
SDS SIGMA 7 BA SIC INSTRUCTIONS

Mnemonic Code instruction Name Page Mnemonic Code Instruction Name Page ----
LOAD/STORE FLOATING-POINT ARITHMETIC

II 2.2 Load Immediate 29 FAS 3D Floating Add Short 50

LB 72 Load Byte 29 FAL tD Floating Add Long 50

LH 52 Load Halrword 29 FSS 3C Floating Subtract Short 50

LW 32 Load Word 29 FSL IC Floating Subtract Lon!~ 51

LO 12 ' Load Dou~leword 29 FMS 3F Floating Multipl/ Short 51

LCH SA Load Complement Halfword 30 FML IF Floating Multiply Long 51

LAH 58 Lopd Abs<;llute Halfword 30 FDS 3E Floating Divide Short 51

I.CW 3A Load Col11plement Word 30 FDL IE Floating Divide Long 51

LAW 38 Load Absolute Word 30
LCD IA Load Complement Doubleword 30

DECIMAL
LAD 113 Load Absolute Doubleword 31
LS 4A Load Selective 31

DL 7E Decimal Load 53
LM 2A Load Multiple 32

DST 7F Decimal Store 53
LCFI .02 Load Conditions and Floating Control Immediate 32

DA 79 Decimal Add 54
LCF 70 Load Conditions and Floating Control 32

DS 78 Decimal Subtract 54
XW 46 Exchange Word 33

DM 7B Decimal Multiply 54
S.TB 75 Sto~e Byte 33
STH Store Haffword l3 DD 7A Decimal Divide 55

55 DC 7D Decimal Compare 55
STW 35 Store Word 33

DSA 7C Decimal Shift ArithmE~tic 55
STO 15 Store Doubleword 33

PACK 76 Pack Decimal Dig its 56
STS 47 Store Selective 33
STM 213 Store Multiple 34 UNPK 77 Unpack Decimal Dighs 56

STCF 74 Store Conditions and Floating Control 34
BYTE STRING

ANAL YZE/I NTERPRET
MBS 61 Move Byte Strin9 58

ANLZ 44 Analyze 34 CBS 60 Compare Byte String 59

INT 6B ~nterpret 35 TBS 41 Translate Byte String 60
TTBS 40 Trans lot.e an~ Test Byte Stri n9 60

FIXED-POINT ARITHMETIC EBS 63 Edit Byte String 61

Al 20 Add Immediate 36
PUSH DOWN

AH 50 Add Halfword 36
AW 30 Add Word 37

PSW 09 Push Word 66
AD 10 Add Doub leword 37

PLW 08 Pull Word 66
SA 58 Subtract Holfword 37

PSM OB Push Multiple 67
SW 38 Subtroct Word 37
SO I~ Subtract Doubleword 38 PLM OA Pull Multiple 67

MI 23 Mvltiply Immediate 38 MSP 13 Modify Stack Pointer 68

MH 57 Multiply Halfword 38
MW 37 Multiply Word 39 EXECUTE/BRANC H
PH 56 Divide Halfword 39
OW 36 Divide Word 39 EXU 67 Execute 70

AWM 66 Add Wor!:} to Memory 40 BCS 69 Branch on Conditions Set 70

MIS 73 ,Modify and Test Byte 40 BCR 68 Branch on Conditions Reset 70

MIH 53 Modify and Test Halfword 40 BIR 65 Branch on Incrementing Register 70

MTW 33 Modify and Test Word 41 BOR 64 Branch on Decrementing_Re9ister 71

ML 6A Branch and Link 71

COMPARISON

CI 21 Compare Immediate 41 CALL

ce 71 Compare, Byte 41
CALI 04 CallI 71

CH 51 Compare Ha lfword 42
CAL2 05 Call 2 71

CW 31 Compare Word 42
CAL3 06 Call 3 71

CP 11 Compare Doubleword 42
CAL4 07 Call 4 71

CS 45 Compare'Selective 42
CLR 39' Compare withLimits in Register 43
elM 19 Compare' with Limits in Memory 43 CONTROL

LOGICAL LPSD OE Load Program Status Doubleword 72

XPSD ,OF txchange Program Status Doubleword 72

,OR 49 OR Worq 43 LRP 2F L9ad Register Pointer 74

eOR 48 Exclusive OR Word 43 MMC 6F Move to Memory ConlT~1 74

AND 4B AN.D WQf9 43 WAIT 2E Wait 76

RD 6C Read Dir.ect '77

SHIFT WD 6D Write Direct 77

5 25 Shift 44 INPUT/OUTPUT
SF 24 Shift Floating 45

SIO 4C Start I'nput/Output 80
CONV~RSION HIO 4F Halt Input/Output 83

TIO 4D Test Input/Output 83
CVA 29 Convert by Addition 46 TDV 4E Test Device 84
CVS 28 Convert by Subtraction 47 AIO 6E Acknowledge Input/Output Interrupt 84

50S SIGMA 7 COMPUTER
REFERENCE MANUAL

90 09 50G

October 1969

Price: $5.00

SCIENTIFIC DATA SYSTEMSA XEROX COMPANy/701 South Aviation Boulevard/EI Segundo, California 90245

© 1966. 1967. 1968. 1969. Scientific Data Systems. Inc. Printed in USA.

ii

REVISION

This publication, SDS 90 09 50G, is a minor revision of the SDS SIGMA 7 Computer Ref­
erence Manual, 9009 50F (dated December 1968). A change in text from that of the pre­
vious manual is indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title

SDS Sigma 5/7 Symbol/Meta-Symbol Reference Manual

SDS Sigma Glossary of Computer Terminology

ALL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Publ ication No.

90 09 52

90 09 57

CONTENTS

1. SIGMA 7 SYSTEM 3. INSTRUCTION REPERTOIRE (cont.)

General Characteristics 2 Execute/Branch Instructions 69
Real- Time Features 3 Call Instructions 71
General-Purpose Features 4 Control Instructions 72
Time-Sharing Features 5 Input/Output Instructions 79
Multiusage Features 5

4. INPUT/OUTPUT OPERATIONS 86
2. SIGMA 7 SYSTEM ORGANIZATION 6

lOP Command Doubl ewords 87
Informati on Format 6
Core Memory 6

Dedicated Core Memory Locations 6 5. OPERATOR CONTROLS 90
Information Boundaries 6

Computer Modes 7 Processor Control Panel 90
CPU Fast Memory 7 Loading Operation 95
Central Processing Unit 8

General Registers and Register Block
Pointer 9 INDEX 133

Memory Control Storage 9
Instruction Format 9
Immediate Operand 10 APPENDIXES
Memory Reference Addresses 10
Memory Address Control 12 A. REFERENCE TABLES 97

Memory Map and Access Protection 12
Memory Write Locks 13 SDS Standard Symbols and Codes 97
Program Status Doubl eword 15 SDS Standard Character Sets 97
Interru pt System 16 Control Codes 97

Internal Interrupts 16 Special Code Properti es
---~~---

97
External Interrupts 18 SDS Standard 8-Bit ComputerCodes (EBCDIC) __ 98
States of an Interrupt Level 18 SDS Standard 7-Bit Communication Codes
Control of the Interrupt System 19 (USASCII)

-~-.. --~-- 98
Time of Interrupt Occurrence 19 SDS Standard Symbol-Code Correspondences __ 99
Single-Instruction Interrupts 19 Hexadecimal Arithmetic 103

Trap System 20 Hexadecimal Addition Table 103
Nonallowed Operati on Trap 20 Hexadecimal Multiplication Table 103
Unimplemented Instruction Trap 22 Table of Powers of 16 10 104
Push-Down Stack Limit Trap 22 Table of Powers of 1016 ----- 104
Fixed-Point Overflow Trap 23 Hexadecimal-Decimal Integer Conversion Table _ 105
Floating-Point Arithmetic Fault Trap 23 Hexadecimal-Decimal Fraction Conversion T abl e _ 111
Decimal Arithmeti c Faul t Trap 24 Table of Powers of Two 115
Watchdog Timer Runout Trap 24 Mathematical Constants

------~----
115

Call Instruction Traps 24

B. REFERENCE DIAGRAMS 116
3. INSTRUCTION REPERTOIRE 25

Basic SIGMA 7 Instruction Execution Cycle ___ 116
Load/Store Instruction 28 FI oati ng-Poi nt Instruction Execution 119
Analyze/Interpret Instructions 34 Floating-Point Multiplication and Division __ 119
Fixed-Point Arithmetic Instructions 36 Floating-Point Addition and Subtraction _____ 120
Comparison Instructions 41 Floating-Point Shift 121
logical Instructions 43 Edit Byte String Instruction Execution ___ 122

Shift Instructions 44
Conversion Instructions 46
Floating-Point Arithmetic Instructions 47 C. INSTRUCTION LIST 123
Decimal Instructions 51
Byte String Instructions 57
Push-Down Instructions 64 D. INSTRUCTION TIMING 125

iii

ILLUSTRATIONS TABLES

Frontispiece - SIGMA 7 Computer System ____ _ v 1. Dedicated SIGMA 7 Core Memory Locations 7
2. SIGMA 7 Interrupt Locations 17

1. A Typical SIGMA 7 System ________ 1 3. Summary of SI GMA 7 Trap System 21
2. Information Boundaries __________ 7 4. Glossary of Symbolic Terms 27
3. SIGMA 7 Central Processing Unit ______ 8 5. Analyze Table for SIGMA 7 Operation Codes __ 35
4. Index Displacement Alignment 12 6. Floating-Point Number Representation 48
5. Generation of Actual Addresses 14 7. Condition Code Settings for Floating-Poi nt
6. Typical Interrupt Priority Chain 16 Instructions 50
7. Interrupt Level Operation 18 8. Status Bits for I/O Instructions 81
8. Processor Control Panel __ .__________ 90 9. Program Status Doubleword Indicators 92

iv

SIGMA 7 Computer System

v

1. SIGMA 7 SYSTEM

A typical SIGMA 7 system (see Figure 1) consists of the fol­
lowing major elements:

• A memory consisting of up to eight magnetic core stor­
age modules

• A central processing unit (CPU) that addresses core
memory, fetches and stores information, performs arith­
metic and logical operations, sequences and controls

Core Memory
Module

t

Core Memory
Module

t

•

instruction execution, and controls the exchange of in­
formation between core memory and other elements of
the system

An input/output system controlled by one or more input/
output processors (lOPs), each providing data transfer
between core memory and peripheral input/output de­
vices, and operating simultaneously with the CPU.

_I

Core Memory
Module

1

Core Memory
Module

SIGMA 7
Central Processing Unit

~~~::·:·:D·~~:i:~~·:·:·::~~~ 

{.s.~.~.~~.~.I .. !.~~.r 
• 

f---+ I/o Device 
o 

~ I/O Device 
15 

Multiplexo/ 
I/o Processor 

Ir 

~~~······6·~·~·i·~·~······f 

~~~Controller> 
.:.:.:.:.:.:-:.:.:.:-:.:::-:-:::::::::: 

I/o Device 

:~~;·····h~~:i:~:~:·:·:·~~~~ 

:;: Controller :::: 
: -:.:-:.:-: -:.:-: -: -: -:.:-:. ~"""::::: 

• 

I/o Device 

'------ Standard-Speed Peripheral Devices -------' 

Selecto/
t 

I/o Processor 

~ ______ ~n~ ____________ ~ 
~~~·:·:·b:~~·i·~·~·:·:·:~~~~ 

tS;?~.~.~~.~.~.~.~ .. r

I/O Device

u

I/O Device
;=:> 0

~ I/o Device
.~ 15

High-Speed Peripheral Devices

.~~~:·:·:·D:~~·i·~:~:·:·:·:~~

< Controller :~~ :.: :-:.:-:-:-:.:-:-:-:-

I/o Device

Figure 1. A Typical SIGMA 7 System

tMultiplexor lOP allows up to 32 devices (one per device controller) to operate simultaneously.

tt Selector lOP allows one device at a time to operate at a high-speed transfer rate of up to one 32-bit word per microsecond.
A selector lOP may service up to 32 high-speed devices, and two selector lOPs may share a single memory bus.

SIGMA 7 System

GENERAL CHARACTERISTICS

A SIGMA 7 system has many advanced features and oper­
ating characteristics that enable it to function efficiently
in rea I-time, genera I-purpose, time-shari ng, and multi­
usage computing environments:

• Word-oriented memory (32-bit word plus parity bit)
for maximum efficiency; memory is addressable and
alterable by byte (8-bit), halfword (2-byte), word
(4-byte), and doubleword (8-byte) quantities

• Full parity checking for both CPU/memory and input/
output operations

• Memory expandable from 4096 to 131,072 words
(16,384 to 524,288 bytes) in blocks of 4096, 8192,
12,288, or 16,384 words, for complete flexibi lity of
capacity

• Direct addressing of the entire core memory, within
the primary instruction word and without the need for
base registers, indirect addressing, or indexing

• Indirect addressing, with or without post-indexing,
for additional programming flexibility

• Displacement index registers, automatica Ily self­
adjusting for all data sizes

• Immediate addressing of operands, for greater storage
efficiency and increased speed

• 16 general-purpose registers, expandable (in blocks of
16) to 512 to reduce transfer of data into and out of
registers in a multiusage environment

• Hardware memory mapping (optional), to eliminate
memory fragmentation and to provide dynamic pro­
gram relocation

• Selective memory access protection with four modes
(inc luded with memory mapping) for system and infor­
mation security and protection

• Selective memory write protection (optiona I)

• Watchdog timer, assuring nonstop operation

• Real-time priority interrupt system with automatic
identification and priority assignment, extremely fast
response time, and up to 240 levels that can be
individua Ily armed and/or enabled by program control

•
•

•

•

•

•

Interruptibi lity of long instructions guaranteeing fast­
est possible response to interrupts

Automatic traps, for error conditions and for simulation
of optional instructions not physically implemented, all
under flexible program control

Power fail-safe, for automatic, safe shutdown in the
event of a power fai lure

Multiple interval timers, with a choice of resolutions
for independent time bases

Privileged instruction logic (master/slave modes), for
concurrent, time-shared operation

Complete, powerful instruction set including:

• Byte, ha If word, word, and doubleword operations

2 Genera I Characteristics

•

• Use of all memory-referencing instruction for
register-to-register operations, wii.th or without
indirect addressing and post-inde)l:ing, and within
the normal instruction format

• Multiple-register operations

• Fixed-point arithmetic operations in halfword,
word and doubleword modes

• Optional floating-point hardware operations, in
short and long formats, with significance, zero,
and normalization control and che·cking, all under
full program control

• Full complement of logica I operations (AND, OR,
exc lusive OR)

• Comparison operations, inc luding compare between
limits (with limits in memory or in registers)

• Calls, an extension of the SDS programmed
operator, concept, permitting up "to 64 dynami­
cally variabl e, user-defined instructions, and
permitting a program to gain access to Monitor
functions without Monitor intervention

• Optional decimal hardware operat'iQns, including
arithmetic, edit, and pack/unpack

• Push-down stack operations (hardwore implemented)
of single or multiple words, with automatic limit
checking, for dynamic space all oCCItion, subroutine
communication, and recursive routine capabi I ity

• Automatic conversion operations, including binary/
BCD and any other weighted-number systems

• An analyze instruction, for facilitating effective
address computation

• An interpret instruction, for increlJsed compilation
effectiveness and speed

• Shift operations (left and right) of word or double­
word, including logical, circular, arithmetic, and
floating-point modes

Independently operating input/output system with the
following features:

•

•
•

•

•

•

•

Direct input/output of a full word" without the use
of a channel

Up to eight input/output processors

Multiplexor input/output proceSSOlrs, for simultane­
ous operation of up to 32 standard-speed devices
per I/O processor

Selector input/output channels (8 or 32 bits
wide), fordata rates approaching 4. mill ion
bytes per second

Up to 32 device controllers can be connected to
each I/O processor

Both data and command chaining, for gather-read
and scatter-write operations

Up to 32,000 output control signals and input test
signals

•

•

Comprehensive array of modular software:

• Expands in capability and speed as system grows,
with no reprogramming required

• Operating systems: Basic Control Monitor, Batch
Processing Monitor, and Universal Time-Sharing
Monitor

•

•

Compiler: FORTRAN IV in standard and high­
efficiency version

Assemblers: Symbol and advanced Meta-Symbol

• Conversational language: FORTRAN IV,
calculator mode

• Library: Mathematical, uti I ity, and input/output
programs

• Business software: General ized Sort/Merge, 1401
Simulator, and SDS COBOL-65.

Wide range of standard and special-purpose peripheral
equipment. Field-proven peripheral equipment avail­
able for use with SIGMA 7 includes:

• Rapid-access data (RAD) files: Capacities to 5.37
million bytes per unit; transfer rates to 3 million
bytes per second; average access times as low as
17 mi II iseconds. Fixed read/write head for each
track el iminates time delays associated with
movabl e-head units.

• Magnetic tape units: Four models; 7-track and
9-track systems, IBM-compatible; high-speed
un its operate at 150 inches per second with trans­
fer rates of up to 120,000 bytes per second; low­
cost units operate at 37.5 inches per second with
transfer rates of 20, 800 bytes per second.

• Displays: Keyboard/display, buffered, with 8.5
x 11 inch page area containing up to 2048 char­
acters displayed in any of 32 I ines of 86 char­
acters each. The display operates in character or
message modes. Graphic display has standard
character generator, vector generator, and close­
ups, as well as I ight pen, refresh buffer, and
alphanumeric/function keyboard options. Both
types feature display rates of up to 100,000 char­
acters per second.

• Card equipment: Reading speeds of up to 1500
cards per minute; punching speeds of up to 300
cards per minute; intermixed binary and EBCDIC
card codes; simplified punch programming does
not require "corner-turning" logic.

• Line printers: Fully buffered, with speeds of up
to 1,000 lines per minute; 132 print positions
with 56 different characters.

• Keyboard/printers: 10 characters per second;
also available with integral paper tape reader
(20 characters per second) and punch (10 char­
acters per second).

• Paper tape equipment: Readers with speeds of up
to 300 characters per second; punches with speeds
of up to 120 characters per second.

• Graph Plotters: digital incremental; providing
drift-free plotting in two axes in up to 300 steps
per second at speeds from 30 mm to 3.5 inches per
second.

• Data Communications equipment: A compl ete line
of character- and message-oriented equipment to
connect remote and local user terminals to common
carrier lines.

REAl-TIME FEATURES

Real-time applications are characterized by a need for hard­
ware that provides quick response to an externa I environment,
speed great enough to keep up with the rea I-time process it­
self, and sufficient input/output flexibility to handle a wide
variety of data types at varying speeds. The SIGMA 7
system includes provisions for the following real-time com­
puting features:

Multilevel, True Priority Interrupt System. The real-time­
oriented SIGMA 7 system provides for quick response to in­
terrupts by means of up to 224 external interrupt levels. The
source of each interrupt is automaticall y identified and re­
sponded to according to its priority (this function need not
be programmed). For further flexibility, each level can be
individually disarmed (to discontinue accepting inputs to it)
and disabled (to defer responding to it). Use of the disarm/
disable feature makes programmed dynamic reassignment of
priorities quick and easy, even while a real-time process is
in progress. In establishing a configuration for the system,
each group of 16 interrupt levels can have its priority as­
signed in different ways in order to meet the specific needs
of the problem; the way in whi ch interrupt levels are pro­
grammed is not affected by the priority assignment.

Programs that dea I with interrupts from specia Ily designed
equipment sometimes must be checked out before that equip­
ment is actually available. To permit simulating this special
equipment, any SIGMA 7 interrupt level can be triggered
by the CPU itse If through execution of a sing Ie instruction.
This capability is also useful in establishing a hierarchy of
responses. For example, in responding to a high-priority
interrupt, after the urgent processing is completed, it may
be desirable to assign a lower priority to the remainIng
portion in order to respond to other critical stimul i. The
interrupt routine can accompl ish this merely by trigger­
ing a lower-priority level, which processes the remaining
data on Iy after other interrupts have been hand led.

Nonsto 0 eration. When connectedtospecial devices {on a
ready resume basis}, the computer can sometimes become ex­
cessively delayed if the special device does not respond quick­
Iy. A bui It-in watchdog timer assures that the SIGMA 7
computer cannot be delayed for an excessive length of time.

Real-Time Clocks. Many real-time functions must be timed
to occur at specific instants. Other timing information is
a Iso needed - elapsed time since a given event, for example,
or the current time-of-day. SIGMA 7 can contain two or
four real-time c locks with varying degrees of resolution
(1/60 second or 1/8 millisecond, for example) to meet these
needs. These clocks also allow easy handling of separate
time bases and relative time priorities.

Real-Time Features 3

Rapid Context Switching. When responding to a new set of
interrupt initiated circumstances, a computer system must
preserve the current operating environment, for continuance
later, while setting up the new environment. This changing
of environments must be done quickly, with a minimum of
"overhead" costs in time. In SIGMA 7, each one of up to
32 blocks of general-purpose arithmetic registers can, if
desired, be assigned to a specific environment. All rele­
vant information about the current envi ronment (instruction
address, current general register block, memory-protection
key, etc.) is kept in a 64-bit program status doubleword
(PSD). A single instruction stores the current PSD anywhere
in memory and loads a new one from memory to establ ish a
new environment, which includes information identifying a
new block of general-purpose registers. A SIGMA 7 system
can thus preserve and change its operating environment
com pi etely through the execution of a singl e instruction.

Simultaneous I/o Channel Operation. The use of multi-
pi exor input/output processor permits up to 32 channels with
standard-speed devices to operate concurrently; the addition
of more mul ti pi exor I/O processors increases th is throughput.

High-Speed Channel Operation. The use of the sel ector
I/O processor permits very high-speed data transfer - up
to one 32-bit word per memory cycle. To meet special
needs, data size can be 8 or 32 bits wide.

Memory Protection. Both foreground (real-time) and
background programs can be run concurrently in a SIGMA
7 system because a foreground program is protected against
destruction by an unchecked background program. The
optional memory write-protection guarantees that protected
areas of memory can be written into only under certain
conditions. Under monitor control, the optional memory
access-protection feature also prevents accessing of memory
for specified combinations of reading, writing, and instruc­
tion acquisition.

Variable Precision Arithmetic. Many of the data encoun­
tered in real-time systems are 16 bits or less in precision.
To permit this length of data to be processed efficiently,
SIGMA 7 provides halfword arithmetic operations in addi­
tion to fullword operations. Doubleword arithmetic oper­
ations (for extended precision) are also included.

Direct Data Input/Output. For handl ing asynchronous
I/O, a 32-bit word can be transferred directly to or from
a general-purpose register, so that an I/o channel need
not be occupied with relatively infrequent transmissions.

Interleave/Overlap. To increase processing speeds, mem­
ory modules overlap cycl es automatically wherever possible.
Core memory addresses can be interl eaved modu 10-2
{odd-even}, or modul0-4, to increase the probabil ity of
overlapping.

GENERAL-PURPOSE FEATURES
General-purpose computing appl ications are characterized
primari Iy by an emphasis on computation and internal data
handling. Many operations are performed in floating-point
format and on strings of characters. Other typical charac­
teristics include decimal arithmetic operations, the need to
convert binary numbers into decimal (for output printing or
display), and large amounts of input/output at standard

4 General-Purpose Features

speeds. The SIGMA 7 system includes the following general­
purpose computer features.

Floating-Point Hardware (0 tional). Floating-point instruc­
tions are avai labl e in both short 32-bi t) and long (64-bit) for­
mats. Under program control, the user can select optional zero
checking, normalization, and significance checking (which
causes the computer to trap when a post operation shift of more
than two hexadec ima I places occurs in the frac:ti~n of a floating­
point number). The significance checking feclture permits the
U:;E" of the short floating-point format (for high processing speed
and storage economy) and the use of the long format wher.
loss of significance is detected.

Decimal Arithmetic Hardware (optional). Decimal arithmetic
instructions operate on up to 31 digits pi us sign. Thi s optiona I
instruction set a Iso inc ludes pack/unpack instructions (for con­
verting to/from the pac ked format of two digits per byte) and a
genera I ized edit instructi on (for zero suppressi on, check pro­
tection, and formatting byte information with punctuation to
display or print it).

Indirect Addressing. This feature provides for simple table
linkagesand permits the user to keep data sectionsofhis pro­
gram separate from procedure sections for ease of maintenance.

Displacement Indexing. The technique of indexing by means
of a IIfloating II displacement permits the user to access the
desired unit of data without the need to consider its size.
The index registers automaticallyalign themselves appropri­
ately; thus, the same index register can be used on arrays
with different data sizes. For example, in QI matrix multi­
plication of any array of fullword, sing Ie-precision, fixed­
point numbers, the results can be stored in (l second array
as double-precision numbers, using the same index quantity
for both arrays. If an index register contains the va lue of
k, then the user a Iways accesses the kth element, whether
it is a byte, halfword, word, or doubleword. Incrementing
by various quantities according to data size is not required;
instead, incrementing is always by units in Cl continuous
array table no matter which size of data elE~ment is used.

Powerful Instruction Set. The avai labi lity of more than 100
major instructions results in programs that an~ short, rapidly
assembled, and quickly executed.

Translate Instruction. This instruction permits rapid transla­
tion between any two 8-bit codes (such as EBCDIC to ASCII);
thus data from a variety of input sources can be handled eas­
ily, and can be easily reconverted for output.

Conversion Instructions. Two genera lized conversi on instruc­
tions provide for bidirectiona I conversi ons between interna I
binary and anyotherweighted number system, including BCD.

Call Instructions. Four instructions permit handling up to 64
user-defined subroutines (as if they were built-in machine
instructions) and gaining access to specified monitor
services without requiring monitor intervention.

Interpret Instruction. Thh instruction simplifies and speeds
compi ling operations, thus reducing the space and time re­
quirements for compi lers.

Four-Bit Condition Code. This feature simplifies the check­
ing of results by automatica Ily providing information on

almost every instruction execution (including indicators
for overflow, underflow, zero, minus, and plus, as appro­
priate) without requiring an extra instruction execution.

TIME-SHARING FEATURES

Time sharing is the ability of a SIGMA 7 system to share
its total capacities among many users at the same time.
Each user can be performing a different task (requiring a
differe"nt share of the available resources) and, in many
instances each can be on-line in an interactive, IIconver­
sational ll mode with the computer, while others merely
enter work to be processed and requ ire only final output.
The SIGMA 7 system provides for the following time­
sharing computer features:

Rapid Context Saving. When changing from one user to
another, the operating environment can be switched qui ckly
and easily. Stack-manipulating instructions permit from
one to 16 general-purpose registers to be stored in a push­
down stack by a single instruction-with automatic updating
of stack status information-and to be retrieved (again, by
a single instruction) when needed. The current program
status doubleword (whi ch contains the entire description of
the current user's environment and mode of operation) can
be stored anywhere in memory and a new program status
doubleword loaded, all with a single instruction.

Multiple Register Blocks. The optional availabilityofupto
32 blocks of 16 general-purpose registers further improves
response time by reducing the need to store and load reg­
ister blocks. As needed, each user can be assigned a
distinct block; the program status doubleword automati­
cally points to the currently appl icable register block.

User Protection. The master/slave mode of operation re­
stricts each user to his own set of instructions while
reserving to the monitor those instructions that could, if
used incorrectly, destroy another user's program. An
optional memory access-protection system prevents tiny
user from accessing storage areas other than those assigned
to him. This access protection permits the user to access
certain areas for reading only, such as those containing
public subroutines, while preventing him from reading, or
writing, or accessing instructions in areas set aside for
other users.

Storage Management. SIGMA 7 memory is available in 32
sizes (from 4096 to 131,072 words) to provide the precise
capacity needed, while assuring potential for expansion.
To assure efficient use of available memory, the optional
memory map hardware permits storing a user's program" in
fragments (as small as 512 words) wherever space is avail­
able; yet, all fragments appear as a single, contiguous
block of storage at execution time. Further, the memory
map automatically and dynamically handles program re­
location, so that the program appears to be stored in a
standard way at execution time (even though it may
actually be stored in a different set of locations each time
it is brought into memory). The memory map for the fu 11-
sized SIGMA 7 memory is provided as a single option no
matter how small the actual machine memory may be.
Thus, the system can always be used to address a virtual
memory of 131,072 words even when the physical memory
is, for example, only 24,576 words.

Input/Output Capabil ity. SIGMA 7 can control up to eight
input/output processors (of two types) in various combin­
ations. Each multiplexor I/O processor can have up to 32
standard-speed I/o channels operating simultaneously:
sel ector I/O processors can have anyone of up to 32 high­
speed I/o devi ces operating on each processor. The I/O
processors operate semi-independently of the central pro­
cessor, leaving it free to provide faster response to overall
system needs.

Nonstop Operation. A watchdog timer assures that the
system continues to operate even if certain special I/o
capabi I ities are used with special devices that can cause
delays or halts if they fail. Multiple real-time clocks
with varying resolutions permit establ ishing several inde­
pendent time bases, thus allowing flexible allocation of
time slices to each user.

MUl TIUSAGE FEATURES
As implemented in the SIGMA 7 system, IImultiusage"
combines two or more computer application areas. The
most difficult general computing problem is the real-time
application because of its severe requirements. Similarly,
the most difficult multiusage problem is a time-sharing
application that includes one or more real-time processes.
Because the SIGMA 7 system has been designed on a real­
time base (embedded in time-sharing capab il ities that
augment its real-time power) it is uniquely qualified for a
mixture of applications in a multiusage environment. Many
of the hardware features that prove valuable for certain
application areas are equally useful in others, although in
different ways. This multiple capability makes SIGMA 7
particularly effective in multiusage applications. The major
SIGMA 7 multiusage computer features are:

Priority Interrupt. In a multiusage environment, manyele­
ments operate asynchronously. Thus, having a true priority
interrupt system, as SIGMA 7 does, is especially important.
With it the computer system can respond qu ickly (and in
proper order) to the many demands being made upon it, with­
out the high overhead costs of complicated programming,
lengthy execution time, and extensive storage allocations.

Quick Response. The many features that combine to
produce a quick-response system - multiple register blocks,
qu ick context saving, push-pull operations - benefit all
users because more of the machine's power at any instant
is available for useful work.

Memory Protection. The optional memory protection
features not only protect each user from every other user,
but they al so guarantee the integrity of programs essential
to critical real-time appl ications.

Input/Output. Because of its wide range of capac ities
and speeds (with and without channels), the SIGMA 7 I/o
system simultaneously satisfies the needs of many different
application areas economically, both in terms of equip­
ment and of programming.

Instruction Set. The large, powerful SIGMA 7 instruction
set provides the computational and data handl ing capabil i­
ties required for widely differing application areas, so that
each user's program length (thus running time) is decreased
and the speed of obtaining results is increased.

Time-Sharing and Multiusage Features 5

2. SIGMA 7 SYSTEM ORGANIZATION

The three primary elements in a basic SIGMA 7 system - a
central processor, core memory, and input/output processor
- are all designed around a central, double bus structure.
Each primary element of the system operates asynchronously
and semi -independently, automati cally overlapping the op­
eration of the other elements {when circumstances permit}
for greater speed. The basic configuration can be expanded
merely by increasing the number of core memory modules
{up to eight}, increasing the number of buses {up to six},
increasing the number of input/output processors (up to
eight), or by increasing the number of central processors.

INFORMATION FORMAT

The basic element of SIGMA 7 information is a 32-bit word,
in which the bit positions are numbered from a through 31,
as follows:

A SIGMA 7 word can be divided into two 16-bit parts
{called halfwords} in which the bit positions are numbered
from a through 15, as fo II ows:

o 1 2

Half~ord 0 1 Hal~ord 1 1

3 1 4 5 6 7 8 9 10 11112 13 14 15 0 1 2 3 I 4 5 6 7 8 9 10 11112 13 14 15

A SIGMA 7 word can also be divided into four 8-bit parts
{called bytes} in which the bit positions are numbered from
a through 7, as fo Ilows:

I Byte a I Byte 1 I Byte 2 -r==;yte 3
a 1 2 3 1 4 5 6 7· 0 1 2 3 1 4 5 6 7 0 1 2 3 1 4 5 6 7- 0 1 2 3 I 4 5 6

Two SIGMA 7 words can be combined to form a 64-bit
element {called a doubleword} in which the bit positions
are numbered from a through 63, as follows:

I, , , ,I. , • ,:.
Most si9ni~icant word: I

9 10 11112 13 14 15 16 17 18 1912021 22 23 24 25 26 27128 29 30 31

Four bits of information can be expressed by means of a
single hexadecimal digit. Hexadecimal digits {and their
binary and decimal equivalents} are expressed in the fol­
lowing notation:

Hexadecimal Binary Decimal

a 0000 a
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6

6 System Organization

Hexadecimal Binary Decimal

7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 11 01 13
E 1110 14
F 1111 15

Thus, a byte can be expressed as a 2-digit hexadecimal
number, a halfword as a 4-digit hexadecimal number, a
word as an 8-digit hexadecimal number, and a doubleword
as a 16-digit hexadecimal number. In this reference man­
ua I, a hexadecimal number is displayed as la string of hexa­
decimal digits surrounded by single quotation marks and pre­
ceded by the letter IIXII. For example, the binary number
01011010 is expressed hexadecimally as XI5AI.

CORE MEMORY
SIGMA 7 core memory systems use a 32-bit word {four 8-bit
bytes, plus a parity bit) as the basic unit of information.
A II core memory is directly addressable both by the CPU
(exceptfor memory locations a through 15) OInd by the lOP.
The SIGMA 7addressing capabilityaccommodates a maxi­
mum core memory size of l31,072 words (524,288 bytes).
Core memory is modular and is available in up to 8 blocks
of 4096 words (16,384 bytes), 8192 words (32,768 bytes),
12,288 words (49,152 bytes), or 16,384 words (65,536 bytes),
in almost any combination.

DEDICATED CORE MEMORY LOCATIONS

Core memory locations a through 319 are reserved by stan­
dard SDS software for special purpose as shown in Table 1.

INFORMATION BOUNDARIES

SIGMA 7 instructions assume that bytes, h()lfwords, and
doublewords are located in core storage clccording to the
following boundary conventions:

1. A byte is located in bit positions a through 7, 8
throug h 15, 16 throug h 23, or 24 throug h 31 of a word.

2. A halfword is located in bit positions 0 through 15 or
16 through 31 of a word.

3. A doubleword is located such that bits a through 31 of
the doubleword are contained within em even-numbered
word, and bits 32 through 63 of the same doubleword
must be contained within the next consecutive (odd­
numbered) word.

The various information boundaries are i Ilu!strated in Figure 2.

I
Doubleword Doubleword i

I I
L J .
I Word (even address) Word (odd address) Word (even address) Word (odd address) I
! I

i Halfword 0 Halfword 1 Halfword 0 Halfword 1 Halfword 0 Halfword 1 Halfword 0 Halfword 1 I
I I

: Byte 0 1 Byte 1 Byte 21 Byte 3 Byte 0 I Byte 1 Byte 21 Byte 3 Byte 0 1 Byte 1 Byte 21 Byte 3 Byte 0 I Byte 1 Byte 21 Byte 3 ~

Figure 2. Information Boundaries

Table 1. Dedicated SIGMA 7 Core Memory Locations

Location

Decimal Hexadecimal Function

0 0
Addresses of general registers

15 F

16 10
Reserved for future use

31 1F

32 20
CPU/lOP communication

33 21

34 22
Program stored by LOAD
switch on the processor panel

41 29

42 2A
First record read from peri-
pheral device during a load

63 3F operation

64 40
Traps

79 4F

80 50
Override interrupt levels

87 57

88 58
Counter interrupt levels

91 5B

92 5C
Input/output interrupt levels

95 5F

96 60
External interrupt levels

319 13F

COMPUTER MODES

The SIGMA 7 computer operates in either the master mode
or the slave mode. The mode of operation is determined
by the state of the master/slave mode control bit in the
arithmetic and control unit.

MASTER MODE

The master mode is the basic operating mode of the com­
puter. In this mode, all legal SIGMA 7operations are per­
missible. It is assumed that there is a resident executive
program (operating in the master mode) that controls and
supports the operation of other programs (which may be in
the master mode or in the slave mode).

SLAVE MODE

The slave mode is the problem-solving mode of the com-­
puter. In this mode, certain II privi leged ll operations are
prohibited. Privi leged operations are those relating to
input/output and to changes in the basic control state
of the computer. A II privi leged operations are performed
(in the master mode on Iy) by a group of privi leged in­
structions. Any attempt by a program to execute a priv­
ileged instruction while the computer is in the slave mode
results in a return of control to the resident executive
program. The master/slave mode control bit can be changed
only when the computer is in the master mode; thus, a
slave program cannot directly change the computer mode
from slave to master. However, the slave program can
gain direct access to certain executive program operations
by means of CALL instructions without requiring executive
program intervention. The operations available through
CALL instructions are established by the resident execu­
tive program.

CPU FAST MEMORY

Several special memories may be used in the SIGMA 7CPU.
These memories consist of high-speed integrated circuits
that are capable of delivering information to (or receiving
information from) the arithmetic and control unit simulta­
neously with the operation of core memory modules. These
integrated-circuit memories are not accessible to any other
unit in a SIGMA 7 system.

Computer Modes/CPU Fast Memory 7

CENTRAL PROCESSING UNIT

This section describes the organization and operation of the
the SIGMA 7 central processing unit in terms of informa­
tion processing and program control, instruction and data

CPU FAST MEMORY

GENERAL REGISTER BLOCK (TYPICAL)

o I 1

~F:I·~:::::::::::'0'0':::::::::::~::::::t:~:::::::::::~::::::H~:::::::{"""""":::::::::::~:I:t~~:nt::..........,.):::::~:~::::~:n: :::::)::~:::::d "'

2 1~::::::::::)::~:::t:I:::::n::::::~::::::::::t:::::::::::::::::::::::::~:::::~::d

3 r::::::::::::::::::::::::::::::::::::::I:::::::n:::::::::::I:::::::::::::::::::::::::::::::::::::::n::nu::::::::::::::::::::}I

4 I::::::U::}:::::::::::::::::::::::::::::::::::~:::::::::::H:::::::~:::::d

5 EI::::::::::}:::U:::~::::::::::n:1

6 I:::iii::)

Index
Registers

formats, indirect addressi ng and indexing, memory map­
ping and protection, overflow and trap conditions, and
interrupt control. Basically, the SIGMA 7 CPU consists
of a fast memory and an arithmetic and conhol unit (see
Figure 3).

ARITHMETIC AND CONTROL UNIT

INSTRUCTION REGISTER

o Indirect Address Flag
o

I I I I II I I Operation Code Field
1 7

[]II] General Register Designator
8 11

[II] Index Register Designator
12 14

Reference Address Field

11111111111111111111 /
15 31 .To From •

7 It:t::::::::I:I::::::I:::::::::::::::::::::::::::::::::::I:::}j

......... ---... t~ Core Memory I
_... • To/From _ ~ ... --1... I/O Processors I

8

9

10

11

12

13

14

15

~----------------------~ ~

~----------------------~ "'

~----------------------~ ~ 31

MEMORY CONTROL STORAGE

Memory Map

t--- 256 8-bit page addresses ---I
Memory Access Protecti on

IIIIIIIIIIIII~~....-+-r-II"""-'--'III
I--- 256 2-bit access codes ---I
Memory Write Protection

IIIIII1111111 ~ ~ I1I1I

J--- 256 2-bit write locks ----t

31-digit
Decimal
Accumu­
lator

-

-

I

• Read/Write _...-j

Direct

Interrupts

Priority Interrupt System
Write Direct

PROGRAM STATUS DOU BLEWORD

[IJJJ Condition Code
a 3

[[]] Floating-point Mode Control
5 7

D Master/Slave Mode Control
8

o Memory Map Control
9

[] Arithmetic Trap Masks
1011

Instruction Address

[[I[[[·.....-r-II T""'T"'"1111r-r-T\I"""""'1 I~II
15 31

[] Write Key
34 35

[ll] Interrupt Inh ibits
37 39

II I III Register Block Pointer
55 59

Figure 3. SIGMA 7 Central Processing Unit

8 Central Processing Unit

GENERAL REGISTERS AND REGISTER BLOCK POINTER

An integrated-circuit memory, consisting of sixteen 32-bit
words, is contained within the basic SIGMA 7 CPU for
general-purpose register usage; these 16 words of fast
memory are referred to as a register block. A SIGMA 7
system may contain up to 32 such register blocks, and a
5-bit control field (called the register block pointer) in
the arithmetic and control unit selects the block currently
available to a program. The 16 general registers se­
lected by the register block pointer are referred to asthe
current register block. The register block pointer can be
changed only when the computer is in the master mode;
thus, a slave program cannot change the register block
pointer.

Each of the general registers in a register block is identified
by a 4-bit code in the range 0000 through 1111 (0 through
15 in decima I, or X'O' through X 'F' in hexadecimal notation).
Any of the genera I registers can be used as fixed-point accumu­
lators, floating-point accumulators, temporary storage, or
to contain control information such as data addresses, counts,
pointers, etc. Any (or all) of general registers 1 through 7
can be used as index registers, and registers 12 through 15
are used as a decimal accumulator capable of containing a
decimal number of 31 digits plus sign. The use of registers
12 through 15 is automatic when a decimal instruction is ex­
ecuted; however, these registers may be used for other pur­
poses by instructions not in the decimal instruction set.

MEMORY CONTROL STORAGE

Three optional, high-speed integrated-circuit memories are
available for storage of a memory map, a set of memory ac­
cess protection codes, and a set of memory write-protection
codes, all of which can be changed only when the computer
is in the master mode.

Memory Map and Access Protection

The optional memory map feature includes the necessary
integrated -c i rcu it memori es for both the memory map and
the access-protection codes. When the memory map is im­
plemented in a SIGMA 7 computer, use of the map is de­
termined by the state of the memory map control bit in the
arithmetic and control unit.

Memory Map. Two terms are essential to a proper under­
standing of the memory mapping concept: virtual address
and actua I address.

A virtual address is a value used by a machine-level pro­
gram to designate the location of an instruction, the loca­
tion of an element of data, the location of a data address
(indirect address), or to designate an explicit quantity,
such as a count. Normally, virtual addresses are derived
from programmer-suppl ied labels through an assembly (or
compi lation) process followed by a loading process. Virtual
addresses may also be computed during a program's execu­
tion. Thus, virtual addresses include all instruction ad­
dresses, data addresses, i nd i rec t addresses, and addresses
used as counts within a stored program, as well as those
addresses computed by the program.

An actual address is a value used by the CPU to access mem­
ory for storage or retrieval of information, as required by the
execution sequence of an instruction. Thus, actual addresses
designate wired-in hardware storage locations.

When the memory map is not implemented in a SIGMA 7 com­
puter (or when the map is implemented but is not in effect, as
determined by the memory map control bit), all virtual address
values above 15 are used by the CPU as actual addresses.
Virtual addresses in the range 0 through 15 are always used
by the CPU as general register addresses rather than as core
memory addresses. Thus, for example, if an instruction uses
a virtual address of 5 as the address where a result is to be
stored, the result is stored in general register 5 in the current
register block instead of in core memory location 5.

When the computer is operating with the memory map (i. e.,
the memory map is implemented and in effect), virtual ad­
dresses in the range 0 through 15 are sti II used as general
register addresses. However, all virtual addresses above 15
are transformed into actual addresses, by replacing the high­
order portion of the virtual address with a value obtained
from the memory map. The memory map replacement process
is described in the section "Memory Address Control II •

Memory Access Protection. When the computer is operating
in the slave mode with the memory map, the access-protec­
tion codes determine whether or not the program may access
instructions from, read from, or write into specific regions
of the virtual address continuum (virtual memory). If the
slave program attempts to access a region of virtual memory
that is so protected, program control is returned to the exe­
cutive program. {The access-protection codes are described
in the section IIMemory Address Control".}

Memory Write Protection

The optional memory write-protection feature operates inde­
pendently of the memory map and access protection. The
memory write-protection option includes the necessary
integrated-circuit memory for the memory write locks. These
locks operate in conjunction with a 2-bit field, called the
write key, in the arithmetic and control unit. The locks
and the key determine whether or not the program {slave or
master} may alter the contents of specific regions of core
memory. The write key can be changed only when the com­
puter is in the master mode; thus the current write key can­
not be changed by a slave program. {The functions of the
locks and key are described in the section "Memory Address
Control ". }

INSTRUCTION FORMAT

The normal SI GMA 7 memory-addressing instruction has the
following format:

* This bit position indicates whether or not in­
direct addressing is to be performed. Indirect
addressing is performed {one level only} if this

Instruct i on Format 9

bit position contains a 1, and is not performed
if this bit position contains a O.

Operation This 7-bit field contains the code that desig­
nates the operation to be performed.

R

X

Reference
address

This 4-bit field designates any of the 16 regis­
ters of the current register block as an operand
source, result destination, or both.

This 3-bit field designates anyone of registers
1-7 of the current register block as an index
register. X =0 designates no indexing; hence,
register 0 cannot be used as an index register.

This 17-bit field contains the initial virtual ad­
dress of the instruction operand. Although the
contents of this field is always, in itself, a word
address, the reference address field allows any
word, doubleword, left halfword, or leftmost
byte within a word in memory to be directly
addressed. Halfword and byte operations re­
quire additional address bits for halfwords and
bytes that do not begin on a word boundary.
Thus, to address the second halfword of a word,
the X field of the instruction must designate a
register that contains a 1 in its low-order bit
position. To address bytes 1,2, or 3 of a word,
the X field of the instruction must designate a
register that contains 01, 10, or 11, respect­
ively, in its two low-order bit positions. See
.. Indexing and Index Registers" for a more com­
plete description of the SIGMA 7 indexing
process.

Some SIGMA 7 instructionsare of the immediate-addressing
type. The format of these instructions provides for an
operand within the instruction word itself, as shown below.
The functions of the Operation and R fields are identical to
those of the normal instruction format.

o

Operand

This bit position is shown coded with a 0 be­
cause indirect addressing cannot be used with
this type of instruction. If indirect addressing
is attempted, the computer treats the instruc­
tion as a nonexistent instructi on.

This field contains an operand that is 20 bits in
length, with negative numbers represented in
two I s-compl eme nt form.

There are several methods by which an instruction word
may specify the source of an operand or the destination of
a result. These methods are explained below.

IMMEDIATE OPERAND

The operation code of an immediate operand instruction
specifies that an operand is to be found in the operand
field (bit positions 12-31) of the instruction word itself,

10 Memory Reference Address

and not in a general register or core memory location. The
operand field of this type of instruction cannot be modified
by indexing. The following SIGMA 7 instructions are of
the immediate operand type:

Instruction Name Mnemonic Page -----
Load Immediate LI 29

Load Conditions and Floating LCFI 32
Control Immediate

Add Immediate AI 36

Mul tipl y Immediate MI 38

Compare Immediate CI 41

The byte string instructions (see page 57) are simi lar to
those of the immediate operand type in that they cannot be
modified by indexing. However, the operand field of these
instructions contains a byte address displacem1ent (or a byte
address) that is a virtual address subject to modification by
the memory map. If an immediate or byte string instruction
is indirectly addressed, it is treated as a nonexistent instruc­
tion by the computer.

MEMORY REFERENCE ADDRESSES

Core memory locations 0 through 15 are not accessible to
the programmer because memory addresses 0 through 15 are
reserved as register designators for IJregister-to-register lJ

operations. Thus, an instruction can treat any register of
the current register block as if it were a location in core
memory. Furthermore, the register block can be used to
hold an instruction (or a series of up to 16 instructions) for
execution just as if the instruction (or instrucf'ions) were in
core memory. The only restriction upon the use of the
register block for instruction storage is:

If an instruction accessed from a general register uses
the R field of the instruction word to designate the
next higher-numbered register and execution of the
instruction would al ter the contents of the register so
designated, the contents of that register :should not be
used as the next instruction in sequence because the
operation of the instruction in the affectE~d register
would be unpredictable.

In the maximum core memory configuration (131,072 words),
memory addresses "wrap around IJ with address 0 (general
register 0) being the next consecutive memory address after
X ' 1FFFF'(131,07l). Core memory location 16 Follows gen­
eral register 15 as the next location in ascending sequence.

Direct Reference Address

If neither indirect addressing nor indexing is called for by
the instruction, the reference address field of the instruc­
tion is a direct reference address.

Indirect Reference Address. If indirect addressing is called
for by the i nstruc ti on (a 1 in bi t posi ti on a of the i nstruc ti on
word), the reference address field is used to clccess a word
location that contains the direct reference address in bit

positions 15-31. The direct reference address then re­
places the indirect reference address. Indirect addressing
is limited to one level; only the reference address field of
the indirect word is significant.

Index Reference Address. If indexing is called for by the
instruction (a nonzero value in bit positions 12-14 of the
instruction), the direct reference address is modified by
addition of the displacement value in the general register
(index) called for by the instruction (after scaling the dis­
placement according to the instruction type). This final
reference address value (after indirect addressing, index­
ing, or both) is defined as the effective address of the
instruction. If indirect addressing and indexing are both
called for in an instruction, the index displacement is not
used to modify the indirect reference address, but is used
to modify the direct reference obtained from the location
pointed to by the indirect reference address. This method
of indexing after indirect addressing is called post­
indexing.

Register Address. If any instruction produces a virtual ad­
dress that is a memory reference (i. e., a direct, indirect
or indexed reference address) in the range 0 through 15,
the CPU does not attempt to read from or write into core
memory. Instead, the 4 low-order bi ts of the reference
address are used as a general register address, and the gen­
eral register (of the current register block) corresponding to
this address is used as the operand location or result desti­
nation. Thus, the instruction can use any register in the
current register block as the source of an operand, the loca­
tion ofa direct address, orthe destination of a result. Such
usage is referred to as a "register-to-register" operation.

Actual Address. An actual address is the address value
actually used by the CPU to access core memory. If the
memory map option is not implemented, or if the computer
is not operating with the memory map, all virtual addresses
above 15 automati cally become actual address. However,
if the computer is operating with the memory map feature,
all virtual address above 15 are transformed (usually into
alternate addresses ina different memory page) by the mem­
ory map, and these then become actual addresses. Virtual
addresses below 16 are never transformed by the memory
mapand thus always refertoa general register for a register­
to-register operation.

Effective Address. The effective address is defined as the
final virtual address computed for an instruction. The
effective address is usually used as the virtual address of
an operand location or result destination. However, some
instructions do not use the effective address as a location
reference; instead, the effective address is used to control
the operation of the instruction (as in a shift instruction),
to designate the address of an input/output device (as in
an input/output instruction), or to designate a specific
element of the system (as in a READ DIRECT or WRITE
DIRECT instruction).

Effective Location. An effective location is defined to be
the actual location (in core memory or in the current regis­
ter block) that is to receive the result of a memory­
referencing instruction, and is referred to by means of an
effective address. Because an effective address be either
an actual address or a virtual address, this definition of an

effective location assumes, where applicable, the trans­
formation of virtual addresses into actual address.

Effective Operand. An effective operand is defined to be
the contents of an actual location (in core memory or in
the current regi ster block) that is to be used as an operand
by a memory-referenci ng i nstruc ti on, and is referred to by
means of an effective address. This definition of an ef­
fective operand also presupposes the transformation of vir­
tual address into actual addresses.

Address Modifi cation

Indirect Addressing. The 7-bit operation code field of the
SIGMA 7 instruction word format provides for up to 128 in­
struction operation codes, nearly all of which can use indi­
rect addressing (the excepti ons, al ready menti oned, are the
immediate and byte string instructions). The indirect ad­
dressing operation is limited to one level, as called for by
the indirect address bit (bit position O) of the instruction
word. Indirect addressing does not proceed to further levels,
regardless of the contents of the word location pointed to by
the reference address field of the instruction. Indirect ad­
dressing occurs before indexing; that is, the 17-bit reference
address field of the instruction is used to obtain a word, and
the 17 low-order bits of the word thus obtained effectively
replace the initial reference address field; then, indexing
is carried out according to the operation code of the
instruction.

Indexing and Index Registers. The X field of the normal
instruction format permits anyone of registers 1 through 7
in the current register block to be designated as an index
register. The contents of this register are then treated as
a displacement value.

Figure 4 shows how the indexing operation takes place. As
the instruction is brought from memory, it is loaded into a
34-bit instruction register that initially contains OIS in the
two low-order bit positions (32 and 33). The di splacement val ue
from the index register is then aligned with the instruction
register (as an integer) according to the addressing type of
the instruction. That is; if it is a byte operation, the dis­
placement is lined up so that its low-order bit is aligned
with the least significant bit of the 34-bit instruction regis­
ter. The displacement is shifted one bit to the left of this
position for a halfword operation, two bits to the left for a
word operation, and three bits to the left for a doubleword
operation. An addition process then takes place to develop
a 19-bi t address, which is referred to as the effective ad­
dress of the instruction. High-order bits of the 32-bit dis­
placement field are ignored in the development of this
effective address (i. e., the 15 high-order bits are ignored
for word operations, the 25 high-order bits are ignored for
shift operations, and the 16 high-order bits are ignored for
doubleword operations). However, the displacement va lue
can cause the effective address to be less than the initial
reference address within the instruction if the displacement
value contains a sufficient number of high-order lis 0. e.,
if the displacement is a negative integer in twols comple­
ment form).

The effective address of an instruction is always a 19-bit byte
address value; however, this value is automatically adjusted

Memory Reference Address 11

Instruction in memory:

Instruction in instruction register:

Byte operation indexing alignment:

Halfword operation indexing alignment:

Word operation indexing alignment:

Shift operation indexing alignment:

Doubleword operation
indexing al ignment:

Effective virtual address:

Figure 4. Index Displacement AI ignment

to the SIGMA 7 information boundary conventions. Thus,
for halfword operations, the low-order bit of the effective
halfword address is 0; for word operations, the two low-order
bits of the effective word address are O's; and for doubleword
operations, the 3 low-order bits of the effective doubleword
address are O's.

If no indexing is used with a byte operation, the effective
byte is the first byte (bit positions 0-7) of a word location;
if no indexing is used with a halfword operation, the effec­
tive halfword is the first halfword (bit positions 0-15) of a
word location. A doubleword operation always involves a
word at an even-numbered word address and the word at the
next sequential (odd-numbered) word address. If an odd­
numbered word location is specified for a doubleword oper­
ation, the low-order bit of the effective address field (bit
position 31) is automatically forced to O. Thus, an odd­
numbered word address (referring to the middle of a double­
word) designates the same doubleword as an even-numbered
word address, when used for a doubleword operation.

MEMORY ADDRESS CONTROL

With a SIGMA 7 computer, two optional methods are avail­
able for controlling the use of core memory by a program;

12 Memory Address Control

they are the memory map and the memory lock. The memory
map provides for dynamic relocatability of programs and for
access protection through inhibitions imposed on slave mode
programs. The memory lock provides memory write protec­
tion for both master and slave mode programs.

MEMORY MAP AND ACCESS PROTECTION

The memory map can be represented as a sE~ries of 256 8-bit
registers, each of which contains an 8-bit actual memory
page address code for a specific 512-word page of virtual
addresses, and a series of 256 2-bit registers, each of which
contains a 2-bit access control code for a specific 5I2-word
page of virtual addresses. (The access control codes are ap­
plicable only to programs operating in the slave mode with
the memory map.)

The memory page address codes are assigned to pages of vir­
tua I addresses as fo lIows:

1 Memory page X 1 Memory page K 1 ~ [I Memory page N 1

Vi rtua I addresses
X'10'-X'lFF'
(virtual page 0)

Virtual addresses Virl"ual addresses
X'200'-X'3FF' X'I FEOO'-X'I FFFF'
(virtual page 1) (virtual page 255)

The access control codes are assigned as follows:

I AC I AC I AC I AC I AC IHI AC I AC I

I 1
·Virtual address~s ·Virtual addresses
X '600 ' -X?FF ' 1 X'1FEOO'-X'1FFFF'

Virtual addresses Virtual addresses
X'400'-X '5FF' X'1FCOO'-X'l FDFF'

Virtua I addresses (virtua I page 254)
X'200'-X ' 3FF'

Virtual addresses
X ' 1O'-X'1FF'
(virtual page O)

The memory page address and access control codes can be
changed only by means of the privi leged instruction MOVE
TO MEMORY CONTROL (see IIControl Instructions ll).

When the CPU is operating in the mapping mode, all mem­
ory refere!1ces used by the program (including instruction ad­
dresses) whether direct, indirect, or indexed, are referred to
as virtual addresses. Virtual addresses in the range 0 through
15 are not used to address core memory; instead, the 4 low­
order bits of the virtual address comprise a general register
address. However, if an instruction produces a virtual ad­
dress greater than 15, the 8 high-order bits of the virtual
address are used to obtain the appropriate memory page ad­
dress and access control codes. For example, if the 8 high­
order b its of the vi rtua I address are 0000 0000, the first page
address code and the first access control code are used; if
the 8 high-order bits of the virtual address are 0000 0001,
the second page address and access control codes are used;
and so on, through the 256th page address and control codes.
Thus, each 512-word page of virtual addresses is associated
with its own memory page address and access control codes.

When the memory map is accessed, the CPU performs a test
to determine whether or not there are any inhibitions on using
the virtual address by a slave program. (If the CPU is in the
master mode, this test is not performed.) The 2-bit access
control code is interpreted as follows:

AC Function

00 The slave program can write into, read from, or access
instructions from this page of virtual addresses.

01 The slave program cannot write into, but can read from
or access instructions from this page of virtual addresses.

10 The slave program cannot write into or access instruc­
tions from, but can read from this page of virtual ad­
dresses.

11 The slave program is denied any access to this page of
virtual addresses.

If the instruction being executed by the slave program fai Is
this test, the instruction execution is aborted and the com­
puter traps to location X 1401, the IInonaliowed operation II
trap (see II Trap Systemll).

If the instruction being executed by the slave program passes
this test (or the CPU is in the master mode), the page address

bit·s in the accessed byte of the memory map replace the 8
high-order bits of the virtual address, to produce the actual
address of the core memory location to be used by the in­
struction.

If the page address bits in the accessed byte of the memory
map are all OIS, and when combined with 9 low-order bits
of the virtual ,address, an actual address is produced that
corresponds to a word address in the range 0 through 15,
the corresponding general register in the current register
block is not accessed. In this one particular instance, a
word address in the range 0 through 15 corresponds to actual
core memory locations rather than general registers.

Figure 5 illustrates the address modification and mapping
process for an indirectly addressed, indexed, halfword
operation. As the figure shows, word address 1 is the
content of the reference address fi e I din the i nstructi on
stored in memory. The instruction is brought into the in­
struction register, and word address 1 (assumed to be greater
than 15) is converted from a virtual address to an actual ad­
dress by the memory map. The 17 low-order bits of the core
memory location pointed to by word address 1, labeled word
address 2, then replaces word address 1 in the instruction reg­
ister. The index register designated in the X field of the in­
struction is then aligned for incrementing at the halfword­
address level, the final virtual (effective) address is formed,
and the effective address (assumed to be greater than 15) is
also transformed, through the memory map. The final 19-
bit core memory address, which automati cally contains a
low-order 0, is then used to access the halfword to be used
as an operand for the instruction.

MEMORY WRITE LOCKS

The access control bits in the memory map provide access
protection, through inhibitions imposed on slave programs.
However, this protection is only available when the memory
map is in effect, and is only operative with respect to slave
programs. An optional memory protection feature, indepen­
dent of the map option, is provided by a lock and key tech­
nique. A 2-bit write-protect lock (WL) is provided for each
512-word page of actual core memory addresses. The write­
protect locks consist of 256 2-bit write locks, each as­
signed to a 512-word page of actual addresses as follows:

I WL I WL I WL I WL I WL I~ II WL I WL I
1

• +. Actua I addresses Actua I addresses
X'600'-X?FF ' 1 X'lFEOO'-X'lFFFF'

Actua I addresses Actua I addresses
X'400'-X'5FF' X'1FCOO' -X'lFDFF'

Actua I addresses
X'200'-X'3FF'

Actua I add resses
O-X'lFF'
(memory page 0)

(memory page 254)

The write-protect locks can be changed on Iy by the execu­
tion of the privileged instruction MOVE TO MEMORY CON­
TROL (see Control Instructions).

Memory Address Control 13

Instruction in memory:

Instruction in instruction register:

The 8 high-order bits of the reference address are
replaced with page address Z from memory map:

Actual address of memory location
that contains the direct address:

Direct address in memory:

Indi rect addressi ng rep I aces reference
address wi th di rect address:

Halfword operation indexing alignment:

Effective virtual address:

The 8 high-order bits of the effective address are
replaced with page address N from memory map:

Final memory address, which is the actual address of
halfword location containing the effective halfword:

III
R I X I : Word ad~ress 2 ToOl

9 10 1112 13 14 1516 17 18 19120 21 22 23 24 25 26 27128 29 30 ~
II I I

II 11
r+~19~-~b~i-t-v~ir-t-u-a~l+-a~lfw~0-r~d-a-d~d~n~

kkkkkkkk mmmmmmmmm ~
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 :II 32 33

Figure 5. Generation of Actual Memory Addresses

The write-key (a 2-bit field in the arithmetic and control
unit) works in conjunction with the lock storage to deter­
mine whether or not the program (whether slave or master)
can write into a specific block of core memory locations.
The keys and locks control access for writing, according to
the following rules:

A lock value of 00 means that the corresponding mem­
oryblockis ll unlockedll ;writeaccess to that block is
permitted independent of the key value.

A key value of 00 is a "skeletonll key that wi II open
any lock; thus, write access to any memory block is
permitted independent of its lock value.

A lock value other than 00 for a memory block permits
write access to that block only if the key value is
identical to the lock value.

14 Memory Address Control

Thus, a program can write into a given memory block if
the lock value is 00, if the key value is 00, or if the key
value matches the lock value.

Note that the memory acc.ess protection feal"ure provided
with the map option operates on virtual addresses, whereas
the memory write protection feature provided as a separate
option, operates on actual memory addresses. Thus, if the
access protection feature is invoked (that is, the CPU is
in the slave mode and is using the memory map), the access
protection codes are examined at the time the virtual ad­
dress is converted into an actua I address. Then, the loc ks
and keys are examined to determine whether or not the
program (master or slave) is a lIowed to altler the contents
of the core memory location corresponding to the final
actual address. If an instruction attempts to write into
a write-protected memory page, the computer aborts

the instruction, and traps to location X'40', which is
the "nonallowed operation" trap (see Trap System).

PROGRAM STATUS DOUBLEWORD

The critical control conditions of the SIGMA 7 CPU can be
defined within 64 bits of information. These 64 bits are
collectively referred to as the current program status double­
word (PSD). The current PSD can be considered as a 64-
bit internal CPU register, although it actually exists as a
collection of separate registers and flip-flops. When stored
in memory, the PSD is always in the following format:

Desig-
nation Function

CC Condition code. This generalized 4-bit code in­
dicates the nature of the results of an instruction.
The significance of the condition code bits depends
on the particular instruction iust executed. After
an instruction is executed, the instructions BRANCH
ON CONDITIONS SET (BCS) and BRANCH ON
CONDITIONS RESET (BCR) can be-used, singly
or in combination, to test for a particular condi­
tion code setting (these instructionsaredescribed
in Chapter 3, "Execute/Branch Instructions").

