

SMARTBUG - AN INTELLIGENT MONITOR FOR THE 6800

INTRODUCTION

SMARTBUG is a 1024 byte monitor program which may be used
in most systems using the Motorola 6800 microprocessor.
It was designed primarily to replace the MIKBUG ROM used
in many systems including the Southwest Technical Products
6800 microcomputer. SMARTBUG is available from SMOKE SIGNAL
BROADCASTING on a 2708 EPROM. In order to implement SMARTBUG
in the SWTPC 6800 microcomputer system, SMOKE SIGNAL BROAD­
CASTING has developed the P-38 series of EPROM boards.
These boards are equipped with SMARTBUG and contain room
for seven more 2708's so that the user can expand the monitor
at any time.

Most of the SMARTBUG subroutines start at the same address
locations as the functionally equivalent MIKBUG subroutines.
Thus, most programs designed to run with MIKBUG should require
little, if any, modification to run with SMARTBUG.

One major advantage of SMARTBUG is that it is available on a
2708 Eraseable-Programmable Read Only Memory Chip. This
means that the user may easily change the monitor to suit
his individual system requirements simply by re-programming
the 2708.

WHY SMARTBUG?

SMARTBUG has several new features not found in MIKBUG which
make system operation easier; however, these are not the
primary reasons for SMARTBUG, but are added bonuses. MIKBUG
handles serial I/O through the 6820 Parallel Interface Adapter
which was designed for 8 bit parallel I/O and not serial I/O.
MIKBUG requires the 6800 microprocessor to wait in timing
loops while inputting or outputting data through the PIA.
Thus, while the processor is writting a character, it cannot
check to see if the user wishes to input a character at the
same time. This limitation becomes quite noticeable to the
user when trying to interrupt a program listing in BASIC
(or any program that checks for user input while outputting
data) by typing "CONTROL C". Many "C" keys have been worn
out trying to get the program to recognize the user input.
Also, while the processor is spinning its wheels in I/O
timing loops, it cannot be doing any other work although
this is usually unimportant except in real-time applications
requiring fast servicing of interrupt requests.

SMARTBUG handles I/O through the 6850 Asynchronous Communi­
cations Interface Adapter. The 6850 was designed specifically
to handle serial data. When writting data to the 6850, all

-1-

the microprocessor needs to do is check to see that the 6850
is ready to receive data and then write an 8 bit word to the
6850 in parallel form over the system data bus. This takes
only a few instructions and very little time. While the 6850
is converting the parallel data received from the microprocessor
to serial and sending it to the output device, it can simul­
taneously receive data. Thus,· if you are running BASIC and
type a "CONTROL C", the processor is "instantaneously" able
to respond to your interrupt the first time you type "CONTROL
c If.

Another advantage of haridling serial I/O through an ACIA is
that baud rates in excess of 19,200 can be accomodated
compared to a maximum baud rate of about 1200 baud that can
be handled by MIKBUG.

WHY MIKBUG?

To the experienced hobbiest who has used MIKBUG, the limitations
of handling serial I/O through a 6820 parallel I/O chip are
intuitively obvious. If you are a newcomer, just accept it
on faith that only a very strange person would use a 6820 for
serial I/O instead of a 6850 in a general purpose microcomputer
system. The question that is often asked is: 8 Why would a
big company like Motorola do such a silly thing?". The answer
is that in 1974 when MIKBUG was written, the 6850 was not
yet in production and the 6820 was. In order to introduce
the first 6800 evaluation kit, it was necessary to handle the
serial I/O through a 6820 and MIKBUG was a very clever little
device used to demonstrate how easy it was to use the 6800
microprocessor.

HARDWARE REQUIREMENTS

SMARTBUG "talks" through a 6850 ACIA which should be located
at $8008 and $8009. It also requires RAM at $AOOO through
$A06B. SMARTBUG itself is located at $EOOO through $E3FF.
In order to have the reset and interrupt vectors operate
without external ROM, it is necessary to have SMARTBUG
located at $FCOO through $FFFF in addition to $EOOO through
$E3FF. The SMOKE SIGNAL BROADCASTING P-38 series of EPROM
boards has a switch to allow SMARTBUG to occupy both of
these areas or only the $EOBG through $E3FF area when using
another 2708 in the $FCOO through $FFFF area. To locate a
6850 ACIA at $8008 and $8009, owners of the SWTPC 6800 should
purchase a MP-S board and place it in I/O slot number 2.
The MP-C control board in slot number 1 is no longer used
and should be removed from the machine.

USE OF HIGH BAUD RATES

The maximum baud rate useable with MIKBUG is about 1200 baud.
With SMARTBUG, it is possible to use baud rates of at least

.,

19,200; however, for baud rates in excess of about 1200
baud, it may be necessary to change the crystal in the
SWTPC 6800. The MC14411P baud rate generator chip used
in the SWTPC 6800 is designed to use a crystal frequency
of 1.8432 MHz. The crystal supplied with the SWTPC 6800
is a few percent lower in frequency due to an anomaly of
MIKBUG. If you wish to take full advantage of SMARTBUG
and use it's high baud rate capability, you may need a
crystal of the correct frequency. Also, it will be necessary
to bring the desired baud rate line out from the baud rate
generator chip on the CPU board in place of one of the lower
baud rates that you are not using. This requires a foil
cut and jumper on the CPU card. Consult the CPU card instruc­
tion manual and the MC14411P data sheet to determine the
correct locations for your particular application.

SOFTWARE OPERATION

RESET

Pressing the reset button on the SWTPC 6800 will cause
SMARTBUG to output a carriage return, line feed and an
asterisk (*) to the system terminal. As in MIKBUG, the
asterisk is the prompt character; and, when it appears,
SMARTBUG is waiting for the user to enter a command. One
of the advantages of having your monitor in EPROM is that
you are able to customize the monitor to your system.
When SMARTBUG prompts with an asterisk, it is actually
outputting the character string located at $E3FO through
$E3F6. If you are using a non-scrolling terminal such as
the CT-1024, you may wish to change oneof the null (00)
characters in this string to an "Erase to End of Line"
character ($15 in the case of the CT-1024).

COMMANDS

After being prompted with an asterisk, the user may enter
any valid SMARTBUG command. All SMARTBUG commands are
single-letter commands followed, in some cases, by address
information. The valid command letters are A, B,C,D,E,G,
H,I,J,K,L,M,N,P,Q,R,T,X,4. Entering any other character
will cause SMARTBUG to prompt again with an asterisk.

"R" REGISTERS

Typing "R" will cause SMARTBUG to display the various
registers in the 6800 in the following format.

*R CC BB AA XXXX PCPC SPSP

Throughout this manual, user input is indicated by underlined
characters. Output from SMARTBUG is not underlined.

-3-

CC is the two hex digits representing the contents of the
Condition Code Register

BB is the contents of the B Accumulator
AA is the contents of the A Accumulator
XXXX is the contents of the Index Register (4 hex digits)
PCPC is the contents of the Program Counter
SPSP is the contents of the Stack Pointer

"A" EXAMINE AND CHANGE THE A ACCUMULATOR

Entering an "A" after the * prompt character will cause the
contents of the A Accumulator to be displayed. To change
the contents of the A Accumulator, simply type two hex
c·haracters. Type a carriage return to return to SMARTBUG
without altering the contents of the A Accumulator. A sample
format is shown below.

*A XX YY

where XX is the old contents of the A Accumulator and YY is
the new contents entered by the user.

"B" EXAMINE AND CHANGE THE B ACCUMULATOR

"B" allows the user to examine and change the contents of
the B Accumulator and operates in the same manner as the
"A" conunand.

"C" EXAMINE AND CHANGE THE CONDITION CODE REGISTER

"C" allows the user to examine and change the Condition Code
Register and operates in the same manner as the "A" command.

"X" EXAMINE AND CHANGE THE INDEX REGISTER

"X" allows the user to examine and change the contents of
the Index Register. This conunand operates in the same manner
as the "A" command except that four hex characters are
required for the "X" command instead of two.

"M" MEMORY EXAMINE AND CHANGE

The "M" command allows the user to examine any memory location
and to change any memory location occupied by RAM memory.
To examine a memory location, type "M" followed by the four
hex digits of the memory location you wish to examine.

