

, symbolics

2 Referen,ce .G ... ,U." i.de to
Symbohcs~Llsp ..

Cambridge, Massachusetts

Reference Guide to Symbolics-Lisp
996025

March 1985

This document corresponds to Release 6.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbollcs, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance with the terms of such license.

This document may not be reproduced In whole or in part without the prior written
consent of Symbolics, Inc.

Copyright C> 1985, 1984, 1983, 1982, 1981, 1980 Symbolics, Inc. All Rights Reserved.
Font Library Copyright © 1984 Bitstream Inc. All Rights Reserved.

Symbolics, Symbolics 3600, Symbolics 3670, Symbolics 3640, SYM80lICS-lISP,
ZETAlISP, MACSYMA, S-GEOMETRY, S-PAINT, and S-RENDER are trademarks of
Symbolics, Inc.

UNIX is a trademark of Bell Laboratories, Inc. TENEX is a registered trademark of Bolt

Beranek and Newman Inc. The chapter on the LOOP iteration macro Is a reprint of
M.I.T. Laboratory for Computer Science memo TM-169, by Glenn Burke.

Restricted Rights Legend
Use, duplication, or disclosure by the government is subject to restrictions as set forth
In subdivision (b)(3)(II) of the Rights In Technical Data and Computer Software Clause
at FAR 52.227-7013.

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symbolics, Inc.

Text typography: Century Schoolbook and Helvetica produced on Symbolics 3600-
family computers from Bitstream, Inc., outlines; text masters printed on Symbolics LGP-1
Laser Graphics Printers.
Cover design: Schafer/laCasse
Cover printer: W.E. Andrews Co., Inc.
Text printer: ZBR Publications, Inc.

Printed in the USA.

Printing year and number: 87 86 85 9 8 7 6 5 4 3 2 1

iii

March 1985 Reference Guide to Symbolics-Usp

Table of Contents

Page

I. Basic Objects 1

L Data Types 3

1.1 The Symbol Data Type 3
1.2 The Cons Data Type 4
1.3 Numeric Data Types 4
1.4 The Compiled Function Data Type 4
1.5 The Locative Data Type 5
1.6 The Array Data Type 5
1.7 The List Data Type 5

2. Predicates 7

3. Printed Representation 13

3.1 How the Printer Works 13
3.2 Effects of Slashification on Printing 13
3.3 What the Printer Produces 14

3.3.1 Printed Representation of Integers 14
3.3.2 Printed Representation of Ratios 14
3.3.3 Printed Representation of Floating-point Numbers 14
3.3.4 Printed Representation of Complex Numbers 15
3.3.5 Printed Representation of Symbols 15
3.3.6 Printed Representation of Common Lisp Character Objects 16
3.3.7 Printed Representation of Strings 16
3.3.8 Printed Representation of Instances 16
3.3.9 Printed Representation of Arrays That Are Named Structures 16
3.3.10 Printed Representation of Arrays That Are Not Named 17

Structures
3.3.11 Printed Representation of Conses 17
3.3.12 Printed Representation of Miscellaneous Data Types 18

3.4 Controlling the Printed Representation of an Object 19
3.5 How the Reader Works 19
3.6 What the Reader Recognizes 20

3.6.1 How the Reader Recognizes Integers 20
3.6.2 How the Reader Recognizes Ratios 22
3.6.3 How the Reader Recognizes Floating-point Numbers 22
3.6.4 How the Reader Recognizes Complex Numbers 24
3.6.5 How the Reader Recognizes Symbols 24
3.6.6 How the Reader Recognizes Strings 25

iv

Reference Guide to Symbolics-Usp March 1985

4.

5.

6.

3.6.7 How the Reader Recognizes Conses 25
3.6.8 How the Reader Recognizes Macro Characters 26

3.7 Sharp-sign Reader Macros ' 27
3.8 Special Character Names 32
3.9 The Readtable 33

3.9.1 Functions That Create New Readtables 33
3.9.2 Functions That Change ,Character Syntax 34
3.8.3 Functions That Change Characters Into Macro Characters 35
3.9.4 Readtable Functions for' Maclisp Compatibility 36

D. Lists

Manipulating List Structure

39

41
42
42
46
54
56
59
59
64
67
69
71
72
73
75
75
75
75
77
78
79
79

4.1 Conses
4.1.1 Composition of Cars and Cdrs

4.2 Basic List Operations
4.3 Alteration of List Structure
4.4 Cdr-coding
4.5 Tables
4.6 Lists as Tables
4.7 Association Lists
4.8 Property Lists
4.9 Hash Tables

4.9.1 Creating Hash Tables
4.9.2 Hash Table Messages
4.9.3 Hash Table Functions
4.9.4 Dumping Hash Tables to Files
4.9.5 Hash Tables and Loop Iteration
4.9.6 Hash Tables and the Garbage Collector
4.9.7 Hash Primitive

4.10 Heaps
4.10.1 Messages to Heaps
4.10.2 Heaps and Loop Iteration

4.11 Sorting

Locatives

5.1 Cells and Locatives
5.2 Cdr-coding and Locatives
5.3 Functions That Operate on Locatives

m. Numbers

Introduction to Numbers

6.1 Coercion Rules for Numbers

83

83
83
84

87

89

90

March 1985

6.2 Numbers in the Compiler
6.3 Printed Representation of Numbers

7. Types of Numbers

7.1 Integers
7.2 Rational Numbers
7.3 Floating-point Numbers'
7.4 Complex Numbers

8. Numeric Functions

8.1 Numeric Predicates
8.2 Numeric Comparisons
8.3 Arithmetic
8.4 Transcendental Functions
8.5 Numeric Type Conversions
8.6 Logical Operations on Numbers
8.7 Byte Manipulation Functions
8.8 Random Numbers
8.9 32-bit Numbers

IV. Evaluation

9. Introduction to Evaluation

10. Variables

10.1 Changing the Value of a Variable
10.2 Binding Variables
10.3 Kinds of Variables
10.4 Special Forms for Setting Variables
10.5 Special Forms for Binding Variables
10.6 Special Forms for DefIDing Special Variables
10.7 Special Form for Declaring a Named Constant

v

Reference Guide to Symbolics-Usp

90
90

93

93
93
94
95

97

97
98

100
106
107
113
115
118
l19

121

123

125

125
125
126
128
128
134
135

lL Lexical Scoping 137

11.1 Lexical Environment Objects and Arguments 138
11.2 Funargs and LexiCal Closure Allocation 139

11.2.1 The sys:downward-function and sys:downward-funarg 140
Declarations

11.3 flet, labels, and macrolet Special Forms 142

12. Generalized Variables 147

13. Evaluating a Function Form 151

Reference Guide to Symbolics-Usp

13.1 Binding Parameters to Arguments
13.2 Examples of Simple Lambda Lists
13.3 Specifying Default Forms in Lambda Lists
13.4 Specifying a Keyword Parameter's Symbol in Lambda Lists
13.5 Specifying Aux-variables in Lambda Lists
13.6 Safety of &rest Arguments

March 1985

153
154
155
156
157
157

14. Some Functions and Special Forms 159

14.1 Function for Evaluation 159
14.2 Functions for Function Invocation 159
14.3 Functions and Special Forms for Constant Values 161
14.4 Special Forms for Sequencing 164
14.5 Functions for Compatibility with Maclisp Lexprs 165

15. Multiple Values 167

15.1 Primitive for Producing Multiple Values 167
15.2 Special Forms for Receiving Multiple Values 167
15.3 Passing-back of Multiple Values 169
15.4 Interaction of Some Common Special Forms with Multiple Values 169

v. Flow of Control 173

16. Introduction to Flow of Control 175

17. Conditionals 177

18. Blocks and Exits 183

19. Transfer of Control 187

20. Iteration 189

2L Nonlocal Exits 197

22. Mapping 201

23. The loop Iteration Macro 205

23.1 Introduction to loop 205
23.2 Clauses 206

23.2.1 Iteration-driving Clauses 207
23.2.2 Bindings 210
23.2.3 Entrance and Exit 212
23.2.4 Side Effects 212
23.2.5 Values 212
23.2.6 Endtests 214
23.2.7 Aggregated Boolean Tests 215

vii

March 1985 Reference Guide to Symbolics-Lisp

23.2.8 Conditionalization 216
23.2.9 Miscellaneous Other Clauses 218

23.3 loop Synonyms 218
23.4 Data Types Recognized by loop 219
23.5 Destructuring 220
23.6 The Iteration Framework 221
23.7 Iteration Paths 222

23.7.1 loop Iteration Over Hash Tables or Heaps 224
23.7.2 Predefined Iteration Paths 225
23.7.3 Defining Iteration Paths 227

VI. Arrays, Characters, and Strings 233

24. Arrays 235

24.1 Array Types 235
24.1.1 art-q Array Type 236
24.1.2 art-q-list Array Type 236
24.1.3 art-Nb Array Type 236
24.1.4 art-string Array Type 236
24.1.5 art-fat-string Array Type 236
24.1.6 art-boolean Array Type 237
24.1.7 Multidimensional Arrays 237

24.2 Array Representation Tools 237
24.3 Extra Features of Arrays 238

24.3.1 Array Leaders 238
24.3.2 Displaced Arrays 239
24.3.3 Indirect Arrays 240

24.4 Basic Array Functions 241
24.5 Accessing Multidimensional Arrays as One-dimensional 245
24.6 Getting Information About an Array 246
24.7 Changing the Size of an Array 249
24.8 Arrays Overlaid with Lists 250
24.9 Adding to the End of an Array 251
24.10 Copying an Array 252
24.11 Array Registers 255

24.11.1 Array Registers and Performance 255
24.11.2 Hints for Using Array Registers 257
24.11.3 Array Register Restrictions 258

24.12 Matrices and Systems of Linear Equations 258
24.13 Planes 260
24.14 Maclisp Array Compatibility 262

25. Characters 265

25.1 Character Objects 265
25.1.1 Character Object Details 265

viii

Reference Guide to Symbolics-Usp March 1985

25.1.2 Character Sets and Character Styles 267
25.1.3 The Device-font and Subindex Derived Fields 268
25.1.4 Two Kinds of Characters 268

25.2 Character Fields 269
25.3 Character Predicates 270
25.4 Character Comparisons 270

25.4.1 Character Comparisons Affected by Case, Style, and Bits 270
25.4.2 Character Comparisons Ignoring Case, Style, and Bits 271

25.5 Character Conversions 272
25.6 Character Names 273
25.7 Mouse Characters 273
25.8 ASCII Characters 274
25.9 Support for Nonstandard Character Sets 275

26. Strings 277

26.1 Basic String, Operations 278
26.2 String Comparisons 282

26.2.1 String Comparisons Affected by Case, Style, and Bits 282
26.2.2 String Comparisons Ignoring Case, Style, and Bits 283

26.3 String Conversions 285
26.4 String Searching 286

26.4.1 String Searching Affected by Case, Style, and Bits 286
26.4.2 String Searching Ignoring Case, Style, and Bits 287

26.5 AScn Strings 290
26.6 I/O to Strings 290
26.7 Maclisp-compatible . Functions 292

w. Functions and Dynamic Closures 295

27. Functions 297

27.1 What is a Function? 297
27.2 Function Specs 297
27.3 Simple Function Definitions 300
27.4 Operations the User Can Perform on Functions 302
27.5 Kinds of Functions 303

27.5.1 Interpreted Functions 304
27.5.2 Compiled Functions 305
27.5.3 Other Kinds of Functions 305

27.6 Function-defming Special Forms 305
27.7 Lambda-list Keywords 309
27.8 Declarations 311
27.9 How Programs Manipulate Definitions 316
27.10 How Programs Examjne Functions 322
27.11 Encapsulations 325

27.11.1 Rename-within Encapsulations 329

Ix

March 1985 Reference Guide to Symbollcs-Usp

28. Dynamic Closures 331

28.1 What is a Dynamic Closure? 331
28.2 Examples of the Use of Dynamic Closures 333
28.3 Dynamic Closure-manipulating Functions 335

vm. Macros 337

29. Introduction to Macros 339

30. Aids for Defining Macros 343

30.1 detmacro 343
30.2 Backquote 345

3L Substitutable Functions 351

32. Symbol Macros 353

33. Lambda Macros 355

34. Hints to Macro Writers 357

34.1 N arne Conflicts 357
34.2 prog-Context Conflicts 359
34.3 Macros Expanding Into Many Forms 360
34.4 Macros That Surround Code 362
34.5 Multiple and Out-of-order Evaluation 363
34.6 Nesting Macros 366
34.7 Functions Used During Expansion 368
34.8 Aid for Debugging Macros 369

35. Displacing Macros 371

36. &-Keywords Accepted by defmacro 373

37. Functions to Expand Macros 375

IX. Structure Macros 377

38. Introduction to Structure Macros 379

39. Using defstruct 383

40. Options to defstruct 385

4L Using the Constructor and Alterant Macros 395

41.1 Constructor Macros 395

x

Reference Guide to Symbo/ics-Usp March 1985

41.2 By-position Constructor Macros 396
41.3 Alterant Macros 397

42. Using Byte Fields and defstruct 399

43. Grouped Arrays 401

44. Named Structures 403

44.1 Introduction to Named Structures 403
44.2 Handler Functions for Named Structures 403
44.3 Functions That Operate on Named Structures 405

45. defstruct Internal Structures 407

46. Extensions to defstruct 409

46.1 An Example of defstruct-define-type 409
46.2 . Options to defstruct-cierme-type 410

X. Flavors 415

47. Introduction to the Flavor System 417

47.1 Objects and the Flavor System 417
47.2 Modularity and Object-oriented Programming 418
47.3 Generic Operations on Objects 421
47.4 Message Passing in the Flavor System 423

48. Using the Flavor System 425

48.1 Simple Use of Flavors 425
48.1.1 Functions for Creating Flavors 428
48.1.2 Functions for Passing Messages 430

48.2 Mixing Flavors 431

49. Flavor Functions 435

50. deffiavor Options 441

5L Flavor Families 451

52. Vanilla Flavor 453

53. Method Combination 455

54. Whoppers and Wrappers 461

55. Copying Instances 465

xi

March 1985 Reference Guide to Symbolics-Usp

56. Implementation of Flavors 467
56.1 Ordering Flavors, Methods, and Wrappers 467
56.2 Changing a Flavor 468

57. Zmacs Commands for Flavors 471

58. Property List Messages 473

59. Flavor Examiner 475

XI. Conditions 477

60. Introduction 479
60.1 Overview and Definitions 479

6L How Applications Programs Treat Conditions 481
61.1 Example of a Handler 481
61.2 Signalling 482
61.3 Condition Flavors 482

62. Creating New Conditions 485

62.1 Creating a Set of Condition Flavors 486

63. Establishing Handlers 487
63.1 What is a Handler? 487
63.2 Classes of Handlers 487
63.3 Reference Material 488
63.4 Application: Handlers Examining the Stack 494

63.4.1 Reference Material 495

64. Signalling Conditions 501

64.1 Signalling Mechanism 501
64.1.1 Finding a Handler 501
64.1.2 Signalling Simple Conditions 502
64.1.3 Signalling Errors 502
64.1.4 Restriction Due to Scope 503

64.2 Reference Material 503

65. Default Handlers and Complex Modularity 509

65.1 Reference Material 510

66. Interactive Handlers 511

xii

Reference Guide to Symbolics-Usp March 1985

67. Restart Handlers 513
67.1 Reference Material 514
67.2 Invoking Restart Handlers Manually 516

68. Proceeding 617

68.1 Protocol for Proceeding 517
68.2 Proceed Type Messages 519
68.3 Proceeding with condition-bind Handlers 520
68.4 Proceed Type Names 520
68.5 Signallers 520
68.6 Reference Material 521

69. Issues for Interactive Use 623

69.1 Tracing Conditions 523
69.2 Breakpoints 523
69.3 Debugger Bug Reports 524
69.4 Debugger Special Commands 525
69.5 Special Keys 526

70. Condition Flavors Reference 629

70.1 Messages and Init Options 529
70.2 Standard Conditions 531

70.2.1 Fundamental Conditions 531
70.2.2 Lisp Errors 533
70.2.3 File-system Errors 544
70.2.4 Pathname Errors 553
70.2.5 Network Errors 554
70.2.6 Tape Errors . 556

XII. Packages 557

7L The Need for Packages 559

72. Symbols 661
72.1 The Value Cell of a Symbol 561
72.2 The Function Cell of a Symbol 563
72.3 The Property List of a Symbol 564
72.4 The Print Name of a Symbol 565
72.5 The Package Cell of a Symbol 566
72.6 Creating Symbols 566

73. Sharing of Symbols Among Packages 669
73.1 External Symbols 570

March 1985

73.2 Package Inheritance
73.3 The global Package
73.4 Home Package of a Symbol
73.5 Importing and Exporting Symbols
73.6 Shadowing Symbols
73.7 Introduction to Keywords

xiii

Reference Guide to Symbolics-Usp

571
571
573
573
574
575

74. Specifying Packages in Programs 579

75. Package Names 581

75.1 Introduction to Package Names 581
75.2 Relative Package Names 582
75.3 Qualified Package Names 584

75.3.1 Introduction to Qualified Package Names 584
75.3.2 Specifying Internal and External Symbols in Packages 585
75.3.3 Qualified Package Names as Interfaces 585
75.3.4 Qualified Names of Symbols 585
75.3.5 Multilevel Qualified Package Names 586

76. Examples of Symbol Sharing Among Packages 589

77. Consistency Rules for Packages 591

78. Package Name-con11ict Errors 593

78.1 Introduction to Package Name-conflict Errors 593
78.2 Checking for Package Name-conflict Errors 593
78.3 Resolving Package Name-conflict Errors 595

79. Package Functions, Special Forms, and Variables 597

79.1 The Current Package 597
79.2 Defining a Package 598
79.3 Mapping Names to Symbols 604

79.3.1 Functions That Map Names to Symbols 605
79.4 Functions That Find the Home Package of a Symbol 607
79.5 Mapping Between Names and Packages 607
79.6 Package Iteration 608
79.7 Interpackage Relations 610
79.8 Functions That Import, Export, and Shadow Symbols 611
79.9 Package "Commands" 612
79.10 System Packages 615

SO. Package-related Conditions 619

8L Multipackage Programs 621

xiv

Reference Guide to Symbollcs-Usp

82. Compatibility with the Pre-release 5.0 Package System

82.1 External-only Packages and Locking

XID. Symbolics Common Lisp

83. Introduction to Symbolics Common Lisp

84. Using SCL

84.1 SCL Packages
84.2 SeL and Strings
84.3 seL and Symbolics Common Lisp Extensions
84.4 SeL and Optimization
84.5 SeL and Common Lisp Files
84.6 SeL Documentation

85. SCL and Common Lisp Differences

Index

List of Figures

Figure L Condition flavor hierarchy

March 1985

625

626

629

831

633

633
634
635
635
635
636

637

647

484

1

March 1985 Basic Objects

PART I.

Basic Objects

2

Reference Guide to Symbo/ics-Usp March 1985

3

March 1985 Basic Objects

1. Data Types

This section enumerates some of the various different primitive types of objects in
Symbolics-Lisp. The types explained below include symbols, conses, various types of
numbers, compiled functions, locatives, arrays, stack groups, and closures. Each type
is given an associated symbolic name, which is returned by the function data-type.

1.1 The Symbol Data Type

A symbol (sometimes called "atom" or "atomic symbol" by other texts) has a print
name, a binding, a definition, a property list, and a package.

• The print name is a string, which can be obtained by the function
get-pname. This string serves as the printed representation of the symbol.
See the section ''What the Printer Produces", page 14.

• Each symbol has a binding (sometimes also called the "value"), which can be
any Lisp object. It is also referred to as the "contents of the value cell", since
internally every symbol has a cell called the value cell that holds the binding.
It is accessed by the symeval function and updated by the set function.
(That is, given a symbol, you use symeval to find out what its binding is, and
use set to change its binding.)

• Each symbol has a definition, which can also be any Lisp object. It is also
referred to as the "contents of the function cell", since internally every symbol
has a cell called the function cell that holds the definition. The definition can
be accessed by the fsymeval function and updated with fset. Usually the
functions fdefinition and fdefine are employed.

• The property list is a list of an even number of elements; it can be accessed
directly by plist and updated directly by setplist. Usually the functions get,
putprop, and remprop are used. The property list is used to associate any
number of additional attributes with a symbol - attributes not used frequently
enough to deserve their own cells as the value and definition do.

• Symbols also have a package cell, which indicates to which package of names
the symbol belongs. See the section "Packages", page 557.

The primitive function for creating symbols is make-symbol, although most symbols
are created by read, intern, or fasload (which call make-symbol themselves.)

4

Reference Guide to Symbolics-Usp March 1985

1.2 The Cons Data Type

A cons is an object that cares about two other objects, arbitrarily named the car and
the cdr. These objects can be accessed with car and cdr, and updated with rplaca
and rplacd. The primitive function for creating conses is cons.

1.3 Numeric Data Types

There are several kinds of numbers in Symbolics-Lisp.

Fixnums represent integers in the range of -2"31 to 2"31-1. Bignums represent
integers of arbitrary size, but they are more expensive to use than fIxnums because
they occupy storage and are slower. The system automatically converts between
flXIlums and bignums as required.

Rational numbers include both ratios and integers. Ratios are represented in terms
of an integer numerator and denominator. The ratio is always "in lowest terms",
meaning that the denominator is as small as possible.

Double-floats are double-precision floating-point numbers. Single-floats are single­
precision floating-point numbers; they have less range and precision, and less
computational overhead.

Complex numbers are pairs of noncomplex numbers, representing the real and
imaginary parts of the number. The real and imaginary parts can be integer,
rational, or floating-point.

Other types of numbers are likely to be added in the future. See the section
"Numbers", page 87. Full details of these types and the conversions between them
are discussed there.

1.4 The Compiled Function Data Type

The usual form of compiled, executable code is a Lisp object called a "compiled
function". A compiled function contains the code for one function. Compiled
functions are produced by the Lisp Compiler and are usually found as the definitions
of symbols. The printed representation of a compiled function includes its name, so
that it can be identified.

About the only useful thing to do with compiled functions is to apply them to
arguments. However, some functions are provided for examining such objects, for
user convenience. See the section "How Programs Examine Functions", page 322.

5

March 1985 Basic Objects

1.5 The Locative Data Type

A locative is a kind of a pointer to a single memory cell anywhere in the system.
See the section "Locatives", page 83. The contents of this cell can be accessed by
location-contents and updated by (setf (location-contents ... ».

1.6 The Array Data Type

An array is a set of cells indexed by a tuple of integer subscripts. The contents of
the cells can be accessed and changed individually. There are several types of arrays.
Some have cells that can contain any object, while others (numeric arrays) can only
contain small positive numbers. Strings are a type of array; the elements are B-bit
unsigned numbers which encode characters.

1.7 The List Data Type

A list is not a primitive data type, but rather a data structure made up of conses
and the symbol nil. See the section "Manipulating List Structure", page 41.

6

Reference Guide to Symbolics-Usp March 1985

7

March 1985 Basic Objects

2. Predicates

A predicate is a function that tests for some condition involving its arguments and
returns the symbol t if the condition is true, or the symbol nil if it is not true.
Most of the following predicates are for testing what data type an object has; some
other general-purpose predicates are also explained.

By convention, the names of predicates usually end in the letter "p" (which stands
for "predicate").

The following predicates are for testing data types. These predicates return t if the
argument is of the type indicated by the name of the function, nil if it is of some
other type.

symbolp arg Function
symbolp returns t if its argument is a symbol, otherwise nil.

nsymbolp arg Function
nsymbolp returns nil if its argument is a symbol, otherwise t.

listp arg Function
listp returns t if its argument is a cons, otherwise nil. Note that this
means (listp nil) is nil even though nil is the empty list. [This might be
changed in the future.]

n1istp arg Function
n1istp returns t if its argument is anything besides a cons, otherwise nil.
n1istp is identical to atom, and so (nIistp nil) returns t. [This might be
changed in the future, if and when listp is changed.]

atom arg Function
The predicate atom returns t if its argument is not a cons, otherwise nil.

numberp arg' Function
numberp returns t if its argument is any kind of number, otherwise nil.

f'ap arg Function
f'lIp returns t if its argument is a fIXed-point number, that is, a fIXnum or a
bignum, otherwise nil.

floatp arg Function
floatp returns t if its argument is a a single- or double-precision floating-
point number. Otherwise it returns nil. .

8

Reference Guide to Symbo/ics-Usp March 1985

f"lXIlump arg Function
f"lXDump returns t if its argument is a flXIlum, otherwise nil.

bigp arg Function
bigp returns t if arg is a bignum, otherwise nil.

flonump arg Function
flonump returns t if arg is a (large) flonum, otherwise nil.

sys:single-float-p arg Function
Returns t if arg is a single-precision floating-point number, otherwise nil.

sys:double-float-p arg Function
Returns t if arg is a double-precision floating-point number, otherwise nil.

complexp x Function
Returns t if x is a complex number, otherwise nil.

rationalp x Function
Returns t if x is a ratio. Returns nil if x is an integer. Note that in
Common Lisp, rationalp of an integer returns t.

stringp arg Function
stringp returns t if its argument is a string, otherwise nil.

arrayp arg Function
arrayp returns t if its argument is an array, otherwise nil. Note that
strings are arrays.

functionp arg &optional allow-special-forms Function
functionp returns t if its argument is a function (essentially, something that
is acceptable as the first argument to apply), otherwise it returns nil. In
addition to interpreted, compiled, and built-in functions, functionp is true of
closures, select-methods, and symbols whose function definition is functionp.
See the section "Other Kinds of Functions", page 305. functionp is not true
of objects that can be called as functions but are not normally thought of as
functions: arrays, stack groups, entities, and instances. If allow-special-forms
is specified and non-nil, then functionp is true of macros and special-form
functions (those with quoted arguments). Normally functionp returns nil
for these since they do not behave like functions. As a special case,
functionp of a symbol whose function definition is an array returns t,
because in this case the array is being used as a function rather than as an
object.

subrp arg Function
subrp returns t if its argument is any compiled code object, otherwise nil.
The Symbolics Lisp Machine system does not use the term "subr"; the name
of this function comes from Maclisp.

9

March 1985 Basic Objects

closurep arg Function
closurep returns t if its argument is a closure, otherwise nil.

locativep arg Function
locativep returns t if its argument is a locative, otherwise nil.

errorp object Function
errorp returns t if object is an error object, and nil otherwise. That is:

(errorp x) <=> (typep x 'error)

typep arg &optional type Function
typep is really two different functions. With one argument, typep is not
really a predicate; it returns a symbol describing the type of its argument.
With two arguments, typep is a predicate that returns t if arg is of type
type, and nil otherwise. Note that an object can be "of" more than one type,
since one type can be a subset of another.

The symbols that can be returned by typep of one argument are:

: symbol

:ilXllum

:bignum

:rational

:singIe-float

: double-float

arg is a symbol.

arg is a flXllum (not a bignum).

arg is a bignum.

arg is a ratio.

arg is a single-precision floating-point number.

arg is a double-precision floating-point number.

:complex arg is a complex number.

:Iist arg is a cons.

:locative arg is a locative pointer.

:compiled-function
arg is the machine code for a compiled function.

: closure arg is a closure.

:select-method arg is a select-method table.

: stack-group arg is a stack-group.

:string arg is a string.

: array arg is an array that is not a string.

:random Returned for any built-in data type that does not fit into
one of the above categories.

(00 An object of user-defmed data type roo (any symbol). The
primitive type of the object could be array, instance, or
entity.

10

Reference Guide to Symbolics-Usp March 1985

The type argument to typep of two arguments can be any of the above
keyword symbols (except for :random), the name of a user-defined data type
(either a named structure or a flavor), or one of the following additional
symbols:

:atom

:IlX

:float

:number

Any atom (as determined by the atom predicate).

Any kind of fixed-point number (fixnum or bignum).

Any kind of floating-point number (single- or double­
precision) .

Any kind of number.

:non-complex-number

: instance

:null

:list-or-nil

Any noncomplex number.

An instance of any flavor.

nil is the only value that has this type.

A cons or nil.

See also data-type.

Note that (typep nil) => : symbol , and (typep nil :list) => nil; the latter
might be changed.

The following functions are some other general purpose predicates:

eq x y Function
(eq x y) => t if and only if x and y are the same object. It should be noted
that things that print the same are not necessarily eq to each other. In
particular, numbers with the same value need not be eq, and two similar
lists are usually not eq. Examples:

(eq 'a 'b) = > n i1
(eq 'a 'a) = > t
(eq (cons 'a 'b) (cons 'a 'b » = > n i1
(setq x (cons 'a 'b» (eq x x) => t

Note that in Symbolics-Lisp equal integers are eq; this is not true in Maclisp.
Equality does not imply eqness for other types of numbers. To compare
numbers, use =. See the section "Numeric Comparisons", page 98.

neq x y Function
(neq x y) = (not (eq x y». This is provided simply as an abbreviation for
typing convenience.

eql x y Function
eql returns t if its arguments are eq, or if they are numbers of the same
type with the same value, or (in Common Lisp) if they are character objects

11

March 1985 Basic Objects

that represent the same character. The predicate = compares the values of
two numbers even if the numbers are of different types.

Examples:

(eql 'a 'a) =) t
(eql 3 3) =) t
(eql 3 3.0) => nil
(eql 3.0 3.0) => t
(eql RIa #/a) =) t
(eq 1 (cons 'a 'b) (cons 'a 'b» =) n i1
(eql HfooH "FOO") => nil

The following expressions might return either t or nil:

(eq 1 '(a • b) '(a . b»
(eql "foo" "foo")

In Symbolics-Lisp:

(eql 1.0s0 1.0dO) => nil
(eql 0.0 -0.0) =) nil

equal x y Function
The equal predicate returns t if its arguments are similar (isomorphic)
objects. See the function eq, page 10. Two numbers are equal if they have
the same value and type (for example, a flonum is never equal to an integer,
even if = is true of them). For conses, equal is defined recursively as the
two ears being equal and the two edrs being equal. Two strings are equal
if they have the same length, and the characters composing them are the
same. See the function string-equal, page 283. Alphabetic case is ignored.
All other objects are equal if and only if they are eq. Thus equal could
have been defined by:

(defun equal (x y)
(cond ((eq x y) t)

((neq (typep x) (typep y» nil)
((numberp x) (= x y»
((stringp x) (string-equal x y»
((listp x) (and (equal (car x) (car y»

(equal (cdr x) (cdr y»»»

As a consequence of the above definition, it can be seen that equal may
compute forever when applied to looped list structure. In addition, eq always
implies equal; that is, if (eq a b) then (equal a b). An intuitive defInition
of equal (which is not quite correct) is that two objects are equal if they
look the same when printed out. For example:

12

Reference Guide to Symbolics-Usp March 1985

(setq a '(1 2 3»
(setq b '(1 2 3»
(eq a b) => nil
(equal a b) => t
(equal "Foo" "foo") => t

not x Function

null x

not returns t if x is nil, else nil. null is the same as not; both functions
are included for the sake of clarity. Use null to check whether something is
nil; use not to invert the sense of a logical value. Even though Lisp uses
the symbol nil to represent falseness, you should not make understanding of
your program depend on this. For example, one often writes:

(cond «not (null 1st» ...)
(... »

rather than
(cond (1st ...

(... »
There is no loss of efficiency, since these compile into exactly the same
instructions.

See the function null, page 12.

Function
not returns t if x is nil, else nil. null is the same as not; both functions
are included for the sake of clarity. Use null to check whether something is
nil; use not to invert the sense of a logical value. Even though Lisp uses
the symbol nil to represent falseness, you should not make understanding of
your program depend on this. For example, one often writes:

(cond «not (null 1st» ...)
(... »

rather than
(cond (1st ...

(... »
There is no loss of efficiency, since these compile into exactly the same
instructions.

13

March 1985 Basic Objects

3. Printed Representation

3.1 How the Printer Works

People cannot deal directly with Lisp objects, because the objects live inside the
machine. In order to let us get at and talk about Lisp objects, Lisp provides a
representation of objects in the form of printed text; this is called the printed
representation.

Functions such as print, print, and prine take a Lisp object and send the
characters of its printed representation to a stream. These functions (and the
internal functions they call) are known as the printer. The read function takes
characters from a stream, interprets them as a printed representation of a Lisp
object, builds a corresponding object and returns it; read and its subfunctions are
known as the reader. See the section "Introduction to Streams" in Reference Guide
to Streams, Files, and 110.

The printed representation of an object depends on its type. For descriptions of how
different Lisp objects are printed:

See the section "Printed Representation of Integers", page 14.
See the section "Printed Representation of Ratios", page 14.
See the section "Printed Representation of Floating-point Numbers", page 14.
See the section "Printed Representation of Complex Numbers", page 15.
See the section "Printed Representation of Symbols", page 15.
See the section "Printed Representation of Common Lisp Character Objects", page 16.
See the section "Printed Representation of Strings", page 16.
See the section "Printed Representation of Instances", page 16.
See the section "Printed Representation of Arrays That Are Named Structures", page 16.
See the section "Printed Representation of Arrays That Are Not Named Structures", page 17.
See the section "Printed Representation of Conses", page 17.
See the section "Printed Representation of Miscellaneous Data Types", page 18.
See the section "Controlling the Printed Representation of an Object", page 19.

3.2 Effects of Slashification on Printing

Printing is done either with or without slashification. The unslashified version is
nicer looking, but read cannot handle it properly. The slashified version, however,
is carefully set up so that read is able to read it in.

The primary effects of slashification are:
• Special characters used with other than their normal meanings (for example, a

parenthesis appearing in the name of a symbol) are preceded by slashes or
cause the name of the symbol to be enclosed in vertical bars.

14

Reference Guide to Symbolics-Usp March 1985

• Symbols that are not from the current package are printed out with their
package prefIXes. (A package prefIX looks like a symbol followed by a colon).

3.3 What the Printer Produces

3.3.1 Printed Representation of Integers

If the number is negative, the printed representation begins with a minus sign ("_").
Then, the value of the variable base is examined, with the following results:

• If base is a positive integer, the number is printed out in that base (base
defaults to 10).

• If it is a symbol with a si:princ-function property, the value of the property
is applied to two arguments:

o minus of the number to be printed
o The stream to which to print it (this is a hook to allow output in Roman

numerals and the like)
Otherwise, the value of base is invalid and an error is signalled.

Finally, if base equals 10. and the variable *nopoint is nil, a decimal point is
printed out.

Slashification does not affect the printing of numbers.

base Variable
The value of base is a number that is the radix in which integers are
printed, or a symbol with a si:princ-function property. The initial value of
base is 10. base should not be greater than 36.

*nopoint Variable
If the value of *nopoint is nil, a trailing decimal point is printed when an
integer is printed out in base 10. This allows the numbers to be read back
in correctly even if ibase is not 10. at the time of reading. If *nopoint is
non-nil, the trailing decimal points are suppressed. The initial value of
*nopoint is nil.

3.3.2 Printed Representation of Ratios

Ratios are printed as the numerator, followed by a backslash, followed by the
denominator. Ratios print in the current base, not always in decimal.

3.3.3 Printed Representation of Floating-point Numbers

For a single-precision floating-point number, the printer first decides whether to use
ordinary notation or exponential notation. If the magnitude of the number is so
large or small that the ordinary notation would require an unreasonable number of

15

March 1985 Basic Objects

leading or trailing zeroes, exponential notation is used. The number is printed as
follows:

• An optional leading minus sign
• One or more digits

• A decimal point
• One or more digits
• An optional trailing exponent, consisting of the letter "e", an optional minus

sign, and the power of ten

The number of digits printed is the "correct" number; no information present in the
single-float is lost, and no extra trailing digits are printed that do not represent
information in the single-float. Feeding the printed representation of a single-float
back to the reader is always supposed to produce an equal single-float. Single-floats
are always printed in decimal; they are not affected by slashification nor by base
and *nopoint.

The printed representation of a double-precision floating-point number is very similar
to that of a single-float, except that exponential notation is always used and the
exponent is delimited by "d" rather than "e".

The printed representation for floating-point infmity is as follows:

• A plus or minus sign

• The digit "1"
• The appropriate Common Lisp exponent mark character
• The exponent character, an infinity sign: co

3.3.4 Printed Representation of Complex Numbers

The printed representation for complex numbers is:

IC(realpart imagpart)

The real and imaginary parts of the complex number are printed in the manner
appropriate to their type.

3.3.5 Printed Representation of Symbols

If slashification is off, the printed representation of a symbol is simply the successive
characters of the print-name of the symbol. If slashification is on, two changes must
be made.

1. The symbol might require a package prefix for read to work correctly,
assuming that the package into which read reads the symbol is the one in
which it is being printed. (See the section "System Packages", page 615.)

2. If the printed representation would not read in as a symbol at all (that is, if
the print-name looks like a number, or contains special characters), the printed
representation must have one of the following kinds of quoting for those
characters.

16

Reference Guide to Symbolics-Usp March 1985

• Slashes ("I") before each special character
• Vertical bars (" I ") around the whole name

The decision whether quoting is required is made using the readtable, so it is always
accurate provided that readtable has the same value when the output is read back
in as when it was printed. See the variable readtable, page 33.

Uninterned symbols are printed preceded by #:. You can turn this off by evaluating
(sett (si:pttbl-unintemed-preflx readtable) .m).

3.3.6 Printed Representation of Common Lisp Character Objects

For Common Lisp, character objects always print as #\char.

3.3.7 Printed Representation of Strings

If slashification is off, the printed representation of a string is simply the successive
characters of the string. If slashification is on, the string is printed between double
quotes, and any characters inside the string that need to be preceded by slashes are.
Normally these are just double-quote and slash. Compatibly with Maclisp, carriage
return is not ignored inside strings and vertical bars.

3.3.8 Printed Representation of Instances

If the instance has a method for the :print-self message, that message is sent with
three arguments: the stream to print to, the current depth of list structure, and
whether slashification is enabled. The object should print a suitable printed
representation on the stream. (See the section ''Flavors'', page 415. Instances are
discussed there.) See the section "Printed Representation of Miscellaneous Data
Types", page 18. Most such objects print as described there, except with additional
information such as a name. Some objects print only their name when slashification
is not in effect (when princed).

3.3.9 Printed Representation of Arrays That Are Named Structures

If the array has a named structure symbol with a named-structure-invoke
property that is the name of a function, then that function is called on five
arguments:

• The symbol :print-self
• The object itself
• The stream to print to
• The current depth of list structure
• Whether slashification is enabled

A suitable printed representation should be sent to the stream. This allows you to
define your own printed representation for the array's named structures. See the
section "Named Structures", page 403. If the named structure symbol does not have

17

March 1985 Basic Objects

a named-structure-invoke property, the printed representation is like that for
miscellaneous data types: a number sign and a less-than sign ("<"), the named
structure symbol, the numerical address of the array, and a greater-than sign (">").

3.3.10 Printed Representation of Arrays That Are Not Named Structures

The printed representation of an array that is not a named structure contains the
following elements, in order:

• A number sign and a less-than sign ("<")

• The "art-" symbol for the array type

• The dimensions of the array, separated by hyphens

• A space, the machine address of the array, and a greater-than sign (">")

3.3.11 Printed Representation of Conses

The printed representation for conses tends to favor lists. It starts with an open­
parenthesis. Then the car of the cons is printed and the cdr of the cons is
examined. If it is nil, a close-parenthesis is printed. If it is anything else but a
cons, space dot space followed by that object is printed. If it is a cons, we print a
space and start allover (from the point after we printed the open-parenthesis) using
this new cons.· Thus, a list is printed as an open-parenthesis, the printed
representations of its elements separated by spaces, and a close-parenthesis.

This is how the usual printed representations such as (a b (foo bar) c) are
produced.

The following additional feature is provided for the printed representation of conses:
as a list is printed, print maintains the length of the list so far, and the depth of
recursion of printing lists. If the length exceeds the value of the variable
prinlength, print terminates the printed representation of the list with an ellipsis
(three periods) and a close-parenthesis. If the depth of recursion exceeds the value
of the variable prinlevel, the list is printed as "**". These two features allow a
kind of abbreviated printing that is more concise and suppresses detail. Of course,
neither the ellipsis nor the "**" can be interpreted by read, since the relevant
information is lost.

prinlevel Variable
prinlevel can be set to the maximum number of nested lists that can be
printed before the printer gives up and just prints a n**". If it is nil, which
it is initially, any number of nested lists can be printed. Otherwise, the
value of prinlevel must be an integer.

18

Reference Guide to Symbofics·:Usp March 1985

prinlengtb Variable
prinlengtb can be set to the maximum number of elements of a list that is
printed before the printer gives up and print a " ... ". If it is nil, which it is
initially, any length list can be printed. Otherwise, the value of prinlengtb
must be an integer.

3.3.12 Printed. Representation of Miscellaneous Data Types

For a miscellaneous data type, the printed representation starts with a number sign
and a less-than sign, the "dtp-n symbol for this data type, a space, and the octal
machine address of the object. Then, if the object is a microcoded function, compiled
function, or stack group, its name is printed. Finally, a greater-than sign is printed.

Including the machine address in the printed representation makes it possible to tell
two objects of this kind apart without explicitly calling eq on them. This can be
very useful during debugging. It is important to know that if garbage collection is
turned on, objects are occasionally moved, and therefore their octal machine
addresses are changed. It is best to shut off garbage collection temporarily when
depending on these numbers.

None of the printed representations beginning with a number sign can be read back
in, nor, in general, can anything produced by instances and named structures. See
the section "What the Reader Recognizes", page 20. This can be a problem if, for
example, you are printing a structure into a fue with the intent of reading it in
later. But by setting the si:print-readably variable, you can make sure that what
you are printing can indeed be read with the reader.

si:print-readably Variable
When si:print-readably is bound to t, the printer signals an error if there
is an attempt to print an object that cannot be interpreted by read. When
the printer sends a :print-self or a :print message, it assumes that this
error checking is done for it. Thus it is possible for these messages not to
signal an error, if they see fit.

sys:printing-random-object (object stream. keywords) body... Macro
The vast majority of objects that defme :print-self messages have much in
common. This macro is provided for convenience, so that users do not have
to write out that repetitious code. It is also the preferred interface to
si:print-readably. With no keywords, sys:printing-random-object checks
the value of si:print-readably and signals an error if it is not nil. It then
prints a number sign and a less-than sign, evaluates the forms in body, then
prints a space, the octal machine address of the object, and a greater-than
sign. A typical use of this macro might look like:

March 1985

(sys:printing-random-object (ship stream)
(prine (typep ship) stream)
(tyo #\space stream)
(prinl (ship-name ship) stream»

This might print #<ship "ralph" 23655126>.

The following keywords can be used to modify the behavior of
sys:printing-random-objeet:

19

Basic Objects

:no-pointer

:typep

This suppresses printing of the octal address of the object.

This prints the result of (typep object) after the less-than sign.
In the example above, this option could have been used instead of
the first two forms in the body.

3.4 Controlling the Printed Representation of an Object

If you want to control the printed representation of an object, usually you make the
object an array that is a named structure, or an instance of a flavor. See the
section "Named Structures", page 403. See the section "Flavors", page 415.
Occasionally, however, you might want to get control over all printing of objects in
order to change in some way how they are printed. The best way to do this is to
customize the behavior of si:print-object, which is the main internal function of
the printer. All the printing functions, such as print and prine, as well as format,
go through this function. The way to customize it is by using the "advice" facility.
See the special form advise in Program Development Utilities.

3.5 How the Reader Works

The purpose of the reader is to accept characters, interpret them as the printed
representation of a Lisp object, and return a corresponding Lisp object. The reader
cannot accept everything that the printer produces; for example, the printed
representations of arrays (other than strings), compiled code objects, closures, stack
groups, and so on cannot be read in. However, it has many features that are not
seen in the printer at all, such as more flexibility, comments, and convenient
abbreviations for fr~uently used unwieldy constructs.

In general, the reader operates by recognizing tokens in the input stream. Tokens
can be self-delimiting or can be separated by delimiters such as whitespace. A token
is the printed representation of an atomic object such as a symbol or a number, or a
special character such as a parenthesis. The reader reads one or more tokens until
the complete printed representation of an object has been seen, and then constructs
and returns that object.

20

Reference Guide to Symbolics-Usp March 1985

3.6 What the Reader Recognizes

3.6.1 How the Reader Recognizes Integers

The reader understands the printed representations of integers in a more general
way than the printer. The syntax for a simple integer is:

• An optional plus or minus sign
• A string of digits
• An optional decimal point

A simple integer is interpreted by read as an integer. If the trailing decimal point
is present, the digits are interpreted in decimal radix; otherwise, they are considered
as a number whose radix is the value of the variable ibase.

ibase Variable
The value of ibase is a number that is the radix in which integers are read.
The initial value of ibase is 10. ibase should not be greater than 36.

read also understands a simple integer, followed by an underscore (_) or a
circumflex ("'), followed by another simple integer. The two simple integers are
interpreted in the usual way and the character between them indicates an operation
to be performed on the two integers.

• The underscore indicates a binruy "left shift"; that is, the integer to its left is
doubled the number of times indicated by the integer to its right. For
example, 645_6 means 64500 (in octal).

• The circumflex multiplies the integer to its left by ibase the number of times
indicated by the integer to its right. (The second integer is not allowed to
have a leading minus sign.) For example, 645"'3 means 645000.

Here are some examples of valid representations of integers to be given to read:

4
23456.
-546
+45"'+6
2_11

The reader uses the same syntax for fIXnums and bignums. A number is a bignum
rather than a fIXnum if and only if it is too large to be represented as a fIXnum.
Here are some examples of valid representations of bignums:

72361356126536125376512375126535123712635
-123456789.
105_1000
105_1000.

21

March 1985 Basic Objects

Reading Integers in Bases Greater Than 10

The reader uses letters to represent digits greater than 10. When ibase is greater
than 10, some tokens could be read as either integers, floating-point numbers, or
symbols. The reader's action on such ambiguous tokens is determined by the value
of si:*read-extended-ibase-unsigned-number* and
si:*read-extended-ibase-signed-number*.

si:*read-extended-ibase-unsigned-number* Variable
Controls how a token that could be an integer, floating-point number, or
symbol and does not start with a + or - sign, is interpreted when ibase is
greater than ten.

nil

t

:sbarpsign

: single

It is never an integer.

It is always an integer.

It is a symbol or floating-point number at top level, but an
integer after #X or #nR.

It is a symbol or floating-point number except immediately
after #X or #nR.

The default value is :single.

In the table below, the token FACE for each case could be a symbol or a
hexadecimal number. :single makes it an integer on the second line, but a
symbol on the first and third lines. :sbarpsign makes it an integer on both
the second and third lines.

nil t :single :sbarpsign

FACE symbol integer symbol symbol

#xFACE symbol integer integer integer

#x(FACE FF 1234 5COO) symbol integer symbol integer

1dO float integer float float

si:*read-extended-ibase-signed-number* Variable
Controls how a token that could be an integer, floating-point number, or
symbol and starts with a + or - sign, is interpreted when ibase is greater
than ten.

nil

t

:sbarpsign

It is never an integer.

It is always an integer.

It is a symbol or floating-point number at top level, but an
integer after #X or #nR.

22

Reference Guide to Symbolics-Usp March 1985

:single It is a symbol or floating-point number except immediately
after #X or #nR.

The default value is :sharpsign.

In the table below, the token FACE for each case could be a symbol or a
hexadecimal number. :single makes it an integer on the second line, but a
symbol on the first and third lines. :sharpsign makes it an integer on both
the second' and third lines.

, nil t :single :sharpsign

+FACE symbol integer symbol symbol

#x+FACE symbol integer integer integer

#x(+FACE +FF 1234 +5COO) symbol integer symbol integer

+ldO float integer float float

3.6.2 How the Reader Recognizes Ratios

Two integers separated by \ (backslash) are read as a ratio of the integers. Ratios
are read in the current ibase, not in decimal.

3.6.3 How the Reader Recognizes Floating-point Numbers

The syntax for floating-point numbers is:

• An optional plus or minus sign
• (Optionally) some digits
• A decimal point
• One or more digits
• And an optional trailing exponent, consisting of an exponent letter, an optional

minus sign, and digits representing the power of ten

If no exponent is present, the number is a single-float. If an exponent is present,
the exponent letter determines the type of the number.

Floating-point Exponent Characters

The reader accepts all Common Lisp floating-point exponent characters. Following is
a summary of floating-point exponent characters and the way numbers containing
them are read.

23

March 1985 Basic Objects

Character

D or d

E or e

For f

L or I

S or s

Floating-point precision

double-precision

depends on value of
cl:*read-default-float-format*

single-precision

double-precision

single-precision

The variable cl:*read-default-float-format* controls how floating-point numbers
with no exponent or an exponent preceded by "E" or "e" are read.

cl:*read-default-float-format* Variable
Controls how floating-point numbers with no exponent or an exponent
preceded by "E" or "e" are read. Following is a summary of the way possible
values cause these numbers to be read.

Value Floating-point precision

cl:single-float single-precision

cl:short-float single-precision

cl:double-float double-precision

cl:long-float double-precision

The default value is cI:single-float.

As a special case, the reader recognizes IEEE floating-point infinity. The syntax for
infinity is as follows:

• A required plus or minus sign
• The digit "1"
• Any of the Common Lisp exponent mark characters
• And the exponent character, which must be an infmity sign: co

Here are some examples of printed representations that read as single-floats:

24

Reference Gu;de to Symbolics-Lisp

0.0
1.5
14.0
0.01
.707
-.3
+3.14159
6.03e23
lE-9
1.e3
+lem

March 1985

Here are some examples of printed representations that read as double-floats:

OdD
1.5d9
-4203
1.d5
-ldm

3.6.4 How the Reader Recognizes Complex Numbers

The reader recognizes #C(numberl number2) as a complex number. The
numbers can be of any noncomplex type and are read according to the rules for
those types. numberl is used as the real part and number2 is used as the
imaginary part. If the types of the real and imaginary parts differ, coercion rules
are applied to make them the same. If the real part is rational and the imaginary
part is integer zero, the result is simply the rational real part.

3.6.5 How the Reader Recognizes Symbols

A string of letters, numbers, and "extended alphabetic" characters is recognized by
the reader as a symbol, provided it cannot.be interpreted as a number. Alphabetic
case is ignored in symbols; lowercase letters are translated to uppercase. When the
reader sees the printed representation of a symbol, it interns it on a package. See
the section "Packages", page 557.

Symbols can start with digits; for example, read accepts one named "-345T". If you
want to put strange characters (such as lowercase letters, parentheses, or reader
macro characters) inside the name of a symbol, put a slash before each strange
character. If you want to have a symbol whose print-name looks like a number, put
a slash before some character in the name. You can also enclose the name of a
symbol in vertical bars, which quotes all characters inside, except vertical bars and
slashes, which must be quoted with slash.

Examples of symbols:

25

March 1985 Basic Objects

faa
bar/(baz/)
34w23
IFrob Salel

When a token could be read as either a symbol or an integer in a base larger than
ten, the readerts action is determined by the value of
si:*read-extended-ibase-unsigned-number* and
si:*read-extended-ibase-signed-number* .

3.6.6 How the Reader Recognizes Strings

The reader recognizes strings, which should be surrounded by double quotes. If you
want to put a double quote or a slash inside a string, precede it by a slash.
Examples of strings:

"This is a typical string."
"That is known as a I"cons cellI" in Lisp."

3.6.7 How the Reader Recognizes Conses

When read sees an open parenthesis, it knows that the printed representation of a
cons is coming, and calls itself recursively to get the elements of the cons or the list
that follows. Any of the following are valid:

(faa. bar)
(faa bar baz)
(faa . (bar . (baz . ni 1»)
(faa bar. quux)

The first is a cons whose car and cdr are both symbols. The second is a list, and
the third is exactly the same as the second (although print would never produce it).
The fourth is a "dotted list"; the cdr of the last cons cell (the second one) is not nil,
but quux.

Whenever the reader sees any of the above, it creates new cons cells; it never
returns existing list structure. This contrasts with the case for symbols, as very
often read returns symbols that it found interned in the package rather than
creating new symbols itself. Symbols are the only thing that work this way.

The dot that separates the two elements of a dotted-pair printed representation for
a cons is only recognized if it is surrounded by delimiters (typically spaces). Thus
dot can be freely used within print-names of symbols and within numbers. This is
not compatible with Maclisp; in Maclisp (a.b) reads as a cons of symbols a and b,
whereas in Symbolics-Lisp it reads as a list of a symbol a.b.

Tokens that consist of more than one dot, but no other characters, are valid symbols
in Zetalisp but errors in Common Lisp. For Common Lisp, the variable
si:*read-multi-dot-tokens-as-symbols* should be set to nil.

26

Reference Guide to Symbolics-Usp March 1985

si:·read-multi-dot-tokens-as-symbols· Variable
When t, for Zetalisp, tokens containing more than one dot, but no other
characters, are read as symbols. When nil, for Common Lisp, tokens
containing more than one dot but no other characters signal an error when
read. Default: t.

If the circle-X (~) character is encountered, it is an octal escape, which might be
useful for including unusual characters in the input. The next three characters are
read and interpreted as an octal number, and the character whose code is that
number replaces the circle-X and the digits in the input stream. This character is
always taken to be an alphabetic character, just as if it had been preceded by a
slash.

3.6.8 How the Reader Recognizes Macro Characters

Certain characters are defined to be macro characters. When the reader sees one of
these, it calls a function associated with the character. This function reads
whatever syntax it likes and returns the object represented by that syntax. Macro
characters are always token delimiters; however, they are not recognized when
quoted by slash or vertical bar, nor when inside a string. Macro characters are a
syntax-extension mechanism available to the user. Lisp comes with several
predefined macro characters:

Quote (') An abbreviation to make it easier to put constants in programs.
'foo reads the same as (quote foo).

Semicolon (;) Used to enter comments. The semicolon and everything up
through the next carriage return are ignored. Thus a comment
can be put at the end of any line without affecting the reader.

Backquote (') Makes it easier to write programs to construct lists and trees by
using a template. See the section "Backquote", page 345.

Comma (,) Part of the syntax of backquote. It is invalid if used other than
inside the body of a backquote. See the section "Backquote", page
345.

Sharp sign (#) Introduces a number of other syntax extensions. See the section
"Sharp-sign Reader Macros", page 27. Unlike the preceding
characters, sharp sign is not a delimiter. A sharp sign in the
middle of a symbol is an ordinary character.

The function set-syntax-macro-char can be used to derme your own macro
characters.

Reader macros that call a read function should call si:read-recursive.

27

March 1985 Basic Objects

si:read-recursive stream Function
si:read-recursive should be called by reader macros that need to call a
function to read. It is important to call this function instead of read in
macros that are written in Zetalisp but used by the Common Lisp read table.
In particular, this function must be called by macros used in conjunction with
the Common Lisp #n= and #n# syntaxes.

stream is the stream from which to read. This function can be called only
from inside a read.

For example, this is the reader macro called when the reader sees a quote ('):

si:(defun xr-quote-macro (list-so-far stream)
1 ist-so-far ; not used
(values (list-in-area read-area

'quote (read-recursive stream»
'list»

3.7 Sharp-sign Reader Macros

The reader's syntax includes several abbreviations introduced by sharp sign (#).
These take the general form of a sharp sign, a second character that identifies the
syntax, and following arguments. Certain abbreviations allow a decimal number or
certain special "modifier" characters between the sharp sign and the second
character.

The function set-syntax-#-macro-char can be used to define your own sharp-sign
abbreviations.

#\ or #/
#\x (or #/x, which is identical) reads in as the number that: is the character
code for the character x. For example, #\a is equivalent to 141 but clearer
in its intent. This is the recommended way to include character constants in
your code. Note that the slash causes this construct to be parsed correctly
by the editor.

As in strings, upper- and lowercase letters are distinguished after #\. Any
character works after #\, even those that are normally special to read, such
as parentheses.

#\name (or. #/name) reads in as the number which is the character code for
the non printing character symbolized by name. A large number of character
names are recognized. See the section "Special Character Names", page 32.
For example, #\return reads in as an integer, being the character code for
the Return character in the Symbolics Lisp Machine character set. In
general, the names that are written on the keyboard keys are accepted. The
abbreviations cr for return and sp for space are accepted and generally
preferred, since these characters are used so frequently. The page separator

28

Reference Guide to Symbolics-Lisp March 1985

character is called page, although form and clear-screen are also accepted
since the keyboard has one of those legends on the page key. The rules for
reading name are the same as those for symbols; thus upper- and lowercase
letters are not distinguished, and the name must be terminated by a
delimiter such as a space, a carriage return, or a parenthesis.

When the system types out the name of a special character, it uses the same
table as the #\ reader; therefore, any character name typed out is acceptable
as input.

#\ (or #/) can also be used to read in the names of characters that have
control and meta bits set. The syntax looks like #\control-meta-b to get a
"B" character with the control and meta bits set. You can use any of the
prefix bit names control, meta, hyper, and super. They can be in any
order, and upper- and lowercase letters are not distinguished. The last
hyphen can be followed by a single character, or by any of the special
character names normally recognized by #\. If it is a single character, it is
treated the same way the reader normally treats characters in symbols; if you
want to use a lowercase character or a special character such as a
parenthesis, you must precede it with a slash character. Examples:
#\Hyper-Super-A, \meta-hyper-roman-i, #\CTRL-META-/(.

The character can also be modified with control and meta bits by inserting
one or more special characters between the # and the \. This syntax is
obsolete since it is not mnemonic and it generally unclear. However, it is
used in some old programs, so here is how it is defined. #a\X generates
Control-x. #(J\X generates Meta-x. #n\X generates Super-x. #A \X generates
Hyper-x. These can be combined, for instance #n(J\& generates Super-Meta­
ampersand. Also, #f. \X is an abbreviation for #a(J\X. When control bits are
specified, and x is a lowercase alphabetic character, the character code for the
uppercase version of the character is produced.

In Common Lisp, #\char (or #/char) can cause char to read as a character
object instead of an integer, depending on the readtable.

#A #AX is exactly like #alX if the input is being read by Symbolics-Lisp; it
generates Control-x. In Maclisp x is converted to uppercase and then
exclusive-or'ed with 100 (octal). Thus #AX always generates the character
returned by tyi if the user holds down the control key and types x. (In
Maclisp #alX sets the bit set by the CONTROL key when the TTY is open in
IlXDum mode.)

#' #'too is an abbreviation for (function too). too is the printed representation
of any object. This abbreviation can be remembered by analogy with the '
macro character, since the function and quote special forms are somewhat
analogous.

#, #,too evaluates too (the printed representation of a Lisp form) at read time,
unless the compiler is doing the reading, in which case it is arranged that too
be evaluated when the QFASL file is loaded. This is a way, for example, to

29

March 1985 Basic Objects

include in your code complex list-structure constants that cannot be written
with quote. Note that the reader does not put quote around the result of
the evaluation. You must do this yourself, typically by using the ' macro­
character. An example of a case where you do not want quote around it is
when this object is an element of a constant list.

#. #.{oo evaluates roo (the printed representation of a Lisp form) at read time,
regardless of who is doing the reading.

#: #:name reads name as an uninterned symbol. It always creates a new
symbol. Like all package prefIxes, #: can be followed by any expression.
Example: #:(a be).

#B #Brational reads rational (an integer or a ratio) in binary (radix 2).
Examples:

181101 <:> 13.
#81100\100 <:> 3

#0 #0 number reads number in octal regardless of the setting of ibase.
Actually, any expression can be prefIxed by #0; it is read with ibase bound
to 8.

#X #X number reads number in radix 16. (hexadecimal) regardless of the setting
of ibase. As with #0, any expression can be prefIxed by #X. The number
can contain embedded hexadecimal "digits" A through F as well as the 0
through 9. See the section "Reading Integers in Bases Greater Than 10",
page 21.

#R #radixR number reads number in radix radix regardless of the setting of
ibase. As with #0, any expression can be prefIxed by #radixR; it is read
with ibase bound to radix. radix must consist of only digits, and it is read
in decimal. number can consist of both numeric and alphabetic digits,
depending upon radix.

For example, #3R102 is another way of writing 11. and #11R32 is another
way of writing 35.

#Q #Q roo reads as roo if the input is being read by Symbolics-Lisp, otherwise it
reads as nothing (whitespace).

#M #M roo reads as roo if the input is being read into Maclisp, otherwise it reads
as nothing (whitespace).

#N #N roo reads as roo if the input is being read into NIL or compiled to run in
NIL, otherwise it reads as nothing (whitespace). Also, during the reading of
roo, the reader temporarily defInes various NIL-compatible sharp-sign reader
macros (such as #! and #") in order to parse the form correctly, even though
it is not going to be evaluated.

#+ This abbreviation provides a read-time conditionalization facility similar to, but
more general than, that provided by #M, #N, and #Q. It is used as
#+{eature tonne If feature is a symbol, then this is read as {onn if

30

Reference Guide to Symbolics-UslJ March 1985

(status feature feature) is t. If (status feature feature) is nil, then this
is read as whitespace. Alternately, feature can be a boolean expression
composed of and, or, and not operators and symbols representing items
which can appear on the (status features) list. (or lispm amber)
represents evaluation of the predicate
(or (status feature lispm) (status feature amber» in the read-time
environment.

For example, #+lispm form makes form exist if being read by Symbolics-Lisp,
and is thus equivalent to #Q form. Similarly, #+maclisp form is equivalent
to #M form. #+(or lispm nil) form makes form exist on either Symbolics­
Lisp or in NIL. Note that items can be added to the (status features) list
by means of (sstatus feature feature), thus allowing the user to. selectively
interpret or compile pieces of code by parameterizing this list. See the
section "status and sstatus" in User's Guide to Symbolics Computers.

#- #-feature form is equivalent to #+(not feature) form.

#1 #1 begins a comment for the Lisp reader. The reader ignores evetything
until the next 1#, which closes the comment. Note that if the 1# is inside a
comment that begins with a semicolon, it is not ignored; it closes the
comment that began with the preceding #1. #1 and 1# can be on different
lines, and # 1 ••• 1 # pairs can be nested.

Using #1 ••• 1# always works for the Lisp reader. The editor, however, does
not understand the reader's interpretation of # 1 ••. 1 #. Instead, the editor
retains its knowledge of Lisp expressions. Symbols can be named with
vertical bars, so the editor (not the reader) behaves as if # 1 ..• 1 # is the name
of a symbol surrounded by pound signs, instead of a comment.

Note: Use #11 ..• 11# instead of #1 ... 1# to comment out Lisp code.

The reader views #11 ..• 11# as a comment: the comment prologue is #1, the
comment body is 1 •.. 1, and the comment epilogue is 1#. The editor,
however, interprets #11 .•• 11# as a pound sign (#), a symbol with a zero
length print name (II), lisp code (•••), another symbol with a zero length
print name (II), and a stray pound sign (#). Therefore, inside a # 11 •.. 11 #,
the editor commands that operate on Lisp code, such as balancing
parentheses and indenting code, work correctly.

#< This is not valid reader syntax. It is used in the printed representation of
objects that cannot be read back in. Attempting to read a #< causes an
error.

#~ #~ turns infIx expression syntax into regular Lisp code. It is intended for
people who like to use traditional arithmetic expressions in Lisp code. It is
not intended to be extensible or to be a full programming language. We do
not intend to extend it into one.

(defun my-add (a b)
#~a+b~)

31

March 1985 Basic Objects

The quoting character is backslash. It is necessary for including special
symbols (such as -) in variable names.

! reads one Lisp expression, which can use this reader-macro inside itself.

#~ supports the following syntax:

Delimiters Begin the reader macro with #~, complete it with ~.

#~a+b-c~

Escape characters
Special characters in symbol names must be preceded with
backslash (\). You can escape to normal Lisp in an infIx
expression; precede the Lisp form with exclamation point (!).

Symbols Start symbols with a letter. They can contain digits and
underscore characters. Any other characters need to be
quoted with \.

Operators It accepts the following classes of operators. Arithmetic
operator precedence is like that in FORTRAN and PUl.
Operator Infix Lisp

Assignment
Functions

Array ref
Unary ops
Binary ops
Conditional

Grouping:

x:y
f(x,y)

a[ij]
+ - not
+ - * 1 " = ~ < ~ > ~ and or
if p then c
if p then c else a
(a, b, c)

Equivalent
(setf x y)
(f x y) -- also
works for
defstruct
accessors,
and so on.
(aref a i j)
same
same
(if p c)
(if p c a)
(progn a b c)
- even works
for (1+2)/3

32

Reference Guide to Symbofics-Usp March 1985

The following example shows matrix multiplication using an infIx expression.
(defun matrix-multiply (a b)

(let «n (array-dimension-n 2 a»)
(unless (= n (array-dimension-n , b»

(ferror "Matrices -5 and -5 do not have compatible dimensions") a b)
(let «d' (array-dimension-n , a»

(d2 (array-dimension-n 2 b»)
(let «c *~ make\-array(list(d" d2), !:type, art\-float)~ »

(dotimes (i d')
(dotimes (j d2)
#~ c[i,j] : !(loop for k below n sum #~ a[i,k]*b[k,j] ~)~»

c» »
The line containing the infIx expression could also have been written like
this:

(let «sum 0»
(dotimes (k n) *~ sum:sum+a[i,k]*b[k,j] ~)
#~ c[i,j]:sum ~)

3.8 Special Character Names

The following are the recognized special character names, in alphabetical order except
with synonyms together and linked with equal signs. These names can be used
after a #\ to get the character code for that character. Most of these characters
type out as this name enclosed in a lozenge.

The special characters are:

Break
End
Hand-Up
Ro an-II

Call
Hand-Down
Help

Cl ear-Input=Cl ear
Hand-Left
Hold-Output
Ro an-IV

Abort
Clear-Screen
Hand-R;ght
Ro an-I
L;ne=LF Macro=Back-Next

Ro an-III
Network
Page=For
Rubout
Syste

Overstr;ke=Backspace=BS
Resu e Return=CR
Status Stop-Output
Ter ;nal=ESC

Quote
Space=SP
Tab

These are printing characters that also have special names because they can be hard
to type on a PDP-IO.

Alt ode
Integral

C;rcle-Plus
La bda

Delta
Plus-Minus

Ga a
Up-Arrow

The following are special characters sometimes used to represent single and double
mouse clicks. The buttons can be called either I, m, r or 1, 2, 3 depending on
stylistic preference. These characters all contain the %%kbd-mouse bit.

Mouse-L-l =Mouse-l-l Mouse-L-2= Mouse-1-2

33

March 1985 Basic Objects

Mouse-M-l=Mouse-2-1
Mouse-R-l =Mouse-3-1

3.9 The Readtable

Mouse-M-2=Mouse-2-2
Mouse-R-2=Mouse-3-2

A data structure called the readtable is used to control the reader. It contains
information about the syntax of each character. Initially it is set up to give the
standard Lisp meanings to all the characters, but you can change the meanings of
characters to alter and customize the syntax of characters. It is also possible to have
several readtables describing different syntaxes and to switch from one to another by
binding the symbol readtable.

readtable Variable
The value of readtable is the current readtable. This starts out as a copy
of si:initiaI-readtable. You can bind this variable to temporarily change the
readtable being used.

si:initiaI-readtable Variable
The value of si:initial-readtable is the initial standard readtable. You
should never change the contents of either this readtable or
si:initiaI-readtable; only examine it, by using it as the from-readtable
argument to copy-readtable or set-syntax-from-char. Change readtable
instead.

You can program the reader by changing the readtable in any of three ways.

• You can create a completely new readtable, using the readtable compiler
(sys:io;rtc) to define new kinds of syntax and to assign syntax classes to
characters. Use of the readtable compiler is not documented here.

• The syntax of a character can be set to one of several predefined possibilities.

• A character can be made into a macro character, whose interpretation is
controlled by a user-supplied function that is called when the character is read.

3.9.1 Functions That Create New Readtables

copy-readtable &optional from-readtable to-readtable Function
from-readtable, which defaults to the current readtable, is copied. If
to-readtable is un supplied or nil, a fresh copy is made. Otherwise to-readtable
is clobbered with the copy. Use copy-readtable to get a private readtable
before using the other readtable functions to change the syntax of characters
in it. The value of readtable at the start of a Symbolics Lisp Machine
session is the initial standard read table, which usually should not be modified.

34

Reference Guide to Symbolics-Usp March 1985

3.9.2 Functions That Change Character Syntax

set-syntax-from-cbar to-char from-char &optional to-readtable Function
from-readtable

Makes the syntax of to-char in to-readtable be the same as the syntax of
from-char in from-readtable. to-readtable defaults to the current readtable,
and from-readtable defaults to the initial standard readtable.

set-character-translation from-char to-char &optional readtable Function
Changes readtable so that from-char is translated to to-char upon read-in,
when readtable is the current readtable. This is normally used only for
translating lowercase letters to uppercase. Character translations are turned
ofT by slash, string quotes, and vertical bars. readtable defaults to the
current readtable.

set-syntax-from-description char description &optional readtable Function
Sets the syntax of char in readtable to be that described by the symbol
description. The following descriptions are defmed in the standard readtable:

si:a1pbabetic An ordinary character such as "A".

si:break A token separator such as "(". (Obviously left parenthesis
has other properties besides being a break.)

si:whltespace A token separator that can be ignored, such as "@".

si:single A self-delimiting single-character symbol. The initial
readtable does not contain any of these.

si:slasb The character quoter. In the initial readtable this is "/".

si:verticalbar The symbol print-name quoter. In the initial read table
this is "I".

si:doublequote The string quoter. In the initial readtable this is ''''.

si:macro

si:circlecross

si:bitscale

si:digitscale

A macro character. Do not use this; use
set-syntax-macro-cbar.

The octal escape for special characters. In the initial
readtable this is "(D".

A character that causes the integer to its left to be
doubled the number of times indicated by the integer to its
right. In the initial readtable this is "_". See the section
nWhat the Reader Recognizes", page 20.

A character that causes the integer to its left to be
multiplied by ibase the number of times indicated by the
integer to its right. In the initial readtable this is ""n.
See the section "What the Reader Recognizes", page 20.

35

March 1985 Basic Objects

si:non-terminating-macro
A macro character that is not a token separator. This is a
macro character if seen alone but is just a symbol
constituent inside a symbol. You can use it as a character
of a symbol other than the first without slashing it. (#
would be one of these if it were not built into the reader.)

readtable defaults to the current readtable.

3.9.3 Functions That Change Characters Into Macro Characters

set-syntax-macro-cbar char {unction &optional readtable Function
non-terminating-p

Changes readtable so that char is a macro character. When char is read,
{unction is called. readtable defaults to the current readtable.

{unction is called with two arguments: list-so-far and the input stream.
When a list is being read, list-so-far is that list (nil if this is the first
element). At the "top level" of read, list-so-far is the symbol :toplevel.
After a dotted-pair dot, list-so-far is the symbol :after-dot. {unction can read
any number of characters from the input stream and process them however
it likes.

{unction should return three values, called thing, type, and splice-po thing is
the object read. If splice-p is nil, thing is the result. If splice-p is non-nil,
then when reading a list thing replaces the list being read - often it is
list-so-far with something else nconc'ed onto the end. At top level and after
a dot if splice-p is non-nil the thing is ignored and the macro character does
not contribute anything to the result of read. type is a historical artifact
and is not really used; nil is a safe value. Most macro character functions
return just one value and let the other two default to nil.

{unction should not have any side effects other than on the stream and
list-so-far. Because of the way the input editor works, {unction can be called
several times during the reading of a single expression in which the macro
character only appears once.

char is given the same syntax that single-quote, backquote, and comma have
in the initial readtable (it is called :macro syntax).

If non-terminating-p is nil (the default), set-syntax-macro-cbar makes a
normal macro character. If it is t, set-syntax-macro-cbar makes a
nonterminating macro character. A nonterminating macro character is a
character that acts as a reader macro if seen between tokens, but if seen
inside a token it acts as an ordinary letter; it does not terminate the token.

36

Reference Guide to Symbolics-Usp March 1985

set-syntax-#-macro-char char function &optional readtable Function
Causes function to be called when #char is read. readtable defaults to the
current readtable. The function's arguments and return values are the same
as for normal macro characters. When function is called, the special variable
si:xr-sharp-argument contains nil or a number that is the number or
special bits between the # and char.

3.9.4 Readtable Functions for Maclisp Compatibility

setsyntax character arg2 arg3 Function
This exists only for Maclisp compatibility. The other readtable functions are
preferred in new programs. The syntax of character is altered in the current
readtable, according to arg2 and arg3. character can be an integer, a symbol,
or a string, that is, anything acceptable to the character function. arg2 is
usually a keyword; it can be in any package since this is a Maclisp
compatibility function. The following values are allowed for arg2:

:macro

:splicing

:single

nil

a symbol

The character becomes a macro character. arg3 is the
name of a function to be invoked when this character is
read. The function takes no arguments, can tyi or read
from standard-input (that is, can call tyi or read
without specifying a stream), and returns an object that is
taken as the result of the read.

Like :macro, but the object returned by the macro
function is a list that is nconced into the list being read.
If the character is read not inside a list (at top level or
after a dotted-pair dot), then it can return 0, which
means it is ignored, or (obj), which means that obj is read.

The character becomes a self-delimiting singie-character
symbol. If arg3 is an integer, the character is translated
to that character.

The syntax of the character is not changed, but if arg3 is
an integer, the character is translated to that character.

The syntax of the character is changed to be the same as
that of the character arg2 in the standard initial readtable.
arg2 is converted to a character by taking the first
character of its print name. Also if arg3 is an integer, the
character is translated to that character.

setsyntax-sharp-macro character type function &optional readtable Function
This exists only for Maclisp compatibility. set-syntax-#-macro-char is
preferred. If function is nil, #character is turned off, otherwise it becomes a
macro that calls function. type can be :macro, :peek-macro, :splicing, or
:peek-splicing. The splicing part controls whether function returns a single

37

March 1985 Basic Objects

object or a list of objects. Specifying peek causes character to remain in the
input stream when function is called; this is useful if character is something
like a left parenthesis. {unction gets one argument, which is nil or the
number between the # and the character.

38

Reference Guide to Symbolics-Usp March 1985

39

March 1985 Lists

PART II.

Lists

40

Reference Guide to Symbolics-Usp March 1985

41

March 1985 Usts

4. Manipulating List Structure

This chapter discusses functions that manipulate conses, and higher-level structures
made up of conses, such as lists and trees. It also discusses hash tables and
resources, which are related facilities.

A cons is a primitive Lisp data object that is extremely simple: it knows about two
other objects, called its car and its cdr.

A list is recursively defmed to be the symbol nil, or a cons whose cdr is a list. A
typical list is a chain of conses: the cdr of each is the next cons in the chain, and
the cdr of the last one is the symbol nil. The cars of each of these conses are called
the elements of the list. A list has one element for each cons; the empty list, nil,
has no elements at all. Here are the printed representations of some typical lists:

(foo bar)
(a (b c d) e)

;This list has two elements.
;This list has three elements.

Note that the second list has three elements: a, (b c d), and e. The symbols b, c,
and d are not elements of the list itself. (They are elements of the list that is the
second element of the original list.)

A "dotted list" is like a list except that the cdr of the last cons does not have to be
nil. This name comes from the printed representation, which includes a "dot"
character. Here is an example:

(a b • c)

This "dotted list" is made of two conses. The car of the first cons is the symbol a,
and the cdr of the first cons is the second cons. The car of the second cons is the
symbol b, and the cdr of the second cons is the symbol c.

A tree is any data structure made up of conses whose cars and cdrs are other
conses. The following are all printed representations of trees:

(foo . bar)
«a. b) (c • d»
«a. b) (c d e f (g • 5) s) (7 . 4»

These definitions are not mutually exclusive. Consider a cons whose car is a and
whose cdr is (b (c d) e). Its printed representation is:

(a b (c d) e)

It can be thought of and treated as a cons, or as a list of four elements, or as a tree
containing six conses. You can even think of it as a "dotted list" whose last cons
just happens to have nil as a cdr. Thus, lists and "dotted lists" and trees are not
fundamental data types; they are just ways of thinking about structures of conses.

A circular list is like a list except that the cdr of the last cons, instead of being nil,

42

Reference Guide to Symbolics-Usp March 1985

is the first cons of the list. This means that the conses are all hooked together in a
ring, with the cdr of each cons being the next cons in the ring. While these are
perfectly good Lisp objects, and there are functions to deal with them, many other
functions will have trouble with them. Functions that expect lists as their
arguments often iterate down the chain of conses waiting to see a nil, and when
handed a circular list this can cause them to compute forever. The printer is one of
these functions; if you try to print a circular list the printer will never stop
producing text. See the section "Output Functions" in Reference Guide to Streams,
Files, and lID. You must use circular lists carefully.

The Symbolics Lisp Machine internally uses a storage scheme called "cdr coding" to
represent conses. This scheme is intended to reduce the amount of storage used in
lists. The use of cdr-coding is invisible to programs except in terms of storage
efficiency; programs work the same way whether or not lists are cdr-coded. Several
of the functions below mention how they deal with cdr-coding. You can completely
ignore all this if you want. However, if you are writing a program that allocates a
lot of conses and you are concerned with storage efficiency, you might want toleam
about the cdr-coded representation and how to control it. See the section "Cdr­
coding", page 56.

4.1 Conses

car x

cdr x

Returns the car of x. Example:

(car '(a be» =) a

Function

Officially car is applicable only to conses and locatives. However, as a matter
of convenience, car of nil returns nil.

Returns the cdr of x. Example:

(cdr '(a be» =) (b c)

Function

Officially cdr is applicable only to conses and locatives. However, as a matter
of convenience, cdr of nil returns nil.

4.1.1 Composition of Cars and Cdrs

All the compositions of up to four cars and cdrs are dermed as functions in their
own right. The names of these functions begin with "c" and end with "r", and in
between is a sequence of "a"'s and "d'''s corresponding to the composition performed
by the function. The error checking for these functions is exactly the same as for
car and cdr.

43

March 1985 Lists

caarx Function

(caar x) is the same as (car (car x»

cadrx Function

(cadr x) is the same as (car (cdr x»

cdarx Function

(cdar x) is the same as (cdr (car x»

cddrx Function

(cddr x) is the same as (cdr (cdr x»

caaar X Function

(caaar x) is the same as (car (car (car x»)

caadr X Function

(caadr x) is the same as (car (car (cdr x»)

cadar x Function

(cadar x) is the same as (car (cdr (car x»)

caddr X Function

(caddr x) is the same as (car (cdr (cdr x»)

cdaar X Function

(cdaar x) is the same as (cdr (car (car x»)

cdadr X Function

(cdadr x) is the same as (cdr (car (cdr x»)

cddar x Function

(cddar x) is the same as (cdr (cdr (car x»)

cdddr X Function

(cdddr x) is the same as (cdr (cdr (cdr x»)

caaaar X Function

(caaaar x) is the same as (car (car (car (car x»»

caaadr X Function

(caaadr x) is the same as (car (car (car (cdr x»»

44

Reference Guide to Symbolics-Usp March 1985

caadar X Function

(caadar x) is the same as (car (car (cdr (car x»»

caaddr X Function

(caaddr x) is the same as (car (car (cdr (cdr x»»

cadaar x Function

(cadaar x) is the same as (car (cdr (car (car x»»

cadadr X Function

(cadadr x) is the same as (car (cdr (car (cdr x»»

caddar X Function

(caddar x) is the same as (car (cdr (cdr (car x»»

cadddr X Function

(cadddr x) is the same as (car (cdr (cdr (cdr x»»

cdaaar x Function

(cdaaar x) is the same as (cdr (car (car (car x»»

cdaadr X Function

(cdaadr x) is the same as (cdr (car (car (cdr x»»

cdadar X Function

(cdadar x) is the same as (cdr (car (cdr (car x»»

cdaddr x Function

(cdaddr x) is the same as (cdr (car (cdr (cdr x»»

cddaar X Function

(cddaar x) is the same as (cdr (cdr (car (car x»»

cddadr X Function

(cddadr x) is the same as (cdr (cdr (car (cdr x»»

cdddarx Function

(cdddar x) is the saine as (cdr (cdr (cdr (car x»»

cddddr X Function

(cddddr x) is the same as (cdr (cdr (cdr (cdr x»»

45

March 1985 Lists

cons X Y Function
cons is the primitive function to create a new cons, whose car is x and
whose cdr is y. Examples:

(cons 'a 'b) = > (a . b)
(cons 'a (cons 'b (cons 'c nil») => (a b c)
(cons 'a '(b cd» => (a bed)

neons x Function
(neons x) is the same as (cons x nil). The name of the function is from
"nil-cons" .

xeons x y Function
xeons ("exchanged cons") is like cons except that the order of the
arguments is reversed. Example:

(xcons 'a 'b) => (b . a)

eons-in-area x y area-number Function
This function creates a cons in a specific area. (Areas are an advanced
feature of storage management.) See the section "Areas" in Internals,
Processes, and Storage Management. The first two arguments are the same
as the two arguments to eoDS, and the third is the number of the area in
which to create the cons. Example:

(cons-in-area 'a 'b my-area) => (a . b)

neons-in-area x area-number Function
(neons-in-area x area-number) = (eons-in-area x nil area-number)

xeons-in-area x y area-number Function
(xeons-in-area x y area-number) = (eons-in-area y x area-number)

The backquote reader macro facility is also generally useful for creating list structure,
especially mostly constant list structure, or forms constructed by plugging variables
into a template. See the section "Backquote", page 345.

car-location cons Function
car-location returns a locative pointer to the cell containing the car of cons.

Note: there is no cdr-location function; it is difficult because of the cdr-coding
scheme. See the section "Cdr-coding", page 56.

46

Reference Guide to Symbolics-Usp March 1985

4.2 Basic List Operations

length list Function
length returns the length of list. The length of a list is the number of
elements in it. Examples:

(length nil) => 0
(length '(a b cd» => 4
(length '(a (b c) d» => 3

length could have been defined by:

(defun length (x)

or by:

(cond «atom x) 0)
«1+ (length (cdr x»» »

(defun length (x)
(do «n 0 (1+ n»

(y x (cdr y»)
((a tom y) n) »

except that it is an error to take length of a non-nil atom.

first list Function
This function takes a list as an argument, and returns the first element of
the list. first is identical to car. The reason these names are provided is
that they make more sense when you are thinking of the argument as a list
rather than just as a cons.

second list Function
This function takes a list as an argument, and returns the second element of
the list. second is identical to cadr. The reason these names are provided
is that they make more sense when you are thinking of the argument as a
list rather than just as a cons.

third list Function
This function takes a list as an argument, and returns the third element of
the list. The reason these names are provided is that they make more sense
when you are thinking of the argument as a list rather than just as a cons.

fourth list Function
This function takes a list as an argument, and returns the fourth element of
the list. The reason these names are provided is that they make more sense
when you are thinking of the argument as a list rather than just as a cons.

fifth list Function
This function takes a list as an argument, and returns the fifth element of
the list. The reason these names are provided is that they make more sense
when you are thinking of the argument as a list rather than just as a cons.

47

March 1985 Usts

sixth list Function
This function takes a list as an argument, and returns the sixth element of
the list. The reason these names are provided is that they make more sense
when you are thinking of the argument as a list rather than just as a cons.

seventh list Function
This function takes a list as an argument, and returns the seventh element
of the list. The reason these names are provided is that they make more
sense when you are thinking of the argument as a list rather than just as a
cons.

rest! list Function
rest! returns the rest of the elements of a list, starting with element 1
(counting the first element as the zeroth). Thus rest! is identical to cdr.
The reason these names are provided is that they make more sense when
you are thinking of the argument as a list rather than just as a cons.

rest2 list Function
rest2 returns the rest of the elements of a list, starting with element 2
(counting the first element as the zeroth). Thus rest2 is identical to cddr.
The reason these names are provided is that they make more sense when
you are thinking of the argument as a list rather than just as a cons.

rest3 list Function
rest3 returns the rest of the elements of a list, starting with element 3
(counting the first element as the zeroth). The reason these names are
provided is that they make more sense when you are thinking of the
argument as a list rather than just as a cons.

rest4 list Function
rest4 returns the rest of the elements of a list, starting with element 4
(counting the first element as the zeroth). The reason these names are
provided is that they make more sense when you are thinking of the
argument as a list rather than just as a cons.

nth n list Function
(nth n list) returns the nth element of list, where the zeroth element is the
car of the list. Examples:

(nth 1 '(foo bar gack» => bar
(nth 3 '(foo bar gack» => nil

If n is greater than the length of the list, nil is returned.

Note: this is not the same as the Interlisp function called nth, which is
similar to but not exactly the same as the Symbolics Lisp Machine function
nthcdr. Also, some people have used their own, macros and functions called
nth in their Maclisp programs. -,

48

Reference Guide to Symbo/ics-Usp March 1985

nth could have been· defined by:

(defun nth (n list)
(do «i n (1- i»

(1 list (cdr 1»)
«zerop i) (car 1»»

nthcdr n list Function
<nth cdr n list) cdrs list n times, and returns the result. Examples:

(nthcdr 0 '(a be» =) (a b c)
(nthcdr 2 '(a be» =) (c)

In other words, it returns the nth cdr of the list. If n is greater than the
length of the list, nil is returned.

This is similar to Interlisp's function nth, except that the Interlisp function
is one-based instead of zero-based; see the Interlisp manual for details.
nthcdr could have been defined by:

(defun nthcdr (n list)
(do «i 0 (1+ i»

(list list (cdr list»)
«= i n) list»)

last list Function
last returns the last cons of list. If list is nil, it returns nil. Note that last
is unfortunately not analogous to first (first returns the first element of a
list, but last does not return the last element of a list); this is a historical
artifact. Example:

(setq x '(a bed»
(1 as t x) =) (d)
(rplacd (last x) '(e f»
x =) '(a b c d e f)

last could have been defined by:

(defun last (x)

list &rest args

(cond «atom x) x)
«atom (cdr x» x)
«last (cdr x») »

list constructs and returns a list of its arguments. Example:

(list 3 4 'a (car '(b. c» (+ 6 -2» =) (3 4 a b 4)

list could have been defined by:

Function

March 1985

(defun list (&rest args)
(let «list (make-list (length args»»

(do «1 list (cdr 1»
(a args (cdr a»)

« null a) 1 ist)
(rplaca 1 (car a»»)

49

Lists

list· &rest args Function
list· is like list except that the last cons of the constructed list is "dotted".
It must be given at least one argument. Example:

(list* 'a 'b 'c 'd) => (a be. d)

This is like

(cons 'a (cons 'b (cons 'c 'd»)

More examples:
(l iO s t* 'a 'b) = > (a • b)
(1 ist* 'a) => a

list-in-area area-number &rest args Function
list-in-area is exactly the same as list except that it takes an extra
argument, an area number, and creates the list in that area.

list·-in-area area-number &rest args Function
list·-in-area is exactly the same as list· except that it takes an extra
argument, an area number, and creates the list in that area.

make-list length &rest options Function
This creates and returns a list containing length elements. length should be
an integer. options are alternating keywords and values. The keywords can
be either of the following:

:area The value specifies in which area the list should be created. See the
section "Areas" in Internals, Processes, and Storage Management. It
should be either an area number (an integer), or nil to mean the
default area.

:initial-value
The elements of the list are all this value. It defaults to nil.

make-list always creates a cdr-coded list. See the section "Cdr-coding", page
56. Examples:

(make-list 3) => (nil nil nil)
(make-list 4 :initial-value 7) => (7 7 7 7)

When make-list was originally implemented, it took exactly two arguments:
the area and the length. This obsolete form is still supported so that old
programs will continue to work, but the new keyword-argument form is
preferred.

50

Reference Guide to Symbo/ics-Usp March 1985

circular-list &rest args Function
circular-list constructs a circular list whose elements are args, repeated
infinitely. circular-list is the same as list except that the list itself is used
as the last cdr, instead of nil. circular-list is especially useful with
mapcar, as in the expression:

(mapcar (function +) foo (circular-list 5»

which adds each element of foo to 5. circular-list could have been dermed
by:

(defun circular-list (&rest elements)
(setq elements (copylist* elements»
(rplacd (last elements) elements)
elements)

copylist list &optional area force-dotted Function
Returns a list that is equal to list, but not eq. copy list does not copy any
elements of the list: only the conses of the list itself. The returned list is
fully cdr-coded to minimize storage. See the section "Cdr-coding", page 56. If
the list is "dotted", that is, (cdr (last list» is a non-nil atom, this is true of
the returned list also. You can optionally specify the area in which to create
the new copy.

copylist* list &optional area Function
This is the same as copylist except that the last cons of the resulting list is
never cdr-coded. See the section "Cdr-coding", page 56. This makes for
increased efficiency if you nconc something onto the list later.

copyalist list &optional area Function
copyalist is for copying association lists. See the section "Tables", page 59.
The list is copied, as in copylist. In addition, each element of list that is a
cons is replaced in the copy by a new cons with the same car and cdr. You
can optionally specify the area in which to create the new copy.

copytree tree &optional area Function
copytree copies all the conses of a tree and makes a new tree with the
same fringe. You can optionally specify the area in which to create the new
copy.

copytree-share tree &optional area (hash Function
(make-equal-hash-table »

copytree-share is similar to copytree; it makes a copy of an arbitrary
structure of conseS, copying at all levels, and optimally cdr-coding. However,
it also assures that all lists or tails of lists are optimally shared when equal.

copytree-share takes as arguments the tree to be copied, and optionally a
storage area and an externally created hash table to be used for the equality
testing.

51

March 1985 Lists

Note: copytree-sbare might be very slow in the general case, for long lists.
However, applying it at the appropriate level of a specific structure-copying
routine (furnishing a common externally created hash table) is likely to yield
all the sharing possible, at a much lower computational cost. For example,
copytree-sbare could be applied only to the branches of a long alist.

Example:

(copy tree-share '«1 2 3) (1 2 3) (0 1 2 3) (0 2 3»)

If x = '(1 2 3), the above returns (roughly):

, (, x ,x (0 • , x) (0 • ,(cdr x»)

reverse list Function
reverse creates a new list whose elements are the elements of list taken in
reverse order. reverse does not modify its argument, unlike nreverse,
which is faster but does modify its argument. The list created by reverse is
not cdr-coded. Example:

(reverse '(a b (c d) e» => (e (c d) b a)

reverse could have been dermed by:

(defun reverse (x)
(do «1 x (cdr 1»

(r nil
(cons (car 1) r»)

«null 1) r»)

scan down argument,
putting each element
into list, until
no more elements.

nreverse list Function
nreverse reverses its argument, which shoulcl be a list. The argument is
destroyed by rplacds all through the list (see reverse). Example:

(nreverse '(a b c» => (c b a)

nreverse could have been defined by:

(defun nreverse (x)
(cond «null x) nil)

«nreversel x nil»»

(defun nreversel (x y) ; auxiliary function
(cond «null (cdr x» (rp1acd x y»

«nreversel (cdr x) (rp1acd x y»»)
;; this last call depends on order of argument evaluation.

nreverse does something inefficient with cdr-coded lists, because it just uses
rplacd in the straightforward way. See the section "Cdr-coding", page 56.
Using reverse might be preferable in some cases.

append &rest lists Function
The arguments to append are lists. The result is a list that is the

52

Reference Guide to Symbolics-Usp March 1985

concatenation of the arguments. The arguments are not changed (see
nconc). Example:

(append '(a b c) 'Cd e f) nil '(g» => (a bed e f g)

append makes copies of the conses of all the lists it is given, except for the
last one. So the new list shares the conses of the last argument to append,
but all the other conses are newly created. Only the lists are copied, not the
elements of the lists.

A version of append that only accepts two arguments could have been
defined by:

(defun append2 (x y)
(cond «null x) y)

«cons (car x) (append2 (cdr x) y» »)

The generalization to any number of arguments could then be made (relying
on car of nil being nil):

(defun append (&rest args)
(if « (length args) 2) (car args)

(append2 (car args)
(apply (function append) (cdr args»»)

These definitions do not express the full functionality of append; the real
definition minimizes storage utilization by cdr-coding the list it produces,
using cdr-next except at the end where a full node is used to link to the last
argument, unless the last argument is nil in which case cdr-nil is used. See
the section "Cdr-coding", page 56.

To copy a list, use copylist; the old practice of using append to copy lists is
unclear and obsolete.

nconc &rest lists Function
nconc takes lists as arguments. It returns a list that is the arguments
concatenated together. The arguments are changed, rather than copied. See
the function append, page 51. Example:

(setq x '(a be»
(setq y 'Cd e f»
(ncone x y) => (a bed e f)
x => (a bed e f)

Note that the value of x is now different, since its last cons has been
rplacdd to the value of y. If the nconc form is evaluated again, it would
yield a piece of "circular" list structure, whose printed representation would
be (a bed e f d e f d e f ...), repeating forever.

nconc could have been defined by:

53

March 1985 Lists

(defun nconc (x y) ;for simplicity, this definition
(cond ((null x) y) ;only works for 2 arguments.

(t (rplacd (last x) y) jhook y onto X
x») jand return the modified X.

nreeone x y Function
(nreeone x y) is exactly the same as (neone (nreverse x) y) except that it
is more efficient. Both x and y should be lists.

nreeonc could have been defined by:

(defun nreconc (x y)
(cond ((null x) y)

((nreversel x y» »

using the same nreversel as above.

butlast list Function
This creates and returns a list with the same elements as list, excepting the
last element. Examples:

(butlast '(a bed» => (a b c)
(but1ast '((a b) (c d») => «(a b»
(butlast '(a» => nil
(butlast nil) => nil

The name is from the phrase "all elements but the last".

nbutlast list Function
This is the destructive version of butlast; it changes the cdr of the second­
to-last cons of the list to nil. If there is no second-to-Iast cons (that is, if the
list has fewer than two elements) it returns nil. Examples:

(setq faa '(a bed»
(nbutlast faa) => (a b c)
foo => (a b c)
(nbutlast '(a» => nil

firstn n list Function
firstn returns a list of length n, whose elements are the first n elements of
list. If list is fewer than n elements long, the remaining elements of the
returned list are nil. Example:

(firstn 2 '(a bed» => (a b)
(firstn 0 '(a bed» => nil
(firstn 6 '(a bed» => (a bed nil nil)

nleft n list &optional tail Function
Returns a "tail" of list, that is, one of the conses that makes up list, or nil.
(nleft n list) returns the last n elements of list. If n is too large, nleft
returns list.

54

Reference Guide to Symbolics-Lisp March 1985

(nleft n list tail) takes cdr of list enough times that taking n more cdrs
would yield tail, and returns that. You can see that when tail is nil this is
the same as the two-argument case. If tail is not eq to any tail of list,
nleft returns nil.

ldiff list sub list Function
list should be a list, and sublist should be one of the conses that make up
list. ldiff (meaning "list difference") returns a new list, whose elements are
those elements of list that appear before sublist. Examples:

(setq x '(a bed e»
(setq y (cdddr,x» =) (d e)
(ldiff x y) =) (a b c)

but:

(ldiff '(a bed) '(c d» =) (a bed)

since the sublist was not eq to any part of the list.

4.3 Alteration of List Structure

The functions rplaca and rplacd are used to make alterations in existing list
structure, that is, to change the cars and cdrs of existing conses.

The structure is not copied but is physically altered; hence you should be cautious
when using these functions, as strange side effects can occur if portions of list
structure become shared unknown to you. The nconc, nreverse, nreconc, and
nbutlast functions and the delq family have the same property.

rplaca x y Function
(rplaca x y) changes the car of x to y and returns (the modified) x. x must
be a cons or a locative. y can be any Lisp object. Example:

(setq 9 '(a be»
(rplaca (cdr g) 'd) =) (d c)
Now 9 =) (a de)

rplacd x y Function
(rplacd x y) changes the cdr of x to y and returns (the modified) x. x must
be a cons or a locative. y can be any Lisp object. Example:

(setq x '(a be»
(rplacd x'd) =) (a . d)
Now x =) (a . d)

55

March 1985 Lists

subst new old tree Function
(subst new old tree) substitutes new for all occurrences of old in tree, and
returns the modified copy of tree. The original tree is unchanged, as subst
recursively copies all of tree replacing elements equal to old as it goes.
Example:

(subst 'Tempest 'Hurricane
'(Shakespeare wrote (The Hurricane»)

=) (Shakespeare wrote (The Tempest»

subst could have been defined by:

(defun subst (new old tree)
(cond «equal tree old) new) ;if item equal to old, replace.

«(atom tree) tree) ;if no substructure, return argo
«cons (subst new old (car tree» ;otherwise recurse.

(subst new old (cdr tree»»»

Note that this function is not "destructive"; that is, it does not change the
car or cdr of any existing list structure.

To copy a tree, use copytree; the old practice of using subst to copy trees is
unclear and obsolete.

Note: certain details of subst might be changed in the future. It might
possibly be changed to use eq rather than equal for the comparison, and
possibly may substitute only in cars, not in cdrs. This is still being discussed.

nsubst new old tree Function
nsubst is a destructive version of subst. The list structure of tree is altered
by replacing each occurrence of old with new. nsubst could have been
defined as

(def~n nsubst (new old tree)
(cond «eq tree old) new)

«atom tree) tree)
(t

;if item eq to old, replace.
;if no substructure, return argo
;otherwise, recurse.

(rplaca tree
(rplacd tree
tree»)

(nsubst new old (car tree»)
(nsubst new old (cdr tree»)

sublis alist tree Function
sublis makes substitutions for symbols in a tree. The first argument to
sublis is an association list. See the section "Tables", page 59. The second
argument is the tree in which substitutions are to be made. sublis looks at
all symbols in the fringe of the tree; if a symbol appears in the association
list, occurrences of it are replaced by the object with which it is associated.
The argument is not modified; new conses are created where necessary and
only where necessary, so the newly created tree shares as much of its
substructure as possible with the old. For example, if no substitutions are
made, the result is just the old tree. Example:

56

Reference Guide to Symbo/ics-Usp

(sublis '«x. 100) (z . zprime»
'(plus x (minus 9 z x p) 4»

=> (plus 100 (minus 9 zprime 100 p) 4)

sublis could have been defined by:

(defun sublis (alist sexp)
(cond «symbolp sexp)

(let «tern (assq sexp alist»)
(if tern (cdr tem) sexp»)

« 1 istp sexp)
(let «car (sublis alist (car sexp»)

(cdr (sublis alist (cdr sexp»»

(t

(if (and (eq (car sexp) car) (eq (cdr sexp) cdr»
sexp
(cons car cdr»»

(sexp» »

March 1985

nsublis alist tree Function
nsublis is like sublis but changes the original tree instead of creating new.

nsublis could have been defined by:

(defun nsublis (alist tree)
(cond «atom tree)

4.4 Cdr-coding

(let «tern (assq tree alist»)
(if tem (cdr tern) tree»)

(t (rplaca tree (nsublis alist (car tree»)
(rplacd tree (nsublis alist (cdr tree»)
tree»)

This section explains the internal data format used to store conses inside the
Symbolics Lisp Machine. It is only important to read this section if you require
extra storage efficiency in your program.

The usual and obvious internal representation of conses in any implementation of
Lisp is as a pair of pointers, contiguous in memory. If we call the amount of storage
that it takes to store a Lisp pointer a "word", then conses normally occupy two
words. One word (say it is the first) holds the car, and the other word (say it is the
second) holds the cdr. To get the car or cdr of a list, you just reference this
memory location, and to change the car or cdr, you just store into this memory
location.

Very often, conses are used to store lists. If the above representation is used, a list
of n elements requires two times n words of memory: n to hold the pointers to the

57

March 1985 Lists

elements of the list, and n to point to the next cons or to nil. To optimize this
particular case of using conses, the Symbolics Lisp Machine uses a storage
representation called "cdr coding" to store lists. The basic goal is to allow a list of n
elements to be stored in only n locations, while allowing conses that are not parts of
lists to be stored in the usual way.

The way it works is that there is an extra two-bit field in every word of memory,
called the "cdr-code" field. There are three meaningful values that this field can
have, which are called cdr-normal, cdr-next, and cdr-nil. The regular, noncom pact
way to store a cons is by two contiguous words, the first of which holds the car and
the second of which holds the cdr. In this case, the cdr code of the first word is
cdr-normal. (The cdr code of the second word does not matter; it is never looked
at.) The cons is represented by a pointer to the first of the two words. When a list
of n elements is stored in the most compact way, pointers to the n elements occupy
n contiguous memory locations. The cdr codes of all these locations are cdr-next,
except the last location whose cdr code is cdr-nil. The list is represented as a
pointer to the first of the n words.

Now, how are the basic operations on conses defined to work based on this data
structure? Finding the car is easy: you just read the contents of the location
addressed by the pointer. Finding the cdr is more complex. First you must read
the contents of the location addressed by the pointer, and inspect the cdr-code you
find there. If the code is cdr-normal, then you add one to the pointer, read the
location it addresses, and return the contents of that location; that is, you read the
second of the two words. If the code is cdr-next, you add one to the pointer, and
simply return that pointer without doing any more reading; that is, you return a
pointer to the next word in the n-word block. If the code is cdr-nil, you simply
return nil.

If you examine these rules, you find that they work fine even if you mix the two
kinds of storage representation within the same list. There is no problem with
doing that.

How about changing the structure? Like car, rplaca is very easy; you just store into
the location addressed by the pointer. To do an rplacd you must read the location
addressed by the pointer and examine the cdr code. If the code is cdr-normal, you
just store into the location one greater than that addressed by the pointer; that is,
you store into the second word of the two words. But if the cdr-code is cdr-next or
cdr-nil, there is a problem: there is no memory cell that is storing the cdr of the
cons. That is the cell that has been optimized out; it just does not exist.

This problem is dealt with by the use of "invisible pointers". An invisible pointer is
a special kind of pointer, recognized by its data type (Symbolics Lisp Machine
pointers include a data type field as well as an address field). The way they work is
that when the Symbolics Lisp Machine reads a word from memory, if that word is
an invisible pointer then it proceeds to read the word pointed to by the invisible
pointer and use that word instead of the invisible pointer itself. Similarly, when it

58

Reference Guide to Symbolics-Usp March 1985

writes to a location, it first reads the location, and if it contains an invisible pointer
then it writes to the location addressed by the invisible pointer instead. (This is a
somewhat simplified explanation; actually there are several kinds of invisible pointer
that are interpreted in different ways at different times, used for things other than
the cdr coding scheme.)

Here is how to do an rplacd when the cdr code is cdr-next or cdr-nil. Call the
location addressed by the first argument to rplacd l. First, you allocate two
contiguous words (in the same area that l points to). Then you store the old
contents of l (the car of the cons) and the second argument to rplacd (the new cdr
of the cons) into these two words. You set the cdr-code of the first of the two
words to cdr-normal. Then you write an invisible pointer, pointing at the first of
the two words, into location l. (It does not matter what the cdr-code of this word
is, since the invisible pointer data type is checked first.)

Now, whenever any operation is done to the cons (car, cdr, rplaca, or rplacd), the
initial reading of the word pointed to by the Lisp pointer that represents the cons
finds an invisible pointer in the addressed cell. When the invisible pointer is seen,
the address it contains is used in place of the original address. So the newly
allocated two-word cons is used for any operation done on the original object.

Why is any of this important to users? In fact, it is all invisible to you; everything
works the same way whether or not compact representation is used, from the point
of view of the semantics of the language. That is, the only difference that any of
this makes is in efficiency. The compact representation is more efficient in most
cases. However, if the conses are going to get rplacd'ed, then invisible pointers are
created, extra memory is allocated, and the compact representation is seen to
degrade storage efficiency rather than improve it. Also, accesses that go through
invisible pointers are somewhat slower, since more memory references are needed.
So if you care a lot about storage efficiency, you should be careful about which lists
get stored in which representations.

You should try to use the normal representation for those data structures that are
subject to rplacd operations, including nconc and nreverse, and the compact
representation for other structures. The functions cons, xcons, ncons, and their
area variants make conses in the normal representation. The functions list, list*,
Iist-in-area, make-list, and append use the compact representation. The other
list-creating functions, including read, currently make normal lists, although this
might get changed. Some functions, such as sort, take special care to operate
efficiently on compact lists (sort effectively treats them as arrays). nreverse is
rather slow on compact lists, since it simply uses rplacd

(copylist x) is a suitable way to copy a list, converting it into compact form. See
the function copylist, page 50.

59

March 1985 lists

4.5 Tables

Symbolics-Lisp includes functions that simplify the maintenance of tabular data
structures of several varieties. The simplest is a plain list of items, which models
(approximately) the concept of a set. There are functions to add (cons), remove
(delete, delq, del, del-if, del-it-not, remove, remq, rem, rem-if, rem-it-not),
and search for (member, memq, mem) items in a list. Set union, intersection, and
difference functions can be easily written using these.

Association lists are very commonly used. An association list is a list of conses. The
car of each cons is a "key" and the cdr is a "datum", or a list of associated data.
The functions assoc, 88SQ, ass, memass, and rassoc can be used to retrieve the
data, given the key. For example:

«tweety . bird) (sylvester. cat»

is an association list with two elements. Given a symbol representing the name of
an animal, it can retrieve what kind of animal this is.

Structured records can be stored as association lists or as stereotyped cons-structures
where each element of the structure has a certain car-cdr path associated with it.
However, these are better implemented using structure macros. See the section
"Structure Macros", page 377.

Simple list-structure is very convenient, but might not be efficient enough for large
data bases because it takes a long time to search a long list. Symbolics-Lisp includes
hash table facilities for more efficient but more complex tables, and a hashing
function (sxhash) to aid you in constructing your own facilities. See the section
"Hash Tables", page 69.

4.6 Lists as Tables

memq item list Function
(memq item list) returns nil if item is not one of the elements of list.
Otherwise, it returns the sublist of list beginning with the first occurrence of
item; that is, it returns the first cons of the list whose car is item. The
comparison is made by eq. Because memq returns nil if it does not fmd
anything, and something non-nil if it fmds something, it is often used as a
predicate. Examples:

(memq 'a '(1 2 3 4» =) nil
(memq 'a '(g (x a y) cad e a f» =)' (a d e a f)

Note that the value returned by memq is eq to the portion of the list
beginning with 8. Thus rplaca on the result of memq can be used, if you
f11"st check to make sure memq did not return nil. Example:

60

Reference Guide to Symbolics-Usp March 1985

(let «sublist (memq x z»)
(if (not (null sublist»

(rplaca sublist y»)

memq could have been defined by:

(defun memq (item list)
(cond «null list) nil)

;search for X in the list z.
;if it is found,
;replace it with y.

«eq item (car list» list)
(t (memq item (cdr list») »

memq is hand-coded in microcode and therefore especially fast.

member item list Function
member is like memq, except equal is used for the comparison, instead of
eq.

member could have been defined by:

(defun member (item list)
(cond «null list) nil)

«equal item (car list» list)
(t (member item (cdr list») »

mem predicate item list Function
mem is the same as memq except that it takes an extra argument that
should be a predicate of two arguments, which is used for the comparison .
instead of eq. (mem 'eq a b) is the same as (memq a b).
(mem 'equal a b) is the same as (member a b).

mem is usually used with equality predicates other than eq and equal, such
as =, char-equal or string-equaI. It can also be used with noncommutative
predicates. The predicate is called with item as its first argument and the
element of list as its second argument, so:

(mem "< 4 1 ist)

finds the first element in list for which « 4 x) is true; that is, it finds the
first element greater than 4.

find-position-in-list item list Function
find-position-in-list looks down list for an element that is eq to item, like
memq. However, it returns the numeric index in the list at which it found
the first occurrence of item, or nil if it did not find it at all. This function is
sort of the complement of nth; like nth, it is zero-based. See the function
nth, page 47. Examples:

(find-position-in-list 'a '(a be» => 0
(find-position-in-list 'c '(a be» => 2
(find-position-in-list 'e '(a be» => nil

61

March 1985 Usts

find-position-in-list-equal item list Function
find-position-in-list-equal is exactly the same as find-position-in-list,
except that the comparison is done with equal instead of eq.

tailp sub list list Function
Returns t if sub list is a sublist of list (that is, one of the conses that makes
up list). Otherwise returns nil. Another way to look at this is that tailp
returns t if (nthcdr n list) is sublist, for some value of n. tailp could have
been defined by:

(defun tailp (sublist list)
(do «list list (cdr list»)

«null list) nil)
(if (eq sublist list)

(return t»»

delq item list &optional n Function
(delq item list) returns the list with all occurrences of item removed. eq is
used for the comparison. The argument list is actually modified (rplacded)
when instances of item are spliced out. delq should be used for value, not
for effect. That is, use:

(setq a (delq 'b a»

rather than:

(delq 'b a)

These two are not equivalent when the first element of the value of a is b.

(delq item list n) is like (delq item list) except only the first n instances of
item are deleted. n is allowed to be zero. If n is greater than or equal to
the number of occurrences of item in the list, all occurrences of item in the
list are deleted. Example:

(delq 'a '(b a c (a b) d a e» => (b c (a b) d e)

delq could have been defmed by:

(defun delq (item list &optional (n -1»
(cond «or (atom list) (zerop n» list)

«eq item (car list»
(delq item (cdr list) (1- n»)

(t (rplacd list (delq item (cdr list) n»»)

If the third argument (n) is not supplied, it defaults to -1, which is effectively
infinity, since it can be decremented any number of times without reaching
zero.

delete item list &optional n Function
delete is the same as delq except that equal is used for the comparison
instead of eq.

62

Reference Guide to Symbolics-Usp March 1985

del predicate item list &optional n Function
del is the same as delq except that it takes an extra argument that should
be a predicate of two arguments, which is used for the comparison instead of
eq. (del 'eq a b) is the same as (delq a b). See the function mem, page
60.

remq item list &optional n Function
remq is similar to delq, except that the list is not altered; rather, a new list
is returned. Examples:

(setq x '(a bed e f»
(remq 'b x) => (a c d e f)

x => (a bed e f)

(remq 'b '(a b c b a b) 2) => (a c a b)

remove item list &optional n Function
remove is the same as remq except that equa1 is used for the comparison
instead of eq.

rem predicate item list &optional n Function
rem is the same as remq except that it takes an extra argument that
should be a predicate of two arguments, which is used for the comparison
instead of eq. (rem 'eq a b) is the same as (remq a b). See the function
mem, page 60.

union &rest lists Function
Takes any number of lists that represent sets and creates and returns a new
list that represents the union of all the sets it is given. union uses eq for
its comparisons. You cannot change the function used for the comparison.
(union) returns nil.

intersection &rest lists Function
Takes any number of lists that represent sets and creates and returns a new
list that represents the intersection of all the sets it is given. intersection
uses eq for its comparisons. You cannot change the function used for the
comparison. (intersection) returns nil.

nunion &rest lists Function
Takes any number of lists that represent sets and returns a new list that
represents the union of all the sets it is given, by destroying any of the lists
passed as arguments and reusing the conses. (nunion) returns nil.

nintersection &rest lists Function
Takes any number of lists that represent sets and returns a new list that
represents the intersection of all the sets it is given, by destroying any of the
lists passed as arguments and reusing the conses. (nintersection) returns
nil.

63

March 1985 Usts

subset predicate list &rest extra-lists Function
subset and rem-it-not do the same thing, but they are used in different
contexts. rem-if-not means "remove if this condition is not true"; that is, it
keeps the elements for which predicate is true. subset refers to the
function's action if list is considered to represent a mathematical set.

predicate should be a function of one argument. A new list is made by
applying predicate to all of the elements of list and removing the ones for
which the predicate returns nil.

If extra-lists is present, each element of extra-lists (that is, each further
argument to subset or rem-if-not) is a list of objects to be passed to
predicate as predicate's second argument, third argument, and so on. The
reason for this is that predicate might be a function of many arguments;
extra-lists lets you control what values are passed as additional arguments to
predicate. However, the list returned by subset or rem-if-not is still a
"subset" of those values that were passed as the first argument in the
various calls to predicate.

rem-if-not predicate list &rest extra-lists Function
subset and rem-it-not do the same thing, but they are used in different
contexts. rem-if-not means "remove if this condition is not true"; that is, it
keeps the elements for which predicate is true. subset refers to the
function's action if list is considered to represent a mathematical set.

predicate should be a function of one argument. A new list is made by
applying predicate to all of the elements of list and removing the ones for
which the predicate returns nil.

If extra-lists is present, each element of extra-lists (that is, each further
argument to subset or rem-it-not) is a list of objects to be passed to
predicate as predicate's second argument, third argument, and so on. The
reason for this is that predicate might be a function of many arguments;
extra-lists lets you control what values are passed as additional arguments to
predicate. However, the list returned by subset or rem-if-not is still a
"subset" of those values that were passed as the first argument in the
various calls to predicate.

subset-not predicate list &rest extra-lists Function
subset-not and rem-if do the same thing, but they are used in different
contexts. rem-it means "remove if this condition is true". subset-not refers
to the function's action if list is considered to represent a mathematical set.

predicate should be a function of one argument. A new list is made by
applying predicate to all the elements of list and removing the ones for which
the predicate returns non-nil. The meaning of extra-lists is the same as for
subset and rem-it-not.

64

Reference Guide to Symbo/ics-Usp March 1985

rem-it predicate list &rest extra-lists Function
subset-not and rem-if do the same thing, but they are used in different
contexts. rem-it means "remove if this condition is true". subset-not refers
to the function's action if list is considered to represent a mathematical set.

predicate should be a function of one argument. A new list is made by
applying predicate to all the elements of list and removing the ones for which
the predicate returns non-nil. The meaning of extra-lists is the same as for
subset and rem-it-not.

del-if predicate list Function
del-if is just like rem-it except that it modifies list rather than creating a
new list and it does not take an extra-lists &rest argument.

del-if-not predicate list Function
del-if-not is just like rem-if-not except that it modifies list rather than
creating a new list and it does not take an extra-lists &rest argument.

every list predicate &optional step-function Function
every returns t if predicate returns non-nil when applied to every element of
list, or nil if predicate returns nil for some element. If step-function is
present, it replaces cdr as the function used to get to the next element of
the list; cddr is a typical function to use here.

some list predicate &optional step-function Function
some returns a tail of list such that the car of the tail is the first element
that the predicate returns non-nil when applied to, or nil if predicate returns
nil for every element. If step-function is present, it replaces cdr as the
function used to get to the next elelnent of the list; cddr is a typical
function to use here.

4.7 Association Lists

assq item alist Function
(assq item alist) looks up item in the association list (list of conses) alist.
The value is the first cons whose car is eq to x, or nil if there is none such.
Examples:

(assq 'r '«a. b) (c • d) (r • x) (s . y) (r . z»)
=> (r. x)

(assq 'fooo '«faa. bar) (zoo. goo») => nil

(assq 'b '« abc) (b cd) (x y z») = > (b cd)

You can rplacd the result of assq as long as it is not nil, if your intention
is to "update" the "table" that was assq's second argument. Example:

65

March 1985 Usts

(setq values '«x. 100) (y • 200) (z .50»)
(assq 'y values) => (y . 200)
(rplacd (assq 'y values) 201)
(assq 'y values) => (y . 201) no~

A typical trick is to say (cdr (assq X y». Since the cdr of nil is guaranteed
to be nil, this yields nil if no pair is found (or if a pair is found ~hose cdr is
nil.)

assq could have been deflned by:

(defun assq (item list)
(cond «null list) nil)

«eq item (caar list» (car list»
«assq item (cdr list») »

assoc item alist Function
assoc is like assq except that the comparison uses equal instead of eq.
Example:

(assoc '(a b) '«x. y) «a b) • 1) «c . d) .e»)
=> «a b) . 7)

assoc could have been defined by:

(defun assoc (item list)
(cond «null list) nil)

«equal item (caar list» (car list»
«assoc item (cdr list») »

ass predicate item alist Function
ass is the same as assq except that it takes an extra argument that should
be a predicate of t~o arguments, ~hich is used for the comparison instead of
eq. (ass 'eq a b) is the same as (assq a b). See the function mem, page
60. As ~th mem, you may use noncommutative predicates; the flrst
argument to the predicate is item and the second is the key of the element
of alist.

memass predicate item alist Function
memass searches alist just like ass, but returns the portion of the list
beginning ~th the pair containing item, rather than the pair itself.
(car (memass x y z» = (ass x y z). See the function mem, page 60. As
~th mem, you can use noncommutative predicates; the first argument to
the predicate is item and the second is the key of the element of alist.

rassq item alist Function
rassq means "reverse assq". It is like assq, but it tries to fmd an element
of alist· ~hose cdr (not car) is eq to item. rassq could have been defined by:

66

Reference Guide to Symbolics·Usp March 1985

(defun rassq (item in-list)
(do 1 in-list (cdr 1) (null 1)

(and (eq item (cdar 1»
(return (car 1»»)

rassoc item alist Function
rassoc is to rassq as assoc is to assq. That is, it finds an element whose
cdr is equal to item.

rass predicate item alist Function
rass is to rassq as ass is to assq. That is, it takes a predicate to be used
instead of eq. See the function mem, page 60. As with mem, you can use
noncommutative predicates; the fIrSt argument to the predicate is item and
the second is the cdr of the element of alist.

sassq item alist {unction Function
(sassq item alist (unction) is like (assq item alist) except that if item is not
found in alist, instead of returning nil, sassq calls the function {unction with
no arguments. sassq could have been defmed by:

(defun sassq (item alist function)
(or (assq item alist)

(apply function nil»)

sassq and sassoc are of limited use. These are primarily leftovers from Lisp
1.5.

sassoc item alist {unction Function
(sassoc item alist (unction) is like (assoc item alist) except that if item is
not found in alist, instead of returning nil, sassoc calls the function {unction
with no arguments. sassoc could have been defined by:

(defun sassoc (item alist function)
(or (assoc item alist)

(apply function nil»)

pairlis cars cdrs Function
pairlis takes two lists and makes an association list which associates
elements of the first list with corresponding elements of the second list.
Example:

(pairlis '(beef clams kitty) '(roast fried yu-shiang»
=> «beef. roast) (clams. fried) (kitty. yu-shiang»

67

March 1985 Usts

4.8 Property Lists

Lisp has always had a kind of tabular data structure called a property list (plist for
short). A property list contains zero or more entries; each entry associates from a
keyword symbol (called the indicator) to a Lisp object (called the value ort

sometimest the property). There are no duplications among the indicators; a
property list can only have one property at a time with a given name.

This is very similar to an association list. The difference is that a property list is an
object with a unique identity; the operations for adding and removing property list
entries are side-effecting operations that alter the property list rather than making a
new one. An association list with no entries would be the empty list Ot that is, the
symbol nil. There is only one empty list, so all empty association lists are the same
object. Each empty property list is a separate and distinct object.

The implementation of a property list is a memory cell containing a list with an even
number (possibly zero) of elements. Each pair of elements constitutes a property;
the first of the pair is the indicator and the second is the value. The memory cell is
there to give the property list a unique identity and to provide for side-effecting
operations.

The term "property list" is sometimes incorrectly used to refer to the list of entries
inside the property list, rather than the property list itself. This is regrettable and
confusing.

How do we deal with "memory cells" in Lisp; that is, what kind of Lisp object is a
property list? Rather than being a distinct primitive data type, a property list can
exist in one of three forms:

1. A property list can be a cons whose cdr is the list of entries and whose car is
not used and is therefore available to the user to store something.

2. The system associates a property list with every symbol. See the section "The
Property List of a Symbol", page 564. A symbol can be used where a property
list is expected; the property-list primitives automatically find the symbol's
property list and use it.

3. A property list can be a memory cell in the middle of some data structure,
such as a listt an array, an instance, or a defstruct. An arbitrary memory cell
of this kind is named by a locative. See the section "Locatives", page 83. Such
locatives are typically created with the loef special form. See the macro locf,
page 148.

Property lists of the first kind are called "disembodied" property lists because they
are not associated with a symbol or other data structure. The way to create a
disembodied property list is (neons nil), or (neons data) to store data in the car of
the property list.

68

Reference Guide to Symbolics-Usp March 1985

Here is an example of the list of entries inside the property list of a symbol named
bl that is being used by a program that deals with blocks:

(color blue on b6 associated-with (b2 b3 b4»

There are three properties, and so the list has six elements. The flrst property's
indicator is the symbol color, and its value is the symbol blue. We say that "the
value of bl's color property is blue", or, informally, that "bl's color property is
blue." The program is probably representing the information that the block
represented by bl is painted blue. Similarly, it is probably representing in the rest
of the property list that block bI is on top of block b6, and that bI is associated
with blocks b2, b3, and b4.

get plist indicator Function
get looks up plist's indicator property. If it flnds such a property, it returns
the value; otherwise, it returns nil. If plist is a symbol, the symbol's
associated property list is used. For example, if the property list of foo is
(baz 3), then:

(get 'foo 'baz) => 3
(get 'foo 'zoo) => nil

getl plist indicator-list Function
getl is like get, except that the second argument is a list of indicators. getl
searches down plist for any of the indicators in indicator-list until it flnds a
property whose indicator is one of the elements of indicator-list. If plist is a
symbol, the symbol's associated property list is used. getl returns the portion
of the list inside plist beginning with the flrst such property that it found.
So the car of the returned list is an indicator, and the cadr is the property
value. If none of the indicators on indicator-list are on the property list, getl
returns nil. For example, if the property list of foo were:

(bar (1 2 3) baz (3 2 1) color blue height six-two)

then:

(get1 'foo '(baz height»
=> (baz (3 2 1) color blue height six-two)

When more than one of the indicators in indicator-list is present in plist,
which one getl returns depends on the order of the properties. This is the
only thing that depends on that order. The order maintained by putprop
and defprop is not deflned (their behavior with respect to order is not
guaranteed and can be changed without notice).

putprop plist x indicator Function
This gives plist an indicator-property of x. After this is done,
(get plist indicator) returns x. If plist is a symbol, the symbol's associated
property list is used. putprop returns its second argument.

69

March 1985 Usts

Example:

(putprop 'Nixon 'not 'crook) => NOT

defprop symbol x indicator Special Form
defprop is a form of putprop with "unevaluated arguments", which is
sometimes more convenient for typing. Normally it does not make sense to
use a property list rather than a symbol as the first (or plist) argument.
Example:

(defprop faa bar next-to)

is the same as:

(putprop 'faa 'bar 'next-to)

remprop plist indicator Function
This removes plist's indicator property, by splicing it out of the property list.
It returns that portion of the list inside plist of which the former
indicator-property was the car. car of what remprop returns is what get
would have returned with the same arguments. If plist is a symbol, the
symbol's associated property list is used. For example, if the property list of
roo was:

(color blue height six-three near-to bar)

then:

(remprop 'faa 'height) => (six-three near-to bar)

and foo's property list would be:

(color blue near-to bar)

If plist has no indicator-property, then remprop has no side-effect and
returns nil.

There is a mixin flavor, called si:property-list-mixin, that provides messages that
do things analogous to what the above functions do.

4.9 Hash Tables

A hash table is a Lisp object that works something like a property list. Each hash
table has a set of entries, each of which associates a particular key with a particular
value. The basic functions that deal with hash tables can create entries, delete
entries, and find the value that is associated with a given key. Finding the value is
very fast even if there are many entries, because hashing is used; this is an
important advantage of hash tables over property lists. See the section "Hash
Primitive", page 75.

A given hash table can only associate one value with a given key; if you try to add a
second value it replaces the flrst.

70

Reference Guide to Symbolics-Usp March 1985

Hash tables come in two kinds, the difference being whether the keys are compared
using eq or using equal. The following discussion refers to the eq kind of hash
table; the other kind is described in another section. See the section "Creating Hash
Tables", page 71.

Hash tables of the first kind are created by instantiating an instance of the
si:eq-hash-table flavor with the make-instance function, which takes various init
options. New entries are added to hash tables by sending them a :put-hasb
message. To look up a key and find the associated value, the :get-hash message is
used. To remove an entry, use :rem-hasb. Here is a simple example.

(setq a (make-instance 'si:eq-hash-table»

(send a ':put-hash 'color 'brown)

(send a ':put-hash 'name 'fred)

(send a ':get-hash 'color) => brown

(send a ':get-hash 'name) => fred

In this example, the symbols color and name are being used as keys, and the
symbols brown and fred are being used as the associated values. The hash table
has two items in it, one of which associates from color to brown, and the other of
which associates from name to fred.

Keys do not have to be symbols; they can be any Lisp object. Likewise values can
be any Lisp object. The Lisp function eq is used to compare keys, rather than
equal.

When a hash table is first created, it has a size, which is the maximum number of
entries it can hold. Usually the actual capacity of the table is somewhat less, since
the hashing is not perfectly collision-free. With the maximum possible bad luck, the
capacity could be very much less, but this rarely happens. If so many entries are
added that the capacity is exceeded, the hash table automatically grows, and the
entries are rehashed (new hash values are recomputed, and everything is rearranged
so that the fast hash lookup still works) .. This is transparent to the caller; it all
happens automatically.

The describe function prints a variety of useful information when called with a
hash table.

Hash tables are implemented as instances of flavors. The two flavors for the two
kinds of hash tables are si:eq-hasb-table and si:equal-hash-table. See the section
"Hash Table Messages", page 72.

71

March 1985 Lists

4.9.1 Creating Hash Tables

A new hash table using eq for comparisons of the key is created by making an
instance of the si:eq-hash-table flavor. (See the function make-instance, page
430.) The function make-hash-table also creates an eq hash table, and takes the
init options to pass on to make-instance as arguments.

Hash tables using equal for comparisons are created by making an instance of the
si:equal-hash-table flavor, or by calling the make-equal-hash-table function.

si:eq-hash-table Flavor
This flavor is used to create a hash table using the eq function for
comparison of the hash keys. It accepts the following init options:

:size Sets the initial size of the hash table in entries, as an
integer. The default is 100 (decimal). The actual size is
rounded up from the size you specify to the next size that
is good for the hashing algorithm. An automatic rehash of
the hash table might occur before this many entries are
stored in the table depending upon the keys being stored.

:area Specifies the area in which the hash table should be
created. This is just like the :area option to make-array.
See the function make-array, page 241. The default is
working-storage-area

: growth-factor Specifies how much to increase the size of the hash table
when it becomes full. If it is an integer, the hash table is
increased by that number. If it is a floating-point number
greater than one, the new size of the hash table is the old
size mUltiplied by that number.

:rehash-before-cold
Causes disk-save to rehash this hash table if its hashing
has been invalidated. (This is part of the before-cold
initializations.) Thus every user of the saved band does
not have to waste the overhead of rehashing the first time
they use the hash table after cold booting.

For eq hash tables, the hashing is invalidated whenever
garbage collection or band compression occurs because the
hash function is sensitive to addresses of objects, and those
operations move objects to different addresses. For equal
hash tables, the hash function is not sensitive to addresses
of objects that sxhash knows how to hash but it is
sensitive to addresses of other objects. The hash table
remembers whether it contains any such objects.

Normally a hash table is automatically rehashed "on
demand" the first time it is used after the hashing has

72

Reference Guide to Symbolics-Usp March 1985

become invalidated. This first :get-hash operation is
therefore much slower than normal.

The :rehash-before-cold option should be used on hash
tables that are a permanent part of the system, likely to
be saved in a band saved by disk-save, and to be touched
by users of that band. This applies both to hash tables in
the Lisp system itself and to hash tables in user-written
subsystems that are saved on disk bands.

si:equal-hash-table Flavor
A table of this flavor uses the equal function for comparison of the hash
keys. It accepts the following init option as well as those described for eq
hash tables. See the flavor si:eq-hash-table, page 71.

:rehasb-threshold
Specifies how full the table can be before it must grow.
This is typically a flonum. The default is 0.8, which
represents 80 percent.

make-hash-table &rest options Function
This creates a new hash table using the eq function for comparison of the
keys. This function just calls make-instance using the si:eq-hash-table
flavor, passing options to make-instance as init options. See the flavor
si:eq-hash-table, page 71.

make-equal-hash-table &rest options Function
This creates a new hash table using the equal function for comparison of
the keys. This function just calls make-instance using the
si:equal-hash-table flavor, passing options to make-instance as init options.
See the flavor si:equal-hash-table, page 72.

4.9.2 Hash Table Messages

This section describes the messages that can be sent to any hash table instance.

:get-hash key Message
Find the entry in the hash table whose key is key, and return the associated
value. If there is no such entry, return nil. Returns a second value, which
is t if an entry was found or nil if there is no entry for key in this table.

:put-hasb key value Message
Create an entry in the hash table associating key to value. If there is
already an entry for key then replace the value of that entry with value.
Returns value. The hash table automatically grows if necessary.

73

March 1985 Usts

:rem-hash key Message
Remove any entry for key in the hash table. Returns t if there was an
entry or nil if there was not.

:swap-hash key value Message
This does the same thing as :put-hash, but returns different values. If
there was already an entry in the hash table whose key was key, then it
returns the old associated value as its first returned value, and t as its second
returned value. Otherwise it returns two values, nil and nil.

:map-hash function &rest args Message
For each entry in the hash table, call function on the key of the entry and
the value of the entry. If args is supplied, they are passed along to function
following the value of the entry argument.

: clear-hash Message
Remove all the entries from the hash table.

:modify-hash key function &rest args Message
This message combines the actions of :get-hash and :put-hash. It lets you
both examine the value for a particular key and change it. It is more
efficient because it does the hash lookup once instead of twice.

It finds value, the value associated with key, and key-exists-p, which indicates
whether the key was in the table. It then calls function with key, value,
key-exists-p, and other-args. If no value was associated with the key, then
value is nil and key-exists-p is nil. It puts whatever value {unction returns
into the hash table, associating it with key.

(send new-coms ':modify-hash k foo a b c) =>
(funcall foo k val key-exists-p a b c)

:size Message
Returns the number of entries in the hash table, whether empty or filled.
This means the amount of storage allocated, not the number of hash
associations currently stored.

:filled-elements Message
Returns the number of entries in the hash table that have an associated
value.

4.9.3 Hash Table Functions

In addition to sending an instance of a hash table a message, the following functions
can also be used to manipulate a hash table. Please note that these functions are
considered obsolete and are only documented here for compatibility.

74

Reference Guide to Symbolics-Usp March 1985

getbasb key hash-table Function
. Sends hash-table a :get-basb message with key as its argument. The values

returned are the same as for the :get-bash message.

getbash-equaI key hash-table Function
Sends hash-table a :get-bash message with key as its argument. The values
returned are the same as for the :get-bash message.

puthash key value hash-table Function
Sends hash-table a :put-basb message with arguments of key and value.
The values returned are the same as for the :put-basb message.

puthasb-equaI key value hash-table Function
Sends hash-table a :put-basb message with arguments of key and value.
The values returned are the same as for the :put-basb message.

rembasb key hash-table Function
Sends hash-table a :rem-basb message with an argument of key. The values
returned are the same as for the :rem-bash message.

rembasb-equaI key hash-table Function
Sends hash-table a :rem-bash message with an argument of key. The values
returned are the same as for the :rem-bash message.

swapbash key value hash-table Function
Sends hash-table a :swap-bash message with arguments of key and value.
The values returned are the same as for the :swap-basb message.

swapbasb-equal key value hash-table Function
Sends hash-table a :swap-bash message with arguments of key and value.
The values returned are the same as for the :swap-basb message.

m~pbash function hash-table &rest args Function
Sends hash-table a :map-bash message with an argument of function,
passing args to function.

mapbasb-equaI function hash-table &rest args Function
Sends hash-table a :map-bash message with an argument of function,
passing args to function.

clrbash hash-table Function
Sends hash-table a :clear-bash message. Returns the hash table itself.

clrhash-equaI hash-table Function
Sends hash-table a :clear-bash message. Returns the hash table itself.

75

March 1985 Usts

4.9.4 Dumping Hash Tables to Files

Instances of hash tables can be dumped to files by using any of the dump functions.
See the function sys:dump-forms-to-file in Reference Guide to Streams, Files, and
110. The hash table flavors have the :fasd-form methods required to support
dumping of their data to a fasd file.

4.9.5 Hash Tables and Loop Iteration

loop provides an iteration path for iterating over every entry in a hash table. See
the section "loop Iteration Over Hash Tables or Heaps", page 224.

4.9.6 Hash Tables and the Garbage Collector

The eq type hash tables actually hash on the address of the representation of the
object. When the copying garbage collector changes the addresses of object, it lets
the hash facility know so that :get-hash rehashes the table based on the new object
addresses. equal hash tables also hash on the address, sometimes.

4.9.7 Hash Primitive

Hashing is a technique used in algorithms to provide fast retrieval of data in large
tables. A function, known as a "hash function", is created, which takes an object
that might be used as a key, and produces a number associated with that key. This
number, or some function of it, can be used to specify where in a table to look for
the datum associated with the key. It is always possible for two different objects to
"hash to the same value"; that is, for the hash function to return the same number
for two distinct objects. Good hash functions are designed to minimize this by
evenly distributing their results over the range of possible numbers. However, hash
table algorithms must still deal with this problem by providing a secondary search,
sometimes known as a rehash. For more information, consult a textbook on
computer algorithms.

si:equal-hash object Function
si:equal-hash computes a hash code of an object, and returns it as an
integer. A property of si:equal-hash is that (equal x y) always implies
(= (si:equal-hash x) (si:equal-hash y». The number returned by
si:equal-hash is always a nonnegative integer, possibly a large one.
si:equal-hash tries to compute its hash code in such a way that common
permutations of an object, such as interchanging two elements of a list or
changing one character in a string, always changes the hash code.

si:equal-hash uses %pointer to derme the hash key for data types such as
arrays, stack groups, or closures. This means that some of the hash keys in
equal hash tables are based on a virtual memory address. Hash tables that
are at all dependent on memory addresses are rehashed when the garbage
collector flips.

76

Reference Guide to Symbolics-Usp March 1985

si:equal-hash returns a second value (t or nil), if it has used %pointer to
define the hash key. It returns t if the first value returned by
si:equal-hash depends on the GC generation. That is, if t is returned,
future calls to si:equa1-hash (for the same object) might not return the
same number if an intervening GC occurs.

Here is an example of how to use si:equal-hash in maintaining hash tables
of objects:

(defun knownp (x &aux i bkt) ;look up x in the table
(setq i (remainder (si:equal-hash x) 116»

;The remainder should be reasonably randomized.
(setq bkt (aref table i»

;bkt is thus a list of all those expressions that
;hash into the same number as does x.

(memq x bkt»

To write an "intern" for objects, one could:

(defun sintern (x &aux bkt item)
(setq i (remainder (si:equal-hash x) 2n-1»

;2n-1 stands for a power of 2 minus one.
;This is a good choice to randomize the
;result of the remainder operation.

(setq bkt (aref table i»
(cond «setq tem (memq x bkt»

(car tem»
(t (aset (cons x bkt) table i)

x) »
smash object Function

smash computes a hash code of an object, and returns it as a flXDum. A
property of smash is that (equal x y) always implies
(= (smash x) (smash y». The number returned by smash is always a
nonnegative flXDum, possibly a large one. sxhash tries to compute its hash
code in such a way that common permutations of an object, such as
interchanging two elements of a list or changing one character in a string,
always changes the hash code.

smash is the same as si:equal-hash, except that smash returns 0 as the
hash value for objects with data types like arrays, stack groups, or closures.
As a result, hashing such structures could degenerate to the case of linear
search.

si:equal-hash and sxhasb provide what is called "hashing on equal"; that is, two
objects that are equal are considered to be "the same" by si:equal-hash and
smash. In particular, if two strings differ only in alphabetic case, si:equal-hasb
and smash return the same thing for both of them because they are equal. The
value returned by si:equal-basb and sxhash does not depend on the value of the
case of any strings.

77

March 1985 Usts

Therefore, si:equal-hash and smash are useful for retrieving data when two keys
that are not the same object but are equal, are considered the same. If you
consider two such keys to be different, then you need "hashing on eq", where two
different objects are always considered different. In some Lisp implementations,
there is an easy way to create a hash function that hashes on eq, namely, by
returning the virtual address of the storage associated with the object. But in other
implementations, including Symbolics-Lisp, this does not work, because the address
associated with an object can be changed by the relocating garbage collector. The
hash tables discussed here deal with this problem by using the appropriate
subprimitives so that they interface correctly with the garbage collector. Hash tables
that hash on eq are also provided. See the flavor si:eq-hash-table, page 71.

4.10 Heaps

A heap is a data structure in which each item is ordered by some predicate (for
example, less-than) on its associated key. You can add an item to the heap, delete
an item from it, or look at the top item. The "top" operation is guaranteed to
return the first (that is, smallest) item in the heap. Heaps are useful in
maintaining priority queues.

make-heap &key (size 100.) (predicate #'<) (growth-factor 1.5) Function
interlocking

make-heap creates a new heap. :predicate, :size, and :growth-factor are
passed as init options to make-instance when the heap is created.

make-heap takes the following keyword arguments:

:predicate An ordering predicate that is applied to each key. The
default is lessp.

:size The default is 100.

: growth-factor A number or nil. If it is an integer, the heap is increased
by that number. If it is a floating-point number greater
than one, the new size of the heap is the old size
multiplied by that number. If it is nil, the condition
si:heap-overflow is signalled instead of growing the heap.

:interlocking

t This causes make-heap to create a kind
of heap that can be interlocked for use
by multiple processes, using
process-lock to perform the
interlocking.

78

Reference Guide to Symbofics-Usp March 1985

:without-interrupts

4.10.1 Messages to Heaps

The following are defined messages to heaps:

:clear of si:heap
Clears the heap.

This causes make-heap to create a kind
of heap that can be interlocked for use
by multiple processes, using
without-interrupts to perform the
interlocking.

Method

:delete-by-item item &optional equal-predicate of si:heap Method
Finds the fIrst item that satisfies equal-predicate, and deletes it, returning
the item and key if it was found, otherwise it signals
si:heap-item-not-found equal-predicate should be a function that takes
two arguments. The first argument is the item from the heap and the
second argument is item.

:delete-by-key key &optional equal-predicate of si:heap Method
Finds the first item whose key satisfies equal-predicate and deletes it,
returning the item and key if it was found; otherwise it signals
si:heap-item-not-found equal-predicate should be a function that takes
two arguments. The first argument is the key from the heap and the
second argument is key.

:describe stream of si:heap
Describes the heap.

:empty-p of si:heap
Returns t if the heap is empty, otherwise returns nil.

Method'

Method

:find-by-item item &optional equal-predicate of si:heap Method
Finds the first item that satisfies equal-predicate and returns the item and
key if it was found; otherwise it signals si:heap-item-not-found
equal-predicate should be a function that takes two arguments. The first
argument is the item from the heap and the second argument is item.

:find-by-key key &optional equal-predicate of si:heap Method
Finds the first item whose key satisfies equal-predicate and returns the item
and key if it was found; otherwise it signals si:heap-item-not-found
equal-predicate should be a function that takes two arguments. The first
argument is the key from the heap and the second argument is key.

79

March 1985 Usts

:insert item key of si:heap Method
Inserts item into the heap based on its key key, and returns item and key.

:remove of si:heap Method
Removes the top item from the heap and returns it and its key as values.
The third value is nil if the heap was empty; otherwise it is t.

:top of si:heap Method
Returns the value and key of the top item on the heap. The third value is
nil if the heap was empty; otherwise it is t.

4.10.2 Heaps and Loop Iteration

loop provides an iteration path for iterating over every entry in a heap. See the
section "loop Iteration Over Hash Tables or Heaps", page 224.

4.11 Sorting

Several functions are provided for sorting arrays and lists. These functions use
algorithms that always terminate no matter what sorting predicate is used, provided
only that the predicate always terminates. The main sorting functions are not
stable; that is, equal items might not stay in their original order. If you want a
stable sort, use the stable versions. But if you do not care about stability, do not
use them, since stable algorithms are significantly slower.

After sorting, the argument (either list or array) has been rearranged internally to
be completely ordered. In the case of an array argument, this is accomplished by
permuting the elements of the array, while in the list case, the list is reordered by
rplacds in the same manner as nreverse. Thus, if the argument should not be
clobbered, you must sort a copy of the argument, obtainable by fillarray or
copylist, as appropriate. Furthermore, sort of a list is like delq in that it should
not be used for effect; the result is conceptually the same as the argument but in
fact is a different Lisp object.

Should the comparison predicate cause an error, such as a wrong type argument
error, the state of the list or array being sorted is undefmed. However, if the error
is corrected the sort proceeds correctly.

The sorting package is smart about compact lists; it sorts compact sublists as if they
were arrays. See the section "Cdr-coding", page 56. An explanation of compact lists
is in that section.

sort table predicate Function
The first argument to sort is an array or a list. The second is a predicate,
which must be applicable to all the objects in the array or list. The predicate

80

Reference Guide to Symbolics-Usp March 1985

should take two arguments, and return non-nil if and only if the first
argument is strictly less than the second (in some appropriate sense). The
predicate should return nil if its arguments are equal. For example, to sort
in the opposite direction from <, use >, not~. This is because the quicksort
algorithm used to sort arrays and cdr-coded lists becomes very much slower
when the predicate returns non-nil for equal elements while sorting many of
them.

The sort function proceeds to sort the contents of the· array or list under
the ordering imposed by the predicate, and returns the array or list modified
into sorted order. Note that since sorting requires many comparisons, and
thus many calls to the predicate, sorting is much faster if the predicate is a
compiled function rather than interpreted. Example:

(defun mostcar (x)
(cond «symbo1p x) x)

«mostcar (car x»»)

(sort fooarray
(function (lambda (x y)

(a1pha1essp (mostcar x) (mostcar y»»)
If fooarray contained these items before the sort:

(Tokens (The lion sleeps tonight»
(Carpenters (Close to you»
«Rolling Stones) (Brown sugar»
«Beach Boys) (1 get around»
(Beat1es (1 want to hold your hand»

then after the sort fooarray would contain:

«Beach Boys) (1 get around»
(Beat1es (1 want to hold your hand»
(Carpenters (Close to you»
«Rolling Stones) (Brown sugar»
(Tokens (The lion sleeps tonight»

When sort is given a list, it can change the order of the conses of the list
(using rplacd), and so it cannot be used merely for side effect; only the
returned value of sort is the sorted list. This changes the original list; if you
need both the original list and the sorted list, you must copy the original and
sort the copy. See the function copylist, page 50.

Sorting an array just moves the elements of the array into different places,
and so sorting an array for side effect only is all right.

If the argument to sort is an array with a fill pointer, note that, like most
functions, sort considers the active length of the array to be the length, and
so only the active part of the array is sorted. See the function
array-active-Iength, page 247.

81

March 1985 Lists

sortcar x predicate Function
sortcar is the same as sort except that the predicate is applied to the cars
of the elements of x, instead of directly to the elements of x. Example:

(sortcar '«3 . dog) (1. cat) (2 . bird» fI'<)
=> «1. cat) (2 . bird) (3 . dog»

Remember that sortcar, when given a list, can change the order of the
conses of the list (using rplacd), and so it cannot be used merely for side
effect; only the returned value of sortcar is the sorted list.

stable-sort x predicate Function
stable-sort is like sort, but if two elements of x are equal, that is, predicate
returns nil when applied to them in either order, then those two elements
remain in their original order.

stable-sortcar x predicate Function
stable-sort car is like sortcar, but if two elements of x are equal, that is,
predicate returns nil when applied to their cars in either order, then those
two elements remain in their original order.

sort-grouped-array array group-size predicate Function
sort-group ed-array considers its array argument to be composed of records
of group-size elements each. These records are considered as units, and are
sorted with respect to one another. The predicate is applied to the first
element of each record, so the first elements act as the keys on which the
records are sorted.

sort-grouped-array-group-key array group-size predicate Function
This is like sort-group ed-array except that the predicate is applied to four
arguments: an array, an index into that array, a second array, and an index
into the second array. predicate should consider each index as the subscript
of the first element of a record in the corresponding array, and compare the
two records. This is more general than sort-grouped-array since the
function can get at all of the elements of the relevant records, instead of only
the first element.

82

Reference Guide to Symbolics-Lisp March 1985

83

March 1985 Usts

5. Locatives

5.1 Cells and Locatives

A locative is a type of Lisp object used as a pointer to a cell. Locatives are
inherently a more "low-level" construct than most Lisp objects; they require some
knowledge of the nature of the Lisp implementation. Most programmers never need
them.

A . cell is a machine word that can hold a (pointer to a) Lisp object. For example, a
symbol has five cells: the print name cell, the value cell, the function cell, the
property list cell, and the package cell. The value cell holds (a pointer to) the
binding of the symbol, and so on. Also, an array leader of length n has n cells, and
an art-q array of n elements has n cells. (Numeric arrays do not have cells in this
sense.) A locative is an object that points to a cell; it lets you refer to a cell, so that
you can examine or alter its contents.

There are a set of functions that create locatives to cells; the functions are
documented with the kind of object to which they create a pointer. See the
function ap-l, page 244. See the function ap-Ieader, page 245. See the function
car-location, page 45. See the function value-cell-location, page 563. The macro
locf can be used to convert a form that accesses a cell to one that creates a locative
pointer to that cell.

For example:

(loef (fsymeval x» ==> (function-cell-loeation x)

locI is very convenient because it saves the writer and reader of a program from
having to remember the names of all the functions that create locatives.

5.2 Cdr-coding and Locatives

Either of the functions car and cdr can be given a locative, and will return the
contents of the cell at which the locative points.

For example:

(ear (value-eell-loeation x»

is the same as:
(symeval x)

When using locI to return a locative, you should use cdr rather than car to access
the contents of the cell to which the locative points. This is because
(locf (cdr list» returns the list itself instead of a locative.

84

Reference Guide to Symbolics-Usp March 1985

Similarly, either of the functions rplaca and rplacd can be used to store an object
into the cell at which a locative pOints, but rplacd is preferred.

For example:

(rplaca (value-cell-location x) y)

is the same as:
(set x y)

The following example takes advantage of locf symbol to cons up a list in forward
order without special-case code. The first time through the loop, the
(setf (cdr location) •..) is equivalent to (setq result ..•); on later times through
the loop the setf tacks an additional cons onto the end of the list.

(defun simplified-version-of-mapcar (fcn list)
(do «list list (cdr list»

(result nil)
(location (locf result»)

«null list) result)
(let «new-cons (ncons (funcall fen (car list»»)

;; tack it onto the end
(setf (cdr location) new-cons)
;; get a pointer to the new tail
(setq location (locf (cdr new-cons»»»

5.3 Functions That Operate on Locatives

location-contents locative Function
Returns the contents of the cell at which locative points. For example:

(location-contents (value-cell-location x»

is the same as:

(symeval ~)

To store objects into the cell at which a locative points, you should use
(setf (location-contents x) y) as shown in the following example:

(setf (location-contents (value-cell-location x» y)

This is the same as:

(set x y)

location-makunbound loe &optional variable-name Function
location-makunbound is a version of makunbound that can be used on
any cell in the Symbolics Lisp Machine. It takes a locative pointer to
designate the cell rather than a symbol. (makunbound is restricted to use
with symbols.)

85

March 1985 Lists

location-makunbound takes a symbol as an optional second argument:
variable-name of the location that is being made unbound. It uses
variable-name to label the null pointer it stores so that the Debugger knows
the name of the unbound location if it is referenced. This is particularly
appropriate when the location being made unbound is really a variable value
cell of one sort or another, for example, closure or instance.

location-boundp location Function
location-boundp is a version of boundp that can be used on any cell in the
Symbolics Lisp Machine. It takes a locative pointer to designate the cell
rather than a symbol. The following two calls are equivalent:

(location-boundp (locf a»
(variable-boundp a)

The following two calls are also equivalent. When a is a special variable, they
are the same as the two calls in the preceding example too.

(location-boundp (value-cell-location 'a»
(boundp 'a)

86

Reference Guide to Symbofics-Usp March 1985

87

March 1985 Numbers

PART III.

Numbers

88

Reference Guide to Symbofics-Lisp March 1985

89

March 1985 Numbers

6. Introduction to Numbers

Symbolics-Lisp includes several types of numbers, with different characteristics. Most
numeric functions accept any type of numbers as arguments and do the right thing.
That is to say, they are generic. Maclisp contains both generic numeric functions
(like plus) and specific numeric functions <like +), which only operate on a certain
type, and are much more efficient. In Symbolics-Lisp, this distinction does not exist;
both function names exist for compatibility but they are identical. The
microprogrammed structure of the machine makes it possible to have only the
generic functions without loss of efficiency.

Symbolics-Lisp Number Types

The types of numbers in Symbolics-Lisp are:

flXDum

bignum

ratio

single-float

double-float

Fixnums are 32-bit 2's complement binary integers. These are
the "preferred, most efficient" type of number.

Bignums are arbitrary-precision binary integers.

A ratio is a pair of integers, representing the numerator and
denominator of the number.

Single-precision floating-point numbers have a precision of 24 bits,
or about 7 decimal digits. Their range is from 1.1754944e-38 to
3.4028235e38.

Double-precision floating-point numbers have a precision of 53 bits,
or about 16 decimal digits. Their range is from
2.2250738585072014d-308 to 1.7976931348623157d308.

complex number A complex number is a pair of noncomplex numbers, representing
the real and imaginary parts of the number.

Generally, Lisp objects have a unique identity; each exists, independent of any other,
and you can use the eq predicate to determine whether two references are to the
same object or not. Numbers are the exception to this rule; they do not work this
way.

The following function can return either t or nil.

(defun foo ()
(let «x (float 5»)

(eq x (car (cons x nil»»)

This is very strange from the point of view of Lisp's usual object semantics, but the
implementation works this way to gain efficiency, and on the grounds that identity
testing of numbers is not really an interesting thing to do. So, the rule is that the
result of applying eq to numbers is undefined, and can return either t or nil at will.
If you want to compare the values of two numbers, use =.

90

Reference Guide to Symbolics-Usp March 1985

Fixnums and single-floats are exceptions to this rule; some system code knows that
eq works on flXIlums used to represent characters or small integers, and uses memq
or assq on them. eq works as well as = as an equality test for flXIlums.

6.1 Coercion Rules for Numbers

When an arithmetic function of more than one argument is given arguments of
different numeric types, uniform coercion rules are followed to convert the
arguments to a common type, which is also the type of the result (for functions
which return a number). When an integer meets a single-float or a double-float, the
result is a single-float or a double-float (respectively). When a single-float meets a
double-float, the result is a double-float. When a single-precision floating-point
number meets a double-precision floating-point number, the result is a double-float.

Thus, if the constants in a numerical algorithm are written as single-floats
(assuming this provides adequate precision), and if the input is a single-float, the
computation is done in single-float mode and the result is a single-float. If the input
is a double-float the computations are done in double precision and the result is a
double-float, although the constants still have only single precision. For most
algorithms, it is desirable to have two separate sets of constants to maintain
accuracy for double precision and speed for single precision.

Symbolics-Lisp never automatically converts between double-floats and single-floats, in
the way it automatically converts between flXIlums and bignums, since this would
lead either to inefficiency or to unexpected numerical inaccuracies. (When a single­
float meets a double-float, the result is a double-float, but if you use only one type,
all the results are of the same type, too.) This means that a single-float
computation can get an exponent overflow error even when the result could have
been represented as a double-float.

6.2 Numbers in the Compiler

Unlike Maclisp, Symbolics-Lisp does not have number declarations in the compiler.
Note that because flXIlums and single-floats require no associated storage they are as
efficient as declared numbers in Maclisp.

6.3 Printed Representation of Numbers

The different types of numbers can be distinguished by their printed representations.
A leading or embedded (but not trailing) decimal point, and/or an exponent separated
by "e", indicates a single-precision floating-point number. If a number has an

91

March 1985 Numbers

exponent separated by "d", it is a double-precision floating-point number. Fixnums
and bignums have similar printed representations since there is no numerical value
that has a choice of whether to be a flXllum or a bignum; an integer is a bignum if
and only if its magnitude is too big for a flXllum. See the section "What the Reader
Recognizes", page 20.