In some operations, only a portion of the condition
code is involvedi thus, the term CC 1 refers to the
firstbitofthe condition code, CC2 to the second
bit, CC3 to the third bit, and CC4 to the fourth
bit. Any program (slave or master mode) can change
the current va lue of the condi ti on code by executi ng
either the instruction LOAD CONDITIONS AND
FLOATING CONTROL IMMEDIATE (LCFI) or the
instruction LOAD CONDITIONS AND FLOAT­
ING CONTROL (LCF)i any program can store
the current condition code by executing STORE
CONDITIONS AND FLOATING CONTROL
(STCF). These instructions are described in
Chapter 3, "Load/Store Instructions".

FS Floating significance mode control

FZ Floating zero mode control

FN Floating normalize mode control

The three floating-point mode bits (FS, FZ, and
FN) control the operation of the computer with
respect to floating-point significance checking,

Desig-
nation Function

MS

MM

DM

AM

IA

WK

the generation of zero results, and the normaliza­
tion of the results of floating-point additions and
subtractions, respectively. (The floating-point
mode controls are described in Chapter 3,"Float-
i ng-poi nt Instructi ons" .) Any program (slave or
master) can change the state of the current floating­
point mode controls by executing either the instruc­
tion LCFI or the instruction LCFi any program can
store the current state of the current floating-
point mode controls by executing the instruction
STCF.

Master/slave mode control. The computer is in
the master mode when this bit is a 0; it is in the
slave mode when this bit is a 1. The master/slave
mode control cannot directly be changed by a slave
program; however, a master mode program can change
the control by executing either the instruction LOAD
PROGRAM STATUS DOUBLEWORD (LPSD) or the in­
struction EXCHANGE PROGRAM STATUS DOUBLE­
WORD (XPSD). These two privileged instructions
are described in Chapter 3,"Control Instructions".

Memory map control. The optional memory map
(if implemented) is in effect when this bit is a 1;
it is not in effect when this bit is O. The memory
map control cannot be changed by a slave program.
A master mode program can change the memory
map control by executing either the instruction
LPSD or the instruction XPSD.

Decimal mask. The decimal arithmetic trap (see
"Trap System") is in effect when this bit is a 1;
the trap is not in effect when this bit is a O. The
conditions that can cause a decimal arithmetic
trap are described in Chapter 3, "Decimal In­
structions". The decimal trap mask cannot be
changed by a slave program; a master mode pro­
gram can change the mask by executing eitherthe
instruction LPSD or the instruction XPSD.

Arithmetic mask. The fixed-point arithmetic over­
flow trap is in effect when this bit is a 1ithetrap
is not in effect when this bit is a O. The instruc­
tions that can cause fixed-point overflow are
described in the section "Trap System". The arith­
metic trap mask cannot be changed by a slave programi
a master mode program can change the mask by exe­
cuting either the instruction LPSD or the instruction
XPSD.

Instruction address. This 17-bit field contains the
virtual address of the next instruction to be executed.

Write key. This field contains the 2-bit key used
in conjunction with the optional memory protec­
tion feature. A slave program cannot change the
current write keYi a master mode program can
change the write key by executing either the in­
struction LPSD orthe instructionXPSD.

Program Status Doubleword 15

Desig-
nation Function

CI Counter interrupt group inhibit

II Input/output interrupt group inhibit

EI

RP

External interrupt group inhibit

The three inhibit bits (CI, II, and EI) determine
whether an interrupt can occur. The functions of
the interrupt inhibits are described in the section
"Interrupt System ". A sl ave program cannot change
the state of the interrupt inhibits; a master mode
program can change the interrupt inhibits by exe­
cuting LPSD, XPSD, or the instruction WRITE DI­
RECT (WD). The WD instruction is described in
Chapter 3, "Control Instructions ".

Register pointer. This 5-bit field selects one of
the 32 possible blocks of general-purpose registers
as the current register block. A slave programcan­
not change the register pointer; a master mode pro­
gram can change the register pointer by executing
LPSD, XPSD, or the instruction LOAD REGISTER
POINTER (LRP). The LRP instruction is described
in Chapter 3, "Control Instructions ".

INTERRUPT SYSTEM

The SIGMA 7 priority interrupt system is an improved ver­
sion of the system used successfully in SDS 900/9300 series
computers. Up to 237 interrupt levels are normally avail­
able, each with a unique location (see Table 2) assigned in
core memory, each with a unique priority, and each capable
of being selectively armed and/or enabled by the CPU. Also,
any interrupt level can be "triggered" by the CPU (supplied
with a signal at the same physical point where the signal
from the external source would enter the interrupt level).
The triggering of an interrupt permits the testing of special
systems programs before the special systems equipment is
actually attached to the computer, and also permits an
interrupt-servicing routine to defer a portion of the pro­
cessing associated with an interrupt level by processing the
urgent portion of an interrupt-servicing routine, triggering
a lower-priority level (for a routine that handles the less­
urgent part), then clearing the high-priority interrupt level
so that other interrupts may occur before the deferred inter­
rupt response is processed.

SIGMA 7 interrupts are arranged in groups that are con­
nected in a predetermined priority chain by groups of levels.
The priority of each level within a group is fixed; the first
level has the highest priority and the last level has the low­
est. The user has the option of ordering a machine with a
priority chain starting with the override group and con­
necting all remaining groups in any sequence. This allows
the user to establish external interrupts above, between, or
below the counter and input/output groups of internal in­
terrupts. Figure 6 illustrates this with a configuration that
a typical user might establ ish; where (after the override
group) the counter group of internal interrupts is given

16 Interrupt System

the second-highest priority, followed by the first group of
external interrupts, then the input/output groupof internal
interrupts, and finally all succeeding groups of external in­
terrupts.

~

1 st Pr i or i ty 2nd Priority

Override
Interrupts

Counter
interrupts

3rd Priority

Externa I Interrupts Group 2

4th Priority

... I nput/ Output ... Interrupts

5th Priority

1

Externa I Interrupts Group ~i L
'------------',

Figure 6. Typical Interrupt Priority Chain

INTERNAL INTERRUPTS

Internal interrupts include those standard interrupts that are
normally supplied with a SIGMA 7 system, ,as well as the op­
tional power fai I-safe and the additiona I counter interrupts.

Override Group (Locations X'50' to X' 56 1
)

The seven interrupt levels of this group a IwClys have the
highest priority in a SIGMA 7 system. The loptional power
fai I-safe feature inc ludes the power on and power off inter­
rupt levels. A system can contain 2 or 4 cOlJnt-pu Ise inter­
rupt levels that are triggered by pulses from clock sources.
Counter 4 has a constant frequency of 500 Hz; counters 1,
2, and 3 can be individually set to any of five manually
switchable frequencies - the commercial line frequency,
500 Hz, 2 kHz, 8 kHz, and a user-supplied external sig­
nal - that may be different for each counter. (All counter
frequencies are synchronous except for the line frequency
and the signal supplied by the user.) Each of the count­
pulse interrupt locations must contain one of the modify and
test instructions (MTB, MTH, or MTW). The results of any
other instruction are unpredictable when the instruction is
executed as the result of a count-pulse interrupt level ad­
vancing to the active state. When the modification (of the
effective byte, ha I fword, or word) causes a zero resu It, the
appropriate counter-equals-zero interrupt (see "Counter­
Equals-Zero Group") is triggered. The override group also
includes a memory parity interrupt level that is triggered
whenever a memory parity error is reported to the CPU.

Table 2. SIGMA 7 Interrupt Locations

Location WRITE DIRECT PSD WRITE DIRECT
Dec. Hex. Register bitt Function Availabi lity Inhibit Group codett

80 50 none Power on optional none
81 51 Power off (as a set)
82 52 16 Counter 1 count pu Ise optional
83 53 17 Counter 2 count pulse (as a set) none
84 54 18 Counter 3 count pu Ise
85 55 19 Counter 4 count pu Ise standard
86 56 20 Memory Parity
87 57 Unassigned

88 58 22 Counter 1 zero optional X101

89 59 23 Counter 2 zero (as a set) CI
90 5A 24 Counter 3 zero standard
91 5B 25 Counter 4 zero

92 5C 26 Input/Output standard II
93 5D 27 Control Panel

94 5E Unassigned
95 5F Unassigned

-- ---"------

96 60 16

Externa I Group 2 X'2
1

111 6F 31

112 70 16

External Group 3 X' 3
1

127 7F 31

optional EI

288 120 16

External Group 14 X'E '

303 12F 31

304 130 16

External Group 15 X'F '

319 13F 31

tWhen the privileged instruction WRITE DIRECT is used in the interrupt control mode to operate on interrupt levels, the
interrupt levels are selected by specific bit positions in register R. The numbers in thi s column indicate the bit position
in register R that corresponds to the various interrupt levels.

ttThe numbers in this column indicate the group codes (for use with WRITE DIRECT) of the various interrupt levels.

Counter-Equals-Zero Group (Locations X'581 to X' 5B)

Each interrupt level in the counter-equa Is-zero group (co lied
a counter-equals-zero interrupt) is associated with a count­
pu Ise interrupt in the override group. When the execution
of a modify and test instruction in the count-pulse interrupt
location causes a zero resu It in the effective byte, halfword,
or word location, the corresponding counter-equals-zero in-

~ terrupt is triggered. The counter-equa Is-zero interrupts can
be inhibited or permitted as a group. If bit position 37 (CI)

of the current program status doubleword contains a 0, the
counter-equals-zero interrupts are allowed to interrupt the
program being executed. However, if the CI bit is a I, the
counter-equa Is-zero interrupts are not a lIowed to interrupt
the program.

Input/Output Group (Locations X'5C and X' 5D')

This interrupt group includes two standard interrupts: theI/O
inj'errupt and the control panel interrupt. The I/O interrupt

Interrupt System 17

level accepts interrupt signals from the standard I/O sys­
tem. The I/O interrupt location is assumed to contain an
EXCHANGE PROGRAM STATUS DOUBLEWORD (XPSD)
instruction that transfers program control to a routine for
servicing all I/O interrupts. The I/O routine then con­
tains an ACKNOWLEDGE I/O INTERRUPT (AIO) instruc­
tion that identifies the source and reason for the interrupt.

The control panel interrupt level is connected to the INTER­
RU PT buttons on the processor control pane I and the free­
standing console. The control panel interrupt level can thus
be triggered by the computer operator, allowing him to ini­
tiate a specific routine.

The interrupts in the input/output group can be inhibited or
permitted by means of bit position 38 (II) of the program
status doubleword. If II is a 0, the interrupts in the I/O
group are allowed to interrupt the program being executed.
However, if the II bit is a 1, the interrupts are inhibited
from interrupting the program.

EXTERNAL INTERRUPTS

A SIGMA 7 system can contain up to 14 groups of optional
interrupt levels, with 16 levels in each group. As shown in
Figure 6, the groups can be connected in any priority se­
quence.

All external interrupts can be inhibited or permitted by means
of bit position 39 (EI) of the program status doubleword. If
EI is a 0, external interrupts are allowed to interrupt the pro­
gram; however, if EI is a 1, all external interrupts are in­
hibited from interrupting the program.

STATES OF AN INTERRUPT LEVEL

A SIGMA 7 interrupt level is mechanized by means of three
flip-flops. Two of the fl ip-f1ops are used to define any of
four mutually exclusive states: disarmed, armed, waiting,
and active. The third flip-flop is used as a level-enable.
The various states and the conditions causing them to change
state (see Figure 7) are described in the following paragraphs.

Disarmed

When an interrupt level is in the disarmed state, no signal
to that interrupt level is admitted; that is, no record is re­
tained of the existence of the signal, nor is any program
interrupt caused by it at any time.

Armed

When an interrupt level is in the armed state, it can
accept and remember an interrupt signal. The receipt
of such a signa I advances the interrupt leve I to the
waiting state.

Waiting

When an interrupt level in the armed state receives an in­
terrrupt signal, it advances to the waiting state, and remains
in the waiting state until it is allowed to advance to the

18 Interrupt System

active state. If the level-enable flip-flop is off, the in­
terrupt level can undergo all state changes except that
of moving from the waiting to the active state. Further­
more, if this flip-flop is off, the interrupt level is com­
pletely removed from the chain that determines the prior­
ity of access to the CPU. Thus, an i nterruptleve lin the
waiting state with its level-enable in the off condition
does not prevent an enabled, waiting intE~rrupt of lower
priority from moving to the active state.

When an interrupt level is in the waiting stote, the follow­
ing conditions must all exist simultaneously before the level
advances to the active state.

1. The level must be enabled (i.e., its level-enable flip­
flop must be set to 1).

2. The CPU must be at an interruptible point in theexe­
cution of a program.

3. The group inhibit (CI, II, or EI, if applicable) must be

a ° .
4. No higher-priority interrupt level is iin the active

state or is in the waiting state and totally enabled
(i.e., enabled and not inhibited).

Interrupt
State

Disarmed

Armed

Waiting

Active

FF
Configuration

~

Level
Enable

Source of
Change Signal

I~-~--------------CPU

~
1-o1_.._---------CPU or $ External Signal

~

I
I

~

f----CPU

.Interrupt
Timing

Group Inhibit
. off

No higher-priority
level active, or
waiting and enabled

Figure 7. Interrupt Level Operation

Active

When an interrupt meets a II of the conditions necessary to
permit it to move from the waiting state to the active state,
it is permitted to do so by being acknowledged by the com­
puter, which then executes the contents of the assigned in­
terrupt location as the next instruction. The instruction
address portion of the program status doubleword remains
unchanged unti I the instruction in the interrupt location is
executed.

The instruction in the interrupt location must be one of the
following: XPSD, MTB, MTH, or MTW. If the execution of
any other instruction in an interrupt location attempted as
the result of an interrupt level advancing to the active
state, the results of the instruction are unpredictable.

The use of the privi leged instruction XPSD in an interrupt
location permits an interrupt-servicing routine to save the
entire current machine environment and establish a new
environment. If working registers are needed by the
routine and additiona I register blocks are avai lable, the
contents of the current register block can be saved auto­
matica Ily with no time loss. This is accomplished by chang­
ing the value of the register pointer, which results in the
assignment of a new block of 16 registers to the routine.

An interrupt level remains in the active state unti I it is
cleared (removed from the active state) by the execution
of the LPSD instruction or the WD instruction. An interrupt­
servicing routine can itself be interrupted (whenever a
higher-priority interrupt level meets all of the conditions
for becoming active) and then continued (after the higher­
priority interrupt level meets all of the conditions for be­
coming active) and then continued (after the higher-priority
interrupt is cleared). However, an interrupt-servicing
routine cannot be interrupted by a lower-priority interrupt
as long as it remains in the active state. Normally, the
interrupt servicing routine clears its interrupt and transfers
program control back to the point of interrupt by means of
an LPSD instruction with the same effective address as the
XPSD instruction in the interrupt location.

CONTROL OF THE INTERRUPT SYSTEM

The SIGMA 7 system has two points of interrupt control.
One point of interrupt control is at the individual interrupt
level. The WD instruction can be used to individually arm,
disarm, enable, disable, or trigger any interrupt level ex­
cept for the power fai I-safe interrupts (which are always
armed, always enab led, and cannot be triggered).

The second point of interrupt control is achieved by means
of the interrupt inhibits (CI, II, and EI) in the program status
doubleword. If an interrupt inhibit is set to 1, all interrupt
levels in the corresponding group are effectively disabled;
i. e., no interrupt in the group may advance from the wait­
ing state to the active state and the group is removed from
the interrupt recognition priority chain .. Thus, a waiting,
enabled interrupt level (in a group that is not inhibited) is
not prevented from interrupting the program by a higher­
priority, waiting, enabled interrupt level in a group that is
inhibited. However, if an interrupt group is inhibited whi Ie

a level in that group is in the active state, no lower-priority
interrupt level may advance to the active state.

TIME OF INTERRUPT OCCURRENCES

The SIGMA 7 CPU permits an interrupt to occur during the
following time intervals (related to the execution cycle of
an instruction) providing the control panel COMPUTE switch
is in the RUN position and no "haltl1 condition exists:

1. Between instructions: An interrupt is permitted between
the completion of any instruction and the initiation of
the next instruction.

2. Between the initiation of an instruction and memory or
register modification: For some instructions, an interrupt
is permitted after an instruction has been in process and
up to the point in time when a memory location or a general
register is modified. If an interrupt occurs during this time
interval, the instruction is aborted, the instruction address
portion of the program status doubl eword remai ns poi nti ng
to the interrupted instruction, and the instruction in the in­
terrupt location is executed. After the interrupt-servicing
routine has been processed, program control is returned to
the interr.upted instruction, and the interrupted instruction
is then reinitialized. Most instructions have such a short
execution time that they are not abortable by an interrupt;
thus, an interrupt normal I y occurs onl y before or after an
instruction execution.

3. Between instruction iterations: An interrupt is also per­
mitted to occur during the execution of the following
multiple-operand instructions:

Move Byte String (MBS)
Compare Byte String (CBS)
Translate Byte String (TBS)
Translate and Test Byte String (TTBS)
Edit Byte String (EBS)
Decimal Multiply (DM)
Decimal Divide (DD)
Move to Memory Control (MMC)

The control and intermediate results of these instructions re­
side in registers and memory; thus, the instruction can be
interrupted between the completion of one iteration (oper­
and execution cycle) and the point in time (during the next
iteration) when a memory location or register is modified.
If an interrupt occurs during this time, the current iteration
is aborted and the instruction address portion of the program
status doubleword remains pointing to the interrupted instruc­
tion. After the interrupt-servicing routine is completed, the
instruction continues from the point at which it was inter­
rupted and does not begin anew.

SINGLE-INSTRUCTION INTERRUPTS

A single-instruction interrupt is a situation where an interrupt
level is activated, the current program is interrupted, the single­
instruction in the interrupt location is executed, the interrupt
level is automaticall y c I eared and armed, and the interrupted
program continues without be ing disturbed or delayed (except
for the time required for the singl e-instruction).

If any of the following instructions is executed in any in­
terrupt location, then that interrupt automatically becomes
a single-instruction interrupt.

Interrupt System 19

Instruction Name

Modify and Test Byte
Modify and Test Halfword
Modify and Test Word

Mnemonic

MTB
MTH
MTW

Page

40
40
41

The modify and test instruction modifies the effective byte,
halfword, or word (as described in the section IIFixed-point
Arithmetic Instructions") but the current condition code
remains unchanged (even if overflow occurs). The effective
address of a modify and test instruction in an interrupt loca­
tion is always treated as an actual address, regardless of
whether or not the memory map is currently being used: The
execution of a modify and test instruction in an interrupt
location is independent of the memory access protection
codes and the write-protection locks; thus, a memory pro­
tection violation trap cannot occur (a nonexistent memory
address will cause an unpredictable operation). Also, the
fixed-point overflow trap cannot occur asthe resultof over­
flow caused by executing MTH or MTW in an interrupt
location.

The execution of a modify and test instruction in an interrupt
location automatically clearsand arms the corresponding in­
terrupt level, allowing the interrupted program to continue.

When a modify and test instruction is executed in a count­
pulse interrupt location, all of the above conditions apply,
in addition to the following: If the resultant value in the
effective location is zero, the correspondi ng counter-equa Is­
zero interrupt is triggered.

TRAP SYSTEM

When a condition that is to result in an interrupt is
sensed, a signal is sent to an interrupt level. If that
level is "armed" it advances to the waiting state. When
all of the conditions for its acknowledgment have been
achieved, the interrupt level eventually advances to the
active state, where it finally causes the computer to take
an instruction from a specific location in memory. The
computer may execute many instructions between the time
that the interrupt requesting condition is sensed and the
time that the actual interrupt acknowl edgment occurs.
However, detecting any of the conditions I isted in Table 3
results in a trap (the immediate execution of the in­
struction in a unique location in memory).

When a trap conditon occurs, the CPU sets the trap state.
Depending on the type of trap, the instruction currently
being executed by the CPU mayor may not be carried
to completion. In any event, the instruction is termin­
ated with a trap sequence. In this sequence, the in­
struction address (IA) portion of the program status double­
word (PSD), which has a Iready been incremented by 1,
is decremented by 1 and then the instruction in the lo­
cation associated with the trap is executed. An interrupt
acknow ledgement cannot occur unti I the execution of
the instruction in the trap location is completed. The
instruction in the trap location must be an XPSD instruc­
tion; if the execution of any other instruction in a trap
location is attempted as the result of a trap activation,
the results of the instruction are unpredictable. The de­
tailed operation of XPSD is described in Chapter 3,
JlControl Instructions".

20 Trap System

The XPSD instruction in a trap location is accessed without
using the memory map, regardless of whether or not the mem­
ory map is in effect when the trap condition occurs. Also,
no memory protection violation or privileged instruction
violation can occur as a result of either accessing or execu-
ting an XPSD instruction in a trap location. Table 3 sum-
marizes the description of the trap system.

NON ALLOWED OPERATION TRAP

The occurrence of one of the nonallowed operations always
causes the computer to abort the instruction being
executed (at the time that the nonallowed operation is
detected) and to immediately execute the instruction in
trap location X'40'.

Nonexistent Instruction

Any instruction that is neither c;tandard nor optional on SIG­
MA7is defined as nonexistent{this includes immediate ad­
dressing instructions that are indirectly addressed. If exe­
cution of nonexistent instruction is attempted, the computer
traps to location X'40' at the time the instruction isdecoded.
The operation of the XPSD instruction in trap location X'40'
(with respect to the condition code and instruction address
portions of the PSD) is as follows:

1. Store the current PSD. The condition code stored is
that which existed at the end of the instruction exe­
cuted immediatel y prior to the nonexistent instruction.

2. Load the new PSD. The current PSD is replaced by the
contents of the doubl eword location following the double­
word location in which the current PSD was stored.

3. Modify the new PSD:

a. Set CCl to 1 (CC2, CC3, and CC4 remain set at
the values loaded from memory).

b. Ifbit position 9 of XPSD contains a 1, the instruction
address loaded from memory is incremented by 8. If
bit position 9 ofXPSDcontainsaO, j'he instruction
address remains at the value loaded from memory.

Nonexistent Memory Address

Any attempt to access a nonexistent memory address causes a
trap to location X '40' at the time of the request for memory
service. A nonexistent memory address condition is detected
by memory on the basis of the actual address presented to it.
If the CPU is currently using the memory map, the virtual ad­
dress will already have been modified by the memory map to
generate an actual (but nonexistent) address.. The operation
of XPSD in trap location X'40' is as follows:

1. Store the current PSD.

2. Load the new PSD.

3. Modify the new PSD:

a. Set CC2 to 1 (CC1, CC3, and CC4 remain set at
the values loaded from memory).

b. Ifbit position 9 ofXPSD contains a 1, the instruction
address loaded from memory is incremented by 4. If
bit position 9 ofXPSD contains a 0, the instruction
address remains at the value loaded from memory.

Table 3. Summary of SIGMA 7 Trap System

Location
Dec. Hex. Function

PSD
Mask Bit

64

65

66

67

68

69

70

72

73

74

75

40

41

42

43

44

45

46

48

49

4A

4B

Nonallowed operation

1. Nonexistent instruction

2. Nonexistent memory
address

3. Privileged instruction
in slave mode

4. Memory protection

none

Unimplemented instruction none

Push-down stack limit TW, TSt
reached

Fixed-point arithmetic
overflow

Floating-point fault

AM

1. Characteristic overflow none

2. Divide by zero none

3. Significance check

Decimal arithmetic fault

Watchdog timer runout

CALL 1

CALL 2

CALL 3

CALL4

FS, FZ,
FN

DM

none

none

none

none

none

Time of Occurrence

Instruction decoding

Prior to memory access

Instruction decoding

Prior to memory access

Instruction decoding

At the time of stack limit
detection

Spec ial Action During XPSD

Set CC1 after new CC is
loaded from memory. If bit
9 of XPSD is 1, add 8 to
the new instruction address
value loaded from memory.

Set CC2 after new CC is
loaded from memory. If bit
9 of XPSD is 1, add 4 to
the new instruction address
value loaded from memory.

Set CC3 after new CC is
loaded from memory. If bit
9 of XPSD is 1, add 2 to
the new instruction address
value loaded from memory.

Set CC4 after new CC is loaded
from memory. If bit 9 of XPSD is
1, add 1 to the new instruction
address value loaded from memory.

none

none

For all instructions except DW none
and D H, trap occurs after com-
pletion of instruction. For DW
and D H, instruction is aborted
with memory, registers, CC1,
CC3, CC4 unchanged.

At time of fault detection; the
,condition code is set to indi­
cate the reason for the trap

At time of foul t detection; the
condition code is set to indi­
cate the reason for the trap

At time of runout

Instruct i on decod i ng

Instruction decoding

Instruction decoding

Instruction decoding

none

none

none

The R field of the CALL instruc­
tion is ORed into new CC set­
tings loaded from memory. If
bit 9 of XPSD is 1, the R field
of the CALL instruction is ad­
ded to the new i nstructi on ad­
dress va I ue loaded from memory.

tThe push-down stack limit trap is masked within the stack pointer doubleword for each push-down stack (see page 65).

Trap System 21

Privi leged Instruction in Slave Mode

An attempt to execute a privi leged instruction whi Ie the
CPU is in the slave mode causes a trap to location X'40 '
at the time of instruction decoding. The operation of
XPSD in trap location X'40' is as follows:

1. Store the current PSD.

2. Load the new PSD.

3. Modify the new PSD:

a. Set CC3 to 1 (CC 1, CC2, and CC4 remain at the
values loaded from memory).

b. If bit position 9 of XPSD contains a 1, the instruc­
tion address loaded from memory is incremented by
2. If bit position 9 of XPSD contains a 0, the in­
struction address remains at the value loaded from
memory.

The operation codes OC, OD, 2C, 2D and their indirectly
addressed forms, 8C, 8D, AC, AD, are both nonexistent
and privi leged. If one of these operation codes is used whi Ie
the CPU is in the slave state, both CC1 and CC3 will be set
to lis after the new PSD has been loaded, and if bit posi­
tion 9 of XPS D contains a 1, the instruction address loaded
from memory is incremented by 10.

Memory Protection Violation

A memory protection violation can occur either because of
a memory map access control bit violation (by a slave pro­
gram using the memory map) or because of a memory write
lock violation (by either a slave or a master mode program).
When either memory protection violation occurs, the CPU
aborts execution of the current instruction (without changing
protected memory) and traps to location X'40'. The opera­
tion of the XPSD in trap location X 140 1 is as follows:

1. Store the current PSD

2. Load the new PSD.

3. Modify the new PSD:

a. Set CC4 to 1 (CC1, CC2, and CC3 remain at the
values loaded from memory).

b. If bit position 9 of XPSD contains a 1, the instruc­
tion address loaded from memory is incremented by
1. If bit position 9 of XPSD contains a 0, the in­
struction address remains at the value loaded from
memory.

An attempt to access a memory location that is both pro­
tected and nonexistent causes both CC2 and CC4 to be set
to lis after the new PSD has been loaded, and if bit posi­
tion 9 of XPS D contains a 1, the instruction address loaded
from memory is incremented by 5.

22 Trap System

UNIMPLEMENTED INSTRUCTION TRAP

There are two SIGMA 7 optional instruction groups: the
decimal option and the floating-point option. The decimal
option includes the following instructions:

Instruction Name Mnemonic O~eration Code

Decimal Load DL X'7E'
Dec ima I Store DST X'7F'
Decimal Add DA X'791

Decimal Subtract DS X'781

Decimal Multiply DM X'7B'
Decimal Divide DD X'7A'
Decimal Compare DC X'7D'
Decimal Shift Arithmetic DSA X'7CI
Pack Decimal Digits PACK X'76 1

Unpack Decimal Digits UNPK X'771
Edit Byte String EBS X '631

The floating-point option includes the following instructions:

Floating Add Short FAS X '3D '
Floating Add Long FAL X ' ID '
Floating Subtract Short FSS X '3C'
F loati ng Subtract Long FSL X ' IC'

Floating Multiply Short FMS X '3F '
Floating Multiply Long FML X' IF'

Floating Divide Short FDS X' 3E '
Floating Divide Long FDL X ' l E'

If an attempt is made to execute an instruction (directly or
indirectly addressed) in either of these groups when the re­
quired option is not implemented, the computer traps to lo­
cation X'411. An indirectly addressed EDIT BYTE STRING
(EBS) instruction is always treated as a nonexistent instruction
rather than as an unimplemented instruction. The move to
memory control (MMC) instruction is always considered im­
plemented even if the memory map option or the memory­
protection option are not implemented. The operation of
the XPSD in trap location X ' 41 1 is as follows:

1. Store the current PSD. The condition code stored is
that which existed at the end of the instruction im­
mediately prior to the unimplemented instruction.

2. Load the new PSD. The condition code and the in­
struction address portions of the PSD remain at the
values loaded from memory.

PUSH-DOWN STACK LIMIT TRAP

Push-down stack overflow or underflow can occur duri ng
execution of any of the following instructions:

Instruction Name

Push Word
Pull Word

Mnemonic

PSW
PLW

Page

66
66

Instruction Name

Push Mu Iti pie
Pull Multiple
Modify Stack Pointer

Mnemonic

PSM
PLM
MSP

Page

67
67
68

During the execution of any stack-manipulating instruction
(see Push-down Instructions) the stack is either pushed (words
added to stack) or pulled (words removed from stack). In
either case, the space count and word count fields of the
stack pointer doubleword are tested prior to moving any
words. If execution of the instruction would cause thespace
count to become less than 0 or greater than 2 15_1, the in­
struction is aborted with memory and registers unchanged;
then, if bit 32 (TS) of the stack pointer doubleword is 0,
the CPU traps to location X'42'. If execution of the in­
struction would cause the word count to become less than
o or greater than 2 15-1, the instruction is aborted with
memory and registers unchanged; then, if bit 48 (TW) of the
stack pointer doubleword is a 0, the CPU traps to location
X'42'. If trapping does occur, the condition code remains
at the value it had immediately prior to the instruction that
caused the trap. When trapping is inhibited, either CClor
CC3 is set to 1 (or both CCl and CC3 are set to l's) to in­
dicate the reason for aborting the instruction. The stack
pointer doubleword, memory, and registers are modified
only if the instruction is successfully executed. lhe exe­
cution of XPSD in trap location X'42' is as follows:

1. Store the current PSD. The condition code stored is
that which existed immediately prior to the execution
of the aborted push-down i nstructi on.

2. Load the new PSD. The condition code and instruction
address portions of the PSD remain at the values loaded
from memory.

FIXED-POINT OVERFLOW TRAP

Fixed-point overflow can occur forany of the following
instructions:

Instruction Name

Load Compl ement Word
Load Absolute Word
Load Complement Doubleword
Load Absolute Doubleword
Add Immediate
Add Ha I fword
Add Word
Add Doubleword
Subtract Halfword
Subtract Word
Subtract Doubleword
Divide Halfword
Divide Word
Add Word to Memory
Modify and Test Halfword
Modify and Test Word

Mnemonic

LCW
LAW
LCD
LAD
AI
AH
AW
AD
SH
SW
SD
DH
DW
AWM
MTH
MTW

Page

30
30
30
31
36
36
37
37
37
38
38
39
39
40
40
41

Except for the instructions DIVIDE HALFWORD (DH) and
DIVIDE WORD (DW), the instruction execution is allowed

to proceed to completion, CC2 is set to 1 and CC3 and
CC4 represent the actual result (0, -, or+) after overflow.

If the fixed-point arithmetic trap mask (bit 11 of PSD) is a
1, the CPU traps to location X'43' instead of executing the
next instruction in sequence.

For DW and DH, the instruction execution is aborted with­
out changing any registers and CC2 is set to 1; but CC1,
CC3, and CC4 remain unchanged from their values at the
end of the instruction immediately prior to the DW or DH.
If the fixed-point arithmetic trap mask is a 1, the CPU traps
to location X'43' instead of executing the next instruction
in sequence.

1. Store the current PSD. If the instruction causing the
trap was an instruction other than DW or DH, the
stored condition code is interpretedt as follows:

2.

CC 1 tt CC2 CC3 CC4 Meaning

o
1

o
o

o
1

o

resu I t after overflow is zero
result after overflow is
negative
result after overflow is
positive
no carry from bit position 0
carry from bit position 0

If the instruction causing the trap was DW or DH, the
stored condition code is interpreted as follows:

CC 1 CC2 CC3 CC4 Meaning

overflow

Load the new PSD. The condition code and instruc­
tion address portions of the PSD remain at the value
loaded from memory.

FLOATING-POINT ARITHMETIC FAULT TRAP

Floating-point fault detection is performed after the opera­
tion called for by the instruction code is performed, but be­
fore any results are actually loaded into the general registers;
thus, the floating-point operation that causes an arithmetic
fault is not carried to completion (in the sense that the orig­
inal contents of the general registers remain unchanged).
Instead, the computer traps to location X'44' with the cur­
rent condition code indicating the reason for the trap. A
characteristic overflow or an attempt to divide by zero
always results in a trap condition; a significance check or
a characteristic underflow result in a trap condition only
if the floating-point mode controls (FS, FZ, and FN) in the
program status doubleword are set to the appropriate state.

tA hyphen (-) indicates that the condition code bit is not
affected by the condition given under the "Meaning"
heading.

ttCCl remains unchanged for the instructio/lS LCW, LAW,
LCD, and LAD.

Trap System 23

If a floating-point instruction causes a trap, the execution
of XPSD in trap location X '44 1 is as follows:

1. Store the current PSD. If division is attempted with
a zero divisor or if characteristic overflow occurs,
the stored condition code is interpreted as follows:

CCl CC2 CC3 CC4 Meaning

0 0 0 divide by zero

0 0 characteristic overflow, neg-
ative result

0 0 characteristic overflow, posi-
tive result

If none of the above conditions occurs, but character­
istic underflow occurs with the floating zero (FZ) mode
bit set to 1, the stored condition code is interpreted
as follows:

CCl CC2 CC3 CC4 Meaning

o

o

characteristic underflow, neg­
ative result

characteristic underflow, posi­
tive result

If none of the above conditions occurs, but an addition
or subtraction results in either a zero result (with
FS = 1 and FN = 0), or a postnormalization shift of more
than two hexadecimal places (with FS= 1 and FN=O),
the stored condition code is interpreted as follows:

CCl CC2 CC3 CC4 Meaning

0 0 0 zero result of addition or sub-
traction

0 0 more than 2 postnormalizing
shifts, negative result

0 0 more than 2 postnormalizing
shi fts, positive result

2. Load the new PSD. The condition code and instruction
address portions of the PSD remain at the values loaded
from memory.

DECIMAL ARITHMETIC FAULT TRAP

When either of two decimal fault conditions occur (see
Decimal Instructions), the normal sequencing of instruction
execution is halted, CCl and CC2 are set according to the
reason for the fault condition, and CC3, CC4, memory, and
the decimal accumulator remain unchanged by the instruc­
tion. If the decimal arithmetic trap mask (bit position 10
of PSD) is a 0, the instruction execution sequence con­
tinues with the next instruction (in sequence) at the time of
fault detection; however, if the decimal arithmetic trap
mask bit is a 1, the computer traps to location X'45 1 at
the time of fault detection.

24 Trap System

The execution of XPSD in trap location X '45 1 is as follows:

1. Store the current PSD. The stored condition code is
interpreted as follows:

CCl CC2 CC3 CC4 Meaning

o all digits legal and overflow

o illegal digit detected

2. Load the new PSD. The condition code and instruction
address portions of the PSD remain at the values loaded
from memory.

WATCHDOG TIMER RUNOUT TRAP

The instruction watchdog timer insures that i~he CPU must
periodically reach interruptible points of operation in the
execution of instructions. An interruptible point is a time
during the execution of a program when an interrupt request
(if present) would be acknowledged. Interruptible points
occur at the end of every instruction and during the execu­
tion of some instructions (such as the byte stTing group). The
watchdog timer measures elapsed time from the last inter­
ruptible point. If the maximum allowable time has been
reached before the next time that an interrupt could be
recognized, the current instruction is aborted and the watch­
dog timer runout trap is activated. Except for a nonexistent
address used with READ DIRECT (RD) or WRITE DIRECT
(WD) instructions, programs trapped by the watchdog timer
cannot (in general) be continued. Execution of XPSD in
trap location X'46' is as follows:

1. Store the current PSD. The stored condition code is,
in general, meaningless.

2. Load the new PSD. The instruction address portion of
the PSD remain at the values loaded from memory;
however, the resulting condition code is, generally,
meaningless.

CALL INSTRUCTION TRAPS

The four CALL instructions (CAL 1, CAL2, CAL3, and CAL4)
cause the computer to trap to location X'48 1 (for CAL 1)
X'49 1 (for CAL2), X'4A' (for CAL3), or X'4B' (for CAL4).
Execution of XPSD in the trap location is IJS follows:

1. Store the current PSD. The stored condition code is
that which existed at the end of the instruction im­
mediately prior to the CALL instruction.

2. Load the new PSD.

3. Modify the new PSD.

a. The R field of the CALL instruction is logically
ORed with the condition code value loaded from
memory, and the result is loaded into the condi­
tion code.

b. If bit 9 of XPSD contains a 1, the R field of the
CALL instruction is added to the instruction ad­
dress loaded from memory.

If bit 9 of XPSD contains a 0, the instruction ad­
dress remains at the value loaded from memory.

3. INSTRUCTION REPERTOIRE

This section describes all SIGMA 7 instructions, grouped in­
to the following functional classes:

Page

l. Load and Store 28
2. Analyze and Interpret 34
3. Fixed-Point Arithmetic 36
4. Comparison 41
5. Logical 43
6. Shift 43
7. Conversion 46
8. Floating-Point Arithmetic 47
9. Decimal 51

10. Byte String 57
11. Push Down 64
12. Execute and Branch 68
13. Call 70
14. Control 71
15. Input/Output 78

SIGMA 7 instructions are described in the following format:

MNEMONIC CD INSTRUCTION NAME @

(Addressing type @, Optional ~
Privileged ®, Interrupt Action@)

Description ®

A ffec ted (!) Trap @l

Symbol ic notation ®

Condition Code Settings@

Trap Action@

Example@

1. MNEMONIC is the code used by the SIGMA 7 assem­
blers to produce the instruction's basic operation code.

2. INSTRUCTION NAME is the_ instruction's descriptive
title.

3. The instruction's addressing type is one of the following:

a. Byte index alignment: the reference address field
of the instruction (plus the displacement value) can
be used to address a byte in core memory or in the
current block of general registers.

b. Halfword index alignment: the reference address
field of the instruction (plus the displacement value)
can be used to address a halfword in core memory
or in the current block of general registers.

c. Word index alignment: the reference address field
of the instruction (plus the displacement value) can
be used to address any word in core memory or in
the current block of general registers.

d. Doubleword index alignment: the reference address I
field of the instruction (plus the displacement value)
can be used to address anydoublewordincoremem­
oryor in thecurrentblock of general registers. The
addressed doubleword is automatically located
within doubleword storage boundaries.

e. Immediate operand: the instruction word contains
an operand value used as part of the instruction
execution. If indirect addressing is attempted
with this type of instruction (i. e., bit 0 of the
instruction word is a 1), the instruction is treated
as a nonexistent instruction, in which case the
computer unconditionally aborts execution of the
instruction (at the time of operation code decoding)
and traps to location X'40', the "nonallowed
operation" trap. Indexing does not apply to this
type of instruction.

f. Immediate displacement: the instruction word con­
tains an address displacement used as part of the
instruction execution. If indirect addressing is at­
tempted with this type of instruction, the computer
treats the instruction as a nonexistent instruction,
in wh i ch case the computer uncond i ti ona II y aborts
execution of the instruction (at the time of opera­
tion code decoding) and traps to location X'40'.
Indexing does not apply to this type of instruction.

4. If the instruction is not in the standard SIGMA 7 in­
struction set, it is labeled "optional". If execution of
an optional instruction is attempted on a comput'er in
wh ich the i nstructi on is not implemented, the computer
unconditionally aborts execution of the instruction (at
the time of operation code decoding) and traps to loca­
tion X '41 1

, which is the "unimplemented instruction
trap".

5. If the instruction is not executable while the computer
is in the slave mode, it is labeled "privileged". If
execution of a privileged instruction is attempted
while the computer is in the slave mode, the com­
puter unconditionally aborts execution of the instruc­
tion(atthetimeofoperationcodedecoding) and traps
to location X'40'.

,6. If the instruction can be successfully resumed after its
execution sequence has been interrupted by an interrupt
acknowledgment, the instruction is labeled "continue
after interrupt". Otherwise, the instruction is either
completed or the instruction is aborted and then re­
started after the interrupt is cleared. In the case of
the "continue after interr.upt" instructions, certain gen­
eral registers contain intermediate results or control in­
formation that allows the instruction to continue properly.
In the case of aborted instructions, all affected registers
are restored to the values they contained immediately
before the aborted i nstructi on was begun.

Instruction Repertoire 25

7. Instruction format:

a. Indirect addressing - If bit position 0 of the in­
struction format contains an asterisk (*), the in­
struction can uti lize indirect addressing; however,
if bit position 0 of the instruction format contains
a 0, the instruction is of the immediate addressing
type, which is treated as a nonexistent instruction
if indirect addressing is attempted (resulting in a
trap to location XI401).

b. Operation code - The operation code field (bit
positions 1-7) of the instruction is shown in hexa­
decimal notation.

c. R field - If the register address field (bit positions
8-11) of the instruction format contains the char­
acter IIR II , the instruction can specify any register
in the current block of general registers as an op­
erand source, result destination, or both; otherwise,
the function of this field is determined by the in­
struction.

d. X fi eld - If the index register address field (bit
positions 12-14) of the instruction format contains
the character IIX", the instruction can specify in­
dexing with anyone of registers 1 through 7 in the
current block of general registers; otherwise, the
function of this field is determined by the instruc­
tion.

e. Reference address field - Norma lIy, the reference
address field (bit positions 15-31) of the instruc­
tion format is used as the initial address value for
an instruction operand. For instructions of the im­
mediate addressing type, the effective address of
the instruction is not used to access an operand;
instead, the effective address itself is used as an
operand. In these cases, the function of the ef­
fective address is represented in the lower half of
the reference address field in the instruction for­
mat diagram.

f. Value field - In some fixed-point arithmetic in­
structions, bit positions 12-31 of the instruction
format contain the word "value". This field is
treated as a 20-bit integer, with negative inte­
gers represented in two IS complement form.

g. Displacement field - In the byte string instructions,
bit positions 12-31 of the instruction format con­
tain the word "displacement. II In the execution
of the instruction, this field is used to modify the
source address of an operand, the destination ad­
dress of a result, or both.

h. Ignored fields - In the instruction format diagrams,
any area that is shaded represents a field or bit po­
sition that is ignored by the computer (i. e., the con­
tent of the shaded field or bit has no effect on instruc­
tion execution) but should be coded with OIS so as to
preclude conflict with possible modifications.

In any format diagram of a general register or mem­
ory word modified by an instruction, a shaded area
represents a field whose content is indeterminate
after execution of the instruction.

26 Instruction Repertoire

8. The description of the instruction defines the operations
performed by the computer in response to the insrrl)ction
configuration depicted by the instruction format diagram.
Any instruction configuration that causes an unpredict­
able result is so specified in the description.

9. All programmable registers and storage areas that can be
affected by the instruction are I isted (symbol ically) after
the word "Affected". The instruction elddress portion of
the program status doubleword is considered to be af­
fected only if a branch condition can occur as a resul t
of the instruction execution, since the instruction ad­
dress is updated (incremented by 1) as part of every in­
struction execution.

10. All trap conditions that may be invoked by the execu­
tion of the instruction are I isted after the word IITrap ".
SIGMA 7 trap locations are summarized in the section
"Trap System".

11. The symbol ic notation presents the instruction operation
as a seri es of general ized symbol i c statements. The sym­
bolic terms used in the notation are de:Fined in Table 4.

12. Condition Code settings are given for E~ach instruction
that affects the condition code. A 0 or a 1 under any
of columns 1, 2, 3, or 4 indicates that the instruction
causes a 0 or 1 to be placed in CC 1, CC2, CC3, or
CC4, respectivel y, for the reasons given. If a hyphen
(-) appears in columns 1, 2, 3, or 4, that portion of the
condition code is not affected by the rl9ason given for
the condition code bit(s) containing a 0 or 1. For ex­
ample, the following condition code settings are given
for a comparison instruction:

2 3 4 Resul t of comparison

0 0 equal

0 register operand is arithmetically
less than effective operand

0 register operand is arithmetically
greater than effective operand

0 the logical product (AND) of the
two operands is zero

the logical product of the two
operands is nonzero

CCl is unchanged by the instruction. CC2 indicates
whether or not the two operands have l"s in corres­
ponding bit positions, regardless of their arithmetic
relationship. CC3 and CC4 are set according to the
arithmetic relationship of the two opemnds, regard­
less of whether or not the two operands have lis in
corresponding bit positions. For example, if the
register operand is arithmetically less than the effec­
tive operand and the two operands both have lis in at
least one corresponding bit position, the condition
code setting for the comparison instruction is:

234

o

The above statements about the condition code are valid
only if no trap occurs before the successful completion of

the instruction execution cycle. If a trap does occur
during the instruction execution, the condition code
is normally reset to the value it contained before the
instruction was started, and then the appropriate trap
location is activated.

13. Actions taken by the computer for those trap con­
ditions that may be invoked by the execution of
the instruction are described. The description
includes the criteria for the trap condition, any
control I ing trap mask or inhibit bits, and the action
taken by the computer. In order to avoid unnecessary
repetition, the two trap conditions that apply to all

instructions (i. e., nonallowed operations and
watchdog timer runout) are not described for each
instruction.

14. Some instruction descriptions provide one or more
exampl es to illustrate the results of the instruction.
These examples are intended only to show how the
instructions operate, and not to demonstrate their
full capability. Within the examples, hexadecimal
notation is used to represent the contents of general
registers and storage locations (condition code set­
tings are shown in binary notation. The character IIXII

is used to indicate irrelevant or ignored information.

Table 4. Glossary of Symbol ic Terms

Term

()

AM

R

Rul

x

RA

Meaning

Contents of

Fixed-point arithmetic trap mask - bit 11 of
the program status doubleword. If this bit is
a 1, the computer traps to location X'43 1

after executing an instruction that causes
fixed-point overflow; if this bit is a 0, the
computer does not trap to location X'43 1

•

Instruction register - the internal CPU register
used to hold instructions obtained from memory
while they are being decoded.

General register address value - the 4-bit
contents of bit positions 8-11 (the R field) of
an instruction word, also expressed symboli­
cally as (1)8-11. In the instruction descrip­
tions, register R is the general register (of
the current register block) that corresponds to
the R field address value.

Odd register address value - register Ru 1
is the general register pointed to by the
value obtained by logically ORing 0001 into
the address va lue for reg ister R. Thus, if the
R field of an instruction contains an even
value, Rul = R + 1 and if the R field con­
tains an odd value, Ru 1 = R.

Index register address value - the 3-bit
contents of bit positions 12-14 (the X field)
of an instruction word. If X = 0 for an
instruction, no indexing is performed. If
X 1= 0 for an instruction, indexing is per­
formed (after indirect addressing if indirect
addressing is called for) with general register
X in the current register block.

Reference address - the contents of bit
positions 15-31 of an instruction word. This
17-bit field is capable of directly addressing
any general register in the current register
block (by using a value in the range 0-15) or
any word in core memory in the address range
16 through 131,071. This address value is
the in itial address value for any subsequent
address computations, memory mapping, or
both computation and mapping.

Term

EVA

EBL

EB

EHL

EH

EWL

EW

EDL

ED

CC

FN

FS

Meaning

Effective virtual address - the virtual address
value obtained as a result of indirect addressing
and/or indexing. This address value is inde­
pendent of the program's actual location in core
memory, and is the final address value before
memory mapping is performed.

Effective byte location - the byte location
pointed to by the effective virtual address of an
instruction for a byte operation.

Effective byte - the 8-bit contents of the effec­
tive byte location, or (EBL).

Effective halfword location - the halfword loca­
tion pointed to by the effective virtual address of
an instruction for a halfword operation.

Effective hal fword - the 16-bit contents of the
effective hal fword location, or (EHL).

Effective word location - the word location pointed
to by the effective virtual address of an instruc­
tion for a word operation.

Effective word - the 32-bit contents of the
effective word location, or (EWL).

Effective doubleword location - the doubleword
location pointed to by the effective virtual address
of an instruction for a doubleword operation.

Effective doubleword - the 64-bit contents of
the effective doubleword location, or (EDL).

Condition code - a 4-bit value (whose bit
positions are labeled CC1, CC2, CC3, and
CC4) that is establ ished as part of the exe­
cution of most SIGMA 7 instructions.

Floating normalize mode control - bit 7 of the
program status doubleword. If this bit is a 0,
the results of floating-point additions and
subtractions are to be normalized; if this bit
is a 1, the results are not normalized.

Floating significance mode control - bit 5 of
the program status doubleword. If this bit is
a 1, the computer traps to location X'44 l when
when more than two hexadecimal places of

Instruc ti on Repertoi r 27

Table 4. Glossary of Symbolic Terms (cont.)

Term

FS
(cont.)

FZ

IA

X'n'

Meaning

postnormal ization shifting are required for a
floating-point addition or subtraction; if this
bit is 0, no significance checking is performed.

Floating zero mode control - bit 6 of the
program status doubleword. If this bit is a 1,
the computer traps to location X'44' when
either characteristic underflow or a zero re­
sult occurs for a floating-point multiplication
or division; if this bit is a 0, characteristics
underflow and zero results are treated as
normal conditions.

Instruction address - the 17-bit value that
defines the virtual address of an instruction
immediately prior to the time that the instruc­
tion is executed.

Hexadecimal qual ifier - a hexidecimal value
(n) is an unsigned string of hexidecimal digits
(0 through 9 and A through F) surrounded by
single quotation marks and preceded by the
qual ifier II X" (for example, 7B0 16 is written
X7BO'.

LOAD/STORE INSTRUCTIONS

The following load/store instructions are implemented in
51 GMA 7 computers:

Instruction Name Mnemonic Page

Load Immediate LI 29
Load Byte LB 29
Load Ha I fword LH 29
Load Word LW 29
Load Doubleword LD 29
Load Complement Halfword LCH 30
Load Absolute Halfword LAH 30
Load Complement Word LCW 30
Load Absolute Word LAW 30
Load Complement Doubleword LCD 30
Load Absolute Doubleword LAD 31
Load Selective LS 31
Load Multiple LM 32
Load Conditions and Floating Control

Immediate LCFI 32
Load Conditions and Floating Control LCF 32
Exchange Word XW 33
Store Byte STB 33
Store Halfword 5TH 33
Store Word STW 33
Store Doubleword STD 33
Store Selective STS 33
Store Multiple STM 34
Store Conditions and Floating Controls STCF 34

SIGMA 7 load and store instructions operate with informa­
tion fields of byte, halfword, word, and doubleword lengths.

28 Load/Store

Term

n

u

SE

Meaning

AND (logical product, where 0 nO = 0,
o n 1 = 0" 1 n 0 = 0, and 1 n 1 = 1).

OR (logical inclusive OR, where 0 u 0 = 0,
o u 1 = 1, 1 u 0 = 1, and 1 u 1 = 1).

EOR (logical exclusive OR, where 0 @ 0 = 0,
o @ 1 = 1, 1 @ 0 = 1, and 1 @ 1 = 0).

Sign extension - some SIGMA 7 instructions
operate on two operands of different lengths;
The two operands are made equal in length by
extending the sign of the shorter operand by the
required number of bit positions. For positive
operands, the result of sign extension is high­
order 0' s prefixed to the operand; for negative
operands, high-order l's are prefix'9d to the
operand. This sign extension process is per­
formed after the operand is accessed from
memory and before the operation called for by
the instruction code is performed.

Load instructions load the information indicated into one of
the general registers in the current register block. Load
instructions do not affect core memory storage; however,
nearly all load instructions provide a condition code setting
that indicates the following information about the contents
of the affected general register{s) after the instruction is
successfully completed:

Condition code settings:

2 3 4 Result

o 0 zero - the result in the.affected register(s)
is all O's.

o negative - register R contlJins a 1 in bit
position O.

a positive - register R contains a a in bit
position 0, and at least one 1 appears in
the remainder of the affected register(s)
(or appeared during execution of the cur­
rent instruction.)

a no fixed-point overflow - the result in
the affected register{s) is orithmetically
correct.

fixed-point overflow - the result in the
affected register{s) is arithmetically in­
correct.

Store instructions affect only that portion of memory storage
that corresponds to the length of the informaHon field speci­
fied by the operation code of the instruction,; thus, register
bytes are stored in memory byte locations, register halfwords
in memory halfword locations, register words in memory

word locations, and register doublewords in memory double­
word locations. Store instructions do not affect the contents
of the general register specified by the RJield of the instruc­
tion, unless the same register is also specified by the effec­
tive virtua I address of the instruction.

LI LOAD IMMEDIATE
(Immediate operand)

LOAD IMMEDIATE extends the sign of the value field (bit
position 12 of the instruction word) 12 bit positions to the
left and then loads the 32-bit result into register R.

Affected: (R), CC3, CC4

(I) 12-31SE --- R

Condition code settings:

2 3 4 Result in R

0 0 zero
0 1 negative
1 0 positive

If LI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of opera­
tion code decoding) and traps to location X'40 ' with the
contents of register R and the condition code unchanged.

lB LOAD BYTE
(Byte index alignment)

LOAD BYTE loads the effective byte into bit positions 24-31
of register R and clears bit positions 0-23 of the reg ister to
aIIO's.

Affected: (R), CC3, CC4
EB-- R24 - 31 ; 0 - RO- 23
Condition code settings:

2 3 4 Result in R ------

lH

o
1

o zero
o nonzero

LOAD HALFWORD
(Halfword index alignment)

LOAD HALFWORD extends the sign of the effective half­
word 16 bit positions to the left and then loads the 32-bit
result into register R.

Affected: (R),CC3,CC4

EHSE --- R

Condition code settings:

2 3 4 Result in R

0 0 zero
0 1 negative
1 0 positive

lW LOAD WORD
(Word index al ignment)

LOAD WORD loads the effective word into register R.

Affected: (R),CC3,CC4
EW - R

Condition code settings:

2 3 4 Result in R

0 0 zero
0 1 negative
1 0 positive

lD LOAD DOUBLEWORD
(Doubleword index al ignment)

LOAD DOUBLEWORD loads the 32 low-order bits of the ef­
fective doubleword into register Ru 1 and then loads the 32
high-order bits of the effective doubleword into register R.

If R is an odd value, the result in register R is the 32 high­
order bits of the effective doubleword. The condition code
settings are based on the effective doubleword, rather than
the final result in register R (see example 3, below).

Affected: (R), (Ru 1),CC3,CC4
ED

32
-
63

- Ru1; ED
O

_
31

- R

Condition code settings:

2 3 4 Effective doubleword

o 0
o 1
1 0

zero
negative
positive

Example 1, even R field value:

ED
(R)
(Ru 1)
CC

Before execution After execution

X 10 123456789ABC DEF' • X 10 123456789ABC DEF I

xxxxxxxx X'012345671

xxxxxxxx X '89ABCDEF '
xxxx xxlO

Example 2, odd R field value:

ED
(R)
CC

X '0123456789ABCDEF ' X'0123456789ABCDEF'
xxxxxxxx X'012345671

xxxx xxlO

Load/Store 29

Example 3, odd R field value:

ED X'0000000012345678' X'0000000012345678'
(R) xxxxxxxx X' 00000000'
CC xxxx xxlO

LCH LOAD COMPLEMENT HALFWORD
(Halfword index al ignment)

LOAD COMPLEMENT HALFWORD extends the sign of the
effective halfword 16 bit positions to the left and then loads
the 32-bit two's complement of the result into register R.
(Overflow cannot occur.)

Affected: (R),CC3,CC4

_~HSEJ -R

Condition code settings:

LAH

2 3 4 Result in R

o 0
o 1
1 0

zero
negative
positive

LOAD ABSOLUTE HALFWOR 0
(Halfword index alignment)

If the effective halfword is positive, LOAD ABSOLUTE
HA.LFWORD extends the sign of the effective halfword 16
bit positions to the left and then loads the 32-bit result in
register R. If the effective halfword is negative, LAH ex­
tends the sign of the effective halfword 16 bit positions to
the left and then loads the 32-bit two's complement of the
result into register R. (Overflow cannot occur.)

Affected: (R),CC3,CC4

IEH SE/ - R
Cond ition code settings:

LCW

2 3 4 Result in R

o 0 zero
1 0 nonzero

LOAD COMPLEMENT WORD
(Word index alignment)

LOAD COMPLEMENT WORD loads the 32-bit two's com­
plement of the effective word into register R. Fixed-point
overflow occurs if the effective word is _231 (X'80000000~,
in which case the result in register R is -231 and CC2 is set
to 1; otherwise, CC2 is reset to O.

Affected: (R),CC2,CC3,CC4 Trap: Fixed-point overflow.
-EW R

30 Load/Store

Condition code settings:

2 3 4 Result in R

0 0 0 zero
0 1 negative

0 1 0 positive
0 no fixed-point overflow
1 0 fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43' afterexe­
cution of LOAD COMPLEMENT WORD; otherwise, the com­
puter executes the next instruction in sequence.

LAW LOAD ABSOLUTE WORD
(Word index alignment)

1* I 3B I R I X I: Reference' address =:J
o 1 2 3 14 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19120 21 22 2:3124 25 26 27128 29 30 31

If the effective word is positive, LOAD ABSOLUTE WORD
loads the effective word into register R. If the effective
word is negative, LAW loads the 32-bit two's complement
of the effective word into register R. Fixed-point overflow
occurs if the effective word is -231 (X'80000000'), in which
case the result in register R is _2 31 and CC2 is set to 1;
otherwise, CC2 is reset to O.

Affected: (R),CC2,CC3,CC4 Trap: Fixed-point overflow
IEWI- R

Condition code settings:

2 3 4 Result in R

0 0 0 zero
1 0 nonzero

0 no fixed-point overflow
1 0 fixed-point overflow (sign bit on)

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43' afterexe­
cut ion of LOAD ABSOLUTE WORD; otherwise, the compu­
ter executes the next instruction in sequence.

LCD LOAD COMPLEMENT DOUBLEWORD
(Doubleword index alignment)

LOAD COMPLEMENT DOUBLEWORD forms the 64-bit two's
complement of the effective doubleword, loads the 32 low­
order bits of the result into register Ru1, and then loads the
32 high-order bits of the result into register R.

If R is an odd value, the result in register R is the 32 high­
order bits of the two's complemented doubleword. The con­
dition code settings are based on the two's complement of
the effective doubleword, rather than the final result in
register R.

Fixed-point overflow occurs if the effective doubleword is
-263 (X '8000000000000000 '), in which case the result in

regi sters Rand Ru 1 is -263 and CC2 is set to 1; otherwise,
CC2 is reset to O.

Affected: (R),(Ru1),CC2, Trap: Fixed-point overflow
CC3,CC4

[-ED]32-63 - Ru1; [-ED]0_31 - R

Condition code settings:

2 3 4 Two's complement of effective doubleword

0 0 0 zero
0 1 negative

0 1 0 positive
0 no fixed-point overflow
1 0 fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X '43 1 after exe­
cution of LOAD COMPLEMENT DOUBLEWORD; otherwise,
the computer executes the next instruction in sequence.

Example 1, even R field val ue:

Before execution After execution

ED X '0123456789ABCDEF ' X '0123456789ABCDEF '
(R) xxxxxxxx X ' FEDCBA98'
(Rul) xxxxxxxx X 17654321 0 1

CC xxxx xOOl

Example 2, odd R field value:

ED X'0123456789ABCDEF' X'0123456789ABCDEF '
(R) xxxxxxxx X'FEDCBA98'
CC xxxx x001

I LAD LOAD ABSOLUTE DOUBLEWORD
(Doubleword index alignment)

If t~e effective doubleword is positive, LOAD ABSOLUTE
DOUBLEWORD loads the 32 low-order bits of the effective
doubleword into register Ru1, and then loads the 32 high­
order bits of the effective doubleword into register R. If R
is an odd value, the result in register R is the 32 high-order
bits of the effective doubleword. The condition code settings
are based on the effective doubleword, rather than the fina'!
result in register R.

If the effective doubleword is negative, LAD forms the 64-
bit twols complement of the effective doubleword, loads the
32 low-order bits of the two's complemented doubleword in­
to register Ru1, and then loads the 32 high-order bits of the
two's complemented doubleword into register R. If R is an
odd value, the result in register R is the 32 high-order bits
of the two's complemented doubleword. The condition code
settings are based on the two's complement of the effective
doubleword, rather than the final result in register R.

Fixed-point overflow occurs if the effective doubleword is
_263 (X '8000000000000000'), in which case the result in

regi sters Rand Ru 1 is -263 and CC2 is set to 1; otherwise,
CC2 is reset to O.

Affected: (R),(Ru 1),CC2, Trap: Fixed-point overflow
CC3,CC4

IED1 32_63 - Ru1; 1ED10_31 - R

Condition code settings:

2 3 4 Absolute value of effective doubleword

0 0 0 zero
1 0 nonzero

0 no fixed-point overflow
1 0 fixed-point overflow (sign bit on)

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43' after exe­
cution of LOAD ABSOLUTE DOUBLEWORD; otherwise, the
computer executes the next instruction in sequence.

Example 1, even R field value:

Before execution After execution

ED X' 0 12345678 9ABC D EF I X' 0123456789ABC DEF'
(R) xxxxxxxx X '01234567'
(Ru 1) xxx xxx xx X'89ABCDEF '
CC xxxx x010

Example 2, even R field value:

ED X 'FEDCBA987654321 0 1 X'FEDCBA9876543210 '
(R) xxxxxxxx X '01234567'
(Ru 1) xxxxxxxx X'89ABCDEF'
CC xxxx xOl0

Example 3, odd R field value:

ED
(R)
CC

X '0123456789ABCDEF ' X'0123456789ABCDEF'
xxxxxxxx X'01234567'
xxxx x010

LS LOAD SELECTIVE
(Word index alignment

Register Rul contains a 32-bit mask. If R is an even value,
LOAD SELECTIVE loads the effective word into register R
in those bit positions selected by a 1 in corresponding bit
positions of register Ru1. The contents of register R are not
affected in those bit positions selected by a 0 in correspond­
ing bit positions of register Rul.

If R is an odd value, LS logically ANDs the contents of
register R with the effective word and loads the result into
register R. If corresponding bit positions of register Rand
the effective 'word both contain lis, a 1 remains in register
R; otherwise, a 0 is placed in the corresponding bit position
of regi ster R.

