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Preface 

This new edition of the Users' Guide describes Algol 68 in its most widely used form-the Algol 
68-R system for large ICL 1900 computers produced by the Computing and Software Research 
Division of the Royal Radar Establishment. The Guide reflects the experience gained in several 
years of teaching and practical use. 

In the first implementation of a language, particularly a language on the scale of Algol 68, small 
departures from the original definition* are inevitable. The revised report on Algol 68 is likely to 
reduce these differences by coming closer to Algol 68-R; it will also introduce new ones such as 
the use of OD at the end of a DO-clause. But these are relatively minor considerations. The 
growing popularity of Algol 68 is due largely to its versatility, and especially its data structuring 
capability, rather than to grammatical minutiae. 

The increasing power and complexity of computer software is reflected in the thickness and tech­
nicality of its documentation, so that for the occasional programmer the advances can be self­
defeating. With this in mind, every attempt has been made to keep the present Guide brief without 
departing too far from the use of plain English. However, we prefer to start from the very begin­
ning rather than use some other language such as Fortran, Algol 60 or Coral 66 as a starting point, 
as the best Algol 68 programmers are those who approach the language with a mind open to new 
possibilities. Brevity has been achieved by concentrating strictly on how to use the language, 
omitting such matters as library facilities for which separate documentation is available at user 
installations. The treatment of input and output has been much enlarged in this edition of the 
Guide, and now includes formatting. The presentation of the syntax rules in Appendix 3 has been 
further simplified, and we would particularly like to recommend their use for reference purposes. 

PMW, SGB 

April 1974 

* "Report on the Algorithmic Language ALGOL 68" by A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck and 
C.H. A. Koster, submitted by the ALGOL Working Group to the General Assembly of the International 
Federation for Information Processing. The report has been reprinted in Numerische Mathematik, volume 14, 
pp. 79-218 (1969). 
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1 

Introduction 

A program to print the sum of two and two, complete in every respect, is 

two and two 
BEGIN 

INT two = 2; 
print(two + two) 

END 
FINISH 

The part which does the actual calculation is 'two + two' and all the rest could be described as a 
formality. However, it is a mistake to dismiss formalities as mere overheads, for most of the 
challenge in large scale computing problems rests in the organization of the work rather than the 
arithmetic. When the arithmetic is difficult, the library of standard procedures can come to the 
rescue with proven methods, already programmed. But when the organization is difficult, the 
formal structure of the language is what counts. In the present Guide, we concentrate on this 
formal structure from the very outset, in chapters I and 2. The later chapters deal with specific 
topics, all of them necessary, but all subservient to the main concepts underlying the structure of 
a program. 

In this introductory chapter, it is necessary to concentrate largely on terminology, but in defining 
terms like modes, identifiers, declarations and clauses, the principles of program design already 
begin to emerge. The first principle is that every item of data, however small or large, must be 
classified. This is where the real strength of Algol 68 resides, and we therefore take it as the 
starting point. 

1.1 Modes 

Programs describe operations to be carried out on values, some of which will probably come from 
a file of data to be read by the program while it is running, while others-such as numerical con­
stants-will be written into the program itself. Values are classified according to type, known in 
Algol 68 as their mode. A selection of simple modes, with examples of actual values, is 

INT 
REAL 
BOOL 
CHAR 

as denoted 
in program 

12 
3.25 

FALSE 
"H" 

input as data 
to program 

12 
3.25 

F 
H 

an integer 
a real number 
a boolean value 
a character 
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A complete list is given in Appendix 1, along with the corresponding forms of denotation to be 
used within a program. 

More complicated objects than simple values require more complicated modes. It is a special 
feature of Algol 68 that the programmer can construct such modes for himself to describe the 
entities handled in the program. For example, the mode for a data-structure begins with the word 
STRUCT and goes on to include the modes of all the constituent parts of the structure. Arrays 
also have their own modes. Procedures have modes which start with the word PROC and include 
a full specification of the modes of parameters and result. The mode of a variable begins with the 
word REF and continues with further mode information to distinguish one type of variable 
from another. The scheme is so general that it becomes misleading to use the word 'value' to des­
cribe an entity which can be handled in Algol 68. We have chosen the word object to mean a 
simple value, variable, structure, array or procedure. Every object has a mode, and every mode 
describes a class of object. 

1.2 Identifiers and declarations 

The only values which can be written as denotations (12, "H", etc) are those which are known 
when the program is written. Other values, and objects such as variables which do not have deno­
tations, must be identified symbolically. Identifiers are constructed arbitrarily by the programmer 
as any sequence of lower-case letters and digits, starting with a letter. Spaces can be included, but 
are ignored. Typical identifiers are x, birthday, and algol 68r. (By contrast, modes are always 
written in upper case, so that INT and int would not be confused.) No identifier can be used until 
it has been introduced by a declaration, either in the user's program or in the system library avail­
able to it. The declaration defines the object identified and specifies its mode. 

The simplest declarations are those which cause an identifier to stand for an ordinary value with 
a mode like REAL or INT. For example, 

REAL h = 0.1 * random 

introduces the identifier h, with mode REAL, to stand for 0.1 times 'random', which is the iden­
tifier for a library procedure which serves up a random number between 0 and 1. It is important to 
understand that when the program is running, the declaration is obeyed when it is encountered. In 
this instance, a random number is generated, multiplied by 0.1, and the identifier his defined to be 
synonymous with the REAL result obtained. Nothing we do with h afterwards can alter the 
object it stands for. So, in this case, h can be used only as a numerical constant. 

Other examples of declarations are 

REAL grams in 1 ounce = 28.35 ; 
REAL four pi = 4.0 * pi ; 
CHAR comma = "," 

These are cases where we know the values we want while we are writing the program, but it may 
be helpful to use identifiers all the same, so as to avoid writing the actual values every time they 
are used. 
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1.3 Variables and assignment 

Long calculations are always carried out in stages, starting from initial values and proceeding 
through intermediate results until final answers are obtained. We need identifiers for intermediate 
results, and we need a ready method of altering the values to which such identifiers refer. The 
declarations shown in the previous section are inadequate, because objects of modes such as 
REAL or INT are constants which cannot change. In fact, no objects can change; they can only 
be created or destroyed. This leads to the conundrum, 'what type of object is it, which remains 
constant but can refer to one value at one time and another at another?' The answer is a working 
space in the store. Without itself changing, it can hold different values at different times. In high­
level languages, working spaces are given identifiers and are described as variables. A con­
sciousness of the fact that variables are receptacles is even more important in Algol 68 than in 
other languages, as variables are objects in their own right and have their own modes. For example, 
an integer variable has mode REF INT and is said to 'refer' to the INT object held in it. (The word 
refer is always used in this technical sense.) We must now consider how references are created and 
their identifiers declared. Just as we can write expressions like 4.0 * pi which deliver numerical 
values, there are expressions which generate space in store. Space for a REAL, for example, is 
generated by the expression 

LOCREAL 

and similarly for other modes. The word LOC means 'local' and implies that the space is created 
for local use in the portion of the program we are in at the time (see 2.3). To declare x as a real 
variable, it should now be evident that we can write 

REF REAL x = LOC REAL 

At any time after this declaration, a real value can be assigned to x by writing 

x : = 1.5 

or whatever expression we like on the right-hand side. The assignment can be read as 'x receives 
1.5' or 'x now refers to 1.5'. When a new assignment is made, the old value, 1.5, is destroyed. 

The object expressed by the right-hand side of an assignment clause must be of the correct mode, 
which is determined by the mode of the left-hand side. There must be one less REF for the value 
on the right, ie a REF REAL can only receive a REAL, and similarly for all other modes. For 
example, a REF REF REAL, which is a receptacle for a reference, can only receive a REF REAL. 

1.4 Unitary and serial clauses 

The body of a program is composed of steps which are either declarations (chapter 3) or unitary 
clauses (chapter 4). An assignment is one type of unitary clause; other particular examples are 

read(x) 

where x is any variable, and 

print(formula) 

where formula is any expression which delivers a printable result. 
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The various steps in a program are separated by semi-colons, and the whole sequence is known as 
a serial clause. A complete program is a serial clause enclosed in brackets (round brackets or 
BEGIN and END), with an identifier at the top for a title and the word FINISH atthe very end, 
as shown in Example 1. 

EXAMPLE I 

.title· 
BEGIN 

REFREALx 
REFREALy 
read(x); 
read(y) ; 
print(x +y) 

END 
FINISH 

LOCREAL; 
LOCREAL; 

Notice that there is no semi-colon after the print clause, because there is no clause following it 
needing to be separated. A semi-colon just before the word END would cause a failure to compile. 

The concept of a serial clause as a sequence of steps is extremely important because it applies not 
only to complete programs but to parts of programs. Chapter 2 will show how a serial clause can 
be nested inside a single main step of the program, and how it defines the life-times of any identi­
fiers declared within it. A serial clause need not contain any declarations, but if it does, it must 
start with a declaration and end with a unitary clause. The serial clause which forms the main body 
of a program must always contain at least one declaration, so the first BEGIN must always be 
followed by a declaration. However, it is not necessary to group all declarations together. 

1.5 Notation 

The full character set for Algol 68-R includes upper and lower case alphabets and various other 
symbols. In this section, we take a brief look at how these are used. 

Upper case is used for all the fixed language words such as BEGIN, END, IF, THEN and ELSE. 
These words shape the grammatical structure of a program and their meanings cannot be altered. 
Upper case is also used for modes and some operators, while lower case is reserved for words 
made up by the user to suit his own program. For the most part, t..1iese are identifiers introduced 
by declarations, but lower case is also used for labels and field selectors in STRUCT modes. 

If the full character set is not available, a restricted set with only one alphabet can be used. The 
true upper-case words must then be distinguished by enclosure within primes, 

full set REAL a ; 
restricted set 'REAL' A ; 

The full set is very much easier to read, and is used throughout this Guide. 

Various symbols are used for bracketing; as will be seen from the list, the same symbols are 
sometimes used for opening and closing. 
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( ... ) 

[ ... ] 

" II 

{ 

Ordinary round brackets are used in formulae and around pieces of program. An 
alternative pair is BEGIN ... END, customarily used for vertical grouping, as in 
Example L 

Always associated with array indexing. 

In addition to their use for contending with a restricted character set, primes can be 
used to enclose various operator symbols so as to increase the effective number of 
combinations available. For example '/' is different from/ (Appendix 2). 

Used for character denotations and around sequences of characters. 

... } Program comment, enclosed in this way, can be inserted in any reasonable place in a 
program. Alternatives to curly brackets are 

COMMENT ... COMMENT 
c ... c 
Note that curly brackets are also used in this Guide for a purpose outside the language' 
indicating optional elements of the grammar. 

$ ... $ Used as the opening and closing symbols for format denotations. 

The principal punctuation marks are the semi-colon and the comma. Although they have dif­
ferent meanings, both are used as separators, not terminators. For example, a bracketed list of 
items is (a, b, c) not (a, b, c,). The same principle applies to the semi-colons in a serial clause. 

The only strict rule of layout is that there must be no interruption of an upper case language word 
by spaces or new lines, nor must two language words be run together. Nevertheless, layout is 
supremely important for program legibility. Trouble taken over indenting and alignment is 
amply repaid in the avoidance of errors. 

1.6 Glossary of terms 

Declaration 

Identifier 

Mode 

Object 

Program 

Serial clause 

Step 

Unitary clause 

A step which introduces an identifier to stand for a given object 

Sequence of lower-case letters and digits, starting with a letter 

The class of an object, eg INT for an integer, REF INT for an integer 
variable 

An entity which has a mode 

A serial clause, enclosed in brackets, with a title at the top and FINISH 
at the bottom. The serial clause must start with a declaration and end with a 
unitary clause 

A sequence of unitary clauses, or a mixed sequence of declarations and 
unitary clauses starting with a declaration and ending with a unitary clause 

A declaration or a unitary clause 

Describes some action to be taken 
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2 

Structure of a Program 

2.1 Sequencing and nesting 

In low-level language, each step is a rudimentary operation and the program designer must neces­
sarily adopt a highly sequential attitude of mind-do this, now this, now this. In Algol 68, the 
steps can be less rudimentary, and any idea that each step will occupy one single line of text should 
be discarded. Each step is separated from the next by a semi-colon. The semi-colon is an indication 
that what has gone before must be completed before the next step is taken. It has nothing whatever 
to do with new lines or cards. 

Without some kind of structure beyond simple sequencing, a long program may be difficult to 
write, for it is easy to miss the wood for the trees. Structure can be built into an Algol program by 
thinking first what each major step ought to do. If it is a complicated step, sequences of smaller 
steps can be incorporated inside it, and even smaller steps inside those, to whatever extent may be 
necessary. 

The grammar of the language decides where such nesting can occur. For example, one type of 
construction is the 'conditional' 

IF some condition is true 
THEN carry out one sequence of steps 
ELSE carry out another sequence of steps 
FI 

This provides us with the opportunity to obey a serial clause within a single step of the program. 
In due course, we shall see that there are several other ways in which this can be done. 

To illustrate program structure we now take a definite problem and discuss the ways in which it 
might be programmed. The problem is this: 

An examination result A, B +, B- or C is to be read by the program, and converted into an 
integer I, 2, 3 or 4 respectively. The result is to be left in a variable. Errors in the data need 
not be detected. 

The first solution is shown in Example 2, using conditionals of the type 

IF a condition is true 
THEN carry out one or more steps 
FI 

This construction does nothing at all if the condition is false. Example 2 includes comment to 
show which are the main steps at the outermost level, and is written as though it were part of a 
larger program, that is to say without any 'top and tail'. 
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EXAMPLE2 

{declaration} 
{declaration} 
{unitary clause} 
{unitary clause} 

{unitary clause} 

{unitary clause} 

REF INT class = LOC INT {creates space to hold the integer result} ; 
REF CHAR mark = LOC CHAR ; 
read(mark) ; 
IF mark = "A" 
THEN class : = 1 
FI; 
IFmark = "B" 
THEN 

FI; 

class : = 2{provisionally} ; 
read(mark) ; 
IF mark = "-" 
THEN class : = 3 
FI 

IF mark = "C" 
THEN class : = 4 
FI 

The important thing to see is that the conditionals count as single steps, even though there may be 
sequences inside them. After testing for B, for instance, the action to be taken is written as a 
serial clause made up of three separate unitary clauses, the third of which is itself a conditional. 

In this problem, there is really no need to consider the three cases A, Band C separately. By using 
conditionals with an ELSE part the last three steps can be rolled into one, as shown at Example 3. 

EXAMPLE3 

{unitary clause} IF mark = "A" 
THEN class : = 1 
ELSE IF mark = "B" 

FI 

THEN read(mark) ; 
IF mark = "+" 
THEN class : = 2 
ELSE class : = 3 
FI 

ELSE class : = 4 
FI 

The indentations help the eye to pick up the nested structure, and some such convention should 
always be observed when preparing Algol text. 

2.2 Results delivered by unitary and serial clauses 

Most problems have two closely interwoven aspects, arithmetical calculation and data handling. 
The example discussed in 2.1 contains no arithmetical element; it is merely a transformation of 
the way an examination result is classified. To perform a calculation, and get a result, we write an 
expression such as a + b + c or x * y * z. (Asterisk is the symbol for multiplication.) Details of 
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how expressions are written are given in chapter 4. Here we are concerned with where they fit into 
the scheme of things. 

An expression is a type of unitary clause which delivers a result, and from a purely grammatical 
point of view it can be written wherever a unitary clause is allowed. For example, the grammar 
rule for assignment to a variable (x, say) is 

x : = unitary clause 

and this is where expressions in practical programs most often appear. Thus, 

i := i + 1 

adds I to the integer held in the variable i. In Example 3, the simple assignment 

class := 3 

does actually contain a unitary clause, ihe rather simple expression 3. By exploiting the idea that 
the right-hand side of an assignment can be any unitary clause which delivers a result, this example 
can be much improved. An experienced programmer would not write four separate assignments, 
but would say "I have to obtain a result for assignment to 'class'. Let me think of a unitary clause 

. which will deliver the required num her under a11 conditions." Example 4 is the outcome-shorter 
and clearer. 

