
IJ ,

Open DesktopTM

on
00 .:::1
ni on
3~ -a ~_ ...
.. IIC --a-. =:::1 --a. ..
IIC

gj OPEN
_ ,. DESKTOP.

The Complete Graphical Operating System

SCo® TCP/IP

Derived from

LACHMAN™ SYSTEM V STREAMS TCP

User's Guide

The Santa Cruz Operation, Inc.

Portions copyright © 1988, 1989, 1990 The Santa Cruz Operation, Inc. All rights reserved.
Portions copyright © 1987, 1988 Lachman Associates, Inc. All rights reserved.
Portions copyright © 1987 Convergent Technologies, Inc. All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor
translated into any human or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written
permission of the copyright owner, The Santa Cruz Operation, Inc., 400 Encinal, Santa Cruz,
California, 95061, USA. Copyright infringement is a serious matter under the United States and
foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User only for use
in strict accordance with the End User License Agreement, which License should be read
carefully before commencing use of the software. Information in this document is subject to
change without notice and does not represent a commitment on the part of The Santa Cruz
Operation, Inc.

The following legend applies to aJ1 contracts and subcontracts governed by the Rights in
Technical Data and Computer Software Clause of the United States Department of Defense
Federal Acquisition Regulations Supplement:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the govemment is
subject to restrictions as set forth in subparagraph (c) (I) (ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 52.227-7013. The Santa Cruz Operation, Inc., 400
Encinal Street, Santa Cruz, California 95061, U.S.A.

SCO TCP/IP was developed by Lachman Associates.
SCO TCP/IP is derived from LACHMAN™ SYSTEM V STREAMS TCP, a joint development
of Lachman Associates and Convergent Technologies.

This document was typeset with an lMAGEN@ 8/300 Laser Printer.

SCO and the SCO logo are registered trademarks, and The Santa Cruz Operation is a trademark of The
Santa Cruz Operation, Inc.

UNIX is a registered trademark of AT&T.

LACHMAN is a trademark of Lachman Associates, Inc.

Ethernet is a registered trademark of Xerox.

SCO Document Number: 11-25-89-1.1.00
Printed: 4/26/90

Contents

1 Introduction

What is TCP/IP? 1-1
How are Messages Routed? 1-3
ICMP Error and Control Messages 1-5
Protocol Layering 1-6
Further Reading 1-7

2 Using Network Commands

Introduction 2-1
Overview ofTCP/lPNetworking Commands 2-2
UNIX Networking Commands 2-4
Concepts Important to Using Network Commands 2-6
Virtual Tenninals and Remote Login 2-9
Transferring Files 2-10
Executing Remote Commands 2-11

3 Executing Remote Commands

Usingrcmd 3-1
Shellscript Programming 3-3

4 Using Remote Terminals

Introduction 4-1
Communicating Using telnet 4-2
The rlogin Command 4-11

5 Transferring Files

Introduction 5-1
Workingwithftp 5-2
ThercpCommand 5-21

6 The Time Synchronization Protocol

Introduction 6-1
Message Fonnat 6-3
The TSP Messages 6-4

-i-

Chapter 1

Introduction

What is TCP/IP? 1-1
The Internet Protocol (IP) 1-1
The Transmission Control Protocol (TCP) 1-2

How are Messages Routed? 1-3
Gateways 1-3
Network Addresses 1-3
Ports and Sockets 1-4

ICMP Error and Control Messages 1-5

Protocol Layering 1-6

Further Reading 1-7
General Computer Network Concepts 1-7
TCP/IP Information 1-8
LAN and Ethernet Information 1-9

What is TCP/IP?

What is TCP/IP?
TCP/IP is a set of protocols used to interconnect computer networks and
to route traffic among many different computers. "TCP" means Transmis­
sion Control Protocol, and "IP" means Internet Protocol. Protocols are
standards which describe allowable formats, error handling, message
passing, and communication standards. Computer systems which con­
form to communications protocols such as TCP/IP are thus able to speak a
common language. This enables them to transmit messages accurately to
the correct destination, despite major differences in the hardware and
software of the various machines.

Many large networks have been implemented with these protocols,
including the DARPA Internet (Defense Advanced Research Projects
Agency Internet). A variety of universities, government agencies, and
computer firms are connected to an internetwork which follows the
TCP/IP protocols. Thousands of individual machines are connected to
this internet. Any machine on the internet can communicate with any
other. (The term internetworking is used to refer to the action of joining
two or more networks together. The result can be described as a network
of networks, which is called an "internet.") Machines on the internet are
referred to as "hosts" or "nodes."

TCP/IP provides the basis for many useful services, including electronic
mail, file transfer, and remote login. Electronic mail is designed to
transfer short text files. The file transfer application programs can
transfer very large files containing programs or data. They also can pro­
vide security checks controlling file transfer. Remote login allows users
on one computer to log in at a remote machine and carry on an interactive
session.

The Internet Protocol (IP)

The Internet Protocol, IP, defines a connectionless packet delivery. This
packet delivery connects one or more packet-handling networks into an
internet. The term "connectionless" means that the sending and receiv­
ing machines are not connected by a direct circuit. Instead, individual
packets of data (datagrams) are routed through different machines on the
internet to the destination network and receiving machine. Thus, a mes­
sage is broken up into several datagrams which are sent separately. Note
that connectionless packet delivery by itself is not reliable. Individual
datagrams mayor may not arrive, and they probably won't arrive in the
order in which they were sent. TCP add reliability.

Introduction 1-1

What is TCP/IP?

A datagram consists of header information and a data area. The header
information is used to route and process the datagram. Datagrams may be
fragmented into smaller pieces, depending on the physical requirements
of the networks they cross. (When a gateway sends a datagram to a net­
work which cannot accommodate the datagram as a single packet, the
datagram must be fragmented into pieces that are small enough for
transmission.) The datagram fragment headers contain the information
necessary to reassemble the fragments into the complete datagram. Frag­
ments do not necessarily arrive in order; the software module implement­
ing the IP protocol on the destination machine must reassemble the frag­
ments into the original datagram. If any fragments are lost, the entire
datagram is discarded.

The Transmission Control Protocol (TCP)

The 'fransmission Control Protocol, TCP, works with IP to provide reli­
able delivery. It provides a means to ensure that the various datagrams
making up a message are reassembled in the correct order at their final
destination and that any missing datagrams are sent again until they are
correctly received.

The primary purpose of TCP is to provide a reliable, secure, virtual­
circuit connection service between pairs of communicating processes on
top of unreliable subnetworking of packets, where loss, damage, duplica­
tion, delay or misordering of packets can occur. Also, security provisions
such as limiting user access to certain machines can be implemented
through TCP.

TCP is concerned only with total end-to-end reliability. It makes few
assumptions about the possibility of obtaining reliable datagram service.
If a datagram is sent across an internet to a remote host, the intervening
networks do not guarantee delivery. Likewise, the sender of the datagram
has no way of knowing the routing path used to send the datagram.
Source-to-destination reliability is provided by TCP in the face of unreli­
able media; this makes TCP well-suited to a wide variety of multi-ma­
chine communication applications.

Reliability is achieved through checksums (error detection codes),
sequence numbers in the TCP header, positive acknowledgment of data
received, and retransmission of unacknowledged data.

1-2 TCP/IP User's Guide

How are Messages Routed?

How are Messages Routed?
The following sections explain gateways and network addresses. These
two concepts are the key to understanding how datagrams are routed
through an internet.

Gateways

The various networks which compose an internet are connected through
gateway machines. A gateway is a machine that is connected to two or
more networks. It can route datagrams from one network to another.
Gateways route the datagrams based on the destination network, rather
than the individual machine (host) on that network. This simplifies the
routing algorithms. The gateway decides which network should be the
next destination of a given datagram. If the destination host for the
datagram is on that network, the datagram can be sent directly to that
host. Otherwise, it continues to pass from gateway to gateway until it
reaches the destination network.

Network Addresses

Each host machine on a TCP/IP internet has a 32-bit network address. The
address includes two separate parts: the network id and the host machine
id. Machines which serve as gateways will thus have more than one
address, since they are on more than one network. Internet addresses are
assigned by the Network Information Center (NIC) located at SRI Inter­
national in Menlo Park, California. The NIC assigns only network id's;
the individual network administrators then assign the host machine id's
for their network.

There are three classes of network addresses, corresponding to small,
medium, and large networks. The larger the network, the larger the num­
ber of hosts on that network; likewise, smaller networks have fewer hosts.
Thus, when the 32-bit network address is divided between the network id
and the host machine id, larger networks will need a larger number of bits
to uniquely specify all the hosts on the network. Also, there are only a
small number of really large networks, and so fewer bits are needed to
uniquely identify these networks. The network addresses have thus been
divided into three classes, identified as A, B, or C. The following table
lists these classes and their formats.

Introduction 1-3

How are Messages Routed?

Class Network Size Configuration
Class A Allocates a 7 -bit network id and a 24-bit host id.

Class B Allocates a 14-bit network id and a 16-bit host id.

Class C Allocates a 21-bit network id and an 8·bit host id.

All network addresses are 32 bits. The first bit of a Class A address is 0
(zero), to identify the address as Class A. Class B addresses begin with
the digits 10, and Class C addresses begin with 11.

This system of network address classes provides a unique address for the
entire statistical distribution of types of networks that might be expected
among the various networks using this address system. There are a
smaller number of large networks, having many hosts (Class A), a larger
number of small networks, consisting of a lesser number of hosts (Class
C), and a medium number of networks made up of a medium number of
hosts (Class B).

Network addresses are often written as four decimal integers separated by
periods (.), where each decimal number represents one octet of the 32-bit
network address. For example, a machine might have the address
128.12.3.5.

Ports and Sockets

TCP also uses a 16-bit number called the "port" to address a connection.
The port specifies the particular destination program or utility, such as ftp
(file transfer program).

A socket is an address that specifically includes a port identifier, that is,
the concatenation of an internet address with a TCP port. Port connec­
tions are displayed in the Active Connections Display of netstat (TC).

For more information on sockets and how TCP uses them, see the SCQ
TCPIIP Socket Programmer's Guide.

1-4 TCP/IP User's Guide

ICMP Error and Control Messages

ICMP Error and Control Messages
ICMP is the Internet Control Message Protocol. It defines the error and
control messages for IP. ICMP messages are sent in datagrams, like other
network messages. These messages can be error messages, such as
unreachable destinations, or requests for information, such as a particular
network address. ICMP messages are also used to request timestamps,
which are useful when synchronizing the clocks of various hosts on a net­
work.

Introduction 1-5

Protocol Layering

Protocol Layering
Communications software protocols are divided into different layers,
where the lowest layer is the hardware which physically transports the
data, and the highest layer is the applications program on the host ma­
chine. Each layer is very complex in its own right, and no single protocol
could encompass all the tasks of the various layers. As discussed earlier,
the Internet Protocol handles the routing of datagrams, while the
Thansmission Control Protocol, which is the layer above IP, provides reli­
able transmission of messages which have been divided into datagrams.
The applications programs in tum rely on TCP to send information to the
destination host.

To the applications programs, TCP/IP appears to provide a full-duplex
virtual circuit between the machines. In actuality, all information is
divided into datagrams, which may then be further fragmented during
transmission. The software modules implementing IP then reassemble
the individual datagrams, while the modules implementing TCP make
sure that the various datagrams are reassembled in the order in which they
were originally sent.

There are several higher-level specialized protocols for specific applica­
tions such as terminal traffic (telnet(TC» and file transfer (ftp(TC», and
protocols for other network functions such as gateway-status monitOring.
In this manual, however, these are not usually referred to as protocols, but
rather as programs or services.

1-6 TCP/IP User's Guide

Further Reading

FnrtherReading
The following is a list of useful references where additional infonnation
about TCP/IP can be found. Some references are for highly technical
users, while others are less technical. References fall into three
categories:

• General computer network concepts

• TCP/IP infonnation

• Local Area Network (LAN) and Ethernet infonnation

General Computer Network Concepts

Technical Explanations and Texts:

Tannenbaum, Andrew S., Computer Networks, (Prentice-Hall, Englewood
Cliffs, N.J., 1981). ISBN 0-13-165183-8.

Stallings, William, Data and Computer Communications, (Macmillan
Publishing Company, New York, 1988), 2nd Ed. ISBN 0-02-415451-2.

Standards and specifications:

The following documents are available from the American National Stan­
dards Association, Inc., 1430 Broadway, New York, NY 10018:

International Standard 7498 (IS 7498), "Infonnation processing systems
-- Open Systems Interconnection -- Basic Reference Model," (Interna­
tional Organization for Standardization (ISO), Geneva, 1984).

This document defines the "Reference Model for Open Systems Intercon­
nection," commonly known as the "OSI Reference Model."

Recommendation X.200, "Reference Model of Open Systems Intercon­
nection for CCITT Applications," (International Telegraph and Telephone
Consultative Committee (CCITT), Geneva, 1985). ISBN 92-61-02341-X.

This is basically the same document as the ISO version, but as adopted by
the CCITT. The CCITT version is published in a bound volume known as

Introduction 1-7

Further Reading

Volume VIII -- Fascicle VIII.5 of the Red Book. The Red Book is a col­
lection of recommendations on all aspects of telegraph and telephone
communications by both humans and computers. Every four years the
CCnT approves an updated set of Recommendations, which it is known
by the color of the binding. The 1985 Red Book was published in 10
"Volumes," many of which were broken down into several separate "Fas­
cicles," for a total of 42 separately bound books.

TCP!IP Information

Technical Explanations and Texts

Comer, Douglas, Internetworking with TCPIIP: Principles, Protocols,
and Architecture, (Prentice-Hall, Englewood Cliffs, N.J, 1988). ISBN 0-
13-470154-2.

Gives good explanations of the protocols, how they should be imple­
mented, and references for further information such as "Requests For
Comments" (RFCs).

Stallings, William S., et. al., Handbook of Computer Communications
Standards, Volume 3: Depaitment of Defense (DOD) Protocol Standards,
(Macmillan Publishing Company, New York, 1988). ISBN
0-02-948072-8.

Davidson, John, An Introduction to TCPIIP, (Springer-Verlag Inc., New
York, 1988). ISBN 0-387-96651-X.

Standards and Specifications

Feinler, Elizabeth J., et. al. (Eds.), DDN Protocol Handbook, (SRI Inter­
national, Menlo Park, Calif., 1985). 3 volumes. Available at a cost of
about US$110.00 from:

1-8

DON Network Information Center
SRI International
333 Ravenswood Avenue, Room EJ291
Menlo Park, CA 94025 USA
Telephone 1-800-235-3155

or:

Defense Technical Information Center (OTIC)
Cameron Station
Alexandria, VA 22314 USA

TCP/IP User's Guide

Further Reading

The DDN Protocol Handbook is a compilation of various documents
including relevant Internet RFCs and "Internet Engineering Notes"
(lENs). The RFCs and lENs are identified by a number, such as RFC 791
or lEN 48. The RFCs and lENs are normally made available to network
researchers and other interested parties in electronic form on the ARPA
Internet, but can also be obtained in printed form from the DDN Network
Information Center listed above. Many important RFCs have been issued
since 1985 when the DDN Protocol Handbook was published, so the
above volumes should be considered a starting point. Some of the newer
RFCs supercede information contained in those printed in this set of vol­
umes. Generally, RFCs numbered higher than RFC 961 will not be found
in these volumes.

LAN and Ethernet Information

Technical Explanations and Texts

Stallings, William S., Handbook of Computer Communications Stan­
dards, Volume 2: Local Network Standards, (Macmillan Publishing Com­
pany, New York, 1987). ISBN 0-02-948070-1.

Chorafas, Dimitris N.,Designing and Implementing Local Area Networks,
(McGraw-Hill, Inc., New York, 1984). ISBN 0-07-010819-6.

Hammond, Joseph L., and O'Reilly, Peter J.P.,Performance Analysis
of Local Computer Networks, (Addison-Wesley, Reading, Mass., 1986).
ISBN 0-201-11530-1.

Although this selection is very mathematical and focuses on performance
analysis, it is a good source of information about how local area networks
actually function.

Standards and Specifications

ANSI!IEEE Std 802.2-1985 (ISO Draft International Standard 8802/2), An
American National Standard: IEEE Standards for Local Area Networks:
Logical Link Control (The Institute of Electrical and Electronic
Engineers, Inc., 1984). ISBN 471-82748-7.

ANSI/lEEE Std 802.3-1985 (ISO Draft International Standard 8802/3), An
American National Standard: IEEE Standards for Local Area Networks:
Carrier Sense Multiple Access with Collision Detection (CSMAICD)
Access Method and Physical Layer Specifications (The Institute of
Electrical and Electronic Engineers, Inc., 1985). ISBN 471-82749-5.

Introduction 1-9

Chapter 2

Using Network Commands

Introduction 2-1

Overview of TCPIIP Networking Commands 2-2

UNIX Networking Commands 2-4

Concepts Important to Using Network Commands 2-6
User Equivalence 2-6
Connections, Names and Addresses 2-7
Access Privileges 2-7

Virtual Tenninals and Remote Login 2-9
The telnet Command 2-9
Remote Login with rlogin 2-9

Transferring Files 2-10

Executing Remote Commands 2-11

Introduction

Introduction
This chapter is an overview of UNIX intemetworking commands. You
should read this chapter if you are a network user, a new system adminis­
trator, or a programmer. This chapter introduces key concepts necessary
to properly use the intemetworking commands. It also includes introduc­
tions to several of the commands. Subjects discussed in this chapter
include:

• the available network commands

• user equivalence

• identifying machine addresses within commands

• access and password problems

• remote login

• using a virtual terminal

• transferring files to and from remote machines

• remote command execution

Using Network Commands 2-1

Overview of TCP/IP Networking Commands

Overview of TCP!IP Networking
Commands
The TCPIIP commands are derived from both the Berkeley UNIX
environment and the ARPANET networking environment. (ARPA is an
acronym for [Defense] Advanced Research Projects Agency.) The com­
mands derived from Berkeley UNIX can only be used with UNIX or
UNIX-compatible systems. Those derived from ARPANET are designed
to work with any operating system.

The major difference between these two different types of commands is
that the 4.3BSD (Berkeley UNIX) commands propagate UNIX-style per­
missions across the network. The ARPANET commands do not under­
stand the UNIX-style pennissions.

Included in the TCPIIP commands is a set of commands often referred to
in a Berkeley UNIX environment as the r-commands. The r stands for
remote. This set includes such commands as rep, rcmd, and rlogin.
These commands are similar to their Berkeley UNIX counterparts. These
4.3BSD type commands are designed to be UNIX-specific and are most
suitably used when you are working on a UNIX type host.

Commands such as telnet and ftp originated from ARPANET. They are
designed to be operating-system independent. The protocols used in
these commands are in accord with the Department of Defense (DoD)
Internet specification.

The networking commands are listed alphabetically in the table below
with brief descriptions. Not all of these commands are intended for use
by network users. Some provide network administrative functions.

Command

TCPIIP Networking Commands

Description

ftp(TC)
ifconfig(ADMN)
10gger(TC)
mkhosts(ADMN)
netstat(TC)
rcmd(TC)

2-2

file transfer program
configure network interface parameters
make entries in the system log
make node name commands
show network status
remote shell command execution

TCPIIP User's Guide

rcp(TC)
rlogin(TC)
ruptime(TC)
rwho(TC)
slattach(ADMN)
sldetach(ADMN)
talk(TC)
telnet(TC)
trpt(ADMN)

Overview of TCP/IP Networking Commands

remote file copy
remote login
display status of nodes on local network
who is logged in on the local network nodename
attach serial lines as network interfaces
detach serial lines as network interfaces
talk to another user
user interface to DARPA TELNET protocol
print protocol trace

Using Network Commands 2-3

UNIX Networking Commands

UNIX Networking Commands
A UNIX network is a group of UNIX or UNIX compatible machines linked
together, usually through Ethernet. A UNIX internetwork is two or more
such networks joined together by gateways to fonn a larger network. The
internetworking gateways are invisible at the command interface level,
giving the appearance of a single network. (Gateways are also referred to
as IF routers or bridges.)

UNIX is a command-oriented operating system, and so to make use of the
remote resources in a UNIX internetworking environment, certain
network-specific commands are available. These commands are fully
integrated with UNIX and can be invoked from the shell command line
and shell scripts. Alternatively, they can be executed from within user
programs by using the fork(S) or exec(S) system calls, or the system(S)
library routine.

These commands are user processes of the operating system but they
require network software to function. In UNIX, the name of the command
is the same as the name of the file that contains the process program.

Some of the many things you can do as a user whose machine is con­
nected in a UNIX network are:

• Remotely log onto another machine on which you have an account.

• Move logically from one remote machine to another without hav­
ing to enter your password (if your system administrator has
"equated" the machines or if you have created a user equivalence
for that machine)

• Execute commands on any machine in the network. This means,
for example, that you can execute commands from wherever the
data is located. The advantage of this is that you do not need to
move files. Alternatively, you can choose to execute commands
where the load is lowest, or you can construct sequences of UNIX
commands including pipes that move data between machines for
processing.

• Access public data from all machines.

• Copy or transfer files from one machine to another if you have per­
mission to do so (see chmod(C».

2-4 TCP/IP User's Guide

UNIX Networking Commands

• Share remote devices such as printers and tape drives.

• Access electronic mail systems that have been implemented for
the network.

• Run applications resident on other machines.

• Access other UNIX machines that are running the appropriate com­
munications protocol.

Note that there are three types of UNIX networking objects:

• executable commands and server programs (sometimes called dae­
mons) supporting the commands

• configuration files

• library and system calls for use by programmers

Using Network Commands 2-5

Concepts Important to Using Network Commands

Concepts Important to Using
Network Commands
This section discusses several concepts which you must understand in
order to use network commands properly. These include:

• user equivalence

• connections and addresses

• machine access and passwords

User Equivalence

User equivalence applies only to the commands rep, rcmd, and rlogin.
The command rep cannot be used without user equivalence. The com­
mand rlogin prompts for a user name and password when user
equivalence is not established; when there is user equivalence, this step is
omitted. The command remd cannot be used normally without user
equivalence. (If remd is invoked with a host name and no command
when there is no user equivalence, the effect is the same as invoking rlog-.
in without user equivalence. That is, the program will prompt for a user
name and password for login.)

There are several files which are used to establish user equivalence. One
is the letc!hosts.equiv file, which covers the system as a whole, except for
the root account. The other is the .rhosts file in the individual account's
home directory. This file covers only the individual account. (For root,
this is I.rhosts.) These two files work together with a third file,
letc!passwd, to determine the extent of user equivalence.

There are two ways to establish user equivalence:

• An entry in .rhosts and in letc!passwd, or

• An entry in letc!hosts.equiv and in letc!passwd.

In both cases, letc!passwd must contain an entry for the user name from
the remote machine. Do not edit this file to insert entries for equivalence.
Rather, use the sysadmsh(ADM) utility to create user accounts and
entries in the letc!passwd file for user equivalence. XENIX users may
note that they can edit the letc!passwd file to add equivalence entries.
This is prohibited under UNIX.

2-6 TCPJIP User's Guide

Concepts Important to Using Network Commands

The two methods of making equivalence listed above have differing
scopes. If the file .rhosts is used in a particular account, then user
equivalence is established for that account only. However, if there is an
entry in letclhosts.equiv for a host name and an account on that host, then
that account has user equivalence for any account (except root). If the
entry in letclhosts.equiv has only the remote host name, then any user on
that host has user equivalence for all local accounts (except root).

Entries for .rhosts must include both the system name and the account
name. The file letclhosts.equiv does allow entries for the system name
only, as discussed earlier.

If there are entries in both .rhosts and letclhosts.equiv for the same ma­
chine or machine/account combination, then the entry from
letclhosts.equiv determines the extent of user equivalence.

Connections, Names and Addresses

In order to communicate between your machine and a remote machine
over the internet, you must first establish a connection to the remote ma­
chine.

TCPIIP performs the mechanics of establishing connections for you, but
for several programs, telnet and ftp in particular, you must be aware of
connections and give the commands to establish them.

As in dialing a telephone, you must first know how to reach the recipient
of your call when setting up a connection. Each host on the internet has a
unique address at which it can be called to establish a connection.
Because network addresses are not always easy to remember, the internet
software allows for the use of names instead of addresses. Host names
are established by your system administrator. If you do not know the
names of the hosts that you need to use, ask your system administrator.
Since hosts may be used for several purposes, it is possible to have
several names (aliases) for the same host address. However, each name
always stands for a single host address and will connect you to the same
host each time you use it.

Access Privileges

Often in an internetworking environment, different host machines are
under the jurisdiction of different departments and personnel. Those in
charge of a host machine often want to limit access to their host for vari­
ous security and procedural reasons. Privileges to access a machine can
be granted only from the machine in question. If you are unable to access

Using Network Commands 2-7

Concepts Important to Using Network Commands

a machine that you need to use, you or your supervisor should consult the
network administrator of the host machine in question.

If you need access beyond anonymous ftp (see "Transferring Files" later
in this chapter), the administrator can set up a machine or user
equivalence between your native host and the remote host. You will need
an account and password for the remote machine. If you have an account
on a remote machine, you can set up a user equivalence yourself. (See
"What Is User Equivalence?" earlier in this chapter.)

2-8 TCP/IP User's Guide

Virtual Terminals and Remote Login

Virtual Terminals and Remote Login
The command rlogin(TC) and the ARPANET command telnet(TC) pro­
vide a choice of virtual tenninal capability. A virtual tenninal is created
when you use your local machine to log onto a remote machine. The
impression given is that your tenninal is logically attached to the remote
machine. Switching your tenninal between UNIX-compatible machines
can be as easy as typing the name of the machine to which you intend to
connect.

Virtual tenninal capability differs from remote command execution in
that the user can use programs that depend on accessing the tenninal
directly, such as vi(C). These commands use the tenninal in raw mode.
That is, they read from the tenninal character-by-character, instead of
line-by-line.

The following is a brief overview of telnet and rlogin. For more infonn­
ation on these commands, see Chapter 4, "Using Remote Tenninals."

The telnet Command

The telnet command provides virtual tenninal access to other machines
on the internet. Using telnet, you can log into any host on the network for
which you have an account, just as if you were a local user of that ma­
chine. Once telnet is invoked and your connection is established, your
tenninal is linked to a remote machine, and data that you type is passed to
that machine. Responses from the remote machine will be displayed on
the screen of your tenninal.

For more infonnation on telnet, see Chapter 4, "Using Remote Tenni­
nals."

Remote Login with rlogin

You can use rlogin to remotely log into another UNIX-compatible ma­
chine. To use this command, you need a password on the host where you
intend to log on. However, if you already have user equivalence on the
remote machine, you do not need a password. The rlogin command can
only be used to connect to UNIX-compatible hosts.

For more infonnation on rlogin, see Chapter 4, "Using Remote Tenni­
nals."

Using Network Commands 2-9

Transferring Files

Transferring Files
The ftpcommandenables you to manipulate files on two machines simul­
taneously. Using ftp, you can examine directories and move single or
multiple files between systems. This program is designed to be mostly
independent of the type of operating system.

An additional feature of ftp is that it allows an anonymous user who does
not have an account on your machine to pick up or deposit certain files
without a password from a protected area of the ftp home directory. The
ftp command does not require (or understand) user equivalence.

The remote file copy command rep does require user equivalence. The
command rep is a UNIX-specific command, and it can only be used when
you are transferring files between UNIX compatible hosts.

For more information of ftp and rep, see Chapter 5, "Transferring Files."

2-10 TCP/IP User's Guide

Executing Remote Commands

Executing Remote Commands
The rcmd command enables you to send commands to remote UNIX ma­
chines for execution and have the results returned to you. You do not
have to log onto the remote machine to use rcmd; it acts like a pipe to the
other machine. This command is useful for constructing distributed shell
programs which execute commands on remote machines over the net­
work. To use rcmd, you must have equivalence on the target machine
(the machine on which you are trying to execute the command).

This command can only be used with remote machines that are running
UNIX or a compatible operating system. The rcmd command passes its
standard input and output to the remotely executed command, and returns
to the issuing system all output that the remote command generates on
standard output and standard error.

You must have lusrlhosts in your search path to access machines directly.
(For more information on rcmd, see Chapter 3, "Executing Remote Com­
mands.")

Using Network Commands 2-11

Chapter 3

Executing Remote Commands

Using rcmd 3-1
Invoking rcmd 3-1
Options of rcmd 3-1
A Sample Session Using rcmd 3-2
Remote Printing 3-2

Shellscript Programming 3-3

Usingrcmd

Usingrcmd
The rcmd command enables you to send commands to remote UNIX ma­
chines for execution with the results returned to you. You do not have to
log onto the remote machine to use rcmd. (The command acts like a pipe
to another machine.) The rcmd command is useful for constructing dis­
tributed shell programs. You must have equivalence on the target machine
to use rcmd. (User equivalence is discussed in Chapter 2.) The target
machine is the machine on which you are trying to execute the command.

This command can be used only with remote machines running UNIX or a
compatible operating system. The rcmd command passes the standard
input (for the command to be executed) to the remote machine, and then
it outputs the command's standard output and standard error to the local
machine.

You must have lusrlhosts in your search path to access machines directly.

Invoking rcmd

The rcmd command is given from the UNIX shell. You must specify the
name of a remote machine and one or more commands to be executed, for
example:

rcmd machine-name co~nd

In most cases, you can omit specifying rcmd to the shell and simply use
the name of the remote machine and a command. For example:

machine-name co~nd

In order for you to be able to use this feature, your system administrator
must have configured UNIX to accept the name of the remote machine
without specifying rcmd. Your system administrator can advise you on
how your machine is configured.

Options of rcmd

There are two options you can specify when you invoke rcmd. These
options are:

Executing Remote Commands 3-1

Usingrcmd

-1 user Normally, the command you specify is executed under
your user name on the remote machine. This option
allows you to specify that the command be executed
under another user name, for example:

rcmd machine-name -1 tom co~nd

Whether you use your user name or another user name,
you must have established permission for yourself on the
remote machine that will execute the command. The
system administrator of the remote machine can advise
you on how the remote machine is configured.

-n This option prevents rcmd from sending standard input
to the remote command you specify and prevents rcmd
from "reading up" standard input. This is done by mak­
ing the command's standard input /dev/null instead of
rcmd's standard input. For example:

rcmd machine-name -n -1 tom co~nd

"Reading up" means reading and buffering the data.
The rcmd command buffers standard input data regard­
less of whether the remote command reads it.

A Sample Session Using rcmd

The following example shows rcmd being used to run the who(C) com­
mand on a remote machine called admin. The output is placed in a file on
the local machine by redirecting standard output. In this example, stan­
dard output is redirected to the file /tmp/admin.who.

rcmd admin who > /tmp/admin.who

Remote Printing

The rcmd command can be used for remote printing, as in the following
example, which prints a file called tempi on the default printer of a sys­
tem called systemx:

$ cat tempI I rcmd systernx 1p

3-2 TCP/IP User's Guide

Shellscript Programming

Shellscript Programming
Many useful shell programs can be written by using the ability of the
TCP/IP networking commands to use pipes across the network. (See
sh(C) and pipe(S) for more information on piping.) Some examples of
systems based on shell programs are:

• remote line printer spooling using rcmd and [p.

• distributed text processing using troft' (CT). In this system,
macroprocessing is done at the user's node, the font processing is
done on a lightly loaded back-end machine, and printing is done on
a machine with a laser printer.

• using a remote tape drive to read/write a cpio archive.

• killing a process on a remote machine.

• backing up or restoring remote file systems.

Executing Remote Commands 3-3

Chapter 4

Using Remote Terminals

Introduction 4-1

Communicating Using telnet 4-2
Command and Input Modes 4-2
Invoking the telnet Program 4-2
Using telnet Commands 4-4
Some Sample Sessions 4-8

The rlogin Command 4-11
Invoking the rlogin Program 4-11
Leaving the rlogin Program 4-11
Options forrlogin 4-12
Using a Tilde in the Text 4-12

Introduction

Introduction
This chapter explains how to use two TCP/IP commands that provide vir­
tual terminal capability. "Virtual" means that no physical connection is
made to the remote machine. Rather, the command simulates a physical
line between your terminal and a remote machine. "Terminal" means
that the command allows your terminal on your local machine to act as a
terminal on a remote machine over the internet.

The virtual terminal commands described in this chapter are:

• telnet(TC)

• rlogin(TC)

The telnet command provides virtual terminal access to other machines
on the internet. Using telnet, you can log into any host on the network for
which you have permission, just as if you were a local user of that ma­
chine. Once telnet is invoked, your terminal is linked to a remote ma­
chine, and data that you type is passed to that machine. Responses from
the remote machine are displayed on the screen of your terminal.

The rlogin command can be used in place of telnet to communicate with
other machines running the UNIX operating system. The rlogin command
provides a virtual terminal access that is specific to the UNIX operating
system. For more information, see the section titled "The rlogin Com­
mand" later in this chapter.

Using Remote Terminals 4-1

Communicating Using telnet

Communicating Using tel net
The telnet program is an interactive program that enables you to com­
municate with a remote machine in a terminal session. Once you invoke
telnet, you interact with telnet until you exit and return to the shell (the
calling program).

Command and InputModes

Whenever you open a telnet connection to a remote machine, telnet
operates in input mode. Input mode transfers all the characters you type
to the remote machine and displays on your terminal screen all data sent
to you by the remote machine. The one exception to this is a special
character called the escape character (A]). If you type this, it places
telnet in command mode. (This escape character is not the same as the
<ESC> command of your keyboard. The escape character for telnet is
produced by typing <CTL>]).

In command mode, data that you type is interpreted by telnet to allow
you to control telnet operation. Command mode is active when telnet is
not connected to a remote host.

When telnet is in input mode, it communicates with the remote host
based on a number of options. These options specify how operating sys­
tem and terminal-specific properties of terminal-to-computer communi­
cations will be performed. An example of such an option is whether the
echoing of the characters you type is done by telnet locally or by the
remote machine. The telnet program and the remote machine you specify
will negotiate these options and establish a compatible set of options for
your terminal when you connect to a host.

Invoking the telnet Program

The telnet program is invoked from the UNIX shell with the command
telnet.

4-2 TCP/IP User's Guide

Communicating Using telnet

Optionally, you can specify the name of the remote machine with which
you intend to communicate. The following example shows a connection
being made to a remote machine called admin:

telnet admin

Machine names are defined by your system administrator. You can exam­
ine the machine names available to you by listing the contents of the file
fete/hosts.

When you specify a machine name to invoke telnet, it establishes a net­
work connection to that machine and enters input mode. You can also
invoke telnet without a machine name, for example:

telnet

In this case, you will be in command mode, since no machine was
specified. If you do not specify a machine name, you must open a con­
nection from within telnet by using telnet's open command to access a
remote host. More details are given in the next section, "Using telnet
Commands."

Using Remote Terminals 4-3

Communicating Using telnet

Using telnet Commands

You can enter telnet commands whenever the telnet command mode
prompt is displayed. The telnet command prompt looks like this:

telnet>

If you are not connected to a remote machine, the telnet program 1S m
command mode. The same applies when you enter the escape character
(~]) from input mode.

If command mode was not entered from input mode, telnet generally
remains in command mode and displays the command mode prompt again
after you enter each command. If you use the open command to establish
a telnet connection to a remote machine, telnet enters input mode.

If command mode was entered from input mode, telnet generally returns
to input mode after processing your command. If you use the close com­
mand to close the remote host connection, telnet remains in command
mode after the command is processed. If you use the quit command,
telnet exits and returns you to the calling program (usually the shell).

Each command you give to telnet in command mode must be followed by
<Return>. The telnet program will not start a command until it receives
<Return> from you. If you make a mistake while typing a command, you,
can use the shell line-editing commands erase (<BKSP» and kill «Can­
cel>) to edit the characters that you have typed. However, these shell
line-editing commands do not work when you are in input mode. Instead,
you must use special telnet send commands. These are discussed later in
this section.

When entering a command, you do not have to enter the full command
name. You need only enter enough characters to distinguish the command
from other telnet commands. The definitive syntax for all telnet com­
mands is given on the manual page telnet(TC) in the TCPI/P User's
Reference Manual. These are the telnet commands:

4-4

open This command establishes a telnet connection to a
remote machine. You should specify the name of the
remote machine as an option of the command. This
example opens a telnet connection to the machine
admin:

telnet> open admin

TCP/IP User's Guide

Communicating Using telnet

close This command closes the connection to the remote host
and stops telnet operation. It is functionally equivalent
to the quit command.

quit This command terminates your telnet session and exits
telnet. The quit command closes the connection to the
remote machine if one is active.

z This command suspends telnet on systems with job con­
trol. On other systems, the command provides the user
with another shell.

mode The following are subcommands and options of the
mode command, whose syntax is described in the man
page telnet(TC):

display

send

mode line I character 1

line The remote host is asked for permis­
sion to go into line-at-a-tirne mode.

character The remote host is asked for permis­
sion to go into character-at-a-tirne
mode.

This command displays all or some of the set or toggle
values. (See the set and toggle commands later in this
section.)

This command sends one or more special character
sequences to the remote host. The subcommands and
options of the send command are fully described in the
man page telnet(TC):

send ao I ayt I brk I ... 1

ao This command causes telnet to tell the
remote machine to abort sending any
output that is in progress. This com­
mand is useful if the remote host is
sending you data that you do not wish
to see and you would like telnet to
return to command mode on the remote
machine. The only output aborted is
that currently being sent; you can con­
tinue to communicate with the remote
machine once the current output has
been stopped.

Using Remote Terminals 4-5

Communicating Using telnet

4-6

ayt This command causes telnet to send an
"are you there?" message to the
remote machine. The remote machine
will send you back a message if it is
active. This message is often simply a
command which causes the bell on
your tenninal to sound, although it may
be a string of text that is displayed on
your tenninal. This message is useful
if the remote host has not responded to
your input and you wish to see whether
it is inactive or just busy.

brk

ec

el

This command sends a message to the
remote machine that has the same
significance as pressing the <Break>
key on your tenninal would for your
local machine. Since brk is imple­
mented between a tenninal and a local
machine as a set of physical signals,
rather than data, pressing the <Break>
key on your tenninal affects only the
local machine; the message is not sent
to the machine to which you are con­
nected via telnet. You must use the
brk command if you want to send a
break indication to a remote machine.

This command sends the telnet erase
character message to the remote ma­
chine. The ec command has the same
meaning as the shell erase (<BKSP»
command has on your local machine.
Since different operating systems
implement the erase-character opera­
tion differently, you may have to use
the ec command, rather than the shell
erase character, when interacting with
a remote machine. The shell erase
character can be used when you are in
command mode because command
mode's operation is local to your ma­
chine.

This command sends the telnet erase­
line message to the remote machine.
The el command has the same meaning
as the shell kill (erase line) command

TCP/IP User's Guide

ip

synch

escape

nop

Using Remote Tenninals

Communicating Using telnet

has on your local machine. Since
different operating systems implement
the erase-line operation differently, you
may have to use the ec command,
rather than the shell kill command,
when interacting with a remote ma­
chine. The shell kill command can be
used in command mode, because com­
mand mode's operation is local to your
machine.

This command sends the telnet inter­
rupt process message to the remote ma­
chine. The ip command has the same
meaning as the shell interrupt charac­
ter does on your local machine. Since
different operating systems implement
the interrupt operation differently, you
must use the ip command, rather than
the shell interrupt command, when
interacting with a remote machine.
The shell interrupt command can be
used in command mode, because com­
mand mode's operation is local to your
machine.

This command sends a message to the
remote machine telling it to ignore any
input you have sent that has not yet
been processed on the remote machine.
This command is useful if you have
typed ahead a number of commands
and wish to cancel those commands
without tenninating the telnet connec­
tion to the remote machine.

This command sends the current telnet
escape character.

This command sends the telnet no­
operation sequence.

4-7

Communicating Using telnet

toggle This command toggles various flags that control telnet
processing. The flags are toggled between TRUE and
FALSE. The subcommands and options of the toggle
command are fully described in the man page
telnet(TC):

toggle [localchars I autoflush I .•. 1

set This command allows you change telnet variable
values. There are subcommands and options of the set
command, and their syntax is described in the man page
telnet(TC):

status

?

set [echo I escape I interrupt I ••. 1

This command shows you the status of the connection to
the remote host, as well as the current options and
escape character.

This command displays information on your terminal
about operating telnet. If you specify a telnet command
name after the help command (?), then information
about that command is displayed. If you just enter the
help command, a list of all telnet commands is dis­
played.

Some Sample Sessions

Two sample sessions are shown below. They illustrate how telnet can be
used in a variety of ways. Communications with a host named "there"
are shown.

Description of Session 1

This is a simple session illustrating basic telnet use. The telnet program
is invoked with a host name. A connection to that host is opened as a
result. The telnet program displays the following message while estab­
lishing the connection:

"Trying ... "

This indicates that telnet is attempting to establish a connection. A
second message is displayed when the connection is established. The tel­
net program displays the current escape character. (There is no options-

4-8 TCP/IP User's Guide

Communicating Using teinet

status display.} At this point, teinet has established the connection to the
remote machine, and the remote machine displays its login prompt. The
user then logs into the machine using the same procedures that would be
used for a local terminal on that machine. The user produces a directory
listing on the remote machine. Work completed, the user then types the
escape character, and teinet enters command mode and displays the com­
mand mode prompt. The user enters the quit command, and telnet closes
the connection to the remote machine and returns to the local shell.

laiter$ telnet there
Trying 192.9.200.101 .•.
Connected to there.
Escape character is '-]'.

System V.3.2 UNIX (there.Lachrnan.CCM)

login: stevea
Password:
UNIX System V/386 Release 3.2
there
Copyright (C) 1984, 1986, 1987, 1988 AIT&T
Copyright (C) 1987, 1988 Microsoft Corp.
All Rights Reserved
Login last used: fun Feb 2717:14:18 1989
there$ Is -xF
belli
hi*
hn*
jam/
maketd+/
ot2.c
ripsoak*
t*
there$
-]

blot/
hi+.c
hn.c
linger*
I!1almlin
ping+*
ripsoak.c
t.c

telnet> quit
Connection closed.
laiter$

Description of Session 2

connect.h
hi.c
indent/
linger.c
ot*
ping.c
sr.sh*
tcp/

connection.c
hin*
intel/
mailstats. c+
ot.c
profiler/
st.c
tcp.sh*

dhry/
hin.c
ip iarp.h
maketd/
ot2*
qJ:./
sw/
tcp0227/

This session illustrates alternative ways to log into and out of a remote
machine with teinet. The telnet program is invoked without a machine
name and enters command mode. The user does a status command, and
teinet indicates that no connection is established. The user then uses the
teinet open command to establish a connection and place telnet in input
mode. The user receives a login message from the remote system. The
user then logs into the machine, using the same procedures that would be
used for a local terminal on that machine. Work completed, the user logs

Using Remote Terminals 4-9

Communicating Using telnet

out of the remote machine. The remote machine then closes the connec­
tion. The telnet program terminates automatically and returns to the
local shell.

41 telnet
telnet> status
No Connection.
Escape character is • -] •
local echo is off
telnet> open there
hying •..
Connected to there
Escape character is • - J '
System V.3 UNIX (there)
login: mary
TERM = (ansi)
$ 15
passwd.
volcopy
whodo
$ -D
Connection closed by foreign host.
41

4-10 TCP/IP User's Guide

The rlogin Command

The rlogin Command
The rlogin(TC) command connects you to a shell on a remote machine.
The rlogin program is similar to telnet but specific to UNIX-compatible
machines. The rlogin command allows you to access the same UNIX
commands on a remote machine as telnet. However, rlogin is more con­
venient than telnet, because once you have logged onto a remote ma­
chine, you have the impression of working on your local machine. You
do not have to know the special commands used in telnet. This command
can only be used with remote machines running UNIX or a compatible op­
erating system. The TERM variable in the remote shell is set to the value
you are using in your local shell.

Once invoked, rlogin passes all data you input to the remote machine and
displays all output from that machine on your terminal's screen.

Invoking the rlogin Program

The rlogin program is invoked from the UNIX shell. You must specify
the name of a remote machine, as in this example which logs onto the ma­
chine admin:

rlogin admin

In some cases, you may omit specifying rlogin to the shell and simply put
the name of the remote machine, for example, admin. This is only possi­
ble when your system administrator has configured UNIX to accept the
name of the remote machine without specifying rlogin. You must also
have lusrlhosts in your search path. Your system administrator can advise
you on how your machine is configured.

Leaving the rlogin Program

To leave rlogin and return control to your local shell, type the escape
character (the tilde) and a period Co).

Simply exiting your remote shell also causes rlogin to return control to
your local shell.

Using Remote Terminals 4-11

The rlogin Command

Options for rlogin

You can specify three options when invoking rlogin. These options are:

-ec The -e option causes rlogin to use the character c
instead of tilde n as the escape character to use when
exiting rlogin. For example:

rlogin admin -e!

sets the exclamation point (!) as the rlogin escape char­
acter.

-8 The -8 option tells rlogin to turn off the stripping of par­
ity bits and pass 8 bit characters through to the remote
end.

Whether you use your own user name or another user name, you must
have established user equivalence for yourself on the remote machine to
which you are logging in. The system administrator of the remote ma­
chine can advise you on the configuration of that machine. (User
equivalence is discussed in Chapter 2.)

Using a Tilde in the Text

If your escape character is tilde n, the default escape character, then you
cannot normally send a line of input beginning with a tilde to the remote
machine. If you need to send such a line, begin that line with a second
tilde. That is, the line should begin with two tildes C).

4-12 TCP/IP User's Guide

Chapter 5

Transferring Files

Introduction 5-1

Working with ftp 5-2
File-Transfer Modes in ftp 5-2
File-Naming Conventions in ftp 5-2
Invoking ftp 5-3
Command Options in ftp 5-3
Using the .netrc File for Automatic Login 5-5
Restrictions on ftp Commands 5-6
Description of the ftp Commands 5-6
Some Sample ftp Sessions 5-18

The rep Command 5-21
Invoking rep 5-21
The Options of rep 5-22
Some Sample rcp Sessions 5-23

Introduction

Introduction
This chapter describes two command programs that you can use to
transfer files. These programs are called ftp (file transfer program) and
rcp (remote copy program). Information in this chapter includes:

• when and why to use the commands

• how to invoke and exit the commands

• how to use the command options

• sample sessions

The ftp(TC) command makes it possible to transfer files between your
current node and other machines on the internet. It is an interactive pro­
gram that enables you to input a variety of commands for file transmis­
sion and reception. In addition, ftp enables you to examine and modify
file systems of machines on the network. When you invoke ftp, you
interact with ftp's command mode until you exit ftp and return to the cal­
ling program. The ftp program is available under a wide range of operat­
ing systems.

When you are communicating with machines running the UNIX operating
system, the rcp(TC) command can be used in place of ftp. The rcp com­
mand is specific to UNIX-compatible operating systems.

Transferring Files 5-1

Working with ftp

Working with ftp
To use the ftp program, you need to open a connection over the internet to
a remote machine before you transfer files to or from the remote machine
with ftp. The ftp program allows you to have several connections active
simultaneously, although generally you can only issue commands that
operate on a single connection. The multiple connection facility allows
you to communicate with several remote machines within a single ftp
session. You do not have to log in and out of these machines every time
you want to change connections. The connection that ftp uses at any
given time is called the current connection.

File-Transfer Modes in ftp

The ftp program allows you to transfer files in one of two modes, ASCII or
binary. Use ASCII mode for text files that can be represented in standard
ASCII code. Binary mode is used for binary data that must be represented
as strings of contiguous bits. For communication between UNIX ma­
chines, the ASCII mode can be used for most file transfers. (ASCn is the
default mode.) The binary mode may be required for transferring some
files, such as program-object modules, when communicating with non-­
UNIX machines, Your system administrator can advise you on when to
use which file transfer mode.

File-Naming Conventions in ftp

If the first character of a file name that you specify to ftp is a hyphen (-),
ftp uses its standard input (for reading) or the standard output (for writ­
ing).

If the first character of a file name that you specify to ftp is a vertical bar
(I), the remainder of the file name is interpreted as a shell command. The
ftp program creates a shell with the file name supplied as a command, and
then uses its standard input (for reading) or the standard output (for writ­
ing). If the shell command includes spaces, the file name must be appro­
priately quoted. For example:

"I 15 -15"

The pipe symbol (I) can appear either inside or outside the quote maries.

5-2 TCP/IP User's Guide

Working with ftp

Invoking ftp

To invoke ftp from the UNIX shell, enter the command ftp. After ftp is
started, its prompt is displayed on your terminal. The ftp prompt looks
like this:

ftp>

Optionally, you can specify the name of the remote machine with which
you intend to communicate. The following example shows how to
specify a remote machine called admin:

$ ftp admin

Machine names are defined by your system administrator. Before using
ftp, you can examine the machine names available to you by listing the
contents of the file fetc/hosts.

When you specify a machine name while invoking ftp, the program estab­
lishes a network connection to that machine to allow you to transfer files.
This is equivalent to using ftp's open command to open a connection to
the host you name. You can also invoke ftp without a machine name, as
in this example:

$ ftp

If you do not specify a machine name from the shell, you must open a
connection from within ftp. This is done by using ftp's open command
before you transfer any files. See the section "Description of the ftp
Commands" later in this chapter for details of the open command.

Command Options in ftp

In addition to specifying a host name when invoking ftp, you can also
specify a number of options that affect how ftp operates. These options
must be placed after the command name (ftp) but before the host name if
you are specifying one. The options you can specify when invoking ftp
each consist of a hyphen (-) followed by a single letter, for example, -v.

Each of the available options has a corresponding command of the same
name that can be used within ftp. You should compare the use of the
options with the corresponding ftp command. See the section "Descrip­
tion of the ftp Commands" for details of the ftp commands.

1ransferring Files 5-3

Working with ftp

-v causes ftp to operate in verbose mode. In verbose mode,
the ftp protocol messages sent by the remote machine to
ftp are displayed on your terminal. Also, if you use ver­
bose mode, statistics are displayed after the completion
of each file transfer. Verbose mode is on by default if ftp
is run interactively. If ftp is run in a script, verbose
mode is off, and the -v option turns verbose mode on.
You can also change whether verbose-mode information
is displayed from within ftp with ftp's verbose com­
mand.

-d causes ftp to operate in debug mode. In debug mode,
the ftp protocol messages sent by ftp to the remote ma­
chine are displayed on your terminal. If you do not use
the -d option, this information is not displayed. You can
also change whether debug mode information is dis­
played from within ftp with ftp's debug command.

-i means that there is no interactive prompt.

-n prevents ftp from using autologin mode when connect­
ing to a remote machine. When autologin mode is used,
ftp will try to identify you automatically to the remote
machine and log you into that machine. (See the section
"Using the .netrc File for Automatic Login" later in this
chapter for more information.) If you use the -n option
to turn off autologin, you will have to use ftp's user
command to log into the remote machine manUally.

-g causes ftp to disable expansion of UNIX filename wild
cards such as *. If you do not use the -g option, ftp will
expand your filenames containing wild cards into lists of
files. You can also change whether wild card expansion
is used from within ftp with ftp's glob command.

Here are examples that show the use of some ftp options:

$ ftp -v -d admin

The above command invokes ftp with verbose and debug modes on and
causes ftp to open a connection to the remote machine named admin. In
debug mode, the commands sent to the remote machine are displayed.
Verbose mode displays the responses received and the statistics in bytes
received.

5-4 TCP/IP User's Guide

Working with ftp

$ ftp -v -d

The above command invokes ftp with verbose and debug modes' on but
does not cause any connection to be opened.

$ ftp -a -g admin

The above command invokes ftp with autologin and wild card expansion
mode off and causes ftp to open a connection to the remote machine
named admin.

$ ftp -n -g

The above command invokes ftp with autologin and wild card expansion
mode offbut does not cause any connection to be opened.

Using the .netrc File for Automatic Login

You can create a file named .netre in your home directory as an optional
c:;onvenience feature. This file contains a line entry of the login data for
each machine that you need ftp to open automatically. See netrc(F) for
detailed information on this file.

When you invoke ftp specifying a machine, or when you subsequently
open a machine, ftp reads the .netre file. If you have an entry for that
particular machine, ftp automatically conducts the login protocol
exchange with its counterpart at the remote machine. It supplies your
login name and password if you have entered your password in the file. If
you open a machine in verbose mode, you can see the transactions taking
place.

The format of the file consists of blank-separated fields introduced by
keywords:

machine name login name password password

where machine, login, and password are keywords followed by the
literal data needed for login:

machine

login

password

" Transferring Files

The name of the node.

The user login name for that node.

The user's password on that node. (The password
is given in normal, unencrypted text.) If you
include your password in the .netre file, you must
read/write protect the file, by setting permissions,

5-5

Working with ftp

to prevent discovery of your password; otherwise,
ftp will not let you use the file. File pennissions
must be set to 400 or 600 for a .netrc file which
includes passwords. See chmod(C) for more in­
fonnation on file permissions. (There is still some
risk here in putting your password in the file. You
must weigh the security considerations.) Ask your
system administrator before using this feature.

If you do not enter your password in the file, ftp prompts you for your
password. For example:

machine admin login guido password open

where admin is the node, guido is the user who logs into admin, and open
is guido's password.

Restrictions on ftp Commands

In addition to ftp commands that use standard ftp protocol functions,
SCO TCP/IP provides a number of commands that use optional ftp proto­
col functions. Such commands should be used only to communicate with
machines that are running UNIX or a compatible operating system. The
commands whose use should be restricted in this way are indicated in the
command descriptions described later in this chapter. When communi­
cating with a remote machine that does not run UNIX, you should ask
your system administrator whether it supports these ftp commands before
using them. Some ftp servers do not support all the optional commands.

Many ftp servers can provide a list of supported commands. When com­
municating with a remote machine that has such a server, ftp's
remotehelp command can be used to obtain this infonnation.

Description of the ftp Commands

When ftp displays its prompt, you can enter one of the commands
described in this section. When the command is complete, the ftp prompt
is displayed again. Depending on whether you turn on verbose or debug
mode, other messages may also appear on your tenninal.

Each command you give to ftp must be followed by <Return>. The ftp
program does not start a command until it receives a <Return> from you.
If you make a mistake while typing a command, you can use the shell
line-editing commands erase (<BKSP» and kill (<Cancel» to edit the
characters that you have typed.

5-6 TCP/IP User's Guide

Working with ftp

You do not have to enter the full command name, only enough characters
to distinguish the command from other ftp commands. In most cases, this
is the first one or two characters of the command.

This section lists most, but not all, of the commands available for ftp.
See the manual page ftp(TC) for a complete list of commands.

append

ascii

bell

Transferring Files

The ! command suspends ftp and invokes a shell
on the local machine. Any character(s) you type
after entering the exclamation point are then exe­
cuted locally as a shell command. You can return
to ftp by exiting the shell. All ftp options and
remote machine connections are returned in the
same state as before you gave this command. If a
shell command is typed on the same line as the !
character, only that single command is executed.
The ftp program then returns to command mode
when the given command is complete.

The append command causes ftp to add the con­
tents of a local file to the end of a file on the
remote machine to which you are currently con­
nected. You can specify the files to be used when
invoking the command, for example:

ftp> append loealfile remote file

Alternatively, you can just use the command name
and have ftp prompt you for the file names, for
example:

ftp> append
(local-file) loealfile
(remote-file) remote file

When you use the append command, the remote
machine you are connected to must be a machine
running UNIX or a compatible operating system.

The ascii command causes ftp to transfer files in
ASCII mode. (The default mode is ASCII.)

The bell command causes ftp to sound the bell at
your terminal after each file transfer is completed.
The next time you enter the bell command, ftp
will stop sounding the bell after file transfers.

5-7

Working with ftp

binary

bye

cd

close

debug

delete

dir

5-8

The binary command causes ftp to transfer files
in binary mode. (The default mode is ASCn.)

The bye command terminates your ftp session and
exits ftp. The bye command closes all your open
connections.

The cd command changes your directory on the
remote machine to a new directory name. You
can specify the new directory name when invok­
ing the command, as in the following example:

ftp > cd /usr/bin

Alternatively, you can just use the command
name, in which case ftp prompts you for the new
directory, as in the following example:

ftp> cd
(remote-directory) /usr/bin

The close command closes the current connection.

The debug command turns debug mode on and
off. If debug mode is on, messages sent by ftp to
the remote machine are displayed on your termi-'
nal. If debug mode is off, this information is not
displayed.

The delete command deletes a file on the remote
machine to which you are currently connected.
You can specify the name of the file to be deleted
when invoking the command, for example:

ftp> delete remote file

If you prefer, you can just use the command name.
The ftp program then prompts you for the file
name, as in the following example:

ftp> delete
(remote-file) remote file

The dir command displays a detailed listing of the
contents of a directory on the remote machine to
which you are currently connected. (Compare Is,

TCP/IP User's Guide

form

get

Transferring Files

Working with ftp

below.) You can specify the name of the directory
to be listed when invoking the command, as
shown here:

ftp> dir /usr/bin

If you do not specify a directory name, the current
working directory on the remote machine is listed.

You can also specify that the results of this com­
mand are placed in a file rather than displayed on
your terminal. Do this by giving ftp a file name
on your local machine in which to store the direc­
tory listing, for example:

ftp> dir /usr/bin printfile

You must specify a directory name before the out­
put file name (here, printfile). Thus, if you want to
list the current directory in a file called printfile,
use:

ftp> dir • print file

where "." stands for the current directory.

The form command displays the file format used.
Currently, only the nonprint format is supported.

The get command copies a file from the remote
machine to which you are currently connected.
The file is copied to your local machine. (Use the
mget command to copy several files at one time.)
When you invoke the command, you can specify
the name of a file on the remote machine and a file
name on your machine where the file is to be
stored, as in this example:

ftp> get remote file localfile

If you simply specify the name of a file to be
copied from the remote machine, then the file cre­
ated on your local machine is given the same
name as the file on the remote machine. Here is
an example that does this:

ftp> get remote file

5-9

Working with ftp

glob

hash

help

led

Is

5-10

If you prefer, you can just use the command name.
The ftp program prompts you for the filenames to
use. Here is an example:

ftp> get
(remote-file) remote file
(local-file) localfile

If you omit the local filename, the get command
will create a file on your machine with the same
name as the file on the remote machine.

The glob command causes ftp to disable expan­
sion of UNIX file-name wild cards such as '*'.
This command toggles off and then on; that is, the
next time you enter the glob command, wild card
expansion will be re-enabled. When wild card
expansion is enabled, ftp will expand your file
names which contain wild cards into lists of files.

The hash command causes ftp to display a pound
sign (#) after each block of data it sends to or
receives from the remote host. The size of a data
block may vary with the software release; use ver­
bose mode with the hash command to see the
current value. The hash command toggles on and
then off; that is, the next time you enter the hash
command, ftp will stop displaying pound signs
after each data block.

The help command displays information on your
terminal about operating ftp. If you specify a
command name after help, information about that
command is displayed. If you just enter help, a
list of all the ftp commands is displayed.

The led command changes the working directory
used by ftp on your local machine. You can
specify a directory name to be used as the working
directory, for example:

ftp> lcd lusr/deb

If you do not specify a directory name, your home
directory will be used.

The Is command displays an abbreviated listing of
the contents of a directory on the remote machine

TCPIIP User's Guide

mdelete

mdir

transferring Files

Working with ftp

to which you are currently connected. You can
specify the name of the directory to be lis\ed, for
example:

ftp> Is lusr/bin

If you do not specify a directory name, the current
working directory on the remote machine is listed.

You can also specify that the results of this com­
mand are placed in a file rather than displayed on
your terminal by giving ftp a file name on your
local machine in which to store the directory list­
ing' as in this example:

ftp> Is lusr/bin printfile

You must specify a directory name before the out­
put file (here, printftle). For example, if you want
to list the current directory in a file called
printftle, the command is:

ftp> Is . printfile

where "." stands for the current directory.

The mdelete command deletes a list of files on the
remote machine to which you are currently con­
nected. You can specify the names of the files to
be deleted when invoking the command, for
example:

ftp> mdelete remotefilel remotefile2 ...

Alternatively, you can simply use the command
name. The ftp program prompts you for the
filename(s), for example:

ftp> mdelete
(remote-files) remotefilel remotefile2 ...

The mdir command obtains a directory listing for
a list of remote files and places the result in a
local file. You can specify the list of remote files
and the local file when invoking the command, for
example:

ftp> mdir remotefilel remotefile2 printfile

5-11

Working with ftp

mget

mkdir

mls

5-12

(Notice that the last filename in the list is assumed
to be the printfile.) It is also possible to use just
the command name. The ftp program then
prompts you for the filename, as in the following
example:

ftp> mdir
(remote-files) remotefilel remotefile2 printfill
local-file printfile? y

The mget command copies one or more files from
the remote machine to which you are currently
connected and stores them on your local machine.
The files stored on your local machine will have
the same names as the files on the remote ma­
chine.

You can specify the list of remote files when
invoking the command, for example:

ftp> mget remotefilel remotefile2 ...

If you prefer you can just use the command name.
The ftp program prompts you for the filenames as
shown here:

ftp> mget
(remote-files) remotefilel remotefile2 ...

The mkdir command creates a directory on the
remote machine to which you are currently con­
nected. You can specify the name of the directory
to be created when invoking the command, for
example:

ftp> mkdir /ulmydir

Alternatively, you can just use the command. The
ftp program then prompts you for the directory
name, for example:

ftp> mkdir
(directory-name) /ulmydir

Not all ftp servers support the mkdir command.

The mls command obtains an abbreviated direc­
tory listing for a group of remote files or direc­
tories and places the result in a local file. You can

TCP/IP User's Guide

mput

nmap

ntrans

Transferring Files

Working with ftp

specify the list of remote files or directories and
the local file when invoking the command, for
example:

ft p> ml s remotefilel remotefile2 printfile

or you can just use the command name and have
ftp prompt you for the filenames, for example:

ftp> mls
(remote-files) remotefile1 remotefile2 printfile
local-file printfile? y

The mput command copies one or more files from
your local machine to the remote machine where
you are currently connected. The files stored on
the remote machine will have the same names as
the files on your local machine.

You can specify the list of files when invoking the
command, for example:

ft p> mput localfilel localfile2 ...

You may prefer just to use the command name and
have ftp prompt you for the file names as in the
following example:

ftp> mput
(local-files) loealfilel localfile2 ...

Use this command to set or unset the filename
mapping mechanism. This command is useful
when connecting to a remote computer which is
not UNIX compatible and has different file naming
conventions. It affects the mapping of local
filenames with the get and mget commands and
the mapping of remote filenames with the put and
mput commands. The nmap command is com­
plex; see the ftp(TC) manual pages for more
detailed information.

Use this command to set or unset the filename
character translation mechanism. This command
is useful when connecting to a non-UNIX remote
computer with different file naming conventions.
It affects the translation of characters in local
filenames with the get and mget commands and in

5-13

Working with ftp

open

prompt

put

5-14

remote filenames with the put and mput com­
mands. The ntrans command is complex; see the
ftp(TC) manual pages for more detailed informa­
tion.

The open command establishes a connection to a
remote machine that can then be used for file
transfer commands. You can specify the name of
the remote machine when invoking the command,
for example:

ftp > open admin

The command name can be used on its own. The
ftp program then prompts you for the machine
name, as in this example:

ftp> open
(to) admin

IT you specify a host name when invoking the
command, you can also optionally specify a port
number on the remote machine. IT Ii port number
is specified, ftp will attempt to open a connection
to the remote machine at that port rather than the
default port for ftp. You should only use this
option if you are asked to do so by your system
administrator. IT you do not specify a port num-'
ber, ftp will not prompt you for one.

The prompt command prevents ftp from asking
you for permission to proceed between files in
multiple file commands such as mget. This com­
mand toggles off and then on; that is, the next time
you enter the prompt command, ftp will start ask­
ing you for permission to proceed between files.

The put command transfers a file from your local
machine to the remote machine where you are
currently connected. (Use the mput command to
transfer several files at one time.) You can specify
the name of a file on your local machine and a file
name on the remote machine when you invoke the
command, for example:

ftp> put localfile remote file

or:

ftp> put localfile

TCP/IP User's Guide

pwd

quit

quote

recv

remotehelp

rename

Transferring Files

Working with ftp

Alternatively, you can just use the command name
and have ftp prompt you for the filename(s) to
use, for example:

ftp> put
(local-file) loealfile
(remote-file) remote file

If you omit the remote filename, the put command
will create a file on the remote machine with the
same name as the file on the local machine.