-4-

EXAMPLE: *M 0100
*0100 7E BD
*0101 El

In the above example, the user typed "M" followed by "0100".
SMARTBUG then typed *0100 7E. 7E was the old contents of
0100. The user then typed "BD", thus changing the contents
of 0100 to BD. SMARTBUG then proceeded to show the user
the contents of 0101.

To change a memory location, it is only necessary to type the
two hex digits representing the new data. To return to
SMARTBUG without changing the data, type a carriage return.
To examine the following location without changing the
present location, hit the SPACE BAR. To examine the pre­
vious memory location, type "U" for up.

GO TO USER'S PROGRAM

Two commands are provided to transfer control from SMARTBUG
to a user's program. The "G" command which operates in
the same manner as the "G" command in MIKBUG and a new "J"
command.

"G" GO TO LOCATION CONTAINED IN $A048 and $A049

To use the "G" command, first use the "M" command to put
the starting address of the program into memory locations
$A048 and $A049. Then type "G". SMARTBUG will then jump
to the location contained in $A048 and $A049. This command
is useful when you will enter the program several times
from SMARTBUG. When you only intend to enter the program
from SMARTBUG once, the "J" command is more convenient.

"J" JUMP TO LOCATION XXXX

Typing "J" "XXXX" where XXXX are four hex digits will cause
SMARTBUG to transfer program control to that location.
EXAMPLE: *J OlAO will cause SMARTBUG to jump to $01AO and
begin executrng-whatever program was previously stored
beginning at that location.

"I" INSERT

FORMAT: I XXXX YYYY ZZ EXAMPLE: *I 0000 3FFF 3F
This command will insert the two hex aigits "'ZZ"" Into
memory locations "XXXX" through "YYYY". In the example,
memory locations $0000 through $3FFFwill now contain $3F.
In debugging a new program, it is often desireable to store
$3F (software interrupt) in all your memory prior to loading
and executing the program. If the program inadvertantly

-s-

transfers outside the program area, it will encounter a
software interrupt, display the CPU registers and return
to SMARTBUG. This command can also be used to clear blocks
of memory by storing "00" into specified areas of memory.

"Q" QUICKSTART

This command is for the convenience of those people using the
SMOKE SIGNAL BROADCASTING BFD-68 Disc System. Typing "Q"
does the same thing as typing "J 8020". SMARTBUG transfers
control to $8020 which is the beginning address of the
routine that boots in the disc operating system from a
cold start.

"D" DISC

Typing "D" transfers control from SMARTBUG to $7283 which
is the warmstart address of DOS68, the disc operating
system used with the BFD-68 disc system. This provides a
convenient means of re-entering the DOS68 monitor from
SMARTBUG when DOS68 has previously been booted in from disc
and is resident in memory. Those people using the optional
version of DOS68 located between DOOO and DFFF will want to
re-program the 2708 and change location $E3DF from $72 to
$D2. Typing "D" will then trasfer program control to $0283
which is the warmstart address of the optional version of
DOS68.

"E" ECHO, "N" NO-ECHO, "H" HARDCOPY

RAM location $AOOB is a "flag" location that determines
whether INEEE will echo back characters typed on the terminal
and whether OUTEEE will output to the system terminal con­
nected to I/O port number 2 (ACIA at $8008 and $8009) or
jump to an external output routine. The external output
routine would normally be a routine to drive a hardcopy
printer. INEEE is a subroutine located at $ElAC that waits
for a character input from the system console and returns
that character input in the A accumulator. OUTEEE is located
at $E1Dl and causes a character in the A accumulator to be
transmitted to the system console (or to the external print
routine).

When hitting "RESET" or otherwise entering SMARTBUG at $EODO,
location $AOOB is cleared. Typing an "E" will also clear
this location. When.location $AOOB contains a "00", all
input through INEEE will be echoed through the system console
and calls to OUTEEE will result in output to the system
console and not a jump to an external printer output routine.

NOTE: Many programs have been written that re-enter MIKBUG
upon completion of the program at "START" location $EODO.

-6-

Normally, it is better to re-enter MIKBUG or SMARTBUG at
"CONTRL" location $EOE3. Entering at "CONTRL" will not
re-initialize $AOOB to the ECHO mode, but will leave it in
the mode last selected by the user or the user's program.
This is usually more desireable. While MIKBUG does not
have an echo control feature, there are some other reasons
why it is usually better to re-enter MIKBUG or SMARTBUG
at $EOE3 rather than $EODO. Also, remember that hitting
"RESET" restores the echo. Unless this is your desired
mode of ope~ation, you will have to type "N" or "H" after
pressing "RESET".

Any positive number ($01 through $7F) stored in $AOOB will
cause INEEE not to echo the character inputted through INEEE
and OUTEEE will not jump to an external print routine.
Typing "N" stores a $4E in location $AOOB and, thus, suppresses
the echo.

Any negative nuiitber ($80 through $FF) stored in $AOOB will
cause OUTEEE to jump to $A04A before anything is transmitted
to the terminal device. Typing "H" stores a $B8 in location
$AOOB and, therefore, will cause OUTEEE to jump to $A04A.
Any user wishing to use the "H" command will have to put
a jump to his printer routine location in location $A04A,
$A04B and $A04C prior to using this feature. Those SMARTBUG
users having a SMOKE SIGNAL BROADCASTING P-38 series EPROM
board will probably want to put their printer routine in
EPROM. Then the printer routine will always be available
without having to load it into RAM each time the system is
powered up. The next EPROM location available on the P-38
board is $E400 through $E7FF. We suggest standardizing on
$E600 as the beginning location of the print routine. This
leaves $E400 through $ESFF available for extended monitor
routines. If you do put your printer routine at $E600,
you will probably want to change SMARTBUG location $ElD7
from $AO to $E6 and location $ElD8 from $4A to $00. This
will cause OUTEEE to jump directly to your routine at $E600
instead of to $A04A. This again points out the advantage of
having the system monitor in EPROM rather than ROM. With
EPROM, it is easy to customize the system monitor to your
unique system requirements.

If you want OUTEEE to output both to the system console
as well as to your separate hardcopy device when in the
"H" mode, your print routine should end with a jump to
$ElD9. Otherwise, it should end with a "RTS" ($39).

CONTROL OF THE ECHO FUNCTION FROM THE USER'S PROGRAM

Several programs such as BASIC and DOS68 turn the MIKBUG
echo off prior to jumping to INEEE and restore the echo
upon return. This allows ·the program to echo control charac-.
ters and other normally non-printable characters. This is
also probably the only major area where SMARTBUG and MIKBUG
are not compatible. In MIKBUG, the echo is suppressed by
storing a $3C in location $8007 and is restored by storing

-7-

$34 in location $8007. Running a program that suppresses
the MIKBUG echo in SMARTBUG without first modifying the
echo handling routine will result in the input being double
echoed unless you type a "N" prior to entering these programs.
For frequently used programs, it will probably be more
convenient to modify them than to remember to type "N".

To modify an existing program, we suggest that you change
the instructions storing a $3C in $8007 to an "INC $AOOB"
(7C AO OB) and that the instruction storing a $34 in $8007
be changed to a "DEC $AOOB" (7A AO OB). NOP's ($01) should
be used to fill in the extra area used by the previous in­
structions.

In DOS68, the echo control is found in the ZLINEI routine.
The jump to ZLINEI is found in the jump table at $72B5
(or $D2B5). Echo is turned off by the instruction sequence
86 3C B7 80 07 and turned back on by the sequence 86 34 B7
80 07. These sequences should be changed to 7C AO OB 01 01
and 7A AO OB 01 01 respectively. The exact location of

the ZLINEI routine may vary with different versions of DOS68,
but the jump table location will remain the same. This is
why we ask you to go to the jump table to find ZLINEI and
search through ZLINEI for this instruction sequence rather
than specify the locations to be changed.

By using an increment-decrement scheme to control the echo,
the user now has control of the echo even if he has selected
the "H" HARDCOPY function prior to entering his program.
The first part of the printer routine should test to see if
$AOOB contains a $BS. If it does, the routine should output data
given it. If it contains a $B9, the routine should do a
"RTS" without outputting the data.