Affected: (R), CC3, CC4

If R is even, [EWn(Ru1llu[(R)n(Rul)]-R
If R is odd, EWn(R)-R

Load/Store 31

Condition code settings:

2 3 4 Result in R

o 0 zero

o bit 0 of register R is a

o bit 0 of register R is a 0 and bit positions
1-31 of register R contain at leastone 1

Example 1, even R field value:

EW
(Ru 1)
(R)
CC

Before execution

X' 01234567 1

X'FFOOFFOO '
xxxxxxxx
xxxx

Example 2, odd R field value:

Before execution

EW X '89ABCDEF '
(R) X'FOFOFOFO '
CC xxxx

LM LOAD MULTIPLE
(Word index alignment)

After execution

XI 0 12345671

X 'FFOOFFOO '
X ' 01xx45xx '
xx10

After exec uti on

X '89ABCDEF '
X '80AOCOEO'
xx01

LOAD MULTIPLE loads a sequential set of words into a se­
quential set of registers. The set of words to be loaded be­
gins with the word pointed to by the effective address of
LM, and the set of registers begins with register R. The set
of registers is treated modulo 16 (i.e., the next register
loaded after register 15 is register 0 in the current register
block).

The number of words to be loaded into the general registers
is determined by the value of the condition code immediately
before the execution of LM. (The desired value of the con­
dition code can be set with LCF or LCFI.) An initial value
of 0000 for the condition code causes 16 consecutive words
to be loaded into the register block.

Affected: (R) to (R+CC-l)
(EWL) -Ri .•. (EWL+CC-1} -R+CC-1

If the instruction starts loading words from an accessible
region of memory and then crosses into an inaccessible mem­
ory region, either the memory protection trap or the nonex­
istent memory address trap can occur. In either case, the
trap is activated with the condition code unchanged from
the value it contained before the execution of LM. The ef­
fective address of the instruction permits the trap routine to
compute how many registers have been loaded. Since it is
permissible to use indirect addressing or indexing through a
general register, or even to execute an instruction located
in a general register, a trapped LM instruction may have
already overwritten the index, direct address, or the LM
instruction itself, thus destroying any possibility of contin­
uing the program successfully. If such programming must

32 Load/Store

be done, it is advisable that the register containing the di­
rect address, index displacement, or instruction be the last
register loaded by the LM instruction.

LCFI LOAD CONDITIONS AND FLOATING
CONTROL IMMEDIATE
(Immediate operand)

If bit position 10 of the instruction word contains a 1, LOAD
CONDITIONS AND FLOATING CONTROL IMMEDIATE
loads the contents of bit positions 24 through 27 of the in­
struction word into the condition codei however, if bit 10
is 0, the condition code is not affected.

If bit position 11 of the instruction word contains a 1, LCFI
loads the contents of bit positions 29 through 31 of the in­
struction word into the floating significance (FS), floating
zero (FZ), and floating normalize (FN) mode control bits,
respectively (in the program status doubleword}i however,
if bit 11 is 0, the FS, FZ and FN control bits are not af­
fected. The functions of the floating-point control bits
are described in the section "FI oati ng-poinl' Instructions".

Affected: CC, FS, FZ, FN

If (I}l 0 = 1, (1)24-27 - CC

If (1)10 = 0, CC is not affected

If (1)11 = 1, (1)29-31 - FS, FZ, FN

If (1)11 = 0, FS, FZ, and FN not affected

Condition code settings, if (1)10 = 1:

2 3 4

If LCFI is indirectly addressed, it is treated as a nonexis­
tent instruction, in which case the computer uncondition­
ally aborts execution of instruction (at the l-ime of operation
code decoding) and traps to location X'40 ' with the condi­
tion code unchanged.

LCF LOAD CONDITIONS AN~ FLOATING
CONTROL
(Byte index al ignment)

If bit position 10 of the instruction word contains a 1, LOAD
CONDITIONS AND FLOATING CONTROIL loads bits 0
through 3 of the effective byte into the condition code; how­
ever, if bit lOis 0, the condition code is not affected.

If bit position 11 of the instruction word contains a 1, LCF
loads bits 5 through 7 of the effective byte into the floating
significance (FS), floating zero (FZ), and floating normalize
(FN) mode control bits, respectively; however, if bit 11 is
0, the FS, FZ and FN control bits are not affected, The

functions of the floating-point mode control bits are de­
scribed in the section "Floating-point Instructions".

Affected: CC, FS, FZ, FN

If (1)10 = 1, EBO_
3
--- CC

If (I) 10 = 0, CC not affected

If (1)11 = 1, EBS_7 - FS, FZ, FN

If (1)11 = 0, FS, FZ, FN not affected

Condition code settings, if (1)10 = 1:

XW

2 3 4

(EB)2

EXCHANGE WORD
(Word index alignment)

EXCHANGE WORD exchanges the contents of register R
with the contents of the effective word location.

Affected: (R), (EWL),CC3,CC4
(R) - (EWL)

Condition code settings:

2 3 4 Result in R

0 0 zero
0 1 negative
1 0 positive

STB STORE BYTE
(Byte index al ignment)

STORE BYTE stores the contents of bit positions 24-31 of
register R into the effective byte location.

Affected: (EBL)

(R)24-31 - EBL

STH STORE HALFWOR D
(Halfword index alignment)

STORE HALFWORD stores the contents of bit positions 16-31
of register R into the effective halfword location. If the in­
formation in register R exceeds halfword data limits, CC2 is
set to 1; otherwise, CC2 is reset to O.

Affected: (EHL),CC2

(R)16-31 - EHL

Condition code settings:

2 3 4 Information in R

o (R)0-16 = all OIS or all lis

(R) 0 -16 oj a II 0 I S or a II 1 IS

STW STORE WORD
(Word index al ignment)

STORE WORD stores the contents of register R into the ef­
fective word location.

Affected: (EWL)
(R) - EWL

STD STORE DOUBLEWORD
(Doubleword index alignment)

STORE DOU BLEWORD stores the contents ofregister R into the
32 high-order bit positions of the effectivedoubleword loca­
tion and then stores the contents of register Ru 1 into the 32 low­
order bit positions of the effective doubleword location.

Affected: (EDL)
(R) -- EDL

O
_
31

i (Rul) - EDL
32

_
63

Example 1, even R field value:

(R)
(Ru 1)
(EDL) =

Before execution

X '01234S67 1

X '89ABC DEF'
xxxxxxxxxxxxxxxx

Example 2, odd R field value:

(R) X '89ABC DEF'
(EDL) = xxxxxxxxxxxxxxxx

After execution

X '01234567 1

X '89ABCDEF '
X '0123456789ABCDEF '

X '89ABCDEF '
X '89ABCDEF89ABCDEF '

STS STORE SELECTIVE
(Word index alignment)

Register Rul contains a 32-bit mask. If R is an even value,
STORE SELECTIVE stores the contents of register R into the
effective word location in those bit positions selected by a 1
in corresponding bit positions of register Ru1i the effective
word remains unchanged in those bit positions selected by a
o in corresponding bit positions of register Rul.

IfR isan odd value, STS logically inclusive ORs the contents
of register R with the effective word and stores the result
into the effective word location. The contents of register
R are not affected.

Affected: (EWL)
If R is even, [(R)n(Rul)] u [EWn(~)] - EWL
If R is odd, (R) u EW - EWL

Example 1, even R field value:

(R)
(Ru 1)
EW

Before execution

XI 123456781

XI FOFOFOFO'
xxxxxxxx

After exec uti on

XI 123456781

XI FOFOFOFO '
X'lx3x5x7x '

Load/Store 33

Example 2, odd R field value: ANALYZE/INTERPRET INSTRUC:TIONS
Before execution After execution

(R)
EW

X'OOFFOOFF'
XI 123456781

X'OOFFOOFF'
X' 12 FF56FF'

STM STORE MULTIPLE
(Word index al ignment)

STORE MULTIPLE stores the contents of a sequentia I set of
registers into a sequential set of word locations. The set of
locations begins with the location pointed to by the effective
word address of STM, and the set of registers begins with
register R. The set of registers is treated modulo 16 (i.e.,
the next sequential register after register 15 is register 0).
The number of registers to be stored is determined by the
va lue of the condition code immediate Iy before execution
of STM. (The condition code can be set to the desired val­
ue before execution of STM with LCF or LCFl.) An ini tial
value of 0000 for the condition code causes 16 general regi­
sters to be stored.

Affected: (EWL) to (EWL +CC-1)
(R) - EWL; ... , (R+CC-1) - EWL+CC-1

If the instructi on starts storing words into an accessibl e region
of the memory and then crosses into an inaccessible memory
region, either the memory protection trap or the nonexistent
memory address trap can occur. In either case, the trap is
activated with the condition code unchanged from the value
it contained before the execution of STM. The effective
address of the instruction permits the trap routine to com­
pute how many words of memory have been changed. Since
it is permissible to use indirect addressing through one of
the affected locations, or even to execute an instruction lo­
cated in one of the affected locations, a trapped STM
instruction may have al ready overwritten the di rect address,
or the STM instruction itself, thus destroying any possibil ity
of continuing the program successfully. If such programming
must be done, it isadvisablethatthedirect address, or the
STM instruction, occupy the last location in which the con­
tents of a register are to be stored by the STM instruction.

STCF STORE CONDITIONS AND FLOATING
CONTROL
(Byte index alignment)

STORE CONDITIONS AND FLOATING CONTROL stores
the current condition code and the current values of the
floating significance (FS), floating zero (FZ), and floating
norma lize (FN) mode control bits of the program status dou­
b'leword into the effective byte location as follows:

Affected: (EBL)

(PSD)0_7 - EBL

34 Anal yze/Interpret

ANlZ ANALYZE
(Word index alignment)

The ANALYZE instruction treats the effective word as a
SIGMA 7 instruction and calculates the effective virtual
address that would be generated by the instruction if the
instruction were to be executed. ANALYZE produces an
answer to the question, "What effective virtual address
would be used by the instruction located at N if it were
executed now? II The ANALYZE instruction determ ines
the addressing type of the "analyzed" instruction, calcu­
lates its effective virtual address (if the instruction is not
an immediate-operand instruction), and loads the effective
virtual address into register R as a displacement value
(the condition code settings for the ANALYZE instruction
indicate the addressing type of the analyzed instruction).

The nonexistent instruction, the privileged instruction vio­
lation, and the unimplemented instruction trap conditions
can never occur during execution of the ANLZ instruction.
However, either the nonexistent memory address condition
or the memory protection violation trap condition (or both)
can occur as a result of any memory access initiated by the
ANLZ instruction. If either of these trap conditions occur,
the instruction address stored by an XPSD in trap location
X'40 ' is always the virtual address of the ANLZ instruction.

The detailed operation of ANALYZE is as follows:

1. The contents of the location pointed to by the effective
virtual address of the ANLZ instruction is obtained. This
effective word is the instruction to be analyzed. From a
memory-protecti on viewpoint, the instruction (to be ana­
lyzed) is treated as an operand of the At-.JLZ instructionj
that is, the analyzed instruction may be obtained from
any memory area to which the program hm read access.

2a. If the operation code portion of the effective word spec­
ifies an immediate-addressing instruction type, the
condition code is set to indicate the addressing type,
and instruction execution proceeds to the next instruc!'"
tion in sequence after ANLZ. The original contents of
register R are not changed when the ancdyzed instruc­
tion is of the immediate-addressing type.

2b. If the operation code portion of the effective word spec­
ifies a reference-addressing instruction type, the condi­
tion code is set to indicate the addressing type of the
analyzed instruction and the effective Clddress of the
analyzed instruction is computed (using all of the normal
address computation rules). If bit 0 of the effective word
is a 1, the contents of the memory location specified by
bits 15-31 of the effective word are obtained and then
used as a direct address. The nonallowed operation trap
(memory protection violation or nonexistent memory
address) can occur as a result of the memory access. In­
dexing is always performed (with an index register in the
current register block (if bits 12-14 of the analyzed in­
struction are nonzero. The effective virtual address of

the analyzed instruction is aligned as an integer dis­
placement value and loaded into register R, accord­
ing to the instruction addressing type, as follows:

Byte Addressing:

Ha Ifword Addressing:

Word Addressing:

Doubleword Addressing:

Operation codes and mnemonics for the SIGMA 7 instruc­
tion set are shown in Table 5. Circled numbers in the table
indicate the condition code value (decimal) available to the
next instruction after ANALYZE when a direct-addressing
operation code in the corresponding addressing type is
analyzed.

Affected: (R), CC

Condition code settings:

2 3 4 Instruction addressing type

0 0 0 byte
0 0 1 immediate byte
0 1 0 halfword
1 0 0 word
1 0 1 immediate, word
1 1 0 doubleword

0 direct addressing (EWO = 0)
1 indirect addressing (EWO = 1)

INT INTERPRET
(Word index al ignment)

INTERPRET loads bits 0-3 of the effective word into the
condition code, loads bits 4-15 of the effective word
into bit positions 20-31 of register R (and loads O's into
the remainder of register R), and then loads bits 16-31
of the effective word into bit positions 16-31 of register
Ru 1 (and loads O's into bit positions 0-15 of register Ru 1).
If R is an odd value, INT loads bits 0-3 of the effective
word into the condition code, loads bits 16-31 of the ef­
fective word into bit positions 16-31 of register R, and

Table 5. ANALYZE Table for SIGMA 7 Operation Codes

X'n' X'OO'+n X'20'+n X'40'+n X'60'+n

00 - AI TTBS CBS
01

LCFI®
CI TBS CD MBS

02 LI - -
03 - MI - EBS

04 CALl SF ANLZ BDR
05 CAL2 5 CS BIR
06 CAL3 - XW AWM
07 CAL4 - STS EXU

08 PLW CVS EOR BCR
09 PSW CVA® OR BCS
OA PLM LM LS BAL
OB PSM STM AND INT

OC - - 510 RD
OD

LPSD @
- no WD

OE WAIT TDV AIO
OF XPSD LRP HIO MMC

10 AD AW AH LCF
11 CD CW CH CB
12 LD LW LH LB
13 MSP MTW MTH MTB

~-

14 - - - STCF
15 STD STW 5TH STB ®
16 - DW DH 0 PACK 0
17 - MW MH UNPK

18 SD SW SH DS
19 CLM CLR - DA
lA LCD Lew LCH DD
lB LAD LAW LAH DM

lC FSL FSS - DSA
lD FAL FAS - DC
lE FDL FDS - DL
IF FML FMS - DST

loads O's into bit positions 0-15 of register R (bits 4-15
of the effective word are ignored in this case).

Affected: (R),(Rul),CC

EWO_
3

- CC

EW4 _15 - R20- 31 ; 0 - RO- 19
EW 16-31 - Rul 16_31 ; 0 - Rul 0_15
Condition code settings:

1 ____ ~2~ ____ ~3 ____ ~4

EWO EWl EW2 EW3

Example 1, even R field value:

Before execution

EW X' 12345678'
(R) xxxxxxxx
(R u 1) xxxxxxxx
CC xxxx

After execution

X'12345678'
X' 00000234'
X'00005678'
0001

Anal yze/Interpret 35

FIXED-POINT ARITHMETIC INSTRUCTIONS

The following fixed-point arithmetic instructions are inc lud­
ed as a standard feature of the SIGMA 7 computer:

Instruction Name Mnemonic Page

Add Immediate AI 36
Add Ha Ifword AH 36
Add Word AW 37
Add Doubleword AD 37
Subtract Halfword SH 37
Subtract Word SW 37
Subtract Doubleword SD 38
Multiply Immediate MI 38
Multiply Halfword MH 38
Multiply Word MW 39
Divide Halfword DH 39
Divide Word DW 39
Add Word to Memory AWM 40
Modify and Test Byte MTB 40
Modify and Test Halfword MTH 40
Modify and Test Word MTW 41

The fixed-point arithmetic instruction set performs binary
addition, subtraction, multiplication, and division with in­
teger operands that may be data, addresses, index values,
or counts. One operand may be either in the instruction
word itself or may be in one or two of the current general
registers; the second operand may be either in core memory
or in one or two of the current general registers. For most
of these instructions, both operands may be in the same gen­
eral register, thus permitting the doubling, squaring, or
clearing the contents of a register by using a reference ad­
dress value equal to the R field value.

All fixed-point arithmetic instructions provide a condition
code setting that indicates the following information about
the result of the operation called for by the instruction:

Condition code settings:

2 3 4 Resu It

o 0 zero - The result in the specified general
register(s} is a II zeros.

o negative - The instruction has produced a
fixed-point negative result.

o positive - The instruction has produced a
fixed-point positive resu It.

o fixed-point overflow has not occurred dur­
ing execution of an add, subtract, or
divide instruction, and the result is
correct.

fixed-point overflow has occurred during
execution of an add, subtract, or divide
instruction. For addition and subtrac­
tion, the incorrect result is loaded into
the designated register(s}. For a divide
instruction, the designated register(s},
and CC1, CC3, and CC4 are not af­
fected.

36 Fixed -point Arithmetic

2 3 4

o

Resu It

no carry - For an add or subtract instruc­
tion, there was no carry of a 1-bit out of
the high-order (sign) bit position of the
result

carry - For on add or subl-ract instruction,
there was a 1-bit carry out of the sign bit
position of the result.

AI ADD IMMEDIATE
(Immediate operand)

The value field (bit positions 12-31 of the instruction word)
is treated as a 20-bit, two's complement integer. ADD
IMMEDIATE extends the sign of the value field (bit position
12 of the instruction word) 12 bit positions to the I eft, adds
the resulting 32-bit value to the contents of register R, and
loads the sum into register R.

Affected: (R), CC Trap: Fixed-·point overflow

(R) + (1)12-31 SE -- R

Condition code settings:

o
1

2

o

3 4

o 0
o 1
1 0

Result in R

zero
negative
positive
no fixed-point overflow
fixed-poi nt overflow
no carry from bit position 0
carry from bit position 0

If AI is indirectly addressed, it is treated as a nonexistent
instruction, in whi ch case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to location X'40' with the contents
of register R and the condition code unchanged.

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43' after
loading the sum into register Ri otherwise, the computer
executes the next instruction in sequence.

AH ADD HALFWORD
(Halfword index alignment)

ADD HALFWORD extends the sign of the effective halfword
16 bit positions to the left (to form a 32-bH word in which
bit positions 0-15 contain the sign of the eHective halfword),
adds the 32-bit result to the contents of re9ister R, and loads
the sum into register R.

Affected: (R), CC

(R) + EHSE - R

Trap: Fixed-point overflow

Condition code settings:

a
1

2

a
1

3 4 Result in R

a
a
1

a zero
1 negative
a positive

no fixed-point overflow
fixed-point overflow
no carry from bit position a
carry from bit position a

If CC2 is set to 1 and the fixed-point arithmetic trap mask
is 1, the computer traps to location X'43 1 after loading the
sum into regi ster R; otherwise, the computer executes the
next instruction in sequence.

AW ADD WORD
(Word index al ignment)

ADD WORD adds the effective word to the contents of reg­
ister R and loads the sum into register R.

Affected: (R), CC
(R) + EW- R

Trap: Fixed-point overflow

Condition code settings:

a
1

2

a
1

3 4

a a
a 1
1 a

Resul t in R

zero
negative
positive
no fixed-poi nt overflow
fixed-point overflow
no carry from bit position a
carry from bit position a

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X '431 after
loading the sum into register R; otherwise, the computer
executes the next instruction in sequence.

AD ADD DOUBLEWORD
(Doubleword index alignment)

ADD DOUBLEWORD adds the effective doubleword to the
contents of registers Rand Rul (treated as a single, 64-bit
register); loads the 32 low-order bits of the sum into reg­
ister Rul and then loads the 32 high-order bits of the sum
into register R. R must be an even value; if R is an odd
value, the result in register R is unpredictable.

Affected: (R), (Ru 1), CC
(R, Rul) + ED- R, Rul

Condition code settings:

Trap: Fixed-point overflow

2 3 4 Result in R, Rul

a a
a 1

zero
negative

a
1

2

a
1

3 4 Result in R, Rul

a positive
no fixed-point overflow
fixed-point overflow
no carry from bit position a
carry from bit position a

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X '43 1 after
loading the sum into registers Rand Rul; otherwise, the
computer executes the next instruction in sequence.

Example 1, even R field value:

ED
(R)
(Ru 1)
CC

Before execution

X'33333333EEEEEEEE '
X' llllllll i

X '333333331

xxxx

After execution

X'33333333EEEEEEEE '
X 144444445 1

X 1222222211
0010

SH SUBTRACT HALFWORD
(Halfword index alignment)

SUBTRACT HALFWORD extends the sign of the effective
halfword 16 bit positions to the left (to form a 32-bit word
in which bit positions 0-15 contain the sign of the effec­
tive halfword), forms the two1s complement of the resulting
word, adds the compl emented word to the contents of reg­
ister R, and loads the sum into register R.

Affected: (R), CC Trap: Fixed-point overflow
-EH + (R)-R

SE

Condition code settings:

a
1

234

a
1

a a
a 1
1 a

Resul t in R

zero
negative
positive
no fixed-point overflow
fixed-point overflow
no carry from bit position a
carry from bit position a

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43 1 after
loading the sum into register R; otherwise, the computer
executes the next instruction in sequence.

SW SUBTRACT WORD
(Word index al ignment)

SUBTRACT WORD forms the two1s compl ement of the effec­
ti ve word, adds that compl ement to the contents of regi ster
R, and loads the sum into regi ster R.

Affected: (R), CC
-EW + (R)-- R

Trap: Fixed-point overflow

Fixed-point Arithmetic 37

Condition code settings:

2 3 4 Result in R

o 0 zero
o 1 negative
1 0 positive

o no fixed-point overflow
1 fixed-poi nt overflow

o no carry from bit position 0
1 carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X '431 after
loading the sum into register R; otherwise, the computer
executes the next instruction in sequence.

I SO SUBTRACT DOUBLEWORD
(Doubleword index al ignment)

SUBTRACT DOUBLEWORD forms the 64-bit twols comple­
ment of the effective doubleword, adds the complemented
doubleword to the contents of registers Rand Ru 1 (treated
as a single, 64-bit register), loads the 32 low-order bits
of the sum into register Ru1 and loads the 32 high-or.der bits
of the sum into register R. R must be an even va lue; if R is
an odd value, the result in register R is unpredictable.

Affected: (R),(Ru1),CC
-ED + (R, Rul)- R, Ru1

Trap: Fixed-point overflow

Condition code settings:

o
1

2

o
1

3 4

o 0
o 1
1 0

Result in R, Ru1

zero
negative
positive
no fixed-point overflow
fixed-point overflow
no carry from bit position 0
carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X 1431 after the
result is loaded into registers Rand Ru1; otherwise, the com­
puter executes the next instruction in sequence.

MI MULTIPLY IMMEDIATE
(Immediate operand)

The value field (bit positions 12-31 of the instructions word)
is treated as a 20-bit, twols complement integer. MULTI­
PLY IMMEDIATE extends the sign of the value field (bit
position 12) of the instruction word 12 bit positions to the
left and multiplies the resulting 32-bit value by the con­
tents of register Ru1, then loads the 32 high-order bits of
the product into register R, and then loads the 32 low-
order bits of the product into register Ru 1.

38 Fixed-poi nt Arithmetic

If R is an odd value, the result in register R is the 32 low­
order bits of the product. Thus, in order to generate a 64-
bit product, the R field of the instruction must be even and
the multiplicand must be in register R+1. The conditioncode
settings are based on the 64-bit product formed during in­
structi on exec uti on, rather than on the final contents of
register R. Overflow cannot occur.

Affected: (R), (Ru1), CC2, CC3, CC4

(Ru1) x (I)12-31SE -R,Ru1

Condition code settings:

2 3 4 64-bit product

o 0 zero

o negative

o positive

o result is correct, as represented in reg­
ister Ru1

resu I tis not correctl y representab lei n
register Ru 1 alone

If MI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of opercl­
tion code decoding) and traps to location X 1401 with the
contents of register R, register Ru1, and the condition code
unchanged; otherwise, the computer executes the next i n­
struction in sequence.

Example 1, even R field value:

Before execution

(1)12-31 = X?OOOOI

(R) xxxxxxxx

(Ru 1) X 1100010001

CC = xxxx

Example 2, odd R field value:

(1)12-31= X
1
01234

1

(R) X 1000300021

CC xxxx

After execution

X?OOOOI

X 1000070001

X?OOOOOOOI

x110

X '01234 1

X '369C2468 1

x010

MH MULTIPLY HALFWORD
(Halfword index alignment)

MULTIPLY HALFWORD multiplies the contents of bit posi­
tions 16-31 of register R by th.e effective halfword (with
both halfwords treated as signed, twols complement inte­
gers) and stores the product in register Ru1 (overflow can­
not occur). If R is an even value, the original multiplier
in register R is preserved, allowi ng repetitive halfword
multiplication with a constant multiplier; however, if R is

an odd value, the product is loaded into the same register.
Overflow cannot occur.

Affected: (Ru 1), CC3, CC4

(R)16-31 x EH - Rul

Condition code settings:

2 3 4 Result in Rul

0 0 zero
0 1 negative
1 0 positive

Example 1, even R field value:

Before execution

EH X'FFFF '
(R) X 'xxxxOOOA I
(R u 1) xxxxxxxx
CC xxxx

Example 2, odd R field value:

EH X'FFFF '
(R) X 'xxxxOOOA I
CC xxxx

MW MULTIPLY WORD
(Word index alignment)

After execution

X'FFFF '
X I xxxxOOOA I
X 'FFFFFFF6 1

xxOl

X'FFFF '
X ' FFFFFFF6 1

xxOl

MULTIPLY WORD multipl ies the contents of register Ru 1 by
the effective word, loads the 32 high-order bits of the prod­
uct into register R and then loads the 32 low-order bits of
the product into register Ru1 (overflow cannot occur).

If R is an odd value, the result in register R is the 32 low­
order bits of the product. Thus, in order to generate a 64-
bit product, the R field of the instruction must be even and
the multiplicand must be in register R+1. The condition
code settings are based on the 64-bit product formed dur­
ing instruction execution, rather than on the final contents
of regi ster R.

Affected: (R), (Ru 1), CC
(Rul) x EW - R, Rul

Condition code settings:

2 3 4 64-bit product

o

o o zero

o negative

o positive

resu I tis correct, as represented in reg­
ister Ru 1

result is not correctly representable in
register Rul alone

DH DIVIDE HALFWORD
(Halfword index alignment)

DIVIDE HALFWORD divides the contents of register R (treat­
ed as a 32-bit fixed-point integer) by the effective halfword
and loads the quoti ent into regi ster R. If the absol ute val ue
of the quotient cannot be correctly represented in 32 bits,
fixed-point overflow occurs; in which case CC2 is set to 1
and the contents of register R, and CC1, CC3, and CC4
are unchanged.

Affected: (R), CC2, CC3,
CC4

Trap: Fixed-point overflow

(R)7 EH - R

Condition code settings:

2 3 4 Result in R

0 0 0 zero quotient, no overflow
0 0 1 negati ve quoti ent, no overflow
0 1 0 positive quotient, no overflow
1 fi xed - po i nt overf low

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43 1 with the
contents of register R, CC1, CC3, and CC4 unchanged.

ow DIVIDE WORD
(Word index alignment)

DIVIDE WORD divides the contents of registers Rand Rul
(treated as a 64-bit fixed-point integer) by the effective
word, loads the integer remainder into register R and then
loads the integer quotient into register Ru1. If a nonzero
remai nder occurs, the remai nder has the same sign as the
dividend (original contents of register R). If R is an odd
value, DW forms a 64-bit register operand by extending
the sign of the contents of register R 32 bit positions to the
left, then divides the 64-bit register operand by the effec­
tive word, and loads the quotient into register R. In this
case, the remainder is lost and only the contents of register
R are affected.

If the absolute value of the quotient cannot be correctly
represented in 32 bits, fixed-point overflow occurs; in
which case, CC2 is set to 1 and the contents of register R,
register Ru 1, CC1, CC3, and CC4 remai n unchanged; other­
wise, CC2 is reset to 0, CC3 and CC4 reflect the quotient
in register Rul, and CCl is unchanged.

Affected: (R), (Rul), CC2 Trap: Fixed-point overflow
CC3, CC4

(R, Ru1) 7 EW - R (remainder), Ru1 (quotient)

Condition code settings:

234

000
o 0

Result in Rul

zero quotient, no overflow
negative quotient, no overflow

Fixed-poi nt Arithmetic 39

Condition code settings:

2

o
1

3 4 Result in Rul

o positive quotient, no overflow
fixed-point overflow

If CC2 is set to 1 and the fixed-poi nt arithmetic trap mask
(AM) is a 1, the computer traps to location X I 43 1 with the
original contents of register R, register Rul, CC1, CC3, and
CC4 unchanged; otherwise, the computer executes the next
instruction in sequence.

AWM ADD WORD TO MEMORY
(Word index alignment)

ADD WORD TO MEMORY adds the contents of register R to
the effective word and stores the sum in the effective word
location. The sum is stored regardless of whether or not ov­
erflow occurs.

Affected: (EWL), CC
EW + (R)-- EWL

Condition code settings:

Trap: Fixed-point overflow

2 3 4 Result in EWL

o 0 zero
o 1 negative

o positive
o no fixed-point overflow
1 fixed-point overflow

o no carry from bit position 0
carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X 1431 after the
result is stored in the effective word location; otherwise,
the computer executes the next instruction in sequence.

MTS MODIFY AND TEST BYTE
(Byte index alignment)

If the value of the R field is nonzero, the high-order bit of
the R field (bit position 8 of the instruction word) is extend­
ed 4 bit positions to the left, to form a byte with bit posi­
tions 0-4 of that byte equal to the high-order bit of the R
field. This byte is added to the effective byte and then
(if no memory protection violation occurs) the sum is stored
in the effective byte location and the condition code is set
according to the value of the resultant byte. This process
allows modification of a byte by any number in the range
-8 through +7, followed by a test.

If the value of the R field is zero, the effective byte is
tested for being a zero or nonzero value. The condition
code is set according to the result of the test, but the
effective byte is not affected. A memory write-protection

40 Fixed-point Arithmetic

violation cannot occur in this case; however, a memory
read-protection violation can occur.

Affected: CC if (I)8-11 = 0;

(EBL) and CC if (1)8-11 I- 0

If (1)8-11 -I 0, EB + (1)8-11 SE-- EBL and set CC

If (1)8-11 = 0, test byte and set CC

Condition code settings:

2 3 4 Result in EBL

0 0 0 zero
0 1 0 nonzero

0 no carry from byte
1 carry from byte

If MTB is executed in an interrupt location, the condition
code is not affected (see Chapter 2, IISingle-Instruction
Interruptsll) .

MTH MODIFY AND TEST HALFWORD
(Halfword index alignment)

If the value of the R field is nonzero, the high-order bit of
the R field (bit position 8 of the instruction word) is extended
12 bit positions to the left, to form a halfword with bit posi­
tions 0-11 of that halfword equal to the high-order bit of I' he
R field. This halfword is added to the effective halfword and
then (if no memory protection violation occurs) the sum is
stored in the effective halfword location and the condition
code is set according to the value of the resultant halfword.
The sum is stored regard I ess of whether or not overflow oc­
curs. This process allows mo~ification of a halfword by any
number in the range -8 through +7, followed by a test.

If the value of the R field is zero, the effecl'ive halfword is
tested for being a zero, negative, or positive value. The
condition code is set, according to the resu I t of the test,
but the. effective hal fword is not affected. A memory write­
protection violation cannot occur in this casei however, a
memory read-protection violation can occur.

Affected: CC if (1)8-11 = 0; Trap: Fixed-point overflow

(EHL) and CC if (1)8-11 -10

If (1)8-11 = 0, test halfword and set CC

If (1)8-11 -I 0, EH + (1)8-11 SE - EHL and set CC

Condi ti on code setti ngs:

o
1

2

o
1

3 4

o 0
o 1

o

Result in EHL

zero
negative
positive
no fixed-point overflow
fixed-poi nt overflow
no carry from hal fword
carry from hal fword

If CC2 is set to 1 and the fixed-point arithmetic trap
mask (AM) is a 1, the computer traps to location X'43 1

after the result is stored in the effective halfword loca­
tion; otherwise, the computer executes the next instruc­
tion in sequence. However, if MTH is executed in an
interrupt location, the condition code is not affected
and no fixed-point overflow trap can occur (see "Single­
Instruction Interrupts").

IMTW MODIFY AND TEST WORD
(Word index alignment)

If the value of the R field is nonzero, the high-order
bit of the R field (bit position 8 of the instruction
word) is extended 28 bit positions to the left, to form
a word with bit positions 0-27 of that word equal to
the high-order bit of the R field. This word is added
to the effective word and then (if no memory protec­
tion violation occurs) the sum is stored in the effective
word location and the condition code is set according
to the value of the resultant word. The sum is stored
regardless of whether or not overflow occurs. This
process allows modification of a word by any number
in the range -8 through +7, followed by a test.

If the value of the R field is zero, the effective word
is tested for being a zero, negative, or positive value.
The condition code is set according to the result of the
test, but the effective word is not affected. A memory
write-protection violation cannot occur in this case;
however, a memory read-protection violation can occur.

Affected: CC if (1)8-11 = 0; Trap: Fixed-point overflow

(EWl) and CC if (1)8-11 f 0

If (1)8-11 = 0, test word and set CC

If (1)8-11 f 0, EW + 18- 11 SE -EWl and set CC

Condition code settings:

o
1

2

o
1

3 4

o 0
o 1
1 0

Result in EWl

zero
negative
positive
no fixed-point overflow
fixed-point overflow
no carry from word
carry from word

If CC2 is set to 1 and the fixed-point arithmetic trap
mask (AM) is a 1, the computer traps to location X'431

after the result is stored in the effective word location;
otherwise, the computer executes the next instruction
in sequence. However, if MTW is executed in an
interrupt location, the condition code is not affected
and no fixed-point overflow trap can occur (see "Single­
Instruction Interrupts").

COMPARISON INSTRUCTIONS

The following comparison instructions are avai lable to
SIGMA 7 computers:

Instruction Name

Compare Immediate
Compare Byte
Compare Halfword
Compare Word
Compare Doubleword
Compare Selective
Compare With Limits in Register
Compare With limits in Memory

Mnemonic

CI
CB
CH
CW
CD
CS
ClR
ClM

Page

41
41
42
42
42
42
43
43

All SIGMA 7 comparison instructions produce a condition
code setting which is indicative of the results of the com­
parison, without affecting the effective operand in memory
and without affecting the contents of the designated register.

CI COMPARE IMMEDIATE
(Immediate operand)

COMPARE IMMEDIATE extends the sign of the value field
(bit position 12) of the instruction word 12 bit positions to
the left, compares the 32-bit result with the contents of reg­
ister R (with both operands treated as signed fixed-point
quantities), and then sets the condition code accordi ng to
the results of the comparison.

Affected: CC2, CC3, CC4

(R) : (1)12-31 SE

Condition code settings:

2 3 4

o 0

Result of Comparison

equal

o register value less than immediate value

o register value greater than immediate
value

o no 1-bits compare, (R) n (I)12-32SE = 0

one or more 1-bits compare,

(R) n (I)12-32SE f 0

If CI is indirectl y addressed, it is treated as a nonexistent
instruction, in whi ch case the computer unconditional I y
aborts execution of the instruction (at the time of operation
code decoding) and then traps to location X 1401 with the
condition code unchanged.

CB COMPARE BYTE
(Byte index al ignment)

COMPARE BYTE compares the contents of bit positions
24-31 of register R with the effective byte (with both bytes

Compari son 41

treated as positive integer magnitudes) and sets the condi­
tion code according to the results of the comparison.

Affected: CC2, CC3, CC4

(R)24-31 : EB

Condition code settings:

CH

2 3 4 Result of Comparison

o

o
o

o
1

o

equal

register byte less than effective byte

register byte greater than effective byte

no l-bits compare, (R)24-31 n EB = 0

oneormore l-bitscompare,
(R)24-31 n EB I' 0

COMPARE HALFWORD
(Halfword index alignment)

COMPARE HALFWORD extends the sign of the effective hal f­
word 16 bit positions to the left, then compares the resultant
32-bit word with the contents of register R (with both words
treated as signed, fixed-point quantities) and sets the condi­
tion code according to the results of the comparison.

Affected: CC2, CC3, CC4
(R) : EHSE

Condition code settings:

2 3 4 Result of Comparison

o

o 0 equal

o register word less than effective half­
word with sign extended

o regi ster word greater than effecti ve
halfword with sign exter.ded

no l-bits compare, (R) n EHSE = 0

one or more 1-bits compare,

(R) n EHSE I' 0

CW COMPARE WORD
(Word index alignment)

COMPARE WORD compares the contents of register R with
the effective word, with both words treated as signed fixed­
point quantities, and sets the condition code according to
the results of the comparison.

Affected: CC2, CC3, CC4
(R) : EW

Condition code settings:

2 3 4 Result of Comparison

o 0 equal
o 1 register word less than effective word

42 Compari son

,_--=2=-------""3 __ 4...!- Result of Comparison

CD

C) 1 2

o
1

o register word greater than effective word
no l-bits compare, (R) n EW = 0
one or more 1-bits compare, (R) n EWI'O

COMPARE DOUBLEWORD
(Doubleword index alignment)

11 I R I X I: Referenc~ address I
314 5 6 78 9 1011121314151617181912021222:324252627128293031

COMPARE DOUBLEWORD compares the effective double­
word with the contents of registers Rand Ru'l (with both
doublewords treated as signed, fixed-point quantities) and
sets the condition code accordi ng to the resul ts of the com­
parison. If the R field of CD is an odd value, CD forms a
64-bit register operand (by duplicating the contents of reg­
ister R for both the 32 high-order bits and the 32 low-order
bits) and compares the effective doubleword with the 64-bit
register operand. The condition code settings are based on
the 64-bit comparison.

Affected: CC3, CC4
(R, Ru 1) : ED

Condition code settings:

2

CS

3 4 Result of Comparison

0 0 equal

0 register doubleword less than effective
doubleword

0 register doubleword greater than effective
doubleword

COMPARE SELECTIVE
(Word index alignment)

COMPARE SELECTIVE compares the contents of register R
wi th the effective word in only those bi t posi tions selected by
a 1 incorrespondingbitpositionsofregisterRul (mask). The
contents of register R and the effective word are ignored in
those bi t posi tions desi gnated by a 0 in corresponding bi t po­
sitionsofregisterRul. The selected contents of register R
and the effective word are treated as positive integer mag­
nitudes, and the condition code is set according to the re­
sult of the comparison. If the R field of CS is an odd value,
CS compares the contents of register R with the logical prod­
uct (AND) of the effective word and the contents ofregi ster R.

Affected: CC3, CC4
If R is even: (R) n(Rul): EW n(Rul)
If R is odd: (R) : EW n(R)

Condition code settings:

2 3 4

o 0
o 1
1 0

Results of Comparison under Mask in Rul

equal
register word less than effective word
register word greater than effective word
(if R is even)

ClR COMPARE WITH LIMITS IN REGISTERS
(Word index alignment)

COMPARE WITH LIMITS IN REGISTERS simultaneously com­
pares the effective word with the contents of register Rand
with the contents of regi ster Ru 1 (with all three words treat­
ed as signed fixed-point quantities), and sets the condition
code according to the results of the comparisons.

Affected: CC
(R) : EW, (Ru 1) : EW

Condition code settings:

2 3 4 Result of Comparison

o 0 contents of R equal to effective word
o 1 contents of R less than effective word
1 0 contents of R greater than effective word

o 0 contents of Ru 1 equal to effective word
o 1 contents of Ru 1 I ess than effective word

ClM

o contents of Ru 1 greater than effective word

COMPARE WITH LIMITS IN MEMORY
(Doubleword index alignment)

COMPARE WITH LIMITS IN MEMORY simultaneously com­
pares the contents of register R with the 32 high-order bits
of the effective doubleword and with the 32 low-order bits
of the effective doubleword, with all three words treated
as 32-bit signed quantities, and sets the condition code
according to the results of the comparisons.

Affected: CC
(R) : ED O_31 ; (R) : ED

32
-

63

Condition code setti ngs:

2 3 4 Result of Comearison

0 0 contents of R equal to most significant

word, (R) = ED 0-31

0 contents of R less than most significant
word, (R) < ED

O
_

31

0 contents of R greater than most signifi-
cant word, (R) > ED

O
_

31

0 0 contents of R equal to least significant

word, (R) = ED 32-63

0 contents of R less than least significant

word, (R) < ED 32-63

0 contents of R greater than least signifi-

cant word, (R) > ED 32-63

lOGICAL INSTRUCTIONS

All logical operations are performed bit by corresponding
bit between two operands; one operand is in re.gister Rand
the other operand is the effective word. The result of the
logical operation is loaded into register R.

OR OR WORD
(Word index alignment)

OR WORD logically ORs the effective word into register R.
If corresponding bits of register R and the effective word are
both 0, a 0 remains in register R; otherwise, a 1 is placed in
the corresponding bit position of register R. The effective
word is not affected.

Affected: (R), CC3, CC4
(R) u EW-R, where OuO =0, Ou 1 =1,1 uO=l, 1 u 1 =1

Condition code settings:

2 3 4 Resul t in R

o 0 zero

o bit 0 of register R is a 1

Obit 0 of register R is a 0 and bit positions
1-31 of register R contain at least one 1

EOR EXCLUSIVE OR WORD
(Word index alignment)

EXCLUSIVE OR WORD logically exclusive ORs the effective
word into register R. If corresponding bits of register Rand
th e effecti ve word are di fferent, ali s pi aced in the corre­
sponding bit position of register R; if the contents of the
corresponding bit positions are alike, a 0 is placed in the
corresponding bit position of register R. The effective word
is not affected.

Affected: (R), CC3, CC4
(R)@EW-- R, where O@O = 0, 0@1 = 1,

1 @O = 1, 1 @1 = 0

Condition code settings:

2 3 4 Result in R

o 0 zero

o bit 0 of register R is a 1

Obit 0 of register R is a 0 and bit positions
1-31 of register R contain at least one 1

AND AND WORD
(Word index alignment)

AND WORD logically ANDs the effective word into register
R. If corresponding bits of register R and the effective word

Comparison/Logical 43

are both 1, a 1 remains in register R; otherwise, a 0 is
placed in the corresponding bit position of register R. The
effective word is not affected.

Affected: (R), CC3, CC4
(R) n EW -- R, where 0 n 0 = 0, 0 n 1 = 0,

1 n 0 = 0, 1 n 1 = 1

Condition code settings:

2 3 4 Resu I tin R

a a zero

a bit 0 of register R is a 1

a bit 0 of register R is a a and bit positions
1-31 of reg i ster R conta i n at I east one 1

SHIFT INSTRUCTIONS

The instruction format for logical, circular, and arithmetic
shift operations is:

5 SHIFT
(Word index al ignment)

25
o 1 2

If neither indirect addressing nor indexing is called for in
the instruction SHIFT, bit positions 21-23 of the reference
address field determine the type, and bit positions 25-31
determine the direction and amount of the shift. Ifonly in­
direct addressing is called for in the instruction, bits 15-31
of the instruction are used to access the indirect word and
then bits 21-31 of the indirect word determine the type,
direction, and amount of the shift. If only indexing is
called for in the instruction, bits 21-23 of the instruction
word determine the type of shift; the direction and amount
of shift are determined by bits 25-31 of the instruction plus
bits 25-31 of the specified index register. If both indirect
addressing and indexing are called for in the instruction,
bits 15-31 of the instruction are used to access the indirect
word and then bits 21-23 of the indirect word determine the
type of shift; the direction and amount of the shiftare deter­
mined by bits 25-31 of the indirect word plus bits 25-31 of
the specified index register.-

Bit positions 15-20 and 24 of the effective virtual address
are ignored. Bit positions 21, 22 and 23 of the effective
virtual address determine the type of shift, as follows:

21 22 23 Shift Type

a 0 a Logical, single register
a a 1 Logical, double register
a 1 a Circular, single register
a 1 1 Circular, double register
1 0 0 Arithmetic, single register
1 a 1 Ari thmeti c, doubl e regi ster
1 1 a Undefined
1 1 1 Undefined

Bit positions25 through 31 of the effective virtual address are
a shift count that determ ines the direction and amount of the
shift. The shift count (C) is treated asa 7-bit signed binary

44 Shift

integer, with the high-order bit (bit position 25) as the sign
(negative integers are represented in two's complement form).
A positive shift count causes a left shift of C bit positions.
A negative shift count causes a right shift of I C I bit posi­
tions. The value of C is within the range: -64 ::s C ::s +63.

All double-register sh ift operations require an even value for
the R field of the instruction, and treat registers Rand Ru1
as a 64-bit register with the high-order bit (bit position Oof
register R) as the sign for the entire register. If the R field
of SHIFT is an odd value and a double-register shift opera­
tion is specified, a register doubleword is formed by dupli­
cating the contents of register R for both the 32 high-order
bits and the 32 low-order bits of the doubleword. The shift
operation is then performed and the 32 high-order bits ofthe
result are loaded into register R.

Overflow occurs (on left shifts only) whenever the value of
the sign bit (bit position a of register R) changes. At the
completion of logical left, circular left, and arithmetic left
shifts, the condition code is set as follows:

2 3 4 Result of Shift

a

a

even number of l's shifted off left end of
register R

odd number of l's sh i fted off I eft end of
register R

no overflow on left shift

overflow on left shift

At the completion of logical right, circular right, and arith­
metic right shifts, the condition code is set as follows:

2 3 4

o a

Logical Shift, Single Register

If the shift count, C, is positive, the contents of register R
are shifted left C places, with a's copied into vacated bit
positions on the right. (Bits shifted past RO ore lost.) If C
is negative, the contents of register Rare sh ifted right IC I
places, with a's copied into vacated bit positions on the
left. (Bits shifted past R31 are lost.)

Affected: (R), CC1, CC2

Logical Shift, Double Register

If the sh ift count, C, is positive, the contents of registers
Rand Rul are shifted left C places, with O's copied into
vacated bit positions on the right. Bits shifted past bit posi­
tion a of register Ru1 are copied into bit position 31 of reg­
ister R. (Bits sh ifted past RO are lost.) If C is negative, the
contents of registers Rand Rul are shifted right IC I places,

with O's copied into vacated bit positions on the left. Bits
shifted past bit position 31 of register R are copied into bit
position 0 of register Rul. (Bits shifted past Ru1 3 1 are lost.)

Affected: (R), (Rul), CC1, CC2

Circular Shift, Single Register

If the shift count, C, is positive, the contents of register R
are shifted left C places. Bits shifted past bit position 0
are copied into bit position 31. (No bits are lost.) If C
is negative, the contents of register R are shifted right ICI
places. Bits shifted past bit position 31 are copied into
bit position O. (No bits are lost.)

Affected: (R),CC1,CC2

Circular Shift, Double Register

If the shift count, C, is positive, the contents of registers
Rand Rul are shifted left C places. Bits shifted past bit
position 0 of register R are copied into bit position 31 of
register Ru1. (No bits are lost.) If C is negative, the
contents of registers Rand Rul are shifted right Ici places.
Bits shifted past bit position 31 of register Rul are copied
into bit position 0 of register R. (No bits are lost.)

Affected: (R), (Ru 1), cc 1, CC2

Arithmetic Shift, Single Register

If the shift count, C, is positive, the contents of register
R are shifted left C places, with O's copied into vacated
bit positions on the right. (Bits shifted past RO are lost.)
If C is negative, the contents of register R are shifted right
Ic I places, with the contents of bit position 0 copied into
vacated bit positions on the left. (Bits shifted past R31 are
lost.)

Affected: (R), CC1, CC2

Arithmetic Shift, Double Register

If the shift count, C, is positive, the contents of registers
Rand Rul are shifted left C places, with O's copied into
vacated bit positions on the.right. Bits shifted past bit
position 0 of register Rul are copied into bit position 31
of register R. (Bits shifted past RO are lost.) If C is nega­
tive, the contents of registers Rand Rul areshiftedright\CI
places, with the contents of bit position 0 of register R
copied into vacated bit positions on the left. Bits shifted
past bit position 31 of register R are copied into bit posi­
tion 0 of register Ru 1. (Bits shifted past Ru 131 are lost.)

Affected: (R), (Ru 1), CC 1, CC2

FLOATING-POINT SHI FT

Floating-point numbers are defined on page 47. The for­
mat for the floating-point shift instruction is:

SF SHIFT FLOATING
(Word index a I ignment)

If indirect addressing or indexing is call ed for in the in­
struction word, the effective virtual address is computed
as for the instruction SHIFT (see page 44) except that bit
position 23 of the effective virtual address determ ines the
type of shift. If bit 23 is a 0, the contents of register R
are treated as a short-format floating-point number; if bit
23 is a 1, the contents of registers Rand Ru 1 are treated
as a long-format floating-point number.

The shift count, C, in bit positions 25 through 31 of the
effective virtual address determines the amount and direc­
tion of the shift. The shift count is treated as a 7-bit
signed binary integer, with the high-order bit (bit position
25) as the sign (negative integers are represented in two's
compl ement form).

The absolute value of the shift count determines the number
of hexadecimal digit positions the floating-point number is
to be shifted. If the shift count is positive, the f1oating­
point number is shifted left; if the count is negative, the
number is shifted right.

SHIFT FLOATING loads the floating-point number from the
register(s) specified by the R field of the instruction into a
set of internal registers. If the number is negative, it is
two's complemented. A record of the original sign is re­
tained. The floating-point number is then separated into
a characteristic and a fraction, and CCl and CC2 are both
reset to O's.

A positive shift count produces the following left shift op­
erations:

1. If the fraction is normalized (i.e., is less than 1 and is
equal to or greater than 1/16), or the fraction is all
O's, CCl is set to 1.

2. If the fraction field is all O's, the entire floating-point
number is set to all O's (true zero), regardless of the
sign and the characteristic of the original number.

3. If the fraction is not normalized, the fraction field is
shifted 1 hexadecimal digit position (4 bit positions) to
the I eft and the characteri stic field is decremented by
1. Vacated digit positions at the right of the fraction
are filled with hexadecimal O,'s.

If the characteristic field underflows (i.e., is all l's
as the resul t of being decremented), CC2 is set to 1.
However, if the characteristic field does not under­
flow, the shift process (shift fraction, and decrement
characteristic) continues until the fraction is normal­
ized, until the characteristic field underflows, or
until the fraction is shifted left C hexadecimal digit

Shift 45

positions, whichever occurs first. (Any two, or all
three, of the terminating conditions can occur
simultaneously.)

4. At the completion of the left shift operation, the floating­
point result is loaded back into the general register{s).
If the number was originally negative, the two's com­
plement of the resultant number is loaded into the gen­
eral register{s).

5 The condition code settings following a floating-point
left shift are as follows:

2

o 0

3

o
o

4

o

o

Result

true zero (all O's)

negative

positive

C digits shifted (fraction unnormal­
ized, no characteristic underflow)

fraction normalized (includes true
zero)

characteristic underflow

A negative shift count produces the following right shift op­
erations (again assuming that negative numbers are two's
complemented before and after the shift operation):

1. The fraction field is shifted 1 hexadecimal digit posi­
tion to the right and the characteristic field is incre­
mented by 1. Vacated di git positions at the I eft are
fi lied with hexadecimal O's.

2.

3.

4.

5.

If the characteristic field overflows (i.e., is all O's as
the result of being incremented), CC2 is set to 1. How­
ever, if the characteristic field does not overflow, the
shift process (shift fraction, and increment character­
istic) continues until the characteristic field overflows
or until the fraction is shifted right Ici hexadecimal
digit positions, whichever occurs first. (Both termin­
ating conditions can occur simultaneously.)

If the resultant fraction field is all O's, the entire
floating-point number is set to all O's (true zero), re­
gardless of the sign and the characteristic of the origi­
nal number.

At the compl etion of the right shift operation, the
floating-point result is loaded back into the general
register{s). If the number was originally negative, the
two's complement of the resultant number is loaded in­
to the general register{s}.

The condition code settings following a floating-point
right shift are as follows:

2

o 0

o

3 4

o 0

o

Result

true zero (all zeros)

negative

o positive

Ic I digits shifted (no characteristic
overflow)

characteristic overflow

46 Shift/Conversion

Floating Shift, Single Register

The short-format floating-point number in re9ister R is shifted
according to the rules established above for floating-point
shift operations.

Affected: (R), cc

Floating Shift, Double Register

o 1 2

The long-format floating-point number in re~listers Rand Ru1
is shifted according to the rules established clbove for floating­
point shift operations. (If the R field of the instruction word
is an odd value, a long-format floating-point number is gen­
erated by duplicating the contents of register R, and the 32
high-order bits of the result are loaded into register R.)

Affected: (R), (Ru 1), CC

CONVERSION INSTRUCTIONS

The following two conversion instructions are provided by the
51 GMA 7 computer:

Instruction Name

Convert by Addition
Convert by Subtracti on

Mnemonic

CVA
CV5

Page

46
47

These two conversion instructions can be used to accomplish
bidirectional translation between binary code and any other
weighted binary code, such as BCD.

The effective addresses of the instructions CONVERT BY
ADDITION and CONVERT BY SUBTRACTION each point
to the starting location of a conversion table of 32 words,
containing weighted values for each bit position of register
Ru1. The 32 words of the conversion table are considered to
be 32-bit positive quantities, and are referred to as conver­
sion values. The intermediate results of these instructions
are accumulated in internal CPU registers unti I the instruc­
tion is completed; the result is then loaded into the appro­
priate general register. Both instructions use a counter (n)
that is set to 0 at the beginning of the instruction execution
and is incremented by 1 with each iteration, until a total of
32 iterations have been performed.

If an interrupt or memory protection violation trap occurs during
the execution of either instruction, the instruction sequence is
aborted (without having changed the contents of register R or
Ru 1) and restarted (at the beginning of the instruction sequence)
after the interrupt or trap routine is processed.

eVA CONVERT BY ADDITION
<:Nord index al ignment)

CONVERT BY ADDITION initially clears the internal A reg­
ister and sets an i nterna I counter {n} to O. If bit position n

of regi ster Ru 1 conta i ns a 1, CVA adds the nth conversi on
value (contents of the word location pointed to by the ef­
fective address plus n) to the contents of the A register,
accumulates the sum in the A register, and increments n
by 1. If bit position n of register Rul contains a 0, CVA
only increments n. If n is less than 32 after being incre­
mented, the next bit position of register Rul is examined,
and the addition process continues through n equal to 31;
the result is then loaded into register R. If, on any itera­
tion, the sum has exceeded the value 232 -1, CCl is set to
1; otherwi se, CC 1 is reset to O.

Affected: (R), cc 1, CC3, CC4
o ---A, O-n

If (Rul) = 1, then (EWL + n) + (A) -A, n + 1-n
n

If (Ru 1) = 0, then n + 1 - n
n

If n < 32, repeat; otherwise, (A) --R and continue to
next instruction

Condition code settings:

o

I CVS

234 ResultinR

o 0 zero

o bit 0 of register R is a

Obit 0 of register R is a 0 and bit positions
1-31 of register R contain at least one 1

sum is correct (I ess than 232)

sum is greater than 232 - 1

CO NVERT BY SUBTRACTION
(Word index al ignment)

CONVERT BY SUBTRACTION loads the internal A register
with the contents of register R, clears the internal B regis­
ter, Old sets an internal counter (n) to O. All conversion
values are considered to be 32-bit positive quantities. If
the nth conversion va~ue (the contents of the word location
pointed to by the effective address plus n) is equal to or less
than the current contents of the A register, CVS increments
n by 1, adds the two's compl ement of the nth conversion
value to the contents of the A register, stores the sum in
the A register, and stores ali n bit position n of the B reg-
i ster. If the nth conversi on val ue is greater than the current
contents of the A register, CVS only increments n by 1. If
n is less than 32 after being incremented, the next con­
version value is compared and the process continues through
n equal to 31; the remainder in the A register is loaded into
register R, and the converted quantity in the B register is
loaded into register Ru1.

Affected: (R), (Ru 1), CC3, CC4

(R)-A, O-B, O-n

If (EWL + n) ::; (A) then A - (EWL + n) - A,
1 -Bn' n+ 1-n

If (EWL + n) > (A) then n + 1 ---- n

If n < 32, repeat; otherwise, (A) --- R, (B) - Ru1 and
continue to the next instruction

Condition code settings:

2 3 4 Result in Ru1

o 0 zero

o bit 0 of register Ru 1 is a 1

o bit 0 of register Ru1 is a 0 and bit posi­
tions 1-31 of register Ru1 contain at
least one 1

FLOATING-POINT ARITHMETIC INSTRUCTIONS
The following floating-point arithmetic instructions are
avai labl e as opti onal SIGMA 7 instructions:

Instruction Name Mnemonic Page

Floating Add Short FAS 50
Floating Add Long FAL 50
Floating Subtract Short FSS 50
F I oat i ng Su btract Long FSL 51
Floating Multiply Short FMS 51
Floating Multiply Long FML 51
Floating Divide Short FDS 51
FI oati ng Divide Long FDL 51

FLOATING-POINT NUMBERS

SIGMA 7 accommodates two number formats for floating­
point arithmetic: short and long. A short-format floating­
point number consists of a sign (bit 0), a biased t, base 16
exponent, which is called a characteristic (bits 1-7), and
a six-digit hexadecimal fraction (bits 8-31). A long-format
floating-point number consists of a short-format floating­
point number followed by an additional eight hexadecimal
digits of fractional significance and occupies a doubleword
memory location or an even-odd pair of general registers.

A SIGMA 7 floating-point number (N) has the following
format:

r.+1 Character-I :.: I .. istic (C) FractIon (F)
o 1 2 3 14 5 6 7 8 9 10 11112 13 14 15 16 17 18 19120 21 22 23 24 25 26 27128 29 30 31

A floating-point number (N) has the following formal
definition:

1. N = F x 16C- 64 where F = 0 or

16-6 ::; IF I::; 1 (short format) or

16- 14 ::; IFI::; 1 (long format)

and 0::; C ::; 127

tThe bias value of 4016 is added to the exponent for the
purpose of making it possibl e to compare the absol ute mag­
nitude of two numbers, i. e., without reference to a sign
bit. This manipulation effectively removes the sign bit,
making each characteristic a 7-bit positive number.

Conversion/Floating-point Arithmetic 47

2. A positive floating-point number with a fraction of zero
and a characteristic of zero is a "true" zero. A positive
floating-point number with a fraction of zero and a non­
zero characteristic is an "abnormal" zero. For floating­
point multipl ication and division, an abnormal zero is
treated as a true zero. However, for addition and
subtraction, an abnormal zero is treated the same as
any nonzero operand.

3. A positive floating-point number is normal ized if and
only if the fraction is contained in the interval

1/16 $ F < 1

4. A negative floating-point number is the two's comple­
ment of its positive representation.

5. A negative floating-point number is normalized if and
only if its two's complement is a normalized positive
number.

By this definition, a floating-point number of the form

1 xxx xxxx 1111 0000 . •• 0000

is normal ized, and a floating-point number of the form

1 xxx xxxx 0000 0000 • •• 0000

is illegal and, whenever generated by floating-point in­
structions, is converted to the form

1 yyy yyyy 1111 0000 . .. 0000

where yy ... y is 1 less than xx .' .. x. Table 6 contains
examples of floating-point numbers.

Modes of Operation

SIGMA 7 contains three mode control bits that are used to
qualify floating-point operations. These mode control bits
are identified as FS (floating significance), FZ (floating
zero), and FN (floating normalize), and are contained
in bit positions 5, 6, and 7, respectively, of the program
status doubleword (PSD5_7)'

The floating-point mode is established by setting the three
floating-point mode control bits. This can be performed by
any of the following instructions:

Instruction Name Mnemonic Page ----
Load Conditions and Floating Control LCF 32

Load Conditions and Floating Control
Immediate LCFI 32

Load Program Status Doubleword LPSD 72

Exchange Program Status Doubleword XPSD 72

The floating-point mode control bits are stored by executing
either of the following instructions:

Instruction Name

Store Conditions and Floating Control

Exchange Program Status Doubleword

Mnemonic Page

STCF 34

XPSD 72

Table 6. Floating-point Number Representation

Decimal Number Short Floating -point Format Hexadecimal Value

± C F

+(16+63)(1-2 -24) 0 111 1111 1111 1111 1111 1111 1111 1111 7F FFFIFFF

+(16+3)(5/16) 0 100 0011 0101 0000 0000 0000 0000 0000 43 500000

+(16 -3)(209/256) 0 011 1101 1101 0001 0000 0000 0000 0000 3D D10000

+(16 -63)(2047/4096) 0 000 0001 0111 1111 1111 0000 0000 0000 OT 7FFOOO

+ (16 -64) (1 /16) 0 000 0000 0001 0000 0000 0000 0000 0000 00 100000

o (called true zero) 0 000 0000 0000 0000 0000 0000 0000 0000 00 000000

-(16 -64)(1/16) 1 111 1111 1111 0000 0000 0000 0000 0000 FF FOOOOO

-(16 -63)(2047/4096) 1 111 1110 1000 0000 0001 0000 0000 0000 FE 801000

-(16 -3) (209/256) 1 100 0010 0010 1111 0000 0000 0000 0000 C2 2FOOOO

-(16+3)(5/16) 1 011 1100 1011 0000 0000 0000 0000 0000 BC BOOOOO

_(16+63)(1-224) 1 000 0000 0000 0000 0000 0000 0000 0001 80 000001

Spec ia I Case

_(16e)(1) 1 e 0000 0000 0000 0000 0000 0000

-(16e+1)(1/16)
is changed to --

1 e + 1 1111 0000 0000 0000 0000 0000
whenever generated as the result of a floating-point instruction.

48 Floating-point Arithmetic

UNIMPLEMENTED FLOATING-POINT INSTRUCTIONS

If the optional floating-point instruction set is not imple­
mented in the computer and execution of a floating-point
arithmetic instruction is attempted, the computer uncondi­
tionally aborts execution of the instruction (at the time of
operation code decod i ng). The computer then traps to lo­
cation X I 41 1, with the contents of the condition code and
all general registers unchanged. Location XI41 1 is the
"unimplemented instruction" trap location.

FLOATING-POINT ADD AND SUBTRACT

The fl oati ng normal ize (FN), fl oati ng zero (FZ), and fl oati ng
significance (FS) mode control bits determine the operation of
floating-point addition and subtraction (if characteristic
overflow does not occur) as follows:

FN Floating normalize:

FN = 0 The results of additions and subtractions are
to be postnormalized. If characteristic under­
flow occurs, if the result is zero, or if more
than two postnormalization hexadecimal shifts
are required, the setti ngs for FZ and FS de­
termine the resultant action. If none of the
above conditions occur, the condition code
is set to 0010 if the result is positive or to
0001 if the result is negative.

FN = 1 Inhibit postnormalization of the results of ad­
ditions and subtractions. The settings of FZ
and FS have no effect on the instruction op­
eration. If the result is zero, the result is
set to true zero and the condition code is set
to 0000. If the result is positive, the con­
dition code is set to 0010. If the resul t is
negative, the condition code is set to 0001.