The pwd command causes ftp to print the name of
the current working directory on the remote ma­
chine to which you are currently connected.

(This is the same as the bye command above.)

The quote command causes the arguments you
enter to be sent to the remote machine for execu­
tion. Arguments must be ftp commands and argu­
ments. The ftp commands that a remote host sup­
ports can be displayed with the remotehelp com­
mand. You can enter the command string to be
sent when invoking the command, for example:

ftp> quote NLST

or you can just use the command name and have
ftp prompt you for the command line to use, for
example:

ftp> quote
(command line to send) NLST

You should not use this command unless asked to
do so by your system administrator.

(This is the same as the get command above.)

The remotehelp command requests help from ftp
at the remote machine to which you are currently
connected. The information returned by the
remote machine indicates which ftp commands it
supports.

The rename command renames a file on the
remote machine to which you are currently

5-15

Working with ftp

rmdir

send

sendport

status

5-16

connected. You can enter the filenames to be used
when invoking the command, for example:

ftp> rename remotefilel remotefile2

Alternatively, you can just use the command name
and have ftp prompt you for the file names to use,
for example:

ftp> rename
(from-name) remotefilel
(to-name) remotefile2

The rmdir command removes a directory on the
remote machine to which you are currently con­
nected. You can specify the name of the directory
to be removed when invoking the command, for
example:

ftp> rmdir lulmydir

or you can just use the command name and have
ftp prompt you for the directory name, for exam­
ple:

ftp> rmdir
(directory-name) Iu/mydir

Not all ftp servers support the rmdir command.

(The same as the put command above)

The sendport command causes ftp to disable the
ability to specify a local port to the remote ma­
chine for a data connection. This command tog­
gles off and then on; that is, the next time you
enter the send port command, specification of
local ports will be re-enabled. The default mode
for local port specification when ftp is invoked is
on. You should not use this command unless
asked to do so by your system administrator.

The status command causes ftp to display its
current status on your terminal. This status
includes the modes selected with the bell, form,
hash, glob, port, prompt, and type commands.

TCP/IP User's Guide

type

trace

user

Transferring Files

Working with ftp

The type command sets the file transfer type to
one that you specify. Valid values are Ascn and
binary. The type command is another way of
invoking the ascii and binary commands. If you
do not specify a type when invoking this com­
mand, ascii is used.

The trace command causes ftp to enable packet
tracing. This command toggles on and then off;
that is, the next time you enter the trace com­
mand, packet tracing will be disabled. You should
not use this command unless asked to do so by
your system administrator.

The user command allows you to identify your­
self to the remote host when establishing a con­
nection. If autologin was not disabled with the -n
option when ftp was invoked, this command is not
required. (See the section "Using the .netrc File
for Automatic Login" earlier in this chapter.) If
autologin is disabled or an autologin is not config­
ured for you on the remote machine, you will have
to use the user command to identify yourself to
the remote machine.

Three pieces of information are used to tell the
remote machine who you are: a login name, a
password, and an account name.

Whereas a user name is required for all machines,
password and account names are required only by
some systems. Your system administrator can tell
you the requirements of your machines. You
should also consult your system administrator to
find out valid user and account names and pass­
words for a machine that you intend to use.

You can enter the information for the user com­
mand when invoking it, as in this example:

ftp> user mike cat myaccount

Also, you can just use the command name and
have ftp prompt you for the information to use, for
example:

5-17

Working with ftp

verbose

?

ftp> user
(username) mike
password:
Account: myaccount

Note that ftp will not echo your password when
you type it, in order to protect the security of this
infonnation. If a password or account is not
required on the remote machine with which you
are connecting, the password or account prompts
will not be displayed.

The verbose command causes ftp to disable ver­
bose mode. This command toggles off and then on;
that is, the next time you enter the verbose com­
mand, verbose mode will be enabled. In verbose
mode, the ftp protocol messages sent by the
remote machine to ftp are displayed on your ter­
minal. Also, if you use verbose mode, statistics
are displayed after the completion of each file
transfer. If you do not use verbose mode, this in­
fonnation is not displayed.

(Another name for the help command.)

Some Sample ftp Sessions

This section illustrates how ftp can be used. Three examples are shown.
Two hosts are used in these sessions, the local host HERE and the remote
host THERE.

Description of Session 1

This is a simple session illustrating ftp use for sending and receiving files.
The ftp command is invoked with a host name and automatically logs the
user into that host, because the -n (disable autologin) option was not used.

Verbose mode is disabled with the verbose command. The user then
changes working directory on the remote machine to the fete directory.
Since the -d (debug) option was not used and verbose mode was disabled,
no messages other than the ftp prompt are displayed by ftp.

The user does a directory listing of the fete directory on THERE using the
Is command for an abbreviated listing. The ftp command shows three
files in fete on THERE. The command get passwd is then issued to copy
the file passwd from THERE to HERE. A file named passwd is created on
HERE since no local filename was specified.

5-18 TCP/IP User's Guide

Working with ftp

The put command is then used to copy a file called wall from the current
working directory on the local machine to the remote working directory
(fetc) on the remote machine (THERE). Once again, the same filename is
used since no remote filename was specified. After the transfer is com­
plete, a directory listing is requested that now shows four files in fetc on
THERE including the file wall, which was just sent from HERE.

The bye command is then used to exit ftp and return to the local shell.

$ ftp THERE
Connected to THERE
220 THERE F'I'P server (Version 4.160 #1) ready.
Name (THERE: stevea) :
Password (THERE:stevea):
331 Password required for stevea.
230 User stevea logged in.
ftp> veroose
Verbose mode off.
ftp> cd fete
ftp> Is
passwd
volcopy
whodo
ftp> get passwd
ftp> put wall
ftp> 1s
passwd
vo1eopy
wall
whodo
ftp> bye
$

Description of Session 2

This session illustrates the displays caused by using a number of ftp
options. After invoking ftp with the remote host name, the user issues a
command to turn on debug mode. The ftp command displays messages
indicating that this option is now enabled.

The user then changes the remote working directory to fetc. Since debug
and verbose modes are on, ftp displays messages showing the command
sent to the remote machine (--> CWD fetc) and the response received
from the remote machine (250 CWD command successful.). Note that the
cd command, which has the same form as UNIX's change-directory com­
mand, is sent as a CWD command (for change working directory) to the
remote machine. The CWD command is ftp's way of saying cd indepen­
dently of any specific operating-system command language.

1i"ansferring Files 5-19

Working with ftp

Following the cd command, the user does a pwd command to verify the
working directory. Once again, The ftp command displays the messages
sent between the local and remote machines and then displays the current
remote working directory. The user then turns on the hash option. ftp
displays a message indicating that this option is now enabled.

The command get wall myfile tells ftp to retrieve the file wall and place it
in the file my/de in the user's local working directory. The ftp command
displays the messages sent between the two hosts to begin the transfer
and then prints a hash mark for each block of information received. Mter
the transfer is complete, statistics are displayed showing the total time
required and the data rate for the transfer.

After the file is received, the user closes the connection with the close
command and exits ftp with the bye command.

$ ftp THERE
Connected to THERE
220 THERE E'l'P server (Version 4.160 *1) ready.
Name (THERE:stevea):
Password (THERE: stevea) :
331 Password required for stevea.
ftp>.debug
Debugging on (debug = 1)
ftp> cd /ete
-> CWO /ete
200 CWO carmand okay.
ftp> pwd
-> FWD
251
ftp> hash
Hash mark printing on (1024 bytes/hash mark) •
ftp> get wall myfile
-> PORT 3,20,0,2,4,51
200 PORT carmand okay.
--> RETR weill
150 Opening data connection for wall (3.20.0.2,1075) (24384 bytes).

226 Transfer carplete.
24550 bytes received in 12.00 seconds (2 !\bytes/s)
ftp> elose
-> QUIT
221 Goodbye.
ftp> bye
$

5-20 TCP/IP User's Guide

The rep Command

The rep Command
Another command that enables you to copy files between any two UNIX
machines on the internet is rep (remote copy). The rep command is simi­
lar to ftp but has a syntax much like the UNIX ep command. This com­
mand can only be used with remote machines running UNIX or a compati­
ble operating system.

Invoking rep

The rep program is invoked from the UNIX shell. You must specify the
names of files to copy and the location to which they are to be copied.
Note that rep is similar to the ep command. You can use it to copy from
a local file to a remote file or vice versa. The following example shows a
file called remote file on the machine admin being copied to local file on
the local machine.

As shown, filenames for rep follow a convention that is an extension of
the UNIX filename convention. Filenames can take one of three forms,
where a filename names a file or a directory. Valid forms for filenames
are:

• user@maehine:filename

• maehine:filename

• filename

where:

machine

user

Transferring Files

is the name of the machine which contains or will
contain the file. If you do not specify a machine,
the file is assumed to reside on your local ma­
chine.

is the user name on the machine you specify. If
you do not specify a user name, your user name on
your local machine is used. Whether you use your
user name or another user name, you must have
established permission for yourself on the ma­
chine where the file is located. The system
administrator of the remote machine can advise
you on how the remote machine is configured.

5-21

The rep Command

filename is a standard UNIX filename which can include a
directory path. If the filename you specify does
not begin with a slash (f), the filename is assumed
to be relative to the specified user's home direc­
tory. The filename can include wild cards but
these filenames may have to be quoted to prevent
their expansion by the shell on your local ma­
chine.

If you specify only a directory name for the destination of an rep com­
mand, the file(s) you specify are copied into that directory with the same
names as the files.

The Options of rep

You can specify the following options when invoking rep:

-r

-p

5-22

This option allows the copying of directory trees.
If the file specified for copying is a directory and
you specify -r, the entire directory tree under that
directory is copied. When -r is specified, the des­
tination of the rep command must be a directory.
When you do not specify the -r option, requesting
the copying of a directory is an error.

This option allows the preserving of modification
times and modes of the source files in its copies,
ignoring the umask. When you select -p, the
modification times are duplicated. When you do
not select -p, the umask is observed.

TCP/IP User's Guide

The rep Command

Some Sample rep Sessions

In the following examples, two remote machines on the network named
THERE-C and THERE-Cl are used.

The first example copies a file named list from the user's current directory
to the user's home directory on THERE-C:

$ rep list THERE-C:list

The second example copies the directory hierarchy Inetl src on the local
machine to a directory tree rooted in the directory src within the user's
home directory on THERE-C.

$ rep -r /net/sre THERE-C:sre

The third example shows the user copying the file list from the home
directory of a user named mike on THERE-C to the lusrltmp directory on
THERE-Cl. The copy on THERE-Cl is to belong to a user named deb.

$ rep mike@THERE-C:list deb@THERE-Cl: /usr/tmp

Thmsferring Files 5-23

Chapter 6

The Time Synchronization
Protocol

Introduction 6-1

Message Fonnat 6-3

The TSP Messages 6-4
Adjtime Message 6-4
Acknowledgment Message 6-5
Master-Request Message 6-5
Master Acknowledgement 6-6
Set Network Time Message 6-6
Master-Active Message 6-7
Slave-Active Message 6-7
Master-Candidature Message 6-8
Candidature Acceptance Message 6-8
Candidature Rejection Message 6-9
Multiple Master Notification Message 6-9
Conflict-Resolution Message 6-10
Quit Message 6-10
Set-Date Message 6-11
Set-Date-Request Message 6-11
Set Date Acknowledgment Message 6-12
Start-Tracing Message 6-12
Stop-Tracing Message 6-13
Master-Site Message 6-13
Remote Master Site Message 6-14
Test Message 6-14
Loop Detection Message 6-15

Introduction

Introduction
The Time Synchronization Protocol (TSP) was designed for specific use
by the program timed(ADMN). This program is a local area network
clock synchronizer for the UNIX operating system with enhanced net­
working capabilities provided by SCO TCP/IP. The timed program is
built on the DARPA UDP protocol and based on a master-slave scheme.

TSP serves two purposes. First, it supports messages for the synchroniza­
tion of the clocks of the various hosts in a local area network. Second, it
supports messages for the election for a new master that occurs among
slave time daemons when, for any reason, the master disappears.

Briefly, the synchronization software, which works in a local area net­
work, consists of a collection of time daemons (one per machine) and is
based on a master-slave structure. The present implementation keeps pro­
cessor clocks synchronized within 20 milliseconds if supported by the
hardware. Otherwise, 1 second is the best that can be done. A master
time daemon measures the time difference between the clock of the ma­
chine on which it is running and those of all other machines. The current
implementation uses ICMP Time Stamp Requests to measure the clock
difference between machines. The master computes the network time as
the average of the times provided by nonfaulty clocks. A clock is con­
sidered to be faulty when its value is more than a small specified interval
apart from the majority of the clocks of the machines on the same net­
work. It then sends to each slave time daemon the correction that should
be performed on the clock of its machine. This process is repeated peri­
odically. Since the correction is expressed as a time difference rather
than an absolute time, transmission delays do not interfere with synchro­
nization. When a machine comes up and joins the network, it starts a
slave time daemon. This asks the master for the correct time and resets
the machine's clock before any user activity can begin. The time dae­
mons therefore maintain a single network time in spite of the drift of
clocks away from each other.

Additionally, a time daemon on gateway machines may run as a submas­
ter. A submaster time daemon functions as a slave on one network that
already has a master and as master on other networks. In addition, a sub­
master is responsible for propagating broadcast packets from one network
to the other.

To ensure that the service provided is continuous and reliable, it is neces­
sary to implement an election algorithm that will elect a new master.
This election occurs if the machine running the current master crashes,
the master terminates (for example, because of a run-time error), or the

The Time Synchronization Protocol 6-1

Introduction

network is partitioned. Under this algorithm, slaves are able to realize
when the master has stopped functioning; the slaves then elect a new
master from among themselves. It is important to note that since the
failure of the master results only in a gradual divergence of clock values,
the election need not occur immediately.

All the communication occurring among time daemons uses the TSP pro­
tocol. While some messages need not be sent in a reliable way, most
communication in TSP requires reliability not provided by the underlying
protocol. Reliability is achieved by the use of acknowledgements,
sequence numbers, and retransmission when message losses occur. When
a message that requires acknowledgment is not acknowledged after multi­
ple attempts, the time daemon that has sent the message will assume that
the addressee is down. This chapter does not describe the details of how
reliability is implemented, but only points out when a message type
requires a reliable transport mechanism.

The message format in TSP is the same for all message types; however, in
some instances, one or more fields are not used. The next section
describes the message format. The following sections describe in detail
the different message types, their use, and the contents of each field.

Note

The message format is likely to change in future versions of timed.

6-2 TCP/IP User's Guide

Message Format

Message Format
All fields are based upon 8-bit bytes. Fields should be sent in network
byte order if they are more than one byte long. The structure of a TSP
message is the following:

1. A one-byte message type.

2. A one-byte version number, specifying the protocol version
which the message uses.

3. A two-byte sequence number to be used for recognizing
duplicate messages that occur when messages are retransmit­
ted.

4. Eight bytes of packet-specific data. This field contains two
four-byte time values and a one-byte hop count, or it may be
unused, depending on the type of the packet.

5. A zero-terminated string of up to 256 ASCII characters with
the name of the machine sending the message.

The Time Synchronization Protocol 6-3

The TSP Messages

The TSP Messages
The following charts describe the message types, show their fields. and
explain their usages. For the purpose of the following discussion, a time
daemon can be considered to be in one of three states: slave, master, or
candidate for election to master. Also, the term broadcast refers to the
sending of a message to all active time daemons.

Adjtime Message

Byte 1 I Byte 2 I Byte 3 I 8yte4
Type I Version No. I Sequence No.

Seconds of Adjustment
Microseconds of Adjustment

Machine Name
...

The master sends this message to a slave to communicate the difference
between the clock of the slave and the network time which the master has
just computed. The slave will adjust the time of its machirie accordingly.
This message requires an acknowledgment.

6-4 TCP/IP User's Guide

The TSP Messages

Acknowledgment Message

Bvte 1 I Bvte2 I Bvte3 I Brte4
'lYpe I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Both the master and the slaves use this message for acknowledgment
only. It is used in several different contexts; for example, it is used in
reply to an Adjtime message.

Master-Request Message

Bvte 1 I Bvte2 I Bvte3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _MASTERREQ (3)

A newly-started time daemon broadcasts this message to locate a master.
No other action is implied by this packet. It requires a Master Ac­
knowledgment.

The Time Synchronization Protocol 6-5

The TSP Messages

Master Acknowledgement

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _MASTERACK (4)

The master sends this message to acknowledge the Master Request mes­
sage and the Conflict Resolution Message.

Set Network Time Message

Bytel I Byte 2 I Byte 3 I Byte 4
'lype I version No. I Sequence No.

Seconds of Time to Set
Microseconds of Time to Set

Machine Name
...

The master sends this message to slave time daemons to set their time.
This packet is sent to newly-started time daemons and when the network
date is changed. It contains the master's time as an approximation of the
network time. It requires an acknowledgment. The next synchronization
round will eliminate the small time difference caused by the random
delay in the communication channel.

6-6 TCP/IP User's Guide

The TSP Messages

Master-Active Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name ...
Type: TSP _MASTERUP (6)

The master broadcasts this message to solicit the names of the active
slaves. Slaves will reply with Slave Active messages.

Slave-Active Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No.1 Sequence No.

(unused)
(unused)

Machine Name
...

'JYpe: TSP _SLA VEUP (7)

A slave sends this message to the master in answer to a Master Active
message. This message is also sent when a new slave starts up, to inform
the master that it wants to be synchronized.

The Time Synchronization Protocol 6-7

The TSP Messages

Master-Candidature Message

Bytel I Byte 2 I Byte 3 I Byte 4
"lype I Version No. I sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _ELECTION (8)

A slave eligible to become a master broadcasts this message when its
election timer expires. The message declares that the slave wishes to
become the new master.

Candidature Acceptance Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
_1Ype I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _ACCEPT (9)

A slave sends this message to accept the candidature of the time daemon
that has broadcast an Election message. The candidate will add the
slave's name to the list of machines that it will control, should it become
the master.

6-8 TCP/IP User's Guide

The TSP Messages

Candidature Rejection Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
'lype I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

After a slave accepts the candidature of a time daemon, it will reply to
any election messages from other slaves with this message. This rejects
any candidature other than the first received.

Multiple Master Notification Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
'lype I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

When two or more masters reply to a Master Request message, the slave
uses this message to infonn one of them that more than one master exists.

The Time Synchronization Protocol 6-9

The TSP Messages

Conflict-Resolution Message

Byte 1 I Byte 2 I Byte 3 I Bvte4
'type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _RESOLVE (12)

A master that has been informed of the existence of other masters broad­
casts this message to determine who the other masters are,

Quit Message

Bvtel I Byte 2 L Byte 3 I Bvte4
'type I Version No. I Sequence No.

(unused)
(unused)

Machine Name ...

This message is sent by the master in three different contexts:

• to a candidate that broadcasts an Master Candidature message,

• to another master when notified of its existence, or

• to another master if a loop is detected.

In all cases, the recipient time daemon will become a slave. This mes­
sage requires an acknowledgement.

6-10 TCP/IP User's Guide

The TSP Messages

Set-Date Message

Byte 1 I Bvte2 I Byte 3 J Byte 4
Type I Version No. I Sequence No.

Seconds of Time to Set
Microseconds of Time to Set

Machine Name
...

Type: TSP _SETDATE (22)

The program date (1) sends this message to the local time daemon when a
super user wants to set the network date. If the local time daemon is the
master, it will set the date; if it is a slave, it will communicate the desired
date to the master.

Set-Date-Request Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

Seconds of Time to Set
Microseconds of Time to Set

Machine Name
...

Type: TSP _SETDATEREQ (23)

A slave that has received a Set Date message will communicate the
desired date to the master, using this message.

The Time Synchronization Protocol 6-11

The TSP Messages

Set Date Acknowledgment Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

'JYpe: TSP _DATEACK (16)

The master sends this message to a slave in acknowledgment of a Set
Date Request Message. The same message is sent by the local time dae­
mon to the program rdate(ADMN) to confirm that the network date has
been set by the master.

Start-Tracing Message

Bytel I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

'JYpe: TSP _ TRACEON (17)

The controlling program timedc sends this message to the local time dae­
mon to start the recording in a system file of all messages received.

6-12 TCP/IP User's Guide

The TSP Messages

Stop-Tracing Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No·1 Sequence No.

(unused)
(unused)

Machine Name
...

'TYPe: TSP _TRACEOFF (18)

Timedc sends this message to the local time daemon to stop the recording
of messages received.

Master-Site Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

'TYPe: TSP _MSITE (19)

Timedc sends this message to the local time daemon to find out where the
master is running.

The Time Synchronization Protocol 6-13

The TSP Messages

Remote Master Site Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I VerSIOn No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _MSITEREQ (20)

A local time daemon broadcasts this message to find the location of the
master. It then uses the Acknowledgement message to communicate this
location to timedc.

Test Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _TEST (21)

For testing purposes, timedc sends this message to a slave to cause its
election timer to expire.

Note

timed is not normally compiled to support this message.

6-14 TCP/IP User's Guide

The TSP Messages

Loop Detection Message

Byte 1 Byte 2 I Byte 3 I Byte 4
]'ype VersIOn No. I Sequence No.

Hop Count (unused)
(unused)

Machine Name
...

This packet is initiated by all masters occasionally to attempt to detect
loops. All submasters forward this packet onto the networks over which
they are master. If a master receives a packet it sent out initially, it
knows that a loop exists and tries to correct the problem.

The Time Synchronization Protocol 6-15

SCo® TCP/IP

. Derived from

LACHMAN™ SYSTEM V STREAMS TCP

User's Reference

The Santa Cruz Operation, Inc.

Portions copyright © 1988, 1989, 1990 The Santa Cruz Operation, Inc. All rights reserved.
PortionS copyright © 1987, 1988 Lachman Associates, Inc. All rights reserved.

Portions copyright © 1987 Convergent Technologies, Inc. All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor

translated into any human or computer language, in any form or by any means, electronic,

mechanical, magnetic, optical, Chemical, manual or othelWise, without the prior written
permission of the copyright owner, The Santa Cruz Operation, Inc., 400 Encinal, Santa Cruz,
California, 95061, USA. Copyright infringement is a serious matter under the United States and
foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User only for use

in strict accordance with the End User License Agreement, which License should be read
carefully before commencing use of the software. Information in this document is subject to
change without notice and does not represent a commitment on the part of The Santa Cruz
Operation, Inc.

The following legend applies to all contracts and subcontracts governed by the Rights in
Technical Data and Computer Software Clause of the United States Department of Defense
Federal Acquisition Regulations Supplement:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is
subject to restrictions as set forth in subparagraph (c) (I) (ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 52.227-7013. The Santa Cruz Operation, Inc., 400

Encinal Street, Santa Cruz, California 95061, U.S.A.

SCO TCP/IP was developed by Lachman Associates.

SCO TCP/IP is derived from LACHMAN™ SYSTEM V STREAMS TCP, a joint development
of Lachman Associates and Convergent Technologies.

This document was typeset with an IMAGEN® 8/300 Laser Printer.

SCO and the SCO logo are registered trademarks, and The Santa Cruz Operation is a trademark of The

Santa Cruz Operation, Inc.

UNIX is a registered trademark of AT&T.

LACHMAN is a trademark of Lachman Associates, Inc.

Ethernet is a registered trademark of Xerox.

SCQ Document Number: 11-25-89-1.1.00

Printed: The May 114:51:32 PDT 1990

Contents

Networking Commands (TC)

intro
finger
ftp
hostname
logger
netstat
nslookup
remd
rep
rlogin
ruptime
rwho
talk
telnet
tftp

introduction to networking commands
user information look-up program
ARP ANETfile-transfer program
set orprint name of current host system
make entries in the system log
show network status
query name servers interactively
remote shell command execution
remote file copy
remote login
show host status oflocal machines
who is logged in on local network
talk to another user
user interface to the TELNETprotocol
user interface to the DARPA TFIPprotocol

INTRO (TC) INTRO (TC)

intro
Introduction to networking commands

Description

This section describes publicly accessible networking utilities in
alphabetical order.

See Also

The (ADMN) and (ADMP) sections for network administration com­
mands.

Diagnostics

Upon termination, each command returns two bytes of status, one sup­
plied by the system giving the cause for termination, and (in the case
of normal termination) one supplied by the program. The former byte
is 0 for normal termination; the latter is customarily 0 for successful
execution, nonzero to indicate troubles such as erroneous parameters,
bad or inaccessible data, or other inability to cope with the task at
hand. The second byte is called "exit code," "exit status" or "return
code," and is described only where special conventions are involved.

November 25, 1989 INTR0-1

FINGER (TC) FINGER (TC)

finger
User information look-up program

Syntax

finger [options] name ...

Description

By default, finger lists the login name, full name, tenninal name and
write status (as an * before the tenninal name if write pennission is
denied), idle time, log-in time, and office location and phone number
(if they are known) for each current UNIX user. (Idle time is minutes
if it is a single integer, hours and minutes if a: is present, or days and
hours if a d is present.)

A longer fonnat also exists and is used by finger whenever a list of
people's names is given. (Account names as well as fIrst and last
names of users are accepted.) This fonnat is multi-line, and includes
all the infonnation described above as well as the user's home direc­
tory and login shell, any plan which the person has placed in the fIle
.plan in their home directory, and the project on which they are work­
ing from the .project fIle, also in the home directory.

finger may be used to look up users on a remote machine. The fonnat
is to specify the user as user@host. If the user name is left off, the
standard fonnat listing is provided on the remote machine.

finger options include:

-m
Match arguments only on user name.

-I Force long output fonnat.

-p Suppress printing of the .plan files

-s Force short output fonnat.

Files

/etc/utmp
/etc/wtmp
/etc/passwd
$HOME/.lastiogin
$HOME/.plan
$HOME/.project

November 25, 1989

who file (current users)
who file (past logins)
for users names, offices, ...
last log-in infonnation
plans
projects

FINGER-1

FINGER (TC)

See Also

who(C), fingerd(ADMN)

Notes

Only the first line of the .project file is printed.

FINGER (TC)

There is no way to pass arguments to the remote machine, as finger
uses an internet standard port.

November 25, 1989 FINGER-2

FTP (TC) FTP(TC)

ftp
ARPANET file-transfer program

Syntax

ftp [-v] [-d] [-i] [-n] [-g] [host]

Description

ftp is the user interface to the ARPANET standard File Transfer Proto­
col. The program allows a user to transfer flles to and from a remote
network site.

The client host with which ftp is to communicate may be specified on
the command line. If this is done, ftp immediately attempts to estab­
lish a connection to an FTP server on that host; otherwise, ftp will
enter its command interpreter and await instructions from the user.
Wbenftp is awaiting commands from the user, the prompt ftp> is pro­
vided to the user. The following commands are recognized by ftp:

! [command [args]]
Invoke an interactive shell on the local machine. If there are argu­
ments, the first is taken as a command to execute directly, with the
rest of the arguments as its arguments.

$ macro-name [args]
Execute the macro macro-name that was defined with the macdef
command. Arguments are passed to the macro unglobbed.

account [passwd]
Supply a supplemental password which is required by a remote
system for access to resources once a login has been successfully
completed. If no argument is included, the user is prompted for an
account password in a non-echoing input mode.

append local-file [remote-Jile]
Append a local file to a file on the remote machine. If remote-file
is left unspecified, the local file name is used in naming the remote
file after being altered by any ntrans or nmap setting. File
transfer uses the current settings for type, format, mode, and
structure.

ascii
Set the file transfer type to network ASCII. This is the default
type.

November 25, 1989 FTP-1

FTP(TC) FTP (TC)

bell
Arrange for a bell to sound after each file-transfer command is
completed.

binary
Set the file transfer type to support binary image transfer.

bye
Terminate the FfP session with the remote server and exit ftp. An
end-of-file will also terminate the session and exit.

case
Toggle remote computer file-name case mapping during mget
commands. When case is on (default is off), remote computer file
names with all letters in uppercase are written in the local direc­
tory with the letters mapped to lowercase.

cd remote-directory
Change the working directory on the remote machine to remote­
directory .

cdup
Change the remote machine working directory to the parent of the
current remote machine working directory.

close

cr

Terminate the FfP session with the remote server, and return to the
command interpreter. Any defined macros are erased.

Toggle carriage-return stripping during ascii type file retrieval.
Records are denoted by a carriage returnllinefeed sequence during
ascii type file transfer. When cr is on (the default), carriage
returns are stripped from this sequence to conform to the UNIX
single-linefeed record delimiter. Records on non-UNIX remote
systems may contain single linefeeds; when an ascii type transfer
is made, these linefeeds may be distinguished from a record delim­
iter only when cr is off.

delete remote-file
Delete the file remote-file on the remote machine.

debug [debug-value]
Toggle debugging mode. If an optional debug-value is specified, it
is used to set the debugging level. When debugging is on, ftp
prints each command sent to the remote machine, preceded by the
string:

-->

November 25, 1989 FTP-2

FTP(TC) FTP (TC)

dir [remote-directory] [local-file]
Print a listing of the directory contents in the directory, remote­
directory, and, optionally, place the output in local-file. If no
directory is specified, the current working directory on the remote
machine is used. If no local file is specified, or local-file is ., out­
put comes to the terminal.

disconnect
A synonym for close.

form format
Set the file transfer form to format. The default format is file.

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine. If the
local file name is not specified, it is given the same name it has on
the remote machine, subject to alteration by the current case,
ntrans, and nmap settings. The current settings for type, form,
mode, and structure are used while transferring the file.

glob
Toggle filename expansion for mdelete, mget and mput. If glob­
bing is turned off with glob, the file name arguments are taken
literally and not expanded. Globbing for mput is done as in sh(C).
For mdelete and mget, each remote file name is expanded
separately on the remote machine and the lists are not merged.
Expansion of a directory name is likely to be different from expan­
sion of the name of an ordinary file. The exact result depends on
the foreign operating system and ftp server, and can be previewed
with the command:

mls remote-files -

Note: mget and mput are not meant to transfer entire directory
subtrees of files. That can be done by transferring a tar(C) archive
of the subtree (in binary mode).

hash
Toggle hash-sign (#) printing for each data block transferred. The
size of a data block is BUFFERSIZE bytes. BUFFERSIZE is
defined in the ftp source.

help [command]
Print an informative message about the meaning of command. If
no argument is given,ftp prints a list of the known commands.

led [directory]
Change the working directory on the local machine. If no direc­
tory is specified, the user's home directory is used.

Is [remote-directory] [local-file] .
Print an abbreviated listing of the contents of a directory on the
remote machine. If remote-directory is left unspecified, the

November 25,1989 FTP-3

FTP(TC) FTP(TC)

current working directory is used. If no local file is specified, or if
local-file is ., the output is sent to the tenninal.

maedef macro-name
Define a macro. Subsequent lines are stored as the macro macro­
name; a null line (consisting of consecutive newline characters in a
file or carriage returns from the tenninal) tenninates macro input
mode. There are limits of 16 macros and 4096 total characters in
all defined macros. Macros remain defined until a close command
is executed. The macro processor interprets $ and \ as special
characters. A $ followed by a number (or numbers) is replaced by
the corresponding argument on the macro-invocation command
line. A $ followed by an i signal to the macro processor that the
executing macro is to be looped. On the first pass, $i is replaced by
the first argument on the macro-invocation command line; on the
second pass it is replaced by the second argument; and so on. A \
followed by any character is replaced by that character. Use the \
to prevent special treatment of the $.

mdelete [remote-files]
Delete the remote-files on the remote machine.

mdir remote-files local-file
Like dir, except multiple remote files may be specified. If interac­
tive prompting is on,ftp will prompt the user to verify that the last
argument is indeed the target local file for receiving mdir output.

mget remote-files
Expand the remote-files on the remote machine and do a get for
each file name thus produced. See glob for details on the filename
expansion. Resulting file names will then be processed according
to case, ntrans, and nmap settings. Files are transferred into the
local working directory, which can be changed with the command:

led directory

new local directories can be created with the command:

! mkdir directory

mkdir directory-name
Make a directory on the remote machine.

m1s remote-files local-file
Like Is, except multiple remote files may be specified. If interac­
tive prompting is on,ftp will prompt the user to verify that the last
argument is indeed the target local file for receiving m1s output.

mode [mode-name]
Set the file-transfer mode to mode-name. The default mode is
stream mode.

November 25,1989 FTP-4

FTP (TC) FTP(TC)

mput local-files
Expand wild cards in the list of local files given as arguments and
do a put for each file in the resulting list. See glob for dt<tails of
filename expansion. Resulting file names will then be processed
according to ntrans and nmap settings.

nmap [in pattern out pattern]
Set or unset the filename-mapping mechanism. If no arguments
are specified, the filename-mapping mechanism is unset. If argu­
ments are specified, remote filenames are mapped during those
mput commands and put commands issued without a specified
remote target filename. If arguments are specified, local filenames
are mapped during those mget commands and get commands
issued without a specified local target filename. The nmap com­
mand is useful when connecting to a non-UNIX remote computer
with different file-naming conventions or practices. The mapping
follows the pattern set by in pattern and outpattern. Inpattern is a
template for incoming filenames (which may already have been
processed according to the ntrans and case settings). Variable
templating is accomplished by including the sequences $1, $2, ... ,
$9 in in pattern . Use \ to prevent this special treatment of the $
character. All other characters are treated literally, and are used to
determine the nmap inpattern variable values. For example, given
in pattern $1.$2 and the remote file name mydata.data, $1 would
have the value mydata and $2 would have the value data. The out­
pattern determines the resulting mapped filename. The sequences
$1, $2, , $9 are replaced by any value resulting from the inpat­
tern template. The sequence $0 is replaced by the original
filename. Additionally, the sequence [seq1,seq2] is replaced by
seq1 unless seq1 is a null string; in that case, it is replaced by seq2.
For example, the command nmap $1.$2.$3 [$I,$2].[$2,file] would
yield the output filename myfile.data for input filenames
myfile.data and myfile.data.old, myfile.file for the input filename
myfile, and myfile.myfile for the input filename myfile.myfile.
Spaces may be included in outpattern, as in the example: nmap $1
Ised "sl *$/1" > $1 . Use the \ character to prevent special treat­
ment of the $, [,] and , characters.

ntrans [inchars [outchars]]
Set or unset the filename-character translation mechanism. If no
arguments are specified, the filename-character translation mecha­
nism is unset. If arguments are specified, characters in remote
filenames are translated during those mput commands and put
commands issued without a specified remote target filename. If
arguments are specified, characters in local filenames are
translated during those mget commands and get commands issued
without a specified local target filename. This command is useful
when connecting to a non-UNIX remote computer with different
file-naming conventions or practices. Characters in a filename
matching a character in inchars are replaced with the correspond­
ing character in outchars. If the character's position in inchars is
longer than the length of outchars, the character is deleted from

November 25, 1989 FTP-5

FTP(TC) FTP (TC)

the file name. For example, the command ntrans * . would modify
the filenames of files copied withftp. This command translates the
character "*" to the character "." in filenames. Thus, if you used
the ftp command get test*exe, the file test*exe would be copied as
test.exe.

open host [port]
Establish a connection to the specified host FI'P server. An
optional port number may be supplied, in which case, ftp will
attempt to contact an FI'P server at that port. If the auto-login
option is on (default),ftp will also attempt to log the user automat­
ically in to the FI'P server. (See below.)

prompt
Toggle interactive prompting. Interactive prompting occurs during
multiple file transfers to allow the user to retrieve or store files
selectively. If prompting is turned off (default is on), any mget or
mput will transfer all files, and any mdelete will delete all files.

proxy ftp-command
Execute an ftp command on a secondary control connection. This
command allows simultaneous connection to two remote ftp
servers for transferring files between the two servers. The first
proxy command should be an open, to establish the secondary
control connection. Enter the command proxy ? to see other ftp
commands executable on the secondary connection. The following
commands behave differently when prefaced by proxy: open will
not define new macros during the auto-login process; close will not
erase existing macro definitions; get and mget transfer files from
the host on the primary control connection to the host on the sec­
ondary control connection; and put, mput, and append transfer
files from the host on the secondary control connection to the host
on the primary control connection. Third-party file transfers
depend upon support of the ftp protocol PASV command by the
server on the secondary control connection.

put local-file [remote-Jile]
Store a local file on the remote machine. If remote-file is left
unspecified, the local file name is used in naming the remote file
after processing according to any ntrans or nmap settings. File
transfer uses the current settings for type, format, mode, and
structure.

pwd
Print the name of the current working directory on the remote ma­
chine.

quit
A synonym for bye.

November 25, 1989 FTP-6

FTP(TC) FTP(TC)

quote argJ arg2 ...
The arguments specified are sent verbatim to the remote FTP
server.

recv remote-file [local-file]
A synonym for get.

remotehelp [command-name]
Request help from the remote FTP server. If a command-name is
specified, it is supplied to the server as well.

rename [from] [to]
Rename the file from on the remote machine, to the file to.

reset
Clear reply queue. This command re-synchronizes command/reply
sequencing with the remote ftp server. Resynchronization may be
necessary following a violation of the ftp protocol by the remote
server.

rmdir directory-name
Delete a directory on the remote machine.

runique
Toggle storage of files on the local system with unique filenames.
If a file already exists with a name equal to the target local
filename for a get or mget command, a.l is appended to the name.
If the resulting name matches another existing file, a .2 is
appended to the original name. If this process continues up to .99,
an error message is printed, and the transfer does not take place.
The generated unique filename will be reported. Note that
runique will not affect local files generated from a shell command.
The default value is off.

send local-file [remote-file]
A synonym for put.

sendport
Toggle the use of PORT commands. By default, ftp will attempt to
use a PORT command when establishing a connection for each
data transfer. The use of PORT commands can prevent delays
when performing multiple file transfers. If the PORT command
fails, ftp will use the default data port. When the use of PORT
commands is disabled, no attempt will be made to use PORT com­
mands for each data transfer. This is useful for certain FTP imple­
mentations that do ignore PORT commands but, incorrectly, indi­
cate that they have been accepted.

status
Show the current status of ftp .

November 25, 1989 FTP-7

FTP(TC) FTP (TC)

struct [struct-name]
Set the file transfer structure to struct-name. By default, file struc­
ture is used.

sunique
Toggle storage of files on a remote machine under unique file
names. Remote ftp server must support ftp protocol STOU com­
mand for successful completion. The remote server will report a
unique name. Default value is off.

tenex
Set the file transfer type to that needed to talk to TENEX ma­
chines.

trace
Toggle packet-tracing.

type [type-name]
Set the file transfer type to type-name. If no type is specified, the
current type is printed. The default type is network ASCll.

user user-name [password] [account]
Identify yourself to the remote FfP server. If the password is not
specified and the server requires it, ftp will prompt the user for it
(after disabling local echo). If an account field is not specified, and
the FTP server requires it, the user will be prompted for it. When
an account field is specified, an account command will be relayed
to the remote server after the log-in sequence is completed, if the
remote server did not require it for logging in. Unless ftp is
invoked with auto-login disabled, this process is done automatical­
lyon initial connection to the FfP server.

verbose
Toggle verbose mode. In verbose mode, all responses from the
FfP server are displayed to the user. In addition, if verbose is on,
when a file transfer completes, statistics regarding the efficiency of
the transfer are reported. By default, verbose is on.

xmkdir directory-name
Make a directory on the remote machine. This sends an XMKD
command instead of MKD, and is useful for backwards compata­
bility with 4.2BSD UNIX machines.

xpwd
Print the name of the current working directory on the remote ma­
chine. This sends an XPWD command instead of PWD, and is use­
ful for backwards compatability with 4.2BSD UNIX machines.

xrmdir directory-name
Delete a directory on the remote machine. This sends an XRMD
command instead of RMD, and is useful for backwards compata­
bility with 4.2BSD UNIX machines.

November 25, 1989 FTP-8

FTP(TC) FTP(TC)

? [command]
A synonym for help.

Command arguments which have embedded spaces may be quoted
with quotation (") marks.

Aborting a File Transfer

To abort a file transfer, use the terminal interrupt key (usually Ctrl-C).
The sending of transfers is immediately halted. The receiving of
transfers is halted by sending an ftp protocol ABOR command to the
remote server and discarding any further data received. The speed at
which this is accomplished depends upon the remote server's support
for ABOR processing. If the remote server does not support the
ABOR command, an ftp> prompt will not appear until the remote
server has finished sending the requested file.

The terminal-interrupt key sequence will be ignored when ftp has
completed any local processing and is awaiting a reply from the
remote server. A long delay in this mode may result from the ABOR
processing described above, or from unexpected behavior by the
remote server, including violations of the ftp protocol. If the delay
results from unexpected remote server behavior, the local ftp program
must be killed by hand.

File Naming Conventions

Files specified as arguments to ftp commands are processed according
to the following rules.

1) If the file name - is specified, the stdin (for reading) or stdout (for
writing) is used.

2) If the first character of the file name is I, the remainder of the argu­
ment is interpreted as a shell command. Then ftp forks a shell,
using popen(S) with the argument supplied, and reads from the
stdout (or writes to the stdin). If the shell command includes
spaces, the argument must be quoted, for instance, "lIs -It". A par­
ticularly useful example of this mechanism is: dir Imore.

3) Failing the above checks, if globbing is enabled, local file names
are expanded according to the rules used in the sh(C); see the glob
command. If the ftp command expects a single local file (such as
put), only the first filename generated by the globbing operation is
used.

4) For mget commands and get commands with unspecified local file
names, the local filename is the remote filename, which may be
altered by a case, ntrans, or nmap setting. The resulting filename
may then be altered if runique is on.

November 25,1989 FTP-9

FTP(TC) FTP (TC)

5) For mput commands and put commands with unspecified remote
file names, the remote filename is the local filename, which may be
altered by an ntrans or nmap setting. The resulting filename may
then be altered by the remote server if sunique is on.

File Transfer Parameters

The FTP specification specifies many parameters that may affect a file
transfer. The type may be one of ascii, image (binary), ebcdic, and
local byte size (for PDP-IO's and PDP-20's mostly). Theftp command
supports the ascii and image types of file transfer, plus local byte size
8 for tenex mode transfers.

The ftp command supports only the default values for the remaining
file transfer parameters: mode, form , and struet .

Options

Options may be specified at the command line, or to the command
interpreter.

The -v (verbose on) option forces ftp to show all responses from the
remote server, as well as report on data transfer statistics. Ordinarily,
this is on by default, unless the standard input is not a terminal.

The -n option restrains ftp from attempting auto-login upon initial
connection. If auto-login is enabled, ftp will check the file .netre (dis­
cussed below) in the user's home directory for an entry describing an
account on the remote machine. If no entry exists, ftp will prompt for
the remote machine log-in name (default being the user identity on the
local machine), and, if necessary, prompt for a password and an
account with which to log in.

The -i means there is no interactive prompt.

The -d option enables debugging.

The -g option disables file-name globbing.

The .netre File

The .netre file contains login and initialization information used by
the auto-login process. It resides in the user's home directory. The
following tokens are recognized; they may be separated by spaces,
tabs, or new-lines:

machine name
Identify a remote machine name. The auto-login process searches
the .netrc file for a maehine token that matches the remote ma-

November 25, 1989 FTP-10

FTP(TC) FTP(TC)

chine specified on the ftp command line or as an open command
argument. Once a match is made, the subsequent .netrc tokens are
processed, stopping when the end of file is reached or another ma-
chine token is encountered. .

login name
Identify a user on the remote machine. If this token is present, the
auto-login process will initiate a login using the specified name.

password string
Supply a password. If this token is present, the auto-login process
will supply the specified string when the remote server requires a
password as part of the login process. Note that if this token is
present in the .netrc file, ftp will abort the auto-login process if the
.netrc is readable by anyone besides the user.

account string
Supply an additional account password. If this token is present,
the auto-login process will supply the specified string when the
remote server requires an additional account password, or the
auto-login process will initiate an ACCT command when it does
not.

macdefname
Define a macro. This token functions like the ftp macdef com­
mand. A macro is defined with the specified name; its contents
begin with the next .netrc line and continue until a null line (con­
secutive new-line characters) is encountered . ..If a macro named
init is defined, it is automatically executed as the last step in the
auto-login process.

Notes

Correct execution of many commands depends upon proper behavior
by the remote server.

An error in the treatment of carriage returns in the 4.2BSD UNIX
ascii-mode transfer code has been corrected. This correction may
result in incorrect transfers of binary files to and from 4.2BSD servers
using the ascii type. Avoid this problem by using the binary image
type.

November 25, 1989 FTP-11

HOSTNAME (TC) HOSTNAME (TC)

hostname
Set or print name of current host system

Syntax

hostname [nameothost]

Description

The hostname command prints the name of the current host, as given
before the log-in prompt. The super user can set the hostname by giv­
ing an argument; this is usually done at boot time in a startup script.

See Also

gethostname(SLIB), sethostname(SLIB), uname(C)

November 25, 1989 HOSTNAME-1

LOGGER (TC)

logger
make entries in the system log

Syntax

logger [-t tag] [-p pri] [-i] [-f file] [message ...]

Description

LOGGER (TC)

Logger provides a program interface to the syslog(3) system log
module.

A message can be given on the command line, which is logged
immediately, or a file is read and each line is logged.

Examples

logger System rebooted

logger -p localO.notice -t OPER -f /tmp/msg

See Also

syslog(SFF), syslogd(ADMN).

November 25, 1989 LOGGER-1

NETSTAT (TC) NETSTAT (TC)

netstat
Show network status

Syntax

netstat [-AainrsS] [-f address Jamily] [-I interface] [-p
protocol_name] [interval] [namelist] [corefile]

Description

The netstat command symbolically displays the contents of various
network-related data structures. The options have the following
meanings:

-A show the address of any associated protocol control blocks; used
for debugging

-a show the state of all sockets; normally sockets used by server pro­
cesses are not shown

-i show the state of interfaces that have been auto-configured. (Inter­
faces statically configured into a system, but not located at boot
time, are not shown.)

-n show network addresses as numbers. (Normally netstat interprets
addresses and attempts to display them symbolically.)

-r show the routing tables

-s show per-protocol statistics

-S show serial line configuration

-f limit statistics and control block displays to address-family. The
only address-family currently supported is inet

-I show interface state for interface only.

-p limit statistics and control block displays to protocol_name, such
as tcp.

The arguments namelist and core file allow substitutes for the defaults
lunix and Idevlkmem.

If an interval is specified, netstat will continuously display the infor­
mation regarding packet traffic on the configured network interfaces,
pausing interval seconds before refreshing the screen.

November 25, 1989 NETSTAT-1

NETSTAT (TC) NETSTAT (TC)

There are a number of display formats, depending on the information
presented. The default display, for active sockets, shows the local and
remote addresses, send and receive queue sizes (in bytes), protocol,
and, optionally, the internal state of the protocol.

Address formats are of the form host.port or network.port if a socket's
address specifies a network but no specific host address. When
known, the host and network addresses are displayed symbolically
according to the data bases letclhosts and letdnetworks, respectively.
If a symbolic name for an address is unknown, or if the -n option is
specified, the address is printed in the Internet dot format; refer to
rhosts(SFF) for more information regarding this format. Unspecified,
or wildcard, addresses and ports appear as *.
The interface display provides a table of cumulative statistics regard­
ing transferred packets, errors, and collisions. The network address
(currently Internet specific) of the interface and the maximum
transmission unit (mtu) are also displayed.

The routing table display indicates the available routes and their
status. Each route consists of a destination host or network and a gate­
way to use in forwarding packets. The flags field shows the state of
the route (U if up), and whether the route is to a gateway (G). Direct
routes are created for each interface attached to the local host. The
refcnt field gives the current number of active uses of the route.
Connection-oriented protocols normally hold onto a single route for
the duration of a connection, while connectionless protocols obtain a
route then discard it. The use field provides a count of the number of
packets sent using that route. The interface entry indicates the net­
work interface utilized for the route.

When netstat is invoked with an interval argument, it displays a run­
ning count of statistics related to network interfaces. This display
consists of a column summarizing information for all interfaces and a
column for the interface with the most traffic since the system was last
rebooted. The first line of each screen of information contains a sum­
mary since the system was last rebooted. Subsequent lines of output
show values accumulated over the preceding interval.

The serial line display shows the mapping of serial line units to serial
devices. The baud rate and protocols in use are also shown.

See Also

slattach(ADMN), hosts(ADMN), networks(SSC), protocols(SFF),
services(SFF).

November 25, 1989 NETSTAT-2

NETSTAT (TC) NETSTAT (TC)

Bugs

Interface statistics are dependent on the link driver. If it does not
attach itself to the ifstats structure in the kernel, the message "No
Statistics Available" will be printed for that interface.

November 25. 1989 NETSTAT-3

NSLOOKUP (TC) NSLOOKUP (TC)

nslookup
Query name servers interactively

Syntax

nslookup [host-to-Jind / - [server address / server name]]

Description

The nslookup command queries DARPA Internet domain name
servers. Interactive mode allows the user to query the name server for
information about various hosts and domains or to print a list of hosts
in the domain. Non-interactive mode prints just the name and Internet
address of a host or domain.

Arguments

Interactive mode is entered in the following cases:

a) when no arguments are given (the default name server will be
used), and

b) when the first argument is a hyphen (-) and the second argument is
the host name of a name server.

Non-interactive mode is used when the name of the host to be
looked up is given as the first argument. The optional second argu­
ment specifies a name server.

Interactive Commands

Commands may be interrupted at any time by typing a control-C. To
exit, type a controI-D (BOp). The command line length must be less
than 80 characters. N.B. an unrecognized command will be inter­
preted as a host name.

host [server]
Look up information for host using the current default server, or
using server if it is specified.

November 25, 1989 NSLOOKUP-1

NSLOOKUP (TC)

server domain
lserver domain

NSLOOKUP (TC)

Change the default server to domain. The Iserver command uses
the initial server to look up information about domain while
server uses the current default server. H an authoritative answer
can't be found, the names of servers that might have the answer
are returned.

root
Changes the default server to the server for the root of the domain
name space. Currently, the host sri-nic.arpa is used. (This com­
mand is a synonym for the Iserver sri-nic.arpa.) The name of the
root server can be changed with the set root command.

finger [name] [> filename]
finger [name] [» filename]

Connects with the finger server on the current host. The current
host is defined when a previous lookup for a host was successful
and returned address information. (See the set querytype=A com­
mand.) Name is optional. > and » can be used to redirect output
in the usual manner.

Is domain [> filename]
Is domain [» filename]
Is -a domain [> filename]
Is -a domain [» filename]
Is -h domain [> filename]
Is -h domain [» filename]
Is -d domain [> filename]

List the information available for domain. The default output con­
tains host names and their Internet addresses. The -a option lists
aliases of hosts in the domain. The -h option lists CPU and operat­
ing system information for the domain. The -d option lists all con­
tents of a zone transfer. When output is directed to a file, hash
marks are printed for every 50 records received from the server.

view filename
Sorts and lists the output of the previous Is command with
more(C).

help
? Prints a brief summary of commands.

set keyword[=vaJue]
This command is used to change state information that affects the
lookups. Valid keywords are:

November 25. 1989 NSLOOKUP-2

NSLOOKUP (TC) NSLOOKUP (TC)

all Prints the current values of the various options to set. Informa­
tion about the current default server and host is also printed.

[no]debug
Thrn debugging mode on. A lot more information is printed
about the packet sent to the server and the resulting answer.
(Default = nodebug; abbreviation = [no]deb)

[no]d2
Thrn exhaustive debugging mode on. Essentially all fields of
every packet are printed.
(Default = nod2)

[no]defname
Append the default domain name to every lookup.
(Default = defname; abbreviation = [noldef)

[no]search
With defname, search for each name in parent domains for the
current domain.
(Default = search)

domain=name
Change the default domain name to name. The default domain
name is appended to all look-up requests if the defname option
has been set. The search list is set to parents of the domain
with at least two components in their names.
(Default = value in hostname or /etc/resolv.conf; abbreviation
= do)

type=va[ue

querytype=va[ue
Change the type of information returned from a query to one
of:

A the host's Internet address (the default)

CNAME the canonical name for an alias

HINFO the host CPU and operating system type

MD the mail destination

MX the mail exchanger

MG the mail group member

MINFO the mailbox or mail list information

November 25,1989 NSLOOKUP-3

NSLOOKUP (TC)

MR

NS

NSLOOKUP (TC)

the mail rename domain name

nameserver for the named zone

Other types specified in the RFC1035 document are valid but are
not very useful.
(Abbreviation = q)

[no]reeurse
Tell the name server to query other servers if it does not have
the information.
(Default = recurse; abbreviation = [no]rec)

retry=number
Set the number of retries to number. When a reply to a request
is not received within a certain amount of time (changed with
set timeout), the request is resent. The retry value controls how
many times a request is resent before giving up.
(Default = 2; abbreviation = ret)

root=host
Change the name of the root server to host. This affects the
root command.
(Default = sri-nic.arpa; abbreviation = ro)

timeout=number
Change the time-out interval for waiting for a reply to number
seconds.
(Default = 10 seconds; abbreviation = t)

[no]ve
Always use a virtual circuit when sending requests to the
server.
(Default = novc; abbreviation = [no]v)

Diagnostics

If the look-up request was not successful, an error message is printed.
Possible errors are:

Time-out
The server did not respond to a request after a certain amount of
time (changed with set timeout=value) and a certain number of
retries (changed with set retry=value).

No information
Depending on the query type set with the set querytype command,
no information about the host is available, though the host name is
valid.

November 25, 1989 NSLOOKUP-4

NSLOOKUP (TC)

Non-existent domain
The host or domain name does not exist.

Connection refused
Network is unreachable

NSLOOKUP (TC)

The connection to the name or finger server could not be made at
the current time. This error commonly occurs with finger
requests.

Server failure
The name server found an internal inconsistency in its database
and could not return a valid answer.

Refused
The name server refused to service the request.

The following error should not occur and it indicates a bug in the pro­
gram:

Format error
The name server found that the request packet was not in the
proper format.

Files

letc/resolv.conf initial domain name and name server addresses.
/usr/lib/nslookup.hlp help file

See Also

resolver(SLm). resolver(SFF). named(ADMN). RFC974. RFC1034,
RFCI035

November 25. 1989 NSLOOKUP-5

RCMD (TC) RCMD (TC)

rcmd
Remote shell command execution

Syntax

rcmd node [-I user] [-n] [command]

Description

rand sends command to node for execution. It passes the resulting
remote command its own standard input and outputs the remote
command's standard output and standard error. Command can consist
of more than one parameter. The second, simplified form of the com­
mand is equivalent to the first, but is only available if the system
administrator previously ran mkhosts(ADMN}. Interrupt, quit, and
terminate signals received by rcmd are also received by the remote
command; rcmd normally terminates at the same time as the remote
command.

If command is omitted, rcmd simply runs riogin(TC).

By default, the command belongs to the user on the remote node with
the same name as the user who ran rcmd. This means that the result­
ing processes belong to the remote user and begin with the remote
user's home directory as their working directory. Options permit you
to specify another user on node as the owner. In any case, the remote
system must have declared the local user equivalent to the remote
user: an entry in /etc/hosts.equiv or in a .rhosts file in the current
directory (normally the home directory) of the target user will demon­
strate equivalence. [See rcmd(SLIB).]

rcmd understands the following options:

-I user The command is to belong to user on node.

-n Prevent the remote command from blocking on input by
making its standard input be Idev/null instead of the
standard input of rcmd.

If -n is not specified, rcmd reads the local standard input,
regardless of whether the remote machine reads standard
input.

November 25, 1989 RCMD-1

RCMD (TC)

Examples

RCMD (TC)

The following command runs who on a node called "central,".putting
the output in a file on the local machine.

rcmd central who> !tmp!c. who

The next example puts the same output on the remote machine.

rcmd central who \> !tmp!c.who

Files

$HOME!.rhosts

!etc!hosts.equiv

See Also

(on the target machine)

(on the target machine)

mkhosts(ADMN), rlogin(TC), rshd(ADMN), rhosts(SFF).

Requirements

rshd(ADMN) must be running on the target machine.

Notes

In some installations, this command is called rsh, so as to be like
other versions of the software.

Unlike rlogin and telnet, rcmd does not actually use a pseudo-tty.
The remote program can only read and/or write; therefore, programs
such as more or vi will hang. Hit the <Break> key to continue.

Warnings

As the above examples illustrate, metacharacters to be interpreted by
the remote shell must be hidden from the local shell. Thus:

rcmd central cd !etc ; cat passwd

November 25, 1989 RCMD-2

RCMD (TC) RCMD (TC)

clearly doesn't do what was intended because the semicolon is inter­
preted by the local shell, not the remote shell, and the remote shell
never even sees the cat command. Either of the following commands
properly escapes the semicolon:

Credit

rcmd central cd fetc \; cat passwd

rcmd central 'cd fetc ; cat passwd'

This document was developed at the University of California at
Berkeley and is used with pennission.

November 25, 1989 RCMD-3

RCP(TC) RCP (TC)

rep
Remote file copy

Syntax

rep [-r] [-p] file I [file2 ...] target

Description

rep copies files between two nodes. rep works like the ep command
(see ep(C», with some extensions.

filel is copied to target. If target is a directory, one or more files are
copied into that directory; the copies have the same names as the ori­
ginals.

File and directory names follow a convention which is an extension of
the normal UNIX convention. Names take one of three forms:

user @ host: path
host : path
path

where

host is the name of the system which contains or will contain
the file. If no host is specified (the simple path form of the
name), the system on which the command is executed is
assumed.

user is the name of a user on the specified system. If no user is
specified in the name, then the user on the remote system
whose name is the same as the user who executed the rep
command is used. (That is, this rule applies if the
host:path or path form of the name was used.)

Access to the file system is as if by the specified user who
has just logged in. Created files belong to the speci fied
user and the specified user's group (taken from the pass­
word file). File and directory modifications can only occur
if the specified user has permission to make them. If path
does not begin with a slant (/), it is assumed to be relative
to the specified user's home directory.

For you to use a user name on a remote system, the remote
system must have declared it equivalent to your user name.
See rhosts(SFF).

November 25, 1989 RCP-1

RCP(TC) RCP(TC)

path is a conventional UNIX path name. Path can include file­
name-generation sequences (*, ?, [...]); it may be neces­
sary to quote these to prevent their expansion on the local
system.

The -r (recursive) option copies directory hierarchies. If a file
specified for copying is a directory and -r is specified, the entire
hierarchy under it is copied. When -r is specified, target must be a
directory.

When -r is not specified, copying directories is an error.

By default, the mode and owner of file2 are preserved if it already
existed; otherwise, the mode of the source file modified by the
umask(SSC) on the destination host is used.

The -p option causes rep to attempt to preserve (duplicate) in its
copies the modification times and modes of the source files, ignoring
the umask.

Note that a third system (not the source or target system of the copy)
can execute rep.

Examples

The following examples are executed on system alpha, by user fred.
Alpha is networked to beta and gamma.

The first example copies list from fred's home directory on alpha to
fred's home directory on beta.

rcp list beta:list

The next example copies a directory hierarchy. The original is rooted
at sre in fred's home directory on beta. The copy is to be rooted in src
in the working directory.

rcp -r beta:src .

Finally, fred copies a file from mike's home directory on beta to
/usr/tmp on gamma; the copy on gamma is to belong to deb. Both
mike and deb must have previously declared fred on alpha equivalent
to their own user names; see rhosts(SFF).

rcp mike@beta:file deb@gamma:/usr/tmp

Note that junk is not placed in deb's home directory because the path
part of the name begins with a slash.

Files

/etc!hosts.equiv
$HOME/.rhosts

November 25, 1989 RCP-2

RCP (TC)

See Also

ftp(TC)

Requirements

RCP (TC)

Both nodes involved in the copy must be running the rshd(ADMN)
server.

Diagnostics

Most diagnostics are self-explanatory. "Pennission denied" means
either that the remote user does not have permission to do what you
want or that the remote user is not equivalent to you.

Warnings

If a remote shell invoked by rep has output on startup, rep will get
confused. This is never a problem with sh(C), because it is not called
as a log-in shell.

The -r option doesn't work correctly if the copy is purely local,
because it relies on underlying support from cp , which is only avail­
able on BSD-derived systems. Use epio(C), instead.

November 25, 1989 RCP-3

RLOGIN (TC) RLOGIN (TC)

rlogin
Remote login

Syntax

rlogin rhost [-ec] [-8] [-L] [-I username]

Description

Rlogin connects your terminal on the current local host system lhost to
the remote host system rhost.

Each host has a file letc!hosts.equiv that contains a list of rhost's with
which it shares account names. (The host names must be the standard
names as described in rcmd(TC).) When you rlogin as the same user
on an equivalent host, you don't need to give a password. Each user
may also have a private equivalence list in a file rhosts in his or her
login directory. Each line in this file should contain an rhost and a
username separated by a space, giving additional cases where logins
without passwords are to be permitted. If the originating user is not
equivalent to the remote user, then a login and password will be
prompted for on the remote machine as in login(TC). To avoid some
security problems, the .rhosts file must be owned by either the remote
user or root.

The remote terminal type is the same as your local terminal type (as
given in your environment TERM variable). The terminal or window
size is also copied to the remote system if the server supports the
option, and changes in size are reflected as well. All echoing takes
place at the remote site, so that (except for delays) the rlogin is tran­
sparent. Flow control via AS and AQ and flushing of input and output
on interrupts are handled properly.

The optional argument -8 allows an eight-bit input data path at all
times; otherwise parity bits are stripped except when the remote side's
stop and start characters are other than AsrQ.

The argument -L allows the rlogin session to be run in without any
output post-processing, (e.g. stty -opost.) A line of the form "-."
disconnects from the remote host, where .. -" is the escape character.
A different escape character may be specified by the -e option. There
is no space separating this option flag and the argument character.

November 25, 1989 RLOGIN-1

RLOGIN (TC)

Notes

RLOGIN (TC)

The control character for closing rlogin connections C by default)
does not appear until after you have typed in the expected character (.
by default).

When using rlogin to a 3.2 system, the login id is always requested,
regardless of host equivalence;

See Also

netlogin (ADMN), rcmd(TC), rlogind(ADMN), rhosts(SFF).

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Files

/usr/hosts/* for rhost version of the command

Bugs

More of the environment should be propagated.

When using rlogin to a 3.2 system, the -1 option is ignored.

November 25, 1989 RLOGIN-2

RUPTIME (TC) RUPTIME (TC)

ruptime
Show host status of local machines

Syntax

ruptime [-8] [-r] [-I] [-t] [-u]

Description

The ruptime command gives a status line for each machine on the
local network; these are formed from packets broadcast by each host
on the network, once every 1 - 3 minutes.

Machines for which no status report has been received for 5 minutes
are shown as being down.

Users idle an hour or more are not counted unless the -a flag is given.

Normally, the listing is sorted by host name. The -I ,-t , and -u flags
specify sorting by load average, uptime, and number of users, respec­
tively. The -r flag reverses the sort order.

Files

/usr/spool/rwho/whod. * data files

See Also

rwho(TC), rwhod(ADMN)

November 25, 1989 RUPTIME-1

RWHO (TC) RWHO (TC)

rwho
Who is logged in on local network

Syntax

rwho [-8]

Description

The rwho command lists users logged in on machines on the local net­
work. The format is similar to that of who(C). Without options, only
users who have typed in the last hour are listed. For each user listed,
rwho displays the user name; the host name; and the date and time the
user logged in. If the user has not typed in the last minute, rwho also
displays the user's idle time in hours and minutes.

The rwho command understands the following option:

-8 List all users on active nodes. (Users idle for more than an hour
are listed.)

If information from a host is more than five minutes old, the host is
assumed to be down and its users are not listed.

Requirements

Each host to be listed must be running the rwhod(ADMN) server,
which broadcasts a status packet once every 1 - 3 minutes. The local
host must also be running this server to maintain the data files. Since
broadcasts do not cross gateways, hosts on other networks will not be
listed.

Files

/usr/spool/rwho/whod. * information about other nodes

See Also

ruptime(TC), rwhod(ADMN).

November 25, 1989 RWH0-1

TALK (TC) TALK (TC)

talk
talk to another user

Syntax

talk person [ttyname]

Description

Talk is a visual communication program which copies lines from your
terminal to that of another user. .