"P" PUNCH FORMATTED TAPE

EXAMPLE: *P 0100 0150

The above example will cause SMARTBUG to punch a formatted
tape containing the data in memory locations $0100 through
$0150. The tape format is the same as the MIKBUG format and
S9 is not punched at the end. This way, several areas of
memory may be punched on one tape and loaded with one "L"
command. At the end of the last area of memory to be punched
to the tape, the user should manually. type a S9 to the tape
so that the "L" command will function automatically.

"L" LOAD FORMATTED TAPE

Typing "L" will turn on the system tape reader and read
formatted tape produced by the "P" command. If the tape does
not contain a S9 as an end of file indicator, it will be
necessary for the user to manually type a S9 on the system
console after the tape has been read in order to return to

-8-

SMARTBUG. The S9 causes SMARTBUG to be entered at "CONTRL".
This is to be preferred over hitting "RESET" which causes
entry at "START".

Unlike MIKBUG, SMARTBUG normally echoes the tape input.
If the user wishes to suppress the echo when loading tape,
he should type "N" prior to typing "L".

"4" JUMP TO $E400

Typing a "4" will cause SMARTBUG to jump to $E400. This
command allows users of the SMOKE SIGNAL BROADCASTING P-38
series boards to expand their SMARTBUG monitor to include
additional commands by installing another 2708 EPROM in the
$E400 through $E7FF socket on the board. The user can
accomodate additional commands by having a routine starting
at $E400 that asks for an additional character input and
then executes whatever command is specified by that second
character. Using this approach, all regular SMARTBUG commands
would continue to be one character commands and all extended
commands would be two character commands with the number "4"
being the first character.

We would very much appreciate a copy of any extended commands
you may develop. Naturally, we would prefer a fully-commented
source listing; however, don't be embarrassed to send just
the object code along with a brief functional description.
After all, it seems most of us write programs first and
document them later (and then, only if absolutely necessary).

"K" BREAKPOINT

The "K" command is a tool to allow the programmer to step
through his program a few steps at a time in order to
inspect his program at these intermediate steps to see if
the program is, indeed, operating as it was so carefully
designed to do. To use the "K" command, first load the
starting address of the program into memory locations $A048
and $A049 using the "M" command. Next decide where you
want the first breakpoint. Then type "K" followed by the
four hex digits representing the address at which the
breakpoint is to be inserted. After entering the fourth
digit, SMARTBUG will jump to the location previously stored
in $A048 and $A049 and execute the program until it encounters
the breakpoint (if it ever does). When the breakpoint
is encountered, SMARTBUG will display the contents of the
registers in the same format as the "R" command. To continue
the program at the point it was interrupted, simply type
"G". To pick up at this point and continue to a second
breakpoint, type "K" followed by a new breakpoint address.

SMARTBUG uses the "SWI" ($3F) instruction to set a breakpoint;
thus, a breakpoint may not be set in an area of Read-Only­
Memory. SMARTBUG remembers the instruction stored i~ the .
breakpoint location and automatically restores that instruction

-9-

after encountering the breakpoint. If the program "gets
lost" and the breakpoint is not encountered, the instruction
will not be restored and will have to be manually restored
by the user.

"T" TRACE MODE

Typing a "T" followed by a four digit hexadecimal address
puts SMARTBUG in the single-step trace mode. This allows
the user to step through a program in RAM one step at a
time and to examine and change the registers after each
step. Stepping to a ROM location will cause SMARTBUG to
return to the regular command mode and prompt with an asterisk.
After typing "T" followed by four hex digits, SMARTBUG
will type the current contents of the registers followed
by the specified address and the command to be executed at
that address. No asterisk prompt character is issued which
indicates that SMARTBUG is in the TRACE mode. Prior to
executing the next instruction, the user may change the
A, B, C or X registers with the A, B, c or X commands.
When ready to execute the next instruction, hit the SPACE BAR.
To return to the regular SMARTBUG mode, hit the carriage
return. Following is the trace output from a very short
program.

MEMORY CONTENTS: 0100 86
0101 43
0102 BD
0103 01
0104 Dl
0105 86
0106 55
0107 3F
OlDl 39

*T 0100
FO 3~00 E26E 0100 A049
0100 86 43
SPACEBAR
F033.43 E26E 0102 A049
0102 BD OlDl
SPACE BAR
FO 33 43 E26E OlDl A047
OlDl 39
B 33 48
SPACEBAR
FO 48 43 E26E 0105 A049
0105 86 55
SPACEBAR
FO 48 55 E26E 0107 A049
0107 3F
SPACEBAR
*--

The format for the listing of the register contents is the
same as in the "R" command.

-ln-

IRQ AND NMI

If the system encounters an IRQ interrupt request, it will
jump to the location contained in memory locations $AOOO and
$A001. An NMI interrupt will cause SMARTBUG to jump to the
location contained in memory locations $A006 and $A007. If
the user anticipates these types of interrupts, he should
initialize these locations early in his program. Alternately,
he can re-program the vector locations in SMARTBUG to go
to permanent interrupt handling routines in his system.

COMPATIBILITY WITH MIKBUG

Every reasonable effort was made to keep the subroutines
in SMARTBUG at the same beginning address locations as
the functionally equivalent subroutines in MIKBUG so that
programs written for MIKBUG would run in SMARTBUG without
modification. As shown in the list below, all the locations
of the most frequently used routines are maintained.

THE FOLLOWING LABELS IN SMARTBUG ARE FUNCTIONALLY EQUIVALENT
TO THOSE IN MIKBUG AND ARE LOCATED AT THE SAME ADDRESS LOCATIONS.

IO POWDWN LOAD LOAD3 LOADll LOAD15
LOAD19 LOAD21 Cl BAD DR BYTE OUTHL
OUT HR OUT CH INCH ·PDATA2 PDATAl CHANGE
CHAS! INHEX INlHG OUT 2H OUT2HA OUT4HS
OUT2HS OUTS START CONTRL SFE INEEE
OUTEEE IOV BEGA ENDA NIO SP
XHI XLOW TEMP TW XTEMP STACK

THE FOLLOWING LOCATIONS IN MIKBUG ARE NOT FOUND AT THE SAME
LOCATIONS IN SMARTBUG AND THERE MAY BE NO FUNCTIONALLY
EQUIVALENT LABEL IN SMARTBUG.

PRINT
PUN23
INl
DEL

C2
PUN32
IN3
DE

LIMITED: ._WARRANTEE

MTAPEl
PUNT2
IOUT
CKSM

PUNCH
MC LO FF
OUT!
BYTECT

PUNll
MCL
IOUT2
MC ONT

PUN22
SAV
IOS

Any purchaser of SMARTBUG who is not satisfied with its
performance may return his copy within 10 days from date
of purchase for a full refund. This warrantee is in lieu
of all other warrantees express or implied. SMOKE SIGNAL
BROADCASTING does not warrant the suitability of SMARTBUG
for any particular user application and will not be responsible
for damages incidental to its use in a user system.

-11-

LICENSE CONDITIONS

Purchase of a P-38 series board which includes SMARTBUG or
purchase of a SMARTBUG listing conveys to the purchaser a
license to copy SMARTBUG for his own use, and not for sale
or free distribution to others. No other license, express
or implied, is conveyed.

LIMERICK

Mary had a little plane.
She flew it high and brisk.
Wasn't she a silly girl,
her little *

USER CONTRIBUTIONS

Any user wishing to contribute program or limerick improvements
should send them to:

SMOKE SIGNAL BROADCASTING
P.O. BOX 2017
HOLLYWOOD, CA 90028

We are particularly interested in extended monitor commands
for possible inclusion in a future 2K or 4K monitor program.
Worthwhile contributions will also be published in future
newletters with credit to the author.