92

Reference Guide to Symbolics-Usp March 1985

93

March 1985 Numbers

7. Types of Numbers

7.1 Integers

Symbolics-Lisp has two primitive types of integers, f1XI1ums and bignums. The
distinction between f1XI1ums and bignums is largely transparent to the user. You
simply compute with integers, and the system represents some as f1XI1ums and the
rest (less efficiently) as bignums. The system automatically converts back and forth
between f1XI1ums and bignums based solely on the size of the integer. There are a
few "low level" functions that only work on f1XI1ums; this fact is noted in their
documentation. Also when using eq on numbers you should be aware of the
fIxnumibignum distinction.

Integer addition, subtraction, and multiplication always produce an exact result.
Integer division, on the other hand, returns an integer rather than the exact
rational-number result. The quotient is truncated towards zero rather than
rounded. The exact rule is that if A is divided by B, yielding a quotient of C and a
remainder of D, then A = B * C + D exactly. D is either zero or the same sign as
A. Thus the absolute value of C is less than or equal to the true quotient of the
absolute values of A and B. This is compatible with Maclisp and most computer
hardware. However, it has the serious problem that it does not obey the rule that if
A divided by B yields a quotient of C and a remainder of D, then dividing A + k * B
by B yields a quotient of C + k and a remainder of D for all integer k. The lack of
this property sometimes makes regular integer division hard to use. See the section
"Numeric Type Conversions", page 107.

7.2 Rational Numbers

Rational numbers include both ratios and integers. Ratios are represented in terms
of an integer numerator and denominator. The ratio is always "in lowest terms",
meaning that the denominator is as small as possible. If the denominator is 1, the
rational number is represented as an integer. The denominator is always positive;
the sign of the number is carried by the numerator. See the section "Numeric Type
Conversions", page 107.

94

Reference Guide to Symbolics·Usp March 1985

7.3 Floating-paint Numbers

IEEE Floating-paint Representation

The Symbolics Lisp Machine supports IEEE-standard single-precision and double­
precision floating-point numbers. Number objects exist that are outside the upper
and lower limits of the ranges for single and double precision. Larger than the
largest number is +leeo (or +ldeo for doubles). Smaller than the smallest number is
-leeo (or -Ideo for doubles). Smaller than the smallest normalized positive number but
larger than zero are the "denormalized" numbers. Some floating-point objects are
Not-a-Number (NaN); they are the result of (1/ 0.0 0.0) (with trapping disabled) and
like operations.

IEEE numbers are symmetric about zero, so the negative of every representable
number is also a representable number. Zeros are signed in IEEE format, but +0.0
and -0.0 act the same arithmetically. For example:

(= +0.0 -0.0) => t
(p1usp 0.0) => nil
(p1usp -0.0) => nil
(zerop -0.0) => t
(eq 0.0 -0.0) => nil

See the IEEE standard: Microprocessor Standards Committee, IEEE Computer
Society, "A Proposed Standard for Binary Floating-Point Arithmetic: Draft 8.0 of
IEEE Task P754," Computer, March 1981, pp. 51-62. See the section "Numeric
Type Conversions", page 107.

Integer computations cannot "overflow", except for division by zero, since bignums
can be of arbitrary size. Floating-point computations can get exponent overflow or
underflow, if the result is too large or small to be represented. Exponent overflow
always signals an error. Exponent underflow normally signals an error, unless the
computation is inside the body of a without-floating-underflow-traps.

without-floating-underflow-traps body... Special Form
Inhibits trapping of floating-point exponent underflow traps within the body
of the form. The result of a computation which would otherwise underflow
is a denormalized number or zero, whichever is closest to the mathematical
result.

Example:

(describe (without-floating-underflow-traps (expt .1 40») =>
1.0e-40 is a Single-precision floating-point number.

Sign 0, exponent 0, 23-bit fraction 213302 (denormalized)
1.0e-40

95

March 1985 Numbers

7.4 Complex Numbers

A complex number is a pair of noncomplex numbers, representing the real and
imaginary parts of the number. The types of the real and imaginary parts are
always the same. No Symbolics-Lisp complex number has a rational real part and
an imaginary part of integer zero. Such a number is always represented simply by
the rational real part. See the section "Numeric Type Conversions", page 107.

96

Reference Guide to Symbolics-Usp March 1985

97

March 1985 Numbers

8. Numeric Functions

8.1 Numeric Predicates

zerop x Function
Returns t if x is zero. Otherwise it returns nil. If x is not a number,
zerop causes an error. For floating-point numbers, this only returns t for
exactly 0.0, -0.0, O.OdO or -O.OdO; there is no "fuzz".

plusp x Function
Returns t if its argument is a positive number, strictly greater than zero.
Otherwise it returns nil. If x is not a number, plusp causes an error.

minusp x Function
Returns t if its argument is a negative number, strictly less than zero.
Otherwise it returns nil. If x is not a number, minusp causes an error.

oddp number Function
Returns t if number is odd, otherwise nil. If number is not an integer,
oddp causes an error.

evenp number Function
Returns t if number is even, otherwise nil. If number is not an integer,
evenp causes an error.

signp test x Special Form
signp is used to test the sign of a number. It is present only for Mac1isp
compatibility, and is not recommended for use in new programs. signp
returns t if x is a number that satisfies the test, nil if it is not a number or
does not meet the test. test is not evaluated, but x is. test can be one of the
following:

I x<O

Ie x ~ 0

e x=o
n x~O

ge x~O

g x>o

98

Reference Guide to Symbolics-Usp March 1985

Examples:

(signp ge 12) => t
(signp le 12) => nil
(signp n 0) => nil
(signp 9 'foo) => nil

See the section "Predicates", page 7.

8.2 Numeric Comparisons

All of these functions require that their arguments be numbers, and signal an error
if given a nonnumber. They work on all types of numbers, automatically performing
any required coercions (as opposed to Maclisp, in which generally only the spelled-out
names work for all kinds of numbers).

= x y Function
Returns t if x and y are numerically equal. An integer can be = to a
floating-point number.

greaterp number &rest more-numbers Function
greaterp compares its arguments from left to right. If any argument is not
greater than the next, greaterp returns nil. But if the arguments are
monotonically strictly decreasing, the result is t. Examples:

(greaterp 4 3) => t
(greaterp 4 3 2 1 0) => t
(greaterp 4 3 1 2 0) => nil

The following function is a synonym of greaterp:

>

> number &rest more-numbers Function
> compares its arguments from left to right. If any argument is not greater
than the next, > returns nil. But if the arguments are monotonically strictly
decreasing, the result is t. Examples:

(> 4 3) => t
(> 4 3 2 1 0) => t
(> 4 3 1 2 0) => nil

The following function is a synonym of > :

greaterp

>= number &rest more-numbers Function
>= compares its arguments from left to right. If any argument is less than
the next, >= returns nil. But if the arguments are monotonically decreasing
or equal, the result is t.

99

March 1985 Numbers

The following function is a synonym of >= :

~ number &rest more-numbers Function
~ compares its arguments from left to right. If any argument is less than
the next, ~ returns nil. But if the arguments are monotonically decreasing
or equal, the result is t.

The following function is a synonym of ~ :

>=

lessp number &rest more-numbers Function
lessp compares its arguments from left to right. If any argument is not less
than the next, lessp returns nil. But if the arguments are monotonically
strictly increasing, the result is t. Examples:

(1 essp 3 4) = > t
(lessp 1 1) => nil
(lessp 0 1 2 3 4) => t
(lessp 0 1 3 2 4) => nil

The following function is a synonym of lessp:

<

< number &rest more-numbers Function
< compares its arguments from left to right. If any argument is not less
than the next, < returns nil. But if the arguments are monotonically strictly
increasing, the result is t. Examples:

« 3 4) => t
« 1 1) => nil
« 0 1 2 3 4) => t
« 0 1 3 2 4) => nil

The following function is a synonym of < :

lessp

<= number &rest more-numbers Function
<= compares its arguments from left to right. If any argument is greater
than the next, <= returns nil. But if the arguments are monotonically
increasing or equal, the result is t.

The following function is a synonym of <= :

s number &rest more-numbers Function
s compares its arguments from left to right. If any argument is greater than
the next, s returns nil. But if the arguments are monotonically increasing
or equal, the result is t.

100

Reference Guide to Symbolics-Usp March 1985

The following function is a synonym of ~ :

<=

~xy Function
Returns t if x is not numerically equal to y, and nil otherwise.

max &rest args Function
max returns the largest of its arguments. max requires at least one
argument. Example:

(max 1 3 2) =) 3

min &rest args Function
min returns the smallest of its arguments. min requires at least one
argument. Example:

(min 1 3 2) =) 1

8.3 Arithmetic

All of these functions require that their arguments be numbers, and signal an error
if given a nonnumber. They work on all types of numbers, automatically performing
any required coercions (as opposed to Maclisp, in which generally only the spelled-out
versions work for all kinds of numbers, and the "$" versions are needed for floating­
point numbers).

plus &rest args Function
Returns the sum of its arguments. If there are no arguments, it returns 0,
which is the identity for this operation. -

The following functions are synonyms of plus:

+
+$

+ &rest args Function
Returns the sum of its arguments. If there are no arguments, it returns 0,
which is the identity for this operation.

The following functions are synonyms of + :

plus
+$

+$ &rest args Function
Returns the sum of its arguments. If there are no arguments, it returns 0,
which is the identity for this operation.

101

March 1985 Numbers

The following functions are synonyms of +$:

plus
+

difference arg &rest args Function
Returns its first argument minus all of the rest of its arguments.

minus x Function
Returns the negative of x. Examples:

(minus 1) => -1
(minus -3.0) => 3.0

- arg &rest args Function
With only one argument, - is the same as minus; it returns the negative of
its argument. With more than one argument, - is the same as difference;
it returns its first argument minus all of the rest of its arguments.

The following function is a synonym of - :

-$

-$ arg &rest args Function

absx

With only one argument, -$ is the same as minus; it returns the negative of
its argument. With more than one argument, -$ is the same as difference;
it returns its first argument minus all of the rest of its arguments.

The following function is a synonym of -$:

Function
Returns Ix I, the absolute value of the number x. For noncomplex numbers,
abs could have been defined by:

(defun abs (x)
(cond «minusp x) (minus x»

(t x»)

For complex numbers, abs could have been defined by:

(defun abs (x)
(sqrt (+ (A (realpart x) 2) (A (imagpart x) 2»»

conjugate x Function
Returns the complex conjugate of x. The conjugate of a noncomplex number
is itself. conjugate could have been defined by:

(defun conjugate (x)
(complex (realpart x) (- (imagpart x»»

102

Reference Guide to Symbolics-Usp March 1985

times &rest args Function
Returns the product of its arguments. If there are no arguments, it returns'
1, which is the identity for this operation.

The following functions are synonyms of times:

•
• $

• &rest args Function
Returns the product of its arguments. If there are no arguments, it returns
1, which is the identity for this operation.

The following functions are synonyms of * :
times
*$

.$ &rest args Function
Returns the product of its arguments. If there are no arguments, it returns
1, which is the identity for this operation.

The following functions are synonyms of *$:

times
•

quotient arg &rest args Function
Returns the first argument divided by all of the rest of its arguments.

/ / arg &rest args Function
The name of this function is written / / rather than / because / is the
quoting character in Lisp syntax and must be doubled. With more than one
argument, / / is the same as quotient; it returns the first argument divided
by all of the rest of its arguments. With only one argument, (/ / x) is the
same as (/ / 1 x). The exact rules for the meaning of the quotient and
remainder of two integers are in another section. See the section "Integers",
page 93. That section explains why the rules used for integer division are not
correct for all applications. Examples:

(II 3 2) = > 1 ;Integer division truncates.
(II 3 -2) => -1
(II -3 2) => -1
(II -3 -2) => 1
(II 3 2.0) => 1.5
(II 3 2.0dO) => 1.5dO
(II 4 2) => 2
(II 12. 2. 3.) => 2
(II 4.0) => .25

March 1985

The following function is a synonym of I I :
11$

103

Numbers

I 1$ arg &rest args Function
The name of this function is written I 1$ rather than I because I is the
quoting character in Lisp syntax and must be doubled. With more than one
argument, 11$ is the same as quotient; it returns the first argument divided
by all of the rest of its arguments. With only one argument, (11$ x) is the
same as (11$ 1 x). The exact rules for the meaning of the quotient and
remainder of two integers are in another section. See the section "Integers",
page 93. That section explains why the rules used for integer division are not
correct for all applications. Examples:

(11$ 3 2) = > 1 ;Integer division truncates.
(11$ 3 -2) => -1
(11$ -3 2) => -1
(11$ -3 -2) => 1
(11$ 3 2.0) => 1.5
(11$ 3 2.0dO) => 1.5dO
(11$ 4 2) => 2
(11$ 12. 2. 3.) => 2
(11$ 4.0) => .25

The following function is a synonym of I 1$:

II

remainder x y Function
Returns the remainder of x divided by y. x and y must be integers (flXIlums
or bignums). The exact rules for the meaning of the quotient and remainder
of two integers are given in another section. See the section "Integers", page
93.

(remainder 3 2) => 1
(remainder -3 2) => -1
(remainder 3 -2) => 1
(remainder -3 -2) => -1

The following function is a synonym for remainder:

\

\ x y Function
Returns the remainder of x divided by y. x and y must be integers (flXIlums
or bignums). The exact rules for the meaning of the quotient and remainder
of two integers are given in another section. See the section "Integers", page
93.

(\ 3 2) => 1
(\ -3 2) => -1
(\ 3 -2) => 1
(\ -3 -2) => -1

104

Reference Guide to Symbolics-Lisp March 1985

The following function is a synonym for \ :
remainder

mod x y Function

addlx

1+ x

1+$ x

sublx

The same as remainder, except that the returned value has the sign of the
second argument instead of the first. When there is no remainder, the
returned value is o. Examples:

(mod -3 2) => 1
(mod 3 -2) =>-1
(mod -3 -2) => -1
(mod 4 -2) => 0

(addl x) is the same as (plus xl).
The following functions are synonyms of addl:

1+
1+$

(1+ x) is the same as (plus xl).
The following functions are synonyms of 1+ :

addl
1+$

(1+$ x) is the same as (plus xl).
The following functions are synonyms of 1+$:

addl
1+

(subl x) is the same as (difference x I).
The following functions are synonyms of sub1:

1-
1-$

Function

Function

Function

Function

1- x Function
(1- x) is the same as (difference x 1). Note that this name might be
confusing: (1- x) does not mean 1-x; rather, it means x-I.

The following functions are synonyms of 1- :

subl
1-$

105

March 1985 Numbers

1-$ X Function
(1-$ x) is the same as (difference xl).
The following functions are synonyms of 1-$:

subl
1-

gcd x y &rest args Function
The arguments Returns the greatest common divisor of all its arguments.

must be integers (fIxnums or bignums).

The following function is a synonym of gcd:

\\

\ \ x y &rest args Function
Returns the greatest common divisor of all its arguments. The arguments
must be integers (fIxnums or bignums).

The following function is a synonym of \ \ :

gcd

expt x y Function

A xy

Returns x raised to the yth power. The result is an integer if both
arguments are integers (even if y is negative!) and floating-point if either x or
y or both is floating-point. If the exponent is an integer a repeated-squaring
algorithm is used, while if the exponent is floating the result is
(exp (. y (log x»).

The following functions are synonyms of expt:

Function
Returns x raised to the yth power. The result is an integer if both
arguments are integers (even if y is negative!) and floating-point if either x or
y or both is floating-point. If the exponent is an integer a repeated-squaring
algorithm is used, while if the exponent is floating the result is
(exp (. y (log x»).

The following functions are synonyms of A :

expt
100$

100$ X Y Function
Returns x raised to the yth power. The result is an integer if both
arguments are integers (even if y is negative!) and floating-point if either x or
y or both is floating-point. If the exponent is an integer a repeated-squaring

106

Reference Guide to Symbolics-Usp March 1985

sqrt x

algorithm is used, while if the exponent is floating the result is
(exp (* y Oog x»).

The following functions are synonyms of A$:

expt

Returns the square root of x.
Function

isqrt x Function
Integer square root. x must be an integer; the result is the greatest integer
less than or equal to the exact square root of x.

signum value Function
signum is a function for determining the sign of its argument.

(signum -2.5) => -1.0
(signum 3.9) => 1.0
(signum 0) => 0
(signum 59) => 1

The definition is compatible with the current Common Lisp design.

8.4 Transcendental Functions

These functions are only for floating-point arguments; if given an integer they
convert it to a single-float. If given a double-float, they return a double-float.

exp x Function
Returns e raised to the xth power, where e is the base of natural logarithms.

log x Function
Returns the natural logarithm of x.

sin x Function
Returns the sine of x, where x is expressed in radians.

cos x Function
Returns the cosine of x, where x is expressed in radians.

tan x Function
Returns the tangent of x, where x is expressed in radians.

sind x Function
Returns the sine of x, where x is expressed in degrees.

107

March 1985 Numbers

cosdx Function
Returns· the cosine of x, where x is expressed in degrees.

tand x Function

cis x

Returns the tangent of x, where x is expressed in degrees.

x must be a noncomplex number. cis could have been defined by:

(defun cis (x)
(complex (cos x) (sin x»)

Mathematically, this is equivalent to e;x.

Function

atan y x Function
Returns the angle, in radians, whose tangent is y/x. atan always returns a
nonnegative number between zero and 21r.

atan2 y x Function
Returns the angle, in radians, whose tangent is y/x. atan2 always returns a
number between -11" and fI'.

phase x Function
The phase of a number is the angle part of its polar representation as a
complex number. The phase of zero is arbitrarily defmed to be zero. phase
could have been defined as:

(defun phase (x)
(atan2 (imagpart x) (realpart x»)

sinh x Function
Returns the hyperbolic sine of x, where x is expressed in radians.

cosh x Function
Returns the hyperbolic cosine of x, where x is expressed in radians.

tanh x Function
Returns the hyperbolic tangent of x, where x is expressed in radians.

8.5 Numeric Type Conversions

These functions are provided to allow specific conversions of data types to be forced,
when desired.

flx x Function
Converts x from a floating-point number to an integer, truncating towards
negative infinity. The result is a flXIlum or a bignum as appropriate. If x is
already a flXIlum or a bignum, it is returned unchanged.

108

Reference Guide to Symbolics-Usp March 1985

Car x Function
Converts x from a floating-point number to an integer, rounding to the
nearest integer. If x is exactly halfway between two integers, this rounds up
(towards positive infInity). fixr could have been defmed by:

(defun fixr (x)
(if (fixp x) x (fix (+ x 0.5»»

rational x Function
Converts any noncomplex number to an equivalent rational number. If x is a
floating-point number, rational returns the rational number of least
denominator, which when converted back to the same floating-point precision,
is equal to x.

n~erator x Function
If x is a ratio, n~erator returns the numerator of x. If x is an integer,
n~erator returns x.

denominator x Function
If x is a ratio, denominator returns the denominator of x. If x is an
integer, denominator returns 1.

float x Function
Converts any kind of number to a single-precision floating-point number.
Note that float reduces a double-precision argument to single precision.

dfloat x Function
Converts any kind of number to a double-precision floating-point number.

complex real &optional imag Function
Constructs a complex number from real and imaginary noncomplex parts. If
the types of the real and imaginary parts are different, the coercion rules are
applied to make them the same. If imag is not specified, a zero of the same
type as real is used. If real is an integer or a ratio, and imag is 0, the
result is real.

realpart x Function
If x is a complex number, realpart returns the real part of x. If x is a
noncomplex number, realpart returns x.

imagpart x Function
If x is a complex number, imagpart returns the imaginary part of x. If x is
a noncomplex number, imagpart returns a zero of the same type as x.

floor number &optional (divisor 1) Function
Divides number by divisor, and truncates the result toward negative infinity.
The truncated result and the remainder are the returned values.

109

March 1985 Numbers

number and divisor must each be a noncomplex number. Not specifying a
divisor is exactly the same as specifying a divisor of 1.

If the two returned values are Q and R, then (+ (* Q divisor) R) equals
number. If divisor is 1, then Q and R add up to number. If divisor is 1 and
number is an integer, then the returned values are number and o.
The first returned value is always an integer. The second returned value is
integral if both arguments are integers, is rational if both arguments are
rational, and is floating-point if either argument is floating-point. If only one
argument is specified, then the second returned value is always a number of
the same type as the argument.

Examples:

(floor 5) --) 5 0 (floor -5) --) -5 0
(floor 5.2) --) 5 0.2 (fl oor -5. 2) --) -6 0.8
(floor 5.8) --) 5 0.8 (floor -5.8) --) -6 0.2
(floor 5 3) --) 1 2 (floor -5 3) --) -2 1
(floor 5 4) --) 1 1 (floor -5 4) --) -2 3
(floor 5.2 3) --) 1 2.2 (floor -5.2 3) --) -2 0.8
(fl oor 5.2 4) --) 1 1.2 (fl oor -5.2 4) --) -2 2.8
(floor 5.8 3) --) 1 2.8 (floor -5.8 3) --) -2 0.2
(floor 5.8 4) --) 1 1.8 (floor -5.8 4) --) -2 2.2

Using floor with one argument is the same as the nx function. Use floor
instead.

Related Topics:

ceiling
truncate
round

ceiling number &optional (divisor 1) Function
Divides number by divisor, and truncates the result toward positive infinity.
The truncated result and the remainder are the returned values.

number and divisor must each be a noncomplex number. Not specifying a
divisor is exactly the same as specifying a divisor of 1.

If the two returned values are Q and R, then (+ (* Q divisor) R) equals
number. If divisor is 1, then Q and R add up to number. If divisor is 1 and
number is an integer, then the returned values are number and o.
The first returned value is always an integer. The second returned value is
integral if both arguments are integers, is rational if both arguments . are
rational, and is floating-point if either argument is floating-point. If only one
argument is specified, then the second returned value is always a number of
the same type as the argument.

110

Reference Guide to Symbolics-Usp March 1985

Examples:
(ceiling 5) --) 5 0
(ceiling 5.2) --) 6 -0.8
(ceiling 5.8) --) 6 -0.2
(ceiling 5 3) --) 2 -1
(ceiling 5 4) --) 2 -3
(ceiling 5.2 3) --) 2 -0.8
(ceiling 5.2 4) --) 2 -2.8
(ceiling 5.8 3) --) 2 -0.2
(ceiling 5.8 4) --) 2 -2.2

Related Topics:

floor
truncate
round

(ceiling -5)
(ceiling -5.2)
(ceiling -5.8)
(ceiling -5 3)
(ceiling -5 4)
(ceiling -5.2 3)
(ceiling -5.2 4)
(ceiling -5.8 3)
(ceiling -5.8 4)

--) -5 0
--) -5 -0.2
--) -5 -0.8
--) -1 -2
--) -1 -1
--) -1 -2.2
--) -1 -1.2
--) -1 -2.8
--) -1 -1.8

truncate number &optional (divisor 1) Function
Divides number by divisor, and truncates the result toward zero. The
truncated result and the remainder are the returned values.

number and divisor must each be a noncomplex number. Not specifying a
divisor is exactly the same as specifying a divisor of 1.

If the two returned values are Q and R, then (+ (* Q divisor) R) equals
number. If divisor is 1, then Q and R add up to number. If divisor is 1 and
number is an integer, then the returned values are number and o.
The first returned value is always an integer. The second returned value is
integral if both arguments are integers, is rational if both arguments are
rational, and is floating-point if either argument is floating-point. If only one
argument is specified, then the second returned value is always a number of
the same type as the argument.

Examples:

(truncate 5) --) 5 0 (truncate -5) --) -5 0
(truncate 5.2) --) 5 0.2 (truncate -5.2) --) -5 -0.2
(truncate 5.8) --) 5 0.8 (truncate -5.8) --) -5 -0.8
(truncate 5 3) --) 1 2 (truncate -5 3) --) -1 -2
(truncate 5 4) --) 1 1 (truncate -5 4) --) -1 -1
(truncate 5.2 3) --) 1 2.2 (truncate -5.2 3) --) -1 -2.2
(truncate 5.2 4) --) 1 1.2 (truncate -5.2 4) --) -1 -1.2
(truncate 5.8 3) --) 1 2.8 (truncate -5.8 3) --) -1 -2.8
(truncate 5.8 4) --) 1 1.8 (truncate -5.8 4) --) -1 -1.8

Related Topics:

floor
ceiling
round

111

March 1985 Numbers

round number &optional (divisor 1) Function
Divides number by divisor, and rounds the result toward the nearest integer.
If the result is exactly halfway between two integers, then it is rounded to
the one that is even. The rounded result and the remainder are the
returned values.

number and divisor must each be a noncomplex number. Not specifying a
divisor is exactly the same as specifying a divisor of 1.

If the two returned values are Q and R, then (+ (. Q divisor) R) equals
number. If divisor is 1, then Q and R add up to number. If divisor is 1 and
number is an integer, then the returned values are number and o.
The first returned value is always an integer. The second returned value is
integral if both arguments are integers, is rational if both arguments are
rational, and is floating-point if either argument is floating-point. If only one
argument is specified, then the second returned value is always a number of
the same type as the argument.

Examples:
(round 5) --) 5 0 (round -5) --) -5 0
(round 5.2) --) 5 0.2 (round -5.2) --) -5 -0.2
(round 5.8) --) 6 -0.2 (round -5.8) --) -6 0.2
(round 5 3) --) 2 -1 (round -5 3) --) -2 1
(round 5 4) --) 1 1 (round -5 4) --) -1 -1
(round 5.2 3) --) 2 -0.8 (round -5.2 3) --) -2 0.8
(round 5.2 4) --) 1 1.2 (round -5.2 4) --) -1 -1.2
(round 5.8 3) --) 2 -0.2 (round -5.8 3) --) -2 0.2
(round 5.8 4) --) 1 1.8 (round -5.8 4) --) -1 -1.8

Using round with one argument is the same as the flu- function. Use
round instead.

Related Topics:

floor
ceiling
truncate

sys:moor number &optional (divisor 1) Function
This is just like floor, except that the first returned value is always a
floating-point number instead of an integer. The second returned value is
the remainder. If number is a floating-point number and divisor is not a
floating-point number of longer format, then the first returned value is a
floating-point number of the same type as number.

112

Reference Guide to Symbolics-Usp

Examples:
(sys:ffloor 5)
(sys:ffloor 5.2)
(sys:ffloor 5 3)
(sys:ffloor 5.2 4)
(sys:ffloor 4.2dO)

Related Topics:

sys:fceiling
sys:ftruncate
sys:fround

--) 5.0 0
--) 5.0 0.2
--) 1.0 2
--) 1.0 1.2
--) 4.0dO 0.2

(sys:ffloor -5)
(sys:ffloor -5.2)
(sys:ffloor -5 3)
(sys:ffloor -5.2 4)
(sys:ffloor -4.2dO)

March 1985

--) -5.0 0
--) -6.0 0.8
--) -2.0 1
--) -2.0 2.8
--) -5.0dO 0.8

sys:fceiling number &optional (divisor 1) Function
This is just like ceiling, except that the first returned value is always a
floating-point number instead of an integer. The second returned value is
the remainder. If number is a floating-point number and divisor is not a
floating-point number of longer format, then the first returned value is a
floating-point number of the same type as number.

Examples:

(sys:fceiling 5) --) 5.0 0
(sys:fceiling 5.2) --) 6.0 -0.8
(sys:fceiling 5 3) --) 2.0 -1
(sys:fceiling 5.2 4) --) 2.0 -2.8
(sys:fceiling 4.2dO) --) 5.0dO -0.8

Related Topics:

sys:ffioor
sys:ftruncate
sys:fround

(sys:fceiling -5)
(sys:fceiling -5.2)
(sys:fceiling -5 3)
(sys:fceiling -5.2 4)
(sys:fceiling -4.2dO)

--) -5.0 0
--> -5.0 -0.2
--) -1.0 -2
--) -1.0 -1.2
--) -4.0dO -0.2

sys:ftnmcate number &optional (divisor 1) Function
This is just like truncate, except that the first returned value is always a
floating-point number instead of an integer. The second returned value is
the remainder. If number is a floating-point number and divisor is not a
floating-point number of longer format, then the first returned value is a
floating-point number of the same type as number.

Examples:

(sys:ftruncate 5)
(sys:ftruncate 5.2)
(sys:ftruncate 5 3)
(sys:ftruncate 5.2 4)
(sys:ftruncate 4.2dO)

--) 5.0 0
--) 5.0 0.2
--) 1.0 2
--) 1.0 1.2
--) 4.0dO 0.2

(sys:ftruncate -5)
(sys:ftruncate -5.2)
(sys:ftruncate -5 3)
(sys:ftruncate -5.2 4)
(sys:ftruncate -4.2dO)

--) -5.0 0
--) -5.0 -0.2
--) -1.0 -2
--) -1.0 -1.2
--) -4.0dO -0.2

113

March 1985 Numbers

Related Topics:

sys:ffloor
sys:fceiling
sys:fround

sys:fround number &optional (divisor 1) Function
This is just like round, except that the first returned value is always a
floating-point number instead of an integer. The second returned value is
the remainder. If number is a floating-point number and divisor is not a
floating-point number of longer format, then the first returned value is a
floating-point number of the same type as number.

Examples:

(sys:fround 5) --) 5.0 0
(sys:fround 5.2) --) 5.0 0.2
(sys:fround 5 3) --) 2.0 -1
(sys:fround 5.2 4) --) 1.0 1.2
(sys:fround 4.2dO) --) 4.0dO 0.2

Related Topics:

sys:ffloor
sys:fceiling
sys:ftruncate

8.6 Logical Operations on Numbers

(sys:fround -5) --) -5.0 0
(sys:fround -5.2) --) -5.0 -0.2
(sys:fround -5 3) --) -2.0 1
(sys:fround -5.2 4) --) -1.0 -1.2
(sys:fround -4.2dO) --> -4.0dO -0.2

Except for Ish and rot, these functions operate on both fixnums and bignums. Ish
and rot have an inherent word-length limitation and hence only operate on 32-bit
flXIlums. Negative numbers are operated on in their 2's-complement representation.

logior number &rest more-numbers Function
Returns the bit-wise logical inclusive or of its arguments. At least one
argument is required. Example:

(logior 4002 67) => 4067

logxor number &rest more-numbers Function
Returns the bit-wise logical exclusive or of its arguments. At least one
argument is required. Example:

(logxor 2531 7777) =) 5246

logand number &rest more-numbers Function
Returns the bit-wise logical and of its arguments. At least one argument is
required. Examples:

(logand 3456 707) => 406
(logand 3456 -100)"=> 3400

114

Reference Guide to Symbolics-Usp March 1985

lognot number Function
Returns the logical complement of number. This is the same as loporing
number with -1. Example:

(lognot 3456) => -3457

boole fn &rest numbers Function
boole is the generalization of logand, logior, and logxor. fn should be an
integer between 0 and 17 octal inclusive; it controls the function that is
computed. If the binary representation of fn is abcd (a is the most
significant bit, d the least) then the truth table for the Boolean operation is
as follows:

y
1 0 1

01 a c
x 1

11 b d

If boole has more than three arguments, it is associated left to right; thus,

(boole fn x y z) = (boole fn (boole fn x y) z)

With two arguments, the result of boole is simply its second argument. At
least two arguments are required.

Examples:
(boole 1 x y) = (logand x y)

(boole 6 x y) = (logxor x y)
(boole 2 x y) = (logand (lognot x) y)

logand, logior, and logxor are usually preferred over the equivalent forms
of boole, to avoid putting magic numbers in the program.

bit-test x y Function
bit-test is a predicate that returns t if any of the bits designated by the I's
in x are I's in y. bit-test is implemented as a macro which expands as
follows:

(bit-test x y) ==> (not (zerop (logand x y»)

Ish x y Function
Returns x shifted left y bits if y is positive or zero, or x shifted right Iy 1 bits
if y is negative. Zero bits are shifted in (at either end) to fill unused
positions. x and y must be f1XD.ums. (In some applications you might find
ash useful for shifting bignums.) Examples:

(lsh 4 1) => 10 ;(octal)
(lsh 14 -2) => 3
(lsh -1 1) => -2

115

March 1985 Numbers·

ash x y Function
Shifts x arithmetically left y bits if Y is positive, or right -y bits if Y is
negative. Unused positions are filled by zeroes from the right, and by copies
of the sign bit from the left. Thus, unlike Isb, the sign of the result is
always the same as the sign of x. If x is an integer, this is a shifting
operation. If x is a floating-point number, this does scaling (multiplication by
a power of two), rather than actually shifting any bits.

rot x y Function
Returns x rotated left y bits if y is positive or zero, or x rotated right Iy I bits
if y is negative. The rotation considers x as a 32-bit number (unlike Maclisp,
which considers x to be a 3S-bit number in both the PDP-IO and Multics
implementations). x and y must be flXIlums. (There is no function for
rotating bignums.) Examples:

(rot 1 2) =) 4
(rot 1 -2) =) 10000000000
(rot -1 7) =) -1
(rot 15 32.) =) 15

baulong x Function
This returns the number of significant bits in Ixl. x must be an integer.
Its sign is ignored. The result is the least integer strictly greater than the
base-2 logarithm of Ix I. Examples:

(haulong 0) =) 0
(haulong 3) => 2
(haulong -7) =) 3

haipart x n Function
Returns the high n bits of the binary representation of Ix I, or the low
-n bits if n is negative. x must be an integer; its sign is ignored. baipart
could have been defined by:

(defun haipart (x n)
(setq x (abs x»
(if (minusp n)

(logand x (1- (ash 1 (- n»»
(ash x (min (- n (haulong x»

0»»

8.7 Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary-width field of contiguous
bits appearing anywhere in an integer (a flXIlum or a bignum). Such a contiguous
set of bits is called a byte. Note that we are not using the term byte to mean eight
bits, but rather any number of bits within a number. These functions use byte

116

Reference Guide to Symbolics-Usp March 1985

specifiers to designate a specific byte position within any word. A byte specifier
consists of the size (in bits) and position of the byte within the number, counting
from the right in bits. A position of zero means that the byte is at the right end of
the number. Byte specifiers are built using the byte function.

For example, the byte specifier (byte 8 0) refers to the lowest eight bits of a word,
and the byte specifier (byte 8 8) refers to the next eight bits.

Bytes are extracted from and deposited into 2t s complement signed integers.
Treating the integers as signed means that negative numbers have an arbitrary
number of "1" bits on the left. Bytes, being a specified number of bits, are never
negative.

The actual format of byte specifiers is a flXIlum where the low 6 bits specify the size
and, the rest of the bits specify the position. These byte specifiers are stylized as '
ppss. Since byte specifiers only have 6 bits to store the field width, there is a
maximum byte field of 63 bits.

byte size position Function
Creates a byte specifier for a byte size bits wide, position bits from the right­
hand (least-significant) end of the 'word.

Example:

(ldb (byte 3 4) #01234,5) =>,6

byte-size byte-specifier Function
Extracts the size field of byte-speCifier. You can use setf on this form:

(setq a (byte 3 4»
(setf (byte-size a) 2)
(byte-size a) => 2

byte-position byte-specifier Function
Extracts the position field of byte-specifier. You can use setf on this form:

(setq a (byte 3 4»
(setf (byte-position a) 2)
(byte-position a) => 2

Idb ppss num Function
ppss specifies a byte of num to be extracted. The ss bits of the byte starting
at bit pp are the lowest ss bits in the returned value, and the rest of the bits
in the returned value are zero. The name of the function, Idb, means "load
byte". num must be an integer. Idb always returns a nonnegative number.
Example:

(ldb (byte 1 2) 5) => 1
(ldb (byte 32. 0) -1) => (1- 1_32.) ;;a positive bignum
(ldb (byte 16. 24.) -1_31.) => #0177600

117

March 1985 Numbers

(ldb #00306 #04567) => #056

load-byte num position size Function
This is like ldb except that instead of using a byte specifier, the position and
size are passed as separate arguments. The argument order is not analogous
to that of ldb so that load-byte can be compatible with Maclisp.

ldb-test ppss y Function
ldb-test is a predicate that returns t if any of the bits designated by the
byte specifier ppss are 1's in y. That is, it returns t if the designated field is
nonzero. ldb-test is implemented as a macro which expands as follows:

(ldb-test ppss y) ==> (not (zerop (ldb ppss y»)

mask-field ppss num Function
This is similar to ldb; however, the specified byte of num is returned as a
number in position pp of the returned word, instead of position 0 as with
ldb. num must be an integer. Example:

(maSk-field (byte 6 3) #04567) =) #0560

dpb byte ppss num Function
Returns a number that is the same as num except in the bits specified by
ppss. The low ss bits of byte are placed in those bits. byte is interpreted as
being right-justified, as if it were the result of ldb. num must be an integer.
The name means "deposit byte". Example:

(dpb 1 (byte 1 2) 1) => 5
(dpb 0 (byte 1 31.) -1_31.) => -1_32. ;;a bignum
(dpb -1 (byte 40. 0) -1_32.) =) -1

(dpb #023 #00306 *04567) => #04237

deposit-byte num position size byte Function
This is like dpb except that instead of using a byte specifier, the position
and size are passed as separate arguments .. The argument order is not
analogous to that of dpb so that deposit-byte can be compatible with
Maclisp.

deposit-field byte ppss num Function
This is like dpb, except that byte is not taken to be right-justified; the ppss
bits of byte are used for the ppss bits of the result, with the rest of the bits
taken from num. num must be an integer. Example:

(deposit-field #0230 (byte 6 3) 104567) => #04237

%logIdb ppss fixnum Function
%logldb is like ldb except that it only loads out of f1XD.ums and allows a
byte size of 32. bits of the f1XD.um including the sign bit.

118

Reference Guide to Symbolics-Usp March 1985

The behavior of%logldb depends on the size of flXD.ums, so functions using it
might not work the same way on future implementations of Symbolics-Lisp.
Its name starts with "%" because it is more like machine-level subprimitives
than other byte manipulation functions.

%logdpb byte ppss fixnum Function
%logdpb is like dpb except that it only deposits into fimums. Using this to
change the sign-bit leaves the result as a flXD.um, while dpb would produce a
bignum result for arithmetic correctness. %logdpb is good for manipulating
flXIlum bit-masks such as are used in some internal system tables and data
structures.

The behavior of%logdpb depends on the size of flXIlums, so functions using
it might not work the same way on future implementations ,of Symbolics­
Lisp. Its name starts with "%" because it is more like machine-level
subprimitives than other byte manipulation functions.

8.8 Random Numbers

The functions in this section provide a pseudorandom number generator facility.
The basic function you use is random, which returns a new pseudorandom number
each time it is called. Between calls, its state is saved in a data object called a
random-array. Usually there is only one random-array; however, if you want to
create a reproducible series of pseudorandom numbers, and be able to reset the state
to control when the series starts over, then yo1,l need some-of the other functions
here.

random &optional arg random-array FUnction
(random) returns a random integer, positive or negative. If arg is present,
an integer between 0 and arg minus 1 inclusive is returned. If random-array
is present, the given array is used instead of the default one. Otherwise, the
default random-array is used (and is created if it does not already exist). The
algorithm is executed inside a without-interrupts so two processes can use
the same random-array without colliding.

A random-array consists of an array of numbers, and two pointers into the array.
The pointers circulate around the array; each time a random number is requested,
both pointers are advanced by one, wrapping around at the end of the array. Thus,
the distance forward from the first pointer to the second pointer, allowing for
wraparound, stays the same. Let the length of the array be length and the distance
between the pointers be offset. To generate a new random number, each pointer is
set to its old value plus one, modulo length. Then the two elements of the array
addressed by the pointers are added together; the sum is stored back into the array
at the location where the second pointer points, and is returned as the random
number after being normalized into the right range.

119

March 1985 Numbers

This algorithm produces well-distributed random numbers if length and offset are
chosen carefully, so that the polynomial x"length+x"offset+l is irreducible over the
mod-2 integers. The system uses 71. and 35.

The contents of the array of numbers should be initialized to anything moderately
random, to make the algorithm work. The contents get initialized by a simple
random number generator, based on a number called the seed. The initial value of
the seed is set when the random-array is created, and it can be changed. To have
several different controllable resettable sources of random numbers, you can create
your own random-arrays. If you don't care about reproducibility of sequences, just
use random without the random-array argument.

si:random-create-array length offset seed &optional (area nil) Function
Creates, initializes, and returns a random-array. length is the length of the
array. offset is the distance between the pointers and should be an integer
less than length. seed is the initial value of the seed, and should be an
integer. This calls si:random-initialize on the random array before
returning it.

si:random-initiaIize array &optional new-seed Function
array must be a random-array, such as is created by
si:random-create-array. If new-seed is provided, it should be an integer,
and the seed is set to it. si:random-initiaIize reinitializes the contents of
the array from the seed (calling random changes the contents of the array
and the pointers, but not the seed).

8.9 32-bit Numbers

Sometimes it is desirable to have a form of arithmetic that has no overflow checking
(which would produce bignums), and truncates results to the word size of the
machine. In Symbolics-Lisp, this is provided by the following set of functions. Their
answers are only correct modulo 2"32.

These functions should not be used for "efficiency"; they are probably less efficient
than the functions which do check for overflow. They are intended for algorithms
which require this sort of arithmetic, such as hash functions and pseudorandom
number generation.

%32-bit-plus x y Function
Returns the sum of x and y in 32-bit wraparound arithmetic. Both
arguments must be flXIlums. The result is a flXIlum.

%32-bit-difference x y Function
Returns the difference of x and y in 32-bit wraparound arithmetic. Both
arguments must be flXIlums. The result is a fixnum.

120

Reference Guide to Symbolics-Usp March 1985

121

March 1985 Evaluation

PART IV.

Evaluation

122

Reference Guide to Symbolics-Usp March 1985

123

March 1985 Evaluation

9. Introduction to Evaluation

The following is a complete description of the actions taken by the evaluator, given a
form to evaluate.

form

A symbol

Result

The binding of form. If form is unbound, an error is signalled.
See the section ''Variables'', page 125. Some symbols can also be
constants, for example: t, nil, keywords, and defconstant.

Not a symbol or list
form

A list The evaluator examines the car of the list to figure out what to
do next. There are three possibilities: the form can be a special
form, a macro form, or a function form.

Conceptually, the evaluator knows specially about all the symbols
whose appearance in the car of a form make that form a special
form, but the way the evaluator actually works is as follows. If
the car of the form is a symbol, the evaluator finds the function
definition of the symbol in the local lexical environment. If no
definition exists there, the evaluator finds it in the global
environment, which is in the function cell of the symbol. In
either case, the evaluator starts allover as if that object had been
the car of the list. (See the section "Symbols", page 561.)

If the car is not a symbol, but a list whose car is the symbol
special, this is a macro form or a special form. If it is a "special
function", this is a special form. See the section "Kinds of
Functions", page 303. Otherwise, it should be a regular function,
and this is a function form.

A special form It is handled accordingly; each special form works differently. See
the section ''Kinds of Functions", page 303. The internal workings
of special forms are explained in more detail in that section, but
this hardly ever affects you.

A macro form The macro is expanded and the result is evaluated in place of
form. See the section "Macros", page 337.

A function form It calls for the application of a function to arguments. The car of
the form is a function or the name of a function. The cdr of the
form is a list of subforms. Each subform is evaluated,
sequentially. The values produced by evaluating the subforms are
called the "arguments" to the function. The function is then
applied to those arguments. Whatever results the function
returns are the values of the original form.

124

Reference Guide to Symbolics-Lisp March 1985

See the section "Variables", page 125. The way variables work and the ways in
which they are manipulated, including the binding of arguments, is explained in that
section. See the section "Evaluating a Function Form", page 151. That section
contains a basic explanation of functions. See the section "Multiple Values", page
167. The way functions can return more than one value is explained there. See the
section "Functions", page 297. The description of all of the kinds of functions, and
the means by which they are manipulated, is there. The evalhook facility lets you
do something arbitrary whenever the evaluator is invoked. See the section
"evalhook" in Program Development Utilities. Special forms are described
throughout the documentation.

125

March 1985 Evaluation

10.- Variables

In Symbolics-Lisp, variables are implemented using symbols. Symbols are used for
many things in the language, such as naming functions, naming special forms, and
being keywords; they are also useful to programs written in Lisp, as parts of data
structures. But when the evaluator is given a symbol, it treats it as a variable. If it
is a special variable, it uses the value cell to hold the value of the variable. It it is
not special, it looks it up in the local lexical environment. If you evaluate a symbol,
you get back the contents of the symbol's value cell.

10.1 Changing the Value of a Variable

There are two different ways of changing the value of a variable. One is to set the
variable. Setting a variable changes its value to a new Lisp object, and the previous
value of the variable is forgotten. Setting of variables is usually done with the setq
special form.

The other way to change the value of a variable is with binding (also called "lambda­
binding"). When a variable is bound, its old value is first saved away, and then the
value of the variable is made to be the new Lisp object. When the binding is
undone, the saved value is restored to be the value of the variable. Bindings are
always followed by unbindings. This is enforced by having binding done only by
special forms that are defined to bind some variables, then evaluate some subforms,
and then unbind those variables. So the variables are all unbound when the form is
finished. This means that the evaluation of the form does not disturb the values of
the variables that are bound; their old value, before the evaluation of the form, is
restored when the evaluation of the form is completed. If such a form is exited by a
nonlocal exit of any kind, such as throw or return, the bindings are undone
whenever the form is exited.

10.2 Binding Variables

The simplest construct for binding variables is the let special form. The do and
prog special forms can also bind variables, in the same way let does, but they also
control the flow of the program and so are explained elsewhere. See the section
"Iteration", page 189. let* is just a sequential version of let.

Binding is an important part of the process of applying functions to arguments. See
the section "Evaluating a Function Form", page 151.

126

Reference Guide to Symbolics-Lisp March 1985

10.3 Kinds of Variables

In Symbolics Lisp, there are three kinds of variables: local, special, and instance. A
special variable has dynamic scope: any Lisp expression can access it simply by
mentioning its name. A local variable has lexical scope: only Lisp expressions
lexically contained in the special form that binds the local variable can access it. An
instance variable has a different kind of lexical scope: only Lisp expressions lexically
contained in methods of the appropriate flavor can access it. Instance variables are
explained in another section. See the section "Modularity and Object-oriented
Programming", page 418.

Variables are assumed to be local unless they have been declared to be special or
they have been implicitly declared to be instance variables by defmethod. Variables
can be declared special by the special forms defvar and defconst, or by explicit
declarations. See the section "Declarations", page 311. The most common use of
special variables is as "global" variables: variables used by many different functions
throughout a program, that have top-level values. Named constants are considered
to be a kind of special variable whose value is never changed.

When a Lisp function is compiled, the compiler understands the use of symbols as
variables. However, the compiled code generated by the compiler does not actually
use symbols to represent non special variables. Rather, the compiler converts the
references to such variables within the program into more efficient references that
do not involve symbols at all. The interpreter stores the values of variables in the

-same places as the compiler, but uses less specialized and efficient mechanisms to
access them.

The value of a special variable is stored in the value cell of the associated symbol.
Binding a special variable saves the old value away and then uses the value cell of
the symbol to hold the new value.

When a local variable is bound, a memory cell is allocated in a hidden, internal place
(the Lisp control stack) and the value of the variable is stored in this cell. You
cannot use a local variable without first binding it; you can only use a local variable
inside a special form that binds that variable. Local variables do not have any "top­
level" value; theydo not even exist outside the form that binds them.

The value of an instance variable is stored in an instance of the appropriate flavor.
Each instance has its own copy of the instance variable. It is impermissible to bind
an instance variable.

Local variables and special variables do not behave quite the same way, because
"binding" means different things for the two of them. Binding a special variable
saves the old value away and then uses the value cell of the symbol to hold the new
value. Binding a local variable, however, does not do anything to the symbol. In
fact, it creates a new memory cell to hold the value, that is, a new local variable.

A reference to a variable that you did not bind yourself is called a free reference.

127

March 1985 Evaluation

When one function definition is nested inside another function definition, using
lambda, flet, or labels, the inner function has access to the local variables bound
by the outer function. An access by the inner function to a local variable of the
outer function looks like a free reference when only the inner function is considered.
However, when the entire surrounding context is considered, it is a bound reference.
We call this a captured free reference. When a function definition is nested inside a
method, it can refer to instance variables just as the method can.

You cannot use a local variable without first binding it. Another way to say this is
t~at you cannot ever have an uncaptured free reference to a local variable. If you
try t6 do so, the compiler complains and assumes that the variable is special, but
was accidentally not declared. The interpreter also assumes that the variable is
special, but does not print a warning message.

Here is an example of how the compiler and the interpreter produce the same
results, but the compiler prints more warning messages.

(setq a 2) ;8et the special variable a to the value 2.

(defun faa ()
(1 et « a 5»

(bar)))

(defun bar ()
a)

(faa) => 2

(compil e 'faa)

(faa) => 2

(compil e 'bar)

(faa) => 2

;But don't declare a special.

;Define a function named foo.
;Bind the local variable a to the value 5.
;Call the function bar.

;Define a function named bar.
;It makes a free reference to the special variable a.

;Calling foo returns 2.

;Now compile foo.
;This warns that the local variable a was bound,
;but was never used.

;Calling foo still returns 2.

;This warns about the free reference to 8.

;Calling foo still returns 2.

When bar was compiled, the compiler saw the free reference and printed a warning
message: Warning: a declared special. It automatically declared 8 to be special and
proceeded with the compilation. It knows that free references mean that special
declarations are needed. But when a function, such as foo in the example, is
compiled that binds a variable that you want to be treated as a special variable but
that you have not explicitly declared, there is, in general, no way for the compiler to
automatically detect what has happened, and it produces incorrect output. 80 you
must always provide declarations for all variables that you want to be treated as
special variables.

128

Reference Guide to Symbolics-Lisp March 1985

When you declare a variable to be special using defvar rather than declare inside
the body of a form, the declaration is "global"; that is, it applies wherever that
variable name is seen. After fuzz has been declared special using defvar, all
following uses of fuzz are treated as references to the same special variable. Such
variables are called "global variables", because any function can use them; their scope
is not limited to one function. The special forms defvar and defconst are useful
for creating global variables; not only do they declare the variable special, but they
also provide a place to specify its initial value, and a place to add documentation. In
addition, since the names of these special forms start with "def' and since they are
used at the top level of files, the editor can find them easily.

10.4 Special Forms for Setting Variables

setq {variable value}... Special Fonn
U sed to set the value of one or more variables. The first value is evaluated,
and the first variable is set to the result. Then the second value is
evaluated, the second variable is set to the result, and so on for all the
variable/value pairs. setq returns the last value, that is, the result of the
evaluation of its last subform. Example:

(setq x (+ 3 2 1) Y (cons x nil»

X is set to 6, y is set to (6), and the setq form returns (6). Note that the
first variable was set before the second value form was evaluated, allowing
that form to use the new value of x.

psetq {variable value}... Special Fonn
Just like a setq form, except that the variables are set "in parallel"; first all
the value forms are evaluated, and then the variables are set to the resulting
values. Example:

(setq a 1)
(setq b 2)
(psetq a b b a)
a => 2
b => 1

10.5 Special Forms for Binding Variables

let ((var value) ...) body... Special Fonn
U sed to bind some variables to some objects, and evaluate some forms (the
"body") in the context of those bindings. A let form looks like this:

March 1985

(1 et « varl vfonnl)
(var2 vfonn2)
...)

bfonnl
bfonn2
...)

129

Evaluation

When this form is evaluated, first the vforms (the values) are evaluated.
Then the vars are bound to the values returned by the corresponding vfonns.
Thus the bindings happen in parallel; all the vforms are evaluated before any
of the vars are bound. Finally, the bfonns (the body) are evaluated
sequentially, the old values of the variables are restored, and the result of the
last bfonn is returned.

You can omit the vfonn from a let clause, in which case it is as if the vfonn
were nil: the variable is bound to nil. Furthermore, you can replace the
entire clause (the list of the variable and form) with just the variable, which
also means that the variable gets bound to nil. It is customary to write just
a variable, rather than a clause, to indicate that the value to which the
variable is bound does not matter, because the variable- is setq'ed before its
first use. Example:

(let «a (+ 3 3»
(b 'foo)
(e)

d)

...)
Within the body, a is bound to 6, b is bound to foo, c is bound to nil, and
d is bound to nil.

let· ((var value) ...) body... Special Form
The same as let, except that the binding is sequential. Each var is bound to
the value of its vfonn before the next vfonn is evaluated. This is useful
when the computation of a vform depends on the value of a variable bound
in an earlier vfonn. Example:

(let* «a (+ 1 2»
(b (+ a a»)

...)
Within the body, a is bound to 3 and b is bound to 6.

compiler-let bindlist body... Special Fonn
When interpreted, a compiler-let form is equivalent to let with all variable
bindings declared special. When the compiler encounters a compiler-let,
however, it performs the bindings specified by the form (no compiled code is
generated for the bindings) and then compiles the body of the compiler-let
with all those bindings in effect. In particular, macros within the body of
the compiler-let form are expanded in an environment with the indicated
bindings. See the section "Nesting Macros", page 366.

130

Reference Guide to Symbolics-Lisp March 1985

compiler-let allows compiler switches to be bound locally at compile time,
during the processing of the body forms. Value forms are evaluated at
compile time. See the section "Compiler Switches". In the following example
the use of compiler-let prevents the compiler from open-coding the map.

(compiler-let «open-code-map-switch nil»
(map (function (lambda (x) ... » foo»

letf places-and-values body... Special Form
Just like let, except that it can bind any storage cells rather than just
variables. The cell to be bound is specified by an access form that must be
acceptable to locf. For example, letf can be used to bind slots in a
structure. letf does parallel binding.

Given the following structure, letf calls do-something-to with ship's x
position bound to zero.

(defstruct ship
position-x
position-y
)

(letf «(position-x ship) 0»
(do-something-to ship»

It is preferable to use letf instead of the bind subprimitive.

letf* places-and-values body... Special Form
Just like let*, except that it can bind any storage cells rather than just
variables. The cell to be bound is specified by an access form that must be
acceptable to locf. For example, letf* can be used to bind slots in a
structure. letf* does sequential binding.

Given the following structure, letf* calls do-something-to with ship's x
position bound to 0 and y position bound to 5.

(defstruct ship
position-x
position-y
)

(letf* «(position-x ship) 0)
«position-y ship) (+ (position-x ship) 5»)

(do-something-to ship»

It is preferable to use letf* instead of the bind subprimitive.

let-if condition ((var value) ... } body... Special Form
A variant of let in which the binding of variables is conditional. The
variables must all be special variables. The let-if special form, typically
written as:

131

March 1985 Evaluation

(1 et- i f cond
«var-I val-I) (var-2 val-2) ...)

bodY-forml body-form2 ...)

first evaluates the predicate form condo If the result is non-nil, the value
forms val-I, val-2, and so on, are evaluated and then the variables var-l,
var-2, and so on, are bound to them. If the result is nil, the vars and vals
are ignored. Finally the body forms are evaluated.

let-globally ((var value) ...) body... Special Form
Similar in form to let. The difference is that let-globally does not bind the
variables; instead, it saves the old values and sets the variables, and sets up
an unwind-protect to set them back. The important difference between
let-globally and let is that when the current stack group calls some other
stack group, the old values of the variables are not restored. Thus,
let-globally makes the new values visible in all stack groups and processes
that do not bind the variables themselves, not just the current stack group.

let-globally-if predicate varlist body... Special Fonn
let-globally-if is like let-globally. It takes a predicate form as its first
argument. It binds the variables only if predicate evaluates to something
other than nil. body is evaluated in either case.

progv symbol-list value-list body... Special Form
Provides the user with extra control over binding. It binds a list of special
variables to a list of values, and then evaluates some forms. The lists of
special variables and values are computed quantities; this is what makes
progv different from let, prog, and do.

progv first evaluates symbol-list and value-list, and then binds each symbol
to the corresponding value. If too few values are supplied, the remaining
symbols are bound to nil. If too many values are supplied, the excess values
are ignored.

After the symbols have been bound to the values, the body forms are
evaluated, and finally the symbols' bindings are undone. The result returned
is the value of the last form in the body. Example:

(setq a 'foo b 'bar)

(progv (list a b 'b) (list b)
(list a b foo bar»

=) (foo nil bar nil)

During the evaluation of the body of this progv, foo is bound to bar, bar is
bound to nil, b is bound to nil, and a retains its top-level value foo.

132

Reference Guide to Symbolics-Lisp March 1985

prop vars-and-vals-fonn body... Special Fonn
A somewhat modified kind of progv; like progv, it only works for special
variables. First, uars-and-uals-fonn is evaluated. Its value should be a list
that looks like the first subform of a let:

«varl val-fonn-l)
(var2 val-fonn-2)
...)

Each element of this list is processed in turn, by evaluating the val-fonn, and
binding the var to the resulting value. Finally, the body forms are evaluated
sequentially, the bindings are undone, and the result of the last form is
returned. Note that the bindings are sequential, not parallel.

This is a very unusual special form because of the way the evaluator is called
on the result of an evaluation. Thus, progw is mainly useful for
implementing special forms and for functions part of whose contract is that
they call the interpreter. For an example of the latter, see
sys:*break-bindings*; break implements this by using progw.

destructuring-bind variable-pattern data body... Special Fonn
Binds variables to values, using defmacro's de structuring facilities, and
evaluates the body forms in the context of those bindings.

First data is evaluated. If variable-pattern is a symbol, it is bound to the
result of evaluating data. If variable-pattern is a tree, the result of
evaluating data should be a tree of the same shape. The trees are
disassembled, and each variable that is a component of variable-pattern is
bound to the value that is the corresponding element of the tree that results
from evaluating data. If not enough values are supplied, the remaining
variables are bound to nil. If too many values are supplied, the excess values
are ignored. Finally, the body forms are evaluated sequentially, the old values
of the variables are restored, and the result of the last body form is returned.

As with the pattern in a defmacro form, variable-pattern actually resembles
the lambda-list of a function; it can have &-keywords. See the section
"&-Keywords Accepted by defmacro", page 373.

Example:

(destrueturing-bind (a (b) &optional (e 'd»
'«x y) (z»

(values abe»

returns (x y), z, and d.

scl:destructuring-bind also exists. It is the same as destructuring-bind
except that it signals an error if the trees data and variable-pattern do not
match.

133

March 1985 Evaluation

desetq {variable-pattern value-pattern}... Special Form
Lets you assign values to variables through de structuring patterns. In place
of a variable to be assigned, you can provide a tree of variables. The value to
be assigned must be a tree of the same shape. The trees are de structured
into their component parts, and each variable is assigned to the corresponding
part of the value tree.

The first value-pattern is evaluated. If variable-pattern is a symbol, it is set
to the result of evaluating value-pattern. If variable-pattern is a tree, the
result of evaluating value-pattern should be a tree of the same shape. The
trees are destructured, and each variable that is a component of
variable-pattern is set to the value that is the corresponding element of the
tree that results from evaluating value-pattern. This process is repeated for
each pair of variable-pattern and value-pattern. desetq returns the last
value. Example: '

(desetq (a b) '«x y) z) e b)

a is set to (x y), b is set to z, and c is set to z. The form returns the
value of the last form, which is the symbol z.

dIet ((variable-pattern value-pattern) ...) body... Special Form
Binds variables to values, using de structuring, and evaluates the body forms
in the context of those bindings. In place of a variable to be assigned, you
can provide a tree of variables. The value to be assigned must be a tree of
the same shape. The trees are de structured into their component parts, and
each variable is assigned to the corresponding part of the value tree.

First the value-patterns are evaluated. If a variable-pattern is a symbol, it is
bound to the result of evaluating the corresponding value-pattern. If
variable-pattern is a tree, the result of evaluating value-pattern should be a
tree of the same shape.' The trees are destructured, and each variable that
is a component of variable-pattern is bound to the value that is the
corresponding element of the tree that results from evaluating value-pattern.
The bindings happen in parallel; all the value-patterns are 'evaluated before
any variables are bound. Finally, the body forms are evaluated sequentially,
the old values of the variables are restored, and the result of the last body
form is returned. Example:

(d 1 et « (a b) '« x y) z»
(e 'd»
(values abe»

returns (x y), z, and d.

dIet· ((variable-pattern value-pattern) ...) body... Special Form
Binds variables to values, using destructuring, and evaluates the body forms
in the context of those bindings. In place of a variable to be assigned, you
can provide a tree of variables. The value to be assigned must be a tree of

134

Reference Guide to Symbolics-Usp March 1985

the same shape. The trees are destructured into their component parts, and
each variable is assigned to the corresponding part of the value tree.

The first value-pattern is evaluated. If variable-pattern is a symbol, it is
bound to the result of evaluating value-pattern. If variable-pattern is a tree,
the result of evaluating value-pattern should be a tree of the same shape.
The trees are destructured, and each variable that is a component of
variable-pattern is bound to the value that is the corresponding element of
the tree that results from evaluating value-pattern. The process is repeated
for each pair of variable-pattern and value-pattern. The bindings happen
sequentially; the variables in each variable-pattern are bound before the next
value-pattern is evaluated. Finally, the body forms are evaluated sequentially,
the old values of the variables are restored, and the result of the last body
form is returned. Example:

(dlet* «(a b) '«x y) z» (c b» (values abc»

returns (x y), z, and z.

10.6 Special Forms for Defining Special Variables

defvar variable &optional initial-value documentation Special Form
The recommended way to declare the use of a global variable in a program.
Placed at top level in a file,

(defvar variable)

declares variable special and records its location for the sake of the editor so
that you can ask to see where the variable is defined. If a second subform is
supplied,

(defvar variable initial-value)

variable is initialized to the result of evaluating the form initial-value unless
it already has a value, in which case it keeps that value. initial-value is not
evaluated unless it is used; this is useful if it does something expensive like
creating a large data structure.

defvar should be used only at top level, never in function definitions, and
only for global variables (those used by more than one function).
(defvar foo 'bar) is roughly equivalent to:

(declare (special fool)
(if (not (boundp 'foo»

(setq foo 'bar»

(de fvar variable initial-value documentation)

allows you to include a documentation string that describes what the variable
is for or how it is to be used. Using such a documentation string is even

135

March 1985 Evaluation

better than commenting the use of the variable, because the documentation
string is accessible to system programs that can show the documentation to
you while you are using the machine.

If defvar is used in a patch file or is a single form (not a region) evaluated
with the editor's compile/evaluate from buffer commands, if there is an initial­
value the variable is always set to it regardless of whether it is already
bound. See the section "Patch Facility" in Program Development Utilities.

defconst variable initial-value &optional documentation Special Form
The same as defvar, except that variable is always set to initial-value
regardless of whether variable is already bound. The rationale for this is
that defvar declares a global variable, whose value is initialized to something
but is then changed by the functions that use it to maintain some state. On
the other hand, defconst declares a constant, whose value is never changed
by the normal operation of the program, only by changes to the program.
defconst always sets the ·variable to the specified value so that if, while
developing or debugging the program, you change your mind about what the
constant value should be, and you then evaluate the defconst form again,
the variable gets the new value. It is not the intent of defconst to declare
that the value of variable never changes; for example, defconst is not license
to the compiler to build assumptions about the value of variable into
programs being compiled. See defconstant for that.

10.7 Special Form for Declaring a Named Constant

defconstant variable initial-value &optional documentation Special Form
Declares the use of a named constant in a program. initial-value is
evaluated and variable set to the result. The value of variable is then fIXed.
It is an error if variable has any special bindings at the time the
defconstant form is executed. Once a special variable has been declared
constant by defconstant, any further assignment to or binding of that
variable is an error.

The compiler is free to build assumptions about the value of the variable into
programs being compiled. If the compiler does replace references to the name
of the constant by the value of the constant in code to be compiled, the
compiler takes care that such "copies" appear to be eql to the object that is
the actual value of the constant. For example, the compiler can freely make
copies of numbers, but it exercises care when the value is a list.

In Symbolics-Lisp, defconstant and defconst are essentially the same if the
value is other than a number, a character, or an interned symbol. However,
if the variable being declared already has a value, defconst freely changes
the value, whereas defconstant queries before changing the value.
defconstant's query offers three choices: Y, N, and P.

136

Reference Guide to Symbolics-Lisp March 1985

• The Y option changes the value.

• The N option does not change the value.

• The P option changes the value and when you change any future
value, it prints a warning rather than a query.

The P option sets inhibit-fdefine-warnings to :just-warn. defconstant
obeys that variable, just as query-about-redefinition does. Use
(setq inhibit-fdefine-warnings nil) to revert to the querying mode.

When the value of a constant is changed by a patch file, a warning is
printed.

defconstant assumes that changing the value is dangerous because the old
value might have been incorporated into compiled code, which is out of date if
the value changed.

In general, you should use defconstant to declare constants whose value is a
number, character, or interned symbol and is guaranteed not to change. An
example is "'. The compiler can optimize expressions that contain references
to these constants. If the value is another type of Lisp object or if it might
change, you should use defconst instead.

documentation, if provided, should be a string. It is accessible to the
documentation function.

137

March 1985 Evaluation

11. Lexical Scoping

Symbolics-Lisp has a lexically scoped interpreter and compiler. The compiler and
interpreter implement the same language.

Consider the following example:

(defun fun1 (x)
(fun2 3 x)
(fun3 #'(1ambda (y) (+ x y» x 4»

This function passes an internal lambda to fun3. Observe that the internal lambda
references the variable x, which is neither a lambda variable nor a local variable of
this lambda. Rather, it is a variable local to the Ie. rabda's lexical parent, fun!. fun3
receives as an argument a lexical closure, that is, a presentation of the internal
lambda in an environment where the variable x can be accessed. x is a free lexical
variable of the internal lambda; the closure is said to be a closure of the free lexical
variables, specifically in this case, x.

Lexical closures, created by reference to internal functions, are to be distinguished
from dynamic closures, which are created by the closure function and the
let-closed special form. Dynamic closures are closures over special variables, while
lexical closures are closures over lexical, local variables. Invocation of a dynamic
closure, as a function, causes special variables to be bound. Invocation of a lexical
closure simply provides the necessary data linkage for a function to run in the
environment in which the closure was made.

Both the compiler and the interpreter support the accessing of lexical variables. The
compiler and interpreter also support, in Zetalisp as well as Symbolics Common Lisp,
the Common Lisp lexical function and macro definition special forms, flet, labels,
and macrolet.

Note that access to lexical variables is true access to the instantiation of the variable
and is not limited to the access of values. Thus, assuming that map-over-list maps
a function over a list in some complex way, the following function works as it
appears to, and finds the maximum element of the list.

(defun find-max (list)
(let «max nil»

(map-over-list
#'(lambda (element)

(when (or (null max)

1 ist)
max))

() element max»
(setq max element»)

138

Reference Guide to Symbolics-Lisp March 1985

11.1 LeXic~\EnVironment Objects and Arguments
~

Macro-expander functions, the actual functions defined by defmacro, macro, and
macrolet, are called with two arguments - form and environment. Special form
implementations used by the interpreter are also passed these two arguments.
Macro-expander functions defined by files created prior to the implementation of
lexical scoping are passed only a form argument, for compatibility.

The environment argument allows evaluations and expansions performed by the
macro-expander function or the special form interpreter function to be performed in
the proper lexical context. The environment argument is utilized by the macro­
expander function in certain unusual circumstances:

• A macro-expander function explicitly calls macroexpand or macroexpand-l to
expand some code appearing in the form which invoked it. In this case, the
environment argument must be passed as a second argument to either of
these functions. This is quite uncommon. Most macro-expander functions do
not explictly expand code contained in their calls: setf is an example of a
macro that does this kind of expansion.

• A macro-expander function explicitly calls eval to evaluate, at macro time, an
expression appearing in the code which invoked it. In that case, the
environment argument must be passed as a second argument to eval. This
explicit evaluation is even more unusual: almost any use of eval by a macro is
guaranteed to be wrong, and does not work or do what is intended in certain
circumstances. The only known legitimate uses are:

o A macro determines that some expression is in fact a constant, and
computable at macro expand time, and evaluates it. Here, there are no
variables involved, so the environment issue is moot.

o A macro is called with some template code, expressed via backquote, and
is expected to produce an instantiation of that template with
substitutions performed. Evaluation is the way to instantiate backquoted
templates.

The format of lexical environments is an internal artifact of the system. They
cannot be constructed or analyzed by user code. It is, however, specified that nil
represents a null lexical environment.

A macro defined with defmacro or macrolet can accept its expansion lexical
environment (if it needs it for either of the above purposes) as a variable introduced
by the lambda-list keyword &environment in its argument list.

A macro defined with macro receives its lexical environment as its second argument.

139

March 1985 Evaluation

11.2 Funargs and Lexical Closure Allocation

A funarg is a function, usually a lambda, passed as an argument, stored into data
structure, or otherwise manipulated as data. Normally, functions are simply called,
not manipulated as data. The term funarg is an acronym for functional argument.
In the following form, two functions are referred to, sort and <.

(defun number-sort (numbers)
(sort numbers H'<»

sort is being called as a function, but < (more exactly, the function object
implementing the < function) is being passed as a funarg.

The major feature of the lexical compiler and interpreter can be described as the
support of funargs that reference free lexical variables. Funargs that do not
reference free lexical variables also work. For example,

(defun data-sort (data)
(sort data #'(lambda (x y) « (fun x) (fun y»»)

The internal lambda above makes no free lexical references. data-sort would have
worked prior to lexical scoping, and continues to work.

The remainder of this discussion is concerned only with funargs that make free
lexical references.

The act of evaluating a form such as

#'(lambda (x) (+ x y»

produces a lexical closure. (Of course, if we are talking about compiled code, the
form is never evaluated. In that case, we are talking about the time in the
execution of the compiled function that corresponds to the time that the form would
be evaluated.) It is that closure that represents the funarg that is passed around.

Funarg closures can be further classified by usage as downward funargs and upward
funargs. A downward funarg is- one that does not survive the function call that
created the closure. For example:

(defun magic-sort (data parameter)
(sort data #'(lambda (x y) « (funk x parameter)

(funk y parameter»»)

In this example, sort is passed a lexical closure of the internal lambda. sort calls
this closure many times to do comparisons. When magic-sort returns its value, no
function or data structure is referencing that closure in any way. That closure is
being used as a downward funarg; it does not survive the call to magic-sort.

In this example,

(defun make-adder (x)
#'(lambda (y) (+ x y»)

140

Reference Guide to Symbolics-Lisp March 1985

the closure of the internal lambda is returned from the activation of make-adder,
and survives that activation. The closure is being used as an upward funarg.

The creation of lexical closures involves the allocation of storage to represent them.
This storage can either be allocated on the stack or in the heap. Storage allocated
in the heap remains allocated until all references to it are discarded and it is garbage
collected. Storage allocated on the stack is transient, and is deallocated when the
stack frame in which it is allocated is abandoned. Stack-allocated closures are more
efficient, and thus to be desired. Stack-allocated closures can only be used when a
funarg is used as a downward funarg. Closures of upward funargs must be allocated
in the heap.

Funargs can be passed to any functions. These functions might well store them in
permanent data structure, or return them nonlocally, or cause other upward use.
Therefore, the compiler and interpreter, in general, must and do assume potential
upward use of all funargs. Thus, they cause their closures to be allocated in the
heap unless special measures are taken to convey the guarantee of downward-only
use. Note that the more general (heap-allocated) closure is guaranteed to work in all
cases.

The ephemeral garbage collector substantially reduces the overhead of heap allocation
of short-lived objects. Thus, you might be able to ignore these issues entirely, and
let the system do as well as it can without additional help.

11.2.1 The sys:downward-function and sys:downward-funarg Declarations

There are two ways to convey the guarantee of downward-only use of a funarg.
These are the sys:downward-function and sys:downward-funarg declarations.

sys:downward-function Declaration

The declaration sys:downward-function, in the body of an internal lambda,
guarantees to the system that lexical closures of the lambda in which it appears are
only used as downward funargs, and never survive the calls to the procedure that
produced them. This allows the system to allocate these closures on the stack.

(defun special-search-table (item)
(block search

(send *hash-table* :map-hash
#'(lambda (key object)

(declare (sys:downward-function»
(when (magic-function key object item)

(return-from search object»»»

Here, the :map-hash message to the hash table calls the closure of the internal
lambda many times, but does not store it into permanent variables or data structure,
or return it "around" speciaI-search-table. Therefore, it is guaranteed that the
closure does not survive the call to speciaI-search-table. It is thus safe to allow
the system to allocate that closure on the stack.

141

March 1985 Evaluation

Stack-allocated closures have the same lifetime (extent) as &rest arguments and lists
created by with-stack-list and with-stack-list*, and require the same precautions.
See the section "Lambda-list Keywords", page 309.

sys:downward-funarg Declaration

The sys:downward-funarg declaration (not to be confused with
sys:downward-function) permits a procedure to declare its intent to use one or
more of its arguments in a downward manner. For instance, sort's second
argument is a funarg, which is only used in a downward manner, and is declared
this way. The second argument to process-ron-function is a good example of a
funarg that is not downward. Here is an example of a function that uses and
declares its argument as a downward funarg.

(defun search-alist-by-predicate (alist predicate)
(declare (sys:downward-funarg predicate»
;; Traditional "recursive" style, for variety.
(if (null alist)

nil
(let «element (car list»

(rest (cdr list»
(if (funcall predicate (car element»

(cdr element)
(search-alist-by-predicate rest predicate»»»

This function only calls the funarg passed as the value of predicate. It does not
store it into permanent structure, return it, or throw it around
search-alist-by-predicate's activation.

The reason you so declare the use of an argument is to allow the system to deduce
guaranteed downward use of a funarg without need for the
sys:downward-function declaration. For instance, if search-alist-by-predicate
were coded as above, we could write

(defun look-for-element-in-tolerance (alist required-value tolerance)
Csearch-alist-by-predicate alist

'" (1 ambda (key)
« (abs (- key required-value» tolerance»»

to search the keys of the list for a number within a certain tolerance of a required
value. The lexical closure of the internal lambda is automatically allocated by the
system on the stack because the system has been told that any funarg used as the
first argument to search-alist-by-predicate is used only in a downward manner.
No declaration in the body of the lambda is required.

All appropriate parameters to system functions have been declared in this way.

There are two possible forms of the downward-funarg declaration:

142

Reference Guide to Symbofics-Lisp March 1985

(declare (sys:downward-funarg varl var2 •••)
Declares the named variables, which must be parameters (formal
arguments) of the function in which this declaration appears, to
have their values used only in a downward fashion. This affects
the generation of closures as functional arguments to the function
in which this declaration appears: it does not directly affect the
function itself. Due to an implementation restriction, var-i cannot
be a keyword argument.

(declare (sys:downward-funarg *»

Notes:

Declares guaranteed downward use of all functional arguments to
this function. This is to cover closures of functions passed as
elements of &rest arguments and keyword arguments.

The special forms flet and labels (additions to Zetalisp from Common Lisp) generate
lexical closures if necessary. The compiler decides how to allocate a closure generated
by flet or labels after analysis of the use of the function defined by the use of flet
or labels.

It is occasionally appropriate to introduce the sys:downward-funarg and
sys:downward-function (as well as other) declarations into the bodies of functions
defined by flet and labels.

There is no easy way to see if code allocates lexical closures on the heap or on the
stack; if disassembly of a compiled function reveals a call to
sys:make-lexical-closure, heap allocation is indicated.

11.3 flet, labels, and macrolet Special Forms

flet ((name args function-body ...) ...) body... Special Fonn
Defines named internal functions. flet (function let) defines a lexical scope,
body, in which these names can be used to refer to these functions. ((name
args function-body ...) ...) is a list of clauses, each of which defines one
function. Each clause of the flet is identical to the cdr of a defun special
form; it is a function name to be defined, followed by an argument list,
possibly declarations, and function body forms. flet is a mechanism for
defining internal subroutines whose names are known only within some local
scope.

Functions defined by the clauses of a single flet are defined "in parallel",
similar to let. The names of the functions being defined are not defined and
not accessible from the bodies of the functions being defined. The labels
special form is used to meet those requirements. See the special form labels,
page 144.

Here is an example of the use of flet:

143

March 1985 Evaluation

(defun triangle-perimeter (pl p2 p3)
(flet «squared (x) (* x x»)

(flet «distance (pointl point2)
(sqrt (+ (squared (- (point-x pointl)

(point-x point2»)
(squared (- (point-y pointl)

(point-y point2»»»)
(+ (distance pl p2)

(distance p2 p3)
(distance pl p3»»)

flet is used twice here, first to define a subroutine squared of
triangle-perimeter, and then to define another subroutine, distance. Note
that since distance is defined within the scope of the first flet, it can use
squared. distance is then called three times in the body of the second
flet. The names squared and distance are not meaningful as function
names except within the bodies of these flets.

Note that functions defined by flet are internal, lexical functions of their
containing environment. They have the same properties with respect to
lexical scoping and references as internal lambdas. They can make free
lexical references to variables of that environment and they can be passed as
funargs to other procedures. Functions defined by flet, when passed as­
funargs, generate closures. The allocation of these closures, that is, whether
they appear on the stack or in the heap, is controlled in the same way as for
internal lambdas. See the section "Funargs and Lexical Closure Allocation",
page 139.

Here is an example of the use, as a funarg, of a closure of a function defined
by flet.

(defun sort-by-closeness-to-goal (list goal)
(flet «closer-to-goal (x y)

« Cabs C- x goal» (abs C- y goal»»)
(sort list #'closer-to-goal»)

This function sorts a list, where the sort predicate of the (numeric) elements
of the list is their absolute distance from the value of the parameter goal.
That predicate is defined locally by flet, and passed to sort as a funarg.

Note that flet (as well as labels) defines the use of a name as a function,
not as a variable. Function values are accessed by using a name as the car
of a form or by use of the function special form (usually expressed by the
reader macro #').

Within its lexical scope, flet can be used to redefine names that refer to
globally defined functions, such as sort or cdar, though this is not
recommended for stylistic reasons. This feature does, however, allow you to
bind names with flet in an unrestricted fashion, without binding the name
of some other function that you might not know about (such as

144

Reference Guide to Symbolics-Lisp March 1985

number-into-array), and thereby causing other functions to malfunction.
This occurs because flet always creates a lexical binding, not a dynamic
binding. Contrast this with let, which usually creates a lexical binding,
unless the variable being bound is declared special, in which case it creates a
dynamic binding.

flet can also be used to redefine function names defined by enclosing uses of
flet or labels.

labels ((name args function-body ...) ...) body... Special Fonn
Identical to flet in structure and purpose, but has slightly different scoping
rules. It, too, defines one or more functions whose names are made available
tvithin its body. In labels, unlike flet, however, the functions being defined
can refer to each other mutually, and to themselves, recursively. Any of the
functions defined by a single use of labels can call itself or any other; there
is no order dependence. Although flet is analogous to let in its parallel
binding, labels is not analogous to let·.

labels is in all other ways identical to flet. It defines internal functions that
can be called, re-redefined, passed as funargs, and so on.

Functions defined by labels, when passed as funargs, generate closures. The
allocation of these closures, that is, whether they appear on the stack or in
the heap, is controlled in the same way as for internal lambdas. See the
section "Funargs and Lexical Closure Allocation", page 139.

Here is an example of the use of labels:

(defun combinations (total-things at-a-time)
jj This function computes the number of combinations of
;; total-things things taken at-a-time at a time.
;; There are more efficient ways. but this is illustrative.
(labels «factorial (x)

(permutations x x»
(permutations (x n) jX things n at a time

(if (= n 1)

x
(* x (permutations (1- x) (1- n»»»

(II (permutations total-things at-a-time)
(factorial at-a-time»»

macrolet ((name args macro-body ...) ...) body... Special Fonn
Defines, within its scope, a macro. It establishes a symbol as a name
denoting a macro, and defines the expander function for that macro.
defmacro does this globally; macrolet does it only within the (lexical) scope
of its body. A macro so defined can be used as the car of a form within this
scope. Such forms are expanded according to the definition supplied when
interpreted or compiled.

145

March 1985 Evaluation

The syntax of macrolet is identical to that of flet or labels: it consists of
clauses defining local, lexical macros, and a body in which the names so
defined can be used. ((name args macro-body ...) ...) body ... is a list of clauses
each of which defines one macro. Each clause is identical to the cdr of a
defmacro form: it has a name being defined (a symbol), a macro pseudo­
argument list, and an expander function body.

The pseudo-argument list is identical to that used by defmacro. It is a
pattern, and can use appropriate lambda-list keywords for macros, including
&environment. See the section "Lexical Environment Objects and
Arguments", page 138.

Here is an example of the use of macrolet:

(defun check-value (z)
(block check-value

(macrolet «succeed () (return-from check-value t»
(fail () (return-from check-value nil»)

(cond «test-' z) (fail»
«test-2 z) (succeed»
(t (fail»»»

It is important to realize that macros defined by macrolet are run (when
the compiler is used), at compile time, not run-time. The expander functions
for such macros, that is, the actual code in the body of each macrolet
clause, cannot attempt to access or set the values of variables of the function
containing the use of macrolet. Nor can it invoke run-time functions,
including local functions defined in the lexical scope of the macrolet by use
of flet or labels. The expander function can freely generate code that uses
those variables and/or functions, as well as other macros defined in its scope,
including itself.

There is an extreme subtlety with respect to expansion-time environments of
macrolet. It should not affect most uses. The macro-expander functions
are closed in the global environment; that is, no variable or function bindings
are inherited from any environment. This also means that macros defined
by macrolet cannot be used in the expander functions of other macros
defined by macrolet within the scope of the outer macrolet. This does not
prohibit either of the following:

• Generation of code by the inner macro that refers to the outer one.

• Explicit expansion (by macroexpand or macroexpand-l), by the inner
macro, of code containing calls to the outer macro. Note that explicit
environment management must be utilized if this is done. See the
section "Lexical Environment Objects and Arguments", page 138.

146

Reference Guide to Symbo/ics-Usp March 1985

147

March 1985 Evaluation

12. Generalized Variables

In Lisp, a variable is something that can remember one piece of data. The main
operations on a variable are to recover that piece of data, and to change it. These
might be called access and update. The concept of variables named by symbols can
be generalized to any storage location that can remember one piece of data, no
matter how that location is named. See the section "Variables", page 125.

For each kind of generalized variable, there are typically two functions that
implement the conceptual access and update operations. For example, symeval
accesses a symbol's value cell, and set updates it. array-leader accesses the
contents of an array leader element, and store-array-Ieader updates it. car
accesses the car of a cons, and rplaca updates it.

Rather than thinking in terms of two functions that operate on a storage location
somehow deduced from their arguments, we can shift our point of view and think of
the access function as a name for the storage location. Thus (symeval 'foo) is a
name for the value of foo, and (aref a 105) is a name for the l05th element of the
arraya. Rather than having to remember the update function associated with each
access function, we adopt a uniform way of updating storage locations named in this
way, using the setf special form. This is ,analogous to the way we use the setq
special form to convert the name of a variable (which is also a form that accesses it)
into a form that updates it.

setf is particularly useful in combination with structure accessors, such as those
created with defstruct, because the knowledge of the representation of the
structure is embedded inside the accessor, and you should not have to know what it
is in order to alter an element of the structure.

setf is actually a macro that expands into the appropriate update function. It has a
database, explained below, that associates from access functions to update functions.

setf access-form value Macro
Takes a form that accesses something, and "inverts" it to produce a
corresponding form to update the thing. A setf expands into an update
form, which stores the result of evaluating the form value into the place
referenced by the access-form. Examples:

(setf (array-leader faa 3) 'bar)
==> (store-array-leader 'bar faa 3)

(setf a 3) ==> (setq a 3)
(setf (plist 'a) '(faa bar» ==> (setplist 'a '(faa bar»
(setf (aref q 2) 56) ==> (aset 56 q 2)
(setf (cadr w) x) ==> (rplaca (cdr w) x)

If access-form invokes a macro or a substitutable function, then setf expands
the access-form and starts over again. This lets you use setf together with
defstruct accessors.

148

Reference Guide to Symbolics-Lisp March 1985

For the sake of efficiency, the code produced by setf does not preserve order
of evaluation of the argument forms. This is only a problem if the argument
forms have interacting side effects. For example, if you evaluate:

(setq x 3)
(setf (arefax) (setq x 4»

the form might set element 3 or element 4 of the array. We do not
guarantee which one it will do; do not just try it and see and then depend
on it, because it is subject to change without notice.

Furthermore, the value produced by setf depends on the structure type and
is not guaranteed; setf should be used for side effect only. If you want well­
defined semantics, you can use cl:setf in your Symbolics-Lisp programs.

Besides the access and update conceptual operations on variables, there is a third
basic operation, which we might call locate. Given the name of a storage cell, the
locate operation returns the address of that cell as a locative pointer. See the
section "Locatives", page 83. This locative pointer is a kind of name for the variable
that is a first-class Lisp data object. It can be passed as an argument to a function
that operates on any kind of variable, regardless of how it is named. It can be used
to bind the variable, using the bind subprimitive.

Of course this can only work on variables whose implementation is really to store
their value in a memory cell. A variable with an update operation that encrypts the
value and an access operation that decrypts it could not have the locate operation,
since the value as such is not directly stored anywhere.

locf access-form Macro
Takes a form that accesses some cell and produces a corresponding form to
create a locative pointer to that cell. Examples:

(locf (array-leader foo 3» ==> (ap-leader foo 3)
(locf a) ==> (variable-location 'a)
(locf (plist 'a» ==> (property-cell-location 'a)
(locf (aref q 2» ==> (aloe q 2)

If access-form invokes a macro or a substitutable function, locf expands the
access-form and starts over again. This lets you use locf together with
defstruct accessors.

If access-form is (cdr list), locf returns the list itself instead of a locative.

Both setf and locf work by means of property lists. When the form
(setf (aref q' 2) 56) is expanded, setf looks for the setf property of the symbol
aref. The value of the setf property of a symbol should be a cons whose car is a
pattern to be matched with the access-form, and whose cdr is the corresponding
update-form, with the symbol si:val in place of the value to be stored. The setf
property of aref is a cons whose car is (aref array. subscripts) and whose cdr is
(aset si:val array. subscripts). If the transformation that setf is to do cannot

149

March 1985 Evaluation

be expressed as a simple pattern, an arbitrary function can be used: When the form
(setf (foo bar) baz) is being expanded, if the setf property of foo is a symbol, the
function definition of that symbol is applied to two arguments, (foo bar) and baz,
and the result is taken to be the expansion of the setf.

Similarly, the locf function uses the locf property, whose value is analogous. For
example, the locf property of aref is a cons whose car is (aref array. subscripts)
and whose cdr is (aloe array. subscripts). There is no si:val in the case of
locf.

incf access-form &optional amount Macro
Increments the value of a generalized variable. (incf ref) increments the
value of ref by 1. (incf ref amount) adds amount to ref and stores the sum
back in to ref.

incf expands into a setf form, so ref can be anything that setf understands
as its access-form. This also means that you should not depend on the
returned value of an incf form.

You must take great care with incf because it might evaluate parts of ref
more than once. (cl:incf doc;~ not evaluate any part of ref more than once.)

Example:

(incf (car (mumble») ==>
(setf (car (mumble» (1+ (car (mumble»» ==>
(rplaca (mumble) (1+ (car (mumble»»

The mumble function is called more than once, which can be significantly
inefficient if mumble is expensive, and which can be downright wrong if
mumble has side effects. The same problem can come up with the decf,
swapf, push, and pop macros.

decf access-form &optional amount Macro
Decrements the value of a generalized variable. (decf ref) decrements the
value of ref by 1. (decf ref amount) subtracts amount from ref and stores
the difference back in to ref.

decf expands into a setf form, so ref can be anything that setf understands
as its access-form. This also means that you should not depend on the
returned value of a decf form.

You must take great care with decf because it might evaluate parts of ref
more than once. (cl:decf does not evaluate any part of ref more than once.)

swapf a b Macro
Exchanges the value of one generalized variable with that of another. a and
b are access-forms suitable for setf. The returned value is not defined. All
the caveats that apply to incf apply to swapf as well: Forms within a and b
can be evaluated more than once. (cl:rotatef does not evaluate any form
within a and b more than once.)

150

Reference Guide to Symbolics-Usp March 1985

Examples:

(swapf a b)
==> (setf a (prog1 b (setf b a»)
==> (setq a (prog1 b (setq b a»)

(swapf (car (faa» (car (bar»)
==> (setf (car (foo» (progl (car (bar» (setf (car (bar» (car (foo»»)
==> (rplaca (faa) (prog1 (car (bar» (rplaca (bar) (car (faa»»)

Note that in the second example the functions foo and bar are called twice.

push item access-form Macro
Adds an item to the front of a list that is stored in a generalized variable.
(push item ref) creates a new cons whose car is the result of evaluating item
and whose cdr is the contents of ref, and stores the new cons into ref.

The form:

(push (hairy-function x y z) variable)

replaces the commonly used construct:

(setq variable (cons (hairy-function x y z) variable»

and is intended to be more explicit and esthetic.

All the caveats that apply to incf apply to push as well: forms within ref
might be evaluated more than once. (cl:push does not evaluate any part of
ref more than once.) The returned value of push is not defined.

push-in-area item access-form area Macro
Adds an item to the front of a list that is stored in a generalized variable.
(push-in-area item ref area) creates a new cons in area whose car is the
result of evaluating item and whose cdr is the contents of ref, and stores the
new cons into ref. See the section "Areas" in Internals, Processes, and
Storage Management.

pop access-form Macro
Removes an element from the front of a list which is stored in a generalized
variable. (pop ref) finds the cons in ref, stores the cdr of the cons back into
ref, and returns the car of the cons. Example:

(setq x '(a be»
(pop x) => a
x => (b c)

All the caveats that apply to incf apply to pop as well: forms within ref
might be evaluated more than once. (cl:pop does not evaluate any part of
ref more than once.)

151

March 1985 Evaluation

13. Evaluating a Function Form

Evaluation of a function form works by applying the function to the results of
evaluating the argument subforms. What is a function, and what does it mean to
apply it? Symbolics-Lisp contains many kinds of functions, and applying them can
do many different kinds of things. This section explains the most basic kinds of
functions and how they work, and in particular, lambda lists and all their important
features.

The simplest kind of user-defined function is the lambda-expression, which is a list
that looks like:

(1 ambda lambda-list bodyl body2 ...)

The first element of the lambda-expression is the symbol lambda; the second
element is a list called the lambda list, and the rest of the elements are called the
body. The lambda list, in its simplest form, is just a list of variables. Assuming
that this simple form is being used, here is what happens when a lambda-expression
is applied to some arguments.

1. The number of arguments and the number of variables in the lambda list
must be the same, or else an error is signalled.

2. Each variable is bound to the corresponding argument value.

3. The forms of the body are evaluated sequentially.

4. The bindings are all undone and the value of the last form in the body is
returned.

This might sound something like the description of let. The most important
difference is that the lambda-expression is a function, not a form. A let form gets
evaluated, and the values to which the variables are bound come from the evaluation
of some subforms inside the let form; a lambda-expression gets applied, and the
values are the arguments to which it is applied.

The variables in the lambda list are sometimes called parameters, by analogy with
other languages. Some other terminologies refer to these as formal parameters, and
to arguments as actual parameters.

Lambda lists can have more complex structure than simply being a list of variables.
Additional features are accessible by using certain keywords (which start with &)
and/or lists as elements of the lambda list.

The principal weakness of the simple lambda lists is that any function written with
one must only take a certain fIxed number of arguments. As we know, many very
useful functions, such as list, append, +, and so on, accept a varying number of

152

Reference Guide to Symbolics-Usp March 1985

arguments. Maclisp solved this problem by the use of lexprs and lsubrs, which were
somewhat inelegant since the parameters had to be referred to by numbers instead
of names (for example, (arg 3». (For compatibility reasons, Symbolics-Lisp supports
lexprs, but they should not be used in new programs). Simple lambda lists also
require that arguments be matched with parameters by their position in the
sequence. This makes calls hard to read when there are a great many arguments.
Keyword parameters enable the use of other styles of call which are more readable.

In general, a function in Symbolics-Lisp has zero or more positional parameters,
followed if desired by a single rest parameter, followed by zero or more keyword
parameters. The positional parameters can be required or optional, but all the
optional parameters must follow all the required ones. The required/optional
distinction does not apply to the rest parameter.

Keyword parameters are always optional, regardless of whether the lambda list
contains &optional. Any &optional appearing after the first keyword argument
has no effect. &key and &rest are independent. They can both appear and they
both use the same arguments from the argument list. The only rule is that &rest
must appear before &key in the lambda list.

This is the ordering rule for lambda-list keywords. The following keywords must
appear in this order, any or all of them can be omitted, and they cannot appear
multiple times:

&optional &rest &key &allow-other-keys &aux

There are some other keywords in addition to those mentioned here. See the
section "Lambda-list Keywords", page 309.

The caller must provide enough arguments so that each of the required parameters
gets bound, but extra arguments can be provided for some of the optional
parameters. Also, if there is a rest parameter, as many extra arguments can be
provided as desired, and the rest parameter is bound to a list of all these extras.
Optional parameters can have a default-form, which is a form to be evaluated to
produce the default value for the parameter if no argument is supplied.

Positional parameters are matched with arguments by the position of the arguments
in the argument list. Keyword parameters are matched with their arguments by
matching the keyword name; the arguments need not appear in the same order as
the parameters. If an optional positional argument is omitted, no further arguments
can be present. Keyword parameters allow the caller to decide independently for
each one whether to specify it. If a keyword is duplicated among the keyword
argumen ts, the leftmost occurrence of the keyword takes precedence.

"153

March 1985 Evaluation

13.1 Binding Parameters to Arguments

When apply (the primitive function that applies functions to arguments) matches up
the arguments with the parameters, it follows this algorithm:

1. The positional parameters are dealt with first.

2. The first required positional parameter is bound to the first argument. apply
continues to bind successive required positional parameters to the successive
arguments. If, during this process, there are no arguments left but some
required positional parameters remain that have not been bound yet, it is an
error ("too few arguments").

3. After all required parameters are handled, apply continues with the optional
positional parameters, if any. It binds successive parameters to the next
argument. If, during this process, there are no arguments left, each remaining
optional parameter's default-form is evaluated, and the parameter is bound to
it. This is done one parameter at a time; that is, first one default-form is
evaluated, and then the parameter is bound to it, then the next default-form
is evaluated, and so on. This allows the default for an argument to depend on
the previous argument.

4. If there are no remaining parameters (rest or keyword), and there are no
remaining arguments, we are finished. If there are no more parameters but
some arguments still remain, an error is signalled ("too many arguments"). If
parameters remain, all the remaining arguments are used for both the rest
parameter, if any, and the keyword parameters.

a. First, if there is a rest parameter, it is bound to a list of all the
remaining arguments. If there are no remaining arguments, it gets
bound to nil.

b. If there are keyword parameters, the same remaining arguments are
used to bind them.

5. The arguments for the keyword parameters are treated as a list of alternating
keyword symbols and associated values. Each symbol is matched with the
keyword parameter names, and the matching keyword parameter is bound to
the value that follows the symbol. All the remaining arguments are treated in
this way. Since the arguments are usually obtained by evaluation, those
arguments that are keyword symbols are typically quoted in the call; however,
they do not have to be. The keyword symbols are compared by means of eq,
which means they must be specified in the correct package. The keyword
symbol for a parameter has the same print name as the parameter, but resides
in the keyword package regardless of what package the parameter name itself
resides in. (You can specify the keyword symbol explicitly in the lambda list if
you must.)

154

Reference Guide to Symbolics-Lisp March 1985

If any keyword parameter has not received a value when all the arguments
have been processed, the default-form for the parameter is evaluated and the
parameter is bound to its value. The default form can depend on parameters
to its left in the lambda-list.

There might be a keyword symbol among the arguments that does not match
any keyword parameter name. An error is signalled unless
&a1low-other-keys is present in the lambda list, or there is a keyword
argument pair whose keyword is :aIlow-other-keys and whose value is not
nil. If an error is not signalled, then the nonmatching symbols and their
associated values are ignored. The function can access these symbols and
values through the rest parameter, if there is one. It is common for a
function to check only for certain keywords, and pass its rest parameter to
another function using lexpr-funcaIl; then that function checks for the
keywords that concern it.

The way you express which parameters are required, optional, and rest is by means
of specially recognized symbols, which are called &-keywords, in the lambda list. All
such symbols' print names begin with the character "&". A list of all such symbols
is the value of the symbol lambda-list-keywords.

13.2 Examples of Simple Lambda Lists

The keywords used here are &key, &optional and &rest. The way they are used
is best explained by means of examples; the following are typical lambda lists,
followed by descriptions of which parameters are positional, rest, or keyword, and
those that are required or optional.

(a b c) a, b, and c are all required and positional. The function must be
passed three arguments.

(a b Bcopt i ona 1 c) a and b are required, c is optional. All three are positional. The
function can be passed either two or three arguments.

(Bcopt i ona 1 abc) a, b, and c are all optional and positional. The function can be
passed any number of· arguments between zero and three,
inclusive.

(Bcrest a) a is a rest parameter. The function can be passed any number of
arguments.

(a b Bcoptional c d Bcrest e)
a and b are required positional, c and d are optional positional,
and e is rest. The function can be passed two or more
arguments.

(Bckey a b) a and b are both keyword parameters. A typical call looks like

March 1985

155

Evaluation

(faa :b 69 :a '(some elements»

This illustrates that the parameters can be matched in either
order.

(x &optional y &rest z &key a b)
x is required positional, y is optional positional, z is rest, and 8

and b are keywords. One or more arguments are allowed. One
or two arguments specify only the positional parameters.
Arguments beyond the second specify both the rest parameter and
the keyword parameters, so that

(faa 1 2 :b '(a list»

specifies 1 for x, 2 for y, (:b (a list» for z, and (a list) for b.
It does not specify 8.

(&rest z &key abc &allow-other-keys)
Z is rest, and 8, b and e are keyword parameters.
&allow-other-keys says that absolutely any keyword symbols can
appear among the arguments; these symbols and the values that
follow them have no effect on the keyword parameters, but do
become part of the value of z.

13.3 Specifying Default Forms in Lambda Lists

If not specified, the default-form for each optional or keyword parameter is nil. To
specify your own default forms, instead of putting a symbol as the element of a
lambda list, put in a list whose first element is the symbol (the parameter itself) and
whose second element is the default-form. Only optional and keyword parameters
can have default forms; required parameters are never defaulted, and rest
parameters always default to nil. For example:

(a &optional (b 3»
The default-form for b is 3. a is a required parameter, and so it
doesn't have a default form.

(&optional (a 'faa) &rest d &key b (c (symeval a»)
a's default-form is 'roo, b's is nil, and e's is (symeval a). Note
that if the function whose lambda list this is were called with no
arguments, 8 would be bound to the symbol roo, and e would be
bound to the binding of the symbol roo; this illustrates the fact
that each variable ;s bound immediately after its default-form is
evaluated, and so later default-forms can take advantage of earlier
parameters in the lambda list. b and d would be bound to nil.

Occasionally it is important to know whether or not a certain optional or keyword
parameter was defaulted. You cannot tell from just examining its value, since if the

156

Reference Guide to Symbolics-Lisp March 1985

value is the default value, there is no way to tell whether the caller passed that
value explicitly, or whether the caller did not pass any value and the parameter was
defaulted. The way to tell for sure is to put a third element into the list: the third
element should be a variable (a symbol), and that variable is bound to nil if the
parameter was not passed by the caller (and so was defaulted), or t if the parameter
was passed. The new variable is called a supplied-p variable; it is bound to t if the
parameter is supplied.

For example:

(a &optional (b 3 e»
The default-form for b is 3, and the supplied-p variable for b is c.
If the function is called with one argument, b is bound to 3 and
c is bound to nil. If the function is called with two arguments, b
is bound to the value that was passed by the caller (which might
be 3), and c is bound to t.

(&key a (b (1+ a) e»
This is the same as the example above, except that it
demonstrates use of a supplied-p variable for a keyword parameter.
This example also shows the default value of one keyword
parameter depending on a previous keyword parameter.

13.4 Specifying a Keyword Parameter's Symbol in Lambda Lists

It is possible to specify a . keyword parameter's symbol independently of its parameter
name. To do this, use two nested lists to specify the parameter. The outer list is
the one that can contain the default-form and supplied-p variable. The first element
of this list, instead of a symbol, is again a list, whose elements are the keyword
symbol and the parameter variable name. For example:

(&key «:a a» «:b b) t»
This is equivalent to (&key a (b t».

(&key «:base base-value»)
This allows a keyword that the caller knows under the name
:base, without making the parameter shadow the value of base,
which is used for printing numbers.

(&key «:base base-value) 10 base-supplied»
When the base keyword is supplied, the default value of 10 is
ignored and base-supplied is bound to t. If the keyword is not
supplied, base-value is bound to 10 and base-supplied is bound
to nil.

157

March 1985 Evaluation

13.5 Specifying Aux-variables in Lambda Lists

It is also possible to include in the lambda list some other symbols that are bound to
the values of their default-forms upon entry to the function. These are not
parameters, and they are never bound to arguments; they just get bound, as if they
appeared in a let· form. <Whether you use these aux-variables or bind the variables
with let· is a stylistic decision.)

To include such symbols, put them after any parameters, preceded by the &-keyword
&aux. For example:

(a &optional b &rest c &aux d (e 5) (f (cons a e))

d, e, and f are bound, when the function is called, to nil, 5, and a cons of the first
argument and 5. Note that aux-variables are bound sequentially rather than in
parallel.

13.6 Safety of &rest Arguments

It is important to realize that the list of arguments to which a rest-parameter is
bound is set up in whatever way is most efficiently implemented, rather than in the
way that is most convenient for the function receiving the arguments. It is not
guaranteed to be a "real" list. Sometimes the rest-args list is stored in the function­
calling stack, and loses its validity when the function returns. If a rest-argument is
to be returned or made part of permanent list-structure, it must first be copied, as
you must always assume that it is one of these special lists. See the function
copylist, page 50.

The system does not detect the error of omitting to copy a rest-argument; you
simply find that you have a value that seems to change behind your back. At other
times the rest-args list is an argument that was given to apply; therefore it is not
safe to rplaca this list, as you might modify permanent data structure. An attempt
to rplacd a rest-args list is unsafe in this case, while in the first case it signals an
error, since lists in the stack are impossible to rplacd

158

Reference Guide to Symbolics-Usp March 1985

159

March 1985 Evaluation

14. Some Functions and Special Forms

14.1 Function for Evaluation

eval form &optional env Function
Evaluates form, and returns the result. Example:

(setq x 43 foo 'bar)
(eval (list 'cons x 'fool)

=> (43 . bar)

It is unusual to explicitly call eval, since usually evaluation is done implicitly.
If you are writing a simple Lisp program and explicitly calling eval, you are
probably doing something wrong. evaI is primarily useful in programs that
deal with Lisp itself.

Also, if you are only interested in getting at the value of a symbol (that is,
the contents of the symbol's value cell), then you should use the primitive
function symeval.

The actual name of the compiled code for eval is "si:*eval" because use of
the evalhook feature binds the function cell of eval.

env defaults to the null lexical environment.

14.2 Functions for Function Invocation

apply f arglist Function
Applies the function f to the list of arguments arglist. arglist should be a
list; f can be any function, but it cannot be a special form or a macro.

Examples:

(setq fred '+)
(apply fred '(1 2» => 3
(setq fred '-)
(apply fred '(1 2» =) -1
(apply 'cons '«+ 2 3) 4» => «+ 2 3) . 4) not (5 . 4)

Of course, arglist can be nil. Note: Unlike Maclisp, apply never takes a
third argument; there are no "binding context pointers" in Symbolics-Lisp.

See the function funcall, page 160.

160

Reference Guide to Symbolics-Usp March 1985

funca11 f &rest args Function
<funca11 f al a2 ... an) applies the function f to the arguments aI, a2, ... ,
an. f cannot be a special form nor a macro; this would not be meaningful.
Example:

(cons 1 2) =) (1 • 2)
(setq cons 'plus)
(funcall cons 1 2) => 3
(cons 1 2) =) (1 • 2)

This shows that the use of the symbol cons as the name of a variable and
the use of that symbol as the name of a function do not interact. The
funca11 form evaluates the variable and gets the symbol plus, which is the
name of a different function. The cons form invokes the function named
cons.

Note: The Maclisp functions subrcall, lsubrcall, and arraycall are not
needed on the Symbolics Lisp Machine; funcall is just as efficient.
arraycall is provided for compatibility; it ignores its fIrst subform (the
Maclisp array type) and is otherwise identical to aref. subrcall and
lsubrcall are not provided.

lexpr-funca11 f &rest args Function
This is similar to a cross between apply and funcall.
(lexpr-funcall f al a2 ..• an l) applies the function f to the arguments al
through an followed by the elements of the list l. Note that since it treats
its last argument specially, lexpr-funcall requires at least two arguments.
Examples:

(lexpr-funcall 'plus 1 1 1 '(1 1 1» =) 6
/

(defun report-error (&rest args)
(lexpr-funcall (function format) error-output args»

lexpr-funcall with two arguments does the same thing as apply.

send object message-name &rest arguments Function
Sends the message named message-name to the object. arguments are the
arguments passed. send does exactly the same thing as funcall. For
stylistic reasons, it is preferable to use send instead of funcall when sending
messages because send clarifIes the programmer's intent.

lexpr-send object message-name &rest arguments Function
Sends the message named message-name to the object. arguments are the
arguments passed, except that the last element of arguments should be a list,
and all the elements of that list are passed as arguments. Example:

(send some-window :set-edges 10 10 40 40)

does the same thing as

161

March 1985 Evaluation

(setq new-edges '(10 10 40 40»
(lexpr-send some-window :set-edges new-edges)

lexpr-send is to send as lexpr-funcall is to funcall.

call function &rest argument-specifications Function
Offers a very general way of controlling what arguments you pass to a
function. You can provide either individual arguments as with funcal) or
lists of arguments as with apply, in any order. In addition, you can make
some of the arguments optional. If the function is not prepared to accept all
the arguments you specify, no error occurs if the excess arguments are
optional ones. Instead, the excess arguments are simply not passed to the
function.

The argument-specifications are alternating keywords (or lists of keywords)
and values. Each keyword or list of keywords says what to do with the value
that follows. If a value happens to require no keywords, provide () as a list
of keywords for it.

Two keywords are presently dermed: :optional and :spread :spread says
that the following value is a list of arguments. Otherwise it is a single
argument. :optional says that all the following arguments are optional. It
is not necessary to specify :optional with all the following
argument-specifications, because it is sticky. Example:

(call #'foo () x :spread y '(:optional :spread) z () w)

The arguments passed to foo are the value of x, the elements of the value of
y, the elements of the value of z, and the value of w. The function foo
must be prepared to accept all the arguments that come from x and y, but if
it does not want the rest, they are ignored.

14.3 Functions and Special Forms for Constant Values

quote object Special Form
(quote object) simply returns object. It is useful specifically because object is
not evaluated; the quote is how you make a form that returns an arbitrary
Lisp object. quote is used to include constants in a form. Examples:

(quote x) => x
(setq x (quote (some list») x => (some list)

Since quote is so useful but somewhat cumbersome to type, the reader
normally converts any form preceded by a single quote (') character into a
quote form. Example:

(setq x '(some list»

is converted by read into

162

Reference Guide to Symbolics-Usp March 1985

(setq x (quote (some list»)

function f Special Form
This means different things depending on whether f is a function or the
name of a function. (Note that in neither case is f evaluated.) The name of
a function is a symbol or a function-spec list. See the section "Function
Specs", page 297. A function is typically a list whose car is the symbol
lambda; however there are several other kinds of functions available. See
the section "Kinds of Functions", page 303.

If you want to pass an anonymous function as an argument to a function,
you could just use quote. For example:

(mapc (quote (lambda (x) (car x») some-list)

The compiler and interpreter cannot tell that the first argument is going to
be used as a function; for all they know, mapc treats its first argument as a
piece of list structure, asking for its car and cdr and so forth. The compiler
cannot compile the function; it must pass the lambda-expression unmodified.
This means that the function does not get compiled, which makes it execute
more slowly than it might otherwise. The interpreter cannot make
references to free lexical variables work by making a lexical closure; it must
pass the lambda-expression unmodified.

The function special form is the way to say that a lambda-expression
represents a function rather than a piece of list structure. You just use the
symbol function instead of quote:

(mapc (function (lambda (x) (car x») some-list)

To ease typing, the reader converts #'thing into (function thing). So #' is
similar to ' except that it produces a function form instead of a quote form.
So the above form could be written as:

(mapc #'(lambda (x) (car x» some-list)

If f is not a function but the name of a function (typically a symbol, but in
general any kind of function spec), then function returns the definition of f;
it is like fdefinition except that it is a special form instead of a function,
and so

(function fred)

is like

(fdefinition 'fred)

which is like

(fsymeval 'fred)

since fred is a symbol.

If f is the name of a local function defmed with flet or labels, then
(function f) produces a lexical closure of f, just like (function Oambda ... ».

163

March 1985 Evaluation

Another way of explaining function is that it causes f to be treated the
same way as it would as the car of a form. Evaluating the form
if argl arg2 •.•) uses the function definition of f if it is a symbol, and
otherwise expects f to be a list that is a lambda-expression. Note that the
car of a form cannot be a non symbol function spec, to avoid dimcult-to-read
code. This can be written as:

(funcall (function speC) args ...)

You should be careful about whether you use #' or '. Suppose you have a
program with a variable x whose value is assumed to contain a function that
gets called on some arguments. If you want that variable to be the car
function, there are two things you could say:

(setq x 'car)
or
(setq x #'car)

The former causes the value of x to be the symbol car, whereas the latter
causes the value of x to be the function object found in the function cell of
car. When the time comes to call the function (the program does
(funcaII x ••. », either of these two work because if you use a symbol as a
function, the contents of the symbol's function cell is used as the function.
The former case is a bit slower, because the function call has to indirect
through the symbol, but it allows the function to be redefined, traced, or
advised. (See the special form trace in Program Development Utilities. See
the special form advise in Program Development Utilities.) The latter case,
while faster, picks up the function definition out of the symbol car and does
not see any later changes to it.

lambda lambda-list body... Special Form
Provided, as a convenience, to obviate the need for using the function special
form when the latter is used to name an anonymous (lambda) function.
When lambda is used as a special form, it is treated by the evaluator and
compiler identically to the way it would have been treated if it appeared as
the operan'd of a function special form. For example, the following two
forms are equivalent:

(my-mapping-function (lambda (x) (+ x 2» list)

(my-mapping-function (function (lambda (x) (+ x 2») list)

Note that the form immediately above is usually written as:

(my-mapping-function ,'(lambda (x) (+ x 2» list)

The first form uses lambda as a special form; the latter two do not use the
lambda special form, but rather, use lambda to name an anonymous
function.

U sing lambda as a special form is incompatible with Common Lisp.

164

Reference Guide to Symbolics-Usp March 1985

false Function
Takes no arguments and returns nil.

true Function
Takes no arguments and returns t.

ignore &rest ignore Function
Takes any number of arguments and returns nil. This is often useful as a
"dummy" function; if you are calling a function that takes a function as an
argument, and you want to pass one that does not do anything and does not
mind being called with any argument pattern, use this.

ignore is also used to suppress compiler warnings for ignored arguments.
For example:

(defun faa (x y)

(ignore y)

(sin x»

comment Special Fonn
Ignores its form and returns the symbol comment. Example:

(defun faa (x)
(cond «null x) 0)

(t (comment x has something in it)
(1+ (faa (cdr x»»»

Usually it is preferable to comment code using the semicolon-macro feature of
the standard input syntax. This allows you to add comments to your code
that are ignored by the Lisp reader. Example:

(defun faa (x)
(cond «null x) 0)

(t (1+ (faa (cdr x»» ;x has something in it
»

A problem with such comments is that they are discarded when the form is
read into Lisp. If the function is read into Lisp, modified, and printed out
again, the comment is lost. However, this style of operation is hardly ever
used; usually the source of a function is kept in an editor buffer and any
changes are made to the buffer, rather than the actual list structure of the
function. Thus, this is not a real problem.

14.4 Special Forms for Sequencing

progn body.... Special Fonn
The body forms are evaluated in order from left to right and the value of the
last one is returned. progn is the primitive control structure construct for

165

March 1985 Evaluation

"compound statements". Although lambda-expressions, cond forms, do
forms, and many other control structure forms use progn implicitly, that is,
they allow multiple forms in their bodies, there are occasions when one needs
to evaluate a number of forms for their side effects and make them appear to
be a single form. Example:

(foo (cdr a)
(progn (setq b (extract frob»

(car b»
(cadr b»

progl first-form body... Special Form
Similar to progn, but it returns the value of its first form rather than its
last. It is most commonly used to evaluate an expression with side effects,
and return a value that must be computed before the side effects happen.
Example:

(setq x (prog1 y (setq y x»)

interchanges the values of the variables x and y.

progl never returns multiple values. See the special form
multiple-vaIue-progl, page 169.

prog2 first-form second-form body... Special Form
prog2 is similar to progn and progl, but it returns its second form. It is
included largely for compatibility with old programs.

14.5 Functions for Compatibility with Maclisp Lexprs

arg x Function
(arg nil), when evaluated during the application of a lexpr, gives the number
of arguments supplied to that lexpr. This is primarily a debugging aid, since
lexprs also receive their number of arguments as the value of their
lambda-variable.

(arg i), when evaluated during the application of a lexpr, gives the value of
the i'th argument to the lexpr. i must be an integer in this case. It is an
error if i is less than 1 or greater than the number of arguments supplied to
the lexpr. Example:

(defun foo nargs
(print (arg 2»
(+ (arg 1)

(arg (- nargs 1»»

;define a lexpr foo.
;print the second argument.
; return the sum of the first
;and next to last arguments.

arg exists only for compatibility with Maclisp lexprs. To write functions that
can accept variable numbers of arguments, use the &optionaI and &rest
keywords. See the section "Evaluating a Function Form", page 151.

166

Reference Guide to Symbolics-Usp March 1985

setarg i x Function
Used only during the application of a lexpr. (setarg i x) sets the lexpr's i'th
argument to x. i must be greater than zero and not greater than the
number of arguments passed to the lexpr. Mter (setarg i x) has been done,
(arg i) returns x.

setarg exists only for compatibility with Maclisp lexprs. To write functions
that can accept variable numbers of arguments, use the &optional and
&rest keywords. See the section "Evaluating a Function Form", page 151.

listify n Function
Manufactures a list of n of the arguments of a lexpr. With a positive
argument n, it returns a list of the first n arguments of the lexpr. With a
negative argument n, it returns a list of the last (abs n) arguments of the
lexpr. Basically, it works as if defined as follows:

(defun listify (n)
(cond «minusp n)

(listify1 (arg nil) (+ (arg nil) n 1»)
(t
(listify1 n 1» »

(defun listify1 (n m)
(do «i n (1- i»

; auxiliary function.

(result nil (cons (arg i) result»)
«< i m) result) »

listify exists only for compatibility with Maclisp lexprs. To write functions
that can accept variable numbers of arguments, use the &optional and
&rest keywords. See the section "Evaluating a Function Form", page 151.

167

March 1985 Evaluation

15. Multiple Values

The Symbolics Lisp Machine includes a facility by which the evaluation of a fonn can
produce more than one value. When a function needs to return more than one
result to its caller, multiple values are a cleaner way of doing this than returning a
list of the values or setq'ing special variables to the extra values. In most Lisp
function calls, multiple values are not used. Special syntax is required both to
produce multiple values and to receive them.

15.1 Primitive for Producing Multiple Values

The primitive for producing multiple values is values, which takes any number of
arguments and returns that many values. If the last fonn in the body of a function
is a values with three arguments, then a call to that function returns three values.
Many system functions produce multiple values, but they all do it via the values
primitive.

values &rest args Function
Returns multiple values, its arguments. This is the primitive function for
producing multiple values. It is valid to call values with no arguments; it
returns no values in that case.

values-list list Function
Returns multiple values, the elements of the list. <values-list '(a b c» is
the same as (values 'a 'b 'c). list can be nil, the empty list, which causes
no values to be returned.

15.2 Special Forms for Receiving Multiple Values

The special forms for receiving multiple values are multiple-value,
multiple-value-bind, multiple-value-list, multiple-value-call, and
multiple-value-progl. These consist of a fonn anp, an indication of where to put
the values returned by that fonn. With the fIrst two of these, the caller requests a
certain number of returned values. If fewer values are returned than the number
requested, then it is exactly as if the rest of the values were present and had the
value nil. If too many values are returned, the rest of the values are ignored. This
has the advantage that you do not have to pay attention to extra values if you don't
care about them, but it has the disadvantage that error-checking similar to that
done for function calling is not present.

168

Reference Guide to Symbolics-Lisp March 1985

multiple-value (variable .. .) fonn Special Fonn
U sed for calling a function that is expected to return more than one value.
fonn is evaluated, and the variables are set (not lambda-bound) to the values
returned by fonn. If more values are returned than there are variables, then
the extra values are ignored. If there are more variables than values
returned, extra values of nil are supplied. If nil appears in the var-list, then
the corresponding value is ignored (you can't use nil as a variable.) Example:

(multiple-value (symbol already-there-p)
(intern "goOH»

In addition to its first value (the symbol), intern returns a second value,
which is t if the symbol returned as the first value was already interned, or
else nil if intern had to create it. So if the symbol goo was already known,
the variable already-there-p is set to t, otherwise it is set to nil.

multiple-value is usually used for effect rather than for value; however, its
value is defined to be the first of the values returned by fonn.

multiple-value-bind (variable ... J fonn body... Special Fonn
Similar to multiple-value, but locally binds the variables that receive the
values, rather than setting them, and has a body - a set of forms that are
evaluated with these local bindings in effect. First fonn is evaluated. Then
the variables are bound to the values returned by fonn. Then the body
forms are evaluated sequentially, the bindings are undone, and the result of
the last body form is returned.

multiple-value-list fonn Special Fonn
Evaluates fonn and returns a list of the values it returned. This is useful for
when you do not know how many values to expect. Example:

(setq a (multiple-value-list (intern "goOH»)
a => (goo nil)

This is similar to the example of multiple-value; a is set to a list of two
elements, the two values returned by intern.

multiple-value-call function body... Special Form
First evaluates function to obtain a function. It then evaluates all the forms
in body, gathering together all the values of the forms (not just one value
from each). It gives these values as arguments to the function and returns
whatever the function returns.

For example, suppose the function frob returns the first two elements of a
list of numbers:

(multiple-value-call #'+ (frob '(1 2 3» (frob '(4 5 6»)
<:> (+ 1 2 4 5) => 12.

169

March 1985 Evaluation

multiple-value-progl first-form body... Special Form
Like progl, except that if its first form returns multiple values,
multiple-value-progl returns those values. In certain cases, progl is more
efficient than multiple-value-progl, which is why both special forms exist.

15.3 Passing-back of Multiple Values

Due to the syntactic structure of Lisp, it is often the case that the value of a certain
form is the value of a subform of it. For example, the value of a cond is the value
of the last form in the selected clause. In most such cases, if the subform produces
mUltiple values, the original form also produces all of those values. This passing-back
of multiple values of course has no effect unless eventually one of the special forms
for receiving multiple values is reached. The exact rule governing passing-back of
multiple values is as follows:

If X is a form, and Y is a subform of X, then if the value of Y is unconditionally
returned as the value of X, with no intervening computation, then all the multiple
values returned by Y are returned by X. In all other cases, multiple values or only
single values can be returned at the discretion of the implementation; users should
not depend on whatever way it happens to work, as it might change in the future
or in other implementations. The reason we do not guarantee nontransmission of
multiple values is because such a guarantee is not very useful and the efficiency cost
of enforcing it is high. Even setq'ing a variable to the result of a form, then
returning the value of that variable might be made to pass multiple values by an
optimizing compiler that realized that the setqing of the variable was unnecessary.

Note that use of a form as an argument to a function never receives multiple values
from that form. That is, if the form (foo (bar» is evaluated and the call to bar
returns many values, foo is still only called on one argument (namely, the first value
returned), rather than called on all the values returned. We choose not to generate
several separate arguments from the several values, because this makes the source
code obscure; it is not syntactically obvious that a single form does not correspond to
a single argument. Instead, the first value of a form is used as the argument and
the remaining values are discarded. Receiving of multiple values is done only with
the special forms discussed in another section. See the section "Special Forms for
Receiving Multiple Values", page 167.

15.4 Interaction of Some Common Special Forms with Multiple
Values

The interaction of special forms with multiple values can be deduced from the rule
mentioned in another section: See the section "Passing-back of Multiple Values",
page 169. Note well that when it says that multiple values are not returned, it

170

Reference Guide to Symbolics-Lisp March 1985

really means that they might or might not be returned, and you should not write
any programs that depend on which way it works.

• The body of a detun or a lambda, and variations such as the body of a
function, the body of a let, and so on, pass back multiple values from the last
form in the body.

• eval, apply, tunc all , and lexpr-tuncall pass back multiple values from the
function called.

• progn passes back multiple values from its last form. progv and progw do
so also. progl and prog2, however, do not pass back mUltiple values (though
multiple-value-progl does).

• Multiple values are passed back from the last subform of an and or or form,
but not from previous forms since the return is conditional. Remember that
multiple values are only passed back when the value of a subform is
unconditionally returned from the containing form. For example, consider the
form (or (foo) (bar». If foo returns a non-nil first value, then only that
value is returned as the value of the form. But if it returns nil (as its first
value), then or returns whatever values the call to bar returns.

• cond passes back multiple values from the last form in the selected clause, but
not if the clause is only one long (that is, the returned value is the value of
the predicate) since the return is conditional. This rule applies even to the
last clause, where the return is not really conditional (the implementation is
allowed to pass or not to pass multiple values in this case, and so you should
not depend on what it does). t should be used as the predicate of the last
clause if multiple values are desired, to make it clear to the compiler (and any
human readers of the code!) that the return is not conditional.

• The variants of cond such as if, when, select, selectq, and dispatch pass
back multiple values from the last form in the selected clause.

• The number of values returned by prog depends on the return form used to
return from the prog. prog returns all of the values produced by the
subform of return. (If a prog drops off the end it just returns a single nil.)

• do behaves like prog with respect to return. All the values of the last
exit-fonn are returned.

• unwind-protect passes back multiple values from its protected form.

• catch passes back multiple values from the last form in its body when it exits
normally.

171

March 1985 Evaluation

• The obsolete special form ·catch does not pass back multiple values from the
last form in its body, because it is defined to return its own second value to
tell you whether the ·catch form was exited normally or abnormally. This is
sometimes inconvenient when you want to propagate back multiple values but
you also want to wrap a ·catch around some forms. Usually people get
around this problem by using catch or by enclosing the ·catch in a prog and
using return to pass out the multiple values, returning through the ·catch.

172

Reference Guide to Symbolics-Usp March 1985

173

March 1985 Row of Control

PART V.

Flow of Control

174

Reference Guide to Symbolics-Usp March 1985

175

March 1985 Flow of Control

16. Introduction to Flow of Control

Lisp provides a variety of structures for flow of control.

Function application is the basic method for construction of programs. Operations
are written as the application of a function to its arguments. Usually, Lisp programs
are written as a large collection of small functions, each of which implements a
simple operation. These functions operate by calling one another, and so larger
operations are defined in terms of smaller ones.

A function can always call itself in Lisp. The calling of a function by itself is known
as recursion; it is analogous to mathematical induction.

The performing of an action repeatedly (usually with some changes between
repetitions) is called iteration, and is provided as a basic control structure in most
languages. The do statement of PIJI, the for statement of ALGOL/60, and so on
are examples of iteration primitives. Lisp provides two general iteration facilities: do
and loop, as well as a variety of special-purpose iteration facilities. (loop is
sufficiently complex that it is explained in its own section. See the section "The
loop Iteration Macro", page 205.) There is also a very general construct to allow
the traditional "goto" control structure, called prog.

A conditional construct is one that allows a program to make a decision, and do one
thing or another based on some logical condition. Lisp provides the simple one-way
conditionals and and or, the simple two-way conditional if, and more general multi­
way conditionals such as cond and selectq. The choice of which form to use in
any particular situation is a matter of personal taste and style.

There are some non local exit control structures, analogous to the leave, exit, and
escape constructs in many modem languages.

The general ones are catch and throw; there is also return and its variants, used
for exiting the iteration constructs do, loop, and prog.

Symbolics-Lisp also provides a coroutine capability and a multiple-process facility. See
the section "Processes" in Internals, Processes, and Storage Management. There is
also a facility for generic function calling using message passing. See the section
"Flavors", page 415.

176

Reference Guide to Symbolics-Lisp March 1985

177

March 1985 Flow of Control

17. Conditionals

if Special Form
The simplest conditional form. The "if-then" form looks like:

(1 f predicate-form then-form)

predicate-form is evaluated, and if the result is non-nil, the then-form is
evaluated and its result is returned. Otherwise, nil is returned.

In the "if-then-else" form, it looks like:

(1 f predicate-form then-form else-form)

predicate-form is evaluated, and if the result is non-nil, the then-form is
evaluated and its result is returned. Otherwise, the else-form is evaluated
and its result is returned.

If there are more than three subforms, if assumes you want more than one
else-form; they are evaluated sequentially and the result of the last one is
returned, if the predicate returns nil.

cond Special Form
Consists of the symbol cond followed by several clauses. Each clause consists
of a predicate form, called the antecedent, followed by zero or more consequent
forms.

(cond (antecedent consequent consequent . ..)
(antecedent)
(antecedent consequent ...)
. ..)

Each clause represents a case that is selected if its antecedent is satisfied and
the antecedents of all preceding clauses were not satisfied. When a clause is
selected, its consequent forms are evaluated.

cond processes its clauses in order from left to right. First, the antecedent
of the current clause is evaluated. If the result is nil, cond advances to the
next clause. Otherwise, the cdr of the clause is treated as a list of
consequent forms that are evaluated in order from left to right. After
evaluating the consequents, cond returns without inspecting any remaining
clauses. The value of the cond special form is the value of the last
consequent evaluated, or the value of the antecedent if there were no
consequents in the clause. If cond runs out of clauses, that is, if every
antecedent evaluates to nil, and thus no case is selected, the value of the
cond is nil. Example:

178

Reference Guide to Symbolics-Lisp March 1985

(cond «zerop x)
(+ y 3»

«null y)
(setq y 4)
(cons x z»

(z)

(t
105)

)

;First clause:
;(zerop x) is the antecedent.
;(+ y 3) is the consequent.
;A clause with 2 consequents:
;this
;and this.
;A clause with no consequents: the antecedent is
;just z. If z is non-nil, it is returned.
jAn antecedent of t
jis always satisfied.
;This is the end of the condo

cond-every Special Form
Has the same syntax as cond, but executes every clause whose predicate is
satisfied, not just the first. If a predicate is the symbol otherwise, it is
satisfied if and only if no preceding predicate is satisfied. The value returned
is the value of the last consequent form in the last clause whose predicate is
satisfied. Multiple values are not returned.

and form... Special Form
Evaluates the forms one at a time, from left to right. If any form evaluates
to nil, and immediately returns nil without evaluating the remaining forms.
If all the forms evaluate to non-nil values, and returns the value of the last
form.

and can be used in two different ways. You can use it as a logical and
function, because it returns a true value only if all of its arguments are true.
So you can use it as a predicate:

(if (and socrates-is-a-person
a11-peop1e-are-morta1)

(setq socrates-is-morta1 t»

Because the order of evaluation is well-defined, you can do:

(if (and (boundp 'x)
(eq x 'foo»

(setq y 'bar»

knowing that the x in the eq form is not evaluated if x is found to be
unbound.

You can also use and as a simple conditional form:

(and (setq temp (assq x y»
(rp1acd temp z»

(and bright-day
glorious-day
(prine "It is a bright and glorious day."»

Note: (and) => t, which is the identity for the and operation.

179

March 1985 Flow of Control

or form... Special Form
Evaluates the forms one by one, from left to right. If a form evaluates to
nil, or proceeds to evaluate the next form. If there are no more forms, or
returns nil. But if a form evaluates to a non-nil value, or immediately
returns that value without evaluating any remaining forms.

As with and, or can be used either as a logical or function, or as a
conditional.

(or it-is-fish
it-is-fowl
(print "It is neither fish nor fowl."»

Note: (or) => nil, the identity for this operation.

when test body... Macro
The forms in body are evaluated when test returns non-null. In that case, it
returns the value(s) of the last form evaluated. When test returns nil, when
returns nil.

(when (eq 1 1) (setq a b) "faa") =>
"foo"
(when (eq 1 2) (setq a b) "foo") =>
NIL

When body is empty, when always returns nil.

unless test body... Macro
The forms in body are evaluated when test returns nil. It returns the value
of the last form evaluated. When test returns something other than nil,
unless returns nil.

(unless (eq 1 1) (setq a b) "foo") =>
NIL
(unless (eq 1 2) (setq a b) "foo") =>
"foo"

When body is empty, unless always returns nil.

selectq Special Form
A conditional that chooses one of its clauses to execute by comparing the
value of a form against various constants, which are typically keyword
symbols. Its form is as follows:

(se 1 ectq key-form
(test consequent consequent ...)
(test consequent consequent ...)
(test consequent consequent ...)
...)

The first thing selectq does is to evaluate key-form; call the resulting value
key. Then selectq considers each of the clauses in turn. If key matches the

180

Reference Guide to Symbolics-Lisp March 1985

clause's test, the consequents of this clause are evaluated, and selectq
returns the value of the last consequent. If there are no matches, selectq
returns nil.

A test can be any of the following:

A symbol If the key is eq to the symbol, it matches.

A number If the key is eq to the number, it matches. Only small
numbers (integers) work.

A list If the key is eq to one of the elements of the list, then it
matches. The elements of the list should be symbols or
integers.

t or otherwise The symbols t and otherwise are special keywords that
match anything. Either symbol can be used; t is mainly
for compatibility with Maclisp's caseq construct. To be
useful, this should be the last clause in the selectq.

Note that the tests are not evaluated; if you want them to be evaluated, use
select rather than selectq. Example:

(selectq x
(foo (do-this»
(bar (do-that»
«baz quux mum) (do-the-other-thing»
(otherwise (ferror nil "Never heard of -5" x»)

is equivalent to:

(cond «eq x 'fool (do-this»
«eq x 'bar) (do-that»
«memq x '(baz quux mum» (do-the-other-thing»
(t (ferror nil "Never heard of -5" x»)

Also see defselect, a special form for defining a function whose body is like a
selectq.

select Special Fonn
The same as selectq, except that the elements of the tests are evaluated
before they are used.

This creates a syntactic ambiguity: if (bar baz) is seen the first element of a
clause, is it a list of two forms, or is it one form? select interprets it as a
list of two forms. If you want to have a clause whose test is a single form,
and that form is a list, you· have to write it as a list of one form. Example:

March 1985

(select (frob x)
(foo 1)

«bar baz) 2)
«(current-frob» 4)
(otherwise 3»

is equivalent to:

(let «var (frob x»)
(cond «eq var fool 1)

«or (eq var bar) Ceq var baz» 2)
«eq var (current-frob» 4)
(t 3»)

181

Flow of Control

selector Special Form
The same as select, except that you get to specify the function used for the
comparison instead of eq. For example:

(selector (frob x) equal
«'(one. two» (frob-one x»
«'(three. four» (frob-three x»
(otherwise (frob-any x»)

is equivalent to:

(let «var (frob x»)
(cond «equal var '(one. two» (frob-one x»

«equal var '(three. four» (frob-three x»
(t (frob-any x»»

typecase form clauses... Special Form
Selects various forms to be evaluated depending on the type of some object.
It is something like select. A typecase form looks like:

(typecase form
(types consequent consequent ...)
(types consequent consequent ...)

form is evaluated, producing an object. typecase examines each clause in
sequence. types in each clause is either a single type (if it is a symbol) or a
list of types. If the object is of that type, or of one of those types, then the
consequents are evaluated and the result of the last one is returned.
Otherwise, typecase moves on to the next clause. As a special case, types
can be otherwise; in this case, the clause is always executed, so this should
be used only in the last clause. For an object to be of a given type means
that if typep is applied to the object and the type, it returns t. That is, a
type is something meaningful as a second argument to typep. Example:

182

Reference Guide to Symbolics-Usp March 1985

(defun tell-about-car (x)
(typecase (car x)

(:fixnum "The car is a number.")
«:string :symbol) "The car is a name.")
(otherwise "I don't know."»)

(tell-about-car '(1 a» =) "The car is a number."
(tell-about-car '(a 1» =) "The car is a name."
(tell-about-car '("word" "more"» =) "The car is a name."
(tell-about-car '(1.0» =)

"I don't know."

dispatch Special Form
(dispatch byte-specifier number clauses ...) is the same as select (not
selectq), but the key is obtained by evaluating (ldb byte-specifier number).
byte-specifier and number are both evaluated. See the section "Byte
Manipulation Functions", page 115. Byte specifiers and Idb are explained in
that section. Example:

(prine (dispatch 0202 cat-type
(0 "5i amese .. ")
(1 "Persian.")
(2 "Alley.")
(3 (ferror nil

"-5 is not a known cat type."
cat-type»»

It is not necessary to include all possible values of the byte that is dispatched
on.

selectq-every Special Form
Has the same syntax as selectq, but like cond-every, executes every
selected clause instead of just the first one. If an otherwise clause is
present, it is selected if and only if no preceding clause is selected. The value
returned is the value of the last form in the last selected clause. Multiple
values are not returned. Example:

(selectq-every animal
«cat dog) (setq legs 4»
«bird man) (setq legs 2»
«cat bird) (put-in-oven animal»
«cat dog man) (beware-of animal»)

caseq Special Form
Provided for Maclisp compatibility; it is exactly the same as selectq. This is
not perfectly compatible with Maclisp, because selectq accepts otherwise as
well as t where caseq would not accept otherwise, and because Maclisp
does some error checking that selectq does not. Maclisp programs that use
caseq work correctly as long as they do not use the symbol otherwise as
the key.

183

March 1985 Flow of Control

18. Blocks and Exits

block and return-from are the primitive special forms for premature exit from a
piece of code. block defines a place that can be exited, and return-from transfers
control to such an exit.

block and return-from differ from catch and throw in their scoping rules. block
and return-from have lexical scope; catch and throw have dynamic scope.

See the section "Nonlocal Exits", page 197.

block name form... Special Form
Evaluates each form in sequence and normally returns the (possibly multiple)
values of the last form. However, <return-from name value) or one of its
variants (a return or return-list form) might be evaluated during the
evaluation of some form. In that case, the (possibly multiple) values that
result from evaluating value are immediately returned from the innermost
block that has the same name and that lexically contains the return-from
form. Any remaining forms in that block are not evaluated.

name is not evaluated. It must be a symbol.

The scope of name is lexical. That is, the return-from form must be inside
the block itself (or inside a block that that block lexically contains), not inside
a function called from the block.

do, prog, and their variants establish implicit blocks around their bodies; you
can use return-from to exit from them. These blocks are named nil unless
you specify a name explicitly.

For example, the following two forms are equivalent:

(cond «predicate x)
(do- one- th i ng»

(t
(format t "The value of X is -5-%" x)
(do-the-other-thing)
(do-something-else-too»)

(block deal-with-x
(when (predicate x)

(return-from deal-with-x (do-one-thing»)
(format t "The value of X is -5-%" x)
(do-the-other-thing)
(do-something-else-too»

184

Reference Guide to Symbofics-Usp March 1985

return-from name value... Special Form
Exits from a block or a construct like do or prog that establishes an
implicit block around its body.

The value subforms are optional. Any value forms are evaluated, and the
resulting values (possibly multiple, possibly none) are returned from the
innermost block that has the same name and that lexically contains the
return-from form. The returned values depend on how many value
subforms are provided:

value sUbforms

None

1

>1

Values returned from block

None

All values that result from evaluating the value
subform

One value from each value subform

This means that the following two forms are equivalent:

(return-from name forml form2 form3)

(return-from name (values forml form2 form3»

The latter form is the preferred way to return multiple values, for the sake
of both clarity and compatibility with Common Lisp.

name is not evaluated. It must be a symbol.

The scope of name is lexical. That is, the return-from form must be inside
the block itself (or inside a block that that block lexically contains), not inside
a function called from the block.

When a construct like do or an unnamed prog establishes an implicit block,
its name is nil. You can use either (return-from nil value ...) or the
equivalent (return value ...) to exit from such a construct.

The return-from form is unusual: It never returns a value itself, in the
conventional sense. It is not useful to write (setq a (return-from name 3»,
because when the return-from form is evaluated, the containing block is
immediately exited, and the setq never happens.

For an explanation of named dos and progs: See the special form
do-named, page 192.

Following is an example, returning a single value from an implicit block
named nil:

185

March 1985 Row of Control

(do «x x (cdr x»
(n 0 (* n 2»)

«null x) n)
(cond «atom (car x»

(setq n (1+ n»)
«memq (caar x) '(sys boom bleah»
(return-from nil n»»

Following is another example, returning multiple values. The function below
is like assq, but it returns an additional value, the index in the table of the
entJ:Y it found:

(defun as~qn (x table)
(do «1 table (cdr 1»

(n 0 (1+ n»)
« nu 11 1) n i 1)

(if (eq (caar 1) x)
(return-from nil (values (car 1) n»»)

return value... Special Form
Can be used to exit from a construct like do or an unnamed prog that
establishes an implicit block around its body. In this case the name of the
block is nil, and (return value ...) is the same as (return-from nil value ...).
See the special form return-from, page 184.

In addition, break recognizes the typed-in form (return value) specially. If
this form is typed at a break, value is evaluated and returned as the value
of break. Only the result of the first value form is returned, but if this
form itself returns multiple values, they are all returned as the value of
break. That is, (return 'foo 'bar) returns only foo, but
(return (values 'foo 'bar» returns both foo and bar. See the special
form break in User's Guide to Symbolics Computers.

It is valid to write simply (return), which exits from the block without
returning any values. (return) inside a break loop causes break to return
nil.

If not specially recognized by break and not inside a block, return signals
an error.

return-list list Function
An obsolete function supported for compatibility with earlier releases. It is
like return except that the block returns ail of the elements of list as
multiple values. This means that the following two forms are equivalent:

(return-list list)

(return (values-list list»

186

Reference Guide to Symbolics-Lisp March 1985

The latter form is the preferred way to return list elements as multiple
values from a block named nil. To direct the returned values to a named
block, use:

(return-from name (values-list list».

187

March 1985 Flow of Control

19. Transfer of Control

tagbody and go are the primitive special forms for unstructured transfer of control.
tagbody defines places that can receive a transfer of control, and go transfers
control to such a place.

tag body tag-or-statement... Special Form
The body of a tagbody form is a series of tags or statements. A tag is a
symbol; a statement is a list. tagbody processes each element of the body in
sequence. It ignores tags and evaluates statements, discarding the results. If
it reaches the end of the body, it returns nil.

If a (go tag) form is evaluated during evaluation of a statement, tagbody
searches its body and the bodies of any tagbody forms that lexically contain
it. Control is transferred to the innermost tag that is eq to the tag in the
go form. Processing continues with the next tag. or statement that follows
the tag to which control is transferred.

The scope of the tags is lexical. That is, the go form must be inside the
tagbody construct itself (or inside a tag body form that that tagbody
lexically contains), not inside a function called from the tagbody.

do, prog, and their variants use implicit tagbody constructs. You can
provide tags within their bodies and use go forms to transfer control to the
tags.

For example, the following two forms are equivalent:

(dotimes (i n) (print i»

(1 et « i 0»
(when (plusp n)

(tagbody
loop
(print i)

(setq i (1+ i»
(when « i n) (go loop»»)

go tag Special Form
Transfers control within a tagbody form or a construct like do or prog that
uses an implicit tagbody.

The tag must be a symbol. It is not evaluated. go transfers control to the
tag in the body of the tagbody that is eq to the tag in the go form. If the
body has no such tag, the bodies of any lexically containing tagbody forms
are examined as well. If no tag is found, an error is signalled.

The scope of tag is lexical. That is, the go form must be inside the

188

Reference Guide to Symbolics-Usp March 1985

tagbody construct itself (or inside a tagbody form that that tagbody
lexically contains), not inside a function called from the tagbody.

Example:

(prog (x y z)
(setq x some frob)

loop
do something
(if some predicate (go endtag»
do something more
(if (minusp x) (go loop»

endtag
(return z»

189

March 1985 Flow of Control

20. Iteration

do Special Form
Provides a simple generalized iteration facility, with an arbitrary number of
"index variables" whose values are saved when the do is entered and restored
when it is left, that is, they are bound by the do. The index variables are
used in the iteration performed by do. At the beginning, they are initialized
to specified values, and then at the end of each trip around the loop the
values of the index variables are changed according to specified rules. do
allows you to specify a predicate that determines when the iteration
terminates. The value to be returned as the result of the form can,
optionally, be specified.

do comes in two varieties.

The more general, so-called "new-style" do looks like:

(do « var init repeat) ...)
(end-test exit-form ...)
body ...)

The first item in the form is a list of zero or more index variable specifiers.
Each index variable specifier is a list of the name of a variable var, an initial
value form init, which defaults to nil if it is omitted, and a repeat value form
repeat. If repeat is omitted, the var is not changed between repetitions. If
init is omitted, the var is initialized to nil.

An index variable specifier can also be just the name of a variable, rather
than a list. In this case, the variable has an initial value of nil, and is not
changed between repetitions.

All assignment to the index variables is done in parallel. At the beginning of
the first iteration, all the init forms are evaluated, then the vars are bound
to the values of the in it forms, their old values being saved in the usual way.
Note that the init forms are evaluated before the vars are bound, that is,
lexically outside of the do. At the beginning of each succeeding iteration
those vars that have repeat forms get set to the values of their respective
repeat forms. Note that all the repeat forms are evaluated before any of the
vars is set.

The second element of the do-form is a list of an end-testing predicate form
end-test, and zero or more forms, called the exit-forms. This resembles a
cond clause. At the beginning of each iteration, after processing of the
variable specifiers, the end-test is evaluated. If the result is nil, execution
proceeds with the body of the do. If the result is not nil, the exit-forms are
evaluated from left to right and then do returns. The value of the do is the
value of the last exit-form, or nil if there were no exit-forms (not the value of
the end-test as you might expect by analogy with cond).

190

Reference Guide to Symbolics-Lisp March 1985

Note that the end-test gets evaluated before the first time the body is
evaluated. do first initializes the variables from the init forms, then it
checks the end-test, then it processes the body, then it deals with the repeat
forms, then it tests the end-test again, and so on. If the end-test returns a
non-nil value the first time, then the body is never processed.

If the second element of the form is nil, there is no end-test nor exit-forms,
and the body of the do is executed only once. In this type of do it is an
error to have repeats. This type of do is no more powerful than let; it is
obsolete and provided only for Maclisp compatibility.

If the second element of the form is (nil), the end-test is never true and
there are no exit-forms. The body of the do is executed over and over. The
infinite loop can be terminated by use of return or throw.

If a return special form is evaluated inside the body of a do, then the do
immediately stops, unbinds its variables, and returns the values given to
return. See the special form return, page 185. return and its variants are
explained in more detail in that section. go special forms and prog-tags can
also be used inside the body of a do and they mean the same thing that
they do inside prog forms, but we discourage their use since they complicate
the control structure in a hard-to-understand way.

The other, so-called "old-style" do looks like:

(do var init repeat end-test body . ..)

The first time through the loop var gets the value of the init form; the
remaining times through the loop it gets the value of the repeat form, which
is reevaluated each time. Note that the init form is evaluated before var is
bound, that is, lexically outside of the do. Each time around the loop, after
var is set, end-test is evaluated. If it is non-nil, the do finishes and returns
nil. If the end-test evaluated to nil, the body of the loop is executed. As
with the new-style do, return and go can be used in the body, and they
have the same meaning.

Examples of the older variety of do:

(setq n (array-length foo-array»
(do i 0 (1+ i) (= i n)

(aset 0 foo-array i» ;zeroes out the array foo-array

(do zz x (cdr zz) (or (null zz)
(zerop (f (car zz»»)

;this applies f to each element of x
;continuously until f returns zero.
;Note that the do has no body.

return forms are often useful to do simple searches:

March 1985

191

Flow of Control

{do i 0 (1+ i) (= i n) ;Iterate over the length of foo-array.
{and (= (aref foo-array i) 5) ;If we find an element that

;equals 5,
(return i») ;then return its index.

Examples of the new form of do:

{do {(i 0 (1+ i» ;This is just the same as the above example,
{n (array-length foo-array»)

({= in» ;but written as a new-style do.
(aset 0 foo-array i» ;Note how the setq is avoided.

{do {(z list (cdr z» ;z starts as list and is cdr'ed each time.
(yother-list) ;y starts as other-list, and is unchanged by the do.
(x) ;x starts as nil and is not changed by the do.
w)

(nil)
body)

;w starts as nil and is not changed by the do.
;The end-test is nil, so this is an infinite loop.

;Presumably the body uses return somewhere.

The following construction exploits parallel assignment to index variables:

(do {(x e (cdr x»
(oldx x x»

({null x»
body)

On the first iteration, the value of oldx is whatever value x had before the
do was entered. On succeeding iterations, oldx contains the value that x
had on the previous iteration.

In either form of do, the body can contain no forms at all. Very often an
iterative algorithm can be most clearly expressed entirely in the repeats and
exit-fonns of a new-style do, and the body is empty.

The following example is like (map 1 is t 'f x y). (See the section "Mapping",
page 201.)

{do {(x x (cdr x»
(y y (cdr y»
{z nil (cons (f x y) z») ;exploits parallel assignment.

({or (null x) (null y»
(nreverse z» ;typical use of nreverse.

) ;no do-body required.

For information about a general iteration facility based on a keyword syntax
rather than a list-structure syntax: See the section "The loop Iteration
Macro", page 205.

do· Special Fonn
Just like do, except that the variable clauses are evaluated sequentially
rather than in parallel. When a do starts, all the initialization forms are

192

Reference Guide to Symbolics-Usp March 1985

evaluated before any of the variables are set to the results; when a do·
starts, the first initialization form is evaluated, then the first variable is set
to the result, then the second initialization form is evaluated, and so on.
The stepping forms work analogously.

do-named Special Form
Sometimes one do is contained inside the body of an outer do. The return
function always returns from the innermost surrounding do, but sometimes
you want to return from an outer do while within an inner do. You can do
this by giving the outer do a name. You use do-named instead of do for
the outer do, and use return-from, specifying that name, to return from
the do-named.

The syntax of do-named is like do except that the symbol do is immediately
followed by the name, which should be a symbol. Example:

(do-named george «a 1 (1+ a»
(d 'foo»

« > a 4) 7)
(do «c b (cdr c»)

«null c»

(return-from george (cons b d»
... »

If the symbol t is used as the name, it is made "invisible" to returns; that
is, returns inside that do-named return to the next outermost level whose
name is not t. (return-from t ...) returns from a do-named named t. You
can also make a do-named invisible to returns by including immediately
inside it the form (declare (invisible-block t». This feature is not
intended to be used by user-written code; it is for macros to expand into.

If the symbol nil is used as the name, it is as if this were a regular do. Not
having a name is the same as being named nil.

progs and loops can have names just as dos can. Since the same functions
are used to return from all of these forms, all of these names are in the
same namespace; a return returns from the innermost enclosing iteration
form, no matter which of these it is, and so you need to use names if you
nest any of them within any other and want to return to an outer one from
inside an inner one.

do*-named Special Form
Just like do-named, except that the variable clauses are evaluated
sequentially, rather than in parallel. See the special form do·, page 191.

dotimes (index count) body... Special Form
A convenient abbreviation for the most common integer iteration. dotimes
performs body the number of times given by the value of count, with index
bound to 0, 1, and so forth on successive iterations. Example:

193

March 1985 Flow of Control

(dotimes (i (II m n»
(frob i»

is equivalent to:

(do «i 0 (1+ i»
(count (II m n»)
«~ i count»

(frob i»

except that the name count is not used. Note that i takes on values
starting at 0 rather than 1, and that it stops before taking the value
(/ / m n) rather than after. You can use return and go and prog-tags
inside the body, as with do. dotimes forms return nil unless returned from
explicitly with return. For example:

(dotimes (i 5)
(if (eq (aref a i) 'foo)

(return i»)

This form searches the array that is the value of a, looking for the symbol
foo. It returns the flXIlum index of the first element of a that is foo, or
else nil if none of the elements are foo.

doUst (item list) body... Special Form
A convenient abbreviation for the most common list iteration. doUst
performs body once for each element in the list that is the value of list, with
item bound to the successive elements. Example:

(do1ist (item (frobs fool)
(mung item»

is equivalent to:

(do «1st (frobs faa) (cdr 1st»
(item»

«null 1st»
(setq item (car 1st»
(mung item»

except that the name 1st is not used. You can use return and go and
prog-tags inside the body, as with do. doUst forms return nil unless
returned from explicitly with return.

keyword-extract Special Form
Aids in writing functions that take keyword arguments in the standard
fashion. You can also use the &key lambda-list keyword to create functions
that take keyword arguments. &key is preferred and is substantially more
efficient; keyword-extract is generally considered to be obsolete. See the
section "Evaluating a Function Form", page 151.

194

Reference Guide to Symbolics-Usp March 1985

The form:
(keyword-extract key-list iteration-var

keywords flags other-clauses ...)

parses the keywords out into local variables of the function. key-list is a form
that evaluates to the list of keyword arguments; it is generally the function's
&rest argument. iteration-var is a variable used to iterate over the list;
sometimes other-clauses uses the form:

(car (setq iteration-var (cdr iteration-var»)

to extract the next element of the list. (Note that this is not the same as
pop, because it does the car after the cdr, not before.)

keywords defines the symbols that are keywords to be followed by an
argument. Each element of keywords is either the name of a local variable
that receives the argument and is also the keyword, or a list of the keyword
and the variable, for use when they are different or the keyword is not to go
in the keyword package. Thus, if keywords is (a (b c) d) then the keywords
recognized are :a, b, and :d. If:8 is specified its argument is stored into 8.
If :d is specified its argument is stored into d. If b is specified, its .argument
is stored into c.

Note that keyword-extract does not bind these local variables; it assumes
you have done that somewhere else in the code that contains the
keyword-extract form.

flags defines the symbols that are keywords not followed by an argument. If
a flag is seen its corresponding variable is set to t. (You are assumed to have
initialized it to nil when you bound it \vith let or &aux.) As in keywords, an
element of flags can be either a variable from which the keyword is deduced,
or a list of the keyword and the variable.

If there are any other-clauses, they are selectq clauses selecting on the
keyword being processed. These clauses are for handling any keywords that
are not handled by the keywords and flags elements. These can be used to
do special processing of certain keywords for which simply storing the
argument into a variable is not good enough. Unless the other-clauses
include an otherwise (or t clause, after them there is an otherwise clause
to complain about any unhandled keywords found in key-list. If you write
your own otherwise clause, it is up to you to take care of any unhandled
keywords.

prog Special Fonn
Provides temporary variables, sequential evaluation of forms, and a "goto"
facility. A typical prog looks like:

March 1985

(prog (varl var2 (var3 init3) var4 (var5 init5»
tagl

statementl
statement2

tag2
statement3

195

Flow of Control

The first subform of a prog is a list of variables, each of which can optionally
have an initialization form. The first thing evaluation of a prog form does is
to evaluate all of the init forms. Then each variable that had an init form is
bound to its value, and the variables that did not have an init form are
bound to nil. Example:

(prog «a t) b (c 5) (d (car '(zz . pp»»
<body>
)

The initial value of a is t, that of b is nil, that of c is the integer 5, and
that of d is the symbol zz. The binding and initialization of the variables is
done in parallel; that is, all the initial values are computed before any of the
variables are changed. prog* is the same as prog except that this
initialization is sequential rather than parallel.

The part of a prog after the variable list is called the body. Each element of
the body is either a symbol, in which case it is called a tag, or anything else
(almost always a list), in which case it is called a statement.

After prog binds the variables, it processes each form in its body
sequentially. tags are skipped over. statements are evaluated, and their
returned values discarded. If the end of the body is reached, the prog
returns nil. However, two special forms can be used in prog bodies to alter
the flow of control. If (return x) is evaluated, prog stops processing its
body, evaluates x, and returns the result. If (go tag) is evaluated, prog
jumps to the part of the body labelled with the tag, where processing of the
body is continued. tag is not evaluated.