If you wish to talk to someone on your own machine, then person is
just the person's login name. If you wish to talk to a user on another
host, then person is of the form :

host!user or
host. user or
host:user or
user@host

though user@host is perhaps preferred.

If you want to talk to a user who is logged in more than once, the.
ttyname argument may be used to indicate the appropriate terminal
name.

When first called, it sends the message

Message from TalkDaemon@his_machine ...
talk: connection requested by your_name@youcmachine.
talk: respond with: talk your_name@your_machine

to the user you wish to talk to. At this point, the recipient of the mes­
sage should reply by typing

talk your_name@your_machine

It doesn't matter from which machine the recipient replies, as long as
his login-name is the same. Once communication is established, the
two parties may type simultaneously, with their output appearing in
separate windows. Typing control L will cause the screen to be
reprinted, while your erase and kill characters will work. in talk as nor­
mal. In addition, control-W is dermed as a word-kill character. To
exit, just type your interrupt character; talk then moves the cursor to
the bottom of the screen and restores the terminal.

November 25. 1989 TALK-1

TALK (TC) TALK (TC)

Pennission to talk may be denied or granted by use of the mesg (TC)
command. At the outset talking is allowed. Certain commands, in
particular nroff(TC) and pr(TC) disallow messages in order to prevent
messy output.

Files

/etc!hosts
/etc/utmp

See Also

to fmd the recipient's machine
to fmd the recipient's tty

mesg(TC), who(TC), mail(TC), write(TC), talkd(ADMN).

Bugs

The version of talk(TC) released with System V STREAMS TCP uses
a protocol that is incompatible with the protocol used in the version
released with 4.2BSD. The new protocol is compatible with 4.3BSD.
The older protocol was not portable across different machine architec­
tures.

Talk may be confused if you attempt to use the host.user format with a
fully qualified hostname.

November 25, 1989 TALK-2

TELNET (TC)

telnet
User interface to the TELNET protocol

Syntax

telnet [host [port]]

Description

TELNET(TC)

The telnet command is used to communicate with another host using
the TELNET protocol. If telnet is invoked without arguments, it
enters command mode, indicated by its prompt (telnet». In this
mode, it accepts and executes the commands listed below. If it is
invoked with arguments, it performs an open command with those
arguments. (See below.)

Once a connection has been opened, telnet enters an input mode. The
input mode entered will be either character-at-a-time or line-by-line,
depending on what the remote system supports.

In character-at-a-time-mode, most text typed is immediately sent to
the remote host for processing.

In line-by-line mode, all text is echoed locally, and (normally) only
completed lines are sent to the remote host. The local echo character
(initially AE) may be used to tum the local echo off and on. (This
would mostly be used to enter passwords without the passwords being
echoed.)

In either mode, if the localchars toggle is TRUE (the default in line
mode, discussed below), the user's quit, intr, and flush characters are
trapped locally, and sent as TELNET protocol sequences to the
remote side. There are options (toggle autoflush and toggle autosynch
described below) which cause this action to flush subsequent output to
the terminal (until the remote host acknowledges the TELNET
sequence) and flush previous terminal input (in the case of quit and
intr).

While connected to a remote host, telnet command mode may be
entered by typing the telnet escape character (initially A]). When in
command mode, the normal terminal editing conventions are avail­
able ..

COMMANDS

The following commands are available. Only enough of each com­
mand to uniquely identify it need be typed. (This is also true for argu­
ments to the mode, set, toggle, and display commands.)

November 25. 1989 TELNET-1

TELNET(TC) TELNET (TC)

open host [port]
Open a connection to the named host. If no port number is
specified, telnet will attempt to contact a TELNET server at the
default port. The host specification may be either a host name
(such as hosts(ADMN» or an Internet address specified in the dot
notation. (See inet(SLffi).)

close
Close a TELNET session and return to command mode. (This is
virtually identical to quit.)

quit

z

Close any open TELNET session and exit telnet. An end-of-file
(in command mode) will also close a session and exit.

Suspend telnet. On System V systems, this command provides the
user with an escape to a shell running on the local machine.

mode type
Type is either line (for line-by-line mode) or character (for
character-at-a-time mode). The remote host is asked for permis­
sion to go into the requested mode. If the remote host is capable of
entering that mode, the requested mode will be entered.

status
Show the current status of telnet. This includes the peer to which
one is connected, as well as the current mode. In addition, both the
local and the remote TELNET options in effect are shown.

display [argument ...]
Displays all, or some, of the set and toggle values. (See below.)

? [command]
Get help. With no arguments, telnet prints a help summary. If a
command is specified, te/net will print the help information for just
that command.

send arguments
Sends one or more special character sequences to the remote host.
The following are the arguments which may be specified. (More
than one argument may be specified at a time.)

escape
Sends the current te/net escape character (initially A)).

synch
Sends the TELNET SYNCH sequence. This sequence causes
the remote system to discard all previously typed (but not yet
read) input. This sequence is sent as TCP urgent data. (It may
not work if the remote system is a 4.2 BSD system. If it doesn't
work, a lowercase r may be echoed on the terminal.)

November 25, 1989 TELNET-2

TELNET(TC) TELNET(TC)

brk

ip

ao

ayt

ec

el

ga

Sends the TELNET BRK (Break) sequence, which may have
significance to the remote system.

Sends the TELNET IP (Interrupt Process) sequence, which
should cause the remote system to abort the currently-running
process.

Sends the TELNET AO (Abort Output) sequence, which
should cause the remote system to flush all output from the
remote system to the user's terminal.

Sends the TELNET AYT (Are You There) sequence, to which
the remote system mayor may not choose to respond.

Sends the TELNET EC (Erase Character) sequence, which
should cause the remote system to erase the last character
entered.

Sends the TELNET EL (Erase Line) sequence, which should
cause the remote system to erase the line currently being
entered.

Sends the TELNET GA (Go Ahead) sequence, which likely
has no significance to the remote system.

nop
Sends the TELNET NOP (No OPeration) sequence.

?
Prints out help information for the send command.

set argument value
Set anyone of a number of telnet variables to a specific value.
The special value otftums off the function associated with the vari­
able. The values of variables may be interrogated with the display
command. The variables which may be specified are:

echo
This is the value (initially AE) which, when in line-by-line
mode, toggles between doing local echoing of entered charac­
ters (for normal processing), and suppressing echoing of
entered characters (for entering, say, a password).

November 25, 1989 TELNET-3

TELNET (TC) TELNET (TC)

escape
This is the te/net escape character (initially AD which causes
entry into te/net command mode (when connected to a remote
system).

interrupt
If telnet is in localchars mode (discussed below) and the inter­
rupt character is typed, a TELNET IP sequence (send ip, dis­
cussed above) is sent to the remote host. The initial value for
the interrupt character is taken to be the terminal's intr charac­
ter.

quit
If te/net is in localchars mode (discussed below) and the quit
character is typed, a TELNET BRK sequence (send brk, dis­
cussed above) is sent to the remote host. The initial value for
the quit character is taken to be the terminal's quit character.

f/ushoutput
If te/net is in localchars mode (discussed below) and the
jlushoutput character is typed, a TELNET AO sequence (send
ao, discussed above) is sent to the remote host. The initial
value for the flush character is taken to be the terminal's flush
character.

erase

kill

If telnet is in loca/chars mode (discussed below), and if te/net
is operating in character-at-a-time mode, then when this char­
acter is typed, a TELNET EC sequence (send ec, discussed
above) is sent to the remote system. The initial value for the
erase character is taken to be the terminal's erase character.

If te/net is in localchars mode (discussed below), and if telnet
is operating in character-at-a-tilne mode, then when this char­
acter is typed, a TELNET EL sequence (send el, discussed
above) is sent to the remote system. The initial value for the
kill character is taken to be the terminal's kill character.

eo!
If telnet is operating in line-by-line mode, entering this charac­
ter as the first character on a line will cause the character to be
sent to the remote system. The initial value of the eof character
is taken to be the terminal's eof character.

toggle arguments ...
Toggle (between TRUE and FALSE) various flags that control how
telnet responds to events. More than one argument may be
specified. The state of these flags may be interrogated with the
display command. Valid arguments are:

November 25,1989 TELNET-4

TELNET (TC) TELNET(TC)

localchars
If this is TRUE, then the flush, interrupt, quit, erase, and kill
characters (discussed under set, above) are recognized locally,
and transfoI1lled into (hopefully) appropriate TELNET control
sequences (respectively, ao, ip, brk, ec, and el; see send
above). The initial value for this toggle is TRUE in line-by­
line mode, and FALSE in character-at-a-time mode.

auto flush
If auto flush and localchars are both TRUE, then when the ao,
intr, or quit character is recognized (and transfoI1lled into
TELNET sequences; detailed under set above), telnet refuses
to display any data on the user's teI1llinal until the remote sys­
tem acknowledges (via a TELNET Timing Mark option) that it
has processed those TELNET sequences. The initial value for
this toggle is TRUE if the teI1llinal user had not done an stty
noflsh, otherwise FALSE. (See stty(C).)

autosynch
If autosynch and localchars are both TRUE, then when either
the intr or quit characters (described above) is typed, the TEL­
NET sequence sent is followed by the TELNET SYNCH
sequence. This procedure should cause the remote system to
begin throwing away all previously typed input until both of the
TELNET sequences have been read and acted upon. The ini­
tial value of this toggle is FALSE.

crmod .
Toggle carriage return mode. When this mode is enabled, most
carriage return characters received from the remote host will be
mapped into a carriage return followed by a line feed. This
mode does not affect those characters typed by the user, only
those received from the remote host. This mode is not very
useful unless the remote host only sends carriage return, but
never line feed. The initial value for this toggle is FALSE.

debug
Toggles socket-level debugging (useful only to the super user).
The initial value for this toggle is FALSE.

options
Toggles the display of some internal telnet protocol processing
(having to do with TELNET options). The initial value for this
toggle is FALSE.

netdata

?

Toggles the display of all network data (in hexadecimal for­
mat). The initial value for this toggle is FALSE.

Displays the legal toggle commands.

November 25, 1989 TElNET-5

TELNET (TC)

do option

dontoption

will option

wont option

TELNET (TC)

These commands allow the user to send the appropriate TELNET
option sequence. If no option is specified, telnet will prompt for one.

Notes

There is no adequate way for dealing with flow control.

On some remote systems, echo has to be turned off manually when in
line-by-line mode.

There is enough settable state to justify a .telnetrc file.

No capability for a .telnetrc file is provided.

In line-by-line mode, the terminal's eo! character is only recognized
(and sent to the remote system) when it is the first character on a line.

November 25,1989 TELNET-6

TFTP(TC) TFTP(TC)

tftp
User interface to the DARPA TFTP protocol

Syntax

tftp [host [port]]

Description

The tftp command is the user interface to the DARPA standard Trivial
File Transfer Protocol. The program allows a user to transfer files to
and from a remote network site.

The client host with which tftp is to communicate may be specified on
the command line. If this is done, tftp will immediately attempt to
establish a connection to a TFTP server on that host. Otherwise, tftp
will enter its command interpreter and await instructions from the
user. When tftp is awaiting commands from the user, the prompt:

tftp>

appears. The following commands are recognized by tftp :

connect host-name [port]
Set the host (and, optionally, port) for transfers. Note that the
TFTP protocol, unlike the FTP protocol, does not maintain connec­
tions between transfers; thus, the connect command does not actu­
ally create a connection, but merely remembers what host is to be
used for transfers. You do not have to use the connect command;
the remote host can be specified as part of the get or put command.

mode transfer-mode
Set the mode for transfers; transfer-mode may be one of ascii or
binary. The default is ascii.

putftle
put localfile remoteftle
putftlel ftle2 ... ftleN remote-directory

Put a file or set of files to the specified remote file or directory.
The destination can be in one of two forms: a filename on the
remote host, if the host has already been specified, or a string of
the form host:jilename to specify both a host and a filename at the
same time. If the latter form is used, the hostnarne specified
becomes the default for future transfers. If the remote-directory
form is used, the remote host is assumed to be a UNIX machine.
Note that the file or files must previously exist and be publicly
writeable on the remote system for put to successfully transfer the
desired file or files.

November 25, 1989 TFTP-1

TFTP(TC)

get filename
get remotename localname
getfilel file2 ... /ileN

TFTP(TC)

Get a file or set of files from the specified sources. Source can be
in one of two forms: a filename on the remote host, if the host has
already been specified; or a string of the form host:filename to
specify both a host and filename at the same time. If the latter
form is used, the last hostname specified becomes the default for
future transfers.

quit
Exit tftp. An end-of-file also exits.

verbose
Toggle verbose mode.

trace
Toggle packet-tracing.

status
Show current status.

rexmt retransmission-timeout
Set the per-packet retransmission timeout, in seconds.

timeout total-transmission-timeout
Set the total transmission timeout, in seconds.

ascii
Shorthand for mode ascii

binary
Shorthand for mode binary

? [command-name ...]
Print help information.

Files

letclhosts

See Also

tftpd(ADMN).

November 25, 1989 TFTP-2

TFTP(TC)

Warnings

TFTP (TC)

Because there is no user-login or validation within the TFI'P protocol.
the remote site will probably have some sort of file-access restrictions
in place. The exact methods are specific to each site.

November 25. 1989 TFTP-3

Index

A

Access privileges 2-8
Active Connections Display 1-4
Addresses 1-3
Anonymous ftp 2-8
Automatic login 5-5

c

Command options, ftpprogram 5-3
Communicating, using telnet 4-2
Connectionless packet delivery 1-1
Connections, establishing 2-7
Copying directory trees 5-22
Copying files between machines 5-21

D

DARPA Internet 1-1
Datagram 1-2
Distributed shell programs 3-1

E

Equivalent user, defined 2-6
Establishing connections 2-7
Ethernet information, further reading

1-9
Executing remote commands 2-11, 3-0

F

File copy, remote 2-10
File naming conventions, ftp 5-2
File transfer 2-10, 5-1
File transfer modes 5-2

ftp program 2-10
anonymous 2-8
ascii mode 5-2
binary mode 5-2
command descriptions 5-6
command options 5-3
examples 5-4
file naming conventions 5-2
file transfer modes 5-2
invoking 5-3
optional protocol functions 5-6
restrictions on commands 5-6
sample sessions 5-18
using 5-2

G

Gateway, defined 1-3

H

Host, defined 1-1

I

ICMP, defined 1-5
Internet Control Message Protocol 1-5
Internet Protocol, defined 1-1
IP, defined 1-1

L

LAN information, further reading 1-9
Login, remote 2-9

1-1

Index

N

.netrc file
automatic login with 5-5
format of 5-5

Netstat 1-4
Network

addresses 1-3
gateways 1-3

Network time message, setting 6-6
Networking commands

list of 2-2
overview of TCP/IP 2-2

Networking objects, types of 2-5
Node, defined 1-1

p

Passwords 2-8
Port, defined 1-4
Printing remotely 3-2
Protocol layering 1-6

R

rcmd command 2-11
invoking 3-1
options of 3-1
remote printing and 3-2
sample session 3-2
using 3-1

rep command 2-10
rep program 5-21

invoking 5-21
options for 5-22
sample sessions 5-23

Remote command execution 2-11,3-0
Remote file copy 2-10
Remote login 2-9
Remote printing 3-2
rlogin command 2-9, 4-1

description 4-11
exiting 4-11
invoking 4-11
options when invoking 4-12
using tilde in text 4-12

1-2

s
Shellscript programming 3-3
Socket, defined 1-4
Specifications

further reading 1-7
Standards

further reading 1-7
Synchronization 6-1

T

TCP
defined 1-2
reliable transmission and 1-2

TCP/IP
networking commands

overview of 2-2
shellscript programming and 3-3
technical references 1-7

TCP/IP, defined 1-1
telnet program 2-9, 4-1

command mode 4-2
command mode prompt 4-4
communicating with 4-2
example 4-2
input mode 4-2
invoking 4-2
sample sessions 4-8
using commands of 4-4

Tilde in text 4-12
Time Synchronization Protocol

SeeTSP
timed program 6-1
Transferring files 2-10, 5-1
TSP

acknowledgment message 6-5
adjtime message 6-4
candidature acceptance message 6-8
candidature rejection message 6-9
conflict resolution message 6-10
loop detection message 6-15
master acknowledgement 6-6
master active message 6-7
master candidature message 6-8
master request message 6-5
master site message 6-13
message format 6-3
messages 6-4
multiple master notification message

6-9

TSP (continued)
network time message, setting 6-6
quit'message 6-10
remote master site message 6-14
set date acknowledgement message

6-12
set date message 6-11
set date request message 6-11
slave active message 6-7
start tracing message 6-12
stop tracing message 6-13
test message 6-14

u

UNIX networking commands 2-4
User equivalence, defined 2-6

v

Virtual terminal commands 4-1
Virtual terminals 2-9

Index

1-3

SCo® TCP/IP

Derived from

LACHMAN™ SYSTEM V STREAMS TCP

Administrator's Guide

The Santa Cruz Operation, Inc.

Portions copyright © 1988, 1989, 1990 The Santa Cruz Operation, Inc. All rights reserved.

Ponions copyright © 1987, 1988 Lachman Associates, Inc. All rights reserved.

Ponions copyright © 1987 Convergent Thchnologies, Inc. All Rights Reserved.

No pan of this publication may be reproduced, transmitted, stored in a retrieval system, nor

translated into any human or computer language, in any form or by any means, electronic,

mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written

permission of the copyright owner, The Santa Cruz Operation, Inc., 400 Encinal, Santa Cruz,

California, 95061, USA. Copyright infringement is a serious matter under the United States and

foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User only for use

in strict accordance with the End User License Agreement, which License should be read

carefully before commencing use of the software. Information in this document is subject to

change without notice and does not represent a commitment on the pan of The Santa Cruz

Operation, Inc.

The following legend applies to all contracts and subcontracts governed by the Rights in
Technical Data and Computer Software Cause of the United States Depanment of Defense

Federal Acquisition Regulations Supplement:

RESTRICfED RIGHTS LEGEND: Use, duplication, or disclosure by the government is

subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and

Computer Software Clause at DFARS 52.227-7013. The Santa Cruz Operation, Inc., 400

Encinal Street, Santa Cruz, California 95061, U.S.A.

SCO TCP/IP was developed by Lachman Associates.

SCO TCP/IP is derived from LACHMAN™ SYSTEM V STREAMS TCP, a joint development

of Lachman Associates and Convergent Technologies.

This document was typeset with an lMAGEN@ 8/300 Laser Printer.

SCO and the sea logo are registered trademarks, and the The Santa Cruz Operation is a trademark of

The Santa Cruz Operation, Inc.

UNIX is a registered trademark of AT&T.

LACHMAN is a trademark of Lachman Associates, Inc.

Ethernet is a registered trademark of Xerox.

sea Document Number: 11·25·89·1.1.00

Printed: 4/26/90

Contents

1 Network Administration

Introduction 1-1
Kernel Configuration 1-2
Runtime Configuration of STREAMS Drivers 1-5
Setting Interface Parameters 1-8
Local Subnetworks 1-9
Internet Broadcast Addresses 1-11
Routing 1-12
U sing UNIX System Machines as Gateways 1-14
Network Servers 1-15
Network Databases 1-16
Network Thning and Troubleshooting 1-19

2 Introduction to send mail

Introduction 2-1
Communicating with sendmail 2-2
Overview of sendmail Operation 2-4
Sendmail Implementation 2-7
Configuration 2-11
Comparing sendmail with Other Mail Programs 2-13

3 Installing and Operating sendmail

Introduction 3-1
Basic Installation 3-2
Quick Configuration Startup 3-4
The System Log 3-5
The Mail Queue 3-6
The Alias Database 3-10
Per-User Forwarding (.forwardFiles) 3-12
Special Header Lines 3-13
Arguments 3-14
Thning 3-16
The Configuration File 3-20
Command Line Flags 3-35
Configuration Options 3-37
Mailer Flags 3-40
Summary of Support Files 3-42

-i-

4 Name Server Operations Guide for BIND

Introduction 4-1
The Name Service 4-2
Types of Servers 4-3
Setting Up Your Own Domain 4-5
Remote Servers 4-9
Initializing the Cache 4-10
Standard Resource Records 4-11
Some Sample Files 4-19
Additional Sample Files 4-23
Domain Management 4-25

5 Synchronizing Network Clocks

Introduction 5-1
Guidelines 5-3
Options 5-5
Daily Operation 5-6

-ii-

Chapter 1

Network Administration

Introduction 1-1

Kernel Configuration 1-2

Runtime Configuration of STREAMS Drivers 1-5
Cloning Drivers with One Major Number per Interface 1-5
Cloning Drivers Using unit select orDL_ATIACH 1-6
Non-Cloning Drivers 1-6

Setting Interface Parameters 1-8

Local Subnetworks 1-9

Internet Broadcast Addresses 1-11

Routing 1-12

Using UNIX System Machines as Gateways 1-14

Network Servers 1-15

Network Databases 1-16
The /etc/hosts.equiv File 1-16
The /etc!ftpusers File 1-17

Network Thning and 'froubleshooting 1-19
STREAMS 1\ming 1-19
Active Connections Display 1-19
Interfaces 1-21
Routing Tables 1-22
Statistics Display 1-24

Introduction

Introduction
This chapter covers topics related to setting up and administering your
TCP/IP network. When you installed your system, many of these tasks
were performed automatically to configure a basic networked system. IT
you want to customize your installation or expand your network, you
should read this chapter.

IT your network is not performing well, the section "Network TIming and
Troubleshooting" at the end of this chapter might provide helpful sugges­
tions.

Network Administration 1-1

Kernel Configuration

Kernel Configuration
The following table lists the drivers that must be included in the kernel,
along with their associated device nodes.

Name
arp
arpproc
ip
icmp
tcp
udp
llcloop
socket
cp
vty
ttyp

Device Node
/dev /inet/ arp
(nolle)
/dev /inet/ip
/dev /inet/icmp
/dev /inet/tcp
/dev /inet/udp
/dev/llcloop
/dev /socksys
/dev /socksys 1
/dev Iptypnn
/dev /ttypnn

Description

Address Resolution Protocol

Internet Protocol
Internet Control Message Protocol
Transmission Control Protocol
User Datagram Protocol
Loopback interface
Socket compatibility package
Copy protection driver

Virtual TTY drivert

t The Virtual ITY driver is used by rlogin(TC) and telnet(TC). There
must be one ptyp device and one ttyp device for each virtual ITY config­
ured. Following ptyp or ttyp in the device node name is a two-digit hexa­
decimal number corresponding to the minor number of the device. For
example, vty minor 0 is referenced by device node IdevlptypOO, and ttyp
minor 0 is referenced by device node IdevlrrypOO.

In addition to the drivers listed above, you may also include one or more
drivers for your network interface hardware:

Name
e3Ann
e3Bnn
wdnn
sIn

Device Node
/dev/e3Ann
/dev/e3Bnn
/dev/wdnn
/dev/slip

Description
3COM 3C501 ethernet board
3COM 3C503 ethernet board
Western Digital WD8003E ethernet board
Serial Line IP interface

The character n in the device nodes indicates anyone of the digits 0
through 3. That is, up to four boards of each type are supported. If there
were two 3COM 3C503 Ethernet boards, their device nodes would be
Idevle3AO and Idevle3Al.

The interrupt vectors you choose for the various Ethernet boards should
be consistent with your hardware requirements.

1-2 TCP/IP Administrator's Guide

Kernel Configuration

All drivers must have references in the following files:

• An entry in letclconf!cfdlmdevice

• A file corresponding to that driver in the letclconf!sdevice.d direc­
tory

• An entry in letclconJlcfdlsdevice
These drivers are normally added to the kernel configuration during in­
stallation of TCP/IP. The following display shows the information from a
partial mdevice file:

ip ocis iSc ip 0 23 0 256 -1
rip ocis iSc rip 0 24 0 256 -1
socket ocrwis ic sock 0 25 0 256 -1
ttyp ocrwi ict ttyp 0 26 0 16 -1
vty ocrwi ic vty 0 27 0 16 -1
arpprococi is app 0 0 0 256 -1
e3AO I iScH e3c 0 28 1 1 -1
iarrp ocis iSc iarrp 0 29 0 256 -1
llcloopocis iSc 10 0 30 0 256 -1
slip s iSc sl- 0 31 0 256 -1
tcp ocis iSc tcp 0 33 0 256 -1
udp ocis iSc udp 0 35 0 256 -1

Some of the information in this file may vary depending on the system
configuration. In these cases, the numbers that are used depend on the
specific system configuration and are probably different from the values
shown in this example.

Column six contains the major block device number, which varies
depending upon the drivers that were installed in the system and the order
in which they were installed. The actual value for any given driver does
not actually matter as long as each driver has a different number and the
number in this file matches the major number of the device name in the
Idev directory that is supposed to refer to it. The arpproc module is a
special case, as it has no - pathoame in Idev; for this driver, the block
major corresponding device number is O.

Network Administration 1-3

Kernel Configuration

The following is a partial sdevice file (comments have been removed for
clarity):

sio y 1 7 1 4 3f8 3ff 0 0
sio y 1 7 1 3 2f8 2ff 0 0
slip y 256 0 0 0 0 0 0 0
socket Y 256 0 0 0 0 0 0 0
sp Y 0 0 0 0 0 0 0 0
spt Y 0 0 0 0 0 0 0 0
ss Y 0 0 0 0 0 0 0 0
str Y 0 0 0 0 0 0 0 0
svdsp Y 1 0 0 0 0 0 0 0
svkbd Y 1 0 ci 0 0 0 0 0
sxt N 1 0 0 0 0 0 0 0
sy Y 1 0 0 0 0 0 0 0
tcp Y 256 0 0 0 0 0 0 0
t.im:xi Y 1 0 0 0 0 0 0 0
tirdwr Y 1 0 0 0 0 0 0 0

The sdevice file is actually assembled from component files in the direc­
tory /etclconf/sdevice.d. Each component file contains the line describing
that driver. The "Y" or "N" in the second column indicates whether the
the driver is to be linked into the kernel. Column six is the interrupt vec­
tor, which varies depending upon which cards are in the system and the
vectors for which they are setup.

The format of these files is defined in sdevice(F) and mdevice(F).

1-4 TCP/IP Administrator's Guide

Runtime Configuration of STREAMS Drivers

Runtime Configuration of STREAMS
Drivers
STREAMS configuration (linking the various STREAMS drivers and
modules together) is handled by the slink(ADMN) program, which is nor­
mally executed at boot time by tcp(ADMN). The slink program reads the
file fetelstre!, which contains a list of STREAMS operations to perform.
Most of fetel stre! is the same on every system. However, under unusual
circumstances, it may be necessary to edit the section of fetel stre! that
configures the network interfaces. Examples for various types of network
drivers are provided. In some cases, it is necessary to write new driver
setup procedures. See slink(ADMN) and strcf(SFF) for further informa­
tion.

SLIP drivers are handled automatically by the slattach(ADMN) com­
mand, which is invoked in the feteltep script. This portion of the script is
set up during installation of the SLIP driver.

The following sections present examples of slink configuration com­
mands for several different driver types.

Cloning Drivers with One Major Number per
Interface

Drivers of this type, such as the 3COM 3C503 e3BO driver or Western
Digital WD8003E wd driver, use cloning but do not support a method of
selecting a particular network interface (such as unit select). Rather, this
is done by allocating a separate major device number to each network
interface. The slink function cenet configures an interface of this type.
The command line to configure such an interface has the form:

cenet ip /dev/e3BO e3BO 0

To add a second interface, add the following line:

cenet ip /dev/e3BO e3BO 1

Note that the device node actually used is formed by concatenating the
given device node name prefix (fdevfe3BO) and the given unit number (0
or 1). The interface name is formed in a similar manner using the sup­
plied interface name prefix (e3BO) and the unit number. Thus, the first
example configures an interface named e3BO, which accesses the device
referred to by fdevfe3BO.

Network Administration 1-5

Runtime Configuration of STREAMS Drivers

Cloning Drivers Using unit select or DL_ATTACH

These drivers have only one device node and one major number, which
are used for all interfaces. (The SLIP drivers are of this type, but they are
a special case in that individual SLIP interfaces do not need explicit con­
figuration in fetclstrcf. The STREAMS configuration of SLIP drivers is
handled by the slattach(ADMN) command, which is invoked from
fetc/tep during system startup. The appropriate slattach command is au­
tomatically placed in the fetcltep file during installation of TCP/IP Run­
time.) The desired interface is selected using either the unit select or the
DL_ATTACH primitive. (Normally, a given driver recognizes only one of
these primitives.) A primitive is a type of command used to invoke a
primitive operation. A primitive operation can be described as part of an
interface between two programs or pieces of software. In this case, a
primitive operation is a service provided by one of the protocol layers.

The slink functions uenet and denet configure this type of driver; uenet
uses unit select, while denet uses DL ATTACH. The command line to
configure an interface of this type has the form:

uenet ip /dev/abc en 0

For a driver that uses DL_ATTACH, use denet in place of uenet. To con­
figure a second interface, add the following line:

uenet ip /dev/abc en 1

The denet and uenet functions form the interface name in the same
manner as does cenet (see previous section), but the device node name is
unchanged (!devfabe is open in both of these examples).

Non-Cloning Drivers
Drivers of this type have a separate device node for each minor device,
with some fixed number of minor devices allocated to each network inter­
face. The slink functions senetc and senet are used for this driver type.
(The senetc function allows the specification of a convergence module.)
The following command line configures such an interface:

senetc ip eli /dev/emdO /dev/emdl enO

If a convergence module is not required, use senet in place of senetc and
omit "eli."

The last argument (enO in this', example) gives the name by which the
newly created interface is known for the pwpose of performing
interface-configuration operatio~s via ifconfig(ADMN). For further in-

1-6 TCP/IP Administrator's Guide

Runtime Configuration of STREAMS Drivers

fonnation, refer to the section entitled "Setting Interface Parameters"
later in this chapter.

Assuming that there are four minor devices assigned to each network
interface, a second interface would be configured as follows:

senetc ip eli /dev/emd4 /dev/emd5 enl

Network Administration 1-7

Setting Interface Parameters

Setting Interface Parameters
All network interface drivers, including the loopback interface, require
that their host addresses be defined at boot time. This is done with
ifconfig(ADMN) commands included in the fete/tep shell script. These
commands are nonnally set up automatically during installation. This
configuration applies only to simple, basic configurations. For example,
if you want to use the network feature of ifconfig, you need to edit
fete/tep manually and modify the ifconfig commands there.

ifconfig can also be used to set options for an interface at boot time.
Options are set independently for each interface and apply to all packets
sent using that interface. These options include disabling the use of the
Address Resolution Protocol. This may be useful if a network is shared
with hosts running software that does not yet provide this function. Alter­
natively, translations for such hosts can be set in advance or published by
a UNIX System host by use of the arp(ADMN) command.

1-8 TCP/IP Administrator's Guide

Local Subnetworks

Local Subnetworks
In TCP/IP, the DARPA Internet support includes the concept of the subnet­
work. This is a mechanism that enables several local networks to appear
as a single Internet network to off-site hosts. Subnetworks are useful
because they allow a site to hide the local topology, requiring only a sin­
gle route in external gateways. This also means that local network num­
bers may be locally administered.

To set up local subnetworks, you first need to know how much of the
available address space is to be partitioned. The term "address" is used
here to mean the Internet host part of the 32-bit address. Sites with a
class A network number have a 24-bit address space with which to work,
sites with a class B network number have a 16-bit address space; and sites
with a class C network number have an 8-bit address space. To define
local subnets you must steal some bits from the local host address space
for use in extending the network portion of the internet address.

This reinterpretation of internet addresses is done only for local networks.
It is not visible to off-site hosts. For example, if your site has a class B
network number, hosts on this network have an Internet address that con­
tains the network number, 16 bits, and the host number, another 16 bits.
To define 254 local subnets, each possessing at most 255 hosts, 8 bits may
be taken from the local part to be used for the subnetwork ID. (The use of
subnets 0 and all-) 's, 255 in this example, is discouraged to avoid confu­
sion about broadcast addresses.) New network numbers are then con­
structed by concatenating the original 16-bit network number with the
extra 8 bits containing the local subnetwork number.

The existence of local subnetworks is communicated to the system when
a network interface is configured with the netmask option to the
ifconfig(ADMN) program. A network mask defines the portion of the
internet address that is to be considered the network part for that network.
This mask normally contains the bits corresponding to the standard net·
work part as well as the portion of the local part that was assigned to sub­
nets. If no mask is specified when the address is set, a mask is set accord­
ing to the class of the network. For example, at Berkeley (class B net­
work 128.32), 8 bits of the local part are reserved for defining subnet­
works. Consequently, the fetc/tep file contains lines of the form:

/etc/ifconfig e3BO netmask OxffffffOO 128.32.1.7

This specifies that for interface e3BO, the upper 24 bits of the internet
address should be used in calculating network numbers (netmask
OxffffffOO). The internet address of the interface is 128.32.1.7 (host 7 on

Network Administration 1-9

Local Subnetworks

network 128.32.1). Hosts m on subnetwork n of this network would then
have addresses of the form 128.32.n.m. For example, host 99 on network
129 would have an address 128.32.129.99. For hosts with multiple inter­
faces, the network mask should be set for each interface, although in prac­
tice only the mask of the first interface on each network is actually used.

1-10 TCP/IP Administrator's Guide

Internet Broadcast Addresses

Internet Broadcast Addresses
The broadcast address for internet networks is defined according to
RFC-919 as the address with a host part of all 1'8. The address used by
4.2BSD was the address with a host part of o. The UNIX System uses the
standard broadcast address (all 1 's) by default, but allows the broadcast
address to be set (with ifconfig) for each interface. This allows networks
consisting of both 4.2BSD and UNIX System hosts to coexist while the
upgrade process proceeds. In the presence of subnets, the broadcast
address uses the subnet field as for normal host addresses, with the
remaining host part set to 1's (or O's, on a network that has not yet been
converted). The UNIX System hosts recognize and accept packets sent to
the logical-network broadcast address as well as those sent to the subnet
broadcast address, and, when using an all-1's broadcast, also recognize
and receive packets sent to host 0 as a broadcast.

Network Administration 1-11

Routing

Routing
If your environment allows access to networks not directly attached to
your host, you need to set up routing information to allow packets to be
properly routed. Two schemes are supported by the system. The first
employs the routing table management daemon routed(ADMN) to main­
tain the system routing tables. The routing daemon uses a variant of the
Xerox Routing Information Protocol to maintain up-to-date routing tables
in a cluster of local-area networks. By using the fetef gateways file, the
routing daemon can also initialize static routes to distant networks. (See
the next section for further discussion.) When the routing daemon is
started (usually from fetc/tep), it reads fetc/gateways if it exists and
installs those routes defined there. It then broadcasts on each local net­
work to which the host is attached to find other instances of the routing
daemon. If any responses are received, the routing daemons cooperate in
maintaining a globally consistent view of routing in the local environ­
ment. This view can be extended to include remote sites also running the
routing daemon by setting up suitable entries in fetc/gateways. See
route(ADMN) for a more thorough discussion.

The second approach is to define a default or wildcard route to a smart
gateway and depend on the gateway to provide ICMP routing redirect in­
formation to create dynamically a routing data base. This is done by add­
ing an entry to fetc/tep as in the following example:

fete/route add default smart-gateway 1

See route(ADMN) for more information. The system uses the default
route as a last resort in routing packets to their destinations. Assuming
the gateway to which packets are directed can to generate the proper rout­
ing redirect messages, the system then adds routing table entries based on
the information supplied. This approach has certain advantages over the
routing daemon, but it is unsuitable in an environment where there are
only bridges. (For example, pseudo-gateways do not generate routing­
redirect messages.) Further, if the smart gateway goes down, there is no
alternative, save manual alteration of the routing table entry, to maintain
service.

The system always listens to, and processes, routing redirect information,
and so it is possible to combine both of the above facilities. For example,
the routing table management process might be used to maintain up-to­
date information about routes to geographically local networks, while

1-12 TCP/IP Administrator's Guide

Routing

employing the wildcard routing techniques for distant networks. The
netstat(TC) program displays routing table contents as well as .various
routing-oriented statistics. The following example displays the contents
of the routing tables:

netstat -r

Alternatively, the following shows the number of routing table entries
dynamically created as a result of routing redirect messages and so forth:

netstat -r -s

Network Administration 1-13

Using UNIX System Machines as Gateways

Using UNIX System Machines as
Gateways
Any UNIX System machine that is connected to more than one network
functions as a gateway. At a gateway machine, packets received on one
network that are destined for a host on another network are automatically
forwarded. If a packet cannot be forwarded to the desired destination, an
ICMP error message is sent to the originator of the packet. When a packet
is forwarded back through the interface on which it arrived, an ICMP
redirect message is sent to the source host if it is on the same network.
This improves the interaction of UNIX System gateways with hosts that
configure their routes via default gateways and redirects.

Local-area routing within a group of interconnected Ethemets and other
such networks can be handled by routed(ADMN). Gateways between the
ARPANET or MILNET and one or more local networks require an addi­
tional routing protocol, the Exterior Gateway Protocol (EGP), to inform
the core gateways of their presence and to acquire routing information
from the core. (BOP is not currently supported in this product.)

1-14 TCP/IP Administrator's Guide

Network Servers

Network Servers
In the UNIX System, most of the server programs are started by a super
server, called the "internet daemon." The internet daemon, fetclinetd,
acts as a master server for programs specified in its configuration file,
fetclinetd.conf, listening for service requests for these servers, and start­
ing up the appropriate program whenever a request is received. The con­
figuration file includes lines containing a service name (as found in
fetclservices) , the type of socket the server expects (for example, stream
or dgram), the protocol used with the socket (as found in fetclprotocols),
whether to wait for each server to complete before starting up another, the
user name under which the server should run, the server program's name,
and at most five arguments to pass to the server program. Some trivial
services are implemented internally in inetd(SFF), and their servers are
listed as internal. For example, an entry for the file-transfer protocol
server would appear as:

ftp stream tcp nowait root /etc/ftpd ftpd

Consult inetd(ADMN) for more details on the format of the configuration
file and the operation of the Internet daemon.

Network Administration 1-15

Network Databases

Network Databases
Several data files are used by the network library routines and server pro­
grams. Most of these files are host independent and updated only rarely.
The following table lists the data files used.

File
letc!hosts
letc/networks
letc/services
letc/protocols
letc!hosts.equiv
letc/ftpusers

. letc/inetd.conf

Manual Reference
hosts (SFF)
networks (SFF)
services (SFF)
protocols (SFF)
rshd(ADMN)
ftpd(ADMN)
inetd (ADMN)

Use
host names
network names
list of known services
protocol names
list of "trusted" hosts
list of "unwelcome" ftp users
list of servers started by inetd

The files distributed are set up for ARPANET or other internet hosts.
Local networks and hosts should be added to describe the local configura­
tion. Network numbers must be chosen for each Ethernet. For sites not
connected to the Internet, these can be chosen more or less arbitrarily;
otherwise, the normal channels should be used for allocation of network
numbers.

The /etc/hosts.equiv File

There are several files that are used to establish user equivalence. One is
the letclhosts.equiv file, which covers the system as a whole, except for
the root account. The other is the .rhosts file in the individual user
account's home directory. This file covers only the individual user
account. (For root, this is I.rhosts.) These two files work together with a
third file, letclpasswd, to determine the extent of user equivalence.

There are two ways to establish user equivalence:

• An entry in .rhosts and in letclpasswd

• An entry in letclhosts.equiv and in letclpasswd

In both cases, letclpasswd must contain an entry for the user name from
the remote machine. However, the two methods have differing scopes. If
the file .rhosts is used in a particular account, then user equivalence is
established for that account only. However, if there is an entry in
letclhosts.equiv for a host name and an account on that host, then that
account has user equivalence for any account (except root). If the entry

1-16 TCP/IP Administrator's Guide

Network Databases

in letclhosts.equiv has only the remote host name, then any user on that
host has user equivalence for all local accounts (except root). Such a host
is Gonsidered a "trusted host."

Note

Entries in letclhosts.equiv can create large holes in system security.
Be sparing in their use. In most circumstances, it is unwise to create
entries that allow all users on remote machines to access all
accounts on your local machine.

For example, suppose you have an account under the user name "Test 1 "
on machine "Admin." You want to establish user equivalence on the
remote machine "Systemb." The administrator for the machine Systemb
must add an entry to the letclpasswd file for an account name Test!. Note
that this file cannot be edited directly under UNIX. You must use the
sysadmsh(ADM} utility to add a user to the letclpasswd file. They must
also include the following entry in the file letclhosts.equiv on Systemb:

Admin Testl

This gives user equivalence for all accounts except root to user Test! on
the machine Systemb. Suppose that Testl really only needed access to
the account Testb on Systemb. Then it would be better to remove the
above entry from Jetclhosts.equiv on Systemb and use the following entry
in the file .rhosts in the home directory for Testb:

Admin Testl

Note that entries for .rhosts must include both the system name and the
account name. The file letclhosts.equiv does allow entries for the system
name only, as discussed earlier.

H there are entries in both .rhosts and letclhosts.equiv for the same ma­
chine or machine/account combination, then the entry from
Jetclhosts.equiv determines the extent of user equivalence.

The letc/ftpusers File

The ftp server included in the system provides support for an anonymous
ftp account. Because of the inherent security problems with such a facil­
ity, you should read this section carefully if you want to provide such a
service.

Network Administration 1-17

Network Databases

An anonymous account is enabled by creating a user called ftp. When a
client uses the anonymous account, a chroot(ADM) system call is per­
formed by the server to restrict the client from moving outside that part of
the filesystem where the ftp home directory is located. Because a chroot
call is used, certain programs and files used by the server process must be
placed in the ftp home directory. Further, you must be sure that all direc­
tories and executable images are unwritable. The following directory
setup is recommended:

41 cd -ftp
41 c:tanod 555 .; chown ftp .; chgrp ftp •
41 mkdir bin etc pub lib dev
41 chown root bin etc lib dev
41 c:tanod 555 bin etc lib dev
41 chown ftp pub
41 c:tanod 777 pub
41 cd bin
41 ep Ibin/sh Ibin/ls •
41 c:tanod 111 sh ls
41 cd • ./ete
41 ep /etc/passwd fete/group •
41 c:tanod 444 passwd group
41 cd . ./lib
41 ep /shlib/libc s •
41 cd •• -
41 find /dev/socksys -print I epio -durrpv •

When local users want to place files in the anonymous area, they must
place them in a SUbdirectory. In the setup here, the directory Jtplpub is
used.

Another issue to consider is the letclpasswd file placed here. It can be
copied by users who use the anonymous account. They can then try to
break the passwords of users on your machine for further access. A good
choice of users to include in this copy might be root, daemon, uucp, and
the ftp user. All passwords here should probably be *.
Aside from the problems of directory modes and such, the ftp server pro­
vides a loophole for interlopers if certain user accounts are allowed. The
file letclftpusers is checked on each connection. If the requested user
name is located in the file, the request for service is denied. It is sug­
gested that this file contain at least the following names:

uucp
root

Accounts with nonstandard shells should be listed in this file. Accounts
without passwords need not be listed in this file; the ftp server does not
service these users.

1-18 TCP/IP Administrator's Guide

,Network Tuning ,and.JtQU.bleshooting

Network Thning and Troubleshooting
It is likely that from time to time you will encounter problems using your
network. The first thing to do is check your network connections. On
networks such as the Ethernet a loose cable tap or poorly placed power
cable can result in severely deteriorated service. The ping(ADMN) com­
mand is particularly useful for confirming the existence of network con­
nections. If there is no hardware problem, check next for routing problems
and addressing problems.

The netstat(TC) program can also be helpful in tracking down hardware
malfunctions. In particular, look at the -i and -s options in the manual
page. The netstat(TC) program also shows detailed information about
network behavior. Examples of netstat displays appear later in this
chapter.

If you think a communication protocol problem exists, consult the proto­
col specifications and attempt to isolate the problem in a packet trace.
The SO_DEBUG option can be supplied before establishing a connection
on a socket, in which case the system traces all traffic and internal actions
(such as timers expiring) in a circular trace buffer. This buffer can then be
printed out with the trpt(ADMN) program. Most of the servers distrib­
uted with the system accept a -d option forcing all sockets to be created
with debugging turned on. Consult the appropriate manual pages for
more information.

STREAMS Tuning

The crash(ADM) command can be used to display STREAMS usage of
buffers of various sizes. Typical symptoms of inadequate STREAMS
buffer space include the following: lost connections for no reason; pro­
cesses that communicate over the network hang; and programs that com­
municate over the network suddenly malfunction. Use the UNIX Link Kit
configure command to increase STREAMS buffer resources.

Active Connections Display

The active connections display is the default display of the netstat(TC)
command. It displays a line of information for each active connection on
the local machine under the headings described below.

Network Administration 1-19

Network Tuning and Troubleshooting

netstat -a

Active Internet connections (including servers) are as follows:

scobox$ netstat -a
Active Internet connections (including se~rs)
Proto Recv-Q Send-Q I=al 1\ddress Foreign 1\ddress (state)
ip 0 0 *.* *.*
tcp 0 0 scobox. telnet scoter.2460 ESTABLISHED
tcp 0 0 *.smtp *.* LISTEN
tcp 0 0 *.1024 *.* LISTEN
tcp 0 0 *.sunzpc *.* LISTEN
tcp 0 0 *.chargen *.* LISTEN
tcp 0 0 *.ciaytime *.* LISTEN
tcp 0 0 *.time *.* LISTEN
tcp 0 0 * .clanain *.* LISTEN
tcp 0 0 *.finger *.* LISTEN
tcp 0 0 *.exec *.* LISTEN
tcp 0 0 *.ftp *.* LISTEN
tcp 0 0 *.telnet *.* LISTEN
tcp 0 0 *.login *.* , LISTEN
tcp 0 0 *.she11 *.* LISTEN
tcp 0 0 scobox • listen *.* LISTEN
tcp 0 0 scobox.ntenn *.* LISTEN
tcp 0 0 *.* *.* CIDSED
udp 0 0 *.1035 *.*
udp 0 0 *.1034 *.*
udp 0 0 *.1033 *.*
udp 0 0 *.1032 *.*
udp 0 0 *.2049 *.*
udp 0 0 *.1028 *.*
udp 0 0 *.sunzpc *.*
udp 0 0 scobox.clanain *.*
udp 0 0 localhost .clanain *.*
scobox$

1-20 TCP/IP Administrator's Guide

Network Tuning and Troubleshooting

Descriptions of the Display Headings

• The protocol used in the connection.

• Receive queue. The number of received characters (bytes) of data
waiting to be processed.

• Send queue. The number of characters (bytes) of data waiting to
be transmitted.

• The port number of the local connection, displayed symbolically.
The port numbers are taken from the fetcfservices file.

• The port number of the remote connection, displayed symbolically.
The port numbers are taken from the fetclservices file.

• The current state of the connection. Each protocol has its own set
of states. For the protocol-dependent states that can be displayed,
see the appropriate protocol specification.

Interfaces

This display describes activities on all the local machine's interfaces to
the net, in the form of a table of cumulative statistics. This display is
available through nelstal with the -i option.

nelstal -i

scobox$ netstat -i
Name Mtu Network
enO 1500 sco-eng-ne
e3BO 1500 128.174.14
100 2048 loopback
scobox$

Address Ipkts Ierrs Opkts Oerrs Collis
scobox No Statistics Available
128.174.14.1 0 0 0 0 0
localhost 189 0 189 0 0

Network Administration 1~21

Network Tuning and Thoubleshooting

Descriptions of the Display Headings

Each interface is described by a line with the following headings:

Name

Mtu

Network

Address

Ipkts

Ierrs

Opkts

Oerrs

Collis

Routing Tables

The name of the network interface. For example,
enD is the name of the first Ethernet interface
board.

Maximum transmission unit (in bytes). This is the
largest size pennitted for any single packet sent
through this interface.

The name of the network address of the interface
as given in fetclnetworks.

The name of the machine address of the interface
in fetclhosts.

Input packets. The number of packets received on
the interface.

Input errors. The number of errors detected in
packets of data received on this interface.

Output packets. The number of packets transmit-:
ted on the interface.

Output errors. The number of errors detected and
corrected in packets of data transmitted on this
interface.

Collisions that occurred on the network.

The Routing Table display provides infonnation about the usage of each
route you have configured. A route consists of a destination host or net­
work and a network interface used to exchange packets. Direct routes are
created for each interface attached to the local host.

1-22 TCP/IP Administrator's Guide

netstat -r

scobox$ netstat -r
Routing tables
Destination Gateway
localhost localhost

Network Tuning and Troubleshooting

Flags
OR

RefcntUse
4 a

Interface
loa

SCC>-1!ng-net
128.174.14
128.174
scobox$

scobox
128.174.14.1
scoffle

U
U
00

4 537 enO
a a e3BO
a a enO

Descriptions of the Display Headings

The infonnation displayed for each route is as follows.

Destination

Gateway

Flags

Refcnt

Use

Interface

The network or machine to which this route
allows you to connect.

The name of the gateway you configured for this
route. If you are directly connected, this is a local
address. Otherwise, it is the name of the machine
through which packets must be routed.

The state of the route. Valid states are:

U up
G a route to a gateway
N a route to a network
H a route to a host

The current number of active connections using
the route. Connection-oriented protocols nor­
mally hold on to a single route for the duration of
the connection, while connectionless protocols
obtain a route and then discard it as needed.

The current number of packets sent using this
route.

The name of the physical network interfac~ used
to begin the route.

Network Administration 1-23

Network Thning and Troubleshooting

Statistics Display

The Protocol Statistics display provides protocol-specific errors: The
errors in the display are grouped under headings for each higher-level
protocol in your system. The headings are protocol-specific.

• Internet Protocol (ip)

• Internet Control Message Protocol (icmp)

• Thansmission Control Protocol (tcp)

• User Datagram Protocol (udp)

netstat -s

ip:

ianp:

1-24

3209 total packets received
o bad header checksums
o with size smaller than minimum
o with data size < data length
o with header length < data size
o with data length < header length
o fragments received
o fragments dropped (dup or out of space)
o fragments dropped after timeout
o packets forwarded
o packets not forwardable
o redirects sent

1 call to ianp error
o e=rs not g;merated because old message was ianp
Output histogram:

destination unreachable: 1

(Continued on next page.)

TCP/IP Administrator's Guide

Network Tuning and Troubleshooting

tcp:

(Continued)

o messages with bad code fields
o messages < rn:inimurn length
o bad checksums
o messages with bad length
Input histogram:

destination unreachable: 640
o message responses generated

348 packets sent
202 data packets (3661 bytes)
o data packets (0 bytes) retransmitted
101 ack-only packets (60 delayed)
o l.lRG only packets
o window probe packets
o window update packets
45 control packets

411 packets received
233 acks (for 3654 bytes)
19 duplicate acks
o acks for unsent data
200 packets (1677 bytes) received in-sequence
o carpletely duplicate packets (0 bytes)
o packets with sane dup. data (0 bytes duped)
9 out-of-order packets (0 bytes)
o packets (0 bytes) of data after window
o window probes
o window update packets
o packets received after close
o discarded for bad checksums
o discarded for bad header offset fields
o discarded because packet too short

25 connection requests
12 connection accepts
21 connections established (including accepts)
72 connections closed (including 0 drops)
16 embtyOnic connections dropped
233 segments updated rtt (of 259 attempts)
o retransmit timeouts

o connections dropped by rexmit timeout

(Continued on next page.)

Network Administration 1-25

Network Tuning and 'froubleshooting

ucIp:

1-26

(Continued)

o persist timeouts
o keepalive tiIooouts

o keepali ve probes sent
o connections dropped by keepalive

o connections lingered
Olinger tiIoors expired
Olinger tiIoors cancelled
Olinger tiIoors aborted by signal

o incanplete headers
o bad data length fields
o bad checksums

TCP/IP Administrator's Guide

Chapter 2

Introduction to sendmail

Introduction 2-1

Communicating with sendmail 2-2
User Interface Program 2-2
SMTP over Pipes 2-3
SMTP over a Berkeley-Style Socket 2-3

Overview of sendmail Operation 2-4
Argument Processing and Address Parsing 2-4
Collecting Messages 2-4
Delivering Messages 2-5
Queueing for Retransmission 2-5
Return to Sender 2-5
Editing the Message Header 2-5
The Configuration File 2-5

Sendmail Implementation 2-7
Sendmail and Arguments 2-7
Mailing to Files and Programs 2-7
Aliasing, Forwarding and Including Mail 2-8
Collecting Messages 2-9
Delivering Messages 2-10
Queued Messages 2-10

Configuration 2-11
Macros 2-11
Header Declarations 2-12
Mailer Declarations 2-12
Rules for Rewriting an Address 2-12
Setting Options 2-12

Comparing sendmail with Other Mail Programs 2-13
Comparing sendmail with delivermail 2-13
Comparing sendmail with MMDF 2-14
Sendmail and the Message-Processing Module 2-14

Introduction

Introduction
The sendmail program acts as a central "post office" which routes inter­
network mail. Such mail has more complex addresses than local mail or
mail within a single network, because the various networks which com­
pose an internetwork often have different address standards which must
be reinterpreted if the mail is to be routed correctly. The sendmail pro­
gram interprets and translates addresses to ensure that mail reaches the
intended destination.

The sendmail program does not interface with the user. Neither does it
perform the actual mail delivery. Rather, it collects a message generated
by a user interface program such as UNIX mail(C), edits the message as
required by the destination network, and calls appropriate mailers to carry
out the mail delivery or queueing for network transmission. This allows
the insertion of new mailers at minimum cost. The sendmail program is
designed to interface with such mail delivery channels as UUCP and
SMTP (Simple Mail Transfer Protocol).

Introduction to sendmail 2-1

Communicating with sendmail

Communicating with sendmail
There are several ways in which sendmail can communicate with the out­
side world, both in receiving and in sending mail:

• the conventional UNIX argument vector/return status (that is, a
user interface program which invokes sendmail)

• SMTP (Simple Mail Thmsfer Protocol) over a pair of UNIX pipes

• SMTP over a Berkeley-style socket

These methods are discussed in the sections that follow.

User Interface Program

This technique is the standard UNIX method for communicating with the
process. In this method, a user interface program invokes sendmail. A
list of recipients is sent in the argument vector (that is, the list of argu­
ments), and the message body is sent on the standard input. Anything that
the mailer prints is simply collected and sent back to the sender if there
were any problems. The Return or Exit status from the mailer is collected
after the message is sent, and a diagnostic is printed if appropriate.

Here is an example which illustrates the concept of argument vectors:

main (argc, argv)
int argc; /* Number of arguments */
char *argv[];
{

/* argument vector (list of arguments) */

int i;

for (i = 1; i < argc, i++)
printf (%s%c, argv [i], (i<argc-l) ?

exit (0);
'\n') ;

Since argv[O] is the name by which the program was invoked, argc will
be at least 1.

2-2 TCP/IP Administrator's Guide

Communicating with sendmail

SMTP over Pipes

The Simple Mail Transfer Protocol (SMTP) can be used to run an interac­
tive lock-step interface with the mailer. A subprocess is still created, but
no recipient addresses are passed to the mailer via the argument list.
Instead, they are passed one at a time in commands sent to the process's
standard input. Anything appearing on the standard output must be a
reply code in a special fonnat. The pipes are between the parent process
and the child (sub)process's stdout and stdin. (The interactive lock-step
interface is the interactive control between the parent process and the
subprocess.) For more infonnation on SMTP, see its definition in
RFC821. There is also some related material in RFC822.

SMTP over a Berkeley-Style Socket

This technique is similar to the previous one, except that it uses a
Berkeley-style socket. This method is exceptionally flexible, as it is not
necessary for the mailer to reside on the same machine. This technique is
nonnally used to connect to a sendmail process on a different machine.

Introduction to sendmail 2-3

Overview of sendmail Operation

Overview of send mail Operation
When a sender wants to send a message, a request is issued to sendmail
using one of the three methods described above. The sendmail program
operates in two distinct phases. During the first phase, it collects and
stores the message. During the second phase, the message is delivered. If
errors occur during the second phase, sendmail creates and returns a new
message describing the error. Alternatively, it may return a status code to
indicate what went wrong.

Argument Processing and Address Parsing

If sendmail is called using SMTP over pipes or through a socket, the fol­
lowing sequence occurs. The arguments are first scanned and option spe­
cifications are processed. Recipient addresses are then collected, either
from the command line or from the SMTP command RCPT (recipient),
and a list of recipients is created. Aliases are expanded at this point. This
includes any aliases that are part of a mailing list. At this stage, as much
validation of the addresses as possible is done. Syntax is checked and
local addresses are verified, but detailed checking of host names and
addresses is deferred until delivery. Forwarding is also performed as the
local addresses are verified.

The sendmail program appends each address to the recipient list after
parsing the recipient list. When a name is a1iased or forwarded, the old
name is retained in the list, and a flag is set that tells the delivery phase to
ignore this recipient. This list is kept free from duplicates, preventing
alias loops and duplicate messages from being delivered to the same reci­
pient, as might occur if a person is in two groups.

Collecting Messages

The sendmail program collects the message after the address parsing is
complete. The message should have a header at the beginning. No for­
matting requirements are imposed on the message, except that they must
be lines of text; binary data is not allowed. The header is parsed and
stored in memory, and the body of the message is saved in a temporary
file.

To simplify the program interface, the message is collected even if no
addresses are valid. The message is then returned to the sender with an
error.

2-4 TCPIIP Administrator's Guide

Overview of sendmail Operation

Delivering Messages

For each unique mailer and host in the recipient list, sendmail calls the
appropriate mailer. Each mailer invocation sends to all users receiving
the message on one host. Mailers that accept only one recipient at a time
are handled accordingly.

The message is sent to themailer.using one of the same three interfaces
used to submit a message to sendmail. Each copy of the message is
prepended by a customized header. The mailer status code is caught and
checked, with a suitable error message given as appropriate. The exit
code must conform to a system standard; otherwise, a generic message
such as "Service unavailable" is given.

Queueing for Retransmission

If the mailer returns a status code that indicates the possibility of being
able to handle the mail later, sendmail puts the mail on the queue and
tries again later.

Return to Sender

If errors occur during processing, sendmail returns the message to the
sender for retransmission. If the user agent (mail) detects the error, then
it will be put in the dead. letter file located in the sender's home directory.
If a sendmail server is connecting with a sendmaiI client on another ma­
chine, then the user is presumed to have become detached from the tran­
saction, and so the message is mailed back to them.

Editing the Message Header

A certain amount of editing occurs automatically to the message header.
Header lines can be inserted under control of the configuration file. Some
lines can be merged. For example, a "From:" line and a "Full-name:"
line can be merged under certain circumstances.

The Configuration File

Almost all configuration information for sendmaiI is read at runtime from
the Ascn file /usr/lib/sendmail.cj. This file has macro definitions encoded

Introduction to sendmail 2-5

Overview of sendmail Operation

in it. These define such details as the value of macros used internally,
header declarations, mailer definitions and address rewriting rules.

The header declarations are used to tell sendmail the fonnat of header
lines that will be processed specially. For example, any lines that are
added or refonnatted receive special processing. The mailer definitions
give infonnation such as the location and characteristics of each mailer.
The address rewriting rules enable sendmail to be highly configurable
and customizable, though this comes at the cost of some complexity. See
the chapter "Installing and Operating sendmail" for more infonnation on
the sendmail configuration file.

2-6 TCP/IP Administrator's Guide

Sendmail Implementation

Sendmail Implementation
The following sections contain infonnation on the implementation of the
sendmail program.

Sendmail and Arguments

Arguments to sendmail can be flags and addresses. The sendmail pro­
gram is initially invoked through a command line in the file fete/tep. Vari­
ous flags can be set on this command line to control different processing
options. For example, there are flags to run in ARPANET mode, to run as
a daemon, to initialize the alias database, to use the SMTP protocol, and
many other options. Control messages can also be sent to sendmail while
it is operating.

Address arguments can be given following flag arguments, unless you are
running in SMTP mode. These addresses follow the syntax in RFC822
for ARPANET address fonnats. Briefly, the fonnat is as follows:

• Anything in parentheses is thrown away (as a comment).

• Arguments in angle brackets « » are preferred over anything
else. This rule implements the ARPANET standard. This means
that addresses of the following fonn will send to the electronic ma­
chine-address rather than the human user name.

user name <machine-address>

• Double quotes (") quote phrases; backslashes (\) quote charac­
ters. Backslashes are more powerful in that they will cause other­
wise equivalent phrases to compare differently.

Parentheses, angle brackets, and double quotes must be properly balanced
and nested.

Mailing to Files and Programs

Any address passing through the initial parsing algorithm as a local
address (that is, not appearing to be a valid address for another mailer) is
scanned for two special cases. If prefixed by a vertical bar (I), the rest of
the address is processed as a shell command. If the user name begins
with a slash mark (/), the name references the name of a file instead of a
login name. .

Introduction to sendmail 2-7

Sendmaillmplementation

Files that have setuid or setgid bits set but no execute bits set have those
bits honored if sendmail is being run by root. For example, if the file per­
missions are rwSrw-r-- or rw-rwSr-, then these file pennission bits will
be honored. However, if any execute bits are set, such as rwsr-xc--, then
the read and write pennissions will not be honored. (See 1s(C) and
chmod(C) for more infonnation on file pennissions.)

Aliasing, Forwarding and Including Mail

The sendmail program reroutes mail in any of the following three ways:

• by aliasing

• by forwarding

• by inclusion

Aliasing applies across the entire system. Forwarding allows all users to
reroute incomIng mail destined for their accounts. Inclusion directs send­
mail to read a file for a list of addresses. Forwarding is nonnally used in
conjunction with aliasing. Each of these methods is described in more
detail in the next three sections.

Aliasing

Aliasing matches names to address lists using a system-wide file. This
file is indexed to speed access. Only names that parse as local are
allowed as aliases. This guarantees a unique key. The alias file is usually
configured to be lusrlliblaliases. This file is not in the same fonnat as the
alias file lusrlIiblmaillaliases. The identity of the alias file is configured
through the sendmail.cf file. (See the chapter "Installing and Operating
sendmail" for more infonnation on alias files.)

Forwarding

After aliasing, recipients that are local and valid are checked for the
existence of a forward file in their home directory. If one exists, the mes­
sage is not sent to that user, but rather to the list of users in that file.
Often, this list will contain only one address, and the feature will be used
for network mail forwarding.

Forwarding also pennits a user to specify a private incoming mailer. For
example, forwarding to:

II I lusr/local/newmail myname"

will use a different incoming mailer.

2-8 TCP/IP Administrator's Guide

Sendmail Implementation

Including

The syntax for including a file is:

: include: pathname

An address of this fonn reads the file specified by pathname and sends to
all users listed in that file.

The intention is not to support direct use of this feature, but rather to use
this as a subset of aliasing. In the following example, the fonn of the
alias used is a method of letting a project maintain a mailing list without
interaction with the system administration, even if the alias file is pro­
tected.

project: :include:/usr/project/userlist

It is not necessary to rebuild the index on the alias database when a list of
this type is changed. All that is needed is to edit the include file to reflect
the changes. In this example, the include file is lusrlprojectluserlist.

Collecting Messages

Once all recipient addresses are parsed and verified, the message is col­
lected. The message comes in two parts. These parts are:

• the message header

• the message body

The two parts are separated by a blank line.

The header is fonnatted as a series of lines of the fonn:

field-name: field-value

Field-value can be split across lines by starting the lines that follow with
a space or a tab. Some header fields have special internal meaning, in
which case they are subject to special processing. Other headers are sim­
ply passed through. Some header fields, such as time stamps, may be
added automatically.

The message body is a series of text lines. It is completely uninterpreted
and untouched by sendmail, except that lines beginning with a dot (.)
have the dot doubled when transmitted over an SMTP channel. This extra
dot is stripped by the receiver. (SMTP uses lines beginning with a dot to
signal the end of the message.)

Introduction to sendmail 2-9

Sendmail Implementation

Delivering Messages

The send queue is sequenced by the receiving host before transmission in
order to implement message batching. Each address is marked as it is
sent, and so rescanning the list is safe. An argument list is built as the
scan proceeds. Mail to files is detected during the scan of the send list.