-12-

PAGE 001 SMARTBOO

00100

00120
00130

NAM SMARTBOO

• "SMARTBOO" - AN INTEU.IGENT MONITOR
• CX>PYRIGHT 1977 SMCICE SIGNAL BROADCASTING

00150
00160 BOOS
00170 S009
00180 EOOO

OPT
ACIAS EQU
ACIAD EQU

ORG

o,s
$8008
$8009
$EOOO

00200 • I/O INTERRUPT SEQUENCE
00210 EOOO FE AOOO IO LDX IOV
00220 E003 6E 00 JMP X

002!10 • NMI SEWENCE
00250 E005 FE A006 POWDWN LDX NIO GET NMI VECTOR
00260 E008 6E 00 JMP x GO TO NMI LOCATION

00280 • LOAD ASCII FORMATTED TAPE
00290 EOOA LOAD EW •
00300 EOOA 86 55 LDA A 1$55 READER RELAY ON, ONE STOP BIT
00310 EOOC fr7 8008 STA A A CI AS
00320 EOOF 86 11 LDA A 1$11
00330 E011 SD 62 RSR Ol11'CH AC-30 READ CTRL
003!10 E013 SD 63 LOAD3 RSR INCH GET CHARACTER
00350 E015 81 53 04P A I'S IS IT AN "S"
00360 E017 26 FA BNE LOAD3 NO-LOOP TILL "S" FOOND
00370 E019 SD SD BSR INCH YES - GET NEXT CHARACTER
00380 E01B S1 39 atP A 1'9 IS IT A "9"
00390 E01D 27 25 BEQ LOAD21 YES - JUMP TO CONTROL
00400 E01F 81 31 QtP A I' 1 IS IT A "1"
00!110 E021 26 FO BNE LOAD3 NO - TRY AGAIN
00!120 E023 7F A06A CLR CKSM YES - ZERO CHECICSll4
00!130 E026 SD 2D BSR em: GET A BrrE
004110 E02S 80 02 SUB A 12
00450 E02A B7 A06B STA A BnECT READ THIS MANY BYTES
001160 • BUILD ADDR~
001170 E02D SD 18 BSR BADDR
004SO • STORE DATA
001190 E02F SD 211 LOAD11 BSR BYl'E READ NEXT BYTE
00500 E031 7A A06B DEC BYTE CT DECROIENT BYTE COUNTER
00510 £0311 27 05 BEQ LOAD15 IF O, GET NEXT LINE
00520 E036 A7 00 STA A x . ELSE, STORE DATA
00530 E038 08 INX
005!10 E039 20 F4 BRA LOAD11
00550 E03B 7C A06A LOAD15 INC CKSM FORM 2'S CCIU'LEMENT
00560 E03E Z1 D3 SEQ LOAD3 IT SHOULD BE ZERO
00570 EOllO 86 3F LOAD19 LDA A I'? READ ERROR - PRINT
00580 EOll2 SD 31 RSR Ol11'CH QUE~ON MARK
00590 EOllll LOAD21 EW •
00600 EOll4 7E EOE3 C1 JMP CONTRL

00620 • BUILD ADDRESS
00630 EO!l7 SD OC BADDR BSR

'em:
READ 2 BYTES

.......

PAGE 002 SMARTBOO

00640 E049 B7 AOOC
00650 E04C SD (ff
00660 E04E 87 AOOD
00670 E()Sj1 FE AOOC
00680 E()Sj4 39

STA A XHI
BSR BYTE
STA A XLOW
I.DX XHI
RTS

AND RETURN FRCJ4 nus
SUBROlTl'INE WITH BOTH
BYTES IN THE INDEX
REGISTER.

00700 • INPUT BYTE (2 HEX CHARACTERS)
00710 E055 SD 53
00720 E057 48
00730 E058 48
00740 E059 48
00750 EOSA 48
00760 EOSB 16
00770 EOSC SD 4C
00780 E()SjE 1B
00790 EOSF 16
00800 E060 FB A06A
00810 E063 F7 A06A
00820 E066 39

BlTE BSR INHEX GET 1ST HEX CHAR
ASL A
ASL A
ASL A
ASL A
TAB
~R INHEX GET 2ND HEX CHAR
ABA
TAB
ADD B CKSM
STA B CKSM
RTS

00840 E067 44
00850 E068 44
00860 E069 44
00870 E06A 44

OUTHL LSR A
LSR A
I.SR A
I.SR A

00890 E06B 84 OF Ol1l'HR
00900 E06D BB 30

AND A
AID A
otP A
BLS
AID A
JMP
JMP

00910 E06F 81 39
00920 E071 23 02
00930 E(!f 3 BB (ff
00940 E075 7E E1D1 OUTCH
00950 E07S 7E E1AC INCH

1$F
1$30
1$39
Oln'CH ,,
OUf EEE
INEEE

UPDATE CHECKSUM AND
RETURN WITH BYTE IN
A ACCUMlLATOR

Ol1r HEX LEFT BCD DIGIT

Oln' HEX RIGHT BCD DIGIT

otrrPUT A CHARACTER
INPUT A CHARACTER

00970 • PRINT DATA POINTED TO BY INDEX REGISTER
PDATA2 mR oorCH

INX
PDATA1 LDA A X

00980 E07B 8D F8
00990 E(!f D 08
01000 E07E A6 00
01010 E080 81 Oii
01020 E082 26 F7
01030 E084 39

otP A #4 END OF STRING CHARACTER
BNE PDATA2
RTS

01050 • QIANGE MDtORY
01060 E085 SD CO CHANGE BSR BADDR
01070 E087 CE E3F1 CHA51 LDX #MCL
01080 E08A SD F2 BSR PDATA1
01090 E08C CE AOOC LDX #XHI
01100 E08F SD 37 BSR otrr'IHS
01110 E091 FE AOOC LDX XHI
01120 E094 SD 34 BSR Ol1f2HS
01130 E096 FF AOOC STX XHI
01140 E099 SD DD BSR INCH
01150 E09B S1 20 04P A 1$20
01160 E09D 27 ES BEQ CHA51
01170 E09F 7E E3AD JMP TDEX

GET MDtORY AOORESS

PRINT C/R L/F

PRINT ADDRESS

PRINT OLD DATA

INPt.rr A CHARACTER
IF IT'S A SPACE
GET NEXT ADDRESS
ELSE - GO TO TDEX

PAGE 003 SMARTBOO

01190 EOA2 A7 00 CHA61 STA A x STORE NEW DATA
01200 EOA~ A1 00 CMP A x DID IT STORE CORREC'n.Y?
01210 EOA6 27 DF BEQ CHA51 YES - GET NEXT ADDRESS
01220 EOA8 20 96 BRA LOAD19 NO - JUMP CONTROL

01240 * INPUT HEX CHARACTER
01250 EOAA 8D CC INHEX ~R INCH
01260 EOAC 80 30 SUB A 1$30
01270 EOAE 28 94 l.IH C1 NOT HEX, JUMP CONTROL
01280 EOBO 81 09 CMP A 19
01290 EOB2 2F OA BLE IN1HG
01300 EOB4 81 11 04P A 1$11
01310 EOB6 28 8C BMI C1 NOT HEX
01320 EOB8 81 16 CMP A 1$16
01330 EOBA 2E 88 BGT C1 NOT HEX
01340 EOBC 80 07 SUB A '1
01350 EOBE 39 IN1HG RTS

01370 EOBF A6 00 OUT2H LDA A x OUTPUT 2 HEX CHAR
01380 EOC1 8D A4 OUT2HA BSR oorHL otrr LEFT HEX CHAR
01390 EOC3 A6 00 LDA A x
01400 EOCS OS INX
01410 EOC6 20 A3 BRA Olll'HR otrrPUT RIGHT HEX CHAR

01430 EOCS SD F5 CXJT4~ BSR Ol1f 2H OOf PUT 4 HEX CHAR AND SPACE
01440 EOCA 8D F3 OOT~ BSR Ol1f 2H Ollf PUT 2 HEX CHAR AND SPACE
01450 EOCC 86 20 OUTS LOA A 1$20 OUTPUT SPACE
01460 EOCE 20 AS BRA Olll'CH