The compiler requires that go and return forms be lexically within the
scope of the prog; it is not possible for a function called from inside a prog
body to return to the prog. That is, the return or go must be inside the
prog itself, not inside a function called by the prog.

See the function do, page 189. That uses a body similar to prog. The do,
catch, and throw special forms are included as an attempt to encourage
gato-less programming style, which often leads to more readable, more easily
maintained code. You should use these forms instead of prog wherever
reasonable.

If the first subform of a prog is a non-nil symbol (rather than a variable

196

Reference Guide to Symbolics-Usp March 1985

list), it is the name of the prog, and return-from can be used to return
from it. See the special form do-named, page 192. Example:

(prog (x y z) ;x, y, z are prog variables - temporaries.
(setq y (car w) z (cdr w» ;w is a free variable.

loop
(cond «null y) (return x»

«null z) (go err»)
rejoin

err

(setq x (cons (cons (car y) (car z»
x»

(setq y (cdr y)
z (cdr z»

(go loop)

(break are-you-sure? t)
(setq z y)
(go rejoin»

prog, do, and their variants are effectively constructed out of let, block,
and tag body forms. prog could have been defined as the following macro
(except for processing of local declare, which has been omitted for clarity):

(defmacro prog (&rest x)
(let «block-name (and (symbolp (car x»

(neq (car x) nil)
(pop x»)

(variables (car x»
(tagbody (cdr x»)

(if block-name
'(block ,block-name

(block nil
(1 et , var i ab 1 es

(tagbody ,@tagbody»»
'(block nil

(let ,variables
(tagbody ,@tagbody»»»

A variant of defun that incorporates a prog into the function body is
described in another section: See the macro defunp, page 302.

proJr Special Form
The prog* special form is almost the same as prog. The only difference is
that the binding and initialization of the temporary variables is done
sequentially, so each one can depend on the previous ones. For example:

(prog* «y z) (x (car y»)
(return x»

returns the car of the value of z.

197

March 1985 Flow of Control

21. Nonlocal Exits

catch and throw are special forms used for nonlocal exits. catch evaluates forms;
if a throw occurs during the evaluation, catch immediately returns (possibly
multiple) values specified by throw.

catch and throw differ from block and tagbody in their scoping rules. catch and
throw have dynamic scope; block and tagbody have lexical scope. See the section
"Blocks and Exits", page 183.

·catch and *throw are supported for compatibility with Maclisp. catch can be used
with • throw, and ·catch can be used with throw. If control exits normally, the
returned values depend on whether catch or ·catch is used. If control exits
abnormally, the returned values depend on whether throw or· *throw is used.

The old Maclisp catch and throw macros are not supported.

catch tag body... Special Form
Used with throw for nonlocal exits. catch first evaluates tag to obtain an
object that is the "tag" of the catch. Then the body forms are evaluated in
sequence, and catch returns the (possibly multiple) values of the last form in
the body.

However, a throw or ·throw form might be evaluated during the evaluation
of one of the forms in body. In that case, if the throw "tag" is eq to the
catch "tag" and if this catch is the innermost catch with that tag, the
evaluation of the body is immediately aborted, and catch returns values
specified by the throw or *throw form.

If the catch exits abnormally because of a throw form, it returns the
(possibly multiple) values that result from evaluating throw's second subform.
If the catch exits abnormally because of a *throw form, it returns two
values: the first is the result of evaluating ·throw's second subform, and
the second is the result of evaluating *throw's first subform (the tag thrown
to).

(catch 'foo form) catches a (throw 'foo form) but not a
(throw 'bar form). It is an error if throw is done when no suitable catch
exists.

The scope of the tags is dynamic. That is, the throw does not have to be
lexically within the catch form; it is possible to throw out of a function that
is called from inside a catch form.

198

Reference Guide to Symbolics-Usp March 1985

Example:
(catch 'negative

(mapcar (function (lambda (x)

y»

(cond «minusp x)
(throw 'negative x»

(t (f x» »)

This returns a list of f of each element of y if they are all positive, otherwise
the first negative member of y.

throw tag form Special Form
Used with catch to make nonlocal exits. It first evaluates tag to obtain an
object that is the "tag" of the throw. It next evaluates form and saves the
(possibly multiple) values. It then finds the innermost catch or ·catch
whose "tag" is eq to the "tag" that results from evaluating tag. It causes
the catch or *catch to abort the evaluation of its body forms and to return
all values that result from evaluating form. In the process, dynamic variable
bindings are undone back to the point of the catch, and any
unwind-protect cleanup forms are executed. An error is signalled if no
suitable catch is found.

The scope of the tags is dynamic. That is, the throw does not have to be
lexically within the catch form; it is possible to throw out of a function that
is called from inside a catch form.

The value of tag cannot be the symbol sys:unwind-protect-tag; that is
reserved for internal use.

unwind-protect protected-form cleanup-form... Special Form
Sometimes it is necessary to evaluate a form and make sure that certain side
effects take place after the form is evaluated. A typical example is:

(progn
(turn-on-water-faucet)
(hairy-function 3 nil 'foo)
(turn-off-water-faucet»

The nonloca1 exit facility of Lisp creates a situation in which the above code
does not work. However, if hairy-function should do a throw to a catch
that is outside of the progn form, <turn-off-water-faucet> is never
evaluated (and the faucet is presumably left running). This is particularly
likely if hairy-function gets an error and the user tells the Debugger to give
up and abort the computation.

In order to allow the above program to work, it can be rewritten using
unwind-protect as follows:

March 1985

(unwind-protect
(progn (turn-on-water-faucet)

(hairy-function 3 nil 'faa»
(turn-off-water-faucet»

199

Flow of Control

If hairy-function does a throw that attempts to quit out of the evaluation
of the unwind-protect, the (turn-off-water-faucet) form is evaluated in
between the time of the throw and the time at which the catch returns.
If the progn returns normally, then the (turn-off-water-faucet) is
evaluated, and the unwind-protect returns the result of the progn.

The general form of unwind-protect looks like:

(unwi nd-protect protected-form
cleanup-forml
cleanup-form2
...)

protected-form is evaluated, and when it returns or when it attempts to quit
out of the unwind-protect, the cleanup-forms are evaluated.
unwind-protect catches exits caused by return-from or go as well as those
caused by throw. The value of the unwind-protect is the value of
protected-form. Multiple values returned by the protected-form are propagated
back through the unwind-protect.

The cleanup forms are run in the variable-binding environment that you
would expect: that is, variables bound outside the scope of the
unwind-protect special form can be accessed, but variables bound inside the
protected-form cannot be. In other words, the stack is unwound to the point
just outside the protected-form, then the cleanup handler is run, and then
the stack is un wound some more.

unwind-protect-case (&optional aborted-p-var) body-form &rest Macro
cleanup-clauses

body-form is executed inside an unwind-protect form. The cleanup forms of
the unwind-protect are generated from cleanup-clauses. Each cleanup-clause
is considered in order of appearance land has the form (keyword forms ...).
keyword can be :normal, :abort or :a1ways. The forms in a :normal
clause are executed only if body-form finished normally. The forms in an
:abort clause are executed only if body-form exited before completion. The
forms in an :always clause are always executed. The values returned are
the values of body-form, if it completed normally.

aborted-p-var, if supplied, is t if the body-form was aborted, and nil if it
finished normally. aborted-p-var can be used in forms within cleanup-clauses
as a condition for executing abort instead of normal cleanup code. It can be
set within body-form, but should be done so with great care. It should only
be set to nil if the remaining subforms of body-form do not need protecting.

200

Reference Guide to Symbolics-Lisp March 1985

*catch tag body... Special Form
An obsolete version of catch that is supported for compatibility with Maclisp.
It is equivalent to catch except that if *catch exits normally, it returns only
two values: the first is the result of evaluating the last form in the body,
and the second is nil. If *catch exits abnormally, it returns the same values
as catch when catch exits abnormally: that is, the returned values depend
on whether the exit results from a throw or a *throw. See the special form
catch, page 197.

*throw tag form Function
An obsolete version of throw that is supported for compatibility with Maclisp.
It is equivalent to throw except that it causes the catch or *catch to
return only two values: the first is the result of evaluating form, and the
second is the result of evaluating tag (the tag thrown to). See the special
form throw, page 198.

201

March 1985 Row of Control

22. Mapping

Mapping is a type of iteration in which a function is successively applied to pieces of
a list. There are several options for the way in which the pieces of the list are
chosen and for what is done with the results returned by the applications of the
function.

In general, the mapping functions take any number of arguments. For example:

(mapcar f xl x2 ... xn)

In this case f must be a function of n arguments. mapcar proceeds down the lists
xl, x2, ... , xn in parallel. The first argument to f comes from xl, the second from
x2, and so on. The iteration stops as soon as any of the lists is exhausted. (If
there are no lists at all, then there are no lists to be exhausted, so the function is
called repeatedly over and over. This is an obscure way to write an infinite loop. It
is supported for consistency.) If you want to call a function of many arguments
where one of the arguments successively takes on the values of the elements of a
list and the other arguments are constant, you can use a circular list for the other
arguments to mapcar. The function circular-list is useful for creating such lists.
See the function circular-list, page 50.

Sometimes a do or a straightforward recursion is preferable to a map; however, the
mapping functions should be used wherever they naturally apply because this
increases the clarity of the code.

Often f is a lambda-expression, rather than a symbol. For example:

(mapcar (function (lambda (x) (cons x something»)
some-list)

The functional argument to a mapping function must be a function, acceptable to
apply - it cannot be a macro or the name of a special form.

202

Reference Guide to Symbolics-Usp March 1985

Here is a table showing the relations between the six map functions.

returns

applies function to

successive I
sublists I

successive
elements

---------------+--------------+---------------+
its own
second

argument
map mapc

---------------+--------------+---------------+
1 ist of the
function
results

mapl ist map car

---------------+--------------+---------------+
nconc of the

function
results

mapcon mapcan

---------------+--------------+---------------+
There are also functions (mapatoms and mapatoms-all) for mapping over all
symbols in certain packages. See the section "Package Iteration", page 608.

You can also do what the mapping functions do in a different way by using loop.
See the section "The loop Iteration Macro", page 205.

map fen &rest lists Function
Like maplist, except that it does not return any useful value. This function
is used when the function is being called merely for its side effects, rather
than its returned values. See the function maplist, page 202.

mapc fen &rest lists Function
Like mapcar, except that it does not return any useful value. This function
is used when the function is being called merely for its side effects, rather
than its returned values. See the function mapcar, page 202.

maplist fen &rest lists Function
Like mapcar, except that the function is applied to the list and successive
cdr's of that list rather than to successive elements of the list. See the
function mapcar, page 202.

mapcar fen &rest lists Function
fen is a function that takes as many arguments as there are lists in the call
to mapcar. For example, since expt takes two arguments the following use
of mapcar is incorrect:

(mapcar #'expt '(1 2 3 4 5) '(43 2 1 4 2) '(2 3 2 3 2»

203

March 1985 Flow of Control

This use of mapcar is correct:

(mapcar #'expt '(1 2 3 4 5) '(43 2 1 4 2»

In the correct example, mapcar calls expt repeatedly, each time using
successive elements of the first list as its first argument and successive
elements of the second list as its second argument. Thus, mapcar calls
expt with the arguments 1 and 43, 2 and 2, 3 and 1, 4 and 4, and 5 and 2
and returns a list of the five results.

In general, the mapping functions take any number of arguments. For
example:

(mapcar (xl x2 ... xn)

In this case {must be a function of n arguments. mapcar proceeds down
the lists xl, x2, ... , xn in parallel. The first argument to { comes from xl, the
second argument from x2, and so on. The iteration stops as soon as any of
the lists is exhausted. If there are no lists at all, then there are no lists to
be exhausted, so the function is called repeatedly over and over.

mapcon {cn &rest lists Function
Like maplist, except that it combines the results of the function using
nconc instead of list. See the function maplist, page 202. That is,
mapcon could have been defined by:

(defun mapcon (f x y)
(apply 'nconc (maplist f x y»)

Of course, this definition is less general than the real one.

mapcan {cn &rest lists Function
Like mapcar, except that it combines the results of the function using
nconc instead of list. See the function mapcar, page 202.

204

Reference Guide to Symbolics-Usp March 1985

205

March 1985 Row of Control

23. The loop Iteration Macro

23.1 Introduction to loop

loop x &optional ignore Macro
A Lisp macro that provides a programmable iteration facility. The same loop
module operates compatibly in Symbolics-Lisp, Maclisp (PDP-IO and Multics),
and NIL. loop was inspired by the "FOR" facility of CLISP in Interlisp;
however, it is not compatible and differs in several details.

The general approach is that a form introduced by the word loop generates
a single program loop, into which a large variety of features can be
incorporated. The loop consists of some initialization (prologue) code, a body
that can be executed several times, and some exit (epilogue) code. Variables
can be declared local to the loop. The features are concerned with loop
variables, deciding when to end the iteration, putting user-written code into
the loop, returning a value from the construct, and iterating a variable
through various real or virtual sets of values.

The loop form consists of a series of clauses, each introduced by a keyword
symbol. Forms appearing in or implied by the clauses of a loop form are
classed as those to be executed as initialization code, body code, and/or exit
code; within each part of the template that loop fills in, they are executed
strictly in the order implied by the original composition. Thus, just as in
ordinary Lisp code, side effects can be used, and one piece of code might
depend on following another for its proper operation. This is the principal
philosophical difference from Interlisp's "FOR" facility.

Note that loop forms are intended to look like stylized English rather than
Lisp code. There is a notably low density of parentheses, and many of the
keywords are accepted in several synonymous forms to allow writing of more
euphonious and grammatical English.

Here are some examples to illustrate the use of loop.

print-elements-ot-list prints each element in its argument, which should be
a list. It returns nil.

(defun print-elements-of-list (list-of-elements)
(loop for element in list-of-elements

do (print element»)

gather-alist-entries takes an association list and returns a list of the "keys";
that is, (gather-alist-entries '«roo 1 2) (bar 259) (baz») returns
(too bar baz).

206

Reference Guide to Symbolics-Usp March 1985

(defun gather-alist-entries (list-of-pairs)
(loop for pair in list-of-pairs

collect (car pair»)

extract-interesting-numbers takes two arguments, which should be
integers, and returns a list of all the numbers in that range (inclusive) that
satisfy the predicate interesting-po

(defun extract-interesting-numbers (start-value end-value)
(lnnn ~nro nllmhoro ~ronm C+!:lIro+_\I!:l11IlD +n Dntf_\I!:l111lD \ ,,,,ut" .u ••• "',"" ••• VII' ~v v -...""" ... __ •• _ ._. __

when (interesting-p number) collect number»

find-maximum-element returns the maximum of the elements of its
argument, a one-dimensional array. For "Maclisp, aref could be a macro that
turns into either funcall or arraycall depending on what is known about
the type of the array.

(defun find-maximum-element (an-array)
(loop for i from 0 below (array-dimension-n 1 an-array)

maximize (aref an-array i»)

my-remove is like the Lisp function delete, except that it copies the list
rather than destructively splicing out elements. This is similar, although not
identical, to the remove function.

(defun my-remove (object list)
(loop for element in list

unless (equal object element) collect element»

find-frob returns the first element of its list argument that satisfies the
predicate frobp. If none is found, an error is generated.

(defun find-frob (list)
(loop for element in list

when (frobp element) return element
finally (ferror nil "No frob found in the list -5" list»)

23.2 Clauses

Internally, loop constructs a prog that includes variable bindings, preiteration
(initialization) code, postiteration (exit) code, the body of the iteration, and stepping
of variables of iteration to their next values (which happens on every iteration after
executing the body).

A clause consists of the keyword symbol and any Lisp forms and keywords with
which it deals. For example:

(loop for x in 1
do (print x»

contains two clauses, "for x in 1" and "do (print x)". Certain parts of the clause

207

March 1985 Flow of Control

are described as being expressions, such as (print x) in the example above. An
expression can be a single Lisp form, or a series of forms implicitly collected with
progn. An expression is terminated by the next following atom, which is taken to
be a keyword. This syntax allows only the first form in an expression to be atomic,
but makes misspelled keywords more easily detectable.

loop uses print-name equality to compare keywords so that loop forms can be
written without package prefixes; in Lisp implementations that do not have
packages, eq is used for comparison.

Bindings and iteration variable steppings can be performed either sequentially or in
parallel, which affects how the stepping of one iteration variable can depend on the
value of another. The syntax for distinguishing the two is described with the
corresponding clauses. When a set of things is "in parallel", all of the bindings
produced are performed in parallel by a single lambda binding. Subsequent bindings
are performed inside that binding environment.

23.2.1 Iteration-driving Clauses

These clauses all create a variable of iteration, which is bound locally to the loop and
takes on a new value on each successive iteration. Note that if more than one
iteration-driving clause is used in the same loop, several variables are created that all
step together through their values; when any of the iterations terminates, the entire
loop terminates. Nested iterations are not generated; for those, you need a second
loop form in the body of the loop. In order to not produce strange interactions,
iteration-driving clauses are required to precede any clauses that produce "body" code:
that is, all except those that produce prologue or epilogue code (initially and
finally), bindings (with), the named clause, and the iteration termination clauses
(while and until).

Clauses that drive the iteration can be arranged to perform their testing and
stepping either in series or in parallel. They are by default grouped in series, which
allows the stepping computation of one clause to use the just-computed values of the
iteration variables of previous clauses. They can be made to step "in parallel", as is
the case with the do special form, by "joining" the iteration clauses with the
keyword and. The form this typically takes is something like:

(loop ... for x = (f) and for y = init then (9 x) ..•)

which sets x to (I) on every iteration, and binds y "to the value of init for the first
iteration, and on every iteration thereafter sets it to (g x), where x still has the
value from the previous iteration. 'I'hus, if the calls to f and g are not order­
dependent, this would be best written as:

(loop ... for y = init then (9 x) for x = (f) ...)

because, as a general rule, parallel stepping has more overhead than sequential
stepping. Similarly, the example:

208

Reference Guide to Symbolics-Usp

(loop for sublist on some-list
and for previous = 'undefined then sublist

· ..)
which is equivalent to the do construct:

(do «sublist some-list (cdr sublist»
(previous 'undefined sublist»

«null sublist) ...)
...)

in terms of stepping, would be better written as:

(loop for previous = 'undefined then sublist
for sublist on some-list

· ..)

March 1985

When iteration-driving clauses are joined with and, if the token following the and is
not a keyword that introduces an iteration-driving clause, it is assumed to be the
same as the keyword that introduced the most recent clause; thus, the above
example showing parallel stepping could have been written as:

(loop ~or sublist on some-list
and previous = 'undefined then sublist

· .. -)
The order of evaluation in iteration-driving clauses is that those expressions that are
only evaluated once are evaluated in order at the beginning of the form, during the
variable-binding phase, while those expressions that are evaluated each time around
the loop are evaluated in order in the body.

One common and simple iteration-driving clause is repeat:

repeat expression
Evaluates expression (during the variable-binding phase), and causes the loop
to iterate that many times. expression is expected to evaluate to an integer.
If expression evaluates to a 0 or negative result, the body code is not
executed.

All remaining iteration-driving clauses are subdispatches of the keyword for, which is
synonymous with 88. In all of them a variable of iteration is specified. Note that,
in general, if an iteration-driving clause implicitly supplies an endtest, the value of
this iteration variable as the loop is exited (that is, when the epilogue code is run) is
undefined. See the section "The Iteration Framework", page 221.

Here are all of the varieties of for clauses. Optional parts are enclosed in curly
brackets. See the section "Data Types Recognized by loop", page 219. The
data-types as used here are discussed fully in that section.

for var {data-type} in exprl {byexpr2}
Iterates over each of the elements in the list exprl. If the by subclause is
present, expr2 is evaluated once on entry to the loop to supply the function
to be used to fetch successive sublists, instead of cdr.

209

March 1985 Flow of Control

for var {data-type} on exprl {by expr2}
Like the previous for format, except that var is set to successive sublists of
the list instead of successive elements. Note that since var is always a list, it
is not meaningful to specify a data-type unless var is a destructuring pattern,
as described in the section on destructuring. Note also that loop uses a null
rather than an atom test to implement both this and the preceding clause.

for var {data-type} = expr
On each iteration, expr is evaluated and var is set to the result.

for var {data-type} = exprl then expr2
var is bound to exprl when the loop is entered, and set to expr2 (reevaluated)
at all but the first iteration. Since exprl is evaluated during the binding
phase, it cannot reference other iteration variables set before it; for that, use
the following:

for var {data-type} first exprl then expr2
Sets var to exprl on the first iteration, and to expr2 (reevaluated) on each
succeeding iteration. The evaluation of both expressions is performed inside
of the loop binding environment, before the loop body. This allows the first
value of var to come from the first value of some other iteration variable,
allowing such constructs as:

(loop for term in poly
for ans first (car term) then (ged ans (car term»
finally (return ans»

for var {data-type} from exprl {to expr2} {by expr3}
Performs numeric iteration. var is initialized to exprl, and on each
succeeding iteration is incremented by expr3 (default 1). If the to phrase is
given, the iteration terminates when var becomes greater than expr2. Each
of the expressions is evaluated only once, and the to and by phrases can be
written in either order. downto can be used instead of to, in which case
var is decremented by the step value, and the endtest is adjusted accordingly.
If below is used instead of to, or above instead of downto, the iteration is
terminated before expr2 is reached, rather than after. Note that the to
variant appropriate for the direction of stepping must be used for the endtest
to be formed correctly; that is, the code does not work if expr3 is negative or
o. If no limit-specifying clause is given, then the direction of the stepping
can be specified as being decreasing by using downfrom instead of from.
upfrom can also be used instead of from; it forces the stepping direction to
be increasing. The data-type defaults to rlXDUJD.

for var {data-type} being expr and its path •••

for var {data-type} being {each I the} path •••
This provides a user-definable iteration facility. path names the manner in
which the iteration is to be performed. The ellipsis indicates where various
path-dependent preposition/expression pairs can appear. See the section
"Iteration Paths", page 222.

210

Reference Guide to Symbolics-Usp March 1985

23.2.2 Bindings

The with keyword can be used to establish initial bindings, that is, variables that
are local to the loop but are only set once, rather thnn on each iteration. The with
clause looks like:

with varl {data-type} {= exprl}
{and var2 {data-type} {= expr2}} •••

If no expr is given, the variable is initialized to the appropriate value for its data
type, usually nil. with bindings linked by and are performed in parallel; those not
linked are performed sequentially. That is:

(loop with a = (foo) and b = (bar) and c
...)

binds the variables like:

«lambda (a b c) •••)
(foo) (bar) nil)

whereas:

(loop with a = (foo) with b = (bar a) with c •••)

binds the variables like:
((1 ambda (a)

((1 ambda (b)
«lambda (e) •••)

nil »
(bar a»)

(foo»

All expr's in with clauses are evaluated in the order they are written, in lambda­
expressions surrounding the generated prog. The loop expression:

(loop with a = xa and b = xb
with e = XC

for d = ~ then (f d)
and e = xe then (g e d)
for p in xp
with q = xq

...)
produces the following binding contour, where tl is a loop-generated temporary:

211

March 1985 Flow of Control

((l ambda (a b)
«l ambda (c)

((1 ambda (d e)
«lambda (p t1)

«lambda (q) ..•)
xq»

nil xp»
xd xe»

xc»
xa xb)

Because all expressions in with clauses are evaluated during the variable-binding
phase, they are best placed near the front of the loop form for stylistic reasons.

For binding more than one variable with no particular initialization, one can use the
construct:

with variable-list {data-type-list} {and •.. }

as in:

with (i j k tl t2) (fixnum fixnum fixnum)

A slightly shorter way of writing this is:

with (i j k) fixnum and (tl t2) ...

These are cases of destructuring which loop handles specially. See the section "Data
Types Recognized by loop", page 219. See the section "Destructuring", page 220.

Occasionally there are various implementational reasons for a variable not to be given
a local type declaration. If this is necessary, the nodeclare clause can be used:

nodeclare variable-list
The variables in variable-list are noted by loop as not requiring local type
declarations. Consider the following:

(declare (special k) (fixnum k»
(defun faa (1)

(loop for x in 1 as k fixnum = (f x) ... »

If k did not have the rlXD.um data-type keyword given for it, then loop
would bind it to nil, and some compilers would complain. On the other
hand, the rlXllum keyword also produces a local rlXllum declaration for k;
since k is special, some compilers complain (or error out). The solution is to
do:

(defun foo (1)
(loop nodeclare (k)

for x in 1 as k fixnum = (f x) ... »

which tells loop not to make that local declaration. The nodeclare clause
must come before any reference to the variables so noted. Positioning it
incorrectly causes this clause to not take effect, and cannot be diagnosed.

212

Reference Guide to Symbolics-Lisp March 1985

23.2.3 Entrance and Exit

initially expression
Puts expression into the prologue of the iteration. It is evaluated before any
other initialization code other than the initial bindings. For the sake of good
style, the initially clause should therefore be placed after any with clauses
but before the main body of the loop.

finally expression
Puts expression into the epilogue of the loop, which· is evaluated when the
iteration terminates (other than by an explicit return). For stylistic reasons,
then, this clause should appear last in the loop body. Note that certain
clauses can generate code that terminates the iteration without running the
epilogue code; this behavior is noted with those clauses. See the section
"Aggregated Boolean Tests", page 215. This clause can be used to cause the
loop to return values in a nonstandard way:

(1 oop for n in 1
sum n into the-sum
count t into the-count
finally (return (quotient the-sum the-count»)

23.2.4 Side Effects

do expression

doing expression
expression is evaluated each time through the loop, as shown in the
print-elements-of-list example. See the function loop, page 205.

23.2.5 Values

The following clauses accumulate a return value for the iteration in some manner.
The general form is:

type-or-collection expr {data-type} {into var}

where type-or-collection is a loop keyword, and expr is the thing being "accumulated"
somehow. If no into is specified, then the accumulation is returned when the loop
terminates. If there is an into, then when the epilogue of the loop is reached, var
(a variable automatically bound locally in the loop) has been set to the accumulated
result and can be used by the epilogue code. In this way, a user can accumulate
and somehow pass back multiple values from a single loop, or use them during the
loop. It is safe to reference these variables during the loop, but they should not be
modified until the epilogue code of the loop is reached. For example:

213

March 1985 Row of Control

(loop for x in list
collect (faa x) into faa-list
collect (bar x) into bar-list
collect (baz x) into baz-list
finally (return (list faa-list bar-list baz-list»)

has the same effect as:

(do «gOOOl list (cdr gOOOl»
(x) (faa-list) (bar-list) (baz-list»

«null gOOO1)
(list (nreverse faa-list)

(nreverse bar-list)
(nreverse baz-list»)

(setq x (car g0001»
(setq faa-list (cons (foo x) foo-list»
(setq bar-list (cons (bar x) bar-list»
(setq baz-list (cons (baz x) baz-list»)

except that loop arranges to form the lists in the correct order, obviating the
nreverses at the end, and allowing the lists to be examined during the
computation.

collect expr {into var}

collecting ...
Causes the values of expr on each iteration to be collected into a list.

nconc expr {into var}

nconcing ...

append ...

appending ...
These are like collect, but the results are nconced or appended together as
appropriate.

(loop for i from 1 to 3
nconc (list i (* i»)

=> (1 1 2 4 3 9)

count expr {into var} {data-type}

counting ..•
If expr evaluates non-nil, a counter is incremented. The data-type defaults to
IlXI1um.

sum expr {data-type} {into var}

summing ...
Evaluates expr on each iteration, and accumulates the sum of all the values.
data-type defaults to number, which for all practical purposes is notype.
Note that specifying data-type implies that both the sum and the number
being summed (the value of expr) is of that type.

214

Reference Guide to Symbolics-Usp March 1985

maximize expr {data-type} {into var}

minimize ...
Computes the maximum (or minimum) of expr over all iterations. data-type
defaults to number. Note that if the loop iterates zero times, or if
conditionalization prevents the code of this clause from being executed, the
result is meaningless. If loop can determine that the arithmetic being
performed is not contagious (by virtue of data-type being f"lXIlum or flonum),
then it can choose to code this by doing an arithmetic comparison rather
than calling either max or min. As with the sum ciause, speciiying
data-type implies that both the result of the max or min operation and the
value being maximized or minimized is of that type.

Not only can there be multiple accumulations in a loop, but a single accumulation
can come from mUltiple places within the same loop form. Obviously, the types of
the collection must be compatible. collect, nconc, and append can all be mixed, as
can sum and count, and maximize and minimize. For example:

(loop for x in '(a b c) for y in '«1 2) (3 4) (5 6»
collect x
append y)

=) (a 1 2 b 3 4 c 5 6)

The following computes the average of the entries in the list list-of-frobs:
(loop for x in list-of-frobs

count t into count-var
sum x into sum-var
finally (return (quotient sum-var count-var»)

23.2.6 Endtests

The following clauses can be used to provide additional control over when the
iteration gets terminated, possibly causing exit code (due to finally) to be performed
and possibly returning a value (for example, from collect).

while expr
If expr evaluates to nil, the loop is exited, performing exit code (if any), and
returning any accumulated value. The test is placed in the body of the loop
where it is written. It can appear between sequential for clauses.

until expr
Identical to while (not expr).

This might be needed, for example, to step through a strange data structure, as in:

(loop until (top-of-concept-tree? concept)
for concept = expr then (superior-concept concept)

...)
Note that the placement of the until clause before the for clause is valid in this

215

March 1985 Flow of Control

case because of the definition of this particular variant of for, which binds concept
to its first value rather than setting it from inside the loop.

The following can also be of use in terminating the iteration:

loop-finish Macro
(loop-finish) causes the iteration to terminate "normally", the same as
implicit termination by an iteration-driving clause, or by the use of while or
until - the epilogue code (if any) is run, and any implicitly collected result is
returned as the value of the loop. For example:

(loop for x in '(1 2 3 4 5 6)
collect x
do (cond «= x 4) (loop-finish»»

=> (1 2 3 4)

This particular example would be better written as until (= x 4) in place of
the do clause.

23.2.7 Aggregated Boolean Tests

All of these clauses perform some test, and can immediately terminate the iteration
depending on the result of that test.

always expr
Causes the loop to return t if expr alwaya evaluates non-null. If expr
evaluates to nil, the loop immediately returns nil, without running the
epilogue code (if any, as specified with the finally clause); otherwise, t is
returned when the loop fmishes, after the epilogue code has been run. If
the loop terminates before expr is ever evaluated, the epilogue code is run and
the loop returns t.

always expr is like (and exprl expr2 ...), except that if no expr evaluates to
nil, always returns t and and returns the value of the last expr. If the
loop terminates before expr is ever evaluated, always is like (and).

If you want a similar test, except that you want the epilogue code to run if
expr evaluates to nil, use while.

never expr
Causes the loop to return t if expr never evaluates non-null. This is
equivalent to always (not expr). If the loop terminates before expr is ever
evaluated, the epilogue code is run and the loop returns t.

never expr is like (and (not exprl) (not expr2) ...). If the loop terminates
before expr is ever evaluated, never is like (and).

If you want a similar test, except that you want the epilogue code to run if
expr evaluates non-null, use until.

216

Reference Guide to Symbolics-Lisp March 1985

thereis expr
If expr evaluates non-null, the iteration is terminated and that value is
returned, without running the epilogue code. If the loop terminates before
expr is ever evaluated, the epilogue code is run and the loop returns nil.

thereis expr is like (or exprl expr2 ...). If the loop terminates before expr is
ever evaluated, thereis is like (or).

If you want a similar test, except that you want the epilogue code to run if
expr evaluates non-null, use until.

23.2.8 Conditionalization

These clauses can be used to "conditionalize" the following clause. They can precede
any of the side-effecting or value-producing clauses, such as do, collect, always, or
return.

when expr
if expr If expr evaluates to nil, the following clause is skipped, otherwise not.

unless expr
This is equivalent to when (not expr».

Multiple conditionalization clauses can appear in sequence. If one test fails t then
any following tests in the immediate sequence, and the clause being conditionalized,
are skipped.

Multiple clauses can be conditionalized under the same test by joining them with
and, as in:

(loop for i from a to b
when (zerop (remainder i 3»

collect i and do (print i»

which returns a list of all mUltiples of 3 from a to b (inclusive) and prints them as
they are being collected.

If-then-else conditionals can be written using the else keywordt as in:

(loop for i from a to b
when (oddp i)

collect i into odd-numbers
else collect i into even-numbers)

Multiple clauses can appear in an else-phrase, using and to join them in the same
way as above.

Conditionals can be nested. For example:

(loop for i from a to b
when (zerop (remainder i 3»

do (print i)
and when (zerop (remainder 2»

collect i)

217

March 1985 Flow of Control

returns a list of all multiples of 6 from a to b, and prints all multiples of 3 from a
to b.

When else is used with nested conditionals, the "dangling else" ambiguity is resolved
by matching the else with the innermost when not already matched with an else.
Here is a complicated example.

(loop for x in 1
when (atom x)

when (memq x *distinguished-symbols*)
do (processl x)

else do (process2 x)
else when (memq (car x) *special-prefixes*)

collect (process3 (car x) (cdr x»
and do (memorize x)

else do (process4 x»

Useful with the conditionalization clauses is the return clause, which causes an
explicit return of its "argument" as the value of the iteration, bypassing any epilogue
code. That is:

when exprl return expr2

is equivalent to:

when exprl do (return expr2)

Conditionalization of one of the "aggregated boolean value" clauses simply causes the
test that would cause the iteration to terminate early not to be performed unless the
condition succeeds. For example:

(loop for x in 1
when (significant-p x)

do (print x) (prine "is significant.")
and thereis (extra-special-significant-p x»

does not make the extra-special-significant-p check unless the significant-p
check succeeds.

The format of a conditionalized clause is typically something like:

when exprl keyword expr2

If expr2 is the keyword it, then a variable is generated to hold the value of exprl,
and that variable gets substituted for expr2. Thus, the composition:

when expr return it

is equivalent to the clause:

thereis expr

and one can collect all non-null values in an iteration by saying:

when expression collect it

If multiple clauses are joined with and, the it keyword can only be used in the fIrst.

218

Reference Guide to Symbolics-Lisp March 1985

If mUltiple whens, unlesses, and/or ifs occur in sequence, the value substituted for
it is that of the last test performed. The it keyword is not recognized in an
else-phrase.

23.2.9 Miscellaneous Other Clauses

named name
Gives the prog that loop generates a name of name, so that you can use
the return-from form to return expiicitiy out oi that particuiar loop:

(loop named sue

do (loop .•. do (return-from sue value) ...)
...)

The return-from form shown causes value to be immediately returned as
the value of the outer loop. Only one name can be given to any particular
loop construct. This feature does not exist in the Maclisp version of loop,
since Maclisp does not support "named progs".

return expression
Immediately returns the value of expression as the value of the loop, without
running the epilogue code. This is most useful with some sort of
conditionalization, as discussed in the previous section. Unlike most of the
other clauses, return is not considered to "generate body code", so it is
allowed to occur between iteration clauses, as in:

(loop for entry in list
when (not (numberp entry»

return (error .•.)
as frob = (times entry 2)

...)
If you instead want the loop to have some return value when it finishes
normally, you can place a call to the return function in the epilogue (with
the finally clause). See the section "Entrance and Exit", page 212.

23.3 loop Synonyms

define-loop-macro keyword Macro
Can be used to make keyword, a loop keyword (such as for), into a Lisp
macro that can introduce a loop form. For example, after evaluating:

(define-loop-macro for),

you can now write an iteration as:

(for i from 1 below n do .•.)

This facility exists primarily for diehard users of a predecessor of loop. Its

219

March 1985 Flow of Control

unconstrained use is not recommended, as it tends to decrease the transportability of
the code and needlessly uses up a function name.

23.4 Data Types Recognized by loop

In many of the clause descriptions, an optional data-type is shown. A data-type in
this sense is an atomic symbol, and is recognizable as such by loop. These are used
for declaration and initialization purposes; for example, in:

(loop for x in 1
maximize x flonum into the-max
sum x flonum into the-sum

...)
The tlonum data-type keyword for the maximize clause says that the result of the
max operation, and its "argu~ent" (x), are both flonums; thus loop can choose to
code this operation specially since it knows there can be no contagious arithmetic.
The tlonum data-type keyword for the sum clause behaves similarly, and in addition
causes the-sum to be correctly initialized to 0.0 rather than o. The tlonum
keywords also cause the variables the-max and the-sum to be declared to be
flonum, in implementations where such a declaration exists. In general, a numeric
data-type more specific than number, whether explicitly specified or defaulted, is
considered by loop to be license to generate code using type-specific arithmetic
functions where reasonable. The following data-type keywords are recognized by
loop (others can be defined; for that, consult the source code):

ilXDum

flonum

integer

number

no type

An implementation-dependent limited-range integer.

An implementation-dependent limited-precision floating-number.

Any integer (no range restriction).

Any number.

Unspecified type (that is, anything else).

Note that explicit specification of a nonnumeric type for an operation that is numeric
(such as the summing clause) can cause a variable to be initialized to nil when it
should be O.

If local data-type declarations must be inhibited, you can use the nodeclare clause.

220

Reference Guide to Symbolics-Lisp March 1985

23.5 Destructuring

Destructuring provides you with the ability to "simultaneously" assign or bind
multiple variables to components of some data structure. Typically this is used with
list structure. For example:

(loop with (foo . bar) = '(a b c) ...)

has the effect of binding f~ to !!. and b~~ to (b c).

loop's destructuring support is intended to parallel if not augment that provided by
the host Lisp implementation, with a goal of minimally providing de structuring over
list structure patterns. Thus, in Lisp implementations with no system de structuring
support at all, you can still use list-structure patterns as loop iteration variables, and
in with bindings. In NIL, loop also supports de structuring over vectors.

You can specify the data-types of the components of a pattern by using a
corresponding pattern of the data type keywords in place of a single-data type
keyword. This syntax remains unambiguous because wherever a data-type keyword
is possible, a loop keyword is the only other possibility. Thus, if you want to do:

(loop for x in 1
as i fixnum = (car x)
and j fixnum = (cadr x)
and k fixnum = (cddr x)

...)
and no reference to x is needed, you can instead write:

(loop for (i j . k) (fixnum fixnum . fixnum) in 1 ...)

To allow some abbreviation of the data-type pattern, an atomic component of the
data-type pattern is considered to state that all components of the corresponding
part of the variable pattern are of that type. That is, the previous form could be
written as:

(loop for (i j . k) fixnum in 1 .•.)

This generality allows binding of multiple typed variables in a reasonably concise
manner, as in:

(loop with (a b c) and (i j k) fixnum ...)

which binds a, b, and c to nil and i, j, and k to 0 for use as temporaries during
the iteration, and declares i, j, and k to be flXIlums for the benefit of the compiler.

(defun map-over-properties (fn symbol)
(loop for (propname propval) on (plist symbol) by 'cddr

do (funcall fn symbol propname propval»)

maps fn over the properties on symbol, giving it arguments of the symbol, the
property name, and the value of that property.

In Lisp implementations where loop performs its own destructuring, notably Multics

221

March 1985 Flow of Control

Maclisp and Symbolics-Lisp, you can cause loop to use already provided destructuring
support instead:

si:loop-use-system-destructuring? Variable
Exists only in loop implementations in Lisps that do not provide
de structuring support in the default environment. It is by default nil. If
changed, then loop behaves as it does in Lisps that do provide destructuring
support: de structuring binding is performed using let, and destructuring
assignment is performed using desetq. Presumably, if your personalized
environment supplies these macros, then you should set this variable to t;
there is, however, little (if any) efficiency loss if this is not done.

23.6 The Iteration Framework

This section describes the way loop constructs iterations. It is necessary if you are
writing your own iteration paths, and can be useful in clarifying what loop does
with its input.

loop considers the act of stepping to have four possible parts. Each iteration-driving
clause has some or all of these four parts, which are executed in this order:

pre-step-endtest
This is an endtest that determines if it is safe to step to the next value of
the iteration variable.

steps Variables that get "stepped". This is internally manipulated as a list of the
form (varl vall var2 val2 •••); all of those variables are stepped in parallel,
meaning that all of the vals are evaluated before any of the vars are set.

post-step-endtest
Sometimes you cannot see if you are done until you step to the next value;
that is, the endtest is a function of the stepped-to value.

pseudo-steps
Other things that need to be stepped. This is typically used for internal
variables that are more conveniently stepped here, or to set up iteration
variables that are functions of some internal variable(s) that are actually
driving the iteration. This is a list like steps, but the variables in it do not
get stepped in parallel. '

The above alone is actually insufficient in just about all iteration-driving clauses that
loop handles. What is missing is that in most cases, the stepping and testing for
the first time through the loop is different from that of all other times. So, what
loop deals. with is two four-tuples as above; one for the first iteration, and one for
the rest. The first can be thought of as describing code that immediately precedes
the loop in the prog, and the second as following the body code - in fact, loop

222

Reference Guide to Symbolics-Usp March 1985

does just this, but severely perturbs it in order to reduce code duplication. Two lists
of forms are constructed in parallel: one is the first-iteration endtests and steps, the
other the remaining-iterations endtests and steps. These lists have dummy entries
in them so that identical expressions appear in the same position in both. When
loop is done parsing all of the clauses, these lists get merged back together such
that corresponding identical expressions in both lists are not duplicated unless they
are "simple" and it is worth doing.

Thus, one might get some dupiicateu code if one has mUltiple iterations.
Alternatively, loop might decide to use and test a flag variable that indicates
whether one iteration has been performed. In general, sequential iterations have
less overhead than parallel iterations, both from the inherent overhead of stepping
multiple variables in parallel, and from the standpoint of potential code duplication.

Note also that although the user iteration variables are guaranteed to be stepped in
parallel, the placement of the endtest for any particular iteration can be either
before or after the stepping. A notable case of this is:

(loop for i from 1 to 3 and dummy = (print 'fool
collect i)

=> (1 2 3)

but prints foo four times. Certain other constructs, such as for var on, might or
might not do this depending on the particular construction.

This problem also means that it might not be safe to examine an iteration variable
in the epilogue of the loop form. As a general rule, if an iteration-driving clause
implicitly supplies an endtest, then you cannot know the state of the iteration
variable when the loop terminates. Although you can guess on the basis of whether
the iteration variable itself holds the data upon which the endtest is based, that
guess might be wrong. Thus:

(loop for subl on expr

finally (f subl»

is incorrect, but:

(loop as frob = expr while (g frob)

finally (f frob»

is safe because the endtest is explicitly dissociated from the stepping.

23.7 Iteration Paths

Iteration paths provide a mechanism for user extension of iteration-driving clauses.
The interface is constrained so that the definition of a path need not depend on
much of the internals of loop. The typical form of an iteration path is

223

March 1985 Flow of Control

for var {data-type} being {each I the} pathname {prepositionl exprl} ...

pathname is an atomic symbol that is defined as a loop path function. The usage
and defaulting of data-type is up to the path function. Any number of
preposition/expression pairs can be present; the prepositions allowable for any
particular path are defined by that path. For example:

(loop for x being the array-elements of my-array from 1 to 10
...)

To enhance readability, pathnames are usually defined in both the singular and
plural forms; this particular example could have been written as:

(loop for x being each array-element of my-array from 1 to 10
...)

Another format, which is not so generally applicable, is:

for var {data-type} being exprO and its pathname {prepositionl exprl} ...

In this format, var takes on the value of exprO the first time through the loop.
Support for this format is usually limited to paths that step through some data
structure, such as the "superiors" of something. Thus, we can hypothesize the cdrs
path, such that:

but:

(loop for x being the cdrs of '(a b c . d) collect x)
=> «b c . d) (c . d) d)

(loop for x being '(a b c . d) and its cdrs collect x)
=> «a b c . d) (b c . d) (c . d) d)

To satisfy the anthropomorphic among you, his, her, or their can be substituted for
the its keyword, as can each. Egocentricity is not condoned. See the section
"Predefined Iteration Paths", page 225. Some example uses of iteration paths are
shown in that section.

Very often, iteration paths step internal variables that the you do not specify, such
as an index into some data structure. Although in most cases the user does not
wish to be concerned with such low-level matters, it is occasionally useful to have a
handle on such things. loop provides an additional syntax with which you can
provide a variable name to be used as an "internal" variable by an iteration path,
with the using "prepositional phrase".

The using phrase is placed with the other phrases associated with the path, and
contains any number of keyword/variable-name pairs:

(loop for x being the array-elements of a using (index i) (sequence s)
...)

which says that the variable i should be used to hold the index of the array being
stepped through, and the variable s should be bound to the array. The particular
keywords that can be used are defined by the iteration path; the index and

224

Reference Guide to Symbolics-Lisp March 1985

sequence keywords are recognized by all loop sequence paths. See the section
"Sequence Iteration", page 225. Note that any individual using phrase applies to
only one path; it is parsed along with the "prepositional phrases". It is an error if
the path does not call for a variable using that keyword.

By special dispensation, if a pathname is not recognized, then the default-loop-path
path is invoked upon a syntactic transformation of the original input. Essentially, the
loop fragment:

for var being frob

is taken as if it were:

for var being default-loop-path in frob

and:

for var being expr and its frob ...
is taken as if it were:

for var being expr and its default-loop-path in frob

Thus, this "undefined pathname hook" only works if the default-loop-path path is
defined. Obviously, the use of this "hook" is competitive, since only one such hook
can be in use, and the potential for syntactic ambiguity exists if frob is the name of
a defined iteration path. This feature is not for casual use; it is intended for use by
large systems that wish to use a special syntax for some feature they provide.

23.7.1 loop Iteration Over Hash Tables or Heaps

loop has iteration paths that support iterating over each entry in a hash table or a
heap.

(loop for x being the hash-elements of new-corns ...)
(loop for x being the hash-elements of new-corns with-key k .•.)

(loop for x being the heap-elements of priority-queue ...)
(loop for x being the heap-elements of priority-queue with-key k ...)

This allows X to take on the values of successive entries of hash tables or heaps.
The body of the loop runs once for each entry of the hash table or heap. For
heaps, x could have the same value more than once, since the key is not necessarily
unique. When looping over hash tables or heaps, the ordering of the elements is
undefined.

The with-key phrase is optional. It provides for the variable k to have the hash or
heap key for the particular entry value x that you are examining.

The heap-elements loop iteration path returns the items in random order and
does not provide for locking the heap.

225

March 1985 Row of Control

23.7.2 Predefined Iteration Paths

loop comes with two predefined iteration path functions; one implements a
mapatoms-like iteration path facility, and the other is used for defining iteration
paths for stepping through sequences.

23.7.2.1 The interned-symbols Path

The interned-symbols iteration path is like a mapatoms for loop.

(loop for sym being interned-symbols ...)

iterates over all of the symbols in the current package and its superiors (or, in
Maclisp, the current obarray). This is the same set of symbols that mapatoms
iterates over, although not necessarily in the same order. The particular package to
look in can be specified as in:

(loop for sym being the interned-symbols in package ...)

which is like giving a second argument to mapatoms.

In Lisp implementations such as Symbolics-Lisp with some sort of hierarchical
package structure, you can restrict the iteration to be over just the package specified
and not its superiors, by using the local-interned-symboIs path:

(loop for sym being the local-interned-symbols {in package}
...)

Example:

(defun my-apropos (sub-string &optional (pkg package»
(loop for x being the interned-symbols in pkg

when (string-search sub-string x)
when (or (boundp x) (fboundp x) (plist x»

do (print-interesting-info x»)

In the Symbolics-Lisp and NIL implementations of loop, a package specified with the
in preposition can be anything acceptable to the pkg-find-package function. The
code generated by this path contains calls to intemalloop functions, with the effect
that it is transparent to changes to the implementation of packages. In the Maclisp
implementation, the obarray must be an array pointer, not a symbol with an array
property.

23.7.2.2 Sequence Iteration

One very common form of iteration is that over the elements of some object that is
accessible by means of an integer index. loop defines an iteration path function for
doing this in a general way, and provides a simple interface to allow users to define
iteration paths for various kinds of "indexable" data.

define-loop-sequence-path path-name-or-names fetchfun sizefun Macro
&optional sequence-type element-type

path-name-or-names is either an atomic path name or list of path names.

226

Reference Guide to Symbolics-Usp March 1985

fetchfun is a function of two arguments: the sequence, and the index of the
item to be fetched. (Indexing is assumed to be zero-origined.) sizefun is a
function of one argument, the sequence; it should return the number of
elements in the sequence. sequence-type is the name of the data-type of the
sequence, and element-type the name of the data-type of the elements of the
sequence. These last two items are optional.

The Symbolics-Lisp implementation of loop utilizes the Symbolics-Lisp array
manipulation primitives to det1ne both array-eiement and array-eieulent8 as
iteration paths:

(define-loop-sequence-path (array-element array-elements)
aref array-active-length)

Then, the loop clause:

for var being the array-elements of array

steps var over the elements of array, starting from o. The sequence path function
also accepts in as a synonym for of.

The range and stepping of the iteration can be specified with the use of all the same
keywords that are accepted by the loop arithmetic stepper (for var from •••); they
are by, to, downto, from, downfrom, below, and above, and are interpreted in
the same manner. Thus:

(loop for var being the array-elements of array
from 1 by 2
...)

steps var over all of the odd elements of array, and:

(loop for var being the array-elements of array
downto 0
...)

steps in "reverse" order.

(define-loop-sequence-path (vector-elements vector-element)
vref vector-length notype notype)

is how the vector-elements iteration path can be defined in NIL (which it is). You
can then do such things as:

(defun cons-a-lot (item &restv other-items)
(and other-items

(loop for x being the vector-elements of other-items
collect (cons item x»»

All such sequence iteration paths allow you to specify the variable to be used as the
index variable, by use of the index keyword with the using prepositional phrase.
You can also use the sequence keyword with the using prepositional phrase to
specify the variable to be bound to the sequence. See the section ''Iteration Paths",
page 222.

227

March 1985 Flow of Control

23.7.3 Defining Iteration Paths

A loop iteration clause (for example, a for or as clause) produces, in addition to the
code that defines the iteration, variables that must be bound, and preiteration
(prologue) code. See the section "The Iteration Framework", page 221. This
breakdown allows a user interface to loop that does not have to depend on or know
about the internals of loop. To complete this separation, the iteration path
mechanism parses the clause before giving it to the user function that returns those
items. A function to generate code for a path can be declared to loop with the
define-loop-path function:

define-loop-path Macro

(defi ne-l oop-path pathname-or-names path-function
list-of-allowable-prepositions
datum-l datum-2 ...)

This defines path-function to be the handler for the path(s)
pathname-or-names, which can be either a symbol or a list of symbols. Such
a handler should follow the conventions described below. The datum-i are
optional; they are passed in to path-function as a list.

The handler is called with the following arguments:

path-name

variable

data-type

The name of the path that caused the path function to be
invoked.

The "iteration variable".

The data type supplied with the iteration variable, or nil if none
was supplied.

prepositional-phrases
A list with entries of the form (preposition expression), in the
order in which they were collected. This can also include some
supplied implicitly (for example, an of phrase when the iteration is
inclusive, and an in phrase for the default-loop-path path); the
ordering shows the order of evaluation that should be followed for
the expressions.

inclusive? t if variable should have the starting point of the path as its
value on the first iteration (by virtue of being specified with
syntax like for var being expr and its pathname), nil otherwise.
When t, expr appears in prepositional-phrases with the of
preposition; for example, for x being foo and its edrs gets
prepositional-phrases of «of foo».

allowed-prepositions
The list of allowable prepositions declared for the pathname that
caused the path function to be invoked. It and data can be used

228

Reference Guide to Symbolics-Lisp March 1985

data

by the path function such that a single function can handle
similar paths.

The list of "data" declared for the pathname that caused the path
function to be invoked. It might, for instance, contain a
canonicalized pathname, or a set of functions or flags to aid the
path function in determining what to do. In this way, the same
path function might be able to handle different paths.

variable-bindings
A list of variables that need to be bound. The entries in it can be of the
form variable, (variable expression), or (variable expression data-type). Note
that it is the responsibility of the handler to make sure the iteration variable
gets bound. All of these variables are bound in parallel; if initialization of one
depends on others, it should be done with a setq. in the prologue-forms.
Returning only the variable without any initialization expression is not
allowed if the variable is a destructuring pattern.

prologue-forms
A list of forms that should be included in the loop. prologue.

the four items of the iteration specification
The four items: pre-step-endtest, steps, post-step-endtest, and pseudo-steps.
See the section "The Iteration Framework", page 221.

another four items of iteration specification
If these four items are given, they apply to the first iteration, and the
previous four apply to all succeeding iterations; otherwise, the previous four
apply to all iterations.

Here are the routines that are used by loop to compare keyWords for eqUality. In
all cases, a token can be any Lisp object, but a keyword is expected to be an atomic
symbol. In certain implementations these functions might be implemented as
macros.

si:loop-tequaI token keyword Function
The loop token comparison function. token is any Lisp object; keyword is
the keyword it is to be compared against. It returns t if they represent the
same token, comparing in a manner appropriate for the implementation.

si:loop-tmember token keyword-list Function
The member variant of si:loop-tequaI.

si:loop-tassoc token keyword-alist Function
The assoc variant of si:loop-tequal.

If an iteration path function desires to make an internal variable accessible to the
user, it should call the following function instead of gensym:

229

March 1985 Flow of Control

si:loop-named-variable keyword Function
Should only be called from within an iteration path function. If keyword has
been specified in a using phrase for this path, the corresponding variable is
returned; otherwise, gensym is called and that new symbol returned.
Within a given path function, this routine should only be called once for any
given keyword.

If you specify a using preposition containing any keywords for which the
path function does not call si:loop-named-variable, loop informs you of the
error.

23.7.3.1 An Example Path Definition

Here is an example function that defines the string-characters iteration path.
This path steps a variable through all of the characters of a string. It accepts the
format:

(loop for var being the string-characters of str ...)

The function is defined to handle the path by:

(define-loop-path string-characters string-chars-path
(of))

Here is the function:

230

Reference Guide to Symbolics-Lisp March 1985

(defun string-chars-path (path-name variable data-type
prep-phrases inclusive?
allowed-prepositions data
&aux (bindings nil)

(prologue nil)
(string-var (gensym»
(index-var (gensym»
(size-var (gensym»)

allowed-prepositions data; unuserl variables
To iterate over the characters of a string, we need
to save the string, save the size of the string,
step an index variable through that range, setting
the user's variable to the character at that index.
Default the data-type of the user's variable:

(cond «null data-type) (setq data-type 'fixnum»)
; We support exactly one "preposition", which is
; required, so this check suffices:
(cond «null prep-phrases)

(ferror nil "OF missing in -5 iteration path of -5"
path-name variable»)

We do not support "inclusive" iter~tion:
(cond «not (null inclusive?»

(ferror ni 1
"Inclusive stepping not supported in -5 path -
of -5 (prep phrases = -:5)"

path-name variable prep-phrases»)
5et up the bindings

(setq bindings (list (list variable nil data-type)
(list string-var (cadar prep-phrases»
(list index-var 0 'fixnum)
(list size-var 0 'fixnum»)

Now set the size variable
(setq prologue (list '(setq ,size-var (string-length

,string-var»»
; and return the appropriate stuff, explained below.
(list bindings

prologue
'(= ,index-var ,size-var)
nil
nil

; char-n is the NIL string referencing primitive.
; In 5ymbolics-Lisp, aref could be used instead.
(list variable '(char-n ,string-var ,index-var)

index-var '(1+ ,index-var»»

The first element of the returned list is the bindings. The second is a list of forms
to be placed in the prologue. The remaining elements specify how the iteration is to
be performed. This example is a particularly simple case, for two reasons: the
actual "variable of iteration", index-var, is purely internal (being gensymmed), and

231

March 1985 Flow of Control

the stepping of it (1+) is such that it can be performed safely without an endtest.
Thus index-var can be stepped immediately after the setting of the user's variable,
causing the iteration specification for the first iteration to be identical to the
iteration specification for all remaining iterations. This is advantageous from the
standpoint of the optimizations loop is able to perform, although it is frequently not
possible due to the semantics of the iteration (for example,
tor var first exprl then expr2) or to subtleties of the stepping. It is safe for this
path to step the user's variable in the pseudo-steps (the fourth item of an iteration
specification) rather than the "real" steps (the second), because the step value can
have no dependencies on any other (user) iteration variables. Using the pseudo-steps
generally results in some efficiency gains.

If you wanted the index variable in the above definition to be user-accessible through
the using phrase feature with the index keyword, the function would need to be
changed in two ways. First, index-var should be bound to
(si:loop-named-variable 'index) instead of (gensym). Secondly, the efficiency
hack of stepping the index variable ahead of the iteration variable must not be done.
This is effected by changing the last form to be:

(list bindings prologue
nil
(list index-var '(1+ ,index-var»
'(= ,index-var ,size-var)
(list variable '(char-n ,string-var ,index-var»
nil
nil
'(= ,index-var ,size-var)
(list variable '(char-n ,string-var ,index-var»)

Note that although the second '(= ,index-var ,size-var) could have been placed
earlier (where the second nil is), it is best for it to match up with the equivalent
test in the first iteration specification grouping.

232

Reference Guide to Symbolics-Lisp March 1985

233

March 1985 Arrays, Characters, and Strings

PART VI.

Arrays, Characters, and Strings

234

Reference Guide to Symbolics-Lisp March 1985

235

March 1985 Arrays, Characters, and Strings

24. Arrays

An array is a Lisp object that consists of a group of cells, each of which can contain
an object. The individual cells are selected by numerical subscripts.

The dimensionality of an array (or, the number of dimensions that the array has) is
the number of subscripts used to refer to one of the elements of the array. The
dimensionality can be any integer from zero to seven, inclusive.

The lowest value for any subscript is 0; the highest value is a property of the array.
Each dimension has a size, which is the lowest number that is too great to be used
as a subscript. For example, in a one-dimensional array of five elements, the size of
the one and only dimension is five, and the acceptable values of the subscript are 0,
1, 2, 3, and 4.

The most basic primitive functions for handling arrays are:

• make-array - used for the creation of arrays

• aref - used for examining the contents of arrays

• aset - used for storing into arrays

An array is a regular Lisp object, and it is common for an array to be the binding of
a symbol, or the car or cdr of a cons, or, in fact, an element of an array. There are
many functions, described in this chapter, that take arrays as arguments and
perform useful operations on them.

Another way of handling arrays, inherited from Maclisp, is to treat them as
functions. In this case each array has a name, which is a symbol whose function
definition is the array. Symbolics-Lisp supports this style by allowing an array to be
applied to arguments, as if it were a function. The arguments are treated as
subscripts and the array is referenced appropriately.

24.1 Array Types

There are many types of arrays. Some types of arrays can hold Lisp objects of any
type; the other types of arrays can only hold integers or flonums. The array types
are known by a set of symbols whose names begin with "art-" (for ARray Type).

236

Reference Guide to Symbolics-Lisp March 1985

24.1.1 art-q Array Type

The most commonly used type is called art-q. An art-q array simply holds Lisp
objects of any type. This array type can store floating point numbers without any
storage overhead.

24.1.2 art-q-list Array Type

Similar to the art-q type is the art-q-list. Like the art-'!: its elements can be any
Lisp object. The difference is that the art-q-list array "doubles" as a list; the
function g-l-p takes an art-q-list array and returns a list whose elements are those
of the array, and whose actual substance is that of the array. If you rpJaca
elements of the list, the corresponding element of the array changes, and if you
store into the array, the corresponding element of the list changes the same way.
An attempt to rplacd the list causes an error, since arrays cannot implement that
operation.

24.1.3 art-Nb Array Type

There is a set of types called art-1b, art-2b, art-4b, art-8b, and art-1Gb; these
names are short for "1 bit", "2 bits", and so on. Each element of an art-nb array is
a nonnegative integer, and only the least significant n bits are remembered in the
array; all of the others are discarded. Thus art-1b arrays store only 0 and 1, and if
you store a 5 into an art-2b array and look at it later, you find a 1 rather than a 5.

These arrays are used when it is known beforehand that the integers that are
stored are nonnegative and limited in size to a certain number of bits. Their
advantage over the art-q array is that they occupy less storage, because more than
one element of the array is kept in a single machine word. (For example, 32
elements of an art-1b array or 2 elements of an art-1Gb array fits into one word).

24.1.4 art-string Array Type

Character strings are implemented by the art-string array type. This type acts
similarly to the art-8b; its elements must be integers, of which only the least
significant eight bits are stored. However, many important system functions,
including read, print, and evaI, treat art-string arrays very differently from the
other kinds of arrays. These arrays are usually called strings. See the section
"Strings", page 277. That section deals with functions that manipulate these type of
arrays.

24.1.5 art-fat-string Array Type

An art-rat-string array is a character string with wider characters, containing 16
bits rather than 8 bits. The extra bits are ignored by string operations, such as
comparison, on these strings; typically they are used to hold font information.

237

March 1985 Arrays, Characters, and Strings

24.1.6 art-boolean Array Type

An art-boolean array type is an array whose elements can take on the values t and
nil. It uses only one bit of storage per element.

For example:

(setq boolean-array (make-array 7 :type 'art-boolean»
=> #<ART-BOOLEAN-7 22741370>

(listarray boolean-array)
=> (NIL NIL NIL NIL NIL NIL NIL)

(setf (aref boolean-array 0) T) => T
(setf (aref boolean-array 1) :some-keyword)

=> :SOHE-KEVWORD
(setf (aref boolean-array 2) 42) => 42
(setf (aref boolean-array 3) boolean-array)

=> #<ART-BOOLEAN-7 25123011>

(listarray boolean-array) => (T T T T NIL NIL NIL)

(setf (aref boolean-array 1) (typep boolean-array :number»
=> NIL

(listarray boolean.."array) => (T NIL T T NIL NIL NIL)

24.1.7 Multidimensional Arrays

Currently, multidimensional arrays are stored in column-major order rather than
row-major order as in Maclisp. Row-major order means that successive memory
locations differ in the last subscript, while column-major order means that successive
memory locations differ in the first subscript. This has an effect on paging
performance when using large arrays; if you want to reference every element in a
multidimensional array and move linearly through memory to improve locality of
reference, you must vary the first subscript fastest rather than the last.

24.2 Array Representation Tools

array-types Variable
The value of array-types is a list of all, of the array type symbols such as
art-q, art-4b, art-string and so on. The values of these symbols are
internal array type code numbers for the corresponding type.

array-types array-type-code Function
Given an internal numeric array-type code, returns the symbolic name of that
type.

238

Reference Guide to Symbolics-Usp March 1985

array-elements-per-q Variable
array-elements-per-q is an association list that associates each array type
symbol with the number of array elements stored in one word, for an array
of that type. See the section "Association Lists", page 64. If the value is
negative, it is instead the number of words per array element, for arrays
whose elements are more than one word long.

array-elements-per-q array-type-code Function
n;u "" +'hn i"+n~~l ~'tO'tOou_hrno ~nrlo nll",ho,.' ,.ot",.nc: tho nnmho ... nf ~ ~v
U&"c.&~ 1I.1.'&~ &.& ... """".&.& 1I.Ao& J-PJJ}I'" '"'" "'" """-.. , .. """'., -_ ... - w ___ -------- -- ---J
elements stored in one word, for an array of that type. If the value is
negative, it is instead the number of words per array element, for arrays
whose elements are more than one word long.

array-bits-per-element Variable
The value of array-bits-per-element is an association list that associates
each array type symbol with the number of bits of unsigned' number it can
hold, or nil if it can hold Lisp objects. This can be used to tell whether an
array can hold Lisp objects or not. See the section "Association Lists", page
64.

array-bits-per-element array-type-code Function
Given the internal array-type code numbers, returns the number of bits per
cell for unsigned numeric arrays, or nil for a type of array that can contain
Lisp objects.

array-element-size array Function
Given an array, returns the number of bits that fit in an element of that
array. For arrays that can hold general Lisp objects, the result is 31; this
assumes that you are storing flXIlums in the array and manipulating their
bits with dpb (rather than %logdpb). You can store any number of bits
per element in an array that holds general Lisp objects, by letting the
elements expand into bignums.

24.3 Extra Features of Arrays

24.3.1 Array Leaders

Any array can have an array leader. An' array leader is similar to a one-dimensional
art-q array that is attached to the main array. An array that has a leader acts like
two arrays joined together. The leader can be stored into and examined by a special
set of functions, different from those used for the main array: array-leader and
store-array-Ieader. The leader is always one-dimensional, and can always hold any
kind of Lisp object, regardless of the type or dimensionality of the main part of the
array.

239

March 1985 Arrays, Characters, and Strings

Very often the main part of an array is a homogeneous set of objects, while the
leader is used to remember a few associated nonhomogeneous pieces of data. In this
case the leader is not used like an array; each slot is used differently from the
others. Explicit numeric subscripts should not be used for the leader elements of
such an array; instead the leader should be described by a defstruct. See the
macro defstruct, page 383.

By convention, element zero of the array leader of an array is used to hold the
number of elements in the array that are "active" in some sense. When the zeroth
element is used this way, it is called a fill pointer. Many array-processing functions
recognize the fill pointer. For instance, if a string (an array of type art-string) has
seven elements, but its fill pointer contains the value 5, then only elements zero
through four of the string are considered to be "active". This means that the
string's printed representation is five characters long, string-searching functions stop
after the fifth element, and so on.

The system does not provide a way to turn off the fill-pointer convention; any array
that has a leader must reserve element 0 for the fill pointer or avoid using many of
the array functions.

Leader element one is used in conjunction with the "named structure" feature to
associate a "data type" with the array. See the section "Named Structures", page
403. Element one is treated specially only if the array is flagged as a named
structure.

24.3.2 Displaced Arrays

Normally, an array is represented as a small amount of header information, followed
by the contents of the array. However, sometimes it is desirable to have the header
information removed from the actual contents. One such occasion is when the
contents of the array must be located in a special part of the Symbolics Lisp
Machine's address space, such as the area used for the control of input/output
devices, or the bitmap memory that generates the TV image. These are known as
displaced arrays. They are also used to reference certain special system tables,
which are at fixed addresses so the microcode can access them easily.

If you give make-array an integer or a locative as the value of the :displaced-to
option, it creates a displaced array referring to that location of virtual memory and
its successors.

References to elements of the displaced array access that part of storage, and return
the contents; the regular aret and aset functions are used. If the array is one
whose elements are Lisp objects, caution should be used: if the region of address
space does not contain typed Lisp objects, the integrity of the storage system and
the garbage collector could be damaged. If the array is one whose elements are
bytes (such as an art-4b type), then there is no problem. It is important to know,
in this case, that the elements of such arrays are allocated from the right to the left
within the 32-bit words.

240

Reference Guide to Symbolics-Lisp March 1985

24.3.3 Indirect Arrays

It is possible to have an array whose contents, instead of being located at a fIxed
place in virtual memolY, are defIned to be those of another array. Such an array is
called an indirect array, and is created by giving make-array an array as the value
of the :displaced-to option.

The effects of this are simple if both arrays have the same type; the two arrays
share all elements. An object stored in a certain element of one can be retrieved
from the corresponding element of the other. This, by itself, is not very useful.
However, if the arrays have different dimensionality, the manner of accessing the
elements differs. Thus, by creating a one-dimensional array of nine elements that
was indirected to a second, two-dimensional array of three elements by three, then
the elements could be accessed in either a one-dimensional or a two-dimensional
manner.

Unexpected effects can be produced if the new array is of a different type than the
old array; this is not generally recommended. Indirecting an art-mb array to an
art-nb array does the "obvious" thing. For instance, if m is 4 and n is 1, each
element of the first array contains four bits from the second array, in right-to-Ieft
order.

It is possible to create an indirect array in such a way that when an attempt is
made to reference it or store into it, a constant number is added to the subscript
give;n. This number is called the index offset, and is specifIed at the time the
indirect array is created, by giving an integer to make-array as the value of the
:displaced-index-offset option. Similarly, the length of the indirect array need not
be the full length of the array it indirects to; it can be smaller. The nsubstring
function creates such arrays. When using index offsets with multidimensional
arrays, there is only one index offset; it is added in to the "linearized" subscript
which is the result of mUltiplying each subscript by an appropriate coefficient and
adding them together.

24.3.3.1 Conformal Indirection

Multidimensional arrays remember their actual dimensions, separately from the
magic numbers by which to multiply the subscripts before adding them together to
get the index into the array.

As a result of this, multidimensional indirect arrays can have conformal indirection.
If A is indirected to B, and they do not have the same width, then normally the
part of B that is shared with A does not have the same shape as A. If conformal
indirection is used, then it does have the same shape and there are gaps between
the rows of A. For example:

(setq b (make-array '(10. 20.»)
(setq a (make-array '(3 5) :displaced-to b

:displaced-index-offset 12.»

241

March 1985 Arrays, Characters, and Strings

Now:
(aref a 1 0) = (aref b 3 1) and (aref a 1 1) = (aref b 6 1).

In contrast:

(setq a (make-array '(3 5) :displaced-to b
:displaced-index-offset 12.
:displaced-conformally t»

(aref a 1 0) = (aref b 3 1) still, but (aref a 1 1) = (aref b 3 2). Each row of A
corresponds to part of a row of B, always starting at the same column (2).

A graphic illustration:

(setq a (make-array '(6 20.»
b (make-array '(3 5) :displaced-to a

:displaced-index-offset 22.)
c (make-array '(3 5) :displaced-to a

:displaced-index-offset 22.
:displaced-conformally t»

Normal case
o 19

+--------------------+
Olaaaaaaaaaaaaaaaaaaaal
I aaBBBBBBBBBBBBBBBaaa I
I aaaaaaaaaaaaaaaaaaaa I
laaaaaaaaaaaaaaaaaaaal
I aaaaaaaaaaaaaaaaaaaa I

51aaaaaaaaaaaaaaaaaaaal
+--------------------+

Conformal case
o 19

+--------------------+
Olaaaaaaaaaaaaaaaaaaaal

laaCCCCCaaaaaaaaaaaaal
laaCCCCCaaaaaaaaaaaaal
I aaCCCCCaaaaaaaaaaaaa I
laaaaaaaaaaaaaaaaaaaal

51aaaaaaaaaaaaaaaaaaaal
+--------------------+

Arrays are stored in column-major order, so the units in which the index-offset is
measured should be read first from left to right and then from top to bottom.

The meaning of adjust-array-size for conformal indirect arrays is undefined.

copy-array-contents, copy-array-contents-and-Ieader, copy-array-portion,
fillarray, listarray, math:invert-matrix, and all other operations that treat a
multidimensional array as if it were one-dimensional do not work on conformally
displaced arrays.

24.4 Basic Array Functions

make-array dimensions &rest options Function
This is the primitive function for making arrays. dimensions should be a list
of integers that are the dimensions of the array; the length of the list is the
dimensionality of the array. For convenience when making a one-dimensional
array, the single dimension can be provided as an integer rather than a list
of one integer.

242

Reference Guide to Symbolics-Usp March 1985

options are alternating keywords and values. The keywords can be any of
the following:

:area The value specifies in which area the array should be created. It
should be either an area number (an integer), or nil to mean the
default area. See the section "Areas" in Internals, Processes, and
Storage Management.

:type The value should be a symbolic name of an array type; the most
common of these is art-q, which is the deiauit. The eiements of the
array are initialized according to the type: if the array is of a type
whose elements can only be integers or flonums, then every element
of the array is initially 0 or 0.0; otherwise, every element is initially
nil. See the section "Arrays", page 235. Array types are described in
that section. The value of the option can also be the value of a
symbol that is an array type name (that is, an internal numeric array
type code).

:displaced-to
If this is not nil, then the array is a displaced array. If the value is
an integer or a locative, make-array creates a regular displaced array
that refers to the specified section of virtual address space. If the
value is an array, make-array creates an indirect array. See the
section "Displaced Arrays", page 239. See the section "Indirect
Arrays", page 240.

:initial-value
This makes its value the initial value of every element of the array.
Example:

(make-array 5 :type 'art-string :initial-value Dla)
=> "aaaaa"

:leader-Iength
The value should be an integer. The array has a leader with that
many elements. The elements of the leader are initialized to nil
unless the :leader-list option is given.

:leader-list
The value should be a list. Call the number of elements in the list n.
The first n elements of the leader are initialized from successive
elements of this list. If the :leader-length option is not specified,
then the length of the leader is n. If the :leader-Iength option is
given, and its value is greater than n, then the nth and following
leader elements are initialized to nil. If its value is less than n, an
error is signalled. The leader elements are filled in forward order;
that is, the car of the list is stored in leader element 0, the cadr in
element 1, and so on.

243

March 1985 Arrays, Characters, and Strings

:fill-pointer
It causes make-array to give the array a fill pointer and initializes it
to the value following the keyword. Use this instead of
:leader-Iength or :leader-list when you are using the leader only for
a fill pointer. This keyword is compatible with the current Common
Lisp design, which has no array leaders.

:displaced-index-offset
If this is present, the value of the :displaced-to option should be an
array, and the value should be a nonnegative integer; it is made to be
the index-offset of the created indirect array. See the section
"Indirect Arrays", page 240.

:displaced-conformally
Can be used with the :displaced-to option. If the value is t and
make-array is creating an indirect array, the array uses conformal
indirection.

:named-structure-symbol
If this is not nil, it is a symbol to be stored in the named-structure
cell of the array. The array is tagged as a named structure. See the
section "Named Structures", page 403. If the array has a leader,
then this symbol is stored in leader element 1 regardless of the value
of the :leader-list option. If the array does not have a leader, then
this symbol is stored in array element zero.

Examples:

;; Create a one-dimensional array of five elements.
(make-array 5)
;; Create a two-dimensional array,
;; three by four, with four-bit elements.
(make-array '(3 4) :type 'art-4b)
;; Create an array with a three-element leader.
(make-array 5 :leader-1ength 3)
;; Create an array with a leader, providing
;; initial values for the leader elements.
(setq a (make-array 100 :type 'art-lb

:leader-1ist '(t nil»)
(array-leader a 0) => t
(array-leader a 1) => nil

244

Reference Guide to Symbolics-Lisp March 1985

;; Create a named-structure with five leader
;; elements, initializing some of them.
(setq b (make-array 20 :leader-1ength 5

:leader-1ist '(0 nil faa)
:named-structure-symbol 'bar»

(array-leader b 0) =) 0
(array-leader b 1) =) bar
(array-leader b 2) =) faa
(array-leader b 3) =) nil
(array-leader b 4) =) nil

make-array returns the newly created array, and also returns, as a second
value, the number of words allocated in the process of creating the array,
that is, the %strueture-total-size of the array.

aref array &rest subscripts Function
Returns the element of array selected by the subscripts. The subscripts
must be integers and their number must match the dimensionality of array.

ar-I array i Function
This is an obsolete version of aref that only works for one-dimensional
arrays. There is no reason ever to use it.

ar-2 array i j Function
This is an obsolete version of aref that only works for two-dimensional
arrays. There is no reason ever to use it.

aset x array &rest subscripts Function
Stores x into the element of array selected by the sUbscripts. The subscripts
must be integers and their number must match the dimensionality of array.
The returned value is x.

as-I x array i Function
This is an obsolete version of aset that only works for one-dimensional
arrays. There is no reason ever to use it.

as-2 x array i j Function
This is an obsolete version of aset that only works for two-dimensional
arrays. There is no reason ever to use it.

aloe array &rest subscripts Function
Returns a locative pointer to the element-cell of array selected by the
subscripts. The subscripts must be integers and their number must match
the dimensionality of array. See the section "Locatives", page 83.

ap-I array i Function
This is an obsolete version of aloe that only works for one-dimensional
arrays. There is no reason ever to use it.

245

March 1985 Arrays. Characters. and Strings

ap-2 array i j Function
This is an obsolete version of aloc that only works for two-dimensional
arrays. There is no reason ever to use it.

The compiler turns aref into ar-l and ar-2 according to the number of subscripts
specified. It also turns aset into as-I and as-2 and aloc into ap-l and ap-2. For
arrays with more than two dimensions the compiler uses the slightly less efficient
form since the special routines only exist for one and two dimensions. There is no
reason for any program to call ar-l, as-I, ar-2, and so forth explicitly; they are
documented because many old programs use them. New programs should use aref,
aset, and aloc.

A related function, provided only for Mac1isp compatibility, is arraycall.

array-leader array i Function
array should be an array with a leader, and i should be an integer. This
returns the i'th element of array's leader. This is analogous to aref.

store-array-leader x array i Function
array should be an array with a leader, and i should be an integer. x can be
any object. x is stored in the i'th element of array's leader.
store-array-leader returns x. This is analogous to aset.

ap-Ieader array i Function
array should be an array with a leader, and i should be an integer. This
returns a locative pointer to the i'th element of an1 ay's leader. See the
section "Locatives", page 83. This is analogous to aloc.

fill-pointer array Function
Returns the value of the fill pointer. array must have a fill pointer.
fill-pointer is actually a subst, so it compiles inline instead of as a function
call. setf can be used on a fill-pointer form to set the value of the fill
pointer.

Programs access the fill pointer by explicitly asking for the zeroth element of the
array leader.

24.5 Accessing Multidimensional Arrays as One-dimensional

sys :array-reg ister-1 d

The sys:array-register-ld declaration is used together with the sys:%ld-aref and
sys:%ld-aset functions to access multidimensional arrays as if they were one­
dimensional. This allows loop optimization of multidimensional array subscript
calculations. The user must do the reduction from multiple subscripts to a single

246

Reference Guide to Symbolics-Usp March 1985

subscript. See the section "Accessing Arrays Specially" in Internals, Processes, and
Storage Management.

sys:%ld-aref array index Function
sys:%ld-aref is the same as aref, except that it ignores the number of
dimensions of the array and acts as if it were a one-dimensional array by
linearizing the multidimensional elements. In Zetalisp, arrays are stored in
column-major order. listarray and copy-array-portion use this function.

For example:

(setq array (make-array '(20 30 50») => #<Art-Q-20-30-50 26165512>

(setf (aref array 5 6 7) 'fool => Foo

(aref array 5 6 7) => FOO

(sys:%1d-aref array (+ 5 (* 20 (+ 6 (* 30 7»») => Foo

sys:%ld-aset value array index Function
sys:%ld-aset is the same as aset, except that it ignores the number of
dimensions of the array and acts as if it were a one-dimensional array by
linearizing the multidimensional elements. In Zetalisp, arrays are stored in
column-major order. copy-array-portion uses this function.

Current style suggests that you should use (setf (sys:%ld-aref ... » instead
of sys:%ld-aset.

sys:%ld-aloc array index Function
sys:%ld-aloc is the same as aloe, except that it ignores the number of
dimensions of the array and acts as if it were a one-dimensional array by
linearizing the multidimensional elements. In Zetalisp, arrays are stored in
column-major order.

Current style suggests that you should use (locf (sys:%ld-aref ... » instead
of sys:%ld-aloc.

24.6 Getting Information About an Array

array-type array
Returns the symbolic type of array. Example:

(setq a (make-array '(3 5»)
(array-type a) => art-q

Function

array-length array Function
array can be any array. This returns the total number of elements in array.
For a one-dimensional array, this is one greater than the maximum allowable

247

March 1985 Arrays, Characters, and Strings

subscript. (But if fill pointers are being used, you might want to use
array-active-Iength.) array-length does not return the product of the
dimensions for conformal arrays.

Example:

(array-length (make-array 3» => 3
(array-length (make-array '(3 5»)

= > 17 ;octal, which is 15. decimal

array-active-Iength array Function
If array does not have a fill pointer, then this returns whatever
(array-length array) would have. If array does have a fill pointer,
array-active-Iength returns it. See the section "Array Leaders", page 238.
A general explanation of the use of fill pointers is in that section.

array-#-dims array Function
Returns the dimensionality of array . Note that the name of the function
includes a "#", which must be slashified if you want to be able to read your
program in Maclisp. (It does not need to be slashified for the Symbolics-Lisp
reader, which is smarter.) Example:

(array-#-dims (make-array '(3 5») => 2

array-dimension-n n array Function
array can be any kind of array, and n should be an integer. If n is between
1 and the dimensionality of array, this returns the nth dimension of array.
If n is 0, this returns the length of the leader of array; if array has no
leader it returns nil. If n is any other value, this returns nil. Examples:

(setq a (make-array '(3 5) : leader-length 7»
(array-dimension-n 1 a) => 3
(array-dimension-n 2 a) => 5
(array-dimension-n 3 a) => nil
(array-dimension-n 0 a) => 7

array-dimensions array Function
array-dimensions returns a list whose elements are the dimensions of
array. Example:

(setq a (make-array '(3 5»)
(array-dimensions a) => (3 5)

Note: the list returned by (array-dimensions x) is equal to the cdr of the
list returned by (arraydims x).

arraydims array Function
array can be any array; it also can be a symbol whose function cell contains
an array, for Maclisp compatibility. See the section "Maclisp Array
Compatibility", page 262. arraydims returns a list whose first element is

248

Reference Guide to Symbofics-Lisp March 1985

the symbolic name of the type of array, and whose remaining elements are
its dimensions. Example:

(setq a (make-array '(3 5»)
(arraydims a) => (art-q 3 5)

array-in-bounds-p array &rest subscripts Function
This function checks whether sUbscripts is a valid set of subscripts for array,
and returns t if they are; otherwise it returns nil.

array-column-major-index array &rest subscripts Function
This function takes an array and valid subscripts for the array and returns a
single nonnegative integer less than the total size of the array that identifies
the accessed element in the column-major ordering of the elements. The
number of subscripts supplied must equal the rank of the array. Each
subscript must be a nonnegative integer less than the corresponding array
dimension. Like aref, array-column-major-index ignores fill pointers.

For example:

wi ndow is a conformal array whose 0,0 coordinate is at 256,256 of bi g-array.
This example creates a 114 size portal into the center of bi g-array.

(setq big-array (make-array '(1024. 1024.) :type 'art-q
:initial-value 0»

(setq window (make-array '(512. 512.) :type 'art-q
:displaced-to big-array
:displaced-index-offset (array-column-major-index

big-array 256. 256.)
:displaced-conformally t»

For a one-dimensional array, the result of array-column-major-index equals
the supplied subscript. An error is signalled if some subscript is not valid.

array-displaced-p array Function
array can be any kind of array. This predicate returns t if array is any kind
of displaced array (including an indirect array). Otherwise it returns nil.

array-indirect-p array Function
array can be any kind of array. This predicate returns t if array is an
indirect array. Otherwise it returns nil.

array-indexed-p array Function
array can be any kind of array. This predicate returns t if array is an
indirect array with an index-offset. Otherwise it returns nil.

array-has-Ieader-p array Function
array can be any array. This predicate returns t if array has a leader;
otherwise it returns nil.

249

March 1985 Arrays, Characters, and Strings

array-leader-length array Function
array can be any array. This returns the length of array's leader if it has
one, or nil if it does not.

24.7 Changing the Size of an Array

adjust-array-size array new-size Function
If array is a one-dimensional array, its size is changed to be new-size. If
array has more than one dimension, its size (array-length) is changed to
new-size by changing only the last dimension.

If array is made smaller, the extra elements are lost; if array is made bigger,
the new elements are initialized in the same fashion as make-array would
initialize them: either to nil or 0, depending on the type of array. Example:

(setq a (make-array 5»
(aset 'foo a 4)
(aref a 4) => foo
(adjust-array-size a 2)
(aref a 4) = > an error occurs

If the size of the array is being increased, adjust-array-size might have to
allocate a new array somewhere. In that case, it alters array so that
references to it are made to the new array instead, by means of "invisible
pointers". See the function structure-forward in Internals, Processes, and
Storage Management. adjust-array-size returns this new array if it creates
one, and otherwise it returns array. Be careful to be consistent about using
the returned result of adjust-array-size, because you might end up holding
two arrays that are not the same (that is, not eq), but that share the same
contents.

The meaning of adjust-array-size for conformal indirect arrays is undefined.

array-grow array &rest dimensions Function
array-grow creates a new array of the same type as array, with the
specified dimensions. Those elements of array that are still in bounds are
copied into the new array. The elements of the new array that are not in
the bounds of array are initialized to nil or 0 as appropriate. If array has a
leader, the new array has a copy of it. array-grow returns the new array
and also forwards array to it, like adjust-array-size.

Unlike adjust-array-size, array-grow always creates a new array rather
than growing or shrinking the array in place. But array-grow of a
multidimensional array can change all the subscripts and move the elements
around in memory to keep each element at the same logical place in the
array.

250

Reference Guide to Symbolics-Usr) March 1985

return-array array Function
This peculiar function attempts to return array to free storage. If it is
displaced, this returns the displaced array itself, not the data that the array
points to. Because of the way storage allocation works, return-array does
nothing if the array is not at the end of its region, that is, if it was not the
most recently allocated non-list object in its area. return-array returns t if
storage was really reclaimed, or nil if it was not.

return-array is a subtle and dangerous feature that should be avoided by
most users.

It is the responsibility of any program that calls return-array to ensure that
there are no references to array anywhere in the Lisp world. This includes
locative pointers to array elements, such as you might create with aloe. The
results of attempting to use such a reference to the returned array are
unpredictable. Simply holding such a reference in a local variable, without
attempting to access it or to print it out, is allowed.

Other tools are available for manually allocating and freeing arrays. See the
special form sys:with-staek-array in Internals, Processes, and s.torage
Management.

24.8 Arrays Overlaid with Lists

This function manipulates art-q-list arrays. See the section "art-q-list Array
Type", page 236.

g-l-p array Function
array should be an art-q-list array. If array has a fill pointer, g-l-p returns
a list that stops at the fill pointer. Example:

(setq a (make-array 4 :type 'art-q-1ist»
(aref a 0) => nil
(setq b (g-l-p a» => (nil nil nil nil)
(rp1aca b t)
b => (t nil nil nil)
(aref a 0) = > t
(aset 30 a 2)
b => (t nil 30 nil)

251

March 1985 Arrays, Characters, and Strings

24.9 Adding to the End of an Array

array-push array x Function
array must be a one-dimensional array that has a fill pointer, and x can be
any object. array-push attempts to store x in the element of the array
designated by the fill pointer, and increase the fill pointer by one. If the fill
pointer does not designate an element of the array (specifically, when it gets
too big), it is unaffected and array-push returns nil; otherwise, the two
actions (storing and incrementing) happen uninterruptibly, and array-push
returns the fonner value of the fill pointer, that is, the array index in which
it stored x. If the array is of type art-q-list, an operation similar to nconc
has taken place, in that the element has been added to the list by changing
the cdr of the formerly last element. The cdr coding is updated to ensure
this.

array-push-extend array x &optional extension Function
array-push-extend is just like array-push except that if the fill pointer
gets too large, the array is grown to fit the new element; that is, it never
"fails" the way array-push does, and so never returns nil. extension is the
number of elements to be added to the array if it needs to be grown. It
defaults to something reasonable, based on the size of the array.
array-push-extend returns the fonner value of the fill pointer, that is, the
array index in which it stored x.

array-push-portion-extend to-array from-array &optional Function
(from-start 0) from-end

Copies a portion of one array to the end of another, updating the fill pointer
of the other to reflect the new contents. The destination array must have a
fill pointer. The source array need not. This is equivalent to numerous
array-push-extend calls, but more efficient.

array-push-portion-extend returns the destination array and the index of
the next location to be filled.

Example:

(setq to-string
(array-push-portion-extend to-string from-string (or from 0) to»

It is similar to array-push-extend except that it copies more than one
element and has different return values. The arguments default in the usual
way, so that the default is to copy all of from-array to the end of to-array.

array-push-portion-extend adjusts the array size using adjust-array-size.
It picks the new array size in the same way that adjust-array-size does,
making it bigger than needed for the information being added. In this way,
successive additions do not each end up consing a new array.
array-push-portion-extend uses copy-array-portion internally.

252

Reference Guide to Symbolics-Lisp March 1985

array-pop array &optional (default nil) Function
array must be a one-dimensional array that has a fill pointer. The fill
pointer is decreased by one, and the array element designated by the new
value of the fill pointer is returned.

The second argument, if supplied, is the value to be returned if the array is
empty. If array-pop is called with one argument and the array is empty, it
signals an error.

The two operations (decrementing and array referencing) happen
uninterruptibly. If the array is of type art-q-list, an operation similar to
nbutIast has taken place. The cdr coding is updated to ensure this.

24.10 Copying an Array

fill array array source Function
array can be any type of array, or, for Maclisp compatibility, a symbol whose
function cell contains an array. There are two forms of this function,
depending on the type of source.

If source is a list, then fillarray fills up array with the elements of list. If
source is too short to fill up all of array, then the last element of source is
used to fill the remaining elements of array. If source is too long, the extra
elements are ignored. If source is nil (the empty list), array is filled with the
default initial value for its array type (nil or 0).

If source is an array (or, for Maclisp compatibility, a symbol whose function
cell contains an array), then the elements of array are filled up from the
elements of source. If source is too small, then the extra elements of array
are not affected. fill array returns array.

If array is multidimensional, the elements are accessed in row-major order:
the last subscript varies the most quickly. The same is true of source if it is
an array.

fill array does not work on conformally displaced arrays.

listarray array &optional limit Function
array can be any type of array, or, for Maclisp compatibility, a symbol whose
function cell contains an array. listarray creates and returns a list whose
elements are those of array. If limit is present, it should be an integer, and
only the first limit (if there are more than that many) elements of array are
used, and so the maximum length of the returned list is limit.

If array is multidimensional, the elements are accessed in row-major order:
the last subscript varies the most quickly.

listarray does not work on conformally displaced arrays.

253

March 1985 Arrays, Characters, and Strings

list-array-Ieader array &optional limit Function
array can be any type of array, or, for Maclisp compatibility, a symbol whose
function cell contains an array. list-array-Ieader creates and returns a list
whose elements are those of array's leader. If limit is present, it should be
an integer, and only the first limit (if there are more than that many)
elements of array's leader are used, and so the maximum length of the
returned list is limit. If array has no leader, nil is returned.

copy-array-contents from-array to~array Function
from and to must be arrays. The contents of from is copied into the
contents of to, element by element. If to is shorter than from, the rest of
from is ignored. If from is shorter than to, the rest of to is filled with nil if
it is a q-type array, or 0 if it is a numeric array or a string, or 0.0 if it is a
flonum array. This function always returns t.

Note that even if from or to has a leader, the whole array is used; the
convention that leader element 0 is the "active" length of the array is not
used by this function. The leader itself is not copied.

copy-array-contents works on multidimensional arrays. from and to are
"linearized" subscripts, and column-major order is used, that is, the first
subscript varies fastest (opposite from fillarray).

copy-array-contents does not work on conformally displaced arrays.

copy-array-contents-and-Ieader from-array to-array Function
This is just like copy-array-contents, but the leader of from (if any) is also
copied into to. copy-array-contents copies only the main part of the array.

copy-array-contents-and-Ieader does not work on conformally displaced
arrays.

copy-array-portion from-array from-start from-end to-array to-start Function
to-end

The portion of the array from-array with indices greater than or equal to
from-start and less than from-end is copied into the portion of the array
to-array with indices greater than or equal to to-start and less than to-end,
element by element. If there are more elements in the selected portion of
to-array than in the selected portion of from-array, the extra elements are
filled with the default value as by copy-array-contents. If there are more
elements in the selected portion of from-array, the extra ones are ignored.
Multidimensional arrays are treated the same way as copy-array-contents
treats them. This function always returns t.

copy-array-portion does not work on conformally displaced arrays.

Currently, copy-array-portion (as well as copy-array-contents and
copy-array-contents-and-Ieader) copies one element at a time in increasing

254

Reference Guide to Symbolics-Usp March 1985

order of subscripts (this behavior might change in the future). This means
that when copying from and to the same array, the results might be
unexpected if from-start is less than to-start. You can safely copy from and to
the same array as long as from-·start ~ to-start.

bitblt alu width height from-array from-x from-y to-array to-x to-y Function
from-array and to-array must be two-dimensional arrays of bits or bytes
(art-lb, art-2b, art-4b, art-8b, art-16b, or art-32b). bitblt copies a
recta.ngular portion of from-array into a rectangular portion of to-array. The
value stored can be a Boolean function of the new value and the value
already there, under the control of alu. This function is most commonly
used in connection with raster images for TV displays.

The top-left corner of the source rectangle is
(aref from-array from-x from-y). The top-left corner of the destination
rectangle is (aref to-array to-x to-y). width and height are the dimensions of
both rectangles. If width or height is zero, bitblt does nothing.

from-array and to-array are allowed to be the same array. bitblt normally
traverses the arrays in increasing order of x and y subscripts. If width is
negative, then (abs width) is used as the width, but the processing of the x
direction is done backwards, starting with the highest value of x and working
down. If height is negative it is treated analogously. When bitblting an
array to itself, when the two rectangles overlap, it might be necessary to
work backwards to achieve the desired effect, such as shifting the entire
array upwards by a certain number of rows. Note that negativity of width or
height does not affect the (x,y) coordinates specified by the arguments, which
are still the top-left corner even if bitblt starts at some o~her corner.

If the two arrays are of different types, bitblt works bit-wise and not
element-wise. That is, if you bitblt from an art-2b array into an art-4b
array, then two elements of the from-array correspond to one element of the
to-array. width is in units of elements of the to-array.

If bitblt goes outside the bounds of the source array, it wraps around. This
allows such operations as the replication of a small stipple pattern through a
large array. If bitblt goes outside the bounds of the destination array, it
signals an error.

If src is an element of the source rectangle, and dst is the corresponding
element of the destination rectangle, then bitblt changes the value of dst to
(boole alu src dst). See the boole function. The following are the symbolic
names for some of the most useful alu functions:

tv:alu-seta

tv:alu-ior

tv:alu-xor

plain copy

inclusive or

exclusive or

255

March 1985 Arrays. Characters. and Strings

tv:aIu-andca and with complement of source

bitbIt is written in highly optimized microcode and goes very much faster
than the same thing written with ordinary aref and aset operations would.
Unfortunately this causes bitbIt to have a couple of strange restrictions.
Wraparound does not work correctly if from-array is an indirect array with
an index offset. bitblt signals an error if the first dimensions of from-array
and to-array are not both integral multiples of the machine word length. For
art-lb arrays, the first dimension must be a multiple of 32., for art-2b
arrays it must be a multiple of 16., and so on.

24.11 Array Registers

The aref and aset operations on arrays consist of two parts:

1. They "decode" the array, determining its type, its rank, its length, and the
address of its first data element.

2. They read or write the requested element.

The first part of this operation is not dependent on the particular values of the
subscripts; it is a function only of the array itself.

When you write a loop that processes one or more arrays, the first part of each
array operation is invariant if the arrays are invariant inside the loop. You can
improve performance by moving this array-decoding overhead outside the loop, doing
it only once at the beginning of the loop, rather than repeating it on every trip
around the loop. This is done using the sys:array-register and
sys:array-register-ld declarations.

sys :array-reg ister

The declared variable is compiled into an array-register variable. This causes
references to the array that is the value of the variable to compile into special faster
instructions. The sys:array-register declaration signals an error if given other
than a one-dimensional array. Use sys:array-register-ld to access multidimensional
arrays. See the section "Accessing Multidimensional Arrays as One-dimensional",
page 245.

For more information: See the function declare, page 311.

24.11.1 Array Registers and Performance

The array-register feature makes optimization possible and convenient. Here is an
example:

256

Reference Guide to Symbolics-Lisp March 1985

(defun foo (array-1 array-2 n-elements)
(let «a array-1)

(b array-2»
(declare (sys:array-register a b»
(dotimes (i n-elements)

(setf (aref b i) (aref a i»»)

This function copies the first n-elements elements of array a into array b. If the
declaration is absent, it does the same thing more slowly. The variables a and b are
compiied into !!array register!! variabies rather th.:1l1 norTilal, local, variables. At the
time a and b are bound, the arrays to which they are bound are decoded and the
variables are bound to the results of the decoding. The compiler recognizes aref
with a first argument that has been declared to be an array register and aset with
a second argument that has been declared to be an array register and compiles them
as special instructions that do only the second part of the operation. These
instructions are fast-aref and fast-aset.

If you want to verify that your array register declarations are working, follow these
steps:

1. Compile the function.

2. Disassemble it: (disassemble 'foo).

3. Look for fast-arefi'fast-aset instructions. For example, note instructions 11
and 13:

o ENTRV: 3 REQUIRED, 0 OPTIONAL
PUSH-LOCAL FPIO iARRAV-1

2 BUILTIN SETUP-1D-ARRAV TO 4 icreating A(FPI3)
3 PUSH-LOCAL FPl1 iARRAV-2
4 BUILTIN SETUP-1D-ARRAV TO 4 . icreating B(FPI7)
5 PUSH-IMMED 0 icreating I(FPI11)
6 PUSH-LOCAL FPI2 iN-ELEMENTS creating NIL(FPI12)
7 BRANCH 15

10 PUSH-LOCAL FPl11 ;1
11 FAST-AREF FPI4 ;A
12 PUSH-LOCAL FPl11 ;1
13 FAST-ASET FPI8 ;B
14 BUILTIN l+LOCAL IGNORE FPl11 ;1
15 PUSH-LOCAL FPl11 ;1
16 PUSH-LOCAL FPI12
17 BUILTIN INTERNAL-< STACK
20 BRANCH-TRUE 10
21 PUSH-NIL
22 RETURN-STACK

The performance advantage of array registers over the simplest types of array (for
example, no leader or no displacement) is fairly small, since the normal aref and

257

March 1985 Arrays, Characters, and Strings

aset operations on those arrays are quite fast. The real advantage of array registers
is that they are equally fast for the more complicated arrays, such as indirect arrays
and those with leaders, as they are for simple arrays.

The performance advantage to be gained through the use of array registers depends
on the type of the array. Using an array register is never slower, except for one
peculiar case: an indirect byte array with an index offset that is not a multiple of
the number of array elements per word; in other words, an array whose first
element is not aligned on a word boundary. An example of this case is:

(setq a (make-array 100 :type 'art-lb»
(setq b (make-array 99 :type 'art-lb :displaced-to a :displaced-index-offset 1»

If the :displaced-index-offset had been a multiple of 32, array registers would
enhance performance.

24.11.2 Hints for Using Array Registers

The expansion of the loop macro's array-elements path copies the array into a
temporary variable. In order to get the benefits of array registers, you must write
code in the following way:

Right:

(defun tstl (array incr)
(declare (sys:array-register a»
(loop for elt being the array-elements of array using (sequence a)

sum (* elt incr»)

Wrong:

(defun tst (array incr)
(let «a array» (declare (sys:array-register a»

(loop for elt being the array-elements of a
sum (* elt incr»»

loop generates a temporary variable; the "using" clause forces the temporary variable
to be named a. Since the user gets to control the name of the variable, it is
possible to assign a declaration to the variable.

The other way to do it is to avoid the array-elements path, and instead use:

(defun tst (array incr)
(let «a array» (declare (sys:array-register a»

(loop for i from 0 below (alray-active-length a)
sum (* (aref a i) incr»»

This is a bit more efficient because it does not have the overhead of setting up the
variable elt.

258

Reference Guide to Symbolics-Lisp March 1985

24.11.3 Array Register Restrictions

You cannot setq an array-register variable. It is, however, valid to read the value of
an array-register variable; this yields the array, just as if the variable had not been
declared.

It is also not valid to declare a variable simultaneously special and
sys:array-register. You cannot declare a parameter (a variable that appears in the
argument-list of a defun or a lambda) to be an array register; you must bind
another variable (perhaps with the same name) to it with let and declare that
variable.

For example:

(defun tst (x y)
(let «x x) (y y»

(declare (sys:array-register X y»
... »

Note that the array-register declaration is in the system package (also known as
sys) , and therefore the declaration is system:array-register or sys:array-register.
If you type array-register instead of sys:array-register, the compiler ignores this
declaration and does not generate any warnings. In general, the compiler ignores
any misspelled declarations. In this case, the code generated by the compiler runs
slower. Additionally, if you type sys:array-registar instead of the correct spelling,
the package system catches the misspelling because the system package is locked.

If the array decoded into an array register is altered (for example, with
adjust-array-size) after the array register is created, the next reference through
the array register re-decodes the array.

24.12 Matrices and Systems of Linear Equations

The functions in this section perform some useful matrix operations. The matrices
are represented as two-dimensional Lisp arrays. These functions are part of the
mathematics package rather than the kernel array system, hence the "math:" in
the names.

math:multiply-matrices matrix-l matrix-2 &optional matrix-3 Function
Multiplies matrix-l by matrix-2. If matrix-3 is supplied, multiply-matrices
stores the results into matrix-3 and returns matrix-3; otherwise it creates an
array to contain the answer and returns that. All matrices must be two- .
dimensional arrays, and the first dimension of matrix-2 must equal the
second dimension of matrix-l.

259

March 1985 Arrays, Characters, and Strings

math:invert-matrix matrix &optional into-matrix Function
Computes the inverse of matrix. If into-matrix is supplied, stores the result
into it and returns it; otherwise it creates an array to hold the result, and
returns that. matrix must be two-dimensional and square. The Gauss­
Jordan algorithm with partial pivoting is used. Note: if you want to solve a
set of simultaneous equations, you should not use this function; use
math:decompose and math:solve.

math:invert-matrix does not work on conformally displaced arrays.

math:transpose-matrix matrix &optional into-matrix Function
Transposes matrix. If into-matrix is supplied, stores the result into it and
returns it; otherwise it creates an array to hold the result, and returns that.
matrix must be a two-dimensional array. into-matrix, if provided, must be
two-dimensional and have sufficient dimensions to hold the transpose of
matrix.

math:determinant matrix Function
Returns the determinant of matrix. matrix must be a two-dimensional
square matrix.

math:decompose and math:solve are used to solve sets of simultaneous linear
equations. math:decompose takes a matrix holding the coefficients of the
equations and produces the LU decomposition; this decomposition can then be passed
to math:solve along with a vector of right-hand sides to get the values of the
variables. If you want to solve the same equations for many different sets of right­
hand side values, you only need to call math:decompose once. In terms of their
argument names, these two functions exist to solve the vector equation A x = b for
x. A is a matrix. b and x are vectors.

math:decompose a &optional lu ps Function
Computes the LU decomposition of matrix a. If lu is non-nil, stores the
result into it and returns it; otherwise it creates an array to hold the result,
and returns that. The lower triangle of lu, with ones added along the
diagonal, is L, and the upper triangle of lu is U, such that the product of L
and U is a. Gaussian elimination with partial pivoting is used. The lu array
is permuted by rows according to the permutation array ps, which is also
produced by this function. If the argument ps is supplied, the permutation
array is stored into it; otherwise, an array is created to hold it. This
function returns two values: the LU decomposition and the permutation
array.

math:solve lu ps b &optional x Function
This function takes the LU decomposition and associated permutation array
produced by math:decompose, and solves the set of simultaneous equations
defined by the original matrix a and the right-hand sides in the vector b. If

260

Reference Guide to Symbolics-Lisp March 1985

x is supplied, the solutions are stored into it and it is returned; otherwise, an
array is created to hold the solutions and that is returned. b must be a one­
dimensional array.

math:1ist-2d-array array Function
Returns a list of lists containing the values in array, which must be a two­
dimensional array. There is one element for each row; each element is a list
of the values in that row.

math:fill-2d-array array list Function
This is the opposite of math:1ist-2d-array. list should be a list of lists, with
each element being a list corresponding to a row. array's elements are stored
from the list. Unlike fillarray, if list is not long enough,
math:fill-2d-array "wraps around", starting over at the beginning. The lists
that are elements of list also work this way.

24.13 Planes

A plane is an array whose bounds, in each dimension, are plus-infinity and minus­
infinity; all integers are valid as indices. Planes are distinguished not by size and
shape, but by number of dimensions alone. When a plane is created, a default value
must be specified. At that moment, every component of the plane has that value.
As you cannot ever change more than a finite number of components, only a finite
region of the plane need actually be stored.

The regular array accessing functions do not work on planes. You can use
make-plane to create a plane, plane-aref or plane-ref to get the value of a
component, and plane-aset or plane-store to store into a component.
array-#-dims works on a plane.

A plane is actually stored as an array with a leader. The array corresponds to a
rectangular, aligned region of the plane, containing all the components in which a
plane-store has been done (and others, in general, which have never been altered).
The lowest-coordinate corner of that rectangular region is given by the plane-origin
in the array leader. The highest coordinate corner can be found by adding the
plane-origin to the array-dimensions of the array. The plane-default is the
contents of all the elements of the plane that are not actually stored in the array.
The plane-extension is the amount to extend a plane by in any direction when the
plane needs to be extended. The default is 32.

If you never use any negative indices, then the plane-origin is all zeroes and you
can use regular array functions, such as aref and aset, to access the portion of the
plane which is actually stored. This can be useful to speed up certain algorithms.
In this case you can even use the bitblt function on a two-dimensional plane of bits
or bytes, provided you don't change the plane-extension to a number that is not a
multiple of 32.

261

March 1985 Arrays, Characters, and Strings

make-plane rank &rest options Function
Creates and returns a plane. ranh is the number of dimensions. options is a
list of alternating keyword symbols and values. The allowed keywords are:

:type The array type symbol (for example, art-Ib) specifying the type of the
array out of which the plane is made.

:default-vaIue
The default component value.

:extension
The amount by which to extend the plane. See the section "Planes",
page 260.

:initiaI-dimensions
A list of dimensions for the initial creation of the plane. You might
want to use this option to create a plane whose first dimension is a
multiple of 32, so you can use bitblt on it. Default: the result
returned by <make-list rank :initiaI-vaIue I).

:initiaI-origins
A list of origins for the initial creation of the plane. Default: the
result returned by <make-list rank :initiaI-vaIue 0).

Example:

(make-plane 2 :type 'art-4b :default-value 3)

creates a two-dimensional plane of type art-4b, with default value 3.

plane-origin plane Function
A list of numbers, giving the lowest coordinate values actually stored.

plane-default plane Function
This is the contents of the infinite number of plane elements that are not
actually stored.

plane-extension plane Function
The amount to extend the plane by in any direction when plane-store is
done outside of the currently stored portion.

plane-aref plane &rest subscripts Function
plane-aref and plane-ref return the contents of a specified element of a
plane. They differ only in the way they take their arguments; plane-aref
takes the subscripts as arguments, while plane-ref takes a list of subscripts.

plane-ref plane subscripts Function
plane-aref and plane-ref return the contents of a specified element of a
plane. They differ only in the way they take their arguments; plane-aref
takes the subscripts as arguments, while plane-ref takes a list of subscripts.

262

Reference Guide to Symbolics-Lisp March 1985

plane-aset datum plane &rest subscripts Function
plane-aset and plane-store store datum into the specified element of a
plane, extending it if necessary, and return datum. They differ only in the
way they take their arguments; plane-aset takes the subscripts as
arguments, while plane-store takes a list of subscripts.

plane-store datum plane subscripts Function
plane-aset and plane-store store datum into the specified element of a
"",1",,,,",,, "...,+"""",..1;"",,..,. ~+ ~~ """,..,...""..7" " ~ "..""+' .. M ,./,..,...,."..,. m'\..."' ,:J:.c.c ____ 1 :_ .. 1..._
pu.u..I.~, <;;AlI~.I..I.U1.l..I.6 III 1.1. .I..I.v~v"''''Q.1.J, Q.1..I.U .I. ClIU.I..I..1. u'""""'''". ~ I.I.CJ UlI.l.CI. VI.U'y I,ll "lit::

way they take their arguments; plane-aset takes the subscripts as
arguments, while plane-store takes a list of subscripts.

24.14 Maclisp Array Compatibility

The functions in this section are provided only for Maclisp compatibility, and should
not be used in new programs.

Integer arrays do not exist (however, see Symbolics-Lisp's small-positive-integer
arrays). Flonum arrays exist but you do not use them in the same way; no
declarations are required or allowed. "Un-garbage-collected" arrays do not exist.

Readtables and obarrays are represented as arrays, but unlike Maclisp special array
types are not used. Information about readtables and obarrays (packages) can be
found elsewhere: See the function read in Reference Guide to Streams, Files, and
110. See the function intern, page 605. There are no "dead" arrays, nor are
Multics "external" arrays provided.

The arraycall function exists for compatibility but should not be used. See the'
function aref, page 244.

Subscripts are always checked for validity, regardless of the value of *rset and
whether the code is compiled or not.

Currently, multidimensional arrays are stored in column-major order rather than
row-major order as in Maclisp. See the section "Multidimensional Arrays", page 237.
This issue is discussed further in that section.

loadarrays and dump arrays are not provided. However, arrays can be put into
compiled code files. See the section "Putting Data in Compiled Code Files" in
Reference Guide to Streams, Files, and 110.

The *rearray function is not provided, since not all of its functionality is available in
Symbolics-Lisp. The most common uses can be replaced byadjust-array-size.

In Maclisp, arrays are usually kept on the array property of symbols, and the
symbols are used instead of the arrays. In order to provide some degree of
compatibility for this manner of using arrays, the array and *array are provided,
and when arrays are applied to arguments, the arguments are treated as subscripts
and apply returns the corresponding element of the array.

263

March 1985 Arrays, Characters, and Strings

array symbol type &rest dims Macro
This creates an art-q type array in default-array-area with the given
dimensions. (That is, dims is given to make-array as its first argument.)
type is ignored. If symbol is nil, the array is returned; otherwise, the array
is put in the function cell of symbol, and symbol is returned.

*array symbol type &rest dims Function
This is just like array, except that all of the arguments are evaluated.

arraycall ignore array &rest subscripts Function
(arraycall t array subl sub2 .••) is the same as (aref array subl sub2 .•.). It
exists for Maclisp compatibility.

264

Reference Guide to Symbolics-Lisp March 1985

265

March 1985 Arrays. Characters. and Strings

25. Characters

25.1 Character Objects

Zetalisp has always used positive integers to represent characters.

<, +, and ldb to perform various operations on characters. Common Lisp, on the
other hand, has a separate data type for characters and specialized functions for
operations on characters. In Common Lisp, it is possible to distinguish
unambiguously between an integer and a character; characters print out in #\
notation.

This incompatibility between Zetalisp and Common Lisp affects strings as well as
characters. A string is defined to be a one-dimensional array of characters, so in
Zetalisp aref of a string returns an integer, but in Common Lisp aref of a string
returns a character.

Eventually Zetalisp will be replaced with Symbolics Common Lisp, an extension of
the standard Common Lisp language that also contains all of the advanced features
of Zetalisp. System programs and most user programs will be written in Symbolics
Common Lisp; old programs will continue to be supported by a Zetalisp compatibility
package. To make it practical for Zetalisp and Symbolics Common Lisp programs to
coexist in the same world and call each other freely, it is necessary for them to use
compatible data types. If the two languages used two different representations for
characters, they could not coexist conveniently, as characters and strings are
ubiquitous throughout the Symbolics Lisp Machine system.

For this reason, in a future major release Zetalisp will be changed incompatibly to
use a separate data type for characters, as Common Lisp does.

25.1.1 Character Object Details

A character object is a structured object containing several fields. Accessor functions,
described later, are provided to extract and modify the fields. In an abstract sense
the fields of a character object are:

code

style

bits

the actual character, such as ''upper-case A".

a modification of the character such as "italic" or "large".

control, meta, super, and hyper.

In addition there are some derived fields, whose values depend on the values of the
three fields listed above. For information about derived fields: See the section
"Character Sets and Character Styles", page 267. See the section "The Device-font
and Subindex Derived Fields", page 268.

266

Reference Guide to Symbolics-Lisp March 1985

Common Lisp calls the style field the font field. Within Symbolics-Lisp, the word
"font" is not used because it has misleading prior associations in Zetalisp.

The precise meaning of the code and style fields might not be clear. Characters that
are recognizably distinct always have different character codes. For example, the
Roman a and the Greek a have two different character codes. The character code,
which specifies the fundamental identity of a character, is modified by a style
specification and by modifier bits from the keyboard. A modification of a character
that leaves it re~ogni7.ably the same is expressed in the style field and does not
change the character code. For example, the Roman a, the bold a, and the italic a
all have the same character code. The style field also expresses such attributes of a
character as its displayed size and the typeface used, for example, whether it has
serifs.

An operational definition of the difference between the code and style fields is
provided by the char-equal function, which compares character codes but ignores
the style and the bits. char-equal also ignores distinctions of alphabetic case.
Because user-visible character comparisons, such as the Search and Replace
commands in the editor, compare characters with char-equal these commands
ignore differences in character style. In the Zetalisp releases that use integers to
represent characters, set/style distinction is not fully implemented; therefore, a and a
might be treated as the same character.

eq is not well-defined on character objects. Changing a field of a character object
gives you a "new copy" of the object; it never modifies somebody else's "copy" of "the
same" character object. In this way character objects are just like integers with
fields accessed by Idb and changed by dpb. Because eq is not well-defined on
character objects, they should be compared for identity with the eqI function, not
the eq function. This statement is true of integers as well. Integers can also be
compared with =, but = is only for numbers and does not work for character objects.
Currently on the 3600 family of machines, eq and eqI are equivalent for characters,
just as they are equivalent for integers, but programs should not be written to
depend on this, for two reasons:

• "Extended" character objects could be introduced in the future, standing in the
same relationship to "basic" character objects as bignums do to flXIlums.

• eq might not work for characters in other implementations of Common-Lisp­
compatible Lisp dialects.

In Zetalisp releases that use integers to represent characters, functions are provided
to manipulate integers as if they were characters. In Zetalisp releases following the
switch to character objects, the same functions will manipulate characters, providing
compatibility.

267

March 1985 Arrays, Characters, and Strings

25.1.2 Character Sets and Character Styles

The code field of a character can be broken down into a character set and an index
into that character set. These are derived fields of a character.

A character set is a set of related characters that are recognizably different from
other characters. Examples of character sets are the standard Symbolics Lisp
Machine character set including the Roman alphabet and other characters, Cyrillic
(the Cyrillic alphabet), and Japanese (comprising a large set of Kanji characters plus
two syllabaries or alphabets). Not all character sets need contain the same number
of characters. The indices in the standard character set range from 0 to 255,
whereas the indices in the Kanji character set range from 0 to about 8000.

The standard Symbolics Lisp Machine character set is an upward-compatible
extension of the 96 Common Lisp standard characters and the 6 Common Lisp semi­
standard characters. It is almost an upward-compatible extension of ASCII; it uses a
single Newline character and omits the ASCII control characters.

Character styles also exist. Among our existing fonts, Times-Roman,
Centuryschoolbook, Jess, and CPTFONT are not different character sets; they are
different styles of the Roman character set. Some styles can be applied to more
than one character set; for example most character sets can be made boldface. It is
possible to mix styles together; for example, a character can simultaneously be bold,
italic, and 24 points high.

Format-effector characters such as Return, Tab, and Space exist only in the
standard character set, but can be modified by styles that make them geometrically
compatible with other character sets.

When comparing characters, there is no intrinsic ordering between characters in
different character sets. Two characters of different character sets are never equal.
Less-than is not well-defined between them. Within a single character set, less-than
is defined so that characters (and strings) can be sorted alphabetically.

In Zetalisp releases that use integers to represent characters, the concepts of
character set and character style are confused and conflated into a single concept:
"font". Consequently there are no formal character-set and character-style objects in
these pre-character object releases, just informal "font numbers". Furthermore, the
exact meaning of these numbers depends on whether the Japanese system is loaded.
Effectively, there is only one character set in Zetalisp releases that use integers to
represent characters, and the "font" number is a style. However, when the optional
Japanese system is loaded, there are two character sets - standard and Kanji -
and the "font" number specifies both set and style. See the section "Support for
Nonstandard Character Sets", page 275. Prior to the switch to character objects, no
functions exist for dealing with character sets and styles. Programs that depend on
this cannot be compatible between the two releases without source changes.

Several functions are based on Common Lisp functions that take an optional
argument named "font". In Zetalisp releases that use integers to represent

268

Reference Guide to Symbolics-Usp March 1985

characters, these functions do not take such an argument, since its meaning would
be unclear and in any case it would change incompatibly in releases following the
switch to character objects. Mter the switch to character objects has been made,
these functions will probably permit either a character set or a style, or both, to be
specified by optional arguments.

25.1.3 The Device-font and Subindex Derived Fields

in Zetaiisp reieases that use integers to represent characters, there are two
additional derived fields of a character: the device-font number and the subindex.
These two fields are derived from the code and style fields. Together they describe
how to portray the character on an output device. Note: Programs that do output
are not normally concerned with these fields; only programs that implement output
devices need to know about them. Device-fonts will not exist after the switch to
character objects has occurred. At that time, any program that uses them will have
to be changed.

The device-font number is an integer that selects a device-dependent font; the
subindex then selects a particular character image from that font. There is
potentially a different device-font for each combination of character set, style, and
output device. Each output device (such as a window or an LGP) has a table that
maps device-font numbers into actual device-fonts.

The subindex can be an integer between 0 and 255. A character set can contain
any number of characters; most character sets contain 256 or fewer characters, but
the Kanji character set contains about 8000. A device-font always contains 256
characters, thus a large character set requires several device-fonts to portray all of
the characters in that character set.

char-device-font accesses the device-font field and char-subindex accesses the
subindex field of the specified character.

25.1.4 Two Kinds of Characters

A problem to be aware of when writing code to deal with characters is that releases
that use integers to represent characters have two incompatible kinds of characters.

One kind, associated with the %%kbd- byte specifiers, is used for characters from
the keyboard. The other kind, associated with the %%ch- byte specifiers, is used for
characters in files, editor buffers, and strings. The keyboard characters can contain
modifier bits, such as Control and Meta; the file characters can contain a device-font.
The same bits in the number are used for both purposes, so in releases that use
integers to represent characters, you cannot have a character with both bits and a
font. Furthermore each character-processing function assumes that it was given a
particular type of character as its argument; it has no way to tell which kind of
character the caller intended, since all characters are just represented as numbers.
Most functions assume file characters. Some functions work on either kind of

269

March 1985 Arrays, Characters, and Strings

character, as long as all arguments are of the same kind, because they treat the bits
and device-font attributes identically. If you are guaranteed to be dealing with
characters in the common intersection of the two kinds, that is, characters whose
bits and device-font attributes are both zero, you don't need to be concerned with
these issues.

An example of the way you can get into trouble now is that <alpha-char-p #\c-A)
returns t. Common Lisp specifies that it is supposed to return nil. In releases that
use integers to represent characters, alpha-char-p expects a file character, so it
regards the "control" bit as being a font number and ignores it. All problems of this
type will be fixed by the switch to character objects, but in the meantime you need
to be aware of them.

25.2 Character Fields

char-code char Function
Returns the code field of char, ignoring font. By default, the character code
is the %%ch-char field. char-code works for both keyboard and file
characters.

char-bits char Function
Returns the bits field of char. You can use setf on <char-bits access-form).
char-bits works for keyboard characters only.

char-device-font char Function
Returns the device-font number field of char. This function works for file
characters only.

char-subindex char Function
Returns the subindex field of char. This function works for both keyboard
and file characters.

char-bit char name Function
Returns t if the specified bit is set in char, otherwise it returns nil. name
can be : control , :meta, :super, :hyper, or :shift. :shift is a pseudo-bit
that is not directly represented in the char-bits field. You can use setf on
<char-bit access-form name). char-bit works for keyboard characters only.

set-char-bit char name value Function
Changes a bit in char and returns the new character. If name is :shift,
char must be a letter with a nonzero char-bits field. value is nil to clear
the bit or non-nil to set it. This function works for keyboard characters
only.

270

Reference Guide to Symbolics-Lisp March 1985

code-char code &optional (bits 0)
Constructs a character given its fields.

make-char char &optional (bits 0)
Sets the bits field of char.

25.3 Character Predicates

Function

Function

graphic-char-p char Function
Returns t if char does not have any control bits set and is not a format
effector. This function works for keyboard characters only.

upper-case-p char Function
Returns t if char is an upper-case letter. This function works for file
characters only.

lower-case-p char Function
Returns t if char is a lower-case letter. This function works for file
characters only.

both-case-p char Function
Returns t if char is a letter that exists in another case. This function works
for file characters only.

alpha-char-p char Function
Returns t if char is a letter. This function works for file characters only.

digit-char-p char &optional (radix 10) Function
Returns t if char is a valid digit in the specified radix. The value, if non-nil,
is the weight of that digit (a number from zero to one less than the radix).
This function works for file characters only. See the function digit-char,
page 273.

alphanumericp char Function
Returns t if char is a letter or a base-IO digit. This function works for file
characters only.

25.4 Character Comparisons

25.4.1 Character Comparisons Affected by Case, Style, and Bits

char= charl &rest more-chars Function
This is a comparison predicate that compares characters exactly, depending on

271

March 1985 Arrays, Characters, and Strings

all fields including b\ts, style, and alphabetic case. This function works for
both keyboard and ltile characters.

char~ chari &rest more-chars Function
This is a comparison predicate that compares characters exactly, depending on
all fields including bits, style, and alphabetic case. This function works for
both keyboard and file characters.

char< chari &rest more-chars Function
This is a comparison predicate that compares characters exactly, depending on
all fields including bits, style, and alphabetic case. This function works for
both keyboard and file characters.

char> chari &rest more-chars Function
This is a comparison predicate that compares characters exactly, depending on
all fields including bits, style, and alphabetic case. This function works for
both keyboard and file characters.

char~ chari &rest more-chars Function
This is a comparison predicate that compares characters exactly, depending on
all fields including bits, style, and alphabetic case. This function works for
both keyboard and file characters.

chan chari &rest more-chars Function
This is a comparison predicate that compares characters exactly, depending on
all fields including bits, style, and alphabetic case. This function works for
both keyboard and file characters.

25.4.2 Character Comparisons Ignoring Case, Style, and Bits

char-equal chari char2 Function
This is the primitive for comparing characters for equality; many of the string
functions call it. chari and char2 must be integers. char-equal ignores case
and style, returning t if the characters are equal. Otherwise it returns nil.

char-not-equal chari char2 Function
This is a comparison predicate that compares only the code field and ignores
distinctions of alphabetic case. This function works for both keyboard and
file characters.

char-Iessp chari char2 Function
This is the primitive for comparing characters for order; many of the string
functions call it. chari and char2 must be integers. The result is t if chari
comes before char2 ignoring case and font, otherwise nil. See the section
"The Character Set" in Reference Guide to Streams, Files, and I/O. Details
of the ordering of characters are in that section.

272

Reference Guide to Symbolics-Lisp March 1985

char-greaterp charI char2 Function
This is a comparison predicate that compares only the code field and ignores
distinctions of alphabetic case. This function works for both keyboard and
file characters.

char-not-greaterp charI char2 Function
This is a comparison predicate that compares only the code field and ignores
distinctions of alphabetic case. This function works for both keyboard and
fiie characters.

char-not-Iessp charI char2 Function
This is a comparison predicate that compares only the code field and ignores
distinctions of alphabetic case. This function works for both keyboard and
file characters.

25.5 Character Conversions

character x Function
character coerces x to a single character, represented as an integer. If x is
a number, it is returned. If x is a string or an array, its first element is
returned. If x is a symbol, the first character of its pname is returned.
Otherwise, an error occurs. See the section "The Character Set" in Reference
Guide to Streams, Files, and 110. The way characters are represented as
integers is explained in that section.

char-int char Function
Converts char to an integer. This function works for both keyboard and file
characters.

int-char integer Function
Converts integer to a character. This function works for both keyboard and
file characters.

char-upcase char Function
If char, which must be an integer, is a lowercase alphabetic character in the
standard character set, char-upcase returns its uppercase form; otherwise, it
returns char. If font information is present it is preserved. The result of
char-upcase is undefined for characters with modifier bits.

char-downcase char Function
If char, which must be an integer, is an uppercase alphabetic character in
the standard character set, char-downcase returns its lowercase form;
otherwise, it returns char. If font information is present it is preserved.
The result of char-downcase is undefined for characters with modifier bits.

273

March 1985 Arrays, Characters, and Strings

cbar-tlipcase char Function
If char, which must be an integer, is a lowercase alphabetic character in the
standard character set, cbar-tlipcase returns its uppercase form. If char is
an uppercase alphabetic character in the standard character set,
cbar-tlipcase returns its lowercase form. Otherwise, it returns char. If
font information is present it is preserved. The result of char-flipcase is
undefined for characters with modifier bits.

digit-char weight &optional (radix 10) Function
Returns the character that represents a digit with a specified weight weight.
Returns nil if weight is not between 0 and (1- radix) or radix is not between
2 and 36.

See the function digit-char-p, page 270.

alphabetic-case-affects-string-comparison Variable
This variable is obsolete, and should always be left set to nil. Binding this
variable non-nil makes some functions behave differently from the
documen tation.

Use char= to compare characters if you want alphabetic case to affect the
result, otherwise use char-equal. Similarly, use string= or string-equal to
compare strings.

25.6 Character Names

char-name char Function
Returns nil or the name of char (a string). char-name ignores bits and
style.

name-char string Function
Returns a character given its name. name-char does not recognize names
with modifier bit prefixes such as "hyper-space".

25.7 Mouse Characters

mouse-char-p char Function
Returns t if char is a mouse-character, representing the clicking of a mouse
button. See the section "The Character Set" in Reference Guide to Streams,
Files, and liD. This function works for keyboard characters only.

char-mouse-button char Function
Returns the zero-origin button number. See the section "The Character Set"
in Reference Guide to Streams, Files, and 110. This function works for
keyboard characters only.

274

Reference Guide to Symbolics-Usp March 1985

char-mouse-n-clicks char Function
Returns one less than the number of times the mouse button was clicked.
See the section "The Character Set" in Reference Guide. to Streams, Files,
and liD. This function works for keyboard characters only.

make-mouse-char button n-clicks &optional (bits 0) Function
Constructs a mouse character given its fields. See the section "The
Character Set" in Reference Guide to Streams, Files, and liD. This function
....... ",1,,~ t! lrau'hno,.r1 I'no"ol'torc:. nn lv
}J.l.V\.A.Y"",,-,y ~'-'J ""'V,."..,. "-A "' _-_ _-- ----.I.

25.8 ASCII Characters

ascii-code arg Function
Returns an integer that is the ASCII code named by argo If arg is a
character, char-to-ascii is called. Otherwise, arg can be a string that is the
name of one of the ASCII special characters.

Valid ASCII special character names are listed below. All numbers are in
octal.

NUL 000 HT 011 DC1 021 SUB 032
SOH 001 LF 012 DC2 022 ESC 033
STX 002 NL 012 DC3 023 ALT 033
ETX 003 VT 013 DC4 024 FS 034
EOT 004 FF 014 NAK 025 GS 035
ENQ 005 CR 015 SYN 026 RS 036
ACK 006 SO 016 ETB 027 US 037
BEL 007 SI 017 CAN 030 SP 040
BS 010 DLE 020 EM 031 DEL 177
TAB 011

char-to-ascii char Function
Converts char to the corresponding ASCII code. #\Return is converted to
the ASCII CR character; the caller must supply an LF if desired. This
function works only for characters with neither bits nor fonts. See the
section "ASCII Strings", page 290.

ascii-to-char code Function
Converts code (an ASCII code) to the corresponding character. The caller
must ignore LF after CR if desired. See the section "ASCII Strings", page
290.

275

March 1985 Arrays, Characters, and Strings

25.9 Support for Nonstandard Character Sets

Symbolics-Lisp has a limited facility for defining multiple character sets, which will be
replaced with a real multiple character set feature after the switch to character
objects has been made. The standard Symbolics Lisp Machine character set is
discussed in another section. See the section "The Character Set" in Reference
Guide to Streams, Files, and 110. You can have both standard and nonstandard
character sets in mUltiple fonts.

Two functions, char-standard and char-code, provide support for nonstandard
character sets that do not have the usual interpretations of case and font.

char-standard char Function
Returns t if char is a standard character, with the usual interpretations of
case and font. By default, char-standard always returns t. You can
redefine this function to introduce multiple character sets. This function will
be removed after the switch to character objects has been made.

See the function char-code, page 269. You can redefine char-code to introduce
mUltiple character sets. Always use char-code instead of (ldb %%ch-char char) to
determine the character code so that your programs can run without modification
when the switch to character objects is made.

char-standard and char-code are hooks. You can redefine these functions to
examine the value of the %%ch-font field of their argument and to use this in
computing their result.

Make sure that replacement definitions for char-standard and char-code are
thoroughly debugged using different names before redefining them. Defective
versions of these functions can cause the system to crash.

By redefining these functions, you can control the behavior of char-equal,
char-Iessp, char-upcase, string-equal, string-search, and other system functions
that ignore font information or that only make sense for the standard character set.

If char-standard is redefined and if
(eq (char-standard cl) (char-standard c2» returns nil, then
(char-equal cl c2) returns nil. char-code usually returns a number between 0
and (dpb -1 %%ch-char 0), inclusive. If it is redefined, it can return numbers
greater than (dpb -1 %%ch-char 0).

For example, suppose you have three different Greek fonts and you want to define a
Greek character set. Characters in fonts 1, 2, and 3 are assumed to be Greek.
Characters in font 0 and in fonts 4 through 255 are assumed to be in the standard
character set. Characters in font 0 must always be in the standard character set.

Suppose that the values of the %%ch-char field of the characters Q, {J, and 'Y are
the same as that of the characters A, B, and C. We want

276

Reference Guide to Symbolics-Lisp March 1985

(char-equal #/ A #/a) and (string-equal "ABC" "an'Y") to return nil. But we
want (string-equal "afJ'Y" "afJ'Y") to return t, even if the first string and the second
string are in two different fonts.

The system provides these definitions of char-standard and char-code:

(defun char-standard (ignore) t)
(defun char-code (char) (ldb %%ch-char char»

You can define a Greek character set, allowing three fonts using font numbers 1, 2,
and 3, by using these definitions instead:

(defun char-standard (char)
(let «font (ldb %%ch-font char»)

(or (zerop font) (~ font 4»»

(defun char-code (char)
(let «font (ldb %%ch-font char»

(code (ldb %%ch-char font»)
(if (or (zerop font) (~ font 4»

code
(dpb 1 %%ch-font code»»

You can define multiple character sets in a similar manner.

277

March 1985 Arrays, Characters, and Strings

26. Strings

Strings are a type of array that represent a sequence of characters. The printed
representation of a string is its characters enclosed in quotation marks, for example,
"foo bar". Strings are constants, that is, evaluating a string returns that string.
Strings are the right data type to use for text processing.

Strings are arrays of type art-string, where each element holds an eight-bit
unsigned integer. This is because characters are represented as integers, and for
fundamental characters only eight bits are used. A string can also be an array of
type art-fat-string, where each element holds a sixteen-bit unsigned integer; the
extra bits allow for multiple fonts or an expanded character set.

See the section "The Character Set" in Reference Guide to Streams, Files, and 110.
The way characters work, including multiple fonts and the extra bits from the
keyboard, is explained in that section. Note that you can type in the integers that
represent characters using "#/" and "#\"; for example, #/f reads in as the integer
that represents the character "r', and #\return reads in as the integer that
represents the special "return" character. See the section "Sharp-sign Reader
Macros", page 27. Details of this syntax are explained there.

The functions described in this section provide a variety of useful operations on
strings. In place of a string, most of these functions accept a symbol or an integer
as an argument, and coerce it into a string. Given a symbol, its print name, which
is a string, is used. Given an integer, a one-character string containing the
character designated by that integer is used.

Since strings are arrays, the usual array-referencing function aret is used to extract
the characters of the string as integers. For example:

(aref "frob" 1) => 162 ;lower-caser

Note that the character at the beginning of the string is element zero of the array
(rather than one); as usual in Symbolics-Lisp, everything is zero-based.

It is also valid to store into strings (using aset). As with rplaca on lists, this
changes the actual object; one must be careful to understand where side effects
propagate to. When you are making strings that you intend to change later, you
probably want to create an array with a fill-pointer so that you can change the
length of the string as well as the contents. See the section "Array Leaders", page
238. The length of a string is always computed using array-active-Iength, so that
if a string has a fill-pointer, its value is used as the length.

See also intern, which given a string returns "the" symbol with that print name.

278

Reference Guide to Symbolics-Usp March 1985

26.1 Basic String Operations

string x Function
string coerces x into a string. Most of the string functions apply this to
their string arguments. If x is a string, it is returned. If x is a symbol, its
pname is returned. If x is a nonnegative integer less than 200000 octal, a
one-character-long string containing it is created and returned. If x is a
pathnalTIe, the "string for printing" js returned. See the section "Naming of
Files" in Reference Guide to Streams, Files, and 110. Otherwise, an error is
signalled.

If you want to get the printed representation of an object into the form of a
string, this function is not what you should use. You can use format,
passing a first argument of nil. You might also want to use
with-output-to-string.

string-length string Function
string-length returns the number of characters in string, which must be a
string or an object that can be coerced into a string. See the function
string, page 278. string-length returns the array-active-Iength if string
is a string, or the array-active-Iength of the pname if string is a symbol.

substring string from &optional to (area nil) Function
This extracts a substring of string, starting at the character specified by from
and going up to but not including the character specified by to. string is a
string or an object that can be coerced to a string. See the function string,
page 278. from and to are O-origin indices. The length of the returned string
is to minus from. If to is not specified it defaults to the length of string.
The area in which the result is to be con sed can be optionally specified.
Example:

(substring "Nebuchadnezzar" 4 8) => "chad"

DBubstring string from &optional to (area nil) Function
DBubstring is the same as substring except that the substring is not
copied; instead an indirect array is created that shares part of the argument
string. See the section "Indirect Arrays", page 240. Modifying one string
modifies the other.

string is a string or an object that can be coerced to a string. Since
nsubstring is destructive, coercion should be used with care since a string
internal to the object might be modified. See the function string, page 278.

Note that nsubstring does not necessarily use less storage than substring;
an nsubstring of any length uses at least as much storage as a substring 4
characters long. So you should not use this just "for efficiency"; it is
intended for uses in which it is important to have a substring that, if
modified, causes the original string to be modified too.

279

March 1985 Arrays. Characters. and Strings

string-append &rest strings Function
Any number of strings are copied and concatenated into a single string.
strings are strings or objects that can be coerced to strings. See the function
string, page 278. With a single argument, string-append simply copies it.
The result is an array of the same type as the argument with the greatest
number of bits per element. For example, if the arguments are arrays of
type art-string and art-tat-string, an array of type art-tat-string is
returned. string-append can be used to copy and concatenate any type of
one-dimensional array. Example:

(string-append *'! "foo" "~!) => "!foo!"

string-nconc to-string &rest strings Function
string-nconc is like string-append except that instead of making a new
string containing the concatenation of its arguments, string-nconc modifies
its first argument. to-string must be a string with a fill-pointer so that
additional characters can be tacked onto it. Compare this with
array-push-extend. The value of string-nconc is to-string or a new, longer
copy of it; in the latter case the original copy is forwarded to the new copy
(see adjust-array-size). Unlike nconc, string-nconc with more than two
arguments modifies only its first argument, not every argument but the last.

string-nconc-portion to-string [from-string from to} ... Function
Adds information onto a string without consing intermediate substrings.
to-string must be a string with a fill-pointer so that additional characters can
be added onto it. The remaining arguments can be any number of "string
portion specs", which are string/from/to triples. from and to are required but
can be nil and nil. Even though the arguments are called strings, they can
be anything that can be coerced to a string with string (for example,
symbols or characters).

The value of string-nconc-portion is to-string or a new, longer copy of it; in
the latter case the original copy is forwarded to the new copy (see
adjust-array-size).

string-nconc-portion is like string-nconc except that it takes parts of
strings without consing substrings.

Example:

(let ((a (make-array 10 :type 'art-string :fill-pointer 0»)
(format t "-A"

(string-nconc-portion a 'xxxfoobar 3 nil
#\sp ni 1 ni 1
"tempstuff" 0 4»)

=> FOOBAR temp

string-nconc-portion uses array-push-portion-extend internally, which
uses adjust-array-size to take care of growing the to-string if necessary.

280

Reference Guide to Symbolics-Usp March 1985

string-trim char-set string Function
This returns a substring of string, with all characters in char-set stripped off
the beginning and end. string is a string or an object that can be coerced to
a string.· See the function string, page 278. char-set is a set of characters,
which can be represented as a list of characters or a string of characters.
Example:

(string-trim '(D\sp)" Dr. No ") =) "Dr. No"
(string-trim "ab" "abbafooabb") =) "fooD

string-left-trim char-set string Function
This returns a substring of string, with all characters in char-set stripped off
the beginning. string is a string or an object that can be coerced to a string.
See the function string, page 278. char-set is a set of characters, which can
be represented as a list of characters or a string of characters.

string-right-trim char-set string Function
This returns a substring of string, with all characters in char-set stripped off
the end. string is a string or an object that can be coerced to a string. See
the function string, page 278. char-set is a set of characters, which can be
represented as a list of characters or a string of characters.

string-reverse string Function
Returns a copy of string with the order of characters reversed. This reverses
a one-dimensional array of any type. If string is not a string or another one­
dimensional array, it is coerced into a string. See the function string, page
278.

string-nreverse string Function
Returns string with the order of characters reversed, smashing the original
string, rather than creating a new one. This reverses a one-dimensional
array of any type. If string is a number, it is simply returned without
consing up a string.

If string is not a string or another one-dimensional array, it is coerced into a
string. Since string-nreverse is destructive, coercion should be used with
care since a string internal to the object might be modified. See the function
string, page 278.

string-pluralize string Function
string-pluralize returns a string containing the plural of the word in the
argument string. Any added characters go in the same case as the last
character of string. string is a string or an object that can be coerced to a
string. See the function string, page 278. Example:

March 1985

(string-pluralize "event") => "events"
(string-pluralize "Han") => "Hen"
(string-pluralize "Can") => "Cans"
(string-pluralize "key") => "keys"
(string-pluralize "TRY") => "TRIES"

281

Arrays. Characters. and Strings

For words with multiple plural forms depending on the meaning,
string-pluralize cannot always do the right thing.

parse-number string &optional (from 0) (to nil) (radix nil) Function
(fail-if-not-whole-string nil)

parse-number takes a string and "reads" a number from it. string must be
a string. It returns two values: the number found (or nil) and the
character position of the next unparsed character in the string. It returns
nil when the first character that it looks at cannot be part of a number.
The function currently does not handle anything but integers.
(read-from-string is a more general function that uses the Lisp reader;
prompt-and-read reads a number from the keyboard.)

(parse-number "123 ") => 123 3
(parse-number" 123") => NIL 0
(parse-number "-123") => -123 4
(parse-number "25.3") => 25 2
(parse-number "$$$123" 3 4) => 1 4
(parse-number "123$$$" 0 nil nil nil) => 123 3
(parse-number "123$$$" 0 nil nil t) => NIL 0

Four optional arguments:

from

to

radix

The character position in the string to start parsing. The
default is the first one, position O.

The character position past the last one to consider. The
default, nil, means the end of the string.

The radix to read the string in. The default, nil, means
base 10.

fail-if-not-whole-string
The default is nil. nil means to read up to the first
character that is not a digit and stop there, returning the
result of the parse so far. t means to stop at the first
nondigit and to return nil and 0 length if that is not the
end of the string.

number-into-array array number &optional (radix base) (at-index Function
0) (min-columns 0)

Deposits the printed representation of number into array.
number-into-array is the inverse of parse-number. It has three optional
arguments:

282

Reference Guide to Symbolics-Lisp March 1985

radix

at-index

The radix to use when converting the number into its
printed representation. It defaults to base.

The character position in the array to start putting the
number. If the number contains less characters than
min-columns, the number is right-justified within the
array. If the number contains more characters than
min-columns, min-columns is ignored. An error is
signalled if the number contains more characters than the
length of the array minus at-index. The default is the
first position, position o.

min-columns The minimum number of characters required for the
printed representation of the number.

The following example puts 23453243 into string starting at character
position 5. Since min-columns is 10, the number is preceded by two spaces.

(let ((string (make-array 20. :type 'art-string :initia1-va1ue #\X»)
(number-into-array string 23453243. 10. 5. 10.)

string)

=> "XXXXX 23453243XXXXX"

26.2 String Comparisons

26.2.1 String Comparisons Affected by Case, Style, and Bits

string= stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including bits, style, and alphabetic case.

stringJl! stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including bits, style, and alphabetic case.

string< stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including bits, style, and alphabetic case.

string> stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including bits, style, and alphabetic case.

string~ stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including bits, style, and alphabetic case.

283

March 1985 Arrays, Characters, and Strings

strin~ stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including bits, style, and alphabetic case.

%string= stringl indexl string2 index2 count Function
This is a low-level string comparison, possibly more efficient than the other
comparisons. Its only current efficiency advantage is its simplified arguments
and minimized type-checking.

string-exact-compare stringl string2 &optional (idxl 0) (idx2 0) Function
liml lim2

This is a comparison predicate that compares two strings or substrings of
them, exactly, depending on all fields including bits, style, and alphabetic case.
string-exact-compare returns:

• a positive number if stringl > string2
• zero if stringl = string2
• a negative number if stringl < string2

sys:%string-exact-compare stringl indexl string2 index2 count Function
This is a low-level string comparison, possibly more efficient than the other
comparisons. Its only current efficiency advantage is its simplified arguments
and minimized type-checking. sys:%string-exact-compare returns:

• a positive number if stringl > string2
• zero if stringl = string2
• a negative number if stringl < string2

26.2.2 String Comparisons Ignoring Case, Style, and Bits

string-equal stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
string-equal compares two strings, returning t if they are equal and nil if
they are not. The comparison ignores the extra "font" bits in 16-bit strings
and ignores alphabetic case. equal calls string-equal if applied to two
strings. stringl and string2 are strings or objects that can be coerced to
strings. See the function string, page 278.

The optional arguments idxl and idx2 are the starting indices into the
strings. The optional arguments liml and lim2 are the final indices; the
comparison stops just before the final index. liml and lim2 default to the
lengths of the strings. These arguments are provided so that you can
efficiently compare substrings. Examples:

(string-equal "Faa" "faa") => t
(string-equal "faa" "bar") => nil
(string-equal "element" "select" 0 1 3 4) => t

284

Reference Guide to Symbolics-Lisp March 1985

string-not-equal stringl string2 &optional (idxl 0) (idx2 0) liml
lim2

Function

This compares two strings or substrings of them, ignoring bits, style, and
alphabetic case.

string-Ie ssp stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
This compares two strings using alphabetical order (as defined by
char-Iessp). The result is t if stringl is the lesser, or nil if they are equal
____ .£-: __ n !_ ~1..._ 1 ____ _

VI- :;", ""'IS.&:. 10 lIUt:: It::OOt::J..

string-greaterp stringl string2 &optional (idxl 0) (idx2 0) liml Function
lim2

This compares two strings or substrings of them, ignoring bits, style, and
alphabetic case.

string-not-greaterp stringl string2 &optional (idxl 0) (idx2 0) liml
lim2

Function

This compares two strings or substrings of them, ignoring bits, style, and
alphabetic case.

string-not-Iessp stringl string2 &optional (idxl 0) (idx2 0) liml
lim2

Function

This compares two strings or substrings of them, ignoring bits, style, and
alphabetic case.

%string-equal stringl indexl string2 index2 count Function
This is a low-level string comparison, possibly more efficient than the other
comparisons. Its only current efficiency advantage is its simplified arguments
and minimized type-checking. %string-equal returns t if the count
characters of stringl starting at idxl are char-equal to the count characters
of string2 starting at idx2, . or nil if the characters are not equal or if count
runs off the length of either array.

Instead of an integer, count can also be nil. In this case, %string-equal
compares the substring from idxl to (string-length stringl) against the
substring from idx2 to (string-length string2). If the lengths of these
substrings differ, then they are not equal and nil is returned.

Note that stringl and string2 must really be strings; the usual coercion of
symbols and integers to strings is not performed. This function is
documented because certain programs that require high efficiency and are
willing to pay the price of less generality might want to use %string-equal
in place of string-equal. Examples:

To compare the two strings foo and bar:

(%string-equa1 foo 0 bar 0 nil)

To see if the string foo starts with the characters "bar":

285

March 1985 Arrays, Characters, and Strings

(%string-equal foo 0 "bar" 0 3)

string-compare stringl string2 &optional (idxl 0) (idx2 0) liml Function
lim2

Compares the characters of stringl starting at idxl and ending just below
liml with the characters of string2 starting at idx2 and ending just below
lim2. The comparison is in alphabetical order. stringl and string2 are
strings or objects that can be coerced to strings. See the function string,
page 278. liml and lim2 default to the lengths of the strings.
string-compare returns:

• a positive number if stringl > string2
• zero if stringl = string2
• a negative number if stringl < string2

If the strings are not equal, the absolute value of the number returned is
one more than the index (in stringl) at which the difference occurred.

sys:%string-compare stringl indexl string2 index2 count Function
This is a low-level string comparison, possibly more efficient than the other
comparisons. Its only current efficiency advantage is its simplified arguments
and minimized type-checking.

26.3 String Conversions

string-upcase string &optional (from 0) to (copy-p t) Function
string is a string or an object that can be coerced to a string. See the
function string, page 278. If copy-p is not nil, returns a copy of string, with
lowercase alphabetic characters replaced by the corresponding uppercase
characters. If copy-p is nil, uppercases characters in string itself and then
returns the modified string. from is the index in string at which to begin
uppercasing characters. If to is supplied, it is used in place of
<array-active-Iength string) as the index one greater than the last
character to be uppercased. Characters not in the standard character set are
unchanged.

string-downcase string &optional <from 0) to (copy-p t) Function
string is a string or an object that can be coerced to a string. See the
function string, page 278. If copy-p is not nil, returns a copy of string, with
uppercase alphabetic characters replaced by the corresponding lowercase
characters. If copy-p is nil, lowercases characters in string itself and then
returns the modified string. from is the index in string at which to begin
lowercasing characters. If to is supplied, it is used in place of
<array-active-Iength string) as the index one greater than the last

286

Reference Guide to Symbolics-Lisp March 1985

character to be lowercased. Characters not in the standard character set are
unchanged.

string-tlipcase string &optional (from 0) to (copy-p t) Function
string is a string or an object that can be coerced to a string. See the
function string, page 278. If copy-p is not nil, string-tlipcase returns a
copy of string, with uppercase alphabetic characters replaced by the
corresponding lowercase characters, and with lowercase alphabetic characters
replaced by the corl'esponding uppercase characters. If topy-p is nii,
string-tlipcase exchanges the case of characters in string itself and then
returns the modified string. from is the index in string at which to begin
exchanging the case of characters. If to is supplied, it is used in place of
<array-active-Iength string) as the index one greater than the last
character whose case is to be exchanged. Characters not in the standard
character set are unchanged.

string-capitalize-words string &optional (copy-p t) Function
Transforms string by changing hyphens to spaces and capitalizing each word.
string is a string or an object that can be coerced to a string. See the
function string, page 278.

(string-capitalize-words "Lisp-listener") => "Lisp Listener"
(string-capitalize-words "LISP-LISTENER") => "Lisp Listener"
(string-capitalize-words "lisp--listener") => "Lisp Listener"
(string-capitalize-words "symbol-processor-3") => "Symbol Processor 3"

copy-p indicates whether to return a copy of the string argument or to
modify the argument itself. The default, t, returns a copy.

26.4 String Searching

26.4.1 String Searching Affected by Case, Style, and Bits

string-search-exact-char char string &optional ({rom 0) to Function
This searches a string or a substring for a character, comparing characters
exactly and depending on all fields including bits, style, and alphabetic case.

string-search-not-exact-char char string &optional ({rom 0) to Function
This searches a string or a substring for a character, comparing characters
exactly and depending on all fields including bits, style, and alphabetic case.

string-reverse-search-exact-char char string &optional from (to 0) Function
This searches a string-or a substring for a character, comparing characters
exactly and depending on all fields including bits, style, and alphabetic case.

287

March 1985 Arrays, Characters, and Strings

string-reverse-search-not-exact-char char string &optional from
(to 0)

Function

This searches a string or a substring for a character, comparing characters
exactly and depending on all fields including bits, style, and alphabetic case.

string-search-exact key string &optional (from 0) to <key-start 0) Function
key-end

This searches one string for another, comparing characters exactly and
depending on all fields including bits, style, and alphabetic case. Substrings of
either argument can be specified.

string-reverse-search-exact key string &optional from (to 0) Function
(key-start 0) key-end

This searches one string for another, comparing characters exactly and
depending on all fields including bits, style, and alphabetic case. Substrings of
either argument can be specified.

%string-search-exact-char char string start end Function
This is a low-level string search, possibly more efficient than the other
searching functions. Its only current efficiency advantage is its simplified
argumen ts and minimized type-checking.

26.4.2 String Searching Ignoring Case, Style, and Bits

string-search-char char string &optional (from 0) to Function
string-search-char searches through string starting at the index from,
which defaults to the beginning, and returns the index of the first character
that is char-equal to char, or nil if none is found. If the to argument is
supplied, it is used in place of (string-length string) to limit the extent of
the search. string is a string or an object that can be coerced to a string.
See the function string, page 278. Example:

<string-search-char #/a "banana") =) 1

string-search-not-char char string &optional (from 0) to Function
string-search-not-char searches through string starting at the index from,
which defaults to the beginning, and returns the index of the first character
which is not char-equal to char, or nil if none is found. If the to argument
is supplied, it is used in place of (string-length string) to limit the extent of
the search. string is a string or an object that can be coerced to a string.
See the function string, page 278. Example:

<string-search-not-char #/b "banana") =) 1

string-reverse-search-char char string &optional from (to 0) Function
string-reverse-search-char searches through string in reverse order,
starting from the index one less than from, which defaults to the length of

288

Reference Guide to Symbofics-Usp March 1985

string, and returns the index of the first character that is char-equal to
char, or nil if none is found. Note that the index returned is from the
beginning of the string, although the search starts from the end. If the to
argument is supplied, it limits the extent of the search. string is a string or
an object that can be coerced to a string. See the function string, page 278.
Example:

(string-reverse-search-char lIn "banana") => 4

string-reverse-search-not-char char string &optionai from (to 0) punction
string-reverse-search-not-char searches through string in reverse order,
starting from the index one less than from, which defaults to the length of
string, and returns the index of the first character that is not char-equal to
char, or nil if none is found. Note that the index returned is from the
beginning of the string, although the search starts from the end. If the to
argument is supplied, it limits the extent of the search. string is a string or
an object that can be coerced to a string. See the function string, page 278.
Example:

(string-reverse-search-not-char Ila "banana") => 4

string-search key string &optional (from 0) to (key-start 0) key-end Function
string-search searches for the string key in the string string, using
string-equal to do the comparison. The search begins at from, which
defaults to the beginning of string. The value returned is the index of the
first character of the first instance of key, or nil if none is found. If the to
argument is supplied, it is used in place of (string-length string) to limit the
extent of the search. string is a string or an object that can be coerced to a
string. See the function string, page 278. Example:

(string-search "an" "banana") => 1
- (string-search "an" "banana" 2) => 3

string-reverse-search key string &optional from (to 0) (key-start 0) Function
key-end

string-reverse-search searches for the string key in the string string, using
string-equal to do the comparison. The search proceeds in reverse order,
starting from the index one less than from, which defaults to the length of
string, and returns the index of the first (leftmost) character of the first
instance found, or nil if none is found. Note that the index returned is from
the beginning of the string, although the search starts from the end. The
from condition, restated, is that the instance of key found is the rightmost
one whose rightmost character is before the from'th character of string. If
the to argument is supplied, it limits the extent of the search. string is a
string or an object that can be coerced to a string. See the function string,
page 278. Example:

(string-reverse-search Una" "banana") => 4

289

March 1985 Arrays, Characters, and Strings

%string-search-char char string from to Function
This is a low-level string search, possibly more efficient than the other
searching functions. Its only current efficiency advantage is its simplified
arguments and minimized type-checking. string must be an array and char,
from, and to must be integers. Except for this lack of type-coercion, and the
fact that none of the arguments is optional, %string-search-char is the
same as string-search-char. This function is documented for the benefit of
those who require the maximum possible efficiency in string searching.

string-search-set char-set string &optional (from 0) to Function
string-search-set searches through string looking for a character that is in
char-set. The search begins at the index from, which defaults to the
beginning. It returns the index of the first character that is char-equal to
some element of char-set, or nil if none is found. If the to argument is
supplied, it is used in place of (string-length string) to limit the extent of
the search. char-set is a set of characters, which can be represented as a list
of characters or a string of characters. string is a string or an object that
can be coerced to a string. See the function string, page 278. Example:

(string-search-set '(#/n #/0) "banana") => 2
(string-search-set "no" "banana") => 2

string-search-not-set char-set string &optional (from 0) to Function
string-search-not-set searches through string looking for a character that is
not in char-set. The search begins at the index from, which defaults to the
beginning. It returns the index of the first character that is not char-equal
to any element of char-set, or nil if none is found. If the to argument is
supplied, it is used in place of (string-length string) to limit the extent of
the search. char-set is a set of characters, which can be represented as a list
of characters or a string of characters. string is a string or an object that
can be coerced to a string. See the function string, page 278. Example:

(string-search-not-set '(#/a #/b) "banana") => 2

string-reverse-search-set char-set string &optional from (to 0) Function
string-reverse-search-set searches through string in reverse order, starting
from the index one less than from, which defaults to the length of string,
and returns the index of the first character that is char-equal to some
element of char-set, or nil if none is found. Note that the index returned is
from the beginning of the string, although the search starts from the end.
If the to argument is supplied, it limits the extent of the search. char-set is
a set of characters, which can be represented as a list of characters or a
string of characters. string is a string or an object that can be coerced to a
string. See the function string, page 278.