FZ Floating zero: (applies only if FN = 0)

FZ = 0 If the final result of an addition or subtrac­
tion operation cannot be expressed in normal­
ized form because of the characteristic being
reduced below zero, underflow has occurred,
in which case the result is set equal to true
zero and the condition code is set to 1100.
(Exception: if a trap results from significance
checking with FS = 1 and FZ = 0, an under­
flow generated in the process of postnormal­
izing is ignored.)

FZ = 1 Characteristic underflow causes the computer
to trap to location X I44 1 with the contents of
the general registers unchanged. If the result
is positive, the condition code is set to 1110.
If the resul t is negative, the condition code
is set to 1 10 1 .

FS Floating significance: (applies only if FN = 0)

FS = 0 Inhibit signifiance trap. If the result of an
addition or subtraction is zero, the res~lt is

set equal to true zero, the condition code is
set to 1000, and the computer executes the
next instruction in sequence. If more than
two hexadecimal places of postnormalization
shifting are required and characteristic under­
flow does not occur, the condition code is set
to 1010 if the result is positive, or to 1001 if
the result is negative; then, the computer ex­
ecutes the next instruction in sequence. (Ex­
ception: if characteristic underflow occurs
with FS = 0, FZ determines the resultant action.)

FS = 1 The computer traps to location X I44 1 if more
than two hexadecimal places of postnormal­
ization shifting are required or if the result is
zero. The condition code is set to 1000 if the
result is zero, to 1010 if the result is positive,
or to 1001 if the result is negative; however,
the contents of the general registers are not
changed. (Exception: if a trap results from
characteristic underflow with FZ = 1, the re­
sults of significance testing are ignored.)

If characteristic overflow occurs, the CPU always traps to
location X 1441 with the general registers unchanged and the
condition code set to 0110 if the result is positive, or to
0101 if the result is negative.

FLOATING-POINT MULTIPLY AND DIVIDE

The floating zero (FZ) mode control bit alone determines
the operation of floating-point multiplication and division
(if characteristic overflow does not occur and division by
zero is not attempted) as follows:

FZ Floating zero:

FZ = 0 If the final result of a multiplication or divi­
sion operation cannot be expressed in normal­
ized form because of the characteristic being
reduced below zero, underflow has occurred.
If underflow occurs, the result is set equal to
true zero and the condition code is set to 1100.
If underflow does not occ ur, the cond i ti on code
is set to 0010 if the result is positive, to 0001
if the result is negative, or to 0000 if the result
is zero.

FZ = 1 Underflow causes the computer to trap to loca­
tion X I44 1 with the contents of the general
registers unchanged. The condition code is
set to 1110 if the result is positive, or to 1101
if the result is negative. If underflow does
not occur, the resultant action is the same
as that for FZ = O.

If the divisor is zero in a floating-point division, the com­
puter always traps to location X I44 1 with the general reg­
isters unchanged and the condition code set to 0100. If
characteristic overflow occurs, the computer always traps
to location X I44 1 with the general registers unchanged and
the condition code set to 0110 if the result is positive, or
,to 0101 if the resu It is negative.

Floating-point Arithmetic 49

CONDITION CODES FOR
FLOATING-POINT INSTRUCTIONS

The condition code settings for floating-point instructions
are summarized in Table 7. The following provisions apply
to all floating-point instructions:

1. Underflow and overflow detection apply to the final
characteristic, not to any "intermediate" value.

2. If a floating-point operation results in a trap, the
original contents of all general registers remain un­
changed.

3. All shifting and truncation are performed on absolute
magnitudes. If the fraction is negative, then the two's
complement is formed after shifting or truncation.

FAS FLOATING ADD SHORT
(Word index alignment, optional)

o 1

The effective word and the contents of register R are loaded
into a set of internal registers and a low-order hexadecimal
zero (guard digit) is appended to both fractions, extending
them to seven hexadecimal digits each. FAS then forms the
floating-point sum of the two numbers. If no floating-point
arithmetic fault occurs, the sum is loaded into register R as
a short-format fl oati ng-poi nt number.

Affected: (R), CC
(R) + EW-R

Traps: Unimplemented in­
struction, fl oati ng­
point arithmetic fault

FAL FLOATING ADD LONG
(Doubleword index alignment, optional)

The effective doubleword and the contents of registers Rand
Ru1 are loaded into a set of internal registers.

The operation of FAL is identical to that of FLOA TINGADD
SHORT (FAS) except that the fractions to be added are each
14 hexadecimal digits long, guard digits are not appended
to the fractions, and R must be an even value for correct re­
sults. If no floating-point arithmetic fault occurs, the sum
is loaded into registers Rand Ru1 as a long-format floating­
poi nt number.

Affected: (R), (Rul), CC
(R, Rul) + ED -- R, Rul

Traps: Unimplemented in­
struction, floating­
point mithmetic fault

FSS FLOA TIN G SUBTRACT SHORT
(Word index alignment, optional)

H 3C
o 1 2 3 14

The effective word and the contents of regist'er R are loaded
into a set of internal registers.

FLOA TIN G SUBTRACT SHORT forms the two's compl ement
of the effective word and then operates identically to
FLOA TIN G ADD SHO RT (FAS). If no fl oati ng-point arith­
metic fault occurs, the difference is loaded into register R
as a short-format fl oati ng-po i nt number.

Affected: (R), CC
(R) - EW-R

Traps: Unimplemented in­
struction, floating­
poi nt Clrithmetic fault

Table 7. Condition Code Settings for Floating-point Instructions

Condition Code Mean i ng if no trap to location X '44' occurs Meaning if trap to location X '44' occurs

1 2 3 4

a a a a A x 0, O/A, or -A + A CD with FN=l 1 I *CV
a a a 1 N < a norma

*
a a 1 a N > a resu I ts

*

a 1 a a *CV div ide by zero 1
a 1 a 1 * overflow, N < a always trapped
a 1 1 a * overflow, N > a

@\ :
a a a -A + ACD

-A + A 1 a a 1 N < ° I > 2 postnorma'-l FS=O, FN=O, and N < a > 2 postnormal- FS=l, FN=O, and no
a 1 a N > a izing shifts no underflow N > a } izing shifts underflow with FZ= 1

1 1 a a underflow with FZ=O and no trap by FS=l CD *
1 1 a 1 * underflow, N < a } FZ=l
1 1 1 a * underflow, N > a

Notes: CD result set to true zero --
(1) "*" indicates impossible configurations

@ applies to add and subtract only where FN=O

50 Floating-point Arithmetic

FSL FLOATING SUBTRACT LONG
(Doubleword index alignment, optional)

The effecti ve doubl eword and the contents of regi sters Rand
Ru1 are loaded into a set of internal 'registers.

FLOATING SUBTRACT LONG forms the two's complement
of the effective doubleword and then operates identically
to FLOATING ADD LONG (FAL). If no floating-point
arithmetic fault occurs, the difference is loaded into reg­
i sters Rand Ru 1 as a long-format fl oati ng-poi nt number.

Affected: (R),(Ru1),CC
(R, Ru 1) - ED - R, Ru 1

Traps: Unimplem61ted in­
struction, f1oating­
point arithmetic fault

FMS FLOATING MULTIPLY SHORT
(Word index alignment, optional)

The effective word (multiplier) and the contents of register
R (multiplicand) are loaded into a set of internal registers,
and both numbers are then prenormalized (if necessary). The
product of the fraction contains 14 hexadecimal digits (the
lower two of which are O's). If no floating-point arithme­
tic fault occurs, the product is loaded into registers Rand
Ru 1 as follows:

1. If R is an even value, the product is loaded into regis­
ters Rand R+ 1 as a long-format fl oati ng-poi nt number.

2. If R is an odd value, the product is loaded into register
R as a properly truncated short-format floating-point
number.

The result of floating-multiply is always postnormalized. At
most, one place of postnormalizing shift may be required.
Truncation takes place after postnormalization.

Affected: (R), (Ru 1), CC
(R) x EW - R, Rul

Traps: Unimplemented in­
struction, floating­
point arithmetic fault

FML FLOATING MULTIPLY LONG
(Doubleword index alignment, optional)

IF

o 1 2 3 14 5

The effective doubleword (multiplier) and the contents of
registers Rand Rul (multiplicand) are loaded into a set of
internal registers. FLOATING MULTIPLY LONG then op­
etates identically to FLOA TING MULTIPLY SHORT (FMS),
except that the multipl ier and the mu Itipl icand fractions are
each 14 hexadecimal digits long, the product fraction is 28
hexadecimal digits long, and R must be an even value for
correct results. Ifno floating-point arithmetic fault occurs,

the postnormalized product is truncated to a long-format
floating-point number and loaded into registers Rand Rul.

Affected: (R), (Ru 1), CC
(R, Rul) x ED - R, Rul

Traps: Unimplemented in­
structi on, fl oati ng­
point arithmetic fault

FDS FLOATING DIVIDE SHORT
(Word index alignment, optional)

The effective word (divisor) and the contents of register R
(dividend) are loaded into a set of internal registers and both
numbers are then prenormal i zed (if necessary). FLOA TIN G
DIVIDE SHORT then forms a floating-point quotient with a
6-digit, normalized hexadecimal fraction. If no floating­
point arithmetic fault occurs, the quotient is loaded into
register R as a short-format floating-point number.

Affected: (R), CC
(R) -;. EW-- R

Traps: Un i mpl emented i n­
struction, floating­
point arithmetic fault

FDL FLOATING DIVIDE LONG
(Doubleword index al ignment, optional)

The effective doubleword (divisor) and the contents of
registersRandRul (dividend) are loaded into a set of inter­
nal registers. FLOATING DIVIDE LONG then operates
identically to FLOATING DIVIDE SHORT (FDS), except
that the divisor, dividend, and quotient fractions are each
14 hexadecimal digits long, and R must be an even value
for correct results. If no floating-point arithmetic fault
occurs, the quotient is loaded into registers Rand Ru 1 as a
long-format floating-point number.

Affected: (R), (Ru 1), CC
(R, Rul) -;. ED - R, Rul

Traps: Unimplemented in­
struction, floating­
point arithmetic fault

DECIMAL INSTRUCTIONS

The following instructions comprise the optional decimal in­
struction set:

Instruction Name Mnemonic Page

Decimal Load DL 53
Dec imal Store DST 53
Decimal Add DA 54
Decimal Subtract DS 54
Decimal Multiply DM 54
Decimal Divide DD 55
Decimal Compare DC 55
Decimal Shift Arithmetic DSA 55
Pack Decimal Digits PACK 56
Unpack Decimal Digits UNPK 56

Edit Byte String (described under EBS 61

Byte String Instructions)

Floating-point Arithmetic/Decimal 51

PACKED DECIMAL NUMBERS

All SIGMA 7 decimal arithmetic instructions operate on
packed decimal numbers, each consisting of from 1 to 31
decimal digits (in absolute form) plus a decimal sign. A
decimal digit is a 4-bit code in the range 0000 through 1001,
where 0000 = 0, 0001 = 1, 0010 = 2, 0011 = 3, 0100 = 4,
0101 = 5, 0110 = 6, 0111 = 7, 1000 = 8, and 1001 = 9. A
positive decimal sign is a 4-bit code of the form: 1010(X'A'),
1100(X'C'), 1110(X'E'), or 1111 (X'FII). A negative decimal
sign is a 4-bit code of the form: 1011 (X'B') or 1101 (X'D').
However, the decimal sign codes generated for the result of
a decimal instruction are: 1100 (X'C') for positive results,
and 11 01 (X'D') for negative results. The format of packed
decimal numbers is:

For the decimal arithmetic instructions, a packed decimal
number must occupy an integral number (1 through 16) of
consecutive bytes. Thus, a decimal number must contain an
odd number of decimal digits, the high-order digit (zero or
nonzero) of the number must be in bit positions 0-3 of the
first byte, the decimal sign must be in bit positions 4-7 of
the last byte, and all decimal digits and the decimal sign
must be 4-bit codes of the form described above.

ZONED DECIMAL NUMBERS

In zoned decimal format, a singledecimal digit is contained
within bit positions 4-7 of a byte, and bit positions 0-3 of
the byte are referred to as the IIzone ll of the decimal digit.
A zoned decimal number consists of from 1 to 31 bytes, with
the decimal sign appearing as the zone for the last byte, as
follows:

A decimal number can be converted from zoned to packed
format by means of the instruction PACK DECIMAL DIGITS.
A decimal number can be converted from packed to zoned
format by means of the instruction UNPACK DECIMAL
DIGITS.

DECIMAL ACCUMULATOR

All decimal arithmetic instructions imply the use of registers
12 through 15 of the current register bank as the decimal ac­
cumulator, and registers 12 through 15 are treated as a singl e
16-byte register. The entire decimal accumulator is used in
every decimal arithmetic instruction.

DECIMAL INSTRUCTION FORMAT

The general format of a decimal instruction is as follows:

52 Decimal

The indirect address bit (position 0), the operation code
(positions.1-7), the index field (12-14), and the reference
address field (15-31) all have the same functions for the
decimal instructions as they do for any other SIGMA 7 byte
addressing instruction. However, bit positions 8-11 of the
instruction word do not refer to a general register; instead,
the contents of this field (designated by the character IIL")
designate the length, in bytes, of a packed decimal number.
(If L = 0, a length of 16 bytes is assumed.)

UNIMPLEMENTED DECIMAL INSTRUCTIONS

If the optional decimal arithmetic instructions described in
this section are not implemented in a SIGMA 7 computer,
the computer unconditional I y aborts the execution of the
instruction (at the time of operation code decoding), and
traps to location X '41', which is the "unimplemented in­
struction" trap location.

ILLEGAL DIGIT AND SIGN DETECTION

Prior to executing any decimal instruction, the computer
checks all decimal operands for the presence of illegal dec­
imal digits or illegal decimal signs. For aH decimal arithme­
tic instructions except DECIMAL MULTIPLY and DECIMAL
DIVIDE, an illegal decimal digit is a sign code (i.e., in the
range X'A' through X'F') that appears anywhere except in
bit positions 4-7 of- the least significant byte (the sign posi­
tion) of the packed decimal number; an illegal dec imal sign
is a digit code (i.e., in the range X'O' through X'9') thatap­
pears in the sign position of the packed decimal number.

For the instructions DECIMAL MULTIPLY and DECIMAL
DIVIDE, the effective decimal operand is checked for ille­
gal digits or signs as above. However, the operand in the
decimal accumulator is checked to verify that there is
at least one legal decimal sign code somE3where in the
number. (This type of check is a result of the interrupti-
bi I ity of these instructions, which may leave the dec imal
accumulator with a partially-completed result containing
an internal sign code.)

If an illegal digit or sign is detected, the computer uncon­
ditionally aborts the execution of the instruction (at the trme
that the illegal digit or sign is detected), sets CCl to 1 and
resets CC2 to O. If the decimal arithmetic fault trap mask
(bit position 10 of the program status doubleword) is a 0, the
computer then executes the next instruction in sequence;
however, if the decimal arithmetic fault trclp mask (PSD10)
is a 1, the computer traps to location X '45'. In either case,
the contents of the decimal accumulator, the effective dec­
imal operand, CC3, and CC4 remain unchanged.

OVERFLOW DETECTION

Arithmetic overflow can occur during execution of the fol­
lowing decimal instructions:

DECIMAL ADD: overflow occurs when the sum of the two
decimal numbers exceeds the 31-digit capacity of the deci­
mal accumulator (+1031 -1 to -1031 +1).

DECIMAL SUBTRACT: overflow occurs when the difference
between the two decimal numbers exceeds the 31-digit cap­
acity of the decimal accumu lator.

DECIMAL DIVIDE: overflow occurs either when the divisor
is zero, or when the dividend is greater than 14 digits in
length and the absolute value of the significant digits to
the left of the 15th digit position (counting from the right)
is greater than or equal to the absolute value of the divisor.

If arithmetic overflow occurs during execution of DECIMAL
ADD, DECIMAL SUBTRACT, or DECIMAL DIVIDE, the com­
puter unconditionally aborts execution of the instruction (at
the time of overflow detection), resets CC1 to 0, and sets
CC2 to 1. Then, if the decimal arithmetic fault trap mask
(PSDlO) is a 1, the computer traps to location X'45';- if the
decimal arithmetic fault trap mask is a 0, the computer exe­
cutes the next instruction in sequence. In either case, the
contents of the decimal accumulator, memory storage, CC3,
and CC4 remain unchanged.

DECIMAL INSTRUCTION NOMENCLATURE

For the purpose of abbreviating the instruction descriptions
to follow, the symbol ic term "DECA II is used to represent
the decimal accumulator, and the symbolic term "EDO" is
used to represent the effective decimal operand of the in­
struction. For the instructions DECIMAL LOAD, DECIMAL
ADD, DECIMAL SUBTRACT, DECIMAL MULTIPLY, DECI­
MAL DIVIDE, and DECIMAL COMPARE, the effective dec­
imal operand is a packed decimal number that is II L II bytes
in length, where L is the numeric value of bit positions 8-
11 of the instruction word, and a value of 0 for L designates
16 bytes. The effective byte addresses of these instructions
point to the byte location that contains the most significant
byte (high-order digits) of the decimal number, and the ef­
fective byte address plus L-1 (where L = 0 = 16) points to
the least significant byte (low-order digit and sign) of the
dec imal number. Thus, for these instructions, the effective
decimal operand (EDO) is the contents of the byte string
that begins with the effective byte location, is L bytes in
length, and ends with the effective byte location plus L-l.

CONDITION CODE SETTINGS

All decimal instructions provide condition code settings,
using CC1 to indicate whether or not an illegal digit or sign
has been detected, and CC2 to indicate whether or not over­
flow has occurred. Most (but not a II) ofthe deci ma I instruc­
tions provide condition code settings, using CC3 and CC4 to
indicate whether the decimal number in the decimal accumu­
lator is zero, negative, or positive, as follows:

CC3 CC4

o 0

o

Result in DECA

zero - the decimal accumulator contains a
positive or negative decimal sign code in the
4 low-order bit positions; the remainder of
the decimal accumulator contains all O's.

negative - the decimal accumulator contains
a negative decimal sign code in the 4 low­
order bit positions; the remainder of the deci­
mal accumulator contains at least one non-zero
decimal digit.

CC3 CC4 Result in DECA

DL

o positive - the decimal accumulator contains
a positive decimal sign code in the 4 low­
order bit positions; the remainder of the dec­
imal accumulator contains at least one
nonzero decimal digit.

DECIMAL LOAD
(Byte index al ignment, optiona I)

If no illegal digitorillegal sign is detected in the effective
decimal operand, DECIMAL LOAD expands the effective
decimal operand to 16 bytes (31 digits + sign) by appending
high-order O's, and then loads the expanded decimal num­
berintothedecimalaccumulator. If the result in thedecimal
accumulator is zero, the converted sign remains unchanged.

Affected: (DECA), CC
(EBL to EBL + L-1) - DECA

Condition code settings:

Traps: Unimplemented in­
struction, decimal
arithmetic

2 3 4 Result in DECA

0 illegal digit or sign detected, instruction

aborted

0 0 0 0 zero

}
no illegal digit or illegal

0 0 0 negative sign detected, instruction

0 0 0 positive
completed

DST DECIMAL STORE
(Byte index al ignment, optional)

If no illegal digit or sign is detected in the low-order L
bytes of the decimal accumulator, DECIMAL STORE stores
the low-order L bytes of the decimal accumulator into mem­
ory from the effective byte location to the effective byte
location plus L-l. If the decimal accumulator contains more
significant information than is actually stored (i.e., at least
one nonzero digit was not stored), CC2 is set to 1; other­
wise CC2 is reset to O. If the result in memory is zero, the
converted sign remains unchanged.

Affected: (EBL to EBL + L-l),
CC1, CC2

Traps: Unimplemented in­
structi on, dec i mal
arithmetic

(DECA) low-order bytes - EBL to EBL+ L-l

Condition code settings:

2 3 4

o
Result of DST

illegal digit or sign detected, instruction
aborted

Decimal 53

2 3

o o

o

4 Result of DST

all significant in-j
formation stored

some significant
information not
stored

OA DECIMAL ADD

no illegal digit or
illegal sign detec­
ted, instruction
completed

(Byte index alignment, optional)

If no illegal digit or sign is detected in the effective deci­
mal operand or in the decimal accumulator, DECIMAL ADD
expands the effective decimal operand to 16 bytes (31 digits
plus sign) by appending high-order O's, algebraically adds
the expanded decimal number to the contents of the entire
decimal accumulator, and then loads the sum into the deci­
mal accumulator. If the result in the decimal accumulator
is zero, the resulting sign is forced to the positive form.

Overflow occursifthesum exceeds thecapacityof the deci­
mal accumulator (i. e. , if the absolute value of the sum is equal
to or greater than 1031), in wh i ch case CC 1 is reset to 0, CC2
is set to 1, and the instruction aborted with the previous con­
tents of the decimal accumulator, CC3 and CC4 unchanged.

Affected: {DECA}, CC Traps: Unimplemented in-
{DECA} + EDO --- DECA struction, decimal

arithmetic

Condition code settings:

2 3 4 Result in DECA

0 illegal digit or

\
sign detected

i nstructi on aborted
0 overflow

0 0 0 0
zero } no illegal digit or sign

0 0 0 negative detected, no overflow,

0 0 0 positive
instruction completed

os DECIMAL SUBTRACT
(Byte index alignment, optional)

If no illegal digit or sign is detected in the effective deci­
mal operand or in the decimal accumulator, DECIMAL SUB­
TRACT expands the effective decimal operand to 16 bytes
(31 digits plus sign) by appending high-order O's, algebraic­
ally subtracts the expanded decimal number from the con­
tents of the entire decimal accumulator, and then loads the
difference into the decimal accumulator. If the result in the
decimal accumulator is zero, the resulting sign is forced to
the positive form.

Overflow occurs if the difference exceeds the capacity of
the decimal accumulator (i .e., if the absolute value of the
difference is equal to or greater then 1031), in which case

54 Decimal

CCl is reset to 0, CC2 is set to 1, and the instruction is
aborted with the contents of the previous decimal accumu­
lator, CC3 and CC4 unchanged.

Affected: (DECA), CC
(DECA) - E DO - DECA

Traps: Unimplemented instruc­
tion, decimal arithmetic

Condition code settings:

2 3 4 Result in DECA

0 illegal digit or

1
sign detected

i nstrUicti on aborted

0 1 overflow

0 0 0 0 zero
} no illegal digit or sign de-

0 a 0 negative tected, no overflow, in-

a 0 0 positive
structi on compl eted

OM DECIMAL MULTIPLY
(Byte index alignment, optional, continue after
interrupt)

Reference oddress

If no illegal digit or sign is detected in the effective deci­
mal operand and there is at least one decimall sign in the
decimal accumulator, DECIMAL MULTIPLY multiplies the
effective decimal operand (multiplicand) by i"he entire
contents of the decimal accumu~ator {multiplier} and then
loads the product into the decimal accumulator. If the
result in the decimal accumulator is zero, the resulting
sign is forced to the positive form.

No overflow can occur; however, an indeterminate resutl
occurs (with an incorrect condition code indication, and
with no trap activation) if any of the following conditions
are not satisfied before the initial execution of DECIMAL
MULTIPLY:

1. The 4 low-order bit positions of the decImal accumu­
lator must contain the sign of the multiplier.

2. The 16 high-order digit positions of the decimal accu­
mulator (i.e., general registers 12 and 1:3) must contain
all O's.

3. The effective decimal operand must not exceed 15 deci-
mal digits (I. e., the value of L must nol" exceed 8).

This instruction can be interrupted during the course of its
execution, and then be resumed, without producing an er­
roneous product {provi ded that the contents of the decimal
accumulator are not altered between the interruption and
continuation}. Actually, the instrvction is re-executed,
but since there is no initializing phase, it begins with the
same iteration that was started prior to the interrupt.

Affected: (DECA), CC
{DECA}x EDO -- DECA

Traps: Unimplemented in­
struction, decimal
arithmetic

Condition code settings:

2 3 4

o

Result in DECA

illegal di git or sign detected, instruc­
tion aborted

2 3 4 Result in DECA

0 0 0 0 zero
} no illegal digit or sign

0 0 0 negative detected, instruction

0 0 0 positive
completed

DO DECIMAL DIVIDE
(Byte index alignment, optional, continue after
interrupt)

If there is no illegal digit or sign in the effe~tive deci­
mal operand and if there is at least one decimal sign in
the decimal accumulator, DECIMAL DIVIDE divides the
contents of the decimal accumulator (dividend) by the ef-,
fective decimal operand (divisor). Then, if no overflow
has occurred, the computer loads the quotient (15 decimal
digits plus sign) into the 8 low-order bytes of the decimal
accumulator (registers 14 and 15), and loads the remainder
(also 15 decimal digits plus sign) into the 8 high-order bytes
of the decimal accumulator (registers 12 and 13). The sign
ofthe remainder is the same as that of the original dividend.
If the quotient is zero, the sign of the quotient is forced to
the positive form.

Overflow can occur if any of the following conditions are
not satisfied before the initial execution of DECIMAL
DIVIDE:

1. The divisor must not be zero.

2. The I ength of the divisor must not be greater than' 15
decimal digits (i.e., the value ofL must not exceed 8.)

3. If the length of the dividend is greater than 15 decimal
digits, the absolute value of the significant digits to
the left of the 15th digit position (i.e., those digits in
registers 12 and 13) must be less than the absolute value
of the divisor.

This instruction can be interrupted during the course of its
execution, and can then be resumed without producing an
erroneous result (provided that the contents of the decimal
accumulator are not altered between interruption and con­
tinuation). Actually, the instruction is re-executed, but
since there is no initializing phase, it begins with the same
iteration that was started prior to the interrupt.

Affected: (DECA), CC
(DECA)7EDO - DECA

Traps: Unimplemented in­
struction, decimal
arithmetic

Condition code settings:

2 3 4 Result in DECA

0 illegal digit or

} sign detected instruction aborted

0 overflow

0 0 0 0 zero quotient

}
no illegal digit or

0 0 0 1 negati ve quoti ent
sign detected, no
overflow, instruc-

0 0 0 positive quotient tion completed

DC DECIMAL COMPARE
(Byte index alignment, optional)

If there is no illegal digit or illegal sign in the effective
decimal operand or in the decimal accumulator, DECIMAL
COMPARE expands the effective decimal operand to 16
bytes (31 digits plus sign) by appending high-order OIS, al­
gebraically compares the expanded decimal number to the
contents of the entire dec imal accumul ator, and sets CC3
and CC4 according to the result of the comparison (a posi­
tive zero compares equal to a negative zero).

Affected: CC
(DECA) : EDO

Traps: Unimplemented in­
struction, decimal
arithmetic

Condition code settings:

2 3 4 Resul t of comparison

0 illegal digit or sign detected, i nstructi on
aborted

0 0 0 0 (DECA) equals EDO I no illegal digit
0 0 0 (DECA) less than EDO or sign detected,

0 0 0 (DECA) greater than
instruction com-

EDO
pleted

DSA DECIMAL SHIFT ARITHMETIC
(Byte index alignment, optional)

If no illegal digit or sign is detected in the decimal accu­
mulator, DECIMAL SHIFT ARITHMETIC arithmetically shifts
,the contents of the decimal accumulator (excluding the
decimal sign), with the direction and amount of the shift
determi ned by the effective vi rtua I address of the i nstruc­
tion. If the result in the decimal accumulator is zero, the
resulting sign remains unchanged.

If no indirect addressing or indexing is used with DSA, the
shift count C is the contents of bit positions 16-31 of the
instruction word. If only indirect addressing is used with
DSA, the shift count is the contents of bit positions 16-31
of the word pointed to by the indirect address in the
instruction word. If indexing only is used with DSA, the
sh ift count is the contents of bit positi ons 16-31 of the
instruction word plus the contents of bit positions 14-29
of the designated index register (bits 0-13, 30, and 31 of
the index are ignored). If indirect addressing and indexing
are both used with DSA, the shift count is the sum of the
contents of bit positions 16-31 of the word pointed to by
the indirect address and the contents of bit positions 14-29
of the designated index register.

The shift count, C, is treated as a 16-bit signed binary in­
teger, with negative integers in twols complement form.
If the shift count is positive, the contents of the decimal
accumulator are shifted left C decimal digit positions; if
the shift count is negative, the contents of the decimal

Decimal 55

accumulator are shifted right -C decimal digit positions. In
either case, the decimal sign is not shifted, vacated deci-

I mal digit positions are filled with OIS, and any digits shifted
out of the decimal accumulator are lost, Although the range
of possible values for C is 2 -15 ~ C ~ 2 5_1, a shift account
greater than +31 or less than -31 is interpreted as a shift
count of exactly +31 or -31.

If any nonzero decimal digit is shifted out of the decimal
accumulator during a left shift, CC2 is set to 1; otherwise,
CC2 is reset to O. CC2 is unconditionally reset to 0 at the
completion of a right shift.

Affected: (DECA), CC Traps: Unimplemented
instruction, decimal
arithmetic

Condition code setti ngs:

2 3 4 Result in DECA

o
o
o
o

o

o

o

PACK

o I 2

illegal digit or sign detected, instruction
aborted

o 0 zero

o
o

negative

positive

right shift or no non­
zero digit shifted out
of DECA on left shift

1 or more nonzero
digit(s} shifted out
of DECA on left shift

PACK DECIMAL DIGITS

no illegal digit
or sign detected,
instruction com­
pleted

(Byte index al ignment, optional, continue after
interrupt)

PACK DECIMAL DIGITS converts the effective decimal
operand (assumed to be in zoned format) into a packed
decimal number and, if necessary, appends sufficient high­
order OIS to produce a decimal number that is 16 bytes (31
decimal digits plus sign) in length. The zone (bits 0-3) of
the low-orderdigit of the effective decimal operand is used
to select the sign code for the packed decimal number; all
other zones are ignored in forming the packed decimal
number. If no illegal digit or sign appears in the packed
decimal number, it is then loaded into the decimal accu­
mulator. If the result in the decimal accumulator is zero,
the resulting sign remains unchanged.

The L field of this instruction specifies the length, in bytes,
of the resultant packed decimal number in the decimal accu­
mu lafor; therefore, the I ength of the effective decimal oper­
and is 2L-1 bytes (where L = 0 implies a length of 31 bytes
for the effective decimal operand).

This instruction can be interrupted during the course of its
execution, and can then be resumed without producing an
erroneous result (provided that the contents of the decimal
accumulator are not altered between interruption and con­
tinuation). Actually, the instruction is re-executed, but

56 Decimal

since there is no initializing phase, it begins with the
same iteration that was started prior to the interrupt.

Affected: (DECA), CC Traps: Unimplemented in­
struction, decimal
arithmetic

packed (EBL to EBL + 2L -2)- DECA

Condition code settings:

2 3 4 Result in DECA

0 illegal digit or sign detected, instruction
aborted

0 0 0 0 zero
} no illegal digit or sign

0 0 0 negative detected, i nstructi on

0 0 0 positive
completed

Example 1, L = 6:

EDO

(DECA)

CC

Before execution

X I FOF1F2F3
F4F5F6F7
F8F9FO I

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxx x

Example 2, L = 6:

EDO

(DECA)

CC

X'000938F7
E655B483
02Fl BO'

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxx

UNPK UNPACK DECIMAL DIGITS

After execution

X I FOF1F2F3
F4F5F6F7
FBF9FO I

X'OOOOOOOO
00000000
00000123
4567890C'

0010

X I 000938F7
E655B483
02Fl BO'

X 100000000
00000000
00000987
6543210D I

0001

(Byte index alignment, optional, continue after
interrupt)

[~I, , ;I~ , , J ~ "..I" ~ ..I,,: .. ,,~e,:~~~~~e"~'~:~::I"" J
If no illegal digit or sign is detected in the decimal accu­
mulator (assumed to be in packed decimal format), UNPACK
DECIMAL DIGITS converts the contents of the low-order L
bytes of the decimal accumulator to zoned decimal format
and stores the result, as a byte string, from the effective byte
location to the effective byte location plus :2L-2. The con­
tents of the 4 low-order bit positions of the decimal accu­
mulator are used to select the sign code for '~he last digit of
the string; a zone of 1111 (XI P) is used for all other digits.
The contents of the decimal accumulator remain unchanged,
and only 2L-1 bytes of memory are altered. If the decimal

accumulator contains more significant information than is
actually unpacked and stored, CC2 is set to 1; otherwise
CC2 is reset to O. If the result in memory is zero, the
resulting sign remains unchanged.

This instruction can be interrupted during the course of its
execution, and can then be resumed without producing an
erroneous result (provided that the contents of the decimal
accumulator are not altered between interruption and con­
tinuation). Actually, the instruction is re-executed, but
since there is no initializing phase, it begins with the same
iteration that was started prior to the interrupt.

Affected: (EBL to EBL + 2L -2),
CC1, CC2

Traps: Unimplemented

zoned (DECA)- EBL to EBL + 2L -2

Condition code settings:

2 3 4 Result of UNPK

instruction, deci­
mal arithmetic

o illegal digit or sign detected, instruction
aborted

o o

o

Example 1,

(DECA)

EDO

CC

Example 2,

(DECA) =

EDO

CC

Example 3,

(DECA) =

all significant infor­
mation zoned and
stored

some significant
information not
zoned and stored

L = 10:

Before execution

X 100000000
00000001
23456789
0123456D'

xxx xxx xx
xxxxxxxx
xxxxxxxx
xxx xxx xx
xxx xxx

xxxx

L = 8:

X '00000000
23000000
10001234
0012345C'

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxx

xxxx

L = 4:

X '0000100l
00001002
00001003
0001004F'

no illegal digit
or sign detected,
instruction com­
pi eted

After execution

X 100000000
00000001
23456789
0123456D'

X'FOFOFOFl
F2F3F4F5
F6F7F8F9
FOF1F2F3
F4F5D6'

OOxx

X '00000000
23000000
10001234
0012345C'

X ' F1FOFOFO
F1F2F3F4
FOFOF1F2
F3F4C5'

01xx

X '00001001
00001002
00001003
0001004F'

EDO xxxxxxxx
xxxxxxxx

X'FOFOFOFl
FOFOC41

CC xxxx Olxx

BYTE-STRING INSTRUCTIONS

Five instructions provide for the manipulation of strings of
consecutive bytes. Four of these instructions are standard
with the SIGMA 7 computer, and one additional instruction
(EDIT BYTE STRIN G) is provided with the decimal option.
The byte string instructions and their mnemonic codes are
as follows:

Instruction Name Mnemonic

Move Byte Stri ng
Compare Byte String

MBS
CBS
TBS
TTBS
EBS

Page

58
59
60
60
61

Translate Byte String
Translate and Test Byte String
Edit Byte String (optional)

These instructions are in the immediate displacement c lass, are
memory-to-memory operations, and proceed one byte at a
time (except for the instruction MOVE BYTE STRING, which
proceeds four bytes at a time under certain conditions). These
operations are under the control of information that must be
loaded into certain general registers before the instruction
is executed; hence, they may be interrupted after any indiv­
idual byte operation. The general format for the information
in the instruction word and in the general registers is as
follows:

Instructi on word:

Contents of register R:

Contents of register Ru 1:

Designation

Operation

R

Displacement

Function

The 7-bit operation code of the instruc­
tion. (If any byte string instruction is
i nd irectl y addressed, the computer traps
to location X'40' at the time of opera­
tion code decoding.)

The 4-bit field that identifies register R
of the current general register bank.

A 20-bit Held that contains a signed byte
displacement value, used to form an ef­
fective byte address. The displacement
value is right-justified in the 20-bit field,
and negative values are in two's comple­
ment form.

Byte String 57

Designation Function

Mask/Fill An 8-bit field used only with TRANS­
LATE AND TEST BYTE STRING and
EDIT BYTE STRING. The purpose of thi s
field is explained in the detailed dis­
cussion of the TTBS and EBS instructions.

Source Address A 19-bit field that normally contains the
byte address of the first (most significant)
byte of the source byte stri ng operand.
The effective source address is the
source address in Register R plus the
displacement value in the instruction
word.

Count

Destinati on
Address

An 8-bit field that contains the true count
(from 0 to 255) of the number of bytes i n­
volved in the operation. This field is de­
cremented by 1 as each byte in the desti­
nation byte string is processed. A 0 count
means "no operation".

A 19-bit field that contains the byte
address of the first (most significant)
byte of the destination byte string oper­
and. This field is incremented by 1 as
each byte in the destination byte string
is processed.

In any byte string instruction, any portion of registers R or
Rul that is not explicitly defined (i.e., in the shaded part
of the register diagram for the instruction) should be coded
with zeros.

Since the value Ru 1 is obtained by performing a logical
inclusive OR with the value 0001 and the value of the R
field of the instruction word, the two control registers are
Rand R + 1 if R is even. However, if R is an odd value, reg­
ister R contains an address value that functions both as a
source operand address and as a destination operand ad­
dress. Also, if register 0 is designated in any byte string
instruction (except for TRANSLATE AND TEST BYTE STRING
and EDIT BYTE STRING), its contents are ignored and a zero
source address value is obtained. Thus, the following three
cases exist for most byte string instructions, depending on
whether the value of the R field of the instruction word is
even and nonzero, odd, or zero:

Case I: R is even and nonzero

The effective source address is the address in register R plus
the displacement in the instruction word; the destination
address is the address in register R + 1, but without the dis­
placement added.

Case II: R is odd

The effective source address is the address in register R plus
the displacement in the instruction word; the destination
address is also the address in register R, but without the
displacement added.

58 Byte String

Case III: R is zero

The effective source address is the displacement value in
the instruction word; the destination address is the address
in register 1. In this case, the source byte s'~ring operand
is always a single byte.

In the descriptions of the byte-string instructiions, the fol­
lowing abbreviations and terms are used:

D Displacement, (1)12-31

SA

ESA

C

DA

SBS

DBS

MBS

Sourc e add ress, (R) 13 -31

Effective source address, [{R)13-31+(I)12-31] 13-31

The contents of bit positions 13-31 of register R
are added (right aligned) to the contents of bit po­
sitions 12-31 of the instruction word; the 19 low­
order bits of the result are used as the effective
source address.

Count, {Ru 1)0-7

Destination address, (Ru1)13_31

Source byte string, the byte string that begins with
the byte location pointed to by the 119-bit effective
source address and is C bytes in length (if R is non­
zero) or is 1 byte in I ength (if R is 0).

Destination byte string, the byte string that begins
with the byte location pointed to by the destination
address and is always C bytes in length.

MOVE BYTE STRING
(Immediate displacement, continue ofter interrupt)

MOVE BYTE STRING copi es the contents of~he source byte
string {left to right) into the destination byte string. The pre­
vi ous contents of the desti nation byte stri ng are destroyed, but
the contents of the source byte stri ng are not affected unl ess
thedestinationbytestringoverlapsthe source byte string.

When the destination byte string overlaps the source byte
string, the resulting destination byte string contains one or
more repetitions of bytes from the source byte string. Thus,
if a destination byte string of C bytes begins with the kth
byte of a source byte string (numbering from 1), the fi rst
k-l bytes of the source byte string are duplicated in the
destination byte string x number of times, where x=C/(k-l).
For example, if the destination byte string begins with the
second byte of the source byte string, the first byte of the
source byte string is duplicated throughout the destination
byte string.

If both byte strings begin with the same byte (i.e., k = 1)
and the R field of MBS is nonzero, the destination byte
string is read and replaced into the same memory locations.
However, if both byte strings begin with the same byte and
the R field of MBS is zero, the first byte of the byte string

is dupl icated throughout the remainder of the byte string
(see "Case III", below).

Affected: (DBS), (R), (Rul)
(SBS)- DBS

If MBS is indirectly addressed, it is treated as a nonexistent
instruction, in whi ch case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to location X'40 ' with the contents
of register R and the destination byte string unchanged.

A speed advantage can be gained in the MBS instruction if
the source and destination byte strings both begin on the
same byte within their respective words. This allows all
bytes (except possibly the first few bytes and the last few
bytes to be moved in fu II word units.

Case I: even, nonzero R field (Ru1=R+1)

Contents of register R:

Contents of register R+1:

The source byte string begins with the byte location pointed
to by the source address in register R plus the displacement
in MBS; the destination byte string begins with the byte lo­
cation pointed to by the destination address in register R+ 1.
Both byte strings are C bytes in length. When the instruc­
tion is completed, the destination and source addresses are
each incremented by C, and C is set to zero.

Case 11: odd R field (Ru1=R)

Contents of register R:

The source byte string begins with the byte location poin­
ted to by the address in register R plus the displacement in
MBSi the destination byte string begins with the byte lo­
cation pointed to by the destination address in register R.
Both byte strings are C bytes in length. When the instruc­
tion is completed, the destination address is incremented by
C, and C is set to zero.

Case III: zero R field (Ru1=1)

Contents of register

The source byte string consists of a single byte, the contents
of the byte location pointed to by the displacement in MBS;
the destination byte string begins with the byte location

pointed to by the destination address in register 1 and is C
bytes in length. In this case, the source byte is duplicated
throughout the destination byte string. When the instruction
is completed, the destination address is incremented by C
and Cis set to zero.

CBS COMPARE BYTE STRIN G
(Immediate displacement, continue after interrupt)

COMPARE BYTE STRIN G compares, as magnitudes, the con­
tents of the source byte string wi th the contents of the des­
tination byte string, byte by corresponding byte, beginning
with the first byte of each string. The comparison continues
until the specified number of bytes have been compared or
until an inequality is found. When CBS terminates, CC3
and CC4 are set to indicate the result of the last comparison.
If the CBS instruction terminates due to inequality, the count
in register Ru1 is one greater than the number of bytes re­
maining to be compared; the source address in register Rand
the destination address in register Ru1 indicate the locations
of the unequal bytes.

Affected: (R), (Ru 1), CC3, CC4
(SBS) : (DBS)

Condition code settings:

2 3 4 Result of CBS

0 0 source byte string equals destination
byte string

0 source byte stri ng I ess than desti nation
byte stri ng

0 source byte string greater than destination
byte string

If CBS is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to location X'40 ' with the contents
of register R and the destination byte string unchanged.

Case I: even, nonzero R field (Rul=R+l)

Contents of reg i ster R

Contents of regi ster R+ 1

The source byte string begins with the byte location
pointed to by the source address in register R plus the
displacement in CBS; the destination byte string begins
with the byte location pointed to by the destination ad-
dress in register R+ 1. Both byte strings are C bytes in
length.

Byte String 59

Case II: odd R field (Ru1=R)

Contents of register R

The source byte string begins with the byte location
pointed to by the addr~ss in register R pi us the displace­
ment in CBS; the destination byte string begins with the byte
location pointed to by the destination address in register R.
Both byte str i ngs are C bytes in length.

Case III: zero R field (Ru1=1)

Contents of register

The source byte string consists of a single byte, the contents
of the location pointed to by the displacement in CBS; the
destination byte string begins with the byte location pointed
to by the destination address in register 1 and is C bytes in
length. In this case, the source byte is compared with each
byte of the desti nation byte string until an i nequal ity is found.

TBS TRANSLATE BYTE STRING
(Immediate displacement, continue after interrupt)

TRANSLATE BYTE STRING replaces each byte of the des­
tination byte string with a source byte located in a transla­
tion table. The destination byte string begins with the byte
location pointed to by the destination address in register
Ru1, and is C bytes in length. The translation table con­
sists of up to 256 consecutive byte locations, with the first
byte location of the table pointed to by the displacement
in TBS pi us the source address in regi ster R. A source byte
is defined as that which is in the byte location pointed to
by the 19 low-order b its of the sum of the foil owing va lues:

1. The displacement in bit positions 12-31 of the TBS in­
struction

2. The current contents of bit positions 13-31 of register
R {source address}

3. The numeric value of the current destination byte, the
8-bit contents of the byte location pointed to by the
current destination address in bit positions 13-31 of
reg i ster {Ru 1 }

Affected: {D BS} ,(Ru 1)
translated (DBS) - DBS

If TBS is indirectl y addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decodi ng) and traps to location X 1401 with the contents
of register R and the destination byte string unchanged.

60 Byte Stri ng

Case I: even, nonzero R fi e I d (Ru 1 =R+ 1)

Contents of register R

Contents of register R+ 1

The destination byte string begins with the byte location
pointed to by the destination address in regis1"erR+ 1 and isC
bytes in length. The source byte string (translation table)
begins with the byte location pointed to by the displacement
in TBS plus the source address in register R. When the in­
struction is completed, the destination address is incremented
by C, C is set to zero, and the source address remains un­
changed.

Case II: odd R field {Ru1=R}

Because of the interruptible nature of TRANSLATE BYTE
STRING, the results of the instruction are unpredictable
when an odd-numbered general regi ster is spec ifi ed by the
R field of the instruction word.

Case III: zero R field (Ru1=1)

Contents of register 1

The destination byte string begins with the byte location
poi nted to by the destination address in register 1 and is C
bytes in length. The source byte string (translation table)
begins with the location pointed to by the displacement in
TBS. When the instruction is completed, the destination
address is incremented by C and Cis set to zero.

HBS TRANSLATE AND TEST BYTE STRING
(Immediate displacement, continue after interrupt)

TRANSLATE AND TEST BYTE STRING compares the mask in
bit positions 0-7 of register R with source bytes in a byte
translation table. The destination byte strin9 begins with
the byte location pointed to by the destination address in
register Ru1, and is C bytes in length. The byte transla­
tion table and the translation bytes themselves are identical
to that described for the instructi on TRANSLATE BYTE
STRING. The destination byte string is examined {without
being changed} until a translation byte {source byte} isfound
that contai ns ali n any of the bit positions sel ected by a 1
in the mask. When such a translation byte is found, TTBS
replaces the mask with the logical product {AND} of the
transl ation byte and the mask, and termi nates with CC4 set
to 1. If the TTBS instruction terminates due to the above

condition, the count (C) in register Rul is one greater than
the number of bytes remaining to be compared and the des­
tination address in register Rul indicates the location of the
destination byte that caused the instruction to terminate. If
no translation byte is found that satisfies the above condi­
tion after the specified number of destination bytes have
been compared, TTBS terminates with CC4 reset to O. In
no case does the TTBS instruction change the source byte
stri ng.

Affected: (R), (Ru 1), CC4

If transl ated (SBS) n mask f 0, translated (SBS) n mask­
mask and stop

If translated (SBS) n mask = 0, continue

Condition code settings:

2 3 4 Result of TTBS

o translation bytes and the mask do not
compare ones anypl ace

the last translation byte compared with
the mask contained at least one 1 corre­
sponding to El 1 in the mask

If TTBS is indirectly addressed, it is treated as a nonexist­
ent instruction, in which case the computer unconditional I y
aborts execution of the instruction (at the time of opera­
tion code decoding) and traps to location X'40' with the
contents of regi ster R and the desti nati on byte stri ng un­
changed.

Case I: even, nonzero R field (Rul=R+l)

Contents of regi ster R

Contents of register R+ 1

Caunt I I D7SIinatian addr~ss I
o 1 2 314 5 6 78 9 10 llt12 13 14 1516 17 18 1912021222324252627128293031

The destination byte string begins with the byte location
pointed to by the destination address in register R+ 1 and is
C bytes in length. The source byte string (translation table)
begins with the byte location pointed to by the displacement
in TTBS plus the source address in register R.

Case II: odd R field

Because of the interruptible nature of TRANSLATE AND
TEST BYTE STRING, the results of the instruction are un­
predictable when an odd-numbered general register is speci­
fied by the R field of the instruction word.

Case III: zero R field (Ru 1 = 1)

Contents of register 1

The destination byte string begins with the byte location
pointed to by the destination address in register 1 and is C
bytes in length. The source byte string (translation table)
begins with the location pointed to by the displacement in
TTBS. In this case, the instruction automatically provides
a mask of eight l's. (This is an exception to the general
rule, used in the other byte string instructions, that register
o provides all O's as its contents.)

EBS EDIT BYTE STRING
(Immediate displacement, optional, continue after
interrupt)

EDIT BYTE STRING converts a decimal information field
from packed decimal format to zoned decimal format, under
control of the editing pattern in the destination byte string,
and replaces the destination byte string with the edited,
zoned result. (See page 52 for a description of packed and
zoned decimal formats.) EBS proceeds 1 byte at a time,
starting with the first (most significant) byte of the editing
pattern, and continues until all bytes in the editing pattern
have been processed. The fill character, contained in bit
positions 0-7 of register R, replaces the pattern byte under
specifi ed conditions. More tha n one decimal number field
can be edited by a single EBS instruction if the pattern in
memory is, in fact, a series of patterns corresponding to a
series of number fields. In such cases, however, after the
EBS instruction is completed, the condition code indicates
the result of the last decimal number field processed and
register 1 contains the byte address (or the byte address
plus 1) of the last significance indicator in the edited des­
tination byte string. (This allows the insertion of a floating
dollar sign, etc. with a subsequent instruction.)

The results of EBS are unpredictable if the R field of EBS is
an odd value, or if the R field of EBS is O.

Contents of regi ster R

Contents of reg i ster R+ 1

The destination byte string is an editing pattern that begins
in the byte I ocati on poi nted to by the desti nati on ad­
dress in register R+l, and is C bytes in length. The deci­
mal information field, which must be in packed decimal
format, begins with the byte location pointed to by the
displacement in EBS plus the source address in register R.
The decimal information field must contain legal decimal
digit and sign codes (packed format) and must begin with
a decimal digit.

The destination byte string (the editing pattern) may contain
any 8-bit codes desired. However, four byte codes in the

Byte String 61

editing pattern have special meanings. These codes are as
follows:

Binary value Function Abbrevi at ion

0010 0000 (X'20') Digit selector ds

00 1 a 000 1 (X 1 211) Significance start ss

0010 0010 (X '221) Field separation fs

0010 0011 (X'231) Immediate sig- si
n i fi canc e start

Before exec uti ng EBS, the condition code should be set to
0000 if the high-order digit of the decimal number is in the
left half of a byte, and should be set to 0100 if the high­
order digit is in the right half of a byte.

The editing operation performed on each pattern byte of the
destination byte string is determined by the following con­
ditions:

1. the pattern byte obtained from the destination byte
string

2. the decimal digit obtained from the decimal number
field

3. the current state of the condition code

Depending upon various combinations of these conditions,
the instruction EDIT BYTE STRING performs one (and only
one) of the following actions with the pattern byte and the
decimal digit:

1. the fill character (contents of bit positions 0-7 of reg­
ister R) or a blank character (character code X '40') re­
places the byte in the destination byte string

2. the decimal digit is expanded to zoned decimal format
(by generating X'Fd ', where d is the decimal digit) and
replaces the pattern byte in the destination byte string

3. the pattern byte remains unchanged

In general, the normal editing process is as follows:

1. Each byte of the destination byte string is replaced by
a fill character until significance is present, either in
the destination byte string or in the decimal informa­
tion field. Significance is indicated by any of the

,following:

a. the pattern byte is X'231 (immediate significance
start), which begins significance with the current
decimal digit.

b. the pattern byte is X'21 1 (significance start), which
begins significance with the following pattern byte.

c. the current decimal digit is nonzero, which begins
significance with the current pattern byte.

2. After significance is encountered, each pattern byte
that is X' 20 ' (digit selector), X'21 1 (significance start),
or X'231 (immediate significance start) is replaced by
a zoned decimal number from the decimal field and all

62 Byte String

oth er pattern bytes are unchanged. This process con­
tinues until any of the following conditions occur:

a. a positive sign is encountered in the decimal field,
in which case subsequent pattern bytes are replaced
by blank characters (X'40') until si!~nificance is
again present, until a field separator is encoun­
tered, or unti I the desti nation byte stri ng is entirel y
processed, whichever occurs first.

b. a negative sign is encountered in the decimal field,
in which case subsequent pattern bytes are unchang­
ed until significance is again present, until a field
separator is encountered, or until the destination
byte string is entirely processed, whichever occurs
first.

c. a pattern byte of X '22 1 (field separcJtor) is encoun­
tered, in which case the field separator is replaced
by a fi II character; subsequent pattern bytes are re­
placed by the fi II character untiJ significance is
again present, until a positive, or negative sign is
encountered, or until the destination byte string is
entirel y processed, whichever occurs first.

d. the destination byte string is entire~y processed, in
which case the computer executes the next i nstruc­
tion in sequence.

The detai led operation of EDIT BYTE STRING is as given
below.

The explanation is necessarily quite detailed due to the high
degree of flexibility inherent in EBS. Condition code set­
tings are made continuously during the editing process and
these settings help determine how each subsequent pattern
byte wi II be edited. The summary of condition code settings
given on the next page will help clarify the discussion below.

1. If the count in bit position 0-7 of register R+ 1 is a non­
zero, a pattern byte is obtained from the destination
byte string; if the count in register R+1 iis 0, the com­
puter executes the next instruction in sequence.

2. If the pattern byte is a digit selector (X!20 ', a signifi­
cance start (X '21 1), or immediate signifiicance start
(X'231), a digit is accessed from the decimal informa­
tion field as follows:

a. a decimal byte is obtained from the byte location
pointed to by the displacement in EBS plus the
source address in register R.

b. if bits 0-3 of the decimal byte are 0 sign code, the
computer automatically aborts execution of EBS and
traps to location X '4S., with the contents of reg­
ister R, register R+ 1, the condition code, and the
destination byte string unchanged from their cur­
rent contents.

c. if CC2 is currently set to 0, the digit to be
used for editing is the left digit (bits 0-3) of
the decimal byte; however, if CC2 is currently
set to 1, the digit is to be used is the right
digit (bits 4-7) of the decimal byte. In either
case, CC3 is set to 1 if the digH is nonzero.
If CC2 is set to 1 and the right digit (bits 4-7) of

the decimal byte is a sign code, the computer
automatically aborts execution of EB5 and traps
to location X'45 1 as described above.

d. one of the following editing actions is performed.

Conditions

Pattern byte=SI(X '231)

Pattern byte = S5(X'211)
CC4 = 1

Pattern byte = 55
CC4 = 0
nonzero digit

Pattern byte = SS
CC4 = 0
digit = 0

Pattern byte=OS(X'20')
CC4 = 1

Pattern byte = OS
CC4 = 0
nonzero digit

Pattern byte = OS
CC4 = 0
digit = 0

Action

Expand digit to zoned
format, store in pattern
byte location, and set
CC4 to 1 (start signifi­
cance)

Expand digit to zoned
format and store in pat­
tern byte location (be­
cause CC4 = 1 means
significance already
encountered

Expand digit to zoned
format, store in pattern
byte I ocati on, (because
nonzero digit begins
significance) and set
CC4 to 1

Store fi II character in
pattern byte location
(because significance
starts wi th next pattern
byte) and set CC4 to 1

Expand digit to zoned
format, and store digit
in pattern byte location

Expand digit to zoned
format, store digit in
patter n byte I ocati on,
and set CC4 to 1 to
signal significance

Store fi II character in
pattern byte I ocati on
(because significance
not encountered yet)

Mark

Mode 1

None

Model

Mode 2

None

Mode 1

None

e. if CC2 is currently reset to 0 and if bits 4-7 of the
decimal byte are a positive decimal sign code,
CCl is set to 1, CC4 is reset to 0, and the source
address in register R is incremented by 1. If CC2
is currently reset to 0 and if bits 4-7 of the deci­
mal byte are a negative decimal sign code, CCl
and CC4 are both set to 1, and the source address
is incremented by 1. Otherwise, CC2 is added to
the source address and then CC2 is inverted.

f. if marking is invoked at step d, above, one of the
two following marking operations are performed:

Mode 1: load bits 13-31 of register R+l into bit
positions 13-31 of register 1; bit positions
0-12 of register are unpredi ctable.

Mode 2: Load bits 13-31 of register R+l into bit
positions 13-31 of register 1 and then

3.

4.

increment the contents of register 1 by
1; bit positions 0-12 of register 1 are
unpredi ctabl e.

If marking is not applicable (i.e., significance has
not been encountered, the contents of register 1
are not affected.

If the pattern byte is a field separator (X '22 1), the fill
character is stored in the pattern byte location. CC 1,
CC3, and CC4 are all reset to OIS, and CC2 remains
unchanged.

If the pattern byte is not a digit selector, significance
start, immediate significance start or field separator,
one of the following actions are performed:

Conditions

CCl = 0
CC4 = 0

CCl = 1
CC4 = 0

CC4 = 1

Action

store fi II characteri n pattern byte
location

store blank character (X'40') in pattern
byte I ocati on

none (pattern byte remains unchanged)

5. Increment the destination address in register Rul, de­
crement the count in register Rul. If the count is still
nonzero, process the next pattern byte as above, other­
wise, execute the next instruction in sequence.

Affected: (R), (Rul) Traps: Unimplemented in-
(register 1), (OBS),CC struction, decimal

arithmetic
edited (SBS) - OBS

Condition code settings:

2

o

o

o

3 4 Resul t of EBS

o significance is not present, no sign digit
has been encountered

significance is present, no sign digit has
been encountered

o a positive sign has been encountered

a negative sign has been encountered

next digit to be processed is I eft digit
of byte

next digit to be processed is right digit
of byte

o no nonzero digit has been encountered

a nonzero digit has been ,encountered

If EBS is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to location X'40 ' with the contents
of register R, register Rul, register 1, the destination byte
string, and the condition code unchanged.

If the decimal instruction set is not implemented, the com­
puter unconditionally aborts execution of EBS (at the time
of operation code decoding) and traps to location X '41 1 with
the condition code, the contents of register R, register Rul,
register 1, and the destination byte string unchanged.

Byte String 63

If an illegal digit or sign is detected in the decimal infor­
mation field, the computer unconditionally aborts execution
of the instruction (at the time the illegal digit or sign is en­
countered) and traps to location X'45' with the contents of
register R, register Rul, register 1, the destination byte
string, and the condition code containing the results of the
last editing operation performed before the illegal digit or
sign was encountered.

In the following examples, the hexadecimal codes for the
digit sel ector (x'201), the significance start (X'21'), the
field separation (X'22 1), and the immediate significance
start (X I23') are represented by the character groups ds, ss,
fs, and si, respectively. Also, the symbol h is used to re
represent the character blank (X'40').

Exampl e 1, before execution:

The instruction word is: X 163600000'

The contents of register 6 are: X15C000100'

The contents of register 7 are: XIOC0010001

The contents of the decimal information field beginning at
byte location X l l001 are: 0000000+

The contents of the destination byte string beginning at
byte location XI10001 are:

ds ds, ds ds ss . ds ds 15 C R

The condition code is: 0000

Example 1, after execution:

The instruction word is unchanged

The new contents of register 6 are: X 15COOOl 04 1

The new contents of register 7 are: X10000100C'

The contents of the decimal information field are unchanged

The new contents of the destination byte string are:

******.001)-01)

The new condition code is: 1000

The contents of register 1 are: X'xxxOl006 1

By subsequent programming, a fl oati ng doll ar si gn can be
inserted in front of the first significant character of the
edited byte string by using the contents of register 1, minus
1, as the address of the byte location where the dollar sign
is to be inserted.

Example 2, before execution:

The initial conditions are identical to example 1, except
that the contents of the decimal information field are:
06 54 32 1-

Example 2, after execution:

The instruction word and the decimal field are unchanged

The new contents of registers 6 and 7 are identical to those
given for example 1

The new contents of the desti nati on byte stri ng are

*6,543.21i5CR

64 Byte Stri ng/Push-Down

The new condition code is: 1011

The new contents of register 1 are: X IxxxOl 001 1

Example 3, before execution:

The initial conditions are identical to example 1, except
that the contents of the decimal field are:

0054 32 1+

Example 3, after execution:

The instruction word and the decimal field are unchanged

The new contents of registers 6 and 7 are identica I to that
gi ven for exampl e 1

The new contents of the destination byte string are

***543.211)1)1)

The new condition code is: 1010

The new contents of register 1 are: X IxxxOl 003'

Example 4, before execution:

The instruction word is: X 163400100'

The contents of register 4 are: X'7B0010001

The contents of register 5 are: X 1190020001

The contents of the decimal information field beginning at
byte I ocati on X III 001 are:

06 12 50 0+ 01 23 4+ 03 5-

The contents of the destination byte string beginning at
byte location X 120001 are:

Adsdssi. dsdsdsfsBdsdsss. dsdsCfsDsidsdsEND

The condition code is: 01 00

Example 4, after execution:

The instruction word is unchanged

The new contents of register 4 are: X'7B001009 1

The new contents of register 5 are: X100002019'

The decimal information field is unchanged

The new contents of the destination byte string are:

6 1 2 . 500 # # # 1 2 . 3 41> # # 035 END

The new condition code is: 1011

The new contents of register 1 are: X l xxx02013 1

PUSH-DOWN INSTRUCTIONS

The term IIpush-down processing" refers to the programming
technique (used extensively in recursive rout"ines) of storing
the context of a calculation in memory, proceeding with a
new set of information, and then activating the previously
stored information. Typically, this process involves a re­
served area of memory (stack) into which operands are
pushed (stored) and from which operands are pulled
(loaded) on a last-in, first-out basis. The SIGMA 7 computer

provides for simplified and efficient programming of push­
down processing by means of the following instructions:

Instruction Name Mnemonic Page

Push Word PSW 66
Pull Word PLW 66
Push Multiple PSM 67
Pull Multiple PLM 67
Modify Stack Poi nter MSP 68

STACK POINTER DOUBLEWORD

Each of these instructions operates with respect to a memory
stack that is defined by a doubleword located at the effec­
tive address of the instruction. This doubleword, referred
to as a stack pointer doubleword (SPD), has the following
structure:

Bit positions 15 through 31 of the SPD contai n a 17-bit ad­
dress field that points to the location of the word currently
at the top (highest-numbered address) of the operand stack
in a push operation, the top-of-stack address is incremented
by 1 and then an operand ina general regi ster is pushed
(stored) into that location, thus becoming the contents of
the new top of the stack; the contents of the previous top of
the stack remain unchanged. In a pull operation, the con­
tents of the current top of the stack are pulled (loaded) into
a general register and then the top-of-stack address is de­
cremented by 1; the previ ous contents of the stack re­
main unchanged.

Bit positions 33 through 47 of the SPD, referred to as the
space count, contai n a 15-bit count (0 to 32,767) of the
number of word locations currently available in the region
of memory allocated to the stack. Bit positions 49 through
63 of the SPD, referred to as the word count, contain a 15-
bit count (0 to 32,767) of the number of words currently in
the stack. In a push operation, the space count is decre­
mented by 1 and the word count is incremented by 1; ina
pull operation, the space count is incremented by 1 and the
word count is decremented by 1. At the beginning of a"
push-down instructions, the space count and the word count
are each tested to determine whether or not the instruction
would cause either count field to be incremented above the
upper limit of 215-1 (32,767), or to be decremented below
the lower limit of O. If execution of the push-down instruc­
tion would cause either count limit to be exceeded, the
computer unconditionally aborts execution of the instruc-
ti on, wi th the stack, the stack poi nter doubl eword, and the
contents of general registers unchanged. Ordinarily, the
computer traps to location X '42 1 after aborting a push-down
instruction because of impending stack limit overflow or
underflow, and with the condition code unchanged from the
value it cOl1tained before execution of the instruction.