014SO * POWER ON SEQUENCE
01490 EOOO START EQU •
01500 EODO SE A042 LDS #STACK
01510 EOD3 BF AOOS STS SP
01520 EOD6 7F AOOB CLR ECHO ECHO ALL INPl11' CHARACTERS
01530 EOD9 S6 03 LDA A 13 MASTER RESET OF ACIA
01540 EODB B7 SOOS STA A ACIAS
01550 EODE 86 15 INZ LDA A 1$15 SET UP FOR 1 STOP BIT
01560 EOEO 87 AOOA INZ1 STA A ACIAT
01570 EOE3 B6 AOOA CONTRL LDA A ACIAT AU.Cll FOR SOFTWARE CONTROL
01580 EOE6 87 SOOS STA A ACIAS OF ACIA CONTROL REGISTER
01590 EOE9 SE A042 LDS #STACK
01600 EOEC 7F A011 CLR TFLAG TURN CFF TRACE MODE
01610 EOEF CE E3FO LDX IMClDFF
01620 EOF2 SD SA BSR PDATA1

0161&0 EOF4 SD 82 ~R INCH INPl11' CCJIUND CHARACTER
01650 EOF6 7F A014 CLR BKFLG CLEAR BREAKPOINT INDICATOR
01660 EOF9 16 TAB
01670 EOFA SD DO ~R ours
016SO EOFC CE E3C3 LOX #FllrABL DO TABLE LOOKUP
01690 EOFF E1 00 NXTCHR CMP 8 o,x FOR CCJIUND FlltCTIONS
01700 £101 27 OB BEQ GOODCH MATCH FOUND
01710 E103 OS INX II> MATCH-INC TO NEXT CCJl4AND
01720 E104 08 INX

PAGE 004 SMARTBOO

01730 E105 08 INX
01740 E106 8C E3FO CPX
01750 E109 26 F4 BNE
01760 E10B 7E E2D9 JMP
01770 E10E EE 01 GOODCH LDX
01780 E110 6E 00 JMP
01790 E112 01 NOP

#TBLEND
NXTCHR
CKCBA
1,X
o,x

END OF CCl4MAND TABLE?
NO - GET NEXT CHARACTER
YES - CHECK FOR A,B,C,X CMNDS
GET CCJ14AND LOCATION
AND JUMP THERE
KEEP SFE AT $E113

01810 • ENTER FRCJ4 SOFTWARE INTERRUPI'
01820 E113 BF A008 SFE STS SP SAVE PROGRAM'S STACK POINTER
01830 • DECREMENT PROGRAM COUNTER
01840 E116 30 TSX
01850 E117 6D 06 TST
01860 E119 26 02 BNE
01870 E11B 6A 05 DEC
01880 E11D 6A 06 DEC
01890 E11F 7D A011 TST
01900 E122 27 63 BEQ
01910 E124 7E E38C JMP

6,X
•+4
5,X
6,X
TFLAG
PRNT
SWTURN

IF TRACE IS CFF
IF TRACE IS ON

01930 • PUNCH - OUTPUT HEX FORMATrED TAPE

01950 E127 8D 74 PUNCH BSR LIMITS GET LIMITS
01960 E129 86 12 LDA A 1$12 AC-30 CONTRL
01970 E12B BD EC175 JSR- OOfCH
01980 E12E FE A002 LDX BEGA 11fE "P" <XlltAND JUMPS TO
01990 E131 FF AOOF STX TW PUNCH AFrER USING THE LIMITS
02000 E134 B6 AOOS PUN11 LDA A ENDA+1 SUBROUl'INE TO ENTER 11fE
02010 £137 BO A010 SUB A 'IW+1 START AND STOP ADDRESSES
02020 E13A F6 AOOAI LDA B ENDA
02030 E13D F2 AOOF SBC B TW
02040 E140 26 04 BNE PUN22
02050 E142 81 10 CMP A #16
02060 E144 25 02 BCS PUN23
02070 E146 86 OF PUN22 I.DA A #15
02080 E148 SB 04 PUN23 AID A 14
02090 E14A B7 A064 STA A MCONT FRAME COUNT THIS RECORD
02100 E14D 80 03 SUB A 13
02110 E14F B7 AOOE STA A TEMP BYTE COUNT 111IS RECORD
02120 •PUNCH C/R,LIF,NULL,S,1
02130 E152 SD 77 BSR CRLF
02140 £154 08 INX
02150 E155 8D 77 BSR PDAT1
02160 E157 SF CLR B ZERO CHECICSM
02170 • PUNCH FRAME COUNT
02180 E15S CE A064 LDX #MCONT
02190 E15B 8D 25 BSR PUNT2 PUNCH 2 HEX CHAR
02200 • PUNCH ADDR~
02210 E15D CE AOOF I.DX ITW
02220 E160 8D 20 BSR PUNT2
02230 E162 SD 1E BSR PUNT2
02240 • PUNCH DATA
02250 E164 FE AOOF LDX TW
02260 E167 SD 19 PUN32 BSR PUNT2 PUNCH ONE BYTE

PAGE 005 SMARTBOO

02270 E169 7A AOOE DEC TEMP DECRDtENT ONE BYTE
022SO E16C 26 F9 BNE PUN32
02290 E16E FF AOOF STX TW
02300 E171 53 COM B
02310 E172 37 PSH B
02320 E173 30 TSX
02330 E174 SD OC BSR PUNT2 PUNCH CHECKSUM
02340 E176 33 PUL B RESTORE STACK
02350 E177 FE AOOF LOX TW
02360 E 17 A 09 DEX
02370 E17B BC A()()jl CPX ENDA
023SO E17E 26 84 BNE PUN11
02390 E1SO 20 47 BRA C3 GO TO CONTROL
02400 E1S2 EB 00 PUNT2 ADD B x
02410 E1S4 7E EOBF JMP OUT2H
02420 E1S7 20 61 PRNT BRA PRINT

02440 E1S9 SD 36 BKPNT BSR BAD2 GET BREAKPOINT ADDRESS
02450 E1SB FF A06S STX PB2
02460 E1SE A6 00 LDA A x SAVE INSTRUCTION AND
02470 E190 87 A014 STA A BKFLG SET BREAKPOINT FLAG
024SO E193 S6 3F LDA A #$3F
02490 E195 A7 00 STA A x SET BREAKPOINT
02500 E197· SD 32 ~R CRLF
02510 E199 BE A008 CONTG LDS SP RESTORE PGM'S STACK POINTER
02520 E19C 3B RTI GO TO USER'S PROGRAM

02540 E19D SD 22 LIMITS BSR BAD2 GET FIRST ADDRESS
02550 E19F FF A002 STX BEGA
02560 E1A2 SD 05 BSR ous Ol1f Pl11' A SPACE
02570 E1A4 8D 1B BSR BAD2 GET SECOND ADDRESS
02580 E1A6 FF A004 STX ENDA
02590 E1A9 7E EOCC OUS JMP OUTS OUTPUT A SPACE & RETURN

02610 * INPUT ONE CHARACTER INTO A ACCUMll.ATOR
02620 E1AC B6 8008 INEEE LDA A ACIAS TEST RECEIVE DATA REG FULL
02630 E1AF 47 ASR A FLAG AND LOOP TILL IT IS SET
02640 £180 24 FA BCC INEEE
02650 E182 86 8009 LDA A AC I AD GET DATA
02660 E1B5 84 7F AND A #$7F ELIMINATE PARITY BIT
02670 E187 81 7F CMP A 1$7F
02680 E1B9 27 Fl BEQ INEEE . IGNORE RUBOOTS
02690 E1BB 7D AOOB TST ECHO
02700 E1BE 2F 11 BLE OUTEEE
02710 E1CO 39 RTS

02730 E1C1 7E £047 BAD2 JMP BADDR GET ADDRESS

02750 E1C4 SF EC HON CLR B ECHO AU. INPUT CHARACTERS
02760 E1C5 50 PRNTON NEG B TIJRI PRillTER ON
02770 E1C6 F7 AOOB ECHOFF STA B ECHO 00 NOT ECtr>
02780 E1C9 20 41 C3 BRA C2 GO TO CONTROL