(string-reverse-search-set Nab" "banana") => 5

290

Reference Guide to Symbolics-Lisp March 1985

string-reverse-search-not-set char-set string &optional from (to 0) Function
string-reverse-search-not-set searches through string in reverse order,
starting from the index one less than from, which defaults to the length of
string, and returns the index of the first character that is not char-equal to
any element of char-set, or nil if none is found. Note that the index
returned is from the beginning of the string, although the search starts from
the end. If the to argument is supplied, it limits the extent of the search.
char-set is a set of characters, which can be represented as a list of
characters or a string of characters. string is a string or an object that can
be coerced to a string. See the function string, page 278.

(string-reverse-search-not-set 'ella DIn) "banana") => 0

26.5 ASCII Strings

string-to-ascii lis pm-string Function
Converts lis pm-string to an art-8b array containing ASCII character codes.
See the section "ASCII Characters", page 274.

Example:

(string-to-ascii "hello") => #<ART-8B-5 24443106>

ascii-to-string ascii-array Function
Converts ascii-array, an art-8b array representing ASCII characters, into a
Lisp string. See the section "ASCII Characters", page 274.

Example:

(ascii-to-string (make-array 5 :type art-8b
:initial-value (char-code #\x»)

~> "xxxxx"

26.6 1/0 to Strings

The special forms in this section allow you to create 110 streams that input from or
output to a string rather than a real 110 device. See the section ''Introduction to
Streams" in Reference Guide to Streams, Files, and 110. 110 streams are
documented there.

with-input-from-string (var string &optional index limit) body ...
The form:

(with-input-from-string (var string)
body)

Special Form

evaluates the forms in body with the variable var bound to a stream that

291

March 1985 Arrays, Characters, and Strings

reads characters from the string which is the value of the form string. The
value of the special form is the value of the last form in its body.

The stream is a function that only works inside the with-input-from-string
special form, so be careful what you do with it. You cannot use it after
control leaves the body, and you cannot nest two with-input-from-string
special forms and use both streams since the special-variable bindings
associated with the streams conflict. It is done this way to avoid any
allocation of memory.

After string you can optionally specify two additional "arguments". The first
is index:

(with-input-from-string (var string index)
body)

uses index as the starting index into the string, and sets index to the index
of the first character not read when with-input-from-string returns. If the
whole string is read, it is set to the length of the string. Since index is
updated it cannot be a general expression; it must be a variable or a setfable
reference. The index is not updated in the event of an abnormal exit from
the body, such as a throw. The value of index is not updated until
with-input-from-string returns, so you cannot use its value within the body
to see how far the reading has proceeded.

Use of the index feature prevents multiple values from being returned out of
the body, currently.

(with-input-from-string (var string index limit)
body)

uses the value of the form limit, if the value is not nil, in place of the
length of the string. If you want to specify a limit but not an index, write
nil for index.

with-output-to-string (var &optional (string nil string-p) index) Special Fonn
body ...

This special form provides a variety of ways to send output to a string
through an 110 stream.

(with-output-to-string (var)
body)

evaluates the forms in body with var bound to a stream that saves the
characters output to it in a string. The value of the special form is the
string.

(with-output-to-string (var string)
body)

appends its output to the string that is the value of the form string. (This
is like the string-nconc function). The value returned is the value of the

292

Reference Guide to Symbo/ics-Lisp March 1985

last form in the body, rather than the string. Multiple values are not
returned. string must have an array-leader; element 0 of the array-leader is
used as the fill-pointer. If string is too small to ,contain all the output,
adjust-array-size is used to make it bigger.

If characters with font information are output, string must be of type
art-fat-string. See the section "art-fat-string Array Type", page 236.

(wi th-output-to-string (var string index)
bodyj

is similar to the above except that index is a variable or setfable reference
that contains the index of the next character to be stored into. It must be
initialized outside the witb-output-to-string and is updated upon normal
exit. The value of index is not updated until witb-output-to-string returns,
so you cannot use its value within the body to see how far the writing has
gotten. The presence of index means that string is not required to have a
fill-pointer; if it does have one it is updated.

The stream is a "downward closure" simulated with special variables, so be
careful what you do with it. You cannot use it after control leaves the body,
and you cannot nest two witb-output-to-string special forms and use both
streams since the special-variable bindings associated with the streams
conflict. It is done this way to avoid any allocation of memory.

You can use a witb-input-from-string and witb-output-to-string nested within
one another, so long as there is only one of each.

Another way of doing output to a string is to use the format facility.

26.7 Maclisp-compatible Functions

The following functions are provided primarily for Maclisp compatibility.

alpbalessp stringl string2 Function
(alpbalessp stringl string2) is equivalent to (string-lessp stringl string2).
If the arguments are not strings, alpbalessp compares numbers numerically,
lists by element, and random characters by printed representation.
alpbalessp is a Maclisp all-purpose alphabetic sorting function.

getcbar string index Function
Returns the indexth character of string as a symbol. Note that l-origin
indexing is used. This function is mainly for Maclisp compatibiiity; aref
should be used to index into strings (however, aref does not coerce symbols
or numbers into strings).

293

March 1985 Arrays, Characters, and Strings

getcharn string index Function
Returns the indexth character of string as an integer. Note that I-origin
indexing is used. This function is mainly for Maclisp cOlnpatibility; aref
should be used to index into strings (however, aref does not coerce symbols
or numbers into strings).

ascii x Function
ascii is like character, but returns a symbol whose printname is the
character instead of returning an integer. Examples:

(ascii #0101) => A
(ascii #056) => /.

The symbol returned is interned in the current package.

maknam char-list Function
maknam returns an un interned symbol whose print-name is a string made
up of the characters in char-list. Example:

(maknam '(a b #/0 d» => abOd

implode char-list Function
implode is like maknam except that the returned symbol is interned in the
current package.

samepnamep syml sym2 Function
Returns t if the two symbols syml and sym2 have string= print-names, that
is, if their printed representation is the same. If either or both of the
arguments is a string instead of a symbol, then that string is used in place of
the print-name. samepnamep is useful for determining if two symbols
would be the same except that for being in different packages. Examples:

(samepnamep 'xyz (maknam '(x y z» => t

(samepnamep 'xyz (maknam '(w x y» => nil

(samepnamep 'xyz "xyz") => t

This is the same function as string=. samepnamep is provided mainly so
that you can write programs that work in Maclisp as well as Symbolics-Lisp;
in new programs, you should just use string=.

294

Reference Guide to Symbolics-Lisp March 1985

295

March 1985 Functions and Dynamic Closures

PART VII.

Functions and Dynamic Closures

296

Reference Guide to Symbolics-Lisp March 1985

297

March 1985 Functions and Dynamic Closures

27. Functions

27.1 What is a Function?

Functions are the basic building blocks of Lisp programs. There are many different
kinds of functions in Symbolics-Lisp. Here are the printed representations of
examples of some of them:

faa
(lambda (x) (car (last x»)
(si:digested-lambda (lambda (x) (car (last x»)

(faa) 2049 262401 nil (x) nil (car (last x»)
#<dtp-compiled-function append 1424771>
#<lexical-closure (lambda ** **) 7371705>
#<lexical-closure (:internal faa 0) 7372462>
#<dtp-closure 1477464>

These all have one thing in common: a function is a Lisp object that can be applied
to arguments. All of the above objects can be applied to some arguments and will
return a value. Functions are Lisp objects and so can be manipulated in all the
usual ways: you can pass them as arguments, return them as values, and make
other Lisp objects refer to them. See the function functionp, page 8.

27.2 Function Specs

The name of a function does not have to be a symbol. Various kinds of lists
describe other places where a function can be found. A Lisp object that describes a
place to find a function is called a function spec. ("Spec" is short for "specification".)
Here are the printed representations of some typical function specs:

faa
(:property foo bar)
(:method tv:graphics-mixin :draw-line)
(:internal faa 1)
(:within faa bar)
(:location #<dtp-locative7435216»

Function specs· have two purposes: they specify a place to remember a function, and
they serve to name functions. The most common kind of function spec is a symbol,
which specifies that the function cell of the symbol is the place to remember the
function. Function specs are not the same thing as functions. You cannot, in
general, apply a function spec to arguments. The time to use a function spec is
when you want to do something to the function, such as define it, look at its
definition, or compile it.

298

Reference Guide to Symbofics-Lisp March 1985

Some kinds of functions remember their own names, and some do not. The "name"
remembered by a function can be any kind of function spec, although it is usually a
symbol. (See the section "What is a Function?", page 297.) In that section, the
example starting with the symbol si:digested-lambda and the one whose printed
representation includes dtp-compiled-function, remember names (the function
specs foo and append respectively). The others do not remember their names,
except that the ones starting with lexical-closure and dtp-closure might contain
functions that do remember their names. The second lexical-closure example
contains the function whose name is (:internai foo 0).

To define a function spec means to make that function spec remember a given
function. This is done with the fdefine function; you give fdefine a function spec
and a function, and fdefine remembers the function in the place specified by the
function spec. The function associated with a function spec is called the definition
of the function spec. A single function can be the definition of more than one

. function spec at the same time, or of no function specs ..

To define a function means to create a new function, and define a given function
spec as that new function. This is what the defun special form does. Several other
special forms such as defmethod and defselect do this too.

These special forms that define functions usually take a function spec, create a
function whose name is that function spec, and then define that function spec to be
the newly created function. Most function definitions are done this way, and so
usually if you go to a function spec and see what function is there, the function's
name is the same as the function spec. However, if you define a function named
foo with defun, and then define the symbol bar to be this same function, the
name of the function is unaffected; both foo and bar are defined to be the same
function, and the name of that function is foo, not bar.

A function spec's definition in general consists of a basic definition surrounded by
encapsulations. Both the basic definition and the encapsulations are functions, but
of recognizably different kinds. What defun creates is a basic definition, and usually
that is all there is. Encapsulations are made by function-altering functions such as
trace and advise. When the function is called, the entire definition, which includes
the tracing and advice, is used. If the function is "redefined" with defun, only the
basic definition is changed; the encapsulations are left in place. See the section
"Encapsulations", page 325.

A function spec is a Lisp object of one of the following types:

a symbol
The function is remembered in the function cell of the symbol. See the
section "The Function Cell of a Symbol", page 563. Function cells and the
primitive functions to manipulate them are explained in that section.

(:property symbol property)
The function is remembered on the property list of the symbol; doing

299

March 1985 Functions and Dynamic Closures

(get symbol property) would return the function. Storing functions on
property lists is a frequently used technique for dispatching (that is, deciding
at run-time which function to call, on the basis of input data).

(:method flavor-name message)
(:method flavor-name method-type message)

The function is remembered inside internal data structures of the flavor
system.

(:handler flavor-name message)
This is a name for the function actually called when a message message i3
sent to an instance of the flavor flavor-name. The difference between
:handler and :method is that the handler can be a method inherited from
some other flavor or a combined method automatically written by the flavor
system. Methods are what you define in source files; handlers are no~. Note
that redefining or encapsulating a handler affects only the namEd flavor, not
any other flavors built out of it. Thus :handler function specs are often
used with trace and advise.

(:Iocation pointer)
The function is stored in the cdr of pointer, which can be a locative or a list.
This is for pointing at an arbitrary place which there is no other way to
describe. This form of function spec is not useful in defun (and related
special forms) because the reader has no printed representation for locative
pointers and always creates new lists; these function specs are intended for
programs that manipulate functions. See the section "How Programs
Manipulate Definitions", page 316.

(:within within-function function-to-affect)
This refers to the meaning of the symbol function-to-affect, but only where it
occurs in the text of the definition of within-function. If you define this
function spec as anything but the symbol function-to-affect itself, then that
symbol is replaced throughout the definition of within-function by a new
symbol which is then defined as you specify. See the section
"Encapsulations", page 325.

(:internal function-spec number)
Some Lisp functions contain internal functions, created by
(function (lambda ... » forms. These internal functions need names when
compiled, but they do not have symbols as names; instead they are named by
:internal function-specs. function-spec is the containing function. number is
a sequence number; the first internal function the compiler comes across in a
given function is numbered 0, the next 1, and so on.

(:internal function-spec number name)
Some Lisp functions contain internal functions, created by tlet or labels
forms. function-spec is the containing function. number is a sequence
number; the first internal function the compiler comes across in a given
function is numbered 0, the next 1, and so on. name is the name of the
internal function.

300

Reference Guide to Symbolics-Lisp March 1985

Here is an example of the use of a function spec that is not a symbol:

(defun (:property foo bar-maker) (thing &optional kind)
(set-the 'bar thing (make-bar 'foo thing kind»)

This puts a function on foo's bar-maker property. Now you can say:

(funcall (get 'foo 'bar-maker) 'baz)

Unlike the other kinds of function spec, a symbol can be used as a function. If you
apply a symbol to ~rgumentsi the symbol's function definition is used instead. If the
definition of the first symbol is another symbol, the definition of the second symbol
is used, and so on, any number of times. But this is an exception; in general, you
cannot apply function specs to arguments.

A keyword symbol that identifies function specs (can appear in the car of a list that
is a function spec) is identified by a sys:function-spec-handler property whose
value is a function which implements the various manipulations on function specs of
that type. The interface to this function is internal and not documented here.

For compatibility with Maclisp, the function-defining special forms defun, macro,
and defselect (and other defining forms built out of them, such as defunp and
defmacro) also accept a list:

(symbol property)

as a function name. This is translated into:

(: property symbol property)

symbol must not be one of the keyword symbols which identifies a function spec,
since that would be ambiguous.

27.3 Simple Function Definitions

defun Special Fonn
defun is the usual way of defining a function that is part of a program. A
defun form looks like:

(defun name lambda-list
body ...)

name is the function spec you wish to define as a function. The lambda-list
is a list of the names to give to the arguments of the function. Actually, it
is a little more general than that; it can contain lambda-list keywords such
as &optional and &rest. (Keywords are explained in other sections. See
the section "Evaluating a Function Form", page 151. See the section
"Lambda-list Keywords", page 309.) Additional syntactic features of defun
are explained in another section. See the section "Function-defining Special
Forms", page 305.

301

March 1985 Functions and Dynamic Closures

defun creates a list which looks like:

(si:digested-lambda ...)

and puts it in the function cell of name. name is now defined as a function
and can be called by other forms.

Examples:

(defun addone (x)
(1+ x»

(defun add-a-number (x &optional (inc 1»
(+ x inc»

(defun average (&rest numbers &aux (total 0»
(loop for n in numbers

do (setq total (+ total n»)
(II total (length numbers»)

addone is a function that expects a number as an argument, and returns a
number one larger. add-a-number takes one required argument and one
optional argument. average takes any number of additional arguments that
are given to the function as a list named numbers.

A declaration (a list starting with declare) can appear as the first element of
the body. It is equivalent to a local-declare surrounding the entire defun
form. For example:

(defun faa (x)
(declare (special x»
(bar» ;bar uses x free.

is equivalent to and preferable to:

(local-declare «special x»
(defun faa (x)

(bar»)

(It is preferable because the editor expects the open parenthesis of a top-level
function definition to be the first character on a line, which isn't possible in
the second form without incorrect indentation.)

A documentation string can also appear as the first element of the body I
(following the declaration, if there is one). (It shouldn't be the only thing in
the body; otherwise it is the value returned by the function and so is not "
interpreted as documentation. A string as an element of a body other than
the last element is only evaluated for side effect, and since evaluation of
strings has no side effects, they are not useful in this position to do any
computation, so they are interpreted as documentation.) This documentation
string becomes part of the function's debugging info and can be obtained
with the function documentation. The first line of the string should be a

302

Reference Guide to Symbolics-Lisp March 1985

complete sentence that makes sense read by itself, since there are two editor
commands to get at the documentation, one of which is "brier' and prints
only the first line. Example:

(defun my-append (&rest lists)
"like append but copies all the lists.

This is like the lisp function append, except that
append copies all lists except the last, whereas
this function copies all of its arguments
including the last one."

...)

defunp Macro
Usually when a function uses prog, the prog form is the entire body of the
function; the definition of such a function looks like
(defun name arglist (prog varlist •.. ». Although the use of prog is
generally discouraged, prog fans might want to use this special form. For
convenience, the defunp macro can be used to produce such definitions. A
defunp form such as:

(defunp fctn (args)
form1
form2

formn)

expands into:

(defun fctn (args)
(prog ()

form1
form2

(return formn»)

You can think of defunp as being like defun except that you can return
out of the middle of the function's body.

See the section "Function-defining Special Forms", page 305. Information on
defining functions, and other ways of doing so, are discussed in that section.

27.4 Operations the User Can Perform on Functions

Here is a list of the various things a user (as opposed to a program) is likely to want
to do to a function. In all cases, you specify a function spec to say where to find
the function.

To print out the definition of the function spec with indentation to make it legible,
use grindef. This works only for interpreted functions. If the definition is a

303

March 1985 Functions and Dynamic Closures

compiled function, it cannot be printed out as Lisp code, but its compiled code can be
printed by the disassemble function. .

To find out about how to call the function, you can ask to see its documentation, or
its argument names. (The argument names are usually chosen to have mnemonic
significance for the caller). Use arglist to see the argument names and
documentation to see the documentation string. There are also editor commands
for doing these things: the c-sh-D and M-sh-D commands are for looking at a
function's documentation, and c-sh-A is for looking at an argument list. c-sh-A

does not ask for the function name; it acts on the function that is called by the
innermost expression that the cursor is inside. Usually this is the function that is
called by the form you are in the process of writing.

You can see the function's debugging info alist by means of the function
debugging-info.

When you are debugging, you can use trace to obtain a printout or a break loop
whenever the function is called. You can customize the definition of the function,
either temporarily or permanently, using advise.

27.5 Kinds of Functions

There are many kinds of functions in Symbolics-Lisp. This section briefly describes
each kind of function. Note that a function is also a piece of data and can be
passed as an argument, returned, put in a list, and so forth.

Before we start classifying the functions, we will first discuss something about how
the evaluator works. When the evaluator is given a list whose first element is a
symbol, the form can be a function form, a special form, or a macro form. If the
definition of the symbol is a function, then the function is just applied to the result
of evaluating the rest of the subforms. If the definition is a cons whose car is
macro, then it is a macro form. See the section "Macros", page 337. What about
special forms?

Conceptually, the evaluator knows specially about all special forms (hence their
name). However, the Symbolics-Lisp implementation actually uses the definition of
symbols that name special forms as places to hold pieces of the evaluator. The
definitions of such symbols as prog, do, and, and or actually hold Lisp objects,
which we call special functions. Each of these functions is the part of the Lisp
interpreter that knows how to deal with that special form. Normally you do not
have to know about this; it is just part of how the evaluator works.

Many of the special forms in ZetaIisp are implemented as macros. They are
implemented this way because it is easier to write a macro than to write both a new
part of the interpreter (a special function) and a new ad hoc module in the compiler.
However, they are sometimes documented as special forms, rather than macros,
because you should not in any way depend on the way they are implemented.

304

Reference Guide to Symbofics-Lisp March 1985

There are four kinds of functions, classified by how they work.

1. Interpreted functions, which are defined with defun, represented as list
structure, and interpreted by the Lisp evaluator.

2. Compiled functions, which are defined by compile or by loading a bin file, are
represented by a special Lisp data type, and are executed directly by the
machine.

3. Various types of Lisp objects that can be applied to arguments, but when they
are applied they dig up another function somewhere and apply it instead.
These include symbols, dynamic and lexical closures, and instances.

4. Various types of Lisp objects that, when used as functions, do something
special related to the specific data type. These include arrays and stack
groups.

27.5.1 Interpreted Functions

An interpreted function is a piece of list structure that represents a program
according to the rules of the Lisp interpreter. Unlike other kinds of functions, an
interpreted function can be printed out and read back in (it has a printed
representation that the reader understands), and it can be pretty-printed. See the
section "Formatting Lisp Code" in Reference Guide to Streams, Files, and 110. It
can also be opened up and examined with the usual functions for list-structure
manipulation.

There are two kinds of interpreted functions: lambdas and si:digested-Iambdas.
A lambda function is the simplest kind. It is a list that looks like this:

(1 ambda lambda-list forml form2 ...)

The symbol lambda identifies this list as a lambda function. lambda-list is a
description of what arguments the function takes. See the section "Evaluating a
Function Form", page 151. The forms make up the body of the function. When the
function is called, the argument variables are bound to the values of the arguments
as described by lambda-list, and then the forms in the body are evaluated, one by
one. The value of the function is the value of its last form.

An si:digested-Iambda is like a lambda, but contains extra elements in which the
system remembers the function's name, its documentation, a preprocessed form of its
lambda-list, and other information. Having the function's name there allows the
Debugger and other tools to give the user more information. This is the kind of
function that defun creates. The interpreter turns any lambdas it is asked to apply
into digested-lambdas, using rplaca and rplacd to modify the list structure of the
original lambda-expression.

305

March 1985 Functions and Dynamic Closures

27.5.2 Compiled Functions

The Lisp function compiler converts lambda functions into compiled functions. A
compiled function's printed representation looks like:

#<dtp-compiled-function append 1424771>

The object contains machine code that does the computation expressed by the
function; it also contains a description of the arguments accepted, any constants
required, the name, documentation, and other things. Unlike Maclisp "subr-objects",
compiled functions are full-fledged objects and can be passed as arguments, stored in
data structure, and applied to arguments.

27.5.3 Other Kinds of Functions

A dynamic closure is a kind of function that contains another function and a set of
special variable bindings. When the closure is applied, it puts the bindings into
effect and then applies the other function. When that returns, the closure bindings
are removed. Dynamic closures are created by the closure function and the
let-closed special form. See the section "Dynamic Closures", page 331.

A lexical closure is a kind of function that contains another function and a set of
local variable bindings. A lexical closure is created by reference to an internal
functions. Invocation of a lexical closure simply provides the necessary data linkage
for a function to run in the environment in which the closure was made. See the
section "Lexical Scoping', page 137.

An instance is a message-receiving object that has some state and a table of
message-handling functions (called methods). See the section "Flavors", page 415.

An array can be used as a function. The arguments to the array are the indices
and the value is the contents of the element of the array. This works this way for
Maclisp _compatibility and is not recommended usage. Use aref instead.

A stack group can be called as a function. This is one way to pass control to
another stack group. See the section "Stack Groups" in Internals, Processes, and
Storage Management.

27.6 Function-defining SpeCial Forms

defun is a special form that is put in a program to define a function. defsubst and
macro are others. This section explains how these special forms work, how they
relate to the different kinds of functions, and how they connect to the rest of the
function-manipulation system.

Function-defining special forms typically take as arguments a function spec and a
description of the function to be made, usually in the form of a list of argument
names and some forms that constitute the body of the function. They construct a

306

Reference Guide to Symbolics-Usp March 1985

function, give it the function spec as its name, and define the function spec to be
the new function. Different special forms make different kinds of functions. defun
and defsubst both make an si:digested-Iambda function. macro makes a macro;
though the macro definition is not really a function, it is like a function as far as
definition handling is concerned.

These special forms are used in writing programs because the function names and
bodies are constants. Programs that define functions usually want to compute the
functions and their names: so they use fdefine.

All of these function-defining special forms alter only the basic definition of the
function spec. Encapsulations are preserved. See the section "Encapsulations", page
325.

The special forms only create interpreted functions. There is no special way of
defining a compiled function. Compiled functions are made by compiling interpreted
ones. The same special form that defines the interpreted function, when processed
by the compiler, yields the compiled function.

Note that the editor understands these and other "defining" special forms (for
example, defmethod, defvar, defmacro, and defstruct) to some extent, so that
when you ask for the definition of something, the editor can find it in its source file
and show it to you. The general convention is that anything that is used at top
level (not inside a function) and starts with def should be a special form for defining
things and should be understood by the editor. defprop is an exception.

defun The defun special form (and the defunp macro that expands into
a defun) are used for creating ordinary interpreted functions.
See the section "Simple Function Definitions", page 300.

For Maclisp compatibility, a type symbol can be inserted between
name and lambda-list in the defun form. The following types
are understood:

expr

fexpr

macro

The same as no type.

Defines a special form that operates like a
Maclisp fexpr. The special form can only be
used in interpreted functions and in forms
evaluated at top-level, since the compiler has
not been told how to compile it.

A macro is defined instead of a normal
function.

If lambda-list is a non-nil symbol instead of a list, the function is
recognized as a Maclisp lexpr and it is converted in such a way
that the arg, setarg, and listify functions can be used to access
its arguments.

307

March 1985 Functions and Dynamic Closures

defsubst

macro

defselect

deft

def

The defsubst special form is used to create substitutable
functions. It is used just like defun but produces a function that
acts normally when applied, but can also be open-coded
(incorporated into its callers) by the compiler. See the section
"Substitutable Functions", page 35!.

The macro special form is the primitive means of creating a
macro. It gives a function spec a definition that is a macro
definition rather than a actual function. A macro is not a
function because it cannot be applied, but it can appear as the car
of a form to be evaluated. Most macros are created with the
more powerful defmacro special form.

The defselect special form defines a select-method function.

Unlike the above special forms, deff does not create new
functions. It simply serves as a hint to the editor that a function
is being stored into a function spec here, and therefore if someone
asks for the source code of the definition of that function spec,
this is the place to look for it.

Unlike the above special forms, def does not create new functions.
It simply serves as a hint to the editor that a function is being
stored into a function spec here, and therefore if someone asks for
the source code of the definition of that function spec, this is the
place to look for it.

def Special Fonn
If a function is created in some strange way, wrapping a def special form
around the code that creates it informs the editor of the connection. The
form:

(def function-spec
fonnl fom2 ...)

simply evaluates the forms fonnl, form2, and so on. It is assumed that these
forms create or obtain a function somehow, and make it the definition of
function-spec.

Alternatively, you could put (def function-spec) in front of or anywhere near
the forms that define the function. The editor only uses it to tell which line
to put the cursor on.

deff function-spec definition-creator Special Fonn
deff is a simplified version of def. It evaluates the form definition-creator,
which should produce a function, and makes that function the definition of
function-spec, which is not evaluated. deff is used for giving a function spec
a definition that is not obtainable with the specific defining forms such as
defun and macro. For example:

(deff faa 'bar)

308

Reference Guide to Symbolics-Lisp March 1985

makes foo equivalent to bar, with an indirection so that if bar changes, foo
likewise changes;

(deff foo (function bar»

copies the definition of bar into foo with no indirection, so that further
changes to bar have no effect on foo.

@define 1v.focro
This macro turns into nil, doing nothing. It exists for the sake of the
@ listing generation program, which uses it to declare names of speciai forms
that define objects (such as functions) that @ should cross-reference.

defselect Special Form
defselect defines a function that is a select-method. This function contains
a table of subfunctions; when it is called, the first argument, a symbol on the
keyword package called the message name, is looked up in the table to
determine which subfunction to call. Each subfunction can take a different
number of arguments, and have a different pattern of &optional and &rest
arguments. defselect is useful for a variety of "dispatching" jobs. By
analogy with the more general message passing facilities in flavors, the
subfunctions are sometimes called methods and the first argument is
sometimes called a message.

The special form looks like:

(defse 1 ect (function-spec default-handler no-which-operations)
(message-name (args ...)
body ...)

(message-name (args ...)
body ...)

...)
function-spec is the name of the function to be defined. default-handler is
optional; it must be a symbol and is a function that gets called if the select­
method is called with an unknown message. If default-handler is unsupplied
or nil, then an error occurs if an unknown message is sent. If
no-which-operations is non-nil, the :which-operations method that would
normally be supplied automatically is suppressed. The :which-operations
met:h..od takes no arguments and returns a list of all the message names in
the defselect.

The :operation-handled-p and :send-if-handles methods are automatically
supplied. See the message :operation-handled-p, page 453. See the
message :send-if-handles, page 454.

If function-spec is a symbol, and default-handler and no-which-operations are
not supplied, then the first subform of the defselect can be just
function-spec by itself, not enclosed in a list.

309

March 1985 Functions and Dynamic Closures

The remaining subforms in a defselect define methods. message-name is
the message name, or a list of several message names if several messages are
to be handled by the same subfunction. args is a lambda-list; it should not

. include the first argument, which is the message name. body is the body of
the function.

A method subform can instead look like:

(message-name . symbol)

In this case, symbol is the name of a function that is called when the
message-name message is received. It is called with the same arguments as
the select-method, including the message symbol itself.

27.7 Lambda-list Keywords

This section documents all the keywords that can appear in the lambda-list
(argument list) of a function, a macro, or a special form. See the section
"Evaluating a Function Form", page 151. Some of them are allowed everywhere,
while others are only allowed in one of these contexts; those are so indicated.

lambda-list-keywords Variable
The value of this variable is a list of all of the allowed "&" keywords. Some
of these are obsolete and do not do anything; the remaining ones (some of
which are also obsolete) are listed below. See the section "Evaluating a
Function Form", page 151. Example functions which use each of these
keywords are provided in that section.

&optional
Declares the following arguments to be optional. See the section
"Evaluating a Function Form", page 151.

&rest Declares the following argument to be a rest argument. There can be
only one &rest argument.

It is important to realize that the list of arguments to which a rest­
parameter is bound is set up in whatever way is most efficiently
implemented, rather than in the way that is most convenient for the
function receiving the arguments. It is not guaranteed to be a "real"
list. Sometimes the rest-args list is stored in the function-calling
stack, and loses its validity when the function returns. If a rest­
argument is to be returned or made part of permanent list-structure,
it must first be copied, as you must always assume that it is one of
these special lists. See the function copylist, page 50.

The system does not detect the error of omitting to copy a rest­
argument; you simply find that you have a value that seems to
change behind your back. At other times the rest-args list is an

310

Reference Guide to Symbolics-Lisp March 1985

argument that was given to apply; therefore it is not safe to rplaca
this list as you might modify permanent data structure. An attempt
to rplacd a rest-args list is unsafe in this case, while in the first case
it causes an error, since lists in the stack are impossible to rplacd.

&key Separates the positional parameters and rest parameter from the
keyword parameters. See the section "Evaluating a Function Form",
page 151.

&aiiow-oi.her-keys
In a lambda-list that accepts keyword arguments, &allow-other-keys
says that keywords that are not specifically listed after &key are
allowed. They and the corresponding values are ignored, as far as
keyword arguments are concerned, but they do become part of the
rest argument, if there is one.

&aux It separates the arguments of a function from the auxiliary variables.
Following &aux you can put entries of the form:

(variable initial-value-form)

or just variable if you want it initialized to nil or do not care what
the initial value is.

&special
Declares the following arguments and/or auxiliary variables to be
special within the scope of this function. &special can appear
anywhere any number of times.

&local Turns off a preceding &special for the variables that follow. &local
can appear anywhere any number of times.

"e
Using "e is an obsolete way to define special functions. "e
declares that the following arguments are not to be evaluated. You
should implement language extensions as macros rather than through
special functions, because macros directly define a Lisp-to-Lisp
translation and therefore can be understood by both the interpreter
and the compiler.

Special functions, on the other hand, only extend the interpreter.
The compiler has to be modified to understand each new special
function so that code using it can be compiled. Since all real
programs are eventually compiled, writing your own special functions
is strongly discouraged.

&eval This is obsolete. Use macros instead to define special functions.
&eval turns off a preceding "e for the arguments which follow.

&list-of
This is not supported. Use loop or mapcar instead of &list-of.

&bodyThis is for macros defined by defmacro or macrolet only. It is

March 1985

311

Functions and Dynamic Closures

similar to &rest, but declares to grindef and the code-formatting
module of the editor that the body forms of a special form follow and
should be indented accordingly.

See the section "&-Keywords Accepted by defmacro", page 373.

&whole
This is for macros defined by defmacro or macrolet only. &whole
is followed by variable, which is bound to the entire macro-call form
or subform. variable is the value that the macro-expander function
receives as its first argument. &whole is allowed only in the top-level
pattern, not in inside patterns.

See the section "&-Keywords Accepted by defmacro", page 373.

&environment
This is for macros defined by defmacro or macrolet only.
&environment is followed by variable, which is bound to an
object representing the lexical environment where the macro call is to
be interpreted. This environment might not be the complete lexical
environment. It should be used only with the macro expand function
for any local macro definitions that the macrolet construct might
have established within that lexical environment. &environment is
allowed only in the top-level pattern, not in inside patterns. See the
section "Lexical Environment Objects and Arguments", page 138.

See the section "&-Keywords Accepted by defmacro", page 373.

27.8 Declarations

Declarations are optional Lisp expressions that provide the Lisp system, typically the
interpreter and the compiler, with information about your program, for example,
documentation.

The special operator declare is the most common mechanism for making
declarations. The other special operator, local-declare should not be used for new
code.

declare &rest ignore Special Form
The declare special form can be used in two ways: at top level or within
function bodies. For information on top-level declare forms: See the section
"How the Stream Compiler Handles Top-level Forms" in Program
Development Utilities.

declare forms that appear within function bodies provide information to the
Lisp system (for example, the interpreter and the compiler) about this
particular function. Expressions appearing within the function-body declare
are declarations; they are not evaluated. declare forms must appear at the

312

Reference Guide to Symbolics-Lisp March 1985

front of the body of certain special forms, such as let and defun. Some
declarations apply to function definitions and must appear as the first forms
in the body of that function; otherwise they are ignored.

Function-body declare forms understand the following declarations. The
first group of declarations can be used only at the beginning of a function
body, for example, defun, defmacro, defmethod, lambda, or flet.
(arglist . arglist)

This declaration saves arglist as the argument list of the function, to
be used instead of its lambda-list if c-sh-A or the arglist function
need to determine the function's arguments. The arglist declaration
is used purely for documentation purposes.

Example:
(defun example (&rest options)

(declare (arglist &key x y z»
(lexpr-funcall #'example-2 "Print" options»

(values . values)
This declaration saves values as the return values list of the function,
to be used if c-sh-A or the arglist function asks what values it
returns. The values declaration is used purely for documentation
purposes.

(sys:function-parent name type)
Helps the editor and source-finding tools <like M-.) locate symbol
definitions produced as a result of macro expansion. (The accessor,
constructor, and alterant macros produced by a defstruct are an
example.)

The sys:function-parent declaration should be inserted in the source
definition to record the name of the outer definition of which it is a
part. name is the name of the outer definition. type is its type,
which defaults to defun. See the section "Using the
sys:function-parent Declaration", page 319.

(sys:downward-function)
The declaration sys:downward-function, in the body of an internal
lambda, guarantees to the system that lexical closures of the lambda
in which it appears are only used as downward funargs, and never
survive the calls to the procedure that produced them. This allows
the system to allocate these closures on the stack.

(defun special-search-table (item)
(block search

(send *hash-table* :map-hash
#'(lambda (key object)

(declare (sys:downward-function»
(when (magic-function key object item)

(return-from search object»»»

March 1985

313

Functions and Dynamic Closures

Here, the :map-hash message to the hash table calls the closure of
the internal lambda many times, but does not store it into permanent
variables or data structure, or return it "around"
special-search-table. Therefore, it is guaranteed that the closure
does not survive the call to special-search-table. It is thus safe to
allow the system to allocate that closure on the stack.

Stack-allocated closures have the same lifetime (extent) as &rest
arguments and lists created by with-stack-list and with-stack-list*,
and require the same precautions.

(sys:downward-funarg varl var2 ...) or (sys:downward-funarg *)
The sys:downward-funarg declaration (not to be confused with
sys:downward-function) permits a procedure to declare its intent to
use one or more of its arguments in a downward manner. For
instance, sort's second argument is a funarg, which is only used in a
downward manner, and is declared this way. The second argument
to process-run-function is a good example of a funarg that is not
downward. Here is an example of a function that uses and declares
its argument as a downward funarg.

(defun search-alist-by-predicate (alist predicate)
(declare (sys:downward-funarg predicate»
;; Traditional "recursive" style, for variety.
(if (null alist)

nil
(let «element (car list»

(rest (cdr list»
(if (funcall predicate (car element»

(cdr element)
(search-alist-by-predicate rest predicate»»»

This function only calls the funarg passed as the value of predicate.
It does not store it into permanent structure, return it, or throw it
around search-alist-by-predicate's activation.

The reason you so declare the use of an argument is to allow the
system to deduce guaranteed downward use of a funarg without need
for the sys:downward-function declaration. For instance, if
search-alist-by-predicate were coded as above, we could write

(defun look-for-element-in-tolerance (alist required-value tolerance)
(search-alist-by-predicate alist
I' (l ambda (key)

« (abs (- key required-value» tolerance»»

to search the keys of the list for a number within a certain tolerance
of a required value. The lexical closure of the internal lambda is

314

Reference Guide to Symbolics-Lisp March 1985

automatically allocated by the system on the stack because the system
has been told that any funarg used as the first argument to
search-alist-by-predicate is used only in a downward manner. No
declaration in the body of the lambda is required.

All appropriate parameters to system functions have been declared in
this way.

There are two possible forms of the downward-funarg declaration:

(declare (sys:downward-funarg varl var2 •••)
Declares the named variables, which must be
parameters (formal arguments) of the function in
which this declaration appears, to have their values
used only in a downward fashion. This affects the
generation of closures as functional arguments to
the function in which this declaration appears: it
does not directly affect the function itself. Due to
an implementation restriction, var-i cannot be a
keyword argument.

(declare (sys:downward-funarg *»
Declares guaranteed downward use of all functional
arguments to this function. This is to cover
closures of functions passed as elements of &rest
arguments and keyword arguments.

The following group of declarations can be used at the beginning of any body,
for example, a let body.

(special syml sym2 ...)
The symbols syml, sym2, and so on, are treated as special variables
within the form containing the declare; the Lisp system (both the
compiler and the interpreter) implements the variables using the value
cells of the symbols.

(unspecial syml sym2 ...)
The symbols syml, sym2, and so on, are treated as local variables
within the form containing the declare.

Example:
(defun print-integer (number base)

(declare (unspecial base»
(when (~ number base)

(print-integer (floor number base) base»
(tyo (digit-char (mod number base) base»)

(sys:array-register variablel variable2 ...)
Indicates to the compiler that variablel, variable2, and so on, are
holding single-dimensional arrays as their values. Henceforth, each of

March 1985

315

Functions and Dynamic Closures

these variables must always hold a single-dimensional array. The
compiler can then use special faster array element referencing and
setting instructions for the aref and aset functions. Whether or not
this declaration is worthwhile depends on the type of array and the
number of times that referencing and setting instructions are
executed. For example, if the number of referencing instructions is
more than ten, this declaration makes your program run faster; for
one or two references, it actually slows execution.

<sys:array-register-ld variablel variable2 ...)
Indicates to the compiler that variablel, variable2, and so on, are
holding single- or multidimensional arrays as their values, and that
the array is going to be referenced as a one-dimensional array.
Henceforth, each of these variables must always hold an array. The
compiler can then use special faster array element referencing and
setting instructions for the sys:%ld-aref and sys:%ld-aset functions.
Whether or not this declaration is worthwhile depends on the type of
array and the number of times that referencing and setting
instructions are executed. For example, if the number of referencing
instructions is more than ten, this declaration makes your program
run faster; for one or two references, it actually slows execution.

The compiler also recognizes any number of declare forms as the first forms
in the bodies of the following special forms. This means that you can have
special declarations that are local to any of these blocks. In addition,
declarations can appear at the front of the body of a function definition, like
defun, defmacro, defsubst, and so on.

destructuring-bind
let
do
do-named
prog
lambda

multiple-value-bind
let·
do·
do*-named
prog*

local-declare declarations body... Special Form
local-declare, while available in Release 6, should not be used for new code.

A local-declare form looks like this:

(1 Dca 1-dec 1 are (declaration declaration ...)
forml
form2
...)

316

Reference Guide to Symbolics-Lisp March 1985

Example:
(local-declare «special fool foo2»
(defun larry ()

)

(defun george ()
)

); end of local-declare

local-declare understands the same declarations as declare.

Each local declaration is consed onto the list local-declarations while the
forms are being evaluated (in the interpreter) or compiled (in the compiler).
This list has two uses. First, it can be used to pass information from outer
macros to inner macros. Secondly, the compiler specially interprets certain
declarations as local declarations, which apply only to the compilation of the
forms.

local-declarations Variable
local-declarations is a list of local declarations. Each declaration is
itself a list whose car is an atom which indicates the type of
declaration. The meaning of the rest of the list depends on the type
of declaration. For example, in the case of special and unspecial
the cdr of the list contains the symbols being declared.

The compiler is interested only in special, unspecial, macro, and
arglist declarations.

Local declarations are added to local-declarations in two ways:

• Inside a local-declare, the specified declarations are bound onto
the front.

• If undo-declarations-flag is t, some kinds of declarations in a
file that is being compiled are con sed onto the front of the list;
they are not popped until local-declarations is unbound at the
end of the file.

Many forms, such as defun, defvar, and defconst, have declarative aspects. For
example, defun tells the system that a function of a certain name and number of
arguments is defined and where it is defined. defvar and defconst tell the system
that certain symbols are special.

27.9 How Programs Manipulate Definitions

fdefine function-spec definition &optional (carefully nil) (no-query nil) Function
This is the primitive that defun and everything else in the system use to
change the definition of a function spec. If carefully is non-nil, which it
usually should be, then only the basic definition is changed, the previous basic

317

March 1985 Functions and Dynamic Closures

definition is saved if possible (see undefun), and any encapsulations of the
function such as tracing and advice are carried over from the old definition to
the new definition. carefully also causes the user to be queried if the
function spec is being redefined by a file different from the one that defined
it originally. However, this warnings is suppressed if either the argument
no-query is non-nil, or if the global variable inhihit-fdefine-warnings is t.

If fdefine is called while a file is being loaded, it records what file the
function definition came from so that the editor can find the source code.

If function-spec was already defined as a function, and carefully is non-nil,
the function-spec's :previous-definition property is used to save the
previous definition. If the previous definition is an interpreted function, it is
also saved on the :previous-expr-definition property. These properties are
used by the undefun function, which restores the previous definition, and
the uncompile function, which restores the previous interpreted definition.
The properties for different kinds of function specs are stored in different
places; when a function spec is a symbol its properties are stored on the
symbol's property list.

defun and the other function-defining special forms all supply t for carefully
and nil or nothing for no-query. Operations that construct encapsulations,
such as trace, are the only ones that use nil for carefully.

inhihit-fdefine-warnings Variable
This variable is normally nil. Setting it to t prevents fdefine from warning
you and asking about questionable function definitions such as a function
being redefined by a different file than defined it originally, or a symbol that
belongs to one package being defined by a file that belongs to a different
package. Setting it to :just-warn allows the warnings to be printed out, but
prevents the queries from happening; it assumes that your answer is "yes",
that is, that it is all right to redefine the function.

record-source-file-name function-spec &optional (type 'defun) Function
no-query

record-source-file-name associates the definition of a function with its
source files, so that tools such as Edit Definition (1'1\-.) can find the source file
of a function. It also detects when two different files both try to define the
same function, and warns the user.

record-source-file-name is called automatically by defun, defmacro,
defstruct, deftlavor, and other such defining special forms. Normally you
do not invoke it explicitly. If you have your own defining macro, however,
that does not expand into one of the above, then you can make its expansion
include a record-source-file-name form.

Normally, record-source-file-name returns t. If a definition of the same
name and type was already made by another file, the user is asked whether

318

Reference Guide to Symbolics-Usp March 1985

the definition should be performed. If the user answers "no",
record-source-file-name returns nil. When nil is returned the caller
should not perform the definition.

function-spec

type

no-query

The function spec for the entity being defined.

The type of entity being defined, with defun as the
default. type can be any symbol, typically the name of the
corresponding special form for defining the entity. Some
standard exampies:

defun
defvar
deffiavor
defstruct

Both macros and substs are subsumed under the type
defun, because you cannot have a function named x in one
file and a macro named x in another file.

Controls queries about redefinitions. t means to suppress
queries about redefining. The default value of no-query
depends on the value of inhihit-fdefine-warnings. When
inhihit-fdefine-warnings is t, no-query is t; otherwise it
is nil. Regardless of the value for no-query, queries are
suppressed when the definition is happening in a patch
file.

You cannot specify the source file name with this function. The function is
always associated with the pathname for the file being loaded
(fdefine-file-pathname).

When redefining functions, some users try to avoid redefinition warnings and
queries by using the form (remprop symbol :source-file-name). The
preferred way to do this is to use the form
(record-source-file-name function-spec 'defun t). The former method
causes the system to forget both the original definition and other definitions
for the same symbol (as a variable, flavor, structure, and so forth).
record-source-file-name lets the system know that the function is defined
in two places, and it avoids redefinition warnings and queries.

Of course, if you are redefining something other than a function, use the
appropriate definition type symbol instead of defun as the second argument
to record-source-file-name. For example, if you are redefining a flavor, use
defflavor as the second argument. See the section "Using the
sys:function-parent Declaration", page 319.

319

March 1985 Functions and Dynamic Closures

sys:fdefine-file-pathname Variable
While loading a file, this is the generic-pathname for the file. The rest of
the time it is nil. fdefine uses this to remember what file defines each
function.

sys:function-parent function-spec Function
When a symbol's definition is produced as the result of macro expansion of a
source definition, so that the symbol's definition does not appear textually in
the source, the editor cannot find it. The accessor, constructor, and alterant
macros produced by a defstruct are an example of this. The
sys:function-parent declaration can be inserted in the source definition to
record the name of the outer definition of which it is a part.

The declaration consists of the following:

(sys:function-parent name type)

name is the name of the outer definition. type is its type, which defaults to
defun. See the section "Using the sys:function-parent Declaration", page
319. Declarations are explained in another section. See the section
"Declarations", page 311.

sys:function-parent is a function related to the declaration. It takes a
function spec and returns nil or another function spec. The first function
spec's definition is contained inside the second function spec's definition. The
second value is the type of definition.

Two examples:

(defsubst foo (x y)
(declare (sys:function-parent bar»
...)

(defmacro defxxx (name ...)
'(local-declare «sys:function-parent ,name defxxx»

(defmacro .•.)
(defmacro ...)
»

Using the sys:function-parent Declaration

A definition is a Lisp expression that appears in a source program file and has a
name by which a user would like to refer to it. Definitions come in a variety of
types. The main point of definition types is that two definitions with the same
name and different types can exist simultaneously, but two definitions with the same
name and the same type redefine each other when evaluated. Some examples of
definition type symbols and special forms that define such definitions are:

320

Reference Guide to Symbo/ics-Usp March 1985

Special form names Type symbol

detun
defvar
defflavor
defstruct

Type name in English

function
variable
flavor

de~, deftnacro, deftnethod
defvar, defconst, defconstant
defflavor

structure defstruct

Things to note: More than one special form can define a given kind of definition.
The name of the most representative special form is typically chosen as the type
symbol. This symbol typically has a si:definition-type-name property of a string

(defprop feature "Feature" si:definition-type-name)
(defprop defun "Function" si:definition-type-name)

record-source-file-name and related functions take a name and a type symbol as
arguments. The editor understands certain definition-making special forms, and
knows how to parse them to get out the name and the type. This mechanism has
not yet been made user-extensible. Currently the editor assumes that any top-level
form it does not know about that starts with "(def' must be defining a function (a
definition of type defun) and assumes that the cadr of that form is the name of the
function. The starting left parenthesis must be at the left margin (not indented) for
the editor to recognize the "(def' form. Heuristics appropriate for defun are applied
to this name if it is a list.

In general, a definition whose name is not a symbol and whose type is not defun
does not work properly. This will be fixed in a future release.

The declaration sys:function-parent is of interest to users. The function with the
same name is probably not of interest to users; it is part of the mechanism by which'
the Zmacs command Edit Definition (M-.) figures out what file to look in.

Example:

We have functions called "frobulators" that are stored on the property list of symbols
and require some special bindings wrapped around their bodies. Frobulator
definitions are not considered function definitions, because the name of the
frobulator does not become defined as a Lisp function. Indeed, we could have a
frobulator named list and Lisp's list function would continue to work. Instead we
make a new definition type.

(defmacro define-frobulator (name arg-list &body body)
'(progn

(add-to-list-of-known-frobulators ',name)
(record-source-file-name '.name 'define-frobulator)
(defun (:property ,name frobulator) (self ,@arg-list)

(declare (sys:function-parent ,name define-frobulator»
(let (,(make-frobulator-bindings name arg-list»

,@body» »

(defprop define-frobulator "Frobulator" si:definition-type-name)

321

March 1985 Functions and Dynamic Closures

Here-we would tell the editor how to parse define-frobulator if its parser were
user-extensible. Because it is not, we rely on its heuristics to make M-. work
adequately for frobulators.

Next we define a frobulator. This is not an interesting definition, for we do not
actually know what the word "frobulate" means. We could always recast this
example as a symbolic diiferentiator: We would define the + frobulator to return a
list of + and the frobulations of the arguments, the • frobulator to return sums of
products of factors and derivatives of factors, and so forth.

(define-frobulator list ()
(frobulate-any-number-of-args self»

In define-frobulator, we call record-source-file-name so that when a file
containing frobulator definitions is loaded, we know what file those definitions came
from. Inside the function that is generated, we include a function-parent declaration
because no definition of that function is apparent in any source file. The system
takes care of doing
(record-source-file-name '(:property list frobulator) 'defun), as it always does
when a function definition is loaded. Suppose an error occurs in a frobulator
function - in the list example above, we might try to call
frobulate-any-number-of-args, which is not defined - and we use the Debugger
c-E command to edit the source. This is trying to edit (:property list frobulator),
the function in which we were executing. The definition that defines this function
does not have that name; rather, it is named list and has type define-frobulator.
The sys:function-parent declaration enables the editor to know that fact.

If your definition-making special form and your definition type symbol do not have
the same name, you should define the special form's zwei:definition-function-spec
property to be the definition type symbol. This helps the editor parse such special
forms. This is useful when several special forms exist to make definitions of a single
type.

For another example, more complicated but real, use mexp or the Zmacs command
Macro Expand Expression (c-sh-M) to look at the macro expansion of:

(defstruct (foo :conc-name) one two)

The macro sys:defsubst-with-parent that it calls is just defsubst with a
sys:function-parent declaration inside. It exists only because of a bug in an old
implementation of defsubst that made doing it the straightforward way not work.

fset-carefully symbol definition &optional force-flag Function
This function is obsolete. It is equivalent to:

(fdefine symbol definition t force-flag)

fdefinedp function-spec Function
This returns t if {unction-spec has a definition, or nil if it does not.

322

Reference Guide to Symbolics-Lisp March 1985

fdefinition function-spec Function
This returns function-spec's definition. If it has none, an error occurs.

sys:fdefinition-Iocation function-spec Function
This returns a locative pointing at the cell that contains function-spec's
definition. For some kinds of function specs, though not for symbols, this
can cause data structure to be created to hold a definition. For example, if
function-spec is of the :property kind, then an entry might have to be added
to the property list if it isn't aiteauy there. in practice, you shouid write
(locf (fdefinition function-spec» instead of calling this function explicitly.

fundefine function-spec Function
Removes the definition of function-spec. For symbols this is equivalent to
fmakunbound. If the function is encapsulated, fundefine removes both
the basic definition and the encapsulations. Some types of function specs
(:location for example) do not implement fundefine. fundefine on a
:within function spec removes the replacement of function-to-affect, putting
the definition of within-function back to its normal state. fundefine on a
:method function spec removes the method completely, so that future
messages will be handled by some other method.

si:function-spec-get function-spec indicator Function
Returns the value of the indicator property of function-spec, or nil if it
doesn't have such a property.

si:function-spec-putprop function-spec value indicator Function
Gives function-spec an indicator property whose value is value.

undefun function-spec Function
If function-spec has a saved previous basic definition, this interchanges the
current and previous basic definitions, leaving the encapsulations alone. This
undoes the effect of a defun, compile, and so on. (See the function
uncompile in Program Development Utilities.)

27.10 How Programs Examine Functions

These functions take a function as argument and return information about that
function. Some also accept a function spec and operate on its definition. The others
do not accept function specs in general but do accept a symbol as standing for its
definition. (Note that a symbol is a function as well as a function spec).

documentation function Function
Given a function or a function spec, this finds its documentation string,
which is stored in various different places depending on the kind of function.
If there is no documentation, nil is returned.

323

March 1985 Functions and Dynamic Closures

See the section "The Document Examiner" in User's Guide to Symbolics
Computers.

debugging-info function Function
This returns the debugging info alist of function. Most of the elements of
this alist are an internal interface between the compiler and the Debugger.

arglist function &optional real-flag Function
arglist is given a function or a function spec, and returns its best guess at
the nature of the function's lambda-list. It can also return a second value
which is a list of descriptive names for the values returned by the function.
The third value is a symbol specifying the type of function:

Returned Value
nil
subst
special

Function Type
ordinary function
substitu table function
special form

macro macro
si:special-macro both a special form and a macro
array array

If function is a symbol, arglist of its function definition is used.

Some functions' real argument lists are not what would be most descriptive
to a user. A function can take an &rest argument for technical reasons
even though there are standard meanings for the first element of that
argument. For such cases, the definition of the function can specify, with a
local declaration, a value to be returned when the user asks about the
argument list. Example:

(defun foo (&rest rest-arg)
(declare (arglist x y &rest z»
.....)

Note that since the declared argument list is supplied by the user, it does not
necessarily correspond to the function's actual argument list.

real-flag allows the caller of arglist to say that the real argument list should
be used even if a declared argument list exists.

If real-flag is t or a declared argument list does not exist, arglist computes
its return value using information associated with the function. Normally the
computed argument list is the same as that supplied in the source definition,
but occasionally some differences occur. However, arglist always returns a
functionally correct answer in that the number and type of the arguments is
correct.

When a function returns multiple values, it is useful to give the values names
so that the caller can be reminded which value is which. By means of a

324

Reference Guide to Symbolics-Usp March 1985

values declaration in the function's definition, entirely analogous to the
arglist declaration above, you can specify a list of mnemonic names for the
returned values. This list is returned by arglist as the second value.

(arglist 'arglist)
=> (function &optional real-flag) and (arglist values type)

args-info function Function
args-info returns an integer called the "numeric argument descriptor" of the
function, which describes the way the function takes arguments. This
descriptor is used internally by the microcode, the evaluator, and the
compiler. {unction can be a function or a function spec.

The information is stored in various bits and byte fields in the integer, which
are referenced by the symbolic names shown below. By the usual Symbolics
Lisp Machine convention, those starting with a single "%" are bit-masks
(meant to be loganded or bit-tested with the number), and those starting
with "%%" are byte descriptors (meant to be used with Idb or Idb-test).

Here are the fields:

%%arg-desc-min-args
This is the minimum number of arguments that can be passed to this
function, that is, the number of "required" parameters.

%%arg-desc-max-args
This is the maximum number of arguments that can be passed to
this function, that is, the sum of the number of "required"
parameters and the number of "optional" parameters. If there is an
&rest argument, this is not really the maximum number of
arguments that can be passed; an arbitrarily large number of
arguments is permitted, subject to limitations on the maximum size of
a stack frame (about 200 words).

%%arg-desc-rest-arg
If this is nonzero, the function takes an &rest argument or &key
arguments. A greater number of arguments than
%%arg-desc-max-args can be passed.

%arg-desc-interpreted
This function is not a compiled-code object.

%%arg-desc-interpreted
This is the byte field corresponding to the %arg-desc-interpreted
bit.

%%arg-desc-quoted
This is obsolete. In Release 5 this was used by the "e feature.

325

March 1985 Functions and Dynamic Closures

%args-info function Function
This is an internal function; it is like args-info but does not work for
interpreted functions. Also, function must be a function, not a function spec.

27.11 Encapsulations

The definition of a function spec actually has two parts: the basic definition, and
encapsulations. The basic definition is what functions like defun create, and
encapsulations are additions made by trace, advise, or breakon to the basic
definition. The purpose of making the encapsulation a separate object is to keep
track of what was made by defun and what was made by trace. If defun is done
a second time, it replaces the old basic definition with a new one while leaving the
encapsulations alone.

Only advanced users should ever need to use encapsulations directly via the
primitives explained in this section. The most common things to do with
encapsulations are provided as higher-level, easier-to-use features: trace, advise,
and breakon.

The way the basic definition and the encapsulations are defined is that the actual
definition of the function spec is the outermost encapsulation; this contains the next
encapsulation, and so on. The innermost encapsulation contains the basic definition.
The way this containing is done is as follows. An encapsulation is actually a
function whose debugging info alist contains an element of the form:

(5i :encap5ulated-definition unintemed-symbol encapsulation-type)

The presence of such an element in the debugging info alist is how you recognize a
function to be an encapsulation. An encapsulation is usually an interpreted function,
but it can be a compiled function also, if the application that created it wants to
compile it.

unintemed-symbol's function definition is the thing that the encapsulation contains,
usually the basic definition of the function spec. Or it can be another encapsulation,
which has in it another debugging info item containing another uninterned symbol.
Eventually you get to a function that is not an encapsulation; it does not have the
sort of debugging info item that encapsulations all have. That function is the basic
definition of the function spec.

Literally speaking, the definition of the function spec is the outermost encapsulation,
period. The basic definition is not the definition. If you are asking for the
definition of the function spec because you want to apply it, the outermost
encapsulation is exactly what you want. But the basic definition can be found
mechanically from the definition, by following the debugging info alists. So it makes
sense to think of it as a part of the definition. In regard to the function-defining
special forms such as detun, it is convenient to think of the encapsulations as
connecting between the function spec and its basic defInition.

326

Reference Guide to Symbolics-Usp March 1985

An encapsulation is created with the macro si:encapsulate.

si:encapsulate Macro
A call to si:encapsuIate looks like:

(5i :encap5ulate function-spec outer-function type
body-form
extra-debugging-info)

All the subforms of this macro are evaluated. In fact~ the macro could
almost be replaced with an ordinary function, except for the way body-form is
handled.

function-spec evaluates to the function spec whose definition the new
encapsulation should become. outer-function is another function spec, which
should often be the same one. Its only purpose is to be used in any error
messages from si:encapsulate.

type evaluates to a symbol that identifies the purpose of the encapsulation; it
says what the application is. For example, it could be advise or trace. The
list of possible types is defined by the system because encapsulations are
supposed to be kept in an order according to their type. See the variable
si:encapsulation-standard-order, page 327. type should have an
si:encapsulation-grind-function property that tells grindef what to do
with an encapsulation of this type.

body-form is a form that evaluates to the body of the encapsulation-definition,
the code to be executed when it is called. Backquote is typically used for this
expression. See the section "Backquote", page 345. si:encapsulate is a
macro because, while body is being evaluated, the variable
si:encapsulated-function is bound to a list of the form
(function unintemed-symbol), referring to the unintemed symbol used to
hold the prior definition of function-spec. If si:encapsulate were a function,
body-form would just get evaluated normally by the evaluator before
si:encapsulate ever got invoked, and so there would be no opportunity to
bind si:encapsulated-function. The form body-form should contain
(apply si:encapsulated-function arglist) somewhere if the encapsulation
is to live up to its name and truly serve to encapsulate the original definition.
(The variable arglist is bound by some of the code that the si:encapsulate
macro produces automatically. When the body of the encapsulation is run,
arglist's value is the list of the arguments that the encapsulation received.)

extra-debugging-info evaluates to a list of extra items to put into the
debugging info alist of the encapsulation function (besides the one starting
with si:encapsulated-definition that every encapsulation must have).
Some applications find this useful for recording information about the
encapsulation for their own later use.

When a special function is encapsulated, the encapsulation is itself a special

327

March 1985 Functions and Dynamic Closures

function with the same argument quoting pattern. (Not all quoting patterns
can be handled; if a particular special form's quoting pattern cannot be
handled, si:encapsulate signals an error.) Therefore, when the outermost
encapsulation is started, each argument has been evaluated or not as
appropriate. Because each encapsulation calls the prior definition with ·apply,
no further evaluation takes place, and the basic definition of the special form
also finds the arguments evaluated or not as appropriate. The basic
definition can call eval on some of these arguments or parts of them; the
encapsulations should not.

Macros cannot be encapsulated, but their expander functions can be; if the
definition of function-spec is a macro, then si:encapsulate automatically
encapsulates the expander function instead. In this case, the definition of
the uninterned symbol is the original macro definition, not just the original
expander function. It would not work for the encapsulation to apply the
macro definition. So during the evaluation of body-form,
si:encapsulated-function is bound to the form
(cdr (function unintemed-symbol», which extracts the expander function
from the prior definition of the macro.

Because only the expander function is actually encapsulated, the
encapsulation does not see the evaluation or compilation of the expansion
itself. The value returned by the encapsulation is the expansion of the
macro call, not the value computed by the expansion.

It is possible f<?r one function to have multiple encapsulations, created by different
subsystems. In this case, the order of encapsulations is independent of the order in
which they were made. It depends instead on their types. All possible
encapsulation types have a total order and a new encapsulation is put in the right
place among the existing encapsulations according to its type and their types.

si:encapsulation-standard-order Variable
The value of this variable is a list of the allowed encapsulation types, in the
order that the encapsulations are supposed to be kept in (innermost
encapsulations first). If you want to add new kinds of encapsulations, you
should add another symbol to this list. Initially its value is:

(advise breakon trace si:rename-within)

advise encapsulations are used to hold advice. breakon and trace
encapsulations are used for implementing tracing. si:rename-within
encapsulations are used to record the fact that function specs of the form
(:within within-function altered-function> have been defined. The
encapsulation goes on within-function. See the section "Rename-within
Encapsulations", page 329.

Every symbol used as an encapsulation type must be on the list
si:encapsulation-standard-order. In addition, it should have an

328

Reference Guide to Symbolics-Lisp March 1985

si:encapsulation-grind-function property whose value is a function that grindef
calls to process encapsulations of that type. This function need not take care of
printing the encapsulated function, because grindef does that itself. But it should
print any information about the encapsulation itself that the user ought to see.
Refer to the code for the grind function for advise to see how to write one. See
the special form advise in Program Development Utilities.

To find the right place in the ordering to insert a new encapsulation, it is necessary
to parse existing ones. This is done with the function
si:unencapsulate-function-spec.

si:unencapsulate-function-spec function-spec &optional Function
encapsulation-types

This takes one function spec and returns another. If the original function
spec is undefined, or has only a basic definition (that is, its definition is not
an encapsulation), then the original function spec is returned unchanged.

If the definition of function-spec is an encapsulation, then its debugging info
is examined to find the uninterned symbol that holds the encapsulated
definition, and also the encapsulation type. If the encapsulation is of a type
that is to be skipped over, the uninterned symbol replaces the original
function spec and the process repeats.

The value returned is the uninterned symbol from inside the last
encapsulation skipped. This uninterned symbol is the first one that does not
have a definition that is an encapsulation that should be skipped. Or the
value can be function-spec if function-spec's definition is not an encapsulation
that should be skipped.

The types of encapsulations to be skipped over are specified by
encapSUlation-types. This can be a list of the types to be skipped, or nil,
meaning skip all encapsulations (this is the default). Skipping all
encapsulations means returning the uninterned symbol that holds the basic
definition of function-spec. That is, the definition of the function spec
returned is the basic definition of the function spec supplied. Thus:

(fdefinition (si:unencapsulate-function-spec 'foo»

returns the basic definition of foo, and:

(fdefine (si:unencapsulate-function-spec 'foo) 'bar)

sets the basic definition (just like using fdefine with carefully supplied as t).

encapsulation-types can also be a symbol, which should be an encapsulation
type; then we skip all types that are supposed to come outside of the
specified type. For example, if encapsulation-types is trace, then we skip all
types of encapsulations that come outside of trace encapsulations, but we do
not skip trace encapsulations themselves. The result is a function spec that
is where the trace encapsulation ought to be, if there is one. Either the

329

March 1985 Functions and Dynamic Closures

definition of this function spec is a trace encapsulation, or there is no trace
encapsulation anywhere in the definition of function-spec, and this function
spec is where it would belong if there were one. For example:

(let «tern (si:unencapsulate-function-spec spec 'trace»)
(and (eq tern (si:unencapsulate-function-spec tern '(trace»)

(si:encapsulate tern spec 'trace '(... body ... »»

finds the place where a trace encapsulation ought to go, and makes one
unless there is already one there.

(let «tern (si:unencapsulate-function-spec spec 'trace»)
(fdefine tern (fdefinition (si:unencapsulate-function-spec

tern '(trace» »)

eliminates any trace encapsulation by replacing it by whatever it
encapsulates. (If there is no trace encapsulation, this code changes nothing.)

These examples show how a subsystem can insert its own type of
encapsulation in the proper sequence without knowing the names of any
other types of encapsulations. Only the si:enc8psulation-standard-order
variable, which is used by si:unencapsulate-function-spec, knows the
order.

27.11.1 Rename-within Encapsulations

One special kind of encapsulation is the type si:rename-within. This encapsulation
goes around a definition in which renamings of functions have been done.

How is this used?

If you define, advise, or trace (:within foo bar), then bar gets renamed to
altered-bar-within-foo wherever it is called from foo, and foo gets a
si:rename-within encapsulation to record the fact. The purpose of the
encapsulation is to enable various parts of the system to do what seems natural to
the user. For example, grindef notices the encapsulation, and so knows to print
bar instead of altered-bar-within-foo, when grinding the definition of foo.

Also, if you redefine foo, or trace or advise it, the new definition gets the same
renaming done (bar replaced by altered-bar-within-foo). To make this work,
everyone who alters part of a function definition should pass the new part of the
definition through the function si:rename-within-new-definition-maybe.

si:rename-within-new-definition-maybe function-spec new-structure Function
Given new-structure that is going to become a part of the definition of
function-spec, perform on it the replacements described by the
si:rename-within encapsulation in the definition of function-spec, if there is
one. The altered (copied) list structure is returned.

It is not necessary to call this function yourself when you replace the basic
definition because fdefine with carefully supplied as t does it for you.

330

Reference Guide to Symbolics-Usp March 1985

si:encapsulate does this to the body of the new encapsulation. So you only
need to call si:rename-within-new-definition-maybe yourself if you are
rplac'ing part of the definition.

For proper results, {unction-spec must be the outer-level function spec. That
is, the value returned by si:unencapsulate-function-spec is not the right
thing to use. It has had one or more encapsulations stripped off, including
the si:rename-within encapsulation if any, and so no renamings are done.

331

March 1985 Functions and Dynamic Closures

28. Dynamic Closures

A closure is a type of Lisp functional object useful for implementing certain advanced
access and control structures. Closures give you more explicit control over the
environment, by allowing you to save the environment created by the entering of a
dynamic contour (that is, a lambda, do, prog, progv, let, or any of several other
special forms), and then use that environment elsewhere, even after the contour has
been exited.

28.1 What is a Dynamic Closure?

We use a particular view of lambda-binding in this section because it makes it easier
to explain what closures do. In this view, when a variable is 'bound, a new value cell
is created for it. The old value cell is saved away somewhere and is inaccessible.
Any references to the variable get the contents of the new value cell, and any setq's
change the contents of the new value cell. When the binding is undone, the new
value cell goes away, and the old value cell, along with its contents, is restored.

For example, consider the following sequence of Lisp forms:

(setq a 3)

(l et « a 10»
(pr in t (+ a 6»)

(print a)

Initially there is a value cell for a, and the setq form makes the contents of that
value cell be 3. Then the let is evaluated. a is bound to 10: the old value cell,
which still contains a 3, is saved away, and a new value cell is created with 10 as its
contents. The reference to a inside the let evaluates to the current binding of a,
which is the contents of its current value cell, namely 10. So 16 is printed. Then
the binding is undone, discarding the new value cell, and restoring the old value cell,
which still contains a 3. The final print prints out a 3.

The form <closure var-list (unction), where var-list is a list of special variables and
{unction is any function, creates and returns a closure. When this closure is applied
to some arguments, all the value cells of the variables on var-list are saved away,
and the value cells that those variables had at the time closure was called (that is,
at the time the closure was created) are made to be the value cells of the symbols.
Then {unction is applied to the arguments.

Here is another, lower level explanation. The closure object stores several things
inside of it. First, it saves the {unction. Secondly, for each variable in var-list, it

332

Reference Guide to Symbolics-Lisp March 1985

remembers what that variable's value cell was when the closure was created. Then
when the closure is called as a function, it first temporarily restores the value cells it
has remembered inside the closure, and then applies {unction to the same arguments
to which the closure itself was applied. When the function returns, the value cells
are restored to be as they were before the closure was called.

Now, if we evaluate the form (assuming that x has been declared special):

(setq a
(let «x 3»

(closure '(x) 'frob»)

what happens is that a new value cell is created for x, and its contents is an integer
3. Then a closure is created, which remembers the function frob, the symbol x,
and that value cell. Finally the old value cell of x is restored, and the closure is
returned. Notice that the new value cell is still around, because it is still known
about by the closure. When the closure is applied, say by doing (funcall a 7), this
value cell is restored and the value of x is 3 again. If frob uses x as a free variable,
it sees 3 as the value.

A closure can be made around any function, using any form that evaluates to a
function. The form could evaluate to a lambda expression, as in '(lambda 0 x), or
to a compiled function, as would (function (lambda 0 x». In the example above,
the form is 'frob and it evaluates to the symbol frob. A symbol is also a good
function. It is usually better to close around a symbol that is the name of the
desired function, so that the closure points to the symbol. Then, if the symbol is
redefined, the closure uses the new definition. If you actually prefer that the
closure continue to use the old definition that was current when the closure was
made, then close around the definition of the symbol rather than the symbol itself.
In the above example, that would be done by:

(closure '(x) (function frob»

Because of the way dynamic closures are implemented, the variables to be closed over
must be declared special. This can be done with an explicit declare, with a special
form such as defvar, or with let-closed. In simple cases, a declare just inside the
binding does the job. Usually the compiler can tell when a special declaration is
missing, but in the case of making a closure the compiler detects this after already
acting on the assumption that the variable is local, by which time it is too late to fix
things. The compiler warns you if this happens.

In Symbolics-Lisp's implementation of dynamic closures, lambda-binding of special
variables never really allocates any storage to create new value cells. Value cells are
created only by the closure function itself, when they are needed. Thus,
implementors of large systems need not worry about storage allocation overhead from
this mechanism if they are not using dynamic closures.

Symbolics-Lisp dynamic closures are not closures in the true sense, as they do not
save the whole variable-binding environment; however, most of that_enxir:oItment is

333

March 1985 Functions and Dynamic Closures

irrelevant, and the explicit declaration of which variables are to be closed allows the
implementation to have high efficiency. They also allow you to explicitly choose for
each variable whether it is to be bound at the point of call or bound at the point of
definition (for example, creation of the closure), a choice which is not conveniently
available in other languages. In addition, the program is clearer because the
intended effect of the closure is made manifest by listing the variables to be affected.

Symbolics-Lisp also offers lexic~ closures, which save the variable bindings of all
accessible local and instance variables. Lexical closures do not affect the bindings of
special variables. There is no function to create a lexical closure; one is created
automatically wherever you use a function with captured free references. See the
section "Kinds of Variables", page 126. See the section "Funargs and Lexical Closure
Allocation", page 139.

The implementation of dynamic closures (which is not usually necessary for you to
understand) involves two kinds of value cells. Every symbol has an internal value
cell, which is where its value is normally stored. When a variable is closed over by a
closure, the variable gets an external value cell to hold its value. The external value
cells behave according to the lambda-binding model used earlier in this section. The
value in the external value cell is found through the usual access mechanisms (such
as evaluating the symbol, calling symeval, and so on), because the internal value cell
is made to contain an invisible pointer to the external value cell currently in effect.
A symbol uses such an invisible pointer whenever its current value cell is a value cell
that some closure is remembering; at other times, there is not an invisible pointer,
and the value just resides in the internal value cell.

Most special variables that live in A-memory cannot be closed over.

28.2 Examples of the Use of Dynamic Closures

One thing we can do with dynamic closures is to implement a generator, which is a
kind of function that is called successively to obtain successive elements of a
sequence. We will implement a function make-list-generator, which takes a list
and returns a generator that returns successive elements of the list. When it gets
to the end it should return nil.

The problem is that in between calls to the generator, the generator must somehow
remember where it is up to in the list. Since all of its bindings are undone when it
is exited, it cannot save this information in a bound variable. It could save it in a
global variable, but the problem is that if we want to have more than one list
generator at a time, they all try to use the same global variable and get in each
other's way.

334

Reference Guide to Symbolics-Usp

Here is how we can use dynamic closures to solve the problem:

(defun make-list-generator (1)
(declare (special 1»
(closure '(1)

(function (lambda ()
(progl (car 1)

(setq 1 (cdr 1»»»)

March 1985

Now we can make as many list generators as we like; they do not get in each
other's way because each has its own (external) value cell for I. Each of these value
cells was created when the make-list-generator function was entered, and the
value cells are remembered by the closures. We could also use lexical closures to
solve the same problem.

(defun make-list-generator (1)
(function (lambda ()

(progl (car 1)

(setq 1 (cdr 1»»»

The following example uses closures to create an advanced accessing environment:

(declare (special a b»

(defun foo ()
(setq a 5»

(defun bar ()
(cons a b»

(let « a 1)
(b 1»

(setq x (closure '(a b) 'fool)
(setq y (closure '(a b) 'bar»)

When the let is entered, new value cells are created for the symbols a and b, and
two closures are created that both point to those value cells. If we do (funcall x),
the function foo is run, and it changes the contents of the remembered value cell of
a to 5. If we then do (funcall y), the function bar returns (5 • 1). This shows
that the value cell of a seen by the closure y is the same value cell seen by the
closure x. The top-level value cell of a is unaffected.

To do this example with lexical closures, foo and bar would have to be defined with
flet or labels so that they would share a lexical environment and contain captured
free references to the same local variables a and b.

335

March 1985 Functions and Dynamic Closures

28.3 Dynamic Closure-manipulating Functions

closure var-list function Function
This creates and returns a dynamic closure of function over the variables in
var-list. Note that all variables on var-list must be declared special.

To test whether an object is a dynamic closure, use the closurep predicate.
See the section "Predicates", page 7. The typep function returns the symbol
closure if given a dynamic closure. (typep x :closure) is equivalent to
(closurep x).

symeval-in-closure closure symbol Function
This returns the binding of symbol in the environment of closure; that is, it
returns what you would get if you restored the value cells known about by
closure and then evaluated symbol. This allows you to "look around inside" a
dynamic closure. If symbol is not closed over by closure, this is just like
symeval.

set-in-closure closure symbol x Function
This sets the binding of symbol in the environment of closure to x; that is, it
does what would happen if you restored the value cells known about by
closure and then set symbol to x. This allows you to change the contents of
the value cells known about by a dynamic closure. If symbol is not closed
over by closure, this is just like set.

locate-in-closure closure symbol Function
This returns the location of the place in closure where the saved value of
symbol is stored. An equivalent form is
(locf (symeval-in-closure closure symbol».

closure-aUst closure Function
Returns an wist of (symbol. value) pairs describing the bindings which the
dynamic closure performs when it is called. This list is not the same one
that is actually stored in the closure; that one contains pointers to value cells
rather than symbols, and closure-alist translates them back to symbols so
you can understand them. As a result, clobbering part of this list does not
change the closure.

If any variable in the closure is unbound, this function signals an error.

closure-function closure Function
Returns the closed function from closure. This is the function that was the
second argument to closure when the dynamic closure was created.

let-closed ((variable value) ...) {unction Special Form
When using dynamic closures, it is very common to bind a set of variables

336

Reference Guide to Symbolics-Usp March 1985

with initial values, and then make a closure over those variables.
Furthermore, the variables must be declared as "special". let-closed is a
special form that does all of this. It is best described by example:

(let-closed «a 5) b (c 'x»
(function (lambda () ... »)

macro-expands into

(let «a 5) b (c 'x»
(declare (special abc »
(closure '(a b c)

(function (lambda () ... »»)

copy-closure closure . Function
Creates and returns a new closure by copying closure, which should be a
dynamic closure. copy-closure generates new external value cells for each
variable in the closure and initializes their contents from the external value
cells of closure.

closure-variables closure Function
Creates and returns a list of all of the variables in closure, which should be a
dynamic closure. It returns a copy of the list that was passed as the first
argument to closure when closure was created.

boundp-in-closure closure symbol Function
Returns t if symbol is bound in the environment of closure; that is, it does
what boundp would do if you restored the value cells known about by
closure. If symbol is not closed over by closure, this is just like boundp.

makunbound-in-closure closure symbol Function
Makes symbol be unbound in the environment of closure; that is, it does
what makunbound would do if you restored the value cells known about by
closure. If symbol is not closed over by closure, this is just like
makunbound.

A note about all of the xxx-in-closure functions (set-, symeval-, boundp-, and
makunbound-): if the variable is not directly closed over, the variable's value cell
from the global environment is used. That is, if closure A closes over closure B,
xxx-in-closure of A does not notice any variables closed over by B.

337

March 1985 Macros

PART VIII.

Macros

338

Reference Guide to Symbolics-Usp March 1985

339

March 1985 Macros

29. Introduction to Macros

If evaI is handed a list whose car is a symbol, then evaI inspects the definition of
the symbol to find out what to do. If the definition is a macro, it contains an
expander function. evaI applies the expander function to two arguments, the form
that evaI is trying to evaluate and an object representing the lexical environment.
The expander function returns a new form and evaI evaluates that in lieu of the
original form.

A macro definition is represented as a list whose first element is the symbol special,
whose second element is the expander function, and whose third element is missing
or nil. (The third element is used by a special form definition.) eval applies the
function to the form it was originally given, takes the expansion that is returned,
and evaluates that in lieu of the original form.

Here is a simple example. Suppose the definition of the symbol first is:

(special (lambda (x env)
(list 'car (cadr x»»

This thing is a macro. What happens if we try to evaluate a form (first '(a b c»?
eval sees that it has a list whose car is a symbol (namely, first), so it looks at the
definition of the symbol and sees that the definition is a macro.

evaI gets the macro's expander {unction, and calls it providing as arguments the
original form that eval was handed and the lexical environment. So it calls
(lambda (x env) (list 'car (cadr x») with arguments (first '(a b c» and the
lexical environment. Whatever this returns is the expansion of the macro call. It is
evaluated in place of the original form.

In this case, x is bound to (first '(a b c», (cadr x) evaluates to '(a b c), and
(list 'car (cadr x» evaluates to (car '(a b c», which is the expansion. eval now
evaluates the expansion. (car '(a b c» returns a, and so the result is that
(first '(a b c» returns a.

What have we done? We have defined a macro called first. What the macro does
is to translate the form to some other form. Our translation is very simple - it just
translates forms that look like (first x) into (car x), for any form x. We can do
much more interesting things with macros, but first we show how to define a
macro.

macro. Special Fonn
The primitive special form for defining macros is macro. A macro defmition
looks like this:

(macro name ({onn enu)
body)

340

Reference Guide to Symbolics-Usp March 1985

name can be any function spec. form and env must be variables. body is a
sequence of Lisp forms that expand the macro; the last form should return
the expansion. defmacro is usually preferred in practice.

To define our first macro, we would say:

(macro first (x ignore)
(list 'car (cadr x»)

Here are some more simple examples of macros. Suppose we want any form that
looks like (addone x) to be translated into (plus 1 x). To define a macro to do this
we would say

(macro addone (x ignore)
(list 'plus '1 (cadr x»»

Now say we wanted a macro that would translate (increment x) into
(setq x (1+ x). This would be:

(macro increment (x ignore)
(list 'setq (cadr x) (list '1+ (cadr x»)

Of course, this macro is of limited usefulness, because the form in the cadr of the
increment form should be a symbol. If you tried (increment (car x», it would be,
translated into (setq (car x) (1+ (car x»), and setq would complain. (If you are
interested in how to fix this problem: See the macro setf, page 147. However, this
is irrelevant to how macros work.)

As you can see, macros are very different from functions. A function would not be
able to tell what kind of subforms are around in a call to itself; they get evaluated
before the function ever sees them. However, a macro can look at the whole form
and see what it is doing. Macros are not functions; if first is defined as a macro, it
is not meaningful to apply first to arguments. A macro does not take arguments at
all; its expander function takes a Lisp form and turns it into another Lisp form.

The purpose of functions is to compute; the purpose of macros is to translate.
Macros are used for a variety of purposes, the most common being extensions to the
Lisp language. For example, Lisp is powerful enough to express many different
control structures, but it does not provide every control structure anyone might ever
possibly want. Instead, if you want some kind of control structure with a syntax
that is not provided, you can translate it into some form that Lisp does know about.

For example, you might want a limited iteration construct that increments a variable
by one until it exceeds a limit (like the FOR statement of the BASIC language).
You might want it to look like:

(for a 1 100 (print a) (print (* a a»)

To get this, you could write a macro to translate it into:

(do a 1 (1+ a) (> a 100) (print a) (print (* a a»)

A macro to do this could be defined with:

341

March 1985 Macros

(macro for (x ignore)
(cons 'do

(cons (cadr x)
(cons (caddr x)

(cons (list '1+ (cadr x»
(cons (list '> (cadr x) (cadddr x»

(cddddr x»»»)
Now you have defined your own new control structure primitive, and it will act just
as if it were a special form provided by Lisp itself.

342

Reference Guide to Symbolics-Usp March 1985

343

March 1985 Macros

30. Aids for Defining Macros

The main problem with the following definition is that it is verbose and clumsy:

(macro for (x ignore)
(cons 'do

(cons (cadr x)
(cons (caddr x)

(cons (list '1+ (cadr x»
(cons (list '> (cadr x) (cadddr x»

(cddddr x»»»)

If it is that hard to write a macro to do a simple specialized iteration construct, you
might wonder how anyone could write Inacros of any real sophistication.

There are two things that make the definition so inelegant. One is that you must
write things like (cadr x) and (cddddr x) to refer to the parts of the form you
want to do things with. The other problem is that the long chains of calls to the
list and cons functions are very hard to read.

Two features are provided to solve these two problems. The defmacro macro solves
the former, and the "backquote" (') reader macro solves the latter.

30.1 defmacro

Instead of referring to the parts of our form by (cadr x) and such, we would like to
give names to the various pieces of the form, and somehow have the (cadr x)
automatically generated. This is done by a macro called defmacro. It is easiest to
explain what defmacro does by showing an example. Here is how you would write
the for macro using defmacro:

(defmacro for (var lower upper . body)
(cons 'do

(cons var
(cons lower

(cons (list '1+ var)
(cons (list '> var upper)

body»»))

(var lower upper. body) is a pattern to match against the body of the form (to
be more precise, to match against the cdr of the first argument to the macro's
expander function). If defmacro tries to match the following two lists:

(var lower upper . body)
(a 1 100 (print a) (print (* a a»)

var gets bound to the symbol a, lower to the integer 1, upper to the integer 100,

344

Reference Guide to Symbolics-Usp March 1985

and body to the list «print a) (print (* a a»). Then inside the body of the
detmacrot var, lower, upper, and body are variables, bound to the matching
parts of the macro form.

detmacro Macro
defmacro is a general-purpose macro-defining macro. A defmacro form
looks like:

(defmacro name pattern . body)

The pattern can be anything made up out of symbols and conses. It is
matched against the body of the macro form; both pattern and the form are
carted and cdr'ed identically, and whenever a non-nil symbol occurs in
patternt the symbol is bound to the corresponding part of the form. If the
corresponding part of the form is nilt it goes off the end of the form.
&optional, &rest, &keYt and &body can be used to indicate where optional
pattern elements are allowed.

All of the symbols in pattern can be used as variables within body. name is
the name of the macro to be defined; it can be any function spec. See the
section "Function Specs''» page 297. body is evaluated with these bindings in
effectt and its result is returned to the evaluator as the expansion of the
macro.

defmacro could have been defined in terms of destructuring-bind as
followst except that the following is a simplified example of defmacro
showing no error-checking and omitting the &environment and &whole
features.

(defmacro defmacro (name pattern &body body)
'(macro ,name (form env)

(destructuring-bind ,pattern (cdr form)
• ,body»)

See the special form destructuring-bin~ page 132.

Note that the pattern need not be a list the way a lambda-list must. In the above
example, the pattern was a "dotted list", since the symbol body was supposed to
match the cddddr of the macro form. If we wanted a new iteration form, like tor
except that our example would look like:

(for a (1 100) (print a) (print (* a a»)

(just because we thought that was a nicer syntax)t then we could do it merely by
modifying the pattern of the defmacro above; the new pattern would be
(var (lower upper) • body).

Here is how we would write our other examples using defmacro:

(defmacro first (the-list)
(list 'car the-list»

345

March 1985 Macros

(defmacro addone (form)
(list 'plus '1 form»

(defmacro increment (symbol)
(list 'setq symbol (list '1+ symbol»)

All of these are very simple macros and have very simple patterns, but they show
that we can replace (cadr x) with a readable mnemonic name such as the-list or
symbol, which makes the program clearer, and enables documentation facilities such
as the arglist function to describe the syntax of the special form defined by the
macro.

There is another version of defmacro that defines displacing macros. See the
section "Displacing Macros", page 371. defmacro has other, more complex features.
See the section "&-Keywords Accepted by defmacro", page 373. A way to define
local macros is discussed elsewhere. See the function macrolet, page 144.

30.2 Backquote

Now we deal with the other problem: the long strings of calls to cons and list.
This problem is relieved by introducing some new characters that are special to the
Lisp reader. Just as the single-quote character makes it easier to type things of the
form (quote x), some more new special characters make it easier to type forms that
create new list structure. The functionality provided by these characters is called
the backquote facility.

The backquote facility is used by giving a backquote character ('), followed by a form.
If the form does not contain any use of the comma character, the backquote acts
just like a single quote: it creates a form that, when evaluated, produces the form
following the backquote. For example:

'(a b c) => (a b c)
tea b c) => (a b c)

So in the simple cases, backquote is just like the regular single-quote macro. The
way to get it to do interesting things is to include a comma somewhere inside the
form following the backquote. The comma is followed by a form, and that form gets
evaluated even though it is inside the backquote. For example:

(setq b 1)

tea b c) => (a b c)
tea ,b c) => (a 1 c)
t (abc , (+ b 4) , (- b 1) (def , b» = > (abc 5 0 (def 1»

In other words, backquote quotes everything except things preceded by a comma;
those things get evaluated.

346

Reference Guide to ·Symbolics-Usp March 1985

A list following a backquote can be thought of as a template for some new list
structure. The parts of the list that are preceded by commas are forms that fill in
slots in the template; everything else is just constant structure that appears in the
result. This is usually what you want in the body of a macro; some of the form
generated by the macro is constant, the same thing on every invocation of the
macro. Other parts are different every time the macro is called, often being
functions of the form that the macro appeared in (the "arguments" of the macro).
The latter parts are the ones for which you would use the comma. Several
exampies oi this use ioHow.

When the reader sees the '(a ,b c) it is actually generating a form such as
(list 'a b 'c). The actual form generated might use list, cons, append, or
whatever might be a good idea; you should never have to concern yourself with what
it actually turns into. All you need to care about is what it evaluates to. Actually,
it does not use regular functions such as cons and list, but uses special ones instead
so that the grinder can recognize a form that was created with the backquote
syntax, and print it using backquote so that it looks like what you typed in. You
should never write any program that depends on this, anyway, because backquote
makes no guarantees about how it does what it does. In particular, in some
circumstances it might decide to create constant forms that cause sharing of list
structure at run time, or it might decide to create forms that create new list
structure at run time. For example, if the reader sees '(r • ,Dil), it might produce
the same thing as (cons 'r nil), or '(r • nil). Be careful that your program does
not depend on one of these.

The following examples might make this behavior clearer. Here is how we would
write our three simple macros using both the defmacro and backquote facilities.

(defmacro first (the-list)
'(car ,the-list»

(defmacro addone (form)
'(plus 1 , form»

(defmacro increment (symbol)
'(setq ,symbol (1+ ,symbol»)

Finally, to demonstrate how easy it is to define macros with these two facilities, here
is the final form of the for macro.

(defmacro for (var lower upper. body)
'(do ,var , lower (1+ ,var) (> ,var ,upper) . ,body»

Look at how much simpler that is than the original definition. Also, look how
closely it resembles the code it is producing. The functionality of the for stands out
when written this way.

If a comma inside a backquote form is followed by an at-sign character (@), it has a
special meaning. The ,@ should be followed by a form whose value is a list; then
each of the elements of the list is put into the list being created by the backquote.

347

March 1985 Macros

In other words, instead of generating a call to the cons function, backquote
generates a call to append. For example, if a is bound to (x y z), then '(1 ,8 2)
would evaluate to (1 (x y z) 2), but '(1 ,@a 2) would evaluate to (1 x y Z 2).

Here is an example of a macro definition that uses the ",@" construction. Suppose
you wanted to extend Lisp by adding a kind of special form called repeat-forever,
which evaluates all of its subforms repeatedly. One way to implement this would be
to expand:

into:

(repeat-forever forml form2 form3)

(prog ()
a forml

form2
form3
(go a»

You could define the macro by:
(defmaero repeat-forever body

'(prog ()
a .@body

(go a»)

A similar construct is ",." (comma, dot). This means the same thing as ",@" except
that the list that is the value of the following form can be freely smashed; backquote
uses neone rather than append. This should of course be used with caution.

Backquote does not make any guarantees about what parts of the structure it
shares and what parts it copies. You should not do destructive operations such as
neone on the results of backquote forms such as:

'La bed)

since backquote might choose to implement this as:

(cons a '(b cd»

and neone would smash the constant. On the other hand, it would be safe to
neone the result of:

'(a b ,e .d)

since there is nothing this could expand into that does not involve making a new
list, such as:

(list 'a 'b e d)

Backquote of course guarantees not to do any destructive operations (rplaea,
rplaed, neonc) on the components of the structure it builds, unless the ,. syntax is
used.

Advanced macro writers sometimes write "macro-defining macros": forms that
expand into forms that, when evaluated, define macros. In such macros it is often

348_

Reference Guide to Symbofics-Usp March 1985

useful to use nested backquote constructs. The following example illustrates the use
of nested backquotes in the writing of macro-defining macros.

This example is a very simple version of defstruct. You should first understand the
basic description of defstruct before proceeding with this example. The defstruct
below does not accept any options, and allows only the simplest kind of items; that
is, it only allows forms like:

(defstruct (nante)
iteml
itent2
itent3
itent4
...)

We would like this form to expand into:

(progn
(de fmacro itentl (x)

t(aref .x 0»
(de fmacro itent2 (x)

, (aref • xl»
(de fmacro itent3 (x)

, (aref ,x 2»
(defmacro itent4 (x)

, (aref ,x 3»
...)

The meaning of the (progn ...) is discussed in another section. See the section
"Macros Expanding Into Many Forms", page 360. Here is the macro to perform the
expansion:

(defmacro defstruct «name) . items)
(do «item-list items (cdr item-list»

(ans ni 1)

(i 0 (1+ i»)
«null item-list)

'(progn . ,(nreverse ans»)
(setq ans

(cons '(defmacro ,(car item-list) (x)
'(aref • x .', i »

ans» »

The interesting part of this definition is the body of the (inner) defmacro form:

, (aref ,x ,', i)

Instead of using this backquote construction, we could have written:

(list 'aref x .i)

That is, ",'," acts like a comma that matches the outer backquote, while ","
preceding the "x" matches with the inner backquote. Thus, the symbol i is
evaluated when the defstruct form is expanded, whereas the symbol x is evaluated
when the accessor macros are expanded.

349

March 1985 Macros

Backquote can be useful in situations other than the writing of macros. Whenever
there is a piece of list structure to be consed up, most of which is constant, the use
of backquote can make the program considerably clearer.

350

Reference Guide to Symbolics-Usp March 1985

351

March 1985 Macros

31. Substitutable Functions

A substitutable function is a function that is open-coded by the compiler. It is like
any other function when applied, but it can be expanded instead, and in that regard
resembles a macro.

defsubst
Used for defining substitutable functions.
almost the same thing.

(defsubst name lambda-list . body)

Special Fonn
It is used just like defun and does

defsubst defines a function that executes identically to the one that a
similar call to defun would define. The difference comes when a function
that calls this one is compiled. Then, the call is open-coded by substituting
the substitutable function's definition into the code being compiled. Such a
function is called a subst. For example, if we define:

(defsubst square (x) (* x x»

(defun faa (a b) (square (+ a b»)

then if foo is used interpreted, square works just as if it had been defined
by defun. If foo is compiled, however, the squaring is substituted into it
and it compiles just like:

(defun faa (a b) (* (+ a b) (+ a b»)

A similar square could be defined as a macro, with:

(defmacro square (x) '(* ,x ,x»

When the compiler open-codes a subst, it binds the argument variables to
the argument values with let, so they get evaluated only once and in the
right order. Then, when possible, the compiler optimizes out the variables.
In general, anything that is implemented as a subst can be reimplemented
as a macro, just by changing the defsubst to a defmacro and putting in
the appropriate backquote and commas, except that this does not get the
simultaneous guarantee of argument evaluation order and generation of
optimal code with no unnecessary temporary variables. The disadvantage of
macros is that they are not functions, and so cannot be applied to
arguments. Their advantage is that they can do much more powerful things
than substs can. This is also a disadvantage since macros provide more ways
to get into trouble. If something can be implemented either as a macro or as
a subst, it is generally better to make it a subst.

As with defun, name can be any function spec, but you get the "subst"
effect only when name is a symbol.

352

Reference Guide to Symbolics-Usp March 1985

The difference between a subst and a lambda is the way they are handled
by the compiler. A call to a normal function is compiled as a closed
subroutine; the compiler generates code to compute the values of the
arguments and then apply the function to those values. A call to a subst is
compiled as an open subroutine; the compiler incorporates the body forms of
the subst into the function being compiled, substituting the argument forms
for references to the variables in the subst's lambda-list. This is a simple
but useful facility for open or in-line coded functions.

353

March 1985 Macros

32. Symbol Macros

A symbol macro translates a symbol into a substitute form. When the Lisp
evaluator is given a symbol, it checks whether the symbol has been defined as a
symbol macro. If so, it evaluates the symbol's replacement form instead of the
symbol itself. Use define-symbol-macro to define a symbol macro.

define-symbol-macro name form Special Form
Defines a symbol macro. name is a symbol to be defined as a symbol macro.
form is a Lisp form to be substituted for the symbol when the symbol is
evaluated. A symbol macro is more like a subst than a macro: form is the
form to be substituted for the symbol, not a form whose evaluation results in . "-the substitute form.

Example:

(define-symbol-macro faa (+ 3 bar»
(setq bar 2)
faa => 5

A symbol defined as a symbol macro cannot be used in the context of a
variable. You cannot use setq on it, and you cannot bind it. You can use
setf on it: setf substitutes the replacement form, which should access
something, and expands into the appropriate update function.

For example, suppose you want to define some new instance variables and
methods for a flavor. You want to test the methods using existing instances
of the flavor. For testing purposes, you might use hash tables to simulate
the instance variables, using one hash table per instance variable with the
instance as the key. You could then implement an instance variable x as a
symbol macro:

(defvar x-hash-table (make-hash-table»
(define-symbol-macro x (send x-hash-table :get-hash self»

To simulate setting a new value for x, you could use (setf x value), which
would expand into (send x-hash-table :put.;hash self value).

354

Reference Guide to Symbo!ics-Lisp March 1985

355

March 1985 Macros

33. Lambda Macros

Lambda macros are similar to regular Lisp macros, except that regular Lisp macros
replace, and expand into, Lisp forms, whereas lambda macros replace, and expand
into, Lisp functions. They are an advanced feature, used only for certain special
language extensions or embedded programming systems.

To understand what lambda macros do, consider how regular Lisp macros work.
When the evaluator is given a Lisp form to evaluate, it inspects the car of the form
to figure out what to do. If the car is the name of a function, the function is
called. But if the car is the name of a macro, the macro is expanded, and the result
of the expansion is considered to be a Lisp form and is evaluated. Lambda macros
work analogously, but in a different situation. When the evaluator finds that the
car of a form is a list, it looks at the car of this list to figure out what to do. If this
car is the symbol lambda, the list is an ordinary function, and it is applied to its
arguments. But if this car is the name of a lambda macro, the lambda macro is
expanded, and the result of the expansion is considered to be a Lisp function and is
applied to the arguments.

Like regular macros, lambda macros are named by symbols and have a body, which
is a function of one argument. To expand the lambda macro, the evaluator applies
this body to the entire lambda macro function (the list whose car is the name of the
lambda macro), and expects the body to return another function as its value.

Several special forms are provided for dealing with lambda macros. The primitive for
defining a new lambda macro is lambda-macro; it is analogous to the macro
special form. For convenience, deflambda-macro and deflambda-macro-displace
are defined; these work like defmacro to provide easy parsing of the function into
its component parts. The special form deffunction creates a new Lisp function
that uses a named lambda macro instead of lambda in its definition.

lambda-macro name lambda-list body... Special Form
Like macro, defines a lambda macro to be called name. lambda-list should be
a list of one variable, which is bound to the function being expanded. The
lambda macro must return a function. Example:

(lambda-macro ilisp (x)
'(lambda (&optional ,@(second x) &rest ignore) • ,(cddr x»)

This defines a lambda macro called ilisp. After it has been defined, the
following list is a valid Lisp function:

(ilisp (x y z) (list x y z»

The above function takes three arguments and returns a list of them, but all
of the arguments are optional and any extra arguments are ignored. (This
shows how to make functions that imitate Interlisp functions, in which all

356

Reference Guide to Symbolics-Lisp March 1985

arguments are always optional and extra arguments are always ignored.) So,
for example:

(funca11 *'(i1isp (x y z) (list x y z» 1 2) => (1 2 nil)

deflambda-macro Special Fonn
Like defmacro, but defines a lambda macro instead of a normal macro.

deflambda-macro-displace Special Fonn
Like defmacro-dispiace, but defines a dispiacing iamooa macro instead oi a
displacing normal macro.

deftunction function-spec lambda-macro-name lambda-list body... Special Fonn
Defines a function using an arbitrary lambda macro in place of lambda. A
deffunction form is like a detun form, except that the function spec is
immediately followed by the name of the lambda macro to be used.
deffunction expands the lambda macro immediately, so the lambda macro
must already be defined before deffunction is used. For example, suppose
the ilisp lambda macro were defined as follows:

(lambda-macro i1isp (x)
'(lambda (&optional ,@(second x) &rest ignore) • ,(cddr x»)

Then the following example would define a function called new-list that
would use the lambda macro called ilisp:

(deffunction new-list ilisp (x y z)
(list x y z»

new-list's arguments are optional, and any extra arguments are ignored.
Examples:

(new-list 1 2) => (1 2 nil)
(new-list 1 2 3 4) -> (1 2 3)

Lambda macro-expander functions can be accessed with the (:lambda-macro name)
function spec.

357

March 1985 Macros

34. Hints to Macro Writers

Over the years, Lisp programmers have discovered useful techniques for writing
macros, and have identified pitfalls that must be avoided. This section discusses
some of these techniques, and illustrates them with examples.

The most important thing to keep in mind as you learn to write macros is that you
should first figure out what the macro form is supposed to expand into, and only
then should you start to actually write the code of the macro. If you have a firm
grasp of what the generated Lisp program is supposed to look like, from the start,
you will find the macro much easier to write.

In general any macro that can be written as a substitutable function should be
written as one, not as a macro, for several reasons:

• Substitutable functions are easier to write and to read.

• They can be passed as functional arguments (for example, you can pass them
to mapcar).

• Some subtleties can occur in macro definitions that need not be worried about
in substitutable functions.

See the section "Substitutable Functions", page 351. A macro can be a substitutable
function only if it has the exact semantics of a function, rather than a special form.

34.1 Name Conflicts

One of the most common errors in writing macros is best illustrated by example.
Suppose we wanted to write doUst as a macro that expanded into a do. The first
step, as always, is to figure out what the expansion should look like. Let's pick a
representative example form, and figure out what its expansion should be. Here is a
typical doUst form.

(dolist (element (append a b»
(push element *big-list*)
(foo element 3»

We want to create a do form that does the thing that the above doUst form says
to do. That is the basic goal of the macro: it must expand into code that does the
same thing that the original code says to do, but it should be in terms of existing
Lisp constructs. The do form might look like this:

358

Reference Guide to Symbolics-Lisp

(do «list (append a b) (cdr list»
(element»

«null list»
(setq element (car list»
(push element *big-list*)
(foo element 3»

March 1985

Now we could start writing the macro that would generate this code, and in general
convert any dolist into a do, in an analogous way. However, there is a problem
with the above scheme for expanding the dolist. The above expansion works fine.
But what if the input form had been the following:

(dolist (list (append a b»
(push list *big-list*)
(foo 1 ist 3»

This is just like the form we saw above, except that the user happened to decide to
name the looping variable list rather than element. The correspondirig expansion
would be:

(do «list (append a b) (cdr list»
(l ist»

«null list»
(setq list (car list»
(push list *big-list*)
(foo 1 ist 3»

This does not work at all! In fact, this is not even a valid program, since it contains
a do that uses the same variable in two different iteration clauses.

Here is another example that causes trouble:

(let «list nil»
(dolist (element (append a b»

(push element list)
(foo list 3»)

If you work out the expansion of this form, you see that there are two variables
named list, and that the user meant to refer to the outer one but the generated
code for the push actually uses the inner one.

The problem here is an accidental name conflict. This can happen in any macro
that has to create a new variable. If that variable ever appears in a context in
which user code might access it, it might conflict with some other name that is in
the user's program.

One way to avoid this problem is to choose a name that is very unlikely to be picked
by the user, simply by choosing an unusual name. This will probably work, but it is
inelegant since there is no guarantee that the user will not happen to choose the
same name. The only sure way to avoid the name conflict is to use an uninterned
symbol as the variable in the generated code. The function gensym is useful for
creating such symbols.

359

March 1985 Macros

Here is the expansion of the original form, using an uninterned symbol created by
gensym.

(do «#:g0005 (append a b) (cdr #:g0005»
(element»

«null #:g0005»
(setq element (car #:g0005»
(push element *big-1ist*)
(foo element 3»

This is the right kind of thing to expand into. Now that we understand how the
expansion works, we are ready to actually write the macro. Here it is:

(defmacro do1ist «var form) . body)
(let «dummy (gensym»)

'(do «,dummy ,form (cdr ,dummy»
(, var»

«null .dummy»
(setq ,var (car ,dummy»
. , body»)

Many system macros do not use gensym for the internal variables in their
expansions. Instead they use symbols whose print names begin and end with a dot.
This provides meaningful names for these variables when looking at the generated
code and when looking at the state of a computation in the Debugger. However,
this convention means that users should avoid naming variables this way.

34.2 prog-Context Conflicts

A related problem occurs when you write a macro that expands into a prog (or a
do, or something that expands into prog or do) behind the user's back (unlike
dolist, which is documented to be like do).

Consider the error-restart special form; suppose we wanted to implement it as a
macro that expands into a prog. If it expanded into a standard prog, then the
following (contrived) Lisp program would not behave correctly:

(prog ()
(setq a 3)
(error-restart (error "Try again")

(cond «> a 10)
(return 5»

«> a 4)
(fsigna1 'lose "You lose."»»

(setq b 7»

The problem is that the return returns from the error-restart instead of the
prog. The way to avoid this problem is to use a named prog whose name is t.
The name t is special in that it is invisible to the return function. If we write

360

Reference Guide to Symbolics-Usp March 1985

error-restart as a macro that expands into a prog named t, then the return
passes right through the error-restart form and returns from the prog, as it
ought to.

In general, when a macro expands into a prog or a do around the user's code, the
prog or do should be named t so that return forms in the user code return to the
right place, unless the macro is documented as generating a prog/do-like form that
can be exited with return.

34.3 Macros Expanding Into Many Forms

Sometimes a macro wants to do several different things when its expansion is
evaluated. Another way to say this is that sometimes a macro wants to expand into
several things, all of which should happen sequentially at run time (not macro­
expand time). For example, suppose you wanted to implement defconst as a macro.
defconst must do two things: declare the variable to be special, and set the variable
to its initial value. To simplify the example, we implement a simplified defconst
that does only these two things, and does not have any options. What should a
detconst form expand into? What we would like is for an appearance of:

(defconst a (+ 4 b»

in a file to be the same thing as the appearance of the following two forms:

(declare (special a»
(5 etq a (+ 4 b»

However, because of the way that macros work, they expand into only one form, not
two. So we need to have a defconst form expand into one form that is just like
having two forms in the file.

There is such a form. It looks like this:

(progn
(declare (special a»
(setq a (+ 4 b»)

In interpreted Lisp, it is easy to see what happens here. This is a progn special
form, and so all its subforms are evaluated, in turn. The declare form and the
setq form are evaluated, and so each of them happens, in turn. So far, so good.

The interesting thing is the way this form is treated by the compiler. The compiler
specially recognizes any progn form at top level in a file. When it sees such a form,
it processes each of the subforms of the progn just as if that form had appeared at
top level in the file. So the compiler behaves exactly as if it had encountered the
declare form at top level, and then encountered the setq form at top level, even
though neither of those forms was actually at top level (they were both inside the
progn). This feature of the compiler is provided specifically for the benefit of
macros that want to expand into several things.

March 1985

Here is the macro definition:

(defmacro defconst (variable init-form)
'{progn

(declare (special ,variable»
(setq ,variable ,init-form»)

361

Macros

Here is another example of a form that wants to expand into several things. We
will implement a special form called define-command, which is intended to be used
in order to define commands in some interactive user subsystem. For each
command, the define-command form provides two things: a function that executes
the command, and a text string that contains the documentation for the command
(in order to provide an online interactive documentation feature). This macro is a
simplified version of a macro that is actually used in the Zwei editor. Suppose that
in this subsystem, commands are always functions of no arguments, documentation
strings are placed on the help property of the name of the command, and the
names of all commands are put onto a list. A typical call to define-command
would look like:

(define-command move-to-top
"This command moves you to the top."
(do ()

« at-the-top-p»
(move-up-one»)

This could expand into:

(progn
(defprop

move-to-top
"This command moves you to the top."
help)

(push 'move-to-top *comrnand-name-list*)
(defun move-to-top ()

(do ()
«at-the-top-p»

(move-up-one»)

The define-command expands into three forms. The first one sets up the
documentation string and the second one puts the command name onto the list of
all command names. The third one is the defun that actually defines the function
itself. Note that the defprop and push happen at load time (when the file is
loaded); the function, of course, also gets defined at load time. For more discussion
of the differences among compile time, load time, and eval time: See the function
eval-when in Program Development Utilities.

This technique makes Lisp a powerful language in which to implement your own
language. When you write a large system in Lisp, frequently you can make things
much more convenient and clear by using macros to extend Lisp into a customized

362

Reference Guide to Symbo/ics-Lisp March 1985

language for your application. In the above example, we have created a little
language extension: a new special form that defines commands for our system. It
lets the writer of the system put documentation strings right next to the code that
they document, so that the two can be updated and maintained together. The way
that the Lisp environment works, with load-time evaluation able to build data
structures, lets the documentation database and the list of commands be constructed
automatically.

34.4 Macros That Surround Code

There is a particular kind of macro that is very useful for many applications. This is
a macro that you place "around" some Lisp code, in order to make the evaluation of
that code happen in some context. For a very simple example, we could define a
macro called with-output-in-base, that executes the forms within its body with any
output of numbers that is done defaulting to a specified base.

(defmacro with-output-in-base «base-form) &body body)
'(let «(base ,base-form»

. , body»

A typical use of this macro might look like:

(with-output-in-base (*default-base*)
(print x)
(print y»

that would expand into:

(let ((base *default-base*»
(print x)

(print y»

This example is too trivial to be very useful; it is intended to demonstrate some
stylistic issues. Some special forms are similar to this macro. See the special form
with-open-file in Reference Guide to Streams, Files, and I/O. See the special form
with-input-from-string, page 290. The really interesting thing, of course, is that
you can define your own such special forms for your own specialized applications.
One very powerful application of this technique is used in a system that manipulates
and solves the Rubik's cube puzzle. The system hea\'ily uses a special form called
with-front-and-top, whose meaning is "evaluate this code in a context in which
this specified face of the cube is considered the front face, and this other specified
face is considered the top face".

The first thing to keep in mind when you write this sort of macro is that you can
make your macro much clearer to people who might read your program if you
conform to a set of loose standards of syntactic style. By convention, the names of
such special forms st~t with "with-". This seems to be a clear way of expressing
the concept that we are setting up a context; the meaning of the special form is "do

363

March 1985 Macros

this with the following things true". Another convention is that any "parameters"
to the special form should appear in a list that is the first subform of the special
form, and that the rest of the subforms should make up a body of forms that are
evaluated sequentially with the last one returned. All of the examples cited above
work this way. In our with-output-in-base example, there was one parameter (the
base), which appears as the first (and only) element of a list that is the first
subform of the special form. The extra level of parentheses in the printed
representation serves to separate the "parameter" forms from the "body" forms so
that it is textually apparent which is which; it also provides a convenient way to
provide default parameters (a good example is the with-input-from-string special
form, which takes two required and two optional "parameters"). Another
convention/technique is to use the &body keyword in the defmacro to tell the
editor how to correctly indent the special form. See the section "&-Keywords
Accepted by defmacro", page 373.

The other thing to remember is that control can leave the special form either by the
last form's returning, or by a non local exit (that is, something doing a throw). You
should write the special form in such a way that everything is cleaned up
appropriately no matter which way control exits. In our with-output-in-base
example, there is no problem, because nonlocal exits undo lambda-bindings.
However, in even slightly more complicated cases, an unwind-protect form is
needed: the macro must expand into an unwind-protect that surrounds the body,
with "cleanup" forms that undo the context-setting-up that the macro did. For
example, using-resource is implemented as a macro that does an
allocate-resource and then performs the body inside of an unwind-protect that
has a deallocate-resource in its "cleanup" forms. This way the allocated resource
item is deallocated whenever control leaves the using-resource special form.

34.5 Multiple and Out-of-order Evaluation

In any macro, you should always pay attention to the problem of multiple or out-of­
order evaluation of user subforms. Here is an example of a macro with such a
problem. This macro defines a special form with two subforms. The first is a
reference, and the second is a form. The special form is defined to create a cons
whose car and cdr are both the value of the second subform, and then to set the
reference to be that cons. Here is a possible definition:

(defmacro test (reference form)
t(setf ,reference (cons ,form ,form»)

Simple cases work all right:

(test foo 3) ==>
(setf foo (cons 3 3»

But a more complex example, in which the subform has side effects, can produce
surprising results:

364

Reference Guide to Symbofics-Usp

(test faa (setq x (1+ x») ==>
(setf faa (cons (setq x (1+ x»

(setq x (1+ x»»

March 1985

The resulting code evaluates the setq form twice, and so x is increased by two
instead of by one. A better definition of test that avoids this problem is:

(defmacro test (reference form)
(let «value (gensym»)

'(let «,value ,form»
(setf ,reference (cons ,value ,value»»)

With this definition, the expansion works as follows:

(test faa (setq x (1+ x») ==>
(let «I:g0005 (setq x (1+ x»»

(setf faa (cons l:g0005 l:g0005»)

In general, when you define a new special form that has some forms as its
subforms, you have to be careful about when those forms get evaluated. If you are
not careful, they can get evaluated more than once, or in an unexpected order, and
this can be semantically significant if the forms have side effects. There is nothing
fundamentally wrong with multiple or out-of-order evaluation if that is really what
you want and if it is what you document your special form to do. However, it is
very common for special forms to simply behave like functions, and when they are
doing things like what functions do, it is natural to expect them to be function-like
in the evaluation of their subforms. Function forms have their subforms evaluated,
each only once, in left-to-right order, and special forms that are similar to function
forms should try to work that way too for clarity and consistency.

The macro once-only makes it easier for you to follow the principle explained above.
It is most easily explained by example. The way you would write test using
once-only is as follows:

(defmacro test (reference form)
(once-only (form)

'(setf ,reference (cons ,form ,form»»

This defines test in such a way that the form is evaluated only once, and
references to form inside the macro body refer to that value. once-only
automatically introduces a lambda-binding of a generated symbol to hold the value of
the form. Actually, it is more clever than that; it avoids introducing the lambda­
binding for forms whose evaluation is trivial and may be repeated without harm or
cost, such as numbers, symbols, and quoted structure. This is just an optimization
that helps produce more efficient code.

The once-only macro makes it easier to follow the principle, but it does not
completely nor automatically solve the problems of multiple and out-of-order
evaluation. It is just a tool that can solve some of the problems some of the time; it
is not a panacea.

The following description attempts to explain what once-only does, but it is much

March 1985

easier to use once-only by imitating the example above than by trying to
understand once-only's rather tricky definition.

once-only
A once-only form looks like:

(once-on ly var-list
fonnl
fonn2
...)

365

Macros

Macro

var-list is a list of variables. The forms are a Lisp program that presumably
uses the values of those variables. When the form resulting from the
expansion of the once-only is evaluated, it first inspects the values of each of
the variables in var-list; these values are assumed to be Lisp forms. It binds
each variable either to its current value, if the current value is a trivial form,
or to a generated symbol. Next, once-only evaluates the fonns, in this new
binding environment, and when they have been evaluated it undoes the
bindings. The result of the evaluation of the last form is presumed to be a
Lisp form, typically the expansion of a macro. If all of the variables had been
bound to trivial forms, then once-only just returns that result. Otherwise,
once-only returns the result wrapped in a lambda-combination that binds
the generated symbols to the result of evaluating the respective nontrivial
forms.

The effect is that the program produced by evaluating the once-only form is
coded in such a way that it only evaluates each form once, unless evaluation
of the form has no side effects, for each of the forms that were the values of
variables in var-list. At the same time, no unnecessary lambda-binding
appears in this program, but the body of the once-only is not cluttered up
with extraneous code to decide whether or not to introduce lambda-binding in
the program it constructs.

Note well: while once-only attempts to prevent multiple evaluation, it does
not necessarily preserve the order of evaluation of the forms! Since it
generates the new bindings, the evaluation of complex forms (for which a
new variable needs to be created) may be moved ahead of the evaluation of
simple forms (such as variable references). once-only does not solve all of
the problems mentioned in this section.

Caution! A number of system macros, setf for example, fail to follow this
convention. Unexpected multiple evaluation and out-of-order evaluation can occur
with them. This was done for the sake of efficiency and is prominently mentioned
in the documentation of these macros. It would be best not to compromise the
semantic simplicity of your own macros in this way. (cl:setf and related macros
follow the convention correctly.)

366

Reference Guide to Symbolics-Usp March 1985

34.6 Nesting Macros

A useful technique for building language extensions is to define programming
constructs that employ two special forms, one of which is used inside the body of the
other. Here is a simple example. There are two special forms; the outer one is
called with-collection, and the inner one is called collect. collect takes one
subform, which it evaluates; with-collection just has a body, whose forms it
evaluates sequentially. with-collection returns a list of all of the values that were
given to collect during the evaluation of the with-collection's body. For example:

(with-collection
(dotimes (i 5)

(collect i»)

=> (1 2 3 4 5)

Remembering the first piece of advice we gave about macros, the next thing to do is
to figure out what the expansion looks like. Here is how the above example could
expand:

(let «#:g0005 nil»
(dotimes (i 5)

(push i #:g0005»
(nreverse #:g0005»

Now, how do we write the definition of the macros? with-collection is pretty easy:

(defmacro with-collection (&body body)
(let «var (gensym»)

'(let «,var nil»
,@body
(nreverse ,var»»

The hard part is writing collect. Let's try it:

(defmacro collect (argument)
'(push ,argument ,var»

Note that something unusual is going on here: collect is using the variable var
freely. It is depending on the binding that takes place in the body of
with-collection to get access to the value of var. Unfortunately, that binding took
place when with-collection got expanded; with-collection's expander function
bound var, and it got unbound when the expander function was done. By the time
the collect form gets expanded, var has long since been unbound. The macro
definitions above do not work. Somehow the expander function of with-collection
has to communicate with the expander function of collect to pass over the
generated symbol.

The only way for with-collection to convey information to the expander function of
collect is for it to expand into something that passes that information. What we
can do is to define a special variable (which we will call *collect-variable*), and

367

March 1985 Macros

have with-collection expand into a form that binds this variable to the name of
the variable that the collect should use. Now, consider how this works in the
interpreter. The evaluator first sees the with-collection form, and calls in the
expander function to expand it. The expander function creates the expansion, and
returns to the evaluator, which then evaluates the expansion. The expansion
includes in it a let form to bind ·collect-variable* to the generated symbol. When
the evaluator sees this let form during the evaluation of the expansion of the
with-collection form, it sets up the binding and recursively evaluates the body of
the let. Now, during the evaluation of the body of the let, our special variable is
bound, and if the expander function of collect gets run, it is able to see the value of
collection-variable and incorporate the generated symbol into its own expansion.

Writing the macros this way is not quite right. It works fine interpreted, but the
problem is that it does not work when we by to compile Lisp code that uses these
special forms. When code is being compiled, there is no interpreter to do the
binding in our new let form; macro expansion is done at compile time, but generated
code is not run until the results of the compilation are loaded and run. The way to
fix our definitions is to use compiler-let instead of let. compiler-let is a special
form that exists specifically to do the sort of thing we are trying to do here.
compiler-let is identical to let as far as the interpreter is concerned, so changing
our let to a compiler-let does not affect the behavior in the interpreter; it
continues to work. When the compiler encounters a compiler-let, however, it
actually performs the bindings that the compiler-let specifies, and proceeds to
compile the body of the compiler-let with all of those bindings in effect. In other
words, it acts as the interpreter would.

Here is the right way to write these macros:

(defvar *collect-variable*)

(defmacro with-collection (&body body)
(let «var (gensym»)

'(let «,var nil»
(compiler-let «*collect-variable* ',var»

. , body)
(nreverse ,var»»

(defmacro collect (argument)
'(push ,argument ,*collect-variable*»

Another way to write this type of macro is to use macrolet to create a defmition of
collect local to the body of with-collection. Example:

368

Reference Guide to Symbolics-Usp March 1985

(defmacro with-collection (&body body)
(let «var (gensym»)

'(let «,var nil»
(macrolet «collect (argument)

'(push ,argument ,',var»)
. ,body)

(nreverse ,var»»

;To make COLLECT known to editing tools, and to get a better error
;ffiessage if it is uSed in the niun9 pluce, we define ~ global definition
;that will be shadowed by the HACROLET. The error message for misuse of
;COLLECT comes out at both compile-time and run-time.

(defmacro collect (argument)
(compiler:warn () H-S used outside of -SH

'collect 'with-collection)
'(ferror "-S used outside of -SH

'(collect "argument) 'with-collection»

34.7 Functions Used During Expansion

The technique of defining functions to be used during macro expansion deserves
explicit mention. A macro-expander function is a Lisp program like any other Lisp
programt and it can benefit in all the usual ways by being broken down into a
collection of functions that do various parts of its work. Usually macro-expander
functions are pretty simple Lisp programs that take things apart and put them
together slightly differentlYt but some macros are quite complex and do a lot of work.
Several features of Symbolics-LisPt including flavorst looPt and defstructt are
implemented using very complex macrost whicht like any complex, well-written Lisp
programt are broken down into modular functions. You should keep this in mind if
you ever invent an advanced language extension or ever find yourself writing a five­
page expander function.

A particular thing to note is that any functions used by macro-expander functions
must be available at compile time. You can make a function available at compile
time by surrounding its defining form with (eval-when (compile load eval) •••).
Doing this means that at compile time the definition of the function is interpretedt
not compiledt and thus runs more slowly. Another approach is to separate macro
definitions and the functions they call during expansion into a separate file, often
called a "defs" (definitions) file. This file defines all the macros but does not use any
of them. It can be separately compiled and loaded up before compiling the main
part of the programt which uses the macros. The system facility helps keep these
various files straightt compiling and loading things in the right order. See the
section "Maintaining Large Programs" in Program Development Utilities.

369

March 1985 Macros

34.8 Aid for Debugging Macros

mexp Function
mexp goes into a loop in which it reads forms and sequentially expands
them, printing out the result of each expansion (using the grinder to improve
readability). See the section "Formatting Lisp Code" in Reference Guide to
Streams, Files, and 110. It terminates when you press the END key. If you
type in a form that is not a macro form, there are no expansions and so it
does not type anything out, but just prompts you for another form. This
allows you to see what your macros are expanding into, without actually
evaluating the result of the expansion.

See the section "Expanding Lisp Expressions in Zmacs" in Text Editing and
Processing. That section describes two editor commands that allow you to
expand macros - c-sh-M and M-sh-M.

370

Reference Guide to Symbolics-Usp March 1985

371

March 1985 Macros

35. Displacing Macros

Every time the evaluator sees a macro form, it must call the macro to expand the
form. If this expansion always happens the same way, then it is wasteful to expand
the whole form every time it is reached; why not just expand it once? A macro is
passed the macro form itself, and so it can change the car and cdr of the form to
something else by using rplaca and rplacd.! This way the first time the macro is
expanded, the expansion is put where the macro form used to be, and the next time
that form is seen, it is already expanded. A macro that does this is called a
displacing macro, since it displaces the macro form with its expansion.

The major problem with this is that the Lisp form gets changed by its evaluation.
If you were to write a program that used such a macro, call grindef to look at it,
then run the program and call grindet again, you would see the expanded macro
the second time. Presumably the reason the macro is there at all is that it makes
the program look nicer; we would like to prevent the unnecessary expansions, but
still let grindet display the program in its more attractive form. This is done with
the function displace.

Another thing to worry about with displacing macros is that if you change the
definition of a displacing macro, then your new definition does not take effect in any
form that has already been displaced. If you redefine a displacing macro, an existing
form using the macro uses the new definition only if the form has never been
evaluated.

displace form expansion Function
Replaces the car and cdr of form so that it looks like:

(si :displaced original-form expansion)

form must be a list. original-form is equal to form but has a different top­
level cons so that the replacing mentioned above does not affect it.
si:displaced is a macro, which returns the caddr of its own macro form. So
when the si:displaced form is given to the evaluator, it "expands" to
expansion. displace returns expansion.

The grinder knows specially about si:displaced forms, and grinds such a form as if
it had seen the original form instead of the si:displaced form.

So if we wanted to rewrite our addone macro (See the section "Introduction to
Macros", page 339.) as a displacing macro, instead of writing:

(macro addone (x)
(list 'plus '1 (cadr x»)

372

Reference Guide to Symbolics-Lisp March 1985

we would write:
(macro addone (x)

(displace x (list 'plus '1 (cadr x»»

Of course, we really want to use defmacro to define most macros. Since there is
no convenient way to get at the original macro form itself from inside the body of a
defmacro, another version of it is provided:

detmacro-displace Macro
Just like defmacro except that it defines a displacing macro, using the
':lifiilnlA~A fnnrt.inn. -r--- - ------------

Now we can write the displacing version of addone as:

(defmacro-displace addone (val)
(list 'plus '1 val»

All we have changed in this example is the defmacro into defmacro-displace.
addone is now a displacing macro.

373

March 1985 Macros

36. &-Keywords Accepted by defmacro

The pattern in a defmaero is like the lambda-list of a normal function. defmaero
is allowed to contain certain &-keywords.

defmaero destructures all levels of patterns in a consistent way. The inside
patterns can also contain &-keywords and there is checking of the matching of
lengths of the pattern and the subform. See the function des true turing-bind,
page 132. This behavior exists for all of defmaero's parameters, except for
&environment, &whole, and &aux.

You must use &optional in the parameter list if you want to call the macro with
less than its full complement of subforms. There must be an exact one-to-one
correspondence between the pattern and the data unless you use &optional in the
parameter destructuring pattern.

(defmacro with-output-to-string
((var &optional string index) &body body)

'(let ((with-output-to-string-internal-string
,(or string '(make-array 100 :type 'art-string»)

...)

,@body»

defmacro accepts these keywords:

&optionaI

&rest

&optional is followed by variable, (variable), (variable default), or
(variable default present-p), exactly the same as in a function.
Note that default is still a form to be evaluated, even though
variable is not being bound to the value of a form. variable does
not have to be a symbol; it can be a pattern. In this case the
first form is disallowed because it is syntactically ambiguous. The
pattern must be enclosed in a singleton list.

Using &rest is the same as using a dotted list as the pattern,
except that it might be easier to read and leaves a place to put
&aux.

&key Separates the positional parameters and rest parameter from the
keyword parameters. See the section "Evaluating a Function
Form", page 151.

&allow-other-keys
In a lambda-list that accepts keyword arguments,
&allow-other-keys says that keywords that are not specifically
listed after &key are allowed. They and the corresponding values
are ignored, as far as keyword arguments are concerned, but they
do become part of the rest argument, if there is one.

374

Reference Guide to Symbolics-Lisp March 1985

&aux &aux is the same in a macro as in a function, and has nothing to
do with pattern matching. It separates the destructuring pattern
of a macro from the auxiliary variables. Following &aux you can
put entries of the form:

(variable initial-value-form)

or just variable if you want it initialized to nil or do not care
what the initial value is.

&'Oody &body is identicai to &rest except that it inform.s the editor and
the grinder that the remaining subforms constitute a ''body''
rather than "arguments" and should be indented accordingly.

&whole &whole is followed by variable, which is bound to the entire
macro-call form or subform. variable is the value that the macro­
expander function receives as its first argument. &whole is
allowed only in the top-level pattern, not in inside patterns.

&environment &environment is followed by variable, which is bound to an
object representing the lexical environment where the macro call is
to be interpreted. This environment might not be the complete
lexical environment. It should be used only with the
macroexpand function for any local macro definitions that the
macrolet construct might have established within that lexical
environment. &environment is allowed only in the top-level
pattern, not in inside patterns. See the section "Lexical
Environment Objects and Arguments", page 138.

&listooOf is not supported as a result of making defmacro Common-Lisp compatible.
Use loop or mapcar instead of &list-of.

375

March 1985 Macros

37. Functions to Expand Macros

The following functions are provided to allow the user to control expansion of
macros; they B:l"e often useful for the writer of advanced macro systems, and in tools
to examine and understand code that might contain macros.

macroexpand-l form &optional env dont-expand-special-forms Function
If form is a macro form, macroexpand-l expands it (once) and returns the
expanded form and t. Otherwise it returns fonn and nil. macroexpand-l
expands defsubst function forms as well as macro forms. env is a lexical
environment that can be supplied to specify the lexical environment of the
expansions. See the section "Lexical Environment Objects and Arguments",
page 138. dont-expand-special-forms prevents Inacro expansion of forms that
are both special forms and macros. See the variable
si:*macroexpand-hook*, page 375.

macroexpand form &optional env dont-expand-special-fonns Function
If form is a macro form, macroexpand expands it repeatedly until it is not a
macro form and returns two values: the final expansion and t. Otherwise, it
returns form and nil. macroexpand expands defsubst function forms as
well as macro forms. env is a lexical environment that can be supplied to
specify the lexical environment of the expansions. See the section "Lexical
Environment Objects and Arguments", page 138. dont-expand-special-forms
prevents macro expansion of forms that are both special forms and macros.

si:*macroexpand-hook* Variable
The value of this variable is used as the expansion interface hook by
macroexpand-l. When macroexpand-l determines that a symbol names a
macro, it obtains the expansion function for that macro. The value of
si:*macroexpand-hook* is called as a function of three arguments: the
expansion function, fonn, and env. The value returned from this call is the
expansion of the macro call.

The initial value of si:*macroexpand-hook* is funcnU, and the net effect is
to invoke the expansion function, giving it form and env as its two
arguments.

376

Reference Guide to Symbo/ics-Usp March 1985

377

March 1985 Structure Macros

PART IX.

Structure Macros

378

Reference Guide to Symbolics-Usp March 1985

379

March 1985 Structure Macros

38. Introduction to Structure Macros

You can extend Lisp's data structures with the defstruct macro. defstruct
provides a facility in Lisp for creating and using aggregate data types with named
elements. These are similar to PIJI structures, or records in Pascal.

For information about using macros to extend the control structures of Lisp:

See the section "Macros", page 337.

See the section "The loop Iteration Macro", page 205.

To understand the basic idea, assume you are writing a Lisp program that deals
with space ships. In your program, you want to represent a space ship by a Lisp
object of some kind. The interesting things about a space ship, as far as your
program is concerned, are its position (x and y), velocity (x and y), and mass. How
do you represent a space ship?

The representation could be either a list of the elements (x-position, y-position, and
so on) or an array of five elements, the zero element being the x-position, the first
being the y-position, and so on. The problem with both these representations is
that the "elements" (such as x-position) occupy places in the object that are arbitrary
and hard to remember; for example, was the mass the third or the fourth element
of the array? It would not be obvious when reading a program that an expression
such as (cadddr ship!) or (aref ship2 3) means "the y component of the ship's
velocity", and it would be very easy to write caddr in place of cadddr.

It would be more useful to have names that are easy to remember and understand.
If the symbol foo were bound to a representation of a space ship, then the following
could return its x-position:

(ship-x-position foo)

The following could return its y-position:

(ship-y-position foo)

And so forth. The defstruct facility does just this.

defstruct itself is a macro that defines a structure. For the space ship example,
the structure could be defined by using:

(defstruct (ship)
ship-x-position
ship-y-position
ship-x-velocity
ship-y-velocity
ship-mass)

This says that every ship is an object with five named components. The evaluation
of this form does several things. First, it dermes ship-x-position to be a function

380

Reference Guide to Symbolics-Usp March 1985

that, given a ship, returns the x component of its position. This is called an
accessor function, because it accesses a component of a structure. defstruct defines
the other four accessor functions in a similar way.

defstruct also defines make-ship to be a macro that expands into the necessary
Lisp code to create a ship object. setq is used to set x to the new ship:

(setq x (make-ship»

The macro make-ship is called a constructor macro, because it constructs a new
structure.

It is also possible to change the contents of a structure. To do this, the setf macro
is used as follows:

(setf (ship-x-position x) 100)

Here x is bound to a ship, and after the evaluation of the setf form, thp
ship-x-position of that ship is 100.

How does all this map into the familiar primitives of Lisp? In this simple example,
the choice of implementation technique is left up to defstruct; it chooses to
represent a ship as an array. The array has five elements, which are the five
components of the ship. The accessor functions are defined thus:

(defun ship-x-position (ship)
(aref ship 0»

The constructor macro (make-ship) expands into (make-array 5), which makes an
array of the appropriate size to be a ship. Note that a program that uses ships
need not contain any explicit knowledge that ships are represented as five-element
arrays; this is kept hidden by defstruct.

The accessor functions are not ordinary functions; they are substs. This difference
has two implications: it allows setf to understand the accessor functions, and it
allows the compiler to substitute the body of an accessor function directly into any
function that uses it, making compiled programs that use defstruct exactly equal in
efficiency to programs that "do it by hand". Thus writing (ship-mass s) is exactly
equivalent to writing (aref s 4), and writing (setf (ship-mass s) m) is exactly
equivalent to writing (aset m 8 4), when the program is compiled. It is also possible
to tell defstruct to implement the accessor functions as macros, although this is not
normally done in Symbolics-Lisp.

You can use the describe-defstruct function to examine the contents of the ship:

381

March 1985 Structure Macros

(describe-defstruct x 'ship) =>

#<art-q-5 17073131> is a ship
ship-x-position: 100
ship-y-position: nil
ship-x-velocity: nil
ship-y-velocity: nil
ship-mass: nil

#<art-q-5 17073131>

defstruct has many other features not demonstrated by the space ship example.
First of all, you can specify the kind of Lisp object to use for the "implementation"
of the structure. The space ship example implemented a "ship" as an array, but
defstruct can also implement structures as array-leaders, lists, and other things.
For array-leaders, the accessor functions call array-leader, for lists, nth, and so on.

Most structures are implemented as arrays. Lists take slightly less storage, but
elements near the end of a long list are slower to access. Array leaders allow you to
have a homogeneous aggregate (the array) and a heterogeneous aggregate with
named elements (the leader) tied together into one object.

defstruct also allows you to specify to the constructor macro what the various
elements of the structure should be initialized to. And it lets you give, in the
defstruct form, default values for the initialization of each element.

The defstruct in Symbolics-Lisp also works in various dialects of Maclisp and thus
has some features that are not useful in Symbolics-Lisp. When possible, the Maclisp­
specific features attempt to do something reasonable or harmless in Symbolics-Lisp so
that it is easier to write code that runs equally well in Symbolics-Lisp and Maclisp.

382

Reference Guide to Symbo/ics-Usp March 1985

383

March 1985 Structure Macros

39. Using defstruct

defstruct
Defines a record-structure data type. A call to defstruct looks like:

(defstruct (name option-l option-2 ...)
slot-description-l
slot-description-2
...)

Macro

name must be a symbol; it is the name of the structure. It is given a
si:defstruct-description property that describes the attributes and elements
of the structure; this is intended to be used by programs that examine other
Lisp programs and that want to display the contents of structures in a
helpful way. name is used for other things; for more information: See the
section "Named Structures", page 403.

Each option can be either a symbol, which should be one of the recognized
option names, or a list, whose car should be one of the option names and the
rest of which should be "arguments" to the option. Some options have
arguments that default; others require that arguments be given explicitly.
For more information about options: See the section "Options to defstruct",·
page 385.

Each slot-description can be in any of three forms:

(1) slot-name
(2) (slot-name default-init
(3) «slot-name-l byte-spec-l default-init-l)

(slot-name-2 byte-spec-2 default-init-2)
...)

Each slot-description allocates one element of the physical structure, even
though in form (3) several slots are defined.

Each slot-name must· always be a symbol; an accessor function is defined for
each slot.

In form (1), slot-name simply defines a slot with the given name. An
accessor function is defined with the name slot-name. The :conc-name
option allows you to specify a prefix and have it concatenated onto the front
of all the slot names to make the names of the accessor functions. Form (2)
is similar, but allows a default initialization for the slot. Form (3) lets you
pack several slots into a single element of the physical underlying structure,
using the byte field feature of defstruct.

Because evaluation of a defstruct form causes many functions and macros to be
defined, you must take care not to define the same name with two different

384

Reference Guide to Symbo/ics-Usp March 1985

defstruct forms. A name can only have one function definition at a time; if it is
redefined, the later definition is the one that takes effect, destroying the earlier
definition. (This is the same as the requirement that each detun that is intended
to define a distinct function must have a distinct name.)

You should always prefIX the names of all accessor functions with some text unique
to the structure. See the section "Introduction to Structure Macros", page 379. In
the space ship example there, all the names start with ship-. The :conc-name
option can be used to provide such prefixes automatically. Similarly, the conventional
name for the constructor macro in the space ship example is make-ship, and the
conventional name for the alterant macro is alter-ship.

The describe-defstruct function lets you examine an instance of a structure.

describe-defstruct instance &optional name Function
Takes an instance of a structure and prints out a description of the instance,
including the contents of each of its slots. name should be the name of the
structure; you must provide this name so that describe-defstruct can know
of what structure instance is an instance, and thus figure out the names of
instance's slots.

If instance is a named structure, you do not have to provide name, since it is
just the named structure symbol of instance. Normally the describe
function calls describe-defstruct if it is asked to describe a named
structure; however, some named structures have their own idea of how to
describe themselves. See the section "Named Structures", page 403.

385

March 1985 Structure Macros

40. Options to defstruct

This section explains each of the options that can be given to defstruct.

Here is an example that shows the typical syntax of a call to defstruct that gives
several options.

:type

(defstruct (faa (:type :array)

a
b)

(:make-array (:type 'art-8b :leader-length 3»
:conc-name
(:size-symbol faa»

The :type option specifies the kind of Lisp object to be used to
implement the structure. The option must be given one
argument, which must be one of the symbols enumerated below,
or a user-defined type. If the option itself is not provided, the
type defaults to : array. You can define your own types by using
defstruct-define-type.

:array Use an array, storing components in the body
of the array.

:named-array Like :array, but make the array a named
structure using the name of the structure as
the named structure symbol. See the section
"Named Structures", page 403. Element 0 of
the array holds the named structure symbol
and so is not used to hold a component of the
structure.

: array-leader Use an array, storing components in the leader
of the array.

:named-array-Ieader
Like :array-Ieader, but make the array a
named structure using the name of the
structure as the named structure symbol. See
the section "Named Structures", page 403.
Element 1 of the leader holds the named
structure symbol and so is not used to hold a
component of the structure.

:list Use a list.

:named-list Like :Iist, but the first element of the list holds
the symbol that is the name of the structure
and so is not used as a component.

386

Reference Guide to Symbolics-Lisp March 1985

:constructor

: export

: alterant

:tree

:rlXllum

The structure is implemented out of a binary
tree of conses, with the leaves serving as the
slots.

This unusual type implements the structure as
a single flXDum. The structure can only have
one slot. This is only useful with the byte field
feature; it lets. you store a bunch of small
numbers within fields of a flXDum, giving the
fields names. See the section "Using Byte
Fields and defstruct", page 399.

:grouped-array See the section "Grouped Arrays", page 401.
This option is described there.

This option takes one argument, which specifies the name of the
constructor macro. If the argument is not provided or if the
option itself is not provided, the name of the constructor is made
by concatenating the string "make-" to the name of the
structure. If the argument is provided and is nil, no constructor
is defined. For more information about the use of the constructor
macro: See the section "Constructor Macros", page 395.

The :export option exports the specified symbols from the
package in which the structure is defined. This option accepts
the following as arguments: the names of slots and the following
options: :a1terant, :constructor, :copier, :predicate,
:size-macro, and :size-symbol.

The following example shows the use of :export.

(defstruct (2d-moving-object
(:type :array)
:conc-name

mass
x-pos
y-pos
x-velocity
y-ve1ocity)

;; export all accessors and make-2d-moving-object
(:export :accessors :constructor»

See the section "Importing and Exporting Symbols", page 573.

This option takes one argument, which specifies the name of the
alterant macro. If neither the argument nor the option itself is
provided, the name of the alterant is made by concatenating the
string "a1ter-" to the name of the structure. If the argument is
provided and is nil, no alterant is defined. For more inforlnation
about the use of the alterant macro: See the section "Alterant
Macros", page 397.

387

March 1985 Structure Macros

:default-pointer Normally, the accessors defined by defstruct expect to be given
exactly one argument. However, if the :default-pointer
argument is used, the argument to each accessor is optional. If
you use an accessor in the usual way it does the usual thing, but
if you invoke it without its argument, it behaves as if you had
invoked it on the result of evaluating the form that is the
argument to the :default-pointer argument. Here is an
example:

:conc-name

:include

(defstruct (room (:default-pointer *default-room*»
room-name
room-contents)

(room-name x) ==> (aref x 0)
(room-name) ==> (aref *default-room* 0)

If the argument to the :default-pointer argument is not given,
it defaults to the name of the structure.

The :conc-name option allows you to specify a prefIX and have it
concatenated onto the front of all the slot names to make the
names of the accessor functions. It is conventional to begin the
names of all the accessor functions of a structure with a specific
prefix, usually the name of the structure followed by a hyphen.
The argument should be a symbol; its print name is used as the
preflX. If :conc-name is specified without an argument, the
name of the structure followed by a hyphen is used as the preflX.
If you do not specify the :conc-name option, the names of the
accessors are the same as the slot names, and you should then
name the slots according to some suitable convention.

The constructor and alterant macros are given slot names, not
accessor names. It is important to keep this in mind when using
:conc-name, because it causes the slot and accessor names to be
different.

The following example turns the slot name knob-color into the
an accessor with the name door-knob-color. It uses door, the
name of the structure, as the default for :conc-name.

(defstruct (door :conc-name)
knob-color
width)

(setq d (make-door knob-color 'red width 5.0»

(door-knob-color d) ==> red

This option is used for building a new structure definition as an
extension of an old structure definition. Suppose you have a
structure called person that looks like this:

388

Reference Guide to Symbolics-Lisp March 1985

(defstruct (person :conc-name)
name
age
sex)

Now suppose you want to make a new structure to represent an
astronaut. Since astronauts are people too, you would like them
to also have the attributes of name, age, and sex, and you would
like Lisp functions that operate on person structures to operate
just as well on astronaut structures. You can do this by defining
astronaut with the :include option, as follows:

(defstruct (astronaut (:include person»
helmet-size
(favorite-beverage 'tang»

The :include option inserts the slots of the included structure at
the front of the list of slots for this structure. That is, an
astronaut will have five slots; first the three. defined in person,
then the two defined in astronaut itself. The accessor functions
defined by the person structure can be applied to instances of
the astronaut structure. The following illustrates how you can
use astronaut structures:

(setq x (make-astronaut name 'buzz
age 45.
sex t
helmet-size 17.5»

(person-name x) => buzz
(favorite-beverage x) => tang

Note that the :conc-name option was not inherited from the
included structure; it applies only to the accessor functions of
person and not to those of astronaut. Similarly, the
:defauIt-pointer and :but-first options, as well as the
:conc-name option, apply only to the accessor functions for the
structure in which they are enclosed; they are not inherited if you
include a structure that uses them.

The argument to the :include option is required, and must be
the name of some previously defined structure of the same type as
this structure. :include does not work with structures of type
:tree or of type :grouped-array.

The following is an advanced feature. Sometimes, when one
structure includes another, the default values for the slots that
came from the included structure are not what you want. The
new structure can specify different default values for the included
slots than the included structure specifies, by giving the :include
option as:

March 1985

:named

:make-array

389

Structure Macros

(: include name new-init-l ... new-init-n)

Each new-init is either the name of an included slot or a list of
the form (name-of-included-slot init-form). If it is just a slot
name, the slot has no initial value in the new structure.
Otherwise its initial value form is replaced by the in it-form. The
old (included) structure is unmodified.

For example, to define astronaut so that the default age for an
astronaut is 45., then the following can be used:

(defstruct (astronaut (:include person (age 45.»)
helmet-size
(favorite-beverage 'tang»

This means that you want to use one of the "named" types. If
you specify a type of :array, :array-Ieader, or :list, and give the
:named option, then the :named-array, :named-array-Ieader,
or :named-list type is used instead. Asking for type :array and
giving the :named option as well is the same as asking for the
type :named-array; the only difference is stylistic.

If the structure being defined is implemented as an array, this
option can be used to control those aspects of the array that are
not otherwise constrained by defstruct. For example, you might
want to control the area in which the array is allocated. Also, if
you are creating a structure of type : array-leader , you almost
certainly want to specify the dimensions of the array to be
created, and you might want to specify the type of the array. Of
course, this option is only meaningful if the structure is, in fact,
being implemented by an array.

The argument to the :make-array option should be a list of
alternating keyword symbols to the make-array function, and
forms whose values are the arguments to those keywords. For
example, (:make-array (:type 'art-1Gb» would request that the
type of the array be art-16b. Note that the keyword symbol is
not evaluated.

When necessary, defstruct overrides any of the :make-array
options. For example, if your structure is of type :array, then
defstruct· supplies the size of that array regardless of what you
say in the :make-array option.

Constructor macros for structures implemented as arrays all allow
the keyword :make-array to be supplied. Attributes supplied
therein override any :make-array option attributes supplied in
the original detstruct form. If some attribute appears in neither
the invocation of the constructor nor in the :make-array option
to detstruct, then the constructor chooses appropriate defaults.

390

Reference Guide to Symbolics-Usp March 1985

:times

:size-symbol

: size-macro

:initial-offset

:but-first

The :make-array option lets you control the initialization of
arrays created by defstruct as instances of structures.
make-array initializes the array before. the constructor code does.
Therefore, any initial value supplied via the new :initial-value
keyword for make-array is overwritten in any slots where you
gave defstruct an explicit initialization.

If a structure is of type :array~leader, you probably want to
specify the dimensions of the array. The dimensions of an array
are given to :make-array as a position argument rather than a
keyword argument, so there is no way to specify them in the
above syntax. To solve this problem, you can use the keyword
:dimensions or the keyword :length (they mean the same thing)
with a value that is anything acceptable as make-array's first
argument.

This option is used for structures of type :grouped-array to
control the number of repetitions of the structure that are
allocated by the constructor macro. The constructor macro also
allows :times to be used as a keyword that overrides the value
given in the original defstruct form. If :times appears in
neither the invocation of the constructor nor in the :make-array
option to defstruct, then the constructor allocates only one
instance of the structure.

The :size-symbol option allows you to specify a global variable
whose value is the "size" of the structure; this variable is declared
with defconst. The exact meaning of the size varies, but in
general this number is the one you would need to know if you
were going to allocate one of these structures yourself. The
symbol has this value both at compile time and at run time. If
this option is present without an argument, then the name of the
structure is concatenated with "-size" to produce the symbol.

This is similar to the :size-symbol option. A macro of no
arguments is defined that expands into the size of the structure.
The name of this macro defaults as with :size-symbol.

This allows you to tell defstruct to skip over a certain number of
slots before it starts allocating the slots described in the body.
This option requires an argument (which must be a flXIlum) that
is the number of slots you want defstruct to skip. To use this
option, you must understand how defstruct is implementing your
structure; otherwise, you will be unable to make use of the slots
that defstruct has left unused.

This option is best explained by example:

March 1985

(defstruct (head (:type :list)
(:default-pointer person)
(:but-first person-head»

nose
mouth
eyes)

. The accessors expand like this:

(nose x)
(nose)

==> (car (person-head x»
==> (car (person-head person»

391

Structure Macros

The idea is that :but-first's argument is an accessor from some
other structure, and it is expected that this structure will never
be found outside that slot of that other structure. Actually, you
can use anyone-argument function, or a macro that acts like a
one-argument function. It is an error for :but-first to be used
without an argument.

:callable-accessors

:eval-when

:property

:print

This option controls whether accessors are really functions, and
therefore "callable", or whether they are really macros. With an
argument of t, or with no argument, or if the option is not
provided, then the accessors are really functions. Specifically, they
are substs, so that they have all the efficiency of macros in
compiled programs, while still being function objects that can be
manipulated (passed to mapcar, and so on). If the argument is
nil then the accessors will really be macros.

Normally the functions and macros defined by defstruct are
defined at eval time, compile time, and load time. This option
allows you to control this behavior. The argument to the
:eval-when option is just like the list that is the first su bform of
an eval-when special form. For example:
(:eval-when (:eval :compile» causes the functions and macros
to be defined only when the code is running interpreted or inside
the compiler.

For each structure defined by defstruct, a property list is
maintained for the recording of arbitrary properties about that
structure. (That is, there is one property list per structure
definition, not one for each instantiation of the structure.)

The :property option can be used to give a defstruct an
arbitrary property. (:property property-name value> gives the
defstruct a property-name property of value. Neither argument
is evaluated. To access the property list, the user should look
inside the defstruct-description structure. See the section
"defstruct Internal Structures", page 407.

The :print option gives you implementation-independent control
over the printed representation of a structure.

392

Reference Guide to Symbolics-Usp March 1985

:predicate

:copier

(defstruct (faa :named

foo-a
faa-b)

(:print "*<Foo S S>" (foo-a faa) (foo-b faa»)

The :print option takes a format string and its arguments. The
arguments are evaluated in an environment in which the name
symbol for the structure is bound to the structure instance being
printed.

The :print option makes obsolete the use .of a
named-structure-invoke handler to define :print handlers.

The :predicate option causes defstruct to generate a predicate
that recognizes instances of the structure. The first example
defines a single-argument function, foo-p, that returns t only for
instances of structure foo. The second example defines a function
called is-it-a-foo?

(defstruct (faa :named :predicate)
foo-a
faa-b)

(defstruct (faa :named (:predicate is-it-a-foo?»
foo-a
faa-b)

The :predicate option has one optional argument, the name for
the function being generated. The default name for the
generated function is formed by appending -p to the structure
name.

The :predicate option works only for named types.

The :copier option causes defstruct to generate a function for
copying instances of the structure.

(defstruct (faa (:type list) :copier)
foo-a
faa-b)

This example would generate a function named copy-foo, with a
definition approximately like this:

type

(defun copy-faa (x)
(list (car x) (cadr x»)

In addition to the documented options to
defstruct, any currently defined type (any valid
argument to the :type option) can be used as
an option. This is mostly for compatibility with
the old version of defstruct. It allows you to
say just type instead of (:type type). It is an
error to give an argument to one of these
options.

March 1985

other

393

Structure Macros

Finally, if an option is not found among the
other options to defstruct, defstruct checks
the property list of the name of the option to
see if it has a non-nil :defstruct-option
property. If it does have such a property, then
if the option was of the form
(option-name value), it is treated just like
(:property option-name value). That is, the
defstruct is given an option-name property of
value. It is an error to use such an option
without a value.

This provides a primitive way for you to define
your own options to defstruct, particularly in
connection with user-defined types. See the
section "Extensions to defstruct", page 409.
Several options to defstruct are implemented
using this mechanism.

394

Reference Guide to Symbolics-Usp March 1985

395

March 1985 Structure Macros

41. Using the Constructor and Alterant Macros

This section describes how to create instances of structures and altering the values
of its slots. After you have defined a new structure with defstruct, you can create
instances of this structure using the constructor macro, and you can alter the values
of its slots using the alterant macro. By default, defstruct defines both the
constructor and the alterant, forming their names by concatenating "make-" and
"a1ter-", respectively, onto the name of the structure. You can specify the names
yourself by passing the name you want to use as the argument to the :constructor
or :a1terant options, or specify that you do not want the macro created at all by
passing nil as the argument.

41.1 Constructor Macros

A call to a constructor macro, in general, has the form:

(name-of-constructor-macro
symbol-l form-l
symbol-2 form-2
...)

Each symbol can be eith,. the name of a slot of the structure, or a specially
recognized keyword. All the forms are evaluated.

If symbol is the name of a slot (not the name of an accessor), that element of the
created structure is initialized to the value of form. If no symbol is present for a
given slot, then the slot is initialized to the result of evaluating the default
initialization form specified in the call to defstruct. (In other words, the
initialization form specified to the constructor overrides the initialization form
specified to defstruct.) If the defstruct itself also did not specify any initialization,
the element's initial value is undefined. You should always specify the initialization,
either in the defstruct or in the constructor macro, if you care about the initial
value of the slot.

Notes: The order of evaluation of the initialization forms is not necessarily the same
as the order in which they appear in the constructor call, nor the order in which
they appear in the defstruct; you should make sure your code does not depend on
the order of evaluation. The forms are reevaluated on every constructor-macro call,
so that if, for example, the form (gensym) were used as an initialization form,
either in a call to a constructor macro or as a default initialization in the defstruct,
then every call to the constructor macro would create a new symbol.