However, this trap action can be selectively inhibited by
setting either (or both) of the trap inhibit bits in the SPD to 1.

Bit position 32 of the SPD, referred to as the trap-on-space
(TS) inhibit bit, determines whether or not the computer is
to trap to location X'42 1 as a result of impending overflow
or underflow of the space count (SPD33-47), as follows:

TS Space count overflow/underflow action

° If the execution ~f a pull instruction would cause the
space count to exceed 215-1, or if the execution of a
push instruction would cause the space count to be less
than 0, the computer traps to location X'42 1 with the
condition code unchanged.

Instead of trapping to location X '42 1
, the computer

sets CCl to 1 and then executes the next instruction
in sequence.

Bit position 48 of the SPD, referred to as the trap-on-word
(TW) inhibit bit, determines whether or not the computer is
to trap to location X'42 1 as a result of impending overflow
or underflow of the word count (SPD49-63)' as follows:

TW Word count overflow/underflow action

° If the execution of a push instruction would cause the
word count to exceed 215_1, or if the execution of a
pull instruction would cause the word count to be less
than 0, the computer traps to location X'42 1 with the
condition code unchanged.

Instead of trapping to location X'42 1
, the computer

sets CC3 to 1 and then executes the next instruction
in sequence.

PUSH-DOWN CONDITION CODE SETTINGS

If the execution of a push-down instruction is attempted and
the computer traps to location X '421

, the condition code re­
mains unchanged from the value it contained immediately
before the instruction was executed.

If the execution of a push-down instruction is attempted and
the instruction is aborted because of impending stack limit
overflow or underflow (or both) but the push-down stack
limit trap is inhibited by one (or both) of the inhibits (TS
and TW), then, CC 1 or CC3 is set to 1 (or both are set to
lis) to indicate the reason for aborti ng the push-down i n­
struction, as follows:

2 3 4

°

o

Reason for abort

impending overflow of word count on a
push operation or impending underflow
of word count on a pull operation. The
push-down stack limit trap was inhibited
by the TW bit (SPD 48)

impending overflow of space count on a
pull operation or impending underflow
of space count on a push operation. The
push-down stack limit trap was inhibited
by the TS bit (SPD

32
)

Push-Down 65

2 3 4 Reason for abort

impending overflow of word count and
underflow of space count on a push op­
eration or impending overflow of space
count and underflow of word count on
a pull operation. The push-down stack
limit trap was inhibited by both the TW
and the TS bits

If a push-down instruction is successfully executed, CC1
and CC3 are reset to 0 at the completion of the instruction.
Also, CC2 and CC4 are independently set to indicate the
current status of the space count and the word count, re­
spectively, as follows:

2 3 4 Status of space and word counts

o 0 the current space count and the current
word count are both greater than zero

o the current space count is greater than
zero, but the current word count is zero,
indicating that the stack is now empty.
If the next operation on the stack is a
pull instruction, the instruction will be
aborted

o the current word count is greater than
zero, but the current space count is zero,
indicating that the stack is now full. If
the next operation on the stack is a push
i nstructi on, the i nstructi on wi II be aborted

If the computer does not trap to location X I 421 as a result
of impending stack I imit overflow/underflow, CC2 and
CC4 indicate the status of the space and word counts at
the termi nati on of the push-down i nstructi on, regard I ess
of whether or not the space and word counts were actually
modified by the instruction. In the following descriptions
of the push-down instruction, only those condition codes
are given that can actually be produced by the instruction,
provided the computer does not trap to location X 1421.

PSW PUSH WORD

(Doubleword index alignment)

PUSH WORD stores the contents of register R into the push­
down stack defined by the stack pointer doubleword located
at the effective doubleword address of PSW. If the push
operation can be successfully performed, the instruction
operates as follows:

1. The current top-of-stack address (SPD15-31) is incre­
mented by 1, to point to the new top-of-stack
location.

2. The contents of register R are stored in the location
pointed to by the new top-of-stack address.

3. The space count (SPD33-47) is decremented by 1 and
the word count (SPD49-63) is incremented by 1.

66 Push-Down

4. The condition code is set to reflect the new status of
the space count.

Affected: (SPD), (TSA+1), Trap: push-down stack limit
CC

(SPD)15_31 + 1 -SPD15_31

(R) - (SPD 15-31)

(SPD)33_47 - 1 -- SPD33_47

(SPD)49_63+ l-SPD 49-63

Condition code settings:

1 2 3 4 Result of PSW

0 0 0 0 space count is greater
than 0

0 0 0 space count is now 0

0 0 0 word count = 215_1,
TW = 1

0 0 space count = 0,
TS = 1

0 space count = 0, word
count = 0, TS = 1

0 word count = 215- 1,
space count = 0,
TW = 1, and TS = 1

PLW PULL WORD
(Doubleword index alignment)

}
instruct ion
completed

instruction
aborted

PULL WORD loads register R with the word currently at the
top of the push-down stack defi ned by the sf,(lck poi nter
doubleword located at the effective doubleword address of
PLW. If the pull operation can be performed successfully,
the instruction operates as follows:

1. Register R is loaded with the contents of the location
pointed to by the current top-of-stack address

(SPD 15-31)·

2. The current top-of-stack address is decremented by 1,
to point to the new top-of-stack location.

3. The space count (SPD33-47) is increme'nted by 1 and
the word count (SPD49-63) is decremented by 1.

4. The condition code is set to reflect the status of the
new word count.

Affected: (SPD), (R), CC Trap: Push-down stack limit

«SPD)15_31) - R; (SPD)15_31 -1 - SPD 15_31

(SPD)33-47 + 1 - SPD 33_4i (SPD 49-63- 1

-SPD49- 63

Condition code setti ngs:

2 3 4 Result of PLW

0 0 0 0 word count is greater
than 0 instruction

0 0 0 word count is now 0
completed

0 0 word count = 0, TW = 1

0 space count = 0,
word count = 0, TW = 1

0 0 0 space count=215-1, i nstructi on
TS = 1 aborted

0 space count = 2 15-1,
word count = 0, TS = 1
and TW = 1

PSM PUSH MULTIPLE
(Doub I eword index a Ii gnment)

PUSH MULTIPLE stores the contents of a sequential set of
general registers into the push-down stack defined by the
stack poi nter doubl eword located at the effective doubl e­
word address of PSM. The condition code is assumed to
contain a count of the number of registers to be pushed in­
to the stack. (An initial value of 0000 for the condition
code specifies that all 16 general registers are to be pushed
into the stack.) The registers are treated as a circular set
(with register 0 following register 15) and the first register
to be pushed into the stack is register R. The last register
to be pushed into the stack is register R+CC-1, and the
contents of this register become the contents of the new
top-of-stack location.

If there is sufficient space in the stack for all of the speci­
fi ed reg i sters, PSM operates as follows:

1. The contents of registers R to R + CC -1 are stored in
an ascending sequence, beginning with the location
pointed to by the current top-of-stack address
(SPD15-31) plus 1 and ending with the current top­
of-stack address plus Cc.

2. The current top-of-stack address is incremented by the
value of CC, to point to the new top-of-stack location.

3. The space count (SPD33- 47) is decremented by the
val ue of CC and t he word count is incremented by
the value of Cc.

4. The condition code is set to reflect the new status of
the space count.

Affected: (SPD), (TSA+ 1) to Trap: Push-down stack limit
(TSA+CC), CC

(R)-(SPD)15_31 + 1 ... (R+CC-1)-(SPD)15_31+CC

(SPD)15_31+CC - SPD 15- 31

(SPD)33_47-CC - SPD 33- 47

(SPD)49_63+CC-SPD 49-63

Condition code settings:

2 3 4 Result of PSM

0 0 0 0 space count> 0

0 0 0 space count = 0

0 0 0 word count + CC >
215_1, TW = 1

0 0 0 space count < CC,
TS = 1

0 0 space count < CC,
word count = 0,
TS = 1

0 0 space count < CC,
word count+ CC >
215_1, TS = 1,
and TW = 1

0 0 space count = 0,
TS = 1

0 space count = 0,
word count = 0,
TS = 1

0 space count = 0,
word count + CC >
215-1, TS = 1,
and TW = 1

instruction
completed

i nstructi on
aborted

instruction
aborted

If the instruction starts storing words into an accessible re­
gion of memory and then crosses into an inaccessible memory
region, either the memory protection trap or the nonexi stent
memory address trap can occur. In ei ther case, the trap is
activated with the condition code unchanged from the value
it contained before the execution of PSM. The effective ad­
dress of the instruction permits the trap routine to compute
how many words of memory have been changed. Since it is
permissible to use indirect addressing through one of the af­
fected I ocati ons, or even to execute an i nstructi on located
in one of the affected locations; a trapped PSM instruction
may have already overwritten the direct address, or the
PSM instruction itself, thus destroying any possibility of
conti nuing the program successful I y. If such programming
must be done, it is advisabl e that the direct address, or the
PSM instruction, occupy the last location in which the con­
tents of a register are to be stored by the PSM instruction.

PlM PULL MULTIPLE
(Doub I eword index a Ii gnment)

PULL MULTIPLE loads a sequential set of general registers
from the push-down stack defined by the stack poi nter
doubleword located at the effective doubleword address
of PLM. The condition code is assumed to contain a count
of the number of words to be pulled from the stack. (An in­
itial value of 0000 for the condition code specifies that 16
words are to be pu II ed from the stack.) The regi sters are
treated as a circular set (with register 0 following register

Push-Down 67

15), the first register to be loaded from the stack is register
R + CC -1, and the contents of the current top-of-stack lo­
cation become the contents of this register. The last reg­
ister to be loaded is register R.

If there is a sufficient number of words in the stack to load
all of the specified registers, PLM operates as follows:

1. Registers R + CC -1 to register R are loaded in a de­
scending sequence, beginning with the contents of
the location pointed to by the current top-of-stack
address (SPD15-31) and ending with the contents of
the location pointed to by the current top-of-stack
address minus CC -1.

2. The current top-of-stack address is decremented by
the value of CC, to point to the new top-of-stack
location.

3. The space count (SPD33-47) is incremented by the
val ue of CC and the word count is decremented by
the va lue of Cc.

4. The condition code is set to reflect the new status
of the word count.

Affected: (SPD), (R+CC-1) Trap: Push-down stack limit
to (R), CC

((SPD)15_31) - R + CC -1,

((SPD)15_31 -ICC- 1 1)-R

(SPD)15_31 - CC -SPD 15_31

(SPD)33-47 + CC --SPD 33_47

(SPD) 49-63 - CC -SPD 49-63

Condition code settings:

2 3 4 Result of PLM

o 0 0 0 word count> 0

o 0 0 word count = 0

o o

o 0

o

o

o o

o

o

o word count < CC,
TW = 1

o

o

o

word count = 0,
TW = 1

space count = 0,
word count < CC,
TW = 1

space count = 0,
word count = 0,
TW = 1

space count+ CC >2 15_1
TS = 1

space count+CC>215-1,
word count<CC, TS=l,
and TW = 1

space count+CC>2 15_1,
word count = 0, TS = 1,
and TW = 1

68 Push-Down

}
instruction
completed

instruction
aborted

If the instruction starts loading from an existent region of
memory and then crosses a memory page boundary into an
inaccessible memory region, either the memory protection
trap or the nonexi stent memory address trap can occur. In
either case, the trap is activated with the condition code
unchanged from the val ue it contained before the execution
of PLM. The effective address of the instruction permits
the trap routine to compute how many registers have been
loaded. Since it is permissible to use indexing or indirect
addressing through a general register, or even to execute
an instruction located in a general register, a trapped PLM
instruction may have already overwritten the index, direct
address, or the PLM instruction itself, thus destroying any
possibility of continuing the program successfully. If such
programming must be done, it is advisable that the register
containing the direct address, index displacement, or in­
struction be the last register loaded by the PlM instruction.

MSP MODIFY STACK POINTER
(Doubleword index al ignment)

MODIFY STACK POINTER modifies the stack pointer double­
word, located at the effective doubleword address of MSP,
by the contents of register R. Register R is assumed to have
the following format:

Bit positions 16 through 31 of register R are treated as a
signed integer, with negative integers in two's complement
form (i.e., a fixed-point halfword). The modifier is alge­
braicall y added to the top-of-stack address, subtracted from
the space count, and added to the word count in the stack
pointer doubleword. If, as a result of MSP, either the space
count or the word count would be decreased below 0 or in­
creased above 2 15_1, the instruction is aborted. Then, the
computer either traps to location X'42' or set·s the condition
code to refl ect the reason for aborti ng, dependi ng on the
stack limit trap inhibits.

If the modification of the stack pointer doubleword can be
successfu" y performed, MSP operates as follows:

1. The modifier in register R is algebraically added to the
current top-of-stack address (SPD}]5-31, to point to a
new top-of-stack location. (If the modifier is negative,
it is extended to 17 bits by appending a hi~3h-order 1.)

2. The modifier is algebraically subtracted from the cur­
rent space count (SPD33- 47) and the result becomes
the new space count.

3. The modifier is algebraically added to the current word
count (SPD49-63) and the result becomes the new word
count.

4. The conditi on code is set to ref I ect the new status of
the new space count and new word count.

Affected: (SPD), cc Trap: Push-down stack limit

(SPD)15_31 + (R)16-31 SE -SPD15_31

(SPD)33_47 - (R)16-31 -SPD33_47

(SPD)49_63 + (R)16-31 - SPD 49-63

Condition code settings:

2 3

0 0 0

0 0 0

0 0

0 0

4

0

0

Result of MSP

space count> 0,
word count> 0

space count> 0,
word count = 0

space count = 0,
word count> 0

space count = 0,
word count = 0,
modifier = 0

instruction
completed

If CC1, or CC3, or both CC1 and CC3 are lis after exe­
cution of MSP, the instruction was aborted but the push­
down stack limit trap was inhibited by the trap-on-space
inhibit (SPD32), by the trap-on-word inhibit (SPD48), or
both. The condition code is set to refl ect the reason for
aborting as follows:

2

o

o

3 4 Status of space count and word count

o word count > 0

o
word count = 0

o :5 word count + modifier :5 215_1

word count + modifier < 0, and TW = 1
or word count + modifier> 215_1 and
TW = 1

space cou nt > 0

space count = 0

0::; space count - modifier::; 215-1

space count - modifier < 0, and TS = 1
or space count - modifier> 215-1
TS = 1

EXECUTE/BRANCH INSTRUCTIONS

The EXECUTE instruction can be used to insert another in­
struction into the program sequence, and the branch instruc­
tions can be used to alter the program sequence, either
unconditi onall y or condi ti onall y. If a branch is uncondi­
tiona� (or conditional and the branch condition is satisfied),
the instruction pointed to by the effective address of the
branch instruction is normally the.next instruction to be ex­
ecuted. If a branch is conditional and the condition for
the branch is not satisfied, the next instruction is normall y
taken from the next location, in ascending sequence, after
the branch instruction.

Prior to the time that an instruction is accessed from memory
for execution, bit positions 15-31 of the program status
doubleword contain the virtual address of the instruction,
referred to as the instruction address. At this time, the

computer traps to location X'40 ' if the actual address of
the instruction is nonexistent or instruction-access pro­
tected. If the instruction address is existent and is
not instruction-access protected, the instruction is ac­
cessed and the instruction address portion of the program
status doubleword is incremented by 1, so that it now con­
tains the virtual address of the next instruction in sequence
(referred to as the updated instruction address).

If a trap condition occurs during the execution sequence of
any instruction, the computer decrements the updated in­
struction address by 1 and then traps to the location assigned
to the trap condition. If neither a trap condition nor a
satisfied branch condition occurs during the execution of an
instruction, the next instruction is accessed from the location
pointed to by the updated instruction address. If a satisfied
branch condition occurs during the execution of a branch
instruction (and no trap condition occurs), the next instruc­
tion is accessed from the location pointed to by the effec­
tive address of the branch instruction. Thus, during execu­
tion of a branch instruction, the updated instruction address
is decremented, unchanged, or replaced, as determined by
the following critera:

1. Trap condition. A nonallowed operation trap condition
can occur during execution of a branch instruction, but
only if an attempt is made to access either a nonexis­
tent memory address or an address that is not avai I abl e
to the slave program for instruction access. The trap
condition occurs in the following situations:

a. The branch instruction is indirectly addressed, but
the address of the I ocati on conta i ni ng the di rec t
address is ei ther nonexi stent or unavai I abl e to the
slave program for read access.

b. The branch instruction is unconditional (or the
branch is conditional and the condition for the
branch is satisfied), but the effective address of
the branch instruction is unavailable to the slave
program for i nstructi on access.

c. The effective address of any branch instruction
(conditional or unconditional) is nonexistent.

If any of the above situations occur, the computer
aborts execution of the branch instruction, decrements
the updated instruction address by 1, and traps to loca­
tion X'40'. In this case, the instruction address value
(IA) stored by the XPSD instruction in location X'40 ' is
the address of the aborted branch instruction.

2. No branch condition. If the branch instruction is con­
ditional, the condition for the branch is not satisfied,
and no trap condition occurs, the updated instruction
address remains unchanged. Then, instruction execu­
tion proceeds with the instruction pointed to by the
updated instruction address.

3. Branch condition. If the branch instruction is uncon­
ditional (or if the branch instruction is conditional and
the condition for the branch is satisfied) and no trap
condition occurs, the updated instruction address is
replaced by the effective virtual address of the branch
instruction. Then, instruction execution proceeds with
the instruction pointed to by the effective virtual ad­
dress of the branch instruction.

Execute/Branch 69

EXC EXECUTE
0/Vord index alignment)

EXECUTE causes the computer to access the instruction in
the location pointed to by the effective address of EXU and
execute the subject instruction. The execution of the sub­
ject instruction, including the processing of trap and in­
terrupt conditions, is performed exactly as if the subject
instruction were initially accessed instead of the EXU in­
struction. If the subject instruction is another EXU, the
computer executes the subject instruction pointed to by the
effective address of the second EXU as described above.
Such "chains ll of EXECUTE instructions may be of any length,
and are processed (without affecting the updated instruction
address) until an instruction other than EXU is encountered.
After the final subject instruction is executed, instruction
execution proceeds with the next instruction in sequence
after the initial EXU (unless the subject instruction is an
LPSD or XPSD instruction, or is a branch instruction and
the branch condition is satisfied).

If an interrupt activation occurs between the beginning of
an EXU instruction (or chain of EXU instructions) and the
last interruptible point in the subject instruction, the com­
puter processes the interrupt-servicing routine for the ac­
tive interrupt I evel and then returns program control to the
EXU instruction (or the intial instruction of a chain of
EXU instructions), which is started anew. Note that a pro­
gram is interruptible after every instruction access, includ­
ing accesses made with the EXU instruction, and the inter­
ruptibility of the subject instruction is the same as the
normal interruptibil ity for that instruction.

If a trap condition occurs between the beginning of an EXU
instruction (or chain of EXU instructions) and the completion
of the subject instruction, the computer traps to the appro­
priate trap location. The instruction address stored by the
XPSD instruction in the trap location is the address of the
EXU instruction (or the initial instruction of a chain of
EXU instructions).

Affected: Determi ned by
subject instruction

Traps: Determined by
subj ect instruction

Condition code settings: Determined by subject instruction

BCS BRANCH ON CONDITIONS SET
(Word index alignment)

BRANCH ON CONDITIONS SET forms the logical product
(AND) of the R fi eld of the instruction word and the current
condition code. If the logical product is nonzero, the
branch condition is satisfied and instruction execution pro­
ceeds with the instruction pointed to by the effective ad­
dress of the BCS instruction. However, if the logical
product is zero, the branch condition is unsatisfied and
instruction execution then proceeds with the next instruc­
tion in normal sequence.

70 Execute/Branch

Affected: (IA) if CC n R =I 0

If CC n (1)8-11 =I 0, EVA 15_31 - IA

If CC n (1)8-11 = 0, IA not affected

If the R field of BCS is 0, the next instruction to be exe­
cuted after BCS is always the next instruction in ascending
sequence, thus effectively producing a "no operation"
instruction.

BCR BRANCH ON CONDITIONS RESET
0/Vord index alignment)

BRANCH ON CONDITIONS RESET forms the logical pro­
duct (AND) of the R field of the instruction word and the
current condition code. If the logical product is zero, the
branch condition is satisfied and instruction execution then
proceeds with the instruction pointed to by the effective ad­
dress of the BCR instruction. However, if the logical pro­
duct is nonzero, the branch condition is unsatisfied and in­
struction execution then proceeds with the next instruction
in normal sequence.

Affected: (IA) if CC n R = 0

If CC n (1)8-11 = 0, EVA 15_31 - IA

IF CC n (1)8-11 =I 0, IA not affected

If the R field of BCR is 0, the next instruction to be execu­
ted after BCR is always the instruction located at the effec­
tive address of BCR, thus effectively producing a "branch
unconditionall y" instruction.

BI R BRANCH ON INCREMENTING REGISTER
(Word index al ignment)

65
o I 2

BRANCH ON INCREMENTING REGISTER increments the
contents of general register R by 1. If the result is a nega­
tive value, the branch condition is satisfied ond instruction
execution then proceeds with the instruction pointed to by
the effective address of the BIR instruction. However, if
the result is zero or a positive value, the bronch condition
is not satisfied and instruction execution proceeds with the
next instruction in normal sequence.

Affected: (R), (IA)

(R) + 1 - R

If (R)O = 1, EVA
15

_
31

- IA

If (R)O = 0, IA not affected

If the effective address of BIR is unavailable to the slave
program for instruction access and the branch condition is
satisfied, or if the effective address of BIR is nonexistent,

the computer aborts execution of the BIR instruction and
traps to location X'40'. In this case, the instruction address
stored by the XPSD instruction in location X '40 ' is the vir­
tual address of the aborted BIR instruction. If the computer
traps because of instruction access protection, register R will
contain the value that existed just before the BIR instruction.

BDR BRANCH ON DECREMENTING REGISTER
(Word index alignment)

BRANCH ON DECREMENTING REGISTER decrements the
contents of general register R by 1. If the result is a positive
value, the branch condition is satisfied and instruction exe­
cution then proceeds with the instruction pointed to by the
effective address of the BDR instruction. However, if the
result is zero or a negative value, the branch condition is
unsatisfied and instruction execution proceeds with the next
instruction in normal sequence.

Affected: (R), (I A)

(R) - 1- R

If (R)O = 0 and (R)1-31 "10, EVA 15_31 - IA

if (R)O = 1 or (R) = 0, IA not affected

If the effective address of BDR is unavailable to the slave
program for i nstructi on access and the branch .condi ti on is
satisfied, or if the effective address of BDR is nonexistent,
the computer aborts execution of the BDR instruction and
traps to location X'40'. In this case, the instruction address
stored by the XPSD instruction in location X ' 40 ' is the vir­
tual address of the aborted BDR instruction. If the computer
traps because of instruction access protection, register R will
contain the value that existed just before the BDR instruction.

BAL BRANCH AND LINK
(Word index alignment)

BRANCH AND LINK determines the effective virtual ad­
dress, loads the updated instruction address (the virtual ad­
dress of the next instruction in normal sequence after the
BAL instruction) into bit positions 15-31 of general regis­
ter R, clears bit position 0-14 of register R to OIS and then
replaces the updated instruction address with the effective
virtual address. Instruction execution proceeds with the
instruction pointed to by the effective address of the BAL
instruction.

Affected: (R), (IA)

IA - R
15

_
31

;0 -R
O

-
14

; EVA
15

_
31

- IA

If the effective address of BAL is either nonexistent or is
unavailable to the slave program for instruction access,

the computer aborts execution of the BAL instruction (after
loading the updated instruction address into register R) and
traps to location X'40'. In this case, the instruction ad­
dress stored by the XPSD instruction in location X '40 ' is
the virtual address of the BAL instruction.

CALL INSTRUCTIONS

Each of the four CALL instructions causes the computer to
trap to a specific location for the next instruction in se­
quence. The four CALL instructions, their mnemonics,
and the locations to which the computer traps are:

Instructi on Name Mnemonic Trap Location

CALL 1 CAll X '48 1

CALL 2 CAL2 X '491

CALL 3 CAL3 X '4A I

CALL 4 CAL4 X I 4B I

Each of these four trap locations must contain an EXCHANGE
PROGRAM STATUS DOUBLEWORD (XPSD) instruction. Exe­
cution of XPSD in the trap location for a CALL instruction is
described on page 72. If the XPSD instruction is coded with
bit position 9 set to 1, the next instruction (executed after
the XPSD) is taken from one of 16 possible locations, as des­
ignated by the value in the R field of the CALL instruction.
Each of the 16 locations may contain an instruction that
causes the computer to branch to a speci fi c routi nei thus,
the four CALL instructions can be used to enter any of as
many as 64 unique routines.

CAll CALL 1
(Word index al ignment)

CALL 1 causes the computer to trap to location X'48 1•

CAL2 CALL 2
(Word index alignment)

CALL 2 causes the computer to trap to location X 1491.

CAL3 CALL 3
(Word index alignment)

CALL 3 causes the computer to trap to location X'4A'.

CAL4 CALL 4
(Word index al ignment)

CALL 4 caUses the computer to trap to location X'4B'.

Call 71

CONTROL INSTRUCTIONS

The following privileged instructions are used to control
the basic operating conditions of the SIGMA 7 computer:

Instruction Name Mnemonic Page ----
load Program Status Doubleword lPSD 72
Exchange Program Status Doubleword XPSD 72
load Register Pointer lRP 74
Move to Memory Control MMC 74
Wait WAIT 76
Read Direct RD 77
Write Direct WD 77

If execution of any control instruction is attempted while
the computer is in the slave mode (i.e., while bit 8 of the
current program status doubleword is a 1), the computer un­
conditionally aborts execution of the instruction (at the time
of operation code decoding) and traps to location X 1401•

PROGRAM STATUS DOUBLEWORD
The SI GMA 7 program status doubl eword has the foil owi ng
structure when stored in memory:

Bit Desig-
Position nation Function

0-3 CC Condition code

5 FS Floating significance mask

6 FZ Floating zero mask

7 FN Floating normalize mask

8 MS Master/SI ave mode control

9 MM Memory Map mode control

10 DM Decimal arithmetic trap mask

11 AM Fixed-point arithmetic overflow trap mask

15-31 IA Instruction address

34,35 WK Write key

37 CI Counter interrupt group inhibit

38 II I/o interrupt group inhibit

39 EI External interrupt inhibit

55-59 RP Register pointer

The' detailed functions of the various portions of the SIGMA
7 program status doubl eword are descri bed on page 15.

LPSD LOAD PROGRAM STATUS DOUBlEWORD
(Doubleword index alignment, privileged)

LOAD PROGRAM STATUS DOUBLEWORD replaces bits 0
through 39 of the current program status doubleword with
bits 0 through 39 of the effective doubleword. The follow­
ing conditional operations are also performed:

72 Control

1. If bit position 8 (lP) of LPSD contains a 1" bits 55
through 59 of the current program status doubl eword
(register pointer) are replaced by bits 55 through 59
of the effective doubleword; if bit 8 of LPSD is a 0,
the current register pointer value remains unchanged.

2. If bit position 10 (Cl) of lPSD contains a 1, the
highest-priority interrupt level currently in the active
state is cleared (i. e., reset to either the armed state
or the disarmed state); the interrupt leve! is armed if
bit 11 of lPSD (AD) is a 1, or is disarmed if bit 11 of
lPSD is O. If bit 10 of lPSD is a 0, no interrupt level
is affected in any way, regardless of whether bit 11
of lPSD is 1 or O. (Interrupt levels are described in
detai I on page 18.)

Those portions of the effective doubleword th(Jt correspond
to undefined fields in the program status doubleword are
ignored.

Affected: (PSD), interrupt system if (1)10 = 1

ED
O

_
3

- CCi ED
5

_
7

- FS, FZ, FN

ED
8
--MS; ED

9
-MM

ED
10

-DM; ED
11

-AM

ED
15

_
31
--WK; ED

34
_

35
WK

ED
37

_
39

- CI, II, EI; If (1)8 = 1, ED
55

_
59

- RP

If (1)10 = 1 and (1)11 = 1, clear and arm interrupt

If (1)11 = 1 and (1)11 = 0, clear and disarm interrupt

XPSD EXCHANGE PROGRAM STATUS DOU BLEWORD
(Doubleword index al ignment, privi leged)

EXCHANGE PROGRAM STATUS DOUBLEVvORD stores the
entire program status doubl eword and then replaces the cur­
rent program status doubleword with a new program status
doubleword.

Use of the memory map in interpreting the XPSD instruction
address depends on the combined settings of bit 9 of the
current PSD and bit 10 of the XPSD instruction, and on
whether or not the XPSD is executed in an interrupt or trap
location as the result of an interrupt or trap:

1. If the XPSD instruction is executed in em interrupt or
trap location, the map is used to interpret the indirect
reference address and the effective address if, and only
if, a 1 is contained in bit positions 9 (MM) of the cur­
rent PSD and 10 (MP) of XPSD.

2. The same logic applies with one exception when the
instruction is not executed in an interrupt or trap lo­
cation. The exception is that if the program is in the
mapping mode (PSD9 = 1), the map is used to interpret
the indirect reference address regardless of the state
of XPSD 1O.

These conditions are summarized in the truth table shown
below. General information on memory addressing is con­
tained in Chapter2 under "Memory Control Storage", "Mem­
ory Reference Addresses", and "Memory Address Control".

XPSD lO PSD9 XPSD Address Type Map?

1
Ind. Ref. Addr. yes

1
Effect. Addr. yes

a Ind. Ref. Addr. no
Effect. Addr. no

1
Ind. Ref. Addr. no I yest

a Effect. Addr. no

a Ind. Ref. Addr. no
Effect. Addr. no

t"Yes" only if XPSD ~ executed in an interrupt or
trap location.

The current program status doubleword is stored in the double­
word location pointed to by the effective address of XPSD
in the following form:

The current program status doubleword is replaced by a new
program status doubleword as follows:

1. The effective address of XPSD is incremented by 2, so
that it points to the next doubleword location. The ad­
dress thus generated is subject to the same mapping con­
sideration as the original effective address (i.e., mapping
is performed with the new address if bit 10 of XPSD is
a 1 and bit 9 of the current program status doubl eword
is also a 1; otherwise, mapping is not performed). The
contents of the next doubl eword location are referred
to as the second effective doubleword, or ED2.

2. Bits a through 35 of the current program status double­
word are unconditionally replaced by bits a through 35
of the second effective doubl eword. The affected por­
tions of the program status doubleword are:

Bit
Position Designation Function

0-3 CC Condition code

5-7 FS, FZ, FN Floating control

8 MS Master/slave mode control

9 MM Mapping mode control

10 DM Decimal arithmetic trap mask

11 AM Fixed-point arithmetic trap mask

15-31 IA Instruction address

34-35 WK Write key

3. A logical inclusive OR is performed between bits 37
through 39 of the current program status doubleword

and bits 37 through 39 of the second effective double­
word.

Bit
Position Designation Function

37 CI Counter interrupt inhibit

38 II I/O interrupt inhibit

39 EI External interrupt inhibit

If any (or all) of bits 37, 38, or 39 of the second effec­
tive doubleword are OIS, the corresponding bits in the
current program status doubleword remain unchanged;
if any (or all) of bits 37, 38, or 39 of the second effec­
tive doubleword are 1's, the corresponding bits in the
current program status doubl eword are set to lis. See
page 19 for a detai I ed discussion of the interrupt inhibits.

4. If bit position 8 (LP) of XPSD contains a 1, bits 55-59 of
the current program status doubleword (register pointer)
are replaced by bits 55 through 59 of the second effec­
tive doubl eword; if bit 8 of XPSD is a 0, the current
register pointer value remains unchanged.

The following additional operations are performed on the new
program status doubleword if, and only if the XPSD is being
executed as the result of a nonallowed operation (trap to lo­
cation X'40 1

) or a CALL instruction (trap to location X'48',
X'49', X'4A', or X'4B'):

1. Nonallowed operations - the following additional func­
tions are performed when XPSD is being executed as a
resul t of a trap to location X'40':

a. Nonexistent instruction - if the reason for the trap
condition is an attempt to execute a nonexistent in­
struction, bit position a of the new program status
doubl eword (CC 1) is set to 1. Then, if bi t 9 (AI)
of XPSD is a 1, bit positions 15-31 of the new pro­
gram status doubleword (next instruction address)
are incremented by 8.

b. Nonexistent memory address - if the reason for the
trap condition is an attempt to access or write into
a nonexistent memory region, bit position 1 of the
new program status doubleword (CC2) is set to 1.
Then, if bit 9 of XPSD is a 1, the instruction ad­
dress portion of the new program status doubl eword
is incremented by 4.

c. Privil eged instruction violation - if the reason for
the trap condition is an attempt to execute a privi­
I eged instruction wh i I e the computer is in the slave
mode, bit position 2 ofthe new program status double­
word (CC3) is set to 1. Then, if bit position 9 of
XPSD is 1, the instruction address portion of the new
program status doubleword is incremented by 2.

d. Memory protection violation - if the reason for the
trap condition is an attempt to read from or write into
a memory region to wh i ch the program does not have
proper access, bit position 3 of the new program status
doubleword (CC4) issetto 1. Then, ifbit90fXPSD
is a 1, the instruction address portion of the new
program status doubl eword is incremented by 1.

Control 73

There are certain circumstances under wh i ch two of the
above nonallowed operations can occur simul taneously.
The following operation codes (including their counter­
parts) are considered to be both nonexistent and privi­
leged: XIOC, XIOD I, XI2C, and XI2DI. If anyone of
these operation codes is used as an instruction while
the computer is in the slave mode, CC 1 and CC3 are
both set to lis; if bit 9 of XPSD is a 1, the instruction
address portion of the new program status doubleword is
incremented by 10. If an attempt is made to access or
write into a memory region that is both nonexistent and
proh ibited to the program by means of the memory con­
trol feature, CC2 and CC4 are both set to lis; if bit 9
of XPSD is a 1, the instruction address of the new pro­
gram status doubleword is incremented by 5.

2. CALL instructions - the following additional functions
are performed when XPSD is being executed as a result
of a trap to location X1481, X149 1, XI4A', or XI4BI:

a: The R field of the CALL instruction causing the
trap is logically inclusively ORed into bit posi­
tions 0-3 (CC) of the new PSD.

b. If bit position 9 of XPSD contains a 1, the R field
of the CALL instruction causing the trap is added
to the instruction address portion of the new PSD.

If bit position 9 of XPSD contains a 0, the instruction ad­
dress portion of the new PSD always remains at the value
establ ished by the second effective doubl eword. Bit posi­
tion 9 of XPSD is effective only if the instruction is being
executed as the result of a nonallowed operation trap or a
CALL instruction trap. Bit position 9 of XPSD must be coded
with a 0 in all other cases; otherwise, the results of the
XPSD instruction are undefined.

Affected: (EDL), (PSD)

If (1)10 = 1, effective address is virtual

If (1)10 = 0, effective address is actual

PSD-EDL

ED20_3 - CC; ED25_7 -- FS, FZ, FN

ED28 - MS; ED29 - MM

ED2 10 --DM; ED2 11 -AM

ED215_31 - IA; ED234- 35 --WK

ED237- 39 u CI, II, EI -CI, II, EI

If (1)8 = 1, ED255_59 - RP

If (1)8 = 0, RP not affected

If nonexistent instruction, 1--CCl then, if (1)9 = 1,
IA + 8-IA

If nonexistent memory address, 1--CC2 then, if (1)9 = 1,
IA + 4--IA

If privileged instruction violation, 1--CC3 then,
if (1)9 = 1, IA + 2 -- IA

If memory protection violation, 1 -- CC4 then, if (1)9 = 1,
IA + 1-- IA

74 Control

If CALL instruction, CC u CALL8-11- CC then,
if (I)9 = 1, IA + CALL8-11 - IA

If (1)9 = 0, IA not affected

lRP LOAD REGISTER POINTER
(Word index alignment, privileged)

LOAD REGISTER POINTER loads bits 23 throLJgh 27 of the
effective word into the register pointer (RP) portion of the
current program status doubl eword. Bit positions 0 through
22 and 28 through 31 of the effective word are ignored, and
no other portion of the program status doubl eword is affected.
If the register pointer is loaded with a value~hat points to a
nonexistent block of general registers, the computer subse­
quently generates either all lis or all OIS as tlhe contents of
the nonexistent block of general registers, whenever an in­
struction designates a general register by means of the R field
or the reference address field.

Affected: RP
EW23- 27 -RP

MMC MOVE TO MEMORY CONTRO L
(Word index al ignment, privi leged, continue
after interrupt)

MOVE TO MEMORY CONTRO L loads a string of one or
more words into one of the three blocks of memory control
registers (memory control registers are described on page
12). Bit positions 12-14 of MMC are not used as an in-
dex register address; instead, they are used j'o specify which
block of memory control registers is to be looded, as follows:

Bit position
12 13 14 Function

100
o 1 0
o 0 1

Load memory map block addresses
Load access protecti on
Load memory write protection locks

If bit positions 12-14 of MMC contain either all OIS or more
than a single 1, the instruction produces an undefined result.
Also, if an attempt is made to load unimplemented memory
control storage, the contents of the general regi sters spec i­
fied by the MMC instruction are undefined ot the completion
of the instruction, and the implemented memory control stor­
age (if any) is not affected.

Bit positions 15-31 (reference address field) of MMC are ig­
nored insofar as the operation of the instrucl'ion is concerned,
and the results of the instruction are the same whether or not
MMC is indirectly addressed.

The R field of MMC designates an even-odd pair of general
registers (R and Rul) that are used to control the loading of

the specified bank of memory control registers. Registers R
and Ru 1 are assumed to contain the following information:

Register R:

Regi ster Ru 1 :

Bit positions 15 through 31 of register R contain the virtual
address of the first word of the control image to be loaded
into the specified block of memory control registers. Bit
positions 0 through 7 of register Ru 1 contain a count of the
number of words to be loaded. If bits 0-7 of register Ru 1
are initially all O's, a word count of 256 is implied.)

Bit positions 15 through 22 of register Ru 1 point to the be­
ginning of the memory region controlled by the registers to
be loaded. The significance of this field is different for the
3 modes of MMC.

The R field of the MMC instruction must be an even value
for proper operation of the instruction; if the R field of MMC
is an odd value, the operation of the instruction is undefined.

If MCC is indirectly addressed and the indirect reference ad­
dress is nonexistent, the nonallowed operation trap (location
X'40') is activated. The effective virtual address of the MMC
instruction however, is not used as a memory reference (thus
does not affect the normal operation of the instruction).

Affected: (R), (Ru 1), memory control storage

LOADING THE MEMORY MAP

The foil owi ng diagrams represent the configuration of MMC,
register R, and register Ru 1 that are required to load the
memory map:

The instruction format is:

The contents of register Rare:

The contents of register Ru 1 are:

Memory Map Control Image

The initial address value in bit positions 15-31 of register R
is the vi rtual address of the first word of the memory map
control image. The word length of the control image to be
loaded is specified by the initial count in bit positions 0-7
of register Ru 1. A word count of 64 is sufficient to load the
entire block of memory map control registers. The memory map
control registers are treated as a circular set, with the first
register following the last; thus, a word count greater than
64 causes the first registers loaded to be overwritten.

Each word of the memory map control image is assumed to
be in the following format:

Memory Map Loading Process

Bit positions 15-22 of register Ru 1 initially points to the first
512-word page of virtual addresses that is to be controlled
by the map image being loaded. MMC moves the map image
into the memory map control registers one word at a time, thus
loading the page address for four consecutive memory map
registers wi th each image wurd. As each word is loaded into
the memory map, the virtual address of the image area is in­
cremented by 1, the word count is decremented by 1, and the
value in bit positions 15-22 of register Ru 1 is incremented by
4; this process continues until the word count is reduced to O.
When the loading process is completed, bit positions 15-31of
register R contain a value equal to the sum of the initial map
image address plus the initial word count. Also, bit positions
0-7 of register Ru 1 contain all O's, and bit positions 15-22 of
register Ru 1 contain a value equal to the sum of the initial
contents plus 4 times the initial word count.

LOADING THE ACCESS PROTECTION CONTROLS

The following diagrams represent the configurations of MMC,
register R, and register Ru 1 that are required to load the ac­
cess protection controls:

The instruction format is:

The contents of register Rare:

The contents of register Ru 1 are:

Access Protection Control Image

The initial address val ue in register R is the virtual address
of the first word of the access control image, and the word
length of the first control image is specified by the initial
count in register Ru 1. A word count of 16 is sufficient to
load the entire block of access protection control registers.
The access protection control registers are treated as a cir­
cular set, with the first register following the last; thus, a
word count greater than 16 causes the first registers loaded
to be overwritten. Each word of the access control image
is assumed to be in the following format:

Access Control Loading Process

Bit positions 15-20 of register Ru 1 initially point to the first
512-word page of vi rtual addresses that is to be controll ed

Control 75

by the access control image. MMC moves the access con­
trol image into the access control registers one word at a
time, thus loading the controls for 16 consecutive 512-word
pages with each image word~ As each word is loaded, the
virtual address of the control image is incremented by 1,
the word count is decremented by 1, and the value in bit
positions 15-20 of register Ru 1 is incremented by 4; this
process continues unti I the word count is reduced to O. When
the loading process is completed, register R contains a value
equal to the sum of the initial control image address plus the
initial word count. Also, the final word count is 0, and bit po­
sitions 15-200fregisterRu1 contain a value equal to thesum
of the initial contents plus 4 times the initial word count.

LOADING THE MEMORY WRITE PROTECTION LOCKS

The following diagrams represent the configuration of MMC,
register R, and register Ru 1 that are requ ired to load the
memory write protection locks:

The instruction format is:

The contents of register Rare:

Lock image address I
15 16 17 18 19 20 21 22 23124 25 26 27128 29 30 31

The contents of register Ru 1 are:

Memory Lock Control Image

The initial address value in register R is the virtual address
of the first word of the memory lock control image, and word
length of the image is specified by the initial count in reg­
ister Rul. A word count of 16 is sufficient to load the en­
tire block of memory locks. The memory lock registers are
treated as a circular set, with the register for memory ad­
dresses 0 through XI1FF' immediately following the register
for memory addresses X 11 FEOOI through X 11 FFFF I; thus, a
word count greater than 16 causes the first registers loaded
to be overwritten. Each word of the lock image is assumed
to be in the following format:

Memory Lock Loading Process

Bit positions 15-20 of register Ru1 initially point to the first
512-word page of actual core memory addresses that is to
be controlled by the memory lock image. MMC moves the
lock image into the lock registers 1 word at a time, thus
loading the locks for 16 consecutive 512-word pages with
each image word. As each word is loaded, the virtual ad­
dress of the lock image is incremented by 1, the word count
is decremented by 1, and the value in bit positions 15 -20
of register Ru1 is incremented by 4; this process continues
until the word count is reduced to O. When the ~oading
process is completed, register R contains a va lue equal to

76 Control

the sum of the initial lock image address plus the initial
word count. Also, the final word count is 0, and bit posi­
tions 15-20 of register Rul contain a value equal to the sum
of the initial contents plus 4 times the initial word count.

INTERRUPTION OF MMC

The execution of MMC can be interrupted afl'er each word
of the control image has been moved into the specified con­
trol register. Immediately prior to the time that the instruc­
tion in the interrupt (or trap) location is executed, the
instruction address portion of the program status doubleword
contains the virtual address of the MMC instruction, register
R contai ns the virtua I address of the next word of the control
image to be loaded, and register Rul contains a count of the
number of control image words remaining to be moved and a
value pointing to the next memory control re9ister to be
loaded.

WAIT WAIT
(Word index alignment, privileged)

WAIT causes the CPU to cease all operations until an inter­
rupt activation occurs, or until the computer operator man­
uall y moves the COMPUTE switch (on the processor control
panel or on the free-standing console) from the RUN posi­
tion to IDLE and then back to RUN. The instruction ad­
dress porti on of the PSD is updated before the computer
begins waiting; therefore, while the CPU is waiting, the
INSTRUCTION ADDRESS indicators contain the virtual ad­
dress of the next location in ascending sequenceafterWAIT
and the contents of the next location are displayed in the
DISPLAY indicators (on the processor control panel and on
the free-standi ng consol e). If any input/output operati ons
are bei ng performed when WAIT is executed, the operations
proceed to their normal termination.

When an interrupt activation occurs while the CPU is wait­
ing, the computer processes the interrupt-servicing routine.
Normally, the interrupt-servicing routine begins with an
XPSD instruction in the interrupt location, and ends with
an LPSD instruction at the end of the routine. After the
LPSD instruction is executed, the next instruction to be
executed in the interrupted program is the next i nstructi on
in sequence after the WAIT instruction. If the interrupt is
to a single-instruction interrupt location, the instruction
in the interrupt location is executed and then instruction
execution proceeds with the next instruction in sequence
after the WAIT instruction. When the COMPUTE switch
is moved from RUN to IDLE and back to RUN while the
CPU is waiting, instruction execution proceeds with the
next instruction in sequence after the WAIT instruction.

If WAIT is indirectly addressed and the indirect reference
address is nonexistent, the nonallowed operati on trap (I oca­
tion X1401) is activated. The effective virh..I01 address of
the WAIT instruction, however, is not used os a memory
reference (thus does not affect the normal operation of the
i nstructi on).

RD READ DIRECT
(Word index al ignment, privi leged)

The CPU is capable of directly communicating with other
elements of the SIGMA 7 system, as well as performing in­
ternal control operations, by means of the READ DIRECT/
WRITE DIRECT (RD/WD) lines. The RD/WD lines consist
of 16 address lines, 32 data lines, 2 condition code lines,
and various control lines, that are connected to various
CPU circuits and to special systems equipment.

READ DIRECT causes the CPU to present bits 16 through 31
of the effecti ve vi rtua I address to other elements of the
SIGMA 7 system on the RD/WD address·1 ines. Bits 16-31
of the effective virtual address identify a specific element
of the SIGMA 7 system that is expected to return informa­
tion (2 condition code bits plus a maximum of 32 data bits)
to the CPU. The significance and number of data bits re­
turned to the CPU depend on the selected element. If the
R field of RD is nonzero, up to 32 bits of the returned data
are loaded into general register R; however, if the R field
of RD is 0, the returned data is ignored and genera I regis­
ter 0 is not changed. Bits CC3 and CC4 of the condition
code are set by the addressed element, regardless of the
value of the R field. (CCl and CC2 are also set when the
RD instruction is coded for the internal control mode.)

Bits 16-19 of the effective virtual address of RD determine
the mode of the RD instruction, as fo I lows:

Bit Position
16 17 18

000
000
001
001

19

o
1
o

0

1)

Interna I computer contro I
Unassigned
S DS testers

Assigned to various groups of standard
S DS products

Special systems control (for customer use
with specially designed equipment)

READ DIRECT
INTERNAL COMPUTER CONTROL (MODE 0)

In this mode, the condition code is unconditionally set ac­
cording to the states of the four SENSE switches on the pro­
cessor control panel. If a particular SENSE switch is set,
the corresponding bit of the condition code is set to 1; if a
SENSE switch is reset, the corresponding bit of the condi­
tion code is set to 0 (see "SENSE" in chapter 5).

Read SENSE Switches

The following configuration of RD can be used to read the
control panel SENSE switches:

In this case, only the condition code is affected

Read and Reset MEMORY FAULT Indicators

Each core memory module isassociatedwith a MEMORY FAULT
indicator that is turned on whenever a memory parity or over­
temperature condition occurs. The following configuration
of RD is used to record and reset the MEMORY FAULT indi­
cators.

If the R field of RD is nonzero, bit positions 0-23 of register
R are reset to a II 0' s, bit positions 24-31 are set according
to the current states of the MEMORY FAULT indicators, and
all MEMORY FAULT indicators are reset. If a bit position
in register R is set to 1, a memory fault has been detected
in the corresponding core memory module. If the R field of
RD is 0, the MEMORY FAULT indicators and the contents
of register 0 remain unchanged (although the condition code
is still set to the value of the SENSE switches). The MEM­
ORY FAU L T indicators are also reset by means of the SYS
RESET/CLEAR switch on the processor control panel (or on
the free-standing console).

Affected: (R), CC, MEMORY FAULT Indicators

WD WRITE DIRECT
(Word index al ignment, privi leged)

WRITE DIRECT causes the CPU to present bits 16 through 31
of the effective virtual address to other elements of the SIG­
MA 7 system on the RD/WDaddress lines{see READ DIRECT).
Bits 16-31 of the effective virtua I address identify a specific
element of the SIGMA 7 system that is to receive control in­
formation from the CPU. If the R fie Id of WD is nonzero,
the 32-bit contents of register R are transmitted to the speci­
fied element on the RD/WD data lines. If the R field of
WD is 0, 32 O's are transmitted to the specified element (in­
stead of the contents of register 0). The specified element
may return information to set the condition code.

Bits 16-19 of the effect i ve vi rtua I address determine the mode
of the WD instruction, as follows:

Bit Position
16 17 18

0 0 0
0 0 0
0 0 1
0 0 1

19

o
1
o

: I

Mode

Interna I computer contro I
Interrupt control
SDS testers

Assigned to various groups of standard
SDS products

Special systems control (for customer use
with specia lIy designed equipment)

WRITE 01 RECT
INTERNAL COMPUTER CONTROL (MODE 0)

In this mode, the condition code is unconditionally set ac­
cording to the states of the four SENSE switches on the pro­
cessor control panel. If a particular SENSE switch is set,

Control 77

the corresponding bit of the condition code is set to 1; if a
SENSE switch is reset, the corresponding bit of the condi­
tion code is reset to 0 (see "SENSE" in chapter 5).

Set Interrupt In h ibi ts

The following configuration of WD can be used to set the
interrupt inhibits (bit positions 37-39 of the PSD).

A logical inclusive OR is performed between bits 29-31 of
the effective virtual address and bits 37-39 of the PSD. If
any (or al J) of bits 29-31 of the effective virtua I address are
1 IS, the corresponding inhibit bits in the PSD are set to 1 IS;

the current state of an inhibit bits is not affected if a cor­
responding bit position of the effective virtual address con­
tains a O.

Reset Interrupt Inhibits

The following configuration of WD can be used to reset the
interrupt inhibits:

If any {or alJ)of bits 29-31 of the effective virtual address
are 1's the corresponding inhibit bits in the PSD are reset to
O's; the current state of an inhibit bit is not affected if a
corresponding bit position of the effective virtual address
contains a O.

Set ALARM Indicator

The following configuration ofWD is used to set the ALARM
indicator on the maintenance section of the processor con­
trol panel:

If the COMPUTE switch on the processor control panel is
in the RUN position and the AUDIO switch on the mainte­
nance section of the processor control panel is in the ON
position, a 1000-Hz signa I is transmitted to the computer
speaker. The signal may be interrupted by moving the COM­
PUTE switch to the IDLE position, by moving the AUDIO
switch to the OFF position, or by resetting the ALARM
indicator.

Reset ALARM Indicator

The following configuration of WD is used to reset the
ALARM i ndi cator:

The ALARM indicator is also reset by means of either the
CPU RESET/CLEAR switch or the SYS RESET/CLEAR switch
on the processor control panel (or on the freestanding
console).

78 Control

Toggle Program-Controlled-Frequency Flip··flop

The following configuration of WD is used t·o If togg leU the
CPU program-control led-frequency (PCF) flip-flop:

The output of the PCF flip-flop is transmitted to the com­
puter speaker through the AUDIO switch on the maintenance
secti on of the processor contro I pane I. If the PCF fl ip-flop
is reset when the above configuration of WD is executed,
the WD instruction sets the PCF flip-flop; if the PCF flip­
flop was previously set, the WD instruction resets it. A pro­
gram can thus generate a desired frequency by togg ling (set­
ting and resetting) the PCF flip-flop at the appropriate rate.
Execution of the above configuration of WD also resets the
ALARM indicator.

WRITE DIRECT, INTERRUPT CONTROL (MODE 1)

The following configuration of WD is used to control the al­
teration of the various states of the individu(ll interrupt levels
within the CPU interrupt system:

Bits 28 through 31 of the effective address specify the iden­
tification number (see page 17) of the group of interrupt
levels to be controlled by the WD instructioln.

The R field of the WD instructionspecifiesageneral register
that contains the selection bits for the individual interrupt
levels within the specified group. Bit posiHon 16 of register
R contains the selection bit for the highest-priority (Iowest­
numbered) interrupt level within the group, cmd bit position
31 of register R contains the selection bit for the lowest­
priority (highest-numbered) interrupt level within the group.
Each interrupt level in the designated group is operated on
according to the function code specified by bits 21 through
23 of the effective address of WD. The codes and their as­
sociated functions are as follows:

Code Function

000 Undefi ned

001 Disarm all levelsselected by a 1; all levels selected
by a 0 are not affected.

010 Arm and enable all levels selected by a 1; all levels
selected by a 0 are not affected.

011 Arm and disable all levels selected by a 1; all levels
selected by a 0 are not affected.

100 Enable all levels selected by a 1; all levels selected
by a 0 are not affected.

101 Disable all levelsselectedby a 1; all levels selected
by a 0 are not affected.

110 Enable all levels selected by a 1 and disable all
levels selected by a O.

111 Trigger all levels selected by a 1. All such levels
that are currently armed advance to f'he waiting state.

INPUT jOUTPUT INSTRUCTIONS

II Standard II SIGMA 7 I/o refers to the normal I/o system
consisting of input/output processors, device controllers,
and devices. This system handles normal communications
with standard peripherals such as printers, discs, tapes,
and so forth. When dealing with standard I/O operations,
the CPU uses the following five instructions:

Instruction Name

Start Input/Output
Halt Input/Output
Test Input/Output
Test Device
Acknowl edge Input/Output Interrupt

Mnemonic

SIO
HIO
TIO
TDV
AIO

80
83
83
84
84

If execution of any input/output instruction is attempted
while the computer is in the slave mode (i.e., while bit 8
of the current program status doub I eword is a 1), the com­
puter unconditionally aborts execution of the instruction
(at the time of operation code decoding) and traps to loca­
tion X'40'.

I/O ADDRESSES

The device to be operated on by an I/O instruction is sel­
ected by the effective virtual address of the I/o instruction
itself. Indirect addressing and/or indexing are performed,
as for other word-addressing instructions, to compute the
effective virtual address of the I/O instruction. However,
the effective address is not used as a memory reference
(i.e., not subject to memory mapping). For the SIO, HIO,
TIO, and TDV instructions, the 11 low-order bits of the
effective virtual address constitute an I/O address. For
the AIO instruction, the device causi ng the interrupt re­
turns its 11-bit I/O address as part of the response to the
AIO instruction.

An I/O address occupies bit positions 21 through 31 of the
effective virtual address, with bits 21, 22, and 23 of the
I/o address specifying one of eight possible lOPs that can
be controlled by a CPU. The remainder of the I/o address
is factored into one of two forms, depending on bit 24, as
follows:

Case I: Single-unit device controllers (bit 24 is 0)

Bits 25 through 31 of the I/o address (DC/Device) consti­
tute a single code specifying a particular combination of
device controller and device. Normally these codes refer
to device controllers that drive only a single device, such
as card readers, card punches, line printers, etc.

Case II: Multiunit device controllers (bit 24 is 1)

Bits positions 25 through 31 of the I/O address contain a
3-bit device controller code (DC) in bit positions 25-27

and a 4-bit device code (Device) in bit positions 28-31.
This form of I/O address is used for device controllers (such
as magnetic tape and rapid access data file controllers) that
control information exchange with only one device at a time
(out of a set of as many as 16 devi ces).

I/O UNIT ADDRESS ASSIGNMENT

Device controller numbers are normally assigned to a multi­
plexor lOP in numerical sequence, beginning with zero and
continuing through the highest number recognized by the
lOP (i.e., X'7I, X'F', X'171, or X'1P). In the case of
multiunit device controllers, the device controller number
must be in the range XIO I through X'71 because the I/O
address field structure allows for a 3-bit multiunit device
controller number. In the case of single-unit device con­
trollers, any of the available numbers in the range XIO I

through X 11 F' maybe assigned to the device controller, pro­
viding that the same number has not already been assigned
to a multiunit device controller. For example, if device
controller number XIO I is assigned to a magnetic tape unit
controller, the number XIO I cannot also be used for a card
reader (although the coding of the I/o address field would
be different in bit position 24). The I/O address codes
used by standard SDS software are

I/O address Peripheral device designation

X '080 '

X'081 1

X '0871

X'001'

X'002 1

X '003 1

X'0041

X '0051

lOP 0, devi ce control I er 0,
unit 0

lOP 0, devi ce control I er 0,
unit 1

lOP 0, devi ce control I er 0,
unit 7

lOP 0, device controller 1,

lOP 0, device controller 2,

lOP 0, devi ce control I er 3,

lOP 0, device control I er 4,

lOP 0, device control I er 5,
reader/punch

1/0 STATUS RESPONSE

magnetic tape

magneti c tape

magnetic tape

keyboard/ pri nter

line printer

card reader

card punch

paper tape

All I/O instructions result in the setting of condition code
CCl and CC2 to denote the nature of the I/o response.
Th~ R field of the I/o instruction specifies one of the gen­
eral registers that is to accept additional I/O response in­
formation during the execution of an I/O instruction. In
some situations, the programmer may want two sets of re­
sponse information loaded into the general registers, while
in other situations he may want only one set, or even no
information loaded into a general register. This control is
achieved by coding the R field of the I/O instruction. One
set of response information is loaded into register R and an­
other set may be loaded into register Rul. If the R field is
an even, nonzero number, registers Rand R + 1 are each
loaded with response information. If the R field specifies

Input/Output Instructions 79

an odd-numbered general register, then only register R is
loaded with response information. However, if the R field
is 0 or if the I/o address is not recognized by the I/o sys­
tem, or if the device controller is attached to a "busy" se­
lector lOP, no general registers are loaded with response
information. The I/O response information loaded into the
general register for SIO, HIO, TIO and TDV instructions
is in the following format:

Word into register R

Word into register Ru1

Current Command Doubleword Address. After the addressed
device has received an order, this field contains the 16
high-order bits of the core memory address for the command
doubleword (see page 87) currently being processed for the
addressed device.

Status. The meaning of this field depends on the particular
I/o instruction being executed and upon the selected I/O
device (see Table 8).

Byte Count. After the addressed device has received an
order, this field contains a count of the number of bytes yet
to be transmitted by the operation call ed for by the order.

The format of I/O response information loaded into register
R for the instruction AIO is described on page 85.

510 START INPUT/OUTPUT
<:Nord index al ignment, privi leged)

START INPUT/OUTPUT is used to initiate an input or out­
put operation with the device selected by the I/O address
(bits 21-31 of the effective virtua I address of the instruction).

SIO utilizes data in general register 0, which is assumed
to have the following content when SIO is executed.

General register 0 is temporarily dedicated during the exe­
cution of an SIO instruction to specify the starting double­
word address for the 10 P command list. The doubl eword ad­
dress in register 0 is the 16 high-order bits of a memory
address; thus, the address in register 0 always specifies an
even-numbered word location. (The lOP command list is
described in "lOP Command Doublewords", Chapter 4.)

If I/o address recognition exists in the I/o system, the
first command doubleword address is loaded into the lOP

80 Input/Output Instructi ons

command address counter associated with the device con­
troller specified by the I/O address of the SIO instruction.
If, at this time, the device is in the" ready" condition and
no interrupt condition is pending, the device is started (i. e.,
advanced to the "busy" condition). Then, if the device is
in the "automatic" mode, it requests an order from the lOP.
The lOP loads the first command doubleword of the I/O
command I ist into its appropriate registers and transmits the
order to the device.

The CPU condition code provides an indication of whether
the I/o address specified by the SIO instruction was or was
not recognized by the I/O system and whether the SIO in­
structi on was or was not accepted by the device (i. e. , whether
the device did or did not advance to the "busy" condition).

The condition code settings for SIO are:

2 3 4 Result

o 0

o

o

I/O address recognized and SIO accepted

I/O address recognized but SIO not
accepted

device controller is attached to a "busy"
selector lOP

I/o address not recognized

STATUS INFORMATION FOR SIO

In the event that the SIO instruction was not accepted
(i.e., CC1 = 0 and CC2 = 1), the status information returned
as a part of the I/O response provides indications of why
the SIO instruction was not accepted. If thc3 SIO instruction
has been coded with an R field value of 0, or if the I/o
address is not recognized by the I/o system j • or if the device
controller is attached to a "busic selector lOP, only the
condition code settings are available. If the R field value
is odd, register R contains the following information:

Bit
Position Function

o Device interrupt pending: if this bit is 1, the ad­
dressed device has requested an interrupt and the
interrupt has not been acknowl edged by an AIO
instruction. Device interrupts can be achieved by
coding of the flag portion of the I/O command
doubleword. Device interrupts can also be achieved
by using M modifiers in the basic: order to the
device (M bits in the Order portion of the command
doubleword). In either case, the device will not
accept a new SIO instruction until the interrupt­
pending condition is cleared (i.e., the condition
code settings for the SIO instruction will indicate
"SIO not accepted" if the interrupt-pending con­
dition is present in the addressed device.

Position and State in Register Ru 1

Device Status Byte

o 2 3

00-
- 0 1

10-
1 1

- 0
1

4 5 6 7

o 0
- 0 1

1 0
1 1

- 0

Position and State in Register R

Device Status Byte

o 2 3 4 5 6 7

Table 8. Status Bits for I/o Instructions

Operational Status Byte

8 9 10 11 12 13 14 15

Operational Status Byte

8 9 10 11 12 13 14 15

Significance for
510, HIO, and no

interrupt pendi ng
device ready
devi ce not operational
device unavailable
device busy
device manual
device automatic

device unusual end
device controller ready
device controller not operational
device controller unavailable
device controller busy
unassigned

incorrect length
transmission data error
transmission memory error
memory address error

lOP memory error
lOP control error
lOP halt
Selector lOP busy

Significance for AIO

data overrun

unique to the device and
the devi ce controller

incorrect length
transmission data error
zero byte count interrupt
channel end interrupt

unusual end interrupt

: } unassigned
- 0

- 0

Significance
for TDV

data overrun

unique to the
devi ce and the
device controller

same as for
510, HIO, and
TIO

Input/Output Instructions 81

Bit
Position Function

1,2

3

4

Device condition: if bits 1 and 2 are 00 (device
"ready"), all device conditions required for proper
operation are satisfied. If bits 1 and 2 are 01
(device "not operational "), the addressed device
has developed some condition that wi II not allow
it to proceed; in either case, operator intervention
is usually required. If bits 1 and 2 are 10 (device
"Unavailable"), the device has more than one
channel of communication avai lable and it is en­
gaged in an operation controlled by an lOP other
than the one specified by the I/o address. If bits
1 and 2 are 11 (device "busy"), the device has
accepted a previous SIO instruction and is already
engaged in an I/o operation.