02800 E1CB CE E3A4 CRLF LDX #CRLFAS C/R L/F WITHOUT * PROMPT

PAGE 006 SMARTBOO

02810 E1CE 7E E07E PDAT1 JMP PDATA1 SIGNIFIES TRACE MODE

02830 * OUTPUT ONE CHARACTER FRCl4 A-REG
02S40 E1D1 7D AOOB OUTEEE TST ECHO IF ECHO IS NEGATIVE,
02850 E1D4 2C 03 BGE OUTCH2 GO TO PRINTER ROOfINE.
02860 E1D6 7E A04A JMP PRINTR
02870 E1D9 37 OUTCH2 PSH B
02S80 ElDA F6 800S OOTCH1 LDA B ACIAS TEST TRANSMIT DATA
02890 ElDD 57 ASR B REGISTER EMPTY FLAG
02900 ElDE 57 ASR B AND LOOP TILL SET
02910 E1DF 24 F9 BCC OUTCH1
02920 E1E1 87 8009 STA A ACIAD OtrrPUT DATA TO ACIA
02930 E1E4 33 PUL B RESTORE B-REG
02940 E1E5 39 RTS

02960 E1E6 SD D9 JUMP BSR BAD2
02970 E1ES 6E 00 JMP X

GET LOCATION OF JUMP
GO TO USER'S PROGRAM

02990 • PRINT CONTENTS OF STACK
03000 E1EA FE A008 PRINT LDX SP
03010 E1ED 08 INX
03020 E1EE SD 44 BSR
03030 E1FO SD 42 BSR
03040 E1F2 SD 40 BSR
03050 E1F4 SD 3C SSR
03060 E1F6 SD 3A BSR
03070 E1FS CE A008 LDX
03080 E1FB 7D A011 TST
03090 E1FE 26 21 BNE
03100 E'100 8D 30 BSR
03110 E202 B6 A014 LDA A
03120 E205 27 05 BEQ
03130 E207 FE A068 LDX
03140 E20A A7 00 STA A
03150 E20C 7E EOE3 C2 JMP

03170 E20F SD SC IFILL BSR
031SO E211 SD 7F BSR
03190 £213 FE A002 LDX
03200 E216 09 DEX
03210 £217 OS Fil.LOP INX
03220 E21S A7 00 STA A
03230 E21A BC A004 CPX
03240 E21D 26 FS BNE
03250 E21F 20 EB cs BRA

03270 E221 E6 00 PRINTS LDA B
03280 E223 A6 01 LDA A
03290 E225 SB '17 ADD A
03300 E227 C9 00 ADC B
03310 E229 F7 AOOE STA B
03320 E22C 87 AOOF STA A
03330 E22F CE AOOE LDX
03340 E232 20 63 OUTT4 BRA

OUT2
OUT2
OUT2
OlTfT4
OOIT4
ISP
'ITI.AG
PRINTS
Otm'4
BKFLG
C2
PB2
x
CONTRL

LIMITS
BYT
BEGA

x
ENDA
FILLOP
C2

x
1,X
11
IO
TEMP
TEMP+l
#TEMP
Ol11'4

CONDITION CODES
B ACCUMlLATOR
A ACCUMtl..ATOR
INDEX REGISTER
PROGRAM COUNTER

IF IN TRACE MODE
STACK POINTER
GET INSTR TO REPLACE BICPNT
NO BREAKPOINT SET

REPLACE BREAKPOINT

GET START & END ADDRESSES
GET DESIRED CONTENTS
1ST ADDRESS TO INDEX REG

FILL MEJ40RY FRCJt A REG

LOOP UNTIL DONE
GO TO CONTROL

WHEN IN TRACE MODE
DISPLAY S-POINTER THAT
WILL BE USED W!£N EXECUTING
ntE DISPLAYED INSTRUCTION

PAGE 007 SMARTBtxi

03350 E234 7E EOCA OUT2 JMP OUT2HS

03370 * TRACE ROUTINE
03380 E237 8D 88 TRACE BSR BAD2
03390 E239 80 90 BSR CRLF
03400 E23B FE AOOB LOX SP
03410 E23E F6 AOOC LOA B XHI
03420 E241 E7 06 STA B 6,X
03430 E243 B6 AOOD LOA A XLOW
03440 E246 A7 07 STA A 7,X

GET START ADDRESS OF TRACE
AND SAVE IN XHI & XLOW

PUT START ADDRESS IN
PROGRAM COUNTER POSITION
IN STACK

03450 E248 7C AOii INC 'IFLAG SET TRACE FLAG
03460 E24B BE A060 RETURN LOS #TSTACK SEPARATE STACK FOR TRACE
03470 E24E 80 9A BSR PRINT DISPLAY AU.. REGISTERS
03480 E250 7F A065 CLR BFLAG CLEAR BRANCH FLAG
03490 E253 FE A008 LOX SP
03500 E256 EE 06 LOX 6,X
03510 E258 FF AOOC STX XHI
03520 E25B BD E1CB JSR CRLF
03530 E25E CE AOOC l..DX #XHI
03540 E261 BD 34 BSR OUT4
03550 E263 FE AOOC LDX XHI
03560 E266 E6 00 LOA B X
03570 E26B BD CA BSR OlTl'2
03580 E26A A6 00 LOA A X
03590 E26C B7 A06B STA A PB2
03600 E26F A6 01 LOA A 1,X
03610 EZ71 87 A069 STA A PB3
03620 E274 F7 A067 STA B PB1
03630 EZ77 C1 8D CMP B #$80
03640 EZ79 27 12 SEQ BBR
03650 E27B C1 8C CMP B 1$BC
03660 E27D 27 25 BEQ BYT3
03670 E27F C1 BE CMP B 1$BE
036BO E281 27 21 SEQ BYT3
03690 E283 C1 CE CMP B #$CE
03700 E2B5 27 1D BEQ BYT3
03710 E2B7 C4 FO AND B #$FO

GET PROGRAM COUNTER FROM STAC
AND SAVE IN XHI AND XI.OW

DISPLAY PROGRAM COUNTER
AND FIRST BYTE OF
INSTRUCTION

STORE 2ND BYl'E OF INSTRUCTION
IN PB2 AND 3RD BYTE IN PB3
IF INSTRUCTION IS LONGER
niAN ONE BYTE

BSR? TEST FOR SPECIAL CODES

CPX?

LOS?

LDX?

03720 E289 Cl 20 CMP B #$20 TEST FOR RELATIVE BRANCH
03730 E28B 26 OD BNE NOTB TYPE INSTRUCTIONS
03740 E28D 7C A065 BBR INC BFLAG SET BRANCH FLAG
03750 E290 20 16 BRA BYT2 TWO BYTE INSTRUCTION
03760 E292 7E EQl55 BYT JMP BYTE
03770 E295 20 8B C4 BRA C5
037BO E297 7E EOCB OUT4 JMP OUT4HS
03790 E29A Cl 60 NOTB CMP B 1$60
03800 E29C 25 OC BCS BYT1
03810 E29E C4 30 AND B 1$30
03820 E2AO Cl 30 CMP B 1$30
03B30 E2A2 26 04 BNE BYT2
03B40 E2A4 BD F1 BYT3 BSR OUT4

GO TO CONTROL

IS CODE LESS nlAN 60?
YES - 1 BYrE INSTRUCTION

ONLY 3 BYTE WILL FALL niRU
DISPLAY 2 BYrE OPERAND

03B50 E2A6 20 02 BRA BYTl
03860 E2A8 80 BA BYT2 BSR OUT2 DISPLAY 1 BYTE OPERAND
03870 E2AA FF AOOC BYT1 STX XHI SAVE LOCATION OF NEXT INSTR
03880 * XHI NOW CONTAINS NEXT INS LOCATION