After a connection is established, sendmail makes the changes to the
header necessary for correct interpretation by a particular mailer and
sends the result to that mailer. If any mail is rejected by the mailer, a flag
is set to invoke the return-to-sender function after all delivery completes.

Queued Messages

If the mailer returns a "temporary failure" exit status, the message is
queued. A control file is used to describe the recipients to be sent to and
various other parameters. This control file is fonnatted as a series of
lines, each describing a sender, a recipient, the time of submission, or
some other significant parameter of the message. The header of the mes­
sage is stored in the control file, so that the associated data file in the
queue is just the temporary file that was originally collected.

2-10 TCP/IP Administrator's Guide

Configuration

Configuration
Configuration is controlled primarily by the configuration file
lusrlliblsendmail.cf, which is read at startup. The sendmail program
should not need to be recompiled unless it is necessary to perfonn any of
the following:

• Change operating systems (V6, V7/32V, 4BSD).

• Remove or insert the DBM (UNIX database) library.

• Change ARPANET reply codes.

• Add header fields requiring special processing.

Adding mailers and changing parsing (that is, rewriting) or routing infor­
mation do not require recompilation of sendmail. Instead, these changes
are made in the configuration file.

If the mail isbeingsentbyalocaluser.andthefile.mailcf exists in the
sender's home directory, that file is read as a configuration file after the
system configuration file. The primary use of this feature is to add header
lines.

The configuration file encodes macro definitions, header definitions,
mailer definitions, rewriting rules, and options. The following sections
contain a brief description of some of the infonnation contained in the
sendmail configuration file. See the chapter "Installing and Operating
sendmail" for more infonnation on the configuration file.

Macros

Macros can be used in three ways. They can be used to transmit unstruc­
tured textual infonnation into the mail system. An example of this is the
name that sendmail uses to identify itself in error messages. Macros can
be used to transmit infonnation from sendmail to the configuration file in
creating other fields (such as argument vectors to mailers). Examples are
the name of the sender, and the host and user of the recipient. Other mac­
ros are unused internally. These macros can be used as shorthand in the
configuration file.

Introduction to sendmail 2-11

Configuration

Header Declarations

Header declarations infonn send mail of the fonnat of known header
lines. Knowledge of a few header lines is built into sendmail, such as the
From: and Date: lines.

Most configured headers will automatically be inserted in the outgoing
message if they don't exist in the incoming message. Certain headers are
suppressed by some mailers.

Mailer Declarations

Mailer declarations tell sendmail of the various mailers available to it.
The mailer declaration specifies the internal name of the mailer, the path­
name of the program to call, some of the flags associated with the mailer,
and an argument vector to be used in the call to the mailer.

Rules for Rewriting an Address

The heart of address parsing in sendmail is a set of rewriting rules. These
are an ordered list of pattern-replacement rules, which are applied to each
address. These rewriting rules are contained in the configuration file for
sendmail. The configuration file also supports the editing of addresses
into different fonnats. For example, an address of the fonn:

ucsfcgl!tef

might be mapped into:

tef@ucsfcgl.UUCP

to confonn to the syntax of a different domain. Translations can also be
done in the opposite direction.

Setting Options

There are several options that can be set from the configuration file.
These include the patbnames of various support files, timeouts, default
modes and so forth.

2-12 TCP/IP Administrator's Guide

Comparing sendmail with Other Mail Programs

Comparing send mail with Other Mail
Programs
The remainder of this chapter compares sendmail with three other mail
programs:

• delivermail

• MMDF (Multichannel Memorandum Distribution Facility)

• MPM (Message Processing Module)

These comparisons are provided for those who are familiar with these
other mail routing programs.

Comparing sendmail with delivermail

The sendmail program is an outgrowth of delivermail. The primary
differences are:

• Configuration information is not compiled in. This change
simplifies many of the problems of moving to other machines. It
also simplifies debugging of new mailers.

• Address parsing is more flexible. For example, delivermail only
supported one gateway to any network, whereas sendmail can be
sensitive to host names and reroute to different gateways.

• The forward and include features of sendmail eliminate the
requirement that the system alias file be writable by any user (or
that an update program be written, or that the system administra­
tion make all changes).

• The sendmail program supports message batching across networks
when a message is being sent to multiple recipients.

• A mail queue is provided in sendmait Mail that cannot be
delivered immediately but can potentially be delivered later is
stored in this queue for a later retry. The queue also provides a
buffer against system crashes; after the message has been col­
lected, it may be reliably redelivered even if the system crashes
during the initial delivery.

Introduction to sendmail 2-13

Comparing sendmail with Other Mail Programs

• The sendmail program uses the networking support of 4.2BSD,
which provides a direct interface to networks such as ARPANET
or Ethernet using SMTP (the Simple Mail transfer Protocol) over a
TCP/IP connection.

Comparing sendmail with MMDF

The Multichannel Memorandum Distribution Facility (MMDF) spans a
wider problem set than sendmail. For example, the domain of MMDF
includes a "phone network" mailer, whereas sendmail calls on pre­
existing mailers in most cases.

MMDF and sendmail both support aliasing, customized mailers, message
batching, automatic forwarding to gateways, queueing, and retransmis­
sion. MMDF supports two-stage timeout, which send mail does not sup­
port. (MMDF uses two-stage timeout when routing mail through ma­
chines to users. If a message can't be forwarded to a particular machine
or to a particular user on a machine, a warning is sent back to the mail
message sender. This is stage 1. At some future time (configurable by
the administrator), the message is relayed again. If it fails, a failure mes­
sage is returned to the sender, and MMDF makes no further attempts to
resend the original message. "This is stage 2.)

The configuration for MMDF is compiled into the code.

Since MMDF does not consider backwards compatibility as a design
goal, the address parsing is simpler but much less flexible.

It is somewhat harder to integrate a new channel into MMDF. In particu­
lar, MMDF must know the location and format of host tables for all chan­
nels, and each channel must speak a special protocol. This allows MMDF
to do additional verification (such as verifying host names) at submission
time.

MMDF strictly separates the submission and delivery phases. Although
sendmail has the concept of each of these stages, they are integrated into
one program, whereas in MMDF they are split into two programs.

Sendmail and the Message-Processing Module

The Message Processing Module (MPM) matches sendmail closely in
terms of its basic architecture. However, like MMDF, the MPM includes
the network interface software as part of its domain.

2-14 TCP/IP Administrator's Guide

Comparing sendmail with Other Mail Programs

MPM also postulates a duplex channel to the receiver, as does MMDF.
This allows simpler handling of errors by the mailer than is possjble in
sendmail. When a message queued by sendmail is sent, any errors must
be returned to the sender by the mailer itself. Both MPM and MMDF
mailers can return an immediate error response, and a single error pro­
cessor can create an appropriate response.

MPM prefers passing the message as a structured object, with {type,
length, value} triples. Such a convention requires a much higher degree
of cooperation between mailers than is required by sendmail. MPM also
assumes a universally agreed-upon internet name space (with each
address in the form of a net-host-user tuple), which sendmail does not.

Introduction to sendmail 2-15

Chapter 3

Installing and Operating
sendmail

Introduction 3-1

Basic Installation 3-2
Off-the-Shelf Configurations 3-2
Installation 3-3

Quick Configuration Startup 3-4

The System Log 3-5
Fonnat 3-5
Levels 3-5

The Mail Queue 3-6
Printing the Queue 3-6
Fonnat of Queue Files 3-6
Forcing the Queue 3-8

The Alias Database 3-10
Rebuilding the Alias Database 3-1.0
Potential Problems 3-11

Per-User Forwarding (.forward Files) 3-12

Special Header Lines 3-13
Return-Receipt-to: 3-13
Errors-To: 3-13
Apparently-To: 3-13

Arguments 3-14
Queue Interval 3-14
Daemon Mode 3-14
Forcing the Queue 3-14
Debugging 3-14
Trying a Different Configuration File 3-15
Changing the Values of Options 3-15

1\ming 3-16
Timeouts 3-16
Read Timeouts 3-16
Forking During Queue Runs 3-17
Queue Priorities 3-17
Delivery Mode 3-18
File Modes 3-18

The Configuration File 3-20
The Syntax 3-20
The Semantics 3-23
The "en;or" Mailer 3-29
Building a Configuration File from Scratch 3-29

Command Line Flags 3-35

Configuration Options 3-37

Mailer Flags 340

Summary of Support Files 3-42

Introduction

Introduction
The sendmail program implements a general purpose internetwork mail­
routing facility under the UNIX operating system. It is not tied to anyone
transport protocol. Its function may be likened to a crossbar switch, relay­
ing messages from one domain into another. Included as part of this pro­
cess, it can do a limited amount of message-header editing to put the mes­
sage into a format that is appropriate for the receiving domain. All of this
is done under the control of a configuration file.

Due to the requirements of flexibility for sendmall, the configuration file
can seem somewhat unapproachable. However, there are only a few
basic configurations for most sites, for which standard configuration files
have been supplied. Most other configurations can be built by adjusting
existing configuration files incrementally.

Although sendmail is intended to run without the need for monitoring, it
has a number of features that may be used to monitor or adjust the opera­
tion under unusual circumstances.

Installing and Operating sendmail 3-1

Basic Installation

Basic Installation
There are two basic steps to installing sendmail. They are:

• building the configuration table

• installing the software

The configuration table is a file that sendmail reads when it starts up.
This file describes the mailers that sendmail knows about, how to parse
addresses, how to rewrite the message header, and the settings of various
options. Although the configuration table is quite complex, a configura­
tion can usually be built by adjusting an existing off-the-shelf configura­
tion. The second step is performing the actual installation. This means
creating the necessary files and so on.

The remainder of this section describes the installation of sendmail. The
description assumes that you can use one of the existing configurations
and that the standard installation parameters are acceptable.

Off-the-Shelf Configurations

Several sample configuration files are included with this release. They
are found in the directory lusrllocalllibi sendmail. The make file in the cf
directory makes two files, node.cf and relay.cf. Node.cf is the configura­
tion to use on a host that is not a central mail router. Relay.cf should be
used on a major mail relay machine in your installation.

Once these variables are changed, the file is now ready for installation as
/usr/lib/ sendmail.cf.

The configuration file you need should be copied to a file with the same
name as your system, as in the following example:

cp relay.cf laidbak.cf

There are some variables that need to be changed in both files, and the
Tune script in the cf directory can be used to take care of this. These
variables are as follows:

3-2 TCP/IP Administrator's Guide

Basic Installation

Thnable Parameters
Parameter Value
ZZHOST Host Name
ZZRELAY Mail Relay Host Name
ZZDOMAIN Your subdomain, e.g. Lachman.
ZZDOM Your domain, e.g. COM.

You can use the Tune script to change these variables. Tune takes the
qualified hostname and the relay as arguments. It splits the hostname up
to generate ZZHOST, ZZDOMAIN, and ZZDOM.

This file is now ready for installation as lusrlliblsendmail.cf

Installation

For details about how to install the sendmail software, see the TCPIIP
Runtime Release and Installation Notes.

Installing and Operating sendmail 3-3

Quick Configuration Startup

Quick Configuration Startup
A fast version of the configuration file can be set up by using the ·bz flag,
as in the following example:

/usr/lib/sendmail -bz

This creates the file /usrllib/sendmail!c (frozen configuration). This file
is an image of sendmail' s data space after reading in the configuration
file. If this file exists, it is used instead of /usrllib/sendmail.cf The
sendmail!c file must be rebuilt manually every time sendmail.cf is
changed.

The frozen configuration file will be ignored if a ·C flag is specified or if
send mail detects that it is out of date. However, the heuristics are not
strong, and so this should not be trusted.

3-4 TCP/IP Administrator's Guide

The System Log

The System Log
The system log is entered in the file !usr!admlsyslog.

Format

Each line in the system log consists of a timestamp, the name of the ma­
chine that generated it (for logging from several machines over the ether­
net), the word "sendmail," and a message.

Levels

A large amount of infornation can be logged. The log is arranged as a
succession of levels. At the lowest level, only extremely strange situa­
tions are logged. At the highest level, even the most mundane and inin­
teresting events are recorded for posterity. As a convention, log levels
under ten are consiedered "useful;" log levels above ten are usually for
debugging purposes.

Installing and Operating sendmail 3-5

The Mail Queue

The Mail Queue
The mail queue should be processed transparently. However, you may
find that manual intervention is sometimes necessary. For example, if a
major host is down for a period of time the queue may become clogged.
Although sendmail ought to recover gracefully when the host comes up,
you may find performance unacceptably bad in the meantime.

Printing the Queue

The contents of the queue can be printed using the mailq command (or by
specifying the -bp flag to sendmail):

mailq

This produces a listing of the queue identifiers, the size of the message,
the date the message entered the queue, and the sender and recipients.

Format of Queue Files

All queue files have the form x fAA99999, where AA99999 is the ID for
this file and x is a type. The types are:

3-6

d The data file. The message body (excluding the header) is
kept in this file.

n

q

t

The lock file. IT this file exists, the job is currently being
processed, and a queue run will not process the file. For
that reason, an extraneous If file can cause a job to seem to
disappear. (It will not even time out!)

This file is created when an ID is being created. It is a
separate file to ensure that no mail can ever be destroyed
due to a race condition. It should exist for no more than a
few milliseconds at any given time.

The queue control file. This file contains the information
necessary to process the job.

A temporary file. This is an image of the qf file when it is
being rebuilt. It should be renamed to a qf file very
quickly.

TCPIIP Administrator's Guide

The Mail Queue

x A transcript file, existing during the life of a session, show­
ing everything that happens during that session.

The qf file is structured as a series of lines, each beginning with a code
letter. The lines are as follows:

D The name of the data file. There can only be one of these
lines.

H A header definition. There can be any number of these
lines. The order is important: it represents the order in the
final message. This uses the same syntax as header
definitions in the configuration file.

R A recipient address. This will normally be completely
aliased, but is actually realiased when the job is processed.
There will be one line for each recipient.

S The sender address. There can only be one of these lines.

E An error address. If any such lines exist, they represent the
addresses that should receive error messages.

T The job creation time. This is used to compute how long a
job remains in the queue undelivered, before being
returned to the sender.

P The current message priority. This is used to order the
queue. Higher numbers mean lower priorities. The prior­
ity changes as the message sits in the queue. The initial
priority depends on the message class and the size of the
message.

M A message. This line is printed by the mailq command,
and is generally used to store status information. It can
contain any text.

Installing and Operating sendmail 3-7

The Mail Queue

As an example, the following is a queue file sent to "mckee@calder" and
"wnj:"

DdfAl3557
Seric
T404261372
P132
Rmckee@calder
Rwnj
H?D?date: 23-oct-82 15:49:32-PDT (Sat)
H?F?fran: eric (Eric Allman)
H?x?full-name: Eric Allman
Hsubject: this is an exanple message
Hmessage-id: <8209232249.13557@UCBARPA.BERKELEY.ARPA>
Hreceived: by tJCBl>.RPA.BERKELEY.ARPA (3.227 [10/22/82])

id Al3557; 23-oct-82 15:49:32-PDT (Sat)
HTo: mckee@calder, wnj

This shows the name of the data file, the person who sent the message, the
submission time (in seconds since January 1,1970), the message priority,
the message class, the recipients, and the headers for the message.

Forcing the Queue

The sendmail program should run the queue automatically at intervals.
The algorithm is to read and sort the queue, and then to attempt to process
all jobs in order. When it attempts to run the job, sendmail first checks to
see if the job is locked. If so, it ignores the job.

There is no attempt to ensure that only one queue processor exists at any
time, since there is no guarantee that a job cannot take forever to process.
Due to the locking algorithm, it is impossible for one job to freeze the
queue. However, an uncooperative recipient host or a program recipient
that never returns can accumulate many processes in your system. Unfor­
tunately, there is no way to resolve this without violating the protocol.

In some cases, you may find that if a major host goes down for a couple of
days, this can create a prohibitively large queue. This situation will cause
sendmail to spend an inordinate amount of time sorting the queue. This
situation can be fixed by moving the queue to a temporary place and
creating a new queue. The old queue can be run later, when the offimding
host returns to service.

3-8 TCP/IP Administrator's Guide

The Mail Queue

To do this, it is acceptable to move the entire queue directory:

cd /usr/spool
mv mqueue omqueue; mkdir mqueue; chmod 777 mqueue

You should then kill the existing daemon (since it will still be :,rocessing
in the old queue directory) and create a new daemon.

To run the old mail queue, run the following command:

/usr/lib/sendmail -oQ/usr/spool/omqueue -q

The -oQ flag specifies an alternate queue directory, and the -q flag says
just to run every job in the queue. If you have a tendency toward voyeu­
rism, you can use the -v flag to watch what is going on.

When the queue is finally emptied, you can remove the directory:

nndir /usr/spooUomqueue

Installing and Operating sendmail 3-9

The Alias Database

The Alias Database
The alias database exists in two fonns. One is a text fonn, maintained in
the file lusrlliblaliases. The aliases are of the fonn

name: name], name2, ...

Only local names can be aliased. For example:

eric@rnit-xx: eric@berkeley.EDU

will not have the desired effect. Aliases can be continued by starting any
continuation line with a space or a tab. Blank lines and lines beginning
with a pound sign (#) are comments.

The second fonn is processed by the dbm(S) library. This fonn is in the
files lusrlliblaliases.dir and lusrlliblaliases.pag. This is the fonn that
sendmail actually uses to resolve aliases. This technique is used to
improve perfonnance.

Rebuilding the Alias Database

The DBM version of the database can be rebuilt explicitly by executing
the command:

newaliases

This is equivalent to giving sendmail the -bi flag:

lusrllib/sendmail -bi

If the "0" option is specified in the configuration, sendmail will rebuild
the alias database automatically, if possible, when it is out of date. It will
do this under either or both of the following conditions:

• The DBM version of the database is mode 666.

• sendmail is running setuid to root.

Auto-rebuild can be dangerous on heavily loaded machines with large
alias files; if it might take more than five minutes to rebuild the database,
there is a chance that several processes will start the rebuild process
simultaneously.

3-10 TCPIIP Administrator's Guide

The Alias Database

Potential Problems

There are a number of problems that can occur with the alias database.
They all result when a sendmail process accesses the DBM version while
it is only partially built. This can happen under two circumstances:
either one process accesses the database while another process is rebuild­
ing it, or the process rebuilding the database dies (due to being killed or a
system crash) before completing the rebuild.

The sendmail program includes two techniques to try to relieve these
problems. First, it ignores interrupts while rebuilding the database; this
avoids the problem of someone aborting the process and leaving a par­
tially rebuilt database. Second, at the end of the rebuild it adds an alias of
the form:

@: @

(Note that this is not normally legal.) Before sendmail will access the
database, it checks to ensure that this entry exists. The sendmail program
will wait for this entry to appear, at which point it will force a rebuild
itself.

List Owners

If an error occurs on sending to a certain address, say "x," sendmail will
look for an alias of the form "owner-x" to receive the errors. This is typi­
cally useful for a mailing list where the submitter of the list has no con­
trol over the maintenance of the list itself; in this case the list maintainer
would be the owner of the list. For example:

unix-wizards: eric@ucbarpa, wnj@rnonet, nosuchuser,
sarn@rnatisse

owner-unix-wizards: eric@ucbarpa

This would cause "eriC@ucbarpa" to get the error that will occur when
someone sends to unix-wizards, due to the inclusion of "nosuchuser" on
the list.

Installing and Operating sendmail 3-11

Per-User Forwarding (.forward Files)

Per-User Forwarding (.forward Files)
As an alternative to the alias database, any user can put a file with the
name forward in his or her home directory. If this file exists, sendmail
redirects mail for that user to the list of addresses listed in the forward
file. For example, if the home directory for user mckee has a forward file
with contents:

mckee@ernie
kirk@calder

then any mail arriving for "mckee" will be redirected to the specified
accounts.

3-12 TCP/IP Administrator's Guide

Special Header Lines

Special Header Lines
Several header lines have special interpretations defined by the configura­
tion file. Others have interpretations built into sendmail that cannot be
changed without changing the code. These built-ins are described here.

Return-Receipt-to:

If this header is sent, a message will be sent to any specified addresses
when the final delivery is completed, that is, when successfully delivered
to a mailer with the I flag (local delivery) set in the mailer descriptor.

Errors-To:

If errors occur anywhere during processing, this header will cause error
messages to go to the listed addresses rather than to the sender. This is
intended for mailing lists.

Apparently-To:

If a message comes in with no recipients listed in the message (in a To:,
Cc:, or Bcc: line), then sendmail will add an "Apparently-To:" header
line for any recipients it is aware of. This is not put in as a standard reci­
pient line to warn any recipients that the list is not complete.

Installing and Operating sendmail 3-13

Arguments

Arguments
Some important arguments of the sendmail program are described here.

Queue Interval

The amount of time between forking a process to run through the queue is
defined by the -q flag. If you run in mode r or a, this can be relatively
large, since it will only be relevant when a host that was down comes
back up. If you run in q mode, it should be relatively short, since it
defines the maximum amount of time that a message may sit in the queue.

Daemon Mode

If you allow incoming mail over an IPC connection, you should have a
daemon running. This should be set by your letclrc file using the -bd flag.
The -bd flag and the -q flag may be combined in one call:

/usr/lib/sendmail -bd -q3Om

Forcing the Queue

In some cases, you may find that the queue has gotten clogged for some
reason. You can force a queue run using the -q flag (with no value). It is
entertaining' to use the -v flag (verbose) when this is done, to watch what
happens:

/usr/lib/sendmail -q -v

Debugging

There is a fairly large number of debug flags built into sendmail. Each
debug flag has a number and a level, where higher levels cause more in­
formation to be printed out. The convention is that levels greater than
nine are not required. They print out so much information that you would
not normally want to see them, except for debugging that particular piece
of code. Debug flags are set using the -d option. The syntax is:

3-14 TCP/IP Administrator's Guide

debug-flag:
debug-list:
debug-option:
debug-range:
debug-level:

-d debug-list
debug-option [, debug-option]
debug-range [. debug-level]
integer I integer - integer
integer

where spaces are for reading ease only. For example,

-d12
-dI2.3
-d3-17
-d3-17.4

Set flag 12 to level 1
Set flag 12 to level 3
Set flags 3 through 17 to level 1
Set flags 3 through 17 to level 4

Arguments

For a complete list of the available debug flags you will have to look at
the code. (They are too dynamic to keep this documentation up to date.)

Trying a Different Configuration File

An alternative configuration file can be specified using the -C flag. The
following example uses the configuration file test.cf instead of the default
lusrl lib/ sendmail.cf.

/usr/lib/sendmail -Ctest.c!

If the -C flag has no value, it defaults to sendmail.cf in the current direc­
tory.

Changing the Values of Options

Options can be overridden using the -0 flag. For example:

/usr/lib/sendmail -oT2m

sets the T (timeout) option to two minutes for this run only.

Installing and Operating sendmail 3-15

Tuning

Tuning
There are a number of configuration parameters you may want to change,
depending on the requirements of your site. Most of these are set using an
option in the configuration file. For example, the line "OT3d" sets option
"T" to the value "3d" (three days).

Most of these options default appropriately for most sites. However, sites
having very high mail loads may find they need to tune them as appropri­
ate for their mail load. In particular, sites experiencing a large number of
small messages, many of which are delivered to many recipients, may
find that they need to adjust the parameters dealing with queue priorities.

Timeouts

All time intervals are set using a scaled syntax. For example, "10m"
represents ten minutes, whereas "2h3Om" represents two-and-a-half
hours. The full set of scales is:

s seconds
m minutes
h hours
d days
w weeks

The argument to the -q flag specifies how often a subdaemon will run the
queue. This is typically set to between fifteen minutes and one hour.

Read Timeouts

It is possible to time out when reading the standard input or when reading
from a remote SMTP server. Technically, this is not acceptable within
the published protocols. However, it might be appropriate to set it to
something large (such as an hour) in certain environments. This will
reduce the chance of large numbers of idle daemons piling up on your
system. This timeout is set using the r option in the configuration file.

3-16 TCP/IP Administrator's Guide

Tuning

Message Timeouts

After sitting in the queue for a few days, a message will time out. This
means that if a message cannot be delivered for some reason, it is
returned to the sender. This ensures that at least the sender is aware that
the message was not sent. The timeout is typically set to three days. This
timeout is set using the T option in the configuration file.

The time of submission is set in the queue, rather than the amount of time
left until timeout. As a result, you can flush messages that have been
hanging for a short period by running the queue with a short message
timeout. For example:

/usr/lib/sendmail -oTld -q

will run the queue and flush anything that is one day old.

Forking During Queue Runs

When the Y option is set, sendmail will fork before each individual mes­
sage while running the queue. This prevents sendmail from consuming
large amounts of memory, and so it may be useful in memory-poor
environments. However, if the Y option is not set, sendmail will keep
track of hosts that are down during a queue run, which can improve per­
formance dramatically.

Queue Priorities

Every message is assigned a priority when it is first instantiated, consist­
ing of the message size (in bytes) offset by the message class multiplied
by the "work class factor" and the number of recipients multiplied by the
"work recipient factor." The priority plus the creation time of the mes­
sage (in seconds since January 1, 1970) are used to order the queue.
Higher numbers for the priority mean that the message will be processed
later, when running the queue.

The message size is included so that large messages are penalized rela­
tive to small messages. The message class allows users to send high­
priority messages by including a "Precedence:" field in their message;
the value of this field is looked up in the P lines of the configuration file.
Since the number of recipients affects the size of load a message presents
to the system, this is also included into the priority.

Installing and Operating sendmail 3-17

Thning

The recipient and class factors can be set in the configuration file by using
the y and z options respectively. They default to 1000 (for the recipient
factor) and 1800 (for the class factor). The initial priority is:

pri = size - (class * z) + (nrcpt * y)

(Remember, higher values for this parameter actually mean that the job
will be treated with lower priority.)

The priority of a job can also be adjusted each time it is processed (that is,
each time an attempt is made to deliver it) using the "work time factor,"
set by the Z option. This is added to the priority, so it normally decreases
the precedence of the job, on the grounds that jobs that have failed many
times will tend to fail again in the future.

Delivery Mode

There are a number of delivery modes for sendmail, and they are set by
the d configuration option. These modes specify how quickly mail will
be delivered. Legal modes are:

i deliver interactively (synchronously)
b deliver in background (asynchronously)
q queue only (do not deliver)

There are tradeoffs. Mode "i" passes the maximum amount of informa­
tion to the sender, but is hardly ever necessary. Mode "q" puts the mini­
mum load on your machine, but means that delivery may be delayed for
up to the queue interval. Mode "b" is probably a good compromise.
However, this mode can cause large numbers of processes if you have a
mailer that takes a long time to deliver a message.

File Modes

There are several files involved with sendmail that can have a number of
modes. The modes depend on the functionality you want and the level of
security you require.

3-18 TCP/IP Administrator's Guide

Tuning

To suid or not to suid?

The sendmail program can safely be made setuid to root. At the point
where it is about to exec(S) a mailer, it checks to see if the userid is zero.
If so, it resets the userid and groupid to a default (set by the u and g
options). (This can be overridden by setting the S flag to the mailer for
mailers that are trusted and must be called as root.) However, this will
cause mail processing to be accounted to root rather than to the user send­
ing the mail.

Temporary File Modes

The mode of all temporary files that sendmail creates is determined by
the F option. Reasonable values for this option are 0600 and 0644. If the
more permissive mode is selected, it will not be necessary to run send­
mail as root at all (even when running the queue).

Should My Alias Database Be Writable?

The database that sendmail actually uses is represented by two files.
These files are:

• aliases.dir

• aliases.pag

Both files are located in lusrllib. The mode on these files should match
the mode on lusrlliblaliases. If aliases is writable and the DBM files
(aliases.dir and aliases.pag) are not, users will be unable to reflect their
desired changes through to the actual database. However, if aliases is
read-only and the DBM files are writable, a slightly sophisticated user
can arrange to steal mail anyway.

If your DBM files are not writable by the world or you do not have auto­
rebuild enabled (with the D option), then you must be careful to recon­
struct the alias database each time you change the text version:

newaliases

If this step is ignored or forgotten, any intended changes will also be
ignored or forgotten.

Installing and Operating sendmail 3-19

The Configuration File

The Configuration File
This section describes the configuration file in detail, including hints on
how to write one of your own if you have to.

There is one point that should be made clear immediately: the syntax of
the configuration file is designed to be reasonably easy to parse, since this
is done every time sendmail starts up. As a result, the configuration file
is not particularly easy for a human to read or write.

An overview of the configuration file is given first, followed by details of
the semantics.

The Syntax

The configuration file is organized as a series of lines, each of which
begins with a single character defining the semantics for the rest of the
line. Lines beginning with a space or a tab are continuation lines
(although the semantics are riot well defined in many places). Blank lines
and lines beginning with a pound symbol (#) are comments.

Rand S • Rewriting Rules

The core of address parsing is the rewriting rules. These are an ordered
production system. The sendmall command scans through the set oj
rewriting rules looking for a match on the left hand side (LHS) of the rule.
When a rule matches, the address is replaced by the right hand side (RHS;
of the rule.

There are several sets of rewriting rules. Some of the rewriting sets are
used internally and must have specific semantics. Other rewriting sets de
not have specifically assigned semantics, and may be referenced by the
mailer definitions or by other rewriting sets.

The syntax of these two commands are:

Sn

Sets the current ruleset being collected to n. If you begin a ruleset mon
than once, it deletes the old definition.

3-20 TCP/IP Administrator's Guidt

The Configuration File

Rlhs rhs comments

The fields must be separated by at least one tab character; there may be
embedded spaces in the fields. The lhs is a pattern that is applied to the
input. If it matches, the input is rewritten to the rhs. The comments are
ignored.

D - Define Macro

Macros are named with a single character. These may be selected from
the entire ASCII set, but user-defined macros should be selected from the
set of uppercase letters only. Lowercase letters and special symbols are
used internally.

The syntax for macro definitions is:

Dxval

where x is the name of the macro and val is the value it should have.
Macros can be interpolated in most places using the escape sequence $x.

C and F - Define Classes

Classes of words may be defined to match on the left-hand side of rewrit­
ing rules. For example, a class of all local names for this site might be
created so that attempts to send to oneself can be eliminated. These can
either be defined directly in the configuration file or read in from another
file. Classes may be given names from the set of uppercase letters.
Lowercase letters and special characters are reserved for system use.

The syntax is:

Cc word1 word2 ...
Fcfile

The first form defines the class c to match any of the named words. It is
permissible to split them among multiple lines; for example, the two
forms:

and:

CHmonet ucbmonet

CHmonet
CHucbmonet

Installing and Operating sendmail 3-21

The Configuration File

are equivalent. The second form reads the elements of the class c from
the named file.

M - Define Mailer

Programs and interfaces to mailers are defined in this line. The format is:

Mname, (field=value) *

where name is the name of the mailer (used internally only) and the
"field=name" pairs define attributes of the mailer. Fields are:

Path
Flags
Sender
Recipient
Argv
Eol
Maxsize

The pathoame of the mailer
Special flags for this mailer
A rewriting set for sender addresses
A rewriting set for recipient addresses
An argument vector to pass to this mailer
The end-of-line string for this mailer
The maximum message length for this mailer

Only the first character of the field name is checked.

H - Define Header

The format of the header lines that sendmail inserts into the message is
defined by the H line. The syntax of this line is:

H[?l7iflags?]hname: htemplate

Continuation lines in this spec are reflected directly into the outgoing
message. The htemplate is macro-expanded before insertion into the
message. If the mflags (surrounded by question marks) are specified, at
least one of the specified flags must be stated in the mailer definition for
this header to be automatically output. If one of these headers is in the
input, it is reflected to the output, regardless of these flags.

Some headers have special semantics, described below.

o -Set Option

There are a number of "random" options that can be set from a configura­
tion file. Options are represented by single characters. The syntax of this
line is:

00 value

3-22 TCP/IP Administrator's Guide

The Configuration File

This sets option 0 to be value. Depending on the option, value may be a
string, an integer, a boolean (with legal values "t", "T", "f", or "F"; the
default is TRUE), or a time interval.

T 0 Define Trusted Users

liusted users are those who are permitted to override the sender address
using the of flag. These typically are "root," "uucp," and "network," but
in some cases it may be convenient to extend this list to include other
users, perhaps to support a separate UUCP login for each host. The syn­
tax of this line is:

Tuserl user2 ...

There may be more than one of these lines.

P 0 Precedence Definitions

Values for the "Precedence:" field may be defined using the P control
line. The syntax of this field is:

Pname=num

When the name is found in a "Precedence:" field, the message class is set
to num. Higher numbers mean higher precedence. Numbers below zero
have the special property that error messages will not be returned. The
default precedence is zero. For example, our list of precedences is:

Pfirst-class=O
Pspecial-delivery= 1 00
Pjunk=-lOO

The Semantics

This section describes the semantics of the configuration file.

Special Macros, Conditionals

Macros are interpolated using the construct $x, where x is the name of the
macro to be interpolated. In particular: lowercase letters are reserved to

Installing and Operating sendmail 3-23

The Configuration File

have special semantics, used to pass information in or out of sendmail;
some special characters are reserved to provide conditionals; and so on.

Conditionals can be specified using the syntax:

$?x textl $1 text2 $.

This interpolates textl if the macro $x is set, and text2 otherwise. The
"else" ($1) clause may be omitted.

The following macros must be defined to transmit information into send­
mail:

e The SMTP entry message
j The official domain name for this site
I The format of the UNIX from line
n The name of the daemon (for error messages)
o The set of "operators" in addresses
q default format of sender address

The $e macro is printed out when SMTP starts up. The first word must be
the $j macro. The $j macro should be in RFC821 format. The $1 and $n
macros can be considered constants, except under terribly unusual cir­
cumstances. The $0 macro consists of a list of characters that will be
considered tokens and that will separate tokens when parsing. For exam-·
pIe, if "@" were in the $0 macro, then the input "~b" would be
scanned as three tokens: "a", "@", and "b". Finally, the $q macro
specifies how an address should appear in a message when it is defaulted.
For example, on our system, these definitions are:

De$j Sendmail $v ready at $b .
DnMAILER-DAEMON
DlFrom$g $d
Do.:%@!A=/
Dqg?x ($x)$.
Dj$H.$D

An acceptable alternative for the $q macro is "$?x$x $.<$g>". These
correspond to the following two formats:

3-24

eriC@Lachman (Eric Allman)
Eric Allman <eriC@Lachman>

TCP/IP Administrator's Guide

The Configuration File

Some macros are defined by sendmail for interpolation into argv's for
mailers or for other contexts. These macros are:

a The origination date in Arpanet format
b The current date in Arpanet format
c The hop count
d The date in UNIX (ctime) format
f The sender (from) address
g The sender address relative to the recipient
h The recipient host

The queue id
p sendmail' s pid
r Protocol used
s Sender's host name
t A numeric representation of the current time
u The recipient user
v The version number of send mail
w The hostname of this site
x The full name of the sender
z The home directory of the recipient

There are three types of dates that can be used. The $a and $b macros are
in Arpanet format; $a is the time as extracted from the "Date:" line of the
message (if there was one), and $b is the current date and time (used for
postmarks). IT no "Date:" line is found in the incoming message, $a is set
to the current time also. The $d macro is equivalent to the $a macro in
UNIX (ctime) format.

The $f macro is the id of the sender as originally determined; when you
are mailing to a specific host, the $g macro is set to the address of the
sender _relative to the recipient. For example, if I send to
"bollard@matisse" from the machine "ucbarpa," the $f macro will be
"eric" and the $g macro will be "eriC@ucbarpa."

The $x macro is set to the full name of the sender. This can be deter­
mined in several ways. It can be passed as a flag to sendmail. The
second choice is the value of the "Full-name:" line in the header if it
exists, and the third choice is the comment field of a "From:" line. If all
of these fail, and if the message is being originated locally, the full name
is looked up in the /etclpasswd file.

When sending, the $h, $u, and $z macros are set to the host, user, and
home directories (if local) of the recipient. The first two are set from the
$@ and $: parts of the rewriting rules, respectively.

The $p and $t macros are used to create unique strings (for example, for
the "Message-Id:" field). The $i macro is set to the queue id on this host;

Installing and Operating sendmail 3-25

The Configuration File

if put into the timestamp line, it can be extremely useful for tracking mes­
sages. The $v macro is set to be the version number of sendmail; this is
nonnally put in timestamps and has proved extremely useful for debug­
ging. The $w macro is set to the name of this host, if it can be deter­
mined. The $c field is set to the "hop count," that is, the number of times
this message has been processed. This can be determined by the -h flag
on the command line or by counting the timestamps in the message.

The $r and $s fields are set to the protocol used to communicate with
sendmail and the sending hostname; these are not supported in the
current version.

Special classes

The class $=w is set to be the set of all names by which this host is
known. This can be used to delete local hostnames.

The Left-Hand Side

The left-hand side of rewriting rules contains a pattern. Normal words
are simply matched directly. Metasyntax is introduced using a dollar
sign. The metasymbols are:

$* Match zero or more tokens
$+ Match one or more tokens
$- Match exactly one token
$=x Match any token in class x
$-x Match any token not in class x

H any of these match, they are assigned to the symbol $n for replacement
on the right-hand side, where n is the index in the LHS. For example, if
the LHS:

$-:$+

is applied to the input:

UCBARPA:eric

then the rule will match, and the values passed to the RHS will be:

3-26

$1 UCBARPA
$2 eric

TCP/IP Administrator's Guide

The Configuration File

The Right-Hand Side

When the left-hand side of a rewriting rule matches, the input is deleted
and replaced by the right-hand side. Tokens are copied directly from the
RHS, unless they begin with a dollar sign. Metasymbols are:

$n
$[name$]
$>n
$#mailer
$@host
$:user

Substitute indefinite token n from LHS
Canonicalize name
Call ruleset n
Resolve to mailer
Specify host
Specify user

The $n syntax substitutes the corresponding value from a $+, $-, $*, $=,
or $- match on the LHS. It can be used anywhere.

A host name enclosed between $[and $] is looked up using the gethos­
tent(3) routines and replaced by the canonical name. For example,
"$[csam$]" would become "lbl-csam.arpa", and "$[[128.32.130.2]$]"
would become "vangogh.berkeley.edu."

The $>n syntax causes the remainder of the line to be substituted as usual
and then passed as the argument to ruleset n. The final value of ruleset n
then becomes the substitution for this rule.

The $# syntax should only be used in ruleset zero. It causes evaluation of
the ruleset to terminate immediately, and it signals to send mail that the
address has completely resolved. The complete syntax is:

$#mailer$@host$:user

This specifies the {mailer, host, user} 3-tuple necessary to direct the
mailer. If the mailer is local, the host part can be omitted. The mailer
and host must be a single word, but the user can be multi-part.

A RHS can also be preceded by a $@ or a $: to control evaluation. A
$@ prefix causes the ruleset to return with the remainder of the RHS as
the value. A $: prefix causes the rule to terminate immediately, but the
ruleset to continue. This can be used to avoid continued application of a
rule. The prefix is stripped before continuing.

The $@ and $: prefixes can precede a $> spec. For example,

R$+ $:$>7$1

matches anything, passes that to ruleset seven, and continues; the $: is
necessary to avoid an infinite loop.

Installing and Operating sendmail 3-27

The Configuration File

Substitution occurs in the order described; that is, parameters from the
LHS are substituted, hostnames are canonicalized, "subroutines" are
called and, finally, $#, $@, and $: are processed.

Semantics of Rewriting Rule Sets

There are five rewriting sets that have specific semantics. These are
related as depicted by Figure 4-1.

resolved address

addr msg

D - sender domain addition
S - mailer-specific sender rewriting
R - mailer-speci fic recipient rewriting

Figure 3·1 Rewriting Set Semantics

Ruleset three should tum the address into "canonical form." This- form
should have the basic syntax:

local-part@host-domain-spec

If no "@" sign is specified, then the host-domain-spec can be appended
from the sender address (if the C flag is set in the mailer definition corre­
sponding to the sending mailer). Ruleset three is applied by sendmail
before doing anything with any address.

Ruleset zero is applied after ruleset three to addresses that are actually
going to specify recipients. It must resolve to a {mailer, host, user} triple.
The mailer must be defined in the mailer definitions from the configura­
tion file. The host is defined into the $h macro for use in the argv expan­
sion of the specified mailer.

Rulesets one and two are applied to all sender and recipient addresses,
respectively. They are applied before any specification in the mailer
definition. They must never resolve.

Ruleset four is applied to all addresses in the message. It is typically used
to translate internal to external form.

3-28 . TCPIIP Administrator's Guide

The Configuration File

Mailer Flags

There are several flags that can be associated with each mailer, each
. identified by a letter of the alphabet. Many of them are assigned seman­

tics internally. Any other flags may be used freely to assign headers con­
ditionally to messages destined for particular mailers.

The "error" Mailer

The mailer with the special name "error" can be used to generate a user
error. The (optional) host field is a numeric exit status to be returned, and
the user field is a message to be printed. For example, the entry:

$#error$:Host unknown in this domain

on the RHS of a rule will cause the specified error to be generated if the
LHS matches. This mailer is only functional in ruleset zero.

Building a Configuration File from Scratch

Building a configuration file from scratch is an extremely difficult job.
Fortunately, it is almost never necessary to do so; nearly every situation
that may come up may be resolved by changing an existing table. In any
case, it is critical that you understand what you are trying to do and come
up with a philosophy for the configuration table. This section is intended
to explain the real purpose of a configuration table and to give you some
ideas as to what your philosophy might be.

What You are Trying to Do

The configuration table has three major purposes. The first and simplest
is to set up the environment for sendmail. This involves setting the
options, defining a few critical macros, and so on. Since these are
described in other sections, we will not go into more detail here.

The second purpose is to rewrite addresses in the message. This should
typically be done in two phases. The first phase maps addresses in any
format into a canonical form. This should be done in ruleset three. The
second phase maps this canonical form into the syntax appropriate for the
receiving mailer.

The sendmail program performs this second phase in the following three
subphases: Rulesets one and two are applied to all sender and recipient
addresses, respectively. After this, you can specify per-mailer rulesets for

Installing and Operating sendmail 3-29

The Configuration File

both sender and recipient addresses. This allows mailer-specific customi­
zation. Finally, ruleset four is applied to do any default conversion to
external form.

The third purpose of the configuration table is to map addresses into the
actual set of instructions necessary to get the message delivered. Ruleset
zero must resolve to the internal form, which is in turn used as a pointer
to a mailer descriptor. This describes the interface requirements of the
mailer.

Relevant Issues

The canonical form you use should almost certainly be as specified in the
Arpanet standards documents RFC819 and RFC822.
RFC822 describes the format of the mail message itself. The sendmail
program follows this RFC closely, to the extent that many of the stan­
dards described in this document can not be changed without changing
the code. In particular, the following characters have special interpreta­
tions:

<> () "\

Any attempt to use these characters for other than their RFC822 purpose
in addresses is probably doomed to disaster.

RFC819 describes the specifics of the domain-based addressing. This is
touched on in RFC822 as well. Essentially, each host is given a name
that is a right-to-Ieft dot-qualified pseudo-path from a distinguished root.
The elements of the path need not be physical hosts; the domain is logical
rather than physical. For example, at Lachman, one legal host might be
"a.CC.Lachman.EOU"; reading from right to left, "EOU" is a top level
domain comprising educational institutions, "Lachman" is a logical
domain name, "CC" represents the Computer Center, (in this case a
strictly logical entity), and "a" is a host in the Computer Center.

When reading RFC819, be aware that there are a number of errors in it.

How to Proceed

Once you have decided on a philosophy, it is worth examining the avail­
able configuration tables to decide whether any of them are close enough
for you to steal their major parts. Even under the worst of conditions,
there is a fair amount of boilerplate that can be collected safely.

The next step is to build ruleset three. This will be the hardest part of the
job. Beware of doing too much to the address in this ruleset, because

3-30 TCP/IP Administrator's Guide

The Configuration File

anything you do will reflect through to the message. In particular, strip­
ping of local domains is best deferred, as this can leave you with
addresses with no domain specs at all. Because sendmail likes to append
the sending domain to addresses with no domain, this can change the
semantics of addresses. Also, try to avoid fully qualifying domains in this
ruleset. Although technically legal, this can lead to unpleasantly and
unnecessarily long addresses reflected into messages. The Lachman con­
figuration files define ruleset nine to qualify domain names and strip local
domains. This is called from ruleset zero to get all addresses into a
cleaner form.

Once you have ruleset three finished, the other rulesets should be rela­
tively trivial. If you need hints, examine the supplied configuration
tables.

Testing the Rewriting Rules: the -bt Flag

When you build a configuration table, you can do a certain amount of
testing using the "test mode" of sendmail. For example, you could
invoke sendmail as:

sendmail -bt -Ctest.cf

which would read the configuration file Utest.cf" and enter test mode. In
this mode, you enter lines of the form:

rwset address

where rwset is the rewriting set you want to use and address is an address
to which to apply the set. Test mode shows you the steps it takes as it
proceeds, finally showing you the address with which it ends up. You
may use a comma-separated list of rwsets for sequential application of
rules to an input; ruleset three is always applied first. For example:

1,21,4 monet:boUard

first applies ruleset three to the input Umonet:bollard." Ruleset one is then
applied to the output of ruleset three, followed similarly by rulesets
twenty-one and four.

If you need more detail, you can also use the U·d21" flag to turn on more
debugging. For example:

sendmail -bt -d21.99

turns on an incredible amount of information. A single-word address will
probably print out several pages of information.

Installing and Operating sendmail 3-31

The Configuration File

Building Mailer Descriptions

To add an outgoing mailer to your mail system, you must define the
characteristics of the mailer.

Each mailer must have an internal name. This can be arbitrary, except
that the names "local" and "prog" must be defined.

The patbname of the mailer must be given in the P field. If this mailer
should be accessed via an IPC connection, use the string "[IPC]" instead.

The F field defines the mailer flags. You should specify an "f" or "r" flag
to pass the name of the sender as a -f or -r flag, respectively. These flags
are only passed if they were passed to sendmail, so that mailers that give
errors under some circumstances can be placated. If the mailer is not
picky, you can just specify "-f $g" in the argv template. If the mailer
must be called as root, the S flag should be given. This will not reset the
userid before calling the mailer. If this mailer is local (that is, it will per­
form final delivery rather than another network hop), the I flag should be
given. Quote characters (backslashes and " marks) can be stripped from
addresses if the s flag is specified. If this is not given, they are passed
through. If the mailer is capable of sending to more than one user on the
same host in a single transaction, the m flag should be stated. If this flag
is on, then the argv template containing $u will be repeated for each
unique user on a given host. The e flag will mark the mailer as being
expensive, which will cause sendmail to defer connection until a queue
run.

An unusual case is the C flag. This flag applies to the mailer that the mes­
sage is received from, rather than the mailer being sent to; if set, the
domain spec of the sender (that is, the @host.domain part) is saved and is
appended to any addresses in the message that do not already contain a
domain spec. For example, a message of the form:

From: eric@ucbarpa
To: wnj@monet, mckee

will be modified to:

From: eric@ucbarpa
To: wnj@monet, mckee@ucbarpa

if and only if the C flag is defined in the mailer corresponding to
eriC@ucbarpa.

The S and R fields in the mailer description are per-mailer rewriting sets
to be applied to sender and recipient addresses, respectively. These are
applied after the sending domain is appended and the general rewriting

3-32 TCP/IP Administrator's Guide

The Configuration File

sets (numbers one and two) are applied, but before the output rewrite
(ruleset four) is applied. A typical use is to append the current domain to
addresses that do not already have a domain. For example, a header of
the form:

From: eric

might be changed to be:

From: eric@ucbarpa

or:

From: ucbvax!eric

depending on the domain it is being shipped into. These sets can also be
used to do special-purpose output rewriting in cooperation with ruleset
four.

The E field defines the string to use as an end-of-line indication. A string
containing only newline is the default. The usual backslash escapes (\r,
\n, \f, \b) may be used.

Finally, an argv template is given as the E field. It may have embedded
spaces. If there is no argv with a $u macro in it, sendmail will speak
SMTP to the mailer. If the patbname for this mailer is [!PC], the argv"
should be:

!PC $h [port]

where port is the optional port number to connect to.

For example, the specifications:

Mlocal, P=/usr/bin/mail, F=lsDFMmnPS S=1O, R=20, A=lmail $u
Mether, P=[lPC], F=meC, S=11, R=21, A=IPC $h, M=l00000

specify a mailer to do local delivery and a mailer for Ethernet delivery.
The first is called local; it is located in the file /bin/mail, takes a picky -r
flag, and does local delivery; quotes should be stripped from addresses,
and multiple users can be delivered at once; ruleset ten should be applied
to sender addresses in the message, and ruleset twenty should be applied
to recipient addresses. The argv to send to a message will be the word
mail, the word -d, and words containing the name of the receiving user. If
a -r flag is inserted, it will be between the words mail and -d. The second
mailer is called ether; it should be connected to via an !PC connection; it
can handle multiple users at once; connections should be deferred; and
any domain from the sender address should be appended to any receiver

Installing and Operating sendmail 3-33

The Configuration File

name without a domain. Sender addresses should be processed by ruleset
eleven and recipient addresses by ruleset twenty-one. There is a
lOO,OOO-byte limit on messages passed through this mailer.

3-34 TCP/IP Administrator's Guide

Command Line Flags

Command Line Flags
Arguments must be presented with flags before addresses. The flags are:

-f addr

-raddr

-h ent

-Fname

-n

-t

-bx

The sender's machine address is addr. This flag is
ignored unless the real user is listed as a "trusted user"
or addr contains an exclamation point (because of cer­
tain restrictions in UUCP).

An obsolete form of -f.

Sets the "hop count" to ent. This represents the num­
ber of times this message has been processed by send­
mail (to the extent that it is supported by the underly­
ing networks). ent is incremented during processing,
and if it reaches MAXHOP (currently 30) sendmail
throws away the message with an error.

Sets the full name of this user to name.

Do not alias or forward.

Read the header for To:, Cc:, and Bcc: lines, and send
to everyone in those lists. The Bcc: line will be
deleted before sending. Any addresses in the argument
vector will be deleted from the send list.

Set operation mode to x. The operation modes are:

m Deliver mail (default)
a Run in ARPANET mode (see below)
s Speak SMTP on input side
d Run as a daemon

Run in test mode
v Just verify addresses, do not collect or deliver

Initialize the alias database
p Print the mail queue
z Freeze the configuration file

The special processing for the ARPANET includes
reading the From: line from the header to find the
sender, printing ARPANET-style messages (preceded
by three-digit reply codes for compatibility with the
FTP protocol), and ending lines of error messages with
<CRLF>.

Installing and Operating sendmail 3-35

Command Line Flags

-qtime

-Cfile

-dlevel

-ox value

Try to process the queued up mail. If the time is given,
sendmail will run through the queue at the specified
interval to deliver queued mail; otherwise, it only runs
once.

Use a different configuration file. The sendmail pro­
gram runs as the invoking user (rather than root) when
this flag is specified.

Set debugging level.

Set option x to the specified value. These options are
described in the next section.

There are a number of options that can be specified as primitive flags
(provided for compatibility with deUvermail). These are the e, i, m, and
v options. Also, the f option can be specified as the -s flag.

3-36 TCP/IP Administrator's Guide

Configuration Options

Configuration Options
The following options can be set using the -0 flag on the command line or
the 0 line in the configuration file. Many of them cannot be specified
unless the invoking user is trusted.

Afile Use the named file as the alias file. If no file is
specified, use aliases in the current directory.

aN If set, wait up to N minutes for an @:@ entry to exist
in the alias database before starting up. If it does not
appear in N minutes, rebuild the database (if the D
option is also set) or issue a warning.

Bc Set the blank substitution character to c. Unquoted
spaces in addresses are replaced by this character.

c If an outgoing mailer is marked as being expensive, do
not connect immediately. This requires that queueing
be compiled in, since it will depend on a queue run
process to actually send the mail.

dx Deliver in mode x. Legal modes are:

i Deliver interactively (synchronously)
b Deliver in background (asynchronously)
q Just queue the message (deliver during queue run)

D If set, rebuild the alias database if necessary and possi­
ble. If this option is not set, sendmail will never
rebuild the alias database unless explicitly requested
using -hi.

ex Dispose of errors using mode x. The values for x are:

p Print error messages (default)
q No messages, just give exit status
m Mail back errors
w Write back errors (mail if user not logged in)
eMail back errors and give zero exit stat always

Fn The temporary file mode, in octal. 644 and 600 are
good choices.

Installing and Operating sendmail 3-37

Configuration Options

f Save UNIX-style "From" lines at the front of headers.
Normally, they are assumed redundant and discarded.

gn Set the default group id for mailers to run into n.

BJile Specify the help file for SMTP.

Ignore dots in incoming messages.

Ln Set the default log level to n.

Mxvalue Set the macro x to value. This is intended only for use
from the command line.

m Send to me, too, even if I am in an alias expansion.

Nnetname The name of the home network (ARPA is the default).
The argument of an SMTP HELO command is checked
against hostname.netname, where hostname is
requested from the kernel for the current connection.
If they do not match, Received: lines are augmented
by the name that is determined in this manner, so that
messages can be traced accurately.

o Assume that the headers may be in old format; that is,
spaces delimit names. This actually turns on an adap­
tive algorithm: if any recipient address contains a
comma, parenthesis, or angle bracket, it will be
assumed that commas already exist. If this flag is not
on, only commas delimit names. Headers are always
output with commas be~een the names.

Qdir Use the named dir as the queue directory.

qfactor Use factor as the multiplier in the map function to
decide when just to queue up jobs rather than run them.
This value is divided by the difference between the
current load average and the load average limit (x flag)
to determine the maximum message priority that will
be sent. Defaults to 10,000.

rtime Timeout reads after time interval.

Sfile Log statistics in the named file.

s Be extra safe when running things, that is, always
instantiate the queue file, even if you are going to
attempt immediate delivery. The sendmail program

3-38 TCP/IP Administrator's Guide

Ttime

tS,D

un

v

xLA

XLA

yfact

y

1/act

'Z/act

Configuration Options

always instantiates the queue file before returning con­
trol the client.

Set the queue timeout to time. After this interval, mes­
sages that have not been successfully sent will be
returned to the sender.

Set the local time zone name to S for standard time and
D for daylight time. This is only used under version
six.

Set the default userid for mailers to n. Any mailer
without the S flag in the mailer definition will run as
this user.

Run in verbose mode.

When the system-load average exceeds LA, just queue
messages (that is, do not try to send them).

When the system load average exceeds LA, refuse
incoming SMTP connections.

The indicated factor is added to the pnonty (thus
lowering the priority of the job) for each recipient, that
is, this value penalizes jobs with large numbers of reci -.
pients.

If set, deliver each job that is run from the queue in a
separate process. Use this option if you are short of
memory, since the default tends to consume consider­
able amounts of memory while the queue is being pro­
cessed.

The indicated factor is multiplied by the message class
(determined by the Precedence: field in the user header
and the P lines in the configuration file) and subtracted
from the priority. Thus, messages with a higher Prior­
ity will be favored.

The factor is added to the priority every time a job is
processed. Thus, each time a job is processed, its
priority will be decreased by the indicated value. In
most environments, this should be positive, since hosts
that are down are all too often down for a long time.

Installing and Operating sendmail 3-39

Mailer Flags

Mailer Flags
The following flags can be set in the mailer description.

f The mailer wants a -ffrom flag, but only if this is a network for­
ward operation (that is, the mailer will give an error if the exe­
cuting user does not have special permissions).

r Same as f, but sends a -r flag.

S Do not reset the userid before calling the mailer. This would be
used in a secure environment where send mail ran as root. This
could be used to avoid forged addresses. This flag is suppressed
if given from an unsafe environment (for example, a user's
mail.cf file).

n Do not insert a UNIX-style From: line on the front of the mes­
sage.

This mailer is local (that is, final delivery will be performed).

s Strip quote characters off the address before calling the mailer.

m This mailer can send to multiple users on the same host in one
transaction. When a $u macro occurs in the argv part of the
mailer definition, that field will be repeated as necessary for all
qualifying users. .

F This mailer wants a From: header line.

D This mailer wants a Date: header line.

M This mailer wants a Message-Id: header line.

x This mailer wants a Full-Name: header line.

P This mailer wants a Return-Path: line.

u Uppercase should be preserved in user names for this mailer.

h Uppercase should be preserved in host names for this mailer.

A This is an Arpanet-compatible mailer, and all appropriate
modes should be set.

3-40 TCP/IP Administrator's Guide

Mailer Flags

U This mailer wants UNIX-style From: lines with the ugly
UUCP-style "remote from <host>" on the end.

e This mailer is expensive to connect to, so try to avoid connect­
ing normally. Any necessary connection will occur during a
queue run.

X This mailer want to use the hidden dot algorithm as specified in
RFC821. Basically, any line beginning with a dot will have an
extra dot prepended (to be stripped at the other end). This
ensures that lines in the message containing a dot will not ter­
minate the message prematurely.

L Limit the line lengths as specified in RFC821.

P Use the return-path in the SMTP "MAll.. FROM:" command,
rather than just the return address. Although this is required in
RFC821 , many hosts do not process return paths properly.

I This mailer will be speaking SMTP to another sendmail. As
such, it can use special protocol features. This option is not
required (that is, if this option is omitted, the transmission will
still operate successfully, although perhaps not as efficiently as
possible).

C If mail is received from a mailer with this flag set, any
addresses in the header that do not have an at sign (@) after
being rewritten by ruleset three will have the @domain clause
from the sender tacked on. This allows mail with headers of the
form:

From: usera@hosta
To: userb@hostb, userc

to be rewritten automatically as:

From: usera@hosta
To: userb@hostb, userc@hosta

E Escape lines beginning with From in the message with a'>'
sign.

Installing and Operating sendmail 3-41

Summary of Support Files

Summary of Support Files
This is a summary of the support files that sendmail creates or generates.

lusrl libl sendmail The binary of sendmail.

lusrlbinlnewaliases A link to lusrlliblsendmai/; causes the
alias database to be rebuilt. Running this
program is completely equivalent to giv­
ing sendmail the -bi flag.

lusrlbinlmailq Prints a listing of the mail queue. This
program is equivalent to using the -bp
flag to sendmail.

lusrlliblsendmail.cf The configuration file, in textual form.

lusrlliblsendmai//c The configuration file represented as a
memory image.

lusrl libl sendmail.hj The SMTP help file.

lusrlliblsendmai/.st A statistics file; need not be present.

lusrl libl aliases The textual version of the alias file.

lusrlliblaliases.{pag,dir} The alias file in dbm(S) format.

lusrlspool/mqueue The directory in which the mail queue
and temporary files reside.

lusrlspool/mqueuelqf* Control (queue) files for messages.

lusrlspoollmqueue/df" Data files.

lusrlspoollmqueuellf* Lock files

lusrlspoollmqueueltJ* Temporary versions of the qf files, used
during queue-file rebuild.

lusrlspool/mqueue/nf" A file used when creating a unique id.

/usrlspool/mqueue/xj* A transcript of the current session.

3-42 TCP/IP Administrator's Guide

Chapter 4

Name Server Operations Guide for
BIND

Introduction 4-1

The Name Service 4-2

'JYpes of Servers 4-3
Master Servers 4-3
Caching-Only Servers 4-4
Remote Servers 4-4
Slave Server 4-4

Setting Up Your Own Domain 4-5
Boot File 4-6
Domain 4-6
Directory 4-6
Primary Master 4-6
Secondary Master 4-7
Caching-Only Server 4-7
Forwarders 4-8
Slave Mode 4-8

Remote Servers 4-9

Initializing the Cache 4-10

Standard Resource Records 4-11
Separating Data into Multiple Files 4-12
Changing an Origin in a Data File 4-12
The Start of Authority Resource Record (SOA) 4-12
The Name Server Resource Record (NS) 4-13
The Address Resource Record (A) 4-14
The Host Information Resource Record (HINFO) 4-14
The Well-Known Services Resource Record (WKS) 4-14
The Canonical Name Resource Record (CNAME) 4-15
The Domain Name Pointer Resource Record (PTR) 4-15
The Mailbox Resource Record (MB) 4-16
The Mail Rename Resource Record (MR) 4-16

The Mailbox Infonnation Resource Record (MINFO) 4-16
The Mail Group Member Resource Record (MG) 4-17
The Mail Exchanger Resource Record (MX) 4-17

Some Sample Files 4-18
Caching-Only SelVer 4-18
Primary Master SelVer 4-18
Secondary Master SelVer 4-19
The letc/resolv.conf File 4-19
root.cache 4-19
named.local 4-20
hosts 4-20
hosts.rev 4-21

Additional Sample Files 4-22
named.boot 4-22
root.cache 4-22
named.local 4-23
sco-host.s.rev 4-23
sco.soa 4-23

Domain Management 4-24
Starting the Name SelVer 4-24
letc/named.pid 4-24
letc/hosts 4-24
Reload 4-25
Debugging 4-25

Introduction

Introduction
A name server is a network service that enables clients to name resources
or objects and share this information with other objects in the network.
The Berkeley Internet Name Domain (BIND) Server implements the
DARPA Internet name server for the UNIX operating system. In effect,
this is a distributed database system for objects in a computer network.
BIND is fully integrated into network programs for use in storing and
retrieving host names and addresses. The system administrator can con­
figure the system to use BIND as a replacement for the original host table
lookup of information in the network hosts file fetclhosts. The default
configuration does not use BIND. BIND is initially disabled. If you want
to use it, you must first set up the necessary configuration files.

Name Server Operations Guide for BIND 4-1

The Name Service

The Name Service
The basic function of the name server is to provide infonnation about net­
work objects by answering queries. The advantage of using a name server
over the host table lookup for host-name resolution is to avoid the need
for a single centralized clearinghouse for all names. The authority for
this infonnation can be delegated to the different organizations on the net­
work responsible for it.

The host table lookup routines require that the master file for the entire
network be maintained at a central location by a few people. This works
well for small networks where there are only a few machines and the
different organizations responsible for them cooperate. However, this
does not work well for large networks where machines cross organiza­
tional boundaries.

With the name server, the network can be broken into a hierarchy of
domains. The name space is organized as a tree, according to organiza­
tional or administrative boundaries. Each node, called a domain, is given
a label, and the name of the domain is the concatenation of all the labels
of the domains from the root to the current domain, listed from right to
left, separated by dots. A label need only be unique within its domain.
The whole space is partitioned into several areas called zones, each start­
ing at a domain and extending down to the leaf domains or to domains
where other zones start. Zones usually represent administrative
boundaries. An example of a host address for a host at the University of
California, Berkeley, would look as follows:

monet • Berkeley .EDU

The top-level domain for educational organizations is BDU; Berkeley is a
subdomain of BDU and monet is the name of the host. Additional top­
level domains include:

4-2

COM

GOV

MIL

ORG

Commercial Organizations

GovemmentOrganizations

Military Departments

Miscellaneous Organizations

TCP/IP Administrator's Guide

Types of Servers

Types of Servers
There are several types of servers. These are:

• master servers

• caching-only servers

• remote servers

• slave servers

These types of servers are described in more detail in the following four
sections.

Master Servers

A master server for a domain is the authority for that domain. This server
maintains all the data corresponding to its domain. Each domain should
have at least two master servers: a primary master, and some secondary
masters to provide backup service if the primary is unavailable or over­
loaded. A server may be a master for multiple domains, being primary for
some domams and secondary for others.

Primary

A primary master server is a server that loads its data from a file on disk.
This server may also delegate authority to other servers in its domain.

Secondary

A secondary master server is a server that is delegated authority and
receives its data for a domain from a primary master server. At boot time,
the secondary server requests all the data for the given zone from the pri­
mary master server. This server then periodically checks with the pri­
mary server to see if it needs to update its data.

Name Server Operations Guide for BIND 4-3

Types of Servers

Caching-Only Servers

All servers are caching servers. This means that the server caches the in­
formation that it receives for use until the data expires. A caching only
server is a server that is not authoritative for any domain. This server ser­
vices queries and asks other servers that have the authority for the infor­
mation needed. All servers keep data in their caches until the data
expires, based on a time-to-live field attached to the data when it is
received from another server.

Remote Servers

A remote server is an option given to people who would like to use a
name server on their workstation or on a machine that has a limited
amount of memory and CPU cycles. With this option, you can run all of
the networking programs that use the name server without running the
name server on the local machine. All of the queries are serviced by a
name server that is running on another machine on the network.

