus 84, 203, 235
Momentary Menus 220
Momentary Menus 221
momentary menus 219
momentary-muHlple-menu Example 243
momentary-muHlple-menu flavor 242
momentary window 223
momentary-wlndow-hacklng-menu flavor 221
Month 353
month-length function 369
month-string function 370
:more-exceptlon 108, 116
More flag 108
:more-p Inlt option for tv:sheet 115
:more-p method of tv:sheet 115
More processing 103, 108, 115
Motion 114
Motion 159
mouse 151, 154
Mouse 151
mouse 151
mouse 151, 157
mouse 151, 157
Mouse as an Input device 103, 151
Mouse Behavior 281
Mouse blinker 146
mouse-button-encode function 156
Mouse button encoding 311
mouse buttons 151, 156, 157
Mouse Buttons 225
Mouse buttons, bit mask 229
mouse-buttons function 158
:mouse-cllck method of tv:essentlal-mouse 153
Mouse clicks 151. 152
mouse clicks 151
mouse clicks 311
Mouse documentation 152
Mouse documentation line 156. 207. 259
Mouse documentation window 311
mouse-double-cllck-tlme variable 161
:mouse global line attribute 311
mouse-Incrementlng-keystates variable 161
Mouse Input 151
mouse-Input function 157
:mou.e-Hem line item entry attribute 311

426

Programming the User Interface

tv:

tv:
Scaling

Controlling the

The User's Process and the

Creating

Attributes of a

Associating Actions with
Interactive Streams and

Using the mouse with
The
tv:

tv:
tv:

Relationship of
tv:
tv:

USing the
Using the
USing the
Using the
Using the

tv:
tv:

The tv:
tv:
tv:
tv:

Geometry Example 1: a

:choose method of tv:
:setup method of tv:

tv:
The

The Basic
tv:

The Standard

Instantiable
tv:

Using the mouse with

tv:
tv:

tv:
The

Instantiable

March 1985

mouse-Iast-buttons variable 155
Mouse line documentation 211
:mouse line Item entry attribute 311
mouse-modlfylng-keystates variable 161
Mouse Motion 159
:mouse-moves method of tv:essentlal-mouse 152
Mouse Outside a Window 158
Mouse position 155
Mouse process 151
Mouse Process 206
:mouse-select message 98
:mouse-self global line attribute 311
mouse-sensitive-area of screen 283
Mouse-sensitive Areas 203
Mouse-sensitive Areas Example 286
Mouse-sensitive entries 308
Mouse-sensitive Item 280
Mouse-sensitive Items 203
Mouse-sensitive Items 280
Mouse-sensitive Items 19
mouse-sensitive Items 281
Mouse-sensitive Items Facility 279
mouse-sensltlve-text-scroll-wlndow flavor 174
Mouse Sensitivity 311
Mouse sensitivity and line Items 311
mouse-set-bllnker-cursorpoa function 152
mouse-sheet variable 152
mouse to windows 151
mouse-walt function 155
mouse-wakeup function 152
:mouse window-positioning mode 167
mouse with menus 207
mouse with momentary menus 219
mouse with mouse-sensitive items 281
mouse with multiple choice window 251
mouse with multiple menus 241
mouse-x-acale-array variable 159
mouse-x variable 155
mouse-y-or-n-p Facility 220
mouse-y-or-n-p function 220
mouse-y-scale-array variable 160
mouse-y variable 155
[Move Window] Edit Screen menu Item 76
Multlcolumned Menu 215
Multlcolumn menu 215
munlple-cholce 255
multiple-choice 255
multiple-choice Example 255
Multiple Choice Facility 251
Multiple Choice Flavor 254
munlple-cholce flavor 254
Multiple Choice Function 252
Multiple choice menu 251
Multiple Choice Menu Flavors 254
munlple-cholce Menu Messages 255
Multiple Choice Menus 203
multiple choice window 251
Multiple choice window parameters 251. 255
munlple-choose function 252
multlple-choose Menu Example 253
:munlple-choose message 247
Multiple dynamic columns 236
Multiple-line objects 305
Multiple menu choose 247
munlple-menu-choose Example 248
Multiple Menu Choose Facility 247
Multiple Menu Choose Flavors 249

March 1985

N

tv:
The Standard

tv:
tv:
tv:

tv:
Selecting

:speclal-cholces Inlt option for tv:
tv:
tv:
tv:

Instantiable
Using the mouse with

Displaying

Ust Fonts

Constraint frame configuration
Window

Font
Symbolic

The Flavor

tv:

tv:

tv:

OVerview of
Pop-up

Receiving and Displaying

tv:

N

427

Index

muHlple-menu-choose function 247
Muttlple Menu Choose Function 247
muHlple-menu-choose-menu Example 249
muHlple-menu-choose-menu flavor 249
muHlple-menu-choose-menu-mlxln flavor 248
Multiple Menu Choose Menus 203
Multiple Menu Choose Mixln and Resource 248
muHlple-menu flavor 242
multiple menu items 241
muHlple-menu-mlxln 242
multlple-menu-mlxln flavor 241
muHlple-menu-mlxln Init-plist Options 242
muHlple-menu-mlxln Messages 243
Multiple Menu Mlxlns 241
Multiple Menus 203. 241
Multiple Menus 242
multiple menus 241
multiple values of a function 308
Music systems 324
(m-X) Zmacs command 142

name 179
name 297
Named-lambda expression as line item entry
:name-font Inlt option for

tv:baslc-choose-varlable-values 274
:name-for-selection message 96
:name Init option for tv:menu 297
:name Init option for tv:sheet 171
:name method of tv:sheet 172
names 140. 145
names of shift keys 160
:near-mode inlt option for

tv:chooS8-variable-values 263
Network of tv:menu 293
Nil as a menu Item 208
nil blinker visibility 146
nil option for window size and position

messages 162
:no-Input-save option 31
:no-Input-save option for fquery 56
:nolse-strlng-out method of

sl:lnteractlve-stream 40
Non-real-time synthesis 343. 344
Non-real-time Synthesis Example 343
*nopolnt variable 257
:normal deexposed typeou1 action 82
no-screen-managlng-mlxln flavor 87
:no-select menu item type 210
Notes on Wired Structures 327
:notlce message 82
:notlflcatlon-cell message 128
notlflcatlon-dellver-tlmeout variable 130
:notlflcatlon-handler option 32
Notification messages 103
:notlflcatlon-mode message 130
notlflcatlon-pop-down-delay variable 132
Notifications 126
Notifications 126
Notifications 131
Notifications 127
:notlfy deexposed typeou1 action 82
notify function 127
Notifying the User 127

308

N

428

Programming the User Interface March 1985

o

:number command processor argument type 48
Set number of columns 214. 296

audio: *number-of-polyphonlc-volces* variable 330
:number option for prompt-and-read 59
:number-or-nll option for prompt-and-read 59
:number-or-nll tv:choose-varlable-valuea variable

Complied

Multiple-line
Graphical

Drawing pictures
Primitives for Drawing

Audio Command
Polyphony Command

:buffer-name option for zwel:
:create-p option for zwel:
:default option for zwel:

:end option for zwel:
:hack-fonts option for zwel:

:Interval option for zwel:
:klll option for zwel:

:Ioad.p option for zwel:
:ordered.p option for zwel:
:pathname option for zwel:

:start option for zwel:
:wlndow option for zwel:

The zwel:
zwel:

General Blinker
Interactive-stream

Input
Output

:actlvatlon
:bllp-handler

:brlef-help
:command

:complete-help
:documentatlon menu Item

:do-not-echo
:edltor-command

:font menu Item
:full-rubout

:function Init-pHst
:Inltlal-Input

:Input-hlstory-default
:Input-walt

:Input-walt-handler
:Io-buffer Inl1

:ltem-type-allst Inlt-pllst

o

type 259
:number tv:choose-varlable-valuea variable

type 259

object code as line Item entry 308
:obJect-list option for prompt-and-read 59
:object option for prompt-and-read 59
objects 305
objects and text Intermingled 279
:0" blinker visibility 146
Off-negative Implication 251
Off-positive Implication 251
:on blinker visibility 146
On-negative Implication 251
On-positive Implication 251
onto arrays 118
Onto Arrays 126
Opcodes 323
Opcodes 326
Opcodes for audio commands 323
open-edltor-stream 378
open-edltor-stream 378
open-edltor-stream 378
open-edltor-stream 378
open-edltor-stream 378
open-edltor-stream 378
open-edltor-stream 378
open-edltor-stream 378
open-edltor-stream 378
open-edltor-stream 378
open-edltor-stream 378
open-edltor-stream 378
open-edltor-stream Function 3n
open-edltor-stream function 3n
Opening a bidirectional stream 3n
Opening blinkers 146
Operation of Polyphony 325
Operations 147
Operations for Asynchronous Characters 17
operations on windows 75
operations on windows 75
option 31
option 30
option 29
option 32
option 28
option 211. 224
option 31
option 32
option 211. 224
option 27
option 262
option 29
option 30
option 32
option 32
option 132
option 280

o

March 1985

429

Index

:merged-help option 29
:no-Input-save option 31

:notlflcatlon-handler option 32
:par1lal-help option 28

:pass-through option 27
:pennlt deexposed typeout option 86

:preemptable option 31
:prompt option 28

:reprompt option 28
:stack-group inlt option 274

:suppress-notlflcatlons option 32
tv:margln-cholce-mlxln Inlt-pllst Option 290

tv:momentary-menu Example 2: Item Ust as Inlt-pllst

The
The User

User
:constructor

:lnHlal-coples
:make-wlndow

:reusable-when
:superlor

Init-pllst
:beep

:cholces
:clear-Input
:fresh-line

:help-functlon
:lIst-cholces

:make-complete
:no-Input-save

:select
:slgnal-condltlon

:statua
:stream

:type
:character

:clasa
:complete-strlng

:date
:date-or-never

:declmal-number
:declmal-number-or-nll

:dellmHed-string
:dellmlted-strlng-or-nII

:eval-form
:eval-fonn-or-end

:expresslon
:expresslon-or-end

:flavor-name
:font

:font-list
:function-spec

:host
:host-list

:host-or-iocal
:Integer

: keyword
: keyword-list

:number
:number-or-nll

:obJect
:obJect-list
:past-date

:past-dale-or-never
:pathname

:pathnam.holt

Option 224
Optional Constraint Function 262
Option Facility 266
option facility 203
option for defwlndow-resource 107
option for defwlndow-resourc·) 107
option for defwlndow-resource 107
option for defwlndow-resource 107
option for defwlndow-resource 107
Option for Dynamic Menus 237
option for fquery 56
option for fquery 56
option for fquery 56
option for fquery 56
option for fquery 56
option for fquery 56
option for fquery 56
option for fquery 56
option for fquery 56
option for fquery 56
option for 'query 56
option for 'query 56
option for 'query 56
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59

430

Programming the User Interface

:pathname-list
:pathname-or-nll

:strlng
:string-list

:strlng-or-nll
:strlng-trlm

:symbol
:tlme-Interval-or-never

:asynchronous-characters init
:keyboard-process

:process-name
:typeahead

:function Inlt
:name-font init

:selected-cholce-font Init
:stack-group init

:strlng-font init
:unselected-cholce-font init

:value-font Init
:varlables Init

:conflguratlon init
:conflguratlons init

:constralnts init
:panes init

:selected-pane init
:Hem-type-allst init

:deselected-vlslblllty init
:follow-p init

:half-perlod init
:vlslblllty init

:x-pos init
:y-pos init

:border-margln-wldth init
:borders init

:char Init
:font init

:extra-wldth init
:functlon init

:Iabel init
:margln-cholces Inlt

:near-mode init
:superlor init

:wldth init
:Io-buffer init

:margln-cholces init
:Io-buffer init
:Io-buffer Inlt

:Hem-list-pointer Init
:column-spec-lIst init

:actlvate-p init
:edges-from inlt

:expose-p Init
:mlnlmum-helght Inlt
:mlnlmum-wldth Init
:typeout-window init

:gray-array-for-Inferlors Inlt
:gray-array-for-unused-areas Init

:hysteresls Inlt
:helght Inlt

:Iabel Inlt
:margln-cholces init

:space init
:actlvate-p init

:borders inlt
:bottom Inlt

option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for prompt-and-read 59
option for sl:lnteractlve-stream 17
option for tv:add-functlon-key 135
option for tv:add-functlon-key 135
option for tv:add-functlon-key 135

March 1985

option for tv:baslc-choose-varlable-values 274
option for tv:baslc-choose-varlable-values 274
option for tv:baslc-choose-varlable-values 275
option for tv:baslc-choose-varlable-values 274
option for tv:baslc-choose-varlable-values 275
option for tv:baslc-choose-varlable-values 275
option for tv:baslc-choose-varlable-values 275
option for tv:baslc-choose-varlable-values 274
option for tv:baslc-constralnt-frame 188
option for tv:baslc-constralnt-frame 179
option for tv:baslc-constralnt-frame 189. 196
option for tv:baslc-constralnt-frame 179. 189. 196
option for tv:baslc-constralnt-frame 98. 187
option for tv:baslc-mouse-sensHlve-Hems 283
option for tv:bllnker 148
option for tv:bllnker 148
option for tv:bllnker 149
option for tv:bllnker 148
option for tv:bllnker 148
option for tv:bllnker 148
option for tv:borders-mlxln 171
option for tv:borders-mlxln 170
option for tv:character-bllnker 150
option for tv:character-bllnker 150
option for tv:choose-variable-values 263
option for tv:choose-varlable-values 263
option for tv:choose-varlable-values 263
option for tv:choose-varlable-values 263
option for tv:choose-varlable-values 263
option for tv:choose-varlable-values 264
option for tv:choose-varlable-values 263
option for tv:choose-varlable-values-wlndow 275
option for tv:choose-varlable-values-wlndow 275
option for tv:command-menu 231
option for

tv:constralnt-frame-wHh-shared-lo-buffer 179
option for tv:dynamlc-... -menu 237
option for tv:dynamlc-muHlcolumn-mlxln 237
option for tv:essentlal-wlndow 107
option for tv:essentlal-wlndow 164
option for tv:essentlal-wlndow 107
option for tv:essentlal-wlndow 164
option for tv:essentlal-wlndow 164
option for

tv:essentlal-wlndow-wlth-typeout-mlxln 174
option for tv:gray-deexposed-Inferlors-mlxln 93
option for tv:gray-unused-areas-mlxln 93
option for tv:hysteretlc-wlndow-mlxln 158
option for tv:lbeam-bllnker 150
option for tv:label-mlxln 172
option for tv:margln-cholce-mlxln 290
option for tv:margin-space-mixln 169
option for tv:menu 295
option for tv:menu 222. 295
option for tv:menu 295