PAGE 008 SMARTBOO

03890 E2AD 7D A065 TST BFLAG IS IT A BRANCH?
03900 E2BO 27 19 BEQ NOTBB NO
03910 E2B2 4F CLR A YES, CCJ4PUTE TARGET LOCATION
03920 E2B3 F6 A068 LDA B PB2
03930 E2B6 2C 02 BGE DPOS TEST FOR BRANCH BACK
03940 E2B8 86 FF LDA A 1$FF FF FOR BACKWARD BRANCH
03950 E2BA FB AOOD DPOS ADD B Xl..OW ADD OPERAND TO LOWER
03960 E2BD 89 AOOC ADC A XHI 8 BITS OF PROGRAM COUNTER
03970 E2CO 87 A061 STA A BPOINT SAVE TARGET ADDRESS
03980 E2C3 F7 A062 STA B BPOINT+l
03990 E2C6 CE A061 LDX #BPOINT DISPLAY TARGET ADDRESS
O!lOOO E2C9 80 CC BSR Ol11'4
04010 E2CB BD E1CB NOTBB JSR CRLF
O!l020 E2CE BD ElAC JSR INEEE GET COMMAND
04030 E2D1 16 TAB SAVE IN B REGISTER
04040 E2D2 BD EOCC JSR OUTS
04050 E2D5 Cl 20 C>tP B 1$20 IF SPACE EXECUTE THE
04060 E2D7 27 35 BEQ DOT INSTRUCTION. IF NOT A
04070 E2D9 FE AOOS CKCBA LDX SP SPACE, TEST FOR A CHANGE
04080 E2DC 08 INX REGISTER CCJl4AND. NOTE, THIS
04090 E2DD Cl 43 CMP B l'C PART OF MEMORY IS SHARED
04100 E2DF Zl OA BEQ RDC WITH '11iE CHANGE REGISTER
04110 E2E1 OS INX CCH4ANDS WHEN NOT IN TRACE
04120 E2E2 Cl 42 04P B l'B K>DE. IF IT IS A CHANGE
04130 E2E4 27 05 BEQ RDC REGISTER CCll4AND WHILE IN
04140 E2E6 OS INX TRACE MODE, RETURN TO
04150 E2E7 Cl 41 04P B #'A NOTBB FOR NEXT CCJ4MAND.
04160 E2E9 26 OA BNE CHKX
04170 E2EB BD EOCA RDC JSR Ol1f 2HS DISPLAY REGISTER CONTENTS
041SO E2EE 09 DEX SAVED IN STACK
04190 E2EF SD Al BSR BYT GET NEW CONTENTS
04200 E2F1 A7 00 STA A x AND STORE IN STACK
04210 E2F3 20 12 BRA RETDID
04220 E2F5 Cl 58 CHKX CMP B #'X
04230 E2F7 26 9C BNE C4
04240 E2F9 OS INX
04250 E2FA SD 98 BSR oorii DISPLAY INDEX CONTENTS
04260 E2FC SD 94 BSR BYT GET HIGH S BITS
04270 E2FE FE AOOS LDX SP
042SO E301 A7 04 STA A 4,X STORE IN STACK
04290 E303 SD 8D BSR BYT GET LOWER S BITS
04300 E305 A7 05 STA A 5,X STORE
04310 E307 7D A011 RETDID TST TFLAG IN TRACE?
04320 E30A 26 BF BNE NOTBB YES, GET NEXT TRACE CMD
04330 E30C 20 87 RETNOT BRA C4 REnJRN TO CONTROL
04340 E30E C6 3F OOT LDA B #$3F SWI CODE TO 8-REG
04350 E310 B6 A067 LDA A PB1 GET INSTRUCTION
0Ll360 E313 81 80 CMP A #$80 IS IT A BSR?
04370 E315 26 OB BNE TSTB IF YES, NEXT INSTRUCTION
0Ll380 E317 FE A061 LDX BPOINT WILL BE AT ADDRESS STORED
04390 E31A FF AOOC STX XHI IN BPOINT.
041100 E31D 7F A065 CLR BFLAG ONLY ONE SWI NEED BE SET
041110 E320 20 59 BRA EXEC SET BKPOINT AND EXECUTE INST
04420 E322 70 A065 TSTB TST BFLAG IS IT CONDITIONAL BRANCH?

PAGE 009 SMARTBOO

04il30 E325 71 OC BEQ TSTJ YES, SET BREAKPOINT AT
04440 E327 FE A061 LDX BP<l!NT TARGET ADDRESS IN CASE
Oll450 E32A A6 00 LDA A X PROGRAM OOES THERE.
04460 E32C 87 A063 STA A BPOINT+2 SAVE INSTRUCTION
04470 E32F E7 00 STA B X SET SW! AT TARGET ADDRESS
04480 E331 20 48 BRA EXEC
04il90 E333 81 6E TSTJ CMP A 1$6E
04500 E335 27 14 BEQ ISX
04510 E337 81 AD CMP A #$AD
04520 E339 27 10 BEQ ISX
04530 E33B 81 7E CMP A 1$7E
04540 E33D 2:1 04 BEQ !SJ
04550 E33F 81 BD CMP A #$BD
04560 E341 26 1C BNE NOTJ
04570 E343 FE A068 !SJ LOX PB2
04580 E346 FF AOOC STX XHI
04590 E349 20 30 BRA EXEC
04600 E34B FE A008 ISX LDX SP
04610 E34E A6 05 LDA A 5,X
04620 E350 BB A068 AID A PB2
04630 E353 87 AOOD STA A XLOW
04640 E356 A6 04 LDA A 4,X
04650 E358 89 00 ADC A IO
04660 E35A 87 AOOC STA A XHI
04670 E35D 20 1C BRA EXEC
04680 E35F FE A008 NOTJ LOX SP
04690 E.362 81 39 CMP A 1$39
04700 E364 26 04 BNE NOTRTS
04710 E366 EE 08 LDX 8,X
04720 E368 20 06 BRA EXR
04730 E36A 81 38 NOTRTS CMP A #$38
04740 E36C 26 05 BNE NOTRTI
04750 E36E EE OD LDX 13,X
04760 E370 FF AOOC EXR STX XHI
04770 E373 81 3F NOTRTI CMP A #$3F
04780 £375 27 95 BEQ RETNOT
04790 £377 81 3E CMP A #$3E

. 04800 £379 27 91 BEQ RETNOT
04810 £378 FE AOOC EXEC LDX XHI
04820 E37E A6 00 LDA A X
04830 E380 87 A066 STA A OPSAVE
04840 E383 E7 00 STA B X
04850 E385 El 00 CMP B X
Oll860 E387 26 83 BNE RETNOT

INDEXED JUMP INSTRUCTION?

INDEXED JSR?

STRAIGHT JUMP?

STRAIGHT JSR?

PUT NEXT INSTRUCTION
ADDRESS IN XHI & XLOW

CCJ4PUTE NEXT INST ADDRESS
FOR INDEXED JUMPS

IS INSTRUCTION AN RTS?
NO
YES, PULL REroRN ADDRESS
FRCtl STACK AND STORE IN
NEXT INSTRUCTION POINTER.

SWI?
YES, RETURN TO CONTROL
WAI?
YES, RETURN TO CONTROL
SET BREAKPOINT AT NEXT
INSTRUCTION LOCATION AND SAVE
OP CODE.
STORE SWI AT BREAKPOINT &
VERIFY THAT IT'S WITHIN RAM
IF RCJ4, 00 TO CONTROL

04870 * EXEClll'E INSTRUCTION
04880 £389 7E E199 JMP CONTG RT! TO EXECl!rE INSTRUCTION

04900 *RETURN HERE ON SWI IF TRACE FLAG ON
04910 E38C FE AOOC swnJRN LDX XHI
04920 E38F B6 A066 LOA A OPSAVE
04930 £392 A7 00 STA A X REPLACE SWI'S WITH PREVIOUS
04940 E394 7D A065 TST BFLAG CONTENTS. IF BFLAG IS CLEAR,
04950 E397 27 08 BEQ DISPLY THEN ONLY ONE BREAKPOINT
04960 E399 FE A061 LOX BPOINT WAS SET.