EXAMPLE4 

class : = IF mark = "A" THEN I 
ELSE IF mark = "B 11 

THEN read(mark) ; 

FI 

IF mark = 11 +" THEN 2 ELSE 3 FI 
ELSE4 
Fl 

There is another new point in this example, the concept that a serial clause can deliver a result. 
The clause concerned is 

read(mark) ; IF mark = "+ 11 THEN 2 ELSE 3 FI 

There are two steps here, a preliminary step and an expression. The rule is that the result of a 
serial clause is the result delivered by the last step obeyed in it. Serial clauses delivering results are 
useful whenever we need to take a few preliminary steps before we are ready to write the unitary 
clause which actually does the calculation. 

Although a serial clause can always appear inside a conditional, as shown in Example 4, there are 
some places where the grammar of the language debars the use of a serial clause. For example, the 
clause on the right-hand side of an assignment must be unitary (for otherwise the first semi-colon 
in the serial clause would look like the end of the assignment as a whole). This difficulty is easily 
overcome. By enclosing a serial clause in brackets, it is made unitary. Ordinary round brackets 
may be used, or BEGIN and END if preferred. An assignment of the form 

x : = BEGIN . .. ; .. . ; ... END 
I I 

serial clause 

therefore satisfies the grammar and does what we may require. 
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2.3 Scopes 

A program is made easier to follow if the identifiers are chosen as meaningful names for the ob­
jects they represent in the problem. Very often it is found that a particular meaning applies to only 
one small part of the problem, and we would like to introduce an identifier limited to this part 
only. This is exactly what happens when a declaration is placed in a nested serial clause. The 
identifier is then valid for the remainder of that serial clause only, including smaller clauses nested 
within it, as illustrated below. In the diagram, brackets are used to indicate nested serial clauses, 
which may in fact be delimited by brackets or by words like THEN and ELSE . 

... ( ... x declared ; ... (y declared; ...... ) ... ) .. . 

I scope of) I 
scope ofx 

For descriptive purposes, the words local and non-local are used to distinguish identifiers which 
are newly declared from those which have been declared 'outside' . 

. .. ( ... x declared ; ... (y declared ; ...... ) ... ) .. . 
I I 
y local, x non-local 

Identifiers declared at the outermost level of a program can be used throughout the whole pro­
gram and are described as global. 

When a declaration creates a new variable, as in 

REF REAL x = LOC REAL 

the question of scope arises in two ways. The identifier passes out of scope at the end of the serial 
clause, but what about the corresponding storage space? In this instance, as we might have an­
ticipated, it has the same scope as the identifier x. However, we shall see later on that a local 
generator can be used on its own, and its scope is then the same as that of the mostlocalidentifier 
which has been declared, no matter what it might happen to be. 

To illustrate scoping, let us now modify Example 4. In the solution already given, the variable 
'mark' is used for two different purposes. It is first used as a receptacle for A, B or C, and if the 
mark was B it is used again for the next character (+or-). If we wish to preserve A, B or C in 
mark, we would need a separate variable for the sign, and this can be brought into existence tem­
porarily, as shown in Example 5. 

EXAMPLES 

class : = IF mark = "A" THEN 1 
ELSE IF mark = "B" 

FI 

THEN REF CHAR sign = LOC CHAR ; 
read(sign) ; 
IF sign = "+" THEN 2 ELSE 3 FI 
{the variable 'sign' now disappears} 

ELSE4 
FI 
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By an oversight, or perhaps deliberately, an identifier may be declared locally when the same 
identifier had already been declared non-locally. In such cases, the non-local object continues to 
exist but becomes temporarily inaccessible because the identifier is always taken to have its local 
meaning. 

local x 
I I . 

( ... x declared; ... ( ... x declared ; ......... ) ; ...... ) 

1--non-localx inaccessible--~ 
As an example of this type of clash, consider the effect obtained by 

BEGIN INT k = 1 ; 

END 

BEGININTk = 2; 

END; 
print(k) 

print(k) 

This program prints 2, then 1. 

It is an error to declare the same identifier twice over at the same level, even though the modes 
may be quite different. 

2.4 labelling 

A label is a place marker, and has the same form as an identifier. It does not stand for an object, 
andit does not have to be declared. It is simply written in front of a unitary clause, with a colon 
for separation, like 'part 1' and 'part 2' below. 

BEGIN 

part 1: 

part 2: 
END 

no declarations allowed after 
the first label, except within 
their own serial clauses 

Declarations can never be labelled, and no unitary clause can be labelled if there are declarations 
at the same level coming later in the serial clause. 

The purpose of labelling is to make jumps possible. The unitary clause 

GOTO label 

disturbs the natural sequence in which the steps of a program are obeyed, for the next step obeyed 
after the GOTO is the one marked with the label specified. The jump may be either forwards or 
backwards in the same serial clause, 

( ) 
t t 

but must not be used to skip past declarations. In the above diagram, there can be no declarations 
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after the first arrow-head, which represents the position of a label. It is also permitted to jump to 
a label set at a place outside the serial clause containing the GOTO, but never to a label at an inner 
level. 

right ( ( ) ) 

t ~-t 

wrong ( ( ) ) 

'--~t t~-~ 
The only grammatical contexts in which labels can occur are the places where they are set, and 
after the word GOTO. One may, of course, go to the same label from any number of different 
GOTO clauses. It does not matter if the label happens to be the same as a declared identifier, for 
the two are kept quite distinct. 

An abundance of jumps is usually a sign of a poorly structured program, and obscures an under­
standing of how the program works. It is usually found that GOTO can be avoided by using 
suitably nested conditionals (4.3) or loops (4.4). The solution to any problem may at first seem to 
present itself as a plain sequence of tiny steps, which we may then be tempted to modify by in­
cluding jumps from one place to another. It is nearly always better to proceed by rethinking the 
problem in terms of fewer, larger steps. It may make little difference to run-time efficiency, but it 
encourages the 'top-down' attitude of mind so essential to mastery of really complex problems. 
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3 

Declarations 

3.1 Identity declarations 

A declaration identifies an object. All the declarations in the first two chapters have been written 
in a form which can be described grammatically as 

mode identifier unitary clause 

For example, the declaration at the beginning of chapter 1 was 

INTtwo = 2 

and the correspondence with the grammatical rule should be clear. The mode is INT, the identifier 
is 'two' and the unitary clause is 2. Similarly, in the declaration 

REF CHAR sign = LOC CHAR 

the mode is REF CHAR, the identifier is 'sign' and the unitary clause is the local generator LOC 
CHAR. Declarations written according to this grammar rule are known as identity declarations. 
Every declaration for a new identifier can be written as an identity declaration, but there is a 
specially shortened form of declaration which can be used for variables, described below. 

3.2 Short declaration of variables 

To avoid repeating the mode information when declaring a variable, a shortened type of declara­
tion is permitted. This is formed by omitting both of the portions shown below in curly brackets: 

{REF} mode identifier { = LOC mode} 

The declaration of 'sign' shown in the introductory paragraph can therefore be shortened to 

CHAR sign; 

The semi-colon is not part of the declaration, but is included here simply to emphasize that there 
is no more to the declaration. A similar discretion is used throughout the Guide. 

The short declaration for a variable will be described as a variable declaration. Convenient as it 
is, it unfortunately results in disguising the true mode of the identifier, for when we see 

REALx; 

we must consciously remember that the mode of xis REF REAL, not REAL. This point can hardly 
be emphasized too strongly. The abbreviated form is justified by history, as it has been the stan­
dard way of declaring variables since the days of Algol 60. 
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3.3 Initial assignment to a variable 

Until an assignment has been made, the value held in a variable is indeterminate and should not 
be used. An assignment is often the very first step to be taken after a variable declaration, and the 
following extra abbreviation may then be used: 

full form 

REALx; 
x := 1.0 

abbreviated form 

REALx := 1.0 

This lessens the danger of forgetting the true mode of the identifier; the assignment symbol 
serves to remind us that the left-hand side must be a reference, for one cannot assign to a REAL. 
Compare these: 

REAL pi = 3.142; 
REAL stress : = 13.8 ; 

The first is an identity; therefore the mode of pi is REAL. The second declares and initializes a 
variable; therefore the mode of 'stress' is REF REAL. 

3.4 Compounded declarations 

If several identifiers are to be declared with the same mode, another abbreviation is possible. 

separately 

REALx; 
REALy; 

INTa :== 0; 
INTb:=l; 

INTs = a+b; 
INTd = a-b; 

together 

REALx, y; 

INT a : = 0, b : = 1 ; 

INT s = a + b, d = a - b ; 

Identities must not be mixed with variable declarations (whether initialized or not), but com­
pounded variable declarations need not all be initialized: 

INTc; INT c, e : = 6 ; 
INT e := 6; 

INTf; no combination possible 
INT k = 365; 

As an exercise, the reader is advised to write down the modes of all the identifiers declared in this 
section before looking at the answers below: 

x,y 
a, b, c, e, f 
s, d, k 

REF REAL 
REF INT 
INT 
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3.5 A note on right-hand sides 

The right-hand side of an identity declaration, like that of an initialized variable declaration, is a 
unitary clause capable of delivering a result of the required mode. When we compare the two 
kinds of declaration: 

REAL t = unitary clause delivering a REAL 
REAL z : = unitary clause delivering a REAL 

we see that the requirements for the right-hand sides are exactly the same even though the modes 
oft and z are different. It is useful to remember that the mode of object required in both cases is 
the mode actually written on the left. 
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4 

Unitary Clauses 

In this chapter, all the main types of unitary clause are described, starting with expressions (4.1) 
and assignments (4.2). Apart from conditionals (4.3), the remaining simple type of unitary clause 
is the loop (4.4), which delivers no result. Jumps, which can also be treated as unitary clauses, 
have already been discussed in chapter 2. 

4.1 Expressions 

The three types of expression are primaries (ie single terms),formulae consisting of primaries and 
operators, and generators, which create references. Local generators have been briefly described 
in 1.3 and 2.3, whilst global generators are treated in a later chapter. A generator simply creates a 
variable without attaching an identifier to it, and the important point is that it creates a new 
reference every time it is obeyed. 

4.1.1 Primaries and the use of brackets 

A primary is very often an identifier symbolizing an object, or an object expressed as a denotation. 
However, there are several other types of primary. In the list below, the primaries in italics are to 
be described in later chapters. 

list of primaries 

denotation 
identifier 
procedure call 
array element or slice 
structure field 
conditional 
bracketed serial clause 

example 

1.35 & 6 
x 
cos(x) 
a [i] 
age OF man 
IF u THEN a ELSE b FI 
(read(i) ; i + 3) 

We have now reached the 'bottom of the grammar', for the primary is the smallest grammatical 
class in the language. It is the simplest type of expression and can be used by itself in any context 
where an expression is specified. Similarly, an expression is one type of unitary clause, and a uni­
tary clause with no other steps before or after it can be classed as a one-step serial clause. It 
follows that a primary can always stand by itself in a context which demands one of the following: 

primary, expression, unitary clause, serial clause 

Small units can always play the part of larger units. 
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Large units can also be made to serve as small units, for this is the whole purpose of brackets. 
(A collection of knives and forks tied together with string becomes one small unit in an auction 
sale because of the string.) We have seen in chapter 2 that a serial clause becomes unitary if placed 
in brackets. In reality, the brackets are more powerful, because every one of the above grammatical 
items, including the serial clause, becomes a primary when put in brackets. 

4.1.2 Formulae 

A formula is a mixture of primaries, and operators such as plus ( + ), minus ( - ), times ( *) and 
divide(/). For example, i + 2 is a formula with i and 2 as the operands of +. Operators act on 
primaries or on the results of other operations, as in the formula x + y * z where the operands of 
+ are x and y * z. The y is taken with the multiplication operator because multiplication binds 
more tightly than addition, as in ordinary mathematics. To overcome this natural binding, 
brackets must be used. To obtain the product of x + y and z, for instance, we must write 

(x + y) * z 

By making x + y into a primary, the brackets force the required grouping of terms. 

Operators which take two operands are known as dyadic, and all such operators have a priority 
number which governs the strength of binding. The larger the priority number, the tighter is the 
binding. Some examples are: 

operators 

+and -
*and I 
t (raised to the power) 

priority 

6 
7 
8 

Dyadic operations of equal priority are performed in their written order, left to right. Thus a/b * c 
means ( ajb) * c. 

Some operators take only a single operand; they are known as monadic and bind to their operand 
more tightly than any dyadic operator. This rule usually accords with understood mathematical 
usage, but may occasionally trip the unwary scientific programmer. For example, 

-2t2 means (-2) t 2 

giving the perhaps unexpected result + 4. Monadic operators can be applied in. succession when 
required, so that 

- RO"UNDABSx 

takes the absolute value (modulus) of x, rounds it to the nearest integer and then makes it negative. 
Some operators, of which + and - are examples, can be used either dyadically or monadically, 
and the tightness of binding is governed accordingly. 

Beginners are apt to confuse the uses oft and &. The vertical arrow is an operator, and therefore 

10.0 t 6 

is a formula which will be evaluated at run-time to give the result one million. However, it is less 
extravagant to write such a constant as the primary 

1.0 & 6 
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which is the denotation for 1.0 times ten to the power 6. This is of course a million, but there is 
no run-time calculation. The ampersand is as much a part of the denotation as the decimal point, 
and cannot be used in any other context (son & 6 is wrong). 

A complete list of Algol 68-R operators is given in Appendix 2, where it will be noticed that 
operators taking numerical operands and delivering numerical results are in the minority. A 
formula need not give a numerical result. For instance, the right-hand side of the identity 
declaration 

BOOL internal = a < x AND x < b 

is a boolean formula, in which< binds more tightly than AND. If x lies between a and b, the value 
of 'internal' would be TRUE. 

For economy in the use of symbols, the identity sign used in declarations is shared with the equals 
operator, and a moment's recollection of grammar may be necessary to interpret the declaration 

BOOL equal = n = m 

as meaning "define the identifier 'equal' as an object of mode BOOL, and make its value be that 
of the boolean formula n = m, ie TRUE if n and m are equal, otherwise FALSE". The equals 
operator can test for equality of integers but not reals. In Algol 68-R there is no way of finding out 
whether two real numbers are precisely equal, for such equality is likely to be purely accidental 
bearing in mind the problems of representing real values in a finite machine. 

4.1.3 Modes of operands and results of operations 

The modes of operands are important because they determine what an operator will actually do. 
For example, ABS applied to a REAL delivers its modulus, but applied to a CHAR it delivers an 
integer in the range 0 to 63. We must always take care to see that the operator we think we need 
is actually defined for the given operands-otherwise the program will fail to compile. This 
would happen if, for instance, we applied the operator ARG to a REAL, though not if we applied 
it to a COMPLEX. 

Another item of mode information which can be important is that of the result of an operation. 
Unless we are aware of this mode, we cannot be sure that the result will work as the operand of 
another operator. For example, the boolean formula a> b > c is wrong, because a> b delivers 
a BOOL and the operator > is undefined for a boolean operand. Even when no error occurs, an 
unexpected result can be obtained. Users have been surprised that the formula 

2 t -2 

gives the answer 0, for in mathematics 2 to the power -2 is a quarter. But Appendix 2 points out 
that an INT raised to the power of an INT gives an INT result, and the nearest INT to a quarter 
is 0. 

It is not always possible, nor even desirable, that we should try to present an operator with 
operands of exactly the modes it asks for. It is allowed that operands should be references to ob­
jects of the correct modes. Suppose that n is an integer variable, mode REF INT, and consider 
what happens when we write the formula n + 2. Appendix 2 says that + can be used between 
INT, REAL or COMPLEX objects in any combination, but says nothing about REF INT. The 
operator will then automatically dereference the variable n; in other words it will take its first 
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operand to be the INT to which n refers. This automatic mode-change is known as a coercion, 
and it only takes place when demanded by the context. The only forms of coercion applied to 
operands are dereferencing, when necessary, and 'deproceduring' which is described in chapter 9. 