Slave Server

A slave server is a server that always forwards queries it cannot satisfy
locally to a fixed list of forwarding servers instead of interacting with the
master name servers for the root and other domains. The queries to the
forwarding servers are recursive queries. There may be one or more for­
warding servers, and they are tried in turn until the list is exhausted. A
slave and forwarder configuration is typically used when you do not wish
all the servers at a given site to be interacting with the rest of the Internet
servers. A typical scenario would involve a number of workstations and a
departmental timesharing machine with Internet access. The worksta­
tions might be administratively prohibited from having Internet access.
To give the workstations the appearance of access to the Internet domain
system, the workstations could be slave servers to the timesharing ma­
chine, which would forward the queries and interact with other name
servers to resolve the query before returning the answer. An added
benefit of using the forwarding feature is that the central machine devel­
ops a much more complete cache of information that all the workstations
can take advantage of. The use of slave mode and forwarding is dis­
cussed further under the description of the named bootfile commands.

4-4 TCP/IP Administrator's Guide

Setting Up Your Own Domain

Setting Up Your Own Domain
When setting up a domain that is going to be on a public network, the site
administrator should contact the organization in charge of the network
and request the appropriate domain registration fonn. An organization
that belongs to multiple networks (such as CSNET, DARPA Internet, and
BITNET) should register with only one network.

The contacts are as follows:

DARPA Internet

Sites that are already on the DARPA Internet and need infonnation on set­
ting up a domain should contact HOSTMASTER@SRI-NIC.ARPA. You
may also want to be placed on the BIND mailing list, which is a mail
group for people on the DARPA Internet running BIND. This group
discusses future design decisions, operational problems, and other related
topics. To request placement on this mailing list, send mail to the follow­
ing address:

bind-request @ ucbarpa .Berkeley .EDU.

CSNET

A CSNET member organization that has not registered its domain name
should contact the CSNET Coordination and Infonnation Center (CIC) for
an application and infonnation about setting up a domain.

An organization that already has a registered domain name should keep
the CIC infonned about how it would like its mail routed. In general, the
CSNET relay prefers to send mail via CSNET if possible (as opposed to
BITNET or the Internet). For an organization on multiple networks, this
may not always be the preferred behavior. The CIC can be reached via
electronic mail at cic @ sh • cs • net, or by phone at (617) 497-2777 .

BITNET

If you are on the BITNET and need to set up a domain, contact
INFO@BITNIC.

Name Server Operations Guide for BIND 4-5

Setting Up Your Own Domain

Boot File

The name server uses several files to load its database. The major file
used is the boot file. This is the file that is first read when named starts
up. This tells the server what type of server it is, which zones it has
authority over, and where to get its initial data. The default location for
this file is fetclnamed.boot. However, this can be changed by setting the
BOOTFILE variable when you compile named or by specifying the loca­
tion on the command line when named starts up.

Domain

The boot file contains a line of code that designates the default domain.
The line for the server looks like this:

domain Berkeley.Edu

The name server uses this information when it receives a query for a
name without a "." that is unknown. When it receives one of these
queries, it appends the name in the second field to the query name. This
is an obsolete facility, which will be removed from future releases.

Directory

The directory line specifies the directory in which the name server should
run, allowing the other filenames in the boot file to use relative path­
names.

directory /usr/local/lib/named

If you have more than a couple of named files to be maintained, you may
wish to place the named files in a directory such as fusrllocalldomain and
adjust the directory command properly. The main purposes of this com­
mand are to make sure named is in the proper directory when trying to
include files by relative pathnames with $INCLUDE and to allow named
to run in a location that is reasonable to dump core if it feels the urge.

Primary Master

The line in the boot file that designates the server as a primary server for a
zone looks like the following:

primary Berkeley.Edu ucbhosts

4-6 TCP/IP Administrator's Guide

Setting Up Your Own Domain

The first field specifies that the server is a primary one for the zone stated
in the second field. The third field is the name of the file from which the
data is read.

Secondary Master

The line for a secondary server is similar to that for the primary, except
that it lists addresses of other servers (usually primary servers) from
which the zone data is obtained.

secondary Berkeley.Edu 128.32.0.10 128.32.0.4

The first field specifies that the server is a secondary master server for the
zone stated in the second field. The two network addresses specify the
name servers that are primary for the zone. The secondary server gets its
data across the network from the listed servers. Each server is tried in the
order listed until it successfully receives the data from a listed server. If a
filename is present after the list of primary servers, data for the zone is
dumped into that file as a backup. When the server is first started, the
data are loaded from the backup file if possible, and a primary server is
then consulted to check that the zone is still up-ta-date.

Caching-Only Server

You do not need a special line to designate that a server is a caching
server. A caching-only server is indicated by the absence of authority
lines, such as secondary or primary in the boot file.

All servers should have the following line in the boot file to prime the
name server's cache:

cache root.cache

The period (.) specifies the current domain. All cache files listed are read
in at named boot time and any values still valid are reinstated in the cache
and the root name server information in the cache files are always used.
For information on the cache file, see the later section, "Initializing the
Cache."

Name Server Operations Guide for BIND 4-7

Setting Up Your Own Domain

Forwarders
Any server can make use of forwarders. A forwarder is another server
capable of processing recursive queries to try to resolve queries on behalf
of other systems. The forwarders command specifies forwarders by
internet address as follows:

forwarders 128.32.0.10 128.32.0.4

There are two main reasons for wanting to do so. First, the other systems
may not have full network access and may be prevented from sending any
IP packets into the rest of the network and, therefore, must rely on a for­
warder that does have access to the full net. The second reason is that the
forwarder sees a union of all queries as they pass through the forwarder's
server and, therefore, the forwarder builds up a very rich cache of data
compared to the cache in a typical workstation name server. In effect, the
forwarder becomes a meta-cache that all hosts can benefit from, thereby
reducing the total number of queries from that site to the rest of the net.

Slave Mode

Slave mode is used if the use of forwarders is the only possible way to
resolve queries because of lack of full net access or if you wish to prevent
the name server from using other than the listed forwarders. Slave mode
is activated by placing the simple command

slave

in the bootfile. If slave is used, then you must specify forwarders. When
in slave mode, the server forwards each query to each of the forwarders
until an answer is found or the list of forwarders is exhausted.

4-8 TCP/IP Administrator's Guide

Remote Servers

Remote Servers
To set up a host that uses a remote server instead of a local server to
answer queries, create the file letclresolv.conf 1bis file designates the
name servers on the network that should be sent queries. It is not advis­
able to create this file if you have a local server running. If this file exists,
it is read almost every time gethostbyname(SLm) or gethostbyaddr is
called.

Name Server Operations Guide for BIND 4-9

Initializing the Cache

Initializing the Cache
The name server needs to know the identities of the authoritative name
servers for the root domain of the network. To do this, you have to prime
the name server's cache with the address of these higher authorities. This
is done in a file called root. cache. The location of this file is specified in
the boot file tetclnamed.boot.

There are three standard files used to specify the data for a domain.
These files are:

named.local
hosts
host. rev.

The named. local file specifies the address for the local loopback inter­
face, better known as localhost, with the network address 127.0.0.1. The
location of this file is specified in the boot file.

The hosts file contains all the data about the machines in this zone. The
location of this file is specified in the boot file.

The hosts.rev file specifies the IN-ADDR. ARPA domain. This is a spe­
cial domain for allowing address-to-name mapping. Because Internet
host addresses do not fall within domain boundaries, this special domain
was formed to allow inverse mapping. The IN-ADDR.ARPA domain has
four labels preceding it. These labels correspond to the four octets of an
Internet address. All four octets must be specified even if an octet is zero.
The Internet address 128.32.0.4 is located in the domain
4.0.32. 128.IN-ADDR.ARPA. This reversal of the address is awkward
to read but allows for the natural grouping of hosts in a network.

4-10 TCP/IP Administrator's Guide

Standard Resource Records

Standard Resource Records
The records in the name server data files are called resource records. The
following is a general description of a resource record:

{narre} {ttl} ad±-cla.ss Fecord TJ!pe Fecord Specific data

Resource records have a standard format, as shown above. The first field
is always the name of the domain record and it must always start in
column 1. For some resource records, the name can be left blank. In such
cases, the name of the previous resource record is used. The second field
is an optional time-to-live field. This specifies how long this data is
stored in the database. When this field is left blank, the default time-to­
live is specified in the Start of Authority resource record discussed later
in this chapter. The third field is the address class. There are currently
two classes: IN for internet addresses and ANY for all address classes.
The fourth field states the type of the resource record. The fields after
that are dependent on the type of the resource record. Case is preserved
in names and data fields when loaded into the name server. All comparis­
ons and lookups in the name server database are case-insensitive.

The following characters have special meanings:

A free-standing dot in the name field refers to the
current domain.

@ A free-standing @ in the name field denotes the current
origin.

\X

\ODD

()

TWo free-standing dots represent the null domain name
of the root when used in the name field.

Where X is any character other than a digit (0-9), \X
quotes that character so that its special meaning does
not apply. For example, ',\." can be used to place a dot
character in a label.

Where each D is a digit, \ODD is the octet correspond­
ing to the decimal number described by DDD. The
resulting octet is assumed to be text and is not checked
for special meaning.

Parentheses are used to group data that crosses a line. In
effect, line terminations are not recognized within
parentheses.

Name Server Operations Guide for BIND 4-11

Standard Resource Records

*

A semicolon starts a comment; the remainder of the line
is ignored.

An asterisk signifies a wildcard.

Most resource records have the current origin appended to names if they
are not terminated by a ".". This is useful for appending the current
domain name to the data, such as machine names, but can cause problems
where you do not want this to happen. The following is a good rule of
thumb: if the name is not in the domain for which you are creating the
data file, end the name with a".".

Separating Data into Multiple Files

An include line begins with $INCLUDE (starting in column 1) and is fol­
lowed by a file name. This feature is particularly useful for separating
different types of data into multiple files. Here is an example:

$INCLUDE /usr/named/data/mailboxes

The line would be interpreted as a request to load the file
JusrJnamedJdataJmai/boxes. The $INCLUDE command does not cause
data to be loaded into a different zone or tree. This is simply a way to
allow data for a given zone to be organized in separate files. For exam­
ple, mailbox data might be kept separately from host data using this
mechanism.

Changing an Origin in a Data File

Use the $ORIGIN command to change the origin in a data file. The line
starts in column 1 and is followed by a domain origin. This is useful for
putting more than one domain in a data file. For example,
Jetclnamed.hosts might contain lines of the fonn:

$ORIGIN CC.Berkeley.EDU
[assorted domain data •••]
$ORIGIN EE.Berkeley.EDU
[assorted domain data ...]

The Start of Authority Resource Record (SOA)

The Start of Authority record designates the start of a zone. An SOA
record includes the following fields:

4-12 TCP/IP Administrator's Guide

Standard Resource Records

• Name

• Origin

• Person in charge

• Serial number

• Refresh

• Retry

• Expire

• Minimum

"Name" is the name of the zone. "Origin" is the name of the host on
which this data file resides. "Person in charge" is the mailing address for
the person responsible for the name server. "Serial number" is the ver­
sion number of this data file; this number should be incremented when­
ever a change is made to the data. (Note that the name server cannot han­
dle numbers over 9999 after the decimal point.) "Refresh" indicates how
often, in seconds, a secondary name server is to check with the primary
name server to see if an update is needed. "Retry" indicates how long, in
seconds, a secondary server is to retry after a failure to check for a
refresh. "Expire" is the upper time limit, in seconds, that a secondary
name server is to use the data before it expires for lack of getting a·
refresh. Minimum is the default number of seconds to be used for the
time-to-live field on resource records. There should only be one SOA
recQrd per zone. Here is an example of an SOA record:

narre
@

{ttl} ad:ir-class ~

1.1 ; Serial
3600 ; Fefresh
300 ; PeUy
3600000 ; Expire
3600) ; MirriJTun

The Name Server Resource Record (NS)

The name server record (NS) lists a name server responsible for a given
domain. The first name field lists the domain that is serviced by the listed
name server. There should be one NS record for each primary master
server for the domain. Here is an example of a name server record:

Name Server Operations Guide for BIND 4-13

Standard Resource Records

{narre) {ttl) ad:ir-cl.ass NS
IN NS

The address class is IN (Internet addresses), and the record type is name
server (NS). The record uses the default ttl (time-to-live) value. Here,
the record-specific data is the identity of the name server.

The Address Resource Record (A)

The address record (A) lists the address for a given machine. The name
field is the machine name and the address is the network address. There
should be one A record for each address of the machine. Here is an exam­
ple of an address record for a machine named ucbarpa with two network
addresses:

{narre)
uc±er.pa

{ttl) ad:ir-cl.ass A
IN A
IN A

ad:iress
128.32.0.4
10.0.0.78

The Host Information Resource Record (HINFO)
The host information resource record (HINFO) is for host-specific data. It
lists the hardware and operating system that are running at the listed host.
It should be noted that only a single space separates the hardware infor­
mation and the operating-system information. If you want to include a
space in the machine name, you must quote the name. Host information
is not specific to any address class, so ANY may be used for the address
class. There should be one lllNFO record for each host. Here is an exam­
ple:

{narre) {ttl) ad:ir-cl.ass HINFO HarcIwa:!:e a;
liNt HINFO VAX-ll/780 tMX

Note that the current release ignores any records that appear after an
lllNFO record. Thus, you can use only one lllNFO record within the file,
and it should be the last record in the file.

The Well-Known Services Resource Record
(WKS)

The well-known services record (WKS) describes the well-known ser­
vices supported by a particular protocol at a specified address. The list of
services and port numbers comes from the list of services specified in
fetclservices. There should be only one WKS record per protocol per
.address. Here is an example of a WKS record:

4-14 TCP/IP Administrator's Guide

Standard Resource Records

{narre} {ttl} addr:-class WKS ad:lress
IN WKS 128.32.0.10
IN WKS 128.32.0.10

protoool list of services
In' m:, rrute t:ilred darain
'ICP (ecro t.el.ret

discard SlmIpC sftp
U1X:p"plIth systat daytirre
netstat <ptd nntp
link chal:gen ftp
auth tine m:rl.s ntp
p:p rje f:in;!er srtp
sup:hJp 00stnarres
darain
narre server)

The Canonical Name Resource Record (CNAME)

The canonical name resource record (CNAME) specifies an alias for a
canonical name. An alias should be the only record associated with the
alias name; all other resource records should be associated with the
canonical name and not with the alias. Any resource records that include
a domain name as their value (for example, NS or MX) should list the
canonical name, not the alias. Here is an example of a CNAME record:

aliases {ttl} ad:D:-cl.ass CNl\M!: carx:ru.cal narce
1rl:m::rlet IN CNl\M!: m:net

The Domain Name Pointer Resource Record
(PTR)

A domain name pointer record (PTR) allows special names to point to
some other location in the domain. The following example of a PTR
record is used in setting up reverse pointers for the special IN­
ADDR • ARPA domain. This line is from the example:

hosts.rev file.

In this record, the name field is the network number of the host in reverse
order. You only need to specify enough octets to make the name unique.
For example, if all hosts are on network 127.174.14, then only the last
octet needs to be specified. If hosts are on networks 128.174.14 and
127.174.23, then the last two octets need to be specified. PTR names
should be unique to the zone. Here is an example of a PTR record:

Name Server Operations Guide for BIND 4-15

Standard Resource Records

narce {ttl} ad:Ir-class PlR real narce
7.0 IN PlR rn::Det .Be!:keley .Fdl.

The Mailbox Resource Record (MB)

The mailbox resource record has a record type of MB. It lists the ma­
chine where a user wants to receive mail. The name field is the user's
login; the machine field denotes the machine to which mail is to be
delivered. Mail box names should be unique to the zone. Here is an
example of an MB record:

narce {ttl} ad:Ir-class 1£ M3chine
miriam IN 1£ ~

The Mail Rename Resource Record (MR)

The mail rename record (MR) can be used to list aliases for a user. The
name field lists the alias for the name listed in the fourth field, which
should have a corresponding MB record. Here is an example of a mail
rename record:

narce {ttl} ad:Ir-class Mt oorrespc:n::Iin 1£
Postmistress IN Mt miriam

The Mailbox Information Resource Record
(MINFO)

The mail information record MINFO creates a mail group for a mailing
list. This resource record is usually associated with a mail group, but it
can be used with a mail box record. The "name" specifies the name of
the mailbox. The "requests" field is where mail such as requests to be
added to a mail group should be sent. The "maintainer" is a mailbox that
should receive error messages. This is particularly appropriate for mail­
ing lists when errors in members' names should be reported to a person
other than the sender. Here is an example of this record:

4-16 TCP/IP Administrator's Guide

Standard Resource Records

narre {ttl} acX3r-cl.ass MINFO m:;tUeSts IlBint:ainer
BJN) IN MINFO BJN>-REXllEST kjd.BeJ:Xeley.Fru.

The Mail Group Member Resource Record (MG)

The mail group record (MG) lists members of a mail group.

{nail. grrup narre} {ttl} ac:tlr-cl.ass Mi IIB!ber narre
IN Mi Bloem

An example for setting up a mailing list is as follows:

Bind IN MINFO Bin:i-FeqJest kjd.BeJ:Xeley.Fru.
IN Mi Fa.Jp1. BeJ:Xeley • Fru.
IN Mi ZOOl.BeJ:Xeley .Fru.
IN Mi Painter.BeJ:Xeley .Fru.
IN Mi Ri.cJ;le.BeJ:Xeley .Fru.
IN Mi Ten:y .p:!. Xerox. O:rn.

The Mail Exchanger Resource Record (MX)

nate {ttl} a:tlr-class MX prefererlO3 value nailer exc:han;Jer
M.Jnnari • oz .l>I1 • IN MX 0 Se:isro. CSS. roI.
*.IL. IN MX 0 REIAY.CS.NET.

Mail exchanger records (MX) are used to identify a machine that knows
how to deliver mail to a machine that is not directly connected to the net­
work. In the first example above, Seismo. CSS • GOV. is a mail gateway
that knows how to deliver mail to Munnari • OZ. AU • but other machines
on the network cannot deliver mail directly to Munnari. These two ma­
chines may have a private connection or use a different transport medium.
The preference value is the order that a mailer should follow when there
is more then one way to deliver mail to a single machine. See RFC974
for more detailed information.

Wildcard names containing the character "*" may be used for mail rout­
ing with MX records. There are likely to be servers on the network that
simply state that any mail to a domain is to be routed through a relay. In
the second example above, all mail to hosts in the domain n.. is routed
through RELAY.CS.NET. This is done by creating a wildcard resource
record, which states that *.n.. has an MX of RELAY.CS.NET.

Name Server Operations Guide for BIND 4-17

Some Sample Files

Some Sample Files
The following sections contain sample files for the name selVer. This
covers example boot files for the different types of server and example
domain database files.

Caching-Only Server
,
; B:lot file for <::ad'rin:J Chly Narre Server

; type cbrain sa.u:oe file or host
;
cbrain Betkeley.E'd!
cache I etc/l'lallEd.ca
prjJraJ:y 0.0.127.in-ad:ir.aJ:I:a Ietclnarred.local

Primary Master Server
,
; B:lot file for PriIraIy M:Ister Narre Server

; type cbrain sa.u:oe file or host

lusr/local/lib/narre:i
Betkeley.E'd! 1..ICi:ilosts
32.128.in-ad:ir.aJ:I:a l.lC!::insts.rev
0.0.127.in-adir.aJ:I:a rated.1.oca.l

root.cache

4-18 TCP/lP Administrator's Guide

Some Sample Files

Secondary Master Server

; Boot file for Sec:xn:i3l:y Narre SeIver

; tYfe souroe file or h:lst:

lusr/local/lib/rated
Berlre1ey.Edu
32.128.in-actlr.a.rpa
0.0.127.in-ad:lr.a.rpa

128.32.0.4 128.32.0.10 128.32.136.22 Irl:tr:lst.bak
128.32.0.4 128.32.0.10 128.32.136.22 ud:b:lsts.:rev.bak
nara:l.local
root.cache

The letc/resolv.conf File

c:bra:in Berkel.ey.Fdu
narre sexver 128.32.0.4
narre sexver 128.32.0.10

root.cache
,
; Initial cache data for root: c:bra:in servers.

99999999 IN NS SRI~~Ao

99999999 IN NS ~GOV.
99999999 IN NS 'Im?tM),IDJ.
99999999 IN NS AoISIJ[X1
99999999 IN NS mIr-1!C6.ARPAo
99999999 IN NS G:NIm-ADl\MJ\RI?Ao
99999999 IN NS c.NYSE&ml'.

Pl:ep the cache (h::itwil:e the ad:iresses) •
SRI~~Ao 99999999 IN A 10.0.0.51
SRI~~Ao 99999999 IN A 26.0.0.73
~. 99999999 IN A 128.102.16.10
mIr-1!C6.ARPAo 99999999 IN A 128.20.1.2
AoISI.mJ. 99999999 IN A 26.3.0.103
mIr-1!C6.ARPAo 99999999 IN A 192.5.25.82
G:NIm-ADl\MJ\RI?Ao 99999999 IN A 26.1.0.13
c:.NYSElUEl'. 99999999 IN A 128.213.5.17
'Im?1Ml.mJ. 99999999 IN A 10.1.0.17

Name Server Operations Guide for BIND 4-19

Some Sample Files

named.local
@ m 9JA ucbvax.BeJ:lcel.Fdl. kjd.ucbvax.BeJ:lcel.Fdl. (

1 ; Serial
10800 ; Pefl:esh
1800 ; Petl:y
3600000 ; Expire
86400) ; M:i.n:inun

m m 1.lCbI1ax.EeJ:K.Fdl.
1 m P1R localhost.

hosts

@(t)ucb-h:lSts 1.1 (beJ:keley) 86/02/05

@ m 9JA ucbvax.Berke.l.ey.Fdl. kjdm::net:..BetX.Fdl. (
1.1 ; Serial
3600 ; Pefl:esh
300 ; Petl:y
3600000 ; Expire
3600) ; M:i.n:inun

m m ud.:eJ:p:I.Berl.Fdl.
IN m ucbvax.Berke.l.ey.Fdl.

localhost m A 127.1
uchaJ:p:l. m A 128.32.4

m A 10.0.0.78
m HINro VAX-lln80 lNIX

azpa. m OW£ uchaJ:p:l.
emie m A 128.32.6

m HINro VAX-lln80 lNIX
ucbemi.e IN OW£ emie
nmet IN A 128.32.7

m A 128.32.130.6
m HINro VAX-llnso lNIX

u::bralet m OW£ nmet

4-20 TCPIIP Administrator's Guide

Some Sample Files

m A 10.2.0.78
m A 128.32.10
IN HJNro VAX-11/750 '(lID{

m if<S 128.32.0.10 UP syslog ra.tte tired <:brain
IN if<S 128.32.0.10 'JXP (ech::l telnet

discaJ:d SlJIll:lX sftp
l.lI.lCP'1lElth systat daytine
ret.stat cptd nnt:p
link dlargen ft:p
auth tire Wlois nt:p
pcp rje fin:Jer S'CII:p
Bl.lpiJp b:>st:narres
cbrain
nane server)

vax m OW£ ucbvax

tc¥:ox m A 128.32.131.119
m HJNro Pro35O Rl'l1

tc¥:ox m Ml{ 0 IIO'let.BeJ:keley .Fru
miriam IN M3 v.i.ne}ld.JE:. CXM.
postmistress m ~ Mi.rian
Bird m MINEO ~ kjd.BeJ:keley.Fru.

m M; Ralfh.Berkeley .Fru.
m M; Zhal.BeJ:keley .Fru.
m M; Painter .Berkeley .Fru.
IN M; Rigg1e.BeJ:keley .Fru.
IN M; 'Ieny • pa. Xerox. Con.

hosts.rev

@(#)~.rev 1.1 (Bel:keley) 86/02/05

@ m 9Jh ud:Jvax.I3eDrel.El:h kjd.m:net.Berkeley.El:h (
1.1 ; Serial
10800 ; Fefresh
1800 ; Fetty
3600000 ; ~ire
86400) ; M:inirrun

IN NoS ud::el:];:a.Bel.F.d.J.
m NoS ud:Jvax.I3eDrel.F.d.J.

4.0 m PlR ud::al:pa.BeJ:key.F.d.J.
6.0 m PlR emie.Berkeley.F.d.J.
7.0 IN PlR IIO'let.Berkeley.F.d.J.
10.0 IN PlR ud:Jvax.I3eDrel.F.d.J.
6.130 m PlR l!D1etJ3erkeley.F.d.J.

Name Server Operations Guide for BIND 4-21

Additional Sample Files

Additional Sample Files
The following sections contain an additional set of sample files for the
name server.

named.boot

Name Server boot file for Domain seo.COM

Type Domain Source file or Host

domain seo.COM
primary seo.COM /ete/named.data/seo-hosts
cache /etc/named.data/root.cache
secondary seo.COM /etc/named.data/seo-host.s.rev
primary sco.COM /ete/named. data/named. local

root.cache

4-22

Initial cached data for root domain servers.

99999999 IN NS
99999999 IN NS
99999999 IN NS

USC-ISIB.ARPA.
BRL-AOS . ARPA.
SRI-NIC.ARPA.

Insert your own name servers here

99999999 IN NS seovert.sco.COM

Prep the cache (hotwire the addresses)

tandy.sco.COM. 99999999 IN A 192.9.200.2
;viscous.sco.COM.99999999 IN A 128.0.21.6

; Root servers go here

tandy.sco.COM.
;SRI-NIC.ARPA.
;USC-ISIB.ARPA.
;BRL-AOS.ARPA.
;BRL-AOS .ARPA.

99999999 IN A
99999999 IN A
99999999 IN A
99999999 IN A
99999999 IN A

192.9.200.2
10.0.0.51
10.3.0.52
128.20.1.2
192.5.22.82

TCP/IP Administrator's Guide

Additional Sample Files

named.loeal

Don't forget to increment the serial number in
named.soa

$INCLUDE /etc/named/sco.soa
192.9.200.2 IN PTR localhost.

seo-host.s.rev

Don't forget to increment the serial number in
named.soa

$INCLUDE /etc/named/sco.soa

192.9.200.1 IN
192.9.200.2 IN
192.9.200.3 IN

seo.soa

PTR merlin
PTR tandy
PTR tvi

Don't forget to increment the serial number when you
change this. SCCS or RCS might be a good idea here.

@ IN SOA tandy.sco.COM.
1.0 Serial
3600 Refresh
300 Retry
3600000 Expire
3600) Minimum

IN NS tandy.sco.COM.

Name Server Operations Guide for BIND

root.tandy.sco.COM. (

4-23

Domain Management

Domain Management
This section contains infonnation for starting, controlling, and debugging
named(ADMN), the Internet domain name server.

Starting the Name Server

The host name should be set to the full domain style name (that is,
monet.Berkeley.EDU.) using hostname(TC). The name server is started
automatically if the configuration file fetclnamed.boot is present. Do not
attempt to run named from inetd(ADMN). This continuously restarts the
name server and defeats the purpose of having a cache.

fetcfnamed.pid

When named is successfully started, it writes its process ID into the file
fetcfnamed.pid. This is useful to programs that want to send signals to
named. The name of this file can be changed by defining PIDFILE to the
new name when compiling named.

fetc/hosts

The gethostbyname library call can detect whether named is running. If
it is determined that named is not running; it looks in fetclhosts to resolve
an address. This option was added to allow ifconfig(ADMN) to configure
the machine's local interfaces and to enable a system manager to access
the network while the system is in single-user mode. It is advisable to put
the local machine's interface addresses and a couple of machine names
and addresses in fetclhosts, so the system manager can copy files from
another machine with rep when the system is in single-user mode. The
fonnat of fetclhosts has not changed. See hosts(SFF) for more infonna­
tion. Because the process of reading fetclhosts is slow, it is not advisable
to use this option when the system is in multiuser mode.

4-24 TCP/IP Administrator's Guide

Domain Management

Reload

There are several signals that can be sent to the named process to have it
do tasks without restarting the process. The SIGHUP signal causes
named to read named. boot and reload the database. All previously
cached data is lost. This is useful when you have made a change to a data
file and you want named's internal database to reflect the change.

Debugging

When named is running incorrectly, look first in lusrladmlsyslog and
check for any messages logged by syslog. Next, send it a signal to see
what is happening.

SIGINT dumps the current database and cache to
lusrltmplnamed dump.db This should give you an indication as to
whether the database was loaded correctly. The name of the dump file
can be changed by defining DUMPFILE to the new name when compiling
named.

Note

The following two signals only work when named is built with
DEBUG defined.

SIGUSRI - Thrns on debugging. Each following USRI increments the
debug level. The output goes to lusrltmplnamed.run. The name of this
debug file can be changed by defining DEBUGFILE to the new name
before compiling named.

SIGUSR2 - Thms off debugging completely.

For more detailed debugging, define DEBUG when compiling the resolver
routines into lusrllibllibsocket.a.

Name Server Operations Guide for BIND 4-25

Chapter 5

Synchronizing Network Clocks

Introduction 5-1

Guidelines 5-3

Options 5-5

Daily Operation 5-6

Introduction

Introduction
The clock synchronization service is composed of a collection of time
daemons (timed(ADMN» running on the machines in a local-area net­
work. The algorithms implemented by the service are based on a master­
slave scheme. The time daemons communicate with each other using the
Time Synchronization Protocol (TSP), which is built on the DARPA UDP
protocol.

A time daemon has a two-fold function. First, it supports the synchroni­
zation of the clocks of the various hosts in a local-area network. Second,
it starts (or takes part in) the election that occurs among slave time dae­
mons when, for any reason, the master disappears. The synchronization
mechanism and the election procedure employed by the program timed
are described in the manual page timed(ADMN). This chapter is mainly
concerned with the administrative and technical issues of running timed
at a particular site. The next section is a brief overview of how the time
daemon works. A master time daemon measures the time differences
between the clock of the machine on which it is running and those of all
other machines on its network. The master computes the network time as
the average of the times provided by nonfaulty clocks. (A clock is con­
sidered to be faulty when its value is more than a small specified interval
apart from the majority of the clocks of the other machines.) The master
time daemon then sends to each slave time daemon the correction that
should be performed on the clock of its machine. This process is repeated
periodically.

Because the correction is expressed as a time difference rather than an
absolute time, transmission delays do not interfere with the accuracy of
the synchronization. When a machine comes up and joins the network, it
starts a slave time daemon that asks the master for the correct time and
resets the machine's clock before any user activity can begin. The time
daemons are thus able to maintain a single network time in spite of the
drift of clocks away from each other. The present implementation is capa­
ble of keeping processor clocks synchronized to within 20 milliseconds,
but some hardware is not adjustable at less than 1 second intervals.

To ensure that the service provided is continuous and reliable, it is neces­
sary to implement an election algorithm to elect a new master should the
machine running the current master crash, the master terminate (for
example, because of a runtime error), or the network be partitioned.

Synchronizing Network Clocks 5-1

Introduction

Under this algorithm, slaves are able to realize when the master has
stopped functioning and to elect a new master from among themselves. It
is important to note that the failure of the master results only in a gradual
divergence of clock values; thus, the election need not occur immedi­
ately.

The machines that are gateways between distinct local-area networks
require particular care. A time daemon on such machines may act as a
"submaster." This artifact depends on the current inability of transmis­
sion protocols to broadcast a message on a network other than the one to
which the broadcasting machine is connected. The submaster appears as
a slave on one network and as a master on one or more of the other net­
works to which it is connected.

A submaster classifies each network as one of three types. A slave net­
work is a network on which the submaster acts as a slave. There can only
be one slave network. A master network is a network on which the sub­
master acts as a master. An ignored network is any other network that
already has a valid master. The submaster tries periodically to become
master on an ignored network, but gives up immediately if a master
already exists.

5-2 TCP/IP Administrator's Guide

Guidelines

Guidelines
While the synchronization algorithm is quite general, the election algo­
rithm, which requires a broadcast mechanism, puts constraints on the kind
of network on which time daemons can run. The time daemon works only
on networks with broadcast capability augmented with point-to-point
links. Machines that are only connected to point-to-point, non-broadcast
networks cannot use the time daemon.

If submasters are excluded, there is normally only one master time dae­
mon in a local-area internetwork. During an election, only one of the
slave time daemons becomes the new master. Not all machines are suit­
able as masters; some do not have sufficiently accurate timing mecha­
nisms or cannot afford the extra overhead. Therefore, a subset of ma­
chines must be designated as potential master time daemons." A master
time daemon requires CPU resources proportional to the number of slaves
(in general, more than a slave time daemon), and so it may be advisable to
limit master time daemons to machines with more powerful processors or
lighter loads. Also, machines with inaccurate clocks should not be used
as masters. This is a purely administrative decision; an organization may
well allow all of its machines to run master time daemons.

At the administrative level, a time daemon on a machine with multiple"
network interfaces may be told to ignore all but one network or to ignore
one network. This is done with the timed -n network and -i network
options, respectively, at startup time. 'IYPically, the time daemon would
be instructed to ignore all but the networks belonging to the local admin­
istrative control.

There are some limitations to the current implementation of the time dae­
mon. It is expected that these limitations will be removed in future
releases. The constant NHOSTS in lusrlsrcletcltimedl globals.h limits the
maximum number of machines that can be directly controlled by one
master time daemon. The maximum is (NHOSTS - 1). Currently, the
maximum is 99. The constant must be changed and the program recom­
piled if a site wishes to run timed on a larger network.

In addition, there is a pathological situation to be avoided at all costs.
This situation can occur when time daemons run on multiply-connected
local-area networks. In this case, time daemons running on gateway ma­
chines are submasters, and they act on some of those networks as master
time daemons. Consider machines A and B that are both gateways
between networks X and Y. If time daemons were started on both A and
B without constraints, it would be possible for submaster time daemon A
to be a slave on network X and the master on network Y, while submaster

Synchronizing Network Clocks 5-3

Guidelines

time daemon B would be a slave on network Y and the master on network
x. This loop of master time daemons does not function properly or
~arantee a unique time on both networks, and it causes the submasters to
use large amounts of system resources in the form of network bandwidth
and CPU time. In fact, this kind of loop can also be generated with more
than two master time daemons, when several local-area networks are
interconnected.

5-4 TCPIIP Administrator's Guide

Options

Options

The options for the timed command are:

-n network Considers the named network.

-i network Ignores the named network.

-t Places tracing infonnation in lusrladmltimed.[og.

-M Allows this time daemon to become a master. A time
daemon run without this option is forced into the state
of slave during an election.

Synchronizing Network Clocks 5-5

Daily Operation

Daily Operation
The timedc(ADMN) command is used to control the operation of the
time daemon. It can be used to do the following:

• measure the differences between machines' clocks

• find the location where the master timed is running

• cause election timers on several machines to expire at the same
time

• enable or disable tracing of messages received by timed

See the manual pages on timed(ADMN) and timedc(ADMN) for more
detailed information.

The rdate(ADMN) command can be used to set the network date.

5-6 TCP/IP Administrator's Guide

Glossary

Glossary

ALIAs. An alternate host name, created as a convenience for addressing a
host on a local network whose unique primary name is long and/or
complicated.

ARP. Address Resolution Protocol is used by Ethernet for address map­
ping.

ARPA. Now called DARPA, stands for Defense Advanced Research Pro­
jects Agency . ARPANET is the network based on the work sponsored
by this agency. See also DON.

BIND. Berkeley Internet Name Domain. Also: bind. To fix an association
between a name and an object. In networking, used to explicitly
assign a network address to a socket.

BRIDGE. A simplified gateway used to connect local networks that use the
same internal protocols and exhibit the same interface to attach sta­
tions.

BROADCAST NE1WORK. A system in which messages are sent to all hosts
simultaneously, rather than from point to point. Each node then
"grabs" the transmissions intended for them.

BSD. Berkeley Software Distribution.

Bus. A set of one or more parallel signals implemented in hardware in a
standard manner so that multiple devices can access it and communi­
cate over it.

CACHE. To store temporarily in memory to improve access performance.
Also, that which is stored temporarily in memory.

CACIDNG.ONLY SERVER. A server that is not authoritative for any domain.
This server services queries and asks other servers that have the
authority for the information needed.

Glossary G-l

Glossary

CCI1T. The Comite Consultatif Internationale de Telegraphie et Telo­
phonie. A communications organization that sets international usage
standards. In English: International Telegraph and Telephone Consul­
tative Committee. See X.25.

CLIENT. A computer or executing Qrogram that sends a request to a
server, and waits for a response. The term "client" is generally used
in the context of NFS.

CLONING DEVICE. A cloning device provides for dynamic allocation of
resources by means of a single pathname.

CONNECTION. A connection is a logical communication path.

CONNECTIONLESS. A packet delivery system in which packets sent from
one machine to another may follow different paths. 1t is called unreli­
able because delivery is not guaranteed. PacKets may be delivered out
of sequence, duplicated, or lost. However, connectionless delivery
may be desirable due to its low transport overhead.

CONSUMER. A computer or executing program that receives and uses in­
formation. A subset of client. The term "consumer" is generally used
in the context of LM/X.

DAEMON. A daemon is a system service. It is a program that is active in
the background but not connected to a terminal. Also: demon.

DARPA. Department of Defense Advanced Research Project Agency,
formerly called ARPA. This agency sponsored the network architec­
ture research project upon which ARPANET is based. ARPANET is a
large governmental internetwork, called the Internet, part of which is
the Defense Data Network (DDN).

DATAGRAM. Basic transfer unit of IP. Consists of a header, containing
Internet source and destination addresses, and data. Also called a
packet. Datagram implies that delivery will be connectionless. Also:
ogram.

DATA LINK LEVEL. Data link level is the communications protocol for the
physical media-link used to transport the data.

G-2 TCP/IP Administrator's Guide

Glossary

DDN. Defense Data Network. A set of communications capabilities that
links together computer systems within the Department of Defense
(000). The DON allows users of these computer systems to send mail
and files between systems and to access other computers on the net­
work in interactive terminal sessions. The DON is part of the DARPA
Internet. See also Internet.

DESTINATION. The destination address, an internet header field.

DESTINATION ADDRESS. Network and host identifiers.

DNS. Domain Naming System.

DOMAIN •• A .naming catego~ in DNS, a hierarchical naming ~cheme: A
domam IS a set of machmes usually grouped by geographic 10catlOn,
organization, or activity (for example, EDU for educational machines,
COM for machines in commercial use). .

ETHERNET. Originally, a heavily shielded, half-inch diameter coaxial
cable developed by Xerox Corporation, Digital Equipment Corpora­
tion, and Intel Corporation, for use in local area networks.

FLOW CONTROL. Flow control is the function and process of regulating the
traffic and amount of data between flowing nooes so that neither node
is sent more data than it can handle at a given time.

GATEWAY. A protocol translator device connecting two local networks, or
a local to a long-haul network. Gateways can be thought of as com­
munication paths for the exchange of data between networks.

HOST. A host is a computer that acts as client and/or server. It is, specifi­
cally, a source or destination of messages from the point of view of the
communication network.

lAB. Internet Activities Board.

ICMP. Internet Control Message Protocol. ICMP is used by a gateway or
destination host to communicate with a source host, for example, to
report an error in datagram l'rocessing. ICMP uses the basic support of
IP as if ICMP were a higher level protocol. However, ICMP is actually
an integral part ofIP, and must be implemented by every IP module.

Glossary G-3

Glossary

lEN. Internet Engineering Notes.

INTERNET. When capitalized, Internet refers specifically to the internet
built by DARPA. Otherwise it refers to any mternet.

INTERNET ADDRESS. A 32-bit universal identifier assigned to each host on
the Internet.

INTERNETWORKING. The connection of networks using different hardware
and/or software protocols by means of devices called gateways, for the
purpose of forwarding data from one network to another. Internet­
working allows several networks to function cooperatively as a single,
virtual network.

LAYER. A conceptual model in protocol software in which each machine
in a network can be thought of as being stacked in tiers, in which each
tier, or level, handles one aspect of the process of transferring data.

LOOPBACK INTERFACE. Used for diagnostic purposes, loopback interface is
software, without any associative hardware, that receives information
and sends it right back to its point of origin.

MASTER SERVER. A master server is the authority for a particular domain
and maintains all data corresponding to it.

NETWORK INTERFACE. Device drivers and associated hardware that allow
TCP/IP software to communicate with a particular network.

NETWORK MASK. A bit mask that specifies the ~rtion of an Internet
address that is to be considered the network part for that network.

PORT. A port, or port number, is a 16-bit address used by TCP/IP to iden­
tify a socket on a particular machine.

PRIMARY MASTER SERVER. A server that loads its data from a file on disk.
In a multiple master situation, this server may also delegate authority
to other servers in its domain.

PROCESS. A process is a program in execution. A source or destination of
data from the point of view of the Transmission Control Protocol
(TCP), or other nost-to-host protocol.

G-4 TCP/IP Administrator's Guide

Glossary

PROTOCOL. A set of rules for communications, including standards for
message fonnat.

RFC. Request For Comments. A document containing proposals, ideas,
observations, as well as general infonnation and accepted Internet
protocol standards. RFC is usually followed by a number, which refers
to a particular edition or iteration of the notes, and is available across
the mternet.

ROOT. root is the login name of the super-user. The super-user is the user
who has the widest fonn of machine privileges.

ROUTING TABLE. A collection of configuration infonnation that allows for
the dynamic and adaptive transfer of data from point to point, auto­
matically, via the best available path.

SECONDARY MASTER SERVER. A server that is delegated authority and
receives its data for a domain from a primary master server. A sec­
ondary master server functions as a master server or backup when the
primary master server is unavailable.

SERVER. Any program that accepts requests over the network, perfonns a
service, and returns the result to the machine making the request.

SLAVE SERVER. A server that always forwards queries it cannot satisfy
locally to a fixed list of forwarding servers. In slave mode the server
forwards each query to each of the forwarders until an answer is found
or the list of forwarders is exhausted.

SOCKET. A socket provides a point of access to network software that
allows use of the network.

Tcp. Transmission Control Protocol is a transport level, connection­
oriented protocol that provides reliable end-to-end message transmis­
sion over an internetwork.

UOP. User Datagram Protocol. A connectionless mode, user-level trans­
port protocol for transaction-oriented applications. UDP datagrams
mclude a protocol port number, enabling the sender to specify a par­
ticular application on the remote machine.

X25. X.25 is a circuit-switched network protocol used commonly in
Europe and less so in the United States. X.25 is based on a three-layer,
peer-communications protocol standard defined by the International
Telegraph and Telephone Consultative Committee (CCITI).

Glossary 0-5

SCo® TCP/IP

Derived from

LACHMAN™ SYSTEM V STREAMS TCP

Administrator's Reference

The Santa Cruz Operation. Inc.

Ponions copyright © 1988, 1989, 1990 The Santa Cruz Operation,Inc. All rights reserved.

Ponions copyright © 1987, 1988 Lachman Associates, Inc. All rights reserved.
Ponions copyright © 1987 Convergent Technologies, Inc. All Rights Reserved.

No pan of this publication may be reproduced, transmitted, stored in a retrieval system, nor
translated into any human or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written

permission of the copyright owner, The Santa Cruz Operation, Inc., 400 Encinal, Santa Cruz,
California, 95061, USA. Copyright infringement is a serious matter under the United States and
foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User only for use

in strict accordance with the End User License Agreement, which License should be read

carefully before commencing use of the software. Information in this document is subject to
change without notice and does not represent a commitment on the pan of The Santa Cruz
Operation, Inc.

The following legend applies to all contracts and subcontracts governed by the Rights in
Technical Data and Computer Software Clause of the United States Depanmeill of Defense
Federal Acquisition Regulations Supplement:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is

subject to restrictions as set fonh in subparagraph (c) (I) (ii) of the Rights in Technical Data and

Computer Software Clause at DFARS 52.227-7013. The Santa Cruz Operation, Inc., 400

Encinal Street, Santa Cruz, California 95061, U.S.A.

SCO TCP/IP was developed by Lachman Associates.
SCO TCP/IP is derived from LACHMAN™ SYSTEM V STREAMS TCP, a joint development

of Lachman Associates and Convergent Technologies.

This document was typeset with an IMAGENQ!) 8/300 Laser Printer.

SCO and the SCQ logo are registered trademarks, and The Santa Cruz OperatiCHI is a trademark of The

Santa Cruz Operation, Inc.

UNIX is a registered trademark of AT&T.

LACHMAN is a trademark of Lachman Associates, Inc.

Ethernet is a registered trademark of Xerox.

SCO DoCument Number: 11-25-89-1.1.0D

Printed: The May 1 14:55:53 PDT 1990

Contents

NetworkCommands (ADMN)

intro

arp
drvconf
fingerd
ftpd
hostname
ifconfig
inetd
Idsocket
Imail
mailaddr
mconnect
mkhosts
named
netlogin
ping
rdate
rexecd
rlogind
rmail
route
routed
rshd
rwhod
send mail
slattach
slink
talkd
tcp

introduction to network maintenance and operation
commands
address resolution display and control
configure TCP/IP ethernet drivers
remote user information server
DARPA Internet File Transfer Protocol server
hostname resolution description
configure network interface parameters
internet super
load socket configuration
handle local mail delivery from sendmail
mailing address description
connect to SMTPmail server socket
make node name commands
internet domain name server
network login program
send ICMP ECHO_REQUEST packets to network hosts
notify time server that date has changed
remote execution server
remote login server
handle remote mail received via uucp
manually manipulate the routing tables
network routing daemon
remote shell server
system status server
send mail over the internet
attach serial lines as network interfaces
streams linker
remote user communication server
TCP start/stop script

telnetd
tftpd
timed
timedc
trace
trpt

DARPA TELNETprotocol server
DARPA 1iivial File Thansfer Protocol server
time server daemon
timed control program
routing tools
transliterate protocol trace

INTRO (ADMN) INTRO (ADMN)

intro
introduction to network maintenance and operation
commands

Description

This section contains infonnation related to network operation and
maintenance. It describes a variety of commands: slink, to bring up
the transport; ifconfig, and slattach, to configure network interfaces;
ping, to test status of remote hosts; trpt, to display packet-tracing in­
fonnation; to invoke network services; and and other network
administration functions.

August 1, 1989 INTR0-1

ARP(ADMN) ARP (ADMN)

arp
address resolution display and control

Syntax

arp hostname
arp -a [namelist] [corefile]
arp -d hostname
arp -s hostname ether_addr [temp] [pub] [trail]
arp -f filename

Description

The arp program displays and modifies the Internet-to-Ethernet
address-translation table, which is normally maintained by the
address-resolution protocol (arp(ADMP».

When hostname is the only argument, arp displays the current ARP
entry for hostname. The host may be specified by name or number,
using Internet dot notation. [See hosts(ADMN} and inet(ADMP}.]

Options are interpreted as follows:

-a [namelist] [corefile]
Display all of the current ARP entries by reading the table from the
file corefile (default Idevlkmem) based on the kernel file namelist
(default lunix).

-d Delete an entry for the host whose name is hostname. (This can be
performed only by the super user.) .

. -s hostname ether addr [temp] [pub] [trail]
Create an ARP entry for the host whose name is hostname with the
Ethernet address ether addr. The Ethernet address is given as six
colon-separated, two-digit hexadecimal numbers. The entry will
be permanent unless the argument temp is specified on the com­
mand line. If pub is specified, the entry will be published: that is,
this system will act as an ARP server, responding to requests for
hostname even though the host address is not an address of the
local host. If trail is specified, trailer encapsulations are to be used
with this host. N.B. 'Ii'ailers are a link-dependent issue. Currently,
no known ILl-compliant ethernet driver suppports trailers, and it
is unwise to advertise them, unless it is certain that the link layer
can handle them.

July 15,1989 ARP-1

ARP (ADMN) ARP (ADMN)

-ffilename
Read the file filename and set multiple entries in the ARP tables.
Entries in the file should be of the fonn:

hostname ether _ addr [temp) [pub) [trail]

with argument meanings as given above.

See Also

inet(SLm), arp(ADMP), ifconfig(ADMN).

July 15, 1989 ARP-2

ORVCONF (AOMN) ORVCONF (AOMN)

drvconf
configure TCP/IP ethernet drivers

Syntax

/etcJdrvconf

Description

tetcldrveonf is used to configure TCP/IP to use a particular ethemet
driver. It prompts with a list of possible drivers and asks the user to
select one. The TCP/IP configuration files tetet strcf and tete/tep are
then modified to use the appropriate driver. The driver must be
installed on the system when drveonf is run.

See Also

strcf(SFF), tcp(ADMN), idmknod(ADMN).

Bugs

As distributed, this command only supports drivers for the AT/386.

July 15. 1989 ORVCONF-1

FINGERD (ADMN) FINGERD (ADMN)

fingerd
remote user information server

Syntax

letc/tingerd

Description

fingerd is a server that provides a network interface to the finger(TC)
program (or, on some other systems, the name program). This inter­
face allows finger to display information about remote users.

fingerd listens for TCP connections on the finger port. (See
services(SFF).) For each connection,fingerd reads a single input line
(terminated by a <CRLF», passes the line to finger, and copies the
output offinger to the user on the client machine.

fingerd is started by the super-server inetd, and therefore must have an
entry in inetd 's configuration flle letC/inetd.conf. [See inetd(ADMN)
and inetd.con/(SFF).]

For it to work,fingerd needs to have a lusr/locallbin directory created
and then linked to lusr/binltinger.

See Also

finger(TC), inetd(ADMN), inetd.conf(SFF), services(SFF), RFC 742.

Warning

Connecting to fingerd using TELNET (see telnet(TC) can have
unpredictable consequences and is not recommended.

August 1. 1989 FINGERD-1

FTPD(ADMN) FTPD(ADMN)

ftpd
DARPA Internet File Transfer Protocol server

Syntax

/etC/ftpd [-d] [-I] [-ttimeout]

Description

ftpd is the DARPA Internet File Transfer Protocol server process. The
server uses the TCP protocol and listens at the port specified in the ftp
service specification; see services(SFF).

ftpd is started by the super-server inetd, and therefore must have an
entry in inetd 's configuration file /etC/inetd.conf. [See inetd(ADMN}
and inetd.conf(SFF}.}

If the -d option is specified, debugging infonnation is written to the
syslog.

If the -I option is specified, each FI'P session is logged in the syslog.

The FI'P server will timeout an inactive session after 15 minutes. If
the -t option is specified, the inactivity timeout period will be set to
timeout.

The FI'P server currently supports the following FI'P requests; case is
not distinguished.

Request
ABOR
ACCT
ALLO
APPE
COUP
CWO
DELE
HELP
LIST
MKD
MODE
NLST
NOOP
PASS
PASV
PORT
PWD
QUIT

August 1, 1989

Description
abort previous command
specify account (ignored)
allocate storage (vacuously)
append to a file
change to parent of current working directory
change working directory
delete a file
give help infonnation
give list flIes in a directory (Is -I)
make a directory
specify data transfer mode
give name list of rues in directory (Is)
do nothing
specify password
prepare for server-ta-server transfer
specify data connection port
print the current working directory
tenninate session

FTPD-1

FTPD{ADMN) FTPD{ADMN)

RETR
RMD
RNFR
RNTO
STOR
STOU
STRU
TYPE
USER
XCUP
XCWD
XMKD
XPWD
XRMD

retrieve a file
remove a directory
specify rename-from file name
specify rename-to file name
store a file
store a file with a unique name
specify data transfer structure
specify data transfer type
specify user name
change to parent of current working directory
change working directory
make a directory
print the current working directory
remove a directory

The remaining FfP requests specified in Internet RFC 959 are recog­
nized, but not implemented.

The FfP server will abort an active file transfer only when the ABOR
command is preceded by a Telnet Interrupt Process (IP) signal and a
Telnet Synch signal in the command Telnet stream, as described in
Internet RFC 959.

ftpd interprets file names according to the globbing conventions used
by sh(C). This allows users to utilize the metacharacters *?O { r.
ftpd authenticates users according to three rules.

I) The user name must be in the password data base /etclpasswd and
not have a null password. In this case, a password must be pro­
vided by the client before any file operations can be performed.

2) The user name must not appear in the file /etclftpusers.

3) If the user name is anonymous or ftp, an anonymous ftp account
must be present in the password file (user ftp). In this case, the
user is allowed to log in by specifying any password. (By conven­
tion, this is given as the client host's name.)

In the last case, ftpd takes special measures to restrict the client's
access privileges. The server performs a chroot(2) command to the
home directory of the ftp user. To make sure system security is not
breached, it is recommended that the ftp subtree be constructed with
care; the following rules are recommended. (Note: -ftp means "the
home directory of user ftp")

-ftp)
Make it so the home directory is owned by ftp and unwritable by
anyone.

August 1, 1989 FTPD-2

FTPD(ADMN) FTPD(ADMN)

-ftp/bin)
Make it so this directory is owned by the superuser and unwritable
by anyone. The program Is(C) must be present to support the list
commands. This program should have mode Ill.

-ftp/etc)
Make it so this directory owned by the superuser and unwritable by
anyone. The files passwd(SFF) and group(SFF) must be present
for the Is command to work properly. These files should be mode
444.

-ftp/pub)
Make this directory mode 777 and owned by ftp. Users should
then place files that are to be accessible via the anonymous
account in this directory.

See Also

ftp(TC), syslog(SLffi)

Notes

The anonymous account is inherently dangerous and should avoided
when possible.

The server must run as the superuser to create sockets with privileged
port numbers. It maintains an effective user id of the logged in user,
reverting to the superuser only when binding addresses to sockets.
The possible security holes have been extensively scrutinized, but are
possibly incomplete.

Flies

/etc/ftpusers - restricted user list
/etc/passwd - the user database
/etc/ group - the group database
/usr/adm/syslog - the system log file

The following files are needed for anonymous ftp:

-ftp/etc/passwd - used by -ftp/bin/ls
-ftp/etc/group - used by -ftp/bin/ls
-ftp/bin/ls - to support the LIST and NLST commands

In addition, if your /bin/ls is linked with shared libraries, you will need
to copy /shlib/libc_s to -ftp/shlib/libc_s. If your implementation is
using the SIOCSOCKSYS ioctl, you will need to run the
mdnod(ADMN) command on -ftp/dev/socksys.

August 1, 1989 FTPD-3

HOSTNAME (ADMN) HOSTNAME (ADMN)

hostname
host name resolution description

Description

Hostnames are domains, where a domain is a hierarchical, dot­
separated list of subdomains; for example, the machine laiter, in the
Lachman subdomain of the COM subdomain of the ARPANET would
be represented as

laiter.Lachman.COM
(with no trailing dot).

Hostnames are often used with network client and server programs,
which must generally translate the name to an address for use. (This
function is generally performed by the library routine
gethostbyname(SSC).) Hostnames are resolved by the internet name
resolver in the following fashion.

If the name consists of a single component, i.e. contains no dot, and if
the environment variable "HOSTALIASES" is set to the name of a
flle, that flle is searched for an string matching the input hostname.
The file should consist of lines made up of two white-space separated
strings, the first of which is the hostname alias, and the second of
which is the complete hostname to be substituted for that alias. If a
case-sensitive match is found between the hostname to be resolved
and the first field of a line in the flle, the substituted name is looked
up with no further processing.

If the input name ends with a trailing dot, the trailing dot is removed,
and the remaining name is looked up with no further processing.

If the input name does not end with a trailing dot, it is looked up in the
local domain and its parent domains until either a match is found or
fewer than 2 components of the local domain remain. For example, in
the domain Cffi.Lachman.COM, the name fiaime.STG will be
checked first as fiaime.STG.Cffi.Lachman.COM and then as
fiaime.STG.Lachman.COM. FIaime.STG.COM will not be tried, as
the there is only one component remaining from the local domain.

See Also

gethostent(SFF),resolver(ADMN),
named(ADMN).
RFC883.

July 15,1989

maiiaddr(ADMN),

HOSTNAME-1

IFCONFIG (ADMN) IFCONFIG (ADMN)

ifconfig
configure network interface parameters

Syntax

fetclifconfig interface address_family [address [descaddress]]
[parameters]

fetC/ifconfig interface [protocol_family]

Description

ifconftg is used to assign an address to a network interface and/or con­
figure network interface parameters; it defmes the network address of
each interface present on a machine. ifconfig is run at system start-up
time via tcp(lM). ifconftg may be run at other times to redefine an
interface's address or other operating parameters. (For example,
slattach(ADMN) also runs ifconftg.)

The interface parameter is a string of the form "name unit", for exam­
pIe, "enO".

Since an interface may receive transmissions in differing protocols,
each of which may require a separate naming scheme, it is necessary
to specify the addressjamily, which may change the interpretation of
the remaining parameters. Currently, only the Internet address family
is supported: thus, the only valid value for address_family is inet.

For the DARPA-Internet family, the address is either a host name or a
DARPA Internet address expressed in the Internet standard "dot nota­
tion". (Host name translation is performed either by the name server
or by an entry in fetc/hosts. [See named(ADMN) and hosts(ADMN).]
Internet "dot notation" is described in hosts (ADMN) and
inet(ADMP). Other address families may use different notations.)

The following parameters may be set with ifconftg :

up

August 1, 1989

Mark an interface "up". This may be used to enable
an interface after an "ifconfig down". It happens
automatically when setting the first address on an
interface. If the interface was reset when previ­
ously marked down, the hardware will be re­
initialized.

IFCONFIG-1

IFCONFIG (ADMN) IFCONFIG (ADMN)

down Mark an interface "down". When an interface is
marked "down", the system will not attempt to
transmit messages through that interface. If possi­
ble, the interface will be reset to disable reception
as well. This action does not automatically disable
routes using the interface.

detach Remove an interface from the system. This com­
mand is applicable to transient interfaces only, such
as serial line interfaces.

trailers Request the use of a trailer link level encapsulation
when sending (default). If a network interface sup­
ports trailers, the system will, when possible,
encapsulate outgoing messages in a manner that
minimizes the number of memory-to-memory copy
operations performed by the receiver. On networks
that support the Address Resolution Protocol (see
arp(ADMP); currently, only 10 Mb/s Ethernet), this
flag indicates that the system should request that
other systems use trailers when sending to this host.
Similarly, trailer encapsulations will be sent to
other hosts that have made such requests. This is
currently used by Internet protocols only.

-trailers Disable the use of a trailer-link-level encapsulation.

arp Enable the use of the Address Resolution Protocol
in mapping between network level addresses and
link-level addresses (default). This is currently
implemented for mapping between DARPA Internet
addresses and 10Mb/s Ethernet addresses. This
option is not applicable in the STREAMS environ­
ment. Use of arp for an interface is specified in
fetc/stref. The arp driver will be opened when the
STREAMS stack is built.

-arp Disable the use of the Address Resolution Protocol.

metric n Set the routing metric of the interface to n, default
O. The routing metric is used by the routing proto­
col. Higher metrics have the effect of making a
route less favorable; metrics are counted as addition
hops to the destination network or host.

debug Enable driver-dependent debugging code; usually,
this turns on extra console error logging.

-debug Disable driver-dependent debugging code.

August 1, 1989 IFCONFIG-2

IFCONFIG (ADMN) IFCONFIG (ADMN)

netmask mask (Inet only) Specify how much of the address to
reserve for subdividing networks into sub-networks.
The mask includes the network part of the local
address and the subnet part, which is taken from the
host field of the address. The mask can be specified
as a single hexadecimal number with a leading Ox,
with a dot-notation Internet address, or with a
pseudo-network name listed in the network table
networks(SFF). The mask contains 1 's for the bit
positions in the 32-bit address, which are to be used
for the network and subn~t parts. and O's for the
host part. The mask should contain at least the
standard network portion, and the subnet field
should be contiguous with the network portion.

dstaddr Specify the address of the correspondent on the
other end of a point-to-point link.

broadcast (Inet only) Specify the address to use to represent
broadcasts to the network. The default broadcast
address is the address with a host part of all 1 'So

onepacket Enable the one-packet mode of operation (used for
interfaces that cannot handle back-to-back packets)
The keyword onepacket must be followed by two
numeric parameters, giving the small packet size
and threshold, respectively. If small packet detec­
tion is not desired. these values should be zero. See
tcp (ADMP) for an explanation on one-packet mode.

-onepacket Disable one-packet mode.

ifconfig displays the current configuration for a network interface
when no optional parameters are supplied. If a protocol family is
specified, ifconfig will report only the details specific to that protocol
family.

Only the superuser may modify the configuration of a network inter­
face.

DiagnostiCS

Messages indicating the specified interface does not exit, the
requested address is unknown. or the user is not privileged and tried to
alter an interface's configuration.

August 1, 1989 IFCONFIG-3

IFCONFIG (ADMN) IFCONFIG (ADMN)

Files

/etc/slattach
calls ifconfig to start serial lines

See Also

arp(ADMN). tcp(ADMN). netstat(TC). hosts(SFF). networks(SFF).
strcf(ADMN), arp(ADMP). tcp(ADMP).

August 1. 1989 IFCONFIG-4

INETD (ADMN) INETD (ADMN)

inetd
internet super server

Syntax

lete/inetd [-d] [configuration file]

Description

inetd listens on multiple ports for incoming connection requests.
When it receives a request, it spawns the appropriate server. The use
of a superserver allows other servers to be spawned only when needed
and to terminate when they have satisfied a particular request.

The mechanism is as follows: inetd is started by the superuser (usu­
ally during init 2, if lete/tcp is linked to letC/rc2.dlSnntcp.). To
obtain information about the servers it needs to spawn, inetd reads its
configuration file (by default, /etclinetd.con/(SFF» and issues a call to
getservbyname . [See getservent(SLm).] (Note that lete/services and
fete/protocols must be properly configured.) inetd then creates a
socket for each server and binds each socket to the port for that server.
It does a listen (SSC) on all connection-based sockets (that is, stream
rather than datagram), and waits, using select(SSC), for a connection
or datagram.

• When a connection request is received on a listening (stream)
socket, inetd does an accept(SSC), thereby creating a new socket.
(inetd continues to listen on the original socket for new requests).
inetd forks, dups, and execs the appropriate server, passing it any
server program arguments specified in inetd 's configuration file.
The invoked server has 110 to stdin, stdout, and stderr done to the
new socket; this connects the server to the client process. (Some
built-in, internal services are performed via function calls rather
than child processes.)

• When there is data waiting on a datagram socket, inetd forks, dups,
and execs the appropriate server, passing it any server program
arguments; unlike a connection-based server, a datagram server
has 110 to stdin, stdout, and stderr done to the original socket. If
the datagram socket is marked as wait (which corresponds to an
entry in inetd 's configuration file), the invoked server must process
the message before inetd considers the socket available for new
connections. If the datagram socket is marked as nowait, inetd
continues to process incoming messages on that port. tftpd is an
exceptional case: although its entry in inetd 's configuration file
must be wait (to avoid contention for the port), inetd is able to. con­
tinue processing new messages on the port.

August 1, 1989 INETD-1

INETD (ADMN) INETD (ADMN)

The following servers may be started by inetd: fingerd, ftpd, rexecd,
r/ogind, rshd, te/netd, and tftpd. inet must also start several internal
services: these are described in inetd.con/(SFF). Do not arrange for
inetd to start rwhod, or any NFS server.

inetd rereads its configuration file when it receives a hangup signal,
SIGHUP. Services may be added, deleted or modified when the con­
figuration file is reread.

The -d option turns on socket-level debugging and prints debugging
information to stdout.

Files

/ete/inetd.conf
/etc/protocols
/etc/services

See Also

fingerd(ADMN), ftpd(ADMN), rexeed(ADMN), rlogind(ADMN),
rshd(ADMN), telnetd(ADMN), tftpd(ADMN), inetd.conf(SFF),
protocols(SFF), services(SFF).

August 1 , 1989 INETD-2

LDSOCKET (ADMN)

Idsocket
load socket configuration

Syntax

Idsocket [-v] [-c file]

Description

LDSOCKET (ADMN)

Idsocket initializes the System V STREAMS TCP/IP Berkeley network­
ing compatability interface, which is an alternate stream head support­
ing the socket (SSC) system call family. ldsocket loads the kernel with
associations between the protocol family, type and number triplets
passed to the socket system call, and the STREAMS devices supporting
those protocols. Idsocket reads the file fetclsockcf to obtain con­
figuration information, and must be run before the Berkeley network­
ing interface can be used.