March 1985

:characler-helght Inlt
:character-wldth Inlt

:columns Inlt
:default-font Inlt
:edges-from Inlt

:edges Inlt
:expose-p Inlt

:fI1I-p Inlt
:font-map Inlt
:geometry Inlt

:helght Inlt
:Inslde-helght Inlt

:Inslde-slze Inlt
:Inslde-wldth Inlt

:Item-list Inlt
:Iabellnlt

:Ieft Inlt
:mlnlmum-helght Inlt
:mlnlmum-wldth Inlt

:name Inlt
:posltlon Inlt

:reverse-vldeo-p Inlt
:rlght Inlt
:row8lnlt

:8creen Inlt
:top Inlt
:vsp Inl1

:wldth Inlt
:llnlt
:y Inlt

:hlghllghted-Hems Init
:speclal-cholces Inlt

:process Inlt
:helght Inlt
:wldth Inlt

:type-allst inlt
:backspace-not-overprlntlng-flag Inlt

:bottom Inlt
:char8Cter-helght Inlt
:character-wldth Inlt

:cr-not-newllne-flag Inlt
:deexposed-typeln-actlon Inlt

:deexposed-typeout-acllon Inlt
:edgellnlt

:font-map inlt
:helght Inlt

:Inslde-helght Inlt
:Inslde-slze Inlt

:Inslde-wldth Inlt
:Integral-p Inlt

:Ieft Inlt
:more-p Inlt

:name Inlt
:posltlon Init

:rlght Inlt
:rlght-margln-character-flag Inlt

:slze Inlt
:superlor Inlt

:tab-nchars Init
:top Inlt
:vsp Inlt

:wldth Inlt
:x Init
:y Inlt

nil
:verlfy

:buffer-name

option for tv:menu 295
option for tv:menu 295
option for tv:menu 214. 296
option for tv:menu 222. 296
option for tv:menu 296
option for tv:menu 296
option for tv:menu 296
option for tv:menu 214. 296
option for tv:menu 222. 296
option for tv:menu 214. 296
option for tv:menu 296
option for tv:menu 296
option for tv:menu 296
option for tv:menu 297
option for tv:menu 222. 2JJ7
option for tv:menu 222. 2JJ7
option for tv:menu 2JJ7
option for tv:menu 2JJ7
option for tv:menu 297
option for tv:menu 2JJ7
option for tv:menu 2JJ7
option for tv:menu 297
option for tv:menu 297
option for tv:menu 214. 2JJ7
option for tv:menu 298
option for tv:menu 298
option for tv:menu 222. 298
option for tv:menu 298
option for tv:menu 298
option for tv:menu 298
option for tv:menu-hlghllghtlng-mlxln 242
option for tv:muHlple-menu-mlxln 242
option for tv:process-mlxln 94
option for tv:rectangular-bllnker 149
option for tv:rectangular-bllnker 149
option for tv:scroll-mouse-mlxln 311
option for tv:sheet 108. 117
option for tv:sheet 163
option for tv:sheet 164
option for tv:sheet 164
option for tv:sheet 108. 117
option for tv:sheet 116
option for tv:sheet 116
option for tv:sheet 163
option for tv:sheet 142
option for tv:sheet 163
option for tv:sheet 163
option for tv:sheet 163
option for tv:sheet 163
option for tv:sheet 164
option for tv:sheet 163
option for tv:sheet 115
option for tv:sheet 171
option for tv:sheet 163
option for tv:sheet 163
option for tv:sheet 117
option for tv:sheet 163
option for tv:sheet 107
option for tv:sheet 108. 117
option for tv:sheet 163
option for tv:sheet 116
option for tv:sheet 163
option for tv:sheet 163
option for tv:sheet 163

431

Index

option for window size and position messages 162
option for window size and position messages 162
option for zwel:open-edHor-&tream 378

432

Programming the User Interface

:create-p
:defauh

:end
:hack-fonts

:Interval
: kill

:Ioad-p
:ordered-p
:pathname

:start
:wIndow

:buffer-name
:create-p
:defaults

:end
:hack-fonts

:Interval
: kill

:Ioad-p
:ordered-p
:pathname

:start
:wlndow

Geometry Inlt-pllst
Input Editor

Keyword
Menu Item

tv:baslc-choose-varlable-values Inlt-pllst
tv:baslc-mouse-sensHlve-Hems Init-plist

tv:choose-varlable-values
tv:command-menu Init-pllst

tv:multlple-menu-mlxln Init-pllst
Useful tv:menu Inlt-pllst

Window position Inlt
Window size Inlt

User
Inlt-pllst

Setting parameter
Functions for Altering User
Functions for Defining User

How Windows Display Graphic
Window Attributes for Character

Window Exposure and

Windows as
Character

Graphic
Controlling the Mouse

March 1985

option for zwel:open-edltor-stream 378
option for zwel:open-edHor-stream 378
option for zwel:open-edHor-stream 378
option for zwel:open-edHor-stream 378
option for zwel:open-edHor-stream 378
option for zwel:open-edHor-stream 378
option for zwel:open-edHor-stream 378
option for zwel:open-edHor-stream 378
option for zwel:open-edltor-stream 378
option for zwel:open-edHor-stream 378
option for zwel:open-edHor-stream 378
option for zwel:wHh-edHor-stream 378
option for zwel:wHh-edHor-stream 378
option for zwel:wlth-edltor-stream 378
option for zwel:wHh-edltor-stream 378
option for zwel:wHh-edltor-stream 378
option for zwel:wHh-edHor-stream 378
option for zwel:wHh-edltor-stream 378
option for zwel:wHh-edHor-stream 378
option for zwel:wlth-edltor-stream 378
option for zwel:wlth-edHor-stream 378
option for zwel:wlth-edltor-stream 378
option for zwel:wHh-edHor-stream 378
Options 213
Options 27
Options 378
Options 211
Options 274
Options 283
Options 263
Options 231
Options 242
Options 222
options 162
options 162
Options Example 268
Options for tv:menu 295
options to programs 266
Option Variables 267
Option Variables 267
:ordered-p option for zwel:open-edltor-stream 378
:ordered-p option for zwel:wlth-edltor-stream 378
Ordering list 188
Output 118
Output 115
Output 82
Output hold flag 82, 108, 118
Output Hold state 82
Output operations on windows 75
output streams 103, 108
Output to Windows 108
Output to Windows 118
Outside a Window 158
OVerlapping windows 75
OVerstriklng 108
OVerview of Notifications 126
OVerview of the Choice Facilities 203
OVerview of Window Flavors and Messages 103
OWning of a window by the mouse 151

March 1985

p
fonts
time

Constraint frame

tv:

tv:

Creating
Frames and

Size of
Window

Examples of Specifications of
Specifying

Examples of Specifications of
Specifying
Flavors for

Menu size
Setting

Digital Audio
Initialize border

Multiple choice window
Set edge

time:
time:
time:
time:
time:

Dummy

Array as
:black
Ustas

Symbol as
:whUe

433

Index

p
package 140
package 353
:package command processor argument type 48
package variable 257
pane 179
Pane border 176
pane-mlxln flavor 100. 176
:pane-name method of

tv:bash:-constralnt-frame 188
pane-no-mouse-selecl-mlxln ftavor 100. 1n
Panes 103. 175
panes 176
Panes 95
panes 188
panes 76
Panes and Constraints 185
Panes and Constraints 179
Panes and Constraints Before Release 6.0 196
Panes and Constraints Before Release 6.0 188
Panes and Frames 176

p

:panes init option for tv:baslc-constralnt-frame 179.
189. 196

parameter 213
parameter options to programs 266
Parameters 329
parameters 222. 295
parameters 251. 255
parameters 296
parse function 361
parse-Interval-or-never function 365
parse-present-based-unlversal-tlme function 362
parse-unlversal-tlme function 362
parse-unlversal-tlme-relatlve function 362
:partlal-help option 28
Partially visible windows 75. 86
parts 188
:pass-through option 27
:past-date option for prompt-and-read 59
:past-date-or-never option for prompt-and-read 59
:past-date-or-never tv:choose-varlable-values

variable type 259
:past-date tv:choose-variable-values variable

type 259
:pathname command processor argument type 48
Path name completion with prompt-and-read 59
:path name-host option for prompt-and-read 59
:pathname-host tv:choose-variable-values variable

type 259
:pathname-list option for prompt-and-read 59
:path name-list tv:choose-variable-valuea variable

type 259
:pathname option for prompt-and-read 59
:pathnarne option for zwel:open-edHor-ltream 378
:pathnarne option for zwel:wHh-edHor-atream 378
:pathnarne-or-nll option for prompt-and-read 59
:pathnarne-or-nll tv:choose-varlable-valuea variable

type 259
:pathname tv:choose-varlable-values variable

type 259
pattern In dummy description 188
pattern In dummy descrlptlon 188
pattern In dummy descrlptlon 188
pattern In dummy descrlptlon 188
pattern In dummy description 188
Pauses 108

434

Programming the User Interface

Drawing
Playing Large

Ust item
Fill

Drawing

Drawing

Computing
audio:

Operation of

Conversions for the
The

Basic and Mixin
Instantiable

tv:
tv:

Momentary and
tv:
tv:

Cursor
Initializing Window Size and

Messages for Window Size and
Messages to Read or Set Cursor

Mouse

Window
Cursor

nil option for window size and
:verify option for window size and

Window

Window Sizes and

tv:

Usp
Usp

time:
time:
time:

Peek subsystem 303
:pennH deexposed typeout action 82
:pennH deexposed typeout option 86
pictures onto arrays 118
Pieces Example 344
Pixels 78
Pixels and Bit-save Arrays 78
Playing Large Pieces Example 344
pllst 305. 313
pointer 330

March 1985

:polnt method of tv:graphlcs-mlxln 120
Points on Windows 120
:polnt window-positioning mode 167
Polygons and Circles on Windows 124
Polyphonic Increments 337
Polyphonic Increments 337
polyphonlc-wave-table-entry-channels

function 337
Polyphonic wavetable Increments 337
Polyphony 325
Polyphony 325
Polyphony Command Opcodes 326
Polyphony Example 347
Polyphony feature 319
Polyphony Feature 337
Polyphony Feature 324
Pop-up and Momentary Menus 220
Pop-up and Momentary Menus 221
pop-up-menu Example 226
pop-up-menu flavor 221
Pop-up menus 203. 219. 235
Pop-up Menus 219
pop-up-muHlple-menu-choose-menu flavor 249
pop-up-muHlple-menu-choose-resource

resource 248
Pop-up Notifications 131
position 103. 108. 113. 146
Position 163
Position 165
Position 113
position 155
:posltlon init option for tv:menu 297
:posltlon Init option for tv:sheet 163
position Inlt options 162
position messages 112. 114
position messages 162
position messages 162
position messages 162
:posHlon method of tv:sheet 166
Position of blinkers 146
Position of window 103
Positions 162
Predefined tv:choose-varlable-values Variable

Types 259
:preemptable option 31
prepare-sheet special form 84
:pre-process-functlon list item keyword 313
:prlmltlve-Hem method of

tv:baslc-mouse-sensHlve-Hems 283
Primitives for Drawing Onto Arrays 126
Primitives for the Digital Audio Facilities 329
Primitives for Wiring Memory 328
:prlnc tv:choose-varlable-values variable type 259
prlnlevel variable 257
prlnt-brlef-unlversal-tlme function 359
prlnt-current-date function 359
prlnt-current-tlme function 359

March 1985

lime:

Reading and
lime:
lime:
lime:
lime:

Keyboard
, Mouse

Screen Manager Background
Sending command to user

The User's Process and the Mouse
The User's

Windows and
More

:process init option for tv:
tv:

:actlvlty command
:boolean command

:date command
:documentatlon-toplc command

:enumeratlon command
:font command
:host command

:Integar command
:make-system-version command

:number command
:package command

:pathname command
:prlnter command
:strlng command

:system command
Command

Defining a Command
Command

Creating a command
Deleting a command
Finding a command

Command
Command

The Command
The Command

Responsibilities of Your
Command processor

The Command Processor
The Input Editor

Setting parameter options to
Adding an Item to the
:character option for

:class option for
:complete-strlng option for

:date option for
:date-or-never option for

:declmal-number option for
:declmal-number-or-nll option for

:dellmHed-string option for
:dellmlted-strlng-or-nll option for

:eval-fonn option for
:eval-fonn-or-end option for

:expresslon option for
:expresslon-or-end option for

:flavor-name option for
:font-list option for

435

Index

prlnt-date function 359
:prlnter command processor argument type 48
Printing Dates and Times 359
Printing Time Intervals 365
prlnt-Interval-or-never function 365
print-time function 359
prlnt-unlversal-date function 359
prlnt-unlversal-tlme function 359
Process 103
process 132
process 151
Process 86
process 229
Process 206
Process and the Mouse Process 206
Processes 94
processing 103, 108, 115
:process Inlt option for tv:process-mlxln 94
process-mlxln 94
process-mlxln flavor 94
:process-name option for tv:add-functlon-key 135
processor argument type 48
processor argument type 48
processor argument type 48
processor argument type 48
processor argument type 48
processor argument type 48
processor argument type 48
processor argument type 48
processor argument type 48
processor argument type 48
processor argument type 48
processor argument type 48
processor argument type 48
processor argument type 48
processor argument type 48
Processor Argument Types 48
Processor Command 44
processor command table 53
processor command table 53
processor command table 53
processor command table 53
Processor Command Tables 52
processor program interface 41
Processor Program Interface 41
Processor Reader 41
Program 230
program interface 41
Program Interface 41
Program Interface 21
programs 266
Programs Column 239
prompt-and-read 59
prompl-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59

436

Programming the User Interface

:font option for
:function-spec option for

:host-list option for
:host option for

:host-or-Iocal option for
:Integer option for

:keyword-list option for
:keyword option for
:number option for

:number-or-nll option for
:object-list option for

:object option for
:past-date option for

:past-date-or-never option for
Pathname completion with

:pathname-host option for
:pathname-list option for

:pathname option for
:pathname-or-nll option for

:string-list option for
:strlng option for

:strlng-or-nll option for
:ltrlng-trlm option for

:symbol option for
:tlme-Interval-or-never option for

Displaying
Adding a Type Keyword

Elements of the tv:choose-varlable-values-keyword
:raw 110 buffer

tv:choose-varlable-values-keyword
110 buffer

Q

audio:
audio:
audio:
audio:
audio:
audio:

Q

March 1985

prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-end-read 59
prompt-and-read 59
prompt-and-read 59
prompt-end-read 59
prompt-end-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-end-read 59
prompt-and-read 59
prompt-end-read 59
prompt-and-read 59
prompt-and-read 59
prompt-and-read 59
prompt-end-read function 59
:prompt-and-read message to streams 59
Prompting for Input from user 59
:prompt option 28
Prompts In the Input Editor 33
Property 269
Property 270
property 132
property 269
property list 132
Purpose 01 the Window System 75
push-array-of-audlo-samples function 333
push-audlo-jump function 331
push-audlo-load-volce function 331
push-audlo-polyphony function 332
push-audlo-zero-ftag function 331
push-Immedlate-audlo-sample macro 333

Querying the User 55
Q

Yes-or -no question 55

R
Keyboard as

Blink
Sample

time:
sys:

The Command Processor

R
random access device 160
Raster height 146
Raster width 146
rate 146
rate 329
:raw 110 buffer property 132
read-and-eval function 9
:read-bp method of sl:lnteractlve-stream 40
read-calendar-clock function 355
read-character function 5
read-command function 42
read-command-or-forrn function 41
:read-cursorpos method of tv:blinker 148
:read-cursorpos method of tv:sheet 113
Reader 41
read-expresslon function 6

R

March 1985

437

Index

read-torm-completlon-allst variable 8
read-torm-completlon-dellmHers variable 9
read-torm-edH-trlvlal-errors-p variable 8
read-torm function 7
Reading and Printing Time Intervals 365
Reading characters from the keyboard 103
Reading Dates and Times 361
Reading function to use Input editor 25
Reading mouse clicks 311

time: read-lntervaJ-or-never function 365
readllne-no-echo function 9
read-or-character function 9
read-or-end function 9

Messages to Read or Set Cursor Position 113
readtable variable 257
:recelve-notmcatlon message 128
Receiving and Displaying Notifications 127

Copying Bit Rectangles to and From Windows 120

:helght Inlt option for tv:
:aet-slze method of tv:

:w1dth Inlt option for tv:
tv:

:rectangle window-positioning mode 167
rectangular-bllnker 149
rectangular-bllnker 150
rectangular-bllnker 149
rectangular-bllnker flavor 149
Redisplay 303
:redlsplay message 305
:redlsplay method of tv:baslc-acroll-wlndow 305
:redlsplay-varlable method of

tv:choose-varlable-values-wlndow 276
Redraw menu 299
:refresh method of tv:menu 299
:refresh method of tv:sheet 113
Regenerating contents of windows 78
Region 289

Margin region 289
Flavors Related to Window Selection 99

Relationship of mouse to windows 151
:relaxed boundruy condition for

:draw-cublc-spllne 125
Examples of Specifications of Panes and Constraints Before

Release 6.0 196
Specifying Panes and Constraints Before Release 6.0 188

:remove-asynchronous-characler method of
al:lnteractlve-stream 18

Messages to Remove Characters From Windows 113
:remove-hlghllghted-Hem method of

tv:menu-hlghllghtlng-mlxln 243
:remove-hlghllghted-value method of

tv:menu-hlghllghtlng-mlxln 243
:replace-Input method of al:lnteractlve-stream 39
Representation of Dates and Times 353
:reprompt option 28
:rescannlng-p method of al:lnteractlve-stream 39

audio: reserve-audlo-ftaga function 334

Multiple Menu Choose Mlxln and
tv:momentary-menu

tv:pop-up-muHlple-menu-choose-resource
tv:temporary-choose-varlable-values-wlndow

tv:temporary-multlple-cholce-wlndow

reset-user-optlona function 267
Resource 248
resource 221
resource 248
resource 274
resource 255
Responsibilities of Your Program 230

Geometry Example 2: Retrieving Geometry Information 216
RETURN characters 305
:reuaable-when option for

defwlndow-resource 107
:revense-vldeo-p Init option for tv:menu 297
:revense-vldeo-p method of tv:aheet 116
Right Increment 335

438

Programming the User Interface March 1985

s

:rlght Inlt option for tv:menu ~7
:rlght Init option for tv:sheet 163
Right margin character flag 108
:rlght-margln-characler-ftag Inlt option for

tv:sheet 117
:rlght-margln-slze method of tv:sheet 167
:roman day-of-the-week-representation 370

Constraint frame configuration row 179
Rows 213

audio:
audio:
audio:
audio:

Conversions Between

audio:
Storing

Creating mouse-sensltive-area of

The

tv:

[Bury] Edit
[Move Window] Edit

Black-and-white
Color
[Edit
Slow

tv:
tv:

:type-aUst Inlt option for tv:
tv:
tv:
tv:

Basics of
Introduction to

Text
tv:

Elapsed Time in 60ths of a

The Selected Window and the

s

:rows Inlt option for tv:menu 214. ~7
rubout-handler variable 22

sample-add-f1x function 336
sample-add-ftoat function 336
sample-add-sample function 336
sample-channels function 336
Sample Format 322
Sample Formats 335
Sample rate 3~
sample-rate variable 3~
Samples 333
Saving contents of windows 78
Sawtooth Wave Example 341
Scaling Mouse Motion 159
screen 283
Screen array 79
Screen Arrays and Exposure 79
:screen Inlt option for tv:menu 298
:screen-manag e-deexposed-g ray-array

message 92
:screen-manage message to windows 86
Screen manager 76
Screen Manager 86
Screen Manager Background Process 86
8creen-manage-update-permltted-wlndows

variable 90
Screen menu Item 86
Screen menu Item 76
Screens 78
screens 140
screens 103. 140
Screen] System menu Item 75. 76. 175
scrolling 175
Scrolling Windows 175
scroll-Item-Ieader-offset variable 313
scroil-maintain-list function 315
scroll-mouse-mlxln 311
scroll-mouse-mlxln flavor 311
scroll-parse-Item function 307. 311
scroll-window flavor 305
Scroll Windows 301
Scroll Windows 305
Scroll Windows 303
Scroll Windows 174
acroll-wlndow-wlth-typeout flavor ,305
Second 353
Second 356
Sections in constraint frames 188
:aelectable-wlndows message 96
SELECT and FUNCTI ON Keys 135
SELECT commands 137. 139
Selected Activity 94
:aelected-cholce-font init option for

tv:baslc-choose-varlable-values 275

s

March 1985

The
tv:

Activities and Window
Flavors Related to Window

Messages About Window

tv:

tv:

tv:

tv:

Mouse
Mouse

audio:

time:

Messages to Read or

tv:

439

Index

:selecled-pane InH option for
tv:baslc-constralnt-frame 98, 187

:selecled-pane message 98, 187
Selected Window and the Selected Activity 94
selected-window variable 94
Selecting a Window Temporarily 100
Selecting multiple menu Hems 241
Selection 94
Selection 99
Selection 96
SELECT key 137, 139
select-keys variable 139
:select message 98
select-mlxln flavor 99
:select option for fquery 56
select-or-create-wlndow-of-tlavor Function 240
:select-pane message 97, 187
:select-relatlve message 96
select-relatlve-mlxln flavor 99
self 289
:send-all-exposed-panes method of

tv:baslc-constralnt-frame 188
:send-all-panes method of

tv:baslc-constralnt-frame 188
Sending command to user process 229
:aend-pane method of

tv:baslc-constralnt-frame 188
SensHlvity 311
sensHivity and line Hems 311
Set all bHs alu function 119
set-8udlo-repeat-count macro 334
:set-border-margln-width method of

tv:borders-mlxln 171
:aet-borders method of tv:borders-mlxln 171
aet-calendar-clock function 355
:set-character method of tv:character-bllnker 150
:set-conflguratlon method of

tv:baslc-constralnt-frame 188
:aet-current-font method of tv:sheet 142
Set Cursor Position 113
:aet-cursorpos method of tv:bllnker 148
:8et-curaorpos method of tv:aheet 113
:set-deexposed-typeln-actlon method of

tv:sheet 116
:aet-deexposed-typeout-actlon method of

tv:sheet 116
:aet-default-font method of tv:menu 299
set-default-wlndow-size function 165
:set-deselected-vlslbllfty method of tv:bllnker 149
:aet-dlsplay-Hem message 305
:set-dlsplay-Item method of

tv:baslc-scroll-wlndow 305
Set edge parameters 296
:set-edges method of tv:essentlal-set-edges 167
:set-edges method of tv:menu 299
:8et-fllI-p method of tv:menu 214
self macro 308
:aet-follow-p method of tv:bllnker 148
:set-font-map-and-vsp method of tv:sheet 142
:set-font-map method of tv:sheet 141
:aet-geometry method of tv:menu 214
:aet-gray-array-for-Inferlors method of

tv:gray-deexposed-Inferlors-mlxln 93
:aet-gray-array-for-unused-areas method of

tv:gray-unused-areas-mlxln 93
:aet-hatf-perlod method of tv:bllnker 149
:set-hlghllghted-Hems method of

440

Programming the User Interface

time:

tv:
tv:

Getting and

Menus with

Blinker
Change In window

:backspace-not-overprlntlng-flag Inlt option for tv:
:basellne method of tv:

:bltbH-from-sheet method of tv:
:bltbH method of tv:

:bltbH-wlthln-sheet method of tv:
:boHom inlt option for tv:

:bottom-margln-slze method of tv:
:change-of-slze-or-marglns method of tv:

:character-helght Init option for tv:
:character-wldth Inlt option for tv:

:character-wldth method of tv:
:clear-char method of tv:

:clear-rest-of-line method of tv:
:clear-rest-of-wlndow method of tv:

:clear-wlndow method of tv:
:compute-motlon method of tv:

:cr-not-newline-flag inlt option for tv:
:current-font method of tv:

March 1985

tv:menu-hlghllghtlng-mlxln 243
:set-hlghllghted-values method of

tv:menu-hlghllghtlng-mlxln 243
:set-hysteresls method of

tv:hysteretlc-wlndow-mlxln 158
:set-Inslde-slze method of

tv:essentlal-set-edges 166
:set-Interval-strlng message to

zwel:standalone-edltor-frame 381
:set-Io-buffer message 132
:set-Io-buffer method of tv:command-menu 231
:set-Hem-list method of tv:menu 299
:set-Iabel method of tv:label-mlxln 172
:set-Iabel method of tv:menu 299
set-local-time function 355
:set-margln-cholces method of

tv:margln-cholce-mlxln 290
:set-more-p method of tv:sheet 116
:set-name method of

tv:changeable-name-mlxln 173
:set-notlflcatlon-mode message 131
Set number of columns 214, 296
Set of constraints 175
:set-posltlon method of tv:essentlal-set-edges 167
:set-reverse-vldeo-p method of tv:sheet 116
:set-save-blts message to windows' 79
set-screen-background-gray function 92
set-screen-deexposed-gray function 92
:set-sheet method of tv:bllnker 149
:set-slze-In-characters method of tv:sheet 166
:set-slze method of tv:essentlal-set-edges 166
:set-slze method of tv:rectangular-bllnker 150
:set-space method of tv:margln-space-mlxln 169
Setting parameter options to programs 266
Setting the Time 355
:set-truncate-line-out method of tv:sheet 118
:set-type-allst message 311
:setup method of

tv:choose-varlable-values-wlndow 275
:setup method of tv:muHlple-cholce 255
:set-varlables method of

tv:choose-varlable-values-wlndow 276
:seI-vlslblllty method of tv:bllnker 148
:set-vsp method of tv:sheet 116
several columns 203, 247
:sexp tv:choose-varlable-values variable type 259
shape 150
shape 175
Sharing I/O buffers 176
sheet 108. 117
sheet 142
sheet 120
sheet 120
sheet 121
sheet 163
sheet 167
sheet 166
sheet 164
sheet 164
sheet 114
sheet 113
sheet 113
sheet 113
sheet 114
sheet 114
sheet 108. 117
sheet 142