The list of standard operators (Appendix 2, Arithmetical assignments) includes PLUS, MINUS, 
TIMES and DIV. The main purpose of these is to abbreviate unitary clauses like 

x : = x + 1.0 

which can be expressed simply (and efficiently) as 

x PLUS 1.0 

The action of PLUS is very different from that of +. Its priority is different and it requires a 
reference mode for its first operand. Assuming that x in the above example has mode REF 
REAL, no coercion is applied to x. 

4.2 Assignments 

The purpose of an assignment is to store an object in a variable, where it will remain until a fur­
ther assignment is made or the variable goes out of scope. The mode of the variable determines 
the kind of object it can hold, and no other kind will do. A variable with mode REF REAL can 
only hold a REAL value, and similarly for all other modes. The grammar for assignment is 

expression : = unitary clause 

Nearly always, the expression we use on the left is simply a primary, though we shall encounter 
more general cases in due course. In any event, the expression must deliver a reference. A more 
important matter is to ensure that the right-hand side delivers an object of the correct mode. The 
mode required is the mode of the left-hand side, less one REF, and various coercions are applied, 
if necessary. The full rules of coercion can be quite complicated, and a later chapter deals with the 
subject. The most important forms applied to the right-hand side of an assignment are de­
referencing and widening. Dereferencing has already been met (4.1.3, operands in formulae), but 
widening is new. 

A simple example shows both coercions: 

INT i := 4; 
REALx; 
x := 1 

The mode of x is REF REAL, and the only object x can receive is a REAL. But i has mode REF 
INT which is unsuitable. It is therefore dereferenced. The mode is now INT, which is still unsuit­
able, so it is 'widened' to REAL, which converts the integer value 4 to the real value 4.0. The as­
signment can now take place. REAL is a wider class of object than INT, and similarly COMPLEX 
is wider than REAL. Other forms of widening are listed in 9 .1.3. 

It is important to know what coercions cannot be performed. For example, there is no such co­
ercion as 'narrowing'. A real cannot be converted to an integer other than by using an operator 
such as ROUND, which delivers the integer nearest to its real operand: 

REALx := 3.8; INTi := ROUNDx 
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In the second assignment, the operator ROUND dereferences x and delivers the integer 4, suit­
able for assignment without further coercion. The following is wrong 

i := 0.0 

because 0.0 is a real denotation, and REAL cannot be coerced to INT. 

The left-hand side of an assignment need not be a primary. It can be an expression which delivers 
a variable, such as 

IF random> 0.5 THEN x ELSE y FI : = 1.0 

It is assumed here that both x and y are real variables. They are not dereferenced, for dereferencing 
never occurs on the left-hand side of an assignment. 

4.2.1 Result of an assignment clause 

When an assignment has taken place, the left-hand side variable is delivered as the result of the 
clause. A few examples will show how this fact can be used. The simplest to understand, as no 
coercions are entailed, is 

REALx; 
REF REAL xx; 
xx : = x : = 1.0 

I I 
unitary clause 

As might be guessed, this assigns 1.0 to x, and x to xx. The assignment x : = 1.0 is the unitary clause 
which acts as the right-hand side for the assignment to xx (see grammar rule at beginning of sec­
tion 4.2). Notice that the effect of the grammar is to make multiple assignments work from right 
to left. The variable xx is twice removed from 1.0; it refers to x, which in turn refers to 1.0. 

A similar situation is shown in 

REFREALxx; 
xx := LOCREAL := 1.0 

where the LOC REAL, in which 1.0 has been placed, is assigned to xx. The relation between xx 
and 1.0 is exactly the same as in the previous example; xx refers to an object (which this time has 
no identifier) which in turn refers to 1.0. 

Another example in which no coercions are needed is 

REF REAL x = LOC REAL : = 0.0 

I I 
unitary clause 

which satisfies the grammar rule for an identity declaration (see first display in 3.1 ). This generates 
a working space, puts 0.0 into it, and then attaches the identifier x to the working space or variable. 
The example is simply the unabbreviated form of the initialized variable declaration 

REALx := 0.0 

Finally, we give overleaf an example in which coercion does take place. 

19 



REALx,y; 
x := y := 3.6 

This is the commonest type of multiple assignment, used for assigning the same object to two 
different variables. It is a good idea to know how it works! First 3.6 is assigned toy, and y is 
delivered. Then y is dereferenced to make it suitable for assignment to x, which gives 3.6. This is 
now assigned to x, and finally the clause as a whole delivers x as its result. 

The result of a clause may not always be used. It is most often an assignment clause in which this 
happens, as we may have no further immediate use for the variable. When we write 

.... ' 
x := 1.4; 
y := 1.6 

the result of the first assignment is x, but after the semi-colon x is no longer 'in hand'. Failure to 
use the result of the clause does no harm, for x itself has not been destroyed. 

4.3 Conditionals 

This section deals with two distinct forms of conditional, the IF construction and the CASE 
construction. The first decides between two courses of action, depending on whether a boolean 
value is TRUE or FALSE. The second decides between any number of courses, according to the 
value of an integer. 

4.3.1 The IF construction 

The grammar rule for the use of IF is 

IF serial clause THEN serial clause {ELSE serial clause} FI 

Curly brackets denote a part which can be omitted. When the IF construction is used as a pri­
mary in an expression, a result must be delivered in both cases, so the ELSE part must then be 
present, but when the conditional stands by itself as a step in a serial clause, the ELSE part is 
optional. Example 2 on page 7 illustrates this. 

The clause between IF and THEN must deliver a boolean result. For example, 

IF read(x) ; x > 1.0 OR x < 0.0 THEN etc 

shows a serial clause in which the Jast step is a boolean formula. The fact that boolean formulae 
usually occur in conditionals tends to make one lose sight of other possibilities. Suppose, for 
example, that we wish to assign TRUE or FALSE to a boolean variable b, according to whether 
i is equal to j or not. It is tempting at first to write 

b : = IF i = j THEN TRUE ELSE FALSE FI 

But this is only a roundabout way of saying 

b :'."' i = j 

A not uncommon slip is to translate directly from English and write (mistakenly) 

IF i = 2 OR 3 THEN etc 

20 



To see what is wrong, remember that if the first operand of OR has mode BOOL, so must the 
second. 

One often finds it necessary to nest conditionals within conditionals, particularly between ELSE 
and FI, as happened in Examples 4 and 5 in chapter 2. An abbreviation for ELSE IF ... FI Fl 
is ELSF .. Fl, as shown schematically below. 

in full IF u THEN a ELSE 
IF v THEN b ELSE 
IF w THEN c ELSE d FI FI FI 

abbreviated IF u THEN a ELSF 
vTHENbELSF 
w THEN c ELSE d 

FI 

For each ELSE IF elided into ELSF, one closing Fl is omitted. 

There is an extremely concise contracted notation for conditionals, especially useful in formulae 
where .IF, THEN, ELSE and FI seem disproportionately clumsy. 

full contracted 

IF ... THEN ... FI ( ... I ... ) 
IF ... THEN ... ELSE ... FI ( ... I ... I ... ) 
ELSF I: 

The expression on the right of the assignment to 'class' in Example 4 of 2.2 may now be written 
on one line: 

(mark = "A"! I I: mark = "B"!read(mark) ; (mark = "+ "1213)14) 

It is left to the reader to decide whether this is carrying things too far. 

4.3.2 The CASE construction and SKIP 

The grammar for using the CASE construction is 

CASE serial clause IN 
serial clause, serial clause, .. ., serial clause 
{OUT serial clause} ESAC 

where the curly brackets indicate parts which can optionally be omitted. When serial rather than 
unitary clauses are used after IN, care should be taken with the layout of the program, as in this 
context the commas are stronger separators than semi-colons. Alternatively any serial clauses 
may be placed in brackets, for this is always an option. 

The clause after the word CASE must deliver an integer. This integer selects which of the clauses 
in the list after IN is to be obeyed (1 for the first, 2 for the second etc). If an OUT part is included, 
its clause is obeyed when the selecting integer is out of bounds, ie less than 1 or greater than the 
number of clauses between IN and OUT. If no OUT part is included, the program will fault when 
the selecting integer is out of bounds. 

The CASE construction can be used as a primary or as a unitary clause standing on its own. As 
an example of the former, 
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CASE n IN JI, IF leap year THEN 29 ELSE 28 Fl, 
31, 30, 31, 30, 31, 31, 30, 31, 30, 31 

ESAC 

delivers the number of days in the nth month. When the CASE construction is used for listing 
courses of action (such as jumps or procedure calls), it may happen that some of the cases require 
no action at all to be taken. The dummy primary SKIP can then be used to fill in the blanks, 

CASE wine number · 
IN lay down, drink, SKIP, give away ESAC 

The use of SKIP as the default action between OUT and ESAC is often useful. SKIP does nothing 
and delivers nothing. 

The contracted notation for the CASE construction is similar to that for IF. CASE and ESAC are 
written as round brackets, IN and OUT as vertical strokes, as in 

(n J 31, (leap yearl29l28), 31, 30, 31, 30, 31, 31, 30, 31, 30, 31) 

4.4 Loops 

Loops are expressed by the DO construction, which causes a given unitary clause to be obeyed 
over and over again. There is a wide choice of forms for this construction, as may be seen from its 
grammatical form 

{FOR identifier} 
{FROM unitary clause}{BY unitary clause}{TO unitary clause} 
{WHILE serial clause} 
DO unitary clause 

Parts in curly brackets are optional. The clause which is repeated, known as the 'controlled clause', 
is the one after the word DO. The preambles are all concerned with controlling the repetition. 
Broadly, there are two criteria for terminating repetition, one of which is to carry on until a given 
condition ceases to be true, whilst the other is to repeat a given number of times. The DO con­
struction without any of the optional parts causes indefinite repetition, leaving the programmer to 
provide his own escape with a suitable jump, as shown in the following example which puts the 
factorial of n into f. 

INT i : = f : = 1 ; 
DO IFn>== i 

THEN f TIMES i ; i PLUS 1 
ELSE GOTO label outside 
FI 

This is clumsy, and can be avoided by using WHILE, 

WHILE n >= i DO (fTIMES i; i PLUS 1) 

(Note the use of brackets to make the controlled clause unitary.) The word WHILE expects a 
serial clause delivering a boolean result. This clause is obeyed before each repetition, and if its 
result is FALSE, repetition stops immediately. If the result is false at the outset, the controlled 
dause is not obeyed at all. 
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The other way of controlling repetition is to specify in advance how many times the controlled 
clause is to be obeyed. For the factorial we could have written 

TO n DO (fTIMES i; i PLUS I) 

The word TO expects a unitary clause delivering an integer result. This is evaluated once only at 
the outset and is taken as the number of repeats required. 

A further facility is a loop counter, shown in this version: 

INTf:= 1; 
FOR counter TO n DO fTIMES counter 

The counter must be written as an identifier, and its introduction after FOR is treated as its 
declaration. Its normal values are 1 when the controlled clause is being obeyed the first time, 2 for 
the second time, and so on. Although the value changes, the loop counter has mode INT, not REF 
INT, which debars any artificial assignments being made. Its scope is limited to the controlled 
clause. If the same identifier had, by chance, been declared previously in some other connection, 
the non-local would of course be masked, and unusable anywhere in the DO clause. 

The construction 'FOR counter TO n' is really a default version of 

FOR counter FROM initial value BY step size TO final value 

and a few examples may be needed to see how this operates. 

FROM 2BY 3 TO 11 
BY4TO 12 
BY-1 TO -4 

successive value of counter 
2, 5, 8, 11 
1, 5, 9 
1, 0, -1, -2, -3, -4 

The initial value, step size and final value can all be unitary clauses delivering integers and these 
are evaluated once only at the outset. Any or all of these parts can be omitted, and the default 
values are then taken from 

FROM 1 BY 1 TO infinity 

If the TO and WHILE parts are both included, the repetition may stop for either reason, which­
ever applies first. 

Nested loops are very common; as an example, the following clause prints the integers 1 to 100 
with five on each line. 

FOR i FROM OTO 19 DO 
(FORj TO 5 DO print(5 * i + j) ; print(newline)) 

The normal rules of scoping permit the use of i non-locally in the inner controlled clause. 

Finally, it must be emphasized that a loop delivers no result. When it has been completed, the 
counter passes out of scope and cannot be used to find out how many repetitions actually 
occurred. 
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4.5 Grammatical summary 

The principal types of unitary clause are listed below. Parts in curly brackets need not be present. 
Items not fully discussed in chapters 1-4 are excluded. 

Expression-one of the following three kinds: 
primary, ie 

denotation, or 
identifier, or 
conditional*, or 
BEGIN serial clause END 

formula of primaries and operators 
generator, of form LOC mode 

Assignment: 
expression : = unitary clause 

Jump: 
GOTO label 

Loop: 
{FOR identifier} 
{FROM unitary clause}{BY unitary clause}{TO unitary clausel 
{WHILE serial clause} 
DO unitary clause 

* Conditional: 
IF serial clause THEN serial clause {ELSE serial clause} Fl, or 
CASE serial clause IN serial clause, .. ., serial clause {OUT serial clause} ESAC 
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5 

Data Structuring-Arrays 

Algol 68 is one of the few languages in which complicated data structures can be freely defined 
and then manipulated as simply as integers or reals. For instance, if 'data' is an identifier de­
clared to stand for a group of items and xis a variable of the appropriate mode (REF to the group 
of items), the assignment 

x : = data 

will put the entire data-structure into x. The placing of the individual items can be forgotten. It is 
important not to lose sight of this advantage, and to structure the data in a problem so as to exploit 
it fully. 

Basically there are two types of grouping for individual items of data. A group can be an array 
or a structure. From now onward, the word 'structure' is used in a technical sense, though arrays 
and structures are both instances of data-structuring in the colloquial sense of the phrase. An 
array is a set of objects all of the same mode; these objects are described as elements of the array, 
and are selected by means of a numerical index. For example, if 'vector' is a row (ie one-dimen­
sional array) ofreals, vector [i] is the ith element. Similarly, if 'matrix' is a two-dimensional array, 
matrix [i, j] is the element with coordinates i, j. Indexes are integers, and can be written as variables 
or unitary clauses which deliver integer results. Selection of an element from an array is therefore 
a dynamic process; the position in the array is computed while the program is running. 

By contrast, a structure is a collection of items which need not all have the same mode; the indi­
vidual items are known as fields of the structure, and are named with.field selectors. As an example, 
if 'person' is a structure which includes a field called 'age', this particular field is selected by 
writing 'age OF person'. The selection mechanism is not dynamic, as the field selectors are written 
in the program explicitly and cannot be computed. This makes a structure more efficient than an 
array, and if its static nature is not a handicap, it is preferable. It will often be found that data is 
best organized partly in one way and partly in the other, for structures can contain array fields, 
and arrays can have structured elements. 

5.1 Array declarations and assignment 

The same principles govern array declarations as have already been described for simple constants 
and variables. Constant arrays and array variables can be declared by means of identity declara­
tions, and there is once again an abbreviated form of variable declaration. The only new aspects 
are the modes for arrays, and the manner in which actual values of arrays are displayed when 
written in the program. 
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The mode of an array is the mode of its elements preceded by a pair of square brackets [ ] poss­
ibly containing commas. The brackets are empty for simple rows, but the space can be subdi­
vided by commas to indicate more than one dimension. Thus [ , ] implies 2 dimensions, [ , , ] 
implies 3 and so on. For instance, the mode of a row of reals is 

[]REAL 

and the mode for a two-dimensional array of integers is 

[ , ]INT 

The elements of an array can be of any mode except another array mode. Thus [ ] [ ] REAL is 
not allowed; the touching brackets] [must be replaced by a comma to give a true two-dimensional 
array, or an array of references to another array can be used (5.4). 