Device mode: if this bit is 1, the device is in the
"automatic" mode; if this bit is 0, the device is
in the "manual" mode and requires operator inter­
vention. This bit can be used in conjunction with
bits 1 and 2 to determine the type of action re­
quired. For example, assume that a card reader
is abl e to operate, but no cards are in the hopper.
The card reader would be in state 000 (device
"ready", but manual intervention required), where
the state is indicated by bits 1, 2, and 3 of the
I/O status response. If the operator subsequently
loads the card hopper .and presses the card reader
START switch, the reader would advance to state
001 (device "ready" and in automatic operation).
If the card reader is in state 000 when an SIO in­
struction is executed, the SIO would be accepted
by the reader and the reader would advance to
state 110 (device "busy", but operator intervention
required). Should the operator then place cards
in the hopper and press the START switch, the card
reader state would advance to 111 (device II busy"
and in automatic operation), and the input opera­
tion would proceed. Should the card reader sub­
sequently become empty (or the operator press the
STOP switch) and command chaining is being used
to read a number of cards, the card reader would
return to state 110. If the card reader isi n state
001 when an SIO instruction is executed, the
reader advances to state 111, and the input opera­
tion continues as normal. Should the hopper sub­
sequently become empty (or should the operator
press the card reader STOP switch) and command
chaining is being use.d to read a number of cards,
the reader would go to state 110 unti I the opera­
tor corrected the situation.

Deviceunusual end occurred during last operation:
if this bit is 1, the reason for the indication may
be a normal end (such as an end of fi I e) or a fau I t
condition. For a fault condition, the device has
halted at other than its normal stopping point. In
either case, the device wi II not automatically re­
quest further action from its device controller.
The specific details of this indication are a function
of the particular device.

82 Input/Output Instructions

Bit
Position Function

5,6

7

8

9

10

11

Device controller condition: if bits 5 and 6 are 00
(device controller "ready"), all device controller
conditions required for its proper operation are
satisfied. If bits 5 and 6 are 01 (device controll er
"not operational"), some condition has developed
that does not allow it to operate properly. In
either case, operator intervention is usually re­
quired. If bits 5 and 6 are 10 (device controller
"unavailable"), the device controller is currently
engaged in an operation controlled by an lOP
other than the one addressed by the I/O instruction.
If bits 5 and 6 are 11 (device controller "busy"),
the device controller has accepted a previous
SIO instruction and is currently engaged in per­
forming an operation for the addressed 10P~

Unassigned

Incorrect length: if this bit is 1, on incorrect
length condition has been signaled to the lOP
during the previous operation. Incorrect length
is caused by a channel end {or end of record} con­
dition occurring before the device controller has
received a "count done" signal from the lOP, or is
caused by the device controller receiving a count
done signal before channel end (or end of record);
e. g., count done before 80 columns have been
read from a card. Normally, a count done signal
is sent to the device controller by the lOP to in­
dicate that the byte count associated with the
current operation has been reduced to zero. The
lOP is capable of supressing an error condition on
incorrect length, since there are many situations
in which incorrect length is a legHimate situation
and not a true error condition. Incorrect length is
su ppressed as an error by cod i ng the SI L fl ag (a 1
in bit 38) of the lOP command doubleword (see
page 89). At the end of the execution of an I/O
command list, this status bit is 1 if an incorrect
length condition occurred anywhere in the command
I ist, regardless of the coding of the SIL flag.

Transmission data error: this bit is set to 1 if the
lOP or device controller has detected a parity
error or data overrun in the transmitted information.

Transmission memory error: this bH is set to 1 if
a memory parity error has occurred during a data
input/output operation. A parity error is detected
on any output operation and on pOl"ital-word input
operations. A device halt does not occur unless
the HTE flag in the lOP command doubleword is
set to 1 (see page 88).

Memory address error: a nonexi stent memory
address has been encountered on either data or
commands. Core memory I ocati OI1S 0 through 15
are not considered nonexistent because the lOP
can work with these addresses as normal memory
addresses.

Bit
Position Function

12 lOP memory error: if a memory parity error has
occurred while the lOP was fetching a command,
this bit is set to 1.

13

14

15

16-31

lOP control error: this bit is set to 1 if the lOP
has encountered two successive TRA NSFER IN
CHANNEL commands.

lOP halt: this bit is set to 1 if the lOP has issued
a halt order to the addressed I/o device because
of an error condition.

lOP busy: this bit is set to 1 if a selector
lOP is addressed by the I/o instruction and
the selector lOP is currently in use by some
I/o device operating in conjunction with se­
lector 10 P.

Byte count: a count of the number of bytes yet to
be transmitted in the operation called for by the
current command doubleword.

If the R field value of the SIO instruction is even and not
0, the condition code and register R+1 contain the informa­
tion described above and register R contains the following
information:

Bit
Position Function

16-31 Current command doubl eword address: the 16
high-order bits of the core memory address from
which the command doubl eword for the I/o
operation currently being processed by the ad­
dressed device controller was fetched.

Ordinarily, on an SIO instruction, the programmer has
no interest in where the lOP is in executing its com­
mand list, and thus will usually code the R field of the
SIO instruction to specify an odd-numbered general reg­
ister, loading only the byte count and status information
into the CPU. The condition code is set regardless of
the coding of the R field.

HIO HALT INPUT/OUTPUT
0Nord index alignment, privileged)

HALT INPUT/OUTPUT causes the addressed device to im­
mediately halt its current operation (perhaps improperly,
in the case of magnetic tape units, when the device is
forced to stop at other than an interrecord gap). If the
device is in an interrupt-pending condition, the condition
is cleared.

If the R field of the HIO instruction is 0 or if no I/o ad­
dress recognition exists, no general registers are affected,
but the condition code is set. If the R field is an odd value,
the condition code is set and the following information is
loaded into register R.

The status information returned for HIO has the same inter­
pretation as that returned for the instruction SIO (see page
80), and shows the I/o status at the time of the halt. The
count information shows the number of bytes remaining to
be transmitted at the time of the halt. If the R field of HIO
is an even vCllue and not 0, the condition code is set, reg­
ister R+1 is loaded as shown above, and register R contains
the following information:

The current command doubleword address has the same in­
terpretation as that for the instruction SIO.

Affected: (R), (Ru 1), CC 1, CC2

Condition code settings:

2

o o

o

no

3 4 Resul t of HIO

I/o address recognized and device con­
troller is not "busy"

I/o address recognized but device con­
troller was "busyll at the time of the halt

I/o address not recognized

TEST INPUT/OUTPUT
(Word index alignment, privileged)

TEST INPUT/OUTPUT is used to make an inquiry on the
status of data transmissian. The operation of the selected
lOP, device controller, and device are not affected, and
no operations are initiated or terminated by this instruction.
The responses to no provide the program with the informa­
tion necessary to determine the current status of the device,
device controller, and lOP, the number of bytes remaining
to be transmitted in the operation, and the present point at
which the lOP is operating in the command list. If the R
field of the no instruction is 0, or if no I/o address recog­
nition exists, or if the device controller is attached to a
IIbus/ ' selector lOP, no general registers are affected, but
the condition code is set. If the R field of no is an odd
value, the condition code is set and the I/o status and byte
count are loaded into register R as follows:

The status information has the same interpretation as the
status information returned for the instruction SIO (see
page 88), and shows the I/o status at the time of sampl ing.

Input/Output Instructions 83

The count information shows the number of bytes remaining
to be transmitted at the time of sampl ing. If the R fi eld of
the no instruction is an even value and not 0, the condi­
tion code is set, register R+1 is loaded as shown above,
and reg i ster R is loaded as foil ows:

The current command doubl eword address has the same in­
terpretation as for the instruction SIO.

Affected: (R), (Rul), CC1, CC2

Condition code settings:

2 3 4 Result of no

0 0 I/O address recognized and acceptable
SIO is currently possible

0 I/o address recognized but acceptabl e
SIO is not currently possible

0 7" device controller is attached to "busy"
selector lOP

I/o address not recognized

TDV TEST DEVICE
(Word index al ignment, privi leged)

TEST DEVICE is used to provide information about a device
other than that obtainable by means of the no instruction.
The operation of the selected lOP, device conrroller, and
device are not affected, and no operati ons are i nit iated or
terminated. The responses to TDV provide the program with
information giving details on the condition of the selected
device, the number of bytes remainin::J to be transmitted in
the current operati on, and the present poi nt at wh ich the
lOP is operating in the command list. If the R field of the
TDV instruction is 0 or if no I/o address recognition exists,
of if the device controller is attached to a "busy" selector
lOP, the condition code is set, but no general registers are
affected. If the R field of TDV is an odd value, the con­
dition code is set and the device status and byte count are
loaded into reg i ster R as foil ows:

Sta~us I Byte ~ount I
o I 2 314 5 6 7;8 9 10 11112 13 14 15 16 17 18 19120 2122 23i24 25 26 27128 29 30 31

Bit
Position Function

o Data overrun: This bit is set to 1 if a data over­
run has occurred in the current I/o operation. A
data overrun is a situation wherin the device
controller is ready to transmit data to the lOP
but the lOP has not received the previous data,
or the device controll er requires data but cannot
obtain it from the lOP. In either case, the condi­
tion is caused by an equipment malfunction or by
the total I/o data rate exceeding system limits.

84 Input/Output Instructions

Bit
Position Function

1-7 Unique to the device

8- 15 Same as for bi ts 8- 15 of the status information for
instruction SlOe

The count information shows the number of bytes remaining
to be transmitted in the current operation at the time of the
TDV instruction. If the value of the R field of TDV is an
even value and not 0, the condition code is set, register
R+ 1 is loaded as shown above, and regi ster R is loaded as
follows:

The current command doubleword address has the same in­
terpretation as for the instruction SIO.

Affected: (R), (Ru 1), CC 1

Condition code settings:

o
o

2

o

o

3 4 Result of TDV

I/o address recognized

I/o address recognized and device­
dependent condition is present

device controller is attached to "busy"
sel ector 10 P

I/o address not recognized

AIO ACKNOWLEDGE INPUT/OUTPUT INTERRUPT
(Word index alignment, privileged)

Ala is used to acknowledge an input/output interrupt and to
identify what I/o unit is causing the interrupt cmd why. Bits
21,22, and 23 of the effective virtual address of the Ala in­
struction (the 10Pportion of the I/O selection code field)
specify the type of interrupt being acknowl edged. These bits
should be coded 000 to specify the standard I/o system interrupt
acknowl edgement (other codi ngs of these bits are reserved for
use with special I/o systems). The remainder of the I/o se­
lection code field (bit positions 24-31) has no other use in the
standard I/o interrupt acknowl edgement because the identi-
fi cation of the interrupt source is one of the responses of the
standard I/o system to the Ala i nstructi on.

Standard I/o system interrupts can be initiated for the fol­
lowing conditions:

Condition

Zero byte count

Channel end

I .. t
nterru pt prerequ I Sl te

IZC = 1

ICE = 1

Status
bit set

10

11

t IZC, ICE, IUE, HTE, and SIL refer to flag bits in the lOP
command doublewords (see Chapter 4).

Condition

Transmission memory
error

Incorrect length

Memory address error
(10 P memory error or
lOP control error)

Interrupt prereguisite
t

IUE = 1, HTE = 1

IUE = 1, HTE = 1 and
SIL = 0

IUE = 1

Transmission data error IUE = 1, HTE = 1

Status
bit set

12

8, 12

12

9, 12

When a devi ce interrupt condition occurs, the 10 P forwards
the request to the CPU interrupt system I/O interrupt level.
If this interrupt level is armed, enabled, and not inhibited
(see page 16, "Control of the Interrupt System"), the CPU
eventually acknowl edges the interrupt request and executes
the XPSD instruction in core memory location X'5C, which
leads to the execution of an AIO instruction.

For the purpose of acknowl edgi ng standard I/o interrupts,
the lOPs, device controllers, and devices are connected
in a preestabl ished priority sequence that is customer­
assigned and is independent of the physical locations of
the portions of the I/o system in a particular installation.

If the R field of the AIO instruction is 0 or if no device in­
terrupt request is present, the condition code is set but the
general register is not affected. If the R field of AIO is
not 0, the condition code is set and register R is loaded
with the following information:

Bit
Position Function

o

1-7

8

Data overrun: This bit is set to 1 if a data over­
run has occurred in the current I/o operation.

Unique to the device and the device controller.

Incorrect length: if this bit is 1, an incorrect
length condition has been signaled to the lOP by
the device controller during the previous operation.

t lZC, ICE, IUE, HTE, and SIL refer to flag bits in the lOP
command doublewords (see Chapter 4).

Bit
Position Function

9

Incorrect length is suppressed as an error by
coding the SIL flag (a 1 in bit 38) of the command
doubl eword. At the end of the execution of an
I/O command list, this status bit is 1 if an incor­
rect length condition occurred anywhere in the
command list, regardlessofthecodingoftheSILflag.

Transmission data error: this bit is set to 1 if the
lOP or device controller has detected a parity er­
ror or data overrun in the transmitted information.

10 Zero byte count interrupt: if this bit is 1, the byte
count forthe--()pe~atfon-being performed by the in­
terrupting device has been reduced to 0, and the
interrupt at zero byte count (IZC) flag in the com­
mand doubleword for the operation was coded with
a 1.

11 Channel end interrupt: if this bit is 1, the device
controlT~r has signaled channel end to the lOP,
and the interrupt at channel end (ICE) flag in the
command doubleword for the operation was coded
with a 1.

12 lOP unusual end interrupt: if this bit is 1, the lOP
has originated the interrupt as a result of a fault or
unusual condition reported by the device.

13-20 Unassigned

21-31 I/O address: this field identifies the highest­
priority device requesting an interrupt. Bit posi­
tions 21-23 identify the lOP. If bit 24 is 0, bits
25-31 constitute a common device controller and
device code; if bit 24 is 1, bits 25-27 constitute
a device controller code and bits 28-31 identify a
device attached to that device controller.

The AIO instruction resets the interrupt request signal from
the highest priority I/O device requesting interrupt service
(i.e., the device identified above in bits 21-31).

Affected: (R), CC1,' CC2

Condition code settings:

1 _2_---=-3_4

o 0

o

Resul t of AIO

normal interrupt recognition

unusual interrupt recognition

no interrupt recognition

Input/Output Instructi ons 85

4. INPUT jOUTPUT OPERATIONS

In a SIGMA 7 system, input/output operations are prima­
rily under control of one or more input/output processors
(lOPs). This all ows the CPU to concentrate on program
execution, free from the time-consuming detai Is of I/o opera­
tions. Any I/o events that require CPU intervention are
brought to its attenti on by means of the interrupt system.

In the following discussion, the terminology conventions
used are that the CPU executes instructions, the lOP exe­
cutes commands, and the device controllers and/or I/O
devices execute orders. To illustrate, the CPU will exe­
cute the START INPUT/OUTPUT {SIO} instruction to initi­
ate an I/O operation. During the course of an I/o opera­
tion, the lOP might issue a command called Control, to
transmit a byte to a device controller or I/O device that
interprets the byte as an order, such as Rewind.

SIGMA 7 lOPs operate independently after they have been
started by the central processor. They automaticall y pick
up a chain of one or more commands from core memory and
then execute these commands until the chain is completed.

The multiplexor lOP can simultaneously operate up to 32
device control! ers. Each device controller is assigned
its own channel and chain of I/O commands. The sel ector
lOP can handle any of up to 32 high-speed device con­
troll ers at rates up to the full speed of the core memory
{one 32-bit word/cycle}. A pair of selector lOPs can
share a common memory bus if desired.

The fI exibl e SIGMA 7 I/O structure permits both command
chaining (making possible multiple-record operations) and
data chaining (making possible scatter-read and gather­
write operations) without intervening CPU control. Com­
mand chaining refers to the execution of a sequence of I/O
commands, under control of an lOP, on more than one
physical record. Thus, a new command must be issued for
each physical record even if the operation to be performed
for a record is the same as that performed for the previous
record. Data chaining refers to the execution of a sequence
of I/o commands, under control of an lOP, that gather {or
scatter} information within one physical record from (or to)
more than one region of memory. Thus, a new command
must be issued for each portion of a physical record when
the data associated with that physical record appears {or is
to appear} in noncontiguous locations in memory. For
exampl e, if information in specific col umns of two cards in
a file are to be stored in specific regions of memory, the
I/o command list might appear as follows:

1. Read card, store columns 1-10, data chain

2. Store columns 11-60, data chain

3. Store columns 61-80, command chain {end of data
chain}

4. Read card, store columns 1-40, data chain

5. Store col umns 41-80 (end of command chain, end of
data chain)

86 Input/Output Operations

TheSIGMA7CPU itself plays a minor role inthe execution
of an I/O operation. The CPU-executed prolgram is respon­
sible for creating and storing the command list (prepared
prior to the initiation of any I/O operation) and for supply­
ing the lOP with a pointer to the first commcmd in the I/o
command list. Most of the communicationbe'~ween the CPU
and the I/O system is carried out through m1emory.

The following is an example of the sequence of events that
occurs during an I/O operation:

1. A CPU-executed program writes a sequ1ence of I/O
commands in core memory.

2. The CPU executes the instruction START INPUT/OUTPUT
and furnishes the lOP with an ll-bitl/Oaddress (des­
signating the device to be started) and a 16-bit first
command address (designating the actucd core memory
doubleword location where the first command for this
device is located). At this point, either the device is
started (if in the "ready " condition with no device in­
terrupt pending) or an instruction reject occurs. The
CPU is informed by condition code setti'ngsas towhich
of the two al ternatives has occurred. If the START I/o
instruction is accepted, the command counter portion
of the lOP register associated with the designated de­
vice controller is loaded with the first command address.
Assuming that the SIO instruction is accepted, from this
time until the full sequence of I/O commands has been
executed, the main program of the CPU need play no
role in the I/O operation. At any time:, however, it
may obtain status information on the progress of the I/O
operation without interfering with the operation.

3. The device is now in the "busy" condition. When the
device determines that it has the highest' priority for
access to the lOP, it requests service from the lOP
with a service call. The lOP obtains the address of
the first command doubl eword of the I/O sequence
{from the command counter asssociated with this de­
vice}. The lOP then fetches the I/o command
doubl eword from core memory, load s the doubl eword
into another register associated with the device, and
transmits the first order (extracted from the command
doubl eword) to the device.

4. Each command counter contains the memory address of
the current I/O command in the sequence for its de­
vice. When the device requires furthelr servicing, it
makes a request to the lOP, which then repeats a pro­
cess similar to that of step 3.

5. If a data transmission order has been sent h:>a device, con­
trol of the transmi ssion resides i n the devic:e. As each char­
acter is obtained by the I/Odevice, the lOP is signal ed
that data is available. The lOP uses thEl information
stored in its own registers to control the information

interchange between the I/O device and the memory, on
either a word-by-word or character-by·-character
basis, depending on the nature of the device.

6. When all information exchanges called for by a single
I/o command doubl eword have been compl eted, the
lOP uses the command counter to obtain the next com­
mand doubleword for execution. This process continues
until all such command doublewords associated with the
I/O sequence have been executed.

lOP COMMAND DOUBLEWORDS
All lOP command doublewords (except Transfer in Channel
and Stop) are assumed to be in the following format:

ORDER

Bit positions 0 through 7 of the command doubleword con­
tai n the I/O order for the devi ce controll er or devi ceo The
I/O orders are shown below. Bits represented by the letter
IIMII specify orders or special conditions to the device and
are unique for each type of device.

Bit positions
0 1 2 3 4 5 6 7 Order

M M M M M M 0 1 Write
M M M M M M 1 0 Read
M M M M M M 1 1 Control
M M M M 0 1 0 0 Sense
M M M M 1 1 0 0 Read Backward

Write. The Write order causes the device controller to in­
itiate an output operation. Bytes are read in an ascending
sequence from the memory location specified by the memory
byte address fi eld of the command doubl eword. The output
operation continues until thedevice signals IIchannel end ll

,

or until the byte count is reduced to 0 and no further data
chaining is specified. Channel end occurs when the device
has received all information associated with the output op­
eration, has completed all checks, and no longer requires
the use ofIOPfacilities for the operation. Data chaining
is described on the following page.

Read. The Read order causes the device controller to initi­
ate an input operation. Bytes are stored in core memory in
an ascending sequence, beginning at the location specified
by the memory byte address fi el d of the command doubl e­
word. The input operation continues until the device signals
channel end, or until the byte count is reduced to 0 and no
further data chaining is specified. Channel end occurs when
the device has transmitted all information associated with
the input operati on and no longer requires the use of lOP
facilities for the operation.

Control. The Control order is used to initiate special oper­
ationsbythedevice. For magnetic tape, itis used to issue
orders such as rewi nd, bac kspac e record, bac kspac e fil e
etc. Most orders can be specifi ed by the M bits of the

Control order; however, if additional information is re­
quired for a particular operation (e.g., the starting ad­
dress of a disc-seek), the memory byte address field of the
command doubleword specifies the starting address of the
bytes that are to be transmitted to the device controllerfor
the additional information. When all bytes necessary for
the operation have been transmitted, the device control I er
signals channel end.

Sense. The Sense order causes the devi ce to transmi t one or
~orebytes of information, describing its current state. The
bytesare stored in core memory in an ascending sequence,
beginning with the address specified by the memory byte ad­
dress field of the command doubl eword. The number of bytes
transmitted isa function of the deviceand the condition it
describes. The Sense order can be used to obtain the cur­
rent sector address from a disc or drum unit.

Read Backward. The Read Backward order (for devices that
can execute it) causes the device to be started in reverse,
and bytes to be transmitted to the lOP for storage into core
memory in a descending sequence, beginning at the location
specified by the memory byte address fieldofthe command
doubl eword. In all other respects, Read Backward is iden­
tical to Read, incl udi ng reducing the byte count with each
byte transmitted.

The Transfer in Channel command doubleword is assumed to
be in the following format:

Transfer in Channel. The Transfer in Channel command is exe­
cuted within the lOP, and it has no direct effect on any of
the I/O system el ements external to the addressed lOP. The
primary purpose of Transfer in Channel is to permit branch­
ing within the command list so that thelOPcan, for exam­
ple, repeatedly transmit the same set of information a num­
ber of times. When the lOP executes Transfer in Channel,
itloadsthe command counter for the device controller it is
currentl y servicing with the command doubl eword address
field of the Transfer in Channel command, loads the new
command doubleword specified by this address into the lOP
registers associated with the device controller, and then
executes the new command. (Bit positions 0-3, and 32-63
of the command doubleword for Transfer in Channel are ig­
nored.) Transfer in Channel thus allows a command list to
be broken into noncontiguous groups of commands. When
used in conjunction with command chaining, Transfer in
Channel facil itates the control of devices such as unbuffered
card punches or unbuffered I ine printers. The current flags
(see IIFlags ll below) are not altered during this command;
j'hus, the type of chai ning call ed for in the previ ous com­
mand doubleword is retained until changed by a command
doubleword following Transfer in Channel.

For example, assume that it is desired to present the same
card image twelve times to an unbuffered card punch. The
punch counts the number of times that a record is presented

lOP Command Doublewords 87

to it and, when twelve rows have been punched, it causes
the lOP to skip the command it would be executing next.
Thus, a command list for punching two cards might look
like the following example.

Location

A

B

Command

Punch row for card 1, command chain

Transfer in Channel to A

Punch row for card 2, command chain

Transfer in Channel to B

Stop

The Transfer in Channel command also can be used in con­
junction with data chaining. As one example, consider a
situation often encountered in data acquisition applications,
where data is transmitted in extremely long, continuous
streams. In th is case, the data can be stored al ternatel yin
two or more buffer storage areas so that computer processing
can be carried out on the data in one buffer while additional
data is being input into the other buffer. The command list
forsuch an application might look like the following example.

Location

A

Command

Read data, store into buffer 1, data chain

Store into buffer 2, data chain

Transfer in Channel to A

If the lOP encounters two successive Transfer in Channel
commands, this is considered an lOP control error, result­
ing in the lOP setting the lOP control error status bit and
issuing an II lOP halt" signal to the device controller. The
lOP then halts further servicing of this command list.

The Stop command doubleword is assumed to be in the fol­
lowing format:

Stop. The Stop command causes certain devices to stop,
generate a channel end condition, and also request an in­
terrupt at location X' 5C' if bit 0 in the Stop command is a
1. An AIO instruction executed after the interrupt is ac­
knowledged results in a 1 in bit position 7 of register R, to
indicate the reason for the interrupt. (Bit positions 32-39
of the command doubleword for Stop must be zero; bit posi­
tions 8-31 and 40-63 are ignored). The Stop command is
pri mari I y used to termi nate a command chai n for an unbuffered

88 lOP Command Doubl ewords

device, as illustrated in the example given for Transfer
in Channel.

MEMORY BYTE ADDRESS

For all I/o commands (except Transfer in Channel and
Stop), bit positions 13-31 of the command doubleword
provide for a 19-bit core memory byte address, desig­
nating the memory location for the next byte of data.
For the Write, Read, and Control orders, this field (as
stored in an lOP register) is incremented by 1 as each
byte is transmitted to the I/O operation; for the Read
Backward order, the field is decremented by 1 as each
byte is transmitted.

FLAGS

For all I/O commands (except Transfer in Channel and
Stop) bit positions 32-39 of the command doubl eword
provide the lOP with eight flags that specify how to
handle chaining, error, and interrupt situations. The
functions of these fl ags are:

Bit
Position Function

32 (DC) Data chain. If this flag is 1, dalra chaining is
called for when the current byte count is reduced
to O. The next command doubleword is fetched
and loaded into the lOP register associated with
the device controller, but the new order code is
not passed out to the device controller; thus, the
operation call ed for by the previous order is con­
tinued. (Except for Transfer in Channel, the
new command doubl eword is used only to supply
a new memory address, a new count, and new
flags.) If the data chain flag is 0, no further
data chaining is called for. Channel end is init­
iated either by the device running out of infor­
mation, or by the byte count being reduced to
O. At channel end, the device may accept a
new SIO instruction, providing that a device
interrupt is not pending as a result of coding the
IZC (bit 33), ICE (bit 35), or IUE (bit 37) flags,
and no faul t condition exists.

33 (IZC) Interrupt at zero byte count. If t'his flag is 1,
the lOP requests an interrupt at I<ocation X' 5C'
when the byte count of this command double­
word (as stored in the lOP regist'er) is reduced
to O. An A 10 instruction executed after the
interrupt is acknowledged results in a 1 in bit
position 10 of register R, to indicate the reason
for the interrupt.

34 (CC) Command chain. If this flag is 1, command
chaining is called for when channel end occurs.
The next command doubl eword is fetched and
loaded into the lOP register associated with the
device controller, and the new order code is
passed out to the device controllElr. If the CC
flag is 0, no further command chclining is called

Bit
Position Function

for. If both data chaining and command chain­
ing are called for in the same command double­
word, data chaining occurs if the byte count is
reduced to 0 before channel end, and command
chaining occurs if the channel end occurs be­
fore the byte count is reduced to O.

35 (ICE) Interrupt at channel end. If this flag is 1, the
lOP requests an interrupt at location X' 5C when
channel end occurs for the operation being con­
trolled by this command doubleword. An AIO
instruction executed after the interrupt is acknow­
ledged results in a 1 in bit position 11 of the
status information, to indicate the reason for the
interrupt. If the ICE flag is 0, no interrupt is
requested.

36 (HTE) Halt on transmission error. If this flag is 1, any
error condition (transmission data error, trans­
mission memory error, incorrect length error)
detected in the device controller or lOP results
in halting the I/O operation being controlled by
this command doubleword. If the HTE flag is 0,
an error condition does not cause the I/O oper­
ation to halt, although the error conditions are
recorded in the lOP register and returned as
part of the status information for the instructions
SIO, HIO, and TIO.

The HTE flag must be coded identically in every
command doubl eword associ ated with the same
physical record. This means that when data
chaining occurs, the HTE flag in the new lOP
command doubl eword must be the same as the
HTE flag in the previous lOP command double­
word. This restriction applies to data chaining
onl y, and not to command chaining.

37 (IUE) Interrupt on unusual end. If this flag is 1, the
device controller requests an interrupt at loca­
tion X' 5C ' when a fault condition or unusual
termination is encountered. A fault is a condi­
tion requiring the device to halt, irrespective
of the coding of the HTE flag. Examples of faults
are torn magnetic tape and jammed cards. When
unusual termination is signal ed to the lOP, fur­
ther servi ci ng of the commands for that devi ce
is suspended. An AIO instruction executed after
the interrupt is acknowledged results in a 1 in
bit position 12 of register R, to indi cate the rea­
son for the interrupt. If the IUE flag is 0, no in­
terrupt is requested.

38 (SIL) Suppress incorrect length. If this flag is 1, an
incorrect length indication by the device con­
troller is not to be classified as an error by the

Bit
Position Function

lOP, although the lOP retains the incorrect
length indication and provides an indicator (bit
8 of the status response for SIO, HIO, and
TIO) to the program. If the SIL fl ag is 0, an
incorrect length is considered an error and the
lOP performs as specified by the HTE and IUE
flags. Incorrect length is caused by a channel
end condition occurring before the device con­
troller has received a count-done signal from
the lOP, or is caused by the device control I er
receiving a count-done signal before end of
record; e. g., count-done before 80 col umns
have been read from a card. Normall y, a
count-done signal is sent to the devi ce controll er
by the lOP to indicate that all data transfer
associated with the current operation has been
completed. The lOP is capable of suppressing
an error condition on incorrect length, since
there are many situations in which incorrect
I ength is a I egitimate condition and not a
true error.

39 (S) Skip. If this flag is 1, the input operation
(Read or Read Backward) controlled by this com­
mand doubl eword continues normally, except
that no information is stored in memory. When
used in conjunction with data chaining, the skip
operation provides the capabi I ity for sel ective
reading of portions of a record.

If the S flag is 1 for an output (Write) operation,
the lOP does not access memory, but transmits
zeros as data instead (i. e., the lOP transmits
the number of X100 1 bytes specified in the byte
count of the command doubleword). This allows
a program to punch a bl ank card (by using the S
bit and a Punch Binary order with a byte count
of 120) without requiring memory access for data.
If the S flag is 0, the I/o operation proceeds
normally.

BYTE COUNT

For all commands (except Transfer in Channel and Stop)
bit positions 48-63 of the command doubleword provide
for a 16-bit count of the number of bytes to be trans­
mitted in the I/O operation; thus, 1 to 65,536 bytes
(16,384 words) can be specified for transfer before com­
mand chaining or data chaining is required. This field
(as stored in an lOP register) is decremented by 1 after
each byte transmitted in the I/O operation; thus, it
always contains a count of the number of bytes to be
transmitted and this count is returned as part of the re­
sponse information for the instructions, SIO, HIO, no,
and TDV. An initial byte count of 0 is interpreted as
65,536 bytes.

lOP Command Doublewords 89

The CPU RESET/CLEAR switch does not affect any operations
that may be in process in the standard input/output system.

The CPU RESET/CLEAR switch is also used in conjucntion
with the SYS RESET/CLEAR switch to clear core memory
(i. e., reset memory to all O's). The two switches are inter­
locked so that both must be pressed simultaneously for the
memory clear operation to occur. The memory clear oper­
ation does not affect any general register - core memory
locations 0 through 15 are cleared instead. Also the clear
operation does not affect the memory control storage (write
locks). Note that pressing the SYS RESET/CLEAR switch
affects the I/o system and the MEMORY FAU L T indicators.

1/0 RESET

The I/O RESET switch is used to initialize the standard
input/output system. When the switch is pressed, all peri­
pheral devices under control of the central processor are
reset to the "ready" condition, and all status, interrupt, and
control indicators in the input/output system are reset. The
I/o RESET switch does not affect any operations that may
be processed in the centra I processor.

LOAD

The LOAD switch initializes memory for an input operation
that uses the peripheral unit selected by the UNIT ADDRESS
switches. The detai led operation of the loading process is
described in the section "Loading Operation".

UNIT ADDRESS

The three UNIT ADDRESS switches are used to select the
peripheral unit to be used in the loading process. The left
switch has eight positions, numbered 0 through 7, desig­
nating an input/output processor. The center and right
switches each have 16 positi ons, numbered 0 through F
(hexadecimal) that designate a device controller/device
under the control of the selected input/output processor.

SYSTEM RESETICLEAR

The SYS RESET/CLEAR switch is used to reset all controls
and indicators in the SIGMA 7 system. Pressing this switch
causes the computer to perform all operations descri bed for
the CPU RESET/CLEAR switch, perform all operations de­
scribed for the I/O RESET switch, initialize the memory
control logic, and reset the MEMORY FAULT indicator.

The SYS RESET/CLEAR switch is also used in conjunction
with the CPU RESET/CLEAR switch to reset core memory
to O's.

NORMAL MODE

The NORMAL MODE indicator is lighted when all the fol­
lowing conditions are satisfied:

1. The WATCHDOG TIMER switch is in the NORMAL
position

2. The INTERLEAVE SELECT switch is in the NORMAL
position

3. The PARITY ERROR MODE switch is in the CONT
(continue) position

4. The CLOCK MODE switch is in the CONT (continuous)
position

5. All logic power margins are "normal"

If any of the above conditions is not satisfied, the NORMAL
MODE indicator is unlighted.

RUN

The RUN indicator is lighted when the COMPUTE switch is
in the RUN position and no halt condition exists.

WAIT

The WAIT indicator is lighted when any of the following
halt conditions exist:

1. The computer is executing a WAIT instruction

2. The program is stopped because of the ADDRESS STOP
switch

3. The computer is halted because of the PARITY ERROR
MODE switch

INTERRUPT

The INTERRU PT switch is used by the operator to activate
the control panel interrupt. If the control panel interrupt
(level X'5D') is armed when the INTERRUPT switch is
pressed, a single pulse is transmitted to the interrupt level,
advancing it to the waiting state. The INTERRUPT switch is
lighted when the control panel interrupt level is in the
waitrng state, and remai ns lighted unti I the interrupt level
advances to the active state (at which time the INTERRUPT
switch is turned off). If the control panel interrupt level
is disarmed (or already in the active state) when the INTER­
RUPT switch is pressed, no computer or control panel action
occurs. If the control panel interrupt level advances to the
waiting state and the level is disabled, the INTERRUPT
switch remains lighted until the level is either enabled and
allowed to advance to the active state or is returned to the
armed or disarmed state. The INTERRUPT switch is always
operative, both on the processor control panel and on the
free-standi ng consol e.

PROGRAM STATUS DOUBLEWORD

Two rows of binary indicators are used to display the cur­
rent program status doubleword (PSD). For the convenience
of use and display, the second portion of the PSD, labeled
PSW2, is arranged above the first portion, labeled PSW1.
The PSD display consists of the indicators shown in Table 9.

INSERT

The INSERT switch is used to make changes in the program
status doubleword. The switch is inactive in the center
position and is momentary in the upper (PSW2) and lower
(PSW1) positions. When the INSERT switch is moved to the

Processor Control Panel 91

Table 9. Program Status Doubleword Display

PSD Bit PSD
Indicator Function Posiiton Designation

PSW2 WRITE KEY Write key 34-35 WK

INTRPT INHIBIT Interrupt inhibits 37-39 CI, II, EI
CTR Counter interrupt group inhibit 37 CI

I/o Input/output interrupt group inhibit 38 II
EXT External interrupts inhibit 39 EI

POINTER Register block pointer 55-59 RP

PSW1 CONDITION CODE Condition code 0-3 CC

FLOAT MODE Floating-point mode controls 5-7 FS, FZ, FN
SIG Significance trap mask 5 FS
ZERO Zero trap mask 6 FZ
NRMZ Normalize mask 7 FN

MODE Machine state/memory map controls 8-9 MS,MM
SLAVE Master/slave mode control 8 MS
MAP Memory map control 9 MM

TRAP Arithmetic trap masks 10,11 DM, AM
DEC Decimal arithmetic fault trap mask 10 DM
ARITH Fixed-point arithmetic overflow trap mask 11 AM

INSTRUCTION ADDRESS Address of next instruction to be executed 15-31 IA

PSWl or PSW2 position, the corresponding indicators in the
program status doubleword are altered (or unchanged, ac­
cording to current state of the 32 DATA switches below the
DISPLAY indicators).

INSTR ADDR

The INSTR ADDR (instruction address) switch is inactive in
the center position; the upper position (HOLD) is latching
and the lower position (INCREMENT) is momentary. When
the switch is placed in the HOLD position, the normal pro­
cess of i ncrementi ng the i nstructi on address porti on of th e
program status doubleword with each instruction execution
in inhibited. If the COMPUTE switch is placed in the RUN
position while the INSTRADDR switch is at HOLD, the in­
struction in the location pointed to by the value of the IN­
STRUCTION ADDRESS indicators is executed, repeatedly,
with the INSTRUCTION ADDRESS indicators remaining un­
changed. If the COMPUTE switch is moved to the STEP
position while the INSTR ADDR switch is at HOLD, the in­
struction is executed once each time the COMPUTE switch
is moved to STEP; the INSTRUCTION ADDRESS indicators
remain unchanged unless the instruction is LPSD, XPSD, or
a branch instruction with the branch condition satisfied.

The following operations are performed each time the
INSTR ADDR switch is moved from the center position to
the INCREMENT position:

1. The current value of the INSTRUCTION ADDRESS
indicators is incremented by 1.

92 Processor Control Panel

2. Using the new value of the INSTRUCTION ADDRESS
indicators, the contents of the location pointed to by
the INSTRUCTION ADDRESS is displayed in the DIS­
PLAY indicators.

AD DR STOP

The ADDR STOP (address stop) switch is used (with the
COMPUTE switch in the RUN position) to couse the central
processor to establ ish a halt condition and turn on the WAIT
indicator whenever the CPU accesses the me,mory location
whose address is equal to the SELECT ADDRESS val ue.

When the halt condition occurs, the instruction in the lo­
cation pointed to by the INSTRUCTION ADDRESS indicators
appears in the DISPLAY indicators. The displayed instruc­
tion is the one that would have been execut'ed next, had
the halt condition not occurred. If the halt condition is
caused by an instruction access, the value of the IN­
STRUCTION ADDRESS indicators (at the time of the halt)
is equal to the SELECT ADDRESS value. If the halt condi­
tion is caused by execution of an instruction with an in­
direct reference address equal to the SELECT ADDRESS
value (i.e., by a direct address fetch), is coused by an in­
struction operand fetch, or is caused by an unsatisfied
conditional branch instruction whose effective address is
equal to the SELECT ADDRESS value, the value of the
INSTRUCTION ADDRESS indicators (at the time of the
halt) is 1 greater than the address of the inslrruction that
referenced the SELECT ADDRESS value.

If an interrupt or trap condition is detected after the AD­
DRESS STOP halt condition is detected and before the CPU
reaches the normal ADDRESS STOP halt phase, the CPU
executes the instruction in the appropriate interrupt or trap
location and then enters the ADDRESS STOP halt phase. In
this case; the value of the INSTRUCTION ADDRESS indica­
tors (at the time of the halt) is equal to the address of the
next instruction in logical sequence after the instruction in
the interrupt or trap location.

The ADDRESS STOP halt condition is reset when the COM­
PUTE switch is moved from RUN to IDLE; if the COMPUTE
switch is then moved back to RUN (or to STEP), the instruc­
tion shown in the DISPLAY indicators is the next instruction
executed.

SELECT ADDRESS

The SELECT ADDRESS switd-es select the address at which
a program is to be halted (when used in conjunction with
the ADDR STOP switch), select the address of a location
to be altered (when used in conjunction with the STORE
switch), and select the address of a word to be displayed
(when used in conjunction with the DIS PLAY switch). Each
SELECT ADDRESS switch represents a 1 when it is in the
upper position, and represents a 0 in the lower position.

STORE

The STORE switch is used to alter the contents of a general
register or a memory location. The switch is inactive in the
center position and is momentary in the INSTR ADDR and
SELECT ADDR positi ons. When the switch is moved to the
INSTR ADDR position, the current value of the DISPLAY in­
dicators is stored in the location pointed toby the INSTRUC­
TION ADDRESS i ndi cators; when the switch is moved to the
SELECT ADDR position, the current value of the DISPLAY
indicators is stored in the location pointed to by the SE­
LECT ADDRESS switches.

DISPLAY

The DISPLAY switch is used to display the contents of a
general register or memory location. The switch is inactive
in the center position and is momentary in the INSTR AD DR
and SELECT ADDR positions. When the switch is moved to
the INSTR AD DR or SELECT ADDR position, the word in the
location pointed to by the indicators or switches, respec­
tively, is loaded into the instruction register and displayed
with the DISPLAY indicators.

The 32 DISPLAY indicators are used to display a computer
word, when used together with the INSTR ADDR, STORE,
DISPLAY, and DATA switches. The DISPLAY indicators
represent the current contents of the internal CPU instruc­
tion register.

DATA

The 32 DATA switches beneath the DISPLAY indicators are
used to al ter the contents of the program status doubl eword
(when used in conjunction with the INSERT switch) and to
alter the value of theDISPLAY indicators (when used in
conjunction with the single DATA switch). Each of the
32 DATA switches is inactive in the center position and

is latching in both the upper (1) and lower (O) positions. In
the center positi on, a DATA switch represents no change, in
the upper or lower positi on it represents a 1 or 0, respectively.

The single DATA switch is used to change the state of the
DISPLAY indicators. The switch is inactive in the center
position and is momentary in the CLEAR and ENTER posi­
tions. When the switch is moved to the CLEAR position, all
the DISPLAY indicators are reset (turned off). When the
switch is moved to the ENTER position, the display indica­
tors are not affected in those positions corresponding to
DATA switches that are in the center position, but if a
DATA switch is in the 1 or 0 position, that value is in­
serted into the corresponding indicator.

COMPUTE

The COMPUTE switch is used to control the execution of
instructions. The center position (IDLE) and the upper po­
sition (RUN) are both latching, and the lower position
(STEP) is momentary. When the COMPUTE switch is in the
IDLE position, all other control panel switches are operative
and the ADDRESS STOP halt and the WAIT instruction halt
conditions are reset {cleared}. If the computer is in a halt
conditi on as a result of a memory parity error, moving the
COMPUTE switch to IDLE does not clear the memory parity
halt condition. This condition can be cleared only by press­
ing the SYS RESET/CLEAR switch.

When the COMPUTE switch is moved from IDLE to RUN,
the RUN indicator is lighted and the computer begins to
execute instructions (at machine speed) as follows

1. The current setting of the DISPLAY indicators is taken
as the next instruction to be executed, regardless of
the contents of the location pointed to by the current
value of the INSTRUCTION ADDRESS indicators.

2. The value of the INSTRUCTION ADDRESS indicators
is incremented by 1 unless the instruction in the DIS­
PLAY indicators was LPSD, XPSD, or a branch instruc­
tion and the branch should occur {in which case the
INSTRUCTION ADDRESS indicators are set to the value
established by the LPSD, XPSD, or branch instruction}.

3. Instruction execution continues with the instruction in
the location pointed to by the new value of the IN­
STRUCTION ADDRESS indicators.

When the COMPUTE switch is in the RUN position, the
only switches that are operative are the POWER switch, the
INTERRUPT switch, the ADDR STOP switch, the INSTR
ADDR switch (in the HOLD position), and the switches in
the maintenance section.

Each time the COMPUTE switch is moved from the IDLE to
the STEP position, the following operations occur:

1. The current setting of the DISPLAY indicators is taken
as an instruction, and thesingle instruction isexecuted.

2. The current value of the INSTRUCTION ADDRESS in­
dicators is incremented by 1 unless the "stepped" instruc­
tion was LPSD, XPSD, or branch instruction and the
branch should occur (in which case the INSTRUCTION
ADDRESS indicators are set to the value established by
the LPSD, XPSD, or branch instruction).

Processor Contro I Pane I 93

3. The instruction in the location pointed to by the new
value of the INSTRUCTION ADDRESS indiccator is
displayed in the DISPLAY indicators.

If an instruction is being stepped (executed by moving the
COMPUTE switch from IDLE to STEP), all interrupt levels
are temporarily inhibited while the instruction is being
executed; however, a trap condition can occur while the
instruction is being executed. In this case, the XPSD in­
struction in the appropriate trap location is executed as if
the COMPUTE switch were in the RUN position. Thus, if
a trap condition occurs during a stepped instruction, the
program status doubleword display automatically reflects
the effeCts of the XPSD instruction and the DISPLAY indi­
cators then contai n the first instruction of the trap routi ne.

CONTROL MODE

The CONTROL MODE switch is a three-position, key­
operated locking switch. When the switch is in the REMOTE
position, all controls on the free-standing console are
operative. In addition, all controls and indicators in the
mainterwnce section of the PCP are operative (except for
the SENSE and CLOCK MODE switches) and all indicators
in the lower portion of the PCP continue to display the same
information as the equivalent indicators on the free-standing
console. However, all of the controls in the lower portion of
the PCP (except for the POWER switch) are inoperative. The
POWER switch is always operative (on both the PCP and the
free-standing console); in order for the system to be opera­
tive, both switches must indicate that power is on.

When the CONTROL MODE switch is in the LOCAL posi­
tion, all controls on the PCP are operative. In addition,
all indicators on the free-standing console continue to dis­
play the same information as the equivalent indicators on
the PCP. However, all of the controls on the free-standing
console (except for the POWER switch) are inoperative.
The COMPUTE switches on both the PCP and the free­
standing consol e must be in their IDLE positions whenever
the CONTROL MODE switch is moved either from the
REMOTE to the LOCAL position or from the LOCAL to the
REMOTE position; otherwise, an undefined operation occurs.

When the CONTROL MODE switch is in the LOCK position,
all controls on the free-standing console (except for POWER,
INTERRUPT, and SENSE) are inoperative and all controls
on the PCP (except for POWER, INTERRUPT, SENSE, and
AUDIO) are inoperative. However, all indicators on both
the free-standing console and the PCP continue to indicate
the various computer states. TheAUDIO switch is not af­
fected by the position of the CONTROL MODE switch. In
addition, the following switches (both on the PCP and on
the free-standing console) are operative when the CONTROL
MODE switch is in the LOCK position:

1. The POWER switch remains operative to allow for situa­
tions in which power must be removed from the system.
System power is present only if both POWER switches
indicate that power is on.

2. The INTERRUPT switch remains operative to allow the
operator to interrupt the program ·being executed. If
either INTERRUPT switch is pressed, the control panel
interrupt level is triggered.

94 Processor Control Panel

3. The SENSE switches remain operative to allow the op­
erator to provide information to the program being
executed. If a RD or WD instruction is executed in
the internal control mode while the switch is in the
LOCK position, the resulting condition code value is
the logical sum (inclusive OR) of the PCP and free­
standing consol e SENSE switches •.

Certain switches on the PCP are locked to specific states
when the CONTROL MODE switch is in the LOCK position.
The affected switches and their locked states are:

Switch

COMPUTE
WATCHDOG TIMER
INTERLEAVE SE LECT
PARITY ERROR MODE
CLOCK MODE

Locked State

RUN
NORMAL
NORMAL
CONT
CONT

The COMPUTE switch on the PCP must be in the RUN posi­
tion whenever the CONTROL MODE switch is moved either
from the LOCAL to the LOCK position or from theLOCK
to the LOCAL position; otherwise, an undefined operation
may occur.

MEMORY FAULT

The MEMORY FAULT indicators each correspond to a
specific memory module. Whenever a memory parity error
occurs in a memory module, the appropriate indicator is I
lighted and remains lighted until the indicators are reset.
When a memory parity error occurs, an interrupt pulse is
also transmitted to the memory parity interrupt level.

The MEMORY FAULT indicators are reset whenever the
SYS RESET/CLEAR switch is pressed or whenever the com­
puter executes a READ DIRECT instruction coded to read the
MEMORY FAULT indicators. If the reason for a MEMORY
FAULT indicator being on is overtemperature, and the con­
dition still exists when the indicators are reset, the indica­
tor is immediately turned on again.

ALARM

The ALARM indicator is used to attract the computer opera­
tor's attention, and is turned on and off (under program con­
trol) by executing a properly coded WRITE DIRECT instruc­
tion. When the ALARM indicator is lighted and the AUDIO
switch is ON, a 1000-Hz signal is sent to the computer
speaker; when the AUDIO switch is not in the ON position,
the speaker is disconnected. (The AUDIO switch does not
affect the state of the ALARM indicator.) The ALARM in­
dicator is reset (turned off) whenever either I"he CPU RESET/
CLEAR or the SYS RESET/CLEAR switch is pressed.

AUDIO

The AUDIO switch controls all signals to the computer
speaker, whether from the ALARM indicator or from the
program-controll ed frequency fl i p-flop.

WATCHDOG TIMER

The WATCHDOG TIMER switch is used to override the in­
struction watchdog timer. When this switch is at NORMAL,
the watchdog timer is operative; when the switch is in the
OVERRIDE position, the watchdog timer is inactive.

INTERLEAVE SELECT

The INTERLEAVE SELECT switch is used to override the nor­
mal operation of interleaved memory modules. When this
switch is in the NORMAL position, memory address inter­
leaving occurs normally; however, when the switch is in
the DIAGNOSTIC position, memory addresses are not inter­
I eaved between core memory modu I es.

PARITY ERROR MODE

The PARITY ERROR MODE switch controls the action of the
computer when a memory parity error occurs. If the PARITY
ERROR MODE switch is in the CONT {continue} position
when a parity error occurs, the appropriate MEMORY
FAULT indicator is turned on and an interrupt pulse is trans­
mitted to the memory parity interrupt level. If the switch
is in the HALT position when a parity error occurs, the ap­
priate MEMORY FAULT indicator is turned on and the
computer enters a IIhalt ll state; the memory module in which
the parity error occurred is unavailable to any access until
the MEMORY FAULT indicators are reset. If the COM­
PUTE switch is in the RUN position during a halt, the
WAIT indicator is I ighted; however, the COMPUTE switch
cannot be used alone to proceed from a halt caused by a
parity error. In order to proceed, the SYS RESET/CLEAR
switch must first be pressed.

PHASES

The PHASES indicators, used for maintenance functions,
display certain internal operating phases of the computer.
The PREPARATION indicators display computer phases dur­
ing the preparation portion of an instruction cycle. The
PCP (processor control panel) indicators display computer
phases during processor control panel operations. The EX­
ECUTION indicators display computer phases during the
execution portion of an instruction cycle. The INT/TRAP
{interrupt/trap} indicators are individually lighted when an
interrupt, or trap condition occurs. When the COMPUTE
switch is in the IDLE position, all of the PHASES indicators
are normally off except for the center PCP indicator {phase
2 is the lIidle ll phase for processor control panel functions}.

REGISTER SELECT

The REGISTER SELECT switch is used to display the contents
of selected internal registers. When the REGISTER DISPLAY
switch is in the inactive position, the DISPLAY indicators
display the current contents of the internal instruction reg­
ister. When the COMPUTE switch is in the IDLE position,
the register selected by the REGISTER SELECT swi tch may
be shown in the DISPLAY indicators by moving the REGIS­
TER DISPLAY switch to the ON position.

SENSE

The four SENSE switches are used, under program control,
to set the condition code portion of the program status
doubleword. When a READ DIRECT or WRITE DIRECT in­
struction is executed in the internal control mode, the con­
dition code is set according to the state of the four SENSE
switches. If a SENSE switch is in the set (1) position, the
corresponding bit of the condition code is set to 1; if a
SENSE switch is in the reset {O} position, the corresponding
bit of the condition code is reset to O. The SENSE switches on
the PCP are operative only if the CONTROL MODE switch
is in either the LOCAL position or the LOCK position.

CLOCK MODE

The CLOCK MODE switch controls the internal computer
clock. When the switch is in the CONT {continuous} po­
sition, the clock operates at normal speed. However, when
the CLOCK MODE is in the inactive {center} position, the
clock enters an idle state and can be made to generate one
clock pulse each time the switch is moved to the SINGLE
STEP position. When the clock is pulsed by the CLOCK
MODE switch, the PHASE indicators refl ect the computer
phase during each pulse of the clock.

LOADING OPERATION

Thi s secti on descri bes the procedure for i nitiall y I oadi ng pro­
grams into core memory from certain peripheral units attached
to an i nput/ output processor in the SIGMA 7 system. The com­
puter operator may initiate a loading operation from the pro­
cessor control panel {with the CONTROL MODE switch in the
LOCAL position} or from the free-standing consol e {with the
CONTROL MODE switch in the REMOTE position}.

The LOAD switch and the UNIT ADDRESS switches are used
to prepare a SIGMA 7 computer for a load operation. When
the LOAD switch is pressed, the foil owi ng bootstrap pro­
gram is stored in core memory locations X 1201 through X129 1:

Location
{Hex.} {Dec.}

20 32
21 33
22 34
23 35
24 36
25 37
26 38
27 39
28 40
29 41

Contents
{Hexadecimal}

00000000
00000000
020000A8
OEOOO058
00000011
OOOOOxxxt

32000024
CCOOO025
CDOOO025
69COO028

Symbol i c form
of Instructi on

LW,O 36
510,0 *37
TIO,O *37
BCS, 12 40

When the LOAD switch is pressed, the selected peripheral
device is not activated, and no other indicators or controls
are affected; only core memory is altered.

tThe XiS in location X I 251 represent the value of the UNIT
ADDRESS switches at the time the LOAD switch is pressed.

Loading Operation 95

LOAD PROCEDURE

To assure correct operati on of the I oadi ng process, the fol­
lowing sequence should always be used when initiating a
load operation:

1. Place the COMPUTE switch in the IDLE position.

2. Press the SYS RESET/CLEAR switch.

3. Set the UNIT ADDRESS switches to the address of the
desired peripheral unit.

4. Press the LOAD switch.

5. Place the COMPUTE switch in the RUN position.

After the COMPUTE switch is placed in the RUN position,
in step 5, the following actions occur:

1. The first record on the selected peripheral device is
read into memory locations X '2A ' through X '3F'. (The
previous contents of general register 0 are destroyed as
a result of executing the bootstrap program in locations
X '26 1 through X'29 1

.)

2. After the record has been read, the next instruction is
taken from location X'2A ' (provided that no error con­
dition has been detected by the device or the lOP).

3. When the instruction in location X '2A ' is executed,
the unit device and device controller selected for
loading are capable of accepting a new SIO instruction.

4. Further I/o operations from the load unit may be ac­
complished by coding subsequent I/O instructions to
indirectly address location X'25 1

•

LOAD OPERATION DETAILS

The first executed instruction of the bootstrap program (i n
location X'26 1

) loads general register 0 with thedoubleword
address of the first I/O command doubleword. The I/O ad-

96 Loading Operation

dress for the SIO instruction in location X '27 1 is the 11
low-order bits of location X'25 1 (which have been set equal
to the load unit address as a result of pressing the LOAD
switch). During the SIO instruction, general register 0
points to locations X '22 1 end X '23 1 as the fIrst I/O com­
mand doubleword for the selected device. This command
doubleword contains an order that instructs the selected pe­
ripheral device to read 88 (X'58 1

) bytes into consecutive
memory locations starting at word location X '2A ' (byte lo­
cation X'A8 1

). At the completion of the read operation,
neither data chaining nor command chainin~~ is called for
in the I/O command doubleword. Also, the suppress in­
correct length flag is set to 1 so that an incorrect length
indication will not be considered an error. (This means
that no transmission error halt will result if the first record
is either less than or greater than 88 bytes. If the record
is greater than 88 bytes, only the first 88 bytes will be
stored in memory.) After the SIO instrucf'ion, the com­
puter executes a TIO instruction with the same effective
address the SIO instruction. The TIO instruction is coded
to accept only condition code data from the 10 P. The BCS
instruction in location X'29 1 will cause a branch back to
the TIO instruction as long as either CCl or CC2 (or both)
is set to 1. In normal operation, CCl is reset to 0 and CC2
remains set to 1 until the device can acc.ept another S10
i nstructi on, at wh ich ti me the next i nstructi on wi II be taken
from location X'2A'.

If a transmission error or equipment malfunction is detected
by either the device or the lOP, the lOP instructs the device
to halt and initiate an unusual end interrupt' signal (as speci­
fied by the appropriate flags; in the I/o command double­
word). The unusual end interrupt will be ignored, however,
since all interrupt levels have been disarmed by pressing
the SYS RESET/CLEAR switch prior to loading. The device
will not accept another SIO while the device interrupt is
pending and, therefore, the BCS instruction in locationX'29 1

will continue to branch to location X'28 1
• The correct op­

erator action at this point is to repeat the load procedure.
If there is no I/O address recognition of the load unit, the
SIO instruction will not cause any I/O action and CCl will
continue to be set to 1 by the SIO and TIO instructions;
thus causing the BCS instruction to branch.

APPENDIXA. REFERENCE TABLES

This appendix contains the following reference material:

Title

sDs Standard Symbols and Codes 97

Standard 8-Bit Computer Codes (EBCDIC) 98

sDs Standard 7-Bit Communication Codes (UsAsCII) 98

sDs Standard Symbol-Code Correspondences

Hexadecimal Arithmetic

Addition Table
Multiplication Table
Table of Powers of sixteenlO
Table of Powers of Ten 16

Hexadecimal-Decimal Integer Conversion Table

Hexadecimal-Decimal Fraction Conversion Table

Table of Powers of Two

Mathematical Constants

SDS STANDARD SYMBOLS AND CODES

99

103

103
103
104
104

105

111

115

115

The symbol and code standards described in this publication
are appl icable to all sDs products, both hardware and soft­
ware. They may be expanded or al tered from time to time
to meet changing requirements.

The symbols listed here include two types: graphic symbols
and control characters. Graphic symbols are displayable
and printable; control characters are not. Hybrids are sP,
the symbol for a blank space, and DEL, the delete code
which is not considered a control command.

Three types of code are shown: (1) the 8-bit sDs Standard
Computer Code, i. e., the sDs Extended Binary-Coded­
Decimal Interchange Code (EBCDIC); (2) the 7-bit United
States of America Standard Code for Information Inter­
change (UsAsCII); and (3) the sDs standard card code.

SDS STANDARD CHARACTER SETS

1. EBCDIC

57-character set: uppercase letters, numerals, space,
and & - / • < > () + I $ * : ; , %
@ I =

63-character set: same as above pi us ¢
II --,

?

89-character set: same as 63-character set plus lower­
case letters

2. UsAsCII

64-character set: upper case letters, numerals, space,
and ! II $ % & I () * + , / \

: = < > ? @ [J"'" #

95-character set: same as above pi us lowercase letters
and {} : - \

CONTROL CODES

In addition to the standard character sets listed above, the
sDs symbol repertoire includes 37 control codes and the
hybrid code DEL (hybrid code SP is considered part of all
character sets). These are listed in the table titled sDs
Standard Symbol-Code Correspondences.

SPECIAL CODE PROPERTIES

The following two properties of all sDs standard codes will
be retained for future standard code extensions:

1. All control codes, and onl y the control codes, have
their two high-order bits equal to 1100 11 • DEL is not
considered a control code.

2. No two graphic EBCDIC codes have their seven low­
order bits equal.

Appendix A 97

Hexadec imal 0

Binary 0000

0 0000 NUL
~ ~-

1 0001 SOH

2 0010 STX

3 0011 ETX
.... -

4 0100 EaT
. __ .-

~--

5 0101 HT
.J!!
'0,
(5 6 0110 ACK
c I----f------.-- 1-----
0 7 0111 BEL
~ ----- -

.~ 8 1000
EOM

t--!-S_ Vi I----f--------

0 9 1001 ENQ
.3

A 1010 NAK
f--

B 1011 VT
f--------

C 1100 FF

D 1101 CR

E 1110 SO

F 1111 51
\

Decimal
0 (rows) (col's.)-

I Binary
1

xOOO

0 0000 NUL

I 0001 SOH

2 0010 STX

3 0011 ETX

4 0100 EaT

5 0101 ENQ

'0,
(5 6 0110 ACK

c
0 7 0111 BEL u

'c
0> 8 1000 BS

Vi

0 9 1001 HT
d)

...J LF
10 1010 NL

II 1011 VT
r--I--.

12 1100 FF

13 1101 CR

14 1110 SO

15 11 II SI
\

1 2

0001 0010

DLE ds

DC1 ss

DC2 fs

SDS STANDARD 8-BIT COMPUTER CODES (EBCDIC)
Most Significant Digits

3 4 5 6 7 8 9 A B C D E F

0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

SP & - ~ 0
c-._._ -f-· _-- -_._-

~

~ ~ / ~ a j \1 A J 1

~
'--

b k s { 1 B K 5 2

NOTES:

The characters ~ \ { } [] are USASCII
characters that do not appear in any of the
SDS EBCDIC-based character sets, though
they are shown in the EBCDIC table.

.- - ~ ~ ~
~

_. _.-

The characters /. I --, appear in the SDS
63- and 89-character EBCDIC sets but not
in either of the SDS USASCII-based sets.
However, SDS software translates the char­
acters /. I -, into LJSASCII characters DC3 si ~ ~ ~ c I t

~WW~ DC4 d m u
---- -_ _. __ ..