March 1985

:deexposed-typeln-actlon inlt option for tv:
:deexposed-typeln-actlon method of tv:

:deexposed-typeout-actlon inlt option for tv:
:deexposed-typeout-actlon method of tv:

:delete-char method of tv:
:delete-line method of tv:

:delete-strlng method of tv:
:draw-char method of tv:

:draw-rectangle method of tv:
:edges inlt option for tv:

:edges method of tv:
:font-map inlt option for tv:

:font-map method of tv:
:helght init option for tv:

:home-cursor method of tv:
:home-down method of tv:

:Inlt method of tv:
:Insert-char method of tv:
:Insert-line method of tv:

:Insert-strlng method of tv:
:Inslde-edges method of tv:

:Inslde-helght init option for tv:
:Inslde-slze inlt option for tv:

:Inslde-slze method of tv:
:Inslde-wldth init option for tv:

:Integral-p init option for tv:
:Ieft inlt option for tv:

:Ieft-margln-slze method of tv:
:marglns method of tv:

:more-p init option for tv:
:more-p method of tv:

:name Init option for tv:
:name method of tv:

:posltlon init option for tv:
:posltlon method of tv:

:read-cursorpos method of tv:
:refresh method of tv:

:reverse-vldeo-p method of tv:
:rlght inlt option for tv:

:rlght-margln-character-flag Init option for tv:
:rlght-margln-slze method of tv:

:set-current-font method of tv:
:aet-cursorpos method of tv:

:set-deexposed-typeln-actlon method of tv:
:set-deexposed-typeout-actlon method of tv:

:set-font-map-and-vsp method of tv:
:aet-font-map method of tv:

:set-more-p method of tv:
:set-reverse-vldeo-p method of tv:

:set-slze-In-characters method of tv:
:set-truncate-line-out method of tv:

:set-vsp method of tv:
:slze-In-characters method of tv:

:slze Init option for tv:
:slze method of tv:

:atrlng-Iength method of tv:
:strlng-out method of tv:

:superlor Inlt option for tv:
:tab-nchars Inlt option for tv:

:top init option for tv:
:top-margln-slze method of tv:

:truncate-line-out method of tv:
:tyo method of tv:

:vsp Inlt option for tv:
:vsp method of tv:

:who-line-documentation-string method of tv:
:wldth Inlt option for tv:

sheet 116
sheet 116
sheet 116
sheet 116
sheet 114
sheet 114
sheet 114
sheet 121
sheet 124
sheet 163
sheet 167
sheet 142
sheet 141
sheet 163
sheet 113
sheet 113
sheet 107
sheet 112
sheet 112
sheet 112
sheet 167
sheet 163
sheet 163
sheet 166
sheet 163
sheet 164
sheet 163
eheet 167
aheet 167
sheet 115
sheet 115
sheet 171
sheet 172
sheet 163
sheet 166
sheet 113
sheet 113
sheet 116
sheet 163
sheet 117
sheet 167
sheet 142
sheet 113
sheet 116
sheet 116
sheet 142
sheet 141
sheet 116
sheet 116
sheet 166
sheet 118
sheet 116
sheet 166
sheet 163
sheet 166
sheet 115
sheet 111
sheet 107
sheet 108. 117
sheet 163
sheet 167
sheet 118
sheet 111
sheet 116
sheet 116
sheet 152
sheet 163

441

Index

442

Programming the User Interface

:x Inn option for tv:
:y Inlt option for tv:

tv:
tv:

Symbolic names of

tv:

:add-asynchronous-character method of
. :any-tyl method of

:any-tyl-no-hang method of
:asynchronous-character-p method of

:asynchronous-characters Init option for
:elear-Input method of

:finish-typeout method of
:force-resean method of

:handle-asynehronous-eharacter method of
:Input-edltor method of

:Item method of
:lIne-ln method of
:lIsten method of
:lIst-tyl method of

:nolse-strlng-out method of
:read-bp method of

:remove-asynehronous-character method of
:replace-Input method of
:rescannlng-p method of
:start-typeout method of

:strlng-In method of
:string-line-in method of

:tyl method of
:tyl-no-hang method of

:untyl method of

tv:momentary-menu Example 1:

Blinker
Initializing Window

Messages for Window
nil option for window

:verlfy option for window

Window
Window

Menu
Window

:ask Constraint
:ask-wlndow Constraint

.heet 163
sheet 163

March 1985

sheet-followlng-bllnker function 149
eheet-force-access special form 82, 84
shift keys 160
:shot1 day-of-the-week-representatlon 370
ehow-partlally-vlslble-mlxln flavor 87
sl:*cp-comtab* variable 53
sl:*cp-defauit-biank-line-mode* variable 43
sl:*cp.default-dlspateh-mode* variable 43
sl:*cp-default-prompt* variable 44
sl:create-comtab function 53
.I:delete-comtab function 53
sl:dlspiay-Item-list function 19. 283
sl:flnd-comtab function 53
:slgnal-condltlon option for fquery 56
sl:lnteractlve-strearn 17
sl:lnteractlve-stream 11
sl:lnteractlve-stream 11
sl:lnteractlve-stream 17
sl:lnteractlve-stream 17
sl:lnteractlve-stream 12
sl:lnteractlve-stream 39
sl:lnteractlve-stream 39
sl:lnteractlve-stream 17
sl:lnteractlve-stream 38
sl:lnteractlve-stream 19
sl:lnteractlve-stream 12
sl:lnteractive-stream 12
sl:lnteractlve-stream 12
sl:lnteractive-stream 40
sl:lnteractlve-stream 40
sl:lnteractlve-stream 18
si:lnteractive-stream 39
sl:lnteractlve-stream 39
sl:lnteractlve-stream 38
sl:lnteractlve-stream 13
si:lnteractive-stream 14
sl:lnteractlve-stream 11
sl:lnteractlve-stream 12
sl:lnteractlve-stream 12
sl:lnteractlve-stream flavor 3
Simple Momentary Menu 223
Simple momentary window 223
Sine Wave Example 339
sl:*typeout-default* variable 39
sl:unwlre-words 328
sl:wlre-consecutlve-words 328
sl:wlre-structure 328
sl:wlre-words 328
size 150
Size and Position 163
Size and Position 165
size and position messages 162
size and position messages 162
:slze-In-characters method of tv:sheet 166
:slze init option for tv:sheet 163
size init options 162
size messages 162
:slze method of tv:sheet 166
Size of panes 188
Size of window 103
size parameter 213
Sizes and Positions 162
:slzes Constraint Frame Specification 182
Size Specification 188
Size Specification 188

March 1985

:eval Constraint
:even Constraint

Fraction Constraint
:funcall Constraint

Integer Constraint
:lImh Constraint

Vertical
Vertical

deflne-cp-command
deflne-prompt-and-read-Iype

define-user -option
deflne-user-optlon-allsl

defresource
defwlndow-resource

tv:add-typeout-Hem-type
tv:delaylng-screen-management

tv:prepare-sheet
tv:sheet-force-accesl

tv:wlndow-call
tv:wlndow-call-relatlve
tv:wlndow-mouse-call

tv:with-mouse-and-buttons-grabbed
tv:wlth-mouse-and-buttons-grabbed-on-sheet

tv:wlth-mouse-grabbed
tv:whh-mouse-grabbed-on-sheet

tv:wlth-mouse-usurped
tv:wlth-termlnal-Io-on-lypeout-wlndow

wlth-Input-edltlng
wHh-lnput-edltlng-optlons

whh-lnput-editlng-optlons-11
with-notification-mode

:ask Constraint Size
:ask-wlndow Constraint Size

:eval Constraint Size
:even Constraint Size

Fraction Constraint Size
:funcall Constraint Size

Integer Constraint Size
:Iayout Constraint Frame

:lImlt Constraint Size
:slzes Constraint Frame

:documentatlon
Window Graying

Examples of
Examples of

Drawing

:horizontaJ
:vertical

:edit message to zwel:

443

Index

Size Specification 188
Size Specification 188
Size Specification 188
Size Specification 188
Size Specification 188
Size Specification 188
Slow scrolling 175
:space Inl1 option for tv:margln-apace-mlxln 169
:space method of tv:margln-space-mlxln 169
spaCing 108
spacing between lines In menu 222. 298
Special characters 108
Special Choices 203. 241. 247
:apeclal-cholces Inl1 option for

tv:muHlple-menu-mlxln 242
special form 44
special form 69
special form 267
special form 267
special form 107
special form 107
special form 282
special form 86. 89
special form 84
special form 82. 84
special form 101
special form 100
special form 101
special form 155
special form 155
special form 154
special form 154
special form 157
special form 175
special form 25
special form 23
special form 24
special form 131
Specialized Blinkers 149
Specification 188
Specification 188
Specification 188
Specification 188
Specification 188
Specification 188
Specification 188
Specification 180
Specification 188
Specification 182
specification for tv:choose-varlable-values 259
Specifications 91
Specifications of Panes and Constraints 185
Specifications of Panes and Constraints Before

Release 6.0 196
Specifying Panes and Constraints 179
Specifying Panes and Constraints Before Release

6.0 188
Splines on Windows 125
Squarewave example 341
Square Wave Example 341
:atack-group Inlt option 274
:ltack-group Inlt option for

tv:baslc-choose-varlable-values 274
stacking description 188
stacking description 188
Stacking In constraint frames 188
atandalone-editor-frame 381

444

Programming the User Interface

:Interval-strlng message to zweI:
:set-Interval-strlng message to zwel:

zwel:
Making

The

The
The
The

Output Hold
The Keyboard and Key

Changing the

Starting and
Tab

Opening a bidirectional

:any-tyl method of tv:
:any-tyl-no-hang method of tv:

:clear-Input method of tv:
:fresh-line method of tv:

:lIne-out method of tv:
:lIsten method of tv:
:untyl method of tv:

tv:

Editor buffer
Input Editor Messages to Interactive

Input Functions for Interactive
Interactive

Introduction to Interactive
Messages for Input From Interactive

:prompt-and-read message to
Windows as

Windows as Input
Windows as output

Interactive
Delete
Erase

Typing

atandalone-edHor-frame 381
standalone-edHor-frame 381
standalone-edHor-frame flavor 381
Standalone Editor Windows 381

March 1985

Standard and Customlzable Facilities 205
Standard Choose Variable Values Function 262
Standard facilities 205
Standard Momentary Menu Example 219
Standard Momentary Menu Interface 219
Standard MuHlple Choice Function 252
Standard MuHlple Menu Choose Function 247
Standard TV Fonts 142
Starting and Stopping the Audio Mlcrotask 335
:start option for zwel:open-edltor-slream 378
:start option for zwel:wHh-edHor-slream 378
:start-typeout method of sl:lnteractlve-stream 38
state 82
States 160
Status line 103, 311
status of windows 103
:statua option for fquery 56
Stepper function 315
Stopping the Audio Mlcrotask 335
stops 108
Storing Samples 333
stream 3n
Stream Facility for Editor Buffers 3n
Stream Input messages 103
stream-mlxln 134
stream-mlxln 135
stream-mlxln 135
stream-mlxln 112
etream-mlxln 112
etream-mlxln 135
stream-mlxln 135
stream-mlxln flavor 108, 118, 132
:stream option for fquery 56
streams 3n
Streams 38
Streams 5
Streams 1, 21
Streams 3
Streams 11
streams 59
streams 75
Streams 132
streams 103, 108
Streams and Mouse-sensHlve Hems 19
string 114
string 114
String as menu item 208
:strlng command processor argument type 48
:8trlng-font Init option for

tv:baslc-choose-varlable-valuea 275
:8trlng-ln method of sl:lnteractlve-stream 13
:8trlng-lenglh method of tv:sheet 115
:string-line-in method of sl:lnteractlve-stream 14
:8trlng line item entry 308
:8trlng-list option for prompt-and-read 59
:81r1ng-list tv:choose-varlable-valuea variable

type 259
:8trlng option for prompt-and-read 59
:8trlng-or-nll option for prompt-and-read 59
:strlng-or-nll tv:choose-varlable-values variable

type 259
:strlng-out method of tv:sheet 111
strings 111

March 1985

T

Drawing Characters and

Bp Zwel data
Displaying data
Notes on Wired

Peek
Frame-oriented Interactive

Microcode

Length of
Width of

Non-real-time
Non-real-time

The Beep Feature

Choice Facilities Use the Flavor
Introduction to Using the Window

Purpose of the Window
Using the Window

Window

Window
Adding an Item to the

[Create]
[Edit Screen]

Music

Command processor command
Creating a command processor command
Deleting a command processor command
Finding a command processor command

Font Indexing
Command Processor Command

Selecting a Window
tv:

tv:

T

445

Index

Strings on Windows 121
:strlng-trlm option for prompt-and-read 59
:strlng tv:choose-varlable-values variable type 259
structure 378
structures 303
Structures 327
subsystem 303
subsystems 176
:superlor Init option for

tv:choose-varlable-values 264
:superlor Init option for tv:sheet 107
:superlor option for defwlndow-resource 107
Superior window 76. 78
Support for the Digital Audio Facilities 321
:suppress-nollflcatlons option 32
Symbol as menu item 208
Symbol as pattern In dummy deSCription 188
Symbolic names of shift keys 160
Symbol line Item entry 308
:symbol option for prompt-and-read 59
:symeval line Item 308
:symeval line Item 308
:symeval line item entry 308
Synchronization Flags 334
synthesis 343. 344
Synthesis Example 343
ays:%beep 327
sys:dlsplay-nollflcatlon function 128
sys:%draw-ilne function 126
ays:%draw-reclangle function 126
sys:%draw-trlangle function 126
ays:kbd-Intercepted-characters variable 15
.ys:kbd-slandard-abort-characters varlable 16
sys:kbd-standard-Intercepted-characters

variable 16
sys:kbd-standard-suspend-characters varlable 16
sys:read-character function 5
System 205
System 73
System 75
System 71
System ChOice Facilities 201
:system command processor argument type 48
System Concepts 75
System Menu 238
System menu Item 75
System menu item 75.76.175
systems 324

table 53
table 53
table 53
table 53
table 146
Tables 52
:tab-nchars Inlt option for tv:lheet 108. 117
Tab stops 108
t blinker visibility 146
Temp-locked windows 82. 84
Temporarlly 100
temporary-choou-varlable-values-wlndow

flavor 273
lemporary-choose-varlable-values-wlndow

resource 274

T

446

Programming the User Interface

tv:
tv:
tv:

Editing

Graphical objects and
tv:
tv:

Getling and Setling the
Universal

Internal

Elapsed

Elapsed

Reading and Printing

Dates and
Printing Dates and

Reading Dates and
Representation of Dates and

March 1985

temporary-muHlple-cholce-wlndow flavor 254
temporary-muHlple-cholce-window resource 255
temporary-typeout-wlndow flavor 174
Temporary Windows 84
terminal Inpu1 21
termlnal-Io variable 75
Testing for the Existence of Audio 330
text Intermingled 279
text-scroll-wlndow-empty-gray-hack flavor 174
text-scroll-wlndow flavor 174
Text Scroll Windows 174
Time 355
Time 353
Time Conversions 367
tlme:dayllght-savlngs-p function 369
tlme:dayllght-savlngs-tlme-p function 369
tlme:day-of-the-week-strlng function 370
tlme:decode-unlversal-tlme function 367
tlme-difference function 356
tlme-elapsed-p function 356
tlme:encode-unlversal-tlme function 367
tlme:flxnum-mlcrosecond-tlme function 357
Time formats 353, 359, 361
time function 356
Time Functions 369
tlme:get-tlme function 355
tlme:get-unlversal-tlme function 355
Time In OOths of a Second 356
time-Increment function 356
tlme:lnltlallze-tlmebase function 369
Time In Microseconds 357
:tlme-lnterval-6Oths tv:choose-varlable-values

variable type 259
:tlme-Interval-or-never option for

prompt-and-read 59
:tlme-Interval-or -never tv:choose-varlable-values

variable type 259
Time intervals 353
Time Intervals 365
tlme:leap-year-p function 369
tlme-Iessp function 356
tlme:mlcrosecond-tlme function 357
tlme:month-Iength function 369
tlme:month-strlng function 370
Time of day 353
time package 353
tlme:parse function 361
tlme:parse-Interval-or-never function 365
tlme:parse-present-based-unlversal-tlme

function 362
tlme:parse-unlversal-tlme function 362
tlme:parse-unlversal-tlme-relatlve function 362
tlme:prlnt-brlef-unlversal-tlme function 359
tlme:prlnt-current-date function 359
tlme:prlnt-current-tlme function 359
tlme:prlnt-date function 359
tlme:prlnt-Interval-or-never function 365
tlme:prlnt-tlme function 359
tlme:prlnt-unlversal-date function 359
tlme:prlnt-unlversal-tlme function 359
tlme:read-calendar-clock function 355
tlme:read-Interval-or-never function 365
Times 351
Times 359
Times 361
Times 353
tlme:set-calendar-clock function 355

March 1985

time:
time:

tv:

tv:

fonts:
fonts:

tv:

tv:
tv:
tv:

:keyboard-process option for
:process-name option for

. :typeahead option for

:decode-varlable-type method of
:function inlt option for

:name-font inlt option for
:selected-cholce-font Inlt option for

:slack-group init option for
:strlng-font Init option for

:unselected-cholce-font inlt option for
:value-font Inlt option for
:varlables Init option for

:conflguratlon Inlt option for
:conflguratlon method of

:conflguratlonl Init option for
:constralnts init option for

:get-pane method of
:pane-name method of

:panes Init option for
:aelected-pane inlt option for

:send-all-exposed-panes method of
:send-all-panes method of

:send-pane method of
:aeI-configuratlon method of

447

Index

tlme:set-Iocal-tlme function 355
tlme:tlmezone-strlng function 371
tlme:*tlmezone* variable 367
tlme:vertfy-date function 370
Time zone 353
tlmezone-strlng function 371
tlmezone variable 367
top-box-Iabel-mlxln flavor 173
Top edge of menu 298
:top init option for tv:menu 298
:top inlt option for tv:sheet 163
top-Iabel-mlxln flavor 173
:top-margln-slze method of tv:sheet 167
tr101 font 140
tr8 font 140
Tracking the mouse 151, 157
truncatabie-lines-mlxln flavor 117
:truncate-line-out method of tv:sheet 118
Truncating lines 108, 117, 119
truncating-lines-mlxln flavor 108, 117
truncating-window flavor 117
tum-off-sheet-bllnkers function 149
tv:abstract-dynamlc-Hem-list-mlxln I~avor 235
tv:add-functlon-key 135
tv:add-functlon-key 135
tv:add-functlon-key 135
tv:add-functlon-key function 135
tv:add-select-key function 137
tv:add-to-system-menu-create-menu function 239
tv:add-to-system-menu-programs-column

function 239
tv:add-typeout-Hem-type special form 282
tv:alu-andca variable 119
tv:alu-and variable 120
tv:alu-Ior variable 119
tv:alu-Ieta variable 119
tv:alu-xor variable 119, 124
tv:autoexposlng-more-mlxln flavor 116
tv:back-convert-constralnts function 195
tv:baslc-choose-varlable-values 270
tv:baslc-choose-varlable-valuea 274
tv:baslc-choose-varlable-values 274
tv:baslc-choose-varlable-values 275
tv:baslc-choose-varlable-values 274
tv:baslc-choose-varlable-values 275
tv:baslc-choose-varlable-values 275
tv:baslc-choose-varlable-values 275
tv:baslc-choose-varlable-values 274
tv:baslc-choose-variable-valu8S flavor 272
tv:baslc-choose-variable-vaJues Inlt-pllst

Options 274
tv:baslc-constralnt-frame 188
tv:baslc-constralnt-frame 188
tv:baslc-constralnt-frame 179
tv:baslc-constralnt-frame 189, 196
tv:baslc-constralnt-frame 187
tv:baslc-constralnt-frame 188
tv:baslc-constralnt-frame 179, 189, 196
tv:baslc-constralnt-frame 98, 187
tv:baslc-constralnt-frame 188
tv:baslc-constralnt-frame 188
tv:baslc-constralnt-frame 188
tv:baslc-constralnt-frame 188
tv:baslc-constralnt-frame flavor 175
tv:baslc-frame flavor 100, In
tv:baslc-menu flavor 220
tv:bnlc-momentary-menu flavor 220

448

Programming the User Interface

:Hem method of
:Hem-type-allst Inlt option for

:prlmHlve-Hem method of

:redlsplay method of
:set-dlsplay-Hem method of

:deselected-vlslbility Inlt option for
:deselected-vlslbility method of

:follow-p Inlt option for
:half-perlod Inlt option for

:half-perlod method of
:read-cursorpos method of

:set-cursorpos method of
:set-deselected-vlslbillty method of

:aet-follow-p method of
:set-half-perlod method of

:aet-sheet method of
:set-vlslbillty method of
:vlslbillty Inlt option for

:x-pos Init option for
:y-pos Inlt option for

:border-margln-wldth inlt option for
:border-margln-wldth method of

:borders Inlt option for
:set-border-margln-wldth method of

:set-bordera method of

:set-name method of

:char inlt option for
:font inlt option for

:set-character method of

:documentatlon specification for
:extra-wldth Init option for

:function inlt option for
:Iabel Inlt option for

:margln-cholces init option for
:near-mode init option for

:superlor init option for
:wldth inlt option for

Elements of the

:assoc
:boolean

:character
:character -or-nil

March 1985

tv:baslc-mouse-sensHIve-Hem. 283
tv:baslc-mouse-sensHIve-Hem. 283
tv:baslc-mouse-sensHIve-Hems 283
tv:baslc-mouse-sensHIve-Hem. Example 284
tv:baslc-mouse-sensHIve-Hem. flavor 280
tv:baslc-mouse-sensHlve-Hems Inlt-pllst

Options 283
tv:baslc-mouse-sensHIve-Hems Messages and

Functions 283
tv:baslc-muHlple-cholce flavor 254
tv:baslc-scroll-bar flavor 175
tv:baslc-scroll-wlndow 305
tv:baslc-scroll-wlndow 305
tv:baslc-scroll-wlndow flavor 305
tv:bllnker 148
tv:bllnker 149
tv:bllnker 148
tv:bllnker 149
tv:bllnker 149
tv:bllnker 148
tv:bllnker 148
tv:bllnker 149
tv:bllnker 148
tv:bllnker 149
tv:bllnker 149
tv:bllnker 148
tv:bllnker 148
tv:bllnker 148
tv:bllnker 148
tv:bordered-constralnt-frame flavor 1n
tv:bordered-constralnt-frame-wHh-shared-lo-buffer

flavor 178
tv:borders-mlxln 171
tv:borders-mlxln 171
tv:borders-mlxln 170
tv:borders-mlxln 171
tv:borders-mlxln 171
tv:borders-mlxln flavor 170
tv:box-bllnker flavor 150
tv:changeable-name-mlxln 173
tv:changeable-name-mlxln flavor 173
tv:character-bllnker 150
tv:character-bllnker 150
tv:character-bllnker 150
tv:character-bllnker flavor 150
tv:choose-varlable-values 259
tv:choose-varlable-values 263
tv:choose-varlable-values 263
tv:choose-varlable-values 263
tv:choose-varlable-values 263
tv:choose-varlable-values 263
tv:choose-varlable-values 264
tv:choose-varlable-valu88 263
tv:choose-variable-vaJues Examples 264
tv:choose-varlable-valu88 function 262
tv:choose-varlable-valu88-keyword property 269
tv:choose-varlable-values-keyword Property 270
tv:choose-varlable-values Options 263
tv:choose-varlable-values-pane flavor 272
tv:choose-varlable-values-process-message

function 274
tv:choose-varlable-values Type Definition

Example 271
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choo •• -varlable-values variable type 259

March 1985

:choose
:date

:date-or-never
:declmal-number

:declmal-number-or-nll
:eval-forrn

:expresslon
:font-list

:host
:host-list

:host-or-iocal
:Integer

:Inverted-boolean
:keyword-list

:menu-allst
:number

:number-or-nll
:past-date

:pasI-date-or-never
:pathname

:path name-host
:path name-list

:palhname-or-nII
:prlnc
:aexp

:ltrlng
:etring-list

:ltrlng-or-nll
:tlme-lnterval-6Oths

:tlme-Interval-or-never
Predefined

:adjust-geometry-for-new-varlablea method of
:approprlate-wldth method of

:Io-buffer init option for
:margln-cholces Inlt option for
:redlsplay-varlable method of

:setup method of
:set-varlables method of

:Io-butrer Init option for
:Io-butrer method of

:set-Io-butrer method of

:Io-butrer Inlt option for

449

Index

tv:choose-varfable-values variable type 259
tv:choose-variable-valU8S variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:chooS8-varfable-values variable type 259
tv:choose-varlable-valuea variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varfable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-values variable type 259
tv:choose-varlable-valuea variable type 259
tv:choose-varlable-valuea Variable Types 259
tv:choose-varlable-values-wlndow 276
tv:choose-variable-valu8S-wlndow 276
tv:choose-varlable-values-wlndow 275
tv:choose-varlable-values-wlndow 275
tv:choose-varlable-values-wlndow 276
tv:choose-varlable-values-wlndow 275
tv:choose-varlable-values-wlndow 276
tv:choose-variable-valu8S-wlndow Example 276
tv:choose-variable-valu8S-wlndow ftavor 272
tv:choose-variable-valu8S-window Messages 275
tv:cold-load-atream-old-aelected-wlndow

variable 94
tv:column-spec-lIst variable 236
tv:command-menu 231
tv:command-menu 231
tv:command-menu 231
tv:command-menu-abort-on-deexpose-mlxln

ftavor 230
tv:command-menu Example 231
tv:command-menu flavor 231. 293
tv:command-menu Inlt-pllst Options 231
tv:command-menu Messages 231
tY:command-menu-mlxln ftavor 230. 293
tv:command-menu-pane flavor 231
tv:constralnt-frame flavor 1n
tv:constraint-frame-wHh-shared-lo-buffer 179
tv:constralnt-frame-wlth-shared-Io-buffer

flavor 178
tv:**conltraJnt-node** variable 184. 188
tv:**constraint-remalnlng-helght** variable 184.

188
tv:**constralnt-remalnlng-wldth** variable 184.