Two symbols are specially recognized by the constructor: :make-array, which
should only be used for :array and :array-Ieader type structures (or the named

396

Reference Guide to Symbolics-Usp March 1985

versions of those types), and :times, which should only be used for :grouped-array
type structures. If one of these symbols appears instead of a slot name, then it is
interpreted just as the :make-array option or the :times option, and it overrides
what was requested in that option. For. example:

(make-ship ship-x-position 10.0
ship-y-position 12.0
:make-array (:leader-length 5 :area disaster-area»

41.2 By-position Constructor Macros

If the :constructor option is given as (:constructor name arglist), then instead of
making a keyword-driven constructor, defstruct defines a "function style"
constructor, taking arguments whose meaning is determined by the argument's
position rather than by a keyword. The arglist is used to describe what the
arguments to the constructor will be. In the simplest case something like
(:constructor make-foo (a b c» defines make-foo to be a three-argument
constructor macro whose arguments are used to initialize the slots named a, b, and
c.

In addition, you can use the keywords &optionaI, &rest, and &aux in the
argument list. They work as you might expect, but note the following:

(:constructor make-foo
(a &optional b (c 'sea) &rest d &aux e (f 'eff»)

This defines make-foo to be a constructor of one or more arguments. The first
argument is used to initialize the a slot. The second argument is used to initialize
the b slot. If there is no second argument, then the default value given in the body
of the defstruct (if given) is used instead. The third argument is used to initialize
the c slot. If there is no third argument, then the symbol sea is used instead.
Any arguments following the third argument are collected into a list and used to
initialize the d slot. If there are three or fewer arguments, then nil is placed in the
d slot. The e slot is not initialized; its initial value is undefined. Finally, the f slot
is initialized to contain the symbol eft.

The actions taken in the b and e cases were carefully chosen to allow you to specify
all possible behaviors. Note that the &aux "variables" can be used to completely
override the default initializations given in the body.

Note that you are allowed to give the :constructor option more than once, so that
you can define several different constructors, each with a different syntax.

The following restrictions should also be noted:
• Even these "function-style" constructors do not guarantee that their arguments

will be evaluated in the order that you wrote them.
• You cannot specify the :make-array or :times information in this form of

constructor macro.

397

March 1985 Structure Macros

41.3 Alterant Macros

A call to the alterant macro, in general, has the form:

(name-of-alterant-macro instance-fonn
slot-name-l fonn-l
slot-name-2 fonn-2
...)

instance-fonn is evaluated, and should return an instance of the structure. Each
{onn is evaluated, and the corresponding slot is changed to have the result as its
new value. The slots are altered after all the fonns are evaluated, so you can
exchange the values of two slots, as follows:

(alter-ship enterprise
ship-x-position (ship-y-position enterprise)
ship-y-position (ship-x-position enterprise»

As with the constructor macro, the order of evaluation of the fonns is undefined.
Using the alterant macro can produce more efficient code than using consecutive

-setfs when you are altering two byte fields of the same object, or when you are
using the :but-first option.

You can use alterant macros on structures whose accessors require additional
arguments. Put the additional arguments before the list of slots and values, in the
same order as required by the accessors.

398

Reference Guide to Symbolics-Usp March 1985

399

March 1985 Structure Macros

42. Using Byte Fields and defstruct

The byte field feature of defstruct allows you to specify that several slots of your
structure are bytes in an integer stored in one element of the structure. For
example, consider the following structure:

(defstruct (phone-book-entry (:type :list»
name
address
(area-code 611.)
exchange
line-number)

Although this works correctly, it wastes space. Area codes and exchange numbers
are always less than 1000., and so both can fit into 10. bit fields when expressed as
binary numbers. Because Symbolics Lisp Machine flXIlums have (more than)
20. bits, both of these values can be packed into a single flXIlum. To tell defstruct
to do so, you can change the structure definition to the following:

(defstruct (phone-book-entry (:type :list»
name
address
«area-code #01212 617.)
(exchange #00012»

line-number)

The octal numbers #01212 and #00012 are byte specifiers to be used with the
functions Idb and dpb. The accessors, constructor, and alterant macros now
operate as follows:

(area-code pbe) ==> (ldb 101212 (caddr pbe»
(exchange pbe) ==> (ldb #00012 (caddr pbe»

(make-phone-book-entry
name "Fred OerfH
address H259 Octal St. H
exchange ex
line-number 7788.)

==> (list "Fred OerfH "259 Octal St." (dpb ex 12 2322000) 17154)

(alter-phone-book-entry pbe
area-code ac
exchange ex)

400

Reference Guide to Symbofics-Usp March 1985

==> «lambda (g0530)
(setf (nth 2 g0530)

(dpb ac 1212 (dpb ex 12 (nth 2 g0530»»)
pbe)

Note that the alterant macro is optimized to read and write the second element of
the list only once, even though you are altering two different byte fields within it.
This is more efficient than using two setfs. Additional optimization by the alterant
macro occurs if the byte specifiers in the defstruct slot descriptions are con stan ts.

If the byte specifier is nil, the accessor is defined to be the usu81 kind that accesses
the entire Lisp object, thus returning all the byte field components as a flXDum.
These slots can have default initialization forms.

The byte specifier need not be a constant; you can use a variable (or any Lisp form).
It is evaluated each time the slot is accessed. Of course, you do not ordinarily want
the byte specifier to change between accesses.

Constructor macros initialize words divided into byte fields as if they were deposited
in the following order:

1. Initializations for the entire word given in the defstruct form.

2. Initializations for the byte fields given in the defstruct form.

3. Initializations for the entire word given in the constructor macro form.

4. Initializations for the byte fields given in the constructor macro form.

Alterant macros work similarly: the modification for the entire Lisp object is done
first, followed by modifications to specific byte fields. If any byte fields being
initialized or altered overlap each other, the actions of the constructor and alterant
macros are unpredictable.

401

March 1985 Structure Macros

43. Grouped Arrays

The grouped array feature allows you to store several instances of a structure side­
by-side within an array. This feature is somewhat limited; it does not support the
:include and :named options.

The accessor functions are defined to take an extra argument, which should be an
integer, and is the index into the array of where this instance of the structure
starts. This index should normally be a multiple of the size of the structure. Note
that the index is the first argument to the accessor function and the structure is
the second argument, the opposite of what you might expect. This is because the
structure is &optional if the :default-pointer option. is used.

Note also that the "size" of the structure (for purposes of the :size-symbol and
:size-macro options) is the number of elements in one instance of the structure; the
actual length of the array is the product of the size of the structure and the
number of instances. The number of instances to be created by the constructor
macro is given as the argument to the :times option to defstruct, or the :times
keyword of the constructor macro.

402

Reference Guide to Symbofics-Usp March 1985

403

March 1985 Structure Macros

44. Named Structures

44.1 Introduction to Named Structures

The named structure feature provides a very simple form of user-defined data type.
Any array can be made a named structure, although usually the :named option of
defstruct is used to create named structures. The principal advantages of a named
structure are that it has a more informative printed representation than a normal
array and that the describe function knows how to give a detailed description of it.
(You do not have to use describe-defstruct, because describe can figure out the
names of the structure's slots by looking at the named structure's name.) It is
recommended, therefore, that "system" data structures be implemented with named
structures.

Another kind of user-defined data type, more advanced but less efficient when used
only as a record structure, is provided by the flavor feature. See the section
"Flavors", page 415.

A named structure has an associated symbol called its "named structure symbol"; it
represents the user-defined type of which it is an instance. The typep function
applied to the named structure returns this symbol. If the array has a leader, the
symbol is found in element 1 of the leader; otherwise it is found in element 0 of the
array. Note: If a nume~ic-type array is to be a named structure, it must have a
leader, since a symbol.cannot be stored in any element of a numeric array.

If you call typep with two arguments, the first an instance of a named structure
and the second its named structure symbol, typep returns t. t is also returned if
the second argument is the named structure symbol of a :named defstruct
included (using the :include option), directly or indirectly, by the defstruct for this
structure. For example, if the structure astronaut includes the structure person,
and person is a named structure, then giving typep an instance of an astronaut
as the first argument, and the symbol person as the second argument, returns t.
This reflects the fact that an astronaut is, in fact, a person, as well as an astronaut.

44.2 Handler Functions for Named Structures

You can associate a function that handles various operations that can be done on
the named structure with a named structure. You can control both how the named
structure is printed and what describe will do with it.

To provide such a handler function, make the function. the
named-structure-invoke property of the named structure symbol. The functions
that know about named structures apply this handler function to several arguments.

404

Reference Guide to Symbolics-Usp March 1985

The first is a "keyword" symbol to identify the calling function, and the second is
the named structure itself. The rest of the arguments passed depend on the caller;
any named structure function should have a "&rest" parameter to absorb any extra
arguments that might be passed. What the function is expected to do depends on
the keyword it is passed as its first argument. The following keywords are defined:

:which-operations

:print-self

:describe

Returns a list of the names of the operations handled by the
function.

The arguments are :print-self, the named' structure, the stream
to which to output, the current depth in list-structure, and t if
slashification is enabled (print versus princ). The printed
representation of the named structure should be output to the
stream. If the named structure symbol is not defined as a
function, or :print-self is not in its :which-operations list, the
printer defaults to a reasonable printed representation. For
example:

#<named-structure-symbol octal-address>

The arguments are :describe and the named structure. It
should output a description of itself to stan(lard-output. If the
named structure symbol is not defined as a function, or :describe
is not in its :which-operations list, the describe system checks
whether the named structure was created by using the :named
option of defstruct; if so, the names and values of the structure's
fields are enumerated.

Here is an example of a simple named-structure handler function.

For this example to have any effect, the person defstruct used as an example there
must be modified to include the :named attribute.

(defselect «:property person named-structure-invoke)
(:print-self (person stream ignore slashify-p)
(format stream

(if slashify-p "#<person a>" " a")
(person-name person»»

This example causes a person structure to include its name in its printed
representation; it also causes princ of a person to print just the name, with no
n#<n syntax.

Even though the astronaut structure there :includes the person structure, this
named-structure handler is not invoked when an astronaut is printed, and an
astronaut does not include his name in his printed representation. This is because
named structures are not as general as flavors.

In this example, the :which-operations handler is automatically generated, as well
as the handlers for :operation-handled-p and :send-if-handles.

405

March 1985 Structure Macros

Another way to write this handler is as follows:

(defseleet «:property person named-strueture-invoke»
(:print-self (person stream ignore slashify-p)
(if slash i fy- P

(si:printing-random-objeet (person stream :typep)
(prine (person-name person) stream»

(prine (person-name person) stream»»

This example uses the si:printing-random-object special form, which is a more
advanced way of printing #< ... >. It interacts with the si:print-readably variable
and special form.

44.3 Functions That Operate on Named Structures

named-structure-p x Function
This semi-predicate returns nil if x is not a named structure; otherwise it
returns x's named structure symbol.

named-structure-symbol x Function
x should be a named structure. This returns x's named structure symbol: if
x has an array leader, element 1 of the leader is returned, otherwise element
o of the array is returned.

make-array-into-named-structure array Function
array is made to be a named structure, and is returned.

named-structure-invoke operation structure &rest args Function
operation should be a keyword symbol, and structure should be a named
structure. The handler function of the named structure symbol, found as
the value of the named-structure-invoke property of the symbol, is called
with appropriate arguments.

See also the :named-structure-symbol keyword to make-array.

406

Reference Guide to Symbolics-Lisp March 1985

407

March 1985 Structure Macros

45. defstruct Internal Structures

If you want to write a program that examines structures and displays them the way
describe and the Inspector do, your program will work by examining the internal
structures used by defstruct. In addition to discussing these internal structures,
this section also provides the information necessary to define your own structure
types.

Whenever you use defstruct to define a new structure, defstruct creates an
instance of the si:defstruct-description structure. This structure can be found as
the si:defstruct-description property of the name of the structure; it contains
such useful information as the name of the structure, the number of slots in the
structure, and so on.

The following example shows a simplified version of how si:defstruct-description
structure is actually defined. si:defstruct-description is defined in the
system-internals (or si:) package and includes additional slots that are not shown
in this example:

;;;simplied version of defstruct-description structure
(defstruct (defstruct-description

name

(:default-pointer description)
(:conc-name defstruct-description-»

size
property-alist
slot-alist)

The name slot contains the symbol supplied by the user to be the name of the
structure, such as spaceship or phone-book-entry.

The size slot contains the total number of locations in an instance of this kind of
structure. This is not the same number as that obtained from the :size-symbol or
:size-macro options to defstruct. A named structure, for example, usually uses up
an extra location to store the name of the structure, so the :size-macro option gets
a number one larger than that stored in the defstruct description.

The property-alist slot contains an alist with pairs of the form
(property-name • property) containing properties placed there by the :property
option to defstruct or by property names used as options to defstruct. See the
section "Options to defstruct", page 385.

The slot-alist slot contains an alist of pairs of the form
<slot-name. slot-description). A slot-description is an instance of the
defstruct-slot-description structure. The defstruct-slot-description structure is
defined something like this, also in the si package:

408

Reference Guide to Symbolics-Usp

;;;simplified version of the actual implementation
(defstruct (defstruct-slot-description

(:default-pointer slot-description)
(:conc-name defstruct-slot-description-»

number
ppss
init-code
ref-macro-name)

March 1985

Note that this is a simplified version of the real definition and does not fully
represent the complete implementation. The number slot contains the number of
the location of this slot in an instance of the structure. Locations are numbered
starting with 0, and continuing up to one less than the size of the structure. The
actual location of the slot is determined by the reference-consing function associated
with the type of the structure. See the section "Options to defstruct-define-type",
page 410.

The ppss slot contains the byte specifier code for this slot if this slot is a byte field
of its location. If this slot is the entire location, then the ppss slot contains nil.

The init-code slot contains the initialization code supplied for this slot by the user
in the defstruct form. If there is no initialization code for this slot, then the init­
code slot contains the symbol si:%%defstruct-empty%%.

The ref-Macro-name slot contains the symbol that is defined as a macro or a subst
that expands into a reference to this slot (that is, the name of the accessor
function).

409

March 1985 Structure Macros

46. Extensions to defstruct

This section describes the use of defstruct-define-type.

46.1 An Example of defstruct-define-type

This section provides an explanation of how defstruct-define-type works by
examining a call to the macro. This is how the :1ist type of structure might have
been defined:

(defstruct-define-type :list
(:cons (initialization-list description keyword-options)

: 1 ist
'(list. ,initialization-list»

(:ref (slot-number description argument)
'(nth ,slot-number ,argument»)

This is the simplest possible form of defstruct-define-type. It provides defstruct
with two Lisp forms: one for creating forms to construct instances of the structure,
and one for creating forms to become the bodies of accessors for slots of the
structure.

The keyword :CODS is followed by a list of three variables that are bound while the
constructor-creating form is evaluated. The first, initialization-list, is bound to a
list of the initialization forms for the slots of the structure. The second,
description, is bound to the defstruct-description structure for the structure.
See the section "defstruct Internal Structures", page 407. For a description of the
third variable, keyword-options, and the :list keyword: See the section "Options
to defstruct-define-type", page 410.

The keyword :ref is followed by a list of three variables that are bound while the
accessor-creating form is evaluated. The first, slot-number, is bound to the number
of the slot that the new accessor should reference. The second, description, is
bound to the defstruct-description structure for the structure. The third,
argument, is bound to the form that was provided as the argument to the accessor.

defstruct-define-type type &body options Macro
Teaches defstruct about new types that it can use to implement structures.

The body of this function is shown in the following example:

(defstruct-define-type type
option-l
option-2
...)

410

Reference Guide to Symbolics-Usp March 1985

where each option is either the symbolic name of an option or a list of the
form (option-name. rest). Different options interpret rest in different ways.
The symbol type is given an si:defstruct-type-description property of a
structure that describes the type completely.

48.2 Options to defstruct-define-type

: cons

:ref

The :cons option to defstruct-define-type is how you supply
defstruct with the code necessary to cons up a form that
constructs an instance of a structure of this type.

The :cons option has the syntax:

(: cons (inits description keywords) kind
body)

body is some code that should construct and return a piece of
code that constructs, initializes, and returns an instance of a
structure of this type.

The symbol inits is bound to the information that the constructor
conser should use to initialize the slots of the structure. The
exact form of this argument is determined by the symbol kind.
There are currently two kinds of initialization:

• :Iist - inits is bound to a list of initializations, in the
correct order, with nils in uninitialized slots.

• :a1ist - inits is bound to an alist with pairs of the form
(slot-number. in it-code).

The symbol description is bound to the instance of the
defstruct-description structure that defstruct maintains for
this particular structure. See the section "defstruct Internal
Structures", page 407. This is so that the constructor conser can
find out such things as the total size of the structure. it is
supposed to create.

The symbol keywords is bound to an alist with pairs of the form
(keyword. value), where each keyword was a keyword supplied to
the constructor macro that was not the name of a slot, and value
was the Lisp object that followed the keyword. This is how you
can make your own special keywords, such as the existing
:make-array and :times keywords. See the section "Constructor
Macros", page 395. You specify the list of acceptable keywords
with the :keywords option.

It is an error not to supply the :cons option to
defstruct-define-type.

The :ref option to defstruct-define-type is how you supply

March 1985

:overhead

:named

411

Structure Macros

defstruct with the necessary code that it needs to cons up a
form that will reference an instance of a structure of this type.

The :ref option has the syntax:

(:ref (number description arg-l ... arg-n>
body)

body is some code that should construct and return a piece of
code that will reference an instance of a structure of this type.

The symbol number is bound to the location of the slot that is to
be referenced. This is the same number that is found in the
number slot of the defstruct-slot-description structure. See
the section "defstruct Internal Structures", page 407.

The symbol description is bound to the instance of the
defstruct-description structure that defstruct maintains for
this particular structure.

The symbols arg-i are bound to the forms supplied to the accessor
as arguments. Normally there should be only one of these. The
last argument is the one that is defaulted by the
:default-pointer option. See the section "Options to defstruct",
page 385. defstruct checks that the user has supplied exactly n
arguments to the accessor function before calling the reference
consing code.

It is an error not to supply the :ref option to
defstruct-define-type.

The :overhead option to defstruct-define-type is how you
declare to defstruct that the implementation of this particular
type of structure "uses up" some number of locations in the object
actually constructed. This option is used by various "named"
tyPes of structures that store the name of the structure in one
location.

The syntax of :overhead is: (:overhead n) where n is a flXDum
that says how many locations of overhead this type needs.

This number is used only by the :size-macro and :size-symbol
options to defstruct. See the section "Options to defstruct",
page 385.

The :named option to defstruct-define-type controls the use of
the :named option to defstruct. With no argument, the
:named option means that this type is an acceptable "named
structure". With an argument, as in (:named type-name), the
symbol type-name should be the name of some other structure
type that defstruct should use if someone asks for the named
version of this type. (For example, in the definition of the :list

412

Reference Guide to Symbolics-Usp March 1985

:keywords

:detstruct

:predicate

:copier

type the :named option is used like this:
(:named :named-list>.)

The :keywords option to defstruct-define-type allows you to
define additional constructor keywords for this type of structure.
(The :make-array constructor keyword for structures of type
:array is an example.) The syntax is:
(:keywords keyword-I ••• keyword-n), where each keyword is a
symbol that the constructor conser expects to find in the
keywords alist.

The :defstruct option to defstruct-define-type allows you to
run some code and return some forms as part of the expansion of
the defstruct macro.

The :defstruct option has the syntax:

(:defstruct (description)
body)

body is a piece of code that runs whenever defstruct is
expanding a detstruct form that defines a structure of this type.
The symbol description is bound to the instance of the
defstruct-description structure that defstruct maintains for
this particular structure. .

The value returned by the body should be a list of forms to be
included with those. that the defstruct expands into. Thus, if
you only want to run some code at defstruct-expand time, and
you do not want to actually output any additional code, then you
should be careful to return nil from the code in this option.

The :predicate option specifies how to construct a :predicate
option for defstruct.

(:predicate (description name)
'(defun ,name (x)

(and (frobbozp x)
(eq (frobbozref x 0)

',(defstruct-description-name»»)

The syntax for the option follows.

(:predlcate (description nanne)
body)

The variable description is bound to the defstruct-description
structure maintained for the structure for which a predicate is
generated. The variable nanne is bound to the symbol that is to
be defined as a predicate. body is a piece of code that is evaluated
to return the defining form for the predicate.

The :copier option specifies how to copy a particular type of

March 1985

413

Structure Macros

structure for situations when it is necessary to provide a copying
function other than the one that defstruct would generate.

(:copier (description name)
'(fset-carefully ',name 'copy-frobboz»

1'he syntax for the option follows.

(: cop i er (description name)
body)

description is bound to an instance of the defstruct-description
structure, name is bound to the symbol to be defined, and body is
sorne code to evaluate to get the defining form.

414

Reference Guide to Symbolics-Usp March 1985

415

March 1985 Flavors

PART X.

Flavors

416

Reference Guide to Symbolics-Usp March 1985

417

March 1985 Ravors

47. Introduction to the Flavor System

The Flavor System is the part of Symbolics-Lisp that supports object-oriented
programming. The Flavor System is used to perform generic operations on objects.
Part of its implementation is simply a convention in procedure calling style; part is a
powerful language feature, called Flavors, for defining abstract objects. Flavors are
the abstract types of objects; methods are the generic operators. The objects are
flavor instances that you manipulate by sending messages, which are requests for
specific operations.

47.1 Objects and the Flavor System

It is often convenient to model a program in terms of objects, which are conceptual
entities that can be likened to real-world things. Choosing the objects to provide in
a program is very important to the proper organization of the program. In an
object-oriented design, specifying what objects exist is the first task in designing the
system. In a text editor, the objects might be "pieces of text", "pointers into text",
and "display windows". In an electrical design system, the objects might be
"resistors", "capacitors", "transistors", "wires", and "display windows". After
specifying objects, the next task of the design is to determine what operations can
be performed on each object. In the text editor example, operations on "pieces of
text" might include inserting text and deleting text; operations on "pointers into
text" might include moving forward and backward; and operations on "display
windows" might include redisplaying the window and changing with which "piece of
text" the window is associated.

In this model, the program is built around a set of objects, each of which has a set
of operations that can be performed on it. More specifically, the program defines
several types of object (the editor example has three types), and it can create many
instances of each type (that is, there can be many pieces of text, many pointers into
text, and many windows). The program defines a set of types of object and the
operations that can be performed on any of the instances of each type.

A simple example of this is disembodied property lists, and the functions get,
putprop, and remprop. The disembodied properts list is a type of object; you can
instantiate one with (cons nil nil); that is, by evaluating this form you can create
a new disembodied property list. There are three operations on the object: get,
putprop, and remprop.

Another example is the use of defstruct to create an object called a ship. (For
more information about this example: See the section "Structure Macros", page
377.) defstruct automatically defined some operations on this object to access its
elements. Other functions could be defined that do useful things with the ship

418

Reference Guide to Symbolics-Usp March 1985

objects, such as computing their speed, angle of travel, momentum, or velocity,
stopping them, or moving them elsewhere.

In these cases, the conceptual object is represented by one Lisp object. The Lisp
object for the representation has structure and refers to other Lisp objects. In the
property list case, the Lisp object is a list with alternating indicators and values; in
the ship case, the Lisp object is an array whose details are taken care of by
defstruct. In both cases, the object keeps track of an internal state, which can be
examined and altered by the operations available for that type of object. get
examines the state of a property list, and putprop alters it; ship-x-position
examines the state of a ship, and (setf (ship-mass ship) 5.0) alters it.

This creation and modification is the essence of object-oriented programming. A
conceptual object is modelled by a single Lisp object, which bundles up some state
information. For every type of object, there is a set of operations that can be
performed to examine or alter the state of the object.

100.2 Modularity and Object-oriented Programming

An important benefit of the object-oriented style is that it lends itself to a
particularly simple and lucid kind of modularity. Programs that use modular
programming constructs and techniques make it easier to write programs that are
easy to read and understand, and are more reliable and maintainable. Object­
oriented programming lets a programmer implement a useful facility that presents
the caller (another program) with a set of external interfaces, without requiring the
caller to understand how the internal details of the implementation work. In other
words, a program that calls this facility can treat the facility as a black box; the
program knows what the facility's external interfaces guarantee to do, and that is all
it knows. This set of defined external interfaces is known as the contract between
the caller and the callee.

For example, a program that uses disembodied property lists does not need to know
that the property lists are being maintained as lists of alternating indicators and
values; the program simply performs the operations, passing inputs to the property
lists and getting back outputs. The program depends only on the external definition
of these operations; for example, if it uses putprop to give a property list a property
of x, it can use get on the property list and the indicator to get x returned, as long
as no other changes were made to the property list.

Thus, if you read a program that uses disembodied property lists, you need only
understand what they do, not how they are implemented. This also means that if
the representation of property lists could be changed, your program would continue
to work. For example, instead of a list of alternating elements, the property list
could be implemented as an association list or a hash table. Nothing in the calling
program would change at all.

419

March 1985 Ravors

The same is true of the ship example. (See the section "Introduction to Structure
Macros", page 379.) The caller is presented with a collection of operations, such as
ship-x-position, ship-y-position, ship-speed, and ship-direction; it simply calls
these and looks at their answers, without caring how they did what they did. In
this example, ship-x-position and ship-y-position would be accessor functions,
defined automatically by defstruct, while ship-speed and ship-direction would be
functions defined by the implementor of the ship type. The code might look like
this:

(defstruct (ship)
ship-x-position
ship-y-position
ship-x-velocity
ship-y-velocity
ship-mass)

(defun ship-speed (ship)
(sqrt (+ (A (ship-x-velocity ship) 2)

(A (ship-y-velocity ship) 2»»

(defun ship-direction (ship)
(atan (ship-y-velocity ship)

(ship-x-velocity ship»)

The caller need not know that the first two functions were structure accessors and
that the second two were written by hand and do arithmetic. Those facts would
not be considered part of the black box characteristics of the implementation of the
ship type. The ship type does not guarantee which functions will be implemented
in which ways; such aspects are not part of the contract between ship and its
callers. In fact, ship could have been written this way instead:

(defstruct (ship)
ship-x-position
ship-y-position
ship-speed
ship-direction
ship-mass)

(defun ship-x-velocity (ship)
(* (ship-speed ship) (cos (ship-direction ship»»

(defun ship-y-velocity (ship)
(* (ship-speed ship) (sin (ship-direction ship»»

In this second implementation of the ship type, the velocity is stored in polar
coordinates instead of rectangular coordinates. This is purely an implementation
decision; the caller has no idea which of the two ways the implementation uses,
because the caller only performs the operations on the object by calling the
appropriate functions.

420

Reference Guide to Symbolics-Usp March 1985

In this example, new types of objects, whose implementations are hidden from the
programs that use them, have been created. SUch types are usually referred to as
abstract types. The object-oriented style of programming can be used to create
abstract types by hiding the implementation of the operations, and simply
documenting what the operations are defined to do.

The quantities being held by the elements of the ship structure are referred to as
instance variables. Each instance of a type has the same operations defined on it;
what distinguishes one instance from another (besides identity (eqness» is the
values that reside in its instance variables. The example above· illustrates that a
caller of operations does not know what the instance variables are; these two ways of
writing the ship operations have different instance variables, but from the outside
they perform exactly the same operations.

You might ask: "But what if the caller evaluates (aref ship 2) and notices that the
x-velocity is returned rather than the speed? Then you could tell which of the two
implementations were used." This is true; however, when a facility is implemented
in the object-oriented style, only certain functions are documented and advertised -
those that are considered to be operations on the type of object. The contract
between ship and its callers covers only what happens if the caller calls these
functions; it does not guarantee what would happen if the caller were to use aref.
If ship were reimplemented, the code that does the aref would have a different
effect entirely and would probably stop working. This example shows why the
concept of a contract between a callee and a caller is important: the contract is what
specifies the interface between the two modules.

Unlike some other languages that provide abstract types, Symbolics-Lisp does not
automatically forbid constructs that circumvent the contract. This is intentional.
One reason for this is that the Symbolics Lisp Machine is an interactive system, and
so it is important to be able to examine and alter internal state interactively (usually
from a debugger). Furthermore, there is no strong distinction between the "system"
programs and the ''user'' programs on the Symbolics Lisp Machine; users are allowed
to get into any part of the language system and change what they want to change.

In summary: By defining a set of operations, and making only a specific set of
external entrypoints available to the caller, you can create new abstract types.
These types can be useful facilities for other programs and programmers. Since the
implementation of the type is hidden from the callers, modularity is maintained, and
the implementation can be changed easily.

The implementation of an abstract type can be hidden by making its operations into
functions that the user might call. The important thing is not that they are
functions because in Lisp everything is done with functions. The important thing is
that a new conceptual operation has been defined and been given a name, rather
than requiring the user who wants to do the operation to write it out step-by-step.
Thus, (ship-x-velocity s) can be used, rather than (aref s 2).

Like ordinary functions, such abstract-operation functions are sometimes simple

421

March 1985 Ravors

enough that it is useful to have the compiler compile special code for them rather
than actually calling the function. Compiling special code in this way is often called
open-coding. The compiler is directed to do this through use of macros, defsubsts, or
optimizers. detstruct arranges for this kind of special compilation for the functions
that get the instance variables of a structure.

When using this optimization, the implementation of the abstract type is hidden only
in a certain sense. It does not appear in the Lisp code written by the user, but
does appear in the compiled code. The reason is that there could be some compiled
functions that use the macros (or whatever); even if you change the definition of the
macro, the existing compiled code will continue to use the old definition. Thus, if
the implementation of a module is changed, programs that use it need to be
recompiled.

47.3 Generic Operations on Objects

Consider the rest of the program that uses the ship abstraction. See the section
"Introduction to Structure Macros", page 379. It might deal with other objects that
are like ships in that they are movable objects with mass, but unlike ships in other
ways. A more advanced model of a ship might include the concept of the ship's
engine power, the number of passengers on board, and its name. An object
representing a meteor probably would not have any of these, but might have
another attribute such as the amount of iron it contains.

However, all kinds of movable objects have positions, velocities, and masses, and the
system will contain some programs that deal with these quantities in a uniform way,
regardless of what kind of object the attributes apply to. For example, a piece of the
system that calculates every object's orbit in space need not worry about the other,
more peripheral attributes of various types of objects; it works the same way for all
objects. Unfortunately, a program that tries to calculate the orbit of a ship needs to
know the ship's attributes, and must call ship-x-position, ship-y-velocity, and so
on.

But these functions do not work for meteors. We could have a second program to
calculate orbits for meteors that would be identical to the first, except that where
the first one calls ship-x-posltion, the second would call meteor-x-position, and so
on. However, this would require multiple copies of almost identical code, all of which
would have to be maintained in parallel.

We need an operation that can be performed on objects of several different types,
doing the thing appropriate for each type. Such operations are called generic
operations. The classic example of generic operations is the arithmetic functions in
most programming languages, including Symbolics-Lisp. The + (or plus) function
accepts either flXDums or flonums, and performs either flXIlum addition or flonum
addition, as appropriate, based on the data types of the objects being manipulated.

422

Reference Guide to Symbolics-Usp March 1985

In this example, a generic x-position operation is needed that can be performed on
either ships, meteors, or any other kind of mobile object represented in the system.
This way, a single program can be written to calculate orbits. When it wants to
know the x position of an object, it simply invokes the generic x-position operation
on the object; the correct operation is performed, and the x position is returned.

Performing a generic operation is called sending a message. The objects in the
program are sent messages and respond with answers. In the ship example, the
objects are sent x-position messages, to which they· respond with their x position.
This is known as message passing.

Sending a message is a way of invoking a function. Along with the name of the
message, in general, some arguments are passed; when the object is done with the
message, some values are returned. The sender of the message is simply calling a
function with some arguments, and getting some values back. The interesting thing
is that the caller did not specify the name of a procedure to call, but rather a
message name and an object; that is, the caller said what operation to perform and
what object to perform it on. The function to invoke was found from this
information.

When a message is sent to an object, a function must therefore be found to handle
the message. The function called is based on the type of the object and the name of
the message. The same set of functions is used for all instances of a given type, so
the type is the only attribute of the object used to determine which function to call.
The rest of the message besides the name is information that is passed as
arguments to the function, so the name is the only part of the message used to find
the function. Such a function is called a method. For example, if an x-position
message is sent to an object of type ship, then the function that is used is "the
ship type's x-position method". A method is a function that handles a specific
kind of message to a specific kind of object; this method handles messages named
x-position to objects of type ship.

Using this terminology, the orbit-calculating program finds the x position of the
object it is working on by sending that object a message named x-position (with no
arguments). The returned value of the message is the x position of the object. If
the object were of type ship, then the ship type's x-position method was invoked;
if it were of type meteor, then the meteor type's x-position method was invoked.
The orbit-calculating program merely sends the message, and the right function is
invoked based on the type of the object. These are true generic functions in the
form of message passing: the same operation can mean different things depending on
the type of the object.

423

. March 1985 flavors

47.4 Message Passing In the Flavor System

By convention, objects that receive messages are always functional objects (that is,
you can apply them to arguments), and a message is sent to an object by calling
that object as a function, passing the name of the message as the first argument,
and the arguments of the message as the rest of the arguments. Message names
are represented by symbols; normally these symbols are in the keyword package,
since messages are a protocol for communication between different programs, which
might reside in different packages. For example, to determine the x position of
variable my-ship whose value is an object of type ship, a message is sent as follows:

(funcall my-ship :x-position)

This form returns the x position as its returned value. To set the ship's x position
to 3.0, the following message is sent:

(funcall my-ship :set-x-position 3.0)

It should be stressed that no new features are added to Lisp for message sending;
instead, a convention has been defined on the way objects take arguments. The
convention says that an object accepts messages by always interpreting its first
argument as a message name. The object must consider this message name, find
the function that is the method for that message name, and invoke that function.

This raises the question of how message receiving works. The object must somehow
find the right method for the message it is sent. Furthermore, the object now has
to be callable as a function; objects cannot be defstructs any more, because those
are not functions. But the structure defined by defstruct was doing something
useful: it was holding the instance variables (the internal state) of the object. A
function with an internal state, a coroutine, is needed.

One possible way to provide this internal state is with a closure. A message­
receiving object could be implemented as a closure over a set of instance variables.
The function inside the closure would have a large selectq form to dispatch on its
first argument. While using closures does work, it creates several serious problems.
The main one is that in order to add a new operation to a system, you must modify
a great deal of code to find all the types that understand that operation, and add a
new clause to the selectq. But then you cannot textually separate the
implementation of your new operation from the rest of the system; the methods
must be interleaved with the other operations for the type. Adding a new operation
should only require adding Lisp code; it should not require modifying Lisp code.

The conventional way of making generic operations is to have a procedure for each
operation, which has a big selectq for all the types; this means you have to modify
code to add a type. The way described above is to have a procedure for each type,
which has a big selectq for all the operations; this means you have to modify code
to add an operation. Neither of these has the desired property that extending the
system should only require adding code, rather than modifying code.

424

Reference Guide to Symbolics-Usp March 1985

Closures are also somewhat clumsy and crude. A far more streamlined, convenient,
and powerful system for creating message-receiving objects exists; it is called the
Flavor mechanism. Flavors provide a mechanism for doing many common and useful
things on Lisp Machines. With Flavors, you can add a new method simply by
adding code without modifying anything you can also manage and maintain large
amounts of code easily.

425

March 1985 Ravors

48. Using the Flavor System

48.1 Simple Use of Flavors

A flavor, in its simplest form, is a definition of an abstract type. New flavors are
created with the defflavor special form, and methods of the flavor are created with
the defmethod special form. New instances of a flavor are created with the
make-instance function. This section explains simple uses of these forms.

For an example of a simple use of flavors, here is how the ship example would be
implemented. (See the section "Introduction to Structure Macros", page 379.)

(defflavor ship (x-position y-position
x-velocity y-velocity mass)

()

:gettable-instance-variables)

(defmethod (ship :speed) ()
(sqrt (+ (A x-velocity 2)

(A y-velocity 2»»

(defmethod (ship :direction) ()
(atan y-velocity x-velocity»

This code creates a new flavor. The first subform of the demavor is ship, which
is the name of the new flavor. Next is the list of instance variables: x-position,
y-position, x-velocity, y-velocity, and mass. The next subform, 0, can contain
the names of flavors which get included in this flavor. (For more information about
combining flavors: See the section "Mixing Flavors", page 431.) The last subform is
the body of the defflavor; it specifies an option about this flavor. In this example,
there is only one option, :gettable-instance-variables. This means that for each
instance variable, a method should automatically be generated to return the value of
that instance variable. The name of the message is a symbol with the same name
as the instance variable, but interned on the keyword package. Thus, methods are
created to handle the messages :x-position, :y-position, and so on.

Each of the two defmethod forms adds a method to the flavor. The first adds a
handler to the flavor ship for messages named :speed The second subform is the
lambda-list, and the rest is the body of the function that handles the :speed
message. The body can refer to or set any instance variables of the flavor, as it can
with local variables or special variables. When any instance of the ship flavor is
invoked with a first argum~nt of :direction, the body of the second defmethod is
evaluated in an environment in which the instance variables of ship refer to the
instance variables of this instance (the one to which the message was sent). So
when the arguments of atan are evaluated, the values of instance variables of the

426

Reference Guide to Symbolics-Usp March 1985

object to which the message was sent are used as the arguments. atan is invoked,
and the result it returns is . returned by the instance itself.

In general, this is how to cr~ate a new abstract type: a new flavor. Every instance
of this flavor has the five instance variables named in the defflavor form, and
seven methods (five that were automatically generated because of the
:pttable-instance-variables option, and two that were written in the example).
The way to create an instance of our new flavor is with the make-instance
function. For example:

(setq my-ship (make-instance 'ship»

This returns an object whose printed representation is:

'<SHIP 13731210>

The argument to make-instance is the name of the flavor to be instantiated.
Additional arguments, not used here, are init options; these are commands to the
flavor that is being made an· instance, selecting optional features.

This flavor is useless as it stands, because there is no way to set any of the
parameters. This can be fixed easily by putting the :settable-instance-variables
option into the deMavor form. This option tells defflavor to generate methods for
messages named :set-x-position, :set-y-position, and so on; each such method
takes one argument and sets the corresponding instance variable to the given value.

You can add another option to the defflavor form, :initable-instance-variables,
to initialize the values of the instance variables when an instance is first created.
:initable-instance-variables does not create any methods; instead, it makes
initialization keywords named :x-position, :y-position, and so on, that can be used
as init option arguments to make-instance to initialize the corresponding instance
variables. The set of init options is sometimes called the init-plist because it
resembles a property list.

Here is the improved defflavor:
(defflavor ship (x-position y-position

x-velocity y-velocity mass)
()

:gettable-instance-variables
:settable-instance-variables
:initable-instance-variables)

By evaluating this new defflavor, the existing flavor definition is updated and
includes the new methods and initialization options; in addition, the instance
generated earlier can now be able to accept these new messages.

The mass of the ship can be set created by evaluating the following:
(send my-ship :set-mass 3.0)

This sets the mass instance variable of my-ship to 3.0.

427

March 1985 Ravors

If you want to experiment with flavors, it is useful to know that describe of an
instance tells you the flavor of the instance and the values of its instance variables.
If (describe my-ship) were evaluated at this point, the following would be printed:

I<SHIP 13731210>, an object of flavor SHIP,
has instance variable values:

X-POSITION: unbound
V-POSITION:
X-VELOCITV:
V-VELOCITV:
MASS:

unbound
unbound
unbound
3.0

Now that the instance variables are "initable", the following example shows how to
create another ship and initialize some of the instance variables using the init-plist:

(setq her-ship (make-instance 'ship :x-position 0.0
:y-position 2.0
:mass 3.5»

==> H<SHIP 13756521>

The following shows the results of using describe on the new ship:

(describe her-ship)
#<SHIP 13756521>, an object of flavor SHIP,
has instance variable values:

X-POSITION: 0.0
V-POSITION: 2.0
X-VELOCITV: unbound
V-VELOCITV: unbound

3.5 MASS:

A flavor can also establish default initial values for instance variables. These default
values are used when a new instance is created if the values are not initialized any
other way. The syntax for specifying a default initial value is to replace the name of
the instance variable by a list whose first element is the name and whose second is
a form to evaluate to produce the default initial value. For example:

(defvar *default-x-velocity* 2.0)
(defvar *default-y-veloc1ty* 3.0)

(defflavor ship «x-position 0.0)
(y-pos1t1on 0.0)
(x-velocity *default-x-velocity*)
(y-velocity *default-y-velocity*)
mass)

()

:gettable-instance-variables
:settable-instance-variables
:initable-instance-variables)

(setq another-ship (make-instance 'ship :x-position 3.4»

428

Reference Guide to Symbolics-Lisp March 1985

(describe another-ship)
'<SHIP 14563643>, an object of flavor SHIP,
has instance variable values:

X-POSITION: 3.4
V-POSITION: 0.0
X-VELOCITV:
V-VELOCITV:
MASS:

2.0
3.0
unbound

x-position was initialized explicitly, so the default was ignored. y-position was
initialized from the default value, which was 0.0. The two velocity instance variables
were initialized from their default values, which came from two global variables.
mass was not explicitly initialized and did not have a default initialization, so it was
left unbound.

These are only some of the options that can be used for demavor. Additionally,
init options can used to do more than initialize instance variables. But even with
the small set of features described so far, it is possible to write object-oriented
programs using flavors. (For more information about demavor options: See the
section "defflavor Options", page 441.>

48.1.1 Functions for Creating Flavors

deftlavor Macro
A flavor is defined by a form such as:

(deffl avor flavor-name (varl var2 ...) (flavl flav2 ...)
optl opt2 ...)

flavor-name is a symbol that serves to name this flavor. It gets an si:f1avor
property of the internal data structure containing the details of the flavor.

(typep obj), where obj is an instance of the flavor named flavor-name,
returns the symbol flavor-name. (typep obj flavor-name) is t if obj is an
instance of a flavor, one of whose components (possibly itself) is flavor-name.

varl, var2, and so on, are the names of the instance variables containing the
local state for this flavor. A list of the name of an instance variable and a
default initialization form i~ also acceptable; the initialization form is evaluated
when an instance of the flavor is created if no other initial value for the
variable is obtained. If no initialization is specified, the variable remains
unbound.

flavl, flav2, and so on, are the names of the component flavors out of which
this flavor is built. The features of those flavors are inherited as described
previously.

optl, opt2, and so on, are options; each option could be either a keyword
symbol or a list of a keyword symbol and arguments.

March 1985

The options to deffiavor are described elsewhere: See the section
"deffiavor Options", page 441.

429

flavors

all-tlavor-names Variable
This is a list of the names of all the flavors that have ever been created by
deffiavor.

defmethod Macro
A method is a function to handle a particular message sent to an instance of
a particular flavor. It is defined by a form such as:

(defmethod (flavor-name method-type message) lambda-list
forml form2 ...)

flavor-name is a symbol that is the name of the flavor that is to receive the
method. method-type is a keyword symbol for the type of method; it is
omitted when you are defining a primary method, which is the usual case.
message is a keyword symbol that names the message to be handled.

The meaning of the method-type depends on the kind of method combination
is declared for this message. For instance, for daemons :before and :after
are allowed. For a complete description of method types and the way in
which methods are combined: See the section "Method Combination", page
455.

lambda-list describes the arguments and "aux variables" of the function; the
first argument to the method, which is the message keyword, is handled
automatically, and so it is not included in the lambda-list. Note that
methods cannot have "e arguments; that is, they must be functions,
not special forms. forrnl, form2, and so on, are the function body; the value
of the last form is returned.

The following variant form, where {unction is a symbol, says that
flavor-name's me~hod for message is {unction, a symbol that names a
function:

(defmethod (flavor-name message) function)

The first three arguments are the object receiving the message, the mapping
table (which can safely be ignored), and the message keyword.

If you redefine a· method that is already defined, the old definition is replaced
by the new one. Given a flavor, a message name, and a method type, there
can only be one function, so if you derme a :before daemon method for the
foo flavor to handle the :bar message, you replace the previous before­
daemon. However, you do not affect the primary method or methods of any
other type, message name, or flavor.

The function specification for a method looks like:

430

Reference Guide to Symbollcs-Usp March 1985

(:method flavor-name message) or
(: method flavor-name method-type message)

This is useful to know if you want to trace or advise a method, or if you
want to manipulate (for example, disassemble) the method function itself.

make-instance flavor-name init-optionl valuel init-option2 Function
value2 ...

Creates and returns an instance of the specified flavor. Arguments after the
first are alternating init-option keywords and arguments to those keywords.
These options are used to initialize instance variables and to select arbitrary
options. If the flavor supports the :init message, it is sent to the newly
created object with one argument, the init-plist. This is a disembodied
property list containing the init options specified and those defaulted from the
flavor's :default-init-plist. make-instance is an easy-to-call interface to
instantiate-flavor.

48.1.2 Functions for Passing Messages

In order to improve the clarity of heavily object-oriented programs, funcall is not
used to send messages. Instead, the send function, which has a shorter, more
specific name, is used.

send object message-name &rest arguments Function
Sends the message· named message-name to the object. arguments are the
arguments passed. send does exactly the same thing as funcall. For
stylistic reasons, it is preferable to use send instead of funcall when sending
messages because send clarifies the programmer's intent.

lezpr-send object message-name &rest arguments Function
Sends the message named message-name to the object. arguments are the
arguments passed, except that the last element of arguments should be a list,
and all the elements of that list are passed as arguments. Example:

(send some-window :set-edges 10 10 40 40)

does the same thing as

(setq new-edges '(10 10 40 40»
(lexpr-send some-window :set-edges new-edges)

lexpr-send is to send as lexpr-funcall is to funcall.

send-if-handles, lexpr-send-if-handles, and operation-handled-p work by
sending :operation-handled-p and :send-if-handles messages. For example,
(send-if-handles object message arguments) sends message to object with the
argument arguments.

If you explicitly need to have the :operation-handled-p message sent, you should
use (send object :operation-handled-p message) rather than
(oper'ation-handled-p object message).

431

March 1985 Ravors

send-if-handles object message-name &rest arguments Function
Sends the message named m,essage-name to object if the flavor associated
with object has a method defined for message-name. If it does not have a
method defined, nil is returned. message-name is a message name and
arguments is a list of arguments for that message.

lexpr-send-if-handles object message-name &rest arguments Function
Sends the message named message-name to object if the flavor associated
with object has a method defined for message-name. message-name is a
message name and arguments is a list of arguments for that message. If
object does not have a method defined, nil is returned.

The difference between lexpr-send-if-handles and send-if-handles is that
for lexpr-send-if-handles, the last element of arguments should be a list; all
the elements of that list are passed as arguments. lexpr-send-if-handles is
to send-if-handles as lexpr-send is to send.

operation-handled-p object message-name &rest arguments Function
Returns t if the flavor associated with object has a method defined for
message-name and nil if a method is not defined for message-name.

48.2 Mixing Flavors

This section discusses how to mix flavors to create new flavors. For information
about a system for defining message-receiving objects that provide generic operations:
See the section "Simple Use of Flavors", page 425.

To create a new type called meteor that would accept the same generic operations
as ship, we could write another defflavor and two more defmethods identical to
those of ship; meteors and ships would then both accept the same operations. ship
would have additional instance variables for holding attributes specific to ships and
methods for operations that would not be generic, but that would be defined only for
ships; the same would be true of meteor.

However, this would be wasteful. Code would be duplicated and maintained in
several places, and several instance variables would have to be repeated. The power
of flavors (and the name "flavors") comes from the ability to mix several flavors and
get a new flavor. Since the characteristics of ship and meteor partially overlap, the
common characteristics can be identified and moved into their own flavor, which
might be called moving-object. moving-object would be defined the same way as
ship. ship and meteor could then be defined like this:

(defflavor ship (engine-power number-of-passengers name)
(moving-object)

:gettable-instance-variables)

432

Reference Guide to Symbollcs-Usp March 1985

(defflavor meteor (percent-iron) (moving-object)
:initable-instance-variables)

These defflavor forms use the second subform, which is a list of flavors to be
combined to form the new flavor; such flavors are called components. ship has
exactly one component flavor: moving-object. It also has a list of instance
variables, which includes only the ship-specific instance variables and not the ones
that it shares with meteor.' By incorporating moving-object, the ship flavor
acquires all of its instance variables, and so need not name them again. It also
acquires all of moving-object's methods. So with the new definition, ship
instances still accept the :x-velocity and :speed messages, and they do the same
thing. However, the :engine-power message is also understood (and returns the
value of the engine-power instance variable).

In this example, two more specialized and powerful abstract types have been built on
top of another abstract type, moving-object. Any ship or meteor can do anything a
moving object can do, and each also has its own specific abilities. This kind of
building can continue; a flavor called ship-with-passenger could be defined that
was built on top of ship, and it would inherit all of moving-object's instance
variables and methods as well as ship's instance variables and methods.
Furthermore, the second subform of defflavor can be a list of several components,
meaning that the new flavor should combine all the instance variables and methods
of all the flavors in the list, as well as the ones those flavors are built on. All the
components taken together form a big tree of flavors. A flavor is built from its
components, its components' components, and so on. Sometimes the term
"components" is used to mean the immediate components (the ones listed in the
demavor), and sometimes to mean all the components (including the components of
the immediate components and so on). (Actually, it is not strictly a tree, as some
flavors might be components through more than one path. It is really a directed
graph. Note, though, that the structure cannot be cyclic; circular flavor definitions
are not permitted.)

The order in which the components are combined to form a flavor is important.
The tree of flavors is turned into an ordered list by performing a top-down,
depth-first walk of the tree, including nonterminal nodes before the subtrees they
head, and eliminating duplicates. For example, if flavor-!'s immediate components
are flavor-2 and flavor-3, and l1avor-2's components are flavor-4 and flavor-5,
and flavor-3's component was flavor-4, then the complete list of components of
flavor-l would be:

flavor-l. flavor-2. flavor-4. flavor-5. flavor-3

The flavors earlier in this list are the more specific, less basic ones; in our example,
ship-with-passengers would be first in the list, followed by ship, followed by
moving-object. A flavor is always the first in the list of its own components.
Notice that flavor-4 does not appear twice in this list. Only the first occurrence of
a flavor appears; duplicates are removed. (The elimination of duplicates is done

March 1985

during the walk; if there is a cycle in the directed graph, it will not cause a
nonterminating computation.)

433

flavors

The set of instance variables for the new flavor is the union of all the sets of
instance variables in all the component flavors. If both flavor-2 and flavor-3 have
instance variables named foo, then flavor-l will have an instance variable named
too, and any methods that refer to foo will refer to this same instance variable.
Thus different components of a flavor can communicate with one another using
shared instance variables. Typically, only one component ever sets the variable, and
the others only look at it. The default initial value for an instance variable comes
from the first component flavor to specify one.

The way the methods of the components are combined is the heart of the flavor
system. When a flavor is defined, a single function, called a combined method, is
constructed for each message supported by the flavor. This function is constructed
out of all the methods for that message from all the components of the flavor.
Methods can be combined in many different ways; you can select when a flavor is
defined and· you can create new forms of combination.

There are several kinds of methods, but so far, the only kinds of methods discussed
are primary methods. The default way primary methods are combined is that all
but the earliest one provided are ignored. In other words, the combined method is
simply the primary method of the first flavor to provide a primary method. This
means that if you start with a flavor foo and build a flavor bar on top of it, you
can then override foo's method for a message by providing your own method. Your
method will be called, and foo's will never be called.

Simple overriding is often useful; you could use it to make a new flavor bar that is
just like foo except that it reacts completely differently to a few messages.
However, often you do not want to completely override the base flavor's (foo's)
method; sometimes you want to add some extra things to be done. This is where
you use combination of methods.

The usual way methods are combined is that one flavor provides a primary method,
and other flavors provide daemon methods. The idea is that the primary method is
"in charge" of the main business of handling the message, and that other flavors
only want to know that the message was sent, or only want to do the part of the
operation associated with their own area of responsibility.

When methods are combined, a single primary method is found; it comes from the
first component flavor that has one. Any primary methods belonging to later
component flavors are ignored. This is just what was shown above; bar could
override foo's primary method by providing its own primary method.

However, you can define other kinds of methods. In particular, you can define two
kinds of daemon methods, before and after. There is a special syntax in defmethod
for defining such methods. For example, to give the ship flavor an after-daemon
method for the :speed message, you would use the following syntax:

434

Reference Guide to Symbollcs-Usp

(defmethod (ship :after :speed) ()
body

March 1985

Now, when a message is sent, it is handled by a new function called the combined
method. The combined method first calls all of the before daemons, then the
primary method, then all the after-daemons. Each method is passed the same
arguments that the combined method was given. The returned values from the
combined method are the valUElS returned by the primruy method; any values
returned from the daemons are ignored. Before-daemons are called in the order that
flavors are combined, while after-daemons are called in the reverse order. In other
words, if you build bar on top of foo, then bar's before-daemons will run before any
of those in foo, and bar's after-daemons will run after any of those in foo.

The reason for this order is to keep the modularity order correct. If flavor-! built
on flavor-2 is created, it should not matter what tlavor-2 is built out of. The new
before-daemons go before all methods of flavor-2, and the new after-daemons go
after all methods of flavor-2. Note that if you have no daemons, this reduces to
the form of combination described above. The most recently added component flavor
is the highest level of abstraction; you build a higher-level object on top of a lower­
level object by adding new components to the front. The syntax for defining
daemon methods can be found in the description of defmethod.

To clarify this, consider an example using the :print-self method. The Lisp printer
(that is, the print function) prints instances of flavors by sending them :print-self
messages. The first argument to the :print-self message is a stream (the others
can be ignored for now), and the receiver of the message is supposed to print its
printed representation on the stream. In the ship example, instances of the ship
flavor printed the way they did because the ship flavor was actually built on top of
a very basic flavor called vanilla-flavor; this component is provided automatically by
deftlavor. It was vanilla-flavor'S :print-self method that was doing the printing.
Now, if ship is given its own primruy method for the :print-self message, then that
method takes over the job of printing completely; vanilla-flavor's method is not
called at all. However, if ship is given a before-daemon method for the :print-self
message, then it is invoked before the vanilla-flavor message, and so whatever it
prints appears before what vanilla-flavor prints. Thus, before-daemons can be used
to add prefixes to a printed representation; similarly, after-daemons can add suffIXes.

There are other ways to combine methods besides daemons, but this way is the
most common.

For information about more advanced ways of combining methods: See the section
"Method Combination", page 455.

For more information about the flavor, vanilla-flavor: See the section "Vanilla
Flavor", page 453.

435

March 1985 Ravors

49. Flavor Functions

instantiate-flavor flavor-name init-plist &optional
send-init-message-p retum-unhandled-keywords
area

Function

This is an extended version of make-instance, giving you more features.
Note that it takes the init-plist as an argument, rather than taking an
&rest argument of init options and values.

The init-plist argument must be a disembodied property list; loct of an
&rest argument is acceptable. But note that this property list can be
modified; the properties from the default-init-plist that do not simply initialize
instance variables are putproped on if not already present, and some :init
methods do explicit putprops onto the init-plist.

If :init methods do remprop of properties already on the init-plist (rather
than simply doing get and putprop), then the init-plist is rplacded. This
means that the actual list of options is modified. It also means that Iocr of
an &rest argument does not work; the caller of instantiate-flavor must
copy its rest argument (for example, with copylist); this is because rplacd is
not allowed on &rest arguments.

First, if the flavor's method-table and other internal information have not
been computed or are not up to date, they are computed. This could take a
substantial amount of time and invoke the compiler, but happens only once
for a particular flavor no matter how many instances you make, unless you
change something.

Next, the instance variables are initialized in one of several ways. If an
instance variable is declared initable, and a keyword with the same spelling
appears in init-plist, it is set to the value specified after that keyword. If an
instance variable does not get initialized this way, and an initialization form
was specified for it in a defflavor, that form is evaluated and the variable is
set to the result. The initialization form cannot depend on any instance
variables nor on self; it is not evaluated in the "inside" environment in which
methods are called. If an instance variable does not get initialized either of
these ways it is left unbound; presumably an :init method should initialize it.

Note that a simple empty disembodied property list is (nil), which is what
you should give if you want an empty init-plist. If you use nil, the property
list of nil will be used, which is probably not what you want.

If any keyword appears in the init-plist but is not used to initialize an
instance variable and is not declared in an :init-keywords option, it is
presumed to be a misspelling. Thus, any keywords that you handle in an
:init handler should also be mentioned in the :init-keywords option of the

436

Reference Guide to Symbo/ics-Usp March 1985

definition of the flavor. If the return-unhandled-keywords argument is not
supplied,. such keywords cause an error to be signalled. But if
return-unhandled-keywords is supplied non-nil, a list of such keywords is
returned as the second value of instantiate-flavor.

Note that default values in the init-plist can come from the
:default-init-plist option to detftavor.

If the send-init-message-p argument is supplied and non-nil, an :init message
is sent to the newly created instance, with one argument, the init-plist. get
can be used to extract options from this property list. Each flavor that needs
initialization can contribute an :init method, by defining a daemon.

If the area argument is specified, it is the number of an area in which to
cons the instance; otherwise it is consed in the default area.

change-Instance-flavor instance new-flavor &optional (error-p t) Function
Changes the flavor of an instance to another flavor that has compatible
instance variables. If you specify a third argument of nil, the function
returns t if it works and nil if it does not. If it does not work, you could
create an instance of the new flavor and structure-forward the old instance
to the new.

The caller is responsible for sending any messages to the instance that the
caller requires to let it know what has happened. In some cases the caller
might want to sent an :init message, in other cases some other message.

With the default third argument of t, change-Instance-flavor either
returns t or calls terror and explains why the instance's flavor cannot be
changed.

defun-method function-spec flavor argument-list body... Special Form
Sometimes you write a function that is not itself a method, but that is to be
called by methods and should be able to access the instance variables of the
object self. defun-method is like defun, but the function is able to access
the instance variables of flavor. It is valid to call the function only while
executing inside a method or a defun-method for an object of the specified
flavor, or of some flavor built upon it.

function-spec must be a symbol.

defun-method works by defining two functions, function-spec and
(:defun-method function-spec). An optimizer is also added to function-spec
(since optimizers currently can be added only to symbols, function-spec is
constrained to be a symbol for now). The function named function-spec can
be called from anywhere, as long as self is bound to an appropriate instance.
The environment is correctly set up, and the internal :defun-method is
called. This requires calling into the Flavor System and has some
performance penalty over sending a message. However, if function-spec is

437

March 1985 Flavors

called from a context where the compiler can know the current flavor (in
other words, some constraints on what self can be), the optimizer on
{unction-spec turns into a call to the :defun-method internal function,
generating inline code to pass the correct environment.

Also, because of the optimizer, defun-method acts like a subst in that better
code is generated if the defun-method is defined in a file before it is used.
However, defun-methods are not much faster than message-passing, even
when the optimized version of the call is being used.

Note that it is faster to send a computed message than it is to call a
computed function that is a defun-method. It is slower to use funcall to
call the function being defined with a defun-method than it is to send a
message in which you have to have a form that computes the name of the
message at run time.

defselect-method {unctf,on-spec flavor body... Special Form
Defines a function that is a select-method; it differs from defselect in that
the defselect-method forms of body are able to access the instance variables
of flavor.

undeffiavor flavor-name Function
Removes the flavor named by flavor-name.

undefmethod (flavor [type] message) Macro
(undefmethod (flavor :before :message))

removes the method created by

(defmethod (flavor :before :message) (args) ...)

To remove a wrapper, use undetmethod with :wrapper as the method
type.

undefmetbod is simply an interface to funder-me. undefmethod accepts
the same syntax as detmethod.

undefun-method function-spec Special Form
Undoes the effect of detun-method in the same way that undetmethod
undoes the effect of detmetbod. undetun-method. is a special form, not a
function, so function-spec is not evaluated.

When you redefine a detun-method to no longer be a detun-metbod, you
must use undetun-metbod for the :detun-method function generated
internally by it. Otherwise the compiler thinks that the function is still a
defun-metbod and thus generates the wrong code.

self Variable
When a message is sent to an object, the variable self is automatically bound

438

Reference Guide to Symbolics-Lisp March 1985

to that object, for the benefit of methods that want to manipulate the object
itself (as opposed to its instance variables).

recompile-flavor flavor-name &optional single-message Function
(use-old-combined-methods t) (do-dependents t)

Updates the internal data of the flavor and any flavors that depend on it. If
single-message is supplied non-nil, only the methods for that message are
changed. The system does this when you define a new method. If
use-old-combined-methods is t, then the existing combined method functions
are used if possible. New ones are generated only if the set of methods to be
called has changed. This' is the default. If use-old-combined-methods is nil,
automatically generated functions to call multiple methods or to contain code
generated by wrappers are regenerated unconditionally. If do-dependents is
nil, only the specific flavor you specified are recompiled. Normally it and all
flavors that depend on it are recompiled.

recompile-flavor affects only flavors that have already been 'compiled.
Typically this means it affects flavors that have been instantiated, but does
not affect mixins.

compile-flavor-methods flavor... Macro
The form (compile-flavor-methods flavor-name-l flavor-name-2 •••), placed
in a file to be compiled, causes the compiler to include the automatically
generated combined methods for the named flavors in the resulting bin file,
provided all of the necessary flavor definitions have been made. Furthermore,
when the bin file is loaded, internal data structures (such as the list of all
methods of a flavor) are generated.

This means that the combined methods get compiled at compile time, and
the data structures get generated at load time, rather than both happening
at run time. compile-flavor-methods is thus a very good thing to use,
since the need to invoke the compiler at run time makes programs that use
flavors slow the first time they are run. (The compiler is still called if
incompatible changes have been made, such as addition or deletion of
methods that must be called by a combined method.)

You should use compile-flavor-methods only for flavors that are going to
be instantiated. For a flavor that will never be instantiated (that is, one that
only serves to be a component of other flavors that actually do get
instantiated), it is useless, except in the unusual case where the other flavors
can all inherit the combined methods of this flavor instead of each having its
own copy of a combined method that happens to be identical to the others.

The compile-flavor-methods forms should be compiled after all of the
information needed to create the combined methods is available. You should
put these forms after all of the definitions of all relevant flavors, wrappers,
and methods of all components of the flavors mentioned.

439

March 1985 Ravors

When a compile-flavor-methods form is s·een by the interpreter, the
combined methods are compiled and the internal data structures are
generated.

get-handIer-for function operation &optional (superiors-p t) Function
Given an object and a message, get-handIer-for returns that object's
method for that message, or nil if it has none. When object is an instance
of a flavor, this function can be useful to find which of that flavor's
components supplies the method. If you get back a combined method, you
can use the Zmacs command List Combined Methods (M-X) to find out what
it does.

get-handIer-for is related to the :handIer function spec. It can also be
used with other things than flavors.

get-flavor-handler-for flavor-name operation &optional (superiors-p
t)

Function

Given a flavor name and a message, get-tlavor-handIer-for returns that
flavor's method for that message or nil if it has none.

ftavor-allows-init-keyword-p flavor-name keyword Function
Returns non-nil if the flavor named flavor-name allows keyword in the in it
options when it is instantiated, or nil if it does not. The non-nil value is
the name of the component flavor that contributes the support of that
keyword.

si:flavor-allowed-init-keywords flavor-name Function
Returns a list of all symbols that are valid init options for the flavor, sorted
alphabetically. flavor-name should be the name of a flavor (a symboD. This
function is primarily useful for people, rather than programs, to call to get
information. You can use this to help remember the name of an init option
or to help write documentation about a particular flavor.

symeval-in-instance instance symbol &optional no-error-p Function
Finds the value of an instance variable inside a particular instance. instance
is the instance to be examined, and symbol is the instance variable whose
value should be returned. If there is no such instance variable, an error is
signalled, unless no-error-p is non-nil, in which case nil is returned.

set-In-instance instance symbol value Function
Alters the value of an instance variable inside a particular instance. instance
is the instance to be altered, symbol is the instance variable whose value
should be set, and value is the new value. If there is no such instance
variable, an error is signalled.

440

Reference Guide to Symbolics-Usp March 1985

locate-in-instance instance symbol Function
Returns a locative pointer to the cell inside instance that holds the value of
the instance variable named symbol.

describe-flavor flavor-name Function
Prints out descriptive information about a flavor. One important piece of
information is the combined list of component flavors; this list is what is
printed after the phrase "and directly or indirectly depends on".

si:·f1avor-compilatious· Variable
Contains a history of when the flavor mechanism invoked the compiler. It is
a list; elements toward the front of the list represent more recent
compilations. Elements are typically of the form

(: method flavor-name type message-name)

type is typically :combined

You can. setq this variable to nil at any time, for example, before loading
some files that you suspect might have missing or obsolete
compile-flavor-methods in them.

si:·f1avor-compile-trace· Variable
A string containing a textual description of each invocation of the compiler by
the flavor system. New elements are appended to the end of the string (it
has a fill pointer).

si:flavor-defauIt-init-putprop flavor value property Function
si::flavor-default-init-putprop is like putprop except that its first
argument is either a flavor structure or the name of a flavor. It puts the
property on the default init-plist of the specified flavor.

si:f1avor-default-init-get flavor property Function
si::flavor-default-init-get is like get except that its first argument is either
a flavor structure or the name of a flavor. It retrieves the property from the

------rfdefault init-plisrof-the specified-tlavor. You can use setf:

(setf (si:flavor-default-init-get f p) x)

si:flavor-default-init-remprop flavor property Function
si:flavor-default-init-remprop is like remprop except that its first
argument is either a flavor structure or the name of a flavor. It removes the
property from the default init-plist of the specified flavor.

441

March 1985 flavors

50. defflavor Options

This section describes all the options to defflavor, including those that are for
specialized purposes and are seldom used. Each option can be written in two forms:
either the keyword by itself, or a list of the keyword and "arguments" to that
keyword.

Several of these options declare things about instance variables. These options can
be given with arguments that are instance variables, or without any arguments, in
which case they refer to all of the instance variables listed at the top of the
defflavor. This is not necessarily all the instance variables of the component
flavors, just the ones mentioned in this flavor's defflavor. When arguments are
given, they must be instance variables that were listed at the top of the defflavor;
otherwise they are assumed to be misspelled and an error is signalled. You can
declare things about instance variables inherited from a component flavor, but to do
so you must list these instance variables explicitly in the instance variable list at the
top of the defflavor.

:gettable-instance-variables
Enables automatic generation of methods for getting the values of
instance variables. The message name is the name of the
variable, in the keyword package (that is, put a colon in front of
it.)

Note that there is nothing special about these methods; you could
easily define them yourself. This option generates them
automatically to save you the trouble of writing out many very
simple method definitions. (The same is true of methods defined
by the :settable-instance-variables option.) If you define a
method for the same message name as one of the automatically
generated methods, the new definition overrides the old one, just
as if you had manually defined two methods for the same message
name.

:settable-instance-variables
Enables automatic generation of methods for setting the values of
instance variables. The message name is ":set-" followed by the
name of the variable. All settable instance variables are also
automatically made gettable and initable. (See the note in the
description of the :gettable-instance-variables option.)

:initable-instance-variables
The instance variables listed as arguments, or all instance
variables listed in this defflavor if the keyword is given alone, are
made initable. This means that they can be initialized through
use of a keyword (a colon followed by the name of the variable) as
an init-option argument to make-instance.

442

Reference Guide to Symbolics-Usp March 1985

:init-keywords The arguments are declared to be keywords in the initialization
property list that is processed by this flavor's :init methods. The
system uses this for error-checking; before the system sends the
:init message, it makes sure that all the keywords in the init-plist
are either initable-instance-variables, required-init-keywords, or
elements of this list. If the caller misspells a keyword or
otherwise uses a keyword that no component flavor handles,
make-instance signals an error. When you write an :init handler
that accepts some keywords, they should be listed in the
:init-keywords option of the flavor.

:default-init-plistThe arguments are alternating keywords and value forms, like a
property list. When the flavor is instantiated, these properties
and values are put into the init-plist unless already present. This
allows one component flavor to default an option to another
component flavor. The value forms are only ,evaluated when and
if they are used. For example, the following would provide a
default "frob array" for any instance for which the user did not
provide one explicitly:

(:default-init-plist :frob-array
(make-array 100»

:default-init-plist entries that initialize instance variables are not
added to the init-plist seen by the :init methods.

:required-instance-variables
Declares that any flavor incorporating this one that is instantiated
into an object must contain the specified instance variables. An
error occurs if there is an attempt to instantiate a flavor that
incorporates this one if it does not have these in its set of
instance variables. Note that this option is not one of those that
checks the spelling of its arguments (if it did, it would be useless).

Required instance variables can be freely accessed by methods just
like normal instance variables. The difference between listing

_____________ .LLjnLUs-"'"'ta~n~c~e~v'_Ua riableS_here_and_listing-them-at-the-f-r-ent---ef-t-flP-e----------
defflavor is that the latter declares that this flavor "owns" those
variables and will take care of initializing them, while the former
declares that this flavor depends on those variables but that some
other flavor must be provided to manage them and whatever
features they imply.

:required-init-keywords
Specifies keywords that must be supplied. The arguments are
keywords. It is an error to try to make an instance of this flavor
or any incorporating it without specifying these keywords as
arguments to make-instance (or to instantiate-flavor) or as a
:defauIt-init-pIist option in a component flavor. This error can
often be detected at compile time.

443

March 1985 Ravors

: required-methods
The arguments are names of messages that any flavor
incorporating this one must handle. An error occurs if an
attempt is made to instantiate such a flavor and it lacks a method
for one of these messages. Typically this option appears in the
deffiavor for a base flavor. Usually this is used when a base
flavor does a (send self •..) to send itself a message that is not
handled by the base flavor itself; the idea is that the base flavor
will not be instantiated alone, but only with other components
(mixins) that do handle the message. This keyword allows the
error of having no handler for the message be detected when the
flavor is defined (which usually means at compile time) rather
than at run time.

:required-flavorsThe arguments are names of flavors that any flavor incorporating
this one must include as components, directly or indirectly. The
difference between declaring flavors as required and listing them
directly as components at the top of the de'fflavor is that
declaring flavors to be required does not make any commitments
about where those flavors will appear in the ordered list of
components; that is left up to whoever does specify them as
components. Declaring a flavor as required mainly allows instance
variables declared by that flavor to be accessed. It also provides
error checking: an attempt to instantiate a flavor that does not
include the required flavors as components signals an error.

The ship example demonstrates the use of required flavors. To
define a relativity-mixin that increases the mass dependent on
the speed, the following could be used:

(defflavor relativity-mixin () (moving-object»
(defmethod (relativity-mixin :mass) ()

(II mass (sqrt (- 1 (A (II (send self :speed)
speed-of-light)

2»»)
However, this would not work because any flavor that had
relativity-moon as a component would get moving-object right
after relativity-mixin in its component list. As a base flavor,
movinl-obJect should be last in the list of components so that
other components mixed in can replace its methods and so that
daemon methods combine in the right order. relativity-moon
should not change the order in which flavors are combined, which
should be under the control of its caller. For example:

(defflavor starship ()
(relativity-mixin long-distance-mixin ship»

This puts moving-object last (inheriting it from ship).

So, the following is used instead:

444

Reference Guide to Symbolics-Usp March 1985

(defflavor relativity-mixin () ()
(:requ1red-flavors moving-object»

This allows relativity-mixin's methods to access moving-object
instance variables such as mass (the rest mass), but does not
specify any place for moving-object in the list of components.

It is very common to specify the base flavor of a mixin with the
:required-t1avors option in this way.

:included-l1avorsThe arguments are names of flavors to be included in this flavor.
I! the component is included this way, the .component is inserted
between tpe last flavor that included it and that flavor's first
normal component. The difference between declaring flavors with
:included-flavors and declaring them at the top of the
deMavor is that when component flavors are combined, if an
included flavor is not specified as a normal component, the
included flavor is inserted into the list of components immediately
after the last component to include it. Thus, included flavors act
like defaults.

The important thing is that if an included flavor is specified as a
component, its position in the list of components is completely
controlled by that specification independently of where the flavor
that includes it appears in the list.

:included-t1avors and :required-flavors are used in similar
ways; it would have been reasonable to use :included-flavors in
the relativity-mixin example. See the section n:Required-flavors
Option for Deffiavor ". The difference is that when a flavor is
required but not given as a normal component, an error is
signalled, but when a flavor is included but not given as a normal
component, it is automatically inserted into the list of components
at a "reasonable" place. For this reason, it is suggested that
:required-fIavors be used rather than : included-flavors.

The following example shows the order in which included flavors
are actually included.

(defflavor a () (»
(defflavor b () (»
(defflavor c () (»
(defflavor d () (a»
(defflavor e () (c) (:included-flavors a b»
(defflavor f () (d e) (:included-flavors a b»

F's components are:

(F 0 A E B C SI:VANILLA-FLAVOR)

• A goes after D, rather than after E, because the included
flavor (A) is that flavor's (D) normal component.

March 1985

445

Flavors

• B goes after E, rather than after F, because the included
flavor (B) goes after the last place to include it, which was
E.

• B goes before C because the included component (B) goes
before the normal components. In this case, C was a
normal component of D, which was a normal component of
F.

• si:vanilla-f1avor is always last.

:no-vanilla-f1avorNormally when a flavor is defined, the special flavor
si:vanilla-f1avor is included automatically at the end of its Jist of
components. The vanilla flavor provides some default methods for
the standard messages that all objects are supposed to
understand. These include :print-self, :describe,
:which-operations, and several other messages.

:mixture

If any component of a flavor specifies the :no-vanilla-flavor
option, si:vanilla-flavor will not be included in that flavor. This
option should not be used casually.

Defines a family of related flavors. When make-instance (or
instantiate-flavor) is called, it uses keywords in the init-plist to
decide which flavor of the family to instantiate. Thus, init options
can be used to select the flavor as well as instance-variable values.

The ancestral flavor is the one that includes the :mixture option
in its def.f1avor. The flavors in the family are automatically
constructed by mixing various mixins with the ancestral flavor.
The names for the family members are chosen automatically.
The name of such an automatically constructed flavor is a
concatenation of the names of its components, separated by
hyphens; however, obvious redundancies are removed heuristically.

:mixture does not inherit. If you have a moon that uses
:mixture, the mixin uses only the ancestor and ignores any other
flavors.

defllavor of the ancestral flavor also defines the automatically
constructed flavors. compile-flavor-methods of the ancestral
flavor also compiles combined methods of the automati~y
constructed flavors.

The :mixture option has the following form:

(:mixture spec spec ...)

Each spec is processed independently, and all the resulting mixins
are mixed together. A spec can be any of the following:

446

Reference Guide to Symbolics-Usp March 1985

(keyword mixin)
Add mixin if the value of keyword is t; f:'.dd nothing if nil.

(keyword (value mixin) (value mixin) ...)
Look up the value of keyword in this alist and add the
specified mixin.

(keyword mixin subspec subspec ...)

(keyword (value mixin subspec subspec ...) ...)
Subspacs take on the same forms as specs. Subspacs are
processed only when the specified keyword has the
specified value. Use them when there are
interdependencies among keywords.

A mixin is one of the following:

symbol

nil

string

The name of a flavor to be mixed in.

No flavor needs to be mixed in if the keyword
takes on this value.

This value is invalid: Signal an error with the
string as the message.

make-instance and instantiate-:fIavor check that the keywords
are given with valid values.

Example:

(defflavor cereal-stream (..•) (stream)

(:init-keywords :characters :direction
:ascii :hang-up-when-close)

(:mixture (:characters
(t nil (:direction

(:in buffered-line-input-stream)
(:out buffered-output-character-stream»

(:ascii ascii-translating-character-stream»
(nil nil (:direction (:in buffered-input-stream)

(:out buffered-output-stream»
(:ascii "Ascii translation is not

meaningful for binary streams"»)
(:hang-up-when-close hang-up-when-close-mixin»)

Note the need for an :init-keywords declaration for any
keywords that are used only in the :mixture declaration.

In this declaration, any kind of stream can have a
:hang-up-when-close option. The :characters option does not
itself add any mixins (hence the nil), but the processing of the
:direction option depends on whether it is used with a character

March 1985

447

Ravors

stream or a binary stream. The :ascii option is allowed only for
character streams, and an error message is specified if it is used
with a binary stream. If ~ascii had not been mentioned in the
:characters nil case, the keyword would have been ignored by
make-instance on the assumption that an :init method was
going to do something with it.

:default-handler The argument is the name of a function that is to be called when
a message is received for which there is no method. The function
is called with the arguments the instance was called with,
including the message name; the values it returns are returned.
If this option is not specified on any component flavor, it defaults
to a function that signals an error.

The function specified with the :default-handler option to
defflavor receives two additional arguments. The first argument
is self and the second is always nil.

This is equivalent to using the :unclaimed-message message.
Because of this, in some cases, the :unclaimed-message message
might be preferable to the :default-handler option.

The following example shows the use of :default-handler.

(defflavor lisp-stream (forward) ()
(:default-handler lisp-stream-forward»

(defun lisp-stream-forward (self ignore message &rest arguments)
(lexpr-funcall (send self :forward) message arguments»

:ordered-instance-variables
This option is mostly for internal system uses. The arguments
are names of instance variables that must appear first (and in this
order) in all instances of this flavor or any flavor depending on
this flavor. This is used for instance variables that are specially
known about by microcode, and in connection with the
:outside-accessible-instance-variables option. If the keyword
is given alone, the arguments default to the list of instance
variables given at the top of this defflavor.

:out&ide-accessible-instance-variables
The arguments are instance variables that are to be accessible
from "outside" this object, that is, from functions other than
methods. A macro (actually a defsubst) is defined that takes an
object of this flavor as an argument and returns the value of the
instance variable; sett can be used to set the value of the instance
variable. The name of the macro is the name of the flavor
concatenated with a hyphen and the name of the instance
variable. These macros are similar to the accessor macros created
by defstruct.

448

Reference Guide to Symbolics-Lisp March 1985

This feature works in two different ways, depending on whether
the instance variable has been declared to have a fixed slot in all
instances, via the :ordered-instance-variables option.

If the variable is not ordered, the position of its value cell in the
instance must be computed at run time. This takes longer than
actually sending a message. An error is signalled if the argument
to the accessor macro is not an instance or is an instance that
does not have an instance variable with the appropriate name.
However, there is no error check that the flavor of the instance is
the flavor for which the accessor macro was defined, or a flavor
built on that flavor.

If the variable is ordered, the compiler compiles a call to the
accessor macro into a subprimitive that simply accesses that
variable's assigned slot by number. This subprimitive is only three
or four times slower than car. The only error-checking performed
is to verify that the argument is an instance and is large enough
to contain that slot. There is no check that the accessed slot
belongs to an instance variable of the appropriate name. Any
functions that use these accessor macros must be recompiled if
the number or order of instance variables in the flavor is changed.
The system does not know automatically to do this recompilation.
It is very easy to forget to compile something and thus encounter
a hard-to-find bug. Because of this problem, and because using
these macros is less elegant than sending messages, the use of
this option is discouraged. In any case the use of these accessor
macros should be confined to the module that owns the flavor,
and the "general public" should send messages.

:accessor-pref"lX Normally the accessor macro created by the
:outside-accessible-instance-variables option to access the
flavor fs instance variable v is named {-v. Specifying
(:accessor-pref"lX get$) would cause it to be named
get$v instead.

:special-instance-variables
Use the :speciaI-instance-variables option if you need instance
variables to be bound as special variables when an instance is
entered. Its format is like that of :gettable-instance-variables;
that is, the option can be :special-instance-variables to declare
all of the instance variables to be special variables, or it can be of
the format (:speciaI-instance-variables a b c) to declare only
the instance variables a, b, and c to be special variables. When
any method is called, these special variables are bound to the
values in the instance, and references to these variables from
methods are compiled as special variable references. This detracts
from performance and should be avoided.

449

March 1985 Ravors

:export-instance-variables
Exports the symbols from the package in which the flavor is
defined. The following example shows the use of
:export-instance-variables.

(deffl avor box
(x-dim y-dim z-dim)
()

:gettab1e-instance-variab1es
;; export all the instance variables
:export-instance-variab1es)

See the section "Importing and Exporting Symbols", page 573.

:method-order The old name, :select-method-order, is still accepted, but it
might not be supported in a future release. The arguments are
names of messages that are frequently used or for which speed is
important. Their combined methods are inserted into the handler
hash table first, so that they are found by the first hash probe.

:method-combination
Declares the way that methods from different flavors are to be
combined. Each "argument" to this option is a list
(type order messagel message2 ...). Messagel, message2, and so on,
are names of messages whose methods are to be combined in the
declared fashion. type is a keyword that is a defined type of
combination.

Order is a keyword whose interpretation is up to type; typically it
is either :base-flavor-first or :base-flavor-Iast, depending on
the type that was specified.

Any component of a flavor can specify the type of method
combination to be used for a particular message. If no component
specifies a type of method combination, then the default type is
used, namely :daemon. If more than one component of a flavor
specifies it, they must agree on the specification, or else an error
is signalled.

For more information about combining methods: See the section
"Method Combination", page 455.

:documentation The list of arguments to this option is remembered on the flavor's
property list as the :documentation property. The (loose)
standard for what can be in this list is as follows. A string is
documentation on what the flavor is for; this could consist of a
brief overview in the first line, then several paragraphs of detailed
documentation. A symbol is one of the following keywords:

:mixin A flavor that you might want to mix with
others to provide a useful feature.

450

Reference Guide to Symbolics-Usp March 1985

:essential-mixin A flavor that must be mixed in to all flavors of
its class, or inappropriate behavior follows.

:Iowlevel-mixin A moon used only to build other moons.

:combination . A combination of flavors for a specific purpose.

:special-purpose A flavor used for some internal purpose by a
particular program, which is not intended for
general use.·

This documentation can be viewed with the describe-flavor
function or the Describe Flavor (Pl-x) Zmacs command.

:abstract-flavor Declares that the flavor exists only to defme a protocol; it is not
intended to be instantiated by itself. Instead, it is intended to
have more specialized flavors mixed in before being instantiated.

Trying to instantiate an abstract flavor signals an error.

:abstract-f1avor is an advanced feature that affects paging. It
decreases paging and usage of virtual memory by allowing abstract
flavors to have combined methods. Normally, only instantiated
flavors get combined methods, which are small Lisp functions that
are automatically built and compiled by the flavor system to call all
of the methods that are being combined to make the effective
method. Sometimes many different instantiated flavors use the
same combination of methods. If this is the case, and the
abstract flavor's combined methods are the same ones that are
needed by the instantiated flavors, then all instantiated flavors
can simply share the combined methods of the abstract flavor
instead of having to each make their own. This sharing improves
performance because it reduces the working set.

compile-flavor-methods is permitted on an abstract flavor. It is
useful for combined methods that most specializations of that
flavor would be able to share.

45'1

March 1985 Flavors

51. Flavor Families

The following organization conventions are. recommended for all programs that use
flavors.

A base flavor is a flavor that defines a whole family of related flavors, all of which
will have that base flavor as one of their components. Typically the base flavor
includes things relevant to the whole family, such as instance variables,
:required-methods and :required-instance-variables declarations, default
methods for certain messages, :method-combination declarations, and
documentation on the general protocols and conventions of the family. Some base
flavors are complete and can be instantiated, but most are not instantiatable and
merely serve as a base upon which to build other flavors. The base flavor for the
faa family is often named basic-foo.

A mixin flavor is a flavor that defines one particular feature of an object. A mixin
cannot be instantiated, because it is not a complete description. Each module or
feature of a program is defined as a separate mixin; a usable flavor can be
constructed by choosing the moons for the desired characteristics and combining
them, along with the appropriate base flavor. By organizing your flavors this way,
you keep separate features in separate flavors, and you can pick and choose among
them. Sometimes the order of combining moons does not matter, but often it does,
because the order of flavor combination controls the order in which daemons are
invoked and wrappers are wrapped. Such order dependencies would be documented
as part of the conventions of the appropriate family of flavors. A moon flavor that
provides the mumble feature is often named mumble-moon.

If you are writing a program that uses someone else's facility to do something, using
that facility's flavors and methods, your program might still define its own flavors, in
a simple way. The facility might provide a base flavor and a set of moons, and the
caller can combine these in various ways to get exactly what it wants, since the
facility probably would not provide all possible useful combinations. Even if your
private flavor has exactly the same components as an existing flavor, it can still be
useful since you can use its :detault-init-plist to select options of its component
flavors and you can define one or two methods to customize it.

452

Reference Guide to Symbolics-Usp March 1985

453

March 1985 Ravors

52. Vanilla Flavor

The messages described in this section are a standard protocol that all message­
receiving objects are assumed to understand. The standard methods that implement
this protocol are automatically supplied by the Flavor System unless the user
specifically tells it not to do so. These methods are associated with the flavor
si:vanilIa-flavor.

si:vanilIa-flavor Flavor
Unless you specify otherwise (with the :no-vanilla-flavor option to
defflavor), every flavor includes the "vanilla" flavor, which has no instance
variables but provides some basic useful methods.

:print-self stream prindepth slashify-p Message
The object should output its printed representation to a stream. The printer
sends this message when it encounters an instance. The arguments are the
stream, the current depth in list-structure (for comparison with prinlevel),
and whether slashification is enabled (prinl vs prine). For more information
about printed representations: See the section ''What the Printer Produces",
page 14.

The :print-self method of si:vanilla-flavor ignores the last two arguments,
and prints something like #<f1,avor-name octal-address>. The flavor-name
tells you the type of object it is, and the octal-address allows you to tell
different objects apart (provided the garbage collector does not move them).

:describe Message
The object should describe itself, printing a description onto the
standard-output stream. The describe function sends this message when
it encounters an instance or an entity. The :describe method of
si:vanilIa-flavor outputs the object, the name of its flavor, and the names
and values of its instance-variables, in a reasonable format.

:whieh-operatioDB Message
The object should return a list of the messages it can handle. The
:which-operatioDS method of si:vani11a-flavor generates the list once per
flavor and remembers it, minimizing consing and compute time. If a new
method is added, the list is regenerated the next time someone asks for it.

:operation-handled-p operation Message
operation is a message name. The object should return t if it has a handler
for the specified message, nil if it does not.

454

Reference Guide to Symbolics-Usp March 1985

:,et-handler-for operation Message
operation is a message name. The object should return the method it uses
to handle operation. If it has no handler for that message, it should return
nil. This is like the get-handler-for function, but you can only use it on
objects known to accept messages.

:send-if-handles operation &rest arguments Message
operation is a message name and arguments is a list of arguments for that
message. The object should send itself that message with those arguments if
it handles the message. If it does not handle the message it should return
nil.

:eval-inside-yourself form Message
The argument is a form that is evaluated in an environment in which special
variables with the names of the instance variables are bound to the values of
the instance variables. You can use setq on one of these special variables to
modify the instance variable; this is mainly for debugging. An especially
useful value of form is (break t); this gets you a Lisp top-level loop inside
the environment of the flavor's methods, allowing you to examine and alter
instance variables, and run functions that use the instance variables.

:funcall-inside-yourself function &rest args Message
function is applied to args in an environment in which special variables with
the names of the instance variables are bound to the values of the instance
variables. You can use setq on one of these special variables to modify the
instance variable; this is mainly for debugging.

:unclaimed-message message &rest arguments Message
For each message, the Flavor System checks to be sure that a method exists
for the message. If no method is found, it checks for a handler for
:unclaimed-message. If such a handler exists, it is invoked with arguments
message (the unclaimed message) and all the arguments that were sent to
the unclaimed message.

This is equivalent to using the :default-handler option to defflavor.

455

March 1985 Ravors

53. Method Combination

There are many ways to combine methods. The simplest way is the :daemon type
of combination, which is the default. To use one of the other types, you use the
:method-combination option to deffiavor to specify that all the methods for a
certain message to the flavor, or a flavor built on it, should be combined in a certain
way.

Note that for most types of method combination other than :daemon, you must
define the order in which the methods are combined in the :method-combination
option; the order can be either :base-ftavor-rll'8t or :base-ftavor-last, depending on
the method combination type that is specified. In this context, base-flavor means
the last element of the flavor's fully expanded list of components. The method type
keywords that are allowed depend on the type of method combination selected.
There are also certain method types used for internal purposes.

The combined methods are compiled at compile time. At load time, a
compile-flavor-methods form initializes all the cached information.

You can define your own types of method combination. The types of method
combination that are supplied by the system are as follows:

: daemon

:progn

:or

: and

:list

This is the default type of method combination. All the :before
methods are called, then the primary (untyped) method for the
outermost flavor that has one is called, then all the :after
methods are called. The value returned is the value of the
primary method.

All the methods are called, inside a progn special form. Methods
can have a :progn type for documentation. This means that all
the methods are called, and the result of the combined method is
whatever the last of the methods returns.

All the methods are called, inside an or special form. Methods
can have an :or type for documentation. This means that each
of the methods is called in tum. If a method returns a non-nil
value, that value is returned and none of the rest of the methods
are called; otherwise, the next method is called. Thus each
method is given a chance to handle the message; if it does not
want to handle the message, it should return nil, to give the next
method a chance to try.

All the methods are called, inside an and special form. Methods
can have an :and type for documentation. The basic idea is
much like :or.

Calls all the methods and returns a list of their returned values.
Methods can have a :1ist type for documentation.

456

Reference Guide to Symbolics-Usp March 1985

:inverse-list

:pus-on

:append

Calls each method with one argument; these arguments are
successive elements of the list that is the sole argument to the
message. Methods can have an :inverse-list type for
documentation. Returns no particular value. If the result of a
:list-combined message is sent back with an
:inverse-list-combined message, with the same ordering and with
corresponding method definitions, each component flavor receives
the value that came from that flavor.

Calls each method on the values returned by the preceding one.
The values returned by the combined method are those of the
outermost call. Methods can have a :pass-on type for
documentation. The format of the declaration in the demavor is
as follows, where ordering is :base-flavor-first or
:base-:fIavor-last:

(:method-combination (:pass-on (ordering . arglist» . operation-names)

arglist can include the &aux and &optional keywords.

All the component methods are called as arguments to append.
It expects each of the methods to return a list; the final result is
the result of appending all these lists. Methods can have an
:append type for documentation.

:neone All the component methods are called as arguments to neone. It
expects each of the methods to return a list; the final result is
the result of concatenating these lists. Methods can have an
:nconc type for documentation.

:daemon-with-or This is like the :daemon method combination type, except that
the primary method is wrapped in an or special form with all :or
methods. Multiple values are returned from the primary method,
but not the :or methods. This produces combined methods like
the following (simplified to ignore multiple values):

(progn (foo-before-method)
(or (foo-or-method)

(foo-primary-method»
(foo-after-method»

This is primarily useful for flavors in which a mixin introduces an
alternative to the primary method. Each :or message gets a
chance to run before the primary method and to decide whether
or not the primary method should be run; if any :or method
returns a non-nil value, the primary method is not run (nor are
the rest of the :or methods). Note that the ordering of the
combination of the :or methods is controlled by the order keyword
in the :method-combination option to demavor.

457

March 1985 Ravors

:daemon-with-and
This is similar to :daemon-with-or, except that it combines :and
methods in an and special form. The primary method is run only
if all the :and methods return non-nil values.

:daemon-with-override

: case

This is similar to the :daemon method combination type, except
an or special form is wrapped around the entire combined method
with all :override typed methods before the combined method.
This differs from :daemon-with-or in that the :before and
:after daemons are not run unless none of the :override
methods returns non-nil. The combined method looks something
like this:

(or (foo-override-method)
(progn (foo-before-method)

(foo-primary-method)
(foo-after-method»)

Takes a subsidiary message name. It dispatches on this message
name just as the original message name caused a primary
dispatch. This facility is used in the condition handling system.

(defmethod (sys:subscript-out-of-bounds :case :proceed :new-subscript)
(&optional (sub (prompt-and-read :number

uSubscript to use instead: .»)
"Supply a different subscript"
(values :new-subscript sub»

(send obj :proceed :new-subscript new-sub)

The following are all the method types used in the standard system (you can add
more by defining new forms of method combination).

(no type)

:before

:a:fter

: override

: default

If no type is given to defmethod, a primary method is created.
This is the most common type of method.

This is used for the before-daemon methods used by :daemon
method combination.

This is used for the after-daemon methods used by :daemon
method combination.

This allows some of the features of :or method combination to be
used with daemons. An :override method can choose at run
time to act like a primary method or as if it were not there.
Typically, the :override method returns nil and does nothing,
but in exceptional circumstances it takes over the handling of the
message. :override is used only with the
:daemon-with-override method combination.

If there are any untyped methods among any of the flavors being

458

Reference Guide to Symbolics-Usp March 1985

:or

: and

:wrapper

:whopper

:combined

combined, the :default methods are ignored. If there are no
untyped methods among the flavors being combined, the :default
methods are treated as if they were untyped.

Typically a base-flavor defines some default methods for certain
messages understood by its family.

This is used for :daemon-with-or and :daemon-with-and
method combination.

This is used for :daemon-with-or and :daemon-with-and
method combination.

This type is used internally by defwrapper.

This type is used internally by defwhopper.

This type is used internally for automatically generated combined
methods.

The most common form of combination is : daemon. When do you use a :before
daemon and when do y.0U use an :after daemon? In some cases the primary
method performs a clearly defined action and the choice is obvious:
:before :Iaunch-rocket puts in the fuel, and :after :Iaunch-rocket turns on the
radar tracking.

In other cases the choice can be less obvious. Consider the :init message, which is
sent to a newly created object. To decide what kind of daemon to use, it is
necessary to observe the order in which daemon methods are called. First the
:before daemon of the highest level of abstraction is called, then :before daemons
of successively lower levels of abstraction are called, and finally the :before daemon
(if any) of the base flavor is called. Then the primary method is called. Mter that,
the :after daemon for the lowest level of abstraction is called, followed by the :after
daemons at successively higher levels of abstraction.

Whether you use a :before or :after daemon matters only if some of these methods
interact. This interaction is usually done through instance variables; in general,
instance variables are how the methods of different 'component flavors communicate
with each other. In the case of the :init message, the init-plist can be used as well.
The important thing to remember is that no method knows beforehand which other
flavors have been mixed in to form a flavor; a method cannot make any assumptions
about how the flavor has been combined, and in what order the various components
are mixed.

This means that when a :before daemon has run, it must assume that none of the
methods for the message have run yet. But the :after daemon knows that the
:before daemon for each of the other flavors has run. So if one flavor wants to
convey information to the other, the first one should "transmit" the information in a
:before daemon, and the second one should "receive" it in an :after daemon. So
while the :before daemons are run, information is "transmitted"; that is, instance

459

March 1985 Ravors

variables get set up. Then, when the :after daemons are run, they can look at the
instance variables and act on their values.

In the case of the :init method, the :before daemons typically set up instance
variables of the object based on the init-plist, while the :after daemons actually do
things, relying on the fact that all of the instance variables have been initialized by
the time they are called.

Of course, since flavors are not hierarchically organized, the notion of levels of
abstraction is not strictly applicable. However, it remains a useful way of thinking
about systems.

Combination Method Types

Methods used with :progn, : append, :nconc, :and, :or, :list, : inverse-list , and
:pass-on combination types can use the combination type as the method type. This
is useful in documenting how the method is used.

In the following example, (:method foo :or :find-frabjous-frob) could have been
defined as (:method too :find-trabjous-frob). The only difference is one of style;
using :or as the method type makes it clear that the methods are combined using
:or combination.

(defflavor foo (frobl) (bar)
(:method-comb1nat1on (:or :base-flavor-last :find-frabjous-frob»)

(defmethod (foo :or :find-frabjous-frob) (type)
(dolist (frob frobl)

(when (send frob :frabjous-p type)
(return frob»»

The macro si:define-simple-method-combination provides a simple means of
defining a method combination.

si:define-simple-methQd-combination combination-type operator Macro
&optional single-arg-is-value

Defines a methoq combination with the name combination-type, which must
be a symbol and is usually a keyword, such as :progn or :list. operator is
the name of either a special form or function (such as progn or list) that is

I

used as the function to apply to the results of the individual methods or a
special form.

As an optimization, some functions return their first argument if they are
given exactly one argument. In this case, the single method can be used and
no combined method need be created. single-arg-is-value indicates that
--perator has this property. progn has this property. list does not have this
property; it returns a list length of 1.

If combination is the name (symbol) of the method combination, and
component-n is a form that when evaluated performs the computation

460

Reference Guide to Symbolics-Usp March 1985

contributed by the nth component, the combination produced has exactly the
same values and effect as the form
(combination component-l component-2 .••), just as though this form
were actually the "source code body" for the resulting combination.

The "combination" can be a symbol naming either any function or any macro
or special form that treats all the operands supplied to it as indivisible forms.
Examples of this are: +, -, set, and, if. Examples that do not work include:
let, multiple-value-bind, setq, and cond Note: It is the user's
responsibility to ensure that the correct number of methods are supplied for
functions such as set, which do not have an ~re8~ argument.

The component-n form can be thought of as having the semantics of a form
such as (funcall #'component-n-function. •.). However, the combination
should not depend on the structure of the components and should treat them
as indivisible, atomic forms, as their implementation could change.

461

March 1985 Ravors

54. Whoppers and Wrappers

Wrappers and whoppers provide a means for combining methods and flavors. A
wrapper is a kind of macro that can be used to handle a message to an object of
some flavor. Whoppers are related to wrappers and can do most of the things that
wrappers can do, but have several advantages. Because they involve the interaction
of several complex mechanisms, you should use great care when using wrappers and
whoppers.

Both wrappers and whoppers are used in certain cases in which :before and :after
daemons are not powerful enough. :before and :after daemons let you put some
code before or after the execution of a method; wrappers and whoppers let you put
some code around the execution of the method. For example, you might want to
bind a special variable to some value around the execution of a method. You might
also want to establish a condition handler or set up a *catcb. Wrappers and
whoppers can also decide whether or not the method should be executed.

The main difference between wrappers and whoppers is that a wrapper is like a
macro, whereas a whopper is like a function. If you modify a wrapper, all the
combined methods that use that wrapper have to be recompiled; the system does
this automatically, but it still takes time. If you modify a whopper, only the
whopper has to be recompiled; the combined methods need not be changed.
Another disadvantage of wrappers is that a wrapper's body is expanded in all the
combined methods in which it is involved, and if that body is very large and complex,
all that code is duplicated in many different compiled-code objects instead of being
shared. U sing whoppers is also somewhat easier than using wrappers. Whoppers
are slightly slower than wrappers since they require two extra function calls each
time a message is sent.

Wrappers are defined with the following macro:

detwrapper Macro
Sometimes the way the Flavor System combines the methods of different
flavors (the daemon system) is not powerful enough. In that case you can
use defwrapper to define a macro that expands into code that is wrapped
around the invocation of the methods. This is best explained by an example.

Suppose you need a lock locked during the processing of the :foo message to
the bar flavor, which takes two arguments. You have a lock-frobboz
special form that knows how to lock the lock (presumably it generates an
unwind-protect). lock-frobboz needs to see the fIrst argument to the
message; perhaps that tells it the sort of operation, read or write, that is
going to be performed.

462

Reference Guide to Symbolics-Usp March 1985

(defwrapper (bar :foo) «argl arg2) • body)
'(lock-frobboz (self argl)

• , boefy»

The use of the body macro-argument prevents the defwrappered macro
from knowing the exact implementation and allows several defwrappers
from different flavors to be combined properly.

Note that the argument variables, argland arg2, are not referenced with
commas before them. Although these look like defmacro ';argument"
variables, they are not. Those variables are not bound at the time the
defwrapper-defined macro is expanded and the back-quoting is done; rather,
the result of that macroexpansion and back-quoting is code that, when a
message is sent, binds those variables to the arguments in the message as
local variables of the combined method.

Consider another example. Suppose you thought you wanted a :before
daemon, but found that if the argument was nil you needed to return from
processing the message immediately, without executing the primary method.
You could write a wrapper such as:

(defwrapper (bar :foo) «argl) . boefy)
'(cond «null argl» ;00 nothing if argl is nil

(t before-code
. ,body»)

Suppose you need a variable for communication among the daemons for a
particular message; perhaps the :after daemons need to know what the
primary method did, and it is something that cannot be easily deduced from
just the arguments. You might use an instance variable for this, or you
might create a special variable which is bound during the processing of the
message and used free by the methods.

(defvar *comrnunication*)
(defwrapper (bar :foo) (ignore. boefy)

'(let «*commun1cat1on* nil»
. , body»

Similarly you might wanta wrapper that puts a ·catch around the
processing of a message so that anyone of the methods could throw out in
the event of an unexpected condition.

Redefining a wrapper automatically performs the necessary recompilation of
the combined method of the flavor. If a wrapper is given a new defmition,
the combined method is recompiled so that it gets the new definition. If a
wrapper is redefmed with the same old definition, the existing combined
methods continue to be used, since they are still correct.

Like daemon methods, wrappers work in outside-in order; when you add a
d~fwrapper to a flavor built on other flavors, the new wrapper is placed

463

March 1985 Ravors

outside any wrappers of the component flavors. However, all wrappers
happen before any daemons happen. When the combined method is built,
the calls to the before-daemon methods, primary methods, and after-daemon
methods are all placed together, and then the wrappers are wrapped around
them. Thus, if a component flavor defines a wrapper, methods added by new
flavors execute within that wrapper's context.

Whoppers are defined with the following special form:

defwhopper (flavor-name operation) lambda-list &body body Special Form
Defines a whopper for the specified message to the specified flavor. arglist is
the list of arguments, which should be the same as the argument list for any
method handling the specified message.

When a message is sent to an object of some flavor, and a whopper is defined for
that message, the whopper runs before any of the methods (primary or daemon).
The arguments are passed, and the body of the whopper is executed. Unlike
daemon combination, whoppers always return their own value, not the value of the
primary handler. If a message is sent for value rather than effect, the whopper has
to take responsibility for getting the value back to the caller. If the whopper does
not do anything special, the methods themselves are never run and the result of the
whopper is returned as the result of sending the message. However, most whoppers
usually run the methods for the message. To make this happen, the body of the
whopper calls one of the following two functions:

continue-whopper &rest arguments Function
Calls the methods for the message that was intercepted by the whopper.
arguments is the list of arguments passed to those methods. This function
must be called from inside the body of a whopper. Normally the whopper
passes down the same arguments that it was given. However, some
whoppers might want to change the values of the arguments and pass new
values; this is valid.

lexpr-continue-whopper &rest arguments Function
Calls the methods for the message that was intercepted by the whopper in
the same way that continue-whopper does, but the last element of
arguments is a list of arguments to be passed. It is usefu~ when the
arguments to the intercepted message include an &rest argument.

The following whopper binds the value of the special variable base to 3 around the
execution of the :print-integer message to flavor roo (this message takes one
argument):

(defwhopper (foo :print-integer) (n)
(let «base 3»

(continue-whopper n»)

464

Reference Guide to Symbolics-Lisp March 1985

The following whopper sets up a *catch around the execution of the
:compute-height message to flavor giant, no matter what arguments this message
uses:

(defwhopper (giant :compute-height) (&rest args)
(*catch 'too-high

(lexpr-continue-whopper args»)

Like daemon methods, whoppers work in outward-in order; when you add a
defwhopper to a flavor built on other flavors, the new whopper is placed outside
any whoppers of the component flavors. However, all whoppers happen before any
daemons happen. Thus, if a component defines a whopper, methods added by new
flavors are considered part of the continuation of that whopper and are called only
when the whopper calls its continuation.

Whoppers and wrappers are considered equal for purposes of combination. If two
flavors are combined, one having a wrapper and the other having a whopper for
some method, then the wrapper or whopper of the flavor that is further out is on
the outside. If, for some reason, the very same flavor has both a wrapper and a
whopper for the same message, the wrapper goes outside the whopper.

defwhopper-subst (flavor-name operation) lambda-list &body body Macro
Defines a wrapper for the specified message to the specified flavor by
combining the use of defwhopper with the efficiency of defwrapper. The
body is expanded in-line in the combined method, providing improved time
efficiency but decreased space efficiency unless the body is small. The
symbols continue-whopper and lexpr-continue-whopper should not be
used for any purpose other than calls to the functions with those names; for
example, they should not be used as variable names and should not appear in
quoted constants.

The following example shows the use of defwhopper-subst.

(defwhopper-subst (xns :add-checksum-to-packet) (checksum &optional (bias 0»
(when (= checksum #0177777)

(setq checksum 0»
(continue-whopper checksum bias»

465

March 1985 Ravors

55. Copying Instances

The Flavor System does not include any built-in way to copy instances. Copying
instances raises a number of issues:

• Do you or do you not send an :init message to the new instance? If you do,
what init-plist options do you supply?

• If the instance has a property list, you should copy the property list (for
example, with copylist) so that sending a :putprop or :remprop message to
one of the instances does not affect the properties of the other instance .

• The instance might be contained in data structure maintained by the program
of which it is a part. For example, a graphics system might have a list of all
the objects that are currently visible on the screen. Copying such an instance
requires making the appropriate entries in the data structure .

• If the instance is a pathname, the concept of copying is not even meaningful.
Pathnames are interned, which means that there can only be one pathname
object with any given set of instance-variable values.

• If the instance is a stream connected to a network, some of the instance
variables represent an agent in another host elsewhere in the network.
Copying the instance requires that a copy of that agent somehow be
constructed.

• If the instance is a stream connected to a file, should copying the stream make
a copy of the file or should it make another stream open to the same file?
Should the choice depend on whether the file is open for input or for output?

In order to copy an instance you must understand a lot about the instance. You
must know what the instance variables mean so that their values variables can be
copied if necessary. You must understand the instance's relations to the external
environment so that new relations can be established for the new instance. You
must even understand what the general concept "copy" means in the context of this
particular instance, and whether it means anything at all.

Copying is a generic operation, whose implementation for a particular instance
depends on detailed knowledge relating to that instance. Modularity dictates that
this knowledge be contained in the instance's flavor, not in a "general copying
function". Thus the way to copy an instance is to send it a message.

The Flavor System chooses not to provide any default method for copying an
instance, and does not even suggest a standard name for the copying message,
because copying involves so many semantic issues.

466

Reference Guide to Symbolics-Lisp March 1985

One way that people have organized copying of instances is to define a message,
:copy, whose methods are combined with :append method combination. Each
method supplies some init-plist options. Thus each component flavor controls the
copying of its own aspect of the instance's behavior. The resulting appended list of
init-plist options is used to create the new instance. Each component flavor has an
:init method that extracts the init-plist options that are relevant to it and initializes
the appropriate aspect of the new instance. A wrapper can be used to clean up the
interface to the :copy message seen from the outside. A simple example follows:

(defflavor basic-copyable-object () ()
(:method-combination (:append :base-flavor-last :copy»)

(defwrapper (basic-copyable-object :copy) «) . body)
'(lexpr-funcall #'make-instance (typep self) (progn ,@body»)

(defflavor copyable-property-list-mixin () (si:property-list-mixin»

(defmethod (copyable-property-list-mixin :copy) ()
'(:property-list ,(copylist (send self :property-list»»

(defflavor example () (copyable-property-list-mixin basic-copyable-object»

(setq a (make-instance 'example»

(send a :putprop 1 'value)

(setq b (send a : copy))

(send b :get 'value) =>

(send b :putprop 1.5 'value)

(send b :get 'value) => 1.5

(send a :get 'value) =>

A related feature is the :fasd-fonn message, which provides a way for an instance
to tell the compiler how to copy it from one Lisp world into another, via a bin file.
This is different from making a second copy of the instance in the same Lisp world.
:fasd-fonn is a way to get an equivalent instance when the bin file is loaded.

467

March 1985 Ravors

56. Implementation of Flavors

An object that is an instance of a flavor is implemented using the data type
dtp-instance. The representation is a structure whose first word, tagged with a
header data type, points to a structure (known to the microcode as an "instance
descriptor") containing the internal data for the flavor. The remaining words of the
structure are value cells containing the values of the instance variables. The
instance descriptor is a defstruct that appears on the si:t1avor property of the
flavor name. It contains, among other things, the name of the flavor, the size of an
instance, the table of methods for handling messages, and information for accessing
the instance variables.

deftlavor creates such a data structure for each flavor, and links them together
according to the dependency relationships between flavors.

A message is sent to an instance simply by calling it as a function, with the first
argument being the message keyword. The instance descriptor contains a hash table
that associates the message keyword with the actual function to be called. If there
is only one method, this is that method, otherwise it is an automatically generated
function, called the combined method, that calls the appropriate methods in the
right order.

Any wrappers are incorporated into this combined method. The function that
handles the message is called with three special arguments preceding the arguments
of the message:

• self (the object to which the message was sent)
• self-mapping-table (an internal data structure used in the accessing of

instance variables)
• The message keyword

fdefine and related functions understand the function-specifier syntax
(:method flavor-name optional-method-type message-name).

56.1 Ordering Flavors, Methods, and Wrappers

You have a certain amount of freedom in the order in which you do deffiavors,
defmethods, and defwrappers. This freedom makes it easy to load programs
containing complex flavor structures without having to do things in a certain order.
It is considered important that not all the methods for a flavor need be defined in
the same file. Thus the partitioning of a program into files can be along modular
lines.

The rules for the order of definition are as follows.

468

Reference Guide to Symbolics-Usp March 1985

• Before a method can be dermed (with detmethod or defwrapper), its flavor
must have been dermed (with defllavor). This is because the system needs a
place to remember the method, and because it must know the flavor's instance
variables if the method is to be compiled.

• A flavor can be defined (with deMavor) even before all of its component
flavors have been dermed. This allows defllavors to be spread between files
according to a program's modularity, and to provide for mutually dependent
flavors. Methods can be dermed for a flavor some of whose component flavors
are not yet dermed; however, in certain cases compiling those methods
produces a warning that an instance variable was declared special (because the
system did not realize it was an instance variable). Such a warning indicates
that the compiled code will not work.

• The methods automatically generated by the :gettable-instance-variables
and :settable-instance-variables options to defllavor are generated at the
time the demavor is done.

• The first time a flavor is instantiated, the system looks through all the
component flavors and gathers various information. At this point an error is
signalled if not all of the components have been deMavored. This is also the
time at which certain other errors are detected, such as lack of a required
instance variable. The combined methods are generated at this time also, unless
they already exist. They already exist if compile-flavor-methods was used, but if
those methods are obsolete because of changes made to component flavors since the
compilation, new combined flavors are made.

58.2 Changing a Flavor

You can change anything about a flavor at any time, even after it has been
instantiated. You can change the flavor's general attributes by doing another
defllavor with the same name. You can add or modify methods by using
defmethod. If you do a defmethod with the same flavor-name, message-name,
and (optional) method-type as an existing method, that method is replaced with the
new definition. You can remove a flavor with undemavor and a method with
undefmethod.

These changes always propagate to all flavors that depend on the changed flavor.
Normally the system propagates the changes to all existing instances of the changed
flavor and all flavors that depend on it. However, this is not possible when the
flavor has been changed so drastically that the old instances would not work properly
with the new flavor. This happens if you change the number of instance variables,

469

March 1985 Ravors

which changes the size of an instance. It also happens if you change the order of
the instance variables (and hence the storage layout of an instance), or if you change
the component flavors (which can change several subtle aspects of an instance).

The system does not keep a list of all instances of each flavor, so it cannot find the
instances and modify them to conform to the new flavor definition. Instead it gives
you a warning message, on the error-output stream, that the flavor was changed
incompatibly and the old instances will not get the new version. The system leaves
the old flavor data structure intact (the old instances will continue to point at it)
and makes a new one to contain the new version of the flavor. If a less drastic
change is made, the system modifies the original flavor data structure, thus affecting
the old instances that point at it. However, if you redefine methods in such a way
that they only work for the new version of the flavor, then trying to use those
methods with the old instances does not work.

470

Reference Guide to Symbo/ics-Usp March 1985

471

March 1985 Flavors

57. Zmacs Commands for Flavors

This section documents some Zmacs commands that are useful for flavors.

The PI-. (Edit Definition) command finds the definition of a flavor
in the same way that it can find the definition of a function.

Edit Definition finds the defmition of a method if you give the
following as the function name:

(:method flavor type message)

The keyword :method can be omitted. Completion occurs on the
flavor name and message name.

Describe Flavor (PI-x)
Asks you for a flavor name; when typing the name you have
completion over the names of all defined flavors (thus this
command can be used to aid in guessing the name of a flavor).
Names of flavors and methods in the resulting display are mouse
sensitive; as usual the right mouse button gives you a menu of
operations and the left button does the most common operation,
typically positioning the editor to the source code for the thing at
which you are pointing.

List Methods (PI-x)
Asks you for a message name. Lists the methods of all flavors
that handle the message, in a mouse-sensitive display that allows
you to select methods to edit.

Edit Methods (PI-x)
Asks you for a message name and lists all the flavors that have a
method for that message. You can type in the message name,
point to it with the mouse, or let it default to the message that is
being sent by the Lisp form the cursor is inside. Unlike List
Methods, Edit Methods does not produce a display of selected
methods, but prepares to edit the methods.

As usual with this type of command, the Zmacs command c-. is
redefmed to advance the cursor to the next method in the list,
reading in its source fIle if necessary. Pressing c-. while the
display is on the screen edits the fIrst method.

List Combined Methods (PI-X)

Asks for a message name, then for a flavor name. It lists the
methods for a specified message to a specified flavor. Error
messages appear when the flavor does not handle the message
and when the flavor requested is not a composed, instantiated
flavor.

472

Reference Guide to Symbolics-Usp March 1985

List Combined Methods (M-X) can be very useful for telling what a
flavor will do in response to a message. It shows you the primary
method, the daemons, and the wrappers and lets you see the code
for all of them; press c-. to get to successive ones.

Edit Combined Methods (M-X)
Asks you for a message name and a flavor name. It lists all the
methods that would be called if that message were sent to an
instance of that flavor. You can point to the message and flavor
with the mouse; completion is available for the flavor name. As in
Edit Methods (M-X), the command skips the display and proceeds
directly to the editing phase.

473

March 1985 Ravors

58. Property List Messages

It is often useful to associate a property list with an abstract object, for the same
reasons that it is useful to have a property list associated with a symbol. This
section describes a moon flavor that can be used as a component of any new flavor
in order to provide that new flavor with a property list.

si:property-list-mixin Flavor
This moon flavor provides messages that perform the basic operations on
property lists. The messages for si:property-list-mixin are as follows:

:get indicator Message
Gets the value of this object's indicator attribute. indicator is a
keyword symbol. If there is no such attribute, returns nil.

(send net:*local-host* :get :system-type) => :lispm

:getl indicator-list Message
The :getl message is like the :get message, except that the argument
is a list of indicators. The :getl message searches down the property
list for any of the indicators in indicator-list until it finds a property
whose indicator is one of those elements. It returns the portion of
the property list beginning with the fIrst such property that it found.
If it does not find any, it returns nil.

:putprop property indicator Message
Gives the object an indicator-property of property.

:remprop indicator Message
Removes the object's indicator property by splicing it out of the
property list. It returns that portion of the list inside the object of
which the former indicator-property was the car.

:push-property value indicator Message
The indicator-property of the object should be a list (note that nil is
a list and an absent property is nil). This message sets the
indicator-property of the object to a list whose car is value and whose
cdr is the former indicator-property of the list. This is analogous to
doing:

(push value (get object indicator»

See the special form push, page 150.

474

Reference Guide to Symbolics-Usp March 1985

:property-list Message
Returns the list of alternating indicators and values that implements
the property list.

:set-property-list list Message
Sets the list of alternating indicators and values that implements the
property list to list.

:property-list list (for si:property-list-mixin) [nit Option
Initializes the list of alternating indicators and values that implements
the property list to list.

475

March 1985 Ravors

59. Flavor Examiner

The Flavor Examiner utility examines the structure of flavors defined in the Lisp
environment. You can select the Flavor Examiner with SELECT x, the System menu,
or the Select Activity Flavor Examiner or Select Activity Flavex commands.

The Flavor Examiner window is divided into six panes.
~ ~

Top

~uron • conso e idle "nute,

EdIt

Lock

Ed,t

Lock

Edit

Lock

llear
Help

The examiner panes (the three middle panes) list the answer to a query. The edit
item of each examiner pane places the contents of the pane into a Zmacs possibilities
buffer. The lock item for a examiner pane prevents the pane from being updated.

You enter a flavor name or method-spec into the interaction pane (the bottom pane).

To get started, type the name of a flavor in the interaction pane.

Methods are listed in the following format:

HESSAGE-NAHE method-type method-combinatlon-type FLAVOR

If the method-combination-type is :case, this format is used:
HESSAGE-NAHE SUBHESSAGE-NAHE method-type method-comb1natlon-type FLAVOR

Clicking on a flavor results in these actions:

• A left click on a flavor presents a menu of flavors and methods related to the
flavor. (Note that automatically generated methods to get and set instance
variables and methods associated with si:vanilla-llavor are not listed.)

• A middle click on a flavor presents a menu of related instance variables.

476

Reference Guide to Symbolics-Usp March 1985

• A right click on a flavor presents a menu of operations on the flavor, including
edit and inspect.

• Any click places on a flavor it in the flavor history pane if it is not already
there.

Clicking on a method results in these actions:

• A left click on a method lists the instance variables to which the method
refers.

• A middle click on a combined method lists the methods used to build the
combined method.

• A middle click on a noncombined method lists all methods for that message
from any flavor.

• A right click on a method presents a menu of operations on the method,
including [argiist], [documentation], [edit], [inspect], [method spec], [trace], and
[disassemble], unless the method is pseudocombined.

• Any click on a method places it in the method history if it is not already
there.

Clicking on an instance variable results in these actions:

• A left click on an instance variable lists the methods that refer to the instance
variable.

• A middle click on an instance variable shows the default value of the instance
variable.

March 1985 Conditions

PART XI.

Conditions

478

Reference Guide to Symbolics-Usp March 1985

479

March 1985 Conditions

60. Introduction

This documentation is tailored for applications programmers. It contains descriptions
of all conditions that are signalled by Symbolics Lisp Machine software. With this
information, you can write your own handlers for events detected by the system or
define and handle classe~ of events appropriate for your own application.

The documentation describes the following major topics.

• Mechanisms for handling conditions that have been signalled by system or
application code.

• Mechanisms for defining new conditions.

• Mechanisms that are appropriate for application programs to use to signal
conditions.

• All of the conditions that are defmed by and used in the system software.

60.1 Overview and Definitions

An event is "something that happens" during execution of a program. That is, it is
some circumstance that the system can detect, like the effect of dividing by zero.
Some events are errors - which means something happened that was not part of
the contract of a given function - and some are not. In either case, a program can
report that the event has occurred, and it can fmd and execute user-supplied code as
a result.

The reporting process is called signalling, and subsequent processing is called
handling. A handler is a piece of user-supplied code that assumes control when it is
invoked as a result of signalling. Symbolics Lisp Machine software includes default
mechanisms to handle a standard set of events automatically.

The mechanism for reporting the occurrence of an event relies on flavors. Each
standard class of events has a corresponding flavor called a condition. For example,
occurrences of the event "dividing by zero" correspond to the condition
sys:divide-by-zero.

The mechanism for reporting the occurrence of an event is called signalling a
condition. The signalling mechanism creates a condition object of the flavor
appropriate for the event. The condition object is an instance of that flavor. The
instance contains information about the event, such as a textual message to report,
and various parameters of the condition. For example, when a program divides a
number by zero, the signalling mechanism creates an instance of the flavor
sys:divide-by-zero.

480

Reference Guide to Symbo/ics-Usp M8Ich 1985

Handlers are pieces of user or system code that are bound for a particular condition
or set of conditions. When an event occurs, the signalling mechanism searches all of
the currently bound handlers to find the one that corresponds to the condition. The
handler can then access the instance variables of the condition object to learn more
about the condition and hence about the event.

Handlers have dynamic scope, so that the handler that is invoked for a condition is
the one that was bound most recently.

The condition system provides flexible mechanisms for determining what to do after
a handler runs. The handler can try to proceed, which means that the program
might be able to continue execution past the point at which the condition was
signalled, possibly after correcting the error. Any program can designate restart
points. This facility allows a user to retry an operation from some earlier point in a
program.

Some conditions are very specific· to a particular set of error circumstances and
others are more general. For example, fs:delete-failure is a specialization of
fs:tile-operation-failure which is in tum a specialization of fs:file-error. You
choose the level of condition that is appropriate to handle according to the needs of
the particular application. Thus, a handler can correspond to a single condition or to
a predefined class of conditions. This capability is provided by the flavor inheritance
mechanism.

481

March 1985 Conditions

61. How Applications Programs Treat Conditions

This section provides an overview of how applications programs treat conditions.

• A program signals a condition when it wants to report an occurrence of an
event.

• A program binds a handler when it wants to gain control when an event
occurs.

When the system or a user function detects an error, it signals an appropriate
condition and some handler bound for that condition then deals with it.

Conditions are flavors. Each condition is named by a symbol that is the name of a
flavor, for example, sys:unbound-variable, sys:divide-by-zero, fs:file-not-found.
As part of signalling a condition, the program creates a condition object of the
appropriate flavor. The condition object contains information about the event, such
as a textual message to report and various parameters. For example, a condition
object of flavor fs:file-not-found contains the pathname that the file system failed
to find.

Handlers are bound with dynamic scope, so the most recently bound handler for the
condition is invoked. When an event occurs, the signalling mechanism searches all of
the current handlers, starting with the innermost handler, for one that can handle
the condition that has been signalled. When an appropriate handler is found, it can
access the condition object to learn more about the error.

61.1 Example of a Handler

condition-case is a simple form for binding a handler. For example:

(condition-case ()
(II a b)

(sys:divide-by-zero "*infinity*»

This form does two things.

• Evaluates (/ / a b) and returns the result.

• Binds a handler for the sys:divide-by-zero condition which applies during the
evaluation of (/ / a b).

In this example, it is a simple handler that just returns a value. If division by zero
happened in the course of evaluating (/ / a b), the form would return the value of
*mrmity4' instead. If any other error occurred, it would be handled by the system's
default handler for that condition or by some other user handler of higher scope.

482

Reference Guide to Symbolics-Usp March 1985

You can also bind a handler for a predefined class of conditions. For example, the
symbol fs:file-operation-failure refers to the set of all error conditions in fIle
system operations, such as "fIle not found" or "directory not found" or "link to
nonexistent file", but not to such errors as "network connection closed" or "invalid
arguments to open", which are members of different classes.

81.2 Signalling

You can signal a condition by calling either signal or error. signal is the most
general signalling function; it can signal any condition. It allows either a handler or
the user to proceed from the error. error is a more restrictive version that accepts
only error conditions and does not allow proceeding. error is guaranteed never to
return to its caller.

Both signal and error have the same calling sequence. The first argument is a
symbol that names a condition; the rest are keyword arguments that let you provide
extra information about the error. See the section "Signalling Conditions", page 501.
Full details on using the signalling mechanism are in that section.

Applications programs rarely need to signal system conditions although they can.
Usually when you have a signalling application, you need to defme a new condition
flavor to signal it. Two simpler signalling functions, called ferror and fsignal, are
applicable when you want to signal without defining a new condition.

It is very important to understand that signalling a condition is not just the same
thing as throwing to a tag. *throw is a simple control-structure mechanism
allowing control to escape from an inner form to an outer form. Signalling is a
convention for finding and executing a piece of user-supplied code when one of a
class of events occurs. A condition handler might in fact do a *throw, but it is
under no obligation to do so. User programs can continue to use *throw; it is
simply a different capability with a different application.

61.3 Condition Flavors

Symbols for conditions are the names of flavors; sets of conditions are defined by the
flavor inheritance mechanism. For example, the flavor Imfs:lmfs-rIle-not-found is
built on the flavor fs:file-not-found, which is built on fs:rIle-operation-failure,
which is in turn built on the flavor error.

The flavor inheritance mechanism controls which handler is invoked. For example,
when a Symbolics Lisp Machine flle system operation fails to fmd a flle, it could
signal Imfs:lmfs-file-not-found The signalling mechanism invokes the first
appropriate handler that it finds, in this case, a handler for fs:rIle-not-found., one
for fs:rIle-operation-failure, or one for error. In general, if a handler is bound

483

March 1985 Conditions

for flavor a, and a condition object c of flavor b is signalled, then the handler is
invoked if (typep c 'a) is true; that is, if a is one of the flavors that b is built on.

The symbol condition refers to all conditions, including simple, error, and debugger
conditions. The symbol error refers to the set of all error conditions. Figure 1
shows an overview of the flavor hierarchy.

error is a base flavor for many conditions, but not all. Simple conditions are those
built on condition; debugger conditions are those built on
dbg:debugger-condition. Error conditions or errors are those built on error. For
your own condition defmitions, whether you decide to treat something as an error or
as a simple condition is up to the semantics of the application.

From a more technical viewpoint, the distinction between simple conditions and
debugger conditions hinges on what action occurs when the program does not
provide its own handler. For a debugger condition, the system invokes the
Debugger; for a simple condition, signal simply returns nil to the caller.

484

Reference Guide to Symbolics-Usp

debugger conditions

SWPle/
debugger conditions

(sys:pdl-oTerllow)

conditions

error conditions

March 1985

simple conditions

('qaery
Is:iogin-reqaired
sys:abort)

sys:network-error Is:llle-error Is:pathname-error

/
sys:local-network-error sys:remote-network-error Is:llle-reqaest-lallare Is:llle-operatloa-lallare

Figure 1. Condition flavor hierarchy

485

March 1985 Conditions

62. Creating New Conditions

An application might need to detect and signal events that are specific to the
application. To support this, you need to define new conditions.

Defining a new condition is straightforward. For simple cases, you need only two
forms: one defines the flavor, and the other dermes a :report message. Build the
flavor definition on either error or condition, depending on whether or not the
condition you are defining represents an error. The following example defines an
error condition.

(defflavor block-wrong-color () (error»

(defmethod (block-wrong-color :report) (stream)
(format stream "The block was of the wrong color."»

Your program can now signal the error as follows:

(error 'block-wrong-color)

:report requires one argument, which is a stream for it to use in printing an error
message. Its message should be a sentence, ending with a period and with no
leading or trailing newlines.

The :report method must not depend on the dynamic environment in which it is
invoked. That is, it should not do any free references to special variables. It should
use only its own instance variables. This is because the condition object might
receive a :report message in a dynamic environment that is different from the one
in which it was created. This situation is common with condition-case.

The above example is adequate but does not take advantage of the power of the
condition system. For example, the error message tells you only the class of event
detected, not anything about this specific event. You can use instance variables to
make condition objects unique to a particular event. For example, add instance
variables block and color to the flavor so that error can use them to build the
condition object:

(defflavor block-wrong-color (block color) (error)
:initable-instance-variables
:gettable-instance-variables)

(defmethod (block-wrong-color :report) (stream)
(format stream "The block -5 was -5, which is the wrong color."

block color»

The :initable-instance-variables option dermes :block and :color init options; the
:gettable-instance-variables option defines methods for the :block and :color
messages, which handlers can send to find out details of the condition.

486

Reference Guide to Symbolics-Usp

Your program would now signal the error as follows:
(error 'block-wrong-color :block the-bad-block

:color the-bad-color)

March 1985

The only other interesting thing to do when creating a condition is to define proceed
types. See the section "Proceeding", page 517.

It is a good idea to use compile-flavor-methods for any condition whose
instantiation is considered likely, to avoid the need for run-time combination and
compilation of the flavor. See the macro compile-flavor-methods, page 438.
Otherwise, the flavor must be combined and compiled the first time the event
occurs, which causes perceptible delay.

62.1 Creating a Set of Condition Flavors

You can define your own sets of conditions and condition hierarchies. Just create a
new flavor and build the flavors on each other accordingly. The base flavor for the
set does not need a :report method if it is never going to be signalled itself. For
example:

(defflavor block-world-error () (error»

(defflavor block-wrong-color (block color) (block-world-error)
:initable-instance-variables)

(defflavor block-too-big (block container) (block-world-error)
:initable-instance-variables)

(defmethod (block-too-big :report) (stream)
(format stream HThe block -5 is too big to fit in the -S.N

block container»

(defmethod (block-wrong-color :report) (stream)
(format stream HThe block -5 was -5, which is the wrong color. N

block color»

487

March 1985 Conditions

63. Establishing Handlers

63.1 What Is a Handler?

A handler consists of user-supplied code that is invoked when an appropriate
condition signal occurs. Symbolics Lisp Machine software includes default handlers
for all standard conditions. Application programs need not handle all conditions
explicitly but can provide handlers for just the conditions most relevant to the needs
of the application.

63.2 Classes of Handlers

The simplest form of handler handles every error condition, each in the same way.
The form for binding this handler is ignore-errors. In addition, four basic forms
are available to bind handlers for particular conditions. Each of these has a standard
version and a conditional variant:

• condition-bind and condition-bind-if
condition-bind is the most general form. It allows the handler to run in the
dynamic environment in which the error was signalled and to try to proceed
from the error.

• condition-bind-default and condition-bind-default-if
condition-bind-default is a variant of condition-bind It binds a handler
on the default condition list instead of the bound condition list. The
distinction is described in these two sections. See the section "Signalling
Conditions", page 501. See the section "Default Handlers and Complex
Modularity", page 509.

• condition-case and condition-case-it
condition-case is the simplest form to use. It returns to the dynamic
environment in which the handler was bound and so does not allow
proceeding.

• condition-caII and condition-caIl-if
condition-caII is a more general version of condition-case. It uses user­
specified predicates to select the clause to be executed.

In the conditional variants, the handlers are bound only if some expression is true.

488

Reference Guide to Symbo/ics-Usp March 1985

63.3 Reference Material

condition-bind bindings body... Special Form
condition-bind binds handlers for conditions and then evaluates its body
with those handlers bound. One of the handlers might be invoked if a
condition signal occurs while the body is being evaluated. The handlers
bound have dynamic scope.

The following simple example sets up application-specific handlers for two
standard error conditions, fs:file-not-found and fs:delete-failure.

(condition-bind «fs:file-not-found 'my-fnf-handler)
. (fs:delete-failure 'my-delete-handler»

(deletef pathname»

The format for condition-bind is:

(condition-bind «condition-flavor-I handler-I)
(condition-flavor-2 handler-2)

form-I
form-2

form-n)

(condition-flavor-m handler-m»

condition-flavor-j The name of a condition flavor or a list of names of
condition flavors. The condition-flavor-j need not be
unique or mutually exclusive. (See the section "Finding a
Handler", page 501. Search order is explained in that
section.)

handler-j A form that is evaluated to produce a handler function.

form-i

One handler is bound for each condition flavor clause in
the list. The forms for binding handlers are evaluated in
order from handler-I to handler-me All the handler-j
forms are evaluated and then all handlers are bound.

When handler is a lambda-expression, it is compiled. The
handler function is a lexical closure, capable of referring to
the lexical variables of the containing block.

A body, constituting an implicit progn. The forms are
evaluated sequentially. The condition-bind form returns
whatever values form-n returns (nil when the body
contains no forms). The handlers that are bound
disappear when the condition-bind form is exited.

If a condition signal occurs for one of the condition-flavor-j during evaluation
of the body, the signalling mechanism examines the bound handlers in the

489

March 1985 Conditions

order in which they appear in the condition-bind form, invoking the first
appropriate handler. You can think of the mechanism as being analogous to
typecase or selectq. It invokes the handler function with one argument,
the condition object. The handler runs in the dynamic environment in which
the error occurred; no ·throw is performed.

Any handler function can take one of three actions:

• It can return nil to indicate that it does not want to handle the
condition after all. The handler is free to decide not to handle the
condition, even though the condition-flavor-j matched. (In this case the
signalling mechanism continues to search for a condition handler.)

• It can throw to some outer catch-form, using ·throw.

• If the condition has any proceed types, it can proceed from the
condition by sending a :proceed message to the condition object and
returning the resulting values. In this case, signal returns all of the
values returned by the handler function. (Proceed types are not
available for conditions signalled with error. See the section
"Proceeding", page 517.)

condition-bind-if cond-fonn bindings body... Special Fonn
condition-bind-if binds its handlers conditionally. In all other respects, it is
just like condition-bind It has extra subform called cond-fonn, for the
conditional. Its format is:

(condition-bind-if cond-fonn

fonn-l
fonn-2

fonn-n)

«condition-flavor-l handler-I)
(condition-flavor-2 handler-2)

(condition-flavor-m handler-m»

condition-bind-if first evaluates cond-fonn. . If the result is nil, it evaluates
the handler forms but does not bind any handlers. It then executes the
body as if it were a progn. If the result is not nil, it continues just like
condition-bind binding the handlers and executing the body.

condition-bind-default bindings body ... Special Fonn

condition-bind-default-if cond-fonn bindings body... Special Fonn
These forms bind their handlers on the default handler list instead of the
bound· handler list. (See the section "Finding a Handler", page 501.) In
other respects condition-bind-default is just like condition-bind, and

490

Reference Guide to Symbolics-Usp March 1985

condition-bind-default-if is just like condition-bind-if. Such default
handlers are examined by the signalling mechanism only after all of the
bound handlers have been examined. Thus, a condition-bind-default can
be overridden by a condition-bind outside of it. This advanced feature is
described in more detail in another section. See the section "Default
Handlers and Complex Modularity", page 509.

condition-case (vars ...) form clause... Special Form
condition-case binds handlers for conditions, expressing the handlers as
clauses of a case-like construct instead of as functions. The handlers bound
have dynamic scope.

Examples:

(condition-case ()
(time:parse string)

(time:parse-error *default-time*»

(condition-case (e)
(time:parse string)

(time:parse-error
(format error-output "-A, using default time instead." e)
default-time»

(do () (ni 1)

(condition-case (e)
(return (time:parse string»

(time:parse-error
(setq string

(prompt-and-read
:string
"-A-XUse what time instead? " e»»)

The format is:

(condition-case (varl var2 ...)
form

(condition-fT,avor-l form~l-l form-1-2 ... form-l-n)
(condition-flavor-2 form-2-1 form-2-2 ... form-2-n)

(condition-fT,avor-m form-m-l form-m-2 ... form-m-n»

Each condition-flavor-j is either a condition flavor, a list of condition flavors,
or :no-error. If :no-error is used, it must be the last of the handler
clauses. The remainder of each clause is a body, a list of forms constituting
an implicit prop.

condition-case binds one handler for each clause. The handlers are bound
simultaneously.

If a condition is signalled during the evaluation of fonn, the signalling

491

March 1985 Conditions

mechanism examines the bound handlers in the order in which they appear
in the defmition, invoking the first appropriate handler.

condition-case normally returns the values returned by form. If a condition
is signalled during the evaluation of form, the signalling mechanism
determines whether the condition is one of the condition-flavor-j. If so, the
following actions occur:

1. It automatically performs a ·throw to unwind the dynamic
environment back to the point of the condition-case. This discards
the handlers bound by the condition-case.

2. It executes the body of the corresponding clause.

3. It makes condition-case return the values produced by the last form
in the handler clause.

While the clause is executing, varl is bound to the condition object that was
signalled and the rest of the variables (var2, ...) are bound to nil. If none of
the clauses needs to examine the condition object, you can omit varl.

(condition-case () .•.)

As a special case, condition-flavor-m (the last one) can be the special symbol
:no-error. If form is evaluated and no error is signalled during the
evaluation, condition-case executes the :no-error clause instead of
returning the values returned by form. The variables varl, var2, and so on
are bound to the values produced by form, in the style of
multiple-value-bind, so that they can be accessed by the body of the
:no-error case. Any extra variables are bound to nil. .

When an event occurs that none of the cases handles, the signalling
mechanism continues to search the dynamic environment for a handler. You
can provide a case that handles any error condition by using error as one
condition-flavor-j .

condition-case-if cond-form (vars ...) form clause... Special Form
condition-case-if binds its handlers conditionally. In all other respects, it is
just like condition-case. Its syntax includes cond-form, a subform that
controls binding handlers:

(condition-ease-if cond-form (var)
form

(condition-flavor-l form-l-l form-l-2 ... form-l-n)
(condition-f1,avor-2 form-2-l form-2-2 ... form-2-n)

(condition-flavor-m form-m-l form-m .. 2 ... form-m-n»

condition-case-if fIrSt evaluates cond-form. If the result is nil, it does not

492

Reference Guide to Symbolics-Usp March 1985

set Up any handlers; it just evaluates the form. If the result is not nil, it
continues just like condition-case, binding the handlers and evaluating the
form.

The :no-error clause applies whether or not cond-{orm is nil.

condition-call (vars ...) form clause... Special Form
condition-call binds handlers for conditions, expressing the handlers as
clauses of a case-like construct instead of as functions. These handlers have
dynamic scope.

condition-call and condition-case have similar applications. The major
distinction is that condition-call provides the mechanism for using a
complex conditional criterion to determine whether or not to use a handler.
condition-call clauses do not have the ability to decline to handle a
condition because the clause is selected on the basis of the predicate, rather
than on the basis of the type of a condition.

The format is:

(condition-call (var)
{onn

(predicate-l {onn-l-l {orm-1-2 ... (onn-l-n)
(predicate-2 {orm-2-l {orm-2-2 ... (onn-2-n)

(predicate-m {onn-m-l (onn-m-2 ... (onn-m-n»

Each predicate-j must be a function of one argument. The predicates are
called, rather than evaluated. The {onn-j-i are a body, a list of forms
constituting an implicit prop. The handler clauses are bound
simultaneously.

When a condition is signalled, each predicate in tum (in the order in which
they appear in the definition) is applied to the condition object. The
corresponding handler clause is executed for the first predicate that returns a
value other than nil. The predicates are called in the dynamic environment
of the signaller.

condition-call takes the following actions when it fmds the right predicate:

1. It automatically performs a ·throw to unwind the dynamic
environment back to the point of the condition-call. This discards
the handlers bound by the condition-call.

2. It executes the body of the corresponding clause.

3. It makes condition-call return the values produced by the last form in
the clause. .

During the execution of the clause, the variable var is bound to the condition

493

March 1985 Conditions

object that was signalled. If none of the clauses needs to examine the
condition object, you can omit var:

(condition-call () •••)

conditlon-cell end :no-error

As a special case, predicate-m (the last one) can be the special symbol
:no-error. If form is evaluated and no error is signalled during the
evaluation, condition-case executes the :no-error clause instead of
returning the values returned by form. The variables vars are bound to the
values produced by form, in the style of multiple-value-bind, so that they
can be accessed by the body of the :no-error case. Any extra variables are
bound to nil. .

Some limitations on predicates:

• Predicates must not have side effects. The number of times that the
signalling mechanism chooses to invoke the predicates and the order in
which it invokes them are not defined. For side effects in the dynamic
environment of the signal, use condition-bind

• The predicates are not lexical closures and therefore cannot access
variables of the lexically containing form, unless those variables are
declared special.

• Lambda-expression predicates are not compiled.

condition-call-if cond-form (van ...) form clause... Special Form
condition-caIl-if binds its handlers conditionally. In all other respects, it is
just like condition-ca11. Its format includes cond-form, the subform that
controls binding handlers:

(condition-call-i f cond-form (var)
form
(predicate-l form-l-l form-1-2 ... form-l-n)
(predicate-2 form-2-1 form-2-2 ... form-2-n)

(predicate-m form-m-l form-m-2 ... (orm-m-n»

condition-call-if first evaluates cond-form. If the result is nil, it does not
set up any handlers; it just evaluates the form. If the result is not nil, it
continues just like condition-call, binding the handlers and evaluating the
form.

The :no-error clause applies whether or not cond-form is nil.

ignore-errors body... Special Form
ignore-errors sets up a very simple handler on the bound handlers list that

494

Reference Guide to Symbollcs-Usp March 1985

handles all error conditions. Normally, it executes body and returns the first
value of the last form in body as its first value and nil as its second value.
If an error signal occurs while body is executing, ignore-errors immediately
returns with nil as its fIrSt value and something not nil as its second value.

ignore-errors replaces errset and catch-error.

63.4 Application: Handlers Examining the Stack

condition-bind handlers are invoked in the dynamic environment in which the
error is signalled. Thus the Lisp stack still holds the frames that existed when the
error was signalled. A handler can examine the stack using the functions descnDed
in this section.

One important application of this facility is for writing error logging code. For
example, network servers might need to keep providing service even though no user
is available to run the Debugger. By using these functions, the server can record
some information about the state of the stack into permanent storage, so that a
maintainer can look at it later and determine what went wrong.

These functions return information about stack frames. Each stack frame is
identified by a frame pointer, represented as a Lisp locative pointer. In order to use
any of these functions, you need to have appropriate environment bindings set up.
The macro dbg:with-erring-frame both sets up the environment properly and
provides a frame pointer to the stack frame that got the error. Within the body of
that macro, use the appropriate functions to move up and down stack frames; these
functions take a frame pointer and return a new frame pointer by following links in
the stack.

These frame-manipulating functions are actually sub primitives, even though they do
not have a % sign in their name. If given an argument that is not a frame pointer,
they stand a good chance of crashing the machine. Use them with care.

The functions that return new frame pointers work by going to the next frame or
the previous frame of some category. "Next" means the frame of a procedure that
was invoked more recently (the frame called by this one; toward the top of the
stack). "Previous" means the frame of a procedure that was invoked less recently
(the caller of this frame; towards the base of the stack).

These functions assume three categories of frames: interesting active frames, active
frames, and open frames.

• An active frame simply means a procedure that is currently running (or active)
on the stack.

• Interesting active frames include all of the active frames except those that are
parts of the internals of the Lisp interpreter, such as frames for eval, apply,

495

March 1985 Conditions

funcall, let, and other basic Lisp special forms. The list of such functions is
the value of the system constant dbg:*uninteresting-functions·.

• Open frames include all the active frames as well as frames that are still under
construction, for functions whose arguments are still being computed. Open
frames and active frames are synonymous.

63.4.1 Reference Material

The functions in this section all take a frame pointer as an argument. For
functions that indicate a direction on the stack, using nil as the argument indicates
the frame at relevant end of the stack. For example, when you are using a function
that looks up the stack, nil as the argument indicates the top-most stack frame.

Remember to use the functions in this section only within the context of the
dbg:with-erring-frame macro.

dbg:with-erring-frame (var object) Macro
dbg:with-erring-trame sets up an environment with appropriate bindings
for using the rest of the functions that examine the stack. It binds var with
the frame pointer to the stack frame that signalled the error. var is always
a pointer to an interesting stack frame. object is the condition object for the
error, which was the first argument given to the condition-bind handler.

(defun my-handler (condition-object)
(dbg:with-erring-frame (frame-ptr condition-object)

body ...))

Inside body, the variable frame-ptr is bound to the frame pointer of the
frame that got the error.

Sometimes, you might want to use the special variable dbg:·current-trame·
as var because some functions expect this special variable to be bound to the
stack frame that signalled the error.

You would use this special variable if you are sending the
:bug-report-description message to the condition object, which calls stack­
examination routines that depend on the idea of a current frame, in addition
to the other things that dbg:with-erring-trame sets up.
:bug-report-description is the message that generates the text that the
Debugger c-t1 command puts in th~ mail composition window. See the
message :bug-report-description, page 525.

dbg:get-frame-function-and-args frame-pointer Function
dbg:get-frame-function-and-args returns a list containing the name of the
function for frame-pointer and the values of the arguments.

496

Reference Guide to Symbolics-Usp March 1985

dbg:trame-next-active-frame frame-pointer Function
dbg:trame-next-active-frame returns a frame pointer to the next active
frame following frame-pointer. If frame-pointer is the last active frame on the
stack, it returns nil.

dbg:trame-next-interesting-active-frame frame-pointer Function
dbg:frame-nest-interesting-active-frame returns a frame pointer to the
next interesting active frame following frame-pointer. If frame-pointer is the
last interesting active frame on the stack, it returns nil ..

dbg:frame-nen-open-frame frame-pointer Function
dbg:frame-next-Gpen-frame returns a frame pointer to the next open
frame following frame-pointer. If frame-pointer is the last open frame on the
stack, it returns nil.

dbg:trame-previous-active-frame frame-pointer Function
dbg:frame-previous-active-frame returns a frame pointer to the previous
active frame before frame-pointer. If frame-pointer is the first active frame on
the stack, it returns nil.

dbg:frame-previous-interesting-active-frame frame-pointer Function
dbg:trame-previous-interesting-active-frame returns a frame pointer to
the previous interesting active frame before frame-pointer. If frame-pointer is
the fll'St interesting active frame on the stack, it returns nil.

dbg:trame-previous-open-trame frame-pointer Function
dbg:frame-previous-open-frame returns a frame pointer to the previous
open frame before frame-pointer. If frame-pointer is the first open frame on
the stack, it returns nil.

dbg:trame-next-ntb-active-frame frame-pointer &optional (count 1) Function
dbg:trame-nest-ntb-active-trame goes up the stack by count active frames
from frame-pointer and returns a frame pointer to that frame. It returns a
second value that is not nil. When count is positive, this is like calling
dbg:frame-next-active-frame count times; count can also be negative or
zero. If either end of the stack is reached, it returns a frame pointer to the
first or last active frame and nil.

dbg:frame-next-ntb-interesting-active-frame frame-pointer Function
&optional (count 1)

dbg:frame-next-ntb-interesting-active-frame goes up the stack by count
interesting active frames from frame-pointer and returns a frame pointer to
that frame. It returns a second value that is not nil. When count is
positive, this is like calling dbg:frame-next-interesting-active-frame count
times; count can also be negative or zero. If either end of the stack is
reached, it returns a frame pointer to the first or last active frame and nil.

497

March 1985 Conditions

dbg:trame-nen-nth-open-trame frame-pointer &optional (count 1) Function
dbg:frame-nen-nth-open-frame goes up the stack by count open frames
from frame-pointer and returns a frame pointer to that frame. It returns a
second value that is not nil. When count is positive, this is like calling
dbg:trame-nen-open-frame count times; count can also be negative or zero.
If either end of the stack is reached, it returns a frame pointer to the first
or last active frame and nil.

dbg:frame-out-to-interesting-active-trame {rome-pointer Function
dbg:trame-out-to-interesting-actlve-frame returns either {rome-pointer (if
it points to an interesting active frame) or the previous interesting active
frame before (rome-pointer. (This is what the C-ft-U command in the
debugger does.)

dbg:frame-active-p (rome-pointer Function
dbg:frame-active-p· indicates whether frame-pointer is an active frame.

Value
nil
not nil

Meaning
Frame is not active
Frame is active

dbg:frame-real-tunction (rome-pointer Function
dbg:frame-real-tunction returns either the function object associated with
(rome-pointer or self when the frame was the result of sending a message to
an instance.

dbg:frame-totaI-number-of-args (rome-pointer Function
dbg:frame-totaI-number-of-args returns the number of arguments that
were passed in {rome-pointer. For functions that take an &rest parameter,
each argument is counted separately. Sending a message to an instance
results in two implicit arguments being passed internally along with the other
arguments. These implicit arguments are included in the count.

dbg:trame-number-of-spread-arga frame-pointer &optional (type Function
:supplied)

dbg:frame-number-of-supplied-args returns the number. of "spread"
arguments that were passed in frame-pointer. (These are the arguments
that are not part of a &rest parameter.) Sending a message to an instance
results in two implicit arguments being passed internally along with the other
arguments. These implicit arguments are included in the count.

type requests more specific defmition of the number:

Value
:supplied

Meaning
Returns the number of arguments that were actually
passed by the caller, except for arguments that were bound
to a &rest parameter. This is the default.

498

Reference Guide to Symbolics-Lisp March 1985

:expected

:allocated

Returns the number of arguments that were expected by
the function being called.
Returns the number of arguments for which stack
locations have been allocated. In the absence of a &rest
parameter, this is the same as :expected for compiled
functions, and the same as :supplied for interpreted
functions. If stack locations were alloca~ for arguments
that were bound to a &rest parameter, they are included
in the returned count.

These values would all be the same except in cases where a wrong-number­
of-arguments error occurred, or where there are optional arguments (expected
but not supplied).

dbg:frame-arg-value frame-pointer n &optional callee-context Function
no-error-p

dbg:frame-arg-value returns the value of the nth argument to
frame-pointer. It returns a second value, which is a locative pointer to the
word in the stack that holds the argument. If n is out of range, then it
takes action based on no-error-p: if no-error-p is nll, it signals an error,
otherwise it returns nil. n can also be the name of the argument (a symbol,
but it need not be in the right package). Each argument passed for an
&rest parameter counts as a separate argument when n is a number.
dbg:frame-arg-value controls whether you get the caller or callee copy of
the argument (original or possibly modified.)

dbg:frame-number-of-Iocals (rome-pointer Function
dbg:frame-number-of-Iocals returns the number of local variables allocated
for frame-pointer.

dbg:frame-Iocal-value frame-pointer n &optional no-error-p Function
dbg:frame-locaI-value returns the value of the nth local variable in
(rome-pointer. n can also be the name of the local variable (a symbol, but it
need not be in the right package). It returns a second value, which is a
locative pointer to the word in the stack that holds the local variable. If n is
out of range, then the action is based on no-error-p: if no-error-p is nil, it
signals an error, otherwise it returns nil.

dbg:frame-self-value frame-pointer &optional instance-frame-only Function
dbg:frame-self-value returns the value of self in frame-pointer, or nil if
self does not have a value. If instance-frame-only is not nil then it returns
nil unless this frame is actually a message-sending frame created by send.

dbg:frame-real-value-disposition frame-pointer Function
dbg:frame-real-value-disposition returns a symbol indicating how the
calling function is going to handle the values to be returned by this frame.

499

March 1985 Conditions

If the calling function just returns the values to its caller, then the symbol
indicates how the fmal recipient of the values is going to handle them.
Value Meaning
:ignore The values would be ignored; the function was called for

effect.
:single The first value would be received and the rest would not;

the function was called for value.
:multiple All the values would be received; the function was called

for multiple values. It returns a second value indicating
the number of values expected. nil indicates an
indeterminate number and is always returned.

dbg:print-tunction-and-args frame-pointer &optional show-pc-p Function
dbg:print-function-and-args prints the name of the function executing in
frame-pointer and the names and values of its arguments, in the same format
as the Debugger uses. If show-pc-p is true, the program counter value of the
frame, relative to the beginning of the function, is printed in octal.
dbg:print-function-and-args returns the number of local slots occupied by
arguments.

dbg:print-frame-Iocals (rome-pointer local-start &optional (indent 0) Function
dbg:print-frame-Iocals prints the names and values of the local variables of
frame-pointer. local-start is the first local slot number to print; the value
returned by dbg:print-function-and-args is often suitable for this. indent
is the number of spaces to indent each line; the default is no indentation.

500

Reference Guide to Symbollcs-LJsp March 1985

501

March 1985 Conditions

64. Signalling Conditions

64.1 Signalling Mechanism

The following functions and macros invoke the signalling mechanism, which finds
and invokes a handler for the condition.

error
signal
ferror
fsignal
signal-proceed-case

64.1.1 Finding a Handler

The signalling mechanism finds a handler by inspecting four lists of handlers, in this
order:

1. It first looks down the list of bound handlers, which are handlers set up by
condition-bind, condition-case, and condition-call forms.

2. Next, it looks down the list of default handlers, which are set up by
condition-bind-default.

3. Next, it looks down the list of interactive handlers. This list normally contains
only one handler, which enters the Debugger if the condition is based on
dbg:debugger-condition and declines to handle it otherwise.

4. Finally, it looks down the list of restart handlers, which are set up by
error-restart, error-restart-Ioop, arid catch-error-restart. See the section
"Default Handlers and Complex Modularity", page 509. See the section
"Restart Handlers", page 513.

5. If it gets to the end of the last list without finding a willing handler, one of
two things happens.

• signal returns nil when both of the following are true:

o The condition was signalled with signal, fsignal, or
signal-proceed-case.

o The condition object is not an instance of a condition based on
error.

502

Reference Guide to Symbolics~Usp March 1985

• The Debugger assumes control.

The signalling inechanism checks each handler to see if it is willing to handle the
condition. Some handlers have the ability to decline to handle the condition, in
which case the signalling mechanism keeps searching. It calls the fIrst willing
handler it fInds.

As we have seen, the signalling mechanism searches for handlers in a SpecifIc order.
It looks at all the bound handlers before any of the default handlers and all of the
default handlers before any of the restart handlers. Thus, it tries any
condition-bind handler before any handler bound by condition-bind-default, even
though the condition-bind-default is within the dynamic scope of the
condition-bind. Similarly, it considers a condition-bind handler before an
error-restart handler, even when the error-restart handler was bound more
recently. See the section "Default Handlers and Complex Modularity", page 509.