When declaring a constant array by an identity declaration, the actual value can be displayed in 
the form of a list known as a collateral, as in 

[ JINT lookup = (2, 8, 4, 5, 6, 3, 9, 0, 7, 1) 

In general, the items in the list can be written as serial clauses which will deliver objects of the 
mode required for the array. After being declared in this way, the identifier 'look up' can be used 
to stand for the entire array, or indexed to select a particular element. The index in this case 
runs from I to 10, as the elements of a collateral are numbered from I upwards unless some indi­
cation is supplied to the contrary (see 5.2). A collateral is not specifically a denotation for an 
array, as it is also used for displaying a structure. There are, in fact, no denotations for arrays 
except for arrays of characters, which are discussed separately in section 5.3. Identity declarations 
for constant arrays are not a common requirement in programming, and their use should be 
restricted to cases such as the one shown above where there is a collateral on the right-hand side. 
There is little to be gained from a declaration which defines an array identifier in terms of some 
other array already declared, as it will not cause a copy to be made. 

We turn now to variables. An array variable is a reference to an array and has a mode such as 
REF [ ] REAL. It is used for holding any suitable array assigned to it, and its declaration must 
create the required amount of space. Suppose, for example, that we wish to make space for a 
row of 4 reals. We may write 

REF[ ]REAL row = LOC[l :4]REAL; 

The generator specifies the range over which the array index is going to run, and a fault will occur 
if the index goes outside these bounds. The lower and upper bounds (1 and 4 in the above example) 
can be expressed as integers or more generally as a pair of unitary clauses, which are evaluated 
when the declaration is encountered. 

To abbreviate the above declaration, the rule given in 3.2 is not quite sufficient. It is not good 
enough to omit the right-hand side and delete the initial REF, as this would eliminate the bounds 
altogether. These must still be accommodated, and so the abbreviated form is 

[1 :4]REAL row; 

Bounds must always be given in a declaration which generates space. 

A variable declaration can be combined with initial assignment, as for example 

[I :4]REAL row : = (0.0, 1.0, 0.0, 0.0) 
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Care must be taken when assigning arrays to see that the right-hand side has the same index 
bounds as the variable. The above example is correct, but if the bounds on the left had been 0 : 3, 
it would have been wrong, as the bounds of the collateral are taken to be 1 : 4. The right-hand side 
of an assignment to an array variable need not be a collateral; it can be a previously declared array 
(or any unitary clause which delivers an array). For example, 

[l: 4]REAL copy : = row 

declares a new variable into which 'row' will be copied. Assignment always causes a copy to be 
taken-for that is why space is generated in the first place. Again, care must be taken to see that 
the bounds on the two sides agree exactly, and furthermore the mode of the array which is being 
assigned must be suitable for the variable which is to receive it. The elements of an array (unlike 
the individual terms in a collateral display) cannot be coerced to any other mode. If, in the 
example shown above, 'row' had had mode [ ]INT, it would not have been possible to perform 
the assignment. 

The manner of dealing with arrays of two or more dimensions is an obvious generalization of 
the above. To take an example with two dimensions, 

[1: n, 1: m]REAL matrix ; 

declares a variable for a matrix of n * m real elements. Collaterals can be used for assignment, as 
m 

matrix : = ((xl 1, x12), (x21, x22)) 

which assumes n = m = 2. However, display of a two-dimensional array is expensive, as it 
entails the use of 'heap storage', briefly discussed in section 5.3. If the program would not other­
wise require heap facilities, the use of nested collaterals hardly justifies the cost. There is, in any 
case, an alternative method, mentioned in the next section. 

5.2 Indexing 

As explained in the introduction to this chapter, individual elements of an array are selected by 
indexing. Indexing can also be used to select subsets of arrays, such as a row or column of a matrix. 
First, however, it is important to describe the mode of object obtained as a result of indexing. 

Consider the array constant c, and the variable v, declared by 

[ ] INT c = (1, 2, 3) ; 
[1 :3]INTv := c 

The mode of c is [ ] INT, and the mode of its elements c [1 ], c [2] and c [3] is INT. The mode of 
v is REF [ ] INT, and the mode of v [I], v [2) and v [3] is REF INT. The effect of indexing a re­
ference to an array is to produce a reference to the selected element*. Consequently, we can assign 
to indexed variables, thus 

v[l] 1 ; 
v [2] : = 2 ; 
v[3) : = 3 

* This applies however many levels of reference there are to the array. The effect of indexing is to remove all 
but one REF. 
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The indexes used for selecting array elements will normally be variables or expressions, computed 
whilst the program is running, for otherwise there is no advantage in using arrays rather than 
structures. 

To select a subset of the elements of an array, a more general type of indexing is used. In the 
explanation which follows, we shall take as a starting point the array variables declared by 

[n :m]REAL a; 
[n :m, r :s]REAL b 

Subset Elements of the original array Bounds of the subset 

a [5 :7] a [5], a [6], a [7] 1 : 3 

b [5 : 7, j] b [S, j], b [6, j], b [7, j] 1 : 3 

b [i, 5: 7] b [i, 5], b [i, 6], b [i, 7] 1 : 3 

b[5:7,6:8] b [5, 6: 8], b [6, 6: 8], b [7, 6: 8] 1 : 3, 1 : 3 
(nine elements in all) 

b [i, the ith row of b, complete r: s 

b [i] alternative form of above r:s 

b [ , j] the jth 'column' of b, complete n:m 

It will be seen from these examples that a subset formed by indicating the lower and upper limits 
of an index of the original array acquires new bounds starting at 1. Thus the elements of a [5 : 7] 
are individually 

a[5:7][ 1], a[5: 7] [2] and a[5 :7][3] 

In terms of the original array variable, these are 

a [5], a [6] and a [7] 

On the other hand, if a dimension is left alone, by means of a blank index, the undisturbed dimen­
sion retains its original bounds. Thus 

b[5 :7, ] has bounds 1 :3, r :s 

but 

b[5 :7, r :s] has bounds 1:3,1 :(s - r + 1) 

In this last case, the subset of the second dimension includes the whole of its original range, but 
according to rule it acquires the new lower bound of 1. In practice, this change of bound is almost 
always what is actually required. To see this, consider the simple case 

[1 : lO]INT row ; 

To assign collaterally to a part of this array, we can write 

rowf6: 10] : = (6, 7, 8, 9, 10) 

and the bounds of the two sides will agree as they should. The integers shown for indexing in all 
of the above examples have been chosen merely for simplicity. In every case, unitary clauses can 
also be used. 
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The indexing range for any array can be made to be different from the actual bounds by means of 
the 'AT' construction. For example, in the declaration 

[O :4]INT w : = (1, 2, 3, 4, 5)[AT O] 

the lower bound for the collateral is shifted to 0, making it suitable for assignment to w. 
Alternatively, 

w [AT 1] : = (1, 2, 3, 4, 5) 

is valid, as the 'indexer' used with w makes the bounds go from 1 to 5. The AT construction can 
be used by itself in this way, or as part of a subsetting indexer. For example, 

w[3:4AT3] 

refers to a row of two integers, and has the lower bound 3 when otherwise it would have been 1. 

There are many applications of array subsetting (often described as slicing). Problems in physics 
often call for the selection of rows or columns from matrices, and we may note in passing that 
slicing is one way of avoiding the nested collateral shown at the end of 5.1. That assignment would 
have been more efficiently written as 

matrix[l] := (xll, x12); 
matrix [2] : = (x21, x22) 

Another application occurs in connection with procedures, where it may be required to supply a 
part of an array, or an array with fewer dimensions, as a parameter. 

When using arrays, it should always be borne in mind that indexing, being dynamic, consumes 
time while the program is running. Repeated use of the same index is usually avoidable by means 
of a suitable identity declaration. For example, let us suppose that we find a particular element of 
an array g, say the element g[l], is required many times over. If g is a real array variable, g[l] 
has mode REF REAL, and the reference can be separately identified by a declaration such as 

REF REAL gl = g[l] 

Thereafter, gl will be exactly equivalent to g[l] but without its indexing overhead. Similarly, 
with h declared by 

[1: n, 1: m]REALh; 

repeated double indexing, when the first index (say) is always the same, can be avoided by 
declaring 

REF[ ]REAL hi = h[i] 

and using hi [j] rather than h [i, j]. This too represents a saving. 

5.3 Sequences of characters and flexible arrays 

The principles applying to arrays of characters are the same as for other arrays, but there are some 
additional and alternative facilities meriting separate discussion. A row of characters can be held 
in an array, which provides the facility of selecting individual characters or subsets by indexing, 
but if indexing is not really required there are alternatives. An object of mode BYTES is a group 
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of 4 characters with no indexing facility (and no associated overhead). Groups of 8 or 12 charac­
ters may similarly be treated as objects of modes LONG BYTES or LONG LONG BYTES re­
spectively. The denotations for such objects are character sequences of the appropriate length 
enclosed by quote symbols; for example 

LONG LONG BYTES title = "USERS' GUIDE" 

In practice, it is usually tolerable to make lengths of sequences up to 4, 8 or 12 by padding with 
spaces. 

Sequences of these and other lengths can be handled as rows of characters with mode [ ] CHAR. 
For example, 

[]CHAR alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" 

or, in the case of a variable, 

[1 :6]CHAR parent : = "FATHER" ; 
IF female THEN parent[l :2] : = "MO" FI 

As they are not of length 4, 8 or 12, the above right-hand sides are row-of-character denotations, 
usually described as string denotations. However, this does not preclude the use of "JACK" in a 
declaration or assignment such as 

[1 : 4]CHAR name : = "JACK" 

as coercion from mode BYTES to [ ]CHAR is performed automatically in such a context. 

A common requirement in character manipulation work is to handle sequences of unknown 
length. Whilst one may always use computed bounds in the declaration of an array, the difficulty 
may be that the size of the array is not known in time. The characters may, for instance, have been 
read in, and the space to receive them has to be generated in advance. When a problem seems un­
manageable with fixed length character sequences, the mode STRING should be used. This is 
what is known as a 'flexible array' of characters. Variables of mode REF STRING automatically 
adjust their bounds to receive any character sequence assigned to them. For example, 

STRING s ; {declares s, but creates no space yet} 
s : = name ; {name was declared earlier as a reference to "JACK". The variables now holds 

these 4 characters, and has the same bounds as name had'} 
s : = "PIECE WORK" {the bounds of s change to become 1 to 10} 

The storage space required by a STRING variable changes whenever an assignment demands that 
it should do so. This facility is achieved by the use of a special system of storage allocation known 
as 'heaping' and it causes some overhead to be added to a program, not only in the storage space 
it occupies, but in the speed with which it runs. Although no universal figures can be provided, 
the extra running time can be ten or twenty per cent. It should be clear from this that the STRING 
mode should be avoided in work of a mainly numerical nature, where rows of characters occur 
only in arranging titles for output or similar purposes. However, for problems in fields such as 
linguistics, or symbol manipulation, it is a facility much to be valued. 

Flexible array variables can be declared for other modes (at the same cost) by inclusion of the 
word FLEX after the bounds. Examples are 

[1 :0 FLEX] REAL arrayl ; 
[1 :4 FLEX] REAL array2; 
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The first of these declarations creates an array variable with no initial space, for the bounds 1 : 0 
correspond to an array of zero size (1 : 1 being an array with one element). Space is created auto­
matically when an assignment is made to the unindexed array variable, for example 

array I : = (1.0, 2.0, 3.0) 

The bounds of array I will now agree with those of the object assigned, in this instance 1 : 3. The 
array cannot be extended by assigning to a non-existent element, 

arrayl [4] : = 4.0 {wrong} 

This is wrong. A larger array must be created afresh, by a further complete assignment. The 
declaration of array2 shown above creates some space for the array initially, so that we could 
write 

array2 [1 : 3] : = arrayl ; 
array2[4] : = 4.0 

The mode STRING is defined to mean [I :0 FLEX] CHAR. 

5.4 Arrays of references to arrays 

A common practical requirement is to be able to select one array from a set of similar arrays by 
means of an index. The ability to select rows or columns from a two-dimensional array is not 
quite the same thing. The data may have been already grouped in one-dimensional arrays, not 
necessarily all of the same size. If a two-dimensional array were declared, the data would have to 
be copied into it, and would not completely fill it unless the original arrays were of equal size. The 
solution to this problem is to declare an array whose elements are the original array variables. 
This is an array of references to the given arrays. As an initial example, let the original array 
variables be vl, v2 and v3 declared by 

[1: nl]REAL vl ; 
[l: n2]REAL v2; 
[1 : n3] REAL v3 ; 

These can be grouped into a 'higher' array, r say, as follows: 

[ ]REF[ ]REAL r = (vl, v2, v3) 

The effect of indexing r is to select one of the original variables; thus r[2] is v2, and the ith element 
of v2 can be selected by writing r[2] [i]. Notice that both pairs of square brackets in the above 
declaration are empty. This is because the declaration creates no new working space. The first 
pair of brackets simply indicates that (vl, v2, v3) is to be treated as an array. The second pair is 
part of the mode for the elements. Since these are merely references to other arrays no actual array 
space need be created; it is claimed in the separate declarations of vl, v2 and v3. 

Although it illustrates the idea, the above example is not wholly typical of the way arrays of array 
references arise in practice, as the size of the array of references will probably not be known when 
the program is written. This raises a difficulty, for if the number of component arrays is unknown, 
they cannot be declared like vl, v2 and v3. The space must be generated anonymously as shown 
in the following problem, which gives a more realistic picture of a practical situation. 
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The problem is to read in a set of arrays of reals, creating space for each array just before its items 
are read, and to assign each array reference to a suitable variable, whose mode will be REF 
REF[ ]REAL. We shall assume that the data stream is arranged in the following sequence: 

number of rows (an integer) 
number of reals in the first row (an integer) 
the first row of reals 
number of reals in the second row (an integer) 
the second row of reals 
etc 

The piece of program shown below reads the first item and uses this to declare an array of array 
references. This is followed by a loop; each repetition creates the space required for the next row 
of reals (by a local generator), fills it, and assigns it to the main array of references (though the 
last two steps must necessarily be done in reverse order). 

INT rows, items ; 
read(rows) ; 
[1 :rows]REF[ ]REAL array; 
FOR i TO rows DO 
BEGIN read(items) ; 

END 

array[i] := LOC[l :items] REAL; 
read(array [i]) {reads the row of reals} 

The scope of the local generator is the same as that of 'array'. It is essential in this example that 
there be no declarations after DO BEGIN, as the effect would be to restrict the scope of the genera­
tor and prevent the program working properly (see section 10.5 forbidding assignment of scoped 
objects to variables of wider scope). 
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6 

Structures and Mode Declarations 

6.1 Structure declaration and field selection 

A structure is a collection of objects whose modes may all be different. Each object occupies a 
certain position or field in the structure and is named with afield selector. The selectors are made 
up by the programmer in the same way as identifiers, but there is no confusion between the two, 
as they are used in different contexts. 

A constant structure can be declared by an identity declaration such as 

STRUCT(BYTES name, INT day, month)feast = ("XMAS", 25, 12) 

The above mode is an obvious abbreviation of 

STRUCT(BYTES name, INT day, INT month) 

The.field selectors are part of the mode. To declare a structure variable, the identity declaration is 
particularly clumsy, as will be seen from the example 

REF STRUCT(BYTES name, INT day, month) occasion 
= LOC STRUCT(BYTES name, INT day, month) 

This can be abbreviated in the usual way for variable declarations, and may also include an initial 
assignment, thus 

STRUCT(BYTES name, INT day, month) occasion : = feast 

The effect of this assignment is to copy ("XMAS", 25, 12) into the new variable, 'occasion'. 

When a single field of a structure is required, it is selected by the construction 

selector OF primary 

Usually the primary will be a structure identifier, but it could be a bracketed clause delivering a 
structure or reference to a structure. The mode of the field is given by the specification in the 
structure declaration; thus 'name OF feast' has mode BYTES, and 'day OF feast' has mode INT. 
However, when field selection is applied to a structure variable, the REF belonging to the variable 
is transferred to the field. 

object 
occasion 
name OF occasion 
day OF occasion 
month OF occasion 

mode 
REF STRUCT(BYTES name, INT day, month) 
REF BYTES 
REF INT 
REF INT 
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Thus it is possible to assign individually to the fields of a variable structure, as in 

name OF occasion : = "WHIT" 

This is similar to the way array indexing works and the same generalization about multiple 
references applies. The object after OF is automatically dereferenced until its mode is REF 
STRUCT( ... ), and the remaining REF is transferred to the selected field. 