188
tv:**constralnt-stacklng** variable 184. 188
tv:**constralnt-total-helght** variable 184. 188
tv:**constralnt-totaJ-wldth** variable 184. 188

450

Programming the User Interface

:delayed-set-Iabel method of
:updat.label method of

:Hem-lIst..polnter Inlt option for
:update-Item-list method of

:column-spec-lIst Inlt option for

:handle-mouse method of
:mouse-cllck method of

:mouse-moves method of
:center-around method of

:expose-near method of
:set-edges method of

:set-Inslde-slze method of
:set-position method of

:set-slze method of
:actlvate-p Init option for

:edges-from Init option for
:expose-p Init option for

:mlnlmum-helght Init option for
:minlmum-wldth Inlt option for
:typeout-window Init option for

Attributes of
Format of
Standard

Using

:draw-clrcle method of
:draw-clrcular-arc method of

:draw-closed-curve method of
:draw-cublc-spllne method of

:draw-curve method of
:draw-dashed-Iine method of

:draw-fliled-in-circle method of
:draw-filled-In-sector method of

:draw-Iine method of
:draw-Iines method of
:draw-polnt method of

:draw-regular-polygon method of
:draw-strlng method of

:draw-trlangle method of
:draw-wlde-curve method of

:polnt method of

:gray-array-for-Inferlors Init option for
:gray-array-for-Inferlors method of

:set-gray-array-for-Inferlors method of

:gray-array-for-unused-areas init option for
:gray-array-for-unused-areas method of

:set-gray-array-for-unused-areaa method of

March 1985

tv:defaulted-multlple-menu-choose function 248
tv:delayed-redlsplay-Iabel-mlxln 173
tv;delayed-redlsplay-Iabel-mlxln 173
tv:delayed-redlsplay-Iabel-mlxln flavor 173
tv:delaylng-screen-management special form 86,

89
tv:dont-select-wHh-mouse-mlxln flavor 100
tv:dynamlc-... -menu 237
tv:dynamlc-••• -menu 237
tv:dynamlc-Hem-list-mlxln flavor 235
tv:dynamlc-momentary-menu flavor 236
tv:dynamlc-momentary-wlndow-hacklng-menu

flavor 236
tv:dynamlc-multlcolumn-mlxln 237
tv:dynamlc-multlcolumn-mlxln flavor 236
tv:dynamlc-pop-up-abort-on-deexpose-command-

menu flavor 236
tv:dynamlc-pop-up-command-menu flavor 236
tv:dynamlc-pop-up-menu flavor 236
tv:essentlal-mouse 152
tv:essentlal-mouse 153
tv:essentlal-mouse 152
tv:essentlal-set-edges 167
tv:essentlal-set-edges 167
tv:essentlal-set-edges 167
tv:essentlal-set-edges 166
tv:essentlal-set-edges 167
tv:essentlal-set-edges 166
tv:essentlal-wlndow 107
tv:essentlal-wlndow 164
tv:essentlal-wlndow 107
tv:essentlal-wlndow 164
tv:essentlal-wlndow 164
tv:essentlal-wlndow-wlth-typeout-mlxln 174
tv:flashy-scrolllng-mlxln flavor 175
TV Fonts 140
TV Fonts 143
TV Fonts 145
TV Fonts 142
TV Fonts 140
tv:*functlon-keys* variable 137
tv:graphlcs-mlxln 124
tv:graphlcs-mlxln 124
tv:graphlcs-mixln 124
tv:graphlcs-mlxln 125
tv:graphlcs-mlxln 123
tv:graphlcs-mlxln 122
tv:graphlcs-mlxln 125
tv:graphlcs-mlxln 125
tv:graphlcs-mlxln 122
tv:graphlcs-mlxln 122
tv:graphlcs-mlxln 120
tv:graphlcs-mlxln 125
tv:graphlcs-mlxin 121
tv:graphlcs-mlxln 124
tv:graphlcs-mlxln 124
tv:graphlcs-mlxln 120
tv:graphlcs-mlxin flavor 118
tv:*gray-arrays* variable 92
tv:gray-deexposed-Inferlors-mlxln 93
tv:gray-deexposed-Inferlors-mlxln 93
tv:gray-deexposed-Inferlors-mlxln 93
tv:gray-deexposed-Inferlors-mlxln flavor 93
tv:gray-unused-areas-mlxln 93
tv:gray-unused-areas-mlxln 93
tv:gray-unused-areas-mlxln 93
tv:gray-unused-areas-mlxln flavor 93

March 1985

:hysteresls init option for
:hysteresls method of

:set-hysteresla method of

:helght inlt option for

:Iabel inlt option for
:label-8Ize method of
:set-Iabel method of

:margln-cholces inlt option for
:set-margln-cholces method of

The

:set-space method of
:space init option for

:space method of

:actlvate-p inlt option for
:borders init option for
:boHom inlt option for

:character-helght inlt option for
:character-wldth inlt option for

:choose method of
:columns inlt option for

:current-geometry method of
:deactlvate method of
:deexpose method of

:default-font inlt option for
:edges-from init option for

:edges inlt option for
:execute method of
:expose method of

:expose-p Inlt option for
:fI1I-p inlt option for

:fI1I-p method of
:font-map Inlt option for
:geometry inlt option for

:geometry method of
:helght Inlt option for

Init-plist Options for
:Inslde-helght inlt option for

:Inslde-slze init option for
:Inslde-wldth init option for

:Item-list Inlt option for
:Iabel Init option for

:Ieft Inlt option for
Messages Accepted by

:mlnlmum-helght Init option for
:mlnlmum-wldth init option for

:name Inlt option for
:position init option for

:refresh method of
:reverse-vldeo-p inlt option for

tv:hollow-rectangular-bllnker flavor 150
tv:hysteretlc-wlndow-mlxln 158
tv:hysteretlc-wlndow-mlxln 158
tv:hysteretlc-wlndow-mlxln 158
tv:hysteretlc-wlndow-mlxln flavor 158
tv:lbeam-bllnker 150
tv:lbeam-bllnker flavor 150
tv:ltem-list-pointer variable 235
tv:ltem-type-aJlst Instance-variable 280
tv:key-state function 132. 161
tv:key-test function 161
tv:label-mlxln 172
tv:label-mlxln 172
tv:label-mlxln 172
tv:label-mlxln ftavor 171
tv:llne-truncatlng-mlxln ftavor 117
tv:make-bllnker function 147
tv:make-sheet-blt-array function 121
tv:make-wlndow function 107. 305
tv:margln-cholce-mlxln 290
tv:margln-cholce-mlxln 290
tv:margln-cholce-mlxln Example 290
tv:margln-cholce-mlxln ftavor 289
tv:margln-cholce-mlxln Flavor 289
tv:margln-cholce-mlxln Init-plist Option 290
tv:margln-cholce-mlxln Messages 290
tv:margln-scroll-mlxln flavor 175
tv:margln-space-mlxln 169
tv:margln-space-mlxln 169
tv:margln-space-mlxln 169
tv:margln-space-mlxln flavor 169
tv:menu 295
tv:menu 222. 295
tv:menu 295
tv:menu 295
tv:menu 295
tv:menu 223
tv:menu 214. 296
tv:menu 214
tv:menu 223. 299
tv:menu 299
tv:menu 222. 296
tv:menu 296
tv:menu 296
tv:menu 223
tv:menu 299
tv:menu 296
tv:menu 214. 296
tv:menu 214
tv:menu 222. 296
tv:menu 214. 296
tv:menu 214
tv:menu 296
tv:menu 295
tv:menu 296
tv:menu 296
tv:menu 297
tv:menu 222. 297
tv:menu 222. 297
tv:menu 297
tv:menu 299
tv:menu 297
tv:menu 297
tv:menu 297
tv:menu 297
tv:menu 299
tv:menu 297

451

Index

452

Programming the User Interface

:rlght Inlt option for
:rowa Inlt option for

:acreen Inlt option for
:set-default-font method of

:aet-edgea method of
:aet-fllI-p method of

:set-geometry method of
:set-ltem-1I1t method or

:aet-Iabel method of
The Flavor Network or

:top Inlt option for
:vep Init option for

:width Inlt option for
:x Inlt option for
:y Inlt option for

:add-hlghllght~ltem method or
:add-hlghllghted-valu8 method or
:hlghllghted-Items Inlt option for

:hlghllghted-Items method of
:hlghllghted-values method of

:remove-hlghllghted-Hem method or
:remove-hlghllghted-value method or

:set-hlghllghted-Hems method of
:set-hlghllghted-valuea method of

Useful
Useful

The

:choose method of
:setup method of

tv:menu 297
tv:menu 214. 297
tv:menu 298
tv:menu 299
tv:menu 299
tv:menu 214
tv:menu 214
lY:menu 299
tv:menu 299
tv:menu 293
tv:menu 298
tv:menu 222. 298
tv:menu 298
tv:menu 298
tv:menu 298
tv:menu-choose function 212. 219
tv:menu flavor 213, 221. 293, 295, 299
tv:menu-hlghllghtlng-mlxln 243
tv:menu-hlghllghtlng-mlxln 243
tv:menu-hlghllghtlng-mlxln 242
tv:menu-hlghllghtlng-mlxln 243
tv:menu-hlghllghtlng-mlxln 243
tv:menu-hlghllghtlng-mlxln 243
tv:menu-hlghllghtlng-mlxln 243
tv:menu-hlghllghtlng-mlxln 243
tv:menu-hlghllghtlng-mlxln 243
tv:menu-hlghllghtlng-mlxln flavor 241
tv:menu Inlt-pllst Options 222
tv:menu Messages 223

March 1985

tv:mlnlmum-window flavor 105
tv:momentary-menu Example 1: Simple Momentary

Menu 223
tv:momentary-menu Example 2: Item Ust as Inl1-

pllst Option 224
tv:momentary-menu Example 3: Centered Label

and Use of General Ust Items 224
tv:momentary-menu Example 4: Using the Mouse

Buttons 225
tv:momentary-menu flavor 221, 293
tv:momentary-menu resource 221
tv:momentary-muHlple-menu Example 243
tv:momentary-muHlple-menu flavor 242
tv:momentary-wlndow-hacklng-menu flavor 221
tv:mouse-button-encode function 156
tv:mouse-buttons function 158
tv:mouse-double-cllck-tlme variable 161
tv:*mouse-Incrementlng-keystates* variable 161
tv:mouse-Input function 157
tv:mouse-Iast-buttons variable 155
tv:*mouse-modlfylng-keystates* variable 161
tv:mouae-sensHlve-text-acroll-wlndow flavor 174
tv:mouse-set-~linker-cursorpos function 152
tv:mou18-sheet variable 152
tv:mouse-waH function 155
tv:mouse-wakeup function 152
tv:mouse-x-scale-array variable 159
tv:mouse-x variable 155
tv:mouse-y-or-n-p Facility 220
tv:mouse-y-or-n-p function 220
tv:mouse-y-acale-array variable 160
tv:mouse-y variable 155
tv:muHlple-cholce 255
tv:muHlple-cholce 255
tv:muHlple-cholce Example 255
tv:muHlple-cholce flavor 254
tv:multlple-cholce Menu Messages 255
tv:muHlple-choose function 252

March 1985

:apeclal-cholcea Inlt option for

:process Inlt option for

:helght Inlt option for
:set-slze method of

:wIdth Inlt option for

:type..allst Inlt option for

:backspace-not-overprlntlng-ftag Inlt option for
:basellne method of

:bltblt-from-Iheet method of
:bltblt method of

:b1tb1t-wHhln-sheet method of
:bottom Inlt option for

:bottom-margln-llze method of
:change-of-slze-or-marglnl method of

:charBCter-helght Inlt option for
:character-wldth Inlt option for

:character-wldth method of
:clear-ch .. method of

:clear-rest-of-line method of
:clear-rest-of-wlndow method of

:clear-wtndow method of
:compute-motlon method of

:cr-not-newllne-ftag Inlt option for
:current-tont method of

:deexposed-typeln-actlon Inlt option for
:deexposed-typeln-actlon method of

:deexposed-typeout-actlon Inlt option for

453

Index

tv:multlple-choose Menu Example 253
tv:munlple-menu-choose Example 248
tv:munlple-menu-choose function 247
tv:munlple-menu-choose-menu Example 249
tv:munlple-menu-choose-menu flavor 249
tv:munlple-menu-choose-menu-mlxln flavor 248
tv:multlple-menu flavor 242
tv:munlple-menu-mlxln 242
tv:multlple-menu-mlxln flavor 241
tv:munlple-menu-mlxln Inlt-pllst Options 242
tv:multlple-menu-mlxln Messages 243
tv:no-screen-managlng-mlxln flavor 87
tv:*notiflcatlon-dellver-tlmeout* variable 130
tv:*notlflcatlon-pop-down-delay* variable 132
tv:notlfy function 127
tv:pane-mlxln flavor 100. 176
tv:pane-no-mouse-select-mlxln flavor l00.ln
tv:pop-up-menu Example 226
tv:pop-up-menu flavor 221
tv:pop-up-multlple-menu-choose-menu flavor 249
tv:pop-up-munlple-menu-choose-resource

resource 248
tv:prepare-Iheet special form 84
tv:process-mlxln 94
tv:process-mlxln flavor 94
tv:rectangular-bllnker 149
tv:rectangular -blinker 150
tv:rectangular-bllnker 149
tv:rectangular-bllnker flavor 149
tv:screen-manage-update-permltted-windoWl

variable 90
tv:scroll-Item-Ieader-offset variable 313
tv:scroil-maintain-list function 315
tv:scroll-mouse-mlxln 311
tv:scroll-mouse-mlxln flavor 311
tv:acroll-parse-Item function 307. 311
tv:scroll-wlndow flavor 305
tv:scroll-wlndow-wlth-typeout flavor 305
tv:selected-wtndow variable 94
tv:*select-keya* variable 139
tv:select-mlxln flavor 99
tv:select-or-create-wlndow-of-ftavor Function 240
tv:aelect-relatlve-mlxln flavor 99
tv:aet-default-wlndow-Ilze function 165
tv:aet-screen-background-gray · function 92
tv:aet-screen-deexposed-gray function 92
tv:lheet 108. 117
tv:lheet 142
tv:lheet 120
tv:sheet 120
tv:lheet 121
tv:lheet 163
tv:lheet 167
tv:lheet 166
tv:lheet 164
tv:sheet 164
tv:lheet 114
tv:sheet 113
tv:lheet 113
tv:lheel 113
tv:lheet 114
tv:sheel 114
tv:lheel 108. 117
tv:lheet 142
tv:aheet 116
tv:sheet 116
tv:lheet 116