PAGE 010 SMARTBlXi

04970 E39C B6 A063 LDA A BPOINT+2
04980 E39F A7 00 STA A X
04990 E3A1 7E E24B DISPLY JHP RETURN DISPLAY REGISTER STATUS

05010 E3A4 OD
E3A5 OA
E3A6 00
E3A7 00
E3A8 00
E3A9 04
E3AA 53
E3AB 31
E3AC 04

CRLFAS FCB $D,$A,0,0,0,4,'S,'1,4

05030 E3AD 81 55 TDEX CHP A l'U IF IT'S A "U"
05040 E3AF 'Z7 OA BEQ CHA71 GET PREVIOUS ADDRESS
05050 E3B1 BD EOAC JSR INHEX+2 IF NOT HEX, JMP CONTROL
05060 E3B4 BD E057 JSR BYTE+2 ELSE, GET NEW DAT~
05070 E3B7 09 DEX
05080 E3B8 7E EOA2 JHP CHA61 STORE NEW DATA
05090 E3BB 09 CHA71 DEX GET PREVIOUS ADDRESS
05100 E3BC 09 DEX
05110 E3BD FF AOOC STX XHI
05120 E3CO 7E E087 JMP CHA51 PRINT PREVIOUS ADDRESS

05140 E3C3 FllrABL EQU • CC»tlAND LOOKUP TABLE
05150 E3C3 4D FCC /Ml
05160 E3C4 E085 FDB CHANGE MEMORY EXAMINE
05170 E3C6 47 FCC /GI
05180 E3C7 E199 FDB CONTG GO TO $A048
05190 E3C9 52 FCC /R/
05200 E3CA E1EA FDB PRINT PRINT REGISTERS
05210 E3CC 54 FCC IT/
05220 E3CD E237 FDB TRACE TRACE ROOl'INE
05230 E3CF 49 FCC /I/
05240 E3DO E20F FDB IFILL MEMORY FILL
05250 E3D2 4B FCC /Kl
05260 E3D3 E189 FDB BKPNT SET BREAKPOINT
05270 E3D5 34 FCC /4/
05280 E3D6 E400 FDB $E400 GO TO $E400
05290 E3D8 4A FCC /J/
05300 E3D9 E1E6 FOB JUMP JUMP TO ADDRESS ENTERED
05310 E3DB 51 FCC /QI
05320 E3DC 8020 FDB $8020 QUICKSTART - BCX)T DISC
05330 E3DE 44 FCC ID/
05340 E3DF 7283 '!:> ~ g J FOB $7283 DISC WARMSTART
05350 E3E1 48 FCC IHI
05360 E3E2 E1C5 FOB PRNTON SET HARDCOPY FLAG
05370 E3E4 4C FCC ILi
05380 E3E5 EOOA FOB LOAD LOAD ASCII FORMATl'ED TAPE
05390 E3E7 50 FCC /P/
05400 E3E8 E127 FDB PUNCH PUNCH ASCII FORMATl'ED TAPE
05410 E3EA 45 FCC /El
05420 E3EB E1C4 FOB ECHON TURN INPUT ECHO ON

PAGE 011 SHARTBlD

05430 E3ED 4E FCC /N/
05440 E3EE E1C6 FOB ECHOFF TURN INPUT ECHO OFF
0'3450 E3FO TBLEND EQU •
05470 E3FO 13 MCLOFF FCB $13
05480 E3F1 OD MCL FCB $D,$A,$14,0,0,'*,4

E3F2 OA
E3F3 14
E3F4 00
E3F5 00
E3F6 2A
E3F7 04

05500 E3F8 EOOO FDB IO IRQ VECTOR
05510 E3FA E113 FDB SFE SWI VECTOR
05520 E3FC E005 FOB POWDWN NMI VECTOR
05530 E3FE EODO FDB START RESET VECTOR

05550 * RAM STORAGE LOCATIONS

05570 AOOO ORG $AOOO
05580 AOOO 0002 IOV RMB 2 I/O INTERRUPT POINTER
0'3590 A002 0002 BEGA RMB 2 BEGINNING ADDRESS
05600 A004 0002 ENDA RMB 2 ENDING ADDRESS
0'3610 A006 0002 NIO RMB 2 NMI INTERRUPT POINTER
05620 A008 0002 SP RMB 2 TARGET STACK POINTER
05630 AOOA 0001 ACIAT RMB 1 ACIA STAnJS WORD
0'5640 AOOB 0001 ECHO RMB 1 ECHO FLAG
05650 AOOC 0001 XHI RMB 1 INDEX REG HI
05660 AOOD 0001 XI.OW RMB 1 INDEX REG LOW
05670 AOOE 0001 TEMP RMB 1 TEMP
C5680 AOOF 0002 TW RMB 2 TEMP
05690 A011 0001 '!FLAG RMB 1 TRACE FLAG
C5700 A012 0002 XTEMP RMB 2 X-REG TEMP STORAGE
05710 A014 0001 BKFLG RMB 1 BREAKPOINT FLAG
05720 A015 0020 RMB 45 SMARTBOO STACK
05730 A042 0001 STACK RMB 1 STACK POINTER
05740 A043 0010 RMB 29
05750 A060 0001 TSTACK RMB 1 TRACE MODE STACK
05760 A061 0003 BPC>INT RMB 3 BRANCH POINT ADDR & CODE
05770 A064 0001 MCONT RMB 1 TEMP
05780 A065 0001 BFLAG RMB 1 BRANCH FLAG (TRACE)
05790 A066 0001 OPSAVE RMB 1 OPERAND (TRACE)
05800 A067 0001 PB1 RMB 1 TRACE TEMP
05810 A068 0001 PB2 RMB 1 TRACE TEMP
05820 A069 0001 PB3 RMB 1 TRACE TEMP
05830 A06A 0001 CKSM RMB 1 CHECKSll4
05840 A06B 0001 BlTECT RMB 1 BYl'E COUNT
05850 A04A PRINTR EQJ $A04A USER PRINT ROlTl'INE

PAGE 012 SMARTBlli

05870
ACIAS 8008
ACIAD 8009
IO EOOO
POWIMN EOOS
LOAD EOOA
LOAD3 E013
LOAD11 E02F
LOAD15 E03B
LOAD19 E040
LOAD21 E044
C1 E044
BADDR E047
BYTE E055
OUTHL E067
OUTHR E06B
OUTCH E075
INCH E078
PDATA2 E07B
PDATA1 E07E
CHANGE E085
CHA51 E087
CHA61 EOA2
INHEX EOAA
IN1HG EOBE
OUT2H EOBF
OOT2HA EOC1
OUT4HS EOC8
OUT2HS EOCA
OUTS EOCC
START EODO
INZ EODE
INZ1 EOEO
CONTRL EOE3
NXTCHR EOFF
OOODCH E10E
SFE E113
PUNCH E127
PUN11 E134
PUN22 E146
PUN23 E148
PUN32 E167
PUNT2 E182
PRNT E187
BKPNT E189
CONTG E199
LIMITS E19D
OUS E1A9
INEEE E1AC
BAD2 E1C1
ECfllN E1C4
PRNTON E1C5
ECfDFF E1C6
C3 E1C9

END CRLF E1CB
PDATl E1CE
OOTEEE E1D1
oorcH2 E1D9
Ol1fCH1 E1DA
JUMP E1E6
PRINT E1EA
C2 E20C
IFILL E20F
FILLOP E217
CS E21F
PRINTS E221
oorr4 E232
OUT2 E234
TRACE E237
RETURN E24B
BBR E28D
BY!' E292
C4 E295
Ol1f 4 E297
NOTB E29A
BY1'3 E2A4
BYT2 E2A8
BY1'1 E2AA
DPOS E2BA
t«>TBB E2CB
CKCBA E2D9
RDC E2EB
Clf KX E2F5
RETDID E307
RETNOT E30C
OOT E30E
TSTB E322
TSTJ E333
ISJ E3!'3
ISX E34B
NOTJ E35F
NOTRTS E36A
EXR E370
NOTRTI E373
EXEC E37B
SW1URN E38C
DISPLY E3A1
CRLFAS E3A4
TDEX E3AD
aiA71 E3BB
FlTl'ABL E3C3
TBLEND E3FO
MCLOFF E3FO
MCL E3F1
IOV AOOO
BEGA A002
ENDA A004
NIO A006

SP A008
ACIAT AOOA
ECHO AOOB
XHI AOOC
XI.OW AOOD
TEMP AOOE
TW AOOF
TFLAG A011
XTEMP A012
BKFLG A014
STACK A042
TSTACK A060
BFOINT A061
MCONT A064
BFLAG A065
OPSAVE A066
PB1 A067
PB2 A068
PB3 A069
CKSM .A06A
BYrECT A068
PRINTR A04A

TOTAL ERRORS 00000