Grammatically, the construction selector OF primary is itself a primary. The word OF cannot be 
omitted, even if the selector is unique in the program, and it binds more tightly than any operator. 
This makes it easy to write expressions, such as 

100 *month OF occasion + day OF occasion 

without having to bracket month OF occasion, and day OF occasion. 

As the fields of a structure can have any mode, they may themselves be structures. For example, 
lettered points on a diagram could be held in variables such as p, q and r declared as 

STRUCT{CHAR label, STRUCT{REAL x, y)coords)p, q, r ; 

and values could be assigned to all or part of such variables in such ways as 

xOFcoordsOFp := yOFcoordsOFp := 1.0; 
label OF p : = "O" ; 
q := p; 
r : = ("X", (1.0, 0.0)) 

6.2 Mode declarations 

It will already be obvious that the mode of a structure is likely to be quite long, and the need for 
some means of abbreviation is quickly felt. This is one of the purposes of mode declarations. Any 
mode-not just a structure mode-can be given a concise name by a declaration of the form 

MODE modename = mode 

where modename can be any upper case word chosen by the programmer. For example, the 
declarations 

MODE VECTOR = STRUCT(REAL x, y) ; 
MODE POINT = STRUCT{CHAR label, VECTOR coords) ; 

enable us to declare p, q and r of section 6.1 by writing simply 

POINT p, q, r ; 

A new mode name can be used as soon as it has been declared (or 'mentioned' -see chapter 11 ), 
and is scoped in the usual way. 

When a mode name is declared for an array, the question of bounds has to be considered. As the 
mode name may be used in a variable declaration, its definition must always include bounds in 
places where they would then be necessary. For example, to define a mode name for a mode such 
as 

[ , ]REAL 
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the mode declaration would have to include bounds, as in 

MODE MATRIX = [1:n,1 :m]REAL; 

so that a variable declaration like 

MATRIXh; 

would contain all the information required. The bounds are evaluated when the mode declaration 
is encountered, and will therefore be the same whenever the mode name MATRIX is used. In 
contexts where bounds are not required, the hidden bounds are simply ignored. For example, 
consider the declaration 

[l :6]REF MATRIX row of refs; 

This would be taken to mean 

[1 : 6] REF [ , ] REAL row of refs ; 

as bounds are never required after the word REF (and would indeed be wrong). 

The mode names STRING and COMPLEX can be used without declaration in a user's program. 
Their standard meanings are 

MODE STRING = [1 :0 FLEX] CHAR 
MODE COMPLEX = STRUCT(REAL re, im) 

Care should be taken not to use the construction [ ]STRING, as this would mean [ ] [ ]CHAR, 
and rows of rows are not allowed. 

6.3 Structures and arrays in combination 

Structures can have array fields and arrays can have structures as their elements. This enables us 
to build modes of arbitrary complexity to match the structure of the data we are dealing with. 
The rules for selecting elements of an array or fields of a structure have already been described, 
but when arrays and structures occur in combination, one further rule is needed. Briefly, brackets 
bind more tightly than OF. This applies to the square brackets used for indexing arrays and also 
to round brackets when they are used for holding the actual parameters of a procedure. To see 
how this rule works, consider the following situation. A variable t is declared by 

[1 :n]STRUCT(INT i, REAL x)t; 

and we wish to select the integer field of the first structure in the array. The construction 

iOFt[l] 

is correct, because tis bound more tightly to [1] than to the preceding OF. However, the binding 
rule will not always produce the effect we actually require. Take the declaration 

STRUCT([l :n] INT row, INT i)s; 

and consider how to select the first element of the row field. The constructions 

row OF s[l] {wrong} 
row [1] OF s {wrong} 

are both wrong. The first is wrong because sis not an array, and therefore cannot be indexed. The 
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second is wrong because 'row' is not an object at all! It is a field selector. The correct answer is 

(row OF s) [1] 

Round brackets can always be used to form the primary which is required. 

6.4 Bounds in declarations 

A variable declaration for a structure must create space for all of its fields. If any of the fields are 
arrays, they will require appropriate space generation, and index bounds must therefore be given. 
Beginners are not always entirely clear about this, and it has been found useful to give a general 
rule for determining when bounds must be included in declarations involving arrays and when 
not. 

Identity declarations 
The mode must never include bounds. Examples: 

[ ]COMPLEX w = (0.0?1.0, 1.0?0.0, 0.0?0.0); 
STRUCT([ ]CHAR s, INT i)t = ("ABCDE", 8) 

Variable declarations 
First write the declaration without any index bounds, then apply the following rules. 

Does the mode start with [ ] ? 
If so, insert bounds and apply rule 2 to the rest of the mode. 
If not, 

2 Does it start with STRUCT? 
If so, apply rule 1 to each field in turn. 
If not, 

3 Do not put bounds in any subsequent square brackets, as this declaration is not concerned 
with creating array space. 

Example: 

[1 : 5] STR UCT (REF [ ] INT reference field, 
STRUCT([l :3]BYTES b, BOOL c)struct field, 
[1:n,1 :rn]REAL matrix) row of structures; 

This makes space in all for 5 references, 15 bytes', 5 bools and 5 * n * m reals. The space for the 
integer arrays would be generated in the declarations which created the references to be assigned 
to these fields. 
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7 

Procedures 

Procedures are objects, such as cos or print, which happen to be processes rather than data in the 
normal sense of the word. They are objects which can be obeyed. The purpose of a procedure is to 
enable a piece of program to be written and given a name at one place in a program, without being 
obeyed there and then. Once named, it can be obeyed at any time by merely writing its name and 
coupling it with such data as it needs for its operation. The economy which results may be very 
great indeed, for commonly needed processes have only to be written out once. It is found, also, 
that the mental stress entailed in writing a complicated program is enormously reduced if subsi­
diary parts are hived off as procedures. 

In the present chapter, we concentrate first on obeying procedures which have already been written. 
This should give an understanding of the proper way to use library procedures, which do not have 
to be declared by the user. The remaining sections demonstrate how a user may write his own 
procedures and declare them in his program. 

7.1 Mode of a procedure 

A procedure is a piece of program named with an identifier. For example, the standard procedure 
for taking a square root is named 'sqrt'. In order to use such a procedure correctly, we must as­
certain (i) what type of data it needs, and (ii) what type of result it delivers. This information is 
contained in the mode of the procedure. (What a library procedure actually does will normally be 
described in words in the library catalogue. If the procedure has been written by the user himself, 
it is good practice for him to keep a brief description for future reference.) 

As an example, we find from Appendix 2 that the mode of sqrt is 

PROC(REAL) REAL 

This indicates that sqrt 

-is the name of a procedure 
-needs to be supplied with a REAL object of data 
-delivers a result of mode REAL 

Other examples of procedure modes are given overleaf. 
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mode of procedure remarks 

PROC(INT, INT)BOOL Requires 2 integers as data. 
Delivers boolean result. 

PROC REAL Requires no data. 
Delivers REAL result 
(for example 'random', Appendix 2). 

PROC(REF[ ]INT) VOID Requires an integer array variable. 
Delivers no result. 

PROC VOID Requires no data. 
Delivers no result. 

PROC(REAL,REAL,PROC(REAL)REAL)REAL Requires three objects of data, two 
real numbers and a procedure of mode 
PROC(REAL)REAL. 
Delivers a real result. 

It should be clear from these examples that a procedure can demand as data any number of ob­
jects of any mode, and can deliver a result of any mode or no result at all. The word VOID means 
that no result is delivered. 

7.2 Obeying a procedure 

A procedure is obeyed ('called') when its identifier is followed by a list of the objects of data it 
requires. These are known as the actual parameters and are separated by commas and enclosed 
in brackets. For example, suppose that f is a procedure of mode PROC(INT,INT)REAL. Such a 
procedure could be called, with two integer parameters, in any context where a REAL would 
be appropriate, as for instance in the expression: 

f(3,5) * sqrt(9.0) + f(4,6) * sqrt(13.0) + 1.0 

The actual parameters (3, 5, etc) can be unitary clauses. In practice, they will usually be expres­
sions, as in 

f(n + m, ROUND sqrt(l + xt2)) 

Before the procedure f is obeyed, the two parameters are evaluated, and it must not be assumed 
that the first will be evaluated before (or after) the second. The order is undefined. In this example, 
the second parameter contains a call of sqrt; any amount of such nesting of procedure calls is 
allowed. 

Each actual parameter must be capable of delivering an object of the mode specified in the mode 
of the procedure. If necessary, coercions such as dereferencing will be applied automatically. For 
example, remembering that the mode of sqrt is PROC(REAL)REAL, we can see that the use of 
a real variable x in the call sqrt(x) would cause x to be dereferenced before sqrt was obeyed. 
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A procedure like sqrt, whose sole purpose is to deliver a result, is akin to a mathematical function. 
But procedures are not restricted to functions; a procedure can perform any process whatever, 
and its call need not appear in a formula. It may stand by itself as an individual step in a pro­
gram, for example: 

BEGIN 
REALx,y; 
read(x); 
y := 1 + sqrt(l + xt2); 
print(y/(y - 2)) 

END 

The calls of 'read' and 'print', which are standard input and output procedures, do not deliver any 
result. They carry out processes. Grammatically, a procedure call is a primary and as such can 
always be used as a unitary or serial clause. 

7.3 Writing a procedure-a simple example 

Suppose that we require a procedure which will deliver as its result the period of swing of a simple 
pendulum for any given values of the length of the pendulum and angle of swing (ie semi-arc in 
radians). Denoting these two parameters by 'length' and 'angle', the mathematical formula for the 
period is 

21t Jlen:h. ( 1 + an:~e2 ) 

where g is the acceleration due to gravity. The following bracketed serial clause would perform the 
calculation and deliver the required result: 

BEGIN 
REAL length = ... , angle = . . . ; 
REAL g = 981.3; 
2 *pi* sqrt(Iength/g) * (1 + anglet2/16) 

END 

provided that we could fill in the blanks with the actual values of length and angle required. 
However, this cannot be done. Length and angle must be left as mere identifiers until actual 
values are supplied at the call of the procedure. To express this, the denotation for the procedure 
is written, not as shown above, but as 

(REAL length, REAL angle) REAL: 
BEGIN 

REAL g = 981.3; 
2 *pi * sqrt(length/g) * (1 + anglet2/16) 

END 

This is a form of construction peculiar to procedures. There must be a heading which gives the 
modes and identifiers for the parameters, all in brackets, followed by the mode of the· result 
delivered, and a colon. The parameter names, length and angle, are known as formal parameters. 
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7 .4 Procedure declarations 

Procedures are declared in the same way as other objects. Variable declarations can be used to 
create variables to which different procedures may be assigned (7.4.1), or identity declarations can 
be used to name particular procedures. We shall consider the identity declaration first, as this is 
what is most often required. The form of an identity declaration is 

mode identifier = unitary clause 

When this is used to declare a procedure, the mode of the procedure is written on the left. The 
unitary clause on the right must deliver an object of this mode, and in the simplest case it will be 
the denotation of the procedure. 

As an example, consider how we might attach a name, 'period' say, to the procedure discussed in 
7.3. This procedure takes two REAL parameters and delivers a REAL result. Its mode is 

PROC(REAL,REAL) REAL 

The identity declaration is therefore written as 

PROC(REAL, REAL) REAL period 
(REAL length, REAL angle) REAL: 
BEGIN 

REAL g = 981.3 ; 
2 *pi* sqrt(length/g) * (1 + anglet2/I6) 

END 

It will be seen that the mode information appears on both sides, making the declaration rather 
cumbersome. When the right-hand side of the identity is a procedure denotation*, as in this 
example, an abbreviated form is allowed, 

PROC identifier = procedure denotation 

The example may therefore be written 

PROC period = (REAL length, angle) REAL: 
BEGIN 

REAL g = 981.3 ; 
2 *pi * sqrt(Iength/g) * (1 + anglet2/16) 

END 

In practice, most procedure declarations are expressed in this way. Notice that the mode REAL 
can apply without repetition to both length and angle. 

Procedures may or may not have parameters, and may or may not deliver a result. In the heading 
of the denotation, if there are no parameters the parameter list is simply omitted. If there is no 
result the word VOID is used, as also in the mode of the procedure. The different forms for the 
(abbreviated) declaration are therefore as shown on the next page. 

*It need not be; for consider 

PROC(REAL)REAL trig'= IF u THEN sin ELSE cos FI; 

which makes trig synonymous with sin or cos. 
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With parameters and result-

PROC identifier = (parameter list) mode: (serial clause) 

With parameters and no result (in this case the use of VOID is optional)­

PROC identifier = (parameter list) {VOID}: (serial clause) 

With result and no parameters-

PROC identifier = mode: (serial clause) 

With no result and no parameters-

PROC identifier = VOID: (serial clause) 

In Algol 68-R, the serial clause must always be enclosed in brackets, even when it consists 
of a single step. If this step is a conditional, double brackets will arise, eg (IF ... FI) or 
CC ••• I ... I ... )). 

7.4.1 Procedure variables 

A procedure variable is a reference to a procedure, and may be used as an indirect means of 
calling it. This makes it possible to assign different procedures to the same variable in different 
parts of the program, so varying the effect of the call. The various procedures which may be as­
signed must all have precisely the same mode. As an example, 

PROC(REAL)REAL f; 
f : = sin 

declares the procedure variable f, to which sin is assigned. When we now write f (x), the variable 
will be automatically dereferenced and the effect will be sin(x). The procedure itself must, of 
course, be fully in scope when it is called, as discussed in 7.8. 

7.5 Parameters 

The rules for declaring and calling a procedure have already been described. This section is in­
tended to comment on their practical application, which inevitably revolves around the subject 
of parameters, as these are the plugs and sockets through which a program communicates with its 
procedures. 

The mechanism by which formal parameters are identified with their actuals is just as though the 
procedure body began with a series of identity declarations, one for each parameter. The formal 
parameter provides the identifier and the unitary clause supplied as the actual parameter gives the 
right-hand side: 

mode identifier unitary clause 

t t 
formal actual 

All facets of identity declarations therefore apply with equal force to parameter substitution. 
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7.5.1 Simple values as parameters 

Readers accustomed to Algol 60 should be made aware that a REAL parameter in Algol 68 is not 
quite the same as a 'value parameter' in the earlier language. In Algol 68, a REAL parameter is 
identified with a real number, and cannot be used as though it were a variable; it cannot appear on 
the left of assignments in the body of the procedure. 

When a REAL parameter is specified in a procedure declaration, any expression can be supplied 
as the actual parameter, provided that it is capable of delivering a REAL result. If a variable is 
supplied, as will usually be the case, it will automatically be dereferenced. If an integer is supplied, 
it will be converted to the equivalent real number. But if the parameter is specified as INT, a real 
must not be supplied. This is a good restriction. If a procedure needs to be given the number of 
teeth on a gear, an actual parameter such as 8.5, possibly disguised as a real variable currently 
holding 8.5, probably indicates a programming error or misconception. The compiler will report 
errors of this sort. Reals can, if necessary, be converted to integers by use of operators ENTIER 
or ROUND. 

7.5.2 Reference parameters 

The purpose of a reference parameter is to supply a procedure with a variable. This enables it to 
perform assignments to the actual parameter. As a trivial example, consider 

PROC step = (REF INT i)VOID: (i PLUS 1) 

The clause i PLUS 1 uses the operator PLUS, defined in Appendix 2, whose effect is to perform 
the assignment i : = i + 1. This clause delivers the result i, which is discarded as 'step' is defined 
to have no result. The action of this procedure is therefore to take the integer out of the parameter 
variable, add 1, and put it back. A reference parameter can be regarded as a receptacle for use by 
the procedure. Depending on how the procedure is designed, it can take an item of data from the 
receptacle, place a result in it, or both-in this instance both. 