The following options may be specified on the ldsocket command
line:

-efile Use file instead of fete/sockcf.

-v Use verbose mode (in which a message is written to stderr
for each protocol loaded).

Files

fetcfsockcf

See Also

sockcf(SFF), intro(ADMP), socket(SSC).

July 15. 1989 LDSOCKET-1

LMAIL (ADMN) LMAIL (ADMN)

Imail
handle local mail delivery from send mail

Syntax

Imail user ...

Description

lmai/ interprets incoming mail received from sendmail (ADMN) , and
delivers it to the specified user on the local machine. It locks the
user's mailbox using the mail (TC) locking mechanism.

See Also

mail(TC), sendmail(ADMN).

August 1, 1989 LMAIL-1

MAILADDR (ADMN) MAILADDR (ADMN)

mailaddr
mail addressing description

Description

Mail addresses are based on the ARPANET protocol listed at the end
of this manual page. These addresses are in the general format

user@domain

where a domain is a hierarchical dot separated list of subdomains. For
example, the address

stevea@laiter.lachman.com

is normally interpreted from right to left: the message should go to the
Lachman gateway, after which it should go to the local host laiter.
When the message reaches laiter it is delivered to the user "·stevea".

Unlike some other forms of addressing, this does not imply any rout­
ing. Thus, although this address is specified as an RFC822 address, it
might travel by an alternate route if that were more convenient or effi­
cient. For example, at Lachman, the associated message would prob­
ably go directly to laiter over the Ethernet rather than going via the
Lachman mail gateway.

Abbreviation.

Under certain circumstances it may not be necessary to type the entire
domain name. In general, anything following the first dot may be
omitted if it is the same as the domain from which you are sending the
message. For example, a user on "laisagna.Lachman.COM" could
send to "stevea@laiter" without adding the "Lachman.COM" since it
is the same on both sending and receiving hosts.

Certain other abbreviations may be permitted as special cases. For
example. at Lachman, Internet hosts may be referenced without add­
ing the "Lachman. COM" as long as their names do not conflict with a
local host name.

July 15. 1989 MAILADDR-1

MAILADDR (ADMN) MAILADDR (ADMN)

Compatibility.

Certain old address formats are converted to the new format to provide
compatibility with the previous mail system. In particular,

user@host.ARPA

is allowed and

host:user

is converted to

user@host

to be consistent with the rcp(1) command.

Also, the syntax

host! user

is converted to:

user@host.UUCP

This is normally converted back to the "host!user" form before being
sent on for compatibility with older UUCP hosts.

The current implementation is not able to route messages automatical­
ly through the UUCP network. Until that time you must explicitly tell
the mail system which hosts to send your message through to get to
your fmal destination.

Case Distinctions.

Domain names (Le., anything after the "@" sign) may be given in any
mixture of upper and lower case with the exception of UUCP host­
names. Most hosts accept any combination of case in user names,
with the notable exception of MULTICS sites.

Route-addrs.

Under some circumstances it may be necessary to route a message
through several hosts to get it to the fmal destination. Normally this
routing is done automatically, but sometimes it is desirable to route
the message manually. Addresses which show these relays are termed
"route-addrs." These use the syntax:

<@hosta,@hostb:user@hostc>

July 15, 1989 MAILADDR-2

MAILADDR (ADMN) MAILADDR (ADMN)

This specifies that the message should be sent to hosta, from there to
hostb, and fmany to hostc. This path is forced even if there is a more
efficient path to hostc.

Route-addrs occur frequently on return addresses, since these are gen­
erally augmented by the software at each host. It is generally possible
to ignore all but the "user@domain" part of the address to determine
the actual sender.

Postmaster.

Every site is required to have a user or user alias designated "post­
master" to which problems with the mail system may be addressed.

Other Networks.

Some other networks can be reached by giving the name of the net­
work as the last component of the domain. This is not a standard/ea­
ture and may not be supported at all sites. For example, messages to
CSNET or BITNET sites can often be sent to "user@host.CSNET" or
"user@host.BITNET" respectively.

Bugs

The RFC822 group syntax ("group:userl,user2,user3;") is not sup­
ported except in the special case of "group:;" because of a conflict
with old berknet-style addresses.

Route-Address syntax is ugly.

UUCP- and RFC822-style addresses do not coexist politely.

See Also

mailx(TC), sendmail(ADMN). RFC822.

July 15, 1989 MAILADDR-3

MCONNECT (ADMN) MCONNECT (ADMN)

mconnect
connect to SMTP mail server socket

Syntax

mconnect [-p port] [-r] [hostname]

Description

Mconnect opens a connection to the mail server on a given host, so
that it can be tested independently of all other mail software. If no
host is given, the connection is made to the local host. Servers expect
to speak: the Simple Mail Transfer Protocol (SMTP) on this connec­
tion. Exit by typing the "quit" command. Typing end-of-file will
cause an end of file to be sent to the server. An interrupt closes the
connection immediately and exits.

Options

-p Specify the port number instead of the default SMTP port (number
25) as the next argument.

-r "Raw" mode: disable the default line buffering and input handling.
This gives you a similar effect as te/net to port number 25, not
very useful.

Files

/usrllib/sendmail.hf

See Also

sendmail(ADMN).
RFC821.

July 15, 1989

Help file for SMTP commands

MCONNECT-1

MKHOSTS .(ADMN) MKHOSTS (ADMN)

mkhosts
make node name commands

Syntax

letclmkhosts

Description

mkhosts makes the simplified fonns of the rcmd(TC) and rlogin(TC)
commands. For each node listed in letclhosts, mkhosts creates a link
to lusrlbinlrcmd in lusrlhosts. Each link's name is the same as the
node's official name in letclhosts.

See Also

rcmd (TC), rlogin(TC).

August 1, 1989 MKHOSTS-1

NAMED (ADMN) NAMED (ADMN)

named
Internet domain name server

Syntax

named [-d debug level] [-p port#] [-b bootfile]

Description

named is the Internet domain name server. (See RFC1035 for more
details on the Internet name-domain system.) Without any arguments,
named will read the default boot fIle tetc/named.boot, read any initial
data, and listen for queries.

Options are:

-d Print debugging information. A number after the d determines the
level of messages printed.

-p Use a different port number. The default is the standard port num­
ber as listed in letc/services.

-b Use an alternate boot file. This is optional and allows you to
specify a file with a leading dash.

Any additional argument is taken as the name of the boot file. The
boot file contains information about where the name server is to get its
initial data. If multiple boot files are specified, only the last is used.
Lines in the boot file cannot be continued on subsequent lines. The
following is a small example:

boot file for name server

directory lusr/localllibinamed
; type domain source hostlfile backup file

cache root.cache
primary Berkeley.EDU berkeley.edu.zone
primary 32.128.IN-ADDR.ARPA ucbhosts.rev
secondary CC.Berkeley.EOU 128.32.137.8128.32.137.3 cc.zone.bak
secondary 6.32.128.IN-ADDR.ARPA 128.32.137.8128.32.137.3 cc.rev.bak
primary 0.0.127.IN-ADDR.ARPA Iocalhost.rev
forwarders 10.0.0.78 10.2.0.78
; slave

August 1, 1989 NAMED-1

NAMED (ADMN) NAMED (ADMN)

The "directory" line causes the server to change its working directory
to the directory specified. This can be important for the correct pro­
cessing of SINCLUDE files in primary zone files.

The "cache" line specifies that data in "root.cache" is to be placed in
the backup cache. Its main use is to specify data such as locations of
root domain servers. This cache is not used during nonnal operation,
but is used as "hints" to find the current root servers. The file
"root.cache" is in the same fonnat as "berkeley.edu.zone". There can
be more than one "cache" file specified. The cache files are processed
in such a way as to preserve the time-to-live's of data dumped out.
Data for the root nameservers is kept artificially valid if necessary.

The first "primary" line states that the file "berkeley.edu.zone" con­
tains authoritative data for the "Berkeley.EDU" zone. The file
"berkeley.edu.zone" contains data in the master file fonnat described
in RFC 1035. All domain names are relative to the origin, in this case,
"Berkeley.EDU" (see below for a more detailed description). The
second "primary" line states that the file "ucbhosts.rev" contains
authoritative data for the domain "32.128.IN-ADDR.ARPA," which is
used to translate addresses in network 128.32 to hostnames. Each
master file should begin with an SOA record for the zone (see below).

The first "secondary" line specifies that all authoritative data under
"CC.Berkeley.EDU" is to be transferred from the name server at
128.32.137.8. If the transfer fails it will try 128.32.137.3 and continue
trying the addresses, up to 1 0, listed on this line. The secondary copy
is also authoritative for the specified domain. The first non-dotted­
quad address on this line will be taken as a filename in which to
backup the transferred zone. The name server will load the zone from
this backup file if it exists when it boots, providing a complete copy
even if the master servers are unreachable. Whenever a new copy of
the domain is received by automatic zone transfer from one of the
master servers, this file will be updated. The second "secondary" line
states that the address-to-hostname mapping for the subnet 128.32.136
should be obtained from the same list of master servers as the previous
zone.

The "forwarders" line specifies the addresses of sitewide servers that
will accept recursive queries from other servers. If the boot file
specifies one or more forwarders, then the server will send all queries
for data not in the cache to the forwarders first. Each forwarder will
be asked in turn until an answer is returned or the list is exhausted. If
no answer is forthcoming from a forwarder, the server will continue as
it would have without the forwarders line unless it is in "slave" mode.
The forwarding facility is useful to cause a large sitewide cache to be
generated on a master, and to reduce traffic over links to outside
servers. It can also be used to allow servers to run that do not have
access directly to the Internet, but wish to act as though they do.

August 1, 1989 NAMED-2

NAMED (ADMN) NAMED (ADMN)

The "slave" line (shown commented out) is used to put the server in
slave mode. In this mode, the server will only make queries to for­
warders. This option is nonnally used on machine that wish to run a
server but for physical or administrative reasons cannot be given
access to the Internet, but have access to a host that does have access.

The "sortlist" line can be used to indicate networks that are to be pre­
ferred over other, unlisted networks. Queries for host addresses from
hosts on the same network as the server will receive responses with
local network addresses listed first, then addresses on the sort list, then
other addresses. This line is only acted on at initial startup. When
reloading the nameserver with a SIGHUP, this line will be ignored.

The master file consists of control infonnation and a list of resource
records for objects in the zone of the fonns:

$INCLUDE <filename> <opcdomain>
$ORIGIN <domain>
<domain> <opCttl> <opCclass> <type> <resource_record_data>

where domain is ". " for root, "@" for the current origin, or a standard
domain name. If domain is a standard domain name that does not end
with , the current origin is appended to the domain. Domain names
ending with "." are unmodified. opt_domain field is used to define an
origin for the data in an included file. It is equivalent to placing a
$ORIGIN statement before the first line of the included file. The field
is optional. Neither the opt_domain field nor $ORIGIN statements in
the included file modify the current origin for this file. The opt_ttl
field is an optional integer number for the time-to-live field. It
defaults to zero, meaning the minimum value specified in the SOA
record for the zone. The opt_class field is the object address type;
currently only one type is supported, IN, for objects connected to the
DARPA Internet. The type field contains one of the following tokens;
the data expected in the resource Jecord _data field is in parentheses.

A a host address (dotted quad)

NS an authoritative name server (domain)

CNAME the canonical name for an alias (domain)

SOA marks the start of a zone of authority (domain of originating
host, domain address of maintainer, a serial number and the
following parameters in seconds: refresh, retry, expire and
minimum TIL (see RFC1035»

MB a mailbox domain name (domain)

MG a mail group member (domain)

August 1, 1989 NAMED-3

NAMED (ADMN) NAMED (ADMN)

MR a mail rename domain name (domain)

MX a mail exchange record

NULL a null resource record (no format or data)

WKS a well-known service description (not implemented yet)

PTR a domain name pointer (domain)

HINFO host information (cpu_type OS_type)

MINFO mailbox or mail list information (requescdomain
errocdomain)

Resource records normally end at the end of a line, but may be contin­
ued across lines between opening and closing parentheses. Comments
are introduced by semicolons and continue to the end of the line.

Each master zone file should begin with an SOA record for the zone.
An example SOA record is as follows:

@ IN SOA ucbvax.Berkeley.EDU. rwh.ucbvax.Berkeley.EDU. (
2.89 ; serial
10800; refresh
3600 ; retry
3600000 ;expire
86400) ; minimum

The SOA lists a serial number, which should be changed each time the
master file is changed. Secondary servers check the serial number at
intervals specified by the refresh time in seconds; if the serial number
changes. a zone transfer will be done to load the new data. If a master
server cannot be contacted when a refresh is due, the retry time
specifies the interval at which refreshes should be attempted until suc­
cessful. If a master server cannot be contacted within the interval
given by the expire time, all data from the zone is discarded by sec­
ondary servers. The minimum value is the time-to-live used by
records in the file with no explicit time-to-live value.

Notes

The boot file directives "domain" and "suffixes" have been obsoleted
by a more useful resolver based implementation of suffixing for par­
tially qualified domain names. The prior mechanisms could fail under
a number of situations, especially when then local nameserver did not
have complete information.

The following signals have the specified effect when sent to the server
process using the kill (C) command.

August 1. 1989 NAMED-4

NAMED (ADMN) NAMED (ADMN)

SIGHUP Causes server to read named.boot and reload database.

SIGINT Dumps current data base and cache to
/usr/tmp/named _ dump.db.

SIGIDT Dumps statistics data into /usr/tmpjnamed.stats if the
server is compiled -DSTATS. Statistics data is appended
to the file.

SIGSYS Dumps the profiling data in /usr/tmp if the server is com­
piled with profiling (server forks, chdirs and exits).

SIGTERM Dumps the primary and secondary database files. Used to
save modified data on shutdown if the server is compiled
with dynamic updating enabled.

SIGUSRI Thms on debugging; each SIGUSRI increments debug
level.

SIGUSR2 Thms off debugging completely.

Files

letc/named.boot
letc/named.pid
/usr/tmp/named.run
/usr/tmp/named_dump.db
/usr/tmp/named.stats

See Also

name server configuration boot file
the process id
debug output
dump of the name servers database
nameserver statistics data

kill(C), gethostent(SLffi), signal(S), sigset(S), resolver(SFF),
resolver(ADMN), hostname(ADMP).
RFC974, RFCI034, RFCI035, Name Server Operations Guide for
BIND.

August 1, 1989 NAMED-5

NETLOGIN (ADMN) NETLOGIN (ADMN)

netlogin
network login program

Syntax

netlogin [-p] [-r remotehost] [name] [env-var]

Description

Netlogin is a derivative of the login(TC) command. It provides facili­
ties that telnetd(ADMN) and rlogind(ADMN) need, such as preserving
the environment, and support for automatically logging users in.
Netlogin takes the following options:

-p Preserve the environment. This is used by telnetd to pass infonna­
tion obtained via tenninal type negotiation.

-r remotehost
Process automatic login from remotehost. Used by rlogind to
allow a user with the proper pennissions to bypass the password
prompt when logging in.

See Also

10gin(TC), rlogind(ADMN), telnetd(ADMN), rhosts(SFF).

July 15, 1989 NETLOGIN-1

PING (ADMN) PING (ADMN)

ping
send ICMP ECHO_REQUEST packets to network
hosts

Syntax

fetc/ping [-r] [-v] host [packetsize] [count]

Description

ping is a troubleshooting tool for tracking a single-point hardware or
software failure in the Internet. It uses the ICMP protocol's manda­
tory ECHO_REQUEST datagram to elicit an ICMP
ECHO_RESPONSE from a host or gateway. ECHO_REQUEST
datagrams (pings) have an IP and an ICMP header, followed by a
struet timeval and an arbitrary number of pad bytes used to fill out
the packet. Default datagram length is 64 bytes, but this may be
changed using the command-line option. Other options are:

-r Bypass the normal routing tables and send directly to a host on an
attached network. If the host is not on a directly-attached network,
an error is returned. This option can be used to ping a local host
through an interface that has no route through it.

-v Verbose output. ICMP packets other than ECHO RESPONSE that
are received are listed.

When using ping for fault isolation, it should first be run on the local
host, to verify that the local network interface is up and running.
Then, hosts and gateways further and further away should be pinged.
The ping tool sends one datagram per second, and prints one line of
output for every ECHO_RESPONSE returned. No output is produced
if there is no response. If an optional count is given, only that number
of requests is sent. Round-trip times and packet loss statistics are
computed. When all responses have been received or the program
times are out (with a count specified), or if the program is terminated
with a SIGINT, then a brief summary is displayed.

This program is intended for use in network testing, measurement and
management. It should be used primarily for manual fault isolation.
Because of the load it could impose on the network, it is unwise to use
ping during normal operations or from automated scripts.

See Also

netstat(TC), ifconfig(ADMN).

August 1 J 1989 PING-1

RDATE (ADMN)

rdate
notify time server that date has changed

Syntax

rdate

Description

RDATE (ADMN)

rdate notifies timed(ADMN) that the system date has changed. If the
local time server is a master, it will notify all of the slaves that the
time has changed. If it is a slave, it will ask the master to update the
time.

rdate should be run whenever the super user sets the date with
date(C). A shell script such as the following could be used to do both
automatically.

: mv /bin/date /binls5date
: install as /bini date

PATH=lbin:/usr/bin
s5date $"
rdate

See Also

date(C), adjtime(SSC), gettimeofday(SLffi),
timed(ADMN), timedc(ADMN).

August 1, 1989

icmp(ADMP),

RDATE-1

REXECD (ADMN) REXECD (ADMN)

rexecd
remote execution server

Syntax

letc/rexecd

Description

rexecd is the server for the rexec(SLm) routine. The server provides
remote execution facilities with authentication based on user names
and passwords.

rexecd listens for service requests at the port indicated in the exec ser­
vice specification; see services (SFF). When a service request is
received, the following protocol is initiated:

1) The server reads characters from the socket up to a null ('\0') byte.
The resultant string is interpreted as an ASCn number, base 10.

2) If the number received in step 1 is non-zero, it is interpreted as the
port number of a secondary stream to be used for the stderr. A
second connection is then created to the specified port on the
client's machine.

3) A null-terminated user name of at most 16 characters is retrieved
on the initial socket.

4) A null-terminated, unencrypted password of at most 16 characters
is retrieved on the initial socket.

5) A null-terminated command to be passed to a shell is retrieved on
the initial socket. The length of the command is limited by the
upper bound on the size of the system's argument list.

6) Then, rexecd validates the user as is done at login time and, if the
authentication was successful, changes to the user's home direc­
tory, and establishes the user and group protections of the user. If
any of these steps fail, the connection is aborted with a diagnostic
message returned.

7) A null byte is returned on the initial socket and the command line
is passed to the normal login shell of the user. The shell inherits
the network connections established by rexecd.

rexecd is started by the super-server inetd, and therefore must have an
entry in inetd' s configuration file letclinetd.conf.

August 1, 1989 REXECO-1

REXECD(ADMN) REXECD(ADMN)

Diagnostics

Except for the last one listed below, all diagnostic messages are
returned on the initial socket, after which any network connections are
closed. An error is indicated by a leading byte with a value of 1. (0 is
returned in step 7, above, upon successful completion of all the steps
prior to the command execution.)

"username too long"
The name is longer than 16 characters.

"pas~ordtoolong"
The password is longer than 16 characters.

"command too long"
The command line passed exceeds the size of the argu­
ment list (as configured into the system).

"Login incorrect."
No password file entry for the user name existed.

"Password incorrect. "
The wrong password was supplied.

"No remote directory."
The ehtiir command to the home directory failed.

"Try again."
A/ork by the server failed.

"<shellname>: ... "

See Also

The user's login shell could not be started. This message
is returned op the connection associated with the stderr,
and is not preceded by a flag byte.

rexec(SLffi), inetd(ADMN), inetd.conf(SFF), services(SFF).

Notes

Indicating "Login incorrect" as opposed to "Password incorrect" is a
security breach which allows people to probe a system for users with
null passwords.

A facility to allow all data and password exchanges to be encrypted
should be present.

August 1, 1989 REXECD-2

RLOGIND (ADMN) RLOGIND (ADMN)

rlogind
remote login server

Syntax

/etc/riogind

Description

rlogind is a network server that supports remote logins by programs
such as rlogin(TC). It is started by the superserver inetd and, there­
fore, must have an entry in inetd 's configuration file /etc/inetd.conf.
[See inetd(ADMN) and inetd.con/(SFF).]

rlogind enforces an authentication procedure based on equivalence of
user names (see rhosts(SFF». This procedure assumes all hosts on the
network are equally secure.

See Also

inetd(ADMN),
services(SFF).

August 1, 1989

rlogin(TC), inetd.conf(SFF), rhosts(SFF),

RLOGIND-1

RMAIL (ADMN) RMAIL (ADMN)

rmail
handle remote mail received via uucp

Syntax

nnail user ...

Description

rmail interprets incoming mail received via uucp(C), collapsing
"From" lines in the form generated by mail (TC) into a single line of
the form return-path/sender, and passing the processed mail on to
sendmail (ADMN).

rmail is explicitly designed for use with uucp and sendmail.

See Also

mail(TC), uucp(C), sendmail(ADMN).

August 1, 1989 RMAIL-1

ROUTE (ADMN)

route
manually manipulate the routing tables

Syntax

ROUTE (ADMN)

fete/route [-f] [-n] [command destination gateway [metric]]

Description

route is a program used to manipulate manually the network routing
tables. It is normally not needed, since the routing daemon routed
manages the system routing table and therefore handles this function.

route accepts two commands: add, to add a route; and delete, to
delete a route.

All commands have the following syntax:

fete/route command destination gateway [metric]

where destination is a host or network for which the route is "to",
gateway is the gateway to which packets should be addressed, and
metric is an optional count indicating the number of hops to the desti­
nation. If no metric is specified, route assumes a value of o. Routes
to a particular host are distinguished from those to a network by inter­
preting the Internet address associated with destination. If the desti­
nation has a local address part of INADDR_ANY, the route is
assumed to be to a network; otherwise, it is presumed to be a route to a
host. Note: If the route is to a destination connected via a gateway, metric
should be greater than o. All symbolic names specified for a destina­
tion or gateway are looked up fIrst in the host-name database; see
hosts(SFF). If this lookup fails, the name is then looked for in the net­
work name database; see networks(SFF).

route uses a raw socket and the SIOCADDRT and SIOCDELRT
ioctl's to do its work. Therefore, only the super user may modify the
routing tables.

If the -f option is specified, route will flush the routing tables of all
gateway entries. If this is used in conjunction with one of the com­
mands described above, the tables are flushed prior to the command's
application.

The -n option prevents attempts to print host and network names sym­
bolically when reporting actions.

August 1, 1989 ROUTE-1

ROUTE (ADMN)

Diagnostics

ROUTE (ADMN)

add [host I network]
The specified route is being added to the tables. The values printed
are from the routing table entry supplied in the ioctl call.

"delete host: gateway host flags hex-flags"
As above, but when deleting an entry.

"host host done"
When the -f flag is specified, each routing table entry
deleted is indicated with a message of this form.

"not in table"
A delete operation was attempted for an entry which was
not present in the tables.

"routing table overflow"

See Also

An add operation was attempted, but the system was low
on resources and unable to allocate memory to create the
new entry.

routed(ADMN), intro(ADMN), hosts(SFF), networks(SFF).

August 1, 1989 ROUTE-2

ROUTED (ADMN) ROUTED (ADMN)

routed
network routing daemon

Syntax

tetc/routed [-d] [-g] [-s] [-t] [logfile]

Description

routed manages the Internet routing tables using a variant of the
Xerox NS Routing Information Protocol. routed is invoked by the
superuser (usually during init 2).

In normal operation, routed listens on the udp(ADMP) socket for the
route service (see services(SFF)) for routing information packets. If
the host is an internetwork router, it periodically supplies copies of its
routing tables to any directly connected hosts and networks.

When routed is started, it uses the SIOCGIFCONF ioctl to fmd those
directly connected interfaces configured into the system and marked
"up". (The software loopback interface is ignored.) If multiple inter­
faces are present, it is assumed that the host will forward packets
between networks. Then, routed transmits a request packet on each
interface (using a broadcast packet if the interface supports it) and
enters a loop, listening for request and response packets from other
hosts.

When a request packet is received, routed formulates a reply based on
the information maintained in its internal tables. The response packet
generated contains a list of known routes, each marked with a hop
count metric. (A count of 16 or greater is considered infmite.) The
metric associated with each route returned provides a metric relative
to the sender.

Response packets received by routed are used to update the routing
tables if one of the following conditions is satisfied:

(1)

(2)

No routing table entry exists for the destination network or host,
and the metric indicates the destination is reachable (that is, the
hop count is not infinite).

The source host of the packet is the same as the router in the exist­
ing routing table entry. That is, updated information is being
received from the very internetwork router through which packets
for the destination are being routed.

July 15, 1989 ROUTED-1

ROUTED (ADMN) ROUTED (ADMN)

(3)

(4)

The existing entry in the routing table has not been updated for
some time (defined to be 90 seconds) and the route is at least as
cost effective as the current route.

The new route describes a shorter path to the destination than the
one currently stored in the routing tables; the metric of the new
route is compared against the one stored in the table to decide this.

When an update is applied, routed records the change in its internal
tables and updates the kernel-routing table. The change is reflected in
the next response packet sent.

In addition to processing incoming packets, routed also periodically
checks the routing table entries. If an entry has not been Updated for 3
minutes, its metric is set to infinity and marked for deletion. Deletions
are delayed an additional 60 seconds to ensure that the invalidation is
propagated throughout the local internet.

Hosts acting as internetwork routers gratuitously supply their routing
tables every 30 seconds to all directly-connected hosts and networks.
The response is sent to the broadcast address on nets capable of the
broadcast function, to the destination address on point-to-point links,
and to the router's own address on other networks. The normal routing
tables are bypassed when sending gratuitous responses. The reception
of responses on each network is used to determine that the network
and interface are functioning correctly. If no response is received on
an interface, another route may be chosen to route around the inter­
face, or the route may be dropped if no alternative is available.

routed supports several options:

-d Enable additional debugging information to be logged, such as bad
packets received.

-g This flag is used on internetwork routers to offer a route to the
default destination. This is typically used on a gateway to the
Internet, or on a gateway that uses another routing protocol whose
routes are not reported to other local routers.

-s Supplying this option forces routed to supply routing information
whether it is acting as an internetwork router or not. This is the
default if multiple network interfaces are present, or if a point-to­
point link is in use.

-q This is the opposite of the -5 option.

-t If the -t option is specified, all packets sent or received are printed
on the standard output. In addition, routed will not divorce itself
from the controlling terminal, and so interrupts from the keyboard
will kill the process.

July 15, 1989 ROUTED-2

ROUTED (ADMN) ROUTED (ADMN)

Any other argument supplied is interpreted as the name of file in
which routed's actions should be logged. This log contains informa­
tion about any changes to the routing tables and, if the log is not trac­
ing all packets, a history of recent messages sent and received that are
related to the changed route.

In addition to the facilities described above, routed supports the
notion of distant passive and active gateways. When routed is started
up, it reads the file lete/gateways to find gateways that may not be
located using only information from the SIOCGIFCONF ioctl. Gate­
ways specified in this manner should be marked passive if they are not
expected to exchange routing information, while gateways marked
active should be willing to exchange routing information (that is, they
should have a routed process running on the machine). Passive gate­
ways are maintained in the routing tables forever, and information
regarding their existence is included in any routing information
transmitted. Active gateways are treated equally with network inter­
faces. Routing information is distributed to the gateway and, if no
routing information is received for a period of time, the associated
route is deleted. External gateways are also passive, but are not
placed in the kernel routing table nor are they included in routing
updates. The function of external entries is to inform routed that
another routing process will install such a route, and that alternate
routes to that destination should not be installed. Such entries are
only required when both routers may learn of routes to the same desti­
nation.

The lete/gateways is comprised of a series of lines, each in the follow­
ing format:

<net I host> name] gateway name2 metric value < passive I active I external>

The net or host keyword indicates whether the route is to a network or
specific host.

name} is the name of the destination network or host. This may be a
symbolic name located in lete/networks or letclhosts (or, if started
after named(ADMN), known to the name server), or an Internet
address specified in "dot" notation; see hosts(SFF) and inet(ADMP).

name2 is the name or address of the gateway to which messages
should be forwarded.

value is a metric indicating the hop count to the destination host or
network.

One of the keywords passive. active and external indicates whether
the gateway should be treated as passive or active (as described
above), or the gateway is external to the scope of the routed protocol.

July 15, 1989 ROUTED-3

ROUTED (ADMN)

Files

/etc/gateways for distant gateways

See Also

udp(ADMP).

Notes

ROUTED (ADMN)

The kernel's ICMP routing tables may not correspond to those of
routed when ICMP redirects change or add routes.

July 15,1989 ROUTED-4

RSHD (ADMN) RSHD (ADMN)

rshd
remote shell server

Syntax

letclrshd

Description

rshd is the network server for programs such as rcmd(TC) and
rcp(TC) which need to execute a noninteractive shell on remote ma­
chines. rshd is started by the superserver inetd, and therefore must
have an entry in inetd 's configuration flle letclinetd.conf. [See
inetd(ADMN) and inetd.c01if(SFF»).

rshd enforces an authentication procedure based on equivalence of
user names (see rhosts(SFF». This procedure assumes all nodes on
the network are equally secure.

See Also

inetd(ADMN), rcmd(TC), rcp(TC), inetd.conf(SFF), rhosts(SFF).

August 1. 1989 RSHD-1

RWHOD (ADMN) RWHOD (ADMN)

rwhod
system status server

Syntax

letclrwhod

Description

rwhod is the server which maintains the database used by the
rwho(TC) and ruptime(TC) programs. Its operation is predicated on
the ability to broadcast messages on a network.

rwhod operates as both a producer and a consumer of status infonna­
tion. As a producer of infonnation, it periodically queries the state of
the system and constructs status messages that are broadcast on a net­
work. As a consumer of infonnation, it listens for other rwhod
servers' status messages, validating them, then recording them in a
collection of fIles located in the directory lusrlspoollrwho.

The server transmits and receives messages at the port indicated in the
rwho service specification; see services (SFF). The messages sent and
received are of the fonn:

struct outmp {

};

char ouUine[8];/* tty name·'
char oucname[8];/· user id·'
long ouUime;/· time on·'

struct whod {

};

char wd_vers;
char wd_type;
char wd_fill[2];
int wd_sendtime;
int wd_recvtime;
char wd_hostname[32];
int wd_loadav[3];
int wd_boottime;
struct whoent (

struct outrnp we_utmp;
int we_idle;

} wd_we[1 024' sizeof (struct whoent»);

All fields are converted to network byte order prior to transmission.
The load averages are as calculated by the uptime(C) program, and
represent load averages over the 5-,10-, and 15- minute intervals prior

August 1, 1989 RWHOD-1

RWHOD (ADMN) RWHOD (ADMN)

to a server's transmission; they are multiplied by 100 for representa­
tion in an integer. The host name included is that returned by the
gethostname(SLffi) system call, with any trailing domain name omit­
ted. The array at the end of the message contains information about
the users logged in to the sending machine. This information includes
the contents of the utmp(M) entry for each non-idle terminal line and
a value indicating the time in seconds since a character was last
received on the terminal line.

Messages received by the rwho server are discarded unless they ori­
ginated at an rwho server's port. In addition, if the host's name, as
specified in the message, contains any unprintable ASCII characters,
the message is discarded. Valid messages received by rwhod are
placed in flles named whod.hostname in the directory
lusrlspoollrwho. These flles contain only the most recent message, in
the format described above.

Status messages are generated approximately once every 5 minutes.
rwhod performs an nUst (S) on lunix every 30 minutes to guard against
the possibility that this file is not the system image currently operat­
ing.

See Also

rwho(TC), ruptime(TC).

Notes

There should be a way to relay status information between networks.
Status information should be sent only upon request, rather than con­
tinuously. People often interpret the server dying or network commu­
nication failures as a machine going down.

Some mechanism for cleaning dead machine data out of the spool
directory is needed.

August 1, 1989 RWHOD-2

SENDMAIL (ADMN) SENDMAIL (ADMN)

sendmail
send mail over the internet

Syntax

lusrllib/sendmail [flags] [address ...]

newaliases

maiIq [-v]

Description

sendmaiI sends a message to one or more recipients, routing the mes­
sage over whatever networks are necessary. sendmaiI does internet­
work forwarding as necessary to deliver the message to the correct
place.

sendmaiI is not intended as a user interface routine; other programs
provide user-friendly front ends; sendmaiI is used only to deliver pre­
formatted messages.

With no flags, sendmail reads its standard input up to an end-of-file or
a line consisting only of a single dot and sends a copy of the message
found there to all of the addresses listed. It determines the network(s)
to use, based on the syntax and contents of the addresses.

Local addresses are looked up in a file and aliased appropriately.
Aliasing can be prevented by preceding the address with a backslash.
Normally, the sender is not included in any alias expansions; for
instance, if 'john' sends to 'group', and 'group' includes 'john' in the
expansion, then the letter will not be delivered to 'john'.

Flags are:

-ba Go into ARPANET mode. Every input line must end
with a CR-LF, and each message will be generated
with a CR-LF at the end. Also, the "From:" and
"Sender:" fields are examined for the name of the
sender.

-bd Run as a daemon. sendmail will fork and run in back­
ground listening on TCP port 25 for incoming SMTP
connections. This is normally run from letclrc.

-bi Initialize the alias database. This works only if send­
mail was built with a DBM library. Otherwise, this
option does nothing.

August 1,1989 SENDMAIL-1

SENDMAIL (ADMN) SENDMAIL (ADMN)

-bm

-bp

-bs

-bt

-bv

-bz

-Cfile

-dX

-Ffullname

-fname

-hN

-n

-ox value

August 1, 1989

Deliver mail in the usual way (default).

Print a listing of the queue.

Use the SMTP protocol as described in RFC821 on
standard input and output. This flag implies all the
operations of the -ba flag that are compatible with
SMTP.

Run in address-test mode. This mode reads addresses
and shows the steps in parsing; it is used for debug­
ging configuration tables.

Verify names only; do not try to collect or deliver a
message. Verify mode is normally used for validating
users or mailing lists.

Create the configuration freeze file.

Use alternate configuration file. sendmail refuses to
run as root if an alternate configuration file is
specified. The frozen configuration file is bypassed.

Set debugging value to X.

Set the full name of the sender.

Sets the name of the "from" person (that is, the sender
of the mail). -f can only be used by trusted users (nor­
mally root, daemon, and network), or if the person
you are trying to become is the same as the person
you are.

Set the hop count to N. The hop count is incremented
every time the mail is processed. When it reaches a
limit, the mail is returned with an error message, the
victim of an aliasing loop. If not specified,
"Received:" lines in the message are counted.

Don't do aliasing.

Set option x to the specified value. Options are
described below.

SENDMAIL-2

SENDMAIL (ADMN) SENDMAIL (ADMN)

-q[time]

-rname

-t

-v

Process saved messages in the queue at given inter­
vals. If time is omitted, process the queue once. time
is given as a tagged number, with's' being seconds,
em' being minutes, 'h' being hours, cd' being days,
and ow' being weeks. For example, "-qlh30m" or
.. -q90m" would both set the timeout to one hour and
thirty minutes. If time is specified, sendmail will run
in background. This option can be used safely with
-bd.

An alternate and obsolete form of the -f flag.

Read message for recipients. To:, Cc:, and Bcc: lines
will be scanned for recipient addresses. The Bcc: line
will be deleted before transmission. Any addresses in
the argument list will be suppressed, that is, they will
not receive copies even if listed in the message
header.

Go into verbose mode. Alias expansions will be
announced, and so on.

There is also a number of processing options that may be set. Nor­
mally these will only be used by a system administrator. Options may
be set either on the command line using the -0 flag or in the configura­
tion file. These are described in detail in the TCPI/P Administrator's
Guide. The options are:

Afile

c

dx

D

August 1, 1989

Use alternate alias file.

On mailers that are considered expensive to connect
to, do not initiate immediate connection. This
requires queueing.

Set the delivery mode to x. Delivery modes are 'i' for
interactive (synchronous) delivery, 'b' for background
(asynchronous) delivery, and 'q' for queue only - that
is, actual delivery is done the next time the queue is
run.

Try to rebuild the alias database automatically if
necessary.

SENDMAIL-3

SENDMAIL (ADMN) SENDMAIL (ADMN)

ex

Fmode

f

gN

Hfile

m

o

Qqueuedir

rtimeout

Sfile

s

Ttime

August 1, 1989

Set error processing to mode x. Valid modes are 'm' to
mail back the error message, 'w' to "write" back the
error message (or mail it back if the sender is not
logged in), 'p' to print the errors on the terminal
(default), 'q' to throwaway error messages (so that
only exit status is returned), and 'e' to do special pro­
cessing for the BerkNet. If the text of the message is
not mailed back by mode 'm' or 'w' and if the sender
is local to this machine, a copy of the message is
appended to the file dead.letter in the sender's home
directory.

The mode to use when creating temporary files.

Save UNIX-style From lines at the front of messages.

The default group id to use when calling mailers.

The SMTP help file.

Do not take dots on a line by themselves as a message
terminator.

Send to "me" (the sender) also if I am in an alias
expansion.

If set, this message may have old-style headers. If not
set, this message is guaranteed to have new style
headers (that is, commas instead of spaces between
addresses). If set, an adaptive algorithm is used that
will correctly determine the header format in most
cases.

Select the directory in which to queue messages.

The timeout on reads; if none is set, sendmail will
wait forever for a mailer. This option violates the
word (if not the intent) of the SMTP specification, so
the timeout should probably be fairly large.

Save statistics in the named file.

Always instantiate the queue file, even under cir­
cumstances where it is not strictly necessary. This
provides safety against system crashes during
delivery.

Set the timeout on undelivered messages in the queue
to the specified time. After delivery has failed (for
instance, because a host is down) for this amount of
time, failed messages will be returned to the sender.
The default is three days.

SENDMAIL-4

SENDMAIL (ADMN) SENDMAIL (ADMN)

tstz,dtz Set the name of the time zone.

uN Set the default user id for mailers.

In aliases, the first character of a name may be a vertical bar to cause
interpretation of the rest of the name as a command to which to pipe
the maj.l. It may be necessary to quote the name to keep sendmail
from suppressing the blanks between arguments. For example, a com­
mon alias is:

msgs: "I/Usr/Ucb/msgs _SOl

Aliases may also have the syntax ":include:jilename" to ask sendmail
to read the named file for a list of recipients. For example, an alias
such as:

poets: ":include:/usr/local/lib/poets.list"

would read /usr/locaJllib/poets.list for the list of addresses making up
the group.

The sendmail command returns an exit status describing what it did.
The codes are defined in <sysexits.h >:

EX_OK
EX_NOUSER
EX_UNAVAILABLE

EX_NOHOST
EX_TEMPFAIL

Successful completion on all addresses.
User name not recognized.
Catchall, meaning necessary resources
were not available.
Syntax error in address.
Internal software error, including bad
arguments. .
Temporary operating-system error, such
as cannot fork.
Host name not recognized.
Message could not be sent immediately,
but was queued.

If invoked as newaliases, sendmail will rebuild the alias database.
This works only if sendmail was built with a DBM library. Otherwise,
this option does nothing. If invoked as mailq, sendmail will print the
contents of the mail queue.

August 1, 1989 SENDMAIL-5

SENDMAIL (ADMN) SENDMAIL (ADMN)

Files

Except for lusrllib/sendmail.cf, these patbnames are all specified in
lusrllib/sendmail.cf. Thus, these values are only approximations.

/usr/lib/aliases
/usr/lib/sendmail.cf
/usr/lib/sendmail.fc
/usr/lib/sendmail.hf
/usr/lib/sendmail.st
/usr/spool/mqueue/*

See Also

raw data for alias names
configuration file
frozen configuration
help file
collected statistics
temp files

mail(TC), aliases(SFF), mailaddr(SFF);
RFC819, RFC82 I , RFC822;
The chapter "Introduction to sendmail" in the TCPI/P Administrator's
Guide;
The chapter "Installing and Operating Sendmail" in the TCPI/P
Administrator's Guide.

August 1, 1989 SENDMAIL-6

SLATTACH (ADMN) SLATTACH (ADMN)

slattach, sldetach
attach and detach serial lines as network interfaces

Syntax

letclslattach devname source destination [baudrate]

letclsldetach interface-name

Description

slattach is used to assign a serial (tty) line to a network interface using
the DARPA Internet Protocol, and to defme the source and destination
network addresses. The devname parameter is the name of the device
the serial line is attached to, that is, /dev/ttyOOl. The source and desti­
nation are either host names present in the host name data base (see
hosts(SFF)), or DARPA Internet addresses expressed in the Internet
standard "dot notation." The optional baudrate parameter is used to
set the speed of the connection; if not specified, the default of 9600 is
used.

Only the superuser may attach or detach a network interface.

There should not be a getty (M) on the line.

sldetach is used to remove the serial line that is being used for IP from
the network tables and allow it to be used as a normal terminal again.
interface-name is the name that is shown by netstat(TC}.

Examples

Flies

letclslattach tty001 tom-src genstar
letclslattach Idevltty001 hugo dahl 4800
letclsldetach sl01

/etc/hosts
/dev/*
/usr/spool/locks/slippid. *

August 1, 1989 SLATTACH-1

SLATTACH (ADMN)

Diagnostics

Various messages indicating:
- the specified interface does not exist
- the requested address is unknown
- the user is not the superuser

See Also

hosts(SFF), netstat(TC), ifconfig(ADMN).

August 1, 1989

SLATTACH (ADMN)

SLATTACH-2

SLINK (ADMN) SLINK (ADMN)

slink
streams linker

Syntax

slink [-v] [.f] [·e file] [func [argl arg2 ...]]

Description

slink is a STREAMS configuration utility that is used to link together
the various STREAMS modules and drivers required for STREAMS
TCP/IP. Input to slink is in the form of a script specifying the
STREAMS operations to be performed. Input is normally taken from
the file fetc/stref.

The following options may be specified on the slink command line:

.efile Usefile instead of fetc/stref.

·v Verbose mode (that is, each operation is logged to stderr).

·f Do not fork (that is, slink will remain in foreground).

The configuration file contains a list of functions, each of which is
composed of a list of commands. Each command is a call to one of
the functions defined in the configuration file or to one of a set of
built-in functions. Among the built-in functions are the basic
STREAMS operations open, link, and push, along with several
TCP/IP-specific functions.

slink processing consists of parsing the input file, then calling the
user-defined function boot, which is normally used to set up the stan­
dard configuration at boot time. If a function is specified on the slink
command line, that function will be called instead of boot. Following
the execution of the specified function, slink goes into the background
and remains idle, holding open whatever file descriptors have been
opened by the configuration commands.

A function definition has the following form:

function-name {
command1
command2

August 1, 1989 SLlNK-1

SLINK (ADMN)

The syntax for commands is:

function arg1 arg2 arg3 ...

or:

var = function arg1 arg2 arg3 ...

SLINK (ADMN)

The placement of newlines is important: a newline must follow the
left and right braces and every command. Extra newlines are allowed,
that is, where one newline is required, more than one may be used. A
backslash ("') followed immediately by a newline is considered
equivalent to a space, so it may be used to continue a command on a
new line. The use of other white space characters (spaces and tabs) is
at the discretion of the user, except that there must be white space
separating the function name and the arguments of a command.

Comments are delimited by '#' and newline, and are considered
equivalent to a newline.

Function and variable names may be any string of characters taken
from A-Z, a-z, 0-9, and '_', except that the first character cannot be a
digit. Function names and variable names occupy separate name
spaces. All functions are global and may be forward-referenced. All
variables are local to the functions in which they occur.

Variables are defined when they appear to the left of an equal sign
('=') on a command line, such as:

tcp = open Idevllnetltcp

The variable acquires the value returned by the command. In the
above example, the value of the variable tep will be the file descriptor
returned by the open call.

Arguments to a command may be variables, parameters, or strings.

A variable that appears as an argument must have been assigned a
value on a previous command line in that function.

Parameters take the form of a dollar sign ('$') followed by one or two
decimal digits, and are replaced with the corresponding argument
from the function call. If a given parameter was not specified in the
function call, an error results (for instance, if a command references
$3 and only two arguments were passed to the function, an execution
error will occur).

Strings are sequences of characters optionally enclosed in double
quotes (....). Quotes may be used to prevent a string from being inter­
preted as a variable name or a parameter, and to allow the inclusion of
spaces, tabs, and the special characters '{" '}', '=', and '#'. The
backslash ("') may also be used to quote the characters ,{" T, '=',
'#', , and '\' individually.

August 1, 1989 SLlNK-2

SLINK (ADMN) SLINK (ADMN)

The following built-in functions are provided by slink:

open path

Iinkfdl fd2

pushfd module

sifname fd link name

unitsel fd unit

dlattachfd unit

Open the device specified by patbname
path. Returns a file descriptor referencing
the open stream.

Link the stream referenced by fd2 beneath
the stream referenced by fdl. Returns the
link identifier associated with the link.
Note: The fd2 function cannot be used
after this operation.

Push the module identified by module onto
the stream referenced by fd .

Send a SIOCSIFNAME (set interface
name) ioetl down the stream referenced by
fd for the link associated with link
identifier link specifying the name given in
name.

Send a IF _UNITSEL (unit select) ioctl
down the stream referenced by fd specify­
ing the unit given in unit.

Send a DL_ATIACH_REQ message down
the stream referenced by fd specifying the
unit given in unit.

initqp path qname lowat hiwat ...

August 1, 1989

Send an INITQPARMS (initialize queue
parameters) ioetl to the driver corre­
sponding to patbname path. qname
specifies the queue for which the low and
high water marks will be set, and must be
one of:

hd stream head
rq read queue
wq write queue
muxrq multiplexor read queue
muxwq multiplexor write queue

The lowat and hiwat functions specify the
new low and high water marks for the
queue. Both lowat and hiwat must be
present. To change only one of these
parameters, the other may be replaced with
a dash ('-'). Up to five qname lowat hiwat
triplets may be present.

SLlNK-3

SLINK (ADMN)

streat str 1 str2

return val

Files

letc/strcf

See Also

strcf(SFF), intro(ADMP).

August 1, 1989

SLINK (ADMN)

Concatenate strings str 1 and str2 and
return the resulting string.

Set the return value for the current function
to val. Note: executing a return command
does not terminate execution of the current
function.

SLlNK-4

TALKD (ADMN) TALKD (ADMN)

talkd
remote user communication server

Syntax

letc/talkd

Description

Talkd is the server that notifies a user that somebody else wants to ini­
tiate a conversation. It acts as a repository of invitations, responding
to requests by clients wishing to rendezvous to hold a conversation. In
nonnal operation, a talk client initiates a rendezvous by sending a
CTL_MSG to the server of type LOOK_UP (see <protocolsltalkd.h ».
This causes the server to search its invitation tables to check if an
invitation currently exists for the client. If the lookup fails, the caller
then sends an ANNOUNCE message causing the server to broadcast
an announcement on the callee's login ports requesting contact. When
the callee responds, the local server uses the recorded invitation to
respond with the appropriate rendezvous address and the caller and
callee client programs establish a stream connection through which
the conversation takes place.

See Also

talk(TC), write(TC)

July 15, 1989 TALKD-1

TCP (ADMN)

letc/tcp
TCP start/stop script

Syntax

/etc/tcp start
/etc/tcp stop

Description

TCP (ADMN)

fetc/tep is used to start or stop the STREAMS TCP software. TCP will
start automatically at system startup time if /etc/rc.d/6/name contains
a script iilcludiilg the command /etC/tcp start. TCP does not stop au­
tomatically at system shutdown time. The command /etc/tcp stop
will stop TCP. See init(M) for further infonnation.

/etc/tcp must be customized for a particular installation before it can
be used. The followiilg items must be edited:

Domaiil. name

Interface configuration

The environment variable DOMAIN must
be set to the name of your domaiil..

ifeonfig commands must be used to set the
iiltemet address (and any other desired
options) for each of your iilterfaces. The
ifeonfig liile for the loopback iilterface
should not require modification. See
ifeonfig(ADMN) for further infonnation.

The followiilg items may need to be edited:

PATH

PROCS

Network iilitialization

August 1, 1989

The supplied path may require
modification if commands run by fetc/tep
are iil other directories.

The PROCS variable contains a space­
separated list of names of processes to kill
when executing the stop function. IT
additional daemons are used, their names
can be added to this list.

Certain network hardware may require the
execution of an iilitialization command
before use. Any such commands should
be iilcluded iil this section.

TCP-1

TCP (ADMN)

Daemons

August 1, 1989

TCP (ADMN)

The standard intemetworking daemons
are started at this point. Any additional
daemons or other commands may be
included in this section. Any of the stan­
dard daemons that are not desired may be
removed or commented out.

TCP-2

TELNETD (ADMN) TELNETD (ADMN)

telnetd
DARPA TELNET protocol server

Syntax

/etc/teinetd

Description

te/need is a server that supports the DARPA standard TELNET virtual
tenninal protocol. te/netd is invoked by the internet server (see
inetd(ADMN», nonnally for requests to connect to the TELNET port
as indicated by the /etc/services file (see services (SFF».

te/netd operates by allocating a pseudo-tenninal device for a client,
then creating a login process that has the slave side of the pseudo ter­
minal as stdin, stdout, and stderr. te/need manipulates the master
side of the pseudo-tenninal, implementing the TELNET protocol and
passing characters between the remote client and the login process.

When a TELNET session is started up, te/netd sends TELNET
options to the client side indicating a willingness to do remote echo of
characters, to suppress go ahead, and to receive tenninal type infonna­
tion from the remote client. If the remote client is willing, the remote
tenninal type is propagated in the environment of the created login
process. The pseudo-tenninal allocated to the client is configured to
operate in ICANON mode, and with TAB3 and ICRNL enabled. (See
termio(M).}

te/netd is willing to do: echo, binary, suppress go ahead, and timing
mark. te/netd is willing to have the remote client do: binary, termi­
nal type, and suppress go ahead.

See Also

telnet(TC)

Notes

Some TELNET commands are only partially implemented.

The TELNET protocol allows for the exchange of the number of lines
and columns on the user's tenninal, but te/netd does not make use of
them.

August 1, 1989 TELNETD-1

TELNETD (ADMN) TELNETD (ADMN)

Because of bugs in the original 4.2 BSD telnet, telnetd perfonns some
dubious protocol exchanges to try to discover if the remote client is, in
fact, a 4.2 BSD telnet.

Binary mode has no common interpretation except between similar
operating systems (Unix, in this case).

The tenninal type name received from the remote client is converted
to lowercase.

The packet interface to the pseudo tenninal should be implemented
for intelligent flushing of input and output queues.

telnetd never sends TELNET go ahead commands.

August 1. 1989 TELNETO-2

TFTPD (ADMN) TFTPD (ADMN)

tftpd
DARPA Trivial File Transfer Protocol server

Syntax

letcltftpd

Description

tftpd is a server that supports the DARPA Thvial File 1hmsfer Proto­
col. The TFTP server operates at the port indicated in the tftp service
description; see services (SFF). This port number may be overridden
(for debugging purposes) by specifying a port number on the com­
mand line.

The use of tftp does not require an account or password on the remote
system. Due to the lack of authentication information, tftpd will allow
only publicly readable files to be accessed. Note that this extends the
concept of public to include all users on all hosts that can be reached
through the network; this may not be appropriate on all systems, and
its implications should be considered before enabling tftp service.

tftpd is spawned by the superserver inetd and, therefore, must have an
entry in inetd 's configuration file, letclinetd.conf. [See
inetd(ADMN) and inetd.con/(SFF).] Note that the tftpd entry in this
file must be "wait": this is to prevent subsequent selects from being
successful before the first tftpd process does its receive. tftpd takes
care to prevent multiple tftpd processes from being spawned to service
the same request. (inetd is able to continue processing . new messages
on the port.)

See Also

inetd(ADMN), tftp(TC), inetd.conf(SFF), services(SFF).

Warnings

This server is known only to be self-consistent (that is, it operates with
the user TFTP program tftp(TC».

The search permissions of the directories leading to the files accessed
are not checked if tftp runs as root. The default configuration runs
tftpd as user "sync."

August 1, 1989 TFTPD-1

TIMED (ADMN) TIMED (ADMN)

timed
time server daemon

Syntax

letdtimed [-t] [-M] [-n network] [-i network]

Description

timed is the time server daemon and is normally invoked at boot time
from the STREAMS TCP/IP start-up script. It synchronizes the host's
time with that of other machines in a local area network running
timed (ADMN). These time servers will slow down the clocks of some
machines and speed up the clocks of others to bring them to the aver­
age network time. The average network time is computed from meas­
urements of clock differences using the ICMP timestamp request mes­
sage.

The service provided by timed is based on a master-slave scheme.
When timed(ADMN) is started on a machine, it asks the master for the
network time and sets the host's clock to that time. After that, it
accepts synchronization messages periodically sent by the master and
calls adjtime(SSC) to perform the needed corrections on the host's
clock.

It also communicates with rdate(ADMN) in order to set the date glo­
bally, and with timedc(ADMN), a timed control program. If the ma­
chine running the master crashes, then the slaves will elect a new mas­
ter from among slaves running with the -M flag. A timed running
without the -M flag will remain a slave. The -t flag enables timed to
trace the messages it receives in the file lusr/admltimed.log. Tracing
can be turned on or off by the program timedc(ADMN}. timed nor­
mally checks for a master time server on each network to which it is
connected, except as modified by the options described below. It will
request synchronization service from the flfSt master server located. If
permitted by the -M flag, it will provide synchronization service on
any attached networks on which no current master server· was
detected. Such a server propagates the time computed by the top-level
master. The -0 flag, followed by the name of a network to which the
host is connected (see networks(SFF)), overrides the default choice of
the network addresses made by the program. Each time the -n flag
appears, that network name is added to a list of valid networks. All
other networks are ignored. The -i flag, followed by the name of a
network to which the host is connected (see networks(SFF}), overrides
the default choice of the network addresses made by the program.
Each time the -i flag appears, that network name is added to a list of
networks to ignore. All other networks are used by the time daemon.
The -n and -i flags are meaningless if used together.

August 1, 1989 TIMED-1

TIMED (ADMN)

Files

/usr/adm/timed.log tracing file for timed
/usr/adm/timed.masterlog log file for master timed

See Also

TIMED (ADMN)

date(C), adjtime(SSC), gettimeofday(SLIB), icmp(ADMP),
rdate(ADMN), timedc(ADMN).

August 1, 1989 TIMED-2

TIMEDC (ADMN) TIMEDC (ADMN)

timedc
timed control program

Syntax

timedc [command [argument ...]]

Description

timedc is used to control the operation of the timed program. It may
be used to:

• measure the differences between machines' clocks,

• find the location where the master time selVer is running,

• enable or disable tracing of messages received by timed, and

• perfonn various debugging actions.

Without any arguments, timedc will prompt for commands from the
standard input. If arguments are supplied, timedc interprets the first
argument as a command and the remaining arguments as parameters
to the command. The standard input may be redirected, causing
timedc to read commands from a file. Commands may be abbreviated;
recognized commands are:

? [command ...]

help [command ...]
Print a short description of each command specified in the argu­
ment list or, if no arguments are given, a list of the recognized
commands.

c10ckdiff host ...
Compute the differences between the clock of the host machine
and the clocks of the machines given as arguments.

trace { on I off }
Enable or disable the tracing of incoming messages to timed in the
file /usr/admltimed.log.

quit
Exit from timedc.

Other commands may be included for use in testing and debugging
timed; the help command and the program source may be consulted
for details.

August 1, 1989 TIMEDC-1

TIMEDC (ADMN)

Files

TIMEDC (ADMN)

/usr/adm/timed.log tracing file for timed
/usr/adm/timed.masterlog log file for master timed

See Also

date(C), adjtime(SSC), icmp(ADMP), rdate(ADMN), timed(ADMN).

Diagnostics

? Ambiguous command
?Invalid command
?Privileged command

August 1. 1989

abbreviation matches more than one command
no match found
command can be executed by root only

TIMEDC-2

TRACE (ADMN)

trace, query
routing tools

Syntax

trace [ooloft'] machines ... query [-0] hosts ...

Description

TRACE (ADMN)

trace sends a RIP _TRACE_ON or RIP _TRACE_OFF command to the
specified machines. Machine must be specified as an IP address.

query is used to request routing information from the specified host.
Any packets received in response to a query will be displayed.

These commands are useful for debugging routed(ADMN).

See Also

routed(ADMN), udp(ADMP).
RFC1058

Bugs

RFC 1058 states that TRACE_ON and TRACE_OFF are not supposed
to be supported any more.

August 1, 1989 TRACE-1

TRPT (ADMN) TRPT (ADMN)

trpt
transliterate protocol trace

Syntax

trpt [-a] [-s] [-t] [-f] [-j] [-p hex-address] [system [core]]

Description

trpt interrogates the buffer of TCP trace records created when a socket
is marked for debugging (see getsockopt(SSC», and prints a readable
description of these records. When no options are supplied, trpt prints
all the trace records found in the system, grouped according to TCP
connection protocol control block (PCB). The following options may
be used to alter this behavior.

-a In addition to the normal output, print the values of the source and
destination addresses for each packet recorded.

-s In addition to the normal output, print a detailed description of the
packet sequencing information.

-t In addition to the normal output, print the values for all timers at
each point in the trace.

-f Follow the trace as it occurs, waiting a short time for additional
records each time the end of the log is reached.

-j Just give a list of the protocol control block addresses for which
there are trace records.

-p Show only trace records associated with the protocol control block,
the address of which follows.

The recommended use of trpt is as follows. Isolate the problem and
enable debugging on the socket(s) involved in the connection. Find
the address of the protocol control blocks associated with the sockets
using the -A option to netstat{TC). Then run trpt with the -p option,
supplying the associated protocol control block addresses. The -f
option can be used to follow the trace log, once the trace is located. If
there are many sockets using the debugging option, the -j option may
be useful in checking to see if any trace records are present for the
socket in question.

If debugging is being performed on a system or core file other than the
default, the last two arguments may be used to supplant the defaults.

August 1, 1989 TRPT-1

TRPT (ADMN)

Flies

/unix
ldev/kmem

See Also

getsockopt(SSC), netstat(TC)

Diagnostics

TRPT (ADMN)

The message "no namelist" when the system image doesn't contain
the proper symbols to find the trace buffer; other messages which
should be self explanatory.

Bugs

Should also print the data for each input or output, but this is not saved
in the trace record.

The output format is inscrutable and should be described here.

August 1, 1989 TRPT-2

Contents

Special Files and Protocols (ADMP)

intro
arp
e3A
e3B
eli
icmp
inet
ip
Jlcloop
slip
sock
tcp
udp
vty

introduction to special files and protocols
address resolution protocol
3C501 Ethernet driver
3C503 Ethernet driver
EMD convergence module
internet control message protocol
internet protocol family
internet protocol
software loopback network interface
serial line IP network interface
socket interface driver
internet transmission control protocol
internet user datagram protocol
pseudo tenninal master driver

INTRO (ADMP)

intro
introduction to special files and protocols

#include <sysisocket.h>
#include <netinetlin.h>
#include <netinetlip str.h>
#include <netinetlstnoc.h>

Description

INTRO (ADMP)

This section describes various special files and protocols that refer to
specific System V STREAMS TCP/IP networking protocol drivers.
Features common to a set of protocols are documented as a protocol
family.

Protocol Family Entries

A protocol family provides basic services to the protocol implementa­
tion to allow it to function within a specific network environment.
These services may include packet fragmentation and reassembly,
routing, addressing, and basic transport. A protocol family may sup­
port multiple methods of addressing, though the current protocol
implementations do not. A protocol family is normally comprised of a
number of protocols, one per socket(2) type. It is not required that a
protocol family support all socket types. A protocol family may con­
tain multiple protocols supporting the same socket abstraction.

A protocol supports one of the socket abstractions detailed in
socket(2). A specific protocol may be accessed by creating a socket
of the appropriate type and protocol family, by requesting the protocol
explicitly when creating a socket, by executing the appropriate 1LI
primitives, or by opening the associated STREAMS device.

Protocol Entries

The system currently supports the DARPA Internet protocols. Raw
socket interfaces are provided to the IP protocol layer of the DARPA
Internet and to the ICMP protocol. Consult the appropriate manual
pages in this section for more information.

Routing loctls

The network facilities provided limited packet routing. A simple set
of data structures comprise a "routing table" used in selecting the ap­
propriate network interface when transmitting packets. This table
contains a single entry for each route to a specific network or host. A

July 15, 1989 INTR0-1

INTRO (ADMP) INTRO (ADMP)

user process, the routing daemon, maintains this data base with the aid
of two socket-specific ioetl (2) commands, SIOCADDRT and SIOC­
DELRT. The commands allow the addition and deletion of a single
routing table entry, respectively. Routing table manipulations may
only be carried out by super-user.

A routing table entry has the following form, as defmed in
<netlroute.h>:

struct rtentry
u_long rt_hash;
struct sockaddr rt dst; -
struct sockaddr rt _gateway;
short rt_flags;
short rt refcnt; -u_long rt _use;
struct ifnet *rt_ifp;

} ;

with rt Jlags defmed as follows:

#define RTF UP
#define RTF-GATEWAY
#define RTF-HOST
#define RTF:=DYNlIMIC

Oxl /* route usable */
Ox2 /* destination is a gateway */
Ox4 /* host entry (net otherwise) */
OxlO /* created dynamically

(by redirect) */

Routing table entries are of three general types: those for a specific
host, those for all hosts on a specific network, and those for any desti­
nation not matched by entries of the fIrst two types (a wildcard route).
When the system is booted and addresses are assigned to the network
interfaces, each protocol family installs a routing table entry for each
interface when it is ready for traffic. Normally the protocol specifies
the route through each interface as a "direct" connection to the desti­
nation host or network. If the route is direct, the transport layer of a
protocol family usually requests the packet be sent to the same host
specified in the packet. Otherwise, the interface is requested to
address the packet to the gateway listed in the routing entry (that is,
the packet is forwarded).

Routing table entries installed by a user process may not specify the
hash, reference count, use, or interface fIelds; these are filled in by the
routing routines. If a route is in use when it is deleted (r(relent is
non-zero), the routing entry will be marked down and removed from
the routing table, but the resources associated with it will not be
reclaimed until all references to it are released. The routing code
returns EEXIST if requested to duplicate an existing entry, ESRCH if
requested to delete a non-existent entry, or ENOSR if insufficient
resources were available to install a new route. User processes read
the routing tables through the ldevlkmem device. The rt use fIeld con-
tains the number of packets sent along the route. -

July 15, 1989 INTR0-2

INTRO (ADMP) INTRO (ADMP)

When routing a packet, the kernel will fIrst attempt to fmd a route to
the destination host. Failing that, a search is made for a route to the
network of the destination. Finally, any route to a default ("wild­
card") gateway is chosen. If multiple routes are present in the table,
the fIrst route found will be used. If no entry is found, the destination
is declared to be unreachable.

A wildcard routing entry is specifIed with a zero destination address
value. Wildcard routes are used only when the system fails to fmd a
route to the destination host and network. The combination of wild­
card routes and routing redirects can provide an economical mecha­
nism for routing traffic.

Socket loctls

There are a few ioctls which have signifIcance for the socket layer
only. The ioctl call has the general form:

ioctl(so, code, arg)

SIOCPROTO
Enter a socket type into the kernel protocol switch table. The
arguments used to create the socket used by this ioctl may be zero.
The new socket type is downloaded by setting arg to a pointer to a
specifIcation block with the following structure:

struct socknewproto {
int family; /* address family (AP !NET, etc.) */

/* protocol type -int type;

int proto;
dev t dev;

int flags;
};

(SOCK STREAM, etc.) */
/* per family proto number */
/* major/minor to use

(must be a clone) */
/* protosw flags */

The flags currently supported are specified in the <netlprotosw.h>
header file as:

/* exchange atomic messages only */
tdefine PR ~C OxOl

/*-addresses given with messages */
tdefine PR ADDR Ox02

/*-connection required by protocol */
tdefine PR CONNREQUlRED Ox04
tdefine PR-RIGHTS OxlO /* passes capabilities */
tdefine PR::::BINDPROTO 0x20 /* pass protocol */

SIOCXPROTO
Purge the protocol switch table. The arguments used to create the
socket used by this ioctl may be zero.