454

Programming the User Interface

:deexposed-typeout-actlon method of
:delete-char method of
:delete-line method of

:delete-Itrlng method of
:draw-char method of

:draw-reclangle method of
:edgea Inlt option for

:edges method of
:font-map inlt option for

:font-map method of
:helght Inlt option for

:home-cursor method of
:home-down method of

:lnH method of
:Insert-char method of
:Insert-line method of

:Insert-strlng method of
:Inslde-edgea method of

:Insl~helght Inlt option for
:Inslde-slze Inlt option for

:Inslde-slze method of
:Inslde-wldth Inlt option for

:Integral-p Inlt option for
:Ieft Inlt option for

:Ieft-margln-slze method of
:marglnl method of

:more-p Inlt option for
:more-p method of

:name init option for
:name method of

:posltlon inlt option for
:posHlon method of

:read-cursorpos method of
:refresh method of

:reverse-vldeo-p method of
:rlght init option for

:rlght-margln-character-flag Init option for
:rlght-margln-slze method of

:set-current-font method of
:set-cursorpos method of

:set-deexposed-typeln-actlon method of
:aet-deexposed-typeout-actlon method of

:set-font-map-and-vsp method of
:set-font-map method of

:set-more-p method of
:set-reverse-vldeo-p method of

:set-slze-In-characters method of
:set-truncate-line-out method of

:set-vsp method of
:slze-In-characters method of

:slze Inlt option for
:slze method of

:strlng-Iength method of
:strlng-out method of

:superlor Inlt option for
:tab-nchars init option for

:top init option for
:top-margln-slze method of

:truncate-line-out method of
:tyo method of

:vsp init option for
:vsp method of

:who-line-documentation-string method of
:wldth Init option for

:x inlt option for
:y inlt option for

tv:sheet 116
tv:sheet 114
tv:sheet 114
tv:lheet 114
tv:sheet 121
tv:sheet 124
tv:sheet 163
tv:sheet 167
tv:sheet 142
tv:sheet 141
tv:sheet 163
tv:sheet 113
tv:sheet 113
tv:sheet 107
tv:sheet 112
tv:sheet 112
tv:sheet 112
tv:sheet 167
tv:sheet 163
tv:lheet 163
tv:sheet 166
tv:eheet 163
tv:sheet 164
tv:sheet 163
tv:sheet 167
tv:sheet 167
tv:sheet 115
tv:sheet 115
tv:sheet 171
tv:sheet 172
tv:sheet 163
tv:sheet 166
tv:sheet 113
tv:sheet 113
tv:sheet 116
tv:sheet 163
tv:sheet 117
tv:sheet 167
tv:sheet 142
tv:sheet 113
tv:sheet 116
tv:sheet 116
tv:sheet 142
tv:sheet 141
tv:sheet 116
tv:sheet 116
tv:sheet 166
tv:sheet 118
tv:sheet 116
tv:sheet 166
tv:sheet 163
tv:sheet 166
tv:sheet 115
tv:sheet 111
tv:sheet 107
tv:sheet 108. 117
tv:sheet 163
tv:sheet 167
tv:sheet 118
tv:lheet 111
tv:sheet 116
tv:sheet 116
tv:sheet 152
tv:sheet 163
tv:sheet 163
tv:sheet 163
tv:lheet-followtng-bllnker function 149

March 1985

March 1985

:any-tyl method of
:any-tyl-no-hang method of

:clear-Input method of
:fresh-line method of

:lIne-out method of
:lIsten method of
:untyl method of

:actlvlty command processor argument
:assoc tv:choose-varlable-values variable

:boolean command processor argument
:boolean tv:chooae-varlable-values variable

:buttons menu l1em
:character -or-nil tv:choose-varlable-values variable

:character tv:choose-varlable-values variable
:choose tv:choose-varlable-values variable

:date command processor argument
:date-or -never tv:choose-varlable-values variable

455

Index

tv:sheet-force-access special form 82. 84
tv:show-partlally-vlslble-mlxln flavor 87
tv:stream-mlxln 134
tv:stream-mlxln 135
tv:stream-mlxln 135
tv:stream-mlxln 112
tv:stream-mlxln 112
tv:stream-mlxln 135
tv:stream-mlxln 135
tv:stream-mlxln flavor 108. 118. 132
tv:temporary-choose-variable-values-wlndow

flavor 273
tv:temporary-choose-varlable-values-wlndow

resource 274
tv:temporary-muHlple-cholce-wlndow flavor 254
tv:temporary-muHlple-cholce-wlndow

resource 255
tv:temporary-typeout-wlndow flavor 174
tv:text-scroll-wlndow-empty-gray-hack flavor 174
tv:text-scroll-wlndow flavor 174
tv:top-box-Iabel-mlxln flavor 173
tv:top-Iabel-mlxln flavor 173
tv:truncatabie-lines-mlxln flavor 117
tv:truncating-lines-mlxln flavor 108. 117
tv:truncatlng-wlndow flavor 117
tv:tum-off-sheet-bllnkers function 149
tv:typeout-wlndow flavor 174
tv:typeout-wlndow-wHh-mouse-sensHlve-Hems

flavor 174
tv:unexpected-select-delay variable 132
tv:value 308
tv:waH-for-mouse-button-down function 156
tv:waH-for -mouse-button-up function 156
tv:who-Ilne-mouse-grabbed-documentatlon

variable 156
tv:wlndow-call-relatlve special form 100
tv:wlndow-call special form 101
tv:wlndow flavor 105
tv:wlndow-hacklng-menu-mlxln flavor 220
tv:wlndow-mouse-call special form 101
tv:wlndow-pane flavor 177
tv:wlndow-wHh-typeout-mlxln flavor 174
tv:wHh-mouse-and-buttons-grabbed-on-sheet

special form 155
tv:wHh-mouse-and-buttons-grabbed special

form 155
tv:wHh-mouse-grabbed-on-sheet special form 154
tv:wHh-mouse-grabbed special form 154
tv:wHh-mouse-usurped special form 157
tv:wHh-termlnal-lo-on-typeout-wlndow special

form 175
Two-dimensional bl1-array 121
:tyl message 176
:tyl method of sl:lnteractlve-stream 11
:tyl-no-hang method of 11:lnteractlve-ltream 12
:tyo message 111
:tyo method of tv:sheet 111
type 48
type 259
type 48
type 259
type 210. 225. 311
type 259
type 259
type 259
type 48
type 259

456

Programming the User Interface March 1985

:date tv:choose-varlable-values variable type 259
:declmal-number-or-nll tv:choose-vartable-values variable

type 259
:declmal-number tv:choose-vartable-values variable

type 259
:documentallon menu Item type 311

:documentatlon-toplc command processor argumen1 type 48
:enumerallon command processor argur.lent type 48

:eval-form tv:choose-varlable-values variable type 259
:eval menu Item type 210. 311

:expresslon tv:choose-varlable-values variable type 259
:font command processor argument type 48

:font-lilt tv:choose-varlable-values variable type 259
:funcall menu Item type 210. 311

:funeaU-wlth-self menu Item type 210
:host command processor argument type 48

:host-list tv:choose-varlable-valuea variable type 259
:host-or-Iocal tv:choose-varlable-values variable type 259

:host tv:choose-varlable-values variable type 259
:Integer command processor argument type 48

:Integer tv:choose-varlable-values variable type 259
:Inverted-boolean tv:choose-varlable-values variable

type 259
:kbd menu Item type 210. 311

:keyword-list tv:choose-varlable-values variable type 259
:make-aystem-verslon command processor argumen1

type 48
:menu-allst tv:choose-varlable-values variable type 259

:menu menu Item type 210. 311
:no-select menu Item. type 210

:number command processor argument type 48
:number-or-nll tv:choose-varlable-valuea variable type 259

:number tv:choose-varlable-values variable type 259
:package command processor argument type 48

:past-dale-or-never tv:choose-varlable-values variable
type 259

:past-date tv:choose-varlable-values variable type 259
:pathname command processor argument type 48

:pathname-host tv:choose-varlable-valuea variable type 259
:pathname-liat tv:choose-varlable-values variable type 259

:paIhname-or-nll tv:choose-varlable-values variable
type 259

:pathname tv:choose-varlable-values variable type 259
:prlnc tv:choose-varlable-values variable type 259

:prlnter command processor argument type 48
:sexp tv:choose-varlable-values variable type 259

:strlng command processor argument type 48
:string-list tv:choose-varlable-values variable type 259

:ltrlng-or-nll tv:choose-varlable-values variable type 259
:strlng tv:choose-varlable-values variable type 259

:ayatem command processor argument type 48
:tlme-lnterval-6Oths tv:choose-varlable-values variable

type 259
:tlme-Interval-or-never tv:choose-varlable-values variable

type 259
:value menu Item type 210. 212

:wlndow-op menu Item type 210. 220
:typeahead option for tv:add-functlon-key 135
:type-allst Inlt option for tv:scroll-mouse-mlxln 311
Type Decoding Message 270

Adding a Type Decoding Method 269
tv:choose-varlable-values Type Definition Example 271

Typefaces 103. 140
Adding a Type Keyword Property 269

:type option for fquery 56
Typeout 108

Deexposed typeout action 86

457

March 1985 Index

:error deexposed typeout action 82
:expose deexposed typeout action 82
:norm81 deexposed typeout action 82

:notlfy deexposed typeout action 82
:permlt deexposed typeout action 82

II: *typeout-defauH* variable 39
:permlt deexposed typeout option 86

Inferior typeout window 174
tv: typeout-window flavor 174

:typeout-window Inlt option for
tv:essentlaJ-wlndow-wHh-typeout-mlxln 174

Typeout Windows 174
tv: typeout-wlndow-wlth-mouse-sensHlve-Hems

flavor 174
Command Processor Argument Types 48

Defining Choose Variable Values Types 269
Predefined tv:choose-varlable-values Variable Types 259

Variables and Types 257
Types of Menu Items 210
Typing strings 111

U U U
Undefined character code 108

tv: unexpected-select-delay variable 132
Universal Time 353
:unaelected-cholce-font Inlt option for

tv:baslc-choose-vartable-values 275
:untyl method of sl:lnteractlve-stream 12
:untyl method of tv:stream-mlxln 135
Unwired memory 327

sl: unwire-words 328
:update-Hem-list method of

tv:dyn8mlc-••• -menu 237
:update-Iabel method of

tv:delayed-redlsplay-Iabel-mlxln 173
Updating list items 315
Updating menu Item list 235
Updating the display 303
Useful tv:menu Inlt-pllst Options 222
Useful tv:menu Messages 223

Notifying the User 127
Prompting for input from user 59

Querying the User 55
The Users Process and the Mouse Process 206

User option facility 203
The User Option Facility 266

User Options Example 268
Functions for Altering User Option Variables 267
Functions for Defining User Option Variables 267
Sending command to user process 229

Usurping the mouse 151. 157

V V V
tv: value 308

:value-font Inlt option for
tv:baslc-choose-variable-valu8S 275

Extracting value from chosen Item 223
:value line item entry 308
:value menu Item type 210. 212

Choose Variable Values 203
Menu Values 229

Menu Items and Menu Values 229
The Choose Variable Values Facility 257

The Basic Choose Variable Values Flavor 272

458

Programming the User Interface

Instantlable Choose Variable
The Standard Choose Variable

Displaying multiple
Modifying

Defining Choose Variable
Defining a Choose Variable

I/O Buffers for Choose Variable
audlo:audlo-exlst.

audlo:*number-of-polyphonlc-volcea*
audlo:*aample-rate*

base
lbase

*nopolnt
package
prlnlevel

read-form-completlon-allst
read-form-completlon-dellmHera

read-form-edH-trlvlal-errors-p
readtable

rubout-handler
sl:*cp-comtab*

sl :*cp-defauH-blank-line-mode*
sl:*cp-def,-,uH-dlspatch-mode*

sl :*cp-defauH-prompt*
sl:*typeout-defauH*

sys:kbd-Intercepted-characters
ays:kbd-standard-abort-characters

sys:kbd-standard-Intercepted-charactera
sys:kbd-standard-suspend-characters

termlnal-Io
tlme:*tlmezone*

tv:alu-and
tv:alu-andca

tv:alu-Ior
tv:alu-seta
tv:alu-xor

tv:cold-Ioad-slream-old-selected-wlndow
tv:column-spec-lIst

tv:**constralnt-node**
tv:**constralnt-remalnlng-helght**
tv:**constralnt-remalnlng-wldth**

tv:**constralnt-stacklng**
tv:**constralnt-total-helght**
tv:**constralnt-total-wldth**

tv:*functlon-keys*
tv:*gray-arrays*

tv:ltem-list-polnter
tv:mouse-double-cllck-tlme

tv:*mouse-Incrementlng-keystates*
tv:mouse-Iast-buttons

tv:*mouse-modlfylng-keystates*
tv:mouse-sheet

tv:mouse-x
tv:mouse-x-scale-array

tv:mouse-y
tv:mouse-y-scale-array

tv:*notificatlon-dellver-tlmeout*
tv:*notlficatlon-pop-down-delay*

tv:screen-manage-update-permiHed-wlndows
tv:scroll-Item-Ieader -offset

tv:selected-wlndow
tv:*select-keys*

tv:unexpected-select-delay
tv:who-Ilne-mouse-grabbed-documentatlon

zwei:*comtab*

Functions for Altering User Option

Values Flavors 272
Values Function 262
values of a function 308
values of variables 257
Values Types 269
Values Window 272
Values Windows 273
variable 330
variable 330
variable 329
variable 257
variable 257
variable 257
variable 257
variable 257
variable 8
variable 9
variable 8
variable 257
variable 22
variable 53
variable 43
variable 43
variable 44
variable 39
variable 15
variable 16
variable 16
variable 16
variable 75
variable 367
variable 120
variable 119
variable 119
variable 119
variable 119, 124
variable 94
variable 236
variable 184, 188
variable 184, 188
variable 184, 188
variable 184, 188
variable 184, 188
variable 184, 188
variable 137
variable 92
variable 235
variable 161
variable 161
variable 155
variable 161
variable 152
variable 155
variable 159
variable 155
variable 160
variable 130
variable 132
variable 90
variable 313
variable 94
variable 139
variable 132
variable 156
variable 381