Although the mode INT can be widened to REAL, the mode REF INT cannot be coerced to 
REF REAL. They are different kinds of variable. A procedure which specifies a REF REAL 
parameter must be supplied with a real variable. This does not prevent an expression being used 
as the actual parameter, but it must be an expression capable of delivering a real variable-a nor­
mal arithmetic expression will obviously not do. Valid expressions as actuals for 'step' are shown 
m 

INTn := l,m := 1; 
step(IF random< 0.5 THEN n ELSE m FI); 
step(CASE n IN n, m ESAC) 

Reference parameters can, of course, be of many different modes. References to arrays are dis­
cussed in the following section. References to structures are another possibility. Example 6 shows 
a procedure which operates on a REF DATE parameter, where DATE is defined by 

MODE DATE = STRUCT(INT day, BYTES month, INT year) 

The procedure advances the date referred to in the parameter by one day (without doing anything 
about leap years). 
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EXAMPLE6 

PROC procrastinate = (REF DATE date): 
BEGIN 

[ ]STRUCT(BYTES name, INT days)month 
(("JAN ", 31), ("FEB ", 28), ("MAR ", 31), 
("APR ", 30), ("MAY ", 31), ("JUN ", 30), 
("JUL ", 31), ("AUG ", 31), ("SEP ", 30), 
("OCT ", 31), ("NOV ", 30), ("DEC ", 31)) ; 

REF INT d = day OF date ; 
REF BYTES m = month OF date ; 
INT i := 1 ; 
WHILE m # name OF month [i] DO i PLUS 1 ; 
IF d <days OF month [i]THEN d PLUS 1 ELSE 

FI 
END 

m := nameOFmonth[(i = 12lyearOFdatePLUS 1; Iii+ 1)]; 
d .- 1 

The procedure is called very simply: 

DATE meeting : = (31, "DEC ", 1970) ; 
procrastinate (meeting) 

alters the meeting date to (1, "JAN ", 1971). 

7.5.3 Array parameters 

Array parameters occur with great frequency in practical programming. There are no new basic 
principles to be explained; it should therefore suffice to give an example with comments. As an 
elementary case, consider a procedure for squaring every element of a two-dimensional array of 
reals. Such a procedure would take an array variable as its only parameter, assuming that the 
original array can be over-written with the result. 

PROC square2 = (REF[ , ]REAL a) VOID: 
BEGIN 

FOR i FROM 1 LWB a TO 1 UPB a DO 
FORj FROM 2 LWB a TO 2 UPB a DO 
(REF REAL aij = a [i, j] ; aij TIMES aij) 

END 

The mode of a formal parameter never includes bounds, and yet in nearly every practical case, 
a procedure does need to know what they are. They may, of course, be different for different calls 
of the procedure, and the body of the procedure must then include operations on the parameter 
to determine them. The operators L WB and UPB (Appendix 2) are provided for such a purpose. 
Alternatively, the bounds could be passed to the procedure through extra parameters, but this is 
less convenient in use and less foolproof. Occasionally it may be reasonable to design a procedure 
on the assumption that the bounds are known; it will then be essential to see that the actual 
parameters have these bounds and no others. 
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If an array variable x has been declared as 

[3 : 36, 0: 7] REAL x ; 

and has had numbers assigned to all of its elements, these will become squared by writing the 
unitary clause 

square2(x) 

The 2 has been included in the identifier merely as a reminder that square2 must be given a 2-
dimensional array variable. 

Array parameters of mode [ ] REAL, as distinct from REF [ ] REAL, are not often used, unless 
the actuals are to be supplied as collaterals. This is a useful device for obtaining the effect of an 
unknown number of parameters. For example, the mode of the formal parameter of a procedure 
p might be 

[]REF REAL 

and the corresponding actual could be written as (x, y, z), say. Notice that this introduces double 
brackets in the call : 

p((x, y, z)) 

If, in a particular call, we should wish to supply the procedure p with only one real variable, we 
can write simply 

p(x) 

as a coercion known as rowing (chapter 9) will convert x into an array of one element automatically. 

7.5.4 Procedure parameters 

So far, we have concentrated on the use of parameters for supplying a procedure (which we shall 
call p) with objects of data such as numbers, references, arrays and so on. The actual parameter is 
reduced to the object required (eg by evaluating an expression) upon entry to the procedure p. A 
more general type of requirement is to supply p with a process to be carried out somewhere within 
its body. This is done by giving a procedure as a parameter of p. Within the body of p, the corre­
sponding formal is treated as the name of the (unknown) procedure, which will be obeyed wherever 
the formal parameter is called. Formal parameters treated in this manner have a mode beginning 
PROC. 

As an example, we might have a procedure for finding the area under any mathematicai curve 
from a given lower to a given upper limit. 

PROC area = (PROC(REAL)REAL f, REAL lower, upper) REAL : 
BEGIN ... END 

To use this, we have to give 'area' the process for calculating a particular curve, as a procedure of 
mode PROC(REAL) REAL. To find the area under sin(x) from x = 0.0 to x = 0.3, we would 
write simply 

area(sin, 0.0, 0.3) 

Another application is to provide an escape from a procedure to some given label in the program. 
Typically, this may be a useful means by which some breakdown in a numerical process within the 
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procedure could give rise to a jump to some place in the program where the appropriate steps for 
continuing the problem would be found. To illustrate this most simply, we show below a square 
root procedure with an escape mechanism for negative arguments. 

PROC root = (REAL x, PROC REAL q) REAL: 
(IF x > 0.0 THEN sqrt(x) 

ELSEq Fl) 

This procedure 'root' might be called as follows: 

REAL answer, y ; 

answer : = root(y, GOTO remedy); 

' remedy: --- ; 

This illustrates a new concept. Instead of supplying the name of a procedure as the actual for q, 
we have written GOTO a label. Any GOTO-clause may be regarded as a parameterless procedure 
in this context. 

A procedure parameter can have as its actual either the name of a procedure or a procedure deno­
tation, provided as always that the mode is appropriate. The device shown for GOTO is, in reality, 
a concession to brevity. The call 

root(y, GOTO remedy) 

might have been written more fully with an actual procedure denotation, 

root(y, REAL: (GOTO remedy)) 

but this is unnecessary. 

7.6 The procedure body 

The 'body' of a procedure is the bracketed serial clause following the heading. This piece of pro­
gram will be obeyed when the procedure is called, and is best written so that it is as self-contained 
as possible. If, for example, working spaces or constants are needed (like the real 'g' in the 'period' 
example) they should be declared in the serial clause itself. This makes such identifiers local, ie 
limits their scope to within the procedure and reduces confusion with other parts of the program. 
However, the body of a procedure will often need to make use of library procedures, and to that 
extent will not be strictly self-contained. Indeed it is sometimes convenient, and even desirable, 
to trespass further than this. A procedure can make use of any objects declared outside provided 
they are still in scope when the procedure is called (see 7.8). 

The choice always to be made is whether to pass data to the procedure through the proper chan­
nels (parameters) or whether to allow it to use whatever is available from outside. In the latter 
case, a proper specification of the procedure may become difficult, and much of the purpose of 
using a procedure may be nullified. If a procedure is to be used in many different contexts, pos­
sibly in different programs, it should be as self-contained as possible. It should assume no more 
of an environment than is certain to be available, such as the system library, or other procedures 
in a clearly defined suite. 
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7.7 The result 

The result of a procedure has the mode specified in its heading, and is the object delivered by the 
last unitary clause obeyed in the bracketed serial clause which forms the body of the procedure. 
If necessary, this object is coerced to the required mode. If no result is specified, the object de­
livered by the body is simply discarded, and therefore cannot be used. 

When writing a procedure, it is essential to ensure that the unitary clause delivering the required 
object is indeed the very last clause obeyed. A beginner could make the mistake of writing: 

BEGIN 
IF a> b THEN GOTO middle FI ; 

y ; 
GOTO end; 

middle: 
x; 

end: SKIP 
END 

meaning to deliver x if a>b is true, otherwise y. It is easy to see that the last clause obeyed here 
is the dummy clause SKIP; the results x and y are eliminated, before this, by the semi-colons 
which follow them. One way to overcome this is to use EXIT as shown in 

BEGIN 
IF a> b THEN GOTO middle FI ; 

yEXIT 
middle: --- ; 

x 
END 

The effect of EXIT is to take us to the end of the serial clause containing it, without discarding 
any result we may have in hand. It is used in place of a semi-colon and must always be followed by 
a label (for otherwise there would be no way of reaching the clauses which follow on). 

The word EXIT need not be confined to the body of a procedure, but it must be used with care. 
It must always be remembered that it takes us only to the end of the serial clause in the immediate 
context. Consider 

Dl:'~Tllt..T . 
ll.LlU.ll 'I - - - , 

IF u THEN ... EXIT after: ... FI ; 

END 

In this example, EXIT takes us to FI, not to the END. 

The result of a procedure can be an object of any mode, including procedure modes and reference 
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modes. In these more advanced applications, it is necessary to make quite sure that the scope of the 
object delivered is not restricted to the procedure body. For example, it is impossible to deliver 
as the result of a procedure a variable which was declared within its body. Compare the following 
procedures: 

right (formal parameter list) REAL: (REAL x ; --- ; --- ; x) 

wrong (formal parameter list)REF REAL: (REALx; --- ;---; x) 

right (REF REAL x)REF REAL: (--- ; --- ; x) 

In the first of these examples, xis a REF REAL local to the procedure. The space created by the 
variable declaration is available for use inside the body only, but the REAL to which x refers is a 
basic value which has no scoping limitation. As x is dereferenced to deliver the REAL result, no 
complications arise. 

In the second example, we are attempting to deliver x itself, ie to deliver a working-space. As this 
space is available within the body only, the program is wrong. 

Jn the third example, the object delivered (when the procedure is called) is the actual parameter 
supplied for x. As this must have been in scope at the procedure call, it can be the object delivered 
as the result of the procedure. An application of this idea is shown in the following example. The 
procedure p searches for the largest positive element of an array and delivers a reference to it. If 
all the elements are zero or less, it delivers NIL, which is a reference to a non-existent object. 

PROC p = (REF[ ]INT a)REF INT: 
BEGIN 

INT max : = 0, n ; 
FOR i FROM LWB a TO UPB a DO 

IFa[i]>maxTHENmax := a[i] ;n := iFI; 
IF max = 0 THEN NIL ELSE a[n]FI 

END 

As an illustration of a procedure which delivers a procedure, 

PROC trig = (INT i)PROC(REAL)REAL: 
(CASE i IN sin, cos, tan, sec, cosec, cot ESAC) 

would be a possibility. A typical call would be 

x : = a * trig(3)(pi/4) 

and the effect would be x : = a * tan(pi/4) 

7 .8 Scope of a procedure denotation 

A procedure cannot be obeyed if any of the objects it requires are out of scope when it is called. 
There can be no scoping trouble if the procedure is named in an identity declaration and called 
by using the declared name, but if the procedure denotation is handled as an object, for example, 
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assigned to a procedure variable or delivered as the result of some other procedure, care must be 
taken. The following artificial example shows the type of mistake which could easily be made: 

PROCINTf; 
BEGIN 

INTi; 
f : = INT: (i + 1) ; 
i := 2 

END; 
print(f) 

Between BEGIN and END, an assignment causes the procedure variable f to refer to a procedure 
denoted by INT:(i + 1). It is important to notice that this procedure uses a non-local variable i 
which will cease to exist after END. The use off in the print clause is therefore meaningless, and 
is a situation which must not be allowed to occur. The source of the trouble is the assignment to 
f; an object must never be assigned to a variable which has a greater scope than that of the object 
itself. A similar situation can arise in computing with references, and is discussed in 10.5. 

If a procedure denotation uses no external objects other than those which are passed as its own 
parameters, its scope is not limited in any way. For example, consider 

PROC(REF INT)f; 
BEGIN --- ; 

f := (REF INT i):(i PLUS 1); 

END; 
INTj := 2; 
f(j) 

The procedure assigned to fin the third line is entirely self-contained, and its calls need not be 
restricted to the serial clause in which it appears. The effect off (j) will be to dereference f, and 
apply the procedure to the actual parameter j, thus making j refer to 3. 
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8 

Defining New Operators 

A list of the standard operators is given in Appendix 2. Within a program, additional operators 
can be declared and existing operators can be given additional meanings. The effect of any 
operator depends not only on which operator it is, but on the modes of the operands; extra 
meanings can therefore be given to an existing operator if the modes of the operands for the new 
meaning are distinct from those for existing meanings. 

Operator declarations are especially useful for defining operations between data-structures 
peculiar to the program. 

8.1 Operator declarations 

An operator is not an 'object', and therefore has no mode, but an operator declaration resembles 
a procedure declaration with the word OP in place of PROC. The simple form is 

OP opsymbol = procedure denotation 

A procedure denotation is entirely appropriate on the right, as an operator is, in effect, a procedure 
with one or two parameters (one if monadic, two if dyadic). As an example, the following de­
claration adds an extra dyadic meaning to the multiplication operator l * ), defining it to give the 
scalar product of two vectors of n elements: 

OP* = ([ ]REAL a, b)REAL: 
BEGIN REAL s : = 0.0 ; 

END 

FOR i FROM LWB a TO UPB a DO 
s PLUS a[i] * b [i] ; 

s 

The significant distinction between operators and procedures is that several declarations of the 
same operator symbol may appear in the same serial clause and be valid simultaneously, provided 
that each applies to a distinct set of operand modes. A monadic definition is always distinct from 
a dyadic, and dyadic definitions are distinct provided that no ambiguity can arise in use. An 
operator symbol defined for both the following pairs of modes would be ambiguous. 

a 
b 

left operand 
REAL 
REFREAL 

right operand 
REAL 
REAL 

49 



Ambiguity between a and b is due to the fact that operands are automatically dereferenced if 
necessary. A REF REAL operand could therefore select definition b, or be dereferenced and 
select definition a. The only other possible source of ambiguity would be between a REAL (say) 
and a PROC REAL, where 'deproceduring' (9.1.1) might or might not occur, but this situation 
rarely arises in practice. The following combination does not lead to ambiguity: 

c 
d 

left operand 
REAL 
REAL 

right operand 
REAL 
INT 

because 'widening' (9 .1.3) is not a form of coercion applied to operands. 

As a further example, the operator declaration given below defines 'equals' between two objects 
of mode DATE, where 

MODE DATE = STRUCT(INT day, BYTES month, INT year) ; 

Thus, 

OP (DATE a, b)BOOL: 
(day OF a = day OF b AND 
month OF a = month OF b AND 
year OF a = year OF b) 

As with procedure declarations, a more general form of operator declaration takes one or other 
of the forms: 

monadic 

OP (mode) {mode} opsymbol unitary clause 

dyadic 

OP (mode, mode) {mode} opsymbol = unitary clause 

where the mode for the result may be replaced by the word VOID if (exceptionally) the operator 
is not required to deliver a result. The unitary clause must deliver a procedure with one or two 
formal parameters respectively. For instance, 

OP(REAL)REAL SIN = sin 

provides a new, if rather superfluous, way of finding a sine. (Instead of writing sin(x), one could 
write SIN x.) 

8.2 Declaration of priority 

Monadic operators bind more tightly than dyadic operators, and dyadic operators bind with a 
tightness depending on their priority. The larger the priority number, the tighter the binding. In 
the absence of a priority declaration, the standard priority for the operator symbol applies, re­
gardless of whether the operator declaration supplements the standard definition or overrides it 
(see Appendix 2, Default Priorities). If the operator declaration is for an entirely new operator 
symbol, the default priority is taken to be 1, the weakest binding of all. 
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To define a new priority for a dyadic operator, the operator declaration must be preceded by a 
priority declaration having the simple form 

PRIORITY opsymbol = digit 

where the digit given must be in the range 1 to 9 inclusive. The normal rules of scoping apply to 
operator declarations and priority declarations. For example, consider 

BEGIN PRIORITY £ = 3 ; 
OP£ = (INT a, b)INT:( --- ) ; 

BEGIN PRIORITY £ = 4 ; 
OP£ = (INT a, b)INT:( --- ) ; 

END; 
ww: 
END 

Within the inner serial clause, the new local priority (4) and meaning of£ override the non-local 
definitions. If the local priority declaration had been omitted, the new definition of £ would 
have had priority 3. In any case, at ww the priority 3 is restored, together with the original definition 
of the operator. 