While a bound or default handler is executing, that handler and all handlers inside it
are removed from the list of bound or default handlers. This is to prevent infInite
recursion when a handler signals the same condition that it is handling, as in the
following simplistic example:

(condition-bind «error '(lambda (x) (ferror "foo"»»
(ferror "foo"»

If you want recursion, the handler should bind its own condition.

64.1.2 Signalling Simple Conditions

If a simple condition or a debugger condition not based on error is signalled, the
signalling mechanism searches for a handler on the bound handler and default
handler lists. When it fInds one, it invokes it. Otherwise, the signalling mechanism
checks for an interactive handler, invoking the fIrst one it fInds. If there are no
interactive handlers, the fIrst restart handler for that condition is invoked. If no
restart handler for the condition is found, signal returns nil; error enters the
Debugger.

Normally, there is only one interactive handler. This handler calls the debugger if
the condition is a debugger condition and not a simple condition. See the section
"Interactive Haridlers", page 511.

64.1.3 Signalling Errors

In practice, if the signal function is applied to an error condition object, signal is
very unlikely to return nil, because most processes contain a restart handler that
handles all error conditions. The function at the base of the stack of most processes
contains a catch-error-restart form that handles error and sys:abort. Thus, if
you are in the Debugger as a result of an error, you can always use ABORT. The
restart handler at the base of the stack always handles sys:abort and either
terminates or restarts the process.

503

March 1985 Conditions

64.1.4 Restriction Due to Scope

A condition must be signalled only in the environment in which the event that it
represents took place, to insure that handlers run in the proper dynamic
environment. Therefore, you cannot signal a condition object that has already been
signalled once. In particular, when you are writing a handler, you cannot have that
handler signal its condition argument. Similarly, if a condition object is returned by
some program (such as the open function given nil for the :error keyword), you
cannot signal that object.

It is not correct to pass on the condition by signalling the handler's condition
argument. This is incorrect:

(defun condition-handler (condition)
(if something (*throw ...) (signal condition»)

Instead you should do this:

or this:

(defun condition-handler (condition)
(if something (*throw •..) nil»

(defun condition-handler (condition)
(if something (*throw ...) (signal 'some-other-condition»)

64.2 Reference Material

signal flavor-name &rest init-options Function
signal is the primitive function for signalling a condition. The argument
flavor-name is a condition flavor symbol. The init-options are the init options
when the condition-object is created; they are passed in the :init message
to the instance. (See the function make-instance, page 430.) signal
creates a new condition object of the specified flavor, and signals it. If no
handler handles the condition and the object is not an error object, signal
returns nil. If no handler handles the condition and the object is an error
object, the Debugger assumes control.

In a more advanced form of signal, flavor-name can be a condition object
that has been created with make-condition but not yet signalled. In this
case, init-options is ignored.

error flavor-name &rest init-options Function
error is the function for signalling a condition that is not proceedable. The
argument flavor-name is a condition flavor symbol or an error object, created
by make-condition. The in it-options are the init options specified when the
error object is created; they are passed in the :init message. error is similar
to signal but restricted in the following ways:

504

Reference Guide to Symbolics-Lisp March 1985

• error sets the proceed types of the error object to nil so that it cannot
be proceeded.

• If no handler exists, the Debugger assumes control, whether or not the
object is an error object.

• error never returns to its caller.

In a more advanced form of error, flavor-name can be a condition object
that has been created with make-condition but not yet signalled. In this
case, init-options is ignored.

For compatibility with the old Maclisp error function, error tries to
determine that it has been called with Maclisp-style arguments and turns
into an fsignal or ferror as appropriate. If flavor-name is a string or a
symbol that is not the name of a flavor, and error has no more than three
arguments, error assumes it was called with Maclisp-style arguments.

fsignal fonnat-string &rest fonnat-args Function
fsignal is a simple function for signalling when you do not care to use a
particular condition. fsignal signals dbg:proceedable-ferror. (See the
flavor dbg:proceedable-ferror, page 532.) The arguments are passed as
the :format-string and :format-args init keywords to the error object.

ferror fonnat-string &rest fonnat-args Function
ferror is a simple function for signalling when you do not care what the
condition is. ferror signals ferror. (See the flavor ferror, page 532.) The
arguments are passed as the :format-string and :format-args init keywords
to the error object.

The old (ferror nil ...) syntax continues to be accepted for compatibility
reasons indefinitely; the nil is ignored. An error is signalled if the first
argument is a symbol other than nil; the first argument must be nil or a
string.

parse-ferror fonnat-string &rest fonnat-args Function
Signals an error of flavor sys:parse-ferror. fonnat-string and fonnat-args
are passed as the :format-string and :format-args init options to the error
object.

See the flavor parse-ferror, page 543.

errorp object Function
errorp returns t if object is an error object, and nil otherwise. That is:

(errorp x) <=> (typep x 'error)

505

March 1985 Conditions

make-condition flavor-name &rest init options Function
make-condition creates a condition object of the specified flavor with the
specified init-options. This object can then be signalled by passing it to
signal or error . Note that you are not supposed to design functions that
indicate errors by returning error objects; functions should always indicate
errors by signalling error objects. This function makes it possible to build
complex systems that use subroutines to generate condition objects so that
their callers can signal them.

check-arg var-name predicate description Macro
The check-arg form is useful for checking arguments to make sure that
they are valid. A simple example is:

(check-arg foo stringp "a string")

foo is the name of an argument whose value should be a string. stringp is
a predicate of one argument, which returns t if the argument is a string.
"a string" is an English description of the correct type for the variable.

The general form of check-arg is

(check-arg var-name
predicate
description)

var-name is the name of the variable whose value is of the wrong type. If
the error is proceeded this variable is setq'ed to a replacement value.
predicate is a test for whether the variable is of the correct type. It can be
either a symbol whose function definition takes one argument and returns
non-nil if the type is correct, or it can be a nonatomic form which is
evaluated to check the type, and presumably contains a reference to the
variable var-name. description is a string which expresses predicate in
English, to be used in error messages.

The predicate is usually a symbol such as rlXp, stringp, listp, or closurep,
but when there isn't any convenient predefined predicate, or when the
condition is complex, it can be a form. For example:

(defun testl (a)
(check-arg a

...)
(and (numberp a) (s a 10.) (> a 0.»
"a number from one to ten")

If test! is called with an argument of 17, the following message is printed:

The argument A to TEST1, 11, was of the wrong type.
The function expected a number from one to ten.

In general, what constitutes a valid argument is specified in two ways in a
check-argo description is human-understandable and predicate is executable.
It is up to the user to ensure that these two specifications agree.

506

Reference Guide to Symbolics-Usp March 1985

check-arg uses predicate to determine whether the value of the variable is of
the correct type. If it is not, check-arg signals the
sys:wrong-type-argument condition. See the flavor
sys:wrong-type-argument, page 539.

check-arg-type var-name type-name [description] Macro
This is a useful variant of the check-arg form. A simple example is:

(check-arg-type foo :number)

foo is the name of an argument whose value should be a number. :number
is a value which is passed as a second argument to typep; that is, it is a
symbol that specifies a data type. The English form of the type name, which
gets put into the error message, is found automatically.

The general form of check-arg-type is:

(check-arg-type var-name
type-name
description)

var-name is the name of the variable whose value is of the wrong type. If
the error is proceeded this variable is setq'ed to a replacement value.
type-name describes the type which the variable's value ought to have. It can
be exactly those things acceptable as the second argument to typep.
description is a string which expresses predicate in English, to be used in
error messages. It is optional. If it is omitted, and type-name is one of the
keywords accepted by typep, which describes a basic Lisp data type, then the
right description is provided correctly. If it is omitted and type-name
describes some other data type, then the description is the word "a" followed
by the printed representation of type-name in lowercase.

argument-typecase arg-name &body clauses Special Form
argument-typecase is a hybrid of typecase and check-arg-type. Its
clauses look like clauses to typecase. argument-typecase automatically
generates an otherwise clause which signals an error. The proceed types to
this error are similar to those from check-arg; that is, you can supply a new
value that replaces the argument that caused the error.

For example, this:

(defun foo (x)
(argument-typecase x

(:symbol (print 'symbol»
(:number (print 'number»»

is the same as this:

March 1985

(defun foo (x)
(check-arg x

(typecase x
(:symbol (print 'symbol) t)
(:number (print 'number) t)
(otherwise nil»

"a symbol or a number"»

507

Conditions

508

Reference Guide to Symbolics-Usp March 1985

509

March 1985 Conditions

65. Default Handlers and Complex Modularity

When more than one handler exists for a condition, which one should be invoked?
The signalling mechanism has an elaborate rule, but in practice, it usually invokes
the innermost handler. See the section "Finding a Handler", page 501. "Innermost"
is defined dynamically and thus means "the most recently bound handler".

This decision is made on the basic principle of modularity and referential
transparency: a function should behave the same way, regardless of what calls it.
Therefore, whether a handler bound bya function gets invoked should not depend
on what is going on with that function's callers.

For example, suppose function a sets up a handler to deal with the
fs:file-not-found condition, and then calls procedure b to perform some service for
it. Now, unbeknownst to a, b sometimes opens a file, and b has a condition
handler for fs:file-not-found If b's file is not found, b's handler handles the error
rather than a's. This is as it should be, because it should not be visible to a that b
uses a file (this is a hidden implementation detail of b). a's unrelated condition
handler should not meddle with b's internal functioning. Therefore, the signalling
mechanism follows a basic inside-to-outside searching rule.

Sometimes a function needs to signal a condition but still handle the condition itself
if none of its callers handles it. On first encounter, this need seems to require an
outside-to-inside searching rule instead of the inside-to-outside searching rule
mandated by modularity considerations. How can you circumvent the rules to allow
a function to handle something only if no outer function handles it?

Several strategies are available for dealing with this. Because of our lack of
experience with the condition signalling system, we are not yet sure which of these
are better than others. We are providing several mechanisms in order to allow
experimentation and flexibility.

• The simplest solution is to provide a proceed type for proceeding from the
Debugger. That is, your program signals an ~rror to allow callers to handle
the condition. If none of them handles it, the Debugger assumes control.
Provided that the user decides to use the proceed type, your program then gets
to handle the condition. If what your program wanted to do was to prompt
the user anyway, this might be the right thing. This is most likely true if you
think that a program error is probably happening and the user might want to
be able to trace and manipulate the stack using the Debugger.

• Another simple solution is to signal a cqndition that is not an error. signal
returns nil when no handler is found, and your program can take appropriate
action.

510

Reference Guide to Symbolics-Usp March 1985

• Use condition-bind-default to create a handler on the default handler list.
The signalling mechanism searches this list only after searching through all
regular bound handlers. One drawback of this scheme is that it works only to
one level. If you have three nested functions, you cannot get outside-to-inside
modularity for all three, because only two lists exist, the bound list and the
default list. This facility is probably good enough for some applications
however .

• Use dbg:condition-handled-p to determine whether a handler has been
bound for a particular flavor. This has the advantage that it works for any
number of levels of nested handler, instead of only two. One disadvantage is
that it can return :maybe, which is ambiguous.

The simple solutions work only if your program is doing the signalling. If some
other program is signalling a condition, you cannot control whether the condition is
an error condition or whether it has any proceed types; you can only write handlers.

65.1 Reference Material

dbg:condition-handled-p condition-flavor Function
dbg:condition-handled-p searches the bound handler list and the default
handler list to see whether a handler exists for condition-flavor. This
function should be called only from a condition-bind handler function. It
starts looking from the point in the lists from which the current handler was
invoked and proceeds to look outwards through the bound handler list and
the default handler list. It returns a value to indicate what it found:

Value
:maybe

nil
t

Meaning
condition-bind handlers for the flavor exist. These
handlers are permitted to decline to handle the condition.
You cannot determine what would happen without actually
running the handler.
No handler exists.
A handler exists.

511

March 1985 Conditions

66. Interactive Handlers

The interactive handler list contains one element: a handler that invokes the
Debugger if the condition is built on dbg:debugger-condition and declines to
handle the condition if it is not. No standard procedure exists for changing the
contents of this list.

One of the original design goals of the condition signalling mechanism was to support
building complex applications that could take over the function of the Debugger and
provide their own. The exact definition of the problem is not completely clear
however. We are not ~ure whether the current system provides this functionality.

If you are writing an application that needs to take over error handling completely,
you might be able to create a condition-bind handler that handles error, to
prevent invocation of the Debugger. This strategy might have problems that we have
not anticipated. If you really need to get the Debugger out of the way, you might
try changing the interactive handler list. We have not defined a way to do this;
read the code for complete details. We cannot guarantee that whatever you do will
work in future releases. However, we encourage your experimentation. Please
contact us so that we can help you if possible.

Briefly, the variable holding the list is named dbg:*interactive-handlers*, which
holds an interactive handler object. The list is reset to hold the standard Debugger
when you warm boot the machine.

An interactive handler object must handle the following messages:

:handle-condition-p cond Message
:handle-condition-p examines cond which is a condition object. It returns
nil it if declines to handle the condition and something other than nil when
it is prepared to handle the condition.

:handle-condition cond ignore Message
cond is a condition object. You should handle this condition, ignoring the
second argument. :handle-condition can return values or throw in the
same way that condition-bind handlers can.

512

Reference Guide to Symbolics-Lisp March 1985

513

March 1985 Conditions

67. Restart Handlers

One way to handle an error is to restart at some earlier point the program that got
the error. A program can specify points where it is safe or convenient for it to be
restarted should a condition signal occur during processing a function. The basic
special form for doing this is called error-restart. The following example is taken
from the system code:

(defun connect (address contact-name
&optional (window-sizedefault-window-size)
(timeout (* 10. 60.»
&aux conn real-address (try 0»

(error-restart (connection-error

forms ...))

"Retry connection to -A at -S with longer timeout"
address contact-name)

This code fragment evaluates forms and returns the final value(s) if successful. If
the Debugger assumes control as a result of a chaos:connection-error condition,
the user is given the opportunity of restarting the program. The Debugger's prompt
message would be something like this:

s-A: "Retry connection to SCRC at FILE 1 with longer timeout"

If the user were to press s-A at this point, the forms implementing the connection
would be evaluated again. That is, the body of the error-restart would be started
again from the beginning.

Two variations on this basic paradigm are provided. error-restart-loop is an
infinite loop version of error-restart. It always starts over regardless of whether a
condition has been signalled. catch-error-restart never restarts, even when a
condition is signalled. Instead it always returns, returning either the values from
the body (if successful) or nil if a condition signal occurred.

catch-error-restart is the most primitive version of this control structure. The
other two are built from it. It too has a conditional variant, catch-error-restart-if,
for binding a restart handler conditionally.

A common paradigm is to use one of these forms in the command loop of an
interactive program, with condition-flavor being (error sys:abort). This way, if an
unhandled error occurs, the user is offered the option of returning to the command
loop, and the ABORT key returns to the command loop. Which form you use depends
on the nature of your command loop.

514

Reference Guide to Symbolics-Lisp March 1985

67.1 Reference Material

The use of "error-" in the names of these functions has no real significance. They
could have been called condition-restart, condition-restart-Ioop, and so on,
because they apply to all conditions.

error-restart (condition-flavor {onnat-string {onnat-arg ...) body... Special Fonn
This form establishes a restart handler for condition-flavor and then
evaluates the body. If the handler is not invoked, error-restart returns the
values produced by the last form in the body and the restart handler
disappears. When the restart handler is invoked, control is thrown back to
the dynamic environment inside the error-restart form and execution of the
body starts allover again. The format is:

(error-restart (condition-flavor {onnat-string . {onnat-args)
{onn-l
{onn-2
...)

condition-flavor is either a condition or a list of conditions that can be
handled. {onnat-string and {onnat-args are a control string and il list of
arguments (respectively) to be passed to format to construct a meaningful
description of what would happen if the user were to invoke the handler.
{onnat-args are evaluated when the handler is bound. The Debugger uses
these values to create a message explaining the intent of the restart handler.

error-restart-Ioop (condition-flavor {onnat-string {onnat-args ...) Special Fonn
body ...

error-restart-Ioop establishes a restart handler for condition-flavor and then
evaluates the body. If the handler is not invoked, error-restart-Ioop
evaluates the body again and again, in an infinite loop. Use the return
function to leave the loop. This mechanism is useful for interactive top
levels.

If a condition is signalled during the execution of the body and the restart
handler is invoked, control is thrown back to the dynamic environment inside
the error-restart-Ioop form and execution of the body is started allover
again. The format is:

(error-restart-loop (condition-flavor {onnat-string . {onnat-args)
{onn-l
{onn-2
...)

condition-flavor is either a condition or a list of conditions that can be
handled. {onnat-string and {onnat-args are a control string and a list of
arguments (respectively) to be passed to format to construct a meaningful

515

March 1985 Conditions

description of what would happen if the user were to invoke the handler.
The Debugger uses these values to create a message explaining the intent of
the restart handler.

catch-error-restart (condition-flavor format-string . format-args) Special Form
body ...

catch-error-restart establishes a restart handler for condition-flavor and
then evaluates the body. If the handler is not invoked, catch-error-restart
returns the values produced by the last form in the body, and the restart
handler disappears. If a condition is signalled during the execution of the
body and the restart handler is invoked, control is thrown back to the
dynamic environment of the catch-error-restart form. In this case,
catch-error-restart also returns nil as its first value and something other
than nil as its second value. Its format is:

(catch-error-restart (condition-flavor format-string . format-args)
form-l
form-2
...)

condition-flavor is either a condition or a list of conditions that can be
handled. format-string and format-args are a control string and a list of
arguments (respectively) to be passed to format to construct a meaningful
description of what would happen if the user were to invoke the handler.
The Debugger uses these values to create a message explaining the intent of
the restart handler.

catch-error-restart-if cond-form (condition-flavor format-string Special Form
format-args) body ...

catch-error-restart-if establishes its restart handler conditionally. In all
other respects, it is the same as catch-error-restart. Its format is:

(catch-error-restart- if cond-form
(condition-flavor format-string . format-args)

form-l
form-2
...)

catch-error-restart-if first evaluates cond-form. If the result is nil, it
evaluates the body as if it were a progn but does not establish any handlers.
If the result is not nil, it continues just like catch-error-restart,
establishing the handlers and executing the body.

516

Reference Guide to Symbolics-Lisp March 1985

67.2 Invoking Restart Handlers Manually

dbg:invoke-restart-handlers object &key flavors Function
dbg:invoke-restart-handlers searches the list of restart handle:'s to find a
restart handler for object. The flavors argument controls which restart
handlers are examined. flavors is a list of condition names. When flavors is
omitted, the function examines every restart handler. When flavors is
provided, the function examines only those restart handlers that handle at
least one of the conditions on the list.

The first restart handler that it finds to handle the condition is invoked and
given object. It returns nil if no appropriate restart handler is found.

dbg:invoke-restart-handlers can be called by handlers set up by condition-bind
or condition-bind-default. The object argument should be the condition object
passed to the handler. The handler calls this function to bypass the interactive
handlers list, letting the innermost restart handler handle the condition. A program
that wants to attempt to continue with a computation in the presence of errors
might find this useful. For example, it could be used to support batch-mode
compilation, with the user away from the console.

517

March 1985 Conditions

68. Proceeding

In some situations, execution can proceed past the point at which a condition was
signalled. Events for which this is the case are called proceedable conditions. Some
external agent makes the decision about whether it is reasonable to proceed after
repairing the original problem. The agent is either a condition-bind handler or
the user operating the Debugger.

In general, many different ways are available to proceed from a particular condition.
Each way is identified by a proceed type, which is represented as a symbol.

68.1 Protocol for Proceeding

For proceeding to work, two conceptual agents must agree:

• The programmer who wrote the program that signals the condition;

• The programmer who wrote the condition-bind handler that decided to
proceed from the condition, or else the user who told the Debugger to proceed.

The signaller signals the condition and provides the various proceed types. The
handler chooses from among the proceed types to make execution proceed.

Each agent has certain responsibilities to the other; each must follow the protocol
described below to make sure that any handler interacts correctly with any signaller.
The following description should be considered a two-part protocol that each agent
must follow in order to communicate correctly with the other.

In very simple cases, the signaller can use fsignal, which does not require any new
flavor definitions.

In all other cases, the signaller signals the condition using signal or
signal-proceed-case. The signaller also defines a condition flavor with at least one
method to handle a proceed type. The way to define a method that creates a new
proceed type is somewhat unusual in that it uses a style of method combination
called :case combination. Here's an example from the system:

(defmethod (sys:subscript-out-of-bounds :case :proceed :new-subscript)
(&optional (sub (prompt-and-read :number

"Supply a different subscript."
(values :new-sub~cript sub»

"Subscript to use instead: H»~)

This code fragment creates a proceed type called :new-subscript for the condition
flavor sys:subscript-out-of-bounds. New proceed types are always defined by

518

Reference Guide to Symbolics-Lisp March 1985

adding a :case :proceed method handler to the condition flavor. The method must
always return values rather than throwing.

In :case method combination, the first argument to the :proceed me~sage is like a
subsidiary message name, causing a further dispatch just as the original message
name caused a primary dispatch. The method from the example is invoked
whenever an object of this flavor receives a :proceed message like this:

(send obj :proceed :new-subscript new-sub)

The variables in the lambda list for the method come from the rest of the
arguments of the send

All of the arguments to a :proceed method must be optional arguments. The
:proceed method should provide default values for all its arguments. One useful
way of doing this is to prompt a user for the arguments using the query-io stream.
The example uses prompt-and-read. If all the optional arguments were supplied,
the :proceed method must not do any input or output using query-io.

This facility has been defined assuming that condition-bind handlers would supply
all the arguments for the method themselves. The Debugger runs this method and
does not supply arguments, relying on the method to prompt the user for the
arguments.

As in the example, the method should have a documentation string as the first form
in its body. The :document-proceed-type message to a proceedable condition
object displays the string. This string is used by the Debugger as a prompt to
describe the proceed type. For example, the subscript example might result in the
following Debugger prompt:

s-A: Supply a different subscript

The string should be phrased as a one-line description of the effects of proceeding
from the condition. It should not have any leading or trailing newlines. (You can
use the messages that the Debugger prints out to describe the effects of the s­
commands as models if you are interested in stylistic consistency.)

Sometimes a simple fixed string is not adequate. You can provide a piece of Lisp
code to compute the documentation text at run time by providing your own method
for :case :document-proceed-type. This method definition takes the following
form:

(defmethod (condition-flavor : case : document-proceed-type proceed-type)
(stream)

body ...)

The body of the method should print documentation for proceed-type of
condition-flavor onto stream.

The body of the :proceed method can do anything it wants. In general, it tries to
repair the state of things so that execution can proceed past the point at which the
condition was signalled. It can have side-effects on the state of the environment, it

519

March 1985 Conditions

can return values so that the function that called signal can try to fIx things up, or
it can do both. Its operation is invisible to the handler; the signaller is free to divide
the work between the function that calls signal and the :proceed method as it
sees fIt. When the :proceed method returns, signal returns all of those values to
its caller. That caller can examine them and take action accordingly.

The meaning of these returned values is strictly a matter of convention between the
:proceed method and the function calling signal. It is completely internal to the
signaller and invisible to the handler. By convention, the first value is often the
name of a proceed type. See the section "Signallers", page 520.

A :proceed method can return a fIrst value of nil if it declines to proceed from the
condition. If a nil returned by a :proceed method becomes the return value for a
condition-bind handler, this signifIes that the handler has declined to handle the
condition, and the condition continues to be signalled. When the :proceed message
was sent by the Debugger, the Debugger prints a message saying that the condition
was not proceeded, and it returns to its command level. This might be used by an
interactive :proceed method that gives the user the opportunity either to proceed or
to abort; if the user aborts, the method returns nil. Returning nil from a
:proceed method should not be used as a substitute for detecting earlier (such as
when the condition object is created) that the proceed type is inappropriate for that
condition.

68.2 Proceed Type Messages

By default, condition objects have to handle all proceed types defIned for the
condition flavor. Condition objects can be created that handle only some of the
proceed types for their condition flavor. When the signaller creates the condition
object (with signal or make-condition), it can use the :proceed-types init option
to specify which proceed types the object accepts. The value of the init option is a
list of keyword symbols naming the proceed types.

(signal 'my-condition :proceed-types '(:abc»

The :proceed-types message to a condition object returns a list of keywords for the
proceed types that the object is prepared to handle. (See the method
(:method condition :proceed-types), page 530.)

The :proceed-type-p message examines the list of valid proceed types to see
whether it contains a particular proceed type. (See the method
(:method condition :proceed-type-p), page 530.)

A condition flavor might also have an :init daemon that could modify its
dbg:proceed-types instance variable.

520

Reference Guide to Symbolics-Lisp March 1985

68.3 Proceeding with condition-bind Handlers

Suppose the handler is a condition-bind handler function. Just to review, when
the condition is signalled, the handler function is called with one argument, the
condition object. The handler function can throw to some tag, return nil to say
that it doesn't want to handle the condition, or try to proceed the condition.

The handler must not attempt to proceed using an invalid proceed type. It must
determine which proceed types are valid for any particular condition object. It must
do this at run-time because condition objects can be created that do not handle all of
the proceed types for their condition flavor. (See the init option
(:method condition :proceed-types), page 530.) In addition, condition objects
created with error instead of signal do not have any proceed types. The handler
can use the :proceed-types and :proceed-type-p messages to determine which
~proceed types are available.

To proceed from a condition, a handler function sends the condition object a
:proceed message with one or more arguments. The first argument is the proceed
type (a keyword symbol) and the rest are the arguments for that proceed type. All
of the standard proceed types are documented with their condition flavors. Thus the
programmer writing the handler function can determine the meanings of the
arguments. The handler function must always pass all of the arguments, even
though they are optional.

Sending the :proceed message should be the last thing the handler does. It should
then return immediately, propagating the values from the :proceed method back to
its caller. Determining the meaning of the returned values is the business of the
signaller only; the handler should not look at or do anything with these values.

68.4 Proceed Type Names

Any symbol can be used as the name of a proceed type, although using keyword
symbols is conventional. The symbols :which-operations and
:case-documentation are not valid names for proceed types because they are
treated specially by the :case flavor combination. Do not use either of these symbols
as the name of a proceed type when you create a new condition flavor.

68.5 Signallers

Signallers can use the signal-proceed-case special form to signal a proceedable
condition. signal-proceed-case assumes that the first value returned by every
proceed type is the keyword symbol for that proceed type. This convention is not
currently enforced.

521

March 1985 Conditions

68.6 Reference Material

signal-proceed-case Special Form
signal-proceed-case signals a proceedable condition. It has a clause to
handle each proceed type of the condition. It has a slightly more complicated
syntax than most special forms: you provide some variables, some argument
forms, and some clauses:

(s;gnal-proceed-case «varl var2 ...) argl arg2 ...)
(proceed-type-l bodyl ...)
(proceed-type-2 body2 ...)
...)

The first thing this form does is to call signal, evaluating each arg form to
pass as an argument to signal. In addition to the arguments you supply,
signal-proceed-case also specifies the :proceed-types init option, which it
builds based on the proceed-type-i clauses.

When signal returns, signal-proceed-case treats the first returned value as
the symbol for a proceed type. It then picks a proceed-type-i clause to run,
based on that value. It works in the style of selectq: each clause starts with
a proceed type (a keyword symbol), or a list of proceed types, and the rest of
the clause is a list of forms to be evaluated. signal-proceed-case returns
the values produced by the last form.

varl, var2, and so on, are bound to successive values returned from signal
. for use in the body of the proceed-type-i clause selected.

One proceed-type-i can be nil. If signal returns nil, meaning that the
condition was not handled, signal-proceed-case runs the nil clause if one
exists, or simply returns nil itself if no nil clause exists. Unlike selectq, no
otherwise clause is available for signal-proceed-case.

The value passed as the :proceed-types option to signal lists the various
proceed types in the same order as the clauses, so that the Debugger displays
them in that order to the user and the RESUME command runs the first one.

522

Reference Guide to Symbolics-Lisp March 1985

523

March 1985 Conditions

69. Issues for Interactive Use

69.1 Tracing Conditions

trace-conditions Variable
The value of this variable is a condition or a list of conditions. It can also be
t, meaning all conditions, or nil, meaning none.

If any condition is signalled that is built on the specified flavor (or flavors),
the Debugger immediately assumes control, before any handlers are searched
or called.

If the user proceeds, by using RESUME, signalling continues as usual. This
might in fact revert control to the Debugger again. This variable is provided
for debugging purposes only. It lets you trace the signalling of any condition
so that you can figure out what conditions are being signalled and by what
function. You can set this variable to error to trace all error conditions, for
example, or you can be more specific.

This variable replaces the errset variable from earlier releases.

69.2 Breakpoints

The functions breakon and unbreakon can be used to set breakpoints in a
program. They use the encapsulation mechanism like trace and advise to force
the function to signal a condition when it is called. See the section
"Encapsulations", page 325.

breakon &optional function-spec condition-form Function
With no arguments, breakon returns a list of all functions with breakpoints
set by breakon.

breakon sets a breakpoint for the function-spec. Whenever function-spec is
called, the condition sys:call-trap is signalled, and the Debugger assumes
control. At this point, you can inspect the state of the Lisp environment and
the stack. Proceeding from the condition then causes the program to
continue to run.

The first argument can be any function spec, so that you can trace methods
and other functions not named by symbols. See the section "Function
Specs", page 297.

condition-form can be used for making a conditional breakpoint.
condition-form should be a Lisp form. It is evaluated when the function is

524

Reference Guide to Symbolics-Usp March 1985

called. If it returns nil, the function call proceeds without signalling
anything. condition-form arguments from multiple calls to breakon
accumulate and are treated as an or condition. Thus, when any of the
forms becomes true, the breakpoint "goes off'. condition-form is evaluated in
the dynamic environment of the function call. You can inspect the
arguments of function-spec by looking at the variable arglist.

unbreakon &optional {unction-spec condition-form Function
Turns off a breakpoint set by breakon. If function-spec is not provided, all
breakpoints set by breakon are turned off. If condition-form is provided, it
turns off only that condition, leaving any others. If condition-form is not
provided, the entire breakpoint is turned off for that function.

Calling a function for which a breakpoint is set signals a condition with the following
message:

Break on entry to function nanne

It provides a :no-action proceed type, which allows the function entry to proceed.
The "trap on exit" bit is set in the stack frame of the function call, so that when
the function returns or is thrown through another condition is signalled. Similarly,
the "Break on exit from marked frame" message and the :no-action proceed type
are provided, allowing the function return to proceed.

69.3 Debugger Bug Reports

The c-M command in the Debugger sends a bug report, creating a new process and
running the bug function in that process. By default, the first argument to bug is
the symbol lispm, so that the report is sent to the BUG-LISPM mailing list. Also
by default, the mail-sending text buffer initially contains a standard set of
information dumped by the Debugger. You can control this behavior for your own
condition flavors. You can control the mailing list to which the bug report is sent by
defining your own primary method for the following message.

:bug-report-recipient-system Message
This message is sent by the c-M command in the Debugger to find the
mailing list to which to send the bug report mail. The default method (the
one in the condition flavor) returns lispm, and this is passed as the first
argument to the bug function.

You can control the initial contents of the mail-sending buffer by altering the
handling of the following message, either by providing your own primary method to
replace the default message, or by defining a :before or :after daemon to add your
own specialized information before or after the default text.

525

March 1985 Conditions

:bug-report-description stream number Message
This message is sent by the c-M command in the Debugger to print out the
text that is the initial contents of the mail-sending buffer. The handler
should simply print whatever information it considers appropriate onto stream.
number is the numeric argument given to c-M. The Debugger interprets
number as the number of frames from the backtrace to include in the initial
mail buffer. A number of nil means all frames.

69.4 Debugger Special Commands

When the Debugger assumes control because an error condition was signalled and
not handled, it offers the user various ways to proceed or to restart. Sometimes you
want to offer the user other kinds of options. In the system, the most common
example of this occurs when you forget to type a package prefIx. It signals a
sys:unbound-symbol error and offers to let you use the symbol from the right
package instead. This is neither a proceed type nor a restart-handler; it is a
Debugger special command.

You can add one or more special commands to any condition flavor. For any
particular instance, you can control whether to offer the special command. For
example, the package-guessing service is not offered unless some other symbol with
the same print name exists in a different package. Special commands are called only
by the Debugger; condition-bind handler functions never see them.

Special commands provide the same kind of functionality that a condition-bind
handler does. There is no reason, for example, that the package-prefIx service could
not have been provided by condition-bind It is only a matter of convenience to
have it in a special command.

To add special commands to your condition flavor, you must mix in the flavor
dbg:special-commands-mixin, which provides both the instance variable
dbg:special-commands and several method combinations. Each special command
to a particular flavor is identifIed by a keyword symbol, just the same way that
proceed types are identifIed. You can then create handlers for any of the following
messages:

:special-command command-type Message
:special-command is sent when the user invokes the special command. It
uses :case method-combination and dispatches on the name of the special
command. No arguments are passed. The syntax is:

(defmethod (my-flavor :case :special-command my-command-keyword) ()
"documentation II
body ...)

Any communication with the user should take place over the query-io

526

Reference Guide to Symbofics-Lisp March 1985

stream. The method Cfu.,. return nil to return control to the Debugger or it
can return the same thing that any of the :proceed methods would have
returned in order to proceed in that manner.

:document-special-command command-type stream Message
:document-special-command prints the documentation of command-type
onto stream. If you don't handle this message explicitly, the default handler
uses the documentation string from the :special-command method. You
can, however, handle this message in order to print a prompt string that has
to be computed at run-time. This is analogous to :document-proceed-type.
The syntax is:

(defmethod (my-flavor :case :document-special-command my-command-keyword)
(stream)

body ...)

:initialize-special-commands Message
The Debugger sends :initialize-special-commands after it prints the error
message. The methods are combined with :progn combination, so that each
one can do some initialization. In particular, the methods for this message
can remove items from the list dbg:special-commands in order to decide
not to offer these special commands.

69.5 Special Keys

The system normally handles the ABORT and SUSPEND keys so that ABORT aborts what
you are doing and SUSPEND enters a breakpoint. Without a CONTROL modifier, a
keystroke command takes effect only when the process reads the character from the
keyboard; with the CONTROL modifier, a keystroke command takes effect immediately.
The META modifier means "do it more strongly"; M-ABORT resets the process entirely,
and M-SUSPEND enters the Debugger instead of entering a simple read-eval-print loop.

A complete and accurate description of what these keys do requires a discussion of
conditions and the Debugger.

With no CONTROL modifier, ABORT and SUSPEND are detected when your process tries
to do input from the keyboard (typically by doing an input stream operation such as
:tyi on a window). Therefore, if your process is computing or waiting for something
else, the effects of the keystrokes are deferred until your process tries to do input.

With a CONTROL modifier, ABORT and SUSPEND are intercepted immediately by the
Keyboard Process, which sends your process an :interrupt message. Thus, it
performs the specified function immediately, even if it is computing or waiting.

ABORT Prints the following string on the terminal-io stream, unless it
suspects that output on that stream might not work.

March 1985

M-ABORT

SUSPEND

M-SUSPEND

527

Conditions

[Abort]

It then signals sys:abort, which is a simple condition. Programs
can set up bound handlers for sys:abort, although most do not.
Many programs set up restart handlers for sys:abort; most
interactive programs have such a handler in their command loops.
Therefore, ABORT usually restarts your program at the innermost
command loop. Inside the Debugger, ABORT has a special meaning.

Prints the following string on the terminal-io stream, unless it
suspects that output on that stream might not work.

[Abort all]

It then sends your process a :reset message, with the argument
: always. This has nothing to do with condition signalling. It
just resets the process completely, unwinding its entire stack.
What the process does after that depends on what kind of process
it is and how it was created: it might start over from its initial
function, or it might disappear. See the section "Processes" in
Internals, Processes, and Storage Management.

Calls the break function with the argument break. This has
nothing to do with condition signalling. See the special form
break in User's Guide to Symbolics Computers.

Causes the Debugger to assume control without signalling any
condition. The Debugger normally expects to be invoked because
of some condition object, though, which it needs to interact
properly with proceeding and restarting. Therefore, a condition
object of flavor break is created in order to give the Debugger
something to work with. break is not an error flavor; it is built
on condition. It has no proceed types, but RESUf1E in the
Debugger causes the Debugger to return and the process to
resume what it was doing.

Several techniques are available for overriding the standard operation of ABORT and
SUSPEND when they are being used with modifier keys.

• For using these keys with the CONTROL modifier, use the asynchronous
character facility. See the section "Asynchronous Characters" in Programming
the User Interface.

• Defining your own hook function and binding tv:kbd-tyi-hook to it also
overrides the interception of these characters with no CONTROL modifier. See
the section "Windows as Input Streams" in Programming the User Interface.

At the Debugger command loop, ABORT is the same as the Debugger c-i! command.
It throws directly to the innermost restart handler that is appropriate for either the
current error or the sys:abort condition.

528

Reference Guide to Symbolics-Lisp March 1985

When the Debugger assumes control, it displays a list of commands appropriate to
the current condition, along with key assignments for each. Proceed types come
first, followed by special commands, followed by restart handlers. One alphabetic key
with the SUPER modifier is assigned to each command on the list. In addition, ABORT

is always assigned to the innermost restart handler that handles sys:abort or the
condition that was signalled; RESUME is always assigned to the first proceed type in
the :proceed-types list. See the section "Proceed Type Messages", page 519.

If RESUME is not otherwise used, it invokes the first error restart that does not
handle abort. When you enter the Debugger with M-SUSPEND, RESUME resumes the
process.

You can customize the Debugger, assigning certain keystrokes to certain proceed
types or special commands, by setting these variables in your init file:

dbg:·proceed-type-special-keys· Variable
The value of this variable should be an alist associating proceed types with
characters. When an error supplies any of these proceed types, the Debugger
assigns that proceed type to the specified key. For example, this is the
mechanism by which the :store-new-value proceed type is offered on the
M-C keystroke.

dbg:·special-command-special-keys* Variable
The value of this variable should be an alist associating names of special
commands with characters. When an error supplies any of these special
commands, the Debugger assigns that special command to the specified key.
For example, this is the mechanism by which the :package-dwim special
command is offered on the c-sh-P keystroke.

529

March 1985 Conditions

70. Condition Flavors Reference

A condition object is an instance of any flavor built out of the condition flavor. An
error object is an instance of any flavor built out of the error flavor. The error
flavor is built out of the dbg:debugger-condition flavor, which is built out of the
condition flavor. Thus, all error objects are also condition objects.

Every flavor of condition that is instantiated must handle the :report message.
(Flavors that just define sets of conditions need not handle it). This message takes
a stream as its argument and prints out a textual message describing the condition
on that stream. The printed representation of a condition object is like the default
printed representation of any instance when slashifying is turned on. However,
when slashifying is turned off (by princ or the ,. A format directive), the printed
representation of a condition object is its :report message. Example:

(condition-case (co)
(open "f:>a>b.c")

(fs:file-not-found
(prin1 co») prints out #<QFIlE-NOT-FOUND 33712233>

(condition-case (co)
(open "f:>a>b.c")

(fs:file-not-found
(princ co») prints out The file was not found

For F:>a>b.c

70.1 Messages and Init Options

These messages can be sent to any condition object. They are handled by the basic
condition flavor, on which all condition objects are built. Some particular condition
flavors handle other messages; those are documented along with the particular
condition flavors in another section. See the section "Standard Conditions", page
531.

:document-proceed-type proceed-type stream of condition Method
Prints out a description of what it means to proceed, using the given
proceed-type, from this condition, on stream. This is used mainly by the
Debugger to create its prompt messages. Phrase such a message as an
imperative sentence, without any leading or trailing return characters. This
sentence is for the human users of the machine who read this when they
have just been dumped unexpectedly into the Debugger. It should be
composed so that it makes sense to a person to issue that sentence as a
command to the system.

530

Reference Guide to Symbolics-Usp March 1985

:proceed-type-p proceed-type of condition Method
Returns t if proceed-type is one of the valid proceed types of this condition
object. Otherwise: returns nil.

:proceed-types of condition Method
Returns a list of all the valid proceed types for this condition.

:set-proceed-types new-proceed-types of condition Method
Sets the list of valid proceed types for this condition to new-proceed-types.

:proceed-types proceed-types (for condition) [nit Option
Defines the set of proceed types to be handled by this instance. proceed-types
is a list of proceed types (symbols); it must be a subset of the set of proceed
types understood by this flavor. If this option is omitted, the instance is able
to handle all of the proceed types understood by this flavor in general, but by
passing this option explicitly, a subset of acceptable proceed types can be
established. This is used by signal-proceed-case.

If oniy one way to proceed exists, proceed-types can be a single symbol instead
of a list.

If you pass a symbol that is not an understood proceed type, it is ignored. It
does not signal an error because the proceed type might become understood
later when a new defmethod is evaluated; if not, the problem is caught
later.

The order in which the proceed types occur in the list controls the order in
which the Debugger displays them in its list. Sometimes you might want to
select an order that makes more sense for the user, although usually this is
not important. The most important thing is that the RESUME command in
the Debugger is assigned to the first proceed type in the list.

:special-commands of condition Method
Returns a list of all Debugger special commands for this condition. See the
section "Debugger Special Commands", page 525.

:special-command-p command-type of condition Method
Returns t if command-type is a valid Debugger special command for this
condition object; otherwise, returns nil.

:report stream of condition Method
Prints the text message associated with this object onto stream. The
condition flavor does not support this itself, but it is a required message,
and any flavor built on condition that is instantiated must support this
message.

531

March 1985 Conditions

:report-string of condition Method
Returns a string containing the report message associated with this object.
It works by sending :report to the object.

70.2 Standard Conditions

This section presents the standard condition flavors provided by the system. Some
of these flavors are the flavors of actual condition objects that get instantiated in
response to certain conditions. Others never actually get instantiated, but are used
to build other flavors.

In some cases, the flavor that the system uses to signal an error is not exactly the
one listed here, but rather a flavor built on the one listed here. This often comes
up when the same error can be reported by different programs that implement a
generic protocol. For example, the condition signalled by a remote file-system stream
when a file is not found is different from the one signalled by a local file-system
stream; however, only the generic fs:file-not-found condition should ever be handled
by programs, so that a program works regardless of what kind of file-system stream
it is using. The exact flavors signalled by each file system are considered to be
internal system names, subject to change without notice and not documented herein.

Do not look at system source code to figure out the names of error flavors without
being careful to choose the right level of flavor! Furthermore, take care to choose a
flavor that can be instantiated if you try to signal a system-defined condition. For
example, you can not signal a condition object of type fs:file-not-found because this
is really a set of errors and this flavor does not handle the :report message. If you
were to implement your own file system and wanted to signal an error when a file
cannot be found, it should probably have its own flavor built on fs:file-not-found
and other flavors.

Choosing the appropriate condition to handle is a difficult problem. In general you
do not want to choose a condition on the basis of the apparent semantics of its
name. Rather you should choose it according to the appropriate level of the
condition flavor hierarchy. This holds particularly for file-related errors. See the
section "File-system Errors", page 544.

70.2.1 Fundamental Conditions

These conditions are basic to the functionality of the condition mechanism, rather
than having anything to do with particular system errors.

condition Flavor
This is the basic flavor on which all condition objects are built.

532

Reference Guide to Symbolics-Lisp March 1985

dbg:debugger-condition Flavor
This flavor is built on condition. It is used for entering the Debugger
without necessarily classifying the event as an error. This is intended
primarily for system use; users should normally build on error instead.

error Flavor
This flavor is built on dbg:debugger-condition. All flavors that represent
errors, as opposed to debugger conditions or simple conditions, are built on
this flavor.

ferror Flavor
This is a simple error flavor for the ferror function. Use it when you do not
want to invent a new error flavor for a certain condition. Its only state
information is an error message, normally created by the call to the ferror
function. It has two gettable and initable instance variables format-string
and format-args. The format function is applied to these values to produce
the :report message.

dbg:proceedable-ferror Flavor
This is a simple error flavor for the fsignal function. Use it when you do
not want to invent a new error flavor for a certain condition, but you want
the condition to be proceedable. Its only state information is an error
message, created by the call to the fsignal function. Its only proceed type is
:no-action. Proceeding in this way does nothing and causes fsignal (or
signal) to return the symbol :no-action.

sys:no-action-mixin Flavor
This flavor can be mixed into any condition flavor to define a proceed type
called :no-action. Proceeding in this way causes the computation to proceed
as if no error check had occurred. The signaller might try the action again
or might simply go on doing what it would have done. For example,
proceedable-ferror is just ferror with this mixin.

sys:abort Flavor
The ABORT key on the keyboard was pressed. This is a simple condition.
When sys:abort is signalled, control is thrown straight to a restart handler
without entering the Debugger. See the section "Special Keys", page 526.

break Flavor
This is the flavor of the condition object passed to the Debugger as a result
of the M-BREAK command. It is never actually signalled; rather, it is a
convention to ensure that the Debugger always has a condition when it
assumes control. This is based on dbg:debugger-condition. See the
section "Special Keys", page 526.

533

March 1985 Conditions

70.2.2 Lisp Errors

This section describes the conditions signalled for basic Lisp errors. All of the
conditions in this section are based on the error flavor unless otherwise indicated.

70.2.2.1 Base Flavor: sys:cell-contents-error

sys:cell-contents-error Flavor
All of the kinds of errors resulting from finding invalid contents in a cell of
virtual memory are built on this flavor. This represents a set of errors
including the various kinds of unbound-variable errors, the undefined-function
error, and the bad data-type error.
Proceed type Action
:new-vaIue Takes one argument, a new value to be used instead of

the contents of the cell.
:store-new-vaIue Takes one argument, a new value to replace the contents

of the cell.
:no-action If you have intervened and stored something into the cell,

the contents of the cell can be reread.

sys:unbound-variable Flavor
All of the kinds of errors resulting from unbound variables are built on this
flavor. Because these are a subset of the "cell contents" errors, this flavor is
built on sys:cell-contents-error. The :variable-name message returns the
name of the variable that was unbound (a symbol).

sys:unbound-symboI Flavor
An unbound symbol (special variable) was evaluated. Some instances of this
flavor provide the :package-dwim special command, which takes no
arguments and asks whether you want to examine the value of various other
symbols with the same print name in other packages. This proceed type is
provided only if any such symbols exist in any other packages. (See also
dbg:*defer-package-dwim*.) This flavor is built on sys:unbound-variable.
The proceed types from sys:cell-contents-error are provided, as is the
:variable-name message from sys:unbound-variable.

sys:unbound-closure-variable Flavor
An unbound closure variable was evaluated. This flavor is built on
sys:unbound-variable. The proceed types from cell-contents-error are
provided, as is the :variable-name message from sys:unbound-variable.

sys:unbound-instance-variable Flavor
An unbound instance variable was evaluated. The :instance message
returns the instance in which the unbound variable was found. The proceed
types from cell-contents-error are provided, as is the :variable-name
message from sys:unbound-variable.

534

Reference Guide to Symbo/ics-Usp March 1985

sys:undefined-function Flavor
An undefined function was invoked; that is, an unbound function cell was
referenced. This flavor is built on sys:cell-contents-error and provides all
of its proceed types. The :function-name message returns the name of the
function that was undefmed (a function spec). This also provides
:package-dwim service, like sys:unbound-symbol.

sys:bad-data-type-in-memory Flavor
A word with an invalid type code was read from memory. This flavor is built
on sys:cell-contents-error and provides all of its proceed types.
Message Value returned
: address virtual address, as a locative pointer, from which the word

: data-type
:pointer

70.2.2.2 Location Errors

was read
numeric value of the data-type tag field of the word
numeric value of the pointer field of the word

sys:unknown-setf-reference Flavor
setf did not find a setf property on the car of the form. The :form
message returns the form that setf tried to operate on. This error is
signalled when the setf macro is expanded.

sys:unknown-Iocf-reference Flavor
Iocf did not find a Iocf property on the car of the form. The :form
message returns the form that Iocf tried to operate on. This error is
signalled when the Iocf macro is expanded.

70.2.2.3 Base Flavor: sys:arithmetic-error

sys:arithmetic-error Flavor
Represents the· set of all arithmetic errors. No condition objects of this flavor
are actually created; any arithmetic error signals a more specific condition,
built on this one. This flavor is provided to make it easy to handle any
arithmetic error.

All arithmetic errors handle the :operands message. This returns a list of
the operands in the operation that caused the error.

sys:divide-by-zero Flavor
Division by zero was attempted. This flavor is built on
sys:arithmetic-error. The :function message returns the function that
did the division.

sys:non-positive-Iog Flavor
Computation of the logarithm of a nonpositive number was attempted. This
flavor is built on sys:arithmetic-error. The :number message returns the
nonpositive number.

535

March 1985 Conditions

math:singular-matrix Flavor
A singular matrix was given to a matrix operation such as inversion, taking
of the determinant, or computation of the LU decomposition. This flavor is
built on sys:arithmetic-error.

70.2.2.4 Base Flavor: sys:floating-point-exception

sys:floating-point-exception and the condition flavors based on it are designed to
support IEEE floating-point standards. See the section "Numbers", page 87. By
default, all IEEE traps are enabled, except for the inexact-result trap. See the
function without-floating-underflow-traps, page 94.

The trap handlers that signal these conditions from the system all cause pressing
the RESUME key to mean "return the result that would have been returned if the
trap had been disabled". For example, pressing RESUME on an overflow returns the
appropriately signed infinity as the result. On an underflow it returns the
denormalized (possibly zero) result.

sys:floating-point-exception Flavor
This is the base flavor for floating-point exceptional conditions. No condition
objects of this flavor are actually created. This flavor is provided to make it
easy to handle any floating-point exception. It is built on
sys:arithmetic-error.
Message Value returned
: operation A symbol indicating the operation that caused the

exception.
:operands The list of operands to the operation.
:non-trap-result The result that would have been returned if this

trap had been disabled.
:saved-float-operation-status

Proceed type
:new-value

The value of sys:float-operation-status at the time of
the exception.

Action
Takes one argument and uses this value as the result of
the operation.

sys:t1oat-divide-by-zero Flavor
A floating-point division by zero was attempted. This flavor is built on
sys:divide-by-zero and sys:floating-point-exception.

sys:floating-exponent-overflow Flavor
Overflow of an exponent occurred during floating-point arithmetic. This
flavor is built on sys:floating-point-exception. The :function message
returns the function that got the overflow, if it is known, and nil if it is not
known. The :new-value proceed type is provided with one argument, a
floating-point number to use instead.

536

Reference Guide to Symbolics-Usp March 1985

sys::Ooating-exponent-underflow Flavor
Underflow of an exponent occurred during floating-point arithmetic. This
flavor is built on sys::Ooating-point-exception. The :function message
returns the function that got the underflow, if it is known, and nil if it is
not known. The :use-zero proceed type is provided with no arguments; a
0.0 is used instead.

sys::Ooat-inexact-resuIt Flavor
A floating-point result does not exactly represent the operation's result, due
to the fixed precision of floating-point representation. Since most floating­
point calculations are inexact, the inexact-result trap is disabled by default.
This flavor is built on sys:t1oating-point-exception.

sys::Ooat-invalid-operation Flavor
An invalid floating-point operation was attempted, such as dividing infinity by
infinity. This flavor is built on sys:f1oating-point-exception.

sys::Ooat-invalid-compare-operation Flavor
This is built on and is identical to sys:f1oat-invalid-operation, except that
it does not expect a numeric result. This flavor is raised for any arithmetic
comparison «, >, ~, ~, =, ;It) in \yhich at least one of the operands is a NaN
(IEEE not-a-number object).

For example:

« (II 0.0 0.0) 0.0)

signals sys:f1oat-invalid-compare-operation if you "proceed" from the
invalid division by zero operation.

sys:negative-sqrt Flavor
Computing the square root of a negative number was attempted. This flavor
is built on sys:f1oat-invalid-operation.

sys:f1oat-divide-zero-by-zero Flavor
A floating-point division of zero by zero was attempted. This flavor is built
on sys:t1oat-invalid-operation and sys:f1oat-divide-by-zero. Most
programs handle not this condition itself, but rather one of the component
condition flavors.

70.2.2.5 Miscellaneous System Errors Not Categorized by Base Flavor

sys:end-of-file Flavor
A function doing input from a stream attempted to read past the end-of-file.
The :stream message returns the stream.

sys:stream-closed Flavor
An operation that required a stream to be open was attempted on a closed

537

March 1985 Conditions

stream. sys:stream-closed accepts the following messages and has
corresponding required init keywords:

:attempt Returns a string briefly describing the attempted action on
stream, for example, "read from"

:stream Returns the stream

Example:

(error 'sys:stream-closed :attempt "write to" :stream self)

sys:wrong-stack-group-state Flavor
A stack group was in the wrong state to be resumed. The :stack-group
message returns the stack group.

sys:draw-off -end-of-screen Flavor
Drawing graphics past the edge of the screen was attempted.

sys:draw-on-unprepared-sheet Flavor
A drawing primitive (such as tv:%draw-line) was used on a screen array not
inside a tv:prepare-sheet special form. The :sheet message returns the
sheet (window) that should have been prepared.

sys: bitblt-destination-too-small Flavor
The destination array of a bitblt was too small.

sys:bitblt-array-fractional-word-width Flavor
An array passed to bitblt does not have a first dimension that is a multiple
of 32 bits. The :array message returns the array.

sys:write-in-read-only Flavor
Writing into a read-only portion of memory was attempted. The :address
message returns the address at which the write was attempted.

sys:pdl-overflow Flavor
A stack (pdl) overflowed. The :pdl-name message returns the name of the
stack (a string, such as "regular" or "special"). The :grow-pdl proceed type
is provided, with no arguments; it increases the size of the stack. This is
based on dbg:debugger-condition, not on error.

sys:area-overtlow Flavor
This is signalled when the maximum-size (:size argument to make-area) is
exceeded.

sys:virtual-memory-overtlow Flavor
This is an irrecoverable error that is signalled when you run out of virtual
memory.

538

Reference Guide to Symbolics-Lisp March 1985

sys:region-table-overflow Flavor
This is an irrecoverable error that is signalled when you run out of regions.

sys:cons-in-rlXed-area Flavor
Allocation of storage from a fIXed area of memory was attempted.
Message Value returned
:area name of the area
:region region number

sys:throw-tag-not-seen Flavor
*throw or throw was called, but no matching *catch or catch was found.
Message Value returned
:tag Catch-tag that was being thrown to.
:values List of the values that were being thrown. If *throw was

called, this is always a list of two elements, the value being
thrown and the tag; if the throw special form of Common
Lisp is used, the list can be of any length.

The :new-tag proceed type is provided with one argument, a new tag (a
symbol) to try instead of the original.

sys:instance-variable-zero-referenced Flavor
Referencing instance variable 0 of an instance was attempted. This usually
means that some method is referring to an instance variable that was deleted
by a later evaluation of a deffiavor form.

sys:instance-variable-pointer-out-of-range Flavor
Referencing an instance variable that does not exist was attempted. This
usually means that some method is using an obsolete instance because a
deffiavor form got evaluated again and changed the flavor incompatibly.

sys:disk-error Flavor
An error was reported by the disk software or controller. The
:retry-disk-operation proceed type is provided; it takes no arguments.

sys:redefinition Flavor
This is a simple condition rather than an error condition. It signals an
attempt to redefine something by some other file than the one that originally
defined it. The :definition-type argument specifies the kind of definition: it
might be defun if the function cell is being defined, defstruct if a structure
is being defined, and so on.
Message Value returned
:name symbol (or function spec) being redefined
:old-pathname pathname that originally defined it
:new-pathname pathname that is now trying to define it

Either pathname is nil if the definition was from inside the Lisp
environment rather than from loading a file.

539

March 1985 Conditions

The following proceed types are provided:
Message Action
:proceed Redefinition should go ahead; in the future no warnings

should be signalled for this pair of pathnames.
:inhibit-definition

Definition is not changed and execution proceeds.
:no-action Function should be redefined as if no warning had

occurred.

Note: if this condition is not handled, the action is controlled by the value of
fs:inhibit-fdefine-warnings.

70.2.2.6 Function-calling Errors

sys:zero-args-to-select-method Flavor
A select method was applied to no arguments.

sys:too-few-arguments Flavor
A function was called with too few arguments.
Message Value returned
:function the function
:nargs number of arguments supplied
: argument-list list of the arguments passed

The :additional-arguments proceed type is provided with one argument, a
list of additional argument values to which the function should be applied. If
the error is proceeded, these new arguments are appended to the old
arguments and the function is called with this new argument list.

sys:too-many-arguments Flavor
A function was called with too many arguments.
Message Value returned
:function the function
:nargs number of arguments supplied
:argument-list list of the arguments passed

The :fewer-arguments proceed type is provided with one argument, the
new number of arguments with which the function should be called. In
proceeding from this error, the function is called with the first n arguments
only, where n is the number specified.

sys:wrong-type-argument Flavor
A function was called with at least one argument of invalid type.

540

Reference Guide to Symbolics-Lisp March 1985

Message
:function
:old-value
:description
:arg-name
:arg-number

Value returned
function with invalid argument(s)
invalid value
description of valid value
name of the argument
number of the argument (the first argument to a function
is 0, and so on) or nil if this does not apply

: description, :arg-name, and :arg-number are valid messages only when
the error was signalled by check-arg, check-arg-type, or
argument-typecase. Check to be sure that the message is valid before
sending it (remember :operation-handled-p).
Proceed type Action
:argument-value Takes one argument, the new value to use for the

argument.
:store-argument-value

70.2.2.7 Array Errors

Takes one argument, the new value to use and to store
back into the local variable in which it was found.

dbg:bad-array-mixin Flavor
Errors involving an array that seems to be the wrong object include this
flavor. It provides the :array message, which returns the array.
Proceed type Action
:new-array Takes one argument, an array to use instead of the old

one.
:store-new-array Takes one argument, an array to use instead of the old

one and to store back into the local variable in which it
was found.

sys:bad-array-type Flavor
A meaningless array type code was found in virtual memory, indicating a
system bug. The :type message returns the numeric type code.

sys:array-has-no-Ieader Flavor
U sing the leader of an array that has no array leader was attempted. The
:array message returns the array. This includes the bad-array-mixin
flavor.

sys:fill-pointer-not-i1XD.um Flavor
The fill pointer of an array was not a flXDum. The :array message returns
the array. This includes the bad-array-mixin flavor.

sys:array-wrong-number-of-dimensions Flavor
The rank of the array provided was wrong; the array is in error and the
subscripts are correct.

541

March 1985 Conditions

Message Value returned
:dimensions-given number of sUbscripts presented
:dimensions-expected

number that should have been given
: array the array

This includes the bad-array-mixin flavor.

sys:array-wrong-number-of-subscripts Flavor
This assumes that the array is correct and that the user/application caused
the error by providing the incorrect number of subscripts.
Message Value returned
: array The array
:subscripts-given A list of the subscripts given
:number-of-subscripts-given The number of subscripts given
:number-of-subscripts-expected The rank of the array

The following example signals sys:array-wrong-number-of-subscripts:

(array-in-bounds-p some-3-dimensional-array 2 3)

sys:number-array-not-allowed Flavor
A number array (such as an art-4b or art-1Gb) was used in a context in
which number arrays are not valid, such as an attempt to make a pointer to
an element with aloc or locf. This includes the bad-array-mixin flavor.

sys:subscript-out-of-bounds Flavor
An attempt was made to reference an array using out-of-bounds subscripts,
an out-of-bounds array leader element, or an out-of-bounds instance variable.
Message Value returned
:object the object (an array or instance) if it is known, and nil

otherwise
:function function that did the reference, or nil if it is not known
:subscript-used the subscript that was actually used
:subscript-limit the limit that it passed

The individual subscripts are reported for the :subscript-used and
:subscript-limit messages. These values are flXIlums; if a multidimensional
array was used, they are computed products.
Proceed type Action
:new-subscript Takes an arbitrary number of arguments, the new

subscripts for the array reference.
:store-new-subscript

Takes the same arguments as :new-subscript and stores
them back into the local variables in which they were
found.

542

Reference Guide to Symbolics-Lisp March 1985

70.2.2.8 Eval Errors

sys:invalid-function Flavor
The evaluator attempted to apply an object that is not a function or a
symbol whose definition is an object that is not a function. The :function
message returns the object that was applied. sys:invalid-function is
signalled but is not proceedable.

sys:undefined-keyword-argument Flavor
The evaluator attempted to pass a keyword to a function that does not
recognize that keyword.
Message Value returned
:keyword Unrecognized keyword
:value The value passed with it

Proceed type
:no-action
:new-keyword

Action
The keyword and its value are ignored.
Specifies a new keyword to use instead. Its one argument
is the new keyword.

sys:unclaimed-message Flavor
This flavor is built on error. The flavor system signals this error when it
finds a message for which no method is available.
Message Value returned
:object the object
:message the message-name
: arguments the arguments of the message

The object can be an instance or a select method.

70.2.2.9 Interning Errors Based on sys:package-error
\

sys:package-error Flavor
All package-related error conditions are built on sys:package-error.

sys:package-not-found Flavor
A package-name lookup did not find any package by the specified name.

The :name message returns the name. The :relative-to message returns
nil if only absolute names are being searched, or else the package whose
relative names are also searched.

The :no-action proceed type can be used to try again. The :new-name
proceed type can be used to specify a different name or package. The
:create-package proceed type creates the package with default
characteristics.

543

March 1985 Conditions

sys:package-locked Flavor
There was an attempt to intern a symbol in a locked package.

The :symbol message returns the symbol. The :package message returns
the package.

The :no-action proceed type interns the symbol just as if the package had
not been locked. Other proceed types are also available when interning the
symbol would cause a name conflict.

70.2.2.10 Errors Involving Lisp Printed Representations

si:·print-object-error-message· Variable
Controls what happens when errors are signalled inside the Lisp printer.
When nil (the default), the error is not handled. Otherwise, the value
should be a string. If an error is signalled during the printing of an object,
that string is sent to the stream instead of the printed representation of the
object, and the printing function immediately returns to its caller. This
applies to all functions that are entries to the Lisp printer, including print,
prine, and prin!.

Example:

(let «si:*print-object-error-message* "[Error printing object]"»
(format t "foo: -5, bar: -5" foo bar»

This is useful because bar is printed even if the printing of foo causes an
error.

sys:print-not-readable Flavor
The Lisp printer encountered an object that it cannot print in a way that
the Lisp reader can understand. The printer signals this condition only if
si:print-readably is not nil (it is normally nil). The :object message
returns the object. The :no-action proceed type is provided; proceeding this
way causes the object to be printed as if si:print-readably were nil.

sys:parse-error Flavor
This flavor is built on error and is the type of error caught by the input
editor. This flavor accepts the init keyword :correct-input. If the value is
t, which is the default, the input editor prints "Type RUBOUT to correct your
input" and does not erase the message until a non-self-inserting character is
typed. If the value is nil, no message is printed, and any typeout from the
read function is erased immediately after the next character is typed. Syntax
errors signalled by read functions should be built on top of this flavor.

parse-ferror Flavor
This flavor is built on sys:parse-error and ferror. It accepts the init
keywords :format-string and :format-args as well as :correct-input. This
flavor exists for read functions that do not have a special flavor of error
defined for them.

544

Reference Guide to Symbolics-Usp March 1985

sys:read-error Flavor
This flavor, built on sys:parse-error, includes errors encountered by the
Lisp reader.

sys:read-premature-end-of-symbol Flavor
This is a new error flavor based on sys:read-error. It can be used for
signalling when some read function finishes reading in the middle of a string
that was supposed to contain a single expression.
Message Value returned
:short-symbol the symbol that was read
:original-string the string that it was reading from

when it finished in the middle

An example of the use of sys:read-premature-end-of-symbol is in
zwei:symbol-from-string.

sys:read-end-of-file Flavor
The Lisp reader encountered an end-of-file while in the middle of a string or
list. This flavor is built on sys:read-error and sys:end-of-file.

sys:read-list-end-of-file Flavor
The Lisp reader attempted to read past the end-of-file while it was in the
middle of reading a list. This is built on sys:read-end-of-file. The :list
message returns the list that was being built.

sys:read-string-end-of-file Flavor
The Lisp reader attempted to read past the end-of-file while it was in the
middle of reading a string. This is built on sys:read-end-of-file. The
:string message returns the string that was being built.

70.2.3 File-system Errors

The following condition flavors are part of the Symbolics Lisp Machine's generic file
system interface. These flavors work for all file systems, whether local Lisp Machine
file systems, remote Lisp Machine file systems (accessed over a network), or remote
file systems of other kinds, such as UNIX or TOPS-20. All of them report errors
uniformly.

Some of these condition flavors describe situations that can occur during any file
system operation. These include not only the most basic flavors, such as
fs:file-request-failure and fs:data-error, but also flavors such as fs:file-not-found
and fs:directory-not-found. Other file system condition flavors describe failures
related to specific file system operations, such as fs:rename-failure, and
fs:delete-failure. Given all these choices, you have to determine what condition is
appropriate to handle, for example in checking for success of a rename operation.
Would fs:rename-failure include cases where, say, the directory of the file being
renamed is not found?

545

March 1985 Conditions

The answer to this question is that you should handle fs:file-operation-failure.
fs:rename-failure and all other conditions at that level are signalled only for errors
that relate specifically to the semantics of the operation involved. If you cannot
delete a file because the file is not found, fs:file-not-found would be signalled.
Suppose you cannot delete the file because its "don't delete switch" is set, which is
an error relating specifically to deletion. fs:delete-failure would be signalled.
Therefore, since you cannot know whether a condition flavor related to an operation
requested or some more general error is signalled, you usually want to handle one of
the most general flavors of file system error.

Under normal conditions, you would bind only for fs:file-request-failure or
fs:file-operation-failure rather than for the more specific condition flavors
described in this section. Some guidelines for using the different classes of errors:

error

fs:file-error

Any error at all. It is not wise in general to attempt to handle
this, because it catches program and operating system bugs as
well as file-related bugs, thus "hiding" knowledge of the system
problems from you.

Any file related error at all. This includes
fs:file-operation-failure as well as fs:file-request-failure.
Condition objects of flavor fs:file-request-failure usually indicate
that the file system, host operating system, or network did not
operate properly. If your program is attempting to handle file­
related errors, it should not handle these: it is usually better to
allow the program to enter the debugger. Thus it is very rare
that one would want to handle fs:file-error.

fs:file-operation-failure
This includes almost all predictable file-related errors, whether
they are related to the semantics of a specific operation, or are
capable of occurring during many kinds of operations. Therefore,
fs:file-operation-failure is usually the appropriate condition to
handle.

Specific conditions It is appropriate and correct to handle specific conditions, like
fs:delete-failure, if your program assigns specific meaning to (or
has specific actions associated with) specific occurrences, such as a
nonexistent directory or an attempt to delete a protected file. If
you do not "care" about specific conditions, but you wish to handle
predictable file-related errors, you should handle
fs:file-operation-failure. You should not attempt to handle, say,
fs:delete-failure to test for any error occurring during deletion; it
does not mean that.

fs:file-error Flavor
This set includes errors encountered during file operations. This flavor is
built on error.

546

Reference Guide to Symbolics-Usp March 1985

Message
:pathname
: operation

Value returned
pathname that was being operated on or nil
name of the operation that was being done: this is a
keyword symbol such as :open, :close, :delete, or
:change-properties, and it might be nil if the signaller
does not know what the operation was or if no specific
operation was in progress

In a few cases, the :retry-file-error proceed type is provided, with no
arguments; it retries the file system request. All flavors in this section accept
these messages and might provide this proceed type.

fs:file-request-failure Flavor
This set includes all file-system errors in which the request did not manage
to get to the file system.

fs:file-operation-failure Flavor
This set includes all file-system errors in which the request was delivered to
the file system, and the file system decided that it was an error.

Note: every file-system error is either a request failure or an operation failure, and
the rules given above explain the distinction. However, these rules are slightly
unclear in some cases. If you want to be sure whether a certain error is a request
failure or an operation failure, consult the detailed descriptions in the rest of this
section.

70.2.3.1 Request Failures Based on fs:file-request-failure

fs:data-error Flavor
Bad data are in the file system. This might mean data errors detected by
hardware or inconsistent data inside the file system. This flavor is built on
fs:file-request-failure. The :retry-file-operation proceed type from
fs:file-error is provided in some cases; send a :proceed-types message to
find out.

fs:host-not-available Flavor
The file server or file system is intentionally denying service to users. This
does not mean that the network connection failed; it means that the file
system explicitly does not care to be available. This flavor is built on
fs:file-request-failure.

fs:no-file-system Flavor
The file system is not available. For example, this host does not have any
file system, or this host's file system cannot be initialized for some reason.
This flavor is built on fs:file-request-failure.

547

March 1985 Conditions

fs:network-Iossage Flavor
The file server had some sort of trouble trying to create a new data
connection and was unable to do so. This flavor is built on
fs:file-request-failure.

fs:not-enough-resources Flavor
Some resource was not available in sufficient supply. Retrying the operation
might work if you wait for some other users to go away or if you close some
of your own files. This flavor is built on fs:file-request-failure.

fs:unknown-operation Flavor
An unsupported file-system operation was attempted. This flavor is built on
fs:file-request-failure.

70.2.3.2 Login Problems

Some login problems are correctable and some are not. To handle any correctable
login problem, you set up a handler for fs:login-required rather than handling the
individual conditions.

The correctable login problem conditions work in a special way. The Symbolics Lisp
Machine's generic file system interface, in the user-end of the remote file protocol,
always handles these errors with its own condition handler; it then signals the
fs:login-required condition. Therefore to handle one of these problems, you set up
a handler for fs:login-required The condition object for the correctable login
problem can be obtained from the condition object for fs:login-required by sending
it an :original-condition message.

fs:login-problems Flavor
This set includes all problems encountered while trying to log in to the file
system. Currently, none of these ever happen when you use a local file
system. This flavor is built on fs:file-request-failure.

fs:correctable-login-problems Flavor
This set includes all correctable problems encountered while trying to log in
to the foreign host. None of these ever happen when you use a local file
system. This flavor is built on fs:login-problems.

fs:unknown-user Flavor
The specified user name is unknown at this host. The :user-id message
returns the user name that was used. This flavor is built on
fs:correctable-login-problems.

fs:invalid-password
The specified password was invalid. This flavor is built on
fs:correctable-Iogin-problems.

Flavor

548

Reference Guide to Symbolics-Lisp March 1985

ts:not-logged-in Flavor
A file operation was attempted before logging in. Normally the file system
interface always logs in before doing any operation, but this problem can
come up in certain unusual cases in which logging in has been aborted. This
flavor is built on fs:correctable-login-problems.

fs:login-required Flavor
This is a simple condition built on condition. It is signalled by the file­
system interface whenever one of the correctable login problems happens.
Message Value returned
(send (send error :access-path) :host)

the foreign host
:host-user-id user name that would be the default for this host
:original-condition

condition object of the correctable login problem

The :password proceed type is provided with two arguments, a new user
name and a new password, both of which should be strings. If the condition
is not handled by any handler, the file system prompts the user for a new
user name and password, using the query-io stream.

70.2.3.3 File Lookup

fs:file-lookup-error
This set includes all file-name lookup errors. This flavor is built on
fs:file-operation-failure.

Flavor

fs:file-not-found Flavor
The file was not found in the containing directory. The TOPS-20 and
TENEX "no such file type" and "no such file version" errors also signal this
condition. This flavor is built on fs:file-lookup-error.

fs:multiple-file-not-found Flavor
None of a number of possible files was found. This flavor is built on
fs:file-lookup-error. It is signalled when load is not given a specific file
type but cannot find either a source or a binary file to load.

The flavor allows three in it keywords of its own. These are also the names
of messages that return the following:

:operation

:pathname

:pathnames

The operation that failed

The pathname given to the operation

A list of pathnames that were sought unsuccessfully

The condition has a :new-pathname proceed type to prompt for a new
pathname.

549

March 1985 Conditions

fs:directory-not-found Flavor
The directory of the file was not found or does not exist. This means that
the containing directory was not found. If you are trying to open a directory,
and the actual directory you are trying to open is not found,
fs:file-not-found is signalled. This flavor is built on fs:file-Iookup-error.

This flavor has two Debugger special commands: :create-directory, to
create only the lowest level of directory, and
:create-directories-recursively, to create any missing superiors as well.

Errors of this flavor support the :directory-pathname message. This
message, which can be sent to any such error, returns (when possible) a
"pathname as directory" for the actual dire~tory which was not found.

Example:

Assume the directory x:>a>b exists, but has no inferiors. The following
produces an error instance to which :pathname produces #<LMFS­
PATHNAME x:>a>b>e>d>thing.lisp> and :directory-pathname produces
#<LMFS-PATHNAME x:>a>b>c> >.

(open "x:>a>b>c>d>thing.lisp")

Note: Not all hosts and access media can provide this information (currently,
only local LMFS and LMFS accessed via New File can). When a host does
not return this information, :directory-pathname returns the same as
:pathname, whose value is a pathname as directory for the best
approximation known to the identity of the missing directory.

fs:device-not-found Flavor
The device of the file was not found or does not exist. This flavor is built on
fs:file-lookup-error.

fs:link-target-not-found Flavor
The target of the link that was opened did not exist. This flavor is built on
fs:file-Iookup-error.

70.2.3.4 fs:access-error

fs:access-error Flavor
This set includes all protection-violation errors. This flavor is built on
fs:file-operation-failure.

fs:incorrect-access-to-file Flavor
Incorrect access to the file in the directory was attempted. This flavor is
built on fs:access-error.

fs:incorrect-access-to-directory Flavor
Incorrect access to some directory containing the file was attempted. This
flavor is built on fs:access-error.

550

Reference Guide to Symbolics-Usp March 1985

70.2.3.5 fs:invalid-pathname-syntax

fs:invalid-pathname-syntax Flavor
This set includes all invalid pathname syntax errors. This is not the same as
fs:parse-pathname-error. (See the flavor fs:parse-pathname-error, page
553.) These errors occur when a successfully parsed pathname object is given
to the file system, but something is wrong with it. See the specific
conditions that follow. This flavor is built on fs:file-operation-failure.

fs:invalid-wildcard Flavor
The pathname is not a valid wildcard pathname. This flavor is built on
fs:invalid-pathname-syntax.

fs:wildcard-not-allowed Flavor
A wildcard pathname was presented in a context that does not allow
wildcards. This flavor is built on fs:invalid-pathname-syntax.

70.2.3.6 fs:wrong-kind-of-file

fs:wrong-kind-of-file Flavor
This set includes errors in which an invalid operation for a file, directory, or
link was attempted.

fs:invalid-operation-for-link Flavor
The specified operation is invalid for links, and this pathname is the name of
a link. This flavor is built on fs:wrong-kind-of-file.

fs:invalid-operation-for-directory Flavor
The specified operation is invalid for directories, and this pathname is the
name of a directory. This flavor is built on fs:wrong-kind-of-file.

70.2.3.7 fs:creation-failure

fs:creation-failure Flavor
This set includes errors related to attempts to create a file, directory, or link.
This flavor is built on fs:file-operation-failure.

fs:file-already-exists Flavor
A file of this name already exists. This flavor is built on fs:creation-failure.

fs:create-directory-failure Flavor
This set includes errors related to attempts to create a directory. This flavor
is built on fs:creation-failure.

fs:directory-already-exists Flavor
A directory or file of this name already exists. This flavor is built on
fs:creation-directory-failure.

551

March 1985 Conditions

fs:create-link-failure Flavor
This set includes errors related to attempts to create a link. This flavor is
built on fs:creation-failure.

70.2.3.8 f8 :rename-failure

fs:rename-failure Flavor
This set includes errors related to attempts to rename a file. The
:new-pathname message returns the target pathname of the rename
operation. This flavor is built on fs:file-operation-failure.

fs:rename-to-existing-file Flavor
The target name of a rename operation is the name of a file that already
exists. This flavor is built on fs:rename-failure.

fs:rename-across-directories Flavor
The devices or directories of the initial and target pathnames are not the
same, but on this file system they are required to be. This flavor is built on
fs:rename-failure.

fs:rename-across-hosts Flavor
The hosts of the initial and target pathnames are not the same. This flavor
is built on fs:rename-failure.

70.2.3.9 f8:change-property-failure

fs:cbange-property-failure Flavor
This set includes errors related to attempts to change properties of a file.
This might mean that you tried to set a property that only the file system is
allowed to set. For file systems without user-defined properties, it might
mean that no such property exists. This flavor is built on
fs:file-operation-failure.

fs:unknown-property
The property is unknown. This flavor is built on
fs:cbange-property-failure.

Flavor

fs:invalid-property-value Flavor
The new value provided for the property is invalid. This flavor is built on
fs:cbange-property-failure.

70.2.3.10 fs:delete-failure

fs:delete-failure Flavor
This set includes errors related to attempts to delete a file. It applies to
cases where the file server reports that it cannot delete a file. The exact
events involved depend on what the host file server has received from the
host. This flavor is built on fs:file-operation-failure.

552

Reference Guide to Symbolics-Lisp March 1985

fs:d.irectory-not-empty Flavor
An invalid deletion of a nonempty directory was attempted. This flavor is
built on fs:delete-failure.

fs:dont-delete-flag-set Flavor
Deleting a file with a "don't delete" flag was attempted. This flavor is built
on fs:delete-failure.

70.2.3.11 Miscellaneous Operations Failures

fs:circular-link Flavor
The pathname is a link that eventually gets linked back to itself. This flavor
is built on fs:file-operation-failure.

ts:unimplemented-option
This set includes errors in which an option to a command is not
implemented. This flavor is built on fs:file-operation-failure.

Flavor

fs:inconsistent-options Flavor
Some of the options given in this operation are inconsistent with others.
This flavor is built on fs:file-operation-failure.

ts:invalid-byte-size Flavor
The value of the "byte size" option was not valid. This flavor is built on
fs:unimplemented-option.

ts:no-more-room Flavor
The file system is out of room. This can mean any of several things:

• The entire file system might be full
• The particular volume that you are using might be full
• Your directory might be full
• You might have run out of your allocated quota
• Other system-dependent things

This flavor is built on fs:file-operation-failure. The :retry-file-operation
proceed type from fs:file-error is sometimes provided.

ts:filepos-out-of-range Flavor
Setting the file pointer past the end-of-file position or to a negative position
was attempted. This flavor is built on fs:file-operation-failure.

fs:file-Iocked Flavor
The file is locked. It cannot be accessed, possibly because it is in use by
some other process. Different file systems can have this problem in various
system-dependent ways. This flavor is built on fs:file-operation-failure.

553

March 1985 Conditions

fs:file-open-for-output Flavor
Opening a file that was already opened for output was attempted. This
flavor is built on fs:file-operation-failure. Note: ITS, TOPS-20, and
TENEX file servers do not use this condition; they signal fs:file-locked
instead.

fs:not-available Flavor
The file or device exists but is not available. Typically, the disk pack is not
mounted on a drive, the drive is broken, or the like. Probably operator
intervention is required to fix the problem, but retrying the operation is likely
to work after the problem is solved. This flavor is built on
fs:file-operation-failure. Do not confuse this with fs:host-not-available.

70.2.4 Pathname Errors

fs:pathname-error Flavor
This set includes errors related to pathnames. This is built on the error
flavor. The following flavors are built on this one.

fs:parse-pathname-error Flavor
A problem occurred in attempting to parse a pathname.

fs:invalid-pathname-component Flavor
Attempt to create a pathname with an invalid component.
Message Value returned
:pathname the pathname
:component-vaIue

the invalid value
: component the name of the component (a keyword symbol such as

:name or :directory)
:component-description

a "pretty name" for the component (such as file name or
directory)

The :new-component proceed type is defined with one argument, a
component value to use instead.

At the time this is signalled, a pathname object with the invalid component
has actually been created; this is what the :pathname message returns.
The error is signalled just after the pathname object is created before it goes
in the pathname hash table.

fs:unknown-pathname-host Flavor
The function fs:get-pathname-host was given a name that is not the name
of any known file computer. The :name message returns the name (a
string).

554

Reference Guide to Symbolics-Usp March 1985

fs:undefined-logicaI-pathname-translation Flavor
A logical pathname was referenced but is not defined. The
:logicaI-pathname message returns the logical pathname. This flavor has a
:define-directory proceed type, which prompts for a physical pathname
whose directory component is the translation of the logical directory on the
given host.

70.2.5 Network Errors

sys:network-error Flavor
This set includes errors signalled by networks. These are generic network
errors that are used uniformly for any supported networks. This flavor is
built on error.

70.2.5.1 Local Network Problema

sys:locaI-network-error Flavor
This set includes network errors related to problems with one's own
Symbolics Lisp Machine rather than with the network or the foreign host.
This flavor is built on sys:network-error.

sys:network-resources-eX'hausted Flavor
The local network control program exhausted some resource; for example, its
connection table is full. This flavor is built on sys:locaI-network-error.

sys:unknown-address Flavor
The network control program was given an address that is not understood.
The :address message returns the address. This flavor is built on
sys:locaI-network-error.

sys:unknown-host-name Flavor
The host parser (si:parse-host) was given a name that is not the name of
any known host. The :name message returns the name. This flavor is built
on sys:locaI-network-error.

70.2.5.2 Remote Network Problems

sys:remote-network-error Flavor
This set includes network errors related to problems with the network or the
foreign host, rather than with one's own Symbolics Lisp Machine.
Message Value returned
:toreign-host the remote host
:connection the connection or nil if no particular connection is involved

This flavor is built on sys:network-error.

555

March 1985 Conditions

sys:bad-connection-state Flavor
This set includes remote errors in which a connection enters a bad state.
This flavor is built on sys:remote-network-error. It actually can happen
due to local causes, however. In particular, if your Symbolics Lisp Machine
stays inside a without-interrupts for a long time, the network control
program might decide that a host is not answering periodic status requests
and put its connections into a closed state.

sys:connection-error Flavor
This set includes remote errors that occur while trying to establish a new
network connection. The :contact-name message to any error object in this
set returns the contact name that you were trying to connect to. This flavor
is built on sys:remote-network-error.

sys:host-not-responding Flavor
This set includes errors in which the host is not responding, whether during
initial connection or in the middle of a connection. This flavor is built on
sys:remote-network-error.

70.2.5.3 Connection Problems

sys:host-not-responding-during-connection Flavor
The network control program timed out while trying to establish a new
connection to a host. The host might be down, or the network might be
down. This flavor is built on sys:host-not-respon~ng and
sys:connection-error.

sys:host-stopped-responding Flavor
A host stopped responding during an established network connection. The
host or the network might have crashed. This flavor is built on
sys:host-not-responding and sys:bad-connection-state.

sys:connection-refused Flavor
The foreign host explicitly refused to accept the connection. The :reason
message returns a text string from the foreign host containing its
explanation, or nil if it had none. This flavor is built on
sys:connection-error.

sys:connection-closed Flavor
An established connection became closed. The :reason message returns a
text string from the foreign host containing its explanation, or nil if it had
none. This flavor is built on sys:bad-connection-state.

sys:connection-closed-Iocally Flavor
The local host· closed the connection and then tried to use it. This flavor is
built on sys:bad-connection-state.

556

Reference Guide to Symbolics-Lisp March 1985

sys:connection-lost Flavor
The foreign host reported a problem with an established connection and that
connection can no longer be used. The :reason message returns a text
string from the foreign host containing its explanation, or nil if it had none.
This flavor is built on sys:bad-connection-state.

sys:connection-no-more-data
No more data remain on this connection. This flavor is built on
sys:bad-connection-state.

Flavor

sys:network-stream-closed Flavor
This is a combination of sys:network-error and sys:stream-closed and is
usually used as a base flavor by network implementations (for example, Chaos
and TCP).

70.2.6 Tape Errors

tape:tape-error Flavor
This set includes all tape errors. This flavor is built on error.

tape:mount-error Flavor
A set of errors signalled because a tape could not be mounted. This includes
problems such as no ring and drive not ready. Normally, tape:make-stream
handles these errors and manages mount retry. This flavor is built on
tape:tape-error.

tape:tape-device-error Flavor
A hardware data error, such as a parity error, controller error, or interface
error, occurred. This flavor has tape:tape-error as a :required-flavor.

tape:end-of-tape Flavor
The end of the tape was encountered. When this happens on writing, the
tape usually has a few more feet left, in which the program is expected to
finish up and write two end-of-file marks. Normally, closing the stream does
this automatically. Whether or not this error is ever seen on input depends
on the tape controller. Most systems do not see the end of tape on reading,
and rely on the software that wrote the tape to have cleanly terminated its
data, with EOFs.

This flavor is built on tape:tape-device-error and tape:tape-error.

557

March 1985 Packages

PART XII.

Packages

558

Reference Guide to Symbolics-Lisp March 1985

559

March 1985 Packages

71. The Need for Packages

A Lisp program is a collection of function definitions. The functions are known by
their names, and so each must have its own name to identify it. Clearly a
programmer must not use the same name for two different functions.

The Symbolics Lisp Machine consists of a huge Lisp environment, in which many
programs must coexist. All of the "operating system", the compiler, the editor, and a
wide variety of programs are provided in the initial environment. Furthermore,
every program that you use during his session must be loaded into the same
environment. Each of these programs is composed of a group of functions; each
function must have its own distinct name to avoid conflicts. For example, if the
compiler had a function named pull, and you loaded a program that had its own
function named pull, the compiler's pull would be redefined, probably breaking the
compiler.

It would not really be possible to prevent these conflicts, since the programs are
written by many different people who could never get together to hash out who gets
the privilege of using a specific name such as pull.

Now, if two programs are to coexist in the Lisp world, each with its own function
pull, then each program must have its own symbol named "pull", because one
symbol cannot have two function definitions. The same reasoning applies to any
other use of symbols to name things. Not only functions but variables, flavors, and
many other things are named with symbols, and hence require isolation between
symbols belonging to different programs.

A package is a mapping from names to symbols. When two programs are not closely
related and hence are likely to have conflicts over the use, of names, the programs
can use separate packages to enable each program to have a different mapping from
names to symbols. In the example above, the compiler can use a package that maps
the name pull into a symbol whose function definition is the compiler's pull
function. Your program can use a different package that maps the name pull into a
different symbol whose function definition is your function. When your program is
loaded, the compiler's pull function is not redefined, because it is attached to a
symbol that is not affected by your program. The compiler does not break.

The word "package" is used to refer to a mapping from names to symbols because a
number of related symbols are packaged together into a single entity. Since the
substance of a program (such as its function definitions and variables) consists of
attributes of symbols, a package also packages together the parts of a program. The
package system allows the author of a group of closely related programs that should
share the same symbols to define a single package for those programs.

It is important to understand the distinction between a name and a symbol. A
name is a sequence of characters that appears on paper (or on a screen or in a file).

560

Reference Guide to Symbolics-Lisp March 1985

This is often called a printed representation. A symbol is a Lisp object inside the
machine. You should keep in mind how Lisp reading and loading work. When a
source file is read into the Symbolics Lisp Machine, or a compiled binary file is loaded
in, the file itself obviously cannot contain Lisp objects; it contains printed
representations of those objects. When the reader encounters a printed
representation of a symbol, it uses a package to map that printed representation (a
name) into the symbol itself. The loader does the same thing. The package system
arranges to use the correct package whenever a file is read or loaded. (For a
detailed explanation of this process: See the section "Specifying Packages in
Programs", page 579.

Example of the Need for Packages

Suppose there are two programs named chaos and arpa, for handling the Chaosnet
and Arpanet respectively. The author of each program wants to have a function
called get-packet, which reads in a packet from the network. Also, each wants to
have a function called allocate-pbuf, which allocates the packet buffer. Each "get"
routine first allocates a packet buffer, and then reads bits into the buffer; therefore,
each version of get-packet should call the respective version of allocate-pbuf.

Without the package system, the two programs could not coexist in the same Lisp
environment. But the package system can be used to provide a separate space of
names for each program. What is required is to define a package named chaos to
contain the Chaosnet program, and another package arpa to hold the Arpanet
program. When the Chaosnet program is read into the machine, the names it uses
are translated into symbols via the chaos package. So when the Chaosnet
program's get-packet refers to allocate-pbuf, the allocate-pbuf in the chaos
package is found, which is the allocate-pbuf of the Chaosnet program - the right
one. Similarly, the Arpanet program's get-packet would be read in using the arpa
package and would refer to the Arpanet program's allocate-pbuf.

561

March 1985 Packages

72. Symbols

72.1 The Value Cell of a Symbol

Each symbol has associated with it a value cell, which refers to one Lisp object.
This object is called the symbol's binding or value, since it is what you get when
you evaluate the symbol. The binding of symbols to values allows symbols to be
used as the implementation of variables in programs.

The value cell can also be empty, referring to no Lisp object, in which case the
symbol is said to be unbound. This is the initial state of a symbol when -it is
created. An attempt to evaluate an unbound symbol causes an error.

Symbols are often used as special variables. See the section "N amespace System
Variables" in Networks. The symbols nil and t are always bound to themselves;
they cannot be assigned, bound, or otherwise used as variables. Attempting to
change the value of nil or t (usually) causes an error.

The functions described here work on symbols, not variables in general.

set symbol value Function
set is the primitive for assignment of symbols. The symbol's value is
changed to value; value can be any Lisp object. set returns value. Example:

(set (eond «eq a b) 'e)
(t 'd»

'fool

either sets c to foo or sets d to foo.

set does not work on local variables.

set-globally var value Function
Works like set but sets the global value regardless of any bindings currently
in effect.

set-globally operates on the global value of a special variable; it bypasses
any bindings of the variable in the current stack group. It resides in the
global package.

set-globally does not work on local variables.

symeval sym Function
symeval is the basic primitive for retrieving a symbol's value.
(symeval sym) returns sym's current binding. This is the function called by
eval when it is given a symbol to evaluate. If the symbol is unbound, then
symeval causes an error.

562

Reference Guide to Symbolics-Lisp March 1985

symeval-globally var Function
Works like symeval but returns the global value regardless of any bindings
currently in effect.

symeval-globaUy operates on the global value of a special variable; it
bypasses any bindings of the variable in the current stack group. It resides
in the global package.

symeval-globally does not work on local variables.

makunbound 8ym Function
makunbound causes 8ym to become unbound. Example:

(setq a 1)

a => 1
(makunbound 'a)
a = > causes an error.

makunbound returns its argument.

makunbound-globally var Function
Works like makunbound but sets the global value regardless of any bindings
currently in effect.

makunbound-globally operates on the global value of a special variable; it
bypasses any bindings of the variable in the current stack group. It resides
in the global package.

makunbound-globaIly does not work on local variables.

boundp8ym Function
Returns t if 8ym is bound; otherwise, it returns nil.

variable-boundp variable Special Form
Returns t if the variable is bound and nil if the variable is not bound.
variable should be any kind of variable (it is not evaluated): local, special, or
instance. Note: local variables are always bound; if variable is local, the
compiler issues a warning and replaces this form with t.

If a is a special variable, (boundp 'a) is the same as (variable-boundp a).

variable-makunbound variable Special Form
Makes the variable be unbound and returns variable. variable should be any
kind of variable (it is not evaluated): local, special, or instance. Note: since
local variables are always bound, they cannot be made unbound; if variable is
local, the compiler issues a warning.

If a is a special variable, <makunbound 'a) is the same as
(variable-makunbound a).

563

March 1985 Packages

value-cell-location 8ym
This function is obsolete on local and instance variables; use
variable-location instead.

Function

value-cell-location returns a locative pointer to 8ym's internal value cell.
See the section "Locatives", page 83. It is preferable to write:

(loef (symeval sym))

instead of calling this function explicitly.

(value-cell-Iocation 'a) is still useful when a is a special variable. It
behaves slightly differently from the form (variable-location a), in the case
that a is a variable "closed over" by some closure. See the section "Dynamic
Closures", page 331. value-cell-location returns a locative pointer to the
internal value cell of the symbol (the one that holds the invisible pointer,
which is the real value cell of the symbol), whereas variable-location
returns a locative pointer to the external value cell of the symbol (the one
pointed to by the invisible pointer, which holds the actual value of the
variable).

variable-location variable Special Form
Returns a locative pointer to the memory cell that holds the value of the
variable. variable can be any kind of variable (it is not evaluated): local,
special, or instance.

variable-location should be used in almost all cases instead of
value-cell-location; value-cell-location should only be used when referring
to the internal value cell. For more information on internal value cells: See
the section "What is a Dynamic Closure?", page 331.

You can also use locf on variables. (locf a) expands into
(variable-location a).

72.2 The Function Cell of a Symbol

Every symbol also has associated with it a {unction cell. The {unction cell is similar
to the value cell; it refers to a Lisp object. When a function is referred to by name,
that is, when a symbol is applied or appears as the car of a form to be evaluated,
that symbol's function cell is used to find its definition, the functional object that is
to be applied. For example, when evaluating (+ 5 6), the evaluator looks in +'s
function cell to find the definition of +, in this case a compiled function, to apply to
5 and 6.

Like the value cell, a function cell can be empty, and it can be bound or assigned.
(However, to bind a function cell you must use the bind subprimitive.) The
following functions are analogous to the similar value-ceIl-related functions. See the
section "The Value Cell of a Symbol", page 56l.

564

Reference Guide to Symbolics-Usp March 1985

fsymeval 8ym Function
Returns 8ym's definition, the contents of its function cell. If the function cell
is empty, fsymevaI causes an error.

fset 8ym definition Function
Stores definition, which can be any Lisp object, into 8ym's function cell. It
returns definition.

fboundp 8ym Function
Returns nil if 8ym's function cell is empty, that is, 8ym is undefined.
Otherwise it returns t.

fmakunbound 8ym Function
Causes 8ym to be undefined, that is, its function cell to be empty. It returns
8ym.

function-cell-location 8ym Function
Returns a locative pointer to 8ym's function cell. See the section "Locatives",
page 83. It is preferable to write:

(loef (fsymeval 8ym»

rather than calling this function explicitly.

Since functions are the basic building block of Lisp programs, the system provides a
variety of facilities for dealing with functions. See the section "Functions", page 297.

72.3 The Property List of a Symbol

Every symbol has an associated property list. See the section "Property Lists", page
67. When a symbol is created, its property list is initially empty.

The Lisp language itself does not use a symbol's property list for anything. (This
was not true in older Lisp implementations, where the print-name, value-cell, and
function-cell of a symbol were kept on its property list.) However, various system
programs use the property list to associate information with the symbol. For
instance, the editor uses the property list of a symbol that is the name of a function
to remember where it has the source code for that function, and the compiler uses
the property list of a symbol which is the name of a special form to remember how
to compile that special form.

Because of the existence of print-name, value, function, and package cells, none of
the Maclisp system property names (expr, fexpr, macro, array, subr, lsubr,
fsubr, and in former times value and pname) exist in Symbolics-Lisp.

565

March 1985 Packages

plist sym Function
Returns the list that represents the property list of sym. Note that this is
not the property list itself; you cannot do get on it.

setplist sym list Function
Sets the list that represents the property list of 8ym to list. Use setplist
with extreme caution, since property lists sometimes contain internal system
properties, which are used by many useful system functions. Also, it is
inadvisable to have the property lists of two different symbols be eq, since
the shared list structure causes unexpected effects on one symbol if putprop
or remprop is done to the other.

property-cell-location sym Function
Returns a locative pointer to the location of sym's property-list cell. This
locative pointer is as valid as sym itself as a handle on sym's property list.

72.4 The Print Name of a Symbol

Every symbol has an associated string called the print-name, or pname for short.
This string is used as the external representation of the symbol: if the string is
typed in to read, it is read as a reference to that symbol (if it is interned), and if
the symbol is printed, print types out the print-name. More information about the
reader and the printer can be found elsewhere. See the section "What the Reader
Recognizes", page 20. See the section "What the Printer Produces", page 14.

get-pname sym Function
Returns the print-name of the symbol sym. Example:

(get-pname 'xyz) =) "xyz"

samepnamep syml sym2 Function
Returns t if the two symbols syml and sym2 have string= print-names, that
is, if their printed representation is the same. If either or both of the
arguments is a string instead of a symbol, then that string is used in place of
the print-name. samepnamep is useful for determining if two symbols
would be the same except that for being in different packages. Examples:

(samepnamep 'xyz (maknam '(x y z» =) t

(samepnamep 'xyz (maknam '(w x y» =) nil

(samepnamep 'xyz "xyzH) =) t

This is the same function as string=. samepnamep is provided mainly so
that you can write programs that work in Maclisp as well as Symbolic s-Li sp;
in new programs, you should just use string=.

566

Reference Guide to Symbolics-Usp March 1985

72.5 The Package Cell of a Symbol

Every symbol has a package cell that is used, for interned symbols, to point to the
package to which the symbol belongs. For an uninterned symbol, the package cell
contains nil.

72.6 Creating Symbols

The functions in this section are primitives for creating symbols. However, before
discussing them, it is important to point out that most symbols are created by a
higher-level mechanism, namely the reader and the intern function. Nearly all
symbols in Lisp are created by virtue of the reader's having seen a sequence of input
characters that looked like the printed representation of a symbol. When the reader
sees such a p.r., it calls intern, which looks up the sequence of characters in a big
table and sees whether any symbol with this print-name already exists. If it does,
read uses the existing symbol. If it does not exist, then intern creates a new
symbol and puts it into the table, and read uses that new symbol.

A symbol that has been put into such a table is called an interned symbol. Interned
symbols are normally created automatically; the first time someone (such as the
reader) asks for a symbol with a given print-name, that symbol is automatically
created.

These tables are called packages. In Symbolics-Lisp, interned symbols are handled
by the package system.

An uninterned symbol is a symbol used simply as a data object, with no special
cataloging. An uninterned symbol prints the same as an interned symbol with the
same print-name, but cannot be read back in.

The following functions can be used to create uninterned symbols explicitly.

make-symbol pname &optional permanent-p Function
Creates a new uninterned symbol whose print-name is the string pname.
The value and function bindings are unbound and the property list is empty.
If permanent-p is specified, it is assumed that the symbol is going to be
interned and probably kept around forever; in this case it and its pname are
put in the proper areas. If permanent-p is nil (the default), the symbol goes
in the default area and the pname is not copied. permanent-p is mostly for
the use of intern itself.

Examples:

(make-symbol "FDD") => FDD
(make-symbol "Foo") => IFool

Note that the symbol is not interned; it is simply created and returned.

567

March 1985 Packages

If a symbol has lowercase characters in its print-name, the printer quotes the
name using slashes or vertical bars. The vertical bars inhibit the Lisp
reader's normal action, which is to convert a symbol to uppercase upon
reading it. See the section "What the Printer Produces", page 14.

Example:

(setq a (make-symbol "Hello"»
(prine a)

=) IHello I
prints out Hello

copysymbol sym copy-props Function
Returns a new uninterned symbol with the same print-name as sym. If
copy-props is non-nil, then the value and function-definition of the new
symbol are the same as those of sym, and the property list of the new
symbol is a copy of sym's. If copy-props is nil, then the new symbol is
unbound and undefined, and its property list is empty.

gensym &optional x Function
Invents a print-name, and creates a new symbol with that print-name. It
returns the new, uninterned symbol.

The invented print-name is a character prefix (the value of
si:*gensym-pref'm) followed by the decimal representation of a number (the
value of si:*gensym-counter), for example, "gO001". The number is
increased by 1 every time gensym is called.

If the argument x is present and is a fIXnum, then si:*gensym-counter is
set to x. If x is a string or a symbol, then si:*gensym-pref1x is set to the
first character of the string or of the symbol's print-name. After handling
the argument, gensym creates a symbol as it would with no argument.
Examples:

if (gensym) =) g0007
then (gensym 'fool =) f0008

(gensym 32.) =) f0032
(gensym) =) f0033

Note that the number is in decimal and always has four digits, and the
prefix is always one character.

gensym is usually used to create a symbol that should not normally be seen
by the user, and whose print-name is unimportant, except to allow easy
distinction by eye between two such symbols. The optional argument is
rarely supplied. The name comes from "generate symbol", and the symbols
produced by it are often called "gensyms".

568

Reference Guide to Symbolics-Usp March 1985

569

March 1985 Packages

73. Sharing of Symbols Among Packages

How the Package System Allows Symbol Sharing

Besides keeping programs isolated by giving each program its own set of symbols, the
package system must also provide controlled sharing of symbols among packages. It
would not be adequate for each package's set of symbols to be completely disjoint
from the symbols of every other package. For example, almost every package ought
to include the whole Lisp language: car, cdr, format, and so on should be available
to every program.

There is a critical tension between these two goals of the package system. On the
one hand, we want to keep the packages isolated, to avoid the need to think about
conflicts between programs when we choose names for things. On the other hand,
we want to provide connections among packages so that the facilities of one program
can be made available to other programs. All the complexity of the package system
arises from this tension. Almost all of the package system's features exist to provide
easy ways to control the sharing of symbols among packages, while avoiding
accidental unwanted sharing of symbols. Unexpected sharing of a symbol between
packages, when the authors of the programs in those packages expected to have
private symbols of their own, is a name conflict and can cause programs to go awry.
See the section "Package Name-conflict Errors", page 593.

Note that sharing symbols is not as simple as merely making the symbols defined by
the Lisp language available in every package. A very important feature of the
Symbolics Lisp Machine is shared programs; if one person writes a function to, say,
print numbers in Roman numerals, any other function can call it to print Roman
numerals. This contrasts sharply with many other systems, where many different
programs have been written to accomplish the same thing.

For example, the routines to manipulate a robot arm might be a separate program,
residing in its own package. A second program called blocks (the blocks world, of
course) wants to manipUlate the arm, so it would want to call functions from the
arm package. This means that the blocks program must have a way to name those
robot arm functions. One way to do this is to arrange for the name-to-symbol
mapping of the blocks package to map the names of those functions into the same
identical symbols as the name-to-symbol mapping of the arm package. These
symbols would then be shared between the two packages.

This sharing must be done with great care. The symbols to be shared between the
two packages constitute an interface between two modules. The names to be shared
must be agreed upon by the authors of both programs, or at least known to them.
They cannot simply make every symbol in the arm program available to the blocks
program. Instead they must define some subset of the symbols used by the arm
program as its interface and make only those symbols available. Typically each name

570

Reference Guide to Symbolics-Usp March 1985

in the interface is carefully chosen (more carefully than names that are only used
internally). The arm program comes with documentation listing the symbols that
constitute its interface and describing what each is used for. This tells the author
of the blocks program not only that a particular symbol is being used as the name of
a function in the arms program (and thus cannot be used for a function elsewhere),
but also what that function does (move the arm, for instance) when it is called.

The package system provides for several styles of interface between modules. For
several examples of how the blocks program and the arm program might
communicate: See the section "Examples of Symbol Sharing Among Packages", page
589.

An important aspect of the package system is that it makes it necessruy to clarify
the modularity of programs and the interfaces between them. The package system
provides some tools to allow the interface to be explicitly defined and to check that
everyone agrees on the interface.

73.1 External Symbols

The name-to-symbol mappings of a package are divided into two classes, external and
internal. We refer to the symbols accessible via these mappings as being external
and internal symbols of the package in question, though really it is the mappings
that are different and not the symbols themselves. Within a given package, a name
refers to one symbol or to none; if it does refer to a symbol, that symbol is either
external or internal in that package, but not both.

External symbols are part of the package's public interface to other packages. These
are supposed to be chosen with some care and are advertised to outside users of the
package. Internal symbols are for internal use only, and these symbols are normally
hidden from other packages. Most symbols are created as internal symbols; they
become external only if they are explicitly exported from a package.

A symbol can appear in many packages. It can be external in one package and
internal in another. It is valid for a symbol to be internal in more than one
package, and for a symbol to be external in more than one package. A name can
refer to different symbols in different packages. However, a symbol always has the
same name no matter where it appears. This restriction is imposed both for
conceptual simplicity and for ease of implementation.

571

March 1985 Packages

73.2 Package Inheritance

Some name-to-symbol mappings are established by the package itself, while others
are inherited from other packages. When package A inherits mappings from package
B, package A is said to use package B. A symbol is said to be accessible in a package
if its name maps to it in that package, whether directly or by inheritance. A symbol
is said to be present in a package if its name maps to it directly (not by inheritance).
If a symbol is accessible to a package, then it can be referenced by a program that is
read into that package. Inheritance allows a package to be built up by combining
symbols from a number of other packages.

Package inheritance interacts with the distinction between internal and external
symbols. When one package uses another, it inherits only the external symbols of
that package. This is necessary in order to provide a well-defined interface and avoid
accidental name conflicts. The external symbols are the ones that are carefully
chosen and advertised. If internal symbols were inherited, it would be hard to
predict just which symbols were shared between packages.

A package can use any number of other packages; it inherits the external symbols of
all of them. If two of these external symbols had the same name it would be
unpredictable which one would be inherited, so this is considered to be a name­
conflict error. Consequently the order of the used packages is immaterial and does
not affect what symbols are accessible.

Only symbols that are present in a package can be external symbols of that package.
However, the package system hides this restriction by copying an inherited mapping
directly into a package if you request that the symbol be exported. Note: When
package A uses package B, it inherits the external symbols of B. But these do not
become external symbols of A, and are not inherited by package C that uses package
A. A symbol becomes an external symbol of A only by an explicit request to export it
from A.

A package can be· made to use another package by the :use option to defpackage
or make-package or by calling the use-package function.

73.3 The global Package

Almost every package should have the basic symbols of the Lisp language accessible
to it. This includes:

• Symbols that are names of useful functions, such as cdr, cons, and print

• Symbols that are names of special forms, such as cond and selectq

• Symbols that are names of useful variables, such as base, standard-output,
and •

572

Reference Guide to Symbolics-Lisp March 1985

• Symbols that are names of useful constants, such as lambda-list-keywords
and %%kbd-control-meta

• Symbols that are used by the language as symbols in their own right, such as
&optional, t, nil, and special

Rather than providing an explicit interface between every program and the Lisp
language, listing explicitly the particular symbols from the Lisp language that that
program intends to use, it is more convenient to make all the Lisp symbols
accessible. Unless otherwise specified, every package inherits from the global
package. The external symbols of global are all the symbols of the Lisp language,
including all the symbols documented without a colon (:) in their name. The global
package has no internal symbols.

All programs share the global symbols, and cannot use them for private purposes.
For example, the symbol delete is the name of a Lisp function and thus is in the
global package. Even if a program does not use the delete function, it inherits the
global symbol named delete and therefore cannot define its own function with that
name to do something different. Furthermore, if two programs each want to use
the symbol delete as a property list indicator, they can bump into each other
because they do not have private symbols. You can use a mechanism called
shadowing to declare that a private symbol is desired rather than inheriting the
global symbol. See the section "Shadowing Symbols", page 574. You can also use
the where-is function and the Where Is Symbol (M-X) editor command to determine
whether a symbol is private or shared when writing a program.

Similar to the global package is the system package, which contains all the symbols
that are part of the "operating system" interface or the machine architecture, but
not regarded as part of the Lisp language. The system package is not inherited
unless specifically requested.

Here is how package inheritance works in the example of the two network
programs. (See the section "Example of the Need for Packages", page 560.) When
the Chaosnet program is read into the Lisp world, the current package is the chaos
package. Thus all of the names in the Chaosnet program are mapped into symbols
by the chaos package. If there is a reference to some well-known global symbol
such as append, it is found by inheritance from the global package, assuming no
symbol by that name is present in the chaos package. If, however, there is a
reference to a symbol that you created, a new symbol is created in the chaos
package. Suppose the name get-packet is referenced for the first time. No symbol
by this name is directly present in the chaos package, nor is such a symbol
inherited from global. Therefore the reader (actually the intern function) creates a
new symbol named get-packet and makes it present in the chaos package. When
get-packet is referred to later in the Chaosnet program, that symbol is found.

When the Arpanet program is read in, the current package is arpa instead of
chaos. When the Arpanet program refers to append, it gets the global one; that

573

March 1985 Packages

is, it shares the same symbol that the Chaosnet program got. However, if it refers
to get-packet, it does not get the same symbol the Chaosnet program got, because
the chaos package is not being searched. Rather, the arpa and global packages
are searched. A new symbol named get-packet is created and made present in the
arpa package.

So what has happened is that there are two get-packets: one for chaos and one
for arpa. The two programs are loaded together without name conflicts.

73.4 Home Package of a Symbol

Every symbol has a home package. When a new symbol is created by the reader
and made present in the current package, its home package is set to the current
package. The home package of a symbol can be obtained with the symbol-package
function.

Most symbols are present only in their home package; however, it is possible to make
a symbol be present in any number of packages. Only one of those packages can be
distinguished as the home package; normally this is the first package in which the
symbol was present. The package system tries to ensure that a symbol is present in
its home package. When a symbol is first created by the reader (actually by the
intern function), it is guaranteed to be present in its home package. If the symbol
is removed from its home package (by the remob function), the home package of
the symbol is set to nil, even if the symbol is still present in some other package.

Some symbols are not present in any package; they are said to be unintemed. See
the section "Mapping Names to Symbols", page 604. The make-symbol function
can be used to create such a symbol. An uninterned symbol has no home package;
the symbol-package function returns nil given such a symbol.

When a symbol is printed, for example, with print, the printer produces a printed
representation that the reader turns back into the same symbol. If the symbol is
not accessible to the current package, a qualified name is printed. See the section
"Qualified Package Names", page 584. The symbol's home package is used as the
prefix in the qualified name.

73.5 Importing and Exporting Symbols

A symbol can be made accessible to packages other than its home package in two
ways, importing and exporting.

Any symbol can be made present in a package by importing it into that package.
This is how a symbol can be present in more than one package at the same time.
After importing a symbol into the current package, it can be referred to directly with

574

Reference Guide to Symbolics-Lisp March 1985

an unqualified name. Importing a symbol does not change its home package, and
does not change its status in any other packages in which it is present.

When a symbol is imported, if another symbol with the same name is already
accessible to the package, a name-conflict error is signalled. The shadowing-import
operation is a combination of shadowing (described in the next section) and
importing; it resolves a name conflict by getting rid of any existing symbol accessible
to the package.

Any number of symbols can be exported from a package. This declares them to be
external symbols of that package and makes them accessible in any other packages
that use the first package. To use a package means to inherit its external symbols.

When a symbol is exported, the package system makes sure that no name conflict is
caused in any of the packages that inherit the newly exported symbol.

A symbol can be imported by using the :import, :import-from, or
:shadowing-import option to defpackage and make-package, or by calling the
import or shadowing-import function. A symbol can be exported by using the
:export option to defpackage or make-package, or by calling the export
function. See the section "Defining a Package", page 598. See the section
"Functions That Import, Export, and Shadow Symbols", page 611.

73.6 Shadowing Symbols

You can avoid inheriting unwanted symbols by shadowing them. To shadow a
symbol that would otherwise be inherited, you create a new symbol with the same
name and make it present in the package. The new symbol is put on the package's
list of shadowing symbols, to tell the package system that it is not an accident that
there are two symbols with the same name. A shadowing symbol takes precedence
over any other symbol of the same name that would otherwise be accessible to the
package. Shadowing allows the creator of a package to avoid name conflicts that are
anticipated in advance.

As an example of shadowing, suppose you want to define a function named nth that
is different from the normal nth function. (Perhaps you want nth to be compatible
with the Interlisp function of that name.) Simply writing (defun nth ...) in your
program would redefine the system-provided nth function, probably breaking other
programs that use it. (The system detects this and queries you before proceeding
with the redefinition.)

The way to resolve this conflict is to put the program (call it snail) that needs the
incompatible definition of nth in its own package and to make the snail package
shadow the symbol nth.

Now there are two symbols named nth, so defining snail's nth to be an Interlisp­
compatible function does not affect the definition of the global nth. Inside the snail

575

March 1985 Packages

program, the global symbol nth cannot be seen, which is why we say that it is
shadowed. If some reason arises to refer to the global symbol nth inside the snail
program, the qualified name global:nth can be used.

A shadowing symbol can be established by the :shadow or :shadowing-import
option to defpackage or make-package, or by calling the shadow or
shadowing-import function. See the section "Functions That Import, Export, and
Shadow Symbols", page 611.

73.7 Introduction to Keywords

The Lisp reader is not context-sensitive; it reads the same printed representation as
the same symbol regardless of whether the symbol is being used as the name of a
function, the name of a variable, a quoted constant, a syntactic word in a special
form, or anything else. The consistency and simplicity afforded by this lack of
context sensitivity are very important to Lisp's interchangeability of programs and
data, but they do cause a problem in connection with packages. If a certain
function is to be shared between two packages, then the symbol that names that
function has to be shared for all contexts, not just for functional context. This can
accidentally cause a variable, or a property list indicator, or some other use of a
symbol, to be shared between two packages when not desired. Consequently, it is
important to minimize the number of symbols that are shared between packages,
since every such symbol becomes a "reserved word" that cannot be used without
thinking about the implications. Furthermore, the set of symbols shared among all
the packages in the world is not legitimately user-extensible, because adding a new
shared symbol could cause a name conflict between unrelated programs that use
symbols by that name for their own private purposes.

On the other hand, there are many important applications for which the package
system just gets in the way and one would really like to have all symbols shared
between packages. Typically this occurs when symbols are used as objects in their
own right, rather than just as names for things.

This dilemma is partially re.solved by the introduction of keywords into the language.
Keywords are a set of symbols that is disjoint from all other symbols and exist as a
completely independent set of names. There is no separation of packages as far as
keywords are concerned; all keywords are available to all packages and two distinct
keywords cannot have the same name. Of course, a keyword can have the same
name as one or more ordinary symbols. To distinguish keywords from ordinary
symbols, the printed representation of a keyword starts with a colon (:) character.

Since keywords are disjoint from ordinary symbols, the sharing of keywords among
all packages does not affect the separation of ordinary symbols into private symbols
of each package. The set of keywords is user-extensible; simply reading the printed
representation of a new keyword is enough to create it.

576

Reference Guide to Symbolics-Lisp March 1985

Keywords are implemented as symbols whose home package is the keyword
package, which has the empty string as a nickname. See the section "Package
Names", page 581. Hence the printed representation of a keyword, a symbol
preceded by a colon, is actually just a qualified name. As a matter of style,
keywords are never imported into other packages and the keyword package is never
inherited (used) by another package.

As a syntactic convenience, every keyword is a constant that evaluates to itself (just
like numbers and strings). This eliminates the need to write a lot of " , " marks
when calling a function that takes &key arguments, but makes it impossible to have
a variable whose name is a keyword. However, there is no desire to use keywords as
names of variables (or of functions), because the colon would look ugly. In fact, no
syntactic words of the Lisp language are keywords. Names of special forms, the
otherwise that goes at the end of a selectq, the lambda that identifies an
interpreted function, names of declarations such as special and arglist, all are not
keywords.

The only aspects of symbols significant to keywords are name and property list;
otherwise, keywords could just as easily be some other data type. (Note that
keywords are referred to as enumeration types in some other languages.)

Using Keywords

Keywords can be used as symbolic names for elements of a finite set. For example,
when opening a file with the open function you must specify a direction. The
various directions are named with keywords, such as :input and :output.

One of the most common uses of keywords is to name arguments to functions that
take a large number of optional arguments and therefore are inconvenient to call
with arguments identified positionally. Each argument is preceded by a keyword
that tells the function how to use that argument. When the function is called, it
compares each keyword that was passed to it against each of the keywords it knows,
using eq.

Another common use for keywords is as names for messages that are passed to
active objects such as instances. When an instance receives a message, it compares
its first argument against all the message names it knows, using eq.

See the section "Generic Operations on Objects", page 421.

Since two distinct keywords cannot have the same name, keywords are not used for
applications in which name conflicts can arise. For example, suppose a program
stores data on the property lists of symbols. The data are internal to the program
but the symbols can be global. An example of this would be a program­
understanding program that puts some information about each Lisp function and
special form on the symbol that names that function or special form. The indicator
used should not be a keyword, because some other program might choose the same
keyword to store its own internal data on the same symbol, causing a name conflict.

577

March 1985 Packages

It is permissible, and in fact quite common, to use the same keyword for two
different purposes when the two purposes are always separable by context. For
instance, the use of keywords to name arguments to functions does not permit the
possibility of a name conflict if you always know what function you are calling.

To see why keywords are used to name &key arguments, consider the function
make-array, which takes one required argument followed by any number of
keyword arguments. For example, the following specifies, after the first required
argument, two options with names :leader-Iength and :type and values 10 and
art-string.

(make-array 100 :leader-length 10 :type 'art-string)

The file containing make-array's definition is in the system-internals package, but
the function is accessible to everyone without the use of a qualified name because
the symbol make-array is itself inherited from global. But all the keyword names,
such as type, are short and should not have to exist in global where they would
either cause name conflicts or use up all the "good" names by turning them into
reserved words. However, if all callers of make-array had to specify the options
using long-winded qualified names such as system-intemals:leader-Iength and
system-internals:type (or even si:leader-Iength and si:type) the point of making
make-array global so that one can write make-array rather than
system-intemals:make-array would be lost. Furthermore, by rights one should
not have to know about internal symbols of another package in order to use its
documented external interface. By using keywords to name the arguments, we avoid
this problem while not increasing the number of characters in the program, since we
trade a "'" for a":".

The data type names used with the typep function and the typecase and
cbeck-arg-type special forms are sometimes keywords and sometimes not keywords.
The names of data types that are built into the machine, such as : symbol , :list,
:rlXDum, and :compiled-function, are keywords. On the other hand, the names of
data types that are defined as flavors or structures, such as package or tv:window,
are not keywords. This unfortunate anomaly exists for historical reasons and is
removed by Common Lisp, where names of data types, like names of functions, are
never keywords.

When in doubt as to whether or not a symbol of the language is supposed to be a
keyword, check to see whether it is documented with a colon at the front of its
name.

578

Reference Guide to Symbolics-Usp March 1985

579

March 1985 Packages

74. Specifying Packages in Programs

If you are an inexperienced user, you need never be aware of the existence of
packages when writing programs. The user package is selected by default as the
package for reading expressions typed at the Lisp Listener. Files are read in the
uaer package if no package is specified. Since all the functions that users are likely
to need are provided in the global package, which is used by user, they are all
accessible. In the documentation, functions that are not in the global package are
documented with colons in their names, ,so typing the name the way it is
documented works. Keywords, of course, must be typed with a prefix colon, but
since that is the way they are documented it is possible to regard the colon as just
part of the name, not as anything having to do with packages.

The current package is the value of the variable package. The current package in
the "selected" process is displayed in the status line. This allows you to tell how
forms you type in are read.

If you are writing a program that you expect others to use, you should put it in
some package other than user, so that its internal functions do not conflict with
names other users use. For whatever reason, if you are loading your programs into
packages other than user, you need to know about special constructs including
defpackage, qualified names, and file attribute lists. See the section "Defining a
Package", page 598. See the section "Qualified Package Names", page 584.

Obviously, evety file must be loaded into the right package to serve its purpose. It
might not be so obvious that evety file must be compiled in the right package, but it
is just as true. Any time the names of symbols appearing in the file must be
converted to the actual symbols, the conversion must take place relative to a
package.

The system usually decides which package to use for a file by looking at the file's
attribute list. See the section "File Attribute Lists" in Reference Guide to Streams,
Files, and 110. The package can also be selected by make-system. A compiled file
remembers the name of the package it was compiled in, and loads into the same
package. In the absence of any of these specifications, the package defaults to the
current value of package, which is usually the user package unless you change it.

The file attribute list of a character file is the line at the front of the file that looks
something like:

;;; -*- Hode:Lisp; Package:System-Internals -*-
This specifies that the package whose name or nickname is system-internals is to
be used. Alphabetic case does not matter in these specifications. Relative package
names are not used, since there is no meaningful package to which the name could
be relative. See the section "Relative Package Names", page 582.

580

Reference Guide to Symbolics-Usp March 1985

If the package attribute contains parentheses, then the package is automatically
created if it is not found. This is useful when a single file is in its own package, not
shared with any other files, and no special options are required to set up that
package. The valid forms of package attribute are:

.*. Package: Name .*.
Signal an error if the package is not found, allowing you to load the
package's definition from another file, specify the name of an existing package
to use instead, or create the package with default characteristics .

. *. Package: (Name) .*.
If the package is not found, create it with the specified name and default
characteristics. It uses global so that it inherits the Lisp language symbols .

. *. Package: (Name use) .*.
If the package is not found, create it with the specified name and make it
use use, which can be the name of a package or a list of names of packages .

. *. Package: (Name use size) .*.
If the package is not found, create it with the specified name and make it
use use, which can be the name of a package or a list of names of packages.
size is a decimal number, the number of symbols that expected to be present
in the package .

. *. Package: (Name keyword value keyword value •••) .*.
If the package is not found, create it with the specified name. The rest of
the list supplies the keyword arguments to make-package. In the event of
an ambiguity between this form and the previous one, the previous one is
preferred. You can avoid ambiguity by specifying more than one keyword.

Binary files have similar file attribute lists. The compiler always puts in a :package
attribute to cause the binary file to be loaded into the same package it was compiled
in, unless this attribute is overridden by arguments to load.

581

March 1985 Packages

75. Package Names

75.1 Introduction to Package Names

Each package has a name and perhaps some nicknames. These are assigned when
the package is created, though they can be changed later. A package's name should
be something long and self-explanatory like editor; there might be a nickname that
is shorter and easier to type, like ed. Typically the name of a package is also the
name of the program that resides in that package.

There is a single namespace for packages. Instead of setting up a second-level
package system to isolate names of packages from each other, we simply say that
package name conflicts are to be resolved by using long explanatory names. There
are sufficiently few packages in the world that a mechanism to allow two packages
to have the same name does not seem necessary. Note that for the most frequent
use of package names, qualified names of symbols, name clashes between packages
can be alleviated using relative names.

The syntax conventions for package names are the same as for symbols. When the
reader sees a package name (as part of a qualified symbol name), alphabetic
characters in the package name are converted to uppercase unless preceded by the
"/" escape character or unless the package name is surrounded by "I" characters.
When a package name is printed by the printer, if it does not consist of all
uppercase alphabetics and non-delimiter characters, the "/" and "I" escape characters
are used.

Package name lookup is currently case-insensitive, but it might be changed in the
future to be case-sensitive. In any case you should not make two packages whose
names differ only in alphabetic case.

Internally names of packages are strings, but the functions that require a package­
name argument from the user accept either a symbol or a string. If you supply a
symbol, its print-name is used, which has already undergone case conversion by the
usual rules. If you supply a string, you must be careful to capitalize the string in
the same way that the package's name is capitalized.

Note that IFool:IBarl refers to a symbol whose name is "Bar" in a package whose
name is "Foo". By contrast, I Foo:Barl refers to a 7-character symbol with a colon
in its name, and is interned in the current package. Following the convention used
in the documentation for symbols, we show package names as being in lowercase,
even though the name string is really in uppercase.

582

Reference Guide to Symbolics-Lisp March 1985

Invisible Packages

In addition to normal packages, there can be invisible packages. An invisible
package has a name, but it is not entered into the system's table that maps package
names to packages. An invisible package cannot be referenced via a qualified name
(unless you set up a relative name for it) and cannot be used in such contexts as
the :use keyword to defpackage and make-package (unless you pass the package
object itself, rather than its name). Invisible packages are useful if you simply want
a package to use as a data structure, rather than as the package in which to write a
program.

75.2 Relative Package Names

See the section "Introduction to Package Names", page 581. In addition to the
absolute package names (and nicknames) described there, packages can have relative
names. If p is a relative name for package B, relative to package A, then in
contexts where relative names are allowed and A is the contextually relevant package
the name p can be used instead of b. The relative name mapping belongs to
package A and defines a new name (p) for package B. It is important not to confuse
the package that the name is relative to with the package that is named.

Relative names are established with the :relative-names and
:relative-names-for-me options to defpackage and make-package. You can also
use the pkg-add-relative-name function to establish a relative name. The
pkg-delete-relative-name function removes a relative name.

There are two important differences between relative names and absolute names:
relative names are recognized only in certain contexts, and relative names can
"shadow" absolute names. One application for relative names is to replace one
package by another. Thus if a program residing in package A normally refers to the
thermodynamics package, but for testing purposes we would like it to use the
phlogiston package instead, we can give A a relative name mapping from the name
thermodynamics to the phlogiston package. This relative name shadows the
absolute name thermodynamics.

Another application for relative names is to ease the establishment of a family of
mutually dependent packages. For example, if you have three packages named
algebra, rings, and polynomials, these packages might refer to each other so
frequently that you would like to use the nicknames 8, r, and p rather than spelling
out the full names each time. It would obviously be bad to use up these one-letter
names in the system-wide space of package names; what if someone else has a
program with two packages named reasoning and truth-maintenance, and would
like to use the nicknames r and t? The solution to this name conflict is to make
the abbreviated names be relative names defined in the algebra, rings, and
polynomials packages. These abbreviations are seen by references emanating from

583

March 1985 Packages

those packages, and there is no conflict with other abbreviations defined by other
packages.

An extension of the shadowing application for relative names is to set up a complete
family of packages parallel to the normal one, such as experimental-global and
experimental-user. Within this family of packages you establish relative name
mappings so that the usual names such as global and user can be used. Certain
system utility programs work this way.

When package A uses package B, in addition to inheriting package B's external
symbols, any relative name mappings established by package B are inherited. In the
event of a name conflict between relative names defined directly by A and inherited
relative names, the inherited name is ignored. The results if two relative name
mappings inherited from two different packages conflict are unpredictable.

The Lisp system does not itself use relative names, so a freshly booted Lisp Machine
contains no relative-name mappings.

Relative names are recognized in the following contexts:

• Qualified symbol names - The package name before the colon is relative to
the package in which the symbol is being read (the value of the variable
package). The printer prefers a relative package name to an absolute package
name when it prints a qualified symbol name.

• Package references in package-manipulating functions - For example, the
package names in the :use option to defpackage and in the first argument to
use-package can be relative names. All such relative names are relative to
the value of the variable package.

• Package arguments that default to the current package - The functions
intern, intern-local, intern-soft, intern-local-soft, remob, export,
unexport, import, shadow, shadowing-import, use-package, and
unuse-package all take an optional second argument that defaults (except in
the case of remob) to the current package. If supplied, this argument can be
a package, an absolute name of a package, or a relative name of a package.
All such relative names are relative to the value of the variable package.

Relative names are not recognized in "global" contexts, where there is no obvious
contextual package to be relative to, such as:

• File attribute lists ("-.-" lines)

• Package names requested from you as part of error recovery, or in commands
such as the Set Package (M-X) editor command.

• The pkg-find-package function (unless its optional third argument is
specified).

584

Reference Guide to Symbolics-Lisp March 1985

• Package arguments to the mapatoms, pkg-goto, describe-package, and
pkg-kill functions.

• Package specifiers in the do-symbols, do-local-symbols, and
do-external-symbols special forms, and the interned-symbols and
local-interned-symbols loop iteration paths.

When a package object is printed, if it has a relative name (relative to the value of
package) that differs from its absolute name, both names are printed.

75.3 Qualified Package Names

75.3.1 Introduction to Qualified Package Names

Often it is desirable to refer to an external symbol in some package other than the
current one. You do this through the use of a qualified name, consisting of a
package name, then a colon, then the name of the symbol. This causes the
symbol's name to be looked up in the specified package, rather than in the current
one. For example, editor:buffer refers to the external symbol named buffer of the
package named editor, regardless of whether there is a symbol named buffer in
the current package. If there is no package named editor, or if no symbol named
buffer is present in editor or if buffer is an internal symbol of editor, an error is
signalled.

On rare occasions, you might need to refer to an internal symbol of some package
other than the current one. It is invalid to do this with the colon qualifier, since
accessing an internal symbol of some other package is usually a mistake. See the
section "Specifying Internal and External Symbols in Packages", page 585. However,
this operation is valid if you use "::" as the separator in place of the usual colon. If
the reader sees editor::buffer, the effect is exactly the same as reading buffer
with package temporarily rebound to the package whose name is editor. This
special-purpose qualifier should be used with caution.

Qualified names are implemented in the Lisp reader by treating the colon character
(:) specially. When the reader sees one or two colons preceded by the name of a
package, it reads in the next Lisp object with package bound to that package.
Note that the next Lisp object need not be a symbol; the printed representation of
any Lisp object can follow a package prefix. If the object is a list, the effect is
exactly as if every symbol in that list had been written as a qualified name, using
the preflX that appears in front of the list. When a qualified name is among the
elements of the list, the package name in the second package preflX is taken relative
to the package selected by the first package preflX. The internal/external mode is
controlled entirely by the innermost package preflX in effect.

585

March 1985 Packages

75.3.2 Specifying Interna' and External Symbols in Packages

To ease the transition for people whose programs are not yet organized according to
the distinction between internal and external symbols, a package can be set up so
that the n:n type of qualifi~d name does the same thing as the n::n type. This is
controlled by the package that appears before the colon, not by the package in which
the whole expression is being read. To set this attribute of a package, use the
:colon-mode keyword to defpackage and make-package. :external causes n:n to
behave as described in another section, accessing only external symbols. See the
section "Qualified Package Names as Interfaces", page 585. :internal causes ":" to
behave the same as n::", accessing all symbols. Note that :internal mode is
compatible with :external mode except in cases where an error would be signalled.
The default mode is :internal and all predefined system packages are created with
this mode. In Common Lisp the default mode is :extemal.

75.3.3 Qualified Package Names as Interfaces

See the section "How the Package System Allows Symbol Sharing", page 569. In the
example of the blocks world and the robot arm, a program in the blocks package
could call a function named go-up defined in the arm package by calling
arm:go-up. go-up would be listed among the external symbols of arm, using
:export in its defpackage, since it is part of the interface allowing the outside
world to operate the arm. If the blocks program uses qualified names to refer to
functions in the arm program, rather than sharing symbols as in the original
example, then the possibility of name conflicts between the two programs is
eliminated.

See the section "Example of the Need for Packages", page 560. Similarly, if the
chaos program wanted to refer to the arpa program's allocate-pbuf function, it
would simply call arpa:allocate-pbuf, assuming that function had been exported. If
it was not exported (becljluse arpa thought no one from the outside had any
business calling it), the chaos program would call arpa::allocate-pbuf.

75.3.4 Qualified Names of Symbols

The printer uses qualified names when necessary. (The princ function, however,
never prints qualified names for symbols.) The goal of the printer (for example, the
prinl function) when printing a symbol is to produce a printed representation that
the reader turns back into the same symbol. When a symbol that is accessible in
the current package (the value of package) is printed, a qualified name is not used,
regardless of whether the symbol is present in the package. This happens for one of
three reasons: because this is its home package, is present because it was imported,
or is not present but was inherited. When an inaccessible symbol is printed, a
qualified name is used. The printer chooses whether to use ":" or "::" based on
whether the symbol is internal or external and the :colon-mode of its home
package. The qualified name used by the printer can be read back in and yields the

586

Reference Guide to Symbolics-Usp March 1985

same symbol. If the inaccessible, symbol were printed without qualification, the
reader would translate that printed representation into a different symbol, probably
an internal symbol of the current package.

The qualified name used by the printer is based on the symbol's home package, not
on the path by which it was originally read (which of course cannot be known).
Suppose foo is an internal symbol of package A, has been imported into package B,
and has then been exported from package B. If it is printed while package is
neither A nor B, nor a package that uses B, the name printed is a::foo, not b:foo,
because foo's home package is A. This is an unlikely case, of course.

In addition to the simplest printed representation of a symbol, its name standing by
itself, there are four forms of qualified name for a symbol. These are accepted by
the reader and are printed by the printer when necessary; except when printing an
uninterned symbol, the printer prints some printed representation that yields the
same symbol when read. The following table shows the four forms of qualified
name, assuming that the foo package specifies :colon-mode :enernal. If foo
specifies :colon-mode : internal , as is currently the default, the first and second
forms are equivalent.

foo:bar

foo::bar

:bar

#:bar

When read, looks up bar among the external symbols of the
package named foo. Printed the when symbol bar is external in
its home package foo and is not accessible in the current package.

When read, interprets bar as if foo were the current package.
Printed when the symbol bar is internal in its home package foo
and is not accessible in the current package.

When read, interprets bar as an external symbol in the keyword
package. Printed when the home package of the symbol bar is
keyword.

When read, creates a new uninterned symbol named bar.
Printed when the symbol named bar has no home package.

75.3.5 Multilevel Qualified Package Names

Due to shadowing by relative names, a given package might sometimes be
inaccessible. In this case a multilevel qualified name, containing more than one
package prefix, can be used.

Suppose packages moe, larry, curly, and shemp exist. For its own reasons, the
moe package uses curly as a relative name for the shemp package. Thus, when
the current package is larry the printed representation curly:hair designates a
symbol in the curly package, but when the current package is moe the same
printed representation designates a symbol in the shemp package.

If the moe package is current and the symbol hair in the curly package needs to
be read or printed, the printed representation curly:hair cannot be used since it

587

March 1985 Packages

refers to a different symbol. If curly had a nickname that is not also shadowed by
a relative name it would be used, but suppose there is no nickname. In this case
the only possible way to refer to that symbol is with a multilevel qualified name.
larry:curly:hair would work, since the larry: escapes from the scope of moe's
relative name. The printer actually prefers to print global:curly:hair because of
the way it searches for a usable qualified name.

588

Reference Guide to Symbolics-Lisp March 1985

589

March 1985 Packages

76. Examples of Syrnbol Sharing Among Packages

See the section "How the Package System Allows Symbol Sharing", page 569.
Consider again the example of the robot arm in the blocks world. Two separate
programs, written by different people, interact with each other in a single Lisp
environment. The arm-control program resides in a package named arm, and the
blocks-world program resides in a package named blocks. The operation of the two
programs requires them to interact. For example, to move a block from one place to
another the blocks program calls functions in the arm program with names like
raise-arm, move-arm, and grasp. To find the edges of the table, the arm
program accesses variables of the blocks program.

Communication between the two programs requires that they both know about
certain objects. Usually these objects are the sort that have names (for example,
functions or variables). The names are symbols. Thus each program must be able
to name some symbols and to know that the other program is naming the same
symbols.

Let us consider the case of the function grasp in the arm-control program, which
the blocks-world program must call in order to pick up a block with the arm. The
grasp function is named by the symbol grasp in the ann package. Assume that
we are not going to use either of the mechanisms (keywords and the global
package) that make symbols available to all packages; we only want grasp to be
shared between the two specific packages that need it. There are basically three
ways provided by the package system for a symbol to be known by two separate
programs in two separate packages.

1. If the blocks package imports the symbol grasp from the arm package, then
both packages map the name grasp into the same symbol. The blocks package
could be defined by:

(defpackage blocks
(:import-from arm grasp»

2. The arm package can export the symbol grasp, along with whatever other
symbols constitute its interface to the outside world. If the blocks package uses the
arm package, then both packages again map the name grasp into the same symbol.
The package definitions would look like:

(defpackage arm
(:export grasp move-arm raise-arm ... »

(defpackage blocks
(:use arm global»

Note that the blocks package must explicitly mention that it is using the global
package as well as the arm package, since it is not letting its :use clause default.

590

Reference Guide to Symbolics·Lisp March 1985

The difference between this method (the export method) and the first method (the
import method) is that the hst of symbols that is to constitute the interface is
associated with the arm package, that is, the package that provides the interface,
not the package that uses the interface.

3. In the third method, we do not have the two packages map the same name into
the same symbol. Instead we use a different, longer name for the symbol in the
blocks program than the name used by the arm program. This makes it clear,
when reading the text of the blocks program, which symbol references are connected
with the interface between the two programs. These longer names are called
qualified names. Again, the arm package defines the interface:

(defpackage arm
(:export grasp move-arm raise-arm ... »

A fragment of the blocks-world program might look like

(defun pick-up (block)
(clear-top block)
(arm:grasp (block-coordinates block :top»
(arm: raise-arm»

arm:grasp and arm:raise-arm are qualified names. pick-up, block, clear-top,
and block-coordinates are internal symbols of the blocks-world program. defun is
inherited from the global package. :top is a keyword. Note that although the two
programs do not use the same names to refer to the same symbol, the names they
use are related in an obvious way, avoiding confusion. The package system makes
no provision for the same symbol to be named by two completely arbitrary names.

591

March 1985 Packages

n. Consistency Rules for Packages

Package-related bugs can be very subtle and confusing: the program is not using the
same symbols as you think it is using. The package system is designed with a
number of safety features to prevent most of the common bugs that would otherwise
occur in normal use. This might seem overprotective, but experience with earlier
package systems has shown that such safety features are needed.

In dealing with the package system, it is useful to keep in mind the following
consistency rules, which remain in force as long as the value of package is not
changed by you or your code:

o Read-Read consistency: Reading the same print name always gets you the
same (eq) symbol.

II Print-Read consistency: An interned symbol always prints as a sequence of
characters that, when read back in, yields the same (eq) symbol.

• Print-Print consistency: If two interned symbols are not eq, then their printed
representations are not be the same sequence of characters.

These consistency rules remain true in spite of any amount of implicit interning
caused by typing in Lisp forms, loading files, and so on. This has the important
implication that results are reproducible regardless of the order of either loading files
or typing in symbols. The rules can only be violated by explicit action: changing
the value of package, forcing some action by continuing from an error, or calling a
function that makes explicit modifications to the package structure (remob, for
example).

To ensure that the consistency rules are obeyed, the system ensures that certain
aspects of the package structure are chosen by conscious decision of the programmer,
not by accidents such as which symbols happen to be typed in by a user. External
symbols, the symbols that are shared between packages without being explicitly listed
by the "accepting" package, must be explicitly listed by the "providing" package. No
reference to a package can be made before it has been explicitly defined.

592

Reference Guide to Symbolics-Usp March 1985

593

March 1985 Packages

78. Package Name-conflict Errors

78.1 Introduction to Package Name-conflict Errors

A fundamental invariant of the package system is that within one package any
particular name can refer to only one symbol. A name conflict is said to occur when
more than one candidate symbol exists and it is not obvious which one to choose. If
the system does not always choose the same way, the read-read consistency rule
would be violated. For example, some programs or data might have been read in
under a certain mapping of the name to a symbol. If the mapping changes to a
different symbol, then additional programs or data are read, the two programs do
not access the same symbol even though they use the same name. Even if the
system did always choose the same way, a name conflict is likely to result in a
different mapping from names to symbols than you expected, causing programs to
execute incorrectly. Therefore, any time a name conflict occurs, an error is signalled.
You can continue from the error and tell the package system how to resolve the
conflict.

Note that if the same symbol is accessible to a package through more than one path,
for instance as an external of more than one package, or both through inheritance
and through direct presence in the package, there is no name conflict. Name
conflicts only occur between distinct symbols with the same name.

See the section "Shadowing Symbols", page 574. As discussed there, the creator of a
package can tell the system in advance how to resolve a name conflict through the
use of shadowing. Every package has a list of shadowing symbols. A shadowing
symbol takes precedence over any other symbol of the same name that would
otherwise be accessible to the package. A name conflict involving a shadowing
symbol is always resolved in favor of the shadowing symbol, without signalling an
error (except for one exception involving import described below). The :shadow
and :shadowing-import options to defpackage and make-package can be used
to declare shadowing symbols. The functions shadow and shadowing-import can
also be used.

78.2 Checking for Package Name-confllct Errors

Name conflicts are detected when they become possible, that is, when the package
structure is altered. There is no need to check for name conflicts during every
name lookup. The functions use-package, import, and export check for name
conflicts.

Using a package makes the external symbols of the package being used accessible to

594

Reference Guide to Symbofics-Lisp March 1985

the using package; each of these symbols is checked for name conflicts with the
symbols already accessible.

Importing a symbol adds it to the internals of a package, checking for a name
conflict with an existing symbol either present in the package or accessible to it.
import signals an error even if there is a name conflict with a shadowing symbol,
because two explicit directives from you are inconsistent.

Exporting a symbol makes it accessible to all the packages that use the package from
which the symbol is exported. All of these packages are checked for name conflicts.
(export s p) does (intern-80ft s q) for each package q in
(package-used-by-list p). Note that in the usual case of exporting symbols only
during the initial definition of a package, there are no users of the package yet and
the name-conflict checking takes no time.

intern does not need to do any name-conflict checking, because it never creates a
new symbol if there is already an accessible symbol with the name given.

Note that the function intern-local can create a new symbol with the same name
as an already accessible symbol. Nevertheless, intern-local does not check for name
conflicts. This function is considered to be a low-level primitive and indiscriminate
use of it can cause undetected name conflicts. Use import, shadow, or
shadowing-import for normal purposes.

shadow and shadowing-import never signal a name-conflict error, because by
calling these functions the user has specified how any possible conflict is to be
resolved. shadow does name-conflict checking to the extent that it checks whether
a distinct existing symbol with the specified name is accessible, and if so whether it
is directly present in the package or inherited; in the latter case a new symbol is
created to shadow it. shadowing-import does name-conflict checking to the extent
that it checks whether a distinct existing symbol with the same name is accessible; if
so it is shadowed by the new symbol, which implies that it must be remobed if it
was directly present in the package.

unuse-package, unexport, and remob (when the symbol being remobed is not a
shadowing symbol) do not need to do any name-conflict checking, because they only
remove symbols from a package; they do not make any new symbols accessible.

remob of a shadowing symbol can uncover a name conflict that had previously been
resolved by the shadowing. If package A uses packages B and C, A contains a
shadowing symbol X, and B and C each contain external symbols named x, then
remobing x from A reveals a name conflict between b:x and c:x if those two
symbols are distinct. In this. case remob signals an error.

595

March 1985 Packages

78.3 Resolving Package Name-conflict Errors

Aborting from a name-conflict error leaves the original symbol accessible. Package
functions always signal name-conflict errors before making any change to the
package structure. Note: when multiple changes are to be made, for example when
exporting a list of symbols, it is valid for each change to be processed separately, so
that aborting from a name conflict caused by the second symbol in the list does not
unexport the first symbol in the list. However, aborting from a name-conflict error
caused by exporting a single symbol does not leave that symbol accessible to some
packages and inaccessible to others; exporting appears as an atomic operation.

Continuing from a name-conflict error offers you a chance to resolve the name
conflict in favor of either of the candidates. This can involve shadowing or
remobing. Another possibility that is offered to you is to merge together the
conflicting symbols' values, function definitions, and property lists in the same way
as globalize. This is useful when the conflicting symbols are not being used as
objects, but only as names for functions (or variables, or flavors, for example). You
are also offered the choice of simply skipping the particular package operation that
would have caused a name conflict.

A name conflict in use-package between a symbol directly present in the using
package and an external symbol of the used package can be resolved in favor of the
first symbol by making it a shadowing symbol, or in favor of the second symbol by
remobing the first symbol from the using package. The latter resolution is
dangerous if the symbol to be remobed is an external symbol of the using package,
since it ceases to be an external symbol.

A name conflict in use-package between two external symbols inherited by the
using package from other packages can be resolved in favor of either symbol by
importing it into the using package and making it a shadowing symbol.

A name conflict in export between the symbol being exported and a symbol already
present in a package that would inherit the newly exported symbol can be resolved
in favor of the exported symbol by remobing the other one, or in favor of the
already present symbol by making it a shadowing symbol.

A name conflict in export or remob due to a package inheriting two distinct
symbols with the same name from two other packages can be resolved in favor of
either symbol by importing it into the using package and making it a shadowing
symbol, just as with use-package.

A name conflict in import between the symbol being imported and a symbol
inherited from some other package can be resolved in favor of the symbol being
imported by making it a shadowing symbol, or in favor of the symbol already
accessible by not doing the import. A name conflict in import with a symbol
already present in the package can be resolved by remobing that symbol, or by not
doing the import.

596

Reference Guide to Symbofics-Lisp March 1985

Good user-interface style dictates that use-package and export, which can cause
many name conflicts simultaneously, first check for ali of the name conflicts before
presenting any of them to you. You can then choose to resolve all of them
wholesale, or to resolve each of them individually, requiring considerable interaction
but permitting different conflicts to be resolved different ways.

597

March 1985 Packages

132. Package Functions, Special Forms, and Variables

Packages are represented as Lisp objects. A package is a structure that contains
various fields and a hash table that maps from names to symbols. Most of the
structure field accessor functions for packages are only used internally by the
package system and are not documented.

The typep function with one argument returns the symbol package if given a
package object. (typep obj 'package) is a predicate that is true if obj is a package
object.

Many of the functions that operate on packages accept either an actual package or
the name of a package. A package name can be either a string or a symbol.

Many of the functions and variables associated with packages have names that begin
with "pkg-". This naming convention is considered obsolescent and will eventually
be phased out in favor of the Common Lisp-compatible naming convention that uses
a prefix of "package-" on names that do not already contain the word package.
Currently, however, only "pkg-" is valid.

132.1 The Current Package

package Variable
The value of package is the current package; many functions that take
packages as optional arguments default to the value of package, including
intern and related functions. The reader and the printer deal with printed
representations that depend on the value of package. Hence the current
package is part of the user interface and is displayed in the status line at the
bottom of the screen.

It is often useful to bind package to a package around some code that deals
with that package. The operations of loading, compiling, and editing a file all
bind package to the package associated with the file.

pkg-goto &optional pkg globally Function
pkg can be a package or the name of a package. pkg is made the current
package; in other words, the variable package is set to the package named .
by pkg. pkg-goto can be useful to "put the keyboard inside" a package
when you are debugging.

pkg defaults to the user package.

If globally is specified non-nil, then package is set with setq-globally
instead of setq. This is useful mainly in an init file, where you want to

598

Reference Guide to Symbolics-Lisp March 1985

change the default package for user interaction, and a simple setq of
package does not work because it is bound by load when it loads the init
file.

pkg-bind pkg body... Macro
pkg can be a package or a package name. The forms of the body are
evaluated with the variable package bound to the package named by pkg.
The values of the last form are returned.

Example:

(pkg-bind "zwei"
(read-from-string function-name»

The difference between pkg-bind and a simple let of the variable package
is that pkg-bind ensures that the new value for package is actually a
package; it coerces package names (strings or symbols) into actual package
objects.

79.2 Defining a Package

The defpackage special form is the preferred way to create a package. A
defpackage form is treated as a definition form by the editor; hence the Edit
Definition (1"1-.) command can find package definitions.

Typically you put a defpackage form in its own file, separate from the rest of a
program's source code. The reason to use a separate file is that a package must be
defined before it can be used. In order to compile, load, or edit your program, the
package in which its symbols are to be read must already be defined. Typically the
file containing the defpackage is read in the user package, while all the rest of the
files of your program are read in your own private package.

When a large program consisting· of multiple source files is maintained with the
system system, one source file typically contains nothing but a defpackage form
and a defsystem form. (Occasionally a few other housekeeping forms are present.)
This file is called the system declaration file. The packages and systems built into
the initial Lisp system are defined in two files: sys:sys;pkgdcl defines all the
packages while sys:sys;sysdcl defines all the systems. See the section "Maintaining
Large Programs" in Program Development Utilities.

In the simplest cases, where no nontrivial defpackage options are required, the
defpackage form can be omitted and no separate file is required. All the
information required to create your package is contained in the file attribute list of
the file containing your program. See the section "Specifying Packages in
Programs", page 579.

The make-package function is available as the primitive way to create package
objects.

599

March 1985 Packages

defpackage name options... Special Form
Define a package named name; the name must be a symbol so that the
source file name of the package can be recorded and the editor can correctly
sectionize the definition. If no package by that name already exists, a new
package is created according to the specified options. If a package by that
name already exists, its characteristics are altered according to the options
specified. If any characteristic cannot be altered, an error is signalled. If the
existing package was defined by a different file, you are queried before it is
changed, as with any other type of definition.

Each option is a keyword or a list of a keyword and arguments. A keyword
by itself is equivalent to a list of that keyword and one argument, t; this
syntax really only makes sense for the :extemal-only and
:hash-inherited-symbols keywords.

Wherever an argument is said to be a name or a package, it can be either a
symbol or a string. Usually symbols are preferred, because the reader
standardizes their alphabetic case and because readability is increased by not
cluttering up the defpackage form with string quote (") characters.

None of the arguments are evaluated. The keywords arguments, most of
which are identical to make-package's, are:

(:nicknames name name ••.)
The package is given these nicknames, in addition to its primary
name.

(:preilX-name name)
This name is used when printing a qualified name for a symbol in
this package. The specified name should be one of the nicknames of
the package or its primary name. If :preilX-name is not specified, it
defaults to the shortest of the package's names (the primary name
plus the nicknames).

(:use package package ...)
External symbols and relative name mappings of the specified
packages are inherited. If this option is not specified, it defaults to
(:use global). To inherit nothing, specify (:use).

(:shadow name name ...)
Symbols with the specified names are created in this package and
declared to be shadowing.

(:export name name •.•)
Symbols with the specified names are created in this package, or
inherited from the packages it uses, and declared to be external.

(:import symbol symbol •••)
The specified symbols are imported into the package. Note that
unlike : export , :import requires symbols, not names; it matters in
which package this argument is read.

600

Reference Guide to Symbolics-Lisp March 1985

(:sbadowing-import symbol symbol ..•)
The same as :import but no name conflicts are possible; the symbols
are declared to be shadowing.

(:import-from package name name •.•)
The specified symbols are imported into the package. The symbols to
be imported are obtained by looking up each name in package.

(defpackage only) This option exists primarily for system
bootstrapping, since the same thing can normally be done by :import.
The difference between :import and :import-from can be visible if
the file containing a defpackage is compiled; when :import is used
the symbols are looked up at compile time, but when :import-from is
used the symbols are looked up at load time. If the package structure
has been changed between the time the file was compiled and the
time it is loaded, there might be a difference.

(:relative-names (name package) (name package) ..•)
Declare relative names by which this package can refer to other
packages. The package being created cannot be one of the packages,
since it has not been created yet.

(:relative-names-for-me (package name) (package name) •••)
Declare relative names by which other packages can refer to this
package.

(defpackage only) It is valid to use the name of the package being
created as a package here; this is useful when a package has a
relative name for itself.

(:size number)
The number of symbols expected to be present in the package. This
controls the initial size of the package's hash table. The :size
specification can be an underestimate; the hash table is expanded as
necessary.

(:hash-inherited-symbols boolean)
If true, inherited symbols are entered into the package's hash table to
speed up symbol lookUp. If false (the default), looking up a symbol in
this package searches the hash table of each package it uses.

(:extemal-only boolean)
If true, all symbols in this package are external and the package is
locked. This feature is only used to simulate the old package system
that was used before Release 5.0. See the section "External-only
Packages and Locking", page 626.

(:include package package •••)
Any package that uses this package also uses the specified packages.
Note that if the :include list is changed, the change is not
propagated to users of this package. This feature is used only to
simulate the old package system that was used before Release 5.0.

601

March 1985 Packages

(:new-symbol-function function)
function is called when a new symbol is to be made present in the
package. The default is si:pkg-new-symbol unless :external-only is
specified. Do 110t specify this option unless you understand the
internal details of the package system.

(:colon-mode mode)
If mode is : external, qualitied names mentioning this package behave
differently depending on whether ":" or "::" is used, as in Common
Lisp. ":" names access only external symbols. If mode is :internal,
":" names access all symbols. :internal is the default currently. See
the section "Specifying Internal and External Symbols in Packages",
page 585.

(:preflx-intern-function function)
The function to call to convert a qualified name referencing this
package with ":" (rather than "::") to a symbol. The default is
intern unless (:colon-mode :external) is specified. Do not specify
this option unless you understand the internal details of the package
system.

make-package name &key ... Function
make-package is the primitive subroutine called by defpackage.
make-package makes a new package and returns it. An error is signalled if
the package name or nickname conflicts with an existing package.
make-package takes the same arguments as defpackage except that
standard &key syntax is used, and there is one additional keyword,
: invisible.

When an argument is called a name, it can be either a symbol or a string.
When an argument is called a package, it can be the name of the package as
a symbol or a string, or the package itself.

The keyword arguments, most of which are identical to defpackage's, are:

:nicknames '(name name ...)
The package is given these nicknames, in addition to its primary
name.

:prerlX-name name
This name is used when printing a qualified name for a symbol in
this package. The specified name should be one of the nicknames of
the package or its primary name. If :prerlX-name is not specified, it
defaults to the shortest of the package's names (the primary name
plus the nicknames).