July 15. 1989 INTR(}-3

INTRO (ADMP) INTRO (ADMP)

SIOCSPGRP
Set the process group for a socket to enable signaling (SIGUSRl)
of that process group when out-of-band data arrives. The argu­
ment, arg, is a pointer to an int and, if positive, is treated as a pro­
cess ID; otherwise, (if negative) is treated as a process group ID.

SIOCGPGRP
Get the process group ID associated with a particular socket. If the
value returned to the int location pointed to by arg is negative, it
should be interpreted as a process group ID; otherwise, it should be
interpreted as a process ID.

SIOCCATMARK
Used to ascertain whether or not the socket read pointer is
currently at the point (mark) in the data stream where out-of-band
data was sent. If a 1 is returned to the int location pointed to by
arg, the next read will return data after the mark. Otherwise
(assuming out-of-band data has arrived), the next read will provide
data sent by the client prior to transmission of the out-of-band sig­
nal.

FIONREAD
Returns (to the int location pointed to by arg) the number of bytes
currently waiting to be read on the socket.

FlONBIO
Toggles the socket into blocking/non-blocking mode. If the int
location pointed to by arg contains a non-zero value, subsequent
socket operations that would cause the process to block waiting on
a specific event will return abnormally with errno set to
EWOULDBLOCK; otherwise, the process will block.

Queue loctls

Each STREAMS device has default queue high and low water marks,
that can be changed by the super-user with the INITQPARMS specifi­
cation in an ioctl(2). The ioctl is done on a driver or module, with the
argument being an array of structures of type:

struct iocqp {
ushort iqp_type;
ushort iqp_value;

iqp _value specifies the value for the queue parameter according to
iqp type, which may be one of: IQP RQ(read queue),
IQ:P" WQ(write queue), IQP MUXRQ(mux read queue),
IQP~WQ(mux write queue), or IQP HDRQ(stream head
queue), each OR'ed with either IQP_LOWAT(value is for low water
mark of queue), or IQP _HIWAT(value is for high water mark of
queue).

July 15, 1989 INTR0-4

INTRO (ADMP)

Interface loctls

INTRO (ADMP)

Each network interface in a system corresponds to a path through
which messages may be sent and received. A network interface usu­
ally has a hardware device associated with it, although certain inter­
faces such as the loopback interface, 10(7), do not.

The following ioetl calls may be used to manipulate network inter­
faces. The ioetl is made on a socket (typically of type SOCK_DGRAM
) in the desired "communications domain" [see protoeols(4»). Unless
specified otherwise, the request takes an ifrequest structure as its
parameter. This structure has the form

struct ifreq {
char ifr_name[16]; /* name of interface (e.g. ecO) */
union {

struct sockaddr ifru addr;
struct sockaddr ifru-dstaddr;
struct sockaddr ifru - broacladdr;
short ifru flags; -
int ifru -metric;
struct onepaCket ifru onepacket;

} ifr ifru; -
#define ifr addr ifr ifru.ifru addr /* address */

- /* other erid of p-to-p link * /
#define ifr dstaddr ifr ifru.ifru dstaddr

- /* broadcast address -; /
#define ifr broacladdr ifr ifru.ifru broacladdr
#define ifr-flags ifr-ifru.ifru-flags /* flags */

- /* routing metric * /
#define ifr metric ifr ifru.ifru metric

- /* one-packet mode params */
#define ifr onepacket ifr ifru.ifru onepacket
}; - --

SIOCSIFADDR
Set interface address for protocol family. Following the address
assignment, the "initialization" routine for the interface is called.

SIOCGIFADDR
Get interface address for protocol family.

SIOCSIFDSTADDR
Set point to point address for protocol family and interface.

SIOCGIFDSTADDR
Get point to point address for protocol family and interface.

SIOCSIFBRDADDR
Set broadcast address for protocol family and interface.

July 15, 1989 INTR0-5

INTRO (ADMP) INTRO (ADMP)

SIOCGIFBRDADDR
Get broadcast address for protocol family and interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is marked down, any pro­
cesses currently routing packets through the interface are notified;
some interfaces may be reset so that incoming packets are no
longer received. When marked up again, the interface is reinitial­
ized.

SIOCGIFFLAGS
Get interface flags.

SIOCSIFMETRIC
Set interface routing metric. The metric is used only by user-level
routers.

SIOCGIFMETRIC
Get interface metric.

SIOCSIFONEP
Set one-packet mode parameters. The ifr one packet field of the
ifreq structure is used for this request. This structure is defined as
follows:

struct onepacket {
int spsize; /* small packet size */
int spthresh; /* small packet threshold */

} ;

One-packet mode is enabled by setting the IFF _ONEPACKET flag
(see SIOCSIFFLAGS above). See tcp(7) for an explanation of one­
packet mode.

SIOCGIFONEP
Get one-packet mode parameters.

SIOCGIFCONF
Get interface configuration list. This request takes an ifconf struc­
ture (see below) as a value-result parameter. The ifc _len field
should be initially set to the size of the buffer pointed to by ifc _ buf.
On return it will contain the length, in bytes, of the configuration
list.

/* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).
*/

struct ifconf {
/* size of associated buffer */
int

July 15, 1989 INTR0-6

INTRO (ADMP) INTRO (ADMP)

union
caddr t ifcu_buf;
struct ifreq *ifcu_req;

} ifc_ifcu;
/* buffer address */
#define ifc buf ifc ifcu.ifcu buf
/* array of-structu;es return~d */
#define ifc_req ifc_ifcu.ifcu_req
} ;

Streams loctl Interface

Socket ioctl calls can also be issued using STREAMS file descriptors.
The standard strioctl structure is used, with the ic cmd field contain­
ing the socket ioctl code (from <sys/socket.h» and the ic _ db field
pointing to the data structure appropriate for that ioctl, for all socket
ioctl s except SIOCGIFCONF. For the SIOCGIFCONF ioctl, an ifconf
structure is not used. Rather, the ic _db field points to the buffer to
receive the ifreq structures.

TLI Options Management

Options may be set and retrieved in a manner similar to getsockopt (2)
and setsockopt (2) using t_optmgmt (3N). Options are communicated
using an options buffer, which contains a list of options. Each option
consists of an option header and an option value. The opthdr structure
gives the format of the option header:

struct opthdr {
long level;
long name;
long len;

};

/* protocol level affected * /
/* option to modify */
/* length of option value (in bytes) */

The option value must be a multiple of sizeof(long) bytes in length,
and must immediately follow the option header. Following the option
value is the header of the next option, if present.

To get the values of options, set the flags field of the t optmgmt struc­
ture to T_CHECK. It is not necessary to set the len fieTds in the option
headers to the expected lengths of the option values, nor is it neces­
sary to provide space between option headers for the option values to
be stored (the len fields should be set to zero and the option headers
should be adjacent). A new options buffer will be formatted and
returned to the user. Note that T_CHECK may have failed even if
t_optmgmt returns zero. The user must check the flags field of the
returned t_optmgmt structure. If this field contains T_FAILURE, one
or more of the options were invalid.

July 15. 1989 INTR0-7

INTRO (ADMP) INTRO (ADMP)

To set options, set the flags field of the t_optmgmt structure to
T_NEGOTIATE.

To retrieve the default values of all options, set the flags field of the
t_optmgmt structure. to T_DEFAULT. For this operation, no input
buffer should be speclfied.

Note

System V STREAMS TCP/IP man pages frequently cite appropriate
RFCs (Requests for Comments). RFCs can be obtained from the DDN
Network Information Center, SRI International, Menlo Park, CA
94025.

See Also

ioctl(SSC), socket(SSC), coptmgmt(NSL), tcp(ADMP).

July 15, 1989 INTRO-B

ARP (ADMP) ARP (ADMP)

arp
Address Resolution Protocol

Description

ARP is a protocol used to map dynamically between DARPA Internet
and lOMb/s Ethernet addresses. It is used by all the lOMb/s Ethernet
interface drivers running the Internet protocols.

ARP caches Internet-Ethernet address mappings. When an interface
requests a mapping for an address not in the cache, ARP queues the
message which requires the mapping and broadcasts a message on the
associated network requesting the address mapping. If a response is
provided, the new mapping is cached and any pending message is
transmitted. ARP will queue at most one packet while waiting for a
mapping request to be answered; only the most recently "transmitted"
packet is kept. The ARP protocol is implemented by a STREAMS
driver to do the protocol negotiation, and by a separate STREAMS
module to do the address translation.

To facilitate communications with systems that do not use ARP, ioet! s
are provided to enter and delete entries in the Internet-to-Ethernet
tables. Usage:

#include <sysfioctl.h>
#include <syslsocket.h>
#include <netlif.h>
struct arpreq arpreq;

ioctl(s, SIOCSARP. (caddU)&arpreq);
ioctl(s. SIOCGARP. (caddU)&arpreq);
ioctl(s. SIOCDARP. (caddU)&arpreq);

Each ioetl takes the same structure as an argument. SIOCSARP sets an
ARP entry, SIOCGARP gets an ARP entry, and SIOCDARP deletes an
ARP entry. These ioctls may be applied to any socket descriptor s, but
only by the superuser. The arpreq structure is as follows:

r ARP ioctl request *f
struct arpreq {

struct sockaddr
struct sockaddr
int

};

arp"'pa;/* protocol address *f
arp_ha;/* hardware address *f
arp_flags;/* flags *f

r arp_flags field values *f
#defineATF _COM Ox02l* completed entry

(arp_ha valid) Of

#defineATF _PERM Ox04r permanent entry *f

August 1, 1989 ARP-1

ARP (ADMP)

#defineATF _PUBL oxosr publish
(respond for other host) */

#defineATF _USETRAILERSOx1 or send trailer packets
to host */

ARP (ADMP)

The address family for the arp ya soekaddr , must be AF _INET; for
the arp _ ha sockaddr it must be AF _UNSPEC. The only flag bits which
may be written are ATF]ERM, ATF]UBL and ATF _USETRAll..ERS.
ATF _PERM causes the entry to be permanent if the ioct/ call succeeds.
The peculiar nature of the ARP tables may cause the ioetl to fail if
more than 8 (permanent) Internet host addresses hash to the same slot.
ATF _PUBL specifies that the ARP code should respond to ARP
requests for the indicated host coming from other machines. This
allows a host to act as an "ARP server," which may be useful in con­
vincing an ARP-only machine to talk to a non-ARP machine.

ARP can also negotiate the use of trailer IP encapsulations; trailers are
an alternate encapsulation used to allow efficient packet alignment for
large packets despite variable-sized headers. Hosts that wish to
receive trailer encapsulations indicate so by sending gratuitous ARP
translation replies along with replies to IP requests; they are also sent
in reply to IP translation replies. The negotiation is thus fully sym­
metrical, in that either or both hosts may request trailers. The
ATF _USETRAll..ERS flag is used to record the receipt of such a reply,
and enables the transmission of trailer packets to that host.

ARP watches passively for hosts impersonating the local host (that is,
a host that responds to an ARP mapping request for the local host's
address).

Diagnostics

duplicate IP address!! sent from etbernet address: %x:%x:%x:%x:%x:%x.
ARP has discovered another host on the local network that responds to
mapping requests for its own Internet address.

Files

/dev/inet/arp

See Also

arp(ADMP), ifconfig(ADMN), inet(ADMP).

August 1, 1989 ARP-2

e3A (ADMP) e3A (ADMP)

e3A
3CS01 Ethernet Driver

Description

The e3A driver provides an LLI interface to a 3Com 3C501 ethernet
card. As with other network interfaces, e3A interface must have net­
work addresses assigned for each address family with which it is to be
used. (Currently, only the Internet address family is supported.)
These addresses may be set or changed with the SIOCSIFADDR ioctl.

Files

Idev/e3A[O-3]

See Also

intro(ADMP), inet(ADMP).

July 15, 1989 e3A-1

e3B (ADMP) e3B (ADMP)

e38
3C503 Ethernet Driver

Description

The e3B driver provides an LLI interface to a 3Com 3C503 ethernet
card. As with other network interfaces, e3B interface must have net­
work addresses assigned for each address family with which it is to be
used. (Currently, only the Internet address family is supported.)
These addresses may be set or changed with the SIOCSIFADDR ioetl.

Files

Idev/e3B[0-3]

See Also

intro(ADMP), inet(ADMP).

July 15, 1989 83B-1

ELI (ADMP)

eli
EMD convergence module

Description

ELI (ADMP)

Eli acts as a convergence module between the EMD Ethernet Driver,
and another STREAMS driver or module. Eli provides an LLI compa­
tible interface, which is expected by ip(J\DMP). Eli must be pushed
on the STREAM between ip and emd.

It is expected that since the lObase5 driver is now available as a prod­
uct, EMD will no longer be used, and eli will become obsolete.

See Also

strcf(SFF), ip(ADMP).

July 15, 1989 ELI-1

ICMP (ADMP)

icmp
Internet Control Message Protocol

Syntax

#include <sys/socket.h>
#include <netinetlin.h>

s = socket(AF _INET, SOCK_RAW, proto);

Description

ICMP (ADMP)

ICMP is the error and control message (or device) protocol used by IP
and the Internet protocol family. It may be accessed through a "raw
socket" for network monitoring and diagnostic functions. The proto
parameter to the socket call to create an ICMP socket is obtained from
getprotobyname . [See getprotoent(SLIB).] ICMP sockets are connec­
tionless, and are normally used with the sendto and recvfrom calls; the
connect(SSC) call may also be used to fix the destination for future
packets (in which case the read(S) or recv(SSC) and write(S) or
send(SSC) system calls may be used).

Outgoing packets automatically have an IP header prepended to them
(based on the destination address). Incoming packets are received
with the IP header and options intact.

Diagnostics

A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket
that already has one, or when trying to send a
datagram with the destination address specified and
the socket already connected;

[ENOTCONN] when trying to send a datagram, but no destination
address is specified, and the socket has not been
connected;

[ENOSR] when the system runs out of memory for an internal
data structure;

[EADDRNOTAVAIL]

August 1, 1989

when an attempt is made to create a socket with a
network address for which no network interface
exists.

ICMP-1

ICMP (ADMP)

Files

/dev /inet/icmp

See Also

ICMP (ADMP)

send(SSC), recv(SSC), intro(ADMP), inet(ADMP), ip(ADMP).

August 1, 1989 ICMP-2

INET (ADMP)

inet
Internet protocol family

Syntax

#include <sys/types.h>
#include <netinet/in.h>

Description

INET (ADMP)

The Internet protocol family is a set of protocols using the Internet
Protocol (1P) network layer and the Internet address fonnat. The Inter­
net family provides protocol support for the SOCK_STREAM,
SOCK_DGRAM, and SOCK_RAW socket types; the SOCK_RAW inter­
face provides access to the IP protocol.

Addressing

Internet addresses are four-byte quantities, stored in network standard
fonnat. The include ftle < syslin.h > defines this address as a discrim­
inated union.

Sockets bound to the Internet protocol family use the following
addressing structure:

struct sockaddrjn {
short sin_family;
u_short sin-port;
struct in_addr sin_addr;
char sin_zero(8);

};

When using sockets, the sin Jamily is specified in host order, and the
sin_port and sin _ addr fields are specified in network order.

Sockets may be created with the local address INADDR_ANY to affect
wildcard matching on incoming messages. The address in a
connect(SSC) or sendto [see send(SSC)] call may be given as
INADDR_ANY to mean "this host." The distinguished address
INADDR BROADCAST is allowed as a shorthand for the broadcast
address on the primary network if the first network configured sup­
ports broadcast.

When using the 1hmsport Layer Interface (TI..I), transport providers
such as tcp(ADMP) support addresses whose lengths vary from eight
to sixteen bytes. The eight byte fonn is the same as a sockaddr _in
without the sin _zero field. The sixteen byte fonn is identical to

August 1, 1989 INET-1

INET (ADMP) INET (ADMP)

soekaddr _in. Additionally, when using TLI, the sin Jamily field is
accepted in either host or network order.

Protocols

The Internet protocol family is comprised of the IP transport protocol,
Internet Control Message Protocol (ICMP), Transmission Control Pro­
tocol (TCP), and User Datagram Protocol (UDP). TCP is used to sup­
port the SOCK_STREAM abstraction; UDP is used to support the
SOCK_DGRAM abstraction. A raw interface to IP is available by
creating an Internet socket of type SOCK_RAW. The ICMP message
protocol is accessible from a raw socket.

The 32-bit Internet address contains both network and host parts. It is
frequency-encoded; the most significant bit is clear in Class A
addresses, in which the high-order 8 bits are the network number.
Class B addresses use the high-order 16 bits as the network field, and
Class C addresses have a 24-bit network part. Sites with a cluster of
local networks and a connection to the DARPA Internet may choose to
use a single network number for the cluster; this is done by llSing sub­
net addressing. The local (host) portion of the address is further subdi­
vided into subnet and host parts. Within a subnet, each subnet appears
to be an individual network; externally, the entire cluster appears to be
a single, uniform network requiring only a single routing entry. Sub­
net addressing is enabled and examined by the following ioetl (S)
commands on a datagram socket in the Internet "communications
domain"; they have the same form as the SIOCIFADDR command.
[See intro(ADMP).]

SIOCSIFNETMASK
Set interface network mask. The network mask
defines the network part of the address; if it con­
tains more of the address than the address type
would indicate, then subnets are in use.

SIOCGIFNETMASK
Get interface network mask.

See Also

ioctl(S), socket(SSC), intro(ADMP), intro(SFF), icmp(ADMP),
ip(ADMP), tcp(ADMP), udp(ADMP).

Note

The Internet protocol support is subject to change as the Internet pro­
tocols develop. Users should not depend on details of the current
implementation, but rather the services exported.

August 1, 1989 INET-2

IP (ADMP)

ip
Internet Protocol

Syntax

#include <sys/socket.h>
#include <netinetlin.h>

s = socket(AF _INET, SOCK_RAW, proto);

Description

IP (ADMP)

IP is the network layer protocol used by the Internet protocol family.
Options may be set at the IP level when using higher-level protocols
that are based on IP (such as TCP and UDP). It may also be accessed
through a "raw socket" or device when developing new protocols or
special purpose applications.

A single generic option IP _OPTIONS, is supported at the IP level, and
may be used to provide IP options to be transmitted in the IP header of
each outgoing packet. Options are set with setsockopt and examined
with getsockopt . [See getsockopt (SSC).] The format of IP options to
be sent is that specified by the IP protocol specification, with one
exception: the list of addresses for Source Route options must include
the first-hop gateway at the beginning of the list of gateways. The
first-hop gateway address will be extracted from the option list and
the size adjusted accordingly before use. lP options may be used with
any socket type in the Internet family.

Raw IP sockets are connectionless, and are normally used with the
sendto and recvfrom calls; the connect (SSC) call may also be used to
fix the destination for future packets (in which case, the read(S) or
recv(SSC), and write(S) or send(SSC) system calls may be used).

If proto is 0, the default protocol IPPROTO_RA W is used for outgoing
packets, and only incoming packets destined for that protocol are
received.. If proto is non-zero, that protocol number will be used on
outgoing packets and to fIlter incoming packets. Proto must be speci­
fied in sockcf(SFF).

Outgoing packets automatically have an IP header prepended to them
(based on the destination address given and the protocol number the
socket is created with). Incoming packets are received with IP header
and options intact.

August 1, 1989 IP-1

IP (ADMP)

Diagnostics

IP (ADMP)

A socket operation may fail with one of the following errors returned:

[EISCONN]

[ENOTCONN]

[ENOSR]

when trying to establish a connection on a socket
which already has one, or when trying to send a
datagram with the destination address specified and
the socket already connected;

when trying to send a datagram, but no destination
address is specified, and the socket has not been
connected;

when the system runs out of memory for an internal
data structure;

[EADDRNOTAVAll..]
when an attempt is made to create a socket with a
network address for which no network interface
exists.

The following errors specific to IP may occur when setting or getting
IP options:

[EINVAL]

[ElNVAL]

Files

/dev /inet/ip
/dev /inet/rip

See Also

An unknown socket option name was given.

The IP option field was improperly formed; an
option field was shorter than the minimum value or
longer than the option buffer provided.

getsockopt(SSC), send(SSC), recv(SSC), sockcf(SFF), intro(ADMP),
icmp(ADMP), inet(ADMP).

August 1, 1989 IP-2

LLCLOOP (ADMP)

IIcloop
software loopback network interface

Syntax

#include <sys/socket.h>
#include <netinetlin.h>
struct sockaddr In sin;

sin.sin_addr.s_addr = htonl (INADDR_ANY);
bind(s, (char *)&sin, sizeof(sin»;

Description

LLCLOOP (ADMP)

The llcloop interface is a software loopback mechanism which may be
used for performance analysis, software testing, and/or local commu­
nication. As with other network interfaces, the loopback interface
must have network addresses assigned for each address family with
which it is to be used. (Currently, only the Internet address family is
supported.) These addresses may be set or changed with the SIOCSI­
FADDR ioctl. The loopback interface should be the frrst one config­
ured, otherwise nameserver lookups for hostnames of other interfaces
may fail.

Files

Idev /llcloop

See Also

intro(ADMP), inet(ADMP).

August 1, 1989 LLCLOOP-1

SLIP (ADMP) SLIP (ADMP)

slip
serial line IP network interface

Description

The slip interface is a driver that allows IP datagrams to be sent over
nonnal serial lines. This is useful for connecting machines that do not
have Ethernet hardware. As with other network interfaces, the slip
interface must have network addresses assigned for each address fam­
ily with which it is to be used. (Currently, only the Internet address
family is supported.) These addresses may be set or changed with the
SIOCSIFADDR ioct!.

See Also

ifconfig(ADMN), slattach(ADMN), sldetach(ADMN), intro(ADMP),
inet(ADMP).

July 15, 1989 SLlP-1

SOCK (ADMP) SOCK (ADMP)

sock
Socket Interface Driver

Description

The socket driver is used to provide socket emulation to applications.
Sockets are an alternate entry point into transport providers, such as
tcp(ADMP). The socket driver is a character device that acts as an
alternate stream head, augmenting the functions of the standard
stream head. It also provides support for miscelleanous functions such
as select(SSC).

FILES

/dev/socksys

SEE ALSO

ifconfig(ADMN), intro(SSC), slattach(ADMN), sldetach(ADMN),
intro(ADMP), inet(ADMP)

July 15, 1989 SOCK-1

TCP (ADMP)

tcp
Internet Transmission Control Protocol

Syntax

#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF _INET, SOCK_STREAM, 0);

Description

TCP (ADMP)

The TCP protocol provides reliable, flow-controlled, two-way
transmission of data. It is a byte-stream protocol used to support the
SOCK_STREAM abstraction. TCP uses the standard Internet address
fonnat and, in addition, provides a per-host collection of "port
addresses. " Thus, each address is composed of an Internet address
specifying the host and network, with a specific TCP port on the host
identifying the peer entity.

Sockets using the tep protocol are either "active" or "passive."
Active sockets initiate connections to passive sockets. By default,
TCP sockets are created active; to create a passive socket, the
listen (SSC) system call must be used after binding the socket with the
bind(SSC) system call. Only passive sockets may use the
aeeept(SSC) call to accept incoming connections. Only active sock­
ets may use the eonneet(SSC) call to initiate connections.

Passive sockets may "underspecify" their location to match incoming
connection requests from multiple networks. This technique, called
"wildcard addressi,ng," allows a single server to provide service to
clients on multiple networks. To create a socket that listens on all net­
works, the Internet address INADDR_ANY must be bound. The TCP
port may still be specified at this time; if the port is not specified, the
system will assign one. Once a connection has been established, the
socket's address is fixed by the peer entity's location. The address
assigned the socket is the address associated with the network inter­
face through which packets are being transmitted and received. Nor­
mally, this address corresponds to the peer entity's network.

TCP supports one socket option that is set with setsoekopt and tested
with getsoekopt . [See getsoekopt(SSC).] Under most circumstances,
TCP sends data when it is presented; when outstanding data has not
yet been acknowledged, it gathers small amounts of output to be sent
in a single packet once an acknowledgment is received. For a small
number of clients, such as window systems that send a stream of
mouse events that receive no replies, this packetization may cause sig­
nificant delays. Therefore, TCP provides a boolean option,

August 1, 1989 TCP-1

TCP (ADMP) TCP (ADMP)

TCP _NODELAY (from <netinetltcp.h> , to defeat this algorithm. The
option level for the setsockopt call is the protocol number for TCP.
available from getprotobyname . [See getprotoent (SLffi).]

. Options at the IP transport level may be used with TCP; see
ip(ADMP). Incoming connection requests that are source-routed are
noted, and the reverse source route is used in responding.

TCP is also available as a 'ILl connection-oriented protocol via the
special file /dev/inetltcp. TCP options are supported via the 'ILl
options mechanism.

TCP provides a facility, one-packet mode, that attempts to improve
performance over Ethernet interfaces that cannot handle back-ta-back
packets. One-packet mode may be set by ifconfig (lM) for such an
interface. On a connection that uses an interface for which one-packet
mode has been set, TCP attempts to prevent the remote machine from
sending back-ta-back packets by setting the window size for the con­
nection to the maximum segment size for the interface.

Certain TCP implementations have an internal limit on packet size
that is less than or equal to half the advertised maximum segment size.
When connected to such a machine, setting the window size to the
maximum segment size would still allow the sender to send two pack­
ets at a time. To prevent this, a "small packet size" and a "small
packet threshold" may be specified when setting one-packet mode. If.
on a connection over an interface with one-packet mode enabled, TCP
receives a number of consecutive packets of the small packet size
equal to the small packet threshold, the window size is set to the small
packet size.

Diagnostics

A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket
which already has one;

[ENOSR] when the system runs out of memory for an internal
data structure;

[ETIMEDOUT] when a connection was dropped due to excessive
retransmissions

[ECONNRESET] when the remote peer forces the connection to be
closed;

[ECONNREFUSED]

August 1, 1989

. when the remote peer actively refuses connection
establishment (usually because no process is listen­
ing to the port);

TCP-2

TCP (ADMP) TCP (ADMP)

[EADDRINUSE] when an attempt is made to create a socket with a
port which has already been allocated;

[EADDRNOTAV All..]

Files

/dev /inet/tcp

See Also

when an attempt is made to create a socket with a
network address for which no network interface
exists.

ifconfig(ADMN), getsockopt(SSC), socket(SSC), intro(ADMP),
inet(ADMP), ip(ADMP).

August 1, 1989 TCP-3

UDP (ADMP) UDP (ADMP)

udp
Internet User Datagram Protocol

Syntax

#include <sys/socket.h>
#include <netinetlin.h>

Description

UDP is a simple, unreliable datagram protocol that is used to support
the SOCK_DGRAM abstraction for the Internet protocol family. UDP
sockets are connectionless, and are nonnally used with the sendto and
recvfrom calls; the connect(SSC) call may also be used to fix the des­
tination for future packets (in which case, the recv(SSC), or read(S)
and send(SSC), or write(S) system/library calls may be used). In
addition, UDP is available as TLI connectionless transport via the spe­
cial flle Idev/inetludp.

UDP address fonnats are identical to those used by TCP. In particular,
UDP provides a port identifier in addition to the nonnal Internet
address fonnat. Note that the UDP port space is separate from the TCP
port space (that is, a UDP port may not be "connected" to a TCP port).
In addition, broadcast packets may be sent (assuming the underlying
network supports this) by using a reserved broadcast address; this
address is network interface-dependent.

Options at the IP transport level may be used with UDP; see
ip(ADMP).

Diagnostics

A socket operation may fail with one of the following errors returned:

[ElSCONN]

[ENOTCONN]

August 1, 1989 .

when trying to establish a connection on a socket
which already has one, or when trying to send a
datagram with the destination address specified and
the socket already connected;

when trying to send a datagram, but no destination
address is specified, and the socket has not been
connected;

UDP-1

UDP (ADMP)

[ENOSR]

UDP (ADMP)

when the system runs out of memory for an internal
data structure;

[EADDRINUSE] when an attempt is made to create a socket with a
port that has already been allocated;

[EADDRNOTAVAll..]

Files

/dev /inet/udp

See Also

when an attempt is made to create a socket with a
network address for which no network interface
exists.

getsockopt(SSC), recv(SSC), send(SSC), socket(SSC), intro(ADMP),
inet(ADMP), ip(ADMP), RFC768.

August 1, 1989 UDP-2

VTY (ADMP)

vty
pseudo terminal slave driver

ttyp
pseudo terminal master driver

Description

The ttyp and vty drivers together provide support for a device-pair
tenned a pseudo terminal. A pseudo tenninal is a pair of character de­
vices, a master device and a slave device. The slave device provides
processes an interface identical to that described in termio (ADMP).
However, whereas all other devices which provide the interface
described in termio(ADMP) have a hardware device of some sort
behind them, the slave device has, instead, another process manipulat­
ing it through the master half of the pseudo tenninal. That is, anything
written on the master device is given to the slave device as input and
anything written on the slave device is presented as input on the mas­
ter device.

The following ioetl call applies only to pseudo tenninals:

TIOCPKT
Enable/disable packet mode. Packet mode is enabled by specify­
ing (by reference) a nonzero parameter and disabled by specifying
(by reference) a zero parameter. When applied to the master side
of a pseudo tenninal, each subsequent read from the tenninal will
return data written on the slave part of the pseudo tenninal pre­
ceded by a zero byte (symbolically defined as TIOCPKT_DATA),
or a single byte reflecting control status infonnation. In the latter
case, the byte is an inclusive-or of Zero or more of the bits:

TIOCPKT_FLUSHREAD
whenever the read queue for the tenninal is flushed.

TIOCPKT_FLUSHVnUTE
whenever the write queue for the tenninal is flushed.

TIOCPKT_STOP
whenever output to the terminal is stopped a la AS.

TIOCPKT_START
whenever output to the tenninal is restarted.

TIOCPKT_DOSTOP
whenever t_stope is AS and t_starte is AQ.

July 15, 1989 VTY-1

VTY (ADMP) VTY (ADMP)

TIOCPKT_NOSTOP
whenever the start and stop characters are not AsrQ.

While this mode is in use, the presence of control status informa­
tion to be read from the master side may be detected by a select for
exceptional conditions.

This mode is used by r/ogin(TC) and rlogind(ADMN) to imple­
ment a remote-echoed, locally AsrQ flow-controlled remote login
with proper back-flushing of output; it can be used by other similar
programs.

Files

Idev/ptyp[O-n[O-n
Idev/ttyp[O-n[O-n

See Also

termio(ADMP).

July 15. 1989

master pseudo terminals
slave pseudo terminals

VTY-2

Contents

Formats o/Files Used by Networking Commands (SFF)

intro
aliases
hosts
hosts.equiv
inetd
localhosts
netrc
networks
protocols
resolver
rhosts
sendmail.cf
services
strcf
uucpindomain

introduction to files
aliases file for sendmail
list of hosts on network
list of trusted hosts
configuration file forinetd
configuration file forsendmail
login file for remote networks
names and numbers for the Internet
list of Internet protocols
resolver configuration file
remote equivalent users
configuration file for sendmail
list of Internet services
STREAMS configuration file for STREAMS TCP/IP
configuration file for sendmail

INTRO (SFF) INTRO (SFF)

intro
introduction to formats of files used by networking
commands

Description

This section outlines the fonnats of various files. The C struct
declarations for the file fonnats are given where applicable. Usually,
these structures can be found in header files under the directories
/usr/include, /usr/include/ net, /usr/include/ netinet, or
lusr/include/ sys.

References of the type named(ADMN) refer to entries found in Sec­
tion ADMN of the TCPIP Network Administrator's Reference.

August 1, 1989 INTR0-1

ALIASES (SFF) ALIASES (SFF)

aliases
aliases file for send mail

Syntax

lusr/libl aliases

Description

This file describes user id aliases used by lusrlliblsendmail. It is for­
matted as a series of lines of the fonn

The name is the name to alias, and the name n are the aliases for that
name. Lines beginning with white space are continuation lines. Lines
beginning with • #' are comments.

Aliasing occurs only on local names. Loops can not occur, since no
message will be sent to any person more than once.

After aliasing has been done, local and valid recipients who have a
".forward" file in their home directory have messages forwarded to
the list of users defmed in that file.

See Also

. sendmail(ADMN)

August 1, 1989 ALiASES-1

HOSTS (SFF) HOSTS (SFF)

hosts
list of hosts on network

Description

The file /etc/hosts is a list of hosts that share the network, including
the local host. It is referred to by programs that need to translate
between host names and DARPA Internet addresses when the name
server is not being used [See named(ADMN).] Each line in the file
describes a single host on the network and consists of three fields
separated by any number of blanks or tabs:

address name aliases ...

where

address is the DARPA Internet address. Unless another type
of address is required by some host on the network,
address should be a Class A address, which takes the
form net.node, where net is the network number from
/etc/networks (see networks (4», that must between 0
and 127; and node is a value which must be unique
for each host and be between 0 and 16777215.

name is the official name of the host. If the host is a com­
puter system running UNIX, it must claim this host"
name by executing hostname (TC) when it is initializ­
ing itself.

aliases. . . is a list of alternate names for the host. Aliases can
be used in network commands in place of the official
name.

It is suggested that you specify the hostname and the node name [see
hostname(TC) and uname(C)] as aliases for one another for each ma­
chine listed in the /etc/hosts file.

The routines which search this file ignore comments (portions of lines
beginning with #) and blank lines.

An internet address can actually take one of four forms:

A A is a simple 32-bit integer.

A.B A is an eight-bit quantity occupying the high-order
byte and B is a 24-bit quantity occupying the remain­
ing bytes. This form is suitable for a Class A address
of the form net .node.

August 1, 1989 HOST8-1

HOSTS (SFF) HOSTS (SFF)

A.B.C A is an eight-bit quantity occupying the high-order
byte; B is an eight-bit quantity occupying' the next
byte; and C is a 16-bit quantity occupying the remain­
ing bytes. This fonn is suitable for a Class B address
of the fonn 128.net.node.

A.B.C.D The four parts each occupy a byte in the address.

Example

Engineering network

192.35.53.1
192.35.53.2
192.35.53.85

Files

/etc/hosts

See Also

laizy.Lachman.COM laizy
laidback.Lachman.COM laidback
laiter.Lachman.COM laiter# Sun-3/50 [stevea]

hostname(TC), uname(C), networks(SFF), inet(ADMP).

August 1, 1989 HOSTS-2

HOSTS.EQUIV (SFF) HOSTS.EQUIV (SFF)

hosts.equiv
list of trusted hosts

Description

Hosts.equiv resides in directory letc and contains a list of trusted
hosts. When an rlogin(l) or rcmd(l) request from such a host is made,
and the initiator of the request is in letclpasswd, then no further vali­
dity checking is done. That is, rlogin does not prompt for a password,
and rsh completes successfully. So a remote user is "equivalenced"
to a local user with the same user ID when the remote user is in
hosts.equiv.

The format of hosts.equiv is a list of names, as in this example:

host!
host2

A line consisting of a simple host name means that anyone logging in
from that host is trusted. The .rhosts file has the same format as
hosts.equiv. When user XXX executes rlogin or rcmd, the .rhosts file
from XXX's home directory is conceptually concatenated onto the end
of hosts.equiv for permission checking. In the special case when the
user is the super-user then only the I.rhosts file is checked.

It is also possible to have two entries (separated by a single space) on
a line of these files. In this case, if the remote host is equivalenced by
the first entry, then the user named by the second entry is allowed to
log in as anyone, that is, specify any name to the -I flag (provided that
name is in the letclpasswd file, of course). Thus

laidbak ez

allows ez to log in from laidbak as anyone. The usual usage would be
to put this entry in the .rhosts file in the home directory for derek .
Then ez may log in as derek when coming from laidbak.

Files

letclhosts.equiv
$HOMEI.rhost

See Also

rlogin(TC), rcmd(TC)

August 1, 1989 HOSTS.EQUIV-1

INETD.CONF (SFF) INETD.CONF (SFF)

inetd.conf
configuration file for inetd (internet 'super-s,erver") .

Description

inetd.conf is the configuration me for the inetd (SFF) System V
S1REAMS TCP/IP internetworking "super-server".

The file consists of a series of single-line entries, each entry corre­
sponding to a service to be invoked by inetd. These services are
connection-based, datagram, or "internal".

Internal services are those supported by the inetd program: these ser­
vices are "echo", "discard", "chargen" (character generator), "day­
time" (human readable time), and "time" (machine readable time, in
the form of the number of seconds since midnight, January 1, 1900).
All of these services are tcp based.

Each service, including internal services, must have a valid entry in
fetc/services(ADMN). In the case of an internal service, its name
must correspond to the official name of the service: that is, the first
entry in fete/services.

Each entry has a series of space- or tab-separated fields. (No field,
except for the last one, may be omitted.) The fields are as follows:

service name
Name of a valid service in fetc/services, as described above.

socket type
One of "stream", "dgram", or "raw", depending on whether the
socket type is stream, datagram, or raw [see socket(SSC)].

protocol
Name of a valid protocol (for example, "tcp") specified in
/etc/protocols(ADMN).

wait/nowait
Specifies whether the socket can be made available for new con­
nections while there is still data waiting on the socket. The value
is always "nowait" unless it is a datagram socket. If it is a
datagram socket, the value is usually "wait", although "nowait" is
possible in some cases. (Note that tftpd is an exception in that it
must have "wait" specified, and yet the socket can continue to pro­
cess messages on the port.)

user
Name of the user as whom the server should run. This allows
servers to be run with less permission than root.

August 1, 1989 INETD.CONF-1

INETD.CONF (SFF) INETD.CONF (SFF)

server program
Except in the case of internal services, full patbname of the server
program to be invoked by inetd when a request is waiting on a
socket. For an internal service, the value is "internal".

server program arguments
Arguments to the server program, starting with argv[O], which is
the name of the program. For an internal service, the value is
"internal".

Comments are denoted by a "#" at the beginning of a line.

The distribution inetd.conf file contains prototype entries; refer to
these entries when editing the file.

Example

ftp streamtcp nowait root /etclftpd ftpd
telnet streamtcp nowait root /etcltelnetd telnetd
login streamtcp nowait root /etc/rlogind rlogind
exec streamtcp nowait root /etc/rexecd rexecd
finger streamtcp nowait sync /etclfingerd fingerd
echo streamtcp nowait root internal
discard stream tcp nowait root internal
chargen stream tcp nowait rootinternal
daytime stream tcp nowait rootinternal
time streamtcp nowait root internal
echo dgram udp wait root internal
discarddgram udp wait root internal
chargen dgram udp wait rootinternal
daytime dgram udp wait rootinternal
time dgram udp wait root internal

See Also

fingerd(ADMN), ftpd(ADMN), inetd(ADMN), rexecd(ADMN), rlog­
in(ADMN), rshd(ADMN), telnetd(ADMN), tftpd(ADMN),
protocols(SFF), services(SFF).

August 1, 1989 INETD.CONF-2

LOCALHOSTS (SFF)

localhosts
configuration file for send mail

Description

LOCALHOSTS (SFF)

Localhosts is a file that lists hosts that are to be treated as equivalent
by sendmail(ADMN). In the distributed configuration files, an
equivalent host is in class S. Sendmail also looks at /etclhosts.equiv.

The format of localhosts is very simple. It consists of a list of host­
names, one per line. There is no support for comments.

Example

Files

laidbak
laiter
laisagna

/usr/lib/mail/localhosts

See ALso

hosts.equiv(SFF), sendmail(ADMN),
uucpindomain(SFF).
Sendmaillnstallation and Operations Guide.

August 1. 1989

sendmail(SFF),

LOCALHOST8-1

NETRC (SFF) NETRC (SFF)

netre
login file for remote networks

Description

If the .netre file exists, it will be used by ftp (TC) for automatic login
on the remote host. For each remote host, the file contains a one-line
entry that describes the login data for the user on that host.

An entry may consist of up to three blank-separated fields introduced
by keywords. The keyword is followed by the literal data needed for
login. The following keywords are available:

machine

login

password

The hostname of the machine.

The user login name for that host.

(Optional) The user's password on that host.
NOTE: The literal password must be given in clear
text; it is not encrypted.

If the .netre file includes the password feature, permissions on the file
must be set to prohibit reading by group and others; the file will not
otherwise take effect.

Example

The following example entry allows automatic login on the .. admin"
host by a user named "superuser" whose password is "open".

machine admin login superuser password open

Files

$HOME/.netrc

See Also

ftp(TC).

Warning

For security reasons, use of the password feature is not recommended.

August 1, 1989 NETRC-1

NETWORKS (SFF) NETWORKS (SFF)

networks
names and numbers for the internet

Description

The file fetc/networks lists networks on the internet. Each line
describes a single network and consists of the following blank
separated fields:

name number aliases ...

where

name is the official name of the network. All hosts on the
internet should use the same official name for a given
network.

number is the network number, which serves as part of the
DARPA Internet address for each host on the internet.
All hosts on the internet must use the same number
for a given network.

aliases ... is a blank-separated list of local aliases for the net­
work.

The routines which search this file ignore comments
(portions of lines beginning with #) and blank lines.

Example

Building 1 Internet
Lachman-Net 192.35.52 #General
LAI-TCP-Net 192.35.53 #TCP Development

See Also

hosts(SFF).

Files

letclnetworks

August 1, 1989 NETWORKS-1

PROTOCOLS (SFF)

protocols
list of Internet protocols

Description

PROTOCOLS (SFF)

The file fetc/protocols lists known DARPA Internet protocols. Each
line describes a single protocol and consists of the following blank
separated fields:

name number aliases ...

where

name is the official name of the protocol.

number is the protocol number.

aliases... is a blank-separated list of local aliases for the proto­
col.

The routines which search this file ignore comments (portions of
lines beginning with #) and blank lines.

Protocol names and numbers are specified by the DDN Network In­
fonnation Center. Do not change this file.

Files

fete/protocols

See Also

socket(SSC), slink(ADMN), Idsocket(ADMN).

August 1, 1989 PROTOCOLS-1

RESOLVER (SFF) RESOLVER (SFF)

resolver
resolver configuration file

Syntax

letc/resolv.com

Description

The resolver configuration file contains infonnation that is read by the
resolver routines the fIrst time they are invoked by a process. The file
is designed to be human readable and contains a list of name-value
pairs that provide various types of resolver infonnation.

On a nonnally configured system this file should not be necessary.
The only name server to be queried will be on the local machine and
the domain name is retrieved from the system.

The different configuration options are:

nameserver
followed by the Internet address (in dot notation) of a name server
that the resolver should query. At least one name server should be
listed. Up to MAXNS (currently 3) name servers may be listed; if
more than one name server is specified, the resolver library queries
each one in the order listed. If no nameserver entries are present,
the default is to use the name server on the local machine. The
algorithm used is to try a name server, and if the query times out,
try the next, until out of name servers; then repeat trying all the
name servers until a maximum number of retries are made.

domain
followed by an domain name, that is the default domain to append
to names that do not have a dot in them. If no domain entries are
present, the domain returned by gethostname (SLIB) is used
(everything after the first '.'). Finally, if the host name does not
contain a domain part, the root domain is assumed.

The name value pair must appear on a single line, and the keyword
(e.g. nameserver) must start the line. The value follows the keyword,
separated by white space.

August 1, 1989 RESOLVER-1

RESOLVER (SFF) RESOLVER (SFF)

Example

domain Lachman.COM
nameserver 192.35.52.1
nameserver 192.35.52.2

Files

/etc/resolv.conf

See Also

named(ADMN), resolver(SFF), hosts(ADMN), byteorder(SLffi),
rexec(SLIB).
Name Server Operations Guide for BIND

August 1, 1989 RESOLVER-2

RHOSTS (SFF) RHOSTS (SFF)

rhosts
remote equivalent users

Description

These files grant pennission for remote users to use local user names
without knowing the corresponding user passwords. This is known as
making the remote user "equivalent" to the local user, and is con­
venient, for example, when one person owns user names on more than
one host.

If a user's home directory contains a file named .rhosts, remote users
specified in the file are equivalent to the local user. Each user specifi­
cation in the file consists of the remote user host name and user name,
separated by a space. (If an asterisk is substituted for either name, any
name will match.) For security reasons, .rhosts must belong to the
user granting the equivalence or to root.

The file /etc/hosts.equiv is a list of remote hosts with matching-name
equivalence. The file lists remote hosts one per line. On each host
listed in /etc/hosts.equiv, a remote user with the same name as a local
user is equivalent to the local user. In effect, the users are the same if
the names are the same.

Files

$HOME/.rhosts
letclhosts.equiv

See Also

rcmd(TC), rcp(TC), rlogin(TC).

Warnings

When a system is listed in letc/hosts.equiv, its security must be as
good as local security. One insecure system mentioned in
/etc/hosts.equiv can compromise the security of an entire network.

August 1, 1989 RHOSTS-1

SENDMAIL (SFF)

sendmail.cf
configuration file for sendmail

Description

SENDMAIL (SFF)

Sendmail.cj is the configuration file for the sendmail mail router. A
full description of this file can be found in chapter nine of the
STREAMS TCP User's Guide.

Files

lusr/lib/sendmail.cf

See Also

sendmail(ADMN), localhosts(SFF), uucpindomain(SFF).
Sendmail Installation and Operations Guide.

November 25, 1989 SENDMAIL-1

SERVICES (SFF) SERVICES (SFF)

services
list of Internet services

Description

The file fetclservices lists known DARPA Internet services. Each line
describes a single service and consists of the following blank
separated fields:

name number fprotocol aliases ...

where:

name is the official name of the service.

number is the service-number.

protocol is the name of the protocol used by the service. (See
protocols (SFF).)

aliases... is a blank-separated list of local aliases for the ser­
vice.

The routines which search this file ignore comments (portions of lines
beginning with #) and blank lines.

Service names and numbers are specified by the DDN Network Infor­
mation Center. Do not change this file unless you are familiar with
DARPA Internet internals.

Files

/etc/services

See Also

inetd(ADMN), inetd.conf(SFF).

August 1, 1989 SERVICES-1

STRCF (SFF) STRCF (SFF)

letc/strcf
STREAMS Configuration File for STREAMS TCP/IP

Description

/etc/stref contains the script that is executed by slink(SFF) to perfonn
the STREAMS configuration operations required for STREAMS
TCP/IP.

The standard fete/stref file contains several functions that perfonn
various configuration operations, along with a sample boot function.
Nonnally, only the boot function must be modified to customize the
configuration for a given installation. In some cases, however, it may
be necessary to change existing functions or add new functions.

The following functions perfonn basic linking operations:

Function tp is used to set up the link between a transport provider,
such as TCP, and IP.

tp - configure transport provider (Le. tcp, udp, icmp)
usage: tp devname

tp {

p = open $1
ip = open Idevlinetlip
linkpip

Function Iinkint links the specified streams and does a sifname opera­
tion with the given name.

linkint - link interface to ip or arp
usage: linkint top bottom ifname

linkint {

x = link $1 $2
sifname $1 x $3

Function aplinkint perfonns the same function as Iinkint for an inter­
face that uses the arpproe module.

August 1, 1989 STRCF-1

STRCF (SFF)

aplinkint - like linkint. but arpproc is pushed on dey
usage: aplinkinttop bottom ifname

aplinkint{

push $2 arpproc
linkint $1 $2 $3

STRCF (SFF)

The following functions are used to configure different types of Ether­
net interfaces:

Function uenet is used to configure an Ethernet interface for a cloning
device driver that uses the unit select ioctl to select the desired inter­
face. The interface name is constructed by concatenating the supplied
prefix and the unit number.

uenet - configure ethernet-type interface for cloning driver using
unit select
usage: uenet ip-fd devname ifprefix unit

uenet {

ifname = strcat $3 $4
dev= open $2
unitsel dey $4
aplinkint $1 dey ifname
dey = open $2
unitsel dey $4
arp = open Idevlinetlarp
linkint arp dey ifname

Function denet performs the same function as uenet, except that
DL _ A1TACH is used instead of unit select.

denet - configure ethernet-type interface for cloning driver using
DL_ATTACH
usage: denet ip-fd devname ifprefix unit

denet{

August 1, 1989

ifname = strcat $3 $4
dey = open $2
dlattach dey $4
aplinkint $1 dey ifname
dey = open devname
dlattach dey $4
arp = open IdevlinetJarp
linkint arp dey ifname

STRCF-2

STRCF (SFF) STRCF (SFF)

Function cenet is used to configure an Ethernet interface for a cloning
device driver that uses a different major number for each interface.
The device name is formed by concatenating the supplied device
name prefix and the unit number. The interface name is formed in a
similar manner using the interface name prefix.

cenet - configure ethernet-type interface for cloning driver with
one major per interface
usage: cenet ip-fd devprefix ifprefix unit

cenet{

Function
senet

devname = strcat $2 $4
ifname = strcat $3 $4
dey = open devname
aplinkint $1 dey ifname
dey = open devname
arp = open Idev/inetlarp
linkint arp dey ifname

is used to configure an Ethernet interface for a non-cloning device
driver. 1\vo different device nodes must be specified for IP and ARP.

senet - configure ethernet-type interface for non-cloning driver
usage: senet ip-fd ipdevname arpdevname ifname

senet {

dev= open $2
aplinkint $1 dey $4
dev= open $3
arp = open Idev/inetlarp
linkint arp dey $4

Function senetc is like senet, except that it allows the specification of
a convergence module to be used with the ethernet driver (e.g. for the
3B2 emd driver).

August 1, 1989 STRCF-3

STRCF (SFF) STRCF (SFF)

senetc - configure ethernet-type interface for non-cloning driver
using convergence module
usage: senetc ip-fd convergence ipdevname arpdevname ifname

senetc {

dey = open $3
push dev$2
aplinkint $1 dey $5
dev .. open $4
push dev $2
arp = open /devlinetlarp
linkint arp dey $5

Function loop back is used to configure the loopback interface.

loopback - configure loopback device
usage: loopback ip-fd

loopback{

dey = open /devllicioop
linkint $1 dey 100

Function slip is used to configure a SLIP interface. This function is
not nonnally executed at boot time. Rather, the slattach (ADMN)
command runs slink specifying slip on the command line.

slip - configure slip interface
usage: slip unit

slip {

ip .. open /devlinetlip
s = open /dev/slip
ifname = strcat sl $1
unitsel s $1
linkint ip s ifname

Function boot is called by default when slink is executed. Nonnally,
only the inter/aces section and possibly the queue params section will
have to be customized for a given installation. Examples are provided
for the various Ethernet driver types.

August 1, 1989 STRCF-4

STRCF (SFF)

boot - boot time configuration

boot {

queue params

initqp Idevlinetludp rq 819240960

STRCF (SFF)

initqp ldev/inetlip muxrq 819240960 rq 819240960

Files

transport

tp Idev/inetltcp
tp Idev/inetludp
tp Idev/inetlicmp

interfaces

ip = open Idev/inetlip
senetc ip eli Idev/emdO Idev/emd1 enO

uenet ip Idev/abc en 0
denet ip Idev/def en 0
cenet ip ldev/ghi en 0
senet ip IdevljklO Idevljkl1 enO

loopbackip

letc/strcf

See Also

slink(ADMN), intro(ADMP).

August 1, 1989 STRCF-5

UUCPINDOMAIN (SFF)

uucpindomain
c(~>nfiguration file for sendmail

Description

UUCPINDOMAIN (SFF)

Uucpindomain is a file that lists hosts that are connected by UUCP,
but should be treated as if they were in the local domain by
sendmail(1M). In. the distributed configuration files, this type of host
is in class L.

The format of uucpindomain is very simple. It consists of a list of
hostnames, one per line. There is no support for comments.

Example

huey
duey
louie

Files

/usr/lib/mail/uucpindomain

See Also

hosts.equiv(SFF), localhosts(SFF), sendmail(ADMN), sendmail(SFF).
Sendmaillnstallation and Operations Guide. .

July 15, 1989 UUCPINDOMAIN-1

Index

A

Access privileges 1-16
Active connections display 1-19
Address

resource record 4-14
Address parsing rules 3-20
Alias database 3-10

alternatives to 3-12
list owners 3-11
potential problems 3-11
rebuilding 3-10
writable or nonwritable 3-19

Alias files 2-8
Aliasing mail 2-8
Anonymous account 1-17
Apparently-To header line 3-13
Argument vector/return status 2-2

B

"Berkeley
BIND (Berkeley Internet Name

Domain) 4-1
BITNET 4-5
Boot files for name server 4-19
Broadcast address for internet 1-11

c
Cache initialization 4-10
Cacbing-only server, example of 4-19
chroat system call 1-17
Classes, defining 3-21
Oock synchronization service 5-1
Cloning drivers I-S
Collecting messages 2-9
Command line flags 3-3S
Conditionals 3-24
Configuration file 2-11

building from scratch 3-30
description 3-20

Configuration file 2-11 (continued)
format I-IS
semantics 3-23
sendmail program and 2-5
special header lines 3-13
syntax of 3-20
trying a different 3-lS

Configuration options 3-37
Configuring

STREAMS 1-5
the interface 1-8

CSNET4-S

D

Daemon mode 3-14
DARPA internet 4-5
Databases

network 1-16
dead.1etter file 2-5
Debugging sendmail3-14
Define classes 3-21
Define macro 3-21
Define mailer 3-22
Delivering messages 2-10
delivermail program 2-13
Delivery mode in sendmail 3-18
Display

active connections 1-19
in&erfaces 1-21
protocol statistics 1-24
routing table 1-22

DL_ATTACH primitive 1-6
Domain

database files for name server 4-19
management 4-25
name pointer resource record 4-15
setting llP yom own 4-5

Driver
cloning of 1-5
device nodes 1-2
in kernel 1-2
non-cloning 1-6

1-1

Index

E

EGP(ExteriorGateway Protocol) 1-14
Equivalence 1-16
Error mailer 3-29
Errors-To header line 3-13
letc/ftpusers 1-17
letc/hosts 4-25
letc/hosts.equiv 1-16
letc/named.pid 4-25
letc/resolv.conf 4-20
Exterior Gateway Protocol (EGP) 1-14

F

File modes in sendmail 3-18
Forcing the queue 3-8, 3-14
Forking during queue runs in sendmail

3-17
.forward files 3-12
Forwarding mail 2-8
ftp account 1-17

G

Gateway
machines 1-14
smart 1-12

gethostbyname call 4-25

H

Header declarations 2-12
Header lines

apparently-to 3-13
errors-to 3-13
retum-receipt-to 3-13
special 3-13

Host
information resource record 4-14

hosts file 4-21
hosts.equiv file 1-16
hosts.rev file 4-22

1-2

I

ifconfig
commands 1-8
netmask option 1-9

Including mail 2-8, 2-9
inetd command 1-15
Initializing

cache 4-10
Installing sendmail 3-1
Interface

configuration 1-8
display 1-21
options, setting 1-8

Interface programs and sendmail 2-2
Internet

broadcast addresses 1-11
daemon 1-15

K

Kernel
configuration 1-2

L

List owners 3-11
Local

subnetworks 1-9

M

Macro define 3-21
Macros in sendmail 2-11
Mail

aliasing 2-8
editing the message header 2-5 .
exchanger resource record 4-17
forwarding 2-8
group member resource record 4-17
including 2-9
rename resource record 4-16

Mail between networks 2-1
Mail program 2-1
Mail queue 3-6

file format 3-6

Mail queue 3-6 (continued)
forcing 3-8
printing 3-6

Mailbox
infonnation resource record 4-16

Mailer declarations 2-12
Mailer, defining 3-22
Mailer flags 3-29, 3-40
Mailing to files and programs 2-7
Master

servers 4-3
time daemon 5-1

Master files 1-2
Message

body 2-9
collecting 2-9
header 2-9
queued 2-10

Message Processing Module (MPM)
2-14

Message timeouts in sendmail 3-17
Messages, delivering 2-10
MICOM-Interlan driver 1-5
MMDF, compared to sendmai12-14
MPM (Message Processing Module)

2-14

N

Name resource record, canonical 4-15
Name server

address resource record 4-14
cache initialization 4-10
caching-only server example 4-19
canonical name resource record 4-15
changing origin 4-12
data files 4-11
defined 4-1
domain name pointer record 4-15
host infonnation resource record 4-14
mail box resource record 4-16
mail exchanger resource record 4-17
mail group member resource record

4-17
mail rename resource record 4-16
mailbox infonnation resource record

4-16
master servers 4-3
multiple files 4-12
record 4-14
remote 4-9
resource record 4-14

Index

Name server (continued)
sample files 4-19, 4-23
SOA record 4-13
starting 4-25
types of 4-3
well known services record 4-15

named program
debugging 4-26
defined 4-25
signals to reload 4-26

named.local file 4-21
netstat program 1-13, 1-19
Network

databases 1-16
servers 1-15
troubleshooting 1-19

Non-cloning drivers 1-6

p

Packet trace 1-19
Per-user forwarding 3-12
Precedence definitions 3-23
Primary master server, example file 4-19
Printing the queue 3-6
Protocol

statistics display 1-24

Q

Queue, forcing the 3-14
Queue interval 3-14
Queue intervals in sendmail 3-16
Queue priorities in sendmail 3-17
Queue runs, forking during 3-17
Queued messages 2-10

R

Read timeouts in sendmail 3-16
Rebuilding the alias database 3-10
Remote name servers 4-9
Resource records 4-11
Return-Receipt-To header line 3-13
Rewriting an address 2-12
Rewriting rules 3-20

left hand side 3-26

1-3

Index

Rewriting rules 3-20 (continued)
right hand side 3-27
testing 3-32

RFC8212-3
RFC822 2-3, 2-7
RFC9191-11
.mosts file 1-16
root.cache file 4-20
routed(ADMN) program 1-12
Routing

default 1-12
table

display 1-22
management daemon 1-12

wildcard 1-12
Rule sets, rewriting 3-28

s
Secondary master server

example file 4-20
Sending mail between networks 2-1
sendmail

interface programs and 2-2
sendmail program 2-1

address parsing 2-4
alias database 3-19
aliasing mail 2-8
argument processing 2-4
arguments and 2-7
arguments to 3-14
basic installation 3-2
changing option values 3-15
collecting messages 2-4
command line flags 3-35
compared to delivermail 2-13
compared to MMDF 2-14
compared to MPM 2-14
configuration 2-11

file, building from scratch 3-30
file, description of 3-20
file semantics 3-23
off-the-shelf 3-2
quick startup 3-4
sample files 3-2
trying a different file 3-15

configuration file and 2-5
daemon mode 3-14
debugging 3-14
delivering messages 2-5
delivery mode 3-18
editing the message header 2-5

1-4

sendmail program 2-1 (continued)
error mailer 3-29
file modes 3-18
flags 3-29
forwarding mail 2-8
header declarations 2-12
how sendmail works 2-4
implementation 2-7
including mail 2-8 .
installing 3-1
macros and 2-11
mail queue 3-6
mailer declarations 2-12
mailer flags 3-29
Message Processing Module 2-14
options, changing values of 3-15
queue, forcing the 3-14
queue interval 3-14
queueing for retransmission 2-5
rerouting mail 2-8
return to sender 2-5
rewriting an address 2-12
rewriting rules 3-20
setting options 2-12
special header lines 3-13
suid 3-19
support files 3-42
system organization 2-1
temporary file modes 3-19
tuning 3-16

delivery mode 3-18
file modes 3-18
forking during queue runs 3-17
message timeouts 3-17
queue interval 3-16
queue priorities 3-17
read timeouts 3-16
timeouts 3-16

Setting interface options 1-8
slink .

program 1-5
slink functions

cenet 1-5
denet 1-6
uenet 1-6

Smart gateway 1-12
SMTP

over Berkeley-style sockets 2-3
over pipes 2-3

SOA (Start of Authority) record 4-13
Sockets

SMTP over 2-3
SO_DEBUG option 1-19
Special classes 3-26

Special macros 3-24
Standard resource record fonnat 4-11
STREAMS

configuring 1-5
tuning 1-19

Subnetworks 1-9
suid in sendmail3-19
Support files, summary of 3-42
Synchronization 5-1
System

equivalence 1-16

T

Temporary file modes, sendmail3-19
Time daemon

constraints 5-3
masterS-l
options 5-5

timed program, administration 5-1
timedc command 5-6
Timeouts in sendmail 3-16
Troubleshooting

network 1-19
trpt program 1-19
Trusted users, defining 3-23
1\ming sendmail program 3-16

delivery mode 3-18
file modes 3-18
forking during queue runs 3-17
message timeouts 3-17
queue interval 3-16
queue priorities 3-17
read timeouts 3-16
timeouts 3-16

1\ming STREAMS 1-19

u

unit select 1-6
User

equivalence 1-16
/usr/sys/conf/master 1-2
/usr/sys/conf/unixconf 1-2

Index

w

Well known services resource record
4-15

1-5

Derived from

LACHMA~M SYSTEM V NFS

Reference Guide

The Santa Cruz Operation, Inc.

Portions copyright © 1988, 1989, 1990. The Santa Cruz Operation, Inc. All rights reserved.
Portions copyright © 1986, 1987, 1988, 1989 Lachman Associates, Inc. All rights reserved.
Portions copyright © 1985, 1986, 1987, 1988, 1989 Sun Microsystems, Inc. All Rights
Reserved.

No part of this publication may be reproduced, transmined, stored in a retrieval system, nor
translated into any human or computer language, in any form or by any means, electronic,
mechanical. magnetic. optical, chemical, manual or otherwise, without the prior wrinen
permission of the copyright owner, The Santa Cruz Operation, Inc., 400 Encinal, Santa Cruz,
California, 95061, USA. Copyright infringement is a serious matter under the United States and
foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User only for use
in strict accordance with the End User License Agreement, which License should be read
carefully before commencing use of the software. Information in this document is subject to
change without notice and does not represent a commitment on the part of The Santa Cruz
Operation, Inc.

The following legend applies to all contracts and subcontracts governed by the Rights in
Technical Data and Computer Software Clause of the United States Department of Defense
Federal Acquisition Regulations Supplement:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is
subject to restrictions as set fonh in subparagraph (c) (1) (ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 52.227-7013. The Santa Cruz Operation, Inc., 400
Encinal Street, Santa Cruz, California 95061, U.S.A.

SCO NFS was developed by Lachman Associates.
SCO NFS is derived from LACHMAN™ SYSTEM V NFS, a joint development of Lachman
Associates and Sun Microsystems. .

seo and the SCQ logo are regislered trademarks. and The Santa Cruz Operation. is a InIdemart of The Santa Cruz
Operation. Inc.

XENIX is a regislered trademark of Microsoft Corporation.

UNIX is. regislered trademark of AT&T.

LACHMAN i •• trademark of Lachman AssocialeS. Inc.

Ethernet is a regislered trademark of Xerox.

NFS i •• trademark of Sun Microsystems. Inc.

SCQ Document Number: XN-9-30-89-1.I.OB

Commands

Network Administration (NADM)

Intro
fsirand
Ickclnt
lockd
mount
mountd
nfs
nfsclnt
nfsd
nfsstat
nmountall
passmgmt
pcnfsd
portmap
rexd
rpcinfo
showmount
statd

Introduction to ONC maintenance and operation commands
install random inode generation numbers
create lock manager client handles
Network lock daemon
Mount and unmount file system and remote resources
NFS mount requested server
NFS start/stop script
create NFS client handles
NFSdaemons
Network File System statistics
mount, unmount multiple file systems
password files management
pc-nfs authentication and print spooling daemon
DARPA port to RPC program number mapper
RPC-based remote execution server
Report RPC information
Show all remote mounts
Network status monitor

INTRO (NADM) INTRO (NADM)

intro
introduction to ONe maintenance and operation com­
mands

Description

This section contains infonnation related to ONC operation and main­
tenance. It describes the commands used to start and stop NFS, mount
and unmount NFS file systems, ping RPC based services and the vari­
ous NFS/ONC daemons and utilities.

September 30, 1989 INTR0-1

FSIRAND (NADM) FSIRAND (NADM)

fsirand
install random inode generation numbers

Syntax

fsirand [-p] special

Description

fsirand installs random inode generation numbers on all the inodes on
device special. This helps increase the security of filesystems
exported by NFS.

fsirand must be used only on an unmounted filesystem that has been
checked withfsck(ADM). The only exception is that it can be used on
the root filesystem in single-user mode, if the system is immediately
re-booted afterwords.