8.3 Operator symbols 

Basic symbols which have been set aside for use as operators are: 

standard operators + * I t # < > ? 
spare operator characters £ % @ 

Other permitted forms of operator symbol are: 

any upper case word not already used for some other purpose upper case words 
combinations any combination of symbols, unspaced and between primes, for example 

'/•=I . . 
Note that the standard operators < = and > = are exceptional. These are the only permitted in­
stances in which a combination of operator characters may be used without enclosure in primes. 
(The operators < = and '< = ' are regarded as quite distinct.) Spaces must not be inserted be­
tween< and = or> and =. 
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9 

Coercion 

Modes are important because they control to a great extent the processes to be carried out as a 
program is obeyed. For example, the mode of the variable on the left of an assignment determines 
absolutely the mode of object which the right-hand side must deliver, and the process of evaluating 
the right-hand side is influenced accordingly. If at first an object of the wrong mode appears in 
such a context (the right-hand side), it will be acted upon so as to produce an object of the right 
mode if possible. Not all contexts act as strongly as this. On the left-hand side of an assignment, 
the demands made by the context are much less strong; the only requirement here is that the object 
should be a variable, ie its mode must begin with REF. The present chapter is therefore concerned 
with two aspects of coercion, firstly the types of mode change which are possible and secondly the 
degree to which various contexts will bring them about. 

9.1 Forms of coercion 

9.1.1 Deproceduring 

A procedure which takes parameters is obeyed when actual parameters are supplied, and is not 
obeyed if they are not. Unfortunately, this simple rule is inapplicable for procedures which have 
no parameters in their definition. Whether they are obeyed or not has to depend on the mode of 
object required. For example, the library procedure 'random' has mode PROC REAL. When 
random is mentioned, it is not obeyed if the context expects a PROC REAL, but is obeyed if the 
context expects a REAL. This occurrence is known as the deproceduring coercion, because an 
object of mode PROC ... has given place to an object of the same mode without the PROC. In 
the following example, the deproceduring coercion occurs once: 

REALx; 
PROC(REAL)REAL fl ; 
PROC REAL f2 ; 
x : = sin(0.3) ; x : = random ; 
fl : = sin ; f2 : = random 

9.1.2 Dereferencing 

{both procedures are obeyed} 
{neither procedure is obeyed} 

This is the most familiar coercion, and has been discussed in earlier chapters. Typically, if x has 
mode REF REAL and the context demands a REAL, then x is dereferenced. 

9.1.3 Widening 

If a context demands REAL, then INT can be supplied instead. REAL is a wider class than INT, 
and the coercion is known as widening. Other forms of widening are: 
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INT to 
REAL 
INT 
BYTES 
LONG BYTES 
LONG LONG BYTES 

9.1.4 Rowing 

REAL 
COMPLEX 
BITS 
[]CHAR 
[]CHAR 
[]CHAR 

If the context demands [ ] INT, say, and an INT is supplied, the required mode change to an array 
of one element (with lower and upper bound 1) takes place. 

An example is given in 7.5.3 where an actual parameter is made into an array to suit the mode 
required by a procedure. Similarly, if the context demands REF [ ] INT, the mode REF INT can 
be coerced to it. Thus, 

REALy; 
REF[ ]REALx = y; 

causes x to refer to an array of one element, such that x[l] is the same REF REAL as y. 

Rowing can also be applied to arrays, in order to increase the number of dimensions by one. For 
example, 

[ ]INT i1 = (1, 2, 3) ; 
[, ]INT i2 = il ; 

makes i2 an array with bounds [1: 1, 1: 3]. 

9.1.5 Uniting 

In Algol 68, the programmer is bound to associate a mode with every identifier introduced in the 
program. Occasionally, we would wish that the mode of an object could be dynamic, ie subject 
to change in the course of running. A special class of modes, 

UNION (mode, mode, .•. ) 

caters for this requirement. For example, if we declare x by writing 

UNION(INT, CHAR)x; 

the mode of xis REF UNION (INT, CHAR). The 'united mode' permits x to hold either an integer 
or a character. Ifwe make the assignment 

x := "H" 

the mode of the right-hand side, CHAR, is coerced to UNION(INT, CHAR), which is suitable 
for assignment to x. This is known as uniting. After the assignment has been performed, x holds 
"H" (and knows it holds a character). There is no de-uniting coercion. 

CHARa := x 

is illegal. If this assignment were allowed, the principle of mode-checking would be violated. The 
only way to extract "H" from xis by a conformity clause (9.1.5.1). 
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There are some restrictions on the modes which can be included in a union. As an example, 
UNION(INT, REF INT) is not allowed. For suppose u were a variable of this mode, and we 
were to write the assignment u : = i; where i is an integer variable. If i were dereferenced, it could 
be united as an INT, but if not, it could be united as a REF INT. Such ambiguity ofinterpretation 
is never allowed, and this combination is therefore forbidden. However, in order not to place too 
many constraints on the combinations allowed in a union, the forms of coercion applied before 
uniting are restricted to dereferencing and deproceduring. In consequence a mode like UNION 
(REAL, INT) is allowed, since widening does not occur before uniting. 

9.1.5.1 Conformity clauses 

The purpose of a conformity clause is to retrieve an object which has been united-and to retrieve 
it in its original mode. This could be any one of the modes included in the original declaration of 
the union, depending on which particular path the program takes when it runs. For this reason, a 
'collateral conformity clause' is usually written in conjunction with the CASE construction, 

CASE (expression, expression, . .. ) : : = unitary clause 
IN serial clause, serial clause, . .. {OUT serial clause} ESAC 

The conformity clause is shown between CASE and IN. The unitary clause on the right of the 
special assignment must deliver the united object (after such dereferencing as may be necessary). 
Each expression on the left-hand side should deliver a variable capable of holding an object of one 
of the possible modes of the union. The current value of the united object is assigned to whichever 
of these variables has the correct mode to receive it. If the nth expression is suitable, ie 'conforms', 
the integer n is delivered, and acts as the selecting integer of the case clause. If no expression 
conforms, 0 is delivered and no assignment occurs. 

As an example, let us extract "H" from x (into which it was united in 9.1.5), 

INT i; 
CHAR a; 
CASE (i, a) : : = x IN serial clause, serial clause ESAC 

The mode of xis REF UNION(INT, CHAR). After dereferencing, the dynamic mode will 
therefore be INT or CHAR, so two separate variables are provided. In fact the mode is CHAR, 
so the "H'' is assigned to a, whilst i remains untouched. The integer 2 is delivered as the result of 
the conformity and the second serial clause is obeyed. (This would probably use the variable a, 
whilst the first serial clause would use i.) A collateral conformity clause used in this manner en­
sures a complete run-time check of the mode of a united object, corresponding to the checks 
which can be carried out by the compiler for all non-union modes. 

To obtain values of only one of the modes in the union, a simpler construction can be used. This is 

expression : : = unitary clause 

which carries out an assignment only if the variable delivered by the expression conforms. The 
clause as a whole then delivers the boolean value TRUE. Otherwise no assignment is performed 
and FALSE is delivered. The boolean result should normally be checked by using the conformity 
as the condition of an IF clause. 

If the symbol : : = is replaced by : : the conformity tests are performed in the same way, and 
boolean or integer results delivered, but no assignments take place. 
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9.1.6 De-voiding 

This coercion is, in effect, a rationalization of the way in which GOTO and SKIP may be used. 

A GOTO-clause does not deliver a result, and might be thought unusable in a context such as 

sqrt(IF x > 0 THEN x ELSE GOTO label Fl) 

The parameter of sqrt must be a REAL, and yet, if xis less than 0, a GOTO will be obeyed. To sa­
tisfy the mode rules it has to be said that GOTO can be coerced to any mode-in this case REAL. 
This is a pure technicality. After all, when the GOTO is obeyed, nothing whatever is delivered to 
sqrt. 

A variation of this situation occurs if a procedure takes a parameterless procedure parameter. 
For example, 

PROC f = (PROC REAL p) : (--- p ---) ; 

In this case, 'GOTO label' can be supplied as the actual parameter for p. It is reasonable that 
GOTO label can be treated as though it had mode PROC VOID, but it may seem less convincing 
that it should be used as a PROC REAL. However, this can prove useful in practical 
programming. Notice that the GOTO would not be obeyed until p was deprocedured within the 
body off. Then, when a REAL was expected, the GOTO would cause a jump and in fact deliver 
nothing. 

Similar considerations apply to the use of SKIP, a dummy clause which does nothing and de· 
livers nothing. It can be coerced to the mode of any variable or basic object. As an example, 
consider 

x : = CASE i IN a, b, SKIP, u, v ESAC 

The SKIP is used merely to fill a position in the list. Care should be taken to avoid an assignment 
of SKIP being actually performed, as the result is always undefined and may even cause the pro­
gram to fault while it is running. 

9.1.7 Voiding 

Voiding is the act of discarding a value. Two situations in which this occurs have already been 
described. The object delivered by a unitary clause is thrown away if it is a step followed by a 
semi-colon, and the object delivered by the body of a procedure is thrown away if no result is 
specified in its heading. To describe these occurrences formally as 'voiding' coercions is necessary 
for cases can arise where voiding causes some positive action to be taken before a result is 
discarded. Suppose, for example, that 'consolidate' is the name of a parameterless procedure of 
mode PROC VOID. In the following context, 

--- ; consolidate ; ---

we would expect the procedure to be obeyed, not simply thrown away. This comes about as a 
result of the way voiding works, as objects of mode PROC VOID are deprocedured first. The 
same goes for an object of mode REF PROC VOID (or REF REF PROC VOID, etc), which will 
be dereferenced and deprocedured. However, an object of mode REF PROC VOID is not obeyed 
before voiding if it is the result of an assignment. For example, in the assignment f2 : = random 
(section 9.1.1), we have seen that random cannot be obeyed before assignment, and neither is it 
obeyed when f2, the result, is voided. 
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9.2 Types of context 
9.2.1 Strong positions 

When the context clearly demands a unique mode, every permitted form of coercion is applied in 
an attempt to obtain that mode. A few obvious examples are indicated below: 

REAL k = unitary clause1 ; 

x : = unitary clause2 ; 

IF serial clause3 THEN a[unitary clause4]FI; 
OP(REAL, REAL) REAL£ = unitary clause5 ; 

Key: 

1 must deliver REAL 
2 mode of x, less one REF 
3 BOOV 
4 INT 
5 PROC(REAL, REAL)REAL 

If the context does not itself demand a unique mode, the mechanism of coercion cannot come fully 
into play, but the programmer can force any of the coercions described in section 9.1 by saying 
what mode is required. The construction is 

mode VAL unitary clause 

which can be used as a unitary clause. It delivers an object of the mode given, provided that the 
coercions necessary are of the allowed forms. This is most useful for controlling dereferencing 
where several levels of reference are involved. For example, assuming that a is a real array variable, 
consider the assignments in 

REFREALai; 
ai := a[i]; 
(REF REAL VAL ai) : = 0.0 

After the first assignment, in which no coercions are applied, ai holds the variable a [i]. To assign 
a real to this variable, using ai, a forced coercion is necessary. Another example, also concerned 
with levels of reference, is shown in 10.2. 

9.2.2 Reference positions 

The ultimate modes of left-hand sides of assignments and conformity clauses must always begin 
with REF. The number of REF's is important and no dereferencing occurs. In such positions the 
only coercion applied is deproceduring. 

9.2.3 Operand positions in expressions 

The coercions to operands are dereferencing and deproceduring. These are applied far enough to 
match the modes of the operand(s) to those demanded by the operator. 
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9.2.4 Procedure calls 

The actual parameters of a procedure are in strong positions, but the procedure itself may have 
to be reached by coercion. For example, consider 

PROC(REAL)REAL f : = sin; 
REAL x : = 1 + f (pi/3) 

Here f has mode REF PROC(REAL) REAL. It must be dereferenced at the call to give sin, which 
can then be applied to the given actual parameter. The coercions applied in this context are de­
referencing and deproceduring. 

9.2.5 Array indexing and field selection 

An array can be indexed, and an array variable can be indexed, but a reference to an array variable 
(REF REF [ ] ... ) must be dereferenced once before the indexing can be carried out. Similarly, a 
reference to a structure variable must be dereferenced to a single REF before field selection can 
take place. In both cases, multiple REF's must be reduced to a single REF. The only other 
coercion applied in these contexts is deproceduring. 

9.2.6 Coercion of alternatives to one mode 

If a conditional or case clause delivers an object, it must be of one definite mode, whichever al­
ternative is chosen. If the clause appears in a strong position, this mode is decided by the context, 
and all the alternatives will be coerced to it, but in other types of context, some uncertainty may 
appear to arise unless all the alternatives have already the same mode. If not, one mode must be 
found to which all alternatives can be coerced. The rule for this type of coercion is that one of the 
alternatives will, if necessary, be dereferenced and deprocedured until it is of a mode to which all 
the other alternatives can be (strongly) coerced. 

a INT i, j ; 
REF INT ii : = i ; 
IF u THEN ii ELSEj FI : = 4 

b REALx; 
IF u THEN random ELSE x FI + 123.4 

In a, ii is dereferenced so that the mode of the conditional is REF INT whether u be TRUE or 
FALSE. In b, the mode of the conditional is REAL. This will have been reached by deproceduring 
random and dereferencing x. 

9.2.7 Result of a serial clause containing declarations 

With the currently available Algol 68-R compiler, the result of a serial clause which contains de­
clarations, but is not the body of a procedure, is subject to special restriction. It is always depro­
cedured and dereferenced, and if the result is an array, or structure containing an array, it is voided. 
The result is also voided if it is delivered by a conditional clause with alternatives of different 
modes. 
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10 

Computing with References 

References have always been used in computer programs as the means by which basic data is 
accessed. In any numerical computation, assignment of REAL to REF REAL and dereferencing 
of REF REAL to REAL is commonplace. In certain types of program, a need arises for carrying 
out manipulations one level further away from the basic data. The essential objects of manipula­
tion become the references to basic data, and assignments of REF to REF REF become the order 
of the day. The work which gives rise to this form of manipulation is nearly always concerned 
mainly with the structure of data, and with transformations to structure. This chapter describes 
the language features designed to make reference manipulations really practicable. 

10.1 Avoiding duplication of data 

The word REF is commonly to be found in the specification of the mode of a field in a structure. 
It will be useful to set up an example of such a context: 

MODE MAN = STRUCT(LONG BYTES name, INT age) ; 
MODE DOG = STRUCT(LONG BYTES breed, REF MAN owner) ; 

MAN m : = ("MR SMITH", 70) ; 
DOG d : = ("SHEEPDOG". m) : . . ,,, , 

Suppose that the word REF in the definition of the mode DOG were omitted. Then the second 
field of d would hold an object of mode MAN, obtained by dereferencing m. In other words, 
0 MR SMITH" and 70 would be copied into d, and would duplicate Mr Smith's particulars. 
Subsequently, as Mr. Smith grew older, the assignment 

age OF m PLUS 1 

would update the original record but not the copy ind. As it is, the 'owner' field having mode 
REF MAN, it can be seen that Mr Smith's particulars are kept in one place only, and the assign­
ment to d ensures that 'owner OF d' refers indirectly to the same data as m does. Avoidance of 
duplication of data is, in reality, the main justification for the use of REF. 
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10.2 IS and ISNT 

The number of operations which can be carried out on references (as such) is quite limited. Arith­
metic operators like +, - , etc cause dereferencing to take place, and so also does the equals 
operator, =. However, in reference manipulation work it is essential to have some means of 
testing whether two references are the very same; the construction used for this purpose is a unitary 
clause of the form 

expression IS expression 

where the expressions deliver the references. The clause delivers a boolean result, TRUE if the 
references are the same and FALSE otherwise. (ISNT gives the opposite result.) 