March 1985

:varlable-cholce I/O buffer command 273
Variables 267

March 1985

Functions for Defining User Option
Modifying values of

Functions,

:assoc tv:choose-varlable-values
:boolean tv:choose-varlable-values

:character-or-nll tv:choose-varlable-valuea
:character tv:choose-varlable-valuea

:choose tv:choose-varlable-values
:date-or-never tv:choose-varlable-values

:date tv:choose-varlable-values
:declmal-number-or-nll tv:choose-varlable-valuel

:declmal-number tv:choose-varlable-valuea
:eval-form tv:choose-varlable-values

:expresslon tv:choose-varlable-valuea
:font-list tv:choose-varlable-values
:host-list tv:chooS8-variable-values

:host-or-Iocal tv:choose-varlable-values
:host tv:choose-varlable-valuea

:Integer tv:chooS8-variable-values
:Inverted-boolean tv:choose-varlable-values

:keyword-list tv:choose-varlable-valuea
:menu-allst tv:choose-varlable-valuea

:number-or-nll tv:choose-varlable-valuea
:number tv:choose-varlable-values

:past-date-or-never tv:choose-varlable-values
:past-date tv:choose-varlable-values

:pathname-host tv:choose-varlable-valuea
:pathname-list tv:chooS8-variable-valuea

:pathname-or-nll tv:choose-varlable-valuea
:pathname tv:choose-varlable-values

:princ tv:choose-varlable-valuea
:sexp tv:choose-varlable-valuea

:string-list tv:choose-varlable-vahies
:strlng-or -n II tv:choose-varlable-valuea

:strlng tv:choose-varlable-values
:time-lnterval-6Oths tv:choose-varlable-valuea

:tlme-Interval-or-never tv:choose-varlable-values
Predefined tv:choose-varlable-valuea

Choose
The Choose

The Basic Choose
Instantlable Choose

The Standard Choose
Defining Choose

Defining a Choose
I/O Buffers for Choose

lime:

:blink blinker
Deselected
nil blinker

:off blinker
:on blinker

I blinker

Partially

Variables 267
variables 257
Variables. and Macros for Digital Audio 329
Variables and Types 257
:variables Inl1 option for

tv:baslc-choose-variable-valU8S 274
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
variable type 259
Variable Types 259
Variable Values 203
Variable Values Facility 257
Variable Values Flavor 272
Variable Values Flavors 272
Variable Values Function 262
Variable Values Types 269
Variable Values Window 272
Variable Values Windows 273
Variable-width fonts 108. 144
verlfy-date function 370
:verify option for window size and position

messages 162
Vertical spaCing 108

459

Index

Vertical spacing between tines In menu 222. 298
:vertical stacking deSCription 188
Virtual Ust Maintenance 315
visibility 146
visibility 146
visibility 146
visibility 146
visibility 146
visibility 146
:vIsibility Init option for tv:bllnker 148
Visibility of blinkers 146
Visible windows 75. 79
visible windows 75. 86

460

Programming the User Interface

w
audio:

tv:
tv:

Sawtooth
Sine

Square

Polyphonic
Days of the

tv:

Blinker
Border margin

Character
Inside

Maximum
Raster

Blinker
Messages About Character

Character

Activate
Controlling the Mouse Outside a

Creating a
Deactivating menu

Defining a Choose Variable Values
Delete contents of

Delete to end of
Erase

Erase to end of
Expose

Exposing menu
Inferior typeout

Mouse documentation
Position of

Simple momentary
Size of

Superior
Using the mouse wl1h multiple choice

The Selected

OWning of a
tv:
tv:

[Move

tv:

March 1985

Voices 324
Vsp attribute 108, 116
:vsp Inlt option for tv:menu 222. 298
:vsp Inl1 option for tv:sheel 116
:vsp method of tv:sheel 116

w
waH-for-audlo-nag function 335
waH-for-mouse-buHon-down function 156
waH-for-mouse-buHon-up function 156
Wave Example 341
Wave Example 339
Wave Example 341
Wavetable 325
Wavetable cursor 325
wavetable Increments 337
week 353
:whHe pattern In dummy description 188
:who-line-documentalion-Itring method of

tv:sheet 152
who-II ne-mouse-g rabbed-documentallon

variable 156
width 145. 146
width 170
width 108. 144, 145
width 213
width 213
width 146
Width and Blinker Height Font Attributes 145
Width and Cursor Motion 114
Width Font Attribute 144
:width Inlt option for tv:choose-variable-vaJues
:wIdth Inl1 option for tv:menu 298
:width Inl1 option for tv:rectangular-bllnker 149
:wIdth Inl1 option for tv:lheet 163
Width of :function line l1em 308
Width of :Iymeval line l1em 308
window 295
Window 158
Window 106
window 223. 299
Window 272
window 114
window 113
window 114
window 113
window 296
window 223
window 174
window 311
window 103
window 223
window 103
window 76. 78
window 251
Window and the Selected Activity 94
Window attributes 108
Window Attributes for Character Output 115
Window Borders 170
window by the mouse 151
wlndow-call-relatlve special form 100
wlndow-call special form 101
Window] Edit Screen menu Item 76
Window Exposure and Output 82
window flavor 105

w

263

March 1985

OVerview of
Command menu within

Functions, Flavors, and Messages for

tv:

tv:

tv:

Multiple choice
:mouse

:poInt
:rectangle

:wIndow

Active
Active Inferiors of

Basics of Scroll
Burying

Changing the status of
Character Output to

Copying Bit Rectangles to and From
Deexposed

:deexpose message to
Drawing Characters and Strings on

Drawing Unes on
Drawing Points on

Drawing Polygons and Circles on
Drawing Splines on

Exposed
:expose message to

Exposing
Flavors of Basic

Font Messages to
Graphic Output to

Hierarchy of
110 Buffers for Choose Variable Values

Inactive
Inferior

Input From
Input operations on

Introduction to Scroll
Una-truncating

Locked
Making Standalone Editor
Messages for Input From

Messages to Display Characters on
Messages to Remove Characters From

Output operations on
OVer1applng

Partially visible
Regenerating contents of
Relationship of mouse to

Saving contents of
:acreen-manage message to

Scroll

Window Flavors and Messages i03
Window Flavors and Messages 103
window frame 231
Window Graying 90
Window Graying 92
Window Graying Specifications 91
wlndow-hacklng-menu-mlxln Havor 220
Window Inside 103, 162, 168
Window Labels 171
Window margin 103, 162, 168
Window Margins, Borders, and Labels 168
wlndow-mouse-call special form 101
Window narne 297
:wlndow-op menu Item type 210,220

461

Index

:wIndow option for zwel:open-edltor-stream 378
:window option for zwel:wlth-edltor-stream 378
wlndow-pane flavor 177
Window panes 76
window parameters 251, 255
window-positioning mode 167
window-positioning mode 167
window-positioning mode 167
window-positioning mode 167
Window position Inlt options 162
Window position messages 162
Windows 75
windows 76
windows 76, 79, 86
Windows 305
windows 86
windows 103
Windows 108
Windows 120
windows 82, 86
windows 79
Windows 121
Windows 122
Windows 120
Windows 124
Windows 125
windows 79, 86
windows 79
windows 167
Windows 105
Windows 141
Windows 118
Windows 76
Windows 273
windows 76
windows 78. 103
Windows 132
windows 75
Windows 303
Windows 117
windows 82
Windows 381
Windows 134
Windows 111
Windows 113
windows 75
windows 75
windows 75, 86
windows 78
windows 151
windows 78
windows 86
Windows 301

462

Programming the User Interface

Scrolling
:set-save-blts message to

Temp-locked
Temporary
Text Scroll

Typeout
Visible

How
How

Activities and
Flavors Related to

Messages About
Change In
Initializing

Messages for
nil option for

:verity option for

Introduction to Using the
Purpose of the

USing the

Selecting a
Getting a

tv:
sl:

Notes on
sl:
sl:

Usp Primitives for
audio:

:buffer-name option for zwel:
:create-p option for zwel:
:defauHs option for zwel:

:end option for zwel:
:hack-fonts option for zwel:

:Interval option for zwel:
:klll option for zwel:

:Ioad-p option for zwel:
:ordered-p option for zwel:
:pathname option for zwel:

:start option for zwel:
:wlndow option for zwel:

The zwel:
zwel:

Command menu
tv:

tv:
tv:
tv:
tv:

tv:

Windows 175
windows 79
windows 82. 84
Windows 84
Windows 174
Windows 174
windows 75.79
Windows and Processes 94
Windows as Input Streams 132
Windows as output streams 103. 108
Windows as streams 75
Windows Display Characters 108
Windows Display Graphic Output 118
Window Selection 94
Window Selection 99
Window Selection 96
window shape 175
Window Size and Position 163
Window Size and Position 165

March 1985

window size and position messages 162
window size and position messages 162
Window size Inlt options 162
Window size messages 162
Window Sizes and Positions 162
Window System 73
Window System 75
Window System 71
Window System Choice Facilities 201
Window System Concepts 75
Window Temporarily 100
Window to Use 105
:wIndow window-positioning mode 167
wlndow-wlth-typeout-mlxln flavor 174
wlre-consecutlve-words 328
Wired memory 327
Wired Structures 327
wire-structure 328
wire-words 328
Wiring Memory 328
wlth-audlo macro 330
wlth-edltor-stream 378
wlth-edltor-stream 378
wlth-edltor-stream 378
wlth-edltor-stream 378
wlth-edltor-stream 378
wlth-edltor-stream 378
wlth-edltor-stream 378
wlth-edltor-stream 378
wlth-edltor-stream 378
w1th-edltor-stream 378
wlth-edltor-stream 378
wlth-edltor-stream 378
wlth-edltor-stream Macro 3n
wlth-edltor-stream macro 377
wlth-Input-edltlng-optlons-If special form 24
wlth-Input-edltlng-optlons special form 23
wlth-Input-edltlng special form 25
within window frame 231
wlth-mouse-and-butlons-grabbed-on-sheet special

form 155
wlth-mouse-and-butlons-grabbed special form 155
wlth-mouse-grabbed-on-sheet special form 154
wlth-mouse-grabbed special form 154
wlth-mouse-usurped special form 157
wlth-notlflcatlon-mode special form 131
wlth-termlnal-Io-on-typeout-wlndow special

form 175

March 1985

x

How' the Inpu1 Editor
Horizontal
The Audio

x

Works 21
wraparound 108
Wrapping Form 330
wrlte-user-optlons function 268

:x Inlt option for tv:menu 298
:x Inlt option for tv:sheet 163
:x-pos Inlt option for tv:bllnker 148

463

Index

x

v Y V
Year 353
yes-or-no-p function 55
Yes-or-no question 55
:y Inlt option for tv:menu 298
:y Inlt option for tv:sheet 163
y-or-n-p function 55

Responsibilities of Your Program 230
:y-pos Inlt option for tv:bllnker 148

z z z
Ust Fonts (m-X)

Time

Bp

Introduction to
:buffer-name option for

:create-p option for
:default option for

:end option for
:hack-fonts option for

:Interval option for
:klll option for

:Ioad-p option for
:ordered-p option for
:pathname option for

:start option for
:wIndow option for

The
:edlt message to

:Interval-strlng message to
:set-Interval-strlng message to

:buffer-name option for
:create-p option for
:defaults option for

:end option for
:hack-fonts option for

:Interval option for
:klll option for

:Ioad-p option for
:ordered-p option for
:pathname option for

:start option for
:wlndow option for

The

Zmacs command 142
zone 353
zwel:*comtab* variable 381
Zwel data structure 378
Zwel Internals 373
Zwel Internals 375
zwel:open-edltor-stream 378
zwel:open-edHor-slream 378
zwel:open-edltor-stream 378
zwel:open-edltor-atream 378
zwel:open-edltor-Itream 378
zwel:open-edltor-llream 378
zwel:open-edltor-stream 378
zwel:open-edHor-stream 378
zwel :open-edltor-stream 378
zwel:open-editor-llream 378
zwel:open-edltor-stream 378
zwel:open-edltor-stream 378
zwel:open-edltor-Itream function 3n
zwel:open-editor-llream Function 3n
zwel:llandalone-edltor-frame 381
zwel:standalom!-edltor-frame 381
zwel:standalone-edltor-frame 381
zwel:standalone-edltor-frame flavor 381
zwel:wlth-edltor-stream 378
zwel:wlth-edltor-stream 378
zwel:wlth-edltor-stream 378
zwel:wlth-edttor-stream 378
zwel:wlth-editor-Itream 378
zwel:wlth-edltor-stream 378
zwel:wlth-edltor-stream 378
zwel:wHh-edltor-stream 378
zwel:wlth-edltor-stream 378
zwel:wlth-edltor-stream 378
zwel:wlth-edltor-Itream 378
zwel:wlth-edltor-stream 378
zwel:wlth-edltor-stream macro an
zwel:wlth-edltor-stream Macro 3n