Options

-p Print out the generation numbers for all the inodes, but do not
change the generation numbers.

See Also

fsck(ADM)

September 30,1989 FSIRAND-1

LCKCLNT (NADM) LCKCLNT (NADM)

Ickclnt
create lock manager client handles

Syntax

lckclnt [nclienthandles]

Description

lckclnt allocates connectionless transport endpoints which are used to
create client handles. Lock manager client programs obtain a client
handle for the duration of an RPC operation.

nclienthandles is the number of client handles allocated. This number
limits the number of lock manager client operations that can be run
concurrently, and should be based on the load expected on the client.
If additional client handles are required, more lckclnt processes may
be started. The number of client handles available to lock manager
client programs is the sum of the number of client handles allocated
by each lckclnt program. Killing an lckclnt process will reduce the
available number of client handles by the amount that was initially
allocated by that process.

Files

Idev linet/udp UDP device node

See Also

kclccreate(NS)

September 3D, 1989 LCKCLNT-1

LOCKD(NADM) LOCKD(NADM)

lockd
Network lock daemon

Syntax

letcllockd [-d debuglevel] [-t timeout] [-g graeeperiod] [-h hash­
size] [-I k2utimeout]

Description

loC/cd processes lock requests that are either sent locally by the kernel
or remotely by another lock daemon. loekd forwards lock requests for
remote data to the server site's lock daemon through the RPC/XDR
package. loekd then requests the status monitor daemon,
statd(NADM), for monitor service. The reply to the lock request will
not be sent to the kernel until the status daemon and the server site's
lock daemon have replied. If either the status monitor or server site's
lock daemon is unavailable, the reply to a lock request for remote data
is delayed until all daemons become available.

When a server recovers, it waits for a grace period for all client site
loekds to submit reclaim requests. Client site loekds, on the other
hand, are notified by the statd of the server recovery and promptly
resubmit previously granted lock requests. If a loekd fails to secure a
previously granted lock at the server site, the loekd sends SIGUSR2 to
a process.

loekd should be invoked as early as possible during the transition from
single user to multiuser, so that no other processes have the opportun­
ity to get a standard System V lock. If there are active locks or sleep­
ing locks in the standard System record locking code, loekd attempts
to migrate them to the user level process. This is done so the active
locking processes will not have their locks destroyed by the starting
lock manager.

Options

-t timeout loekd uses timeout (seconds) as the interval instead of the
default value (5 seconds) to retraitsmit lock request to the
remote server.

-ddebuglevel
. loekd has extensive internal reporting capabilities. A level

of 2 reports significant events. Level 4 reports internal
state and all request traffic. Level 4 is considered verbose.

September 30,1989 LOCKD-1

LOCKD(NADM) LOCKD(NADM)

-g grace period
lockd uses graceperiod (seconds) as the grace period
duration instead of the default value (45 seconds).

-hhashsize lockd uses hashsize has buckets internally instead of the
default of 29.

-1k2utimeout

See Also

lockd uses k2utimeout seconds as the interval instead of
the default value of 2 seconds to retransmit kernel lock
manager requests. This is the timeout value used for local
lock requests.

fcntl(S), lockf(S), signal(S), statd(NADM)

September 30, 1989 LOCKD-2

MOUNT (NADM) MOUNT (NADM)

mount, umount
Mount and unmount file system and remote resources

Syntax

lete/mount [[-r] [-f fstyp] special directory]
Jete/mount [-r] [-c] [-d resource directory]
lete/umount special directory
lete/umount [-d) resource

Description

File systems other than root (I) are considered removable in the
sense that they can be either available to users or unavailable. mount
announces to the system that special, a block special device or
resource, a remote resource, is available to users from the mount point
directory. directory must exist already; it becomes the niune of the
root of the newly mounted special.

mount, when entered with arguments, adds an entry to the table of
mounted devices, lete/mnttab. umount removes the entry. If invoked
with no arguments, mount prints the entire mount table. If invoked
with an incomplete argument list, mount searches Jetc/defaultlfilesys
for the missing arguments:
special, -d resource, directory, or -d directory.

Options

-r

-d

-c

-fJstyp

A special or resource is to be mounted read-only. If spe­
cial or resource is write-protected or read-only adver­
tised, this flag must be used.

A resource is a remote resource that is to be mounted on
directory or unmounted.

indicates that remote reads and writes should not be
cached in the local buffer pool. -c is used in conjuncion
with -d.

An fstype is the file system type to be mounted. If this
argument is omitted, it defaults to the root fstyp. If fstyp
is NFS, then NFS options may be added after the fstyp
separated by commas. The available NFS options are:

September 30, 1989 MOUNT-1

MOUNT (NADM) MOUNT (NADM)

soft
return error if the server does not respond.

rsize=n
set the read buffer size to n bytes. (default = 8192)

wsize=n
set the write buffer size to n bytes. (default = 8192)

timeo=n
set the initial NFS timeout to n tenths of a second.

retrans=n
set the number of NFS retransmissions to n.

port=n
set the server IP port number to n.

nosuid
ignore setuid and setgid bits during exec.

bg background this mount. This is recommended for
automatic mounts done during system startup.

special The block special device that is to be mounted on direc­
tory. If !styp is NFS, then special should be of the form
hostname:/pathname.

resource The remote resource name that is to be mounted on a
directory.

directory The directory mount point for special or resource. (The
directory must already exist.)

umount announces to the system that the file system previously
mounted special or resource is to be made unavailable. If invoked
with an incomplete argument list, umount searches /etc/defaultlfilesys
for the missing arguments.

mount can be used by any user to list mounted file systems and
resources. Only a super-user can mount and umount file systems.

Files

/etc/mnttab mount table
/etc/default/filesys file system table

September 30.1989 MOUNT-2

MOUNT (NADM)

Example

MOUNT (NADM)

The following command mounts the root file system of the remote ma­
chine test onto the mount point mnt and specifies the file system type.

mount -fnfs,soft,rsize=I024, wsize=1024 test:/ /mnt

See Also

setmnt(ADM), mountd(NADM), nfsd(NADM), showmount(NADM),
mount(NS), mnttab(NF)

Diagnostics

If the mount(NS) system call fails, mount prints an appropriate diag­
nostic. mount issues a warning if the file system to be mounted is
currently mounted under another name. A remote resource mount will
fail if the resource is not available.

umount fails if special or resource is not mounted or if it is busy. spe­
cial or resource is busy if it contains an open file or some user's work­
ing directory.

Warnings

Physically removing a mounted file system diskette from the diskette
drive before issuing the umount command damages the file system.

September 30,1989 MOUNT-3

MOUNTD(NADM) MOUNTD (NADM)

mountd
NFS mount requested server

Syntax

Jetc/mountd

Description

mountd is an RPC server that answers file system mount requests. It
reads the file Jetc/exports, described in exports(NF), to detennine
which file systems are available to which machines and users. It also
provides infonnation as to which clients have file systems mounted.
This infonnation can be printed using the showmount(NADM) com­
mand.

See Also

exports(NF), services(ADMN), showmount(NADM)

September 30, 1989 MOUNTD-1

NFS(NADM) NFS (NADM)

/etc/nfs
NFS starVstop script

Syntax

letc/nrs start
letc/nrs stop

Description

letclnfs is used to start or stop the NFS software. NFS will start auto­
matically at system startup time if letclnfs is linked to
letc/rc2.d/Sname (name is installed as 72nfs by default). Similarly,
NFS will stop automatically at system shutdown time if letclnfs is
linked to letclrcO.dlKname (name is installed as 66nfs by default).

letclnfs must be customized for a particular installation before it can
be used. The following items may need to be edited:

PATH

PROCS

Daemons

The supplied path may require modification if com­
mands run by letclnfs are in other directories.

The "PROCS" variable contains a space-separated
list of names of processes to kill when executing the
stop function. If additional daemons are used, their
names can be added to this list.

The standard NFS daemons are started at this point.
Any additional daemons or other commands may be
included in this section. Any of the standard dae­
mons that are not desired may be removed or com­
mented out. By default, biod (see nfsd(NADM»,

A transport service for NFS may have to be initialized before NFS is
started. Conversely, the service have to be turned off after NFS is
brought down.

See Also

domainname(NC), portmap(NADM), mountd(NADM), nfsd(NADM),
rexd(NADM), lockd(NADM), statd(NADM), sh(C).

September 30, 1989 NFS-1

NFSCLNT(NADM) NFSCLNT (NADM)

nfsclnt
create NFS client handles

Syntax

nfsclnt [nclienthandles]

Description

nfsclnt allocates connectionless transport endpoints which are used to
create client handles. NFS client programs obtain a client handle for
the duration of an RPC operation.

nclienthandles is the number of client handles allocated. This number
limits the number of NFS client operations that can be run con­
currently, and should be based on the load expected on the client. If
additional client handles are required, more nfsclnt processes may be
started. The number of client handles available to NFS client pro­
grams is the sum of the number of client handles allocated by each
nfsclnt program. Killing an nfsclnt process will reduce the available
number of client handles by the amount that was initially allocated by
that process.

Files

/dev /inet/udp UDP device node

See Also

kclccreate(NS)

September 30, 1989 NFSCLNT-1

NFSD(NADM)

nfsd, blod
NFSdaemons

Syntax

letclnfsd [nservers]

letclbiod [nservers]

Description

NFSD(NADM)

nfsd starts the NFS server daemons that handle client filesystem
requests. nservers is the number of filesystem request daemons to
start. This number should be based on the load expected on this
server.

biod, run on an NFS client, starts nservers asynchronous block I/O
daemons, which do read-ahead and write-behind of blocks from the
client's buffer cache.

See Also

mountd(NADM), exports{NF)

September 30. 1989 NFSD-1

NFSSTAT (NADM) NFSSTAT (NADM)

nfsstat
Network File System statistics

Syntax

nfsstat [-csnrz]

Description

nfsstat displays statistical infonnation about the Network File System
(NFS) and Remote Procedure Call (RPC) interfaces to the kernel. It
can also be used to reinitialize this infonnation. If no options are
given the default is

nfsstat -csnr

That is, print everything and reinitialize nothing.

Options

-c Display client infonnation. Only the client side NFS and RPC in­
fonnation will be printed. Can be combined with the -n and -r
options to print client NFS or client RPC infonnation only.

-s Display server infonnation. Works like the -c option above.

-n Display NFS infonnation. NFS infonnation for both the client and
server side will be printed. Can be combined with the -c and -s
options to print client or server NFS infonnation only.

-r Display RPC infonnation. Works like the -n option above.

-z Zero (reinitialize) statistics. Can be combined with any of the

Files

above options to zero particular sets of statistics after printing
them. The user must have write pennission on Idevlkmem for this
option to work.

/unix
/dev/kmem

system namelist
kernel memory

September 30, 1989 NFSSTAT-1

NFSSTAT (NADM)

See Also

nfs(NADM)

September 30.1989

NFSSTAT (NADM)

NFSSTAT-2

NMOUNTALL (NADM)

nmountall, numountall
mount, unmount multiple file systems

Syntax

letc/nmountall
letclnumountall

Description

NMOUNTALL (NADM)

The nmountall command is used to mount NFS file systems according
to entries in letcldefaultlfilesys. It is strongly recommended that the
NFS mount option, bg, be used for file systems which are automatical­
ly mounted during startup. This will prevent startup processing from
hanging while trying to mount a file system from a very slow or dead
server.

The numountall command causes all NFS mounted file systems to be
unmounted. Processes which hold open files or have current direc­
tories on these file systems are killed by being sent a series of signals.
The fIrst signal sent is SIGHUP. One second later, SIGTERM, is sent.
Finally, one second later, SIGKll..L is sent.

These commands may be executed only by the super-user.

Files

The file system table format is as follows. Lines that being with the
"#" character are considered comments and the fields are generally
delimited with a blank space. Note that for an entry longer than one
line, it is desirable to escape the new lines with backslashes to
separate the fIelds. This has been done in our example for easier read­
ing:

September 3D, 1989 NMOUNTALL-1

NMOUNTALL (NADM) NMOUNTALL (NADM)

bdev=nfs2:! \
The fIrst fIeld is the remote directory name to be mounted.

mountdir=!nfslnfs2 \
The second fIeld is the mount point directory (which must already exist

mount=prompt mountflags= \
These fIelds direct NFS to prompt before mounting and specify
no flags when the fIlesystem is mounted with mnt(NADM)
or umnt(NADM).

fsck=no fsckflags= rcfsck=no \
These fIelds direct NFS not to clean and check the remote fIlesystem.

desc="The Root Filesystem of machine NFS2" \
The above fIeld is a brief description of the mounted fIlesystem.

rcmount=yes fstyp=NFS \
The above fIelds specify that the fIlesystem should be
mounted during NFS initialization and the fIlesystem type.

nfsopts="soft, wsize= 1 024,rsize= 1 024,nosuid"
These are NFS specillc options,
see mount(NS) for more information.

Note that empty lines in letcldefaultlfilesys are ignored.

In practice, our example fIle-system-table entry might read:

bdev=nfs2:1 mountdir=!nfs/nfs2 \ mount=prompt
mountflags= \ fsck=no fsckflags= rcfsck=no \

desc="The Root Filesystem of machine NFS2" \

See Also

rcmount=yes fstyp=NFS \
nfsopts="bg,soft, wsize:l 024,rsize= 1 024,nosuid"

mount(NADM), umount(NADM), fuser(NADM),
and signal(S), fIlesys(F) in the Programmer's Reference Manual and
the User's Reference Manual respectively.

Diagnostics

nmountall prints the mount commands that it will run before it runs
them.

numountall prints the list of process-ids that it sent signals. The list of
fIle systems which are being unmounted is also printed.

September 30,1989 NMOUNTALL-2

NMOUNTALL (NADM)

Notes

NMOUNTALL (NADM)

The infonnation displayed in Column 3 will only appear if the file
system was mounted as a read-only.

September 30, 1989 NMOUNTALL-3

PASSMGMT (NADM) PASSMGMT (NADM)

passmgmt
password files management

Syntax

passmgmt -a options name
passmgmt -m options name
passmgmt -d name

Description

The passmgmt command updates information in the password files.
This command works with both /etc/passwd and /etc/shadow. If there
is no shadow password file the changes done by passmgmt will go into
/etc/passwd.

passmgmt -a adds an entry for user name to the login password files.
This command does not create any directory for the new user and the
new login remains locked (with the string LK in the passwd field)
until the passwd(C) command is executed to set the password.

passmgmt -m modifies the entry for user name in the login password
files. The name field in the /etc/shadow entry and all the fields
(except the password field) in the /etc/passwd entry can be modified
by this command. Only fields entered on the command line will be
modified. If there is no /etc/shadow file, all modifications are made
in /etc/passwd.

passmgmt -d deletes the entry for user name from the login password
files. It will not remove any files that the user owns on the system;
they must be removed manually.

name, the login name of the user, must be unique.

The following options are available:

-c comment A short description of the login. It is limited to a max­
imum of 128 characters and defaults to an empty field.

-h homedir Home directory of name. It is limited to a maximum of
256 characters and defaults to /usr/name.

-u uid UID of the name. This number must range from 0 to
the maximum value for the system. It defaults to the
next available UID greater than 100. Without the -0
option, it enforces the uniqueness of a UID.

September 30,1989 PASSMGMT-1

PASSMGMT (NADM) PASSMGMT (NADM)

-0 This option allows a UID to be non-unique. It is used
only with the -u option.

-g gid GID of the name. This number must range from 0 to
the maximum value for the system. The default is 1.

-s shell Login shell for name. It should be the full pathname of
the program that will be executed when the user logs in.
The maximum length of shell is 256 characters. The
default is for this field to be empty and to be interpreted
as /bin/sh.

-llogname This option changes the name to logname for the -m
option only.

The total size of each login entry, whether existing or new, is limited
to a maximum of 511 bytes in the password files.

Files

/etc/passwd
/etc/shadow
/etc/opasswd
/etc/oshadow

See Also

passwd(C)

Diagnostics

The passmgmt command exits with one of the following values:

o SUCCESS.

1 Permission denied.

2 Invalid command syntax. Usage message of the
passmgmt command will be displayed.

3 Invalid argument provided to option.

4 UIDin use.

5 Inconsistent password files (e.g., name is in the
/etc/passwd file and not in the /etc/shadow file, or vice
versa). .

September 30,1989 PASSMGMT-2

PASSMGMT (NADM) PASSMGMT (NADM)

6 Unexpected failure. Password files unchanged.

7 Unexpected failure. Password file(s) missing.

8 Password file(s) busy. Thy again later.

9 name does not exist (if -m or -d is specified), already
exists (if -a is specified), or logname already exists (if -m
-I is specified).

NOTE

You cannot use a colon or <cr> because it will be interpreted as a field
separator.

September 30,1989 PASSMGMT-3

PCNFSD(NADM) PCNFSD(NADM)

pcnfsd
pc-nfs authentication and print spooling daemon

Syntax

/etclpcnfsd [-d] [-s spoo/dir]

Description

pcnfsd processes authentication and print spool requests from MS­
DOS clients running Sun Microsystem's PC-NFS. Requests, and their
responses, are forwarded through the RPC/XDR package. Upon
receipt of an authentication request, pcnfsd consults the server's pass­
word file and verifies that the password sent from the MS-DOS client
matches that on the local machine. An acceptance or rejection mes­
sage is then sent back to the client. The account's uid/gid pair is also
returned if authentication succeeds. If the account in question does
not exist, then authentication fails.

Print spooling consists of two services: spooling initialization, and
start print. When the server receives an initialization request, a path
name for the print spool directory is assembled from spoo/dir and the
client machine's name. This path is returned to the client. The client
then NFS mounts this directory. When a spool file is ready to print,
the start print request is sent to the server. The server then sends the
file to the print spooling subsystem.

If the host handling pcnfsd service crashes, RPC timeout messages
will be returned to the user when the above requests are generated.

Options

-d Turn on debugging mode. Status messages are returned to
the console terminal.

-s spoo/dir pcnfsd uses spoo/dir instead of /usr/spoolllp/pcnfsd as the
base spooling directory. This option is only available
when pcnfsd is run as a daemon.

See Also

Ip(C), passwd(C), getpwent(S)

September 30, 1989 PCNFSD-1

PORTMAP(NADM) PORTMAP(NADM)

portmap
DARPA port to RPe program number mapper

Syntax

/etc/portmap

Description

portmap is a server that converts RPC program numbers into DARPA
protocol port numbers. It must be running in order to make RPC calls.

When an RPC server is started, it will tell portmap what port number
it is listening to, and what RPC program numbers it is prepared to
serve. When a client wishes to make an RPC call to a given program
number, it will fIrst contact portmap on the server machine to deter­
mine the port number where RPC packets should be sent.

See Also

rpcinfo(NADM)

Notes

If portmap crashes, all servers must be restarted.

September 30, 1989 PORTMAP-1

REXD(NADM) REXD(NADM)

rexd
Rpe-based remote execution server

Syntax

/etclrexd

Description

rexd is the RPC server for remote program execution. For non­
interactive programs standard flle descriptors are connected directly
to TCP connections. Interactive programs involve pseudo-terminals,
similar to the login sessions provided by rlogin (C). This daemon may
use NFS to mount flle systems specified in the remote execution
request.

Files

/dev/ttypn

/etc/passwd

/tmp/rexd.log

See Also

pseudo-terminals used for interactive mode

authorized users

if it exists, logs errors and events

mount(NADM), on(NC), rex(NS), exports(NF)

Diagnostics

Diagnostic messages are normally printed on the console, and returned
to the requester.

Notes

Should be better access control.

September 30, 1989 REXD-1

RPCINFO (NADM)

rpcinfo
Report RPe information

Syntax

rpcinfo -p [host]
rpcinfo -u host program [version]
rpcinfo -t host program [version]

Description

RPCINFO (NADM)

rpcinfo makes an RPC call to an RPC server and reports what it fmds.

Options

-p Probe the portmapper on host, and print a list of all registered RPC
programs. If host is not specified, it defaults to the node name
returned by hostname(NC}.

-u Make an RPC call to procedure 0 of program on the specified host
using UDP, and report whether a response was received.

-t Make an RPC call to procedure 0 of program on the specified host
using TCP, and report whether a response was received.

-b Make an RPC broadcast to procedure 0 of the specified program
and version using UDP and report all hosts that respond.

The program argument can be either a name or a number. If a version
is specified, rpcinfo attempts to call that version of the specified pro-·
gram. Otherwise, rpcinfo attempts to find all the registered version
numbers for the specified program by calling every registered version
and also version 0, which is presumed not to exist. If it does exist,
rpcinfo attempts to obtain this information by calling an extremely
high version number instead.

Note that the version number is required for the -b option.

September 30, 1989 RPCINF0-1

RPCINFO (NADM)

Examples

RPCINFO (NADM)

To show all the RPC services registered on a machine, use the com­
mand:

rpcinfo -p machine_name

Files

/ete/rpc names for RPC program numbers

See Also

rpc(NF), portmap(NADM)

September 30, 1989 RPCINF0-2

SHOWMOUNT (NADM) SHOWMOUNT (NADM)

showmount.
Show all remote mounts

Syntax

letclshowmount [-a] [-d] [-e] [host]

Description

showmount lists all the clients that have remotely mounted a filesys­
tem from host. This infonnation is maintained by the
mountd(NADM) server on host, and is saved across crashes in the file
letclrmtab. The default value for host is the node name returned by
hostname(NC).

Options

-d List directories that have been remotely mounted by clients.

-a Print all remote mounts in the fonnat

hostname:directory

where hostname is the name of the client, and directory is the
root of the file system that has been mounted.

-e Print the list of exported file systems.

See Also

nntab(NF), mountd(NADM), exports(NF)

Notes

If a client crashes, its entry will not be removed from the list until it
reboots and unmounts the file system.

September 30, 1989 SHOWMOUNT -1

STATD (NADM) STATD (NADM)

statd
Network status monitor

Syntax

fete/statd [-d debuglevel]

Description

statd is an intermediate version of the status monitor. It interacts with
lockd(NADM) to provide the crash and recovery functions for the
locking services on NFS.

The statd preserves crash/recovery state in the /etc/sm directory. The
record file records the hostname of all currently monitored systems.
The recover file records the hostname of all systems that have as yet
not been notified of statd's failure, and the state file records statd's
current version number.

Options

-d debug level
The statd command has extensive internal reporting capa­
bilities. A level of 2 reports significant events. A level of
4 reports internal state and all status monitor request
traffic. Level 4 is considered verbose.

Files

/etc! sm/record
fetc! sm/recover
fetc/sm/state

See Also

lockd(NADM), statmon(NF)

September 30, 1989 STATD-1

STATD (NADM)

Notes

The crash of a site is only detected upon its recovery.

September 30, 1989

STATD (NADM)

STATD-2

Commands

Network Commands (NC)

Intro
hostname
mnt
on
rpcgen

Introduction to ONC commands
Get name of current host
Mount and unmount a file system
Execute remote command
RPC Protocol Compiler

INTRO (NC) INTRO (NC)

intro
introduction to NFS commands

Description

The commands in this section are tools for efficient use of NFS. You
can use them to mount a filesystem, execute commands on remote sys­
tems, and compile RPC commands.

September 30,1989 INTRQ-1

HOSTNAME (NC)

hostname
Set or print name of current host system

Syntax

hostname [nameofhost]

Description

HOSTNAME (NC)

The hostname command prints the name of the current host, as given
before the "login" prompt. The super-user can set the hostname by
giving an argument; this is usually done in the startup script
fetc/re.local.

See Also

gethostname(SLIB)

September 30, 1989 HOSTNAME-1

MNT (NC)

mnt, umnt
mount a filesystem

Syntax

lusrlbinlmnt [-urant] [directory

lusr/bin/umnt directory

Description

MNT (NC)

mnt allows users other than the super-user to access the functionality
of the mount(ADM) command to mount selected filesystems. The
super-user can derme how and when a filesystem mount is permitted
via special entries in the letcldefaultlfilesys file.

The filesystem requirements are the same as dermed for mount(ADM).

umnt removes the mountable filesystem previously mounted in direc­
tory .

mnt is invoked from the letclrc scripts with the -r, the -n and possibly
the -a flag to mount filesystems when the system comes up multiuser.
The -a flag is used when the system has autobooted. None of these
flags should be specified during normal command line use.

The -n flag directs the system to mount all filesystems dermed as fstyp
"NFS" with remount set to "yes" in the letcldefaultlfilesys file.
Filesystems of this type should have bdev dermed as follows:

bdev= hostname:/pathname

The cdev entry is not necessary if the filesystem is of type "NFS".
rcfsck should be set to "no". As stated previously, fstyp must be
"NFS" and remount must be set to "yes".

The -t flag displays the contents of letc/default/filesys.

The -u flag forces mnt to behave like umnt.

September 30, 1989 MNT-1

MNT (NC)

Options

MNT (NC)

The following options can be defined in the letcldefaultlftlesys entry
for a filesystem:

bdev=/dev/device

cdev=/dev/device

mountdir-/directory

desc=name

passwd=string

Name of block device associated with the
filesystem.

Name of character (raw) device associated
with the filesystem.

The directory the filesystem is to be mounted
on.

A string describing the filesystem.

An optional password prompted for at mount
request time. Cannot be a simple string; must
be in the format of /etc/passwd. (See Notes.)

fsck=yes, no, dirty, prompt

fsckflags=Jlags

If Yes/no, tells explicitly whether or not to run
fsck. If dirty,fsck is run only if the filesystem
requires cleaning. If prompt, the user is
prompted for a choice. If no entry is given,
the default value is dirty.

Any flags to be passed to fsck.

rcfsck=yes, no, dirty, prompt

maxcleans=n

mount=yes, no, prompt

Similar to fsck entry, but only applies when
the -r flag is passed.

The number of times to repeat cleaning of a
dirty filesystem before giving up. If
undefined, default is 4.

If yes or no, users are allowed or disallowed
to mount the filesystem, respectively. If
prompt, the user specifies whether the filesys­
tern should be mounted.

rcmount=yes,no,prompt

September 30, 1989

If yes, the filesystem is mounted by letclrc2
when the system comes up multiuser. If no,
the filesystem is never mounted by letclrc2.
With prompt, a query is displayed at boot
time to mount the filesystem.

MNT-2

MNT (NC) MNT (NC)

mountflags=jlags Any flags to be passed to mount.

prep=yes, no, prompt Indicates whether any prepcmd entry should
always be executed, never executed, or exe­
cuted as specified by user.

prepcmd=command An arbitrary shell command to be invoked
immediately following password check and
prior to runningfsck.

init=yes, no, prompt Indicates whether an initcmd entry should
always be executed, never be executed, or
executed as specified by user.

initcmd=command An optional, arbitrary shell command to be
invoked immediately following a successful
mount.

fstyp=type Defines the filesystem type. Available types
are NFS, S51K, XENIX, and DOS.

nfsopts=opts Defines NFS options for filesystems of type
NFS. Available options are described in the
mount(NADM) manual page.

Any entries containing spaces, tabs, or new lines must be contained in
double quotes (").

The only mandatory entries in /etcldefaultlfilesys are bdev and
mountdir. The prepcmd and initcmd options can be used to execute
another command before or after mounting the filesystem. For exam­
pIe, initcmd could be defined to send mail to root whenever a given
filesystem is mounted.

When invoked without arguments, mlit attempts to mount all filesys­
terns that have the entries mount=yes or mount=prompt.

Examples

The following is a sample letcldefaultlfilesys file:

bdev=/dev/root cdev=/dev/rroot mountdir=/ \
desc="The Root Filesystem" rcmount=no mount=no

bdev=/dev/u cdev=/dev/ru mountdir=/u rcmount-yes \
fsckflags=-y desc="The User Filesystem"

bdev=/dev/x cdev=/dev/rx mountdir=/u rcmount=no \
mount-yes fsckflags=-y desc="The Extra Filesyst~1

Of the examples above, only Ix is mountable by the user.

September 30, 1989 MNT-3

MNT (NC)

Files

/etc/default/filesys Filesystem data

See Also

mount(ADM), default(F)

Diagnostics

MNT (NC)

mnt will fail if the filesystem to be mounted is currently mounted
under another name.

Busy filesystems cannot be unmounted with umnt. A filesystem is busy
if it contains an open file or if a user's present working directory
resides within the filesystem.

Notes

Some degree of validation is done on the filesystem, however it is gen­
erally unwise to mount corrupt filesystems.

In order to create a password for a filesystem, the system administrator
must run the passwd(C) command using the -f option.

Value Added

mnt is an extension of AT&T System V provided by the Santa Cruz
Operation.

September 30, 1989 MNT-4

ON (NC) ON (NC)

on
Execute a command remotely

Syntax

on [-i] [-n] [-d] host command [argument] ...

Description

The on program is used to execute commands on another system, in an
environment similar to that invoking the program. All environment
variables are passed, and the current working directory is preserved.
To preserve the working directory, the working file system must be
either already mounted on the host or be exported to it. Relative path
names will only work if they are within the current file system; abso­
lute path names may cause problems.

Standard input is connected to standard input of the remote command,
and standard output and standard error from the remote command are
sent to the corresponding files for the on command.

Options

-i Interactive mode: use remote echoing and special char­
acter processing. This option is needed for programs
that expect to be talking to a terminal.' All terminal
modes and window size changes are propagated.

-n No input: this option causes the remote program to get
end-of-file when it reads from standard input, instead of
passing standard input from the standard input of the on
program. For example, -n is necessary when running
commands in the background with job control.

-d Debug mode: print out some messages as work is being
done.

See Also

rexd(NADM), exports(NF)

September 30, 1989 ON-1

ON (NC)

Diagnostics

unknown host
cannot connect to server
can't find.
can't locate mount point

ON (NC)

Host name not found
Host down or not running the server
Problem finding the working directory
Problem finding current file system

Other error messages may be passed back from the server.

September 30,1989 ON-2

RPCGEN(NC)

rpcgen
An RPe protocol compiler

Syntax

rpcgen infile
rpcgen -h [-0 outfile] [inputfile]
rpcgen -c [-ooutfile] [infile]
rpcgen -m [-0 outfile] [infile]
rpcgen -I [-ooutfile] [infile]
rpcgen [-8 transport]· [-ooutfilej [infile]

Description

RPCGEN (NC)

rpegen is a tool that generates C code to implement an RPC protocol.
The input to rpegen is a language similar to C known as RPCL
(Remote Procedure Call Language). rpegen is normally used as in the
fIrst syntax entry, where it takes an input fIle and generates four out­
put fIles. If the infile is named proto.x, rpcgen generates a header fIle
in proto.h, XDR routines in the fIle proto_xdr.e, server-side stubs in
the fIle proto_sve.e, and client-side stubs in the fIle proto_elnt.e.

The other syntax examples shown above produce only one output fIle,
rather than all four. The usage of each syntax example is described
below.

The C-preprocessor, epp(CP), is run on all input fIles before they are
actually interpreted by rpegen, so all the cpp directives are legal
within an rpegen input fIle. For each type of output fIle, rpegen
defmes a special cpp symbol for use by the rpegen programmer:

RPC_HDR
defined when compiling into header files

RPC_XDR
defined when compiling into XDR routines

RPC_SVC
defined when compiling into server-side stubs

RPC_CLNT
defined when compiling into client-side stubs

In addition, rpegen does a little preprocessing of its own. Any line
beginning with '%' is passed directly into the output file, uninter­
preted by rpegen.

You can customize some of your XDR routines by leaving those data
types undefined. For every data type that is undefined, rpegen will
assume that there exists a routine with the name xdr _ prepended to
the name of the undefined type.

September 30.1989 RPCGEN-1

RPCGEN(NC) RPCGEN (NC)

It is highly recommended that you read the chapters on RPC and XDR
in the seo NFS Programmer's Guide before using this utility.

Options

-c Compile XDR routines.

-h Compile C data-definitions (a header file)

-ooutfile
Specify the name of the output file. If none is specified, standard
output is used (-c, -h and -s modes only).

-I Compile into a client-side stubs.

-s transport
Compile into server-side stubs, using the the given transport. The
supported transports are udp and tcp. This option may be invoked
more than once so as to compile a server that serves multiple trans­
ports.

-m
Compile into a server-side stubs, but do not produce a main() rou­
tine. This option is useful if you want to supply your own mai n().

Usage

RPCL Syntax Summary

This summary of RPCL syntax, which is used for rpcgen input, is
intended more for aiding comprehension than as an exact statement of
the language.

Primitive Data Types

[unsigned] char
[unsigned] short
[unsigned] int
[unsigned] long
unsigned
80at
double
void
bool

Except for the added boolean data-type bool, RPCL is identical to C.

September 3D, 1989 RPCGEN-2

RPCGEN (NC) RPCGEN (NC)

rpcgen converts bool declarations to int declarations in the output
header file (literally it is converted to a booU, which has been
#define'd to be an int). Also, void declarations may appear only inside
of union and program definitions. For those averse to typing the
prefix unsigned, the abbreviations uehar, ushort, uint and ulong are
available.

Declarations

RPCL allows only three kinds of declarations:

• simple-declaration

type-name object-ident

For example,

long a;

• pointer-declaration

type-name ·object-ident

For example,

ehar *b;

• vector-declaration

type-name object-ident[size]

(size can be either an integer or a symbolic constant)

For example,

opaque e[10];

RPCL declarations contain both limitations and extensions with
respect to C. The limitations are that you cannot declare multidimen­
sional arrays or pointers-to-pointers in-line (You can still declare them
though, using typedef). There are two extensions:

• Opaque data is declared as a vector as follows:

opaque object-ident [size]

In the protocol, this results in an object of size bytes. Note that this
is not the same as a declaration of size characters, since XDR char­
acters are 32-bits. Opaque declarations are compiled in the output
header file into character array declarations of size bytes.

September 30, 1989 RPCGEN-3

RPCGEN (NC) RPCGEN (NC)

• Strings are special and are declared as a vector declaration:

string object-ident [max-size]

If max-size is unspecified, then there is essentially no limit to the
maximum length of the string. String declarations get compiled
into the following:

char *object-ident

Type Definitions

You need to use rpcgen to generate an XDR routine and/or header file
that defines a type in an input file. For every zetype you define, rpcgen
creates a corresponding XDR routine named xdr zetype that is manda-
tory for creating RPC programs. -

There are six ways to define a type:

type-definition:
typedel
enumeration-del
structure-de! .
variable-length-array-del
discriminated-union-del
program-del

The first three are very similar to their C namesakes. C does not have
a formal type mechanism to define variable-length arrays and XDR
unions are quite different from their C counterparts. Program
definitions are not really type definitions, but they are useful nonethe­
less.

You may not nest XDR definitions. For example, the following will
cause rpcgen to choke:

struct dontdoit {
struct ididit

int oops;
} sorry;
enum ididitagain { OOPS, WHOOPS } iapologize;

};

September 30.1989 RPCGEN-4

RPCGEN (NC)

Typedefs

An XDR typedef looks as follows:

typedef'
typedef type-name object-ident ;

RPCGEN (NC)

The object-ident is the name of the new type, whereas the type-name
part is the name of the type from which it is derived. For example,

typedef longa;

Enumeration Types

The syntax is:

enumeration-def'
enum enum-ident {

enum-list
};

enum-list:
enum-symbol-ident [= assignment]
enum-symbol-ident [= assignment] , enum-Iist

(assignment may be either an integer or a symbolic constant)

If there is no explicit assignment, then the implicit assignment is the
value of the previous enumeration plus 1. If not explicitly assigned,
the first enumeration receives the value O.

Structures

structure-del'
struct struct-ident {

declaration-list
};

declaration-list:
declaration ;
declaration ; declaration-list

Variable-Length Arrays

variable-length-array-def'
array array-ident {

};

unsigned length-identifer ;
vector-declaration ;

September 30, 1989 RPCGEN-5

RPCGEN (NC) RPCGEN (NC)

A variable length array definition looks much like a structure
definition. Here's an example:

array mp int {
unsigned len;
short val[MAX_MP_LENGTHl;

} ;

This is compiled into:

struct mp int
unsigned len;
short *val;

} ;
typedef stru~t mp_int mp_int;

Discriminated Unions

discriminated-union-de!"
union union-ident switch (discriminant-declaration) {

case-list
[default : declaration ;]

};

case-list:
case case-ident : declaration ;
case case-ident : declaration ; case-list

discriminant-declaration:
declaration

The union definition looks like a cross between a C-union and a C­
switch. For example:

union net object switch (net_kind kind} {
case MACHINE:

struct sockaddr_in sin;
case USER:

int uid;
default:

string whatisit;
} ;

September 30.1989 RPCGEN-6

RPCGEN(NC)

Compiles into:

struct net object {
net-kind kind;
union {

} ;

struct sockaddr in sin;
int uid;
char *whatisit;

net_object;

typedef struct net_object net_object;

RPCGEN (NC)

Note that the name of the union component of the output struct is the
same as the name of the type itself.

Program Definitions

program-del
program program-ident {

version-list
} = program-number;

version-list:
version
version version-list

version:
version version-ident {

procedure-list
} = version-number ;

procedure-list:
procedure-declaration
procedure-declaration procedure-list

procedure-declaration:
type-name procedure-ident (type-name) = procedure-number;

Program definitions look like nothing you've ever seen before, so we
tum to an example to explain them. Suppose you wanted to create
server that could get or set the date. Its declaration might look like
this:

program DATE_PROG (
version DATE_VERS

date DATE_GET(timezone) = 1;
void DATE_SET(date) = 2; /* Greenwich mean time */

= 1;
} = 100;

September 3D, 1989 RPCGEN-7

RPCGEN(NC) RPCGEN(NC)

In the header file, this compiles into the following:

'define DATE PROG 100
#define DATE-VERS 1
*define DATE=GET 1
*define DATE_SET 2

These define's are intended for use by the client program to reference
the remote procedures.

If you are using rpcgen to compile your server, then there are some
important things for you to know. The server interfaces to your local
procedures by expecting a C function with the same name as that in
the program definition, but in all lowercase letters and followed by the
version number. Here is the local procedure that implements
DATE_GET:

date * 1* always returns a pointer to the results */
date_get_l (tz)

timezone *tz; 1* always takes a pointer to the arguments */

static date d; 1* must be static! */

1*
* figure out the date
* and store it in d
*1

return (&d);

The name of the routine is the same as the #deftne'd name, but in all
lowercase letters and followed by the version number. XDR will
recursively free the argument after getting the results from your local
procedure, so you should copy from the argument any data that you
will need between calls. However, XDR neither allocates nor frees
your results. You must take care of their storage yourself.

Make Inference Rules For Compiling XDR Headers

It is possible to set up suffix transformation rules in make(C) for com­
piling XDR routines and header files. The convention is that RPCL
protocol files have the extension .x. The make rules to do this are:

.SUFFIXES: .x

.x.c:
rpcgen -c $< -0 $@

.x.h:
rpcgen -h $< -0 $@

September 30, 1989 RPCGEN-B

RPCGEN (NC) RPCGEN (NC)

Example

Consider the following program, example , which defines three data
types:

const NFS PORT
enum nfsstat {

NFS OK=O
} ;
struct gnumbers

= 2059;

long g assets;
long g=liabilities;

} ;

When you run rpcgen with no arguments, it generates a header file,
example.h and an XDR file, example _ xdr .c.

example.h

#define NFS PORT 2059

enum nfsstat {
NFS OK = 0,

} ;
typedef enum nfsstat nfsstat;
bool_t xdr_nfsstat();

struct gnumbers {
long g assets;
long g=liabilities;

} ;
typedef struct gnumbers gnumbers;
bool_t xdr_gnumbers();

September 30. 1989 RPCGEN-9

RPCGEN (NC)

tinclude <rpc/rpc.h>
tinclude "infile.h"

bool t
xdr nfsstat(xdrs, objp)

- XDR *xdrs;
nfsstat *objp;

RPCGEN(NC)

if (!xdr enum(xdrs, (enum t *) objp)) {
return (FALSE);

return (TRUE);

bool t
xdr_gnumbers(xdrs, objp)

XDR *xdrs;
gnumbers *objp;

if (!xdr long(xdrs, &objp->g assets)) {
return (FALSE); -

}
if (!xdr long(xdrs, &objp->g liabilities))

return (FALSE); -

return (TRUE);

See Also

seo NFS Programmer's Guide

Notes

Name clashes can occur when using program definitions, since the
apparent scoping does not really apply. Most of these can be avoided
by giving unique names for programs, versions, procedures and types.

Nesting is not supported. As a workaround, structures can be declared
at the top level and their names used inside other structures in order to
achieve the same effect.

September 30, 1989 RPCGEN-10

Commands

Network File Formats (NF)

Intro
exports
mnttab
rmtab
rpc
statmon

Introduction to network file formats
NFS file systems being exported
Mounted file system table
Remotely mounted file system table
RPC program number data base
Statd directory and file structures

INTRO (NF) INTRO (NF)

intro
introduction to formats of files used by ONe com­
mands

Description

This section outlines the fonnats of various files. The C struct
declarations for the file fonnats are given where applicable. Usually,
these structures can be found in header files under the directories
lusr/include/rpc, lusr/include/rpcsvc, or lusr/include/syslfslnfs.

September 30, 1989 INTR0-1

EXPORTS (NF)

exports
NFS file systems being exported

Syntax

/etc/exports

Description

EXPORTS (NF)

The file /etc/exports describes the file systems which are being
exported to NFS clients. It is created by the system administrator
using a text editor and processed by the mount request daemon
mountd(NADM) each time a mount request is received.

The file consists of a list of file systems and the netgroups (NF) or ma­
chine names allowed to remote mount each file system. The file sys­
tem names are left justified and followed by a list of names separated
by white space. The names will be looked up in /etc/netgroups and
then in /etC/hosts. A file system name with no name list following
means export to everyone. A sharp sign (#) anywhere in the file indi­
cates a comment extending to the end of the line it appears on. Lines
beginning with white space are continuation lines.

Example

/usr clients # export to my clients
/usr/local # export to the world
/usr2 paris peoria phoenix # export to only these machines

Files

/etc/exports

Notes

The identification of the remote system is dependent on the local net­
work transport mechanism employed.

See Also

mountd(NADM)

September 30. 1989 EXPORTS-1

MNTTAB (NF)

mnttab
Mounted file system table

Syntax

. #include <mnttab.h>

Description

MNTTAB (NF)

mnttab resides in directory fete and contains a table of devices,
mounted by the mount(NADM) command, in the following structure
as defmed by <mnttab.h>:

struct mnttab {

} i

char mt dev[32)i
char mt-filsys[32)i
short mt-ro flgi
time t mt-tiiiiei
char- mt-fstyp[16)i
char mt:mntopts[64)i

Each entry is 150 bytes in length;

• the first 32 bytes are the null-padded name of the place where the
special file is mounted;

• the next 32 bytes represent the null-padded root name of the
mounted special file;

• the next 6 bytes contain the mounted special file's read/write per­
missions and the date on which it was mounted;

• the following 16 bytes are the null-padded name of file system type;

• the remaining 64 bytes are the null-padded string of mount options.

The mount options are only used in the case of an NFS file system.

The maximum number of entries in mnttab is based on the system
parameter NMOUNT located in /etc/master.dlkernel, which defines
the number of allowable mounted special files.

See Also

mount(NADM), setmnt(ADM)

September 30, 1989 MNTTAB-1

RMTAB (NF)

rmtab
Remotely mounted file system table

Description

RMTAB (NF)

rmtab resides in directory letc and contains a record of all clients that
have done remote mounts of me systems from this machine. When­
ever a remote mount is done, an entry is made in the rmtab me of the
machine serving up that me system. umount removes entries, if of a
remotely mounted me system. The table is a series of lines of the
form

hostname:directory

This table is used only to preserve information between crashes, and is
read only by mountd(NADM) when it starts up. mountd keeps an in­
core table, which it uses to handle requests from programs like
sfwwmount{NADM) and shutdown(ADM).

Files

letc/rmtab

See Also

showmount(NADM), mountd(NADM),
mount(NADM), shutdown(ADM)

Notes

Although the rmtab table is close to the truth, it is not always 100%
accurate.

September 30. 1989 RMTAB-1

RPC (NF)

rpc
RPe program number data base

Syntax

RPC (NF)

,---
/etc/rpc

Description

The rpc file contains user readable names that can be used in place of
RPC program numbers. Each line has the following information:

name of server for the rpc program
rpc program number
aliases

Items are separated by any number of blanks and/or tab characters. A
sharp sign (#) indicates the beginning of a comment; characters up to
the end of the line are not interpreted by routines which search the
file.

Here is an example of the letclrpc file from the Sun RPC Source distri­
bution.

rpc 87/12/02 3.9 RPCSRC

portmapper 100000
rstacsvc
rosersd
nfs
mountd
waIld
etherstatd 100010
rquotad
sprayd
3270_mapper 1 000 13
rje_mapper 100014
selection svc 100015
database':=-svc 100016
rexd
aIis
sched
llockmgr
nlockmgr
x25.inr

September 3D, 1989

portmap sunrpc
100001 rstatd rstat rup perf meter
100002 rosers
100003 nfsprog
100005 mount showmount
100008 rwaIl shutdown
etherstat
100011
100012

rquotaprog quota rquota
spray

selnsvc

100017
100018
100019
100020
100021
100022

rex

RPC-1

RPC (NF)

statmon
status
bootparam
keyserv

Files

/etc/rpc

See Also

getrpcent(NS)

September 30,1989

100023
100024
100026
100029 keyserver

RPC (NF)

RPC-2

STATMON (NF) STATMON (NF)

statmon, current, backup, state
Statd directory and file structures

Syntax

fete/sm/record fete/sm/recover, fetcJsm/state

Description

The Jete/sm/record and Jete/sm/recover plain text files generated by
statd. Each hostname in fete/sm/record represents the name of the
machine to be monitored by the statd daemon. Each hostname in
fete/sm/recover represents the name of the machine to be notified by
the statd daemon upon its recovery.

The fete/sm/state file is generated by statd to record its version num­
ber. This version number. is incremented each time a crash or
recovery takes place.

See Also

statd(NADM), lockd(NADM)

September 30, 1989 STATMON-1

Commands

Network System Services (NS)

Intro
bindresvport
dbm
getdomainname
gethostent
getrpcent
getrpcport
kelt_create
mount
nfsJettlt
nfs_svc
rex

Introduction to network system services
Bind a socket
Data base subroutines
Get/set name of current domain
Get network host entry
Get RPC entry
Get RPC port number
Create client kernel handles
Mount a file system
Get NFS file handle
NFS daemons
Remote execution protocol

INTRO (NS) INTRO (NS)

intro
introduction to NFS system calls and error numbers

Syntax

#include <sys/errno.h>

Description

This section describes all of the socket system calls used in System V
NFS. Some of these system call are accessible from the RPC library,
librpc. The rest of the system calls were designed for specific pur­
poses for specific programs. The system call interfaces are generally
built into these programs. There are no new error numbers added for
the support of the NFS system calls. Some of these system calls were
not designed to return during normal operation. They were designed
to give the kernel a user context to run in or to provide the kernel with
a resource that is more easily allocated from the user level. Most of
these calls have one or more error returns. An error condition is indi­
cated by an otherwise impossible return value. This is almost always
-1; the individual descriptions specify the details.

As with normal arguments, all return codes and values from functions
are of type integer unless otherwise noted. An error number is also
made available in the external variable ermo, which is not cleared on
successful calls. Thus ermo should be tested only after an error has
occurred.

See the intro (S) manual page for standard error codes.

Files

/usr/lib/librpc.a

See Also

intro(S), perror(S)

September 30,1989 INTR0--1

INTRO (NS)

List Of Functions

Name
kclccreate
nfs~etfh
nfs_svc
async_daemon

Appears on Page
kclccreat(NS)
nfs~etfh(NS)
nfs_svc(NS)
nfs_svc(NS)

September 30.1989

INTRO (NS)

Description
create kernel RPC client handles
return a file handle
NFS server daemon
NFS block i/o daemon

INTR0-2

BINDRESVPORT (NS)

bindresvport
bind a socket to a privileged IP port

Syntax

#include <sys/types.h>
#include <netinetlin.h>

bindresvport(sd, sin)
int sd;
struct sockaddr)n *sin;

Description

BINDRESVPORT (NS)

bindresvport is used to bind a socket descriptor to a privileged IP
port, that is, a port number in the range 0-1023. The routine returns 0
if it is successful, otherwise -1 is returned and errno set to·reflect the
cause of the error.

Only root can bind to a privileged port; this call will fail for any other
users.

September 30, 1989 BINDRESVPORT -1

OBM (NS) OBM (NS)

dbminit, fetch, store, delete, firstkey,
nextkey
Data base subroutines

Syntax

typedef struct {
char *dptr;
int dsize;

} datum;

dbminit(tile)
char *tiIe;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum tirstkeyO

datum nextkey(key)
datum key;

dbmcloseO

Description

These functions maintain key/content pairs in a data base. The func­
tions will handle very large (a billion blocks) databases and will
access a keyed item in one or two flIe system accesses. The functions
are obtained with the loader option ·Idbm.

key s and contents are described by the datum typedef. A datum speci­
fies a string of dsize bytes pointed to by dptr. Arbitrary binary data, as
well as normal ASen strings, are allowed. The data base is stored in
two flIes. One file is a directory containing a bit map and has .dir as
its suffix. The second flIe contains all data and has .pag as its suffix.

Before a database can be accessed, it must be opened by dbminit. At
the time of this call, the flIes file .dir and file .pag must exist. (An
empty database is created by creating zero-length .dirand .pagflles.)

September 30, 1989 OBM-1

OBM (NS) OBM (NS)

Once open, the data stored under a key is accessed by fetch and data is
placed under a key by store. A key (and its associated contents) is
deleted by delete. A linear pass through all keys in a database may be
made, in an (apparently) random order, by use ofJirstkey and nextkey.
Jirstkey will return the first key in the database. With any key nextkey
will return the next key in the database. This code will traverse the
data base:

for (key = firstkeyO; key.dptr!= NULL; key = nextkey(key»

Adatabase may be closed by calling dbmclose. You must close a data­
base before opening a new one.

Diagnostics

All functions that return an int indicate errors with negative values. A
zero return indicates ok. Routines that return a datum indicate errors
with a null (0) dptr.

Notes

The .pag file will contain holes so that its apparent size is about four
times its actual content. Older systems may create real file blocks for
these holes when touched. These files cannot be copied by normal
means (cp, cat, tp, tar, ar) without filling in the holes.

dptr pointers returned by these subroutines point into static storage
that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal
block size (currently 1024 bytes). Moreover all key/content pairs that
hash together must fit on a single block. store will return an error in
the event that a disk block fills with inseparable data.

delete does not physically reclaim file space, although it does make it
available for reuse.

The order of keys presented by firstkey and nextkey depends on a hash­
ing function, not on anything interesting.

There are no interlocks and no reliable cache flushing; thus concurrent
updating and reading is risky.

September 30, 1989 OBM-2

GETDOMAINNAME (NS) GETDOMAINNAME (NS)

getdomainname, setdomainname
Get/set name of current domain

Syntax

getdomainname(name, namelen)
char ·name;
lnt namelen;

setdomainname(name, namelen)
char ·name;
lnt namelen;

Description

getdomainname returns the name of the domain for the current pro­
cessor, as previously set by setdomainname. The parameter name/en
specifies the size of the name array. The returned name is null­
terminated unless insufficient space is provided.

setdomainname sets the domain of the host machine to be name.
which has length namelen. This call is restricted to the super-user and
is normally used only when the system is bootstrapped.

The purpose of domains is to enable two distinct networks that may
have host names in common to merge. Each network would be dis­
tinguished by having a different domain name.

Return Value

If the call succeeds a value of 0 is returned. If the call fails. then a
value of -1 is returned and an error code is placed in the globalloca­
tion ermo.

Errors

The following errors may be returned by these calls:

[EFAULT] The name parameter gave an invalid address.

[EPERM] The caller was not the super-user. This error only
applies to setdomainname.

September 30. 1989 GETDOMAINNAME-1

GETDOMAINNAME (NS)

Notes

Domain names are limited to 64 characters.

September 30.1989

GETDOMAINNAME (NS)

GETDOMAINNAME-2

GETHOSTENT (NS) GETHOSTENT (NS)

gethostent, gethostbyaddr, gethost­
byname, sethostent, endhostent
Get network host entry

Syntax

#include <netdb.h>

struct hostent *gethostentO

struct hostent *gethostbyname(name)
char *name;

struct hostent *gethostbyaddr(addr, len, type)
char *addr; int len, type;

sethostent(stayopen)
int stayopen

endhostentO

Description

gethostent, gethostbyname, and gethostbyaddr each return a pointer to
an object with the following structure containing the broken-out fields
of a line in the network host data base, /etc/hosts.

struct hostent {

} ;

char *h name;
char **i1 aliases·;
int h addrtype;
int h -length;
char *h_addr;

The members of this structure are:

Official name of the host.

/* official host name *,
/* alias list * /
/* address type */
/* length of address */
/* address */

A zero-terminated array of alternate names for the host.

h_addrtype The type of address being returned; currently always
AF_INET. .

The length, in bytes, of the address.

September 30, 1989 GETHOSTENT -1

GETHOSTENT (NS) GETHOSTENT (NS)

A pointer to the network address for the host. Host
addresses are returned in network byte order.

gethostent reads the next line of the file, opening the file if necessary .

sethostent opens and rewinds the file. If the stayopen flag is non-zero,
the host data base will not be closed after each call to gethostent
(either directly, or indirectly through one of the other gethost calls).

endhostent closes the file.

gethostbyname and gethostbyaddr sequentially search from the begin­
ning of the file until a matching host name or host address is found, or
until EOF is encountered. Host addresses are supplied in network
order.

Files

!etc/hosts

See Also

Diagnostics

Null pointer (0) returned on EOF or error.

Notes

All information is contained in a static area so it must be copied if it is
to be saved. Only the Internet address format is currently understood.

Use of this routine depends on the local network transport mechanism

September 30. 1989 GETHOSTENT -2

GETRPCENT(NS) GETRPCENT(NS)

getrpcent, getrpcbyname,
getrpcbynumber
Get RPe entry

Syntax

#include <rpclnetdb.h>

struet rpcent *getrpcentO

struet rpcent *getrpcbyname(name)
char *name;

struet rpcent *getrpcbynumber(number)
int number;

setrpcent(stayopen)
int stayopen

endrpcentO

Description

getrpcent, getrpcbyname, and getrpcbynumber each return a pointer
to an object with the following structure containing the broken-out
fields of a line in the RPC program number data base, letclrpc.

struct rpcent {
char *r_name;
char **r_aliases;
long r_number;

1* name of server for this rpc program
1* alias list *1
1* rpc program number *1

} ;

The members of this structure are:

r_name The name of the server for this RPC program.

caliases A zero-terminated list of alternate names for the RPC pro­
gram.

r_number The RPC program number for this service.

The commands operate as follows:

getrpcent reads the next line of the file, opening the file if necessary.

September 30,1989 GETRPCENT -1

GETRPCENT(NS) GETRPCENT (NS)

setrpcent opens and rewinds the file. If the stayopen flag is non-zero,
the net data base will not be closed after each call to getrpcent (either
directly, or indirectly through one of the other getrpc calls).

endrpcent closes the file.

getrpcbyname and getrpcbynumber sequentially search from the
beginning of the file until a matching RPC program name or program
number is found, or until EOF is encountered.

Files

/etc/rpc
domainnamel rpc.bynumber

See Also

rpc(NF), rpcinfo(NADM),

Diagnostics

Null pointer (0) returned on EOF or error.

Notes

All information is contained in a static area so it must be copied if it is
to be saved.

September 30, 1989 GETRPCENT -2

GETRPCPORT (NS) GETRPCPORT (NS)

getrpcport
Get RPe port number

Syntax

int getrpcport(host, prognum, versnum, proto)
char *host;
int prognum, versnum, proto;

Description

getrpcport returns the port number for version versnum of the RPC
program prognum running on host and using protocol proto. It returns
o if it cannot contact the portmapper, or if prognum is not registered.
If prognum is registered but not with version versnum, it will return
that port number.

September 30, 1989 GETRPCPORT -1

KClT_CREATE (NS)

kelt create
Create kernel RPC client handles

Syntax

#include <sys/types.h>

kelt ereate(nfd, fds, trans, tsdu, pgm, vers)
int nfd;
int "'fds;
int trans;
int tsdu;
ulongpgm;
ulong vers;

Description

KClT_CREATE (NS)

kelt create is used to create client handles for kernel RPC clients to
use:- Currently, there are two kernel RPC clients: NFS and the lock
manager.

nfd is the number of file descriptors in the array pointed by fds. nfd
controls the number of client handles which will be created using
these file descriptors in conjunction with the rest of the arguments.
trans is used as "transport identifier". It is intended to be used to dif­
ferentiate between different transport and protocol implementations
running concurrently on the host. Values for trans have not been
defmed yet, so trans should be set to 1. tsdu is the maximum transport
service data unit that the transport can handle. pgm and vers are used
when initializing the new client handles. The RPC call header is
preserialized in the client handle for performance. pgm and vers are
part of the RPC call header. In addition, trans,pgm, and vers are used
internally to identify client handles for allocation.

See Also

nfsclnt(NADM)

September 30, 1989

MOUNT (NS)

mount
Mount a file system

Syntax

#include <sysltypes.h>
#include <syslmount.h>

int mount (spec, dir, mOag, fstyp,
char *spec, *dir;
int mOag, fstyp;
caddr_t dataptr;
int datalen;

Description

MOUNT (NS)

mount requests that a removable file system contained on the block
special file identified by spec be mounted on the directory identified
by dir. spec and dir are pointers to path names. /styp is the file sys­
tem type number. The sysfs(S) system call can be used to determine
the file system type number. If the MS_FSS flag bit of mflag is off,
the file system type will default to root file system type. If the bit is
on, then/styp is used to indicate the file system type. Additionally, if
the MS_DATA flag is on in mflag then dataptr and data/en are used
to pass mount parameters to the system. If MS_DATA is off, or if
either of dataptr and data/en is zero, it means that there is no addi­
tional data. In the normal case of a local mount, dataptr should be
NULL. When mounting an NFS file system, dataptr should point to a
structure that describes the NFS mount options.

Upon successful completion, references to the file dir will refer to the
root directory on the mounted file system.

The low-order bit of mflag is used to control write permission on the
mounted file system; if 1, writing is forbidden, otherwise writing is
permitted according to individual file accessibility.

mount may be invoked only by the super-user. It is intended for use
only by the mount(NADM) utility.

mount will fail if one or more of the following are true:

[EPERM] The effective user ID is not super-user.

[ENOENT] Any of the named files does not exist.

September 30, 1989 MOUNT-1

MOUNT (NS) MOUNT (NS)

[ENOTDIR] A component of a path prefix is not a directory.

[EREMOTE] spec is remote and can not be mounted.

[ENOLINK] path points to a remote machine and the link to that
machine is no longer active.

[EMULTrnOP] Components of path require hopping to multiple
remote machines.

[ENOTBLK] spec is not a block special device.

[ENXIO] The device associated with spec does not exist.

[ENOTDIR] dir is not a directory.

[EFAULT] spec or dir points outside the allocated address
space of the process.

[EBUSy] dir is currently mounted on, is someon~'s current
working directory, or is otherwise busy.

[EBUSy] The device associated with spec is currently
mounted.

[EBUSy] There are no more mount table entries.

[EROFS] spec is write protected and mflag requests writ~
permission.

[ENOSPC] The file system state in the super-block is not
FsOKAY and mflag requests write permission.

[EINVAL] The super block has a bad magic number or the
fstyp is invalid or mflag is not valid.

See Also

sysfs(S), fs(F), mount(NADM)

Diagnostics

Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

September 30. 1989 MOUNT-2

NFS_GETFH (NS)

nfs.-Qetfh
Get NFSfile handle

Syntax

#include <syslfslnfs.h>

nfs-Ketth(fdes, tbp)
intldes;
tbandle_t *tbp;

Description

NFS_GETFH(NS)

nls getfh returns a file handle for the file open as file descriptor Ides.
It is only used by the NFS mount daemon, and should not be used by
users.

See Also

mountd(NADM)

September 30,1989

NFSdaemons

Syntax

nfs svc(tep, addr, tsdu, but)
int1ep;
int addr;
int tsdu;
char *buf;

async_ daemonO
(PrevPg).ft B

Description

These two system calls allow kernel processes to have a user context.

n/s svc starts an NFS daemon listening on the transport endpoint tep.
This transport endpoint is typically the file descriptor returned from a
call to t_openO. Currently. the transport endpoint (in 4.2BSD termi­
nology) must be AF _!NET. and SOCK_DGRAM (protocol UDP/IP),
but this is completely dependent on the local network transport imple­
mentation. In addition, the transport endpoint should be bound to the
NFS internet port, 2049. addr is the maximum size of a remote
address that the transport can handle. but should be the address of a
buffer of size NFS MAXDATA (currently 8192 bytes) inside of the
user level process:- This buffer is used by the local file system
getdents (S) implementation. The system call will return only if the
process is killed.

async _daemon implements the NFS daemon that handles asynchro­
nous I/O for an NFS client. The system call never returns.

September 30, 1989

REX (NS) REX (NS)

rex
Remote execution protocol

Syntax

#include <rpcsvc/rex.h>

Description

This server will execute commands remotely. The working directory
and environment of the command can be specified. and the standard
input and output of the command can be arbitrarily redirected. An
option is provided for interactive I/O for programs that expect to be
running on terminals. Note that this service is only provided with the
TCP transport.

RPC Info

program number:
REXPROG

xdr routines:

int xdr rex start(xdrs, start);
XnR *xdrs;
struct rex_start *start;

int xdr rex result (xdrs, result);
XnR *xdrs;
struct rex result *result;

int xdr rex ttymode(xdrs, mode);
XnR *xdrs;
struct rex_ttymode *mode;

int xdr rex ttysize(xdrs, size);
XnR *xdrs;
struct ttysize *size;

September 30. 1989 REX-1

REX (NS)

procs:

REX (NS)

REXPROC_START
Takes rex_start structure, starts a command executing,
and returns a rex_result structure.

REXPROC_ WAIT
Takes no arguments, waits for a command to flnish
executing, and returns a rex_result structure.

REXPROC_MODES
Takes a rex_ttyrnode structure, and sends the tty modes.

REXPROC_ WINCH
Takes a ttysize structure, and sends window size
information.

versions:
REXVERS_ORlG

Original version

structures:

struct B_sgttyb {

char bsg_ispeed; /* input speed */
char bsg_ospeed; /* output speed */
char bsg_erase; /* erase character */
char bsg_kill; /* kill character */
short bsg_flags;

} ;

struct tchars
char t intrc; /* interrupt */
char t_quitc; /* quit */
char t - startc; /* start output */
char t _stopc; /* stop output */
char t_eofc; /* end-of-file */
char t_brkc; /* input delimiter

(like nl) */
};

struct ltchars
char t _suspc; /* stop process signal */
char t_dsuspc; /* delayed stop process

signal */
char t_rprntc; /* reprint line */
char t -flushc; /* flush output (toggles)
char t_werasc; /* word erase */
char t lnextc; /* literal next character -

} ;

September 30, 1989 REX-2

*/

*/

REX (NS) REX (NS)

4define REX_INTERACTIVE 1 1* Interactive mode *1
struct rex_start {
char
char
char
char
char
ushort
ushort
ushort
ulong

**rst_cmd; 1* list of command and args *1
rst_host; 1 working directory host name *1
rst_fsname; 1 directory file system name * /
rst_dirwithin; 1 directory within file system *1
**rst_env; 1* list of environment *1
rstyortO; 1* port for stdin *1
rstyortl; 1* port for stdin *1
rstyort2; 1* port for stdin *1
rst_flags; 1* options - see tdefines above *1

} ;

struct rex_result {
int
char
} ;

*rlt_message;

struct rex_ttymode {

1* integer status code
1* string message for humans

struct B_sgttyb basic; 1* Berkeley unix tty flags *1
struct tchars more; 1* interrupt, kill etc. *1
struct ltchars yetmore; 1* special Berkeley chars *1
ulong andmore; 1* and Berkeley modes *1
} ;

struct ttysize {
int tS_lines;
int ts_cols;
} ;

See Also

on(NC), rexd(NADM)

1* no. lines on terminal *1
1* no. columns on terminal *1

*1
*1

September 30,1989 REX-3