~- --

LF
NL ~/ Will not be assigned e n v

. _

~~~~ SYN f 0 w 
~.-- 'Z '///. '/// r//~ -

ETB g p x 

_._--

} 1 C L 
-- -_ .. 
[ 1 D M 

--.----

] 1 E N 

F a 
.-

G P 

---
T 3 

U 4 

V 5 

W 6 

X 7 

as follows: 

EBCDIC 

/. 
I 

UASCII 

\ (6-0) 

i (7-12) 

- (7-14) ~~~~ --j ... -.--e-- -- .. 

~ CAN 
1------

EM 

55 

ESC 

FS 

GS 

RS 

US 
I . 

1 

xOOl 

DLE 

DC1 

DC2 

DC3 

DC4 

NAK 

SYN 

ETB 

CAN 

EM 

SS 

ESC 

FS 

GS 

RS 

US 

~ ~ ~ h q 
- --~f-

~ ~ ~ ~ i r 
... 

/.2 ~1 
! : 

... _" 

$ , # 
~- -.~-.- ---- ~---- ~-~~ 

< * % 'qJ 
~~ ----.. -- ----

( ) I 

-.... -

+ i > = 
---

I 2 2 
PE -, ? " 

, . 1\ 

y 
... - -

z 

--

_._. 

--~-

or 

H Q Y 8 
.. - f----- - ---~ r---

I R Z 9 

~~ ~ ~ ~ 
~~ ~ %a ~ /' '// '//// '/// '////. 

8 Will not be assigned/~ 
'// / /. . 

~ ~ ~ ~ 
~ ~ ~ ~ 
~ ~ ~ DEL 

I 

The EBCDIC control codes in columns 0 
and 1 and their binary representation are 
exactly the same as those in the USASCII 
table, except for two interchanges: LF/NL 
with NAK, and HT with ENQ. 

Characters enclosed in heavy lines are 
included only in the SDS standard 63-
and 89-character EBCDIC sets. 

5 These characters are included only in the 
SDS standard 89-character EBCDIC set. 

SDS STANDARD 7-BIT COMMUNICATION CODES (USASCII) 1 

Most Significant Digits 

2 3 4 5 

x010 x011 x100 x101 

SP 0 @ P 
-~---

! 
5 

1 A Q 
-

" 2 B R 

# 3 C S 

$ 4 D T 
-~ .---~. 

% 5 E U 
- -

& 6 F V 

I 7 G W 

( 8 H X 

) 9 I Y 
-~~ 

-_ ... _-t--- ._-

* : J Z 
---- -[5 

+ ; K 
--

, < L \ 
-S 

- = M ] 

> N 
4~ 5 

/ ? a 
4 

-

6 7 

x110 xlII 

\ P 
I--~ I----

a q 

b r 

c s 

d t 
r-~---

e u 
-- ---

f v 
----- ---

g w 
-- ---
h x 
--- -_.-."----

i Y 
r--- -~.~.-

j z 
f---I--~-

k { 
-~- ---

I I 
I 

-~-t-

m } 
T 

n -
--I----
0 DEL 

I 

NOTES: 

Most significant bit, added for 8-bit format, is either 0 or an even-parity bit for the 
remaining 7 bits. 

Columns 0-1 are control codes. 

Columns 2-5 correspond to the SDS 64-character USASCII set. 
Columns 2-7 correspond to the SDS 95-character USASCII set. 

4 On many current teletypes, the symbol 

is (5-14) 

is (5-15) 

is ESC or ALTMODE control (7-14). 

and none of the symbols appearing in columns 6-7 are provided. Except for the three 
symbol differences noted above, therefore, such teletypes provide all the characters in 
the SDS 64-character USASCII set. (The SDS 7015 Remote Keyboard Printer provides the 
64-character USASCII set also, but prints ~ as" .) 

On the SDS 7670 Remote Batch Terminal, the symbol 

is I (2-1) 

is /. (5-11) 

is (5-13) 

is (5-14) 

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol 
differences noted above, therefore, this terminal provides all the chamcters in the SDS 64-
character USASCII set. 

. '\ . 

98 Appendix A 



SDS STANDARD SYMBOL-CODE CORRESPONDENCES 
EBCDICt RBT Card 

USASCII
tt 

Hex. Dec. Symbol Code Meaning Remarks 

00 0 NUL 0-0 null 00 through 23 and 2F are control codes. 
01 1 SOH 0-1 start of header 
02 2 STX 0-2 start of text 
03 3 ETX 0-3 end of text 
04 4 EOT 0-4 end of transmission 
05 5 HT 12-9-5 0-9 horizontal tab 
06 6 ACK 0-6 acknowledge (positive) 
07 7 BEL 0-9-8-7 0-7 bell 
08 8 BS 11-9-6 0-8 backspace or end of message 
09 9 ENQ 0-5 enquiry 
OA 10 NAK 1-5 negative acknowledge 
OB 11 VT 12-9-8-3 0-11 vertical tab 
OC 12 FF 12-9-8-4 0-12 form feed 
OD 13 CR 12-9-8-5 0-13 carriage return 
OE 14 SO 0-14 shift out 
OF 15 SI 0-15 shift in 

10 16 DLE 1-0 data I ink escape 
11 17 DCl 1-1 devi ce control 1 
12 18 DC2 1-2 device control 2 
13 19 DC3 1-3 device control 3 
14 20 DC4 1-4 device control 4 
15 21 LF or NL 0-9-5 0-10 line feed or new line 
16 22 SYN 1-6 sync 
17 23 ETB 0-9-6 1-7 end of transmission block 
18 24 CAN 1-8 cancel 
19 25 EM 11-9-8-1 1-9 end of medium 
lA 26 SS 1-10 start of special sequence 
lB 27 ESC 1-11 escape 
lC 28 FS 1-12 fi Ie separator 
lD 29 GS 1-13 group separator 
IE 30 RS 1-14 record separator 
IF 31 US 1-15 unit separator 

20 32 ds digit selector 20 through 23 are used with 
21 33 ss significance start Sigma 7 EDIT BYTE STRING (EBS) 
22 34 fs field separation instruction - not input/output con-
23 35 si immediate significance start trol codes. 
24 36 24 through 2E are unassigned. 
25 37 
26 38 
27 39 
28 40 
29 41 
2A 42 
2B 43 
2C 44 
2D 45 
2E 46 
2F 47 PE parity error If parity checking is requested. 

30 48 30 through 3F are unassigned. 
31 49 
32 50 
33 51 
34 52 
35 53 
36 54 
37 55 
38 56 
39 57 
3A 58 
38 59 
3C 60 
3D 61 
3E 62 
3F 63 

tHexadecimal notation. 

ttDecimal notation (column-row). 

Appendix A 99 



SDS STANDARD SYMBOL-CODE CORRESPONDENCES (cent.) 

EBCOICt RBT Card 
USASCII

tt 
Hex. Oec. Symbol Code Meaning Remarks 

40 64 SP Blank 2-0 blank 41 through 49 wi II not be assi!;Jned. 
41 65 
42 66 
43 67 
44 68 
45 69 
46 70 
47 71 
48 72 
49 73 
4A 74 i or ' 8-1 6-0 cent or accent grave Accent grave used for left sin!~le 
4B 75 12-8-3 2-14 period quote. On model 7670, ' not 
4C 76 < 12-8-4 3-12 less than avai lable, and i = U SASCII 5-11. 
40 77 ( 12-8-5 2-8 left parenthesis 
4E 78 + 12-8-6 2-11 plus 
4F 79 lor: 12-11 7-12 vertical bar or broken bar On Model 7670, : not available, 

and I = USASCII 2-1. 

50 80 & 12 2-6 ampersand 
51 81 51 through 59 will not be assigned. 
52 82 
53 83 
54 84 
55 85 
56 86 
57 87 
58 88 
59 89 
5A 90 I 12-8-7 2-1 exclamation point On Mode I 7670, ! is I. 
5B 91 $ 11-8-3 2-4 dollars 
5C 92 * 11-8-4 2-10 asterisk 
50 93 ) 11-8-5 2-9 right parenthesis 
5E 94 i 11-8-6 3-11 semicolon 
5F 95 - or-' 11-0-1 7-14 tilde or logical not On Model 7670, '" is not available, 

and-, =USASCII 5-14. 

60 96 - 11 2-13 minus, dash, hyphen 
61 97 / 0-1 2-15 slash 
62 98 62 through 69 wi II not be assi!}ned. 
63 99 
64 100 
65 101 
66 102 
67 103 
68 104 
69 105 
6A 106 

,.. 
11-8-7 5-14 circumflex On Model 7670 ,.. is -,. 

6B 107 , 0-8-3 2-12 comma 
6C 108 % 0-8-4 2-5 percent 
60 109 - 0-8-5 5-15 underline Underline is sometimes called "break 
6E 110 > 0-8-6 3-14 greater than character"; may be printed adong 
6F 111 ? 0-8-7 3-15 question mark bottom of character line. 

70 112 70 through 79 will not be assiHned. 
71 113 
72 114 
73 115 
74 116 
75 117 
76 118 
77 119 
78 120 
79 121 
7A 122 8-2 3-10 colon 
7B 123 /I 8-3 2-3 number 
7C 124 @ 8-4 4-0 at 
70 125 I 8-5 2-7 apostrophe (right single quote) 
7E 126 = 8-6 3-13 equals 
7F 127 II 8-7 2-2 quotation mark 

tHexadecimal notation 

ttOecimal notation (column-row). 

100 Appendi x A 



SDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.) 

EBCDICt RBT Card 
Hex. Dec. Symbol Code USAScn

tt 
Meaning Remarks 

80 128 
12-0-1 ttt 

80 is unassigned. 
81 129 a 6-1 81-89, 91-99, A2-A9 comprise the 
82 130 b 12-0-2 6-2 lowercase alphabet. Available 
83 131 c 12-0-3 6-3 only in SDS standard 89- and 95-
84 132 d 12-0-4 6-4 character sets. 
85 133 e 12-0-5 6-5 
86 134 f 12-0-6 6-6 
87 135 g 12-0-7 6-7 
88 136 h 12-0-8 6-8 
89 137 i 12-0-9 6-9 
8A 138 8A through 90 are unassigned. 
8B 139 
8C 140 
8D 141 
8E 142 
8F 143 

90 144 
91 145 j 12-11-1 6-10 
92 146 k 12-11-2 6-11 
93 147 I 12-11-3 6-12 
94 148 m 12-11-4 6-13 
95 149 n 12-11-5 6-14 
96 150 0 12-11-6 6-15 
97 151 p 12-11-7 7-0 
98 152 q 12-11-8 7-1 
99 153 r 12-11-9 7-2 
9A 154- 9A through Al are unassigned. 
9B 155 
9C 156 
9D 157 
9E 158 
9F 159 

AO 160 
Al 161 
A2 162 s 11-0-2 7-3 
A3 163 t 11-0-3 7-4 
A4 164 u 11-0-4 7-5 
A5 165 v 11-0-5 7-6 
A6 166 w 11-0-6 7-7 
A7 167 x 11-0-7 7-8 
A8 168 y 11-0-8 7-9 
A9 169 z 11-0-9 7-10 
AA 170 AA through SO are unassigned. 
AB 171 
AC 172 
AD 173 
AE 174 
AF 175 

BO 176 
B1 177 '\ 0-8-2 5-12 backslash 
B2 178 t 12-0 7-11 left brace 
B3 179 } 11-0 7-13 right brace 
B4 180 [ 12-8-2 5-11 left bracket On Model 7670, [ is i. 
B5 181 ] 11-8-2 5-13 right bracket On Model 7670, ] is !. 
B6 182 B6 through SF are unassigned. 
B7 183 
B8 184 
B9 185 
BA 186 
BS 187 
BC 188 
SD 189 
BE 190 
BF 191 

tHexadecimal notation. 

ttDecimal notation {column-row}. 

ttt RST wi II print corresponding uppercase letters when codes for lower case letters are used. 

Appendix A 101 



SDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.) 

EBCDICt RBT Card 
USASClI

tt 
Hex. Dec. Symbol Code Meaning Remarks 

CO 192 CO is unassigned. 
Cl 193 A 12-1 4-1 Cl-C9, Dl-D9, E2-E9 comprise the 
C2 194 B 12-2 4-2 uppercase alphabet. 
C3 195 C 12-3 4-3 
C4 196 D 12-4 4-4 
C5 197 E 12-5 4-5 
C6 198 F 12-6 4-6 
C7 199 G 12-7 4-7 
C8 200 H 12-8 4-8 
C9 201 I 12-9 4-9 
CA 202 CA through CF will not be assigned. 
CB 203 
CC 204 
CD 205 
CE 206 
CF 207 

DO 208 DO is unassigned. 
Dl 209 J 11-1 4-10 
D2 210 K 11-2 4-11 
D3 211 L 11-3 4-12 
D4 212 M 11-4 4-13 
D5 213 N 11-5 4-14 
D6 214 0 11-6 4-15 
D7 215 P 11-7 5-0 
D8 216 Q 11-8 5-1 
D9 217 R 11-9 5-2 
DA 218 DA through DF will not be assigned. 
DB 219 
DC 220 
DD 221 
DE 222 
DF 223 

EO 224 EO, E 1 are unassigned. 
El 225 
E2 226 S 0-2 5-3 
E3 227 T 0-3 5-4 
E4 228 U 0-4 5-5 
E5 229 V 0-5 5-6 
E6 230 W 0-6 5-7 
E7 231 X 0-7 5-8 
E8 232 Y 0-8 5-9 
E9 233 Z 0-9 5-10 
EA 234 EA through EF wi" not be assiigned. 
EB 235 
EC 236 
ED 237 
EE 238 
EF 239 

FO 240 0 0 3-0 
Fl 241 1 1 3-1 
F2 242 2 2 3-2 
F3 243 3 3 3-3 
F4 244 4 4 3-4 
F5 245 5 5 3-5 
F6 246 6 6 3-6 
F7 247 7 7 3-7 
F8 248 8 8 3-8 
F9 249 9 9 3-9 
FA 250 FA through FE will not be assigned. 
FB 251 
FC 252 
FD 253 
FE 254 
FF 255 DEL delete Special - neither graphic nor con-

trol symbol: 

tHexadecimal notation. 

ttDecimal notation (column-row). 

102 Appendi X A 



HEXADECIMAL ARITHMETIC 

ADDITION TABLE 

0 1 2 3 4 5 6 7 8 9 A 8 C D E F 

1 02 03 04 05 06 07 08 09 OA OS OC 00 OE OF 10 

2 03 04 05 06 07 08 09 OA 08 OC 00 OE OF 10 11 

3 04 05 06 07 08 09 OA 08 OC 00 OE OF 10 11 12 

4 05 06 07 08 09 OA 08 OC 00 OE OF 10 11 12 13 

5 06 07 08 09 OA 08 OC OD OE OF 10 11 12 13 14 

6 07 08 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 

7 08 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 16 

8 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 16 17 

9 OA 08 OC 00 OE OF 10 11 12 13 14 15 16 17 18 

A 08 OC OD OE OF 10 11 12 13 14 15 16 17 18 19 

B OC OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 

C OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 18 

D OE OF 10 11 12 13 14 15 16 17 18 19 1A 18 1C 

E OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 

F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 

MULTIPLICATION TABLE 

1 2 3 4 5 6 7 8 9 A B C D E F 

2 04 06 08 OA OC OE 10 12 14 16 18 1A 1C 1E 

3 06 09 OC OF 12 15 18 1B 1E 21 24 27 2A 2D 

4 08 OC 10 14 18 1C 20 24 28 2C 30 34 38 3C 

5 OA OF 14 19 1E 23 28 2D 32 37 3C 41 46 4B 

6 OC 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A 

7 OE 15 1C 23 2A 31 38 3F 46 4D 54 58 62 69 

8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 

9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87 

A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96 

B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5 

C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4 

D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 86 C3 

E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 02 

F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 

Appendix A 103 



3 

23 

163 

OEO 

8AC7 

104 Appendix A 

TABLE OF POWERS OF SIXTEEN 
10 

16 

256 

4 096 

65 536 

1 048 576 

16 777 216 

268 435 456 

4 294 967 296 

68 719 476 736 

099 511 627 776 

17 592 186 044 416 

281 474 976 710 656 

4 503 599 627 370 496 

72 057 594 037 927 936 

152 921 504 606 846 976 

n 

o 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0.10000 00000 00000 00000 x 10 

0.62500 00000 00000 00000 x 10- 1 

0.39062 50000 00000 00000 x 10-2 

0.24414 06250 00000 00000 x 10-3 

0.15258 78906 25000 00000 x 10-4 

0.95367 43164 06250 00000 x 10-6 

0.59604 64477 53906 25000 x 10-7 

0.37252 90298 46191 40625 x 10-8 

0.23283 06436 53869 62891 x 10-9 

0.14551 91522 83668 51807 x 10- 10 

0.90949 47017 72928 23792 x 10- 12 

0.56843 41886 08080 14870 x 10- 13 

0.35527 13678 80050 09294 x 10- 14 

0.22204 46049 25031 30808 x 10- 15 

0.13877 78780 78144 56755 x 10- 16 

0.86736 17379 88403 54721 x 10- 18 

TABLE OF POWERS OF TEN 
16 

2 

17 

E8 

918 

5AF3 

807E 

86F2 

4578 

B6B3 

2304 

F 

A 

64 

3E8 

2710 

86AO 

4240 

98 9680 

5F5 E100 

3B9A CAOO 

540B E400 

4876 E800 

04A5 1000 

4E72 AOOO 

107A 4000 

A4C6 8000 

6FC1 0000 

508A 0000 

A764 0000 

89E8 0000 

o 1.0000 0000 0000 0000 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

0.1999 

0.2 8F 5 

0.4 1 89 

0.680B 

0.A7C5 

0.10C6 

0.1 A07 

0.2AF3 

0.44B 8 

0.60F3 

O.AFE B 

0.1 197 

0.1 C25 

0.2009 

0.480E 

0.734A 

O.B 877 

0.1272 

0.1 083 

9999 

C28F 

374B 

8BAC 

AC47 

F7AO 

F29A 

10C4 

2FAO 

7F67 

FFOB 

9981 

C268 

3700 

BE7B 

CA5F 

AA32 

5001 

C94F 

9999 

5C28 

C6A7 

710C 

1B47 

B5E 0 

BCAF 

6118 

9B5A 

5EF6 

CB24 

20EA 

4976 

4257 

9058 

6226 

36A4 

0243 

B602 

999A 

F5C3 

EF9E 

B296 

8423 

8037 

4858 

73BF 

52CC 

EAOF 

AAFF 

1 1 19 

81C2 

3604 

5660 

FOAE 

B449 

ABA1 

AC35 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

16- 11 

'> 16-~-

16-:3 

-~, 
16 

-~, 
16 

16-5 

16-6 

-"l 
16 

16-B 

16-~~ 

16-9 

16- 10 

16 -11 

16- 12 

16- 13 

16-.14 

16- 14 

16- 15 



HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE 

The table below provides for direct conversions between hexa­
decimal integers in the range O-FFF and decimal integers in 
the range 0-4095. For conversion of larger integers, the 
table values may be added to the following figures: 

Hexadecima I 

01000 
02000 
03000 
04000 
05 000 
06 000 
07000 
08000 
09000 
OA 000 
OB 000 
OC 000 
OD 000 
OE 000 
OF 000 
10000 
11 000 
12 000 
13000 
14000 
15 000 
16000 
17000 
18000 
19000 
lA 000 
lB 000 
lC 000 
lD 000 
lE 000 
IF 000 

000 
010 
020 
030 

040 
050 
060 
070 

080 
090 
OAO 
OBO 

OCO 
ODO 
OEO 
OFO 

0 

0000 
0016 
0032 
0048 

0064 
0080 
0096 
0112 

0128 
0144 
0160 
0176 

0192 
0208 
0224 
0240 

Decimal 

4096 
8 192 

12288 
16384 
20480 
24576 
28672 
32768 
36864 
40960 
45056 
49 152 
53248 
57344 
61440 
65536 
69632 
73728 
77824 
81 920 
86016 
90 112 
94208 
98304 

102400 
106496 
110592 
114 688 
118 784 
122 880 
126 976 

1 2 

0001 0002 
0017 0018 
0033 0034 
0049 0050 

0065 0066 
0081 0082 
0097 0098 
0113 0114 

0129 0130 
0145 0146 
0161 0162 
0177 0178 

0193 0194 
0209 0210 
0225 0226 
0241 0242 

Hexadecimal 

20000 
30000 
40000 
50000 
60000 
70000 
80000 
90000 
AO 000 
BO 000 

CO 000 
DO 000 
EO 000 
FO 000 

100000 
200000 
300000 
400000 
500000 
600000 
700000 
800000 
900000 

AOO 000 
BOO 000 

COO 000 
DOO 000 
EOO 000 
FOO 000 

1 000000. 
2000000 

3 4 

0003 0004 
0019 0020 
0035 0036 
0051 0052 

0067 0068 
0083 0084 
0099 0100 
0115 0116 

0131 0132 
0147 0148 
0163 0164 
0179 0180 

0195 0196 
0211 0212 
0227 0228 
0243 0244 

Decimal 

131 072 
196608 
262 144 
327680 
393 216 
458752 
524 288 
589824 
655 360 
720896 
786 432 
851 968 
917 504 
983040 

1 048576 
2 097 152 
3 145 728 
4 194304 
5 242 880 
6 291 456 
7 340 032 
8388608 
9437 184 

10485 760 
11 534336 
12582 912 
13 631 488 
14680064 
15 728 640 
16 777 216 
33554432 

5 6 

0005 0006 
0021 0022 
0037 0038 
0053 0054 

0069 0070 
0085 0086 
0101 0102 
0117 0118 

0133 0134 
0149 0150 
0165 0166 
0181 0182 

0197 0198 
0213 0214 
0229 0230 
0245 0246 

7 

0007 
0023 
0039 
0055 

0071 
0087 
0103 
0119 

0135 
0151 
0167 
0183 

0199 
0215 
0231 
0247 

Hexadecimal fractions may be converted to decimal fractions 
as follows: 

1. Express the hexadecimal fraction as an integer times 
16 -n, where n is the number of significant hexadecimal 
places to the right of the hexadecimal point. 

O. CA9BF3 16 = CA9 BF316 x 16-6 

2. Find the decimal equivalent of the hexadecimal integer 

CA9 BF3
16 

= 13 278 195
10 

3. Multiply the decimal equivalent by 16-n 

13278 195 
x 596 046 448 x 10-16 

0.791 442 096 10 

Decimal fractions may be converted to hexadecimal fractions 
by successively multiplying the decimal fraction by 16 10, 
After each multiplication, the integer portion is removea to 
form a hexadecimal fraction by building to the right of the 
hexadecimal point. However, since decimal arithmetic is 
used in this conversion, the integer portion of each product 
must be converted to hexadecima I numbers. 

Example: Convert 0.89510 to its hexadecimal equivalent 

0.895 
16 

r-----@.320 
~ 

~----@.120 

/1/ ~ 'If 16 
0.E51 E161.----@.720 

8 9 A B C 

0008 0009 0010 0011 0012 
0024 0025 0026 0027 0028 
0040 0041 0042 0043 0044 
0056 0057 0058 0059 0060 

0072 0073 0074 0075 0076 
0088 0089 0090 0091 0092 
0104 0105 0106 0107 0108 
0120 0121 0122 0123 0124 

0136 0137 0138 0139 0140 
0152 0153 0154 0155 0156 
0168 0169 0170 0171 0172 
0184 0185 0186 0187 0188 

0200 0201 0202 0203 0204 
0216 0217 0218 0219 0220 
0232 0233 0234 0235 0236 
0248 0249 0250 0251 0252 

D E F 

0013 0014 0015 
0029 0030 0031 
0045 0046 0047 
0061 0062 0063 

0077 0078 0079 
0093 0094 0095 
0109 0110 0111 
0125 0126 0127 

0141 0142 0143 
0157 0158 0159 
0173 0174 0175 
0189 0190 0191 

0205 0206 0207 
0221 0222 0223 
0237 0238 0239 
0253 0254 0255 

Appendix A 105 



HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B ( D E F 

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 
IBO 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 

1(0 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 
IDO 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 
1 EO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 
IFO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 
2BO 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 

2(0 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 
2DO 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
3BO 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 

3(0 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
3DO 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 

106 Appendix A 



HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 
4BO 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
4DO 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
5BO 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
6BO 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
6DO 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

Appendix A 107 



HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
7BO 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
7DO 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
8BO 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 

8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
8DO 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
9BO 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 

9(0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
9DO 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

108 Appendix A 



HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cont.) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
AlO 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
B10 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 

B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 
BDO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
Cl0 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 
CDO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 

Appendix A 109 



HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (cant.) 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

DOa 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
Dl0 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 
D20 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 
D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 

D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 

D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 
D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 
DAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
DBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 

DCa 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 
DDO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
ElO 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 

110 Appendix A 



HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.00 000000 .0000000000 .40 000000 .25000 00000 .80 000000 .50000 00000 .CO 000000 .75000 00000 

.01 000000 .00390 62500 .41 000000 .25390 62500 .81 000000 .50390 62500 .C1 000000 .75390 62500 

.02 000000 .00781 25000 .42 000000 .25781 25000 .82 000000 .50781 25000 .C2 000000 .75781 25000 

.03 000000 .01171 87500 .43 000000 .26171 87500 .83 000000 .51171 87500 .C3 000000 .76171 87500 

.04 000000 .0156250000 .44 000000 .2656250000 .84 000000 .51562 50000 .C4 000000 .76562 50000 

.05 000000 .01953 12500 .45 000000 .26953 12500 .85 000000 .51953 12500 .C5 000000 .76953 12500 

.06 000000 .02343 75000 .46 000000 .27343 75000 .86 000000 .52343 75000 .C6 000000 .77343 75000 

.07 000000 .02734 37500 .47 000000 .27734 37500 .87 000000 .52734 37500 .C7 000000 .77734 37500 

.08 000000 .03125 00000 .48 000000 .281 25 00000 .88 000000 .53125 00000 .C8 000000 .781 25 00000 

.09 000000 .03515 62500 .49 000000 .28515 62500 .89 000000 .53515 62500 .C9 000000 .78515 62500 

.OA 000000 .03906 25000 .4A 000000 .28906 25000 .8A 000000 .53906 25000 .CA 00 00 00 .78906 25000 

.OB 000000 .04296 87500 .4B 000000 .29296 87500 .8B 000000 .54296 87500 .CB 000000 .79296 87500 

.OC 000000 .04687 50000 .4C 000000 .29687 50000 .8C 000000 .54687 50000 .CC 000000 .79687 50000 

.OD 000000 .05078 12500 .4D 000000 .30078 12500 .8D 000000 .55078 12500 .CD 00 00 00 .80078 12500 

.OE 000000 .05468 75000 .4E 000000 .30468 75000 .8E 000000 .55468 75000 .CE 000000 .80468 75000 

.OF 000000 .05859 37500 .4F 000000 .30859 37500 .8F 000000 .55859 37500 .CF 000000 .8085937500 

.10 000000 .0625000000 .50 000000 .31250 00000 .90 000000 .56250 00000 .DO 000000 .8125000000 

.11 000000 .0664062500 .51 000000 .3164062500 .91 000000 .56640 62500 .Dl 000000 .8164062500 

.12 000000 .07031 25000 .52 000000 .32031 25000 .92 000000 .57031 25000 .D2 000000 .82031 25000 

.13 000000 .07421 87500 .53 000000 .32421 87500 .93 000000 .57421 87500 .D3 000000 .82421 87500 

.14 000000 .0781250000 .54 000000 .3281250000 .94 000000 .5781 2 50000 .D4 000000 .8281250000 

.15 000000 .08203 12500 .55 000000 .33203 12500 .95 000000 .58203 1 2500 .D5 000000 .83203 12500 

.16 000000 .08593 75000 .56 000000 .33593 75000 .96 000000 .5859375000 .D6 000000 .83593 75000 

.17 000000 .08984 37500 .57 000000 .33984 37500 .97 000000 .58984 37500 .D7 000000 .83984 37500 

.18 000000 .09375 00000 .58 000000 .34375 00000 .98 000000 .59375 00000 .D8 000000 .84375 00000 

.19 000000 .09765 62500 .59 000000 .34765 62500 .99 000000 .59765 62500 .D9 000000 .84765 62500 

.IA 000000 .10156 25000 .5A 000000 .35156 25000 .9A 000000 .60156 25000 .DA 00 00 00 .85156 25000 

.1 B 000000 .10546 87500 .5B 000000 .35546 87500 .9B 000000 .60546 87500 .DB 000000 .85546 87500 

.IC 000000 .10937 50000 .5C 000000 .35937 50000 .9C 000000 .60937 50000 .DC 000000 .85937 50000 

.1 D 000000 .11328 12500 .5D 000000 .36328 12500 .9D 000000 .61328 12500 .DD 000000 .86328 12500 

.1 E 000000 .1171875000 .5E 000000 .3671875000 .9E 000000 .6171875000 .DE 000000 .8671875000 

.1 F 000000 .12109 37500 .5F 000000 .3710937500 .9F 000000 .62109 37500 .DF 000000 .87109 37500 

.20 000000 .12500 00000 .60 000000 .37500 00000 .AO 000000 .62500 00000 .EO 000000 .87500 00000 

.21 000000 .12890 62500 .61 000000 .37890 62500 .Al 000000 .62890 62500 .El 000000 .87890 62500 

.22 000000 .1328125000 .62 000000 .38281 25000 .A2 000000 .63281 25000 .E2 000000 .88281 25000 

.23 000000 .13671 87500 .63 000000 .38671 87500 .A3 000000 .63671 87500 .E3 000000 .88671 87500 
.24 000000 · 14062 50000 .64 000000 .39062 50000 .A4 000000 .64062 50000 .E4 000000 .89062 50000 
.25 000000 · 14453 1 2500 .65 000000 .39453 12500 .A5 000000 .64453 1 2500 .E5 000000 .89453 12500 
.26 000000 · 14843 75000 .66 000000 .39843 75000 .A6 000000 .64843 75000 .E6 000000 .89843 75000 
.27 000000 .15234 37500 .67 000000 .40234 37500 .A7 000000 .65234 37500 .r7 000000 .90234 37500 
.28 000000 .15625 00000 .68 000000 .40625 00000 .A8 000000 .65625 00000 .E& 000000 .90625 00000 
.29 000000 .16015 62500 .69 000000 .41015 62500 .A9 000000 .66015 62500 .E9 000000 .91015 62500 
.2A 0000 00 · 16406 25000 .61>. 000000 .41406 25000 .AA 00 00 00 .66406 25000 .EA 000000 .91406 25000 
.2B 000000 .16796 87500 .6B 000000 .41796 87500 .AB 000000 .66796 87500 .EB 000000 .91796 87500 
.2C 000000 .17187 50000 .6C 000000 .42187 50000 .AC 000000 .67187 50000 .EC 0000 00 .92187 50000 
.2D 000000 .17578 12500 .6D 000000 .42578 12500 .AD 00 00 00 .67578 12500 .ED 000000 .92578 1 2500 
.2E 000000 .17968 75000 .6E 000000 .42968 75000 .AE 000000 .67968 75000 .EE 000000 .92968 75000 
.2F 000000 .18359 37500 .6F 000000 .43359 37500 .AF 000000 .68359 37500 .EF 000000 .9335937500 

.30 000000 .1875000000 .70 000000 .43750 00000 .BO 0000 00 .68750 00000 .FO 000000 .93750 00000 

.31 000000 .1914062500 .71 000000 .44140 62500 .Bl 000000 .6914062500 .Fl 000000 .9414062500 

.32 000000 .19531 25000 .72 000000 .44531 25000 .B2 000000 .69531 25000 .F2 000000 .94531 25000 

.33 000000 .19921 87500 .73 000000 .44921 87500 .B3 000000 .69921 87500 .F3 000000 .94921 87500 

.34 000000 .2031 2 50000 .74 000000 .45312 50000 .B4 000000 .7031 2 50000 .F4 000000 .95312 50000 

.35 000000 .20703 12500 .75 000000 .45703 12500 .B5 000000 .70703 12500 .F5 000000 .95703 12500 

.36 00000'0 .2109375000 .76 000000 .46093 75000 .B6 000000 .7109375000 .F6 000000 .9609375000 

.37 000000 .2148437500 .77 000000 .46484 37500 .B7 000000 .7148437500 .F7 000000 .96484 37500 

.38 000000 .21875 00000 .78 000000 .46875 00000 .B8 000000 .71875 00000 .F8 000000 .96875 00000 

.39 000000 .22265 62500 .79 000000 .47265 62500 .B9 000000 .7226562500 .F9 000000 .97265 62500 

.3A 000000 .22656 25000 .7A 000000 .47656 25000 .BA 000000 .72656 25000 .FA 000000 .97656 25000 

.3B 000000 .23046 87500 .7B 000000 .48046 87500 .BB 000000 .73046 87500 .FB 000000 .98046 87500 

.3C 000000 .23437 50000 .7C 00 00 00 .48437 50000 .Be 000000 .73437 50000 .FC 000000 .98437 50000 

.3D 000000 .23828 12500 .7D 000000 .48828 12500 .BD 000000 .73828 12500 .FD 000000 .98828 12500 

.3E 000000 .2421875000 .7E 000000 .49218 75000 .BE 000000 .7421875000 .FE 000000 .9921875000 

.3F 000000 .2460937500 .7F 000000 .49609 37500 .BF 000000 .74609 37500 .FF 000000 .99609 37500 

Appendix A 111 



HEXADECIMAL - DECIMAL FRACTION CONVERSION TABLE (cont.) 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.0000 0000 .00000 00000 .0040 0000 .00097 65625 .0080 0000 .00195 31250 .00 CO 0000 .00292 96875 

.0001 0000 .00001 52587 .0041 0000 .00099 18212 .0081 0000 .00196 83837 .00 Cl 0000 .00294 49462 

.0002 0000 .0000305175 .0042 0000 .00100 70800 .0082 0000 .00198 36425 .00 C2 0000 .00296 02050 

.0003 0000 .00004 57763 .0043 0000 .00102 23388 .0083 0000 .0019989013 .00 C3 0000 .00297 54638 

.0004 0000 .00006 1 0351 .0044 0000 .00103 75976 .0084 0000 .00201 41601 .00 C4 0000 .00299 07226 

.0005 0000 .00007 62939 .0045 0000 .00105 28564 .0085 0000 .00202 94189 .00 C5 0000 .00300 59814 

.0006 0000 .00009 15527 .0046 0000 .0010681152 .0086 0000 .0020446777 .00 C6 0000 .00302 12402 

.0007 0000 .00010 68115 .0047 0000 .00108 33740 .0087 0000 .00205 99365 .00 C7 0000 .00303 64990 

.00 08 0000 .00012 20703 .0048 0000 .0010986328 .0088 0000 .00207 51953 .00 C8 0000 .00305 17578 

.0009 0000 .0001373291 .0049 0000 .00111 38916 .0089 0000 .00209 04541 .00 C9 0000 .00306 70166 

.OOOA 0000 .00015 25878 .004A 0000 .0011291503 .008A 0000 .0021057128 .00 CA 00 00 .00308 22753 

.00 DB 0000 .00016 78466 .004B 0000 .0011444091 .008B 0000 .0021209716 .00 CB 0000 .00309 75341 

.OOOC 0000 .0001831054 .004C 0000 .00115 96679 .008C 0000 .0021362304 .00 CC 0000 .00311 27929 

.0000 0000 .0001983642 .0040 0000 .0011749267 .0080 0000 .00215 14892 .00 CD 00 00 .0031280517 

.00 DE 0000 .00021 36230 .004E 0000 .0011901855 .008E 0000 .0021667480 .00 CE 0000 .00314 33105 

.00 OF 0000 .00022 88818 .004F 0000 .0012054443 .008F 0000 .00218 20068 .00 CF 0000 .00315 85693 

.00 10 0000 .0002441406 .0050 0000 .0012207031 .0090 0000 .00219 72656 .00 DO 0000 .00317 38281 

.00 11 0000 .00025 93994 .0051 0000 .0012359619 .00 91 0000 .00221 25244 .0001 0000 .00318 90869 

.00 12 0000 .00027 46582 .0052 0000 .00125 12207 .0092 0000 .00222 77832 .00 02 0000 .0032043457 

.00 13 0000 .00028 99169 .0053 0000 .00126 64794 .0093 0000 .00224 30419 .00 03 0000 .00321 96044 

.00 14 0000 .0003051757 .0054 0000 .00128 17382 .0094 0000 .00225 83007 .00 04 0000 .00323 48632 

.00 15 0000 .00032 04345 .0055 0000 .0012969970 .0095 0000 .00227 35595 .00 05 0000 .00325 01220 

.00 16 0000 .0003356933 .0056 0000 .00131 22558 .0096 0000 .00228 88183 .00 06 0000 .0032653808 

.00 17 0000 .00035 09521 .0057 0000 .0013275146 .0097 0000 .0023040771 .00 07 0000 .00328 06396 

.00 18 0000 .00036 62109 .0058 0000 .00134 27734 .0098 0000 .00231 93359 .00 08 0000 .00329 58984 

.00 19 0000 .00038 14697 .0059 0000 .00135 80322 .00 99 0000 .00233 45947 .00 09 0000 .00331 11572 

.00 lA 0000 .0003967285 .005A 0000 .00137 32910 .009A 0000 .00234 98535 .00 OA 00 00 .00332 64160 

.00 1 B 0000 .00041 19873 .005B 0000 .00138 85498 .009B 0000 .00236 51123 .00 DB 0000 .00334 16748 

.00 lC 0000 .00042 72460 .005C 0000 .00140 38085 .009C 0000 .00238 03710 .00 DC 0000 .00335 69335 

.00 10 0000 .00044 25048 .0050 0000 .00141 90673 .0090 0000 .00239 56298 .00 DO 0000 .00337 21923 

.00 1 E 0000 .00045 77636 .005E 0000 .0014343261 .009E 0000 .00241 08886 .00 DE 0000 .00338 74511 

.00 1 F 0000 .00047 30224 .005F 0000 .00144 95849 .009F 0000 .0024261474 .00 OF 0000 .00340 27099 

.0020 0000 .00048 82812 .0060 0000 .00146 48437 .00 AD 0000 .00244 14062 .00 EO 0000 .00341 79687 

.0021 0000 .00050 35400 .0061 0000 .00148 01025 .00 Al 0000 .00245 66650 .00 E1 0000 .00343 32275 

.0022 0000 .00051 87988 .0062 0000 .00149 53613 .00 A2 0000 .00247 19238 .00 E2 0000 .0034484863 

.0023 0000 .00053 40576 .0063 0000 .00151 06201 .00 A3 0000 .0024871826 .00 E3 0000 .00346 37451 

.00 24 0000 .00054 93164 .0064 0000 .0015258789 .00 A4 0000 .00250 24414 .00 E4 0000 .00347 90039 

.0025 0000 .00056 45751 .0065 0000 .00154 11376 .00 A5 0000 .00251 77001 .00 E5 0000 .00349 42626 

.0026 0000 .00057 98339 .0066 0000 .0015563964 .00 A6 0000 .00253 29589 .00 E6 0000 .00350 95214 

.00 27 0000 .00059 50927 .0067 0000 .00157 16552 .00 A7 0000 .0025482177 .00 E7 0000 .00352 47802 

.0028 00 00 .00061 03515 .0068 0000 .0015869140 .00 A8 0000 .00256 34765 .00 E8 0000 .0035400390 

.0029 0000 .00062 56103 .0069 0000 .0016021728 .00 A9 0000 .00257 87353 .00 E9 0000 .00355 52978 

.002A 0000 .00064 08691 .006A 0000 .00161 74316 .00 AA 00 00 .00259 39941 .00 EA 0000 .00357 05566 

.002B 0000 .00065 61279 .006B 0000 .00163 26904 .00 AB 0000 .00260 92529 .00 EB 0000 .00358 58154 

.00 2C 0000 .00067 13867 .006C 0000 .0016479492 .00 AC 0000 .00262 45117 .00 EC 0000 .00360 10742 

.00 20 0000 .00068 66455 .0060 0000 .00166 32080 .00 AD 00 00 .00263 97705 .00 ED 0000 .00361 63330 

.002E 0000 .00070 19042 .006E 0000 .00167 84667 .00 AE 0000 .00265 50292 .00 EE 0000 .00363 15917 

.002F 0000 .00071 71630 .006F 0000 .0016937255 .00 AF 0000 .00267 02880 .00 EF 0000 .00364 68505 

.0030 0000 .00073 24218 .0070 0000 .00170 89843 .00 BO 0000 .00268 55468 .00 FO 0000 .00366 21093 

.0031 0000 .0007476806 .0071 0000 .00172 42431 .00B10000 .0027008056 .00 Fl 0000 .0036773681 

.0032 0000 .00076 29394 .0072 0000 .0017395019 .00 B2 0000 .00271 60644 .00 F2 0000 .00369 26269 

.0033 0000 .00077 81982 .0073 0000 .0017547607 .00 B3 0000 .00273 13232 .00 F3 0000 .00370 78857 

.0034 0000 .00079 34570 .0074 0000 .00177 00195 .00 B4 0000 .00274 65820 .00 F4 0000 .0037231445 

.0035 0000 .0008087158 .0075 0000 .0017852783 .00 B5 0000 .00276 18408 .00 F5 0000 .00373 84033 

.0036 0000 .00082 39746 .0076 0000 .0018005371 .00 B6 0000 .00277 70996 .00 F6 0000 .00375 36621 

.0037 0000 .00083 92333 .0077 0000 .00181 57958 .00 S7 0000 .00279 23583 .00 F7 0000 .00376 89208 

.0038 0000 .00085 44921 .0078 0000 .00183 10546 .00 B8 0000 .0028076171 .00 F8 0000 .00378 41796 

.00 39 0000 .00086 97509 .0079 0000 .0018463134 .00 S9 0000 .00282 28759 .00 F9 0000 .0037994384 

.003A 0000 .00088 50097 .007A 0000 .00186 15722 .00 BA 0000 .00283 81347 .00 FA 0000 .00381 46972 

.003B 0000 .0009002685 .007B 0000 .0018768310 .00 SS 0000 .00285 33935 .00 FB 0000 .00382 99560 

.003C 0000 .00091 55273 .007C 0000 .0018920898 .00 BC 0000 .00286 86523 .00 FC 0000 .0038452148 

.0030 0000 .00093 07861 .0070 0000 .0019073486 .00 BO 0000 .00288 39111 .00 FO 0000 .00386 04736 

.003E 0000 .00094 6044 9 .007E 0000 .00192 26074 .00 BE 0000 .00289 91699 .00 FE 0000 .00387 57324 

.003F 0000 .00096 13037 .007F 0000 .0019378662 .00 SF 0000 .00291 44287 .00 FF 0000 .00389 09912 

112 Appendix A 



HEXADECIMAL - DECIMAL FRACTION CONVERSION TABLE (cont.) 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.000000 00 .0000000000 .000040 00 .00000 38146 .000080 00 .00000 76293 .0000 CO 00 .00001 14440 

.000001 00 .00000 00596 .000041 00 .00000 38743 .000081 00 .0000076889 .0000C100 .00001 15036 

.000002 00 .0000001192 .000042 00 .00000 39339 .000082 00 .00000 77486 .0000 C2 00 .00001 15633 

.000003 00 .0000001788 .000043 00 .00000 39935 .000083 00 .00000 78082 .0000 C3 00 .00001 16229 

.000004 00 .0000002384 .000044 00 .0000040531 .0000 84 00 .0000078678 .0000 C4 00 .00001 16825 

.000005 00 .00000 02980 .000045 00 .0000041127 .000085 00 .00000 79274 .0000 C5 00 .00001 17421 

.000006 00 .0000003576 .000046 00 .00000 41723 .000086 00 .00000 79870 .0000 C6 00 .00001 18017 

.000007 00 .00000 04172 .000047 00 .00000 4231 9 .000087 00 .00000 80466 .0000 C7 00 .00001 18613 

.000008 00 .00000 04768 .000048 00 .00000 42915 .000088 00 .0000081062 .0000 C8 00 .00001 19209 

.000009 00 .00000 05364 .000049 00 .00000 43511 .000089 00 .0000081658 .0000 C9 00 .00001 19805 

.00 00 OA 00 .0000005960 .00004A 00 .00000 44107 .00008A 00 .00000 82254 .0000 CA 00 .00001 20401 

.OOOOOB 00 .00000 06556 .00004B 00 .0000044703 .00008B 00 .00000 82850 .0000 CB 00 .00001 20997 

.00 00 OC 00 .0000007152 .00004C 00 .00000 45299 .00 00 8C 00 .00000 83446 .0000 CC 00 .00001 21593 

.OOOOOD 00 .00000 07748 .00004D 00 .0000045895 .0000 8D 00 .00000 84042 .0000 CD 00 .00001 22189 

.OOOOOE 00 .0000008344 .00004E 00 .00000 46491 .00008E 00 .0000084638 .0000 CE 00 .00001 22785 

.0000 OF 00 .0000008940 .00004F 00 .00000 47087 .00008F 00 .00000 85234 .0000 CF 00 .00001 23381 

.0000 10 00 .00000 09536 .000050 00 .00000 47683 .000090 00 .00000 85830 .0000 DO 00 .00001 23977 

.0000 11 00 .00000 10132 .000051 00 .0000048279 .000091 00 .00000 86426 .0000 Dl 00 .00001 24573 

.0000 12 00 .00000 10728 .000052 00 .00000 48875 .000092 00 .00000 87022 .0000 D2 00 .00001 25169 

.0000 13 00 .00000 11324 .000053 00 .0000049471 .000093 00 .0000087618 .0000 D3 00 .00001 25765 

.0000 14 00 .00000 11 920 .000054 00 .00000 50067 .000094 00 .0000088214 .0000 D4 00 .00001 26361 

.0000 15 00 .00000 1 2516 .000055 00 .0000050663 .0000 95 00 .00000 8881 0 .0000 D5 00 .00001 26957 

.0000 16 00 .00000 13113 .000056 00 .0000051259 .0000 96 00 .00000 89406 .0000 D6 00 .00001 27553 

.0000 17 00 .00000 13709 .000057 00 .00000 51856 .000097 00 .00000 90003 .0000 D7 00 .00001 28149 

.0000 18 00 .00000 14305 .000058 00 .00000 52452 .0000 98 00 .00000 90599 .0000 D8 00 .00001 28746 

.0000 19 00 .00000 14901 .000059 00 .0000053048 .000099 00 .00000 91195 .0000 D9 00 .00001 29342 

.0000 lA 00 .00000 15497 .00005A 00 .0000053644 .00009A 00 .00000 91791 .0000 DA 00 .00001 29938 

.0000 1 B 00 .00000 16093 .00005B 00 .0000054240 .00009B 00 .00000 92387 .0000 DB 00 .00001 30534 

.0000 lC 00 .00000 16689 .00005C 00 .00000 54836 .00009C 00 .00000 92983 .0000 DC 00 .00001 31130 

.0000 1 D 00 .00000 17285 .00005D 00 .00000 55432 .0000 9D 00 .00000 93579 .0000 DD 00 .00001 31726 

.0000 1 E 00 .00000 17881 .00005E 00 .0000056028 .00009E 00 .00000 94175 .0000 DE 00 .00001 32322 

.0000 1 F 00 .00000 18477 .00005F 00 .0000056624 .00009F 00 .00000 94771 .0000 DF 00 .00001 32918 

.0000 20 00 .00000 19073 .000060 00 .0000057220 .0000 AO 00 .00000 95367 .0000 EO 00 .00001 33514 

.0000 21 00 .00000 19669 .000061 00 .0000057816 .0000 Al 00 .00000 95963 .0000 El 00 .00001 34110 

.0000 22 00 .00000 20265 .000062 00 .0000058412 .0000 A2 00 .00000 96559 .0000 E2 00 .00001 34706 

.000023 00 .00000 20861 .000063 00 .0000059008 .0000 A3 00 .00000 97155 .0000 E3 00 .00001 35302 

.0000 24 00 .00000 21457 .000064 00 .0000059604 .0000 A4 00 .00000 97751 .0000 E4 00 .00001 35898 

.000025 00 .00000 22053 .000065 00 .0000060200 .0000 A5 00 .00000 98347 .0000 E5 00 .00001 36494 

.0000 26 00 .00000 22649 .000066 00 .0000060796 .0000 A6 00 .00000 98943 .0000 E6 00 .00001 37090 

.0000 27 00 .00000 23245 .000067 00 .0000061392 .0000 A7 00 .00000 99539 .0000 E7 00 .00001 37686 

.000028 00 .00000 23841 .000068 00 .0000061988 .0000 A8 00 .00001 00135 .0000 E8 00 .00001 38282 

.000029 00 .00000 24437 .000069 00 .00000 62584 .0000 A9 00 .00001 00731 .0000 E9 00 .00001 38878 

.00002A 00 .00000 25033 .00006A 00 .00000 63180 .0000 AA 00 .00001 01327 .0000 EA 00 .00001 39474 

.00002B 00 .00000 25629 .00006B 00 .0000063776 .0000 AB 00 .00001 01923 .0000 EB 00 .00001 40070 

.0000 2C 00 .00000 26226 .00006C 00 .00000 64373 .0000 AC 00 .00001 02519 .0000 EC 00 .00001 40666 

.0000 2D 00 .00000 26822 .00006D 00 .00000 64969 .0000 AD 00 .00001 03116 .0000 ED 00 .00001 41263 

.00002E 00 .00000 27418 .00006E 00 .0000065565 .0000 AE 00 .00001 03712 .0000 EE 00 .00001 41859 

.00002F 00 .00000 28014 .00006F 00 .0000066161 .0000 AF 00 .00001 04308 .0000 EF 00 .00001 42455 

.000030 00 .00000 28610 .000070 00 .0000066757 .0000 BO 00 .00001 04904 .0000 FO 00 .00001 43051 

.000031 00 .00000 29206 .000071 00 .00000 67353 .OOOOBI 00 .00001 05500 .0000 Fl 00 .00001 43647 

.000032 00 .00000 29802 .000072 00 .00000 67949 .0000 B2 00 .00001 06096 .0000 F2 00 .00001 44243 

.000033 00 .00000 30398 .000073 00 .0000068545 .0000 B3 00 .00001 06692 .0000 F3 00 .00001 44839 

.0000 34 00 .00000 30994 .000074 00 .0000069141 .0000 B4 00 .00001 07288 .0000 F4 00 .00001 45435 

.000035 00 .00000 31590 .000075 00 .0000069737 .0000 B5 00 .00001 07884 .0000 F5 00 .00001 46031 

.000036 00 .0000032186 .000076 00 .00000 70333 .0000 B6 00 .00001 08480 .0000 F6 00 .00001 46627 

.000037 00 .00000 32782 .000077 00 .00000 70929 .0000 B7 00 .00001 09076 .0000 F7 00 .00001 47223 

.000038 00 .00000 33378 .000078 00 .00000 71525 .0000 B8 00 .00001 09672 .0000 F8 00 .00001 47819 

.0000 39 00 .00000 33974 .000079 00 .0000072121 .0000 B9 00 .00001 10268 .0000 F9 00 .00001 48415 

.00003A 00 .00000 34570 .00007A 00 .00000 72717 .0000 BA 00 .00001 10864 .0000 FA 00 .00001 49011 

.00003B 00 .00000 35166 .00007B 00 .00000 73313 .0000 BB 00 .00001 11460 .0000 FB 00 .00001 49607 

.00003C 00 .00000 35762 .00007C 00 .00000 73909 .0000 BC 00 .00001 12056 .0000 FC 00 .00001 50203 

.0000 3D 00 .00000 36358 .00007D 00 .0000074505 .0000 BD 00 .00001 12652 .0000 FD 00 .00001 50799 

.00003E 00 .00000 36954 .00007E 00 .0000075101 .0000 BE 00 .00001 13248 .0000 FE 00 .00001 51395 

.00003F 00 .00000 37550 .00007F 00 .00000 75697 .0000 BF 00 .00001 13844 .0000 FF 00 .00001 51991 

Appendix A 113 



HEXADECIMAL - DECIMAL FRACTION CONVERSION TABLE (cont.) 

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal 

.00000000 .00000 00000 .00000040 .0000000149 .00000080 .00000 00298 .000000 CO .00000 00447 

.00000001 .0000000002 .00000041 .0000000151 .00000081 .0000000300 .000000 C1 .00000 00449 

.00000002 .0000000004 .00000042 .0000000153 .00000082 .00000 00302 .000000 C2 .00000 00451 

.00000003 .0000000006 .00000043 .00000 00155 .00000083 .00000 00305 .000000 C3 .0000000454 

.00000004 .00000 00009 .00000044 .00000 00158 .00000084 .00000 00307 .000000 C4 .00000 00456 

.00000005 .0000000011 .00000045 .00000 00160 .00000085 .00000 00309 .000000 C5 .00000 00458 

.00000006 .00000 00013 .00000046 .0000000162 .00000086 .0000000311 .000000 C6 .00000 0046 1 

.00000007 .00000 00016 .00000047 .00000 00165 .00000087 .00000 00314 .000000 C7 .00000 00463 

.00000008 .00000 0001 8 .00000048 .0000000167 .00000088 .0000000316 .000000 C8 .00000 00465 

.00000009 .0000000020 .00000049 .0000000169 .00000089 .00000 00318 .000000 C9 .00000 00467 

.OOOOOOOA .0000000023 .00 00 00 4A .00000 00172 .00 00 00 8A .0000000321 .000000 CA .00000 00470 

.OOOOOOOB .00000 00025 .00 00 00 4B .0000000174 .00 00 00 8B .00000 00323 .000000 CB .0000000472 

.OOOOOOOC .0000000027 .00 00 00 4C .0000000176 .0000 00 8C .00000 00325 .000000 CC .00000 00474 

.OOOOOOOD .00000 00030 .0000004D .0000000179 .00 00 00 8D .00000 00328 .000000 CD .00000 00477 

.OOOOOOOE .0000000032 .0000004E .0000000181 .00 00 00 8E .00000 00330 .000000 CE .00000 00479 

.000000 OF .00000 00034 .0000004F .0000000183 .00 00 00 8F .0000000332 .000000 CF .00000 00481 

.000000 10 .0000000037 .00000050 .00000 00186 .00000090 .00000 00335 .000000 DO .00000 00484 

.000000 11 .00000 00039 .00000051 .0000000188 .00000091 .0000000337 .000000 D1 .00000 00486 

.000000 12 .00000 00041 .00000052 .00000 00190 .00000092 .00000 00339 .000000 D2 .0000000488 

.000000 13 .00000 00044 .00000053 .00000 001 93 .000000 93 .0000000342 .000000 D3 .00000 00491 

.000000 14 .00000 00046 .00000054 .00000 00195 .00000094 .00000 00344 .000000 D4 .0000000493 

.000000 15 .00000 00048 .00000055 .00000 001 97 .00000095 .00000 00346 .000000 D5 .00000 00495 

.000000 16 .0000000051 .00000056 .00000 00200 .00000096 .0000000349 .000000 D6 .00000 00498 

.000000 17 .00000 00053 .00000057 .00000 00202 .00000097 .00000 00351 .000000 D7 .00000 00500 

.000000 18 .00000 00055 .00000058 .0000000204 .00000098 .0000000353 .000000 D8 .0000000502 

.000000 19 .0000000058 .00000059 .0000000207 .00000099 .00000 00356 .000000 D9 .0000000505 

.000000 1A .00000 00060 .00 00 005A .00000 00209 .0000009A .0000000358 .000000 DA .00000 00507 

.000000 1 B .00000 0006 2 .0000005B .00000 00211 .0000009B .00000 00360 .000000 DB .0000000509 

.0000001C .00000 00065 .00 00 005C .00000 00214 .0000009C .00000 00363 .000000 DC .00000 00512 

.000000 1 D .0000000067 .0000005D .0000000216 .0000009D .0000000365 .000000 DO .00000 00514 

.000000 1 E .00000 00069 .0000005E .00000 00218 .0000009E .0000000367 .000000 DE .00000 00516 

.0000001F .0000000072 .0000005F .00000 00221 .0000009F .00000 00370 .000000 DF .00000 00519 

.00000020 .00000 00074 .00000060 .00000 00223 .000000 AO .0000000372 .000000 EO .00000 00521 

.00000021 .00000 00076 .00000061 .00000 00225 .000000 A1 .0000000374 .000000 E1 .0000000523 

.000000 22 .00000 00079 .00000062 .00000 00228 .000000 A2 .0000000377 .000000 E2 .0000000526 

.00000023 .00000 00081 .00000063 .0000000230 .000000 A3 .00000 00379 .000000 E3 .00000 00528 

.00000024 .0000000083 .00000064 .00000 00232 .000000 A4 .00000 00381 .000000 E4 .00000 00530 

.000000 25 .0000000086 .00000065 .00000 00235 .000000 A5 .00000 00384 .000000 E5 .0000000533 

.00000026 .0000000088 .00000066 .00000 00237 .000000 A6 .00000 00386 .000000 E6 .0000000535 

.00000027 .00000 00090 .00000067 .00000 00239 .000000 A7 .00000 00388 .000000 E7 .00000 00537 

.00000028 .0000000093 .00000068 .00000 00242 .000000 A8 .00000 00391 .000000 E8 .00000 00540 

.000000 29 .0000000095 .00000069 .00000 00244 .000000 A9 .0000000393 .000000 E9 .00000 00542 

.0000002A .00000 00097 .0000006A .0000000246 .000000 AA .00000 00395 .000000 EA .00000 00544 

.0000002B .00000 001 00 .0000006B .00000 00249 .000000 AB .00000 00398 .000000 EB .00000 00547 

.0000002C .0000000102 .00 00 00 6C .00000 00251 .000000 AC .00000 00400 .000000 EC .00000 00549 

.0000002D .0000000104 .0000006D .00000 00253 .000000 AD .00000 00402 .000000 ED .00000 00551 

.0000002E .00000 00107 .0000006E .0000000256 .000000 AE .00000 00405 .000000 EE .00000 00554 

.0000002F .0000000109 .0000006F .00000 00258 .000000 AF .0000000407 .000000 EF .00000 00556 

.00000030 .00000 00111 .00000070 .00000 00260 .000000 BO .00000 00409 .000000 FO .00000 00558 

.00000031 .0000000114 .00000071 .00000 00263 .000000 B1 .00000 00412 .000000 F1 .00000 00561 

.00000032 .00000 00116 .00000072 .00000 00265 .00000082 .00000 00414 .000000 F2 .00000 00563 

.00000033 .0000000118 .00000073 .00000 00267 .000000 B3 .0000000416 .000000 F3 .00000 00565 

.00000034 .0000000121 .00000074 .0000000270 .0000 0084 .00000 00419 .000000 F4 .00000 00568 

.00000035 .0000000123 .00000075 .0000000272 .000000 B5 .00000 00421 .000000 F5 .00000 00570 

.00000036 .00000 001 25 .00000076 .00000 00274 .000000 B6 .00000 00423 .000000 F6 .0000000572 

.00000037 .00000 001 28 .00000077 .0000000277 .000000 B7 .00000 00426 .000000 F7 .00000 00575 

.00000038 .00000 001 30 .00000078 .00000 00279 .000000 B8 .00000 00428 .000000 F8 .00000 00577 

.00000039 .0000000132 .00000079 .00000 00281 .000000 B9 .00000 00430 .000000 F9 .00000 00579 

.0000 00 3A .00000 001 35 .0000007A .00000 00284 .000000 BA .00000 00433 .000000 FA .00000 00582 

.0000003B .0000000137 .0000007B .00000 00286 .000000 BB .00000 00435 .000000 FB .0000000584 

.00 00 00 3C .00000 00139 .0000007C .00000 00288 .000000 BC .0000000437 .000000 FC .00000 00586 

.0000003D .00000 00 142 .0000007D .00000 00291 .000000 BD .00000 00440 .000000 FD .00000 00589 

.0000003E .00000 00144 .00 00 00 7E .0000000293 .000000 BE .0000000442 .000000 FE .0000000591 

.0000003F .00000 00146 .0000 00 7F .00000 00295 .000000 BF .00000 00444 .000000 FF .00000 00593 

114 Appendix A 



TABLE OF POWERS OF TWO MATHEMATICAL CONSTANTS 

L..!:!..L 
1 0 1.0 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
32 5 0.031 25 
64 6 0.015 625 

128 7 0.007 812 5 

256 8 0.003 906 25 
512 9 0.001 953 125 

1 024 10 0.000 976 562 5 
2 048 11 0.000 488 281 25 

4 096 12 0.000 244 140 625 
8 192 13 0.000 122 070 312 5 

16 384 14 0.000 061 035 156 25 
32 768 15 0.000 030 517 578 125 

65 536 16 0.000 015 258 789 062 5 
131 072 17 0.000 007 629 394 531 25 
262 144 18 0.000 003 814 697 265 625 
524 288 19 0.000 001 907 348 632 812 5 

1 048 576 20 0.000 000 953 674 316 406 25 
2 097 152 21 0.000 000 476 837 158 203 125 
4 194 304 22 0.000 000 238 418 579 101 562 5 
8 388 608 23 0.000 000 119 209 289 5S0 781 25 

16 777 216 24 0.000 000 059 604 644 775 390 625 
33 554 432 25 0.000 000 029 802 322 387 695 312 5 
67 108 864 26 0.000 000 014 901 161 193 847 656 25 

134 217 728 27 0.000 000 007 450 580 596 923 828 125 

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5 

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125 

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5 
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25 

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625 
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 