:invisible boolean
If true, the package is not entered into the system's table of
packages', and therefore cannot be referenced via a qualified name.

602

Reference Guide to Symbolics-Usp March 1985

This is useful if you simply want a package to use as a data
structure, rather than as the package in which to write a program.

:use '(package package •••)
External symbols and relative name mappings of the specified
packages are inherited. If only a single package is to be used, the
name rather than a list of the name can be passed. If no package is
to be used, specify nil. The default value for :use is global.

:sbadow '(name name •••)
Symbols with the specified names are created in this package and
declared to be shadowing.

:export '(name name .••)
Symbols with the specified names are created in this package, or
inherited from the packages it uses, and declared to be external.

:import '(symbol symbol •••)
The specified symbols are imported into the package. Note that
unlike : export, :import requires symbols, not names; it matters in
which package this argument is read.

:sbadowing-import '(symbol symbol ..•)
The same as :import but no name conflicts are possible; the symbols
are declared to be shadowing.

:import-from '(package name name .••)
The specified symbols are imported into the package. The symbols to
be imported are obtained by looking up each name in package.

(defpackage only) This option exists primarily for system
bootstrapping, since the same thing can normally be done by :import.
The difference between :import and :import-from can be visible if
the file containing a defpackage is compiled; when :import is used
the symbols are looked up at compile time, but when :import-from is
used the symbols are looked up at load time. If the package structure
has been changed between the time the file was compiled and the
time it is loaded, there might be a difference.

:relative-names '«name package) (name package) •.•)
Declare relative names by which this package can refer to other
packages. The package being created cannot be one of the packages,
since it has not been created yet.

:relative-names-for-me '«package name) (package name) •••)
Declare relative names by which other packages can refer to this
package.

(defpackage only) It is valid to use the name of the package being
created as a package here; this is useful when a package has a
relative name for itself.

603

March 1985 Packages

:size number
The number of symbols expected to be present in the package. This
controls the initial size of the package's hash table. The :size
specification can be an underestimate; the hash table is expanded as
necessary.

:hash-inherited-symbols boolean
If true, inherited symbols are entered into the package's hash table to
speed up symbol lookup. If false (the default), looking up a symbol in
this package searches the hash table of each package it uses.

:extemal-only boolean
If true, all symbols in this package are external and the package is
locked. This feature is only used to simulate the old package system
that was used before Release 5.0. See the section "External-only
Packages and Locking", page 626.

:include '(package package •••)
Any package that uses this package also uses the specified packages.
Note that if the :include list is changed, the change is not
propagated to users of this package. This feature is used only to
simulate the old package system that was used before Release 5.0.

:new-symbol-function function
function is called when a new symbol is to be made present in the
package. The default is si:pkg-new-symbol unless :extemal-only is
specified. Do not specify this option unless you understand the
internal details of the package system.

:colon-mode mode
If mode is :external, qualified names mentioning this package behave
differently depending on whether ":" or "::" is used, as in Common
Lisp. ":" names access only external symbols. If mode is : internaI ,
":" names access all symbols. :internal is the default currently. See
the section "Specifying Internal and External Symbols in Packages",
page 585.

:pretlx-intem-function function
The function to call to convert a qualified name referencing this
package with ":" (rather than "::") to a symbol. The default is
intern unless (:colon-mode :external) is specified. Do not specify
this option unless you understand the internal details of the package
system.

pkg-kill package Function
Kill package by removing it from all package system data structures. The
name and nicknames of package cease to be recognized package names. If
package is used by other packages, it is un-used, causing its external symbols
to stop being accessible to those packages. If other packages have relative
names for package, the names are deleted.

604

Reference Guide to Symbo/ics-Lisp March 1985

Any symbols in package still exist and their home package is not changed. If
this is undesirable, evaluate (mapatoms #'remob package nil) first.

package can be a package or the name of a package.

79.3 Mapping Names to Symbols

The name of a symbol is a string, corresponding to the printed representation of
that symbol with quoting characters removed. Mapping the name of a symbol into
the symbol itself is called interning, for historical reasons. Interning is only
meaningful with respect to a particular package, since packages are name-to-symbol
mappings. Unless a package is explicitly specified, the current package is assumed.

There are four functions for interning: intern, intern-soft, intern-local, and
intern-local-soft. Each function takes two arguments and returns two values.
The arguments are a name and a package. The name can be a string or a symbol.
The package argument can be a package, the name of a package as a string or a
symbol, or nil or unsupplied, in which -case the current package (the value of
package) is used by· default.

The -soft functions do not create new symbols, but only find existing symbols. The
other two functions add a new symbol to the package if no existing symbol with the
specified name is found. When adding a new symbol, if the name argument is a
string, a new symbol is created and its home package is made to be the specified
package. If the name argument is a symbol, that symbol is used as the new symbol.
If it has a home package, it is not changed, but if it does not have a home package
its home package is set to the package to which it was just added.

The -local functions only look for symbols present in the package; they do not
search through inherited symbols. The other two functions see all accessible
symbols.

The first value is the symbol that was found or created, or nil if no symbol was
found and a -soft function was called. The second value is a flag that takes on one
of the following values:

nil

:internal

: external

:inherited

No preexisting symbol was found. If the function called was not a
-soft version, a new internal symbol was added to the package.

An existing internal symbol was found to be present in the
package.

An existing external symbol was found to be present in the
package.

An existing symbol was found to be inherited by the package.
This symbol is necessarily external in the package from which it
was inherited, and cannot be external in the package being
searched.

605

March 1985 Packages

Note that the first value should not be used as a flag to detect whether or not a
symbol was found, since the false value, nil, is a symbol. The second value must be
used for this purpose. The -soft functions return both values nil if they do not find
a symbol.

Note: interning is sensitive to case; that is, it considers two character strings
different even if the only difference is one of uppercase versus lowercase <unlike most
string comparisons elsewhere in the Symbolics Lisp Machine system). Symbols are
converted to uppercase when you type them in because the reader converts the case
of characters in the printed representation of symbols; the characters are converted
to uppercase before intern is ever called. So if you call intern with a lowercase
"too" and then with an uppercase "FOO", you do not get the same symbol.

79.3.1 Functions That Map Names to Symbols

intern string &optional (pkg package) Function
Find or create a symbol named string accessible to pkg, either directly present
in pkg or inherited from a package it uses.

If string is not a string but a symbol, intern searches for a symbol with the
same name. If it does not find one, it interns string - rather than a newly
created symbol - in pkg (even if it is also interned in some other package)
and returns it.

For more information: See the section "Mapping Names to Symbols", page
604.

intern-local string &optional (pkg package) Function
Find or create a symbol named string directly present in pkg. Symbols
inherited by pkg from packages it uses are not considered, thus intern-local
can cause a name conflict. intern-local is considered to be a low-level
primitive and indiscriminate use of it can cause undetected name conflicts.
Use import, shadow, or shadowing-import for normal purposes.

If string is not a string but a symbol, and no symbol with that print name is
already interned in pkg, intern-local interns string - rather than a newly
created symbol - in pkg (even if it is also interned in some other package)
and returns it.

For more information: See the section "Mapping Names to Symbols", page
604.

intern-soft string &optional (pkg package) Function
Find a symbol named string accessible to pkg, either directly present in pkg
or inherited from a package it uses. If no symbol is found, the two values
nil nil are returned.

606

Reference Guide to Symbolics-Usp March 1985

intern-local-soft string &optional (pkg package) Function
Find a symbol named string directly present in pkg. Symbols inherited by
pkg from packages it uses are not considered. If no symbol is found, the two
values nil nil are returned.

intern-local-soft is a good low-level primitive for when you want complete
control of what packages to search and when to add new symbols.

For more information: See the section "Mapping Names to Symbols", page
604.

find-all-symbols string Function
Search all packages for symbols named string and return a list of them.
Duplicates are removed from the list; if a symbol is present in more than one
package, it only appears once in the list. The global package is searched
first, and so global symbols appear earlier in the list than symbols that
shadow them. In general packages are searched in the order that they were
created.

string can be a symbol, in which case its name is used. This is primarily for
user convenience when calling find-all-symbols directly from the read-eval­
print loop.

Invisible packages are not searched.

The where-is function is a more user-oriented version of find-all-symbols;
it returns information about string, rather than just a list.

For more information: See the section "Mapping Names to Symbols", page
604.

remob symbol &optional package Function
remob removes symbol from package (the name is historical and means
"REMove from OBlist"). symbol itself is unaffected, but intern no longer
finds it in package. Removing a symbol from its home package sets its home
package to nil; removing a symbol from a package different from its home
package leaves the symbol's home package unchanged.

remob returns t if the symbol was found and removed, or nil if it was not
found.

remob is always "local", in that it removes only from the specified package
and not from any other packages. Thus remob has no effect unless the
symbol is present in the specified package, even if it is accessible from that
package via inheritance.

If package is unspecified it defaults to the symbol's home package. Note this
exception well: the default value of remob's package argument is not the
current package.

607

March 1985 Packages

79.4 Functions That Find the Home Package of a Symbol

symbol-package symbol Function
Returns the contents of symbol's package cell, which is the package that
owns symbol, or nil if symbol is uninterned.

package-cell-location symbol Function
Returns a locative pointer to symbol's package cell. It is preferable to write
the following, rather than calling this function explicitly.

(locf (symbol-package symbol»

keywordp object Function
A predicate that is true if object is a symbol and its home package is the
keyword package, and faIse otherwise.

79.5 Mapping Between Names and Packages

pkg-name package Function
Get the (primary) name of a package. The name is a string.

It is an error if package is not a package object. (The phrase "it is an error"
has special significance in Common Lisp. See the Common Lisp manual, not
available from Symbolics, for more information.) Note that pkg-name is a
structure-accessing function and does not check that its argument is a
package object, only that it is some kind of an array with a leader.

pkg-find-package x &optional (create-p : error) (relative-to nil) Function
pkg-find-package tries to interpret x as a package. Most of the functions
whose descriptions say "... can be either a package or the name of a package"
call pkg-find-package to interpret their package argument.

If x is a package, pkg-find-package returns it.

If x is a symbol or a string, it is interpreted as the name of a package. If
relative-to is specified and non-nil, then it must be a package or the name of
a package. If relative-to or one of the packages it uses has a relative name of
x, the package named by that relative name is used. If the relative name
search fails, or if no relative name search is called for (that is, relative-to is
nil, which is the default), then if a package with a primary name or
nickname of x exists it is returned.

If x is a list, it is presumed to have come from a file attribute line.
pkg-find-package is done on the car of the list. If that fails, a new
package is created with that name, according to the specifications in the rest
of the list. See the section "Specifying Packages in Programs", page 579.

608

Reference Guide to Symbolics-Usp March 1985

If no package is found, the create-p argument controls what happens. Note
that this can only happen if x is a symbol or a string. The possible values
for create-p are:

:error or nil

:find

: ask

t

An error is signalled. The error can be continued by
defming the package manually, creating it automatically
with default attributes, or using a different package name
instead. :error is the default. nil is accepted as a
synonym for :error for backwards compatibility.

Just return nil.

Ask the user whether to create it.

Create a package with the specified name with default
attributes. It does inherit from global but not from any
other packages.

The package name search is independent of alphabetic case. However, this
might be changed in the future for Common Lisp compatibility and should
not be depended upon. In any event it is not considered good style to have
two distinct packages whose names differ only in alphabetic case.

79.8 Package Iteration

mapatoms function &optional (package package) (inherited-p t) Function
function should be a function of one argument. mapatoms applies function
to each of the symbols in package. If inherited-p is t, this is all symbols
accessible to package, including symbols it inherits from other packages. If
inherited-p is nil, function only sees the symbols that are directly present in
package.

Note that when inherited-p is t symbols that are shadowed but otherwise
would have been inherited are seen; this slight blemish is for the sake of
efficiency. If this is a problem, function can try intern in package on each
symbol it gets, and ignore the. symbol if it is not eq to the result of intern;
this measure is rarely needed.

mapatoms-a11 function Function
function should be a function of one argument. mapatoms-all applies
function to all of the symbols in all of the packages in existence, except for
invisible packages .. Note that symbols that are present in more than one
package are seen more than once.

Example:

609

March 1985 Packages

(mapatoms-all
(functi on

(lambda (x)
(and (alphalessp 'z x)

(print x»»)

do-symbols (variable &optional package result) body... Special Fonn
Evaluate the body forms repeatedly with variable bound to each symbol
accessible in package. package can be a package object or a string or symbol
that is the name of a package, or it can be omitted, in which case the value
of package is used by default.

When the iteration terminates, result is evaluated and its values are
returned. The value of variable is nil during the evaluation of result. If
result is not specified, the value returned is nil.

The return special form can be used to cause a premature exit from the
iteration.

do-local-symbols (variable &optional package result) body... Special Fonn
Evaluate the body forms repeatedly with variable bound to each symbol
present in package. package can be a package object or a string or symbol
that is the name of a package, or it can be omitted, in which case the value
of package is used by default.

When the iteration terminates, result is evaluated and its values are
returned. The value of variable is nil during the evaluation of result. If
result is not specified, the value returned is nil.

The return special form can be used to cause a premature exit from the
iteration.

do-external-symbols (variable &optional package result) body... Special Fonn
Evaluate the body forms repeatedly with variable bound to each external
symbol exported by package. package can be a package object or a string or
symbol that is the name of a package, or it can be omitted, in· which case
the value of package is used by default.

When the iteration terminates, result is evaluated and its values are
returned. The value of variable is nil during the evaluation of result. If
result is not specified, the value returned is nil.

The return special form can be used to cause a premature exit from the
iteration.

do-all-symbols (variable &optional result) body... Special Fonn
Evaluate the body forms repeatedly with variable bound to each symbol
present in any package (excluding invisible packages).

When the iteration terminates, result is evaluated and its values are

610

Reference Guide to Symbolics-Usp March 1985

returned. The value of variable is nil during the evaluation of result. If
result is not specified, the value returned is nil.

The return special form can be used to cause a premature exit from the
iteration.

See the section "Iteration Paths", page 222. This section contains a discussion of
the intemed-symbols and local-intemed-symbols loop iteration paths.

79.7 Interpackage Relations

pkg-add-relative-name {rom-package name to-package Function
Add a relative name named name, a string or a symbol, that refers to
to-package. From now on, qualified names using name as a prefix, when the
current package is {rom-package or a package that uses {rom-package, refer to
to-package.

{rom-package and to-package can be packages or names of packages.

It is an error if {rom-package already defmes name as a relative name for a
package different from to-package.

pkg-delete-relative-name {rom-package name Function
If {rom-package defmes name as a relative name, it is removed. {rom-package
can be a package or the name of a package. name can be a symbol or a
string. It is not an error if {rom-package does not defme name as a relative
name.

package-use-list package Function
The list of other packages used by the argument package. package can be a
package object or the name of a package (a symbol or a string). The
elements of the list returned are package objects.

package-used-by-list package Function
The list of other packages that use the argument package. package can be a
package object or the name of a package (a symbol or a string). The
elements of the list returned are package objects.

use-package packages-to-use &optional package Function
The packages-to-use argument should be a list of packages or package names,
or a single package or package name. These packages are added to the use­
list of package if they are not there already. All external symbols in the
packages to use become accessible in package. package can be a package
object or the name of a package (a symbol or a string). If unspecified,
package defaults to the value of package. Returns t.

611

March 1985 Packages

unuse-package packages-to-unuse &optional package Function
The packages-to-unuse argument should be a list of packages or package
names, or a single package or package name. These packages are removed
from the use-list of package and their external symbols are no longer
accessible, unless they are accessible through another path. package can be a
package object or the name of a package (a symbol or a string). If
unspecified, package defaults to the value of package. Returns t.

79.8 Functions That Import, Export, and Shadow Symbols

export symbols &optional package Function
The symbols argument should be a list of symbols or a single symbol. If
symbols is nil, it is treated like an empty list. These symbols become
available as external symbols in package. package can be a package object or
the name of a package (a symbol or a string). If unspecified, package
defaults to the value of package. Returns t. The :export option to
detpackage and make-package is equivalent.

unexport symbols &optional package Function
The symbols argument should be a list of symbols or a single symbol. If
symbols is nil, it is treated like an empty list. These symbols become
internal symbols in package. package can be a package object or the name of
a package (a symbol or a string). If unspecified, package defaults to the
value of package. Returns t.

package-external-symbols package Function
A list of all the external symbols exported by package. package can be a
package object or the name of a package (a symbol or a string).

import symbols &optional package Function
The symbols argument should be a list of symbols or a single symbol. If
symbols is nil, it is treated like an empty list. These symbols become
internal symbols in package, and can therefore be referred to without a colon
qualifier. import signals a correctable error if any of the imported symbols
has the same name as some distinct symbol already available in the package.

package can be a package object or the name of a package (a symbol or a
string). If unspecified, package defaults to the value of package. Returns t.

shadowing-import symbols &optional package Function
This is like import, but it does not signal an error even if the importation of
a symbol would shadow some symbol already available in the package. If a
distinct symbol with the same name is already present in the package, it is
removed (using remob). The imported symbol is placed on the shadowing­
symbols list of package.

612

Reference Guide to Symbofics-Usp March 1985

The symbols argument should be a list of symbols or a single symbol. If
symbols is nil, it is treated like an empty list. package can be a package
object or the name of a package (a symbol or a string). If unspecified,
package defaults to the value of package. Returns t.

shadowing-import should be used with caution. It changes the state of the
package system in such a way that the consistency rules do not hold across
the change.

shadow symbols &optional package Function
The symbols argument should be a list of symbols or a single symbol. If
symbols is nil, it is treated like an empty list. The name of each symbol is
extracted, and package is searched for a symbol of that name. If no such
symbol is present in this package (directly, not by inheritance), a new symbol
is created with this name and inserted in package as an internal symbol.
The symbol is also placed on the shadowing-symbols list of package.

package can be a package object or the name of a package (a symbol or a
string). If unspecified, package defaults to the value of package. Returns t.

shadow should be used with caution. It changes the state of the package
system in such a way that the consistency rules do not hold across the
change.

package-shadowing-symbols package Function
The list of symbols that have been declared as shadowing symbols in this
package by shadow or shadowing-import. All symbols on this list are
present in the specified package. package can be a package object or the
name of a package (a symbol or a string).

79.9 Package "Commands"

describe-package package Function
Print a description of package's attributes and the size of its hash table of
symbols on standard-output. package can be a package or the name of a
package. The describe function calls describe-package when its argument
is a package.

where-is pname Function
Finds all symbols named pname and prints on standard-output a description
of each symbol. The symbol's home package and name are printed. If the
symbol is present in a different package than its home package (that is, it
has been imported), that fact is printed. A list of the packages from which
the symbol is accessible is printed, in alphabetical order. where-is searches
all packages that exist, except for invisible packages.

613

March 1985 Packages

If pname is a string it is converted to uppercase, since most symbols' names
use uppercase letters. If pname is a symbol, its exact name is used.

where-is returns a list of the symbols it found.

The find-all-symbols function is the primitive that does what where-is does
without printing anything.

globalize name &optional package Function
Establish a symbol named name in package and export it. If this causes any
name conflicts with symbols with the same name in packages that use
package, instead of signalling an error make an attempt to resolve the name
conflict automatically. Print an explanation of what is being done on
error-output.

globalize is useful for patching up an existing package structure. For
example, if a new function is added to the Lisp language globalize can be
used to add its name to the global package and hence make it accessible to
all packages. Symbols with the desired name might already exist, either by
coincidence or because the function was already defined or already called.
globalize makes all such symbols have the new function as their definition.

package can be a package or the name of a package, as a symbol or a string.
It defaults to the global package. globalize is the only function that does
not care whether package is locked.

name can be a symbol or a string. If package already contains a symbol by
that name, that symbol is chosen. Otherwise, if name is a symbol, it is
chosen. If name is a string and any of the packages that use package
contains a nonshadowing symbol by that name, one such symbol is chosen.
Otherwise, a new symbol named name is created. Whichever symbol is
chosen this way is made present in package and exported from it. If the
home package of the chosen symbol is a package that uses package, then the
home package is set to package; in other words, the symbol is "promoted" to
a "higher" package. If the home package of the chosen symbol is some other
package, it is not changed. This case typically occurs when the chosen
symbol is inherited by package from some package it uses.

The above rules for choosing a symbol to export ensure that no name conflict
occurs if at all possible. If any nonshadowing symbols exist named name but
that are distinct from the chosen symbol present in the packages that use
package, then a name conflict occurs. globalize does its best to resolve the
name 'conflict by merging together the values, function definitions, and
properties of all the symbols involved. Mter merging, all the symbols have
the same value, the same function definition, and the same properties. The
value cells, function cells, and property list cells of all the symbols are
forwarded to the corresponding cells of the chosen symbol, using
dtp-one-q-forward. This ensures that any future change to one of the
symbols is reflected by all of the symbols.

614

Reference Guide to Symbolics-Lisp March 1985

The merging operation simply consists of making sure that there are no
conflicts. If more than one of the symbols has a value (is boundp), all the
values must be eql or an error is signalled. Similarly, all the function
definitions of symbols that are tboundp must be eql and all the properties
with any particular. indicator must be eql. If an error occurs you must
manually resolve it by removing the unwanted value, definition, or property
(using makunbound, fmakunbound, or remprop) then try again.

Note that if name is a symbol, globalize attempts to use that symbol, but
there is no guarantee that it will not use some other symbol. If name is in a
package that does not use package, and globalize does not use name as the
symbol (because another symbol by that name already exists in package or in
some package that uses package), then name is not merged with the chosen
symbol. It is generally more predictable to use a string, rather than a
symbol, for name.

Of course, globalize cannot cause two distinct symbols to become eq. Its
conflict resolution techniques are useful only for symbols that are used as
names for things like functions and variables, not for symbols that are used
for their own sake. You can sometimes get the desired effect by using one of
the conflicting symbols as the first argument to globalize, rather than using
a string.

For example, suppose a program in the color package deals with colors by
symbolic names, perhaps using selectq to test for such symbols as red,
green, and yellow. Suppose there is also a function named red in the
math package and someone decides that this function is generally useful and
should be made global. Doing (globalize 'color:red) ensures that the
exported symbol is the one that the color program is looking for; this means
that every package except the math package sees the right symbol to use if
it wants to call the color program. Programs that call the red function do
not care which of the two symbols they use as the name of the function,
since both symbols have the same definition. Usually the situation described
in this example would not arise, because standard programming style dictates
that the color program should have been using keywords for this application.

globalize returns two values. The first is the chosen symbol and the second
is a (possibly empty) list of all the symbols whose value, function, and
property cells were forwarded to the cells of the chosen symbol.

To disable the messages printed by globalize, bind error-output to a null
stream (one that throws away all output). For example:

(let ((error-output 'si:null-stream»
(globalize 'rumpelstiltskin»

There is a subtle pitfall in the interaction between globalize and the binary files
output by the compiler. Because of this it is best to use a string, rather than a

615

March 1985 Packages

symbol, as the argument to globalize in files that are to be compiled. Suppose a
file contains the following form at top level:

(eval-when (compile load eval)
(globalize 'si:rumpelstiltskin»

If the file is loaded without being compiled, the form is read and evaluated in the
obvious fashion. rumpelstiltskin is read as the symbol by that name in the si
package, that symbol is passed to the globalize function, and the symbol is moved
to the global package. Now suppose the file is compiled. Again rumpelstiltskin is
read as the symbol by that name in the si package. The eval-when causes the
compiler first to evaluate the globalize form, and then to place a representation of
the form into its output file. But at the time the output file is being generated, the
symbol rumpelstiltskin is global; the compiler no longer has any way to know that
it came from the si package. When the binary file is loaded, it globalizes the symbol
rumpelstiltskin in the current package, not the one in the si package as the
programmer intended. Furthermore, if at compile time there was a
rumpelstiltskin symbol in the current package, the compile-time globalize turns
that symbol into a shadowing symbol. When the binary file is loaded, it tries to
refer to the symbol rumpelstiltskin in the global package, which gets an error
since the global package is locked. The same pitfall can arise without the use of
eval-when if the file being compiled was previously loaded into the Lisp that
compiled it, perhaps for test purposes.

79.10 System Packages

The following are some of the packages initially present in the Lisp world. New
packages will be added to this list from time to time. The list is presented in
"logical" order, with the most important or interesting packages first. A number of
packages that are not of general interest have been omitted from the list for· the
sake of brevity.

global Contains the global symbols of the Lisp language, including
function names, variable names, special form names, and so on.
All symbols in global are supposed to be documented. global
does not inherit symbols from any other package.

keyword Contains keyword symbols. keyword has a blank nickname so
that keywords print as :foo rather than keyword:foo. keyword
does not inherit symbols from any other package.

user The default package for user programs that do not have their own
package. When first booted the Symbolics Lisp Machine uses the
user package to read expressions typed in by the user.

sys or system Contains symbols shared among various system programs.
system is for symbols global to the Symbolics Lisp Machine

616

Reference Guide to Symbolics-Lisp March 1985

"operating system", while global is for symbols global to the Lisp
language.

si or system-internals
Most of the programs that implement the Lisp language and
operating system are in the system-internals package.
system-internals is one of the packages that uses system. The
externally advertised symbols of these programs are in system or
global. system-internals would not exist as a separate package
from system if the system took advantage of the distinction
between internal symbols and external symbols, but it does not
yet do so.

compiler Contains the compiler. compiler is one of the packages that use
system.

dbg or debugger Contains the condition system and the debugger. debugger is
one of the packages that use system.

zwei Contains the editor and Zmail.

tv Contains the window system. tv is one of the packages that use
system.

fs or file-system Contains pathnames and the generic file access system.
file-system is one of the packages that use system.

lmfs

format

Contains the Symbolics Lisp Machine file storage system. lmfs is
one of the packages that use system.

Contains the function format and its associated subfunctions.

net or network Contains the external interfaces to the generic network system.
network is one of the packages that uses system. Each network
implementation and network-related program has its own package,
which uses network.

neti or network-internals
Contains the programs that implement the generic network
system. network-internals is one of the packages that use
network and system.

chaos Contains the Chaosnet control program. chaos is one of the
packages that use network and system.

cl or common-lisp-global
Contains the global symbols of the Common Lisp Compatibility
Package. Inside of Common Lisp this package is called lisp.
common-lisp-global does not use global.

fonts Contains the names of all fonts. fonts does not inherit symbols
from any other package.

617

March 1985 Packages

The following variables have the !TIost important packages as their values.

pkg-global-package Variable
The global package.

pkg-keyword-package Variable
The keyword package.

pkg-system-package Variable
The system package.

618

Reference Guide to Symbo/ics-Usp March 1985

619

March 1985 Packages

80. Package-related Conditions

This section documents the most basic package-related conditions. There are other
conditions built on these, but most programmers should not need to deal with them.

sys:package-error Flavor
All package-related error conditions are built on sys:package-error.

sys:package-not-found Flavor
A package-name lookup did not find any package by the specified name.

The :name message returns the name. The :relative-to message returns
nil if only absolute names are being searched, or else the package whose
relative names are also searched.

The :no-action proceed type can be used to try again. The :new-name
proceed type can be used to specify a different name or package. The
:create-package proceed type creates the package with default
characteristics.

sys:external-symbol-not-found Flavor
A n:n qualified name referenced a name that had not been exported from the
specified package.

The :string message returns the name being referenced (no symbol by this
name exists yet). The :package message returns the package.

The :export proceed type exports a symbol by that name and uses it.

sys:package-Iocked Flavor
There was an attempt to intern a symbol in a locked package.

The :symbol message returns the symbol. The :package message returns
the package.

The :no-action proceed type interns the symbol just as if the package had
not been locked. Other proceed types are also available when interning the
symbol would cause a name conflict.

sys:name-conflict Flavor
Any sort of name conflict occurred (there are specific flavors, built on
sys:name-conflict, for each possible type of name conflict.) The following
proceed types might be available, depending on the particular error:

The :skip proceed type skips the operation that would cause a name conflict.

The :shadow proceed type prefers the symbols already present in a package
to conflicting symbols that would be inherited. The preferred symbols are
added to the package's shadowing-symbols list.

620

Reference Guide to Symbolics-Usp March 1985

The :export proceed type prefers the symbols being exported (or being
inherited due to a use-package) to other symbols. The conflicting symbols
are remob'ed if they are directly present, or shadowed if they are inherited.

The :unintern proceed type removes the conflicting symbol (with remob).

The :shadowing-import proceed type imports one of the conflicting symbols
and makes it shadow the others. The symbol to be imported is an optional
argument.

The :share proceed type causes the conflicting symbols to share value,
function, and property cells. It as if globalize were called.

The :choose proceed type pops up a window in which the user can choose
between the above proceed types individually for each conflict.

621

March 1985 Packages

81. Multipackage Programs

Usually, each independent program occupies one package. But large programs, such
as MACSYMA, are usually made up of a number of subprograms, and each
subprogram might be maintained by a different person or group of people. We
would like each subprogram to have its own namespace, since the program as a
whole has too many names for anyone to remember. The package system can
provide the same benefits to programs that are part of the same superprogram as it
does to programs that are completely independent.

Putting each subprogram into its own package is easy enough, but it is likely that a
fair number of functions and symbols should be shared by all of MACSYMA's
subprograms. These would be internal interfaces between the different
subprograms.

A package named macsyma can be defined and each of the internal interface
symbols can be exported from it. Each subprogram of MACSYMA has its own
package, which uses the macsyma package in addition to any other packages it
uses. Thus the interface symbols are accessible to all subprograms, through package
inheritance. These interface symbols typically get their function definitions, variable
values, and other properties from various subprograms read into the various internal
MACSYMA packages, although there is nothing wrong with also putting a
subprogram directly into the macsyma package. This is similar to the way the Lisp
system works; the global package exports a large number of symbols, which get
their values, definitions, and so on from programs residing in other packages that
use global, such as system-internals or compiler.

It is also often convenient for the macsyma package to supply relative names that
can be used by the various subprograms to refer to each other's packages. This
allows package name abbreviations to be used internally to MACSYMA without
contaminating the external environment.

The system declaration file for MACSYMA would then look something like the
following:

;Contains the interfaces between the various subprograms
(defpackage macsyma

(:export meval mprint ptimes ...)
(:colon-mode :external» ;error-checking in qualified names

;The integration package based on the Risch algorithm
(defpackage risch

(:use macsyma global»

622

Reference Guide to Symbo/ics-Usp March 1985

:The integration package based on pattern matching
(defpackage sin

(:use macsyma global»

:Interface to the operating system. This uses the SYSTEM package
:because it needs many system-dependent functions and constants.
;This package also has a local nickname because its primary name
: is so long.
(defpackage macsyma-system-interface

(:relative-names-for-me (macsyma sysi»
(:use macsyma system global»

You can break the interface symbols down into separate categories. For instance,
you might want to separate internal symbols used only inside MACSYMA from
symbols that are also useful to the outside world. The latter symbols clearly should
be externals of the macsyma package. You could create an additional package
named macsyma-intemals that exports all the symbols that are interfaces between
different subprograms of MACSYMA but are not for use by the outside world. In
this case we would have:

(defpackage risch
(:use macsyma-internals macsyma global»

A program in the outside world that needed to use parts of MACSYMA would either
use qualified names such as macsyma:solve or would include macsyma in the :use
option in its package definition.

The interface symbols can be broken down into even more categories. Each sub­
package can have its own list of exported symbols, and can use whichever other
subpackages it depends on. The subset of these exported symbols that are also
useful to the outside world can be exported from the macsyma package as well. In
this case our example system declaration file would look something like:

:Contains the interfaces between the various subprograms
(defpackage macsyma

(:export solve integrate .0.)
(:co10n-mode :externa1» ;error-checking in qualified names

;The rational function package
(defpackage rat

(:export ptimes ...)
(:use macsyma global»

;The integration package
(defpackage risch

(:export integrate)
(:use rat macsyma global»

623

March 1985 Packages

;The macsyma interpreter
(defpackage meval

(:export meval mprint ... »

The symbol integrate exported by the macsyma package and the symbol
integrate exported by the risch package are the same symbol, because risch
inherits it from macsyma.

Sometimes you can get involved in forward references when setting up this sort of
package structure. In the above example, risch needs to use rat, hence rat was
defined first. If rat also needed to use risch, there would be no way to write the
package definitions using only defpackage. In this case you can explicitly call
use-package after both packages have been defined. For example:

;The rational function package
(defpackage rat

(:export ptimes ...)
(:use macsyma global»

;The integration package
(defpackage risch

(:export integrate)
(:use rat macsyma global»

;Now complete the forward references
(use-package 'risch 'rat)

An analogous issue arises when using :import.

;also uses risch

Now, the risch program and the sin program both do integration, and so it would
be natural for each to have a function called integrate. From inside sin, sin's
integrate would be referred to as integrate (no prefix needed), while risch's would
be referred to as risch::integrate or as risch:integrate if risch exported it (which
is likely). Similarly, from inside risch, risch's own integrate would be called
integrate, whereas sin's would be referred to as sin::integrate or sin:integrate.

If sin's integrate were a recursive function, you would refer to it from within sin
itself, and would not have to type sin:integrate every time; you would just say
integrate.

If the names sin and risch are considered to be too short to use up in the general
space of package names, they can be made local abbreviations within MACSYMA's
family of package through local names. The package definitions would be

;Contains the interfaces between the various subprograms
(defpackage macsyma

(:export meval mprint ptimes ...)
(:colon-mode :external» ;error-checking in qualified names

624

Reference Guide to Symbolics-Usp

;The integration package based on the Risch algorithm
(defpackage macsyma-risch-integration

(:relabive-names-for-me (macsyma risch»
(:use macsyma global»

;The integration package based on pattern matching
(defpackage macsyma-pattern-integration

(:relative-names-for-me (macsyma sin»
(:use macsyma global»

March 1985

From inside the macsyma package or any package that uses it the two integration
functions would be referred to as sin:integrate and as risch:integrate. From
anywhere else in the hierarchy, they could be called macsyma:sin:integrate and
macsyma:risch:integrate, or macsyma-pattern-integration:integrate and
macsyma-risch-integration:integrate.

625

March 1985 Packages

82. Compatibility with the Pre-release 5.0 Package
System

The package system used before Release 5.0 used a hierarchical arrangement of
packages and used package-declare rather than defpackage to create packages.
Most users will not see any change between the old and new package systems, since
the same function names continue to work and most of the old functionality can be
simulated. All programs do need to be recompiled, however, because old assumptions
built into the compiled code - such as where keyword symbols reside and what the
indices of fields in the package structure are - are no longer valid.

If pack! was a subpackage of pack2 in the hierarchical package system, then in the
current system pack! should use pack2 and pack2 should be declared external-only
so that all of its symbols will be inherited by pack!. Relative names follow the
package use relations just as ref names used to follow the subpackage relations.

package-declare name superior size &optional file-alist clause... Special Form
This special form exists only for compatibility with the pre-Release 5.0
package system. defpackage should be used instead.

name is the name of the package to be created. It must be a string or a
symbol (a list is no longer acceptable).

superior is used as the :use option to defpackage.

size is used as the :size option to defpackage.

file-alist must be nil; this feature has been obsolete for several years. It can
be omitted if there are no clauses.

Each clause is a list whose first element is one of the following symbols and
whose remaining elements are "arguments". It makes no difference in what
package the symbols are read, since only their names are used.

borrow

intern

shadow

refname

myrefname

Used as the :import-from option to defpackage.

U sed as the :export option to defpackage.

U sed as the :shadow option to defpackage.

Used as an element of the :relative-names option to
defpackage. Note that this clause is usually unnecessary
in the current package system, since package naming
works more rationally.

Used as an element of the :relative-names-for-me option
to defpackage, unless the first argument is global, in
which case it is used as an element of the :nicknames

626

Reference Guide to Symbolics-Usp March 1985

option. Note that this clause is usually unnecessary in the
current package system, since package naming works more
rationally.

The use, external, advertise, forward, forward-alias, indirect,
indirect-alias, keyword, and subpackage clauses that package-declare
used to accept cannot be simulated and are no longer allowed. None of these
were documented and some of them did not work.

pkg-create-package name &optional superior size Function
This function exists only for compatibility with the pre-Release 5.0 package
system. make-package should be used instead.

name must be a symbol or a string; lists are no longer accepted. superior is
used as the :use argument to make-package. If superior is nil then
:invisible t is specified. size is used as the :size argument to
make-package.

The dont-lock-superior argument no longer exists. Package locking is now
controlled explicitly by the :external-only option to defpackage and
make-package.

The global functions pkg-contained-in, pkg-debug-copy, pkg-Ioad,
pkg-refname-a1ist, and pkg-super-package no longer exist. The first three of
these were not documented.

The functions intern, intern-local, intern-soft, and intern-local-soft no longer
return three values. Now only two values are returned. The second value is
different but upward-compatible.

The functions mapatoms-aIl and where-is no longer take an optional argument
defaulting to the global package. They now always process all packages that are
not invisible. The function package-used-by-list can help if you need to process
only the subset of all packages that use some particular package.

82.1 External-only Packages and Locking

The facilities described in this section are primarily for compatibility with the old,
hierarchical package system used before Release 5.0. Full use of these facilities
requires knowing about functions that are in the si package.

A package can be locked, which means that any attempt to add a new symbol to it
signals an error. Continuing from the error adds the symbol.

When reading from an interactive stream, such as a window, the error for adding a
new symbol to a locked package does not go into the Debugger. Instead it asks you
to correct your input, using the input editor. You cannot add a new symbol to a

627

March 1985 Packages

locked package just by typing its name; you must explicitly call intern, export, or
globalize.

A package can be declared external-only. This causes any symbol added to the
package to be·exported automatically. Since exporting of symbols should be a
conscious decision, when you create an extemal-only package it is automatically
locked. Any attempt to add a new symbol to an extemal-only package signals an
error because it is locked. If adding the symbol would cause a name conflict in some
package that uses the package to which the symbol is being added, the error
message mentions that fact. Continuing from the error adds the symbol anyway.
In the event of name conflicts, appropriate proceed types for resolving name conflicts
are offered.

To set up an external-only package, it can be temporarily unlocked and then the
desired set of symbols can be interned in it. Unlocking an extemal-only package
disables name-conflict checking, since the system (perhaps erroneously) assumes you
know what you are doing. The global package is extemal-only and locked. Its
contents are initialized when the system is built by reading files containing the
desired symbols with package bound to the global package object, which is
temporarily.unlocked. The system package is extemal-only, locked, and initialized
the same way.

628

Reference Guide to Symbolics-Usp March 1985

629

March 1985 Symbolics Common Usp

PART XIII.

Symbolics Common Lisp

630

Reference Guide to Symbolics-Usp March 1985

631

March 1985 Symbolics Common Usp

83. Introduction to Symbolics Common Lisp

Symbolics Common Lisp (SCL) is an enhanced version of Common Lisp that contains
all of the useful features of Zetalisp.

SCL is built on top of the normal Lisp Machine system, known as Zetalisp. SCL
enables you to write programs that can be transported between the 3600-family
machines and other machines that run Common Lisp implementations. In a future
release Symbolics Common Lisp will become the standard language and Zetalisp will
continue to be supported by means of a compatibility package.

Zetalisp is gradually being modified to make it more compatible with Common Lisp,
while at the same time, SCL is being enhanced. The changes to Zetalisp and the
availability of SCL provide an environment for you to easily convert from Zetalisp to
SCL.

Common Lisp programs running under SCL and Zetalisp programs can call each
other freely. The two languages use the same data structures, with one important
exception, strings. See the section "SCL and Strings", page 634.

SCL and Zetalisp share the same interpreter, compiler, and other tools. Both the
interpreter and the compiler use lexical scoping.

Syntactic differences between Common Lisp and Zetalisp are handled by the
reader/printer control variables, such as ibase, base, readtable, and package. In
Common Lisp programs these variables appear under the names *read-base*,
·print-base·, ·readtable·, and *package·. The binding of these variables is
controlled automatically by the system.

Most Zetalisp functions, special forms, and facilities are available in SCL. Some of
them, such as the defstruct macro, have been modified to make them compatible
with Common Lisp. When the SCL documentation refers to the Zetalisp
implementation, you should refer to the Symbolics documentation for more
information.

For information about-using Symbolics Common Lisp: See the section "Using SCL",
page 633 ..

For a description of the differences between SCL and Common Lisp as described in
the Digital Press edition of the Common Lisp manual (eLM) by Guy Steele: See
the section "SCL and Common Lisp Differences", page 637.

632

Reference Guide to Symbolics-Usp March 1985

633

March 1985 Symbolics Common Usp

84. Using SCL

This section describes how to use Symbolics Common Lisp (SCL). SCL can be used
on 3600s, 3670s, and 3640s. Unless stated otherwise, the information applies to
both interpreted and compiled code.

84.1 SCL Packages

SCL provides a separate set of packages for Common Lisp. When the two languages
have a feature in common, some of the symbols in these packages are identical to
symbols in Zetalisp. Other symbols are specific to Common Lisp.

The symbols in SCL can be found in the common-lisp and
symbolics-common-lisp packages. The common-lisp package contains all the
symbols defined in the Common Lisp language, while the symbolics-common-lisp
package contains those symbols plus the symbols that are Symbolics extensions to
Common Lisp.

The following packages are provided by SCL:

common-lisp This package exports all symbols defined by the Common Lisp
language, other than keywords. It is also known by the names
common-lisp-global, lisp, and cl. All Common Lisp packages
inherit from the common-lisp package. The Common Lisp name
for this package is lisp.

symbolics-common-lisp
This package exports all the symbols that are either in the
Common Lisp language or are Symbolics extensions to Common
Lisp. Most of the internals used by SCL are in this package. It
is also known by the name scI.

common-lisp-user
This is the default package for user programs. It is also known
by the names user and cl-user.

common-lisp-user inherits from symbolics-common-lisp. User programs should
be placed in the common-lisp-user package, rather than the
common-lisp package, to insulate them from the internal symbols
of SCL. The Common Lisp name for this package is user.

common-lisp-system
This package exports a variety of 3600-specific architectural and
implementational symbols. It is also known by the name cl-sys.
In ZetaIisp, some of these symbols are in global and some are in

634

Reference Guide to Symbolics-Usp March 1985

system. common-lisp-user does not inherit from
common-lisp-system. The Common Lisp names for this package
are system and sys.

gprint This package contains portions of SCL concerned with the
printing of Lisp expressions. It is not a standard Common Lisp
package.

language-tools This package contains portions of SCL concerned with Lisp code
analysis and construction. It has the nickname It. It is not a
standard Common Lisp package.

zl The name zl can be used in a Common Lisp program to refer to
Zetalisp's global package. The name zetalisp is synonymous
with zl.

zl-user The name, zl-user can be used in a Common Lisp program to
refer to Zetalisp's user package.

SCL and Zetalisp share the same keyword package.

Common Lisp packages can be referred to by their Common Lisp names from
Common Lisp programs, but not from Zetalisp programs. These names are relative
names defined by the common-lisp package.

All Zetalisp packages can be referred to from a Common Lisp program. Those
packages that have the same name as a Common Lisp package, such as system and
user, can be referenced with a multilevel package prefix, for example, zl:user:foo.
zl-user:foo is synonymous with zl:user:foo.

Packages can be used to shadow Common Lisp global symbols. For example, if you
have a program in which you would like to use merge as the name of a function,
you put the program in its own package (separate from cl-user), specify
:shadow merge in the defpackage, and use lisp:merge to refer to the SCL
merge function.

84.2 SCL and Strings

Zetalisp uses integers to represent characters, while Common Lisp has a special data
type for characters. Because a string is an array of characters, Zetalisp and
Common Lisp have incompatible strings. This is the only data incompatibility you
encounter when using SCL. It should not be an issue for strict Common Lisp
programs, only for programs that use Zetalisp facilities such as the window system.

In general an error occurs if you pass a Common Lisp string to a Zetalisp function
or a Zetalisp string to a Common Lisp function. Certain Zetalisp functions such as
fonnat have been made to accept Common Lisp strings for convenience in
programming. The SCL string function converts a Zetalisp string to a Common

635

March 1985 Symbolics Common Usp

Lisp string. Likewise, the ZetaIisp string function converts a Common Lisp string
to a ZetaIisp string.

Each language prints its own strings surrounded by double quote (") characters and
prints the strings of the other language preceded by #" and followed by ". This
syntax is not accepted on input and is regarded as a temporary measure to aid SCL
users in dealing with the string incompatibility, not as a permanent language
feature.

Because of the current incompatibility of characters and strings, Common Lisp
programs must do 110 operations using the Common Lisp functions, not by sending
messages directly to streams. For example, you should call the read-char function
or the read-byte function rather than sending the :tyi message, and call the
write-string function rather than sending the :string-out message. In a future
release, Zetalisp will be modified to be compatible with Common Lisp and this
incompatibility will vanish.

84.3 SCL and Symbolics Common Lisp Extensions

Most of the language features of Zetalisp that are not in Common Lisp are provided
by SCL in the symbolics-common-lisp package. This includes such things as
processes, loop, and flavors. In some cases (string-append, for example) these
Zetalisp features have been modified to make them implementation ally or
philosophically compatible with Common Lisp. In most cases you can refer to the
documentation for information about these features.

84.4 SCL and Optimization

Some of the optimizations that are described in Steele's Common Lisp manual
(CLM) and other useful optimizations have not yet been implemented in SCL. This
document does not describe any specific optimizations or the lack of them. Some of
these optimizations will be implemented in the future and others might not.
Additionally, other optimizations that are not suggested in the CLM might be added
to SeL in the future.

84.5 SCL and Common Lisp Files

The file attribute line of a Common Lisp file should be used to tell the editor, the
compiler, and other programs that the file contains a Common Lisp program. The
following file attributes are relevant:

636

Reference Guide to Symbo/ics-Usp March 1985

Syntax

Package

The value of this attribute can be Common-Lisp or Zetalisp. It
controls the binding of the Zetalisp variable readtable, which is
known as *readtable* in Common Lisp.

user is the package most commonly used for Common Lisp
programs. You can also create your own package. Note that the
Package file attribute accepts relative package names, which
means that you can specify user rather than cl-user.

The following example shows the attributes that should be in an seL file's attribute
line:

;ii -*- Hode:lispi Syntax:Common-lisPi Package:USER -*-

84.6 Sel Documentation

The seL documentation is based on the Guy Steele's Common Lisp manual (CIM)
and on the Release 6.0 documentation. In addition, the Release 5.2 and Release 6.0
Beta Test Notes provide additional information about changes to Zetalisp.

For a list of all the differences between the CIM and SeL in the same order and by
the same topic name as in the CIM: See the section "SCL and Common Lisp
Differences", page 637. This information is subject to change as the development of
seL continues.

Additionally, all Lisp objects referred to in the SCL documentation are indexed; thus,
you can find information either by looking up the topic that corresponds to the CIM
or by looking up the names of objects.

637

March 1985 Symbolics Common Usp

85. SCL and Common Lisp Differences

The sections in this chapter describe the differences between seL and the language
specification presented in Steele's Common Lisp manual (CLM). The sections in this
chapter are arranged in the same order as are those in the CLM. Where it is
appropriate to do so, the same information is provided in more than one place.

This list of differences will change in the future. Many of the items that are
currently marked as incompatible will be changed to be compatible with Common
Lisp.

Chapter 2 - Data Types
All atoms (non-lists) that are not symbols are self-evaluating,
although the CLM only requires that bit-vectors, numbers,
characters, and strings be so.

This difference is compatible.

Section 2.2.5 - String Characters
The type string is implemented to be a subtype of the type
common. The type string-char is not a subtype of the type
common.

Section 2.5.2 - Strings
Each language prints its own strings surrounded by double quote
(") characters and prints the strings of the other language
preceded by #" and followed by ". This syntax is not accepted on
input and is regarded as a temporary measure to aid SeL users in
dealing with the string incompatibility, not as a permanent
language feature. In a future major release, there will be only
one kind of string.

For example, an array of fIXnums prints as #"foo" rather than
"foo". The variable zl:si:·t1ag-wrong-type-strings· has been set
to t to enable this. However, in the future, the #" syntax will be
used to mean something else.

This difference is compatible.

Section 4.8 - Type Conversion Function
Some uses of the seL coerce function generate errors. This is
not an incompatibility with the CLM; the following examples are
provided only for clarification.

Some examples that generate errors and the reasons for the
errors are shown below.

The following is an error because the length is specified.

638

Reference Guide to Symbo/ics-Usp March 1985

(coerce '(1 2 3) '(vector t 3»

The following is an error because the length is specified and does
not match the number of elements for object.

(coerce '(1 2 3) '(vector t 4»

The following is an error because object is not a subtype of the
type sequence.

(coerce x '(array single-float 2»
The following is an error because result-type is a subtype of the
type character.

(coerce #\A 'string-char)

The following is an error because object is not an element of
result-type .

(coerce #\c-A 'string-char)

The following is an error because a range is specified.

(coerce 22/7 '(float 0 10»

Section 5.1.3 - Special Fonns
seL does not provide some of the equivalent macro definitions for
special forms described in CLM as macros but implemented in
SCL as special forms.

This difference is incompatible.

Section 5.2.2 - Lambda-Expressions
The arguments for &rest parameters have dynamic extent.
Furthermore, these arguments should not be modified with the
rplaca or rplacd functions.

Section 6.2.2 - Specific Data Type Predicates
SCL includes the predicate equal-typep, which returns either t
or nil. The arglist is typel type2; both arguments must be
recognized types.

The predicate functionp returns nil if its argument is a symbol
that is not defined as a function. Similarly, functionp returns
nil if the argument is a Zetalisp special form. Thus, functionp
is not true of all values returned by the function special form; for
example, functionp returns nil if the result of evaluating
(function setq) is used as an argument. It is not clear whether
this difference actually constitutes a discrepancy from the CLM
specification; this is being checked.

Section 7.1.1 - Reference
The function special form can return objects that are not
functions; for example, function can return the contents of the
function cell of a macro.

639

March 1985 Symbolics Common Usp

Section 7.2 - Generalized Variables
In the complex version of defsetf, optional arguments are not
fully implemented. The arguments can have defaults, but the
defaults do not necessarily depend on the arguments to the left,
because at the point where they are processed the "lambda
variables" have not yet been bound. suppUed-p variables are
ignored completely.

The documentation function cannot be used for the place
argument for setf.

These differences are incompatible.

Section 7.4 - Simple Sequencing
In compiled code, the macros progl and prog2 do not enforce the
restriction that they must always return exactly one value. They
can return no values, one value, or several values, such as in the
case where form· is empty.

The macro progv binds excess variables to nil if more variables
than values are supplied.

These differences are incompatible.

Section 7.7 - Blocks and Exits
The return and return-from special forms return no values
rather than returning nil when the result form is omitted.
return and return-from allow multiple subforms.

This is a incompatible difference.

Section 7.8.5 - The "Program Feature"
The go special form does not accept integers as tags in the
compiler.

This difference is incompatible.

Section 7.9.2 - Rules Governing the Passing of Multiple Values
The restriction that compiled and interpreted code always return a
single value in a singleton cond clause is not enforced. For
example, the following expression returns the values 1 and 2.

(cond «values 1 2»)

This difference is incompatible.

Chapter 8.1 - Macro Definition
defmacro treats the following form:

(defmacro foo x ...)

as equivalent to the following:

(defmacro foo (& rest x) •••)

Likewise, the form (defmacro foo (& rest x) ...) is equivalent to
(defmacro foo x ...).

640

Reference Guide to Symbollcs-Usp March 1985

Chapter 9 - Declarations
declare forms at the top level are handled according to the
Zetalisp and Maclisp rules rather than following the Common Lisp
rules that they are an error. Declarations that are embedded
inside a form, where allowed by Common Lisp, are evaluated
according to Zetalisp rules. Thus, special declarations embedded
inside a form are usually compatible with Common Lisp.

Section 9.1 - Declaration Syntax
The compiler ignores the value-type argument in the the special
form. This difference is compatible.

The proclaim function is implemented so that its forms at the
top level are evaluated unconditionally at compile time. The eLM
does not state specifically how this evaluation should be done.

Section 9.2 - Declaration Specifiers
The declarations type, ftype, inIine, notinIine, optimize, and
declaration are not implemented. In general all Common Lisp
declarations other than special are ignored.

This is a minor incompatible difference.

Section 9.3 - Type Declaration for Forms
The value-type argument in the is ignored by the compiler.

This difference is compatible.

Section 11.3 - Translating Strings to Symbols
Package-name lookup is not case-sensitive.

This difference is incompatible.

Section 11.8 - Modules
Using one argument with require is the equivalent of using
<make-system module-name :noconfirm) if the module is not
already loaded. Thus, the "registry" of module names consists of
the files in the site directory.

This difference is compatible.

Section 13.2 - Predicates on Characters
standard-char-p does not signal an error if given a non­
character.

This difference is compatible.

Section 14.3 - Modifying Sequences
The substitute, substitute-if, and substitute-if-not functions
are not optimized for detecting the case in which they can return
just their argument. This difference is compatible.

delete-du~Iicates supports the use of the :replace keyword. In
addition to removing duplicates from the front of the list, the

March 1985

641

Symbolics Common Usp

element that stays is moved up to the position of the element
that is deleted. :replace is not meaningful if :from-end t is also
used. This is an SCL extension to Common Lisp.

Section 14.4 - Searching Sequences for Items
The function mismatch erroneously returns nil in some cases.
This will be changed.

Chapter 14 - Sequences, Chapter 15 - Lists
All sequence and list functions that take a two-argument predicate
(such as :test and :not-test) always keep the order of arguments
to the predicate consistent with the order of arguments to the
sequence or list function. Thus, when there are two sequences
and the predicate is called with one item of each, the first
argument to the predicate is an element of the first sequence.
When there is an item and a sequence, the first argument to the
predicate is the item. When there is one sequence and two
elements of it are compared, they are always compared in the
order they appear in the sequence.

This is not a discrepancy from the CLM; this information is
provided for clarification.

Section 15.2 - Lists
The macros push and pusbnew take the keyword :area. This is
an SCL extension to Common Lisp.

Chapter 16 - Hash Tables
When the :test argument to make-hash-table is eq or #'eq,
:rehash-threshold cannot be used. When :test is any other
value, :rehash-size cannot be an integer.

This difference is incompatible.

Chapter 17 - Arrays
This section describes the CLM and SeL differences about arrays
in general.

• Multidimensional arrays currently use column-major order.
This difference is incompatible.

• Except in one case, all arrays are adjustable. The exception
is that indirect arrays that are created shorter than a
certain length cannot be made larger than that size.

• When using arrays, you cannot use the circular-structure
labelling feature; thus, you cannot access an object before it
has been created. For example, the following form signals
an error when #1# is read.

642

Reference Guide to Symbolics-Usp March 1985

;;;this signals an error because the object
;;;is being accessed before it is created
#(#1- #(#1#))

However, it is possible to access the object within the same
form when using lists, as shown in the following example:

(#1= (#1#))

This works for lists because they are built up out of conses,
which is not true of arrays.

This difference is incompatible.

Section 17.3 - Array Information
The function array-row-m~or-indelI is not implemented.

This difference is incompatible.

Chapter 18 - Strings
Each language prints its own strings surrounded by double quote
(n) characters and prints the strings of the other language
preceded by #n and followed by n. This syntax is not accepted on
input and is regarded as a temporary measure to aid SCL users in
dealing with the string incompatibility, not as a permanent
language feature. In a future m~or release, there will be only
one kind of string.

For example, an array of flXIlums prints as #"foo" rather than
"foo". The variable zl:si:*ftag-wrong-type-strings* has been set
to t to enable this. However, in the future, the #" syntax will be
used to mean something else.

This difference is compatible.

Chapter 19 - Structures
The default printing of structures does not use #S.

This difference is incompatible.

Section 19.5 - Defstruct Options
The expression (defstruct (foo (:type vector) :named) •..)
makes a named-structure. The eLM specifies that this should be
a vector whose first element is the type symbol. This variation is
incompatible only in the printed representation and in the
returned value from the type-of function.

Section 19.6 - By-position Constructor Functions
The constructor does not evaluate defstruct slot initializations in
the appropriate lexical environment.

Section 20.2 - The Top-Level Loop
In SCL, a top-level form that returns no values does not set the
variable *. The variable * remains unchanged.

643

March 1985 Symbolics Common Usp

This difference is incompatible.

Section 2L2 - Creating New Streams
The functions make-concatenated-stream and
make-echo-stream are not implemented.

This difference is incompatible.

Section 22.2.1 - Input from Character Streams
The read-char function echoes the character read from the input
stream if it is the terminal.

The second value returned by read-from-string is at most the
length of the string; it is never one greater than the length of the
string.

These differences are compatible.

Section 22.Ll - What the Read Function Accepts
. SCL uses the Zetalisp rules for vertical bars. It supports a

maximum of two vertical bars (I) in a token. The vertical bars
are boundaries for the token; all characters must be contained
between the two vertical bars. Any character outside the pair of
vertical bars is treated as a separate symbol. Thus, a I b I c is
treated as three symbols and I abc I is treated as one symbol.

This difference is incompatible.

Section 22.1.2 - Parsing of Numbers and Symbols
Setting the value of ·read-base· greater than 10 causes tokens to
fail to be interpreted as numbers rather than symbols .. For
example, if ·read-base· is set to 16 (hexadecimal radix), variables
with names such as a, b, and face are interpreted as symbols
rather than numbers. You can set the values of the variables
·read-extended-ibase-signed-numbers· and
·read-extended-ibase-unsigned-numbers· to t to cause the
tokens to always be interpreted as a number. This difference is
incompatible.

The variable ·read-suppress· is not implemented.

The set-syntax-from-char function can copy most character
attributes rather than being limited to the standard character
syntax types shown in Table 22-1, Standard Character Syntax
Types.

SCL does not implement the requirements in Table 22-3,
Standard Constituent Character Attributes, about illegal character
attributes. Changing the syntactic type of space, tab, backspace,
newline (also called return), linefeed, page, or rubout to constituent
or non-terminating macro type does not signal an error in seL.

644

Reference Guide to Symbo/ics-Usp March 1985

Section 22.L3 - Macro Characters
#P is used for printing pathnames and is followed by a string in
double quotes.

This difference is compatible.

Section 22.1.4 - Standard Dispatching Macro Character Syntax
Symbols in the *features* list must be keywords for the reader
macros #+ and #- to work with them. The #+ and #- reader
macros read the feature that follows them in the keyword
package, not in the package that is currently in effect.

It is not clear whether this difference actually constitutes a
discrepancy from the eIM specification; this is being checked.

Section 22.1.5 - The Readtable
The get-macro-character function returns nil for built-in
macros, as they are not defined with set-macro-character. This
causes the example for the read-delimited-list function in the
eLM under read-delimited-list to not work.

This difference is incompatible.

Section 22.1.6 - What the Print Function Produces
seL uses the Zetalisp names (the names on the keyboard), rather
than the names shown in the eLM, for the printing of
characters. This is not completely compatible with Common Lisp.

Slashification is controlled by which tokens the SCL reader
interprets as numbers. Only symbols whose printed
representations are actual numbers get slashified on printing. A
symbol whose printed representation is a potential number and
not an actual number does not get slashified' Potential numbers
are described in Section 22.1.2, Parsing of Numbers and Symbols,
in the eLM. This difference is incompatible.

Section 22.3.3 - Formatted Output to Character Streams
The -G directive is not implemented for the format function.
The -E directive is the ZetaIisp implementation.

SCL implementation of the -T directive does not know the column
position when the output is directed to a file.

These differences are incompatible.

Section 23.1.1 - Pathnames
Pathname components of :unspecific for the device, directory,
type, and version components are allowed in some circumstances.

Pathname hosts are instances; they are not strings or lists of
strings. The host component of a pathname should be considered
to be a structured component. This difference is incompatible and
will not be changed.

645

March 1985 Symbolics Common Usp

Section 23.1.2 - Pathname Functions
The parse-namestring function uses the new (Release 5.0)
Zetalisp rules for fs:parse-pathname regarding what a non-null
host means, rather than the rules shown in the eLM. Thus,
when host is not nil, thing should not contain a host name. This
difference is compatible.

The :junk-allowed keyword for parse-namestring is not
implemented to accept t as an argument. This difference is
incompatible.

The variable ·defauIt-pathname-detauIts· is a defaults alist, not
a pathname. This difference is incompatible and will be changed.

Section 23.5 - Accessing Directories
The directory function returns nil if no flIes matching pathname
are found, but still signals an error for other rue lookup errors,
such as not fmding the directory.

This difference is compatible.

Section 25.1 - The Compiler
The compile-rIle function accepts the keyword :Ioad. This is
provided for compatibility with Spice Lisp.

This difference is compatible.

Section 25.2 - Documentation
The documentation function is the Zetalisp implementation.
This difference is incompatible.

Section 25.3 - Debugging Tools
The describe function is the Zetalisp describe; it returns its
argument after describing the object. This difference is
incompatible.

The function dribble calls zl:dribble-start and zl:dribble-end
This means that dribble does not return until the dribbling has
been completed, because it creates a new command loop to do the
dribbling. This difference is compatible.

Section 25.4.1 - Time Functions
The time-zone argument for the decode-universal-time function
currently suppresses checking for daylight savings time, just as the
encode-universal-time function does. It is not clear whether
this difference actually constitutes a discrepancy from the eLM
speciflcation; this is being checked. However, the compatibility
note in the eLM about time-zone in Zetalisp is obsolete.
get-decoded-time now returns time-zone.

Section 25.4.2 - Other Environment Inquiries
Symbols in the .features· list must be keywords for the reader

646

Reference Guide to Symbolics-Usp March 1985

macros #+ and #- to work with them. The reader macros #+
and #- read the feature that follows them in the keyword
package, not in the package that is currently in effect.

The feature name ieee-ftoatlng-polnt is not yet implemented for
the *features· variable.

647

March 1985 Index

Index

~
Lambda (X) character 32

'Y
Gamma ('Y) character 32

, ,
Delta (8) character 32

1 1 1
Up-Arrow (1) character 32

+ + +
Plus-Minus (+) character 32

ED
Circle-plus (ED) character 32

0
Circle-X (0) character 25

:I:
:F function 100

S S
< function 99

~
> function 99

#~ Reader Macro 30

Sharp-sign (#) macro character 26
#: package qualifier 584
#: Reader Macro 29
#- Reader Macro 30

648

Reference Guide to Symbolics-Usp March 1985

SCL and #- Reader Macro 644, 645
reader macros 27
#" syntax 637, 642
#' Reader Macro 28
#' special form 162
+ Reader Macro 29

SCL and # + Reader Macro 644, 645
#. Reader Macro 28
0 Reader Macro 29
1 character identifier 2n

#\ or #1 Reader Macro 27
#< Reader Macro 30
#b Reader Macro 29
#m Reader Macro 29
#n Reader Macro 29
#0 Reader Macro 29
#P Reader Macro 643
#q Reader Macro 29
#r Reader Macro 29

SCL and #5 macro form 642
#x Reader Macro 29
#\ character identifier 2n
#\ or #1 Reader Macro 27
#- Reader Macro 28
#1 Reader Macro 30

& & &
& keywords 151, 309

,
Single quote (') 161

Quote (') macro character 26

* * *
SCL and * variable 642

* function 102

+ + +
+ $ function 100
+ function 100

, ,
,0 347

Comma character (,) in backquote facility 345
Comma (,) macro character 26

.@ 345

March 1985

I I

1 1

sys:
sys:
sys:

3 3

Addition of
Subtraction of

,

-$ function 101
- function 101

11$ function 103
/I function 102

1-$ function 105
1 + $ function 104
1 + function 104
% 1d-aloc function 246
% 1d-aref function 246
% 1d-aset function 246
1- function 104

%32-blt-dlfference function 119
%32-blt-plus function 119
32-bit Numbers 119
32-bit numbers 119
32-bit numbers 119

: character as keyword identifier 576
: package qualifier 585, 601, 603

Semicolon (;) macro character 26

< <

))

< = function 99
< function 99

= function 98

) = function 98
) function 98

649

Index

I

1

3

)

650

Reference Guide to Symbo/ics-Usp

A
Function

aya:

Getting Information

Combining

A-Keywords
Clm: What the Read Function

fs:
fs:

Clm:

Interesting

SCL and

Character Comparisons
String Comparisons

String Searching

sl:encapsulated-definitlon debugging info
Debugging Info

Funargs and Lexical Closure
Storage
Storage
Memory

How the Package System

sl:

March 1985

A
abbreviation 28
ABORT 532
Abort character 32
abort flavor 502, 526, 532
ABORT key 502, 526
About an Array 246
above loop keyword 207, 225
abs function 101
Absolute value 101
abstract types 431
:abstract-fJavor Option for defflavor 441, 450
Abstract-operatlon functions 418
Abstract types 418, 425
Accepted by defmacro 373
Accepts 643
access-error 549
access-error flavor 549
Access functions 147
Accessing Directories 645
Accessing Multidimensional Arrays as

One-dimensional 245
Accessor functions 379, 401
:accessor-preflx Option for defflavor 441, 448
Active elements in arrays 238, 247
Active frame 494
active frame 494
Actual parameters 151
add1 function 104
Adding new methods 438
Adding new symbols to locked packages 626
Adding to the End of an Array 251
Addition 100, 104
Addition of 32-bit numbers 119
adjust-array-slze function 249
adjustable arrays 641
advise special form 302
Affected by Case, Style, and Bits 270
Affected by Case, Style, and Bits 282
Affected by Case, Style, and Bits 286
:after method type 455, 457
After-daemon methods 431
Aggregated Boolean Tests 215
Aid for Debugging Macros 369
Aids for Defining Macros 343
Alist 59
alist element 325
alist functions 302, 323, 325
all-flavor-names variable 429
Allocation 139, 140, 141, 312, 313
allocation 250
allocation error 538
allocation of conses 56
&allow-other-keys Lambda-Jist Keyword 310, 373
Allows Symbol Sharing 569
aloc function 244
alpha-char-p function 270
alphabetic syntax description 34

A

March 1985

Using the Constructor and

Examples of Symbol Sharing
Sharing of Symbols

Logical

Reference Material:
How

Printed Representation of Arrays That
Printed Representation of Arrays That

sys:

651

Index

alphabetlc-case-affects-strlng-comparlson
variable 273

alphalessp function 292
alphanumerlcp function 270
Alterant Macros 395
:alterant option for defstruct 385. 386
Alterant Macros 397
Alteration of Ust Structure 54
Altering slot values of structures 395
Altmode character 32
always loop keyword 215
Among Packages 589
Among Packages 569
and function 178
and loop keyword 207. 210. 216. 222
:and method combination type 455
:and method type 455. 458
and special form 178
ap-1 function 244
ap-2 function 245
ap-Ieader function 245
append loop keyword 212
:append method combination type 455. 456
append function 51. 56
appending loop keyword 212
Application: Handlers Examining the Stack 494
Application: Handlers Examining the Stack 495
Applications Programs Treat Conditions 481
apply function 8. 151. 159
Applying functions to list items 201
ar-1 function 244
ar-2 function 244
Arctangent 106. 107
Are Named Structures 16
Are Not Named Structures 17
:area inlt option for sl:eq-hash-table 71
:area keyword for make-list 49
:area option for make-array 241
area-overflow flavor 537
aref 255
aref function 235. 244. 277
%%arg-desc-Interpreted numeric argument

descriptor field 324
%arg-desc-Inlerpreted numeric argument descriptor

field 324
%%arg-desc-max-args numeric argument descriptor

field 324
%%arg-desc-mln-args numeric argument descriptor

field 324
%%arg-desc-quoted numeric argument descriptor

field 324
%%arg-desc-rest-arg numeric argument descriptor

field 324
arg function 165
arglist declaration 312
arglist function 302. 323
arglist variable 325
%args-Info function 325

652

Reference Gu;de to Symbolics-Lisp

SCL and documentation as seti'
Numeric

% %arg-desc-Interpreted numeric
%arg-desc-Interpreted numeric
%%arg-desc-max-args numeric
%%arg-desc-mln-args numeric

%%arg-desc-quoted numeric
%%arg-desc-rest-arg numeric

environment
SCL and value-type

Keywords in
:macro

nil
:single

:spllclng
:atom

:flx
:float

:Instance
:list-or-nil

:non-complex-number
:null

:number
Binding Parameters to

Checking for valid
Functional

Lexical Environment Objects and
Safety of &rest

Performing
Base Flavor: sys:

sys:

Adding to the End of an
art-fat-string

art-string
Changing the Size of an

Copying an
Copying From and to the Same

Getting Information About an
Indirect

Named structure
Maclisp

The
Bit size of

Character strings as
Integers as

Returning
Storing into

Basic

Clm:

Hints for Using

args-Info function 324
argument 639
argument deSCriptor 324
argument deSCriptor field 324
argument descriptor field 324
argument descriptor field 324
argument descriptor field 324
argument descriptor field 324
argument descriptor field 324

March 1985

argument for macro-expander functions 138
argument for the special form 640
argument lists 189
argument to setsyntax 36
argument to setsyntax 36
argument to set syntax 36
argument to setsyntax 36
argument to typep 9
argument to typep 9
argument to typep 9
argument to typep 9
argument to typep 9
argument to typep 9
argument to typep 9
argument to typep 9
Arguments 153
arguments 505
arguments 139
Arguments 138
Arguments 157
Arguments to functions 323
argument-typecase special form 506
Arithmetic 100
arithmetic operations on characters in SCL 265
arithmetic-error 534
arithmetic-error flavor 534
Arithmetic errors 534
Array 251
array 277
array 277
Array 249
Array 252
Array 253
Array 246
array 240, 241, 248
array 238, 241
Array Compatibility 262
Array Data Type 5
array elements 236
array elements 236
array elements 236
array elements 244
array elements 244
Array Functions 241
Array header information 239
Array Information 642
Array Register Restrictions 258
Array Registers 257
Array Registers and Performance 255

March 1985

Multidimensional
art-fat-strlng

art-q-lIst
art-16b
art-1b
art-2b
art-4b
art-Db

art-boolean
art-Nb

art-q
art-string

sys:

sys:
sys:

SCL and
sys:
sys:

sys:
sys:

653

Index

Array Representation Tools 237
:array returned by typep 9
array subscripts 245
Array Type 236
Array Tpe 236
array type 236
array type 236
array type 236
array type 236
array type 236
Array Type 237
Array Type 236
Array Type 236
Array Type 236
array-#-dlms function 247
array-active-length function 247
arraY-bits-per-element function 238
arraY-bits-per-element variable 238
array-column-major-index function 248
arraY-dimenslon-n function 247
array-displaced-p function 248
array-element-size function 238
array-elements-per-q function 238
array-elements-per-q variable 238
array-has-Ieader-p function 248
array-has-no-Ieader flavor 540
array-In-bounds-p function 248
array-Indexed-p function 248
arraY-lndirect-p function 248
array-leader-length function 249
array-push-extend function 251
array-push-portlon-extend function 251
array-reglster-1d 245
array-reglster-1d declaration 312
array-row-major-Index function 642
array-wrong-number-of-dlmenslons flavor 540
array-wrong-number-of-subscrlpts flavor 541
arraycall function 262, 263
Array decoding 255
Array dimensions 235, 247
array-dimensions function 247
arraydims function 247
array-element loop iteration path 225
array-elements loop iteration path 225, 257
Array Errors 540
*array function 263
array-grow function 249
Array initialization 241
Array leader 238, 241, 248
array-leader function 245
Array Leaders 238
array-length function 246
array macro 263
arrayp function 8, 69
array-pop function 252
array-push function 251
array-register 255
array-register declaration 312

654

Reference Guide to Symbolics-Usp

Active elements In
Clm:

Dead
Displaced

Extra Features of
Flonum

Grouped
Indirect
Integer

Multlcs external
Multidimensional

Numeric
SCL and adjustable

SCL and column-major order for
SCL and multidimensional

Sorting
Storage of

Un-garbage-collected
SCL

Sorting

Accessing Multidimensional

Printed Representation of
Printed Representation of

Array Registers 255
Array-register variable 255
Arrays 235, 303
arrays 238, 247
Arrays 641
arrays 262
Arrays 239, 241, 248
Arrays 238
arrays 262
Arrays 401
Arrays 240
arrays 262
arrays 262
Arrays 237
arrays 5
arrays 641
arrays 641
arrays 641
arrays 79
arrays 235
arrays 262

March 1985

arrays and circular-structure labelling restriction 641
Arrays and Usts 79
Arrays as functions 235
Arrays as lists 236
Arrays as One-dlmenslonal 245
Arrays Overlaid with Usts 250
Arrays That Are Named Structures 16
Arrays That Are Not Named Structures 17
Arrays used as functions 305
Arrays, Characters, and Strings 233
Array subscripts 235, 248
array-type function 246
Array Types 235, 241
array-types function 237
array-types variable 237
art-tat-string Array Type 236
art-tat-string array 2n
art-q-lIst Array Type 236
art-16b array type 236
art-1b array type 236
art-2b array type 236
art-4b array type 236
art-8b array type 236
art-boolean Array Type 237
art-Nb Array Type 236
art-q Array Type 236
art-string Array Type 236
art-string array 277
as loop keyword 207
as-1 function 244
as-2 function 244
ascll-to-char function 274
ascii-to-string function 290
ASCII Characters 274
ascII-code function 274
ascII function 293
ASCII Strings 290

March 1985

B

Symbol

Self-evaluating

Package
SCL and constituent character

SCL and non-terminating macro character
File

SCL and illegal character
SCL and Standard Constituent Character

Specifying

Comma character (.) in

dbg:
sys:
sys:
sys:

SCL and vertical
Miscellaneous System Errors Not Categorized by

Request Failures
Interning Errors

Reading Integers in

B

655

Index

aset 255
aset function 235. 244
ash function 115
ass function 65
as soc function 65
associated with property list 67
Association list 238
Association lists 59. 64. 67
assq function 64
atan2 function 107
atan function 107
Atom 3
:atom argument to typep 9
atom function 7
Atomic symbol 3
atoms and SCL 637
Attribute 67
attribute 579
attribute 643
attribute 643
attribute list 579
attributes 643
Attributes Table 643
&aux keyword for defmacro 373
&aux lambda-list Keyword 310
Aux-varlables In Lambda Usts 157

Back-Next character 32
Backquote 345
Backquote character (') 345
backquote facility 345
Backquote (') macro character 26
Backspace character 32
bad-array-mlxln flavor 540
bad-array-type flavor 540
bad-connectlon-state flavor 555
bad-data-type-In-memory flavor 534
bars for quoting 643
Base Flavor 536
Base Flavor: sys:arlthmetlc-error 534
Base Flavor: sys:cell-contenls-error 533
Base Flavor: sys:floatlng-polnl-exceptlon 535
Based on fs:flle-requesl-fallure 546
Based on sys:package-error 542
Base flavor .451
Bases Greater Than 10 21
base variable 14
Basic Array Functions 241
Basic definition of the function spec 297. 325
Basic Ust Operations 46
Basic String Operations 278
Basic Objects 1
:before method type 455. 457
Before-daemon methods 431
being loop keyword 207.222
below loop keyword 207, 225

B

656

Reference Guide to Symbolics-Usp

Read rational number in

Condition

Special Forms for

Trap on exit

sys:
sys:

Character Comparisons Affected by Case, Style, and
Character Comparisons Ignoring Case, Style, and

Least
Rotate

Shift
Significant

String Comparisons Affected by Case, Style, and
String Comparisons Ignoring Case, Style, and
String Searching Affected by Case, Style, and

String Searching Ignoring Case, Style, and

Clm:

Aggregated

Truth table for the

sl:

Conditional

Debugger

:blgnum returned by typep 9
Bignums 4, 8, 89
blgp function 8
binary 29
Binary files 613
Binary Integers 89
Bind Recursion 502
Binding 125, 331, 561
Binding condition handlers 481
Binding local and special variables 126
Binding of a symbol 3
Binding Parameters to Arguments 153
Binding Variables 128
Binding handlers 487
Bindings 210
Bindings In loops 210, 220
Binding Variables 125, 331
bit 523

March 1985

Bit size of array elements 236
bltblt-array-fractlonal-word-wldth flavor 537
bltblt-destinatlon-too-small flavor 537
bltblt errors 537
bitblt function 254
Bit manipulation 114
Bits 270
Bits 271
bits 115
bits 115
bits 114
bits 115
Bits 282
Bits 283
Bits 286
Bits 287
bit-test function 114
block special form 183
Blocks 67
Blocks and Exits 183
Blocks and Exits 639
&body keyword for defmacro 373
&body lambda-list Keyword 310
Boolean Tests 215
Boolean operations 113
Boolean operations 114
boole function 114
both-case-p function 270
Bound handlers 488, 501, 502
boundp-In-closure function 336
boundp function 562
Break on exit from marked frame message 523
break syntax description 34
Break character 32
break flavor 532
breakon function 523
Breakpoints 523
breakpoints 523
BS character 32
Bug Reports 524

March 1985

c

Clm:

Using

Create a
Extract position field of a

Extract size field of a
%%ch­

%%kbd-

sys:
Operations the User

:proceed

c

:bug-report-descrlptlon message 525
:bug-report-reclplent-system message
bug function 524
BUG-USPM mailing list 524
:but-flrst option for defstruct 385, 390
butlast function 53
by loop keyword 207, 225
By-position Constructor Functions 642
By-position Constructor Macros 396
Byte 115
Byte Fields and defstruct 399
Byte Manipulation Functions 115
byte specifier 116
byte specifier 116
byte specifier 116
byte specifiers and file characters 268
byte specifiers and keyboard characters
byte function 116
byte-position function 116
byte-size function 116
Byte specifiers 115, 399

c-sh-A command 302
c-sh-D command 302
caaaar function 42
caaaar function 43
caaadr function 42
caaadr function 43
caaar function 42, 43
caadar function 42
caadar function 44
caaddr function 42
caaddr function 44
caadr function 42, 43
caar function 42, 43
cadaar function 42
cadaar function 44
cadadr function 42
cadadr function 44
cadar function 42, 43
caddar function 42
caddar function 44
cadddr function 42
cadddr function 44
caddr function 42, 43
cadr function 42, 43
:callable-accessors option for defstruct
Call character 32
call function 161
call-trap flavor 523
Can Perform on Functions 302
Can Return nil 519
Captured free reference 126
Car 41, 43, 44
car function 42, 83
car-location function 45

657

Index

524

268

c

385,391

658

Reference Guide to Symbolics-Usp

Composition of
SCL

Character Comparisons Affected by
Character Comparisons Ignoring
String Comparisons Affected by

String Comparisons Ignoring
String Searching Affected by

String Searching Ignoring

Miscellaneous System Errors Not

Composition of Cars and

March 1985

Cars and Cdrs 42
case checking In package-name lookup 640
:case flavor combination 520
:case method combination 517
:case method combination type 455, 457
Case sensitivity of Interning 604
Case, Style, and Bits 270
Case, Style, and Bits 271
Case, Style, and Bits 282
Case, Style, and Bits 283
Case, Style, and Bits 286
Case, Style, and Bits 287
:case-documentatlon symbol 520
caseq special form 182
Catch 197
*catch special form 169, 200
catch special form 169, 197
catch-error-restart special form 501, 502, 513, 515
catch-error-restart-If special form 513, 515
categorized by Base Flavor 536
cdaaar function 42
cdaaar function 44
cdaadr function 42
cdaadr function 44
cdaar function 42
cdaar function 43
cdadar function 42
cdadar function 44
cdaddr function 42
cdaddr function 44
cdadr function 42
cdadr function 43
cdar function 42, 43
cddaar function 42
cddaar function 44
cddadr function 42
cddadr function 44
cddar function 42
cddar function 43
cdddar function 42
cdddar function 44
cddddr function 42
cddddr function 44
cdddr function 42
cdddr function 43
cddr function 42, 43
Cdr 41, 43, 44
Cdr storing functions 297
Cdr-code field 56
Cdr-coding 41, 56
Cdr-coding and Locatives 83
cdr function 42, 83
Cdr-next 56
Cdr-nil 56
Cdr-normal 56
Cdrs 42
ceiling function 109
Cell 83

March 1985

External value
Function

Internal value
Value

Memory
Invalid contents in

Package
The Function
The Package

The Value
Base Flavor: sys:

sys:

Functions That
Functions That

fs:
fs:

Abort
Back-Next

Backquote (') macro
Backspace

Break
BS

Call
Circle-pius (ED)

Clrcle-X (~)
Clear

Clear-Input
Clear-Screen

Comma (.) macro
CR

Delta (8)
End

ESC
Form

Gamma (1)
Hand-Down

Hand-Left

cell 331
cell 3
cell 331
cell 3, 83. 331. 561. 563
cell as property list 67
cell errors 533
cell of a symbol 3
Cell of a Symbol 563
Cell of a Symbol 566
Cell of a Symbol 561
cell-contents-error 533
cell-contents-error navor 533
Cells and Locatives 83
% %ch- byte specifiers and file characters 268
Change Character Syntax 34
Change Characters Into Macro Characters 35
Change current package 597
change-Instance-flavor function 436
change-property-fallure 551
change-property-fallure navor 551
Changing a Flavor 468
Changing the Size of an Array 249
Changing the Value of a Variable 125
chaos package 615
cha~ function 271
char< function 271
char> function 271
char-devlce-font function 269
char-mouse-button function 273
char-mouse-n-cllcks function 274
char-not-equal function 271
char-not-greaterp function 272
char-not-Iessp function 272
char-to-ascII function 274
char(function 271
char = function 270
char) function 271
character 32
character 32
character 26
character 32
character 32
character 32
character 32
character 32
character 25
character 32
character 32
character 32
character 26
character 32
character 32
character 32
character 32
character 32
character 32
character 32
character 32

659

Index

660

Reference Guide to Symbolics-Lisp

Hand-Right
Help

Hold-Output
Integral (f)
Lambda (X)

LF
Line

Macro
Network

OVerstrike
Page

Quote
Quote (') macro

Resume
Return

Roman-I
Roman-II
Roman-III
Roman-IV

Rubout
Semicolon (;) macro

Sharp-sign (#) macro
SP

Space
Stop-Output

System
Tab

Terminal
Up-Arrow (t)

Altmode
Hand-Up

Macro
Plus-Minus (+)

Status
Comma

SCL and constituent
SCL and non-terminating macro

SCL and illegal
SCL and Standard Constituent

Reading octal

#1
#\

Zetallsp and SCL
SCL and printed

Special

Font numbers and
Printed Representation of Common Lisp

Expanded

character 32
character 32
character 32
character 32
character 32
character 32
character 32
character 32
character 32
character 32
character 32
character 32
character 26
character 32
character 32
character 32
character 32
character 32
character 32
character 32
character 26
character 26
character 32
character 32
character 32
character 32
character 32
character 32
character 32
character 32
character 32
character 26
character 32
character 32
character (,) in backquote facility 345
character as keyword Identifier 576
character attribute 643
character attribute 643
character attributes 643
Character Attributes Table 643

March 1985

Character code for nonprinting characters 27
character codes 25
Character Comparisons Affected by Case, Style, and

Bits 270
Character Comparisons Ignoring Case, Style, and

Bits 271
character identifier 2n
character Identifier 2n
character incompatibilities 265
character names 644
Character Names 32
Character Object Details 265
character objects 267
Character Objects 16
Character objects code field 265
Character objects font field 265
Character objects style field 265
character set 277

March 1985

Support for Nonstandard

Clm: Formatted Output to
Clm: Input From

Character Sets and
Clm: Standard Dispatching Macro

Functions That Change
SCL and Standard

Backquote

ASCII
%%ch- byte specifiers and file
Character code for non printing

Clm: Macro
Clm: Predicates on

Clm: String
Derived fields for

Floating-point Exponent
Functions That Change Characters Into Macro

How the Reader Recognizes Macro
%%kbd- byte specifiers and keyboard

Mouse
Special

Two Kinds of
Performing arithmetic operations on

Functions That Change
Displaying

Arrays,

661

Index

Character Sets 275
Character Sets and Character Styles 267
Character Streams 644
Character Streams 643
Character strings as array elements 236
Character Styles 267
Character Syntax 644
Character Syntax 34
Character Syntax Types Table 643
character (') 345
Character codes 27, 265
Character Comparisons 270
Character constants 27
Character Conversions 272
Character Fields 269
character function 272
Character Names 273
Character Objects 265
Character Predicates 270
Characters 265
Characters 274
characters 268
characters 27
Characters 643
Characters 640
Characters 637
characters 268
Characters 22
Characters 35
Characters 26
characters 268
Characters 273
characters 32
Characters 268
characters in SCL 265
Characters Into Macro Characters 35
characters on output devices 268
Characters, and Strings 233
Character sets 267
Character strings 2n
char-bit function 269
char-bits function 269
char-code function 269
char-downcase function 272
char-equal function 271
char-fllpcase function 273
char-greaterp function 272
char-Int function 272
char-Iessp function 271
char-name function 273
char-standard function 275
char-subindex function 269
char-upcase function 272
check-arg-type special form 576
check-arg-type macro 506
check-arg macro 505
Checking for Package Name-conflict Errors 593
Checking for valid arguments 505

662

Reference Guide to Symbolics-Usp March 1985

SCL case checking In package-name lookup 640
:choose proceed type 619

sl: clrclecross syntax description 34
Circle-pius ($) character 32
Clrcle-X (0) character 25

fs: circular-link flavor 552
Circular list 41
circular-list function 50

SCL arrays and circular-structure labelling restriction 641
Circumflex C) In Integer syntax 20
cis function 107
cl:*read-default-float-format* variable 23
Classes of Handlers 487
Clauses 206

heration-driving Clauses 207, 221
Miscellaneous Other Clauses 218

cl:double-float format 23
Cleanup handler 197
:clear method of sl:heap 78
Clear character 32
:clear-hash message 73
Clear-Input character 32
Clear-Screen character 32
cl:long-float format 23
Clm: Accessing Directories 645
Clm: Array Information 642
Clm: Blocks and Exits 639
Clm: By-position Constructor Functions 642
Clm: Creating New Streams 643
Clm: Data Types 637
Clm: Debugging Tools 645
Clm: Declaration Specifiers 640
Clm: Declaration Syntax 640
Clm: defstruct Options 642
Clm: Formatted Output to Character Streams 644
Clm: Generalized Variables 639
Clm: Hash Tables 641
Clm: Input From Character Streams 643
Clm: Macro Characters 643
Clm: Macro Definition 639
Clm: Modifying Sequences 640
Clm: Other Environment Inquiries 645
Clm: Parsing of Numbers and Symbols 643
Clm: Pathname Functions 644
Clm: Predicates on Characters 640
Clm: Rules Governing the Passing of Multiple

Values 639
Clm: Searching Sequences for Items 641
Clm: Sequences, Lists 641
Clm: Simple Sequencing 639
Clm: Special Forms 638
Clm: SpecifiC Data Type Predicates 638
Clm: Standard Dispatching Macro Character

Syntax 644
Clm: String Characters 637
Clm: the "Program Feature" 639
Clm: the Compiler 645
Clm: the Readtable 644

March 1985

Funargs and Lexical

Unbound
What Is a Dynamic

Dynamic

Dynamic
Examples of the Use of Dynamic

Functions and Dynamic
Lexical

Stack-allocated

Error logging
Loop exit

Loop initialization
Macros That Surround

Invalid type
Character objects

Character

In-line
Open

Character
Reading octal character

SCL

Hash Tables and the Garbage

Clm: the Top-level Loop 642
Clm: Time Functions 645
Clm: Translating Strings to Symbols 640
Clm: Type Conversion Function 637
Clm: Type Declaration for Forms 640
Clm: What the Print Function Produces 644
Clm: What the Read Function Accepts 643
Clm: Arrays 641
Clm: Declarations 640
Clm: Documentation 645
Clm: Lambda-expressions 638
Clm: Usts 641
Clm: Modules 640
Clm: Path names 644
Clm: Reference 638
Clm: Strings 637, 642
Clm: Structures 642
Closed subroutine 351
Closure Allocation 139, 140, 141, 312, 313
Closure and flavors 423
:closure returned by typep 9
closure variable error 533
Closure? 331
closure-allsl function 335
closure function 305, 335
closure-funcllon function 335
Closure-manipulating Functions 335
closurep function 9, 335
closures 303, 305, 331
Closures 333
Closures 295
closures 137, 303, 305, 331
closures 139
closure-variables function 336
cl package 615, 633
clrhash-equal function 74
clrhash function 74
cl:short-float format 23
cl:slngle-floal format 23
c-M . Debugger command 524
code 494
code 205, 212
code 205, 212
Code 362
code error 534
code field 265
code for non printing characters 27
code-char function 270
coded functions 351
coded functions 351
codes 27, 265
codes 25
coerce function 637
Coercion Rules for Numbers 90
Coercion rules 90
collect loop keyword 212
collecting loop keyword 212
Collector 75

663

Index

664

Reference Guide to Symbolics-Lisp

:extemal
:Intemal

SCL and

:case flavor
:case method

Method

:and method
:append method

:case method
:daemon method

:daemon-with-and method
:daemon-wlth-or method

:daemon-wlth-overrlde method
:Inverse-list method

:lIsl method
:nconc method

:or method
:pass-on method

:progn method
Instance variables of

Zmacs Command: Edit
Zmacs Command: Ust

c-sh-A
c-sh-O

c-M Debugger
:create-dlrectorles-recurslvely Debugger

:create-dlrectory Debugger
m-sh-O

m-BREAK Debugger
Where Is Symbol (m-X) Zmacs

Zmacs
Zmacs
Zmacs
Zmacs
Zmacs
Zmacs

Debugger Special
Package

Zmacs

SCL and type
Greatest
Greatest

colon mode 601. 603
colon mode 601. 603

March 1985

:colon-mode Option for defpackage and
make-package 601. 603

:colon-mode option for make-package 585
:colon-mode option for defpackage 585
column-major order for arrays 641
Column-major ordering 248
combination 520
combination 517
Combination 455
Combination Method· Types 459
combination type 455
combination type 455. 456
combination type 455. 457
combination type 455
combination type 455. 456
combination type 455. 456
combination type 455. 457
combination type 455. 456
combination type 455
combination type 455. 456
combination type 455
combination type 455. 456
combination type 455
combined flavors 431
:comblned method type 455. 458
Combined methods 438
Combined Methods 472
Combined Methods 471
Combined method 431
Combining abstract types 431
Combining flavors 431. 461
Combining methods 461
Comma (.) macro character 26
Comma character (.) In backquote facility 345
command 302
command 302
command 524
command 549
command 549
command 302
command 532
command 571
Command: Describe Flavor 471
Command: Edit Combined Methods 472
Command: Edit Methods 471
Command: Ust Combined Methods 471
Command: Ust Methods 471
Command: m-. 471
Commands 525
commands 612
Commands for Flavors 471
comment special form 164
Comments In macros 26
common 637
common denominator 105
common divisor 105

March 1985

Introduction to Symbolics
Symboiics

Printed Representation of

SCL and
SCL and Symboiics

SCL and

Interaction of Some

Sorting
Character

Cons
Keyword
Numeric

Object
String

Charac1er
String

Charac1er
String

Macllsp
Maclisp Array

Readtable Functions for Macllsp
Common Lisp
Functions for

The

SCL and
Clm: the

Lexically scoped
Numbers in the

Effect of

Default Handlers and
Reference Material: Default Handlers and

How the Reader Recognizes
Prin1ed Representation of

SCL and pathname

String

Common Lisp 631
Common Lisp 629
Common Lisp Character Objects 16
Common Lisp Compatibility Package 615
Common Lisp Differences 637
Common Lisp Extensions 635
Common Lisp Files 635
Common Lisp readtable 27

665

Index

Common Special Forms with Multiple Values 169
common-lisp-global package 615
common-lisp-system package 633
common-lisp-user package 633
common-lisp package 633
Compact lists 56
compact lists 79
Comparisons 270
comparisons 11
comparisons 227
Comparisons 98
comparisons 10
comparisons 11, 282
Comparisons Affected by Case, Style, and Bi1s 270
Comparisons Affected by Case, Style, and Bits 282
Comparisons Ignoring Case, Style, and Bi1s 271
Comparisons Ignoring Case, Style, and Bits 283
compatibility 503
Compatibility 262
Compatibility 36
Compatibility Package 615
Compatibility with Macllsp Lexprs 165
Compatibility with the Pre-release 5.0 Package

System 625
compile-flavor-methods macro 438, 485
Compiled Function Data Type 4
Compiled file 579
:complled-funcllon returned by typep 9
Compiled functions 303, 305
compile-file function 645
Compiler 645
compiler 137
Compiler 90
compiler on variables 126
complier-let special form 129
complier package 615
Complement logical operation 114
Complex Modularity 509
Complex Modularity 510
Complex Numbers 24
Complex Numbers 15
:complex returned by typep 9
complex function 108
Complex magnHude 101
Complex numbers 89, 95
complexp function 8
components 644
Composition of Cars and Cdrs 42
concatenation 279
:conc-name option for defstruct 385, 387

666

Reference Guide to Symbolics-Lisp

SCL and returned values from

:document-proceed-type method of
:proceed-type-p method of

:proceed-types Inlt option for
:proceed-types method of

:report method of
:report-strlng method of

:set-proceed-types method of
Signalling a

:speclal-command-p method of
:speclal-commands method of

sys:wrong-Iype-argument

Creating a Set of

Proceedable
Binding

Creating

dbg:

Read-time

Proceeding with

Creating New
Error

Fundamental
How Applications Programs Treat

Introduction to Signalling and Handling
Package-related

Proceedable
Reference Material: Signalling

Signalling
Signalling proceedable

Signalling Simple
Simple

Standard
Tracing

cond macro 639
cond special form 1n
cond-every special form 178
Condition 479
condition 529
condition 530
condition 530
condition 530
condition 530
condition 531
condition 530
condition 479
condition 530
condition 530
condition 505
Condition Bind Recursion 502
Condition flavor hierarchy 482
Condition Flavors 486
Condition Flavors Reference 529
condition functions 521
condition handlers 481
condition objects 505

March 1985

Condition system package 615
conditlon-blnd-default special form 489. 501. 509
condltlon-blnd-default-If special form 489
conditlon-blnd-If special form 489
condltlon-call and :no-error 493
condition-call-if special form 493
condltlon-case-If special form 491
condltlon-handled-p function 509. 510
Conditional breakpoints 523
Conditional construct 175
Condltlonallzatlon 216
condltlonallzatlon facility 29
Conditionals 1n
condition-bind Handlers 520
condltlon-blnd special form 488. 501. 517
condition-cali special form 492. 501
condltlon-case special form 490. 501
condition flavor 482. 529. 531
Condition Flavors 482
Condition hierarchies 486
Condition objects 479. 481. 519. 529
Conditions 4n
Conditions 485
conditions 482
Conditions 531
Conditions 481
Conditions 479
Conditions 619
conditions 517
Conditions 503
Conditions 501
conditions 521
Conditions 502
conditions 482
Conditions 531
Conditions 523

March 1985

Using the RESUME key with floating-point
. Debugger

Name
Package name

prog-Context
Symbol name

sys:
sys:
sys:
sys:
sys:

Network
sys:

The

sya:

How the Reader Recognizes
Memory allocation of

Printed Representation of

Hash table
Print-Print

Print-Read
Read-Read

Special Form for Declaring a Named
Functions and Special Forms for

Character
SCL and

SCL and Standard
Conditional

USing the
Clm: By-position

By-position

ExpreSSions in loop
Invalid

Flow of
Introduction to Flow of

Program
Transfer of

Exit
NonlocaJ exit

667

Index

conditions 535
conditions 482
Conditions as Instances of flavors 479
Conflicts 357, 613
conflicts 581
Conflicts 359
conflicts 574
Conformal Indirection 240
conjugate function 101
connectlon-closed-Iocally flavor 555
connection-no-more-data flavor 556
connection-closed flavor 555
connection-error flavor 555
connection-lost flavor 556
Connection Problems 555
connection problems 555
connection-refused flavor 555
Cons 41
Cons as property list 67
Cons Data Type 4
:cons option for defstruct-deflne-!ype 410
cons-In-area function 45
cons-In-flxed-area flavor 538
Cons comparisons 11
Conses 42
Conses 25
conses 56
Conses 17'
Conses represented as pointers 56
cons function 45, 56
considerations while using multiprocessing 69
consistency 591
consistency 591
consistency 591
ConSistency Rules for Packages 591
Constant 135
Constant Values 161
constants 27
constituent character at1ribu1e 643
Constituent Character At1ribu1es Table 643
construct 175
Constructor and Alterant Macros 395
Constructor Functions 642
Constructor Macros 396
:constructor option for defstruct 385, 386, 396
Constructor macros 379, 395
constructs 206
contents In cell errors 533
continue-whopper function 463
Contracts 418
Control 173, 175
Control 175
control 175
Control 187
control structures 175
control structures 175
Controlling the Printed Representation of an

Object 19

668

Reference Guide to Symbolics-Lisp

Naming
Clm: Type

Character
Numeric Type

String

fs:

Functions That

fs:
fs:

Functions for

elm:

File
fs:
fs:

Change
The

convention 7
Conversion Function 637
Conversion of numbers 90
Conversions 272
Conversions 107
Conversions 285
:copler option for defstruct 385, 392

March 1985

:copler option for defstruct-define-type 410, 412
copy-array-contents-and-Ieader function 253
copy-array-contents function 253
copy-array-portlon function 253
copyallst function 50
copy-closure function 336
Copying an Array 252
Copying From and to the Same Array 253
Copying Instances 465
copyllst* function 50
copyllst function 50, 56
copy-readtable function 33
copysymbol function 567
copytree function 50
copytree-share function 50
Coroutine 423
correctable-login-problems flavor 547
:correct-Input 504, 543
cosd function 107
cos function 106
cosh function 107
Cosine 106
count loop keyword 212
counting loop keyword 212
CR character 32
Create a byte specifier 116
Create New Readtables 33
:create-directorles-recurslvely Debugger

command 549
create-dlrectory-fallure flavor 550
create-link-failure flavor 551
:create-dlrectory Debugger command 549
:create-package proceed type 542, 619
Creating a Set of Condition Flavors 486
Creating condition objects, 505
Creating data types 379
Creating Flavors 428
Creating Hash Tables 71
Creating instances of flavors 430
Creating instances of structures 395
Creating New Conditions 485
Creating New Streams 643
Creating flavors 428
Creating methods 429
Creating Symbols 566
creation errors 550
creation-failure 550
creation-failure flavor 550
Current package 597
current package 597
Current Package 597

March 1985

D

dtp-instance-header
dtp-select-method

dtp-Instance
The Array

The Compiled Function
The Cons

The List
The Locative
The Symbol

Clm: Specific

Clm:
Creating
Numeric

Printed Representation of Miscellaneous

fs:
flxnum loop
flonum loop
integer loop
notype loop

number loop

D

669

Index

Customizing Debugger keystrokes 526

D exponential representation 94
:daemon method combination type 455
:daemon-with-and method combination type 455,

456

D

:daemon-wlth-or method combination type 455, 456
:daemon-with-override method combination

type 455, 457
Daemon methods 431
data type 467
data type 467
data type 467
Data Type 5
Data Type 4
Data Type 4
Data Type 5
Data Type 5
Data Type 3
Data type names 576
Data Type Predicates 638
Data Types 3
Data Types 637
data types 379
Data Types 4
Data Types 18
Data Types Recognized by loop 219
data-error flavor 546 .
data-type keyword 219
data-type keyword 219
data-type keyword 219
data-type keyword 219
data-type keyword 219
dbg:*interactlve-handlers* variable 511
dbg:*proceed-type-special-keys* variable 528
dbg:*special-command-special-keys* variable 528
dbg:bad-array-mlxln flavor 540
dbg:conditlon-handled-p function 509, 510
dbg:debugger-conditlon flavor 501, 511, 529, 532
dbg:frame-active-p function 497
dbg:frame-arg-value function 498
dbg:frame-Iocal-value function 498
dbg:frame-next-active-frame function 496
dbg:frame-next-interesting-active-frame

function 496
dbg:frame-next-nth-acllve-frame function 496
dbg:frame-next-nth-Interesting-active-frame

function 496
dbg:frame-next-nth-open-frame function 497
dbg:frame-next-open-frame function 496
dbg:frame-number-of-Iocals function 498
dbg:frame-number-of-spread-args function 497
dbg:frame-oUl-to-lnteresting-active-frame

function 497
dbg:frame-prevlous-actlv8-frame function 496
dbg:frame-prevlous-Interestlng-actlve-frame

670

Reference Guide to Symbolics-Usp March 1985

function 496
dbg:frame-prevlous-open-frame function 496
dbg:frame-real-functlon function 497
dbg:frame-real-value-dlsposltlon function 498
dbg:frame-self-value function 498
dbg:frame-total-number-of-args function 497
dbg:get-frame-functlon-and-args function 495
dbg:lnvoke-restal1-handlers function 516
dbg package 615
dbg:prlnt-frame-Iocals function 499
dbg:prlnt-functlon-and-arga function 499
dbg:proceedable-ferror flavor 532
dbg:speclal-commands-mlxln flavor 525
dbg:wlth-errlng-frame macro 494. 495
Dead arrays 262
Debugger 502. 517. 523

Entering Debugger 532

c-M
:create-dlrectorles-recurslvely

:create-dlrectory
m-BREAK

Debugger Bug Reports 524
Debugger command 524
Debugger command 549
Debugger command 549
Debugger command 532
Debugger conditions 482

Customizing Debugger keystrokes 526
Debugger Special Commands 525

dbg: debugger-condition flavor 501. 511. 529. 532
debugger package 615

. sl:encapsulated-deflnltlon debugging info alist element 325
Debugging Info alist functions 302. 323. 325

Aid for Debugging Macros 369
Clm: Debugging Tools 645

Trailing
argllst

def
SCL and declaration

SCL and ftype
SCL and Inllne

SCL and notlnllne
SCL and optimize

special
sys:array-reglsler-1d

sys:array-reglster
sys:downward-funarg

sys:downward-functlon
sys:functlon-parent

unspeclal
Using the sys:functlon-parent

values
SCL and

System
Clm: Type

Clm:
Clm:

debugging-Info function 302. 323
decf macro 149
decimal point 14
declaration 312
declaration 312
declaration 640
declaration 640
declaration 640
declaration 640
declaration 640
declaration 312
declaration 312
declaration 312
declaration 139. 141. 313
declaration 139. 140. 312
declaration 312
declaration 312
Declaration 319
declaration 312
declaration declaration 640
declaration file 598. 621
Declaration for Forms 640
Declaration Specifiers 640
Declaration Syntax 640
Declarations 311

Clm: Declarations 640
The sys:downward-functlon and sys:downward-funarg

March 1985

SCL and
Special Form for

SCL and
Array

math:

Specifying

Reference Material:

SCL and

:abstract-flavor Option for
:accessor-preflx Option for
:default-Inlt-pllst Option for
:default-handler Option for
:documentatlon Option for

:export-Instance-varlables Option for
:geHable-lnstance-varlables Option for

:Included-flavors Option for
:Inltable-Instance-varlables Option for

:Inlt-keywords Option for
:method-comblnatlon Option for

:method-order Option for
:mlXlure Option for

:no-vanllla-fiavor Option for
:ordered-Instance-varlables Option for

:outslde-accesslble-Instance-varlables Option for
:requlred-Inlt-keywords Option for

:required-lnstance-varlable8 Option for
:requlred-flavors Option for

:requlred-methods Option for
:seHable-lnstance-varlables Option for
:speclal-Instance-varlables Option for

sl:

671

Index

Declarations 140
declare special form 126, 311
declare special form 640
Declaring a Named Constant 135
decode-unlversal-tlme function 645
decoding 255
decompose function 259
Decrementing generalized variables 149
der special form 307
Default Forms in Lambda Usts 155
Default forms of lambda-list parameters 151
Default Handlers and Complex Modularity 509
Default Handlers and Complex Modularity 510
:derauh method type 455, 457
Default values for Instance variables 431
:default-Inlt-pllsl Option for defflavor 441, 442
default-pathname-defaulls variable 644
:defaull-value option for make-plane 261
:defaull-handler Option for defflavor 441, 447
Default handlers 501, 502
:default-polnter option for defstruct 385, 386
defconst special form 126, 135
defconstant special form 135
der declaration 312
deff special form 307
defflavor 441, 450
defflavor 441, 448
defflavor 441, 442
defflavor 441, 447
defflavor 441, 449
defflavor 441, 448
defflavor 441, 485
defflavor 441, 444
defflavor 441, 485
defflavor 441, 442
deffl avo r 441, 449
defflavor 441. 449
defflavor 441. 445
defflavor 441. 445
defflavor 441. 447
defflavor 441. 447
defflavor 441, 442
defflavor 441. 442
defflavor 441, 443
defflavor 441. 442
defflavor 441
defflavo r 441, 448
defflavor macro 428
defflavor Options 441
deffunctlon special form 356
define-loop-macro macro 218
define-loop-path macro 227
deflne-Ioop-sequence-path macro 225
deflne-slmple-method-comblnatlon macro 459
define-symbol-macro special form 353
@deflne macro 308
Defining a Package 598
Defining function specs 297

672

Reference Guide to Symbolics-Usp

Aids for

Special Forms for

An Example Path
Clm: Macro

Symbol
Basic

How Programs Manipulate
Selective evaluation in macro

Simple Function
SCL and equivalent macro

Overview and

&aux keyword for
&body keyword for

&-Keywords Accepted by
&lIst-of keyword for

&optlonal keyword for
&rest keyword for

:colon-mode option for
:export option for
:Import option for

:Import-from option for
:relatlve-names-for-me option for

:relatlve-names option for
:shadow option for

:shadowlng-Import option for
:use option for

:colon-mode Option for
:export Option for

:external-onIY Option for
:hash-Inherited-symbols Option for

:Import Option for
:Import-from Option for

:Include Option for
:new-symbol-functlon Option for

:nlcknames Option for
:prefix-Intern-functlon Option for

:prefix-name Option for
:relatlve-names Option for

:relatlve-names-for-me Option for
:shadow Option for

:shadowlng-Import Option for

Defining Iteration Paths 227
Defining Macros 343
Defining special forms 362
Defining special variables 134
Defining Special Variables 134
Defining flavors 428
Defining functions 297, 300, 305
Defining methods 429
Definition 229
Definition 639
definition 3, 563
definition of the function spec 297, 325
Definitions 316
definitions 345
Definitions 300
definitions for special forms 638
Definitions of functions 316

March 1985

Definitions of Signalling and Handling 479
Definition types 319
deflambda-macro-dlsplace special form 356
deflambda-macro special form 356
defmacro 343
defmacro 373
defmacro 373
defmacro 373
defmacro 373
defmacro 373
defmacro 373
defmacro and lexical scoping 138
defmacro special form 305
defmacro-dlsplace macro 372
defmacro macro 344
defmethod special form 297
defmethod macro 429
defpackage 585
defpackage 573
defpackage 573
defpackage 573
defpackage 582
defpackage 582
defpackage 574
defpackage 573, 574
defpackage 571, 599
defpackage and make-package 601, 603
defpackage and make-package 599, 602
defpackage and make-package 600, 603
defpackage and make-package 600, 603
defpackage and make-package 599, 602
defpackage and make-package 600, 602
defpackage and make-package 600, 603
defpackage and make-package 601, 603
defpackage and make-package 599, 601
defpackaga and make-package 601, 603
defpackage and make-package 599, 601
defpackage and make-package 600, 602
defpackage and make-package 600, 602
defpackage and make-package 599, 602
defpackage and make-package 600, 602

March 1985

:slze Option for

SCL and
:alterant option for
:but-flrst option for

:callable-accessors option for
:conc-name option for
:constructor option for

:copler option for
:default-polnter option for

:eval-when option for
:export option for

Extensions to
:Include option for

:Inltlal-offset option for
:make-array option for

:named option for
Options to

:predlcate option for
:prlnt option for

:property option for
SCL and :named option for

SCL and :type option for
:slze-macro option for

:slze-symbol option for
:tlmes option for

:type option for
Using

Using Byte Fields and
:array option for

:array-Ieader option for
:flxnum option for

:grouped-array option for
:lIst option for

:named-array-Ieader option for
:named-array option for

:named-list option for
:tree option for

SCL and

Clm:
SCL and

An Example of
:cons option for

:copler option for
:defstruct option for

:keywords option for
:named option for

Options to
:overhead option for
:predlcate option for

:ref option for

sl:

defpackage and make-package 600, 602
defpackage special form 598, 599
defprop special form 69
defselect special form 297, 305, 308
defselect-method special form 437
defsetf function 639
defstruct 385, 386
defstruct 385, 390
defstruct 385, 391
defstruct 385, 387
defstruct 385, 386, 396
defstruct 385, 392
defstruct 385, 386
defstruct 385, 391
defstruct 385, 386
defstruct 409
defstruct 385, 387
defstruct 385, 390
defstruct 385, 389, 395
defstruct 385, 389
defstruct 385
defstruct 385, 392
defstruct 385, 391
defstruct 385, 391
defstruct 642
defstruct 642
defstruct 385, 390
defstruct 385, 390
defstruct 385, 390, 395
defstruct 385
defstruct 383
defstruct 399
defstruct:type 385
defstruct:type 385
defstruct :type 385, 386
defstruct:type 385, 386
defstruct :type 385
defstruct:type 385
defstruct:type 385
defstruct:type 385
defstruct:type 385, 386
defstruct Internal Structures 407
defstruct macro 642

673

Index

:defstruct option for defstruct-deflne-type 410, 412
defstruct Options 642
defstruct slot Initlallzations 642
defstruct-deflne-type 409
defstruct-deflne-type 410
defstruct-deflne-type 410, 412
defstruct-deflne-type 410, 412
defstruct-deflne-type 410, 412
defstruct-deflne-type 410, 411
defstruct-deflne-type 410
defstruct-deflne-type 410, 411
defstruct-deflne-type 410, 412
defstruct-deflne-type 410
defstruct-define-type macro 409
defstruct-descrlption property 407

674

Reference Guide to Symbolics-Usp

sys:

Removing a

SCL and :replace keyword for
fa:
fa:

File

Greatest common
Integer

The Device-font and Subindex

Zmacs Command:

seL and

sl:alphabetlc syntax
sl:break syntax

sl:clrclecross syntax
sl:doublequote syntax

sl:macro syntax
sl:slngle syntax
sl:slash syntax

al:vertlcalbar syntax
sl:whltespace syntax

Slot
Instance

Numeric argument
%%arg-desc-Interpreted numeric argument

%arg-desc-Interpreted numeric argument
%%arg-desc-max-args numeric argument

defstruct macro 345, 383
defsubst 351
defsubst special form 305. 351
defsubst-wHh-parent macro 319
defun special form 297, 300, 305
defun-method 437
defun-method special form 436, 437
defunp macro 302, 305
defvar special form 126, 134
defwhopper special form 463
defwhopper-subst macro 464
defwrapper macro 461
Degrees In trigonometric functions 106
del-If-not function 64
:delete-by-Hem method of sl:heap 78
:delete-by-key method of sl:heap 78
delete-dupllcates function 640
delete-failure 551
delete-failure flavor 551
delete function 61
deletion errors 551
del function 62
del-If function 64
delq function 61
Delta (8) character 32
denominator 105
denominator 93
denominator function 108
deposlt-byte function 117
deposH-field function 117
Depth of recursion of printing lists 16
Derived Fields 268
Derived fields for characters 268
Describe Flavor 471
:describe keyword for

March 1985

named-structure-Invoke 403, 404
:descrlbe method of sl:heap 78
descrlbe-defstruct function 384
describe-flavor function 440
describe function 69
describe function 645
:descrlbe message 453
describe-package function 612
description 34
description 34
description 34
description 34
description 34
description 34
description 34
description 34
description 34
description 407
descriptor 467
descriptor 324
descriptor field 324
descriptor field 324
descriptor field 324

March 1985

%%arg-desc-mln-args numeric argument
%%arg-desc-quoted numeric argument

%%Clrg-desc-rest-arg numeric argument

Character Object
math:

fs:
The

Displaying characters on output

SCL and Common Usp
sl:

Array
SCL and -E
SCL and -G
SCL and -T

SCL and format function
Clm: Accessing

SCL and
fs:
fs:
fs:

Enabling and

sys:

Clm: Standard

sys:

Integer

Greatest common

675

Index

descriptor field 324
descriptor field 324
descriptor field 324
desetq special form 133
Destructurlng 220
destructurlng-blnd special form 132
Details 265
determinant function 259
devlce-not-found flavor 549
Device-font and Subindex Derived Fields 268
devices 268
dfloat function 108
difference function 101
Differences 637
digested-lambda functions 297. 300. 304. 305
dlglt-char-p function 270
dlglt-char function 273
dimensions 235. 247
directive 644
directive 644
directive 644
directives 644
Directories 645
directory function 645
directory-already-exists flavor 550
directory-not-empty flavor 552
directory-not-found flavor 549
:dlrectory-pathname message 549
disabling of floating-point traps 535
disassemble function 302
Disembodied property list 67
Disk error 538
dlsk-error flavor 538
dispatch special form 182
Dispatching Macro Character Syntax 644
Displaced macro expansions 371
:dlsplaced-conformally option for make-array 241
:dlsplaced-Index-offset option for make-array 240.

241
:dlsplaced-to option for make-array 239. 241
Displaced Arrays 239. 241. 248
displace function 371
Displacing Macros 371
Displaying characters on output devices 268
dlvlde-by-zero flavor 479. 534
Division 102. 103
division 93
Division by zero error 534
divisor 105
dlet* special form 133
diet special form 133
do loop keyword 212
do special form 167. 189. 359
do· special form 191
do-all-symbols special form 609
do-eXiemal-symbols special form 609
do-Iocal-symbols special form 609
:document-proceed-Iype method of condition 529

676

Reference Guide to Symbolics-Usp

Clm:
SCL

SCL and

SCL and

fs:

sys:

cl:

sl:

The sys:downward-functlon and sys:
The sys:

sys:

sys:

sys:
sys:

SCL and

Restriction

Functions Used
What is a

Examples of the Use of
Functions and

March 1985

:document-proceed-type message 517
:document-speclal-command message 526
Documentation 645
Documentation 636
documentation as setf argument 639
:documentatlon Option for defflavor 441, 449
Documentation string functions 302, 322
documentation function 302, 322
documentation function 645
doing loop keyword 212
dollst special form 193
do*-named special form 192
do-named special form· 192
dont-delete-flag-set flavor 552
do-symbols special form 609
Dot (.) in symbols 357
dotlmes special form 192
Dotted list 25, 41
double-float-p function 8
Double-precision floating-point numbers 89
Double-float 22
:double-float returned by typep 9
double-float format 23
Double-floats . 4, 89
doublequote syntax description 34
downfrom loop keyword 207, 225
downto loop keyword 207, 225
downward-funarg Declarations 140
downward-function and sys:downward-funarg

Declarations 140
downward-funarg declaration 139, 141, 313
Downward funargs 139
downward-function declaration 139, 140, 312
dpb function 117
draw-off-end-of-screen flavor 537
draw-on-unprepared-sheet flavor 537
Drawing on unprepared sheet error 537
Drawing past edge of screen error 537
dribble function 645
dtp-Instance-header data type 467
dtp-select-method data type 467
dtp-Instance data type 467
Due to Scope 503
dumparrays Macllsp function 262
Dumping Hash Tables to Files 75
During Expansion 368
Dynamic Closure? 331
Dynamic Closure-manipulating Functions 335
Dynamic closures 303, 305, 331
Dynamic Closures 333
Dynamic Closures 295
Dynamic scope 126

March 1985

E

Drawing past
Zmacs Command:
Zmacs Command:

Side

sl:encapsulated-deflnltlon debugging info alist
Bit size of array

Character strings as array
Integers as array

List
Returning array

Storing into array
Removing

Active
Inserting

Maximum number of list

81:

81:
sl:
81:

Rename-within
Adding to the
Read past the

sys:
tape:

MOL programming

Clm: Other

Lexical
Loop

Hashing on

:area Inlt option for sl:
:growth-factor Init option for sl:

:rehash-before-cold Inlt option for sl:
:slze init option for sl:

81:

E
E exponential representation 94
E exponential representation 14
each loop keyword 207, 222
edge of screen error 537
Edit Combined Methods 472
Edit Methods 471
Editor package 615
Effect of compiler on variables 126
Effects 212
Effec1s of Slashification on Printing 13
element 325
elements 236
elements 236
elements 236
elements 41
elements 244
elements 244
elements from list 150
elements in arrays 238, 247
elements into list 150
elements to be printed 18
Elements out-of-bounds 541
else loop keyword 216
:empty-p method of sl:heap 78

677

Index

E

Enabling and disabling of floating-point traps 535
encapsulated-definition debugging info alist

element 325
encapsulated-function variable 325
encapsulate macro 326
encapsulatlon-standard-Order variable 327
Encapsulation mechanism 523
Encapsulations 297, 325
Encapsulations 329
End of an Array 251
end-of-file error 536
end-of-flle flavor 536
end-of-tape flavor 556
End character 32
Endtests 214, 221
Entering Debugger 532
Entrance and Exit 212
environment 205
environment argument for macro-expander

functions 138
Environment Inquiries 645
&envlronment Lambda-list Keyword 311, 374
Environment Objects and Arguments 138
epilogue 205, 212
eq 75
eq versus equal 10
eq versus equal 11
eq-hash-lable 71
eq-hash-table 71
eq-hash-lable 71
eq-hash-table 71
eq-hash-lable flavor 71
eq function 10, 89

678

Reference Guide to Symbolics-Usp March 1985

eql function 10
eq versus equal 10

Hashing on equal 75
eq versus equal 11

:rehash-threshold Inlt option for 81: equal-hash-table 72
81: equal-hash-table flavor 72

equal function 11
81: equal-hash function 75

SCL and equal-typep function 638
Matrices and Systems of Linear Equations 258

Simultaneous linear equations 258
SCL and equivalent macro definitions for special forms 638

Disk error 538
Division by zero error 534

Drawing on unprepared sheet error 537
Drawing past edge of screen error 537

Exponent overflow error 535
Exponent underflow error 536

Illegal redefinition error 538
Invalid type code error 534

Logarithm of non positive number error 534
Read past the end-of-file error 536

Read-only error 537
Singular matrix operation error 535

Square root of a negative number error 536
Stack group state error 537

Stack overflow error 537
Storage allocation error 538

Throw tag error 538
Unbound closure variable error 533

Unbound instance variable error 533
Undefined function error 534

Error logging code 494
error-restart-loop special form 501. 513. 514
Error conditions 482
error flavor 482. 529. 532
error function 482. 503
Error object 529
errorp function 9. 504
error-restart special form 501. 513. 514
Errors 479

Arithmetic errors 534
Array Errors 540
bltblt errors 537

Checking for Package Name-conflict Errors 593
Eval Errors 542

Evaluator errors 542
File creation errors 550
File deletion errors 551
File lookup errors 548

File property errors 551
File rename errors 551
File-system Errors 544

Function-calling Errors 539
Instance variable errors 538

Introduction to Package Name-conflict Errors 593
Invalid contents In cell errors 533

Invalid file operation errors 550

March 1985

Invalid path name syntax
Lisp

Location
Login

Network
Package Name-conflict

Pathname
Protection-violation

Resolving Package Name-conflict
SCL and file lookup

Signalling
Tape

Unbound variable
Interning

Syntax

Miscellaneous System

Reference Material:

Function for
Introduction to

Multiple and Out-of-order

Selective

Testing for

How Programs
Flavor

Application: Handlers
Reference Material: Application: Handlers

An

An

Entrance and
NonlocaJ
Trap on

Loop

errors 550
Errors 533
Errors 534
errors 547
Errors 554
Errors 593
Errors 553
errors 549
Errors 595
errors 645
Errors 502
Errors 556
errors 533
Errors Based on sys:package-error 542
errors in read functions 543
Errors inside Lisp printer 543

679

Index

Errors Involving Lisp Printed Representations 543
Errors Not Categorized by Base Flavor 536
ESC character 32
Establishing Handlers 487
Establishing Handlers 488
&eval Lambda-list Keyword 310
:eval-Inslde-yourself message 454
Eval Errors 542
eval function 159
evalhook 123, 159
Evaluating a Function Form 151
Evaluation 121
Evaluation 159
Evaluation 123
Evaluation 363
Evaluation 123
Evaluation in loops 212
evaluation in macro definitions 345
Evaluation of special functions 303
Evaluator 303
Evaluator errors 542
:eval-when option for defstruct 385, 391
even number 97
evenp function 97
Event 479
every function 64
Examine Functions 322
Examiner 475
Examining the Stack 494
Examining the Stack 495
Example of a Handler 481
Example of defstruct-define-type 409
Example of the Need for Packages 560
Example Path Definition 229
Examples of Simple Lambda Lists 154
Examples of Symbol Sharing Among Packages 589
Examples of the Use of Dynamic Closures 333
Exclusive or 113
Exit 212
exit 197
exit bit 523
exit code 205, 212

680

Reference Guide to Symbolics-Lfsp

Nonlocal
Break on

Blocks and
Clm: Blocks and

Nonlocal
Functions to

Macros

Macros
Functions Used During

Displaced macro

Floating-point

D
E
E

Functions That Import.

Importing and

Reader macro for infix

SCL and Symbolics Common Lisp

Multics

Specifying Internal and

:package message to sys:
:string message to sys:

sys:

Exi1 control structures 175
exit control structures 175
exit from marked frame message 523
Exits 183
Exits 639
Exits 197
Expand Macros 375
Expanded character set 277
expanded to Lisp functions 355
Expander function 144
Expanding Into Many Forms 360
Expansion 368
expansions 371
exp function 106
Exponent Characters 22
Exponent overflow error 535
Exponent underflow error 536
exponential representation 94
exponential representation 94
exponential representation 14
Exponential notation 14
Exponentiation 105
Exponent overflow 94
Exponent underflow 94
:export option for defpackage 573
:export Option for defpackage and

make-package 599, 602
:export option for defstruct 385, 386
:export option for make-package 573
:export proceed type 619

March 1985

Export, and Shadow Symbols 611
:export-instance-variables Option for defflavor 441,

448
export function 593, 611
Exporting symbols 573, 589, 593, 611, 613
Exporting Symbols 573
expr Maclisp type 305
expressions 30
Expressions in loop constructs 206
expt function 105
:extension option for make-plane 261
Extensions 635
Extensions to defstruct 409
external arrays 262
:external colon mode 601, 603
External Symbols in Packages 585
External value cell 331
:external-only Option for defpackage and

make-package 600, 603
external-symbol-not-found 619
external-symbol-not-found 619
external-symbol-not-found flavor 619
External-only Packages and Locking 626
External Symbols 570, 571, 573
Extra Features of Arrays 238
Extract pOSition field of a byte specifier 116
Extract size field of a byte specifier 116

March 1985

F
Hash table

Comma character (.) in backquote
Read-time conditlonalization

FOR
Hasharray

Miscellaneous file operations
Miscellaneous Operations

Request

F
facilities 59
facility 345
facility 29
facility In Interlisp 205
facility of Interlisp 69
failures 552
Failures 552
Failures Based on fs:file-request-fallure 546
false function 164

Flavor Families 451
:fasd-form message 465
fast-a ref instruction 255
fast-aset instruction 255
fboundp function 564

sys: fcelllng function 112
sys: fdefine-file-pathname variable 319

fdeflnedp function 321

sys:
SCL and Ieee-floating-point

Clm: the -Program
Ex1ra

SCL and keywords in the
SCL and

fdeflne function 297. 316
fdeflnitlon function 322
fdefinltlon-Iocatlon function 322
feature name 645
Feature- 639
Features of Arrays 238
*features· list 644
*features· variable 645
ferror flavor 532
ferror function 482. 504
fexpr Maclisp type 305

sys: ffloor function 111

681

Index

F

%%arg-desc-Interpreted numeric argument descriptor

%arg-desc-Interpreted numeric argument descriptor
%%arg-desc-max-args numeric argument descriptor
%%arg-desc-mln-args numeric argument descriptor

%%arg-desc-quoted numeric argument descriptor
%%arg-desc-rest-arg numeric argument descriptor

Character objects code
Character objects font

Character objects style
Cdr-code

Ex1ract position
Ex1ract size

Character
The Device-font and Subindex Derived

Using Byte
Derived

field 324
field 324
field 324
field 324
field 324
field 324
field 265
field 265
field 265
field 56
field of a byte specifier 116
field of a byte specifier 116
Fields 269
Fields 268
Fields and defstruct 399
fields for characters 268
fifth function 46

Compiled file 579
Sysdcl file 598

System declaration file 598. 621
File attribute list 579

%%ch- byte specifiers and file characters 268
File creation errors 550
File deletion errors 551
File lookup errors 548

SCL and file lookup errors 645
Invalid file operation errors 550

682

Reference Guide to Symbolics-Usp

Miscellaneous

fa:
fs:
fa:
fs:
fa:

Request Failures Based on fa:
fa:
fa:
fa:

fa:
Binary

Dumping Hash Tables to
SCL and Common Usp

math:

aya:

Functions That

SCL and zl:sl:
Base

break
Changing a

condHlon
dbg:bad-array-mlxln

dbg:debugger-condHlon
dbg:proceedable-ferror

dbg:speclal-commands-mlxln
error

terror
fa:access-error

file operations failures 552
File property errors 551
File rename errors 551
file-already-exlsts flavor 550
file-lookup-error flavor 548
file-not-found flavor 548
file-open-for-output flavor 553
file-operatlon-fallure flavor 481, 546
flle-requesl-fallure 546
file-request-fallure flavor 546
flle-error flavor 545
file-locked flavor 552
File Lookup 548
filepos-out-of-ranga flavor 552
files 613
Files 75
Files 635
File-system Errors 544
file-system package 615
fill-2d-array function 260
:fill-pointer option for make-array 241
fill-polnter-not-fixnum flavor 540
flllarray function 252
:filled-elementa message 73
Fill pointer 238, 247
fill-polnter function 245
finally loop keyword 212

March 1985

Find the Home Package of a Symbol 607
find-ail-symbols function 606
:find-by-Hem method of al:heap 78
:find-by-key method of al:heap 78
find-posHlon-ln-list-equal function 61
flnd-position-in-list function 60
Finding a Handler 501
first loop keyword 207
first function 46
flrstn function 53
:fix argument to typep 9
Fixed-point numbers 7
fix function 107
fixnum loop data-type keyword 219
:fixnum returned by typep 9
flxnump function 8
Fixnums 4, 89
fixp function 7
fixr function 108
fIag-wrong-type-strlngs 637, 642
flavor 451
flavor 532
Flavor 468
flavor 482, 529, 531
flavor 540
flavor 501, 511, 529, 532
flavor 532
flavor 525
flavor 482, 529, 532
flavor 532
flavor 549

March 1985

fs:change-property-fallure
fs:clrcuiar-link

fs:correctable-Iogln-problems
fs:create-dlrectory-fallure

fs:create-Ilnk-fallure
fs:creatlon-fallure

fs:data-error
fs:delete-fallure

fs:devlce-not-found
fs:dlrectory-already-exlsts

fs:dlrectory-not-empty
fs:dlrectory-not-found
fs:dont-delete-flag-set

fs:flle-already-exlsts
fs:flle-Iookup-error

fs:flle-not-found
fs:flle-open-for-output

fs:flle-operatlon-fallure
fs:file-request-fallure

fs:file-error
fs:flle-Iocked

fs:fllepos-out-of-range
fs:host-not-avallable

fs:lnconslstent-optlons
fs:lncorrect-access-to-dlrectory

fs:lncorrect-access-to-flle
fs:lnvalld-byte-slze

fs:lnvalld-operatlon-for-dlrectory
fs:lnvalld-operatlon-for-Ilnk

fs:lnvalld-pathname-component
fS:lnvalld-pathname-syntax

fs:lnvalld-property-value
fs:lnvalld-password
fs:lnvalld-wlldcard

fs:llnk-target-not-found
fs:logln-problems
fs:logln-requlred

fs:multlple-flle-not-found
fs:network-Iossage

fs:no-flle-system
fs:no-more-room

fs:not-enough-resources
ts:not-Iogged-In
fs:not-avallable

fs:parse-pathname-error
fs:pathname-error

fs:rename-across-dlrectorles
fs:rename-across-hosts

fs:rename-to-exlstlng-file
fs:rename-fallure

fs:undeflned-Ioglcal-pathname-translatlon
fs:unlmplemented-optlon

fs:unknown-pathname-host
fs:unknown-operatlon
fs:unknown-property

fs:unknown-user
fs:wlldcard-not-allowed

fs:wrong-klnd-of-file

flavor 551
flavor 552
flavor 547
flavor 550
flavor 551
flavor 550
flavor 546
flavor 551
flavor 549
flavor 550
flavor 552
flavor 549
flavor 552
flavor 550
flavor 548
flavor 548
flavor 553
flavor 481. 546
flavor 546
flavor 545
flavor 552
flavor 552
flavor 546
flavor 552
flavor 549
flavor 549
flavor 552
flavor 550
flavor 550
flavor 553
flavor 550
flavor 551
flavor 547
flavor 550
flavor 549
flavor 547
flavor 548
flavor 548
flavor 547
flavor 546
flavor 552
flavor 547
flavor 548
flavor 553
flavor 553
flavor 553
flavor 551
flavor 551
flavor 551
flavor 551
flavor 554
flavor 552
flavor 553
flavor 547
flavor 551
flavor 547
flavor 550
flavor 550

683

Index

684

Reference Guide to Symbolics-Lisp March 1985

math:slngular-matrlx flavor 535
Message to an object of some flavor 461

Miscellaneous System Errors Not Categorized by Base

Mixin
parse-ferror

Removing
sl :eq-hash-table

sl :equal-hash-table
sl:property-list-mixin

sl :vanllla-fiavor
sys:abort

sys:area-overflow
sys :arlthmetlc-error

sys:array-has-no-Ieader
sys:array-wrong-number-of-dimenslons

sys:array-wrong-number-of-subscripts
sys:bad-array-type

sys:bad-connectlon-state
sys:bad-data-type-In-memory

sys:bitblt-array-fractlonal-word-wldth
sys:bltblt-destlnatlon-too-small

sys :call-trap
sys:cell-contents-error

sys:connectlon-closed-Iocally
sys:connectlon-no-more-data

sys:connectlon-closed
sys :con nectlon-error

sys:connectlon-Iost
sys:connectlon-refused

sys:cons-In-flxed-area
sys:dlsk-error

sys:divlde-by-zero
sys:draw-off-end-of-screen

sys:draw-on-unprepared-sheet
sys:end-of-flle

sys:extemal-symbol-not-found
sys:flil-pointer-not-flxnum

sys:float-dlvlde-by-zero
sys:float-dlvlde-zero-by-zero

sys:float-lnexact-resuH
sys:float-Invalld-compare-operatlon

sys:float-Invalld-operatlon
sys:floatlng-exponent-overflow

sys:floatlng-exponent-underflow
sys:floatlng-polnt-exceptlon

sys:host-not-respondlng
sys:host-not-respondlng-durlng-connectlon

sys:host-stopped-respondlng
sys:lnstance-varlable-polnter-out-of-range

sys:instance-varlable-zero-referenced
sys:lnvalld-functlon

sys:local-network-error
sys:name-confllct
sys:negative-sqrt

sys:network-resources-exhausted
sys:network-stream-closed

sys:network-error

Flavor 536
flavor 451
flavor 543
flavor 437
flavor 71
flavor 72
flavor 473
flavor 453
flavor 502. 526. 532
flavor 537
flavor 534
flavor 540
flavor 540
flavor 541
flavor 540
flavor 555
flavor 534
flavor 537
flavor 537
flavor 523
flavor 533
flavor 555
flavor 556
flavor 555
flavor 555
flavor 556
flavor 555
flavor 538
flavor 538
flavor 479. 534
flavor 537
flavor 537
flavor 536
flavor 619
flavor 540
flavor 535
flavor 536
flavor 536
flavor 536
flavor 536
flavor 535
flavor 536
flavor 535
flavor 555
flavor 555
flavor 555
flavor 538
flavor 538
flavor 542
flavor 554
flavor 619
flavor 536
flavor 554
flavor 556
flavor 554

March 1985

sys:no-actlon-mlxln
sys:non-positive-Iog

sys:number-array-not-allowed
sys:package-not-found

sys:package-error
$ys:package-Iocked

sys :parse-error
sys:pdl-overflow

sys:prlnt-not-readable
sys:read-end-of-file

sys:read-list-end-of-flIe
sys:read-premature-end-of-symbol

sys:read-strlng-end-of-file
sys:read-error

sys:redeflnltlon
sys:reglon-table-overflow
sys:remote-network-error

sys:stream-closed
sys:subscrlpt-out-of-bounds

sys:throw-tag-not-seen
sys:too-few-arguments

sys:too-many-arguments
sys:unbound-closure-varlable

sys:unbound-Instance-varlable
sys:unbound-symbol
sys:unbound-varlable

sys:unclalmed-message
sys:undeflned-keyword-argument

sys:undeflned-functlon
sys:unknown-host-name

sys:unknown-Iocf-reference
sys:unknown-setf-reference

. sys:unknown-address
sys:vlrtual-memory-overflow

sys:wrlte-In-read-only
sys:wrong-stack-group-state

sys:wrong-!ype-argument
sys:zero-args-to-select-method

tape:end-of-tape
tape: mou nt-error

tape :tape-devlce-error
tape :tape-error

Vanilla
Zmacs Command: Describe

:case
Condition

Introduction to the
Message Passing in the

Objects and the
Using the

sl:

sl:
sl:
51:

flavor 532
flavor 534
flavor 541
flavor 542. 619
flavor 542. 619
flavor 543. 619
flavor 543
flavor 537
flavor 543
flavor 544
flavor 544
flavor 544
flavor 544
flavor 544
flavor 538
flavor 538
flavor 554
flavor 536
flavor 541
flavor 538
flavor 539
flavor 539
flavor 533
flavor 533
flavor 533
flavor 533
flavor 542
flavor 542
flavor 534
flavor 554
flavor 534
flavor 534
flavor 554
flavor 537
flavor 537
flavor 537
flavor 539
flavor 539
flavor 556
flavor 556
flavor 556
flavor 556
Flavor 453
Flavor 471
flavor combination 520
flavor hierarchy 482
Flavor inheritance mechanism 482
Flavor System 417
Flavor System 423
Flavor System 417
Flavor System 425
Flavor system messages 453
Flavor system storing functions 297
flavor-aliowed-lnH-keywords function 439
flavor-allows-Inlt-keyword-p function 439
fIavor-complle-trace variable 440
flavor-default-Inlt-get function 440
flavor-default-Inlt-putprop function 440

685

Index

686

Reference Guide to Symbolics-Usp

81:
Base
Base
Base

II:

Closure and
Combining
Condition

Conditions as Instances of
Creating

Creating a Set of Condition
Creating Instances of

Defining
Functions for Creating

Implementation of
Instance variables of combined

Mixing
Modifying

Simple Use of
Tree of

Zmacs Commands for

Condition
Ordering

IYI:
IYI:
IYS:
IYI:
IYS:

IYI:
IYI:

Double-precision
Base Flavor: IYI:

IYI:
Using the RESUME key with

How the Reader Recognizes
Printed Representation of

Single-precision
IEEE

Enabling and disabling of

Introduction to

March 1985

flavor-defauH-lnlt-remprop function 440
Flavor: IYI:arithmetlc-error 534
Flavor: sys:cell-contents-error 533
Flavor: IYI:fIoatlng-polnt-exceptlon 535
fIavor-compllatlonl variable 440
Flavor Examiner 475
Flavor Families 451
Flavor Functions 435
Flavors 415, 417
flavors 423
flavors 431. 461
Flavors 482
flavors 479
flavors 428
Flavors 486
flavors 430
flavors 428
Flavors 428
Flavors 467
flavors 431
Flavors 431
flavors 438. 468
Flavors 425
flavors 431
Flavors 471
Flavors and SCL 635
Flavors Reference 529
Flavors, Methods, and Wrappers 467
flel special form 142
flet, labell, and macrolel Special Forms 142
:float argument to typep 9
float-dlvlde-by-zero flavor 535
float-dlvlde-zero-by-zero flavor 536
float-lnexact-resuH flavor 536
ftoat-Invalld-compare-operatlon flavor 536
float-Invalld-operatlon flavor 536
ftoat function 108
floatlng-exponent-overflow flavor 535
ftoatlng-exponent-underftow flavor 536
floating-point numbers 89
floating-poi nt-exception 535
floatlng-polnt-exceptlon flavor 535
floating-point conditions 535
Floating-point Exponent Characters 22
Floating-point Numbers 22
Floating-point Numbers 14
floating-point numbers 89
Floating-point Representation 94
floating-point traps 535
Floating-point Infinity 14. 22
Floating-point numbers 4. 7, 94
floatp function 7
ftonum loop data-type keyword 219
Flonum arrays 262
flonump function 8
floor function 108
Flow of Control 173. 175
Flow of Control 175

March 1985

Character objects

#' special
advise special

and special
argument-typecase special

block special
caseq special

*catch special
catch special

catch-error-restart special
catch-error-restart-If special

check-arg-type special
comment special

complier-let special
cond special

cond-every special
condltlon-blnd-default special

condltlon-blnd-default-If special
condltlon-blnd-If special
condltlon-call-If special

condltlon-case-If special
condition-bind special
condltlon-call special

condition-case special
declare special

def special
defconst special

defconstant special
deft special

deftunctlon special
deflne-symbol-macro special

deflambda-macro-dlsplace special
deflambda-macro special

defmacro special
defmethod special
defpackage special

defprop special
defselect special

defselect-method special
defsubst special

detun special
defun-method special

defvar special
defwhopper special

desetq special
destructurlng-blnd special

dispatch special
dlet* special
diet special
do special

do* special
do-all-symbols special

do-extemal-symbols special

fmakunbound function 564
font field 265
Font numbers and character objects 267
Font Information 236. 277
fonts package 615
for loop keyword 207
form 162
form 302
form 178
form 506
form 183
form 182
form 169. 200
form 169. 197
form 501. 502. 513. 515
form 513. 515
form 576
form 164
form 129
form 177
form 178
form 489. 501. 509
form 489
form 489
form 493
form 491
form 488. 501. 517
form 492. 501
form 490. 501
form 126. 311
form 307
form 126. 135
form 135
form 307
form 356
form 353
form 356
form 356
form 305
form 297
form 598. 599
form 69
form 297, 305, 308
form 437
form 305, 351
form 297, 300, 305
form 436. 437
form 126, 134
form 463
form 133
form 132
form 182
form 133
form 133
form 167, 189, 359
form 191
form 609
form 609

687

Index

688

Reference Guide to Symbolics-Lisp

do-local-symbols special
dollst special

do*-named special
do-named special

do-symbols special
dotlmes special

error-restart-loop special
error-restart special

Evaluating a Function
flet special

function special
go special

If special
Ignore-errors special

keyword-extract special
labels special

lambda special
lambda-macro special

let* special
let special

let-globally-If special
let-closed special

lelf* special
lett special

let-globally special
let-If special

local-declare special
macro special

macrolet special
multiple-value-bind special
multiple-value-cali special
multiple-value-list special

multlple-value-prog1 special
multiple-value special

or special
package-declare special

prog special
prog* special
prog1 special
prog2 special
progn special
progv special
progw special
psetq special
quote special
return special

return-from special
SCL and #S macro

SCL and declare special
SCL and function special

SCL and go special
SCL and the special

SCL and value-type argument for the special
select special

selector special
selectq special

selectq-every special
self special

form 609
form 193
form 192
form 192
form 609
form 192
form 501, 513, 514
form 501, 513, 514
Form 151
form 142
form 162
form 187, 189
form In
form 493
form 193
form 144
form 163
form 355
form 129
form 128, 142
form 131
form 305, 335
form 130
form 130
form 131
form 130
form 126, 315
form 305, 339, 355
form 144
form 168
form 168
form 168
form 169
form 168
form 179
form 625
form 167, 194, 359
form 196
form 165
form 165
form 164
form 131
form 132
form 128
form 161
form 167, 169, 185, 189
form 167, 184, 218
form 642
form 640
form 638
form 639
form 640
form 640
form 180
form 181
form 179
form 182
form 147

March 1985

March 1985

setq special
slgnal-proceed-case special

slgnp special
tag body special

throw special
trace special

typecase special
undefun-method special

unwind-protect special
varlable-boundp special
variable-location special

varlable-makunbound special
wlth-Input-from-strlng special

wlth-output-to-strlng special
wlthout-floatlng-underflow-traps special

Special

cl :double-float
cl: long-float

cl:short-float
cl:slngle-float

SCL and

Clm:

elm: Special
Clm: Type Declaration for

Defining special
flet. labels. and macrolet Special

Function-defining Special
Macros Expanding Into Many

SCL and equivalent macro definitions for special
Some Functions and Special

Special
Special

Functions and Special
Special
Special
Special
Special

Specifying Default
Default

Interaction of Some Common Special
Package Functions. Special

Active
Interesting active

Next
Open

Previous
Stack

8reak on exit from marked
dbg:
dbg:
dbg:

form 125. 128
form 517. 521
form 97
form 187
form 198
form 302
form 181. 576
form 437
form 169. 198
form 562
form 563
form 562
form 290
form 291
form 94
Form for Declaring a Named Constant 135
Formal parameters 151
format 23
format 23
format 23
format 23
format function directives 644
:format-args 504
format package 615
:format-string 504
Formatted Output to Character Streams 644
Form character 32
Forms 638
Forms 640
forms 362
Forms 142
Forms 305
Forms 360
forms 638
Forms 159
forms 303
Forms for Binding Variables 128
Forms for Constant Values 161
Forms for Defining Special Variables 134
Forms for Receiving Multiple Values 167
Forms for Sequencing 164
Forms for Setting Variables 128
Forms In Lambda Usts 155
forms of lambda-list parameters 151
Forms of qualified names 585
Forms with Multiple Values 169
Forms. and Variables 597
fourth function 46
frame 494
frame 494
frame 494
frame 494
frame 494
frame 494
frame message 523
frame-actlve-p function 497
frame-arg-value function 498
frame-local-value function 498

689

Index

690

Reference Guide to Symbolics-Usp

dbg:
dbg:
dbg:
dbg:

dbg:
dbg:
dbg:
dbg:
dbg:
dbg:
dbg:

dbg:
dbg:
dbg:
dbg:
dbg:

The Iteration

Captured
Copying

Clm: Input

sys:

Request Failures Based on

March 1985

frame-next-actlve-frame function 496
frame-next-Interestlng-actlve-frame function 496
frame-next-nth-actlve-frame function 496
frame-next-nth-Interestlng-actlve-frame

function 496
frame-next-nth-open-frame function 497
frame-next-open-frame function 496
frame-number-of-Iocals function 498
frame-number-of-spread-args function 497
frame-out-to-Interestlng-actlve-frame function 497
frame-prevlous-acllve-frame function 496
frame-prevlous-Interestlng-acllve-frame

function 496
frame-prevlous-open-frame function 496
frame-real-function function 497
frame-real-value-dlsposltlon function 498
frame-self-value function 498
frame-total-number-of-args function 497
Frame-manipulating functions 494
Frame pointer 494
Framework 221
Free reference 126
free reference 126
From and to the Same Array 253
From Character Streams 643
from loop keyword 207,225
fround function 113
fs:access-error 549
fs:access-error flavor 549
fs:change-property-fallure 551
fs:change-property-fallure flavor 551
fs:clrcuiar-link flavor 552
fs:correctable-Iogln-problems flavor 547
fs:create-dlrectory-fallure flavor 550
fs:create-link-fallure flavor 551
fs:creatlon-fallure 550
fs:creatlon-failure flavor 550
fs:data-error flavor 546
fs:delete-fallure 551
fs:delete-fallure flavor 551
fs:devlce-not-found flavor 549
fs:dlrectory-already-exlsts flavor 550
fs:dlrectory-not-empty flavor 552
fs:dlrectory-not-found flavor 549
fs:dont-delete-flag-set flavor 552
fset-carefully function 321
fset function 3, 564
fs:flle-already-exlsts flavor 550
fs:file-Iookup-error flavor 548
fs:file-not-found flavor 548
fs:file-open-for-output flavor 553
fs:flle-operatlon-fallure flavor 481, 546
fs:flle-request-fallure 546
fs:flle-request-fallure flavor 546
fs:file-error flavor 545
fs:file-Iocked flavor 552
fs:filepos-out-of-range flavor 552
fs:host-not-avallable flavor 546

March 1985

sys:
SCL and

Downward
Upward

+
+$

fslgnal function 482, 504, 517
fs:lnconslstent-optlons flavor 552
fs:lncorrect-access-to-dlrectory flavor 549
fs:lncorrect-access-to-file flavor 549
fs:lnvalld-byte-slze flavor 552
fs:lnvalld-operatlon-for-dlrectory flavor 550
fs:lnvalid-operation-for-link flavor 550
fs:lnvalld-pathname-component flavor 553
fs:lnvalld-pathname-syntax 550
fs:lnvalld-pathname-syntax flavor 550
fs:lnvalld-property-value flavor 551
fs:lnvalld-password flavor 547
fs:lnvalld-wlldcard flavor 550
fs:llnk-target-not-found flavor 549
fs:logln-problems flavor 547
fs:logln-requlred flavor 548
fs:multlple-file-not-found flavor 548
fs:network-Iossage flavor 547
fs:no-file-system flavor 546
fs:no-more-room flavor 552
fs:not-enough-resources flavor 547
fs:not-Iogged-In flavor 548
fs:not-avallable flavor 553
fs package 615
fs:parse-pathname-error flavor 553
fs:pathname-error flavor 553
fs:rename-across-dlrectories flavor 551
fs:rename-across-hosts flavor 551
fs:rename-to-exlstlng-flle flavor 551
fs:rename-fallure 551
fs:rename-fallure flavor 551
fs:undefined-Iogleal-pathname-translatlon

flavor 554
fs:unlmplemented-optlon flavor 552
fs:unknown-pathname-hosl flavor 553
fs:unknown-operatlon flavor 547
fs:unknown-property flavor 551
fs:unknown-user flavor 547
fs:wlldcard-not-allowed flavor 550
fs:wrong-klnd-of-file 550
fs:wrong-klnd-of-file flavor 550
fsymeval function 3, 564
ftruncate function 112
ftype declaration 640
funargs 139
funargs 139

691

Index

Funargs and Lexical Closure Allocation 139, 140, 141,
312, 313

:funcall-Inslde-yourself message 454
funeall function 160
function 100
function 99
function 99
function 102
function 102
function 100
function 100
function 101

692

Reference Guide to Symbolics-Usp March 1985

-$ function 101
/I function 102

1/$ function 103
1- function 104

1-$ function 105
1+ function 104

1+$ function 104
%32-blt-dlfference function 119

%32-blt-plus function 119
(function 99

(= function 99
= function 98
) function 98

)= function 98
abs function 101

add1 function 104
adjust-array-slze function 249

aloc function 244
alpha-char.p function 270

alphalessp function 292
alphanumerlcp function 270

ap-1 function 244
ap-2 function 245

ap-Ieader function 245
append function 51,56

apply function 8, 151, 159
ar-1 function 244
ar-2 function 244
aref function 235,244,2n
arg function 165

argUst function 302.323
%args-Info function 325

args-Info function 324
*array function 263

array-#-dlms function 247
array-actlve-Iength function 247

array-bits-per -element function 238
array-column-major-Index function 248

array-dlmenslon-n function 247
array-dlsplaced-p function 248

array-element-size function 238
array-elements-per-q function 238

array-has-Ieader -p function 248
array-In-bounds.p function 248

array-Indexed-p function 248
array-I ndl rect.p function 248

array-leader-length function 249
array-push-extend function 251

array-push-portlon-extend function 251
arraycall function 262. 263

array-dimensions function 247
arraydlms function 247

array-grow function 249
array-leader function 245
array-length function 246

arrayp function 8,69
array-pop function 252

array-push function 251

693

March 1985 Index

array-type function 246
array-types function 237

as-1 function 244
as-2 function 244
ascII function 293

ascII-to-char function 274
ascII-to-string function 290

ascII-code function 274
aset function 235.244
ash function 115
ass function 65

assoc function 65
assq function 64
atan function 107

atan2 function 107
atom function 7
blgp function 8

bitblt function 254
bit-test function 114

boole function 114
both-case-p function 270

boundp function 562
boundp-In-closure function 336

breakon function 523
bug function 524

butlast function 53
byte function 116

byte-position function 116
byte-size function 116

caaaar function 43
caaadr function 43

caaar function 42.43
caadar function 44
caaddr function 44
caadr function 42.43

caar function 42.43
cadaar function 44
cadadr function 44
cadar function 42.43

caddar function 44
cadddr function 44

caddr function 42.43
cadr function 42.43
call function 161
car function 42.83

car-location function 45
cdaaar function 44
cdaadr function 44

cdaar function 43
cdadar function 44
cdaddr function 44

cdadr function 43
cdar function 42.43

cddaar function 44
cddadr function 44

cddar function 43
cdddar function 44
cddddr function 44

694

Reference Guide to Symbolics-Usp

cdddr
cddr
cdr

ceiling
change-In stance-flavor

chal7'
char<
char'>

char -device-font
char-mouse-button

char-mouse-n-cllcks
char-not-equal

char-not-greaterp
char-not-lesBP

char-to-ascll
char(

char=
char)

character
char-bit

char-bits
char-code

char-down case
char-equal

char-fllpcase
char-greaterp

char-Int
char-Iessp
char-name

char-standard
char-subindex

char-upcase
circular-list

cis
Clm: Type Conversion

closure
closure-allst

closure-function
closurep

closure-variables
clrhash

clrhash-equal
code-char

complex
complexp
conjugate

cons
cons-In-area

continue-whopper
copy-array-contents

copy-array-contents-and-Ieader
copy-array-portlon

copyallst
copy-closure

copyllst
copyllst*

copy-readtable
copysymbol

function 43
function 42, 43
function 42, 83
function 109
function 436
function 271
function 271
function 271
function 269
function 273
function 274
function 271
function 272
function 272
function 274
function 271
function 270
function 271
function 272
function 269
function 269
function 269
function 272
function 271
function 273
function 272
function 272
function 271
function 273
function 275
function 269
function 272
function 50
function 107
Function 637
function 305, 335
function 335
function 335
function 9, 335
function 336
function 74
function 74
function 270
function 108
function 8
function 101
function 45, 56
function 45
function 463
function 253
function 253
function 253
function 50
function 336
function 50, 56
function 50
function 33
function 567

March 1985

March 1985

copytree
copytree-share

cos
cosd
cosh

dbg:condltlon-handled-p
dbg:frame-actlve-p

dbg:frame-arg-value
dbg:frame-Iocal-value

dbg:frame-next-actlve-frame
dbg:frame-next-Interestlng-actlve-frame

dbg:frame-next-nth-actlve-frame
dbg:frame-next-nth-Interestlng-actlve-frame

dbg :frame-next-nth-open-frame
dbg:frame-next-open-frame
dbg :frame-number-of-Iocals

dbg:frame-number-of-spread-args
dbg:frame-out-to-Interestlng-actlve-frame

dbg:frame-prevlous-actlve-frame
dbg :frame-prevlous-I nterestl ng-actlve-frame

dbg:frame-prevlous-open-frame
cIlg :frame-real-functlon

dbg :frame-real-value-dlsposltlon
dbg :frame-self-value

dbg :frame-total-number-of-args
dbg:get-frame-functlon-and-args

dbg:lnvoke-restart-handlers
dbg:prlnt-frame-Iocals

dbg :prlnt-functlon-and-args
debugging-Info

del
del-If-not

delete
del-If
delq

denominator
deposit-byte
deposit-field

describe
descrlbe-defstruct

describe-flavor
describe-package

dfloat
difference

dlglt-char-p
digit-char

disassemble
displace

documentation
dpb

dumparrays Maclisp
eq
eql

equal
error

errorp
eval

evenp

function 50
function 50
function 106
function 107
function 107
function 509. 510
function 497
function 498
function 498
function 496
function 496
function 496
function 496
function 497
function 496
function 498
function 497
function 497
function 496
function 496
function 496
function 497
function 498
function 498
function 497
function 495
function 516
function 499
function 499
function 302. 323
function 62
function 64
function 61
function 64
function 61
function 108
function 117
function 117
function 69
function 384
function 440
function 612
function 108
function 101
function 270
function 273
function 302
function 371
function 302. 322
function 117
function 262
function 10. 89
function 10
function 11
function 482. 503
function 9. 504
function 159
function 97