281 474 976 710656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 
2 251 799 813 685 248 51 0.000000 000 000 000 444 089 209 850062 616 169 452 667236 328 125 

Constont 

IT 
IT-l 

..fiT 

InlT 

e 
-1 

e 

.Je 
I0910 e 

log2 e 

'V 

InY 

.JT 
In2 

log
lO

2 

.JiO 
In 10 

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25 

18014 398 509 481 984 54 0.000000000000000055 511 151 231 257827021 181 583404 541015625 
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5 

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25 

Decimal Value 

3.14159 26535 89793 

0.31830 98861 83790 

1.77245 38509 05516 

1 .14472 98858 49400 

2.71828 18284 59045 

0.36787 94411 71442 

1.64872 12707 00128 

0.43429 44819 03252 

1.44269 50408 88963 

0.57721 56649 01533 

-0.54953 93129 81645 

1.41421 35623 73095 

0.69314 71805 59945 

0.30102 99956 63981 

3.16227 76601 68379 

2.30258 40929 94046 

144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125 
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5 
576460 752 303423488 59 0.000000000000000001 734723475976807094411 924481 391 906 738281 25 

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625 
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994201 773602 981 120 347 976 684 570 312 5 
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25 
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125 

Hexadecimal Value 

3.243F 6A89 

0.517C C187 

1.C58F 891C 

1.250D 048F 

2.87El 5163 

0.5E2D 58D9 

I.A612 98E2 

0.6F2D EC55 

1.7154 7653 

0.93C4 67E4 

-0.8CAE 98Cl 

1.6A09 E668 

0.8172 17F8 

0.4Dl0 4D42 

3.2988 075C 

2.4D76 3777 

Appendix A 115 



APPENDIX B. REFERENCE DIAGRAMS 

This appendix contains flow diagrams that are intended to 
illustrate the major operations involved during the execu­
tion of instructions by the SIGMA 7 computer. The flow 
diagrams are not intended to depict actua I computer oper­
ations and sequences, but the operations and sequences 
shown are valid representations of the internal computer 
operations. The symbolic notation used in the flow dia­
grams is consistent with that used in other portions of this 
reference manual. The symbolic terms used are: 

Term 

A 

AC 

Meaning 

An internal CPU register used to hold an operand 
obtained from the genera I register that is speci - . 
fied by the R field value in the instruction word. 

Access control code - the code used to determine 
whether or not a slave program operating with 
the memory map may read from, access instruc­
tion from, or write into a specific page of virtual 
addresses. 

ADDR Address - any virtua I address. 

B An internal CPU register used to hold an operand 
obtained from the general register that is speci­
fied by the value produced by performing a logi­
calOR between the R field of the instruction and 
the value 1. 

C An interna I CPU register used to hold an immediate 
operand obtained from the instruction, or a byte, 
ha If word, or word operand obtained from the me­
mory (or general register) location specified by 
the effective address of the instruction. For 
doubleword operations, this register holds the 32 
high-order bits of the effective doubleword. 

D An internal CPU register used to hold the32 low­
order bits of the effective doubleword in a double­
word operation. 

EB Effective byte. 

EBL Effective byte location. 

ED Effective doubleword 

EDL Effective doubleword location. 

EH Effective ha If word. 

EHL Effective halfword location. 

EW Effective word. 

EWL Effective word location. 

116 Appendix B 

IA 

IRA 

MA 

OP 

R 

TCC 

TYPE 

WK 

WL 

Instruction register. 

Instruction address. 

Indirect reference address. 

Memory Address - an actual core memory address. 

Operation code - bits 1-7 of an instruction word. 

Genera I register address value. 

Trap condition code - the code that is used during 
the EXCHANGE PROGRAM STATUS DOUBLE­
WORD (XPSD) instruction. 

Memory access type - the following va lues are 
used to indicate the reason for accessing memory: 

0= write 
1 = i nstruc ti on read 
2 = operand read 

Write key 

Write lock 

X Index register designator. 

BASIC SIGMA 7 INSTRUCTION EXECUTION CYCLE 

The hexagonal elements in the flow diagram labeled 
II Memory Contro I" refer to the memory request process 
shown at the right of the basic flow diagram. The memory 
request process is represented as a subroutine with two inputs: 
an address va lue (ADDR) and a memory access TYPE, sepa­
rated by a slash, that correspond to the values shown in the 
"Memory Control II elements of the basic flow diagram. 

The circular entry point labeled "TRAP" is a continuation 
of the circular exit points labeled "Trap X'n"', where n is 
the appropriate trap location. 

The triangular entry point labeled "EXU" indicates the 
point in the basic flow diagram at which cln instruction 
(being executed as an operand of the EXECUTE instruction) 
is started. 

The triangular entry point label'ed "ANLZ" indicates the 
point in the basic flow diagram at which the effective ad­
dress computation for the instruction being analyzed is 
started; the triangular exit points indicate the completion 
of the effective address calculation. 



BASIC SIGMA 7 INSTRUCTION EXECUTION CYCLE 

EB - C24-31 
0- CO-23 
0_ D 

Appendix B 117 



BASIC SIGMA 7 INSTRUCTION EXECUTION CYCLE (cont.) 

o 

o 

yes 

118 Appendix B 



FLOATING· POINT INSTRUCTION EXECUTION 

FLOATING-POINT MULTIPLICATION AND DIVISION 

yes 

no 

Appendix B 119 



no 

yes 

120 Appendix B 

FLOATING-POINT ADDITION AND SUBTRACTION 

Right shift number with 
smaller characteristic and 
Increment Its character­
Istic by 1 for each hex 
place shifted until the 
characteristics of the num­
bers are equal 

yes 

yes 

no 

yel 

yes 

yes 

<postnormallzatlon ""> ______ -, 
required more than 

2 hex shifts? 

no 



no 

LEFT SHIFT 

Shift fraction left 1 hex place, 
fill vacated bit position on the 
right with O's, decrement char­
acteristic field by 1, and dec­
rement shift count by 1. 

FLOATING-POINT SHIFT 

Form the 2's comple­
ment of the final 
floating-point number 

0-CC3 
l-CC4 

yes 

no 

yes 

no 

yes 

RIGHT SHIFT 

Shift fraction right 1 hex place, 
fill vacated bit positions on the 
left with O's, increment char­
acteristic field by 1, and incre­
ment shift count by one, 

Appendix B 121 



EDIT BYTE STRING INSTRUCTION EXECUTION 

Fill = (R)O_7 

SA = (R)I3-31 

D = (1)12-31 

C = (Rul)()"'7 

DA = (Ru 1)13_31 

122 Appendix B 

a = byte butte. 
f3 = byte buffer 
8 = digit buffer 
ds = X'20' 
ss= X'21' 
fs= X'22' 
si = X'23' 



APPENDIX C.INSTRUCTION LIST 

Mnemonic Code Instruction Name Addressing Type Page 

AD 10 Add Doubleword Doubleword 37 
AH 50 Add Halfword Halfword 36 
AI 20 Add Immediate Immediate, word 36 
AIO 6E Acknowledge Input/Output Interrupt Word 83-
AND 4B AND Word Word 43 
ANLZ 44 Analyze Word 34 
AW 30 Add Word Word 37 
AWM 66 Add Word to Memory Word 40 
BAL 6A Branch and Link Word 70 
BCR 68 Branch on Conditions Reset Word 69 
BCS 69 Branch on Conditions Set Word 69 
BDR 64 Branch on Decrementing Register Word 70 
BIR 65 Branch on Incrementing Reg ister Word 69 
CALl 04 Call 1 Word 70 
CAL2 05 Call 2 Word 70 
CAL3 06 Call 3 Word 70 
CAL4 07 Cal14 Word 70 
CB 71 Compare Byte Byte 41 
CBS 60 Compa re Byte Stri ng Immediate, byte 59 
CD 11 Compare Doubleword Doubleword 42 
CH 51 Compare Halfword Halfword 42 
CI 21 Compare Immediate Immediate, word 41 
CLM 19 Compare with Limits in Memory Doubleword 43 
CLR 39 Compare with Limits in Register Word 43 
CS 45 Compare Selective Word 42 
CVA 29 Convert by Addition Word 46 
CVS 28 Convert by Subtraction Word 47 
CW 31 Compare Word Word 42 
DA 79 Decimal Add Byte 54 
DC 7D Dec ima I Compare Byte 55 
DD 7A Decimal Divide Byte 55 
DH 56 Divide Halfword Halfword 39 
DL 7E Decimal Load Byte 53 
DM 7B Decimal Multiply Byte 54 
DS 78 Decimal Subtract Byte 54 
DSA 7C Decimal Shift Arithmetic Byte 55 
DST 7F Decimal Store Byte 53 
DW 36 Divide Word Word 39 
EBS 63 Edit Byte String Immediate, byte 61 
EOR 48 Exclusive OR Word Word 43 
EXU 67 Execute Word 69 
FAL lD Floating Add Long Doubleword 50 
FAS 3D Floating Add Short Word 50 
FDL lE Floating Divide Long Doubleword 51 
FDS 3E Floating Divide Short Word 51 
FML 1 F Floating Multiply Long Doubleword 51 
FMS 3F Floating Multiply Short Word 51 
FSL lC Floating Subtract Long Doubleword 51 
FSS 3C Floating Subtract Short Word 50 
HIO 4F Halt Input/Output Word 83 
INT 6B Interpret Word 35 
LAD lB Load Absolute Doubleword Doubleword 31 
LAH 5B Load Absolute Halfword Halfword 30 
LAW 3B Load Absolute Word Word 30 
LB 72 Load Byte Byte 29 
LCD 1A Load Complement Doublew()rd Doubleword 30 
LCF 70 Load Conditions and Floating Control Byte 32 

Appendix C 123 



Mnemonic Code Instruction Name Addressing Type Page 

lCFI 02 load Conditions and Floating 
Control Immediate Immediate, word 32 

lCH 5A load Complement Halfword Halfword 30 
lCW 3A load Complement Word Word 30 
lD 12 load Doubleword Doubleword 29 
lH 52 load Halfword Halfword 29 
LI 22 load Immediate Immediate, word 29 
lM 2A load Multiple Word 32 
lPSD OE load Program Status Doubleword Doubleword 71 
lRP 2F load Reg i ste r Po inter Word 74 
lS 4A load Selective Word 31 
lW 32 load Word Word 29 
MBS 61 Move Byte Stri ng Immediate, byte 58 
MH 57 Multiply Halfword Halfword 38 
MI 23 Multiply Immediate Immediate, word 38 
MMC 6F Move to Memory Control Word 74 
MSP 13 Modify Stack Pointer Doubleword 68 
MTB 73 Modify and Test Byte Byte 40 
MTH 53 Modify and Test Halfword Halfword 40 
MTW 33 Modify and Test Word Word 41 
MW 37 Multiply Word Word 39 
OR 49 OR Word Word 43 
PACK 76 Pack Decimal Digits Byte 56 
PlM OA Pull Multiple Word 67 
PlW 08 Pull Word Word 66 
PSM OB Push Multiple Word 67 
PSW 09 Push Word Word 65 
RD 6C Read Direct Word 76 
S 25 Shift Word 44 
SD 18 Subtract Doubleword Doubleword 55 
SF 24 Shift Floating Word 45 
SH 58 Subtract Halfword Halfword 66 
SIO 4C Start Input/Output Word 80 
STB 75 Store Byte Byte 65 
STCF 74 Store Conditions and Floating Control Byte 76 
STD 15 Store Doubleword Doubleword 33 
STH 55 Store Halfword Halfword 33 
STM 2B Store Mu Itiple Word 34 
STS 47 Store Selective Word 33 
STW 35 Store Word Word 33 
SW 38 Subtract Word Word 38 
TBS 41 T ransl ate Byte Stri ng Immediate, byte 59 
TDV 4E Test Device Word 84 
no 4D Test Input/Outpu t Word 83 
TTBS 40 Translate and Test Byte String Immediate, byte 60 
UNPK 77 Unpack Decimal Digits Byte 56 
WAIT 2E Wait Word 75 
WD 6D Write Direct Word 76 
XPSD OF Exchange Program Status Doubleword Doubleword 71 
XW 46 Exchange Word Word 33 

124 Appendix C 



APPENDIX D. INSTRUCTION TIMING 

This appendix shows the timing (in microseconds) for exe­
cuting individual SIGMA 7 computer instructions under a 
variety of circumstances. All of the times are based on the 
assumption that whenever the CPU requests a service cyc Ie 
from a particular memory bank, it never has towait for such 
service due to other d<evices (such as lOPs) that are con­
nected to that memory bank. 

Execution times depend not on lyon the nature of the speci fic 
instructions, but also on the configuration of memory banks 

Memory Bank Configuration 

A II instructions and operands are in the same 
memory bank 

All instructions are in one memory bank and all 
operands are in a different memory ban k 

A II instructions and operands are in two inter-
leaved memory banks 

A II instructions and operands are in four inter-
leaved memory banks 

All instructions are in one memory bank and all 
operands are in two interleaved memory banks. 
(Both operand memory banks are different from 
instruction memory ban k.) 

Basic timing information is summarized in the following two 
tab les. A dash entry for any item indicates a non-app licab Ie 
or impossible condition for the instruction. Special notes 
{identified by numbers in the II Notes ll column are given at 
the end of the table to which they apply. Table I shows 
the execution times for instructions under the most common 
conditions that the user can expect to encounter in his pro­
gram. Table II shows the additional times that must be 
added to the basic times if (1) the instruction performs a 
register-to-register operation (i. e., accesses one or more 
of the general registers for an operand(s) or a direct address) 
or (2) the register pointer in the current program status 
doubleword selects one of the register blocks in the range 
from X'4' through X'lF' (4 through 31 decimal). 

The times given in Table II, where the instruction performs 
a register-to-register operation, assume the following 
conditions: 

1. The CPU is operating in the mapping mode with one 
memory bank so that no memory overlap occurs. 

2. All instructions are in core memory. 

in the system, and the placement of instructions and operands. 
The following tableprovides a means of estimating instruction 
execution times for some of the possible combinations of mem­
ory bank configuration, data placement, and instruction type, 
where 

MAX = Time with no memory overlap 

MIN = Time with complete memory overlap 

Average Instruction Execution Time 

Instructions that utilize Instructions that uti I ize 
byte, ha If word, doubleword 

and word addressing addressing 

MAX MAX 

MIN 1/2 MAX + 1/2 MIN 

1/2 MAX + 1/2 MIN 1/4 MAX + 3/4 MIN 

1/4 MAX + 3/4 MIN 1/8 MAX + 7/8 MIN 

MIN MIN 

3. In the case of an instruction with a direct address, its 
operand is in one or more of the general registers. For 
a push-down instruction with a direct address, however, 
its stack pointer doubleword is in the general registers 
a nd the stack is in core memory. 

4. In the case of an instruction with an indirect address, 
the indirect reference is to one of the general registers, 
which contains the direct address of the operand. The 
resu I tant vi rtua I address is assumed to be a core memory 
address. For a push-down instruction with an indirect 
address, therefore, both the stack pointer doubleword 
and the stack are assumed to be in core memory. 

The timing data given below are for a typical system. A 
specific CPU may vary by up to ±10% of the times shown. 

For large core memory configurations, an additional .1 fJ.sec 
per memory access may be encountered due to added cab Ie 
lengths. 

Appendix D 125 



TABLE I. BASIC INSTRUCTION TIMING 

No Memory Overlap Maximum Memory Overlap 

No Map Map No Map Map 

Mnemonics Notes Direct Indirect Direct Indirect Direct Indirect Direct Indirect 

No Index No Index No Index No Index No Index No Index No Index No Index 
Index Index Index Index Index Index Index Index 

AD 2.7 3.3 3.6 3.9 2.7 3.4 3.6 4.0 2.4 3.0 3.3 3.6 2.5 3.2 :3.4 3.8 

AH 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 1.4 2.0 2.3 2.6 1.5 2.2 :2.4 2.9 

AI 1.3 - - - - - - 1.4 - - - - - - 1.3 - - - - - - 1.4 - - .. - - -
AIO RiO 6.9 6.9 7.5 7.5 6.9 6.9 7.5 7.5 6.6 6.6 7.2 7.2 6.7 6.7 7.3 7.3 

AIO R=O 6.1 6.1 6.7 6.7 6.1 6.1 6.7 6.7 6.1 6.1 6.7 6.7 6.1 6.1 6.7 • 6.7 

AND 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 1.4 2.0 2.3 2.6 1.5 2.2 2.4 2.9 

ANLZ 1 3.2 3.8 4.1 4.4 3.2 3.9 4.1 4.5 3.2 3.8 4.1 4.4 3.2 3.9 4.1 4.5 

AW 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 1.4 2.0 2.3 2.6 1.5 2.2 2.4 2.9 

AWM 2.8 3.4 3.7 4.0 2.9 3.6 3.8 4.2 2.6 3.3 3.6 3.9 2.9 3.6 :3.8 4.2 

BAl 2.2 2.2 2.8 2.8 2.3 2.3 2.9 2.9 2.2 2.2 2.8 2.8 2.3 2.3 2.9 2.9 

BCR branch 0.9 1.5 1.8 2.2 0.9 1.6 1.8 2.3 0.9 1.5 1.8 2.2 0.9 1.6 1.8 2.3 

BCR no branch 1.9 2.5 2.8 3.1 2.0 2.7 2.9 3.3 1.9 2.5 2.8 3.1 2.0 2.7 2.9 3.3 

BCS branch 0.9 1.5 1.8 2.2 0.9 1.6 1.8 2.3 0.9 1.5 1.8 2.2 0.9 1.6 11.8 2.3 

BCS no branch 1.9 2.5 2.8 3.1 2.0 2.7 2.9 3.3 1.9 2.5 2.8 3.1 2.0 2.7 2.9 3.3 

BOR branch 1.4 1.7 2.3 2.3 1.4 1.8 2.3 2.4 1.4 1.7 2.3 2.3 1.4 1.8 2.3 2.4 

BOR no branch 2.3 2.6 3.2 3.2 2.4 2.8 3.4 3.4 2.3 2.6 3.2 3.2 2.4 2.8 ~1.4 3.4 

BIR branch 1.4 1.7 2.3 2.3 1.4 1.8 2.3 2.4 1.4 1.7 2.3 2.3 1.4 1.8 ~~.3 2.4 

BIR no branch 2.3 2.6 3.2 3.2 2.4 2.8 3.4 3.4 2.3 2.6 3.2 3.2 2.4 2.8 ~1.4 3.4 

CALl-4 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 ~-I.2 3.2 

CB 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 1.4 2.0 2.3 2.6 1.5 2.2 2.4 2.9 

CBS 2 
4.1 4.2 4.1 4.2 

+3.9N - - - - - - +4.1N - - - - - - +3.9N - - -- - - +4.1N - - ., - - -
--r' 

CD 2.7 3.3 3.6 3.9 2.7 3.4 3.6 4.0 2.4 3.0 3.3 3.6 2.5 3.2 3.4 3.8 

CH 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 1.4 2.0 2.3 2.6 1.5 2.2 2.4 2.9 

CI 1.8 - - - - - - 1.9 - - - - - - 1.8 - - - - - - 1.9 -- ., - - -
ClM 2.7 3.3 3.6 3.9 2.7 3.4 3.6 4.0 2.4 3.0 3.3 3.6 2.5 3.2 3:.4 3.8 

CLR 1.8 2.4 2.8 3.1 1.8 2.6 2.8 3.2 1.8 2.4 2.8 3.1 1.8 2.6 2.8 3.2 

CS 2.9 3.5 3.8 4.1 3.0 3.7 3.9 4.3 2.9 3.5 3.8 4.1 3.0 3.7 3,.9 4.3 

CVA 3 
17.1 17.1 17.3 17.3 17.2 17.2 17.3 17.3 17.1 17.1 17.3 17.3 17.2 17.2 17.3 17.3 
+0.5N +0.5N +0.6N +0.6N +0.6N +0.6N +0.7N +0.7N +0.5N +0.5N +0.6N +0.6N +0.6N +0.6N +0.7N +O.7N 

CVS 33.2 33.2 33.7 33.7 36.8 36.6 36.7 36.7 33.2 33.2 33.7 33.7 .36.8 36.6 36.7 36.7 

cw 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 1.4 2.0 2.3 2.6 1.5 2.2 2.4 2.9 
--- "-----

OA 4 19.2 19.2 20.0 20.0 19.4 19.4 20.6 20.6 19.2 19.2 20.0 20.0 19.4 19.4 20.6 20.6 
+0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D 

DC 4 11.8 ] 1.8 12.3 12.3 12.1 12.1 12.8 12.8 11.8 11.8 12.3 12.3 12.1 12.1 12.8 12.8 
+0.3D +0.30 +0.3D +0.30 +0.3D +0.30 +0.30 +0.30 +0.30 +0.30 +0.3D +0.30 +0.30 +0.30 +0.3D +0.3D 

126 Appendi x 0 



TABLE I. BASIC INSTRUCTION TIMING (cant.) 

No Memory Overlap Maximum Memory Overlap 

No Map Map No Map Map 
--

Mnemonics Notes Oirect Indirect Oirect Indirect Oirect Indirect Oirect Indirect 
-~ 

No Index No 
Index No Index No Index No Index No Index 

No Index No Index 
Index Index Index Index Index Index Index Index 

--f--- --- ---- -----

00 5 
29.7 29.7 30.3 30.3 30.8 30.8 31.4 31.4 29.7 29.7 30.3 30.3 30.8 30.8 31.4 31.4 
+0.8K +0.8K +0.8K +0.8K +0.8K +0.8K +0.8K +0.8K +0.8K +0.8K +0.8K +0.8K +0.8K +0.8K +0.8K +0.8K 

-------
OH 12.4 13.0 13.3 13.6 12.4 13.1 13.3 13.7 12.4 13.0 13.3 13.6 12.4 13.1 13.3 13.7 

--c-------

OL 4 11.8 11.8 12.4 12.4 11.8 11.8 12.5 12.5 11.8 11.8 12.4 12.4 11.8 11.8 12.5 12.5 
+0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 -+0.30 +0.30 +0.30 +0.30 +0.30 

---- ---

OM 6 
61.2 61.2 61.8 61.8 62.3 62.3 62.9 62.9 61.2 61.2 61.8 61.8 62.3 62.3 62.9 62.9 

-tQ.4DN -tQ.4DN -tQ.4DN -tQ.4DN -tQ.4DN -tQ.4DN -tQ.4DN -tQ.4DN -tQ.4DN -to.4DN -tQ.4DN -tQ.4DN -tQ.4DN -tQ.4DN -tQ.4DN -tQ.4DN 
--_.- -----

OS 4 19.2 19.2 19.7 19.7 19.3 19.3 19.7 19.7 19.2 19.2 19.7 19.7 19.3 19.3 19.7 19.7 
+0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 +0.30 

- - r-- ---
OSA 20.2 20.2 20.6 20.6 20.2 20.2 20.9 20.9 20.2 20.2 20.6 20.6 20.2 20.2 20.9 20.9 --
OST 7 11.3 11.3 12.0 12.0 11.3 11.3 12.1 12.1 11.3 11.3 12.0 12.0 11.3 11.3 12.1 12.1 

+0.70 +0.70 +0.70 +0.70 +0.70 +0.70 +0.70 +0.70 +0.70 +0.70 +0.70 +0.70 +0.70 +0.70 +0.70 +0.70 

OW 12.5 13.1 13.4 13.6 12.5 13.2 13.5 13.8 12.5 13.1 13.4 13.6 12.5 13.2 13.5 13.8 
--f-----

EBS 8 4.1 4.2 4.1 4.2 
+6.8N - - - - - - +7.1N - - - - - - +6.8N - - - - - - +7.1N - - - - - -

--f--- --.---.--

EOR 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 1.4 2.0 2.3 2.6 1.5 2.2 2.4 2.9 --
EXU 9 1.2 1.6 2.1 2.2 1.3 1.8 2.2 2.4 1.2 1.6 2.1 2.2 1.3 1.8 2.2 2.4 

FAL 10 4.1 4.7 5.0 5.3 4.2 4.9 5.1 5.5 4.1 4.7 5.0 5.3 4.2 4.9 5.1 5.5 
Min. 

---
FAL 11 13.7 14.2 14.6 14.8 13.8 14.4 14.7 15.1 13.7 14.2 14.6 14.8 13.8 14.4 14.7 15.1 
Max. 

FAL 12 5.0 5.5 5.9 6.1 5.1 5.7 6.0 6.4 5.0 5.5 5.9 6.1 5.1 5.7 6.0 6.4 
Typical 

._- -------r- ---.---
FAS 

10 3.3 3.9 4.2 4.6 3.3 4.0 4.2 4.7 3.3 3.9 4.2 4.6 3.3 4.0 4.2 4.7 
Min. 

FAS 
11 8.2 8.9 9.1 9.5 8.2 9.0 9.1 9.6 8,2 8.9 9.1 9.5 8.2 9.0 9.1 9.6 

Max. 
. . -~" --~ 

FAS 12 4.0 4.6 4.9 5.3 4.0 4.7 4.9 5.4 4.0 4.6 4.9 5.3 4.0 4.7 4.9 5.4 
Typical 

FOL 13,14 25.4 26.1 26.4 26.7 25.5 26.1 27.0 26.8 25.4 26.1 26.4 26.7 25.5 26.1 27.0 26.8 
Min. 

FOL 11 34.7 35.4 35.7 36.0 34.8 35.4 36.3 36.1 34.7 35.4 35.7 36.0 34.8 35.4 36.3 36.1 
Max. 

FOS 13,14 12.4 13.3 13.4 13.7 12.4 13.4 13.4 13.8 12.4 13.3 13.4 13.7 12.4 13.4 13.4 13.8 
Min. 

--- ----
FOS 11 16.6 17.5 17.6 17.9 16.6 17.6 17.6 18.0 16.6 17.5 17.6 17.9 16.6 17.6 17.6 18.0 
Max. 

FML 13,14 9.1 9.8 10.0 10.4 9.2 10.0 10.2 10.6 9.1 9.8 10.0 10.4 9.2 10.0 10.2 10.6 
Min. 

r--- -.-- --- -----

FML 11 14.7 15.4 15.6 16.0 14.8 15.6 15.8 16.2 14.7 15.4 15.6 16.0 14.8 15.6 15.8 16.2 
Max. 

FMS 13,14 6.0 6.6 6.9 7.2 6.0 6.8 6.9 7.4 6.0 6.6 6.9 7.2 6.0 6.8 6.9 7.4 
Min. 

FMS 11 8.8 9.4 9.7 10.0 8.8 9.6 9.7 10.2 8.8 9.4 9.7 10.0 8.8 9.6 9.7 10.2 
Max. 

FSL 10 4.1 4.7 5.0 5.3 4.2 4.9 5.1 
Min. 

5.5 4.1 4.7 5.0 5.3 4.2 4.9 5.1 5.5 
.---_. .-----

FSL 11 13.7 14.2 14.6 14.8 13.8 14.4 14.7 
Max. 

15.1 13.7 14.2 14.6 14.8 13.8 14.4 14.7 15.1 
f- -- --

FSL 12 5.0 5.5 5.9 6.1 5.1 5.7 6.0 6.4 5.0 5.5 5.9 6.1 5.1 5.7 6.0 6.4 
Typical 

Appendix D 127 



TABLE 1. BASIC INSTRUCTION TIMING (cant.) 

No Memory Overlap Maximum tv'Iemory Overlap 

No Map Map No Map MJp 

Mnemonics Notes Direct Indirect Direct Indirect Direct Indirect Direct Indirect 

No Index 
No 

Index No Index No Index No 
Index 

No Index No Index No Index Index Index Index Index Index Index Index llndex 

FSS 10 3.3 3.9 4.2 4.6 3.3 4.0 4.2 4.7 3.3 3.9 4.2 4.6 3.3 4.0 4.2 4.7 Min. 

FSS 11 8.2 8.9 9.1 9.5 8.2 9.0 9.1 9.6 8.2 8.9 9.1 9.5 8.2 9.0 9.1 9.6 Max. 

FSS 12 4.0 4.6 4.9 5.3 4.0 4.7 4.9 5.4 4.0 4.6 4.9 5.3 4.0 4.7 4.9 5.4 Typical 

HIO R=even,lO 9.7 9.7 10.3 10.3 9.7 9.7 10.3 10.3 9.4 9.4 10.0 10.0 9.5 9.5 10.1 10.1 

HIO R=odd 8.3 8.3 8.9 8.9 8.3 8.3 8.9 8.9 8.3 8.3 8.9 8.9 8.3 8.3 8.9 8.9 
f--

HIO R=O 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 

INT 2.3 2.9 3.2 3.5 2.4 3.1 3.3 3.7 2.3 2.9 3.2 3.5 2.4 3.1 3.3 3.7 

LAD 3.1 3.8 4.1 4.4 3.2 4.0 4.2 4.6 3.1 3.7 4.0 4.3 3.2 3.9 4.2 4.6 

LAH 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.2 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 

LAW 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.2 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 

LB 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.2 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 

LCF 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.2 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 

LCD 2.7 3.3 3.6 3.9 2.7 3.4 3.6 4.0 2.4 3.0 3.3 3.6 2.5 3.2 3.4 3.8 

LCH 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.2 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 

LCFI 1.3 - - - - - - 1.4 - - - - - - 1.3 - - - - - - 1.4 - - - - - -
LCW 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.2 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 

LD 2.7 3.3 3.6 3.9 2.7 3.4 3.6 4.0 2.4 3.0 3.3 3.6 2.5 3.2 3.4 3.8 

LH 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.2 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1 

Ll 1.3 - - - - - - 1.4 - - - - - - 1.3 - - - - - - 1.4 - - - - - -
LM 15 

2.2 2.2 2.8 2.8 2.3 2.8 2.2 2.2 2.8 2.8 2.3 2.8 
+1.0N +1.0N +1.0N +1.0N +1.1N - - +1.1N - - +1.0N +1.0N +1.0N +1.0N +1.1N - - +1.1N - -

LRP 2.2 2.8 3.1 3.4 2.3 3.0 3.2 3.6 2.2 2.8 3.1 3.4 2.3 3.0 3.2 3.6 

LPSD 4.4 4.4 5.0 5.0 4.7 4.7 5.2 5.2 4.4 4.4 5.0 5.0 4.7 4.7 5.2 5.2 

LS 2.5 3.1 3.4 3.7 2.6 3.3 3.5 3.9 2.5 3.1 3.4 3.7 2.6 3.3 3.5 3.9 

LW 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.2 1.4 2.0 2.3 2.6 1.5 2.2 2.4 3.0 
--"---- ""---- -----" 

MBS 2 4.2 4.4 4.2 4.4 
Word +.8N - - - - - - +.8N - - - - - - +.8N - - -- - - +.8N - - - - - -
MBS 2 4.2 - - 4.3 - - 4.2 - - 4.3 - - - - - -Byte +3.4N - - - - +3.4N - - - - +3.4N - - - - +3.4N 

MH 3.8 4.4 4.8 5.1 3.9 4.7 4.9 5.3 3.8 4.4 4.8 5.1 3.9 4.7 4.9 5.3 

MI 5.0 - - - - - - 5.1 - - - - - - 5.0 - - - - - - 5.1 - - - - - -
MMC 15 3.0 3.1 3.0 3.1 

+2.9N - - - - - - +3.0N - - - - -- +2.9N - - - - - - +3.0N - - - - - -
MSP 7.6 8.2 8.5 8.8 8.0 8.7 8.9 9.3 7.4 8.0 8.3 8.6 8.0 8.7 8.9 9.3 

f------""--- ~-.. "-""" .. ---"" f--"--"- " -""""--f---
MTB RiO 3.6 4.2 4.6 4.9 3.7 4.4 4.7 5.1 3.6 4.2 4.6 4.9 3.7 4.4 4.7 5.1 

-- f---t--
MTB R=O 2.6 3.2 3.6 3.9 2.7 3.5 3.7 4.1 2.6 3.2 3.6 3.9 2.7 3.5 3.7 4.1 

MTH RIO 3.6 4.2 4.6 4.9 3.7 4.4 4.7 5.1 3.6 4.2 4.6 4.9 3.7 4.4 4.7 5.1 

MTH R=O 2.6 3.2 3.6 3.9 2.7 3.5 3.7 4.1 2.6 3.2 3.6 3.9 2.7 3.5 3.7 4.1 

MTW RiO 2.8 3.4 3.7 4.0 3.9 3.6 3.8 4.2 2.6 3.3 3.6 3.9 3.9 3.6 3.8 4.2 

MTW R=O 2.3 2.9 3.2 3.6 2.4 3.1 3.4 3.8 2.3 2.9 3.2 3.6 2.4 3.1 3.4 3.8 

MW 5.0 5.6 5;9 6.2 5.1 5.8 6.0 6.5 5.0 5.6 5.9 6.2 5.1 5.8 6.0 6.5 

OR 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.2 1.4 2.0 2.3 2.6 1.5 2.2 2.4 2.8 

128 Appendix D 



TABLE I. BASIC INSTRUCTION TIMIN G (cont.) 

No Memory Overlap Maximum Memory Overlap 

No Map Map No Map Map 

Mnemonics Notes Direct Indirect Direct Indirect Direct Indirect Direct Indirect 

No Index No 
Index No Index No 

Index 
No 

Index 
No Index No 

Index No 
Index ~ndex Index Index Index Index Index Index Index 

PACK 16 12.0 12.0 12.6 12.6 12.0 12.0 12.8 12.8 12.0 12.0 12.6 12.6 12.0 12.0 12.8 12.8 
+.6N +.6N +.6N +.6N +.6N +.6N +.6N +.6N +.6N +.6N +.6N +.6N +.6N +.6N +.6N +.6N 

PLM 15 9.7 9.7 10.2 10.2 10.2 10.2 10.7 10.7 9.5 9.5 10.0 10.0 10.2 10.2 10.7 10.7 
rt-l.0N +1.0N +1.0N +1.0N +1.0N +1.0N +1.1N +1.1N +1.0N +1.0N +1.0N +1.0N +1.0N +1.0N +1.1N +1.1N 

PLW 10.3 10.3 11.0 11.0 10.8 11.4 10.8 11.4 10.2 10.2 10.8 10.8 10.8 11.4 10.8 11.4 

PSM 15 
8.5 8.5 9.2 9.2 8.6 8.6 9.6 9.6 8.3 8.3 9.0 9.0 8.6 8.6 9.6 9.6 
+.9N +.9N +.9N +.9N +1.0N +1.0N +1.0N +1.0N +.8N +.8N +.8N +.8N +1.0N +1.0N +1.0N +1.0N 

PSW 9.4 9.4 10.0 10.0 9.8 9.9 10.5 10.5 9.3 9.3 9.8 9.8 9.8 9.9 10.5 10.5 
-~--

RD internal 2.5 2.5 3.1 3.1 2.5 2.5 3.1 . 3.1 2.5 2.5 3.1 3.1 2.5 2.5 3.1 3.1 

RD 
external 2.8 2.8 3.4 3.4 2.8 2.8 3.4 3.4 2.8 2.8 3.4 3.4 2.8 2.8 3.4 3.4 
17 rt-O.4N +O.4N +O,4N +O.4N +O.4N +O.4N +O.4N +O.4N +O.4N +O.4N +0.4N +O.4N +O.4N +O.4N +O.4N +O.4N 

S 18 
2.1 2.1 2.7 2.7 2.2 2.2 2.8 2.8 2.1 2.1 2.7 2.7 2.1 2.1 2.7 2.7 

Left ft-O.lN +O.lN +O.lN +O.lN +O.lN +O.IN +O.IN +O.IN +O.IN +O.lN +O.IN +O.lN +O.lN +O.lN +O.lN +O.IN 

S 18 2.1 2.1 2.8 2.8 2.2 2.2 2.9 2.9 2.1 2.1 2.8 2.8 2.2 2.2 2.9 2.9 
Right ft-0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N 

--r----~-

SD 2.7 3.3 3.6 3.9 2.7 3.4 3.6 4.0 2.4 3.0 3.3 3.6 2.5 3.2 3.4 3.8 

SF single 2.6 2.6 3.2 3.2 2.7 2.7 3.3 3.3 2.6 2.6 3.2 3.2 2.7 2.7 3.3 3.3 
Left 19 ft-0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N 

SF single 2.4 2.4 3.0 3.0 2.6 2.6 3.2 302 2.4 2.4 3.0 3.0 2.6 2.6 3.2 3.2 
Right 19 ft-0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N 

SF double 4.0 4.0 4.6 4.6 4.1 4.1 4.7 4.7 4.0 4.0 4.6 4.6 4.1 4.1 4.7 4.7 
Left 19 ft-0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N +0.2N 

SF double 3.8 3.8 4.4 4.4 3.9 3.9 4.6 4.6 3.8 3.8 4.4 4.4 3.9 3.9 4.6 4.6 
Right 19 ft-0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N +0.6N 

SH 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.2 1.4 2.0 2.3 2.6 1.5 2.2 2.4 2.8 

SIO R=even,jO 10.6 10.6 11.2 11.2 10.6 10.6 11.2 11.2 10.3 10.3 10.9 10.9 10.4 10.4 11.0 11.0 

SIO R=odd 9.5 9.5 10.1 10.1 9.5 9.5 10.1 10.1 9.5 9.5 10.1 10.1 9.5 9.5 10.1 10.1 

SIO R=O 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 

STB 2.9 2.9 3.5 3.5 3.0 3.1 3.6 3.7 2.9 2.9 3.5 3.5 3.0 3.1 3.6 3.7 

STCF 2.8 2.9 3.5 3.5 3.0 3.1 3.6 3,7 2.9 2.9 3.5 3.5 3.0 3.1 3.6 3.7 

STD 3.3 3.3 3.5 3.9 3.5 3.5 3.3 3.9 3.2 3.2 3.3 3.7 3.5 3.5 3.3 3.9 

STH 2.8 2.8 3.5 3.9 3.0 3.0 3.6 4.0 2.8 2.8 3.5 3.9 3.0 3.0 3.6 4.0 

STM 15 
2.1 2.1 2.8 2.8 2.2 2.2 2.2 2.2 2.1 2.1 2.8 2.8 2.2 2.2 2.2 2.2 

~0.9N +0.9N +0.9N +0.9N +0.9N +0.9N +0.9N +0.9N +0.8N +0.8N +0.8N +0.8N +0.9N +0.9N +0.9N +0.9N 

STS 3.5 4.1 4.4 4.7 3.6 4.3 4.5 4.9 3.5 4.0 4.4 4.6 3.6 4.3 4.5 4.9 

STW 2.4 2.4 3.0 3.0 2.6 2.7 3.2 3.3 2.3 2.3 2.9 2.9 2.6 2.7 3.2 3.3 

SW 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.2 1.4 2.0 2.3 2.6 1.5 2.2 2.4 3.0 

TBS 2 3.0 3.2 
+4.2N - - - - - - - - - - - - - - +4.4N - - - - - - - - - - - - - -

TDV R=even,rO 9.7 9.7 10.3 10.3 9.7 9.7 10.3 10.3 9.4 9.4 10.0 10.0 9.5 9.5 10.1 10.1 

TDV R=odd 8.3 8.3 8.9 8.9 8.3 8.3 8.9 8.9 8.3 8.3 8.9 8.9 8.3 8.3 8.9 8.9 

TDV R=O 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 

TIO R=even,IO 9.7 9.7 10.3 10.3 9.7 9.7 10.3 10.3 9.4 9.4 10.0 10.0 9.5 9.5 10.1 10.1 

TIO R=odd 8.3 8.3 8.9 8.9 8.3 8.3 8.9 8.9 8.3 8.3 8.9 8.9 8.3 8.3 8.9 8.9 

TIO R=O 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 
---- ------

TTBS 2 
3.2 3.4 

+4.3N - - - - - - - - - - - - - - +4.5N - - - - - - - - - - - - - -
--

UNPK 
20 11.4 11.4 12.0 12.0 11.8 11.8 12.2 ~ 12.2 11.4 11.4 12.0 12.0 11.8 11.8 12.2 12.2 
21 +1.3N +1.3N +1.3N +1.3N +1.3N +1.3N +1.3N +1.3N +1.3N +1.3N +1.3N +1.3N +1.3N +1.3N +1.3N +1.3N 

Appendix D 129 



Table I. BASIC INSTRUCTION TIMING (cont.) 

No Memory Overlap Maximum Memory Overlap 

No Map Map No Map Mop 
---

Mnemonics Notes Direct Indirect Direct Indirect Direct Indirect Direct Indirect 
~-----

No 
Index 

No 
Index 

No 
Index 

No 
Index 

No 
Index 

No 
Index 

No 
Index 

No 
Index 

Index Index Index Index Index Index Index Index 
--

WAIT 21 1.8 1.8 2.4 2.4 1.9 1.9 2.5 2.5 1.8 1.8 2.4 2.4 1.9 1.9 2.5 2.5 
f--- -_._----_.- ---- --- ---------- ------- -~--- t--- --------- -------- t---------

WD internal 2.5 2.5 3.1 3.1 2.5 2.5 3.1 3.1 2.5 2.5 3.1 3.1 2.5 2.5 3.1 3.1 
--------- ---------- 1-----

WD 
external 2.8 2.8 3.4 3.4 2.8 2.8 3.4 304 2.8 2.8 304 3.4 2.8 2.8 304 304 
17 +O.4N +O.4N +Oo4N +Oo4N +Oo4N +Oo4N +O.4N +Oo4N +O.4N +Oo4N +Oo4N +Oo4N +O.4N +Oo4N +Oo4N +Oo4N 

. -_."--" r- --f------ ---1------

XPSD 110=0 6.3 6.3 6.9 6.9 6.3 6.3 6.9 6.9 6.1 6.1 6.6 6.6 6.1 6.1 6.7 6.7 
--1-------- f----- ------- -- --- -- ----- --------

XPSD 110= 1 6.3 6.3 6.9 6.9 6.5 6.5 7.1 7.1 6.1 6.1 6.6 6.6 6.5 6.5 7.1 7.1 
--... _-_ •.. ---_. --------1------- r-------- ------------ --

XW 2.8 3.4 3.7 4.0 2.9 3.6 3.8 4.2 2.6 3.3 3.6 3.9 2.9 3.6 3.8 4.2 

Notes 

1. Add 0.6 if analyzed instruction is indirect. Subtract 0.3 if it is LCFI, AI, LI, CBS, MBS, or EBS. 

2. N = number of destination bytes processed. 

3. N = number of l's in the word converted. 

4. 0 = number of digits (including the sign) in the effective decimal operand. 

5. K = (0+6)(16-Q); 0 = same as note 4; Q = number of leading zeros in the quotient. 

6. 0 = same as note 4; N = number of nonzero decimal digits in the decimal accumulator. 

7. 0 = number of digits (including the sign) to be stored. 

8. N = number of bytes in the editing pattern. 

9. Add execution time for subject instruction. 

10. No pre-alignment or post-normalization required. 

11. Un-normal ized operands. 

12. One hexadecimal pre-alignment and one hexadecimal post-normalization. 

13. Nonzero, normal ized operands. 

14. Minimum time is also typical time. 

15. N = number of words moved. 

16. N = number of bytes in zoned number in memory. 

17. N = integer (0,1,2, •.• ), dependent on delay in external device. 

18. N = number of bit positions shifted. 

19. N = number of hexadec i ma I posi ti ons sh i fted. 

20. N = number of bytes to be stored in memory. 

21. Minimum time. 

130 Appendix 0 



Register-to-register Operations 

Mnemonic 
Direct Indirect 

Notes 
No No 

Index 
Index 

Index 
Index 

AD 2.4 1.7 1.5 1.5 

AD - - - - - - - -

AH 1.4 0.7 1.4 1.5 

AI - - - - - - - -
AIO 0 0 1.5 1.5 

AND 1.4 0.7 1.4 1.5 

ANLZ 1.5 0 08 105 1.5 

AW 1.4 0.7 1.4 1.5 

AWM 2.4 1.8 1.5 1.5 

BAL 0.8 0.8 1.5 1.5 

BCR branch 1.4 0.8 1.5 1.5 

BCR no branch 206 2 00 105 1.5 

BCS branch 1.4 0 08 1.5 1.5 

BCS no branch 206 2.0 1.5 1.5 

BDR branch 1.4 0 09 1.5 1.5 
----- -----

BDR no branch 205 202 1.3 1.5 

BIR branch 1.4 0 09 1.5 1.5 

BIR no branch 205 202 1.3 1.5 

CAL 
0 0 1.5 1.5 

1,2,3,4 

CB 1.5 0 08 1.5 1.5 

CBS 24 O.7N - - - - - -

CD 2.4 1.7 1.5 1.5 

CH 1.5 0.8 1.5 1.5 

CI - - - - - - - -

CLM 1.7 1.5 1.5 1.5 

CLR 1.5 0.8 1.5 1.5 

CS 1.5 0.8 1.5 1.5 

CVA - - - - 105 1.5 

CVS - - - - 1.5 1.5 

CW 1.5 0 08 1.5 1.5 

DA 001 D O.lD 1.5 1.5 

DC 001 D O.lD 1.5 1.5 

DD 3.5 3.5 1.5 1.5 

DH 1.5 0 08 1.5 '1.5 

DL O.lD O.lD 1.5 1.5 

DM 3.5 3.5 1.5 1.5 

DS 0.1 D O.lD 1.5 1.5 

DSA 0 0 1.5 1.5 

DST 0.3D 0.3D 1.5 1.5 

DW 1.5 0.8 1.5 1.5 

EBS 25 008N - - - - - -

EOR 1.4 0.7 1.4 1.5 

EXU 26 1.5 0 08 1.5 1.5 

TABLE II. ADDITIONAL INSTRUCTION TIMING 
(Add to times in Table I) 

Register pointer selects 
register blockX'4' - X'lF' 

Register-to-register Operations 

Direct Indirect 
Mnemonic 

Direct Indirect 
Notes 

No No 
Index 

Index 
Index 

Index 
Notes 

No No 
Index 

Index 
Index 

Index 

22 005 0.3 0.9 0.6 FAL 203 1.6 1.5 1.5 

23 0.5 0.4 1.0 0 07 FAS 1.5 0.8 105 105 

0.4 003 0 08 0.6 FDL 203 1.6 1.5 105 

0 01 - - - - - - FDS 1.5 008 1.5 1.5 

006 0.6 009 0.9 FML 2 03 1.6 1.5 1.5 

0.4 0.3 0.8 006 FMS 1.5 0.8 1.5 1 ;5 

0.9 0.7 1.6 1.3 FSL 2.3 1.6 1.5 1.5 

0.4 0.3 0.8 0.6 FSS 1.5 0.8 1.5 1.5 

0.4 0.3 0 08 0 06 HIO 0 0 1.5 1.5 

0.4 0.4 0.7 007 INT 1.5 0.8 1.5 1.5 

0.3 003 0.7 0.6 LAD 2.5 1.7 1.5 1.5 

- - - - - - - - LAH 1.4 0.7 1.5 1.5 

0 03 0.3 0.7 0.6 LAW 1.4 0.7 1.5 1.5 

- - - - - - - - LB 1.4 0.7 1.5 1.5 

0.3 0.3 0.7 0 06 LCD 2.4 1.7 1.5 1.5 

- - - - - - - - LCF 1.4 0 07 1.5 1.5 

0 03 003 0.7 006 LCFI - - - - - - - -

- - - - - - - - LCH 1.4 0.7 105 1.5 

0.4 0.4 0.7 0 07 LCW 1.4 007 1.5 105 

0.4 0 03 0 08 0.6 LD 2.4 1.7 1.5 1.5 

0 06 - - - - - - LH 1.4 0.7 1.5 105 

0.4 003 0.8 0.6 LI - - - - - - - -

0.4 003 0.8 006 LM 008N 008N 1.5 1.5 

0.4 - - - - - - LRP 1.5 0.7 1.5 1.5 

0.4 0.3 0.8 0.6 LPSD 1.8 1.8 1.5 1.5 

0.4 0 03 008 0.6 LS 1.5 0.8 1.5 1.5 

0.4 0.3 0.8 0 06 LW 1.4 0.7 1.5 1.5 

0.4 0.4 0.7 007 MBS 27 0.2N - - - - - -

0.4 0.4 0.7 0 07 MBS 28 0.6N - - - - - -

0.4 003 0.8 0.6 MH 1.5 008 1.5 1.5 

0.4 0.4 0.7 0.7 MI - - - - - - - -

0.4 0.4 0.7 0.7 MMC 008N 008N 1.5 1.5 

0.4 0.4 0.7 0.7 MSP 305 3 05 1.5 1.5 

0.4 0.3 008 0.6 MTB RIO 201 1.4 1.5 105 

0.4 0.4 0.7 0 07 MTB R=O 1.5 0.8 1.5 1.5 

0.4 0.4 0.7 0.7 MTH RIO 201 1.4 1.5 1.5 

0.4 0.4 0.7 0.7 MTH R=O 1.5 0.8 1.5 1.5 

0.4 0.4 0.7 0 07 MTW RiO 2.4 1.7 1.5 1.5 

0.4 0.4 0.7 0.7 MTW R=O 105 OoB 105 1.5 

0.4 0.3 0.8 0.6 MW 1.5 0.8 1.5 1.5 

0.3 - - - - - - OR 1.4 0.7 1.5 1.5 

0.4 0.3 0.8 0.6 PACK 0.2N 002N 1.5 1.5 

26 0.4 0.3 0.8 0.6 PLM 3.5 3.5 1.5 1.5 

Register painter selects 
register block X'4' - Xl F' 

Direct Indirect 
Notes 

No No 
Index 

Index 
Index 

Index 

0.4 0.3 0.8 0.6 

0.4 0.3 0 08 006 

0.4 003 0 08 0.6 
--

0.4 003 0 08 0.6 

0.4 003 0.8 0.6 

0.4 0 03 0.8 0.6 

0.4 0.3 0 08 0.6 

0.4 0.3 0 08 0.6 

0.6 0.6 0.9 0.9 

0.4 0.3 008 0.6 

0.4 0 03 008 006 

0.4 0.3 0.8 006 

0.4 003 0.8 0.6 

0.4 0.3 0 08 006 

0.4 003 0.8 006 

0.4 0.3 0.8 0.6 

0.1 - - - - - -
0.4 003 0 08 0.6 

0.4 0 03 0 08 0 06 

0.4 0.3 0.8 0.6 

0.4 003 0.8 0.6 

0.1 - - - - - -

0.4 0.4 0.7 0.7 

0.4 003 0.8 0.6 

0.4 0.4 0.7 0.7 

0.5 0.4 1.0 0.7 

0.4 003 0.8 0.7 

0.6 - - - - - -

- - - - - - - -

0.4 003 0.8 0.6 

0.4 - - - - - -

0 06 006 0 09 0.9 

0.4 0.4 0.7 0.7 

0.4 0.3 0 08 006 

- - - - - - - -

0.4 003 0 08 006 

- - - - - - - -

0.4 0.3 OoB 0 06 

- - - - - - - -

0.4 003 0 08 006 

0.4 0.3 OoB 0.6 

0.4 0.4 0.7 0 07 

0.4 0.4 0.7 007 

Appendix D 131 



TABLE II. ADDITIONAL INSTRUCTION TIMING (cont.) 

(Add to times in Table I) 

Register-to-register Operations 
Register pointer selects 
register block X'4' - X'l F' Register-to-register Operations 

Mnemonic 
Direct Indirect Direct Indirect 

Mnemonic 
Direct Indirect 

Notes 
No No 

Notes 
No No 

Index 
Index 

Index 
Index 

Index 
Index 

Index 
Index 

Notes 
No No 

Index 
Index 

Index 
Index 

PLW 3.5 3.5 1.5 1.5 0.4 0.4 0.7 0.7 STM 0.9N 0.9N 1.5 1.5 

PSM 3.5 3.5 1.5 1.5 0.4 0.4 0.7 0.7 STS 2.5 1.7 1.6 1.5 

PSW 3.5 3.5 1.5 1.5 0.4 0.4 0.7 0.7 STW 0.9 0.9 1.5 1.5 

RD 0 0 1.5 1.5 0.4 0.4 0.7 0.7 SW 1.4 0.7 1.5 1.5 

S 0 0 1.5 1.5 0.4 0.4 0.7 0.7 TBS 29 1.8N - - - - - -

SD 2.4 1.7 1.5 1.5 0.4 0.3 0.8 0.6 TDV 0 0 1.5 1.5 

SF 0 0 1.5 1.5 0.4 0.4 0.7 0.7 TIO 0 0 1.5 1.5 

SH 1.4 0.7 1.5 1.5 0.4 0.3 0.8 0.6 TTBS 29 0.8N - - - - - -
------

SIO 0 0 1.5 1.5 0.6 OA 0.9 0.9 UNPK 0.6N 0.6N 1.5 1.5 

ST8 0.6 0.6 1.5 1.5 0.3 0.3 0.6 0.6 WAIT 0 0 1.5 1.5 

STCF 0.6 0.6 1.5 1.5 0.3 0.3 0.6 0.6 WD 0 0 1.5 1.5 

STD 1.9 1.9 1.5 1.5 0.3 0.3 0.6 0.6 XPSD 3.7 3.7 1.5 1.5 

STH 0.6 0.6 1.5 1.5 0.3 0.3 0.6 0.6 XW 2.4 1.7 1.5 1.5 

Notes 

22. No memory overlap. 

23. Maximum memory overlap. 

24. One byte string is in registers. 

25. Decimal number is in registers. 

26. Add factor for object instruction. 

27. Word mode - one byte string in registers. 

28. Byte mode - one byte string in registers. 

29. Byte string to be translated in registers. 

132 Appendix D 

Register p()inter selects 
register block X'4' - Xl F' 

Direct Indirect 
Notes 

No No 
Index 

Index 
Index 

Index 

0.4 0.4 0.7 0.7 

0.6 0.4 1.0 0.7 

0.3 0.3 0.6 0.6 

0.4 0.3 0.8 0.6 

0.6 - - - - - -
0.6 0.6 0.9 0.9 

0.6 ,0.6 0.9 0.9 

0.6 - - - - - -+O.2N 

0.4 0.4 0.7 0.7 

0.4 0.4 0.7 0.7 

0.4 0.4 0.7 0.7 

0.4 0.4 0.7 0.7 

0.4 0.3 0.8 0.6 



A 
access codes, 12, 13, 75 
access protection, 9,12,13,75 

control image, 75 
loading process, 75 

accumulator, decimal, 52 
address 

actual, 11 
control, 12, 13 
direct reference, 10 
effective, 11,27 
indexed reference, 11 
indirect reference, 10 
input/output, 79,85 
instruction, 15,27 
memory, 6 
modification, 11,25 
nonexistent, 20,21,73 
reference, 10, 27 
register, 11,27 
updated instruction, 69 
virtual, 9, 12, 13 

Anal yze/Interpret instructions, 34,35 
arithmetic shift, 45 
armed interrupt, 18,78 

B 
block pointer, register, 9, 16,74 
Branch instructions, 69 
byte format, 6 
byte-string instructions, 57-64 

c 
Call instructions, 4,24,71,73 
Call instruction traps, 24,71,73 
central processing unit, 8-24 
channel end, 88 
circular shift, 44 
clocks, real-time, 3, 16, 17 
command chaining, 86,88 
comparison instructions, 41-43 
computer modes, 7 
condition code, 4, 15,21,26,27,32,34,48,50 
condition code setting for 

decimal instructions, 24,53 
fixed-point arithmetic instructions, 23,36 
floating-point arithmetic instructions, 24,30, 119, 120 
load/store instructions, 28 
push-down instructions, 23,65 
Shift instructions 44,46 

control instructions, 72-78 
Control order, 87 
conversion instructions, 4,46 
core memory, 6 

dedicated addresses, 7, 17,21 
counter interrupts, 17 

INDEX 

o 
data chaining, 86,88 
decimal 

accumulator, 8,52 
arithmetic fault trap, 15,21 24,52 
arithmetic hardware, 4 
illegal digit, 24,52 
i nstruc t ions, 22, 51-56 
overflow, 24, 52 
packed format, 52 
zoned format, 52 

device interrupt, 80 
disabled interrupt, 18,78 
disarmed interrupt, 18,78 
displacement indexing, 4,5 
doubleword 

E 

format, 6 
I/O command, 80, 87 
program status, 15, 19,20,72, 73,92 
stack pointer, 65,67 

effective address, 11,27 
effective location, 11,27 
effective operand, 11,27 
enabled interrupt, 18,78 
Execute/Branch instructions, 69-71 
external i nterru pt, 18 

F 
fault, interrupt system, 21,22 
fixed-point arithmetic 

instructions, 36-41 
overflow trap, 15,21,23,27 

floating-point 

G 

addition and subtraction, 48,49,50, 120 
arithmetic fault trap, 21,23,27,28 
condition code settings, 24,50 
hardware, 4 
instructions, 22,47-51, 119, 120 
multiplication and division, 49,50,51, 119 
normal ize control, 15, 32, 34, 48, 49 
numbers, 47, 48 
shift, 45,46, 121 
significance control, 15,24,32,34,49 
zero control, 15, 24, 32, 34, 49 

general characteristics, 2 
general registers, 9 
general-purpose features, 4 

H 
hal fword, format, 6 

Index 133 



immediate addressing, 10 
immediate operand, 10 
indexed reference address, 11 
i ndexi ng, 11 
index reg i sters, 8, 11 
indirect addressing, 9, 11 
information organization, 6 
inhibits, interrupt, 15, 16, 17,78 
inhibits, push-down trap, 65 
input/output 

commands, 89 
instructi ons, 79-85 
interrupt, 17 
operations, 86 
status information, 80,81 

instruction format, 9 
instructions, 25-85 

Analyze/Interrupt, 34,35 
Branch, 69-71 
byte string, 57-64, 122 
Call, 71 
comparison, 41-43 
control, 72-78 
conversion, 46,47 
decimal, 51-55 
Execute/Branch, 68-70 
fixed-poi nt arithmeti c, 36-41 
floating-point arithmetic, 47-51, 119, 120 
format, 9 
input/output, 79-89 
load/store, 28-34 
logical, 43 
nonexistent, 20-73 
privi leged, 72-89 
push-down, 64-68 
Shift, 43-46, 121 
unimplemented, 22,49,52 

interrupt 
active, 19 
armed, 18, 78 
channel end, 88 
control panel, 17,91 
counter-equals-zero, 17, 19 
count-pulse, 16, 17, 19 
device, 80 
disabled, 18,78 
di sarmed, 18, 78 
enabled, 18,78 
external, 17, 18 
fault trap, 21,22 
inhibits, 16, 17,78 
input/output, 17,88 
locations, 17 
operat ion, 18 
override, 16, 17 
priority chain, 16 
single-instruction, 19 
states, 18 
system, control of, 17, 19, 78 
time of occurrence, 19 
trigger, 78 

134 Index 

unusual end, 85,89 
zero byte count, 85,88 

interleave/overlap, 4,95 
Interpret i nstructi on, 4, 35 

L 
loading process 

access protecti on, 75 
core memory, 95 
memory map, 75 
write protection, 76 

load/store instructions, 28-34 
logical instructions, 43 
logical shift, 44 

M 
master mode, 7, 15 
memory 

access protection, 9, 12,75 
addresses, 6 
control, 9, 12 
fault indicators, 77,94 
map, 9, 12,75 
nonexi stent addresses, 20, 21 
nonexistent address trap, 20,21 
parity error, 82,85,95 
protection violation trap, 21,22 
write locks, 9, 13,76 
write protection, 9, 12, 13,76 

memory map, 12, 15,75 
control image, 75 
loading process, 75 

multiplexor lOP, 1,85 
multiusage features, 5 

N 
nonexistent instructions, 20,73 
nonexi stent memory addresses, 20, 73 
nonallowed operations, 20,73 
normalize control, floating-point, 48,49 
numbers 

o 

decimal, 51,52 
floating-point, 47,48 

operator control s, 88 
overflow 

decimal, 21,24 
fixed-point, 21,23 
floating-point characteristic, 21,23,48,49 

override interrupt group, 16, 17 

p 
packed decimal format, 52 
pari ty error, memory, 82, 85 
peripheral equipment, 3 



priority interrupt chain, 16 
privileged instructions, 72,79 

violation trap, 21,22,73 
program status doubleword, 15, 19,20,72,73,92 
processor control panel, 17,90-95 
push-down 

R 

instructions, 22, 64-68 
stack limit trap, 22,23,65 

read direct, 77 
read order, 87 
real-time clocks, 3, 16, 17 
real-time features, 3 
reference address, 10, 27 
register address, 11,27 
register block pointer, 9, 16,74 

s 
selector lOP, 1,84 
sense order, 87 
sense switches, 77,95 
Shift instructions, 44 . 
significance control, floating-point, 48,49 
single-instruction interrupt, 19 
sl ave mode, 7, 15 
stack pointer doubleword, 65,67 
Stop order, 88 
states of an i nterru pt level, 18 
system 

T 

input/output, 79-89 
interrupt, 16-19 
organization, SIGMA 7, 6-24 
trap, 20-24 
SIGMA 7, 1-5 

time-sharing features, 5 
times of interrupt occurrence, 19 
transfer in channel, 87 

trap, 20-24 
Call instruction, 21,24,71,73 
decimal arithmetic fault, 21,24,52 
fixed-point overflow, 21,23 
floating-point arithmetic fault, 21,23,48,49 
interrupt system fault, 21,22 
masks, 15, 23, 27 
memory protection violation, 21,22,73 
nonallowed operations, 20,21,22,73 
nonexistent memory address, 20,21,73 
nonexi stent i ilstructi on, 20,73 
privileged instruction violation, 21,22,73 
push-down stack limit, 21,22,23,65 
unimplemented instruction, 21,22,49,52 
watchdog timer runout, 21,24 

translate instruction, 4,57,59 

u 
unimplemented instructions, 22,48,52 
unusual end, 85, 89 
updated instruction address, 68 

v 
virtual address, 9, 12, 13,44,72,79 

w 
watchdog timer runout trap, 21,24 
word format, 6 
write 

z 

direct, 77 
key, 9, 13, 15 
lock, 9, 13 
lock control image, 76 
lock loading process, 76 
order, 87 

zero control, floating-point, 48,49 
zero byte count interrupt, 85,88 
zoned decimal format, 51,52 

Index 135 



SDS SIGMA 7 BASIC OPERATION CODES 

Code Mnemonic Instruction Name Page Code Mnemonic Instruction Name -"age 

02 LCFI Load Conditions and Floating Control Immediate 32 44 ANLZ Analyze 34 
04 CAll Call 1 71 45 CS Compare Selective 42 
05 CAL2 Cal12 71 46 XW Exchange Word 33 
06 CAL3 Cal13 71 47 STS Store Selective 33 
07 CAL4 Cal14 71 48 EOR Exclusive OR Word 43 
08 PLW Pull Word 66 49 OR OR Word 43 
09 PSW Push Word 66 4A LS Load Selective 31 
OA PLM Pull Multiple 67 4B AND AND Word 43 
OB PSM Push Multiple 67 4C SIO Start Input/Output 80 
OE LPSD Load Program Status Doubleword 72 4D no Test Input/Output 83 
OF XPSD Exchange Program Status Doubleword 72 4E TDV Test Device 84 

4F HIO Halt Input/Output 83 
10 AD Add Doubleword 37 
11 CD Compare Doubleword 42 50 AH Add Ha Ifword 36 
12 LD Load Doubleword 29 51 CH Compare Ha I fword 42 
13 MSP Modify Stack Pointer 68 52 LH Load Halfword 29 
15 STD Store Doubleword 33 53 MTH Modify and Test Halfword 40 
18 SD Subtract Doubleword 38 55 STH Store Halfword 33 
19 CLM Compare with Limits in Memory 43 56 DH Divide Halfword 39 
lA LCD Load Complement Doubleword 30 57 MH Multiply Halfword 38 
IB LAD Load Absolute Doubleword 31 58 SH Subtract Half-.yord 37 
lC FSL Floating Subtract Long 

} op,;oool 

51 5A LCH Load Complement Halfword 30 
ID FAL Floating Add Long 50 5B LAH Load Absolute Halfword 30 
IE FDL Floating Divide Long 51 
IF FML Floating Multiply Long 51 

CBS 60 Compare Byte String 59 

20 AI Add Immediate 36 61 MBS Move Byte Stri ng 58 

21 CI Compare Immediate 41 63 EBS Edit Byte String optional 61 

22 LI Load Immediate 29 64 BDR Branch on Decrementing Register 71 

23 MI Multiply Immediate 38 65 BIR Branch on Incrementing Register 70 

24 SF Shift Floating 43 66 AWM Add Word to Memory 40 

25 S Shift 44 67 EXU Execute 70 

28 CVS Convert by Subtracti on 47 68 BCR Branch on Conditions Reset 70 

29 CVA Convert by Addition 46 69 BCS Branch on Conditions Set 70 

2A LM Load Multiple 32 6A BAL Branch and Link 71 

2B STM Store Multiple 34 6B INT Interpret 35 

2E WAIT Wait 76 6C RD Read Direct 77 

2F LRP Load Register Pointer 74 6D WD Write Direct 77 
6E AIO Acknowledge Input/Output Interrupt 84 

30 AW Add Word 37 6F MMC Move to Memory Control 74 

31 CW Compare Word 42 
32 LW Load Word 29 70 LCF Loae! Conditions and Floating Control 32 
33 MTW Modify and Test Word 41 71 CB Compare Byte 41 
35 STW Store Word 33 72 LB Load Byte 29 
36 DW Divide Word 39 73 MTB Modify and Test Byte 40 
37 MW Multiply Word 39 74 STCF Store Conditions and Floating Control 34 
38 SW Subtract Word 37 75 STB Store Byte 33 
39 CLR Compare with Limits in Register 43 76 PACK Pack Decimal Digits 56 
3A LCW Load Complement Word 30 77 UNPK Unpack Decimal Digits 56 

3B LAW Load Absolute Word 30 78 DS Decimal Subtract 54 

3C FSS Floating Subtract Short 

} opHoool 

50 79 DA Decimal Add 54 

3D FAS Floating Add Short 50 7A DD Decimal Divide 55 
3E FDS Floating Divide Short 51 7B DM Decimal Multiply optional 54 

3F FMS Floating Multiply Short 51 7C DSA Decimal'Shift Arithmetic 56 
7D DC Decimal CO,mpare 55 

40 TTBS Translate and Test Byte String 60 7E DL Decimal Load. 53 

41 TBS Translate Byte String 60 7F DST Decimal Store 53 


	0.002
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	back_1