695

Index

696

Reference Guide to Symbolics-Lisp

every
exp

Expander
export

expt
false

fboundp
fdeflne

fdeflnedp
fdefinltlon

ferror
fifth

fill array
fill-pointer

find-ail-symbols
flnd-position-in-ilst

flnd-position-in-ilst-equal
first

flrstn
fix

flxnump
flxp
flxr

flavor-allows-Inlt-keyword-p
float

floatp
flonump

floor
fmakunbound

fourth
fset

fset-carefully
fslgnal

fsymeval
funcall

function-cell-location
functlonp
fundeflne

g-I-p
gcd

gensym
get

get-flavor -handler-for
get-handler-for

getchar
getcham
gethash

gethash-equal
gell

get-pname
globalize

graphlc-char-p
greaterp
grlndef
halpart

haulong
Ignore

Imagpart

function 64
function 106
function 144
function 593. 611
function 105
function 164
function 564
function 297. 316
function 321
function 322
function 482. 504
function 46
function 252
function 245
function 606
function 60
function 61
function 46
function 53
function 107
function 8
function 7
function 108
function 439
function 108
function 7
function 8
function 108
function 564
function 46
function 3. 564
function 321
function 482. 504. 517
function 3. 564
function 160
function 564
function 8
function 322
function 236. 250
function 105
function 357. 567
function 68
function 439
function 439
function 292
function 293
function 74
function 74
function 68
function 565
function 613
function 270
function 98
function 302
function 115
function 115
function 164
function 108

March 1985

March 1985

Implode
Import

Instantiate-flavor
Int-char

Intern
Intern-local-soft

Intern-local
Intern-soft

Intersection
Isqrt

keywordp
last
Idb

Idb-test
Idlrt

length
lessp

lexpr-continue-whopper
lexpr-send-If-handles

lexpr-funcall
lexpr-send

list
IIst*

IIst-array-leader
IIst*-ln-area
IIst-ln-area

IIstarray
IIstiry

II sip
loadarrays Maclisp

load-byte
locate-In-closure

locate-In-Instance
locatlon-boundp

location-contents
locatlon-makunbound

locatlvep
log

logand
%Iogdpb

Logical and
Logical or

loglor
%Iogldb

lognot
logxor

lower-case-p
Ish

macroexpand
macroexpand-1

make-array-Into-named-structure
make-equal-hash-table

make-hash-table
make-mouse-char

make-array
make-char

make-condltlon
make-heap

function 293
function 573, 593, 611
function 435
function 272
function 571, 593, 605
func1ion 606
func1ion 593, 605
function 605
function 62
function 106
function 607
function 48
function 116
function 117
func1ion 54
func1ion 46
function 99
function 463
function 431
func1ion 160
func1ion 160, 430
func1ion 48, 56
func1ion 49, 56
func1ion 253
function 49
function 49, 56
function 252
function 166
func1ion 7
function 262
func1ion 117
function 335
func1ion 440
function 85
function 84
function 84
func1ion 9
func1ion 106
func1ion 113
function 118
function 178
func1ion 179
function 113
function 117
function 114
function 113
function 270
func1ion 114
func110n 375
function 375
func110n 405
func1ion 72
function 72
function 274
function 235, 241
function 270
func110n 505
func110n 77

697

Index

698

Reference Guide to Symbolics-Lisp March 1985

make-Instance function 430
make-list function 49,56

make-package function 601
make-plane function 261

make-symbol function 566,573
maknam function 293

makunbound function 562
makunbound-In-closure function 336

makunbound-globally function 562
map function 202

mapatoms function 608
mapatoms-all function 608,625

mapc function 202
mapcan function 203
mapcar function 202

mapcon function 203
maphash function 74

maphash-equal function 74
mapllst function 202

mask-field function 117
math:decompose function 259
math:determinant function 259
math :fill-2d-array function 260

math :Invert-matrix function 259
math:lIst-2d-array function 260

math:multlply-matrlces function 258
math:solve function 259

math :transpose-matrlx function 259
max function 100

mem function 60
memass function 65
member function 60

memq function 59
mexp function 369

min function 100
minus function 101

mlnusp function 97
mod function 104

mouse-char-p function 273
name-char function 273

named-structure-Invoke function 405
named-structure-p function 405

named-structure-symbol function 405
nbutlast function 53,252

nconc function 52,56
ncons function 45,56

ncons-in-area function 45
neq function 10

nlntersection function 62
nleft function 53

nllstp function 7
not function 12

nreconc function 53
nreverse function 51,56

nsublls function 56
nsubst function 55

nsubstrlng function 240,278
nsymbolp function 7

March 1985

nth
nthcdr

null
number-Into-array

numberp
numerator

nunlon
oddp

operatlon-handled-p
package-cell-location

package-external-symbols
package-shadowlng-symbols

package-use-list
package-used-by-list

palrlla
parse-ferror

parse-number
phase

pkg-add-relatlve-name
pkg-contalned-In

pkg-create-package
pkg-debug-eopy

pkg-delete-relatlve-name
pkg-flnd-package
pkg-refname-allst

pkg-super-package
pkg-goto

pkg-klll
pkg-Ioad

pkg-name
plane-aref
plane-aset

plane-default
plane-extension

plane-orlgln
plane-ref

plane-store
pllst
plus

plusp
prine

property-cell-Ioeatlon
puthash

puthash-equal
putprop
quotient
random

rasa
rassoc
rassq

rational
ratlonalp

read
realpart

*rearray Maclisp
recompile-flavor

reeord-source-flle-name
rem

function 47
function 48
function 12
function 281
function 7
function 108
function 62
function 97
function 431
function 607
function 611
function 612
function 610
function 610. 625
function 66
function 504
function 281
function 107
function 582. 610
function 625
function 626
function 625
function 582. 610
function 607
function 625
function 625
function 597
function 603
function 625
function 607
function 261
function 262
function 261
function 261
function 261
function 261
function 262
function 565
function 100
function 97
function 585
function 565
function 74
function 74
function 68
function 102
function 118
function 66
function 66
function 65
function 108
function 8
function 13. 56
function 108
function 262
function 438
function 317. 319
function 62

699

Index

700

Reference Guide to Symbolics-Lisp March 1985

rem-If-not function 63
remainder function 103

remhash function 74
remhash-equal function 74

rem-If function 64
remob function 573. 593. 606

remove function 62
remprop function 69

remq function 62
resH function 47
rest2 function 47
rest3 function 47
rest4 function 47

Return from typeof function 642
return-array function 250

return-list function 185
reverse function 51

rot function 115
round function 111
rplaca function 54. 56. 83. 236
rplacd function 54. 56. 83. 236

samepnamep function 293. 565
sassoc function 66

sassq function 66
SCL and array-row-maJor-lndex function 642

SCL and compile-file function 645
SCL and decode-unlversal-tlme function 645

SCL and defsetf function 639
SCL and describe function 645
SCL and directory function 645

SCL and documentation function 645
SCL and dribble function 645

SCL and equal-typep function 638
SCL and functlonp function 638

SCL and get-macro-character function 644
SCL and make-concatenated-stream function 643

SCL and make-echo-stream function 643
SCL and mismatch function 641

SCL and parse-namestrlng function 644
SCL and proclaim function 640

SCL and push function 641
SCL and pushnew function 641

SCL and read-dellmited-list function 644
SCL and read-from-strlng function 643

SCL and read-char function 643
SCL and :rehash-slze keyword to make-hash-table function 641

SCL and :rehash-threshold keyword to make-hash-table

SCL and :replace keyword for delete-duplicates
SCL and require
SCL and return

SCL and return-from
SCL and set-macro-character

SCL and set-syntax-from-char
SCL and standard-char-p

SCL and substitute
SCL and substltute-If-not

SCL and substitute-If

function 641
function 640
function 640
function 639
function 639
function 644
function 643
function 640
function 640
function 640
function 640

March 1985

SCL 1:lnd :test keyword to make-hash-table
SCL coerce

second
send

send-if-handles
set

set-char-blt
set-character-translatlon

set-In-closure
set-In-Instance

set-syntax-#-macro-char
set-syntax-from-char

set-syntax-from-descrlptlon
set-syntax-macro-char

setarg
set-globally

setpllst
setsyntax

setsyntax-sharp-macro
seventh
shadow

shadowing-Import
sl :equal-hash

sl:flavor-allowed-Inlt-keywords
sl:flavor-default-Inlt-get

sl:flavor-default-Inlt-putprop
sl:flavor-default-Inlt-remprop

sl :fu nctlon-spec-get
sl:functlon-spec-putprop

signal
signum

sl:loop-named-varlable
sl :Ioop-tassoc
sl:loop-tequal

sl:loop-tmember
sin

sind
sinh

sl:random-create-array
sl:random-initialize

sl: read-recursive
sl :rename-wlthln-new-deflnltlon-maybe

sl:unencapsulate-functlon-spec
sixth

some
sort

sort-grouped-array
sort-grouped-array-group-key

sortcar
sqrt

stable-sort
stable-sortcar

store-array-Ieader
string

strln~
strlng<
string>

strlng-capltallze-words

function 641
function 637
function 46
function 160. 430
function 431
function 561
function 269
function 34
function 335
function 439
function 27. 36
function 34
function 34
function 26. 35
function 166
function 561
function 565
function 36
function 36
function 47
function 574. 593. 612
function 573. 574. 593. 611
function 75

. function 439
function 440
function 440
function 440
function 322
function 322
function 482. 503. 517
function 106
function 229
function 228
function 228
function 228
function 106
function 106
function 107
function 119
function 119
function 27
function 329
function 328
function 47
function 64
function 56. 79
function 81
function 81
function 81
function 106
function 81
function 81
function 245
function 278
function 282
function 282
function 283
function 286

701

Index

702

Reference Guide to Symbolics-Usp

strlng-exact-compare
string-left-trim

strlng-nconc-portlon
strlng-not-equal

strlng-not-greaterp
strlng-not-Iessp

strlng-reverse-search
strlng-reverse-search-char

strlng-reverse-search-exact
strt ng-reverse-search-exact-char

strlng-reverse-search-not-char
strlng-reverse-search-not-exact-char

strlng-reverse-search-not-set
strlng-reverse-search-set

strlng-rlght-trlm
strlng-search-char

%strlng-search-char
strlng-search-exact

%strlng-search-exact-char
strlng-search-exacl-char

strlng-search-not-char
strlng-search-not-exact-char

strlng-search-not-set
strlng-search-set

strlng-to-ascll
strlng(

string =
%strlng=

string)
string-append

string-compare
strlng-downcase

%strlng-equal
string-equal

strlng-fllpcase
strlng-greaterp

string-length
strlng-Iessp

strlng-nconc
strlng-nreverse

strlngp
strlng-plurallze
string-reverse
string-search

string-trim
strlng-upcase

sub1
sublls
subrp

subset
subset-not

subst
substring
swap hash

swaphash-equal
sxhash

symbolp
symbol-package

function 283
function 280
function 279
function 284
function 284
function 284
function 288
function 287
function 287
function 286
function 288
function 287
function 290
function 289
function 280
function 287
function 289
function 287
function 287
function 286
function 287
function 286
function 289
function 289
function 290
function 282
function 282
function 283
function 282
function 279
function 285
function 285
function 284
function 283
function 286
function 284
function 278
function 284
function 279
function 280
function 8
function 280
function 280
function 288
function 280
function 285
function 104
function 55
function 8
function 63
function 63
function 55
function 278
function 74
function 74
function 59. 76
function 7
function 573. 607

March 1985

March 1985

symeval
symeval-In-closure

symeval-In-Instance
symeval-globally

sys:% 1d-aloc
sys:% 1d-aref
sys:% 1d-aset

sys:double-floal-p
sys:fcelllng

sys:fdeflnltlon-Iocallon
sys:ffloor

sys:fround
sys:nruncate

sys:functlon-parent
sys:slngle-float-p

sys:%strlng-exact-compare
sys:%strlng-compare

tallp
tan

tand
tanh
third

*throw
times

true
truncate

typep
unbreakon
uncomplle

undefflavor
undefun
unexport

union
unuse-package

upper-case-p
use-package

value-ceil-location
values

values-list
where-Is

xcons
xcons-In-area

zerop
\

\\

-$
caaaar
caaadr
caadar
caaddr
cadaar
cadadr
caddar
cadddr
cdaaar
cdaadr

cdaar

function 3. 561
function 335
function 439
function 562
function 246
function 246
function 246
function 8
function 112
function 322
function 111
function 113
function 112
function 319
function 8
function 283
function 285
function 61
function 106
function 107
function 107
function 46
function 200
function 102
function 164
function 110
function 9. 335. 403. 576. 597
function 524
function 316
function 437
function 322
function 593. 611
function 62
function 593. 611
function 270
function 571. 593. 610
function 563
function 167
function 167
function 571. 612. 625
function 45. 56
function 45
function 97
function 103
function 105
function 105
function 105
function 42
function 42
function 42
function 42
function 42
function 42
function 42
function 42
function 42
function 42
function 42

703

Index

704

Reference Guide to Symbolics-Lisp

cdadar
cdaddr
cdadr

cddaar
cddadr
cddar

cdddar
cddddr

cdddr
SCL and parse-path name

Clm: What the Read
The

The Complied
Simple

SCL and format
Undefined

Evaluating a
Functions for

Clm: What the Print
Basic definition of the

:handler
:Internal
:Iocatlon
:method

:property
Symbol
:wlthln

SCL and
Defining

:method

sl:
sl:

What is a

SCL and
sys:

Using the sys:
sys:

Abstract-operation
Access

Accessor
Arguments to

Arrays as
Arrays used as

Basic Array
Byte Manipulation

Cdr storing

function 42
function 42
function 42
function 42
function 42
function 42
function 42
function 42
function 42
function 644
Function Accepts 643
Function Cell of a Symbol 563
Function Data Type 4
Function Definitions 300
function directives 644
function error 534
Function for Evaluation 159
Function Form 151
Function Invocation 159
Function Produces 644
function spec 297. 325
function spec type 297
function spec type 297
function spec type 297
function spec type 297
function spec type 297
function spec type 297
function spec type 297
function special form 162
function special form 638
function specs 297
function specs 316
function-ceil-location function 564
functlon-spec-get function 322
function-spec-putprop function 322
Function? 297
Function abbreviation 28
Functional arguments 139
Functional objects 423
Function-calling Errors 539
Function cell 3
Function-defining Special Forms 305
functionp function 638
function-parent declaration 312
function-parent Declaration 319
function-parent function 319
functlonp function 8
Function renaming 329
Functions 297
functions 418
functions 147
functions 379. 401
functions 323
functions 235
functions 305
Functions 241
Functions 115
functions 297

March 1985

March 1985

Clm: By-position Constructor
Clm: Pathname

Clm: Time
Compiled

Debugging Info alist
Defining

Definitions of
Degrees In trigonometric

Documentation string
Dynamic Closure-manipulating

environment argument for macro-expander
Evaluation of special

Flavor
Flavor system storing

Frame-manipulating
Handier-list searching

Hash Table
How Programs Examine

In-line coded
Interpreted

Kinds of
Lambda
Locate

Maclisp-compatible String-manipulation
Macro-expander

Macros expanded to Lisp
Names of

Numeric
Open coded

Operations the User Can Perform on
Other Kinds of

Printed representation of
Proceedable condition

Purpose of
Radians In trigonometric

Redefining
Restart handler
Select-method

sl:dlgested-Iambda
Signalling

Special
Stack groups used as

subst
Substitutable

Symbols used as
Syntax errors In read

Transcendental
Trigonometric

Update

Macro-expander
Some

SCL sequence and list

Functions 642
Functions 644
Functions 645
functions 303, 305
functions 302, 323, 325
functions 297, 300. 305
functions 316
functions 106
functions 302, 322
Functions 335
functions 138
functions 303
Functions 435
functions 297
functions 494
functions 510
Functions 73
Functions 322
functions 351
functions 303, 304
Functions 303
functions 304
functions 147
Functions 292
functions 368
functions 355
functions 297
Functions 97
functions 351
Functions 302
Functions 305
functions 297
functions 521
functions 339
functions 106
functions 318
functions 514
functions 305
functions 297, 300, 304, 305
func1ions 482. 503
functions 303
functions 305
functions 351
Functions 351
functions 297
functions 543
Functions 106
functions 106
functions 147
Functions and Dynamic Closures 295
functions and lexical seoplng 138
Functions and Special Forms 159
Functions and Special Forms for Constant

Values 161

705

Index

functions and two-argument predicates 641
Functions for CompatibIlIty with Macllsp Lexprs 165
Functions for Creating Flavors 428
Functions for Function Invocation 159

706

Reference Guide to Symbolics-Usp March 1985

ReacHable Functions for Macllsp Compatibility 36
Handler Functions for Named Structures 403

Functions for Passing Messages 430
Storing functions on property lists 297

Functions That Change Character Syntax 34
Functions That Change Characters Into Macro

Characters 35
Functions That Create New ReacHables 33
Functions That Find the Home Package of a

Symbol 607
Functions That Import. Export. and Shadow

Symbols 611
Functions That Map Names to Symbols 605
Functions That Operate on Locatives 84
Functions That Operate on Named Structures 405
Functions that return multiple values 167
Functions to Expand Macros 375

Applying functions to list items 201
Functions Used During Expansion 368

Package Functions. Special Forms. and Variables 597
Function Specs 297
Fundamental Conditions 531
fundeflne function 322

G G G

Hash Tables and the

Clm:
Decrementing
Incrementing

Locating
Updating

Seed for random number

dbg:

SCL and

g-I-p function 236. 250
Gamma (1) character 32
Garbage Collector 75
ged function 105
Generalized Variables 147
Generalized Variables 639
generalized variables 149
generalized variables 149
generalized variables 147
generalized variables 147
Generator 333
generator 118
Generic Operations on Objects 421
gensym function 357. 567
get-flavor-handler-for function 439
get-frame-functlon-and-args function 495
get-handler-for function 439
:get-handler-for message 454
get-maero-character function 644
getehar function 292
geteham function 293
get function 68
gethash-equal function 74
gethash function 74
:get-hash message 72
gell function 68
:getl message 473
:get message 473
get-pname function 565
:geHable-lnstanee-variables Option for

defflavor 441. 485
Getting Information About an Array 246

707

March 1985 Index

H

The global Package 571
globalize function 613
global package 615
Global symbols 571
Global variables 126
go special form 187, 189

SCL and go special form 639
Gota-Iess programming 194

Clm: Rules Governing the Passing of Multiple Values 639
SCL gprlnt package 633

graphlc-char-p function 270
Reading Integers in Bases Greater Than 10 21

greaterp function 98
Greatest common denominator 105
Greatest common divIsor 105
grlndef function 302

Stack group state error 537
Grouped Arrays 401

Stack groups used as functions 305
:growth-factor Inlt option for sl:eq-hash-table 71

Cleanup
Example of a

Finding a

Restart

Interactive
What Is a

Binding
Binding condition

Bound
Classes of

Default
Establishing

Interactive
Proceeding wIth condltlon-blnd
Reference Material: Establishing

Reference Material: Restart
Restart

Search rule for Invoking
Default

Reference Material: Default
Application:

Reference Material: Application:
Invoking Restart

OVerview and Definitions of Signalling and
Introduction to Signalling and

H
halpart function 115
Hand-Down character 32
:handle-condltlon-p message 511
:handle-condltlon message 511
Hand-Left character 32
Handler 479
handler 197
Handler 481
Handler 501
:handler function spec type 297
handler functions 514
Handler Functions for Named Structures
handler object 511
Handler? 487
Handler-list searching functions 510
handlers 487
handlers 481
handlers 488, 501, 502
Handlers 487
handlers 501, 502
Handlers 487
handlers 501, 511
Handlers 520
Handlers 488
Handlers 514
handlers 501, 513
handlers 501, 509
Handlers and Complex Modularity 509
Handlers and Complex Modularity 510
Handlers Examining the Stack 494
Handlers ExaminIng the Stack 495
Handlers Manually 516
Handling 479
Handling Conditions 479
Hand-Right character 32

403

H

708

Reference Guide to Symbolics-Usp

Objects as
Trees as

Clm:
Creating

loop Iteration Over
Dumping

Array
:clear method of sl:

:delete-by-Item method of sl:
:delete-by-key method of sl:

:descrlbe method of sl:
:empty-p method of sl:

:flnd-by-Item method of sl:
:flnd-by-key method of sl:

:Insert method of sl:
:remove method of sl:

:top method of sl:

loop Iteration Over Hash Tables or
Messages to

Condition
Condition flavor

Functions That Find the

fs:
sys:
sys:
sys:

SCL and non-null

Hand-Up character 32
Hash table considerations while using

multiprocessing 69
Hash table facilities 59
Hash Table Functions 73
Hash table keys 69
hash table keys 69
hash table keys 69
Hash Table Messages 72
Hash Tables 641
Hash Tables 71
Hash Tables and Loop iteration 75

March 1985

Hash Tables and the Garbage Collector 75
Hash Tables or Heaps 224
Hash Tables to Files 75
:hash-Inherlted-symbols Option for defpackage and

make-package 600, 603
Hasharray facility of Interlisp 69
hash-elements loop iteration path 224
Hashing 75
Hashing on eq 75
Hashing on equal 75
Hash Primitive 75
Hash table 75
Hash Tables 69
haulong function 115
header information 239
heap 78
heap 78
heap 78
heap 78
heap 78
heap 78
heap 78
heap 79
heap 79
heap 79
heap-elements loop iteration path 224
Heaps 77
Heaps 224
Heaps 78
Heaps and Loop Iteration 79
Help character 32
her loop keyword 222
hierarchies 486
hierarchy 482
Hints for Using Array Registers 257
Hints to Macro Writers 357
his loop keyword 222
Hold-Output character 32
Home Package of a Symbol 573
Home Package of a Symbol 607
Home package 606
host-not-avallable flavor 546
host-not-respondlng-durlng-connectlon flavor 555
host-not-respondlng flavor 555
host-stopped-respondlng flavor 555
hosts 644

March 1985

SCL

I character
#\ character

: character as keyword

SCL and

Character Comparisons
String Comparisons

String Searching
SCL and

Functions That

709

Index

How Applications Programs Treat Conditions 481
How Programs Examine Functions 322
How Programs Manipulate Definitions 316
How the Package System Allows Symbol

Sharing 569
How the Printer Works 13
How the Reader Recognizes Complex Numbers 24
How the Reader Recognizes Conses 25
How the Reader Recognizes Floating-point

Numbers 22
How the Reader Recognizes Integers 20
How the Reader Recognizes Macro Characters 26
How the Reader Recognizes Ratios 22
How the Reader Recognizes Strings 25
How the Reader Recognizes Symbols 24
How the Reader Works 19

1/0 operations and streams 634
1/0 to Strings 290
Ibase variable 20
identifier 277
identifier 277
Identifier 576
IEEE Floating-paint Representation 94
Ieee-floating-point feature name 645
If loop keyword 216
If special form 177
Ignore-errors special form 493
Ignore function 164
Ignoring Case. Style. and Bits 271
Ignoring Case. Style. and Bits 283
IgnOring Case. Style. and Bits 287
illegal character attributes 643
Illegal redefinition error 538
Imagpart function 108
Implementation of Flavors 467
Implode function 293
:Import option for defpackage 573
:Import Option for defpackage and

make-package 599.602
:Import option for make-package 573
Import. Export. and Shadow Symbols 611
:Import-from Option for defpackage and

make-package 600. 602
:Import-from option for make-package 573
:Import-from option for defpackage 573
Import function 573. 593. 611
Importing and Exporting Symbols 573
Importing symbols 573. 589. 593. 611
In loop keyword 207.222. 225
Inct macro 149
:Include Option for defpackage and

make-package 600. 603
:Include option for defstruct 385. 387
:Included-flavors Option for defflavor 441. 444
Inclusive or 179

I

710

Reference Guide to Symbo/ics-Lisp

String
Zetalisp and SCL character

Zetallsp and SCL string
fa:
fa:
fa:

Property list

Conformal

Floating-point
Reader macro for

sl:encapsulated-deflnltlon debugging
Debugging

Array header
Clm: Array

Font
Getting

Package
Flavor

:proceed-types
:proceed-types

:area
:growth-factor

:rehalh-before-cold
:slze

:rehash-threshold
:property-list

Messages and

Array
Loop

SCL and defstruct slot

II:

SCL and
Clm:

March 1985

Inclusive or 113
Incompatibilities 634
incompatibilities 265
incompatibilities 265
Inconslstent-optlona flavor 552
Incorrect-access-to-dlrectory flavor 549
Incorrect-access-to-flle flavor 549
Incrementing generalized variables 149
Index loop keyword 222, 225
Index offset 240, 241
Indicator 67
indicators 67
Indirect array 240, 241, 248
Indirect Arrays 240
Indirection 240
Inexact-result trap 535
infinity 14, 22
infix expressions 30
Info allst element 325
Info alist functions 302, 323, 325
information 239
Information 642
information 236, 277
Information About an Array 246
Inheritance 571, 599, 602
inheritance mechanism 482
Inhlblt-fdeflne-wamlngs variable 317
init option 519
init option for condition 530
init option for sl:eq-hash-table 71
init option for sl:eq-hash-table 71
init option for al:eq-hash-table 71
init option for II:eq-hash-table 71
init option for sl:equal-hash-table 72
init option for sl:property-list-mlxln 474
Init Options 529
:Inltable-instance-varlables Option for

defflavor 441, 485
:Initial-dlmenslons option for make-plane 261
:Inltlal-orlglnl option for make-plane 261
:Inltlal-value keyword for make-list 49
:Inltlal-value option for make-array 241
initialization 241
initialization code 205, 212
Initialization In structures 395
Initialization keywords 425
Initiallzations 642
:Inltiallze-speclal-commandl message 526
Initializing Instance variables 425, 435, 455
Initially loop keyword 212
:Inltlal-offset option for defstruct 385, 390
Inltlal-readtable variable 33
:Inlt-keywords Option for defflavor 441, 442
Inlt options 425
Init-pllst 425
In-line coded functions 351
Inllne declaration 640
Input From Character Streams 643

March 1985

Tokens In the
Clm: Other Environment

Errors

Unbound

Default values for
Initializing
Value of

sys:
sys:

Copying
Printed Representation of

Conditions as
Creating
Creating

fast-aref
fast-aset

Circumflex C) in
Underscore (J in

Binary
How the Reader Recognizes

Printed Representation of
String representation of

Reading

Issues for

dbg:

Internal
Qualified Package Names as

FOR facility In
Hasharray facility of

Input stream 19
Inquiries 645
:Insert method of sl:heap 79
Inserting elements Into list 150
Inside Usp printer 543
Instance 305
:Instance argument to typep 9
Instance variable error 533
Instance variable errors 538
Instance variable out-of-bounds 541
Instance variables 431
Instance variables 425. 435. 455
instance variables 439

711

Index

Instance variables of combined flavors 431
Instance-varlable-polnter-out-of-range flavor 538
Instance-varlable-zero-referenced flavor 538
Instance descriptor 467
Instances 303. 417
Instances 465
Instances 16
instances of flavors 479
instances of flavors 430
instances of structures 395
Instance variables 126. 418. 485
instantiate-flavor function 435
instruction 255
instruction 255
Int-char function 272
Integer loop data-type keyword 219
integer syntax 20
Integer syntax 20
Integer arrays 262
Integer denominator 93
Integer division 93
Integer iteration 192
Integer numerator 93
Integer radix 14. 20
Integers 4. 89. 93
Integers 89
Integers 20
Integers 14
integers 2n
Integers as array elements 236
Integers In Bases Greater Than 10 21
Integral (I) character 32
Interaction of Some Common Special Forms with

Multiple Values 169
Interactive handler object 511
Interactive Use 523
Interactive handlers 501. 511
Interactlve-handlers variable 511
Interesting active frame 494
Interface between two modules 569
Interfaces 621
Interfaces 585
Interllsp 205
Interllsp 69
Intern-local-son function 606

712

Reference Guide to Symbolics-Lisp

Specifying

defstruct

The

Case sensitivity of

Lexically scoped

fs:
fs:
fs:
fs:
fs:
fs:
fs:

sys:
fs:
fs:

math:

Functions for Function
dbg:

Search rule for

March 1985

Internal and External Symbols In Packages 585
:Internal colon mode 601, 603
:Internal function spec type 297
Internal Structures 407
Internal value cell 331
Internal interfaces 621
Internal symbols 570
Interned symbol 566
Interned-symbols loop iteration path 225
Interned-symbols Path 225
Intern function 571, 593, 605
Interning 604
interning 604
Interning Errors Based on sys:package-error 542
Intern-local function 593, 605
Intern-soft function 605
Interpackage Relations 610
Interpreted functions 303, 304
interpreter 137
Intersection function 62
Into loop keyword 212
Introduction to Evaluation 123
Introduction to Flow of Control 175
Introduction to Keywords 575
Introduction to loop 205
Introduction to Macros 339
Introduction to Named Structures 403
Introduction to Numbers 89
Introduction to Package Name-conflict Errors 593
Introduction to Package Names 581
Introduction to Qualified Package Names 584
Introduction to Signalling and Handling

Conditions 479
Introduction to Structure Macros 379
Introduction to Symbolics Common Lisp 631
Introduction to the Flavor System 417
Invalid contents in cell errors 533
Invalid file operation errors 550
Invalid path name syntax errors 550
Invalid type code error 534
invalld-byte-size flavor 552
Invalld-operation-for-dlrectory flavor 550
Invalid-operation-for-link flavor 550
invalid-path name-component flavor 553
Invalid-path name-syntax 550
Invalid-path name-syntax flavor 550
invalid-properly-value flavor 551
invalid-function flavor 542
Invalid-password flavor 547
invalid-wildcard flavor 550
:Inverse-list method combination type 455, 456
Invert-matrix function 259
:Invislble Option for make-package 601
Invisible packages 581, 582
Invisible pOinter 56
Invocation 159
invoke-restart-handlers function 516
invoking handlers 501, 509

March 1985

J

K

Errors
What
What
What

Where

Applying functions to list
Clm: Searching Sequences for

Hash Tables and Loop
Heaps and Loop

Integer
List

loop
Package

Sequence
Variable of

The
The loop

loop
array-element loop

array-elements loop
hash-elements loop
heap-elements loop

interned-symbols loop
local-interned-symbols loop

Defining
Predefined

SCL and

ABORT
RESUME

SUPER

Using the RESUME
% %kbd- byte specifiers and

Hash table
Objects as hash table

Special
Trees as hash table

Customizing Debugger
above loop

&allow-other-keys lambda-list

J

K

Invoking Restart Handlers Manually 516
Involving Lisp Printed Representations 543
Is a Dynamic Closure? 331
Is a Function? 297
is a Handler? 487
Is Symbol (m-X) Zmacs command 571
Isqrt function 106
Issues for Interactive Use 523
it loop keyword 216
items 201
Items 641
Iteration 175, 189, 205
Iteration 75
Iteration 79
iteration 192
iteration 193
iteration 221
Iteration 608
Iteration 225
iteration 207
Iteration Framework 221
Iteration Macro 205
Iteration Over Hash Tables or Heaps 224
iteration path 225
iteration path 225, 257
iteration path 224
iteration path 224
iteration path 225
iteration path 225
Iteration Paths 222
Iteration Paths 227
Iteration Paths 225
Iteration-driving Clauses 207, 221
Iteration variables 221
Its loop keyword 207, 222

713

Index

J
:junk-allowed keyword for pars8-namestrlng 644

% %kbd- byte specifiers and keyboard
characters 268

key 502,526
key 526
key 526
&key lambda-list Keyword 310. 373
key with floating-point conditions 535
keyboard characters 268
keys 69
keys 69
Keys 526
keys 69
keystrokes 526
keyword 207. 225
Keyword 310. 373

K

714

Reference Guide to Symbolics-Lisp

alway8100p
and loop

append loop
appending loop

a8 loop
&aux Lambda-list

being loop
below loop

&body lambda-list
by loop

collect loop
collecting loop

count loop
counting loop

do loop
doing loop

downfrom loop
downto loop

each loop
else loop

&envlronment Lambda-list
&eval lambda-list

finally loop
first loop

flxnum loop data-type
flonum loop data-type

for loop
from loop

her loop
his loop

If loop
In loop

Index loop
Initially loop

Integer loop data-type
Into loop

It loop
Its loop

&key Lambda-list
&1I5t-of Lambda-list
&Ioeal Lambda-list

maximize loop
minimize loop

named loop
nconc loop

nconclng loop
never loop

nodeclare loop
notype loop data-type

number loop data-type
of loop
on loop

:optlonal
&optlonal

&optlonal Lambda-list
"e Lambda-list

repeat loop
&rest

keyword 215
keyword 207, 210, 216, 222
keyword 212
keyword 212
keyword 207
Keyword 310
keyword 207, 222
keyword 207, 225
Keyword 310
keyword 207, 225
keyword 212
keyword 212
keyword 212
keyword 212
keyword 212
keyword 212
keyword 207, 225
keyword 207, 225
keyword 207, 222
keyword 216
Keyword 311, 374
Keyword 310
keyword 212
keyword 207
keyword 219
keyword 219
keyword 207
keyword 207, 225
keyword 222
keyword 222
keyword 216
keyword 207, 222, 225
keyword 222, 225
keyword 212
keyword 219
keyword 212
keyword 216
keyword 207, 222
Keyword 310, 373
Keyword 310
Keyword 310
keyword 212
keyword 212
keyword 218
keyword 212
keyword 212
keyword 215
keyword 210
keyword 219
keyword 219
keyword 222, 225
keyword 207
keyword 161
keyword 151
Keyword 309
Keyword 310
keyword 207
keyword 151

March 1985

March 1985

&rest lambda-list
return loop

&speclal lambda-list
:spread

sum loop
summing loop

the loop
their loop
then loop

therels loop
to loop

unless loop
until loop

upfrom loop
using loop
when loop
while loop

&whole Lambda-list
with loop

with-key loop
&aux

&body
&lIst-o'

&optlonal
& rest

SCL and :replace
:area

:Inltlal-value
:descrlbe
:prlnt-seH

:whlch-operatlonl
SCL and :Junk-allowed

: character as
Specifying a

SCL and :rehash-slze
SCL and :rehash-threshold

SCL and :test

&
Initialization

Introduction to
lambda-list

Property list
Using

SCL and

Two

Other

715

Index

Keyword 309
keyword 216. 218
Keyword 310
keyword 161
keyword 212
keyword 212
keyword 207. 222
keyword 222
keyword 207
keyword 215
keyword 207. 225
keyword 216
keyword 214
keyword 207
keyword 222. 225
keyword 216
keyword 214
Keyword 311. 374
keyword 210
keyword 224
keyword for defmacro 373
keyword for defmacro 373
keyword for defmacro 373
keyword for defmacro 373
keyword for defmacro 373
keyword for delete-dupllcates function 640
keyword for make-list 49
keyword for make-list 49
keyword for named-structure-Invoke 403. 404
keyword for named-structure-Invoke 403. 404
keyword for named-structure-Invoke 403. 404
keyword for parse-namestrlng 644
keyword Identifier 576
Keyword Parameter's Symbol in Lambda Usts 156
keyword to make-hash-table function 641
keyword to make-hash-table function 641
keyword to make-hash-table function 641
Keyword comparisons 227
keyword-extract special form 193
keyword package 615
Keyword parameters 151
keywordp function 607
keywords 151. 309
keywords 425
Keywords 575
Keywords 309
keywords 67
Keywords 576
Keywords In argument lists 189
keywords in the *features· list 644
:keywords option for defstruct-deflne-type 410. 412
Keyword symbols 151
Kinds of Characters 268
Kinds of Functions 303
Kinds of Functions 305
Kinds of Variables 126

716

Reference Guide to Symbolics-Lisp

L
SCL arrays and circular-structure

net,

Examples of Simple
Specifying a Keyword Parameter's Symbol in

Specifying Aux-variables In
Specifying Defaut! Forms In

Variables In

&allow-other -keys

SCL and &rest parameters for

&aux
&body

&envlronment
&eval
&key

&lIst-o'
Clm:

&Ioeal
&optlonal

"e
& rest

&speclal
&whole

Default forms of

Usp
SCL

Array

Array

L

March 1985

labelling restriction 641
labels special form 144
labels, and macrolet Special Forms 142
Lambda ().) character 32
Lambda Usts 154
Lambda Usts 156
Lambda Usts 157
Lambda Usts 155
lambda lists 151
lambda special form 163
Lambda-Jist Keyword 310, 373
lambda-list-keywords symbol 151
lambda-list-keywords variable 309
lambda-binding 125, 331
Lambda-expression 151
lambda-expresslons 638
Lambda functions 304
lambda-list 304
Lambda Jist 151
lambda Jist 323
lambda-list Keyword 310
lambda-list Keyword 310
Lambda-Jist Keyword 311, 374
Lambda-Jist Keyword 310
Lambda-Jist Keyword 310, 373
Lambda-Jist Keyword 310
lambda-expressions 638
Lambda-Jist Keyword 310
Lambda-Jist Keyword 309
Lambda-Jist Keyword 310
Lambda-Jist Keyword 309
Lambda-Jist Keyword 310
lambda-list Keyword 311, 374
lambda-Jist parameters 151
Lambda-Jist Keywords 309
lambda-macro special form 355
Lambda Macros 355
Lambda symbol 151
language package 615
language-tools package 633
last function 48
Idb function 116
Idb-test function 117
Idlff function 54
leader 238, 241, 248
:Ieader-Iength option for make-array 241
:Ieader-list option for make-array 241
Leaders 238
Least bits 115
length function 46
lessp function 99
let* special form 129
let special form 128, 142
let-globally-If special form 131
let-closed special form 305, 335
letf* special form 130
lelf speclal-'form 130

L

March 1985

Funargs and

defmacro and
macro and

Macro-expander functions and

Functions for Compatibility with Maclisp

Matrices and Systems of
Simultaneous

fs:
Introduction to Symbolics Common

Symbolics Common
Printed Representation of Common

Common
SCL and Common

SCL and Symbollcs Common
SCL and Common

Macros expanded to

Errors Involving
Errors inside

Common

Association
BUG-LIS PM mailing

Circular
Cons as property

Disembodied property
. Dotted

File attribute
Inserting elements Into

Lambda
lambda

Memory cell as property
Property

Removing elements from
SCL and keywords in the *features·

Symbol associated with property
Zmacs Command:

The
Maximum number of
SCL sequence and

717

Index

lel-globally special form 131
lei-If special form 130
Lexical Closure Allocation 139. 140. 141. 312. 313
Lexical Environment Objects and Arguments 138
Lexical Scoplng 137. 142. 144
lexical scoplng 138
lexical scoping 138
lexical scoping 138
Lexical closures 137. 303. 305. 331
Lexically scoped complier 137
Lexically seoped interpreter 137
Lexical scope 126
Lexpr Maclisp type 305
lexpr-contlnue-whopper function 463
lexpr-send-If-handles function 431
lexpr-funcall function 160
Lexprs 151. 159
Lexprs 165
lexpr-send function 160. 430
LF character 32
Linear Equations 258
linear equations 258
Line character 32
IInk-largel-nol-found flavor 549
Lisp 631
Lisp 629
Lisp Character Objects 16
Lisp Compatibility Package 615
Lisp Differences 637
Lisp Extensions 635
Lisp Files 635
Lisp functions 355
Lisp language package 615
Lisp Printed Representations 543
Lisp printer 543
Lisp readtable 27
Lisp Errors 533
Lisp macros 337
List 41
list 238
list 524
list 41
list 67
list 67
list 25. 41
list 579
list 150
list 151
list 323
list 67
list 67
list 150
list 644
list 67
List Combined Methods 471
List Data Type 5
list elements to be printed 18
list functions and two-argument predicates 641

718

Reference Guide to Symbolics-Usp

Property
Applying functions to

Property
Property

Zmacs Command:
Property

The Property
Basic

Alteration of
Manipulating

Property
math:

Arrays as
Arrays Overlaid with

Association
Clm:

Clm: Sequences,
Compact

Depth of recursion of printing
Examples of Simple Lambda

Keywords In argument
Printing nested

Property
Sorting

Sorting Arrays and
Sorting compact

Specifying a Keyword Parameter's Symbol in Lambda
Specifying Aux-variables in Lambda

Specifying Default Forms In Lambda
Storing functions on property

Variables In lambda

Binding

sys:

list Indicators 67
list items 201
list keywords 67
List Messages 473
:lIst method combination type 455
List Methods 471
list of a symbol 3
List of a Symbol 564
List Operations 46
:lIst returned by typep 9
List Structure 54
List Structure 41
list values 67
IIst-2d-array function 260
IIst-array-leader function 253
IIst*-ln-area function 49
IIst-ln-area function 49, 56
&lIst-of lambda-list Keyword 310
:lIst-or-nll argument to typep 9
IIstarray function 252
List elements 41
IIst* function 49, 56
list function 48, 56
IIstlfy function 166
List iteration' 193
&lIst-of keyword for defmacro 373
IIstp function 7
Lists 39
lists 236
Lists 250
lists 59, 64, 67
Lists 641
Lists 641
lists 56
lists 16
Lists 154
lists 189
lists 17
Lists 67
lists 79
Lists 79
lists 79
Lists 156
Lists 157
Lists 155
lists 297
lists 151
Lists as Tables 59
Lists as templates 345
Imfs package 615
loadarrays Maclisp function 262
load-byte function 117
local and special variables 126
&Iocal Lambda-list Keyword 310

March 1985

Local Network Problems 554
local-Interned-symbols loop iteration path 225
local-network-error flavor 554
local-declarations variable 316

March 1985

The

Cdr-coding and
Cells and

Functions That Operate on

Adding new symbols to
External-only Packages and

Natural

Error

Complement

fs:
fs:

cl:
File

SCL case checking In package-name
File

SCL and file
Clm: the Top-level

Data Types Recognized by
Introduction to
Expressions In

fixnum
flonum
Integer
notype

number

Hash Tables and

local-declare special form 126, 315
Local variables 126, 331
locate-!n-closure function 335
locate-In-Instance function 440
Locate functions 147
Locating generalized variables 147
:Iocatlon function spec type 297
locatlon-boundp function 85
locatlon-contents function 84
Location Errors 534
locatlon-makunbound function 84
Locative Data Type 5
:Iocatlve returned by typep 9
locatlvep function 9
Locative pointer 147
Locatives 67, 83
Locatives 83
Locatives 83
Locatives 84
loct macro 148
loci macro 83
locked packages 626
Locking 626
logand function 113
Logarithm of non positive number error 534
logarithms 106
%Iogdpb function 118
log function 106
logging code 494
Logical and function 178
logical operation 114
Logical Operations on Numbers 113
Logical or function 179
Login errors 547
Login Problems 547
logln-problems flavor 547
login-required flavor 548
loglor function 113
%Iogldb function 117
lognot function 114
logxor function 113
long-float format 23
Lookup 548
lookup 640
lookup errors 548
lookup errors 645
Loop 642
loop 219
loop 205
loop constructs· 206
loop data-type keyword 219
loop data-type keyword 219
loop data-type keyword 219
loop data-type keyword 219
loop data-type keyword 219
Loop exit code 205, 212
Loop Initialization code 205, 212
Loop iteration 75

719

Index

720

Reference Guide to Symbolics-Lisp

Heaps and
The

array-element
array-elements
hash-elements
heap-elements

Interned-symbols
local-Intern ed-symbols

above
always

and
append

appending
as

being
below

by
collect

collecting
count

counting
do

doing
downfrom

downto
each
else

finally
first
for

from
her
his

if
In

Index
Initially

Into
It

Hs
maximize
minimize

named
nconc

nconclng
never

nodeclare
of

on
repeat
return

sum
summing

the
their
then

therels

March 1985

Loop Iteration 79
loop Iteration Macro 205
loop Iteration Over Hash Tables or Heaps 224
loop iteration path 225
loop iteration path 225. 257
loop iteration path 224
loop iteration path 224
loop iteration path 225
loop iteration path 225
loop keyword 207. 225
loop keyword 215
loop keyword 207. 210. 216. 222
loop keyword 212
loop keyword 212
loop keyword 207
loop keyword 207. 222
loop keyword 207. 225
loop keyword 207. 225
loop keyword 212
loop keyword 212
loop keyword 212
loop keyword 212
loop keyword 212
loop keyword 212
loop keyword 207. 225
loop keyword 207. 225
loop keyword 207, 222
loop keyword 216
loop keyword 212
loop keyword 207
loop keyword 207
loop keyword 207. 225
loop keyword 222
loop keyword 222
loop keyword 216
loop keyword 207. 222. 225
loop keyword 222. 225
loop keyword 212
loop keyword 212
loop keyword 216
loop keyword 207. 222
loop keyword 212
loop keyword 212
loop keyword 218
loop keyword 212
loop keyword 212
loop keyword 215
loop keyword 210
loop keyword 222. 225
loop keyword 207
loop keyword 207
loop keyword 216. 218
loop keyword 212
loop keyword 212
loop keyword 207. 222
loop keyword 222
loop keyword 207
loop keyword 215

March 1985

M

10
unless

untIl
upfrom

using
when
while
with

with-key
SCL

sl:
sl:

Bindings in
Evaluation in

II:
sl:

si:

Zmacs Command:

Readtable Functions for
dumparrayl

loadarrays
*rearray

Functions for Compatibility with

expr
fexpr
Lexpr

macro

#* Reader
#- Reader
#' Reader

#+ Reader
#, Reader
#. Reader
#< Reader
#b Reader

#rn Reader
#n Reader

M

721

Index

loop keyword 207, 225
loop keyword 216
loop keyword 214
loop keyword 207
loop keyword 222, 225
loop keyword 216
loop keyword 214
loop keyword 210
loop keyword 224
loop macro 635
loop-named-variable function 229
loop-use-syslem-deslructurlng? variable 221
Loop epilogue 205, 212
loop-finish macro 215
loop iteration 221
loop macro 205
Loop prologue 205, 212
loops 210, 220
loops 212
loop Synonyms 218
loop-Iassoc function 228
loop-Iequal function 228
Loop termination 212, 214
loop-Imember function 228
lower-case-p function 270
Ish function 114
Lsubrs 151

m-sh-O command 302
m-. 471
Maclisp 205, 305
Maclisp Array Compatibility 262
Macllsp Compatibility 36
Macllsp function 262
Maclisp function 262
Macllsp function 262
Maclisp Lexprs 165
Macllsp property names 564
Maclisp system property names 564
Macllsp type 305
Maclisp type 305
Maclisp type 305
Macllsp type 305
Macllsp-compatlble String-manipulation Functions
Maclisp compatibility 503
Macro 144
Macro 30
Macro 30
Macro 28
Macro 29
Macro 28
Macro 29
Macro 30
Macro 29
Macro 29
Macro 29

M

292

722

Reference Guide to Symbolics-Usp March 1985

#0 Reader Macro 29
#P Reader Macro 643
#q Reader Macro 29
#r Reader Macro 29
#x Reader Macro 29

#\ or #1 Reader Macro 27
#- Reader Macro 28
#I Reader Macro 30

array macro 263
check-arg-Iype macro 506

check-arg macro 505
compile-flavor-methods macro 438.485

dbg:wlth-errlng-frame macro 494.495
decf macro 149

defflavor macro 428
@deflne macro 308

define-loop-macro macro 218
define-loop-path macro 227

deflne-loop-sequence-path macro 225
defmacro macro 344

defmacro-dlsplace macro 372
defmethod macro 429

defstruct macro 345.383
defstruct-deflne-Iype macro 409

defunp macro 302.305
defwhopper-subst macro 464

defwrapper macro 461
Incf macro 149
locf macro 148
loci macro 83

loop macro 205
loop-finish macro 215
once-only macro 365

pkg-blnd macro 598
pop macro 150

push macro 150
push-In-area macro 150

SCL and #- Reader Macro 644,645
SCL and # + Reader Macro 644.645

SCL and defstruct macro 642
SCL and prog1 macro 639
SCL and prog2 macro 639
SCL and progv macro 639

SCL and returned values from cond macro 639
SCL loop macro 635

self macro 147
sl:define-slmple-method-comblnatlon macro 459

51 :encapsulate macro 326
swapf macro 149

sys:defsubst-wlth-parent macro 319
sys:prlntlng-random-obJecI macro 18

The loop l1eration Macro 205
undefmethod macro 437.468

unless macro 179
unwlnd-protect-case macro 199

when macro 179
macro and lexical scoplng 138
:macro argument to setsyntax 36

March 1985

Backquote (')
Comma (,)

Quote (')

SCL and non-terminating
Clm:

Functions That Change Characters Into
How the Reader Recognizes

Clm:
SCL and equivalent

Displaced
Reader

SCL and #S

81:
Hints to

Semicolon (;)
Sharp-sign (#)

Clm: Standard Dispatching
Selective evaluation In

environment argument for

81:

flet, labels, and

reader
Aid for Debugging

Aids for Defining
Alterant

By-position Constructor
Comments In

Constructor
Displacing

Functions to Expand
Introduction to

Introduction to Structure
Lambda

Usp
Macro-defining

Nesting
Sharp-sign Reader

Structure
Symbol

Using the Constructor and Alterant

Complex
BUG-USPM

:dlsplaced-conformally option for
:dlsplaced-Index-offset option for

macro character 26
macro character 26
macro character 26
Macro character 26
macro character attribute 643
Macro Characters 643
Macro Characters 35
Macro Characters 26
Macro Definition 639
macro definitions for special forms 638
macro expansions 371
macro for Infix expressions 30
macro form 642
macro Macllsp type 305
macro special form 305, 339, 355
macro syntax description 34
Macro Writers 357
Macro character 32
macro character 26
macro character 26
Macro Character Syntax 644
macro definitions 345
Macro-definlng macros 343, 345
macroexpand-1 function 375
macro-expander functions 138

723

Index

Macro-expander functions and lexical scoplng 138
Macro-expander functions 368
macroexpand function 375
macroexpand-hook variable 375
macrolet special form 144
macrolet Special Forms 142
Macros 303, 305, 337
macros 27
Macros 369
Macros 343
Macros 397
Macros 396
macros 26
macros 379, 395
Macros 371
Macros 375
Macros 339
Macros 379
Macros 355
macros 337
macros 343, 345
Macros 366
Macros 27
Macros 3n
Macros 353
Macros 395
Macros expanded to Usp functions 355
Macros Expanding Into Many Forms 360
Macros That Surround Code 362
magnitude 101
mailing list 524
make-array 241
make-array 240, 241

724

Reference Guide to Symbofics-Lisp March 1985

make-array 239, 241
make-array 241
make-array 241
make-array 241
make-array 241

:dlsplaced-to option for
:fill-polnter option for

:Inltlal-value option for
:Ieader-Iength option for

:Ieader-list option for
:named-structure-symbol option for make-array 241

make-array-Into-named-structure function 405
SCL and make-concatenated-stream function 643
SCL and make-echo-stream function 643

SCL and :rehash-slze keyword to
SCL and :rehash-threshold keyword to

SCL and :test keyword to
:Inltlal-value keyword for

make-equal-hash-table function 72
make-hash-table function 72
make-hash-table function 641
make-hash-table function 641
make-hash-table function 641
make-list 49
make-mouse-char function 274

:colon-mode option for make-package 585
:colon-mode Option for defpackage and make-package 601, 603

:extemal-only Option for defpackage and make-package 600, 603

:Import-from option for
:Import-from Option for defpackage and

:new-symbol-functlon Option for defpackage and
:preflx-Intem-functlon Option for defpackage and

:preflx-name Option for defpackage and
:relatlve-names option for

:reIBtlve-namea Option for defpackage and
:relatlve-names-for-me option for

:reIBtlve-names-for-me Option for defpackage and
:shadowlng-Import option for

:shadowlng-Import Option for defpackage and
:default-value option for

:Inltlal-dlmenslona option for
:Inltlal-orlglns option for

:area option for
:type option for

:hash-Inherited-symbols Option for defpackage and
make-package 600, 603

make-package 573
make-package 600, 602
make-package 601, 603
make-package 601, 603
make-package 599, 601
make-package 582
make-package 600, 602
make-package 582
make-package 600, 602
make-package 573, 574
make-package 600, 602
make-plane 261
make-plane 261
make-plane 261
make-array 241
make-array 241
:make-array option for defstruct 385, 389, 395
make-array function 235, 241
make-char function 270
make-condition function 505
make-heap function 77
make-Instance function 430

:area keyword for make-list 49

:export option for
:export Option for defpackage and

:Import option for
:import Option for defpackage and

:Include Option for defpackage and
:Invislble Option for

:nicknames Option for defpackage and
:shadow option for

:shadow Option for defpackage and
:slze Option for defpackage and

:use option for

make-list function 49, 56
make-package 573
make-package 599, 602
make-package 573
make-package 599, 602
make-package 600, 603
make-package 601
make-package 599, 601
make-package 574
make-package 599, 602
make-package 600, 602
make-package 571, 602
make-package function 601

:extenslon option for make-plane 261

March 1985

:type option for

How Programs

BI1
Byte

Invoking Restart Handlers
Macros Expanding Into

Functions That

Break on exit from

Reference

Reference
Reference
Reference
Reference
Reference

Singular

Encapsulation

725

Index

make-plane 261
make-plane function 261
make-symbol function 566. 573
maknam function 293
makunbound-In-closure function 336
makunbound function 562
makunbound-globally function 562
Manipulate Definitions 316
Manipulating Ust Structure 41
Manipulating the readtable 33
manipulation 114
Manipulation Functions 115
Manually 516
Many Forms 360
Map Names to Symbols 605
mapatoms-all function 608. 625
mapatoms function 608
mapcan function 203
mapcar function 202
mapc function 202
mapcon function 203
map function 202
maphash-equal function 74
maphash function 74
:map-hash message 73
mapllst function 202
Mapping 201
Mapping Between Names and Packages 607
Mapping from names to symbols 559
Mapping Names to Symbols 604
marked frame message 523
mask-field function 117
Material: Default Handlers and Complex

Modularity 510
Material: Establishing Handlers 488
Material: Proceeding 521
Material: Restart Handlers 514
Material: Signalling Conditions 503
Material: Application: Handlers Examining the

Stack 495
math:decompose function 259
math:determlnant function 259
math:fiIl-2d-array function 260
math:lnvert-matrlx function 259
math:llst-2d-array function 260
math:muHlply-matrices function 258
math:slngular-matrlx flavor 535
math:solve function 259
math:transpose-matrlx function 259
Matrices and Systems of Unear Equations 258
matrix operation error 535
Matrix operations 258
max function 100
maximize loop keyword 212
Maximum number of list elements to be printed 18
m-BREAK Debugger command 532
MOL programming environment 205
mechanism 523

726

Reference Guide to Symbolics-Lisp

Flavor inheritance
Signalling

Break on exl1 from marked frame
:bug-report-descrlptlon

:bug-report-reclplent-system
:clear-hash

:descrlbe
:dlrectory-pathname

:document-proceed-type
:document-speclal-command

:eval-Inslde-yourself
:fasd-form

:fllled-elements
:funcall-Inslde-yourself

:get
:get-handler -for

:get-hash
:getl

:handle-condltlon-p
:handle-condltlon

:Inltlallze-speclal-commands
:map-hash

:modlfy-hash
:operatlon-handled-p

:prlnt-self
:proceed

:proceed-type-p
:proceed-types

:property-list
:push-property

:put-hash
:putprop

:rem-hash
:remprop

: report
:send-If-handles

Sending a
:set-property-list

:s1z8
:speclal-command

:swap-hash
:unclalmed-message

:whlch-operatlons
No method for

:prlnt-self

Send
:package

:strlng
:name

: relative-to

mechanism 482
Mechanism 501. 509
memass function 65
member function 60
mem function 60
Memory allocation of conses 56
Memory cell as property list 67
memq function 59
message 523
message 525
message 524
message 73
message 453
message 549
message 517
message 526
message 454
message 465
message 73
message 454
message 473
message 454
message 72
message 473
message 511
message 511
message -526
message 73
message 73
message 453
message 453
message 520
message 519
message 519
message 474
message 473
message 72
message 473
message 73
message 473
message 529
message 454
message 421
message 474
message 73
message 525
message 73
message 454
message 453
message 542
message 16

March 1985

Message Passing In the Flavor System 423
Message to an object of some flavor 461
message 10 self 159
message 10 sys:extemal-symbol-not-found 619
message 10 sys:extemal-symbol-not-found 619
message 10 sys:package-not-found 542, 619
message 10 sys:package-not-found 542. 619

March 1985

:package
:symbol

Flavor system
Functions for Passing

Hash Table
Proceed Type
Property Ust

Relationship between methods and
Sending

Combined
:proceed

:repol1
:case
:and

:append
:case

:daemon
:daemon-wlth-and

:daemon-wlth-or
:daemon-wlth-overrlde

:1 nverse-IIst
:lIst

:nconc
:or

:pass-on
:progn

No

:document-proceed-type
:proceed-type-p
:proceed-types

:repol1
: repol1-strlng

:set-proceed-types
:speclal-command-p
:speclal-commands

:clear
:delete-by-Item
:delete-by-key

:descrlbe
:empty-p

:flnd-by-Hem
:flnd-by-key

:lnsel1
: remove

:top
:after
:and

:before
:comblned

:defauH

message to sys:package-Iocked 543. 619
message to sys:package-Iocked 543. 619
Message names 423
Message passing 421. 423
Message-receiving object 423
messages 453
Messages 430
Messages 72
Messages 519
Messages 473
messages 421
messages 159
Messages and Inlt Options 529
Messages to Heaps 78
Method 421
method 431
method 517. 520
method 485
method combination 517
method combination type 455
method combination type 455. 456
method combination type 455. 457
method combination type 455
method combination type 455. 456
method combination type 455. 456
method combination type 455. 457
method combination type 455. 456
method combination type 455
method combination type 455. 456
method combination type 455
method combination type 455. 456
method combination type 455
method for message 542
:method function spec type 297
:method function specs 316
method of condition 529
method of condition 530
method of condition 530
method of condition 530
method of condition 531
method of condition 530
method of condition 530
method of condition 530
method of sl:heap 78
method of sl:heap 78
method of sl:heap 78
method of sl:heap 78
method of sl:heap 78
method of sl:heap 78
method of sl:heap 78
method of sl:heap 79
method of sl:heap 79
method of sl:heap 79
method type 455. 457
method type 455. 458
method type 455. 457
method type 455. 458
method type 455. 457

727

Index

728

Reference Guide to Symbolics-Lisp

:or
:overrlde
:whopPer
:wrapper

Combination

Adding new
After-daemon

Before-daemon
Combined
Combining

Creating
Daemon
Defining

Modifying
Primary

Removing
Zmacs Command: Edit

Zmacs Command: Edit Combined
Zmacs Command: List

Zmacs Command: List Combined
Relationship between

Ordering Flavors,

Printed Representation of

SCL and

:external colon
:internal colon

Clm:

Default Handlers and Complex
Reference Material: Default Handlers and Complex

Clm:
Interface between two

tape:

method type 455, 458
method type 455, 457
method type 455, 458
method type 455, 458
Method Types 459
Method Combination 455

March 1985

:method-comblnatlon Option for defflavor 441, 449
:method-order Option for defflavor 441, 449
methods 438
methods 431
methods 431
methods 438
methods 461
methods 429
methods 431
methods 429
methods 468
methods 431
methods 437
Methods 471
Methods 472
Methods 471
Methods 471
methods and messages 421
Methods, and Wrappers 467
mexp function 369
min function 100
minimize loop keyword 212
minus function 101
mlnusp function 97
Miscellaneous Data Types 18
Miscellaneous file operations failures 552
Miscellaneous Operations Failures 552
Miscellaneous Other Clauses 218
Miscellaneous System Errors Not Categorized by

Base Flavor 536
mismatch function 641
Mixin flavor 451
Mixing Flavors 431
:mlxture Option for defflavor 441, 445
mode 601, 603
mode 601, 603
mod function 104
:modify-hash message 73
Modifying Sequences 640
Modifying flavors 438, 468
Modifying methods 468
Modifying wrappers 468
Modularity 509
Modularity 510
Modularity and Object-oriented Programming 418
Modules 640
modules 569
mount-error flavor 556
Mouse-1-1 32
Mouse-1-2 32
Mouse-2-1 32
Mouse-2-2 32

March 1985

N

Accessing

SCL and

Clm: Rules Governing the Passing of
Functions that return

Interaction of Some Common Special Forms with
Passing-back of

Primitive for Producing
Special Forms for Receiving

fs:

math:
Hash table considerations while using

Where Is Symbol

SCL and Ieee-floating-point feature
Package
Symbol

Print
The Print

Checking for Package
Introduction to Package

Package
ReSOlving Package

sya:

Special Form for Declaring a

SCL and

N

729

Index

Mouse-3-1 32
Mouse-3-2 32
mouse-char-p function 273
Mouse-L-l 32
Mouse-L-2 32
Mouse-M-1 32
Mouse-M-2 32
Mouse-R-l 32
Mouse-R-2 32
Mouse Characters 273
Multlcs external arrays 262
Multidimensional array subSCripts 245
Multidimensional Arrays as One-dlmenslonal
Multidimensional Arrays 237
multidimensional arrays 641
Multilevel Qualified Package Names 586
Mul1lpackage Programs 621
Mul1iple and Out-of-order Evaluation 363
Multiple Values 639
multiple values 167
Multiple Values 169
Multiple Values 169
Multiple Values 167
Mul1lple Values 167
multlple-file-not-found flavor 548
multiple-value-bind special form 168
multlple-value-call special form 168
multiple-value-list special form 168
multlple-value-prog1 special form 169
multiple-value special form 168
Multiple Values 167
Multiplication 102
muHlply-matrices function 258
multiprocessing 69
(m-X) Zmacs command 571

name 645
name conflicts 581
name conflicts 574

245

:name message to sys:package-not-found 542.
619

name of a symbol 3
Name of a Symbol 565
name-char function 273
Name-conflict Errors 593
Name-conflict Errors 593
Name-conflict Errors 593
Name-confllct Errors 595
name-confllct flavor 619
Name Conflicts 357. 613
Named Constant 135
named loop keyword 218
:named option for defstruct 385. 389
:named option for defstruct 642
:named option for defstrucl-define-type 410. 411
Named structure array 238. 241

N

730

Reference Guide to Symbolics-Usp

Functions That Operate on
Handler Functions for

Introduction to
Printed Representation of Arrays That Are

Printed Representation of Arrays That Are Not
:deserlbe keyword for
:prlnt-self keyword for

:whleh-operatlona keyword for

Character
Data type

Forms of qualified
Introduction to Package

Introduction to Qualmed Package
Macllsp property

Macllsp system property
Message

Multilevel Qualified Package
Package

Proceed Type
Qualmed

Qualified Package
Relative Package

SCL and printed character
Shadowing package

Special Character
Structure

Mapping Between
Qualified Package

Qualmeet
Functions That Map

Mapping
Mapping from

Example of the
The

Testing for
Square root of a

sys:

Printing

Named structure symbol 403
Named Structures 405
Named Structures 403
Named Structures 403
Named Structures 16
Named Structures 17
named-structure-Invoke 403. 404
named-slructure-Invoke 403. 404
named-structure-Invoke 403. 404
named-structure-Invoke function 405
named-structure-p function 405
:named-structure-symbol option for

make-array 241
named-structure-symbol function 405
Named Structures 403
Names 559
Names 273
names 576
names 585
Names 581
Names 584
names 564
names 564
names 423
Names 586
Names 581
Names 520
names 589
Names 584
Names 582. 610
names 644
names 582
Names 32
names 383
Names and Packages 607
Names as Interfaces 585
Names of functions 297
Names of Symbols 585
Names to Symbols 605
Names to Symbols 604
names to symbols 559
Naming convention 7
Natural logarithms 106
nbutlast function 53, 252
ncone loop keyword 212

March 1985

:ncone method combination type 455, 456
ncone function 52. 56
neonelng loop keyword 212
ncons-In-area function 45
ncons function 45. 56
Need for Packages 560
Need for Packages 559
negative number 97
negative number error 536
negatlve-sqrt flavor 536
neq function 10
nested lists 17
Nesting Macros 366

March 1985

Local
Remote

sya:
sys:

sya:

fa:

Creating
Adding

Functions That Create
Clm: Creating

Adding

:proceed can Return

sya:
condHlon-call and

fa:
fs:

ays:

SCL and
Logarithm of

Character code for
Support for

SCL and

Miscellaneous System Errors
Printed Representation of Arrays That Are

fa:
fa:

Exponential
fa:

731

Index

netl package 615
net package 615
Network connection problems 555
Network Problems 554
Network Problems 554
network-resources-exhausted flavor 554
network-stream-closed flavor 556
Network character 32
network-error flavor 554
Network Errors 554
network-Internals package 615
network-Iossage flavor 547
network package 615
never loop keyword 215
New Conditions 485
new methods 438
New Read1ables 33
New Streams 643
new symbols to locked packages 626
:new-symbol-functlon Option for defpackage and

make-package 601. 603
:new-name proceed type 542. 619
Next frame 494
:nlcknames Option for defpackage and

make-package 599. 601
NIL 205.220
nil 519
nil argument to setsyntax 36
nil symbol 561
nlntersectlon function 62
nleft function 53
nllstp function 7
No method for message 542
no-actlon-mlxln flavor 532
:no-error 493
no-flle-system flavor 546
no-more-room flavor 552
:no-vanllla-fiavor Option for defflavor 441. 445
:no-actlon proceed type 523. 542. 543. 619
nodeclare loop keyword 210
:non-complex-number argument to typep 9
non-posHlve-log flavor 534
NonlocaJ exit control structures 175
Nonlocal exit 197
Nonlocal Exits 197
non-null hosts 644
nonposltlve number error 534
nonprinting characters 27
Nonstandard Character Sets 275
non-terminating macro character attribute 643
*nopolnt variable 14
Not Categorized by Base Flavor 536
Not Named Structures 17
not-enough-resources flavor 547
not-logged-In flavor 548
notation 14
not-avallable flavor 553
Note on record-source-flle-name 318

732

Reference Guide to Symbolics-Usp

SCL and

Testing for even
Testing for negative

Testing for odd
Testing for positive

Testing for sign of a

Logarithm of nonposHive
Square root of a negative

Seed for random
Read rational

Maximum
Symbollcs-Usp

Iya:

32-bH
Addition of 32-bH

Coercion Rules for
Complex

Conversion of
Double-precision floating-point

Fixed-point
Floating-point

How the Reader Recognizes Complex
How the Reader Recognizes Floating-point

Introduction to
Logical Operations on

Printed Representation of
Printed Representation of Complex

Printed Representation of Floating-point
Random
Rational

SCL and potential
Single-precision floating-point

Subtraction of 32-blt
Types of
Types of

Font
Clm: Parsing of

Integer

not function 12
notlnllne declaration 640
notype loop data-type keyword 219
nreconc function 53
nreverse function 51, 56
nsublla function 56
nsubst function 55
nsubstrlng function 240, 278
nsymbolp function 7
nthcdr function 48
nth function 47
:null argument to typep 9
null function 12 .
number 97
number 97
number 97
number 97
number 97
:number argument to typep 9
number error 534
number error 536
number generator 118
number In binary 29
number loop data-type keyword 219
number of list elements to be printed 18
Number Types 89
number-array-not-allowed flavor 541
number-Into-array function 281
numberp function 7
Numbers 87
Numbers 119
numbers 119
Numbers 90
numbers 89, 95
numbers 90
numbers 89
numbers 7
numbers 4, 7. 94
Numbers 24
Numbers 22
Numbers 89
Numbers 113
Numbers 90
Numbers 15
Numbers 14
Numbers 118
Numbers 93
numbers 644
numbers 89
numbers 119
Numbers 93
numbers 4
numbers and character objects 267
Numbers and Symbols 643
Numbers In the Compiler 90
numerator 93
numerator function 108
Numeric argument deSCriptor 324

March 1985

March 1985

o

%%arg-desc-Interpreted
%arg-desc-Interpreted
%%arg-desc-max-args
%%arg-desc-mln-args

% %arg-desc-quoted
% %arg-desc-rest-arg

Controlling the Printed Representation of an
Error

Interactive handler
Message-receiving

Character
Message to an

Modularity and
Basic

Character
Condition

Creating condition
Font numbers and character

Functional
Generic Operations on

Printed Representation of Common Usp Character
Lexical Environment

Character
Character
Character

Reading
Testing for

Index

Accessing Muhidlmenslonal Arrays as

Functions That
Functions That

Complement logical
Shadowing-import

Singular matrix
Invalid file

o

numeric argument deSCriptor field
numeric argument descriptor field
numeric argument descriptor field
numeric argument descriptor field
numeric argument descriptor field
numeric argument descriptor field
Numeric Data Types 4
Numeric Type Conversions 107
Numeric arrays 5
Numeric Comparisons 98
Numeric Functions 97
Numeric Predicates 97
nunlon function 62

Obarrays 262
Object 19
object 529
object 511
object 423
Object Details 265
object of some Havor 461
Object comparisons 10
Object-oriented programming 417
Object-oriented Programming 418
Objects 1
Objects 265
objects 479. 481. 519. 529
objects 505
objects 267
objects 423
Objects 421
Objects 16

324
324
324
324
324
324

Objects and Arguments 138
Objects and the Flavor System 417
Objects as hash table keys 69
objects code field 265
objects font field 265
objects style field 265
octal character codes 25
odd number 97
oddp function 97
of loop keyword 222. 225
offset 240. 241
on loop keyword 207
once-only macro 365
One-dimenslonal 245
Open coded functions 351
Open-codlng 418
Open frame 494
Open subroutine 351
Operate on Locatives 84
Operate on Named Structures 405
operation 114
operation 573
operation error 535
operation errors 550

733

Index

o

734

Reference Guide to Symbolics-Usp

Basic Ust
Basic String

Boolean
Matrix

Truth table for the Boolean
SCL 110

Miscellaneous
Miscellaneous file

Performing arithmetic
Logical

Generic

SCL and
SCL and

:proceed-typel Inn
:proceed-types Inn

:abltract-navor
:accelsor-preflx
:defauh-lnh-pIlBt
:defauh-handler
:documentatlon

:export-Instance-varlables
:gettable-Instance-varlables

:Included-flavors
:1 n Hable-I nstance-varlables

:Inlt-keywordl
:method-comblnatlon

:method-order
:mlxture

: no-van ilia-flavor
:ordered-Instance-varlables

:outslde-accesslble-Instance-varlables
:requlred-Inlt-keywords

:requlred-Instance-varlables
:requlred-flavors

:requlred-methods
:settable-Instance-varlables
:special-Instance-variables

:colon-mode
:export
:Import

:Import-from
:relatlve-names-foi'-me

:relatlve-names
:shadow

:shadowlng-Import
:use

:colon-mode
:export

:extemal-only
:hash-Inherlted-symbols

:import
:Import-from

:Include
:new-symbol-functlon

:nlcknames

operatlon-handled-p function 431
:operatlon-handled-p message 453
Operations 46
Operations 278
operations 113
operations 258
operations 114
operations and streams 634
Operations Failures 552
operations failures 552
operations on characters In SCL 265
Operations on Numbers 113
Operations on Objects 421

March 1985

Operations the User Can Perform on Functions 302
Optimization 635
optimize declaration 640
option 519
option for condition 530
Option for demavor 441. 450
Option for demavor 441. 448
Option for demavor 441. 442
Option for demavor 441. 447
. Option for demavor 441. 449
Option for demavor 441. 448
Option for demavor 441. 485
Option for demavor 441. 444
Option for demavor 441. 485
Option for demavor 441. 442
Option for demavor 441. 449
Option for demavor 441. 449
Option for demavor 441. 445
Option for demavor 441. 445
Option for demavor 441, 447
Option for demavor 441. 447
Option for demavor 441, 442
Option for demavor 441. 442
Option for demavor 441. 443
Option for demavor 441. 442
Option for demavor 441
Option for demavor 441. 448
option for defpackage 585
option for defpackage 573
option for defpackage 573
option for defpackage 573
option for defpackage 582
option for defpackage 582
option for defpackage 574
option for defpackage 573. 574
option for defpackage 571. 599
Option for defpackage and make-package 601, 603
Option for defpackage and make-package 599. 602
Option for defpackage and make-package 600. 603
Option for defpackage and make-package 600. 603
Option for defpackage and make-package 599, 602
Option for defpackage and make-package 600. 602
Option for defpackage and make-package 600. 603
Option for defpackage and make-package 601. 603
Option for defpackage and make-package 599. 601

March 1985

:prefix-Intern-function
:preflx-name

:relatlve-names
:relatlve-names-for-me

:shadow
:shadowlng-Import

:slze
:aHerant
:but-flrat

:callable-accessora
:oonc-name
:constructor

:copler
:default-polnter

:eval-when
:export

:Include
:Inltlal-offset
: make-array

:named
:predlcate

:prlnt
:property

SCL and :named
SCL and :type

:slze-macro
:slze-symbol

:tImes
:type

:array
:array-Ieader

:fIxnum
:grouped-array

:1181
:named-array-Ieader

:named-array
:named-liat

:tree
:oonl

:copler
:defstruct

:keywords
:named

:overhead
:predlcate

: ref
:dlsplaced-conformally
:dlsplaced-Index-offset

:dlsplaced-to
:fIlI-polnter

:lnHlaJ-value
:Ieader-Iength

: leader-II st
:named-structure-symbol

:colon-mode
:import

:Import-from
:relatlve-names

735

Index

Option for defpackage and make-package 601. 603
Option for defpackage and make-package 599. 601
Option for defpackage and make-package 600. 602
Option for defpackage and make-package 600. 602
Option for defpackage and make-package 599. 602
Option for defpackage and make-package 600. 602
Option for defpackage and make-package 600. 602
option for defstruct 385. 386
option for defstruct 385. 390
option for defstruct 385. 391
option for defstruct 385. 387
option for defstruct 385. 386. 396
option for defstruct 385. 392
option for defstruct 385. 386
option for defstruct 335. 391
option for defstruct 385, 386
option for defstruct 385. 387
option for defstruct 385. 390
option for defstruct 385. 389. 395
option for defstruct 385. 389
option for defstruct 385. 392
option for defstruct 385. 391
option for defstruct 385. 391
option for defstruct 642
option for defstruct 642
option for defstruct 385. 390
option for defstruct 385. 390
option for defstruct 385, 390, 395
option for defstruct 385
option for defstruct:type 385
option for defstruct:type 385
option for defstruct:type 385. 386
option for defstruct:type 385. 386
option for defstruct:type 385
option for defstruct:type 385
option for defstruct:type 385
option for defstruct:type 385
option for defstruct:type 385. 386
option for defstruct-deflne-type 410
option for defstruct-deflne-type 410. 412
option for defstruct-deflne-type 410. 412
option for defstruct-deflne-type 410. 412
option for defstruct-deflne-type 410. 411
option for defstruct-deflne-type 410. 411
option for defstruct-deflne-type 410. 412
option for defstruct-deflne-type 410
option for make-array 241
option for make-array 240. 241
option for make-array 239, 241
option for make-array 241
option for make-array 241
option for make-array 241
option for make-array 241
option for make-array 241
option for make-package 585
option for make-package 573
option for make-package 573
option for make-package 582

736

Reference Guide to Symbo/ics-Usp

:relatlve-names-for-me
:Ihadowlng-Import

:default-value
:area

:Invilible
:Ihadow

:use
:extenslon

:Inltlal-dlmenslons
:Inltlal-orlglna

:type
:export

:type
:area Inlt

:growth-factor Inlt
:rehash-before-cold Inlt

:slze Inl1
:rehash-threshold Inl1

:property-list Inl1

Clm: defstruct
demavor

Inl1
Messages and Init

Inclusive
Logical

Row-major
SCL and column-major

Column-major

Miscellaneous
Clm:

Elements
Instance variable

Multiple and
Displaying characters on

Clm: Formatted

Exponent
Exponent

Stack

Arrays

option for make-package 582
option for make-package 573. 574
option for make-plane 261
option for make-array 241
Option for make-package 601
option for make-package 574
option for make-package 571. 602
option for make-plane 261
option for make-plane 261
option for make-plane 261
option for make-array 241
option for make-package 573
option for make-plane 261
option for sl:eq-hash-table 71
option for 11:eq-hash-table 71
option for II :eq-hash-table 71
option for sl :eq-hash-table 71
option for II:equal-hash-table 72
option for sl:property-list-mlxln 474
&optlonal keyword for defmacro 373
&optlonal Lambda-Jist Keyword 309
&optlonal keyword 151
:optlonaJ keyword 161
Optional parameters 154
Options 642
Options 441
options 425
Options 529
Options to defstruct 385
Options to defstruct-deflne-type 410
or 179
or function 179
:or method combination type 455
:or method type 455. 458
or special form 179
order 235
order for arrays 641
:ordered-Instance-valiables Option for

defflavor 441, 447
ordering 248

March 1985

Ordering Flavors, Methods, and Wrappers 467
Other Clauses 218
Other Environment Inquiries 645
Other Kinds of Functions 305
otherwise symbol 178
ou1-of-bounds 541
ou1-of-bounds 541
Ou1-of-bounds subscripts 541
Ou1-of-order Evaluation 363
ou1pu1 devices 268
Ou1pu1 to Character Streams 644
:outslde-accesslble-Instance-varlables Option for

defflavor 441, 447
overflow 94
overflow error 535
overflow error 537
:overhead option for defstruct-deflne-type 410, 411
Overlaid wl1h Usts 250

March 1985

p
Change current

chaos
cl

Common Lisp Compatibility
common-lisp-global

common-lisp-system
common-lisp-user

common-lisp
complier

Condition system
Current

dbg
debugger
Defining a

Editor
file-system

fonts
format

fs
global
Home

keyword
Lisp language

Imfs
net
nell

network
network-Internals

Pathnames
Remove

Removing symbol from
sci

SCL gprlnt
SCL language-tools

SCL zl
SCL zl-user

sl
symbollcs-common-lisp

sys
system

system-Internals
The Current
The global

tv
user

Window system
Zmail
zwel

The

p

:overrlde method type 455. 457
OVerstrike character 32
OVerview and Definitions of Signalling and

Handling 479

package 597
package 615
package 615. 633
Package 615
package 615
package 633
package 633
package 633
package 615
package 615
package 597
package 615
package 615
Package 598
package 615
package 615
package 615
package 615
package 615
package 615
package 606
package 615
package 615
package 615
package 615
package 615
package 615
package 615
package 615
package 603
package 606
package 633
package 633
package 633
package 633
package 633
package 615
package 633
package 615
package 571. 615
package 615
Package 597
Package 571
package 615
package 579. 615
package 615
package 615
package 615
Package cell of a symbol 3
Package Cell of a Symbol 566
Package Functions. Special Forms. and

737

Index

p

738

Reference Guide to Symbolics-Usp

Checking for
Introduction to

Resolving
Introduction to

Introduction to Qualified
MuHllevel Qualified

Qualified
Relative

Shadowing
Qualified

Functions That Find the Home
Home

II:

Compatibility with the Pre-release 5.0
How the

:name message to IYI:
:relatlve-to message to IYS:

Iya:

Interning Errors Based on IYS:
IYI:

:package message to sys:
:symbol message to SYI:

sys:
SCL case checking In

Adding new symbols to locked
Consistency Rules for

Example of the Need for
Examples of Symbol Sharing Among

Invisible
Mapping Between Names and

SCL
Sharing of Symbols Among

Specifying Internal and External Symbols in
System

The Need for
External-only

Variables 597
:package message to

March 1985

Iys:extemal-symbol-not-found 619
:package message to sys:package-Iocked 543. 619
Package name conflicts 581
Package Name-confllct Errors 593
Package Name-confllct Errors 593
Package Name-confllct Errors 593
Package Name-conflict Errors 595
Package Names 581
Package Names 584
Package Names 586
Package Names 584
Package Names 582. 610
package names 582
Package Names as Interfaces 585
Package of a Symbol 607
Package of a Symbol 573
package qualifier 584
package qualifier 585. 601. 603
package qualifier 601. 603
Package System 625
Package System Allows Symbol Sharing 569
Package ·Commands· 612
package-ceil-location function 607
package-extemal-symbols function 611
package-not-found 542. 619
package-not-found 542. 619
package-not-found flavor 542. 619
package-shadowlng-symbols function 612
package-use-list function 610
package-used-by-list function 610. 625
Package attribute 579
Package commands 612
package-declare special form 625
package-error 542
package-error flavor 542, 619
Package Inheritance 571, 599, 602
Package Heration 608
package-locked 543, 619
package-locked 543. 619
package-locked flavor 543, 619
package-name lookup 640
Package Names 581
Package-related Conditions 619
Packages 557
packages 626
Packages 591
Packages 560
Packages 589
packages 581. 582
Packages 607
Packages 633
Packages 569
Packages 585
Packages 615
Packages 559
Packages and Locking 626

March 1985

Specifying

Specifying a Keyword

ActuaJ
Default forms of lambda-list

Formal
Keyword
Optional

Positional
Required

Rest
SCL and &rest

Binding
SCL and :junk-allowed keyword for

fs:
sys:

SCL and

SCL and
Clm:

Message
Message

Functions for
Clm: Rules Governing the

Drawing
Read

array-element loop iteration
array-elements loop iteration
hash-elements loop iteration
heap-elements loop iteration

Interned-symbols loop iteration
local-Interned-symbol. loop Iteration

The Interned-symbols
An Example

SCL and
Clm:

Invalid
fs:

Clm:
Printing

SCL

Defining Iteration
Iteration

Predefined Iteration
sys:

Operations the User Can
Array Registers and

Packages In Programs 579
Package system 566
package variable 579. 597
Page character 32
palrlls function 66
Parameter's Symbol In Lambda Usts 156
Parameters 151
parameters 151
parameters 151
parameters 151
parameters 151
parameters 154
parameters 154
parameters 154
parameters 154
parameters for lambda-expressions 638
Parameters to Arguments 153
parse-namestrlng 644
parse-pathname-error navor 553
parse-error flavor 543
parse-ferror flavor 543
parse-ferror function 504
parse-namestrlng function 644
parse-number function 281
parse-pathname function 644
ParSing of Numbers and Symbols 643
passing 421. 423
PaSSing In the Flavor System 423
Passing Messages 430
Passing of Multiple Values 639
Passing-back of Multiple Values 169
:pass-on method combination type 455. 456
past edge of screen error 537
past the end-of-file error 536
path 225
path 225. 257
path 224
path 224
path 225
path 225
Path 225
Path Definition 229
pathname components 644
Pathname Functions 644
pathname syntax errors 550
path name-error flavor 553
Pathname Errors 553
Path names 222
Pathnames 644
pathnames 643
path names and :unspeclflc 644
Pathnames package 615
Paths 227
Paths 222
Paths 225
pdl-overflow flavor 537
Perform on Functions 302
Performance 255

739

Index

740

Reference Guide to Symbolics-Usp

Trailing decimal

Fill
Frame

Invisible
Locative

Conses represented as
Restart

Ex1ract

Testing for

SCL and

Character
Clm: Specific Data Type

Numeric
SCL sequence and list functions and two-argument

March 1985

Performing arithmetic operations on characters In
SCL 265

phase function 107
pkg-add-relatlve-name function 582. 610
pkg-contalned-In function 625
pkg-create-package function 626
pkg-debug-copy function 625
pkg-delete-relatlve-name function 582. 610
pkg-flnd-package function 607
pkg-global-package variable 617
pkg-keyword-package variable 617
pkg-refname-allst function 625
pkg-super-package function 625
pkg-system-package variable 617
pkg-blnd macro 598
pkg-goto function 597
pkg-klll function 603
pkg-Ioad function 625
pkg-name function 607
plane-aref function 261
plane-aset function 262
plane-default function 261
plane-extension function 261
plane-origin function 261
plane-ref function 261
Planes 260
plane-store function 262
Plist 67
pllst function 565
Pluralizing words 280
plus function 100
Plus-Minus <+> character 32
plusp function 97
point 14
Pointer 83
pointer 238. 247
pOinter 494
pointer 56
pOinter 147
pointers 56
points 479
pop macro 150
position field of a byte specifier 116
Positional parameters 154
positive number 97
Post-step-endtest 221
potential numbers 644
Ppss 115
Pre-step-endtest 221
Predefined Iteration Paths 225
Predicate 7
:predicate option for defstruct 385. 392
:predicate option for defstruct-define-type 410. 412
Predicates 7
Predicates 270
Predicates 638
Predicates 97
predicates 641

March 1985

Clm:

Compatibility with the

Hash

Clm: What the

The

dbg:
dbg:
sys:

sl:

Maximum number of list elements to be
SCL and

Controlling the

Errors Involving Lisp

Errors inside Lisp
What the
How the

Effects of Slashlflcation on
Depth of recursion of

SCL and
sys:

si:

741

Index

Predicates on Characters 640
:preflx-Intem-functlon Option for de1package and

make-paekage 601. 603
:preflx-name Option for defpaekage and

make-package 599. 601
Pre-release 5.0 Package System 625.
Previous frame 494
Primary methods 431
Primitive 75
Primitive for Producing Multiple Values 167
prine function 585
prlnlength variable 18
prlnlevel variable 17
Print Function Produces 644
Print name of a symbol 3
Print Name of a Symbol 565
:prlnt option for defstruct 385. 391
prlnt-frame-Iocals function 499
prlnt-funetlon-and-args function 499
prlnt-not-readable flavor 543
prlnt-object-error-message variable 543
:prlnt-self keyword for

named-structure-Invoke 403. 404
printed 18
printed character names 644
Printed Representation of an Object 19
Printed Representation of Arrays That Are Named

Structures 16
Printed Representation of Arrays That Are Not Named

Structures 17
Printed Representation of Common Lisp Character

Objects 16
Printed Representation of Complex Numbers 15
Printed Representation of Conses 17
Printed Representation of Floating-point Numbers 14
Printed representation of functions 297
Printed Representation of Instances 16
Printed Representation of Integers 14
Printed Representation of Miscellaneous Data

Types 18
Printed Representation of Numbers 90
Printed Representation of Ratios 14
Printed Representation of Strings 16
Printed Representation of Symbols 15
Printed Representations 543
Printed representation 3. 13. 559. 585
Printer 13. 585
printer 543
Printer Produces 14
Printer Works 13
Printing 13
printing lists 16
Printing nested lists 17
printing of structures 642
prlntlng-random-object macro 18
Printing path names 643
Print-Print consistency 591
print-readably variable 18

742

Reference Guide to Symbofics-Usp

Connection
Local Network

Login
Network connection

Remote Network

:create-package
:export

:new-name
:no-actlon

:shadow
:shadowlng-Import

:share
:sklp

:unlntem
:ChOO88

dbg:

Signalling
dbg:

Protocol for
Reference Material:

Text
SCL and

Clm: What the Print Function
What the Printer

Primitive for

SCL and

SCL and

Goto-Iess
Modularity and Object-oriented

Print-Read conSistency 591
:print-self message 16
:prlnt-self message 453
Private symbol 571
Problems 555
Problems 554
Problems 547
problems 555
Problems 554
:proceed Can Return nil 519
proceed type 542, 619
proceed type 619
proceed type 542, 619
proceed type 523, 542, 543, 619
proceed type 619
proceed type 619
proceed type 619
proceed type 619
proceed type 619
proceed type 619
Proceed Type Messages 519

March 1985

Proceed Type Names 520
:proceed-type.p method of condition 530
:proceed-type-p message 519
proceed-type-speclal-keys variable 528
Proceed able condition functions 521
Proceedable conditions 517
proceedable conditions 521
proceedable-ferror flavor 532
Proceeding 517
Proceeding 517
Proceeding 521
Proceeding with condltlon-blnd Handlers 520
:proceed message 520
:proceed method 517, 520
Proceed type 517
:proceed-types Inlt option 519
:proceed-types Inlt option for condition 530
:proceed-types method of condition 530
:proceed-types message 519
Processes and SCL 635
processing 277
proclaim function 640
Produces 644
Produces 14
Producing Multiple Values 167
prog special form 167, 194, 359
prog* special form 196
prog1 macro 639
prog1 special form 165
prog2 macro 639
prog2 special form 165
prog-Context Conflicts 359
:progn method combination type 455
progn special form 164
Program control 175
programming 194
Programming 418

March 1985

Object-oriented
MOL

Muttipackage
Specifying Packages in

How
How

How Applications

SCL and

Loop

81 :defstruct-ctescrlptlon
File

Cons as
Disembodied

Memory cell as
Symbol associated with

The

Storing functions on
Maclisp

Maclisp system

:property-list Intt option for sl:
al:

Unwind

SCL and

SCL and

programming 417
programming environment 205
Programs 621
Programs 579
Programs Examine Functions 322
Programs Manipulate Definitions 316
Programs Treat Conditions 481
prog tags 189
progv macro 639
progv special form 131
progw special form 132
prologue 205. 212
Prompt string 517. 528
property 407
property errors 551
:property function spec type 297
property list 67
property list 67
property list 67
property list 67
Property list indicators 67
Property list keywords 67
Property Ust Messages 473
Property list of a symbol 3
Property Ust of a Symbol 564
Property list values 67
property lists 297
property names 564
property names 564
:property option for defstruct 385. 391
property-cell-Iocatlon function 565
:property-list init option for

al:property-list-mlxln 474
property-list-mlxln 474
property-list-mlxln flavor 473
Property list 67
:property-list message 474
Property Usts 67
protection 197
Protection-violation errors 549
Protocol for Proceeding 517
psetq special form 128
Pseudo-steps 221
Purpose of functions 339
push function 641
push-in-area macro 150
push macro 150
pushnew function 641
:push-property message 473
puthash-equal function 74
puthash function 74
:put-hash message 72
putprop function 68
:putprop message 473

743

Index

744

Reference Guide to Symbolics-Usp

Q

R

Introduction to
Multilevel

Forms of
#: package

: package
:: package

Single

SCL and vertical bars for

Integer
Seed for

sl:

sl:

Read

How the Reader Recognizes
Printed Representation of

Clm: What the
Syntax errors In

cl:
SCL and

sys:
sl:

SCL and

sl:

SCL and

SCL and
sys:

Q

R

March 1985

Qualified Names of Symbols 585
Qualified Package Names 584
Qualified Package Names 584
Qualified Package Names 586
Qualified Package Names as Interfaces
Qualified names 589
qualified names 585
qualifier 584
qualifier 585. 601. 603
qualifier 601. 603
quote (') 161
Quote (') macro character 26
"e Lambda-list Keyword 310
quote special form 161
Quote character 32
quotient function 102
quoting 643

Radians In trigonometric functions 106
radix 14. 20
random number generator 118
:random returned by typep 9
random-create-array function 119
Random-array 118
random function 118
random-Initialize function 119
Random Numbers 118
rass function 66
rassoc function 66
rassq function 65
rational number In binary 29
:ratlonal returned by typep 9
rational function 108
Rational Numbers 93
ratlonalp function 8
Ratios 89. 93
Ratios 22
Ratios 14
Read Function Accepts 643
read functions 543
Read past the end-of-file error 536
Read rational number In binary 29
read-default-float-format variable 23
read-delimited-list function 644

Q

585

R

read-end-of-file flavor 544
read-extended-lbase-slgned-number variable 21
read-extended-Ibase-slgned-numbers

variable 643
read-extended-Ibase-unslgned-number

variable 21
read-extended-Ibase-unslgned-numbers

variable 643
read-from-strlng function 643
read-list-end-of-file flavor 544

745

March 1985 Index

sl: *read-multl-dot-tokens-as-symbols* variable 26
sys: read-premature-end-of-symbol flavor 544
sya: read-strlng-end-of-flle flavor 544

SCL and *read-base* variable 643
SCL and read-char function 643

Reader 13
#- Reader Macro 30
#: Reader Macro 29
#~ Reader Macro 30
#' Reader Macro 28

#+ Reader Macro 29
#, Reader Macro 28
#. Reader Macro 29
#< Reader Macro 30
#b Reader Macro 29

#m Reader Macro 29
#n Reader Macro 29
#0 Reader Macro 29
#P Reader Macro 643
#q Reader Macro 29
#r Reader Macro 29
#x Reader Macro 29

#\ or #1 Reader Macro 27
#- Reader Macro 28
III Reader Macro 30

SCL and #- Reader Macro 644.645
SCL and #+ Reader Macro 644. 645

Reader macro for Infix expressions 30
reader macros 27

Sharp-sign Reader Macros 27
What the Reader Recognizes 20
How the Reader Recognizes Complex Numbers 24
How the Reader Recognizes Conses 25
How the Reader Recognizes Floating-point Numbers 22
How the Reader Recognizes Integers 20
How the Reader Recognizes Macro Characters 26
How the Reader Recognizes Ratios 22
How the Reader Recognizes Strings 25
How the Reader Recognizes Symbols 24
How the Reader Works 19

sys: read-error flavor 544
read function 13. 56
Reading Integers in Bases Greater Than 10 21
Reading octal character codes 25
Read-only error 537
Read-Read consistency 591

81: read-recursive function 27
SCL and *read-suppress* variable 643

Readtable 33
Clm: the Readtable 644

Common Usp readtable 27
Manipulating the readtable 33

The Readtable 33
Readtable Functions for Maclisp Compatibility 36
Readtables 262

Functions That Create New Readtables 33
readtable variable 33
Read-time conditlonalizatlon facility 29

746

Reference Guide to Symbolics-Usp

Special Forms for
Data Types

What the Reader
How the Reader
How the Reader
How the Reader
How the Reader
How the Reader
How the Reader
How the Reader
How the Reader

Note on

Structured

Condition Bind
Depth of

Illegal
aya:

Captured free
Clm:

Condition Flavors
Free

aya:
Array
Array

Hints for Using Array
Array

SCL and

SCL and

Interpackage

realpart function 108
*rearray Macllsp function 262
Receiving Multiple Values 167
Recognized by loop 219
Recognizes 20
Recognizes Complex Numbers 24
Recognizes Conses 25
Recognizes Floating-point Numbers 22
Recognizes Integers 20
Recognizes Macro Characters 26
Recognizes Ratios 22
Recognizes Strings 25
Recognizes Symbols 24

March 1985

recompile-flavor function 438
record-aource-flle-name 318
record-source-flle-name function 317, 319
records 59
Recursion 175
Recursion 502
recursion of printing lists 16
Redefining functions 318
redefinition error 538
redeflnHlon flavor 538
:ref option for defstruct-deflne-type 410
reference 126
Reference 638
Reference 529
reference 126
Reference Material: Default Handlers and Complex

Modularity 510
Reference Material: Establishing Handlers 488
Reference Material: Proceeding 521
Reference Material: Restart Handlers 514
Reference Material: Signalling Conditions 503
Reference Material: Application: Handlers Examining

the Stack 495
reglon-table-overflow flavor 538
Register Restrictions 258
Registers 255
Registers 257
Registers and Performance 255
Rehash 75
:rehash-before-cold inlt option for

sl:eq-hash-table 71
:rehash-slze keyword to make-hash-table

function 641
:rehash-threshold init option for

sl:equal-hash-table 72
:rehash-threshold keyword to make-hash-table

function 641
Relations 610
Relationship between methods and messages 421
Relative Package Names 582, 610
:relatlve-names Option for defpackage and

make-package 600, 602
:relatlve-names option for make-package 582
:relatlve-names-for-me option for defpackage 582
:relatlve-names-for-me Option for defpackage and

March 19B5

sys:

File
fa:
fs:
fs:
sl:
fs:
fs:

Function

SCL and

Debugger Bug

D exponential
E exponential

IEEE Floating-point
Printed

E exponential
ContrOlling the Printed

Printed

Printed

Printed

Printed
Printed

make-package 600. 602
:relatlve-names-for-me option for

make-package 582
:relatlve-to message to

sys:paekage-not-found 542. 619
:relatlve-namea option for defpackage 582
rem-If-not function 63
remainder function 103
rem function 62
remhash-equal function 74
remhash function 74
:rem-hash message 73
rem-If function 64
remob function 573. 593, 606
Remote Network Problems 554
remote-network-error flavor 554
:remove method of sl:heap 79
remove function 62
Remove package 603
Removing a defun-method 437
Removing elements from list 150
Removing symbol from package 606
Removing flavor 437
Removing methods 437
remprop function 69
:remprop message 473
remq function 62
rename errors 551

747

Index

rename-aerosa-dlrectorles navor 551
rename-aeross-hosls navor 551
rename-lo-exlstlng-flle navor 551
rename-wlthln-new-deflnltlon-maybe function 329
rename-failure 551
rename-failure flavor .551
Rename-within 329
Rename-within Encapsulations 329
renaming 329
repeat loop keyword 207
:replaee keyword for delele-duplleates function 640
:report method of condition 530
:report message 529
:report method 485
Reports 524
:report-strlng method of condition 531
representation 94
representation 94
Representation 94
representation 3. 13. 559, 585
representation 14
Representation of an Object 19
Representation of Arrays That Are Named

Structures 16
Representation of Arrays That Are Not Named

Structures 17
Representation of Common Usp Character

Objects 16
Representation of Complex Numbers 15
Representation of Conses 17

748

Reference Guide to Symbolics-Usp

Printed
Printed
Printed
Printed
String

Printed
Printed
Printed
Printed
Printed

Array
Errors Involving Usp Printed

Conses

SCL and

Safety of

SCL and

Reference Material:
Invoking

SCL and rplaca
SCL and rplacd

SCL arrays and circular-structure labelling

Array Register
Using the

SCL and

Functions that
:proceed Can

:array
:blgnum
:closure

March 1985

Representation of Floating-point Numbers 14
representation of functions 297
Representation of Instances 16
Representation of Integers 14
representation of integers 2n
Representation of Miscellaneous Data Types 18
Representation of Numbers 90
Representation of Ratios 14
Representation of Strings 16
Representation of Symbols 15
Representation Tools 237
Representations 543
represented as pointers 56
Request Failures Based on

fs:file-request-fallure 546
require function 640
:requlred-Inlt-keywords Option for defflavor 441,

442
:requlred-Instance-varlables Option for

defflavor 441, 442
:requlred-flavors Option for defflavor 441, 443
:requlred-methods Option for defflavor 441, 442
Required parameters 154
Resolving Package Name-confllct Errors 595
&rest Arguments 157
&rest keyword for defmacro 373
&rest lambda-list Keyword 309
&rest parameters for lambda-expressions 638
rest1 function 47
rest2 function 47
rest3 function 47
rest4 function 47
Restart handler functions 514
Restart Handlers 514
Restart Handlers Manually 516
Restart handlers 501, 513
Restart pOints 479
&rest keyword 151
Rest parameters 154
restriction 638
restriction 638
restriction 641
Restriction Due to Scope 503
Restrictions 258
RESUME key with floating-point conditions 535
Resume character 32
RESUME key 526
Return from typeof function 642
return function 639
return loop keyword 216, 218
return multiple values 167
Return nil 519
return special form 167, 169, 185, 189
return-array function 250
Return character 32
returned by typep 9
returned by typep 9
returned by typep 9

March 1985

s

:complled-functlon
:complex

:double-float
:f)xnum

:1151
:Iocatlve
:random
:ratlonal

:select-method
:slngle-float
:stack-group

:strtng
:symbol
SCL and
SCL and

Square
Square

SCL and

SCL and

Search
Coercion
Coercion

Consistency
Clm:

Copying From and to the

Flavors and
Performing arithmetic operations on characters In

Processes and
Self-evaluating atoms and

Using
Zetalisp and

s

returned by typep 9
returned by typep 9
returned by typep 9
returned by typep 9
returned by typep 9
returned by typep 9
returned by typep 9
returned by typep 9
returned by typep 9
returned by typep 9
returned by typep 9
returned by typep 9
returned by typep 9
returned values from cond macro 639
return-from function 639
return-from special form 167. 184. 218
Returning array elements 244
return-list function 185
reverse function 51
Roman-I character 32
Roman-II character 32
Roman-III character 32
Roman-IV character 32
root 106
root of a negative number error 536
Rotate bits 115
rot function 115
round function 111
Rounding 93
Row-major order 235
rplaca restriction 638
rplaca function 54. 56. 83. 236
rplacd restriction 638
rplacd function 54. 56. 83. 236
Rubout character 32
rule for Invoking handlers 501. 509
rules 90
Rules for Numbers 90
Rules for Packages 591
Rules Governing the Passing of Multiple Values

Safety of &rest Arguments 157
Same Array 253
sarnepnamep function 293. 565
sassoc function 66
sassq function 66
SCL 635
SCL 265
SCL 635
SCL 637
SCL 633
SCL 631
SCL and • variable 642
SCL and #- Reader Macro 644. 645
SCL and #+ Reader Macro 644. 645
SCL and #S macro form 642

749

Index

639

s

750

Reference Guide to Symbolics-Usp March 1985

SCL and *defauH-palhname-defauHs* variable 644
SCL and *features* variable 645
SCL and *read-extended-lbase-slgned-numbers*

variable 643
SCL and *read-extended-lbase-unslgned-

numbers* variable 643
SCL and *read-base* variable 643
SCL and *read-suppress* variable 643
SCL and adjustable arrays 641
SCL and array-row-major-Index function 642
SCL and column-major order for arrays 641
SCL and Common Usp Differences 637
SCL and Common Usp Files 635
SCL and compile-file function 645
SCL and constituent character attribute 643
SCL and declaration declaration 640
SCL and declare special form 640
SCL and decode-unlversal-tlme function 645
SCL and defsetf function 639
SCL and defstruct macrp 642
SCL and defstruct slot Inltlallzatlons 642
SCL and describe function 645
SCL and directory function 645
SCL and documentation as setf argument 639
SCL and documentation function 645
SCL and dribble function 645
SCL and equal-typep function 638
SCL and equivalent macro definitions for special

forms _ 638
SCL and file lookup errors 645
SCL and format function directives 644
SCL and ftype declaration 640
SCL and function special form 638
SCL and functlonp function 638
SCL and get-macro-character function 644
SCL and go special form 639
SCLand leee-fioatlng.point feature name 645
SCL and illegal character attributes 643
SCL and Inllne declaration 640
SCL and :Junk-allowed keyword for

parse-namestrlng 644
SCL and keywords In the *features* list 644
SCL and make-concatenated-stream function 643
SCL and make-echo-stream function 643
SCL and mismatch function 641
SCL and multidimensional arrays 641
SCL and :named option for defstruct 642
SCL and non-nUll hosts 644
SCL and non-terminating macro character

attribute 643
SCL and notlnllne declaration 640
SCL and Optimization 635
SCL and optimize declaration 640
SCL and parse-namestrlng function 644
SCL and parse-pathname function 644
SCL and path name components 644
SCL and potential numbers 644
SCL and printed character names 644

751

March 1985 Index

SCl and printing of structures 642
SCl and proclaim function 640
SCl and prog1 macro 639
SCl and prog2 macro 639
SCl and progv macro 639
SCl and push function 641
SCl and pushnew function 641
SCl and read-dellmited-list function 644
SCl and read-from-strlng function 643
SCl and read-char function 643
SCl and :rehash-slze keyword to make-hash-table

function 641
SCl and :rehash-threshold keyword to make-hash­

table function 641
SCl and :replace keyword for delete-dupllcates

function 640
SCl and require function 640
SCl and &rest parameters for

lambda-expresslons 638
SCl and return function 639
SCl and returned values from cond macro 639
SCl and return-from function 639
SCl and rplaca restriction 638
SCl and rplacd restriction 638
SCl and set-macro-character function 644
SCl and set-synlax-from-char function 643
SCl and slashlficatlon 644
SCl and Standard Character Syntax Types

Table 643
SCl and Standard Constituent Character Attributes

Table 643
SCl and standard-char-p function 640
SCl and Strings 634
SCl and substHute function 640
SCl and substltute-If-not function 640
SCl and substHute-1f function 640
SCl and subtype variations 637
SCl and Symbolics Common Usp Extensions 635
SCl and :test keyword to make-hash-table

function 641
SCl and the special form 640
SCl and type common 637
SCl and :type option for defstruct 642
SCl and type string 637
SCl and type strlng-char 637
SCl and value-type argument for the special

form 640
SCl and vertical bars for quoting 643
SCl and zl:sl:*fIag-wrong-type-strlngs* 637. 642
SCl and I 643
SCl and -E directive 644
SCl and -G directive 644
SCl and -T directive 644
SCl arrays and circular-structure labelling

restriction 641
SCl case checking In package-name lookup 640

Zetallsp and SCl character Incompatibilities 265
SCl coerce function 637

752

Reference Guide to Symbolics-Lisp

Zetalisp and

Dynamic
Lexical

Restriction Due to
Lexically
Lexically

defmacro and lexical
Lexical

macro and lexical
Macro-expander functions and lexical

Drawing past edge of

Table
String
String

Handier-list
String
Clm:

Send message to

Case
SCL

Clm: Modifying
Clm: Searching

Clm:
Clm: Simple

SCL gprlnt package 633
SCL 110 operations and streams 634
SCL language-tools package 633
SCL loop macro 635
SCL path names and :unspeclflc 644

March 1985

SCL sequence and list functions and two-argument
predicates 641

SCL string Incompatibilities 265
SCL zl package 633
SCL zl-user package 633
SCL Documentation 636
sci package 633
SCL Packages 633
scope 126
scope 126
Scope 503
scoped complier 137
seoped Interpreter 137
seoplng 138
Scoplng 137, 142, 144
seoplng 138
seoping 138
sereen error 537
Search rule for invoking handlers 501, 509
searches 59
Searching 286
Searching Affected by Case, Style, and Bits 286
searching functions 510
Searching Ignoring Case, Style, and Bits 287
Searching Sequences for Items 641
second function 46
Seed for random number generator 118
select special form 180
Selective evaluation In macro definitions 345
Select-method 305
:select-method returned by typep 9
Select-method functions 305
selector special form 181
selectq special form 179
selectq-every special form 182
sen 159
Self-evaluating atoms and SCL 637
self variable 437
Semicolon (;) macro character 26
Send message to self 159
send-If-handles function 431
:send-If-handles message 454
send function 160, 430
Sending a message 421
Sending messages 159
sensitivity of interning 604
sequence and list functions and two-argument

predicates 641
Sequence iteration 225
Sequences 640
Sequences for Items 641
Sequences, Lists 641
Sequencing 639

March 1985

Special Forms for

Expanded character
Creating a

SCL and

SCL and

SCL and documentation as

Character
Support for Nonstandard Character

Character
:macro argument to

nil argument to
:slngle argument to

:spllclng argument to

Special Forms for

Functions That Import, Export, and

How the Package System Allows Symbol

753

Index

Sequencing 164
Set 59
set 277
Set of Condition Flavors 486
set-char-blt function 269
set-character-translatlon function 34
set-In-closure function 335
set-In-Instance function 439
set-macro-character function 644
:set-proceed-types method of condition 530
:set-property-list message 474
set-syntax-#-macrO-Char function 27, 36
set-syntax-from-char function 34
set-syntax-from-char function 643
set-syntax-from-descrlptlon function 34
set-syntax-macro-char function 26, 35
setarg function 166
self argument 639
self special form 147
self macro 147
set function 561
set-globally function 561
setpllst function 565
setq special form 125, 128
sets 267
Sets 275
Sets and Character Styles 267
setsyntax 36
setsyntax 36
setsyntax 36
setsyntax 36
setsyntax-sharp-macro function 36
setsyntax function 36
:settable-Instance-varlables Option for

defflavor 441
Setting variables 125, 126
Setting Variables 128
seventh function. 47
:shadow option for defpackage 574
:shadow Option for defpackage and

make-package 599, 602
:shadow option for make-package 574
:shadow proceed type 619
Shadow Symbols 611
shadow function 574, 593, 612
Shadowing 571
Shadowing package names 582
:shadowlng-Import Option for defpackage and

make-package 600, 602
:shadowlng-Import option for make-package 573.

574
:shadowlng-Import option for defpackage 573. 574
:shadowlng-Import proceed type 619
shadowing-Import function 573, 574. 593, 611
Shadowing-Import operation 573
Shadowing Symbols 574. 593, 611
:share proceed type 619
Sharing 569

754

Reference Guide to Symbolics-Usp

Examples of Symbol

Drawing on unprepared

cl:

SCL and zl:
:area Inl1 option for

:growth-factor Inl1 option for
:rehash-before-cold Inl1 option for

:slze Inlt option for
:rehash-threshold Inlt option for

:clear method of
:delete-by-Item method of
:delete-by-key method of

:descrlbe method of
:empty-p method of

:fInd-by-Hem method of
:fInd-by-key method of

:Insert method of
:remove method of

:top method of
:property-list Inl1 option for

Testing for

March 1985

Sharing Among Packages 589
Sharing of Symbols Among Packages 569
Sharp-sign (#) macro character 26
Sharp-sign Reader Macros 27
sheet error 537
Shift bl1s 114
short-float format 23
sl:*fIavor-complie-trace* variable 440
sl:*fIavor-compllatlons* variable 440
sl:*macroexpand-hook* variable 375
sl:*prlnt-object-error-message* variable 543
sl:*read-extended-lbase-slgned-number*

variable 21
sl:*read-extended-Ibase-unslgned-number*

variable 21
sl:*read-muHI-dot-tokens-as-symbols* variable 26
sl:*fIag-wrong-type-strlngs* 637. 642
sl:eq-hash-table 71
sl:eq-hash-table 71
sl:eq-hash-table 71
sl:eq-hash-table 71
sl:equal-hash-table 72
sl:heap 78
sl:heap 78
sl:heap 78
sl:heap 78
sl:heap 78
sl:heap 78

. sl:heap 78
sl:heap 79
sl:heap 79
sl:heap 79
II:property-list-mlxln 474
sl:alphabetlc syntax deSCription 34
sl:break syntax deSCription 34
sl:clrclecross syntax description 34
Side Effects 212
sl:deflne-slmple-method-comblnatlon macro 459
sl:defstruct-descrlptlon property 407
sl:dlgested-Iambda functions 297. 300. 304. 305
sl:doublequote syntax deSCription 34
sl:encapsulated-deflnltlon debugging Info alist

element 325
sl:encapsulated-functlon variable 325
sl:encapsulate macro 326
sl:encapsulatlon-standard-order variable 327
sl:eq-hash-table flavor 71
sl:equal-hash-table flavor 72
sl:equal-hash function 75
sl:flavor-allowed-Inlt-keywords function 439
sl:flavor-defauH-lnH-get function 440
sl:flavor-default-Inlt-putprop function 440
sl:flavor-defauH-lnlt-remprop function 440
sl:functlon-spec-get function 322
sl:functlon-spec-putprop function 322
sign of a number 97
slgnal-proceed-case special form 517, 521
signal function 482, 503, 517

755

March 1985 Index

Signallers 520
Signalling 482
Signalling a condition 479

OVerview and Definitions of Signalling and Handling 479
Introduction to Signalling and Handling Conditions 479

Signalling proceedable conditions 521
Signalling Simple Conditions 502
Signalling Conditions 501

Reference Material: Signalling Conditions 503
Signalling Errors 502
Signalling functions 482. 503
Signalling Mechanism 501. 509
Significant bits 115
slgnp special form 97
signum function 106
sl:lnltlal-readtable variable 33
sl:loop-named-variable function 229
sl:loop-use-system-destructurlng? variable 221
sl:loop-tassoc function 228
sl:loop-tequal function 228
sl:loop-tmember function 228
sl:macro syntax description 34

Signalling Simple Conditions 502
Simple Function Definitions 300

Examples of Simple Lambda Usts 154
Clm: Simple Sequencing 639

Simple Use of Flavors 425
Simple conditions 482
Simultaneous linear equations 258
sind function 106
Sine 106
sin function 106
:slngle argument to setsyntax 36
Single quote (') 161

sl: single syntax description 34
sys: slngle-float-p function 8

Single-precision floating-point numbers 89
Single-character symbol 34
Single-float 22
:slngle-float returned by typep 9

cl: single-float format 23
Single-floats 4. 89
Singular matrix operation error 535

math: singular-matrix flavor 535
sinh function 107
sl package 615
sl:prlnt-readably variable 18
sl:property-list-mlxln flavor 473
sl:random-create-array function 119
sl:random-Inltlallze function 119
sl:read-recurslve function 27
sl:rename-wlthln-new-deflnltlon-maybe

function 329
sl:slngle syntax description 34
sl:slash syntax description 34
sl:unencapsulate-functlon-spec function 328
II:vanllla-fiavor flavor 453
sl:vertlcalbar syntax description 34

756

Reference Guide to Symbolics-Usp

Extract

Changing the
Bit

sl:
SCL and
Effects of

SCL and defstruct
Altering

math:
Interaction of

Message to an object of

Basic definition of the function
:handler function
:Internal function
:Iocatlon function
:method function

:property function
Symbol function
:wlthln function

Debugger
#'

advise
and

argument-typecase
block
caseq

·catch
catch

catch-error -restart
catch-error -restart-If

check-arg-type
comment

sl:whHespace syntax description 34
sixth function 47
size field of a byte specifier 116
:sl2e Inlt option for sl:eq-hash-table 71
Size of an Array 249
size of array elements 236
:sl2e Option for defpackage and

March 1985

make-package 600, 602
:slze-macro option for defstruct 385, 390
:sl2e message 73
:slze-symbol option for defstruct 385, 390
:sklp proceed type 619
slash syntax deScription 34
slashification 644
Slashification on Printing 13
Slashifying 529
Slot 383
slot Inltlallzatlons 642
slot values of structures 395
Slot deSCription 407
solve function 259
Some Common Special Forms with Multiple

Values 169
some flavor 461
Some Functions and Special Forms 159
some function 64
IOrt-grouped-array-group-key function 81
sort-Grouped-array function 81
sortcar function 81
sort function 56, 79
Sorting Arrays and Usts 79
Sorting compact lists 79
Sorting arrays 79
Sorting lists 79
Space character 32
SP character 32
spec 297, 325
spec type 297
spec type 297
spec type 297
spec type 297
spec type 297
spec type 297
spec type 297
Special Character Names 32
Special Commands 525
special form 162
special form 302
special form 178
special form 506
special form 183
special form 182
special form 169, 200
special form 169, 197
special form 501, 502, 513, 515
special form 513, 515
special form 576
special form 164

March 1985

complier-let
cond

cond-every
condltlon-blnd-default

condltlon-bl nd-defau It-If
condltlon-blnd-If
condltlon-call-If

condition-ease-If
condltlon-blnd
condition-cali

condltlon-case
declare

def
defconst

defconstant
deft

deffunctlon
deflne-symbol-macro

deflambda-macro-dlsplace
deflambda-macro

defmacro
defmethod
defpackage

defprop
defselect

defselect-method
defsubst

defun
defun-method

defvar
defwhopper

desetq
destructurlng-blnd

dispatch
diet

diet·
do

do·
do-all-symbols

do-external-symbols
do-local-symbols

do II st
do·-named
do-named

do-symbols
dotlmes

error-restart-Ioop
error-restart

flet
function

go
If

Ignore-errors
keyword-extract

labels
lambda

lambda-macro
let

special form 129
special form 1n
special form 178
special form 489, 501, 509
special form 489
special form 489
special form 493
special form 491
special form 488, 501, 517
special form 492, 501
special form 490, 501
special form 126, 311
special form 307
special form 126, 135
special form 135
special form 307
special form 356
special form 353
special form 356
special form 356
special form 305
special form 297
special form 598, 599
special form 69
special form 297, 305, 308
special form 437
special form 305, 351
special form 297, 300, 305
special form 436. 437
special form 126. 134
special form 463
special form 133
special form 132
special form 182
special form 133
special form 133
special form 167, 189. 359
special form 191
special form 609"
special form 609
special form 609
special form 193
special form 192
special form 192
special form 609
special form 192
special form 501, 513. 514
special form 501. 513. 514
special form 142
special form 162
special form 187, 189
special form 177
special form 493
special form 193
special form 144
special form 163
special form 355
special form 128, 142

757

Index

758

Reference Guide .to Symbolics-Usp

let·
let-globally-If

let-closed
lelf

Iett*
let-globally

let-If
Iocal-declare

macro
macrolet

muHlple-value-blnd
muHlple-value-ca1l
muHlple-value-list

multlple-value-prog1
muHlple-value

or
package-declare

prog
prog·
prog1
prog2
progn
progv
progw
psetq
quote
return

return-from
SCL and declare

SCL and function
SCL and go

SCL and the
SCL and value-type argument for the

select
selector
selectq

selectq-every
self
setq

slgnal-proceed-case
slgnp

tag body
throw
trace

typecase
undefun-method

unwlnd-protect
varlable-boundp
variable-location

varlable-makunbound
wlth-Input-from-strlng

wlth-output-to-strlng
wlthout-floatlng-underflow-traps

Clm:
Defining

flet. labels, and macrolet
Function-defining

special form 129
special form 131
special form 305, 335
special form 130
special form 130
special form 131
special form 130
special form 126, 315
special form 305, 339, 355
special form 144
special form 168
special form 168
special form 168
special form 169
special form 168
special form 179
special form 625
special form 167, 194, 359
special form 196
special form 165
special form 165
special form 164
special form 131
special form 132
special form 128
special form 161
special form 167, 169, 185, 189
special form 167, 184, 218
special form 640
special form 638
special form 639
special form 640
special form 640
special form 180
special form 181
special form 179
special form 182
special form 147
special form 125, 128
special form 517, 521
special form 97
special form 187
special form 198
special form 302
special form 181, 576
special form 437
special form 169, 198
special form 562
special form 563
special form 562
special form 290
special form 291
special form 94

March 1985

Special Form for Declaring a Named Constant 135
Special Forms 638
special forms 362
Special Forms 142
Special Forms 305

March 1985

759

Index

SCL and equivalent macro definitions for speCial forms 638
Some Functions and Special Forms 159

Special Forms for Binding Varlables 128
Functions and Special Forms for Constant Values 161

Special Forms for Defining Special Varlables 134
Special Forms for Receiving Multiple Values 167
Special Forms for Sequencing 164
Special Forms for Setting Varlables 128

Interaction of Some Common Special Forms with Multiple Values 169
Package Functions, Special Forms, and Variables 597

Evaluation of special functions 303
&speclaJ lambda-list Keyword 310

Binding local and special varlables 126
dbg: *speclal-command-speclal-keys* varlable 528

:speclal-Instance-varlables Option for
defflavor 441, 448

Special characters 32
:speclal-command message 525
:speclal-commands method of condition 530
speCial declaration 312
Special forms 303
Special functions 303
Special Keys 526
Special variables 126, 331

Defining special varlables 134
Special Forms for Defining Special Varlables 134

dbg:
Clm:

Create a byte
Extract position field of a byte

Extract size field of a byte
Byte

Clm: Declaration
%%ch- byte

%%kbd- byte

:speclal-command-p method of condition 530
speclal-commands-mlxln flavor 525
Specific Data Type Predicates 638
specifier 116
specifier 116
specifier 116
specifiers 115, 399
Specifiers 640
specifiers and file characters 268
specifiers and keyboard characters 268
Specifying a Keyword Parameter's Symbol in Lambda

Lists 156
Specifying Aux-varlables In Lambda Lists 157
Specifying Default Forms In Lambda Lists 155
Specifying Internal and External Symbols In

Packages 585
Specifying Packages in Programs 579

Defining function specs 297
Function Specs 297

:method function specs 316
:spllclng argument to setsyntax 36
:spread keyword 161
sqrt function 106
Square root of a negative number error 536
Square root 106
stable-sortcar function 81
stable-sort function 81

Application: Handlers Examining the Stack 494
Reference Material: Application: Handlers Examining the

Stack 495
Unwinding a stack 197

Stack group state error 537

760

Reference Guide to Symbolics-Usp

SCL and
SCL and

Clm:
SCL and

Stack group

Cdr
Flavor system

Tokens in the input
sys:

Clm: Creating New
Clm: Formatted Output to Character

Clm: Input From Character
SCL 1/0 operations and

Prompt
SCL and type

Clm:

Documentation

Basic

sys:

Maclisp-compatible

Stack groups used as functions 305
Stack overflow error 537
Stack-allocated closures 139
Stack frame 494
:stack-group returned by typep 9
Stack-groups 303

March 1985

Standard Character Syntax Types Table 643
Standard Constituent Character Attributes Table 643
Standard Dispatching Macro Character Syntax 644
standard-char-p function 640
Standard Conditions 531
state error 537
Status character 32
Stepping 221
Stepping variables 221
Steps 221
Stop-Output character 32
Storage allocation error 538
Storage of arrays 235
Storage allocation 250
store-array-Ieader function 245
storing functions 297
storing functions 297
Storing functions on property lists 297
Storing into array elements 244
Stream 290, 291
stream 19
stream-closed flavor 536
Streams 643
Streams 644
Streams 643
streams 634
string 517, 528
string 637

. strlng~ function 282
strlng< function 282
string> function 283
String Characters 637
String Comparisons Affected by Case, Style, and

Bits 282
String Comparisons Ignoring Case, Style, and

Bits 283
string functions 302, 322
:string message to

sys:external-symbol-not-found 619
String Operations 278
String representation of integers 277
:strlng returned by typep 9
String Searching Affected by Case, Style, and

Bits 286
String Searching Ignoring Case, Style, and Bits 287
strlng-capltallze-words function 286
strlng-exact-compare function 283
%strlng-exact-compare function 283
string-left-trim function 280
String-manipulation Functions 292
strlng-nconc-portlon function 279
strlng-not-equal function 284

March 1985

SCL and type

sys:

Zetalisp and SCL

Arrays, Characters, and
ASCII

Character
Clm:

How the Reader Recognizes
110 to

Printed Representation of
SCL and

Character
Clm: Translating

761

Index

strlng-not-greaterp function 284
strlng-not-Iessp function 284
strlng-reverse-search-char function 287
atrlng-reverse-search-exact-char function 286
strlng-reverse-search-exact function 287
strlng-reverse-search-not-char function 288
atrlng-reverse-search-not-exact-char function 287
strlng-reverse-search-not-set function 290
strlng-reverse-search-set function 289
strlng-reverse-search function 288
strlng-rlght-trlm function 280
strlng-search-char function 287
%strlng-search-char function 289
%strlng-search-exact-char function 287
strlng-search-exact-char function 286
strlng-search-exact function 287
strlng-search-not-char function 287
atrlng-search-not-exact-char function 286
strlng-search-not-set function 289
strlng-search-set function 289
strlng-to-ascll function 290
strlng(function 282
string = function 282
%strlng = function 283
atrlng) function 282
string-append function 279
string-char 637
string-compare function 285
%strlng-compare function 285
String comparisons 11, 282
String concatenation 279
String Conversions 285
strlng-downcase function 285
%strlng-equal function 284
string-equal function 283
strlng-fllpcase function 286
string function 278
strlng-greaterp function 284
String incompatibilities 634
string incompatibilities 265
string-length function 278
strlng-Iessp function 284
strlng-nconc function 279
strlng-nreverse function 280
strlngp function 8
string-pluralize function 280
string-reverse function 280
Strings 5, 236, 277
Strings 233
Strings 290
strings 2n
Strings 637, 642
Strings 25
Strings 290
Strings 16
Strings 634
strings as array elements 236
Strings to Symbols 640

762

Reference Guide to Symbolics-Usp

Alteration of List
Manipulating List

Named
Named

Itrlng-search function 288
String Searching 286
string-trim function 280
Itrlng-upcas8 function 285
Structure 54
Structure 41
structure array 238, 241
structure symbol 403
Structured records 59
Structure Macros 3n

Introduction to Structure Macros 379
Structure names 383

Altering slot values of structures 395
Clm: Structures 642

Creating Instances of structures 395
defstruct Internal Structures 407

Exit control structures 175
Functions That Operate on Named Structures 405

Handler Functions for Named Structures 403
Initialization in structures 395

Introduction to Named Structures 403
Named Structures 403

Nonlocal exit control structures 175
Printed Representation of Arrays That Are Named Structures 16

March 1985

Printed Representation of Arrays That Are Not Named

SCL and printing of
Character objects

Character Comparisons Affected by case,
Character Comparisons Ignoring Case,
String Comparisons Affected by Case,

String Comparisons Ignoring case,
String Searching Affected by Case,

String Searching Ignoring Case,
Character Sets and Character

Structures 17
structures 642
style field 265
Style, and Bits 270
Style, and Bits 271
Style, and Bits 282
Style, and Bits 283
Style, and Bits 286
Style, and Bits 287
Styles 267
lub1 function 104
Subform 169

The Device-font and Subindex Derived Fields 268
lublls function 55
Subprimitives 494
Subprograms 621

Closed subroutine 351
Open subroutine 351

IYS:
Array

Multidimensional array
Out-of-bounds

lubrp function 8
subscrlpt-out-of-bounds flavor 541
subSCripts 235, 248
subscripts 245
subSCripts 541
subset function 63
subset-not function 63
lubst function 55
lubst functions 351
Substitutable Functions 351

SCL and substitute function 640
SCL and lubstltute-If-not function 640
SCL and substitute-H function 640

Substitution 54
lubstrlng function 278

March 1985

SCL and

Macros That

Atomic
Binding of a

:case-documentatlon
Functions That Find the Home Package of a

Home Package of a
Interned
Lambda

lambda-list-keywords
Named structure

nil
otherwise

Package cell of a
Print name of a

Private
Property list of a
Single-character

t
The Function Cell of a
The Package Cell of a

The Print Name of a
The Property Ust of a

The Value Cell of a
Unbound

Un interned
:whIch-operations

The
Removing

Specifying a Keyword Parameter's

Where Is

How the Package System Allows
Examples of

Introduction to
SCL and

Subtraction 101. 104. 105
Subtraction of 32-bit numbers 119
subtype variations 637
sum loop keyword 212
summing loop keyword 212
SUPER key 526
Supplied-p variable 155
Support for Nonstandard Character Sets 275
Surround Code 362
8Wap' macro 149
awaphash-equal function 74
8waphash function 74
:swap-hash message 73
8xhash function 59. 76
symbol 3
symbol 3
symbol 520
Symbol 607
Symbol 573
symbol 566
symbol 151
symbol 151
symbol 403
symbol 561
symbol 178
symbol 3
symbol 3
symbol 571
symbol 3
symbol 34
symbol 561
Symbol 563
Symbol 566
Symbol 565
Symbol 564
Symbol 561
symbol 561
symbol 357. 566
symbol 520
Symbol associated with property list 67
Symbol Data Type 3
symbol from package 606
Symbol function spec type 297
Symbol In Lambda Usts 156

763

Index

:8ymbol message to 8ys:package-locked 543. 619
Symbol (m-X) Zmacs command 571
Symbol name conflicts 574
:symbol returned by typep 9
Symbol Sharing 569
Symbol Sharing Among Packages 589
Symbol deflnltlon 3. 563
Symbolics Common Usp 629
Symbollcs Common Usp 631
Symbollcs Common Usp Extensions 635
aymbollcs-common-lisp package 633
Symbollcs-Usp Number Types 89
Symbol Macros 353
aymbol-package function 573. 607

764

Reference Guide to Symbolics-Lisp

Clm: Parsing of Numbers and
Clm: Translating Strings to

Creating
Dot (.) in
Exporting
External

Functions That Import, Export, and Shadow
Functions That Map Names to

Global
How the Reader Recognizes

Importing
Importing and Exporting

Internal
Keyword

Mapping from names to
Mapping Names to

Printed Representation of
Qualified Names of

Shadowing
Uninterned
Sharing of

Specifying Internal and External
Adding new

loop
#"

Circumflex C) in integer
Clm: Declaration

Clm: Standard Dispatching Macro Character
Functions That Change Character

Underscore (_) In Integer
si :alphabetlc

sl:break
sl:clrclecross

sl:doublequote
sl:macro
sl:slngle
sl:slash

II :vertlcalbar
sl:whltespace

Invalid path name

SCL and Standard Character

Base Flavor:
Base Flavor:

The Iys:downward-functlon and
The

:package message to

symbolp function 7
Symbols 3, 559, 561
Symbols 643
Symbols 640
Symbols 566
symbols 357
symbols 573, 589, 593, 611, 613
Symbols 570, 571, 573
Symbols 611
Symbols 605
symbols 571
Symbols 24
symbols 573, 589, 593, 611
Symbols 573
symbols 570
symbols 151
symbols 559
Symbols 604
Symbols 15
Symbols 585
Symbols 574, 593, 611
symbols 29, 573
Symbols Among Packages 569
Symbols in Packages 585
symbols to locked packages 626
Symbols used as functions 297
symeval-In-closure function 335
symeval-In-Instance function 439
symeval function 3, 561
Iymeval-globally function 562
Synonyms 218
syntax 637, 642
syntax 20
Syntax 640
Syntax 644
Syntax 34
syntax 20
syntax description 34
syntax deSCription 34
syntax description 34
syntax description 34
syntax description 34
syntax description 34
syntax description 34
syntax description 34
syntax description 34
syntax errors 550
Syntax errors in read functions 543
Syntax Types Table 643
sys:%1d-aloc function 246
sys:% 1d-aref function 246
sys:%1d-aset function 246
sys:arlthmetlc-error 534
sys:cell-contents-error 533

March 1985

sys:downward-funarg Declarations 140
sys:downward-functlon and sys:downward-funarg

Declarations 140
sys:external-symbol-not-found 619

March 1985

:strlng message to
Base Flavor:

:name message to
:relatlve-to message to

:package message to
:symbol message to

Using the

765

Index

sys:extemal-symbol-not-found 619
sys:floatlng-polnt-exceptlon 535
sys:package-not-found 542, 619
sys:package-not-found 542, 619
sys:package-Iocked 543, 619
sys:package-Iocked 543, 619
sys:abort flavor 502, 526, 532
sys:area-overflow flavor 537
sys:arlthmetlc-error flavor 534
sys:array-has-no-Ieader flavor 540
sys:array-reglster-1d 245
sys:array-reglster-1d declaration 312
sys:array-wrong-number-of-dlmenslons flavor 540
sys:array-wrong-number-of-subscrlpts flavor 541
sys:array-reglster 255
sys:array-reglster declaration 312
sys:bad-array-type flavor 540
sys:bad-connectlon-state flavor 555
sys:bad-data-type-In-memory flavor 534
sys:bitblt-array-fractlonal-word-wldth flavor 537
sys:bltblt-destlnatlon-too-small flavor 537
sys:call-trap flavor 523
sys:cell-contents-error flavor 533
sys:connectlon-closed-Iocally flavor 555
sys:connectlon-no-more-data flavor 556
sys:connectlon-closed flavor 555
sys:connectlon-error flavor 555
sys:connectlon-Iost flavor 556
sys:connectlon-refused flavor 555
sys:cons-In-flxed-area flavor 538
Sysdcl file 598
sys:defsubst-wlth-parent macro 319
sys:dlsk-error flavor 538
sys:dlvlde-by-zero flavor 479, 534
sys:double-float-p function 8
sys:downward-funarg declaration 139, 141, 313
sys:downward-functlon declaration 139, 140, 312
sys:draw-off-end-of-screen flavor 537
sys:draw-on-unprepared-sheet flavor 537
sys:end-of-flle flavor 536
sys:extemal-symbol-not-found flavor 619
sys:fcelling function 112
sys:fdefine-file-pathname variable 319
ays:fdefinltlon-Iocatlon function 322
sys:ffloor function 111
sys:fill-polnter-not-fixnum flavor 540
sys:float-dlvlde-by-zero flavor 535
sys:float-dlvlde-zero-by-zero flavor 536
sys:float-Inexact-result flavor 536
sys:float-Invalld-compare-operatlon flavor 536
sys:float-Invalld-operatlon flavor 536
sys:floatlng-exponent-overflow flavor 535
sys:floatlng-exponent-underflow flavor 536
sys:floatlng-polnt-exceptlon flavor 535
sys:fround function 113 '
ays:ftruncate function 112
sys:functlon-parent declaration 312
ays:functlon-parent Declaration 319

766

Reference Guide to Symbolics-Usp

Interning Errors Based on

Compatibility wi1h the Pre-release 5.0 Package
Introduction to the Flavor

Message Passing in the Flavor
Objects and the Flavor

Package
Using the Flavor

How the Package

Miscellaneous
Flavor

Condition
Window
Macllsp

Flavor

March 1985

sys:functlon-parent function 319
sys:host-not-respondlng-durlng-connectlon

flavor 555
sya:host-not-respondlng flavor 555
sys:host-stopped-respondlng flavor 555
sys:lnstance-varlable-polnter-out-of-range

flavor 538
sys:lnstance-varlable-zero-referenced flavor 538
sys:lnvalld-functlon flavor 542
sys:local-network-error flavor 554
sys:name-confllct flavor 619
sys:negatlve-sqrt flavor 536
sys:network-resources-exhausted flavor 554
sys:network-stream-closed flavor 556
ays:network-error flavor 554
sys:no-actlon-mlxln flavor 532
sys:non-posltlve-Iog flavor 534
ays:number-array-not-allowed flavor 541
sys package 615
sys:package-not-found flavor 542. 619
sys:package-error 542
sys:package-error flavor 542. 619
sys:package-Iocked flavor 543. 619
sys:parse-error flavor 543
sys:pdl-overflow flavor 537
sys:prlnt-not-readable flavor 543
sys:prlntlng-random-obJecI macro 18
sys:read-end-of-flle flavor 544
sys:read-list-end-of-file flavor 544
sys:read-premature-end-of-symbol flavor 544
sys:read-Btrlng-end-of-flle flavor 544
sys:read-error flavor 544
sys:redeflnHlon flavor 538
sys:reglon-table-overflow flavor 538
sys:remote-network-error flavor 554
sys:slngle-float-p function 8
sys:stream-closed flavor 536
sys:%strlng-exacl-compare function 283
sys:%strlng-compare function 285
sys:subscrlpt-out-of-bounds flavor 541
System 625
System 417
System 423
System 417
system 566
System 425
System Allows Symbol Sharing 569
System declaration file 598. 621
System Errors Not Categorized by Base Flavor 536
system messages 453
system package 615
system package 615
system property names 564
system storing functions 297
System character 32
system-Internals package 615
system package 571. 615
System Packages 615

767

March 1985 Index

T

Matrices and Systems of Unear Equations 258
sys:throw-tag-not-seen flavor 538
sys:too-few-arguments flavor 539
3ys:too-many-arguments flavor 539
sys:unbound-closure-varlable flavor 533
sys:unbound-Instance-varlable flavor 533
sys:unbound-symbol flavor 533
sys:unbound-varlable flavor 533
sys:unclalmed-message flavor 542
sys:undeflned-keyword-argument flavor 542
eys:undeflned-functlon flavor 534
sys:unknown-host-name flavor 554
sys:unknown-Iocf-reference flavor 534
sys:unknown-setf-reference flavor 534
sys:unknown-address flavor 554
sys:vlrtual-memory-overflow flavor 537
sys:wrlte-In-read-only flavor 537
sys:wrong-stack-group-state flavor 537
sys:wrong-type-argument condition 505
sys:wrong-type-argument flavor 539
sys:zero-args-to-select-method flavor 539

Hash
SCL and Standard Character Syntax Types

T
Tab character 32
table 75
Table 643
Table 643

T

SCL and Standard Constituent Character Attributes
Hash
Hash
Truth
Hash
Hash

table considerations while using multiprocessing 69
table facilities 59

Objects as hash
Trees as hash

Hash

Clm: Hash
Creating Hash

Hash
Usts as

Hash
Hash

loop iteration Over Hash
Dumping Hash

Throw

prog

tape:

tape:

table for the Boolean operations 114
Table Functions 73
table keys 69
table keys 69
table keys 69
Table Messages 72
Tables 59
Tables 641
Tables 71
Tables 69
Tables 59
Tables and Loop iteration 75
Tables and the Garbage Collector 75
Tables or Heaps 224
Tables to Files 75
Table searches 59
tag error 538
tagbody special form 187
tags 189
tallp function 61
land function 107
tan function 106
Tangent 106
tanh function 107
tape-devlce-error flavor 556
tape:end-of-tape flavor 556
tape-error flavor 556
Tape Errors 556

768

Reference Guide to Symbolics-Lisp

Lists as

Loop
SCL and

Aggregated Boolean

Reading Integers in Bases Greater
Printed Representation of Arrays
Printed Representation of Arrays

Functions
Functions
Functions
Functions
Functions
Functions
Functions
Functions
Functions

Macros

SCL and
SCL and value-type argument for

sys:

Clm:

IYI:
IYI:

Array Representation
Clm: Debugging

Clm: the

tape:mount-error flavor 556
tape:tape-devlce-error flavor 556
tape:tape-error flavor 556
templates 345
Terminal charat:1er 32
termination 212, 214

March 1985

:test keyword to make-hash-table function 641
Testing for even number 97
Testing for negative number 97
Testing for odd number 97
Testing for positive number 97
Testing for sign of a number 97
Testing for zero 97
Tests 215
Text processing 277
Than 10 21
That Are Named Structures 16
That Are Not Named Structures 17
That Change Character Syntax 34
That Change Characters Into Macro Characters 35
That Create New Readtables 33
That Find the Home Package of a Symbol 607
That Import, Export, and Shadow Symbols 611
That Map Names to Symbols 605
That Operate on Locatives 84
That Operate on Named Structures 405
that return multiple values 167
That Surround Code 362
the loop keyword 207, 222
the special form 640
the special form 640
their loop keyword 222
then loop keyword 207
therels loop keyword 215
third function 46
Throw 197
*throw 482
throw special form 198
Throw tag error 538
throw-tag-not-seen flavor 538
*throw function 200
Time Functions 645
:tImes option for defstruct 385, 390, 395
times function 102
to loop keyword 207, 225
Tokens in the Input stream 19
too-few-arguments flavor 539
too-many-arguments flavor 539
Tools 237
Tools 645
:top method of sl:heap 79
Top-level Loop 642
trace special form 302
trace-condltlons variable 523
Tracing Conditions 523
Trailing decimal point 14
Transcendental Functions 106
Transfer of Control 187

March 1985

Clm:
math:

Inexact-result

Enabling and disabling of floating-point
How Applications Programs

Degrees in
Radians in

Interface between
SCL sequence and list functions and

:after method
:and method

:and method combination
:append method combination

art-fat-strlng Array
art-q-lIst Array

art-16b array
art-1b array
art-2b array
art-4b array
art-8b array

art-boolean Array
art-Nb Array

art-q Array
art-string Array
:before method

:case method combination
:comblned method

:create-package proceed
:daemon method combination

:daemon-wlth-and method combination
:daemon-with-or method combination

:daemon-with-overrlde method combination
:defauH method

- dtp-instance-header data
dtp-select-method data

dtp-Instance data
:export proceed

expr Macllsp
fexpr Macllsp

:handler function spec
:internal function spec

:Inverse-list method combination
Lexpr Maclisp

:lIst method combination
:Iocatlon function spec

macro Maclisp
:method function spec

Translating Strings to Symbols 640
transpose-matrix function 259
trap 535
Trap on exit bit 523
traps 535
Treat Conditions 481
Tree 41
Tree of flavors 431
Trees as hash table keys 69
Trigonometric functions 106
trigonometric functions 106
trigonometric functions 106
true function 164
truncate function 110
Truth table for the Boolean operations 114
t symbol 561
tv package 615
Two Kinds of Characters 268
two modules 569
two-argument predicates 641
type 455, 457
type 455, 458
type 455
type 455, 456
Type 236
Type 236
type 236
type 236
type 236
type 236
type 236
Type 237
Type 236
Type 236
Type 236
type 455, 457
type 455, 457
type 455, 458
type 542, 619
type 455 .
type 455, 456
type 455, 456
type 455, 457
type 455, 457
type 467
type 467
type 467
type 619
type 305
type 305
type 297
type 297
type 455, 456
type 305
type 455
type 297
type 305
type 297

769

Index

770

Reference Guide to Symbolics-Usp

:nconc method combination
:new-name proceed
:no-actlon proceed

:or method
:or method combination

:overrlde method
:pass-on method combination

Proceed
:progn method combination

:property function spec
:shadow proceed

:shadowlng-Import proceed
:share proceed

:sklp proceed
Symbol function spec

The Array Data
The Compiled Function Data

The Cons Data
The List Data

The Locative Data
The Symbol Data

:unlntem proceed
:whopper method

:wlthln function spec
:wrapper method
:choose proceed

Invalid
SCL and

Clm:
Numeric

Clm:
Proceed

Data
Proceed

SCL and

Clm: Specific Data
SCL and
SCL and

Return from
:array returned by
:atom argument to

:blgnum returned by
:closure returned by

:complled-functlon returned by
:complex returned by

:double-float returned by
:fix argument to

:fIxnum returned by
:float argument to

:Instance argument to
:lIst returned by

:lIst-or-nll argument to
:Iocatlve returned by

:non-complex-number argument to

type 455, 456
type 542, 619
type 523, 542, 543, 619
type 455, 458
type 455
type 455. 457
type 455. 456
type 517
type 455
type 297
type 619
type 619
type 619
type 619
type 297
Type 5
Type 4
Type 4
Type 5
Type 5
Type 3
type 619
type 455, 458
type 297
type 455, 458
type 619
type code error 534
type common 637
Type Conversion Function 637
Type Conversions 107
Type Declaration for Forms 640
Type Messages 519
type names 576
Type Names 520
:type option for defstruct 385
:type option for defstruct 642
:type option for make-array 241
:type option for make-plane 261
Type Predicates 638
type string 637
type string-char 637
typecase special form 181. 576
typeof function 642
typep 9
typep 9
typep 9
typep 9
typep 9
typep 9
typep 9
typep 9
typep 9
typep 9
typep 9
typep 9
typep 9
typep 9
typep 9

March 1985

March 1985

u

:null argument to
:number argument to
:random returned by
:ratlonal returned by

:select-method returned by
:alngle-float returned by
:stack-group returned by

:strlng returned by
:symbol returned by

Abstract
Array

Clm: Data
Combination Method

Combining abstract
Creating data

Data
Definition

Numeric Data
Printed Representation of Miscellaneous Data

Symbollcs-Lisp Number

Data
SCL and Standard Character Syntax

sya:
sya:

Iya:
IYI:

Iya:

Iya:
fs:

Iya:

Exponent
Exponent

II:

fs:

u

771

Index

typep 9
typep 9
typep 9
typep 9
typep 9
typep 9
typep 9
typep 9
typep 9
typep function 9, 335, 403, 576, 597
types 418, 425
Types 235, 241
Types 637
Types 459
types 431
types 379
Types 3
types 319
Types 4
Types 18
Types 89
Types of Numbers 93
Types of numbers 4
Types Recognized by loop 219
Types Table 643

Un-garbage-collected arrays 262
Unbindlngs 125
Unbound closure variable error 533
Unbound Instance variable error 533
Unbound variable errors 533
unbound-closure-variable flavor 533
unbound-Instance-varlable flavor 533
Unbound symbol 561
unbound-symbol flavor 533
unbound-variable flavor 533
unbreakon function 524
unclaimed-message flavor 542
:unclalmed-message message 454
uncomplle function 316
undefflavor function 437
Undefined function error 534
undeflned-keyword-argument flavor 542
undeflned-Ioglcal-pathname-translatlon flavor
undefined-function flavor 534
undefmethod macro 437,468
undefun function 322
undefun-method special form 437
underflow 94
underflow error 536
Underscore (_) In Integer syntax 20
unencapsulate-functlon-spec function 328
unexport function 593, 611
unlmplemented-optlon flavor 552
:unlntem proceed type 619
Unlntemed symbol 357,566

u

554

772

Reference Guide to Symbolics-Usp March 1985

v

sys:
sys:

fs:
IYI:
sys:

fs:
fs:
fs:

Drawing on

SCL path names and

Arrays
Stack groups

Symbols
Functions

Operations the

v

Unlnterned symbols 29. 573
union function 62
unknown-host-name flavor 554
unknown-Iocf-reference flavor 534
unknown-pathname-host flavor 553
unknown-self-reference flavor 534
unknown-address flavor 554
unknown-operatlon flavor 547
unknown-property flavor 551
unknown-user flavor 547
unless loop keyword 216
unless macro 179
unprepared sheet error 537
unspeclal declaration 312
:unspeciflc 644
until loop keyword 214
unuse-package function 593. 611
unwlnd-protect-case macro 199
Unwinding a stack 197
unwind-protect special form 169. 198
Unwind protection 197
Up-Arrow (1) character 32
Update functions 147
Updating generalized variables 147
upfrom loop keyword 207
upper-case-p function 270
Upward funargs 139
:use option for defpackage 571. 599
:use option for make-package 571. 602
used as functions 305
used as functions 305
used as functions 297
Used During Expansion 368
use-package function 571, 593, 610
User Can Perform on Functions 302
user package 579, 615
using loop keyword 222. 225

Checking for valid arguments 505
Absolute value 101

External
Internal

The
Changing the

Value of instance variables 439
value-ceil-location function 563
Value cell 3, 83, 331. 561, 563
value cell 331
value cell 331
Value Cell of a Symbol 561
Value of a Variable 125
Values 212

Clm: Rules Governing the Passing of Multiple Values 639
Functions and Special Forms for Constant Values 161

Functions that return multiple values 167
Interaction of Some Common Special Forms with Multiple

Values 169
Multiple Values 167

Passing-back of Multiple Values 169
Primitive for Producing Multiple Values 167

v

March 1985

Property list
Special Forms for Receiving Multiple

Default
SCL and returned

Altering slot

values 67
Values 167
values for instance variables 431
values from cond macro 639
values of structures 395
values declaration 312
values function 167
values-list function 167

SCL and value-type argument for the special form 640
Vanilla Flavor 453

sl: vanilla-flavor flavor 453
all-flavor-names variable 429

alphabetlc-case-affects-strlng-comparlson variable 273
arg II st variable 325

array-blts-per.element variable 238
array-elements-per-q variable 238

Array-register variable 255
array-types variable 237

base variable 14
Changing the Value of a Variable 125

cl:*read-defauH-fioat-format* variable 23
dbg:*lnteractlve-handlers* variable 511

dbg:*proceed-type-speclal-keys* variable 528
dbg:*speclal-command-speclal-keys* variable 528

Ibase variable 20
I nhibit-fdefine-warnIngs variable 317

lambda-list-keywords variable 309
local-declarations variable 316

*nopolnt variable 14
package variable 579. 597

pkg-global-package variable 617
pkg-keyword-package variable 617

pkg-system-package variable 617
prlnlength variable 18

prinlevel variable 17
readtable variable 33

SCL and * variable 642
SCL and *defauH-pathname-defaults* variable 644

SCL and *features* variable 645
SCL and *read-extended-Ibase-slgned-numbers* variable 643

773

Index

SCL and *read-extended-Ibase-unslgned-numbers*

SCL and *read-base*
SCL and *read-suppress*

self
sl:*fIavor-complle-trace*
sl:*fIavor-compllatlons*
sl:*macroexpand-hook*

sl:*prlnt-object-error-message*
sl :*read-extended-Ibase-slgned-number*

sl:*read-extended-Ibase-unslgned-number*
sl:*read-multl-dot-tokens-as-symbols*

sl:encapsulated-functlon
sl:encapsulatlon-standard-order

sl:lnltlal-readtable
sl:loop-use-system-destructurlng?

sl :prlnt-readably
Supplied-p

variable 643
variable 643
variable 643
variable 437
variable 440
variable 440
variable 375
variable 543
variable 21
variable 21
variable 26
variable 325
variable 327
variable 33
variable 221
variable 18
variable 155

Reference Guide to Symbolics-Usp March 1985

w

sys:fdeftne-flle-palhname
lrace-condltlons
Unbound closure

Unbound Instance
Instance
Unbound

Instance

Binding
Binding local and special

Clm: Generalized
Decrementing generalized

Defau" values for Instance
Defining special

Effect of compiler on
Generalized

Global
Incrementing generalized

In"lallzing instance
Instance
tteratlon
Kinds of

Local
Locating generalized

Package Functions, Special Forms, and
Set1ing
Special

Special Forms for Binding
Special Forms for Defining Special

Special Forms for Set1lng
Stepping

Updating generalized
Value of instance

Instance
SCL and subtype

eq
eq

SCL and
sl:

sys:

variable 319
variable 523
variable error 533
variable error 533
variable errors 538
variable errors 533
Variable of Heratlon 207
variable ou1-of-bounds 541
varlable-boundp special form 562
variable-local Ion special form 563
varlable-makunbound special form
Variables 125
Variables 125, 331
variables 126
Variables 639
variables 149
variables 431
variables 134
variables 126
Variables 147
variables 126
variables 149
variables 425, 435, 455
variables 126, 418, 485
variables 221
Variables 126
variables 126, 331
variables 147
Variables 597
variables 125, 126
variables 126, 331
Variables 128
Variables 134
Variables 128
variables 221
variables 147
variables 439
Variables In lambda lists 151
variables of combined flavors 431
variations 637
versus equal 10
versus equal 11
vertical bars for quoting 643
vertlcalbar syntax deSCription 34
vlrtual-memory-overflow flavor 537

W
What is a Dynamic Closure? 331
What Is a Function? 297
What is a Handler? 487

562

Clm: What the Print Function Produces 644
What the Printer Produces 14

Clm: What the Read Function Accepts 643
What the Reader Recognizes 20
when loop keyword 216
when macro 179
Where Is Symbol (m-X) Zmacs command 571

w

March 1985

x

z

Hash table considerations
sl:

fa:

dbg:

Pluralizing
How the Printer

How the Reader

Modifying
Ordering Flavors. Methods. and

Whoppers and
sys:

Hints to Macro
fs:
fs:

aya:
sys:
aya:

Testing for
Division by

sys:

SCL
SCL and

SCL
Where Is Symbol (m-X)

x

z

775

Index

where-Is function 571. 612, 625
:whlch-operatlons keyword for

named-structure-Invoke 403, 404
:whlch-operatlons message 453
:whlch-operatlons symbol 520
while loop keyword 214
while using multiprocessing 69
whltespace syntax description 34
&whole lambda-list Keyword 311. 374
:whopper method type 455, 458
Whoppers and Wrappers 461
wildcard-not-allowed flavor 550
Window system package 615
with loop keyword 210
wlth-errlng-frame macro 494. 495
wlth-Input-from-strlng special form 290
wlth-output-to-strlng special form 291
:wlthln function spec type 297
with-key loop keyword 224
wlthout-floatlng-underflow-traps special form 94
words 280
Works 13
Works 19
:wrapper method type 455. 458
wrappers 468
Wrappers 467
Wrappers 461
wrlte-In-read-only flavor 537
Writers 357
wrong-klnd-of-file 550
wrong-klnd-of-file flavor 550
wrong-stack-group-atate flavor 537
wrong-type-argument condition 505
wrong-type-argument flavor 539

lcons-In-area function 45
Icons function 45. 56

zero 97
zero error 534
zero-args-to-selecl-method flavor 539
zerop function 97
ZetaJlsp and SCL 631
ZetaJlsp and SCL character Incompatibilities 265
ZetaJisp and SCL string Incompatibilities 265
zl package 633
zl:sl:*fIag-wrong-type-strlngs* 637, 642
zl-user package 633
Zmacs command 571
Zmacs Command: Describe Flavor 471
Zmacs Command: Edit Combined Methods 472
Zmacs Command: Edit Methods 471
Zmacs Command: Ust Combined Methods 471

x

z

776

Reference Guide to Symbolics-Usp

\ \

Zmacs Command: Ust Methods 471
Zmacs Command: m-. 471
Zmacs Commands for Flavors 471
Zmail package 615
zwei package 615

\ function 103
\ \ function 105

March 1985

\

A A

-

I

Circumflex C) In integer syntax 20
-$ function 105
- function 105

-Underscore (J in integer syntax 20

,
Backquote character (') 345

Backquote (') macro character 26

I
SCL and I 643

-
SCL and -E directive 644
SCL and -G directive 644
SCL and -T directive 644

I
Integral (f) character 32

,

-

I