To see the distinction between = and IS quite clearly, consider the declarations 

INTi:=8; 
INT j := i; 

For numerical purposes, i andj are now equal and the expression i = j delivers the result TRUE. 
Both variables refer to 8, but they are nevertheless two different variables. The fact that 8 is copied 
from i into j by the second assignment brings this point fully home. The test 

i IS j 

detects that the references are distinct and delivers FALSE. On the other hand, consider the 
identity declaration 

REFINTh = j 

which introduces a new identifier h for a reference which already exists; h and j identify the same 
working space in store, and the test 

h ISj 

therefore gives TRUE. 

In the above examples, the objects being compared both have the same mode, REF INT. The 
modes can be different provided they can be equalised by dereferencing one side or the other a 
suitable number of times. (If not, a fault occurs.) For example, consider the clause 

owner OF d IS m 

in relation to the piece of program given in section 10.1. Here the modes are different. The mode 
of 'owner OF d' is REF REF MAN, whilst that of mis REF MAN. The former is therefore de­
referenced once automatically, so that the test effectively decides whether 'owner OF d' refers to 
m or not. It does, and the result delivered is therefore TRUE. 

The last example shows one of the important uses of reference tests. At the level of the basic data, 
the test would be 

name OF owner OF d = name OF m 
AND age OF owner OF d = age OF m 

which is undoubtedly clumsier, and would be even more so with a more complicated data 
structure. Testing the basic data can always be avoided by working at a reference level, but the 
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two are equivalent only if the basic data is undup/icated. The principle should be to create one 
reference only to each object of data, and then use this unique reference consistently throughout 
the problem. 

Reference work is by no means without pitfalls, and it seems worthwhile to give an example of 
what can go wrong if insufficient thought is given to modes. Consider the following continuation 
of the dog program: 

DOGdl := ("ALSATIAN",m); 
DOG d2 : = ("LABRADOR", m) ; 

Do both of these dogs have the same owner? Clearly so, but the construction 

owner OF dl IS owner OF d2 

delivers the result FALSE. The reason is that 'owner OF dl' identifies one field of the space re­
served for dl, whilst 'owner OF d2' identifies the corresponding space in d2, which is distinct. The 
modes are both REF REF MAN, and this provides the clue. To test whether the two fields con­
tain the same REF MAN, it is necessary to carry out the IS test at the REF MAN level. This can 
be done by using VAL to force the required mode, thus 

(REF MAN VAL owner OF dl)IS owner OF d2 

Only one side need be forced, as the other will then be automatically coerced to the same mode. 
The result will now be TRUE. 

When performing multiple tests, such as 

(x IS y)AND(u ISNT v) 

brackets are needed. It is important to remember that 'x IS y' is a unitary clause, and unitary clauses 
cannot be used as primaries in expressions unless they are bracketed. The words IS and ISNT are 
not operators. Like the assignment symbol, they bind m.ore weakly than any operator. 

10.3 Generators 

To see why generators are important in reference manipulation work, it is helpful to draw a 
parallel with ordinary numerical computation. In the course of any long calculation, numbers are 
continually being created and destroyed. They are created as results of expressions, can be held 
for future use by assignment to variables and are destroyed automatically whenever fresh assign­
ments cause them to be overwritten. The processes required for reference manipulation are exactly 
similar. We need the ability to create new references freely, hold them temporarily in variables and 
have them disappear automatically when (and only when) they are no longer required. Local 
generators, the only kind discussed up to this point in the Guide, do not meet these requirements 
fully for two closely related reasons. Firstly, if a locally generated reference has been assigned to 
a variable, eg 

owner OF d : = LOC MAN : = ("MR YOUNG", 18) ; 

the space it represents does not disappear when another assignment is made to that variable, such 
as 

ownerOFd := m 
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The space occupied by ("MR YOUNG", 18), though now inaccessible, is reserved throughout the 
serial clause which defines the scope of LOC MAN. In certain types of work, this may cause a 
program to run out of data space unnecessarily. Secondly, the fact that the space created by a local 
generator is subject to scoping prevents one from using procedures for grafting new references on 
to a global data structure. Space generated locally in the body of a procedure ceases to exist upon 
exit from the procedure, and if there were no alternative, a powerful technique would be denied 
to us. Both of these objections are overcome by the use of global generators, sometimes known as 
'heap generators' because the heap system of storage allocation is used for their implementation. 

A global generator resembles a local generator in form, but the word LOC is omitted. References 
created by global generators, like numerical values, do not go out of scope. The space continues 
to exist for as long as required. However, once it has become inaccessible, it is automatically made 
available for re-allocation by the system. Such treatment is usually known as garbage collection, 
and it occurs when the program would otherwise run short of data space. The programmer need 
not be aware that it happens; from his point of view, global generators are safe and trouble-free, 
unhampered by scoping restrictions. However, the heap storage allocation system carries an 
overhead, which applies to the whole program if a global generator or a :flexible array (5.3) appears 
anywhere within it. 

10.4 Chaining of data and the use of NIL 

A characteristic feature of most non-numerical computing is the unpredictable amount of space 
required for data. For example, when processing the state of a chess board, a natural language 
sentence, or an algebraic expression, the extent of the data base keeps changing as the work 
proceeds. What we require is a means of extending the data structure without copying it all out. 
The only way of doing this dynamically is to chain the data together by using structures with 
reference fields pointing to similar structures which can be generated to any extent required. In 
this section of the present chapter, an indication of the technique will be given, although the sub­
ject of list-processing as a whole is too big for a full treatment. 

The simplest type of chain can be built from a structure with two fields, one for an item of data and 
the other as a pointer to the next. The mode required for building a chain of integers, for instance, 
is 

MODE LINK = STRUCT(INT item, REF LINK next) 

Let us use this to build a chain containing as items the integers 1, 2, 3 and 4. One obvious way 
to proceed is to declare a variable for each link in the chain, thus 

LINK a, b, c, d ; 
a : = (1, b) ; 
b : = (2, c) ; 
c : = (3, d) ; 
item OFd := 4 

This has left the REF LINK field of d unset-for we cannot go on for ever! However, it is bad 
practice to work with unset variables; what is needed is a dummy reference. The word NIL is pro­
vided for just such a purpose. Its mode begins with REF, though it does not refer to any actual 
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object at all, and it can never be dereferenced. The chain can now be terminated more satisfac­
torily by 

d := (4, NIL) 

An alternative, to be preferred in practice, is to declare a null reference with the specific mode re­
quired, and to use this in place of NIL. This can be done by writing 

REF LINK empty = NIL ; 
d : = (4, empty) 

The reason why this is preferable is that it enables us to test for the end of a chain by means of the 
clause 

next OF d IS empty 

The mode of 'empty' causes 'next OF d' to be dereferenced to REF LINK, and (in this case) 
the result TRUE will be obtained. 

The method of chain building outlined above is of very limited application. It is easy to see that 
it cannot be generalized for chains of unknown length, as this would entail declaring an unknown 
number of variables. The main objective of chaining is therefore vitiated. A solution to this prob­
lem can be found by applying two principles: 

1 The space required for new links must be generated without declaring identifiers. (Global 
generators are recommended.) 

2 For referring to such space, at least one variable of mode REF REF LINK must be declared. 

Using these principles, a chain of four integers can easily be constructed by generating the links 
in reverse order, thus 

REF LINK chain : = empty ; 
chain : = LINK : = (4, chain) ; 
chain : = LINK : = (3, chain) ; 
chain : = LINK : = (2, chain) ; 
chain : = LINK . - (1, chain) 

Before proceeding further, it may be found helpful to analyse the modes in the above 
assignments. 

chain 
I 

REF REF Lll1TK 

LINK 
I 

l>l<'ll T Tl\TV 
.L\..L..t.L" ..L.J.1.1 y .L\.. 

( i ' 
I 

T'A.T,...,.., 
UV 1 

chain ) 
I 

REF LINK 

In the collateral, chain is dereferenced to REF LINK to satisfy the mode specified for the second 
field of a LINK structure (see the original mode declaration). 

Now that the identifiers a, b, c, d have been eliminated, the repeated assignments can be carried 
out in a loop. The final solution is then as follows: 
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MODE LINK = STRUCT(INT item, REF LINK next) ; 
REF LINK empty = NIL ; 
REF LINK chain : = empty ; 
FORiFROM4BY -1TO1 DO 
chain : = LINK : = (i, chain) 



As a simple model of how a chain may be processed, let us consider the problem of adding 1 to 
each of the items in the above chain. These items can be reached by the expressions 

item OF chain 
item OF next OF chain 
item OF next OF next OF chain 
item 0 F next 0 F next 0 F next 0 F chain 

Once again, it is advisable to study the modes involved, starting with the mode of 'chain', which 
can be written out as 

REF REF STRUCT(INT item, REF LINK next) 

The effect of field selection is to remove the REF at the front, and transfer the remaining REF 
to the selected field. Hence the mode of 'next OF chain' is REF REF LINK, which is exactly the 
same as the mode of 'chain' itself. However many times 'next OF' is applied, the same mode 
results. Finally, 'item OF' again removes one REF and transfers the other to the selected field, 
giving a REF INT. We see, then, that all four of the expressions are simply integer variables 
holding the successive items of data. To complete the problem, therefore, we could write 

item OF chain PLUS 1 
item OF next OF chain PLUS 1 
etc. 

though it would obviously be better, and more general, to use a loop. This can be done by intro­
ducing a second variable, with the same mode as 'chain', and using it to move progressively down 
the chain as each item is processed. Thus, 

REF LINK here : = chain ; 
TO 4 DO (item OF here PLUS 1 ; 

here : = next OF here) 

The items in the chain are now 2, 3, 4, 5, and 'here' is left referring to 'empty'. For a chain of un­
known length, this can be used as the test for stopping. Such a test has already been described; it 
can now be incorporated in the loop: 

WHILE here ISNT empty DO 
(item OF here PLUS 1 ; 
here : = next OF here) 

To complete this brief look at list-processing techniques, one final problem remains. We have 
seen how a chain of data can be constructed, and how processed. It is equally important to be 
able to release the space when no longer required. One assignment suffices, 

chain : = empty 

There is now no way of accessing the various links which were generated, and to all intents and 
purposes the space they occupied has ceased to exist. In actuality (as global generators were used), 
it becomes available for further constructions. The amount of data space needed by a list-pro­
cessing program is no greater than required for the items and linkages in use at any one time. 
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10.5 Assignment of scoped values 

When computing with references, we are faced with a scoping complication which does not arise 
in elementary programming of the Algol 60 type. For suppose that ii is a REF REF INT and i is 
a REF INT, and consider the assignment 

ii : = i 

Both ii and i have scopes depending on the levels of the program in which they were declared. If 
the scope of i includes the scope of ii, no trouble can arise, but if the scope of i is smaller than the 
scope of ii, the assignment cannot be satisfactory. The definition of assignment is: 

If B is assigned to A, then A refers to B for as long as A exists, or until a fresh assignment is 
made to A. 

This rule cannot be satisfied if the scope of B is less than that of A. For this reason, even quite 
temporary assignments of local references to global variables must be avoided. 
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11 

Recursion 

Any language construction which defines a new name opens up the possibility of circularity-a 
recurrence of the name within its own definition. This is known as simple recursion. If more than 
one definition is involved in completing the circle, the definitions are described as mutually 
recursive. Recursion can often be usefully exploited, as we shall see, but certain rules must be 
observed. In Algol 68-R, any new identifier, operator or mode name must be the subject of a 
declaration before it is actually used. The purpose of this chapter is to show that such a restriction 
does not debar the use of either simple or mutual recursion. 

11.1 Recursive procedures 

Recursive procedures enable us to express repetitive processes without the use of explicit loops. 
It is usual to take the definition of factorial (n) as an example. In section 4.4, several ways of cal­
culating a factorial using DO loops were shown. The following method uses recursion instead: 

PROC factorial = (INT n)INT: 
(IF n = 0 THEN 1 ELSE n * factorial(n - l)FI) 

The call of factorial(4) causes a call of factorial(3) to take place before the evaluation of factorial 
(4) is completed, and so on down to factorial(O) which is 1. There must always be a final escape 
of some kind to prevent recursion from going on perpetually. Simple recursion in procedure 
declarations should be confined to the abbreviated type of declaration 

PROC identifier = procedure denotation 

For mutually recursive procedures, however, a difficulty presents itself. Suppose that we wish to 
declare a procedure p which calls a procedure q and that q calls p. At first sight, neither can be 
declared first without using an identifier which has not yet been declared. To show the method of 
solution, let us assume that q has mode PROC(REAL)REAL. Then, instead of declaring and 
using q itself, we declare a procedure variable qq which can be 'used' before having an actual 
procedure assigned to it. This is legitimate as long as the assignment has taken place before qq is 
actually obeyed. The form the program would take is 

PROC(REAL)REAL qq ; 
PROC p = denotation using qq ; 
qq : = denotation using p ; 

' call ofp 

It will be seen that no identifier is used before it has been declared, and that by the time pis 
called, and its denotation is actually obeyed, the assignment to qq will have been carried out. 
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11.2 Recursive modes 

The definition of a mode name can include a reference to itself, as shown in the declaration for 
LINK used in chapter 10: 

MODE LINK = STRUCT(INT item, REF LINK next) 

Before deciding on such mode definitions, it is advisable to check that it would be possible to 
declare an object with the specified mode. It is plain to see that a mode such as 

MODE INF = STRUCT(CHAR letter, INF tail) 

would be impossible, as the declaration of an object 

INF impossible = ("A", ("B", ("C", ..... 

would never terminate. 

LINK is an example of a mode name whose declaration is simply recursive. Mutual recursion 
presents the same problem for mode declarations as for procedures, for if one mode uses another 
which in turn uses the first, neither of them can be declared before the other if we are not to violate 
the rule about declaration before use. To overcome this problem, a vestigial type of declaration is 
allowed, having the form 

MODE modename 

with no identity symbol or right-hand side. This acts in lieu of a proper declaration for the purpose 
(and only for the purpose) of satisfying the rule about declaration before use. Eventually the new 
mode name must be properly declared. No actual objects can be declared with the new mode 
until this has been done. 

As an example of how this works, we give below definitions of CELL and ITEM which can be 
useful for programming with tree-like data structures: 

MODE ITEM; 
MODE CELL = STRUCT(ITEM head, tail); 
MODE ITEM = UNION(INT, REF CELL) 

CELL is a generalization of LINK defined earlier. Instead of having an INT field and a REF 
CELL field, each field can have either of these modes. This makes it possible to model a data 
structure which splits into many branches; the chain divides into two whenever the head and tail 
fields are both REF CELL's. For processing such data, it is found that recursive procedures are 
ideal, once the knack of writing them has been acquired. Below is a procedure which makes a 
copy of a compleie data structure, irrespective of how many branches it has. 

REF CELL empty = NIL ; 
PROC copy = (ITEM a) ITEM : 
(REF CELL b; 
IFb ::= a THEN 

IF b IS empty THEN empty 
ELSE CELL : = (copy (head OF b), copy (tail OF b)) 
FI 

ELSE a FI) 

The advantage of recursion in this type of problem becomes fully evident if we attempt the same 
thing with ordinary DO loops. 
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12 

Transput 

The word transput is short for input/output and applies to the transfer of data into or out of the 
computer under program control. In this chapter we are concerned with character transput, 
meaning that the data outside the computer is a stream of characters. Inside, it is represented 
differently and the necessary conversions are performed by transput procedures such as read and 
print. The programmer need be concerned only with the external representations. Each individual 
value, such as an integer or real number, is represented by a short sequence of characters, and the 
forms which these sequences can take will be described at some length. 

The style of data representation is to a lesser or greater extent adaptable, depending on the trans­
put procedure selected. The simplest procedures to describe and use are read and print; read is 
particularly adaptable as it accepts numerical data in free format. Numerical values do not need 
to have a fixed number of figures, and spaces or new lines can be freely interspersed between items. 
By contrast, print can only produce standard forms. A real number is always printed to full 
accuracy and an integer invariably takes the amount of space needed for its largest possible value. 
Spaces and new lines are inserted by means of layout procedures. 

To print results in special styles, with varying numbers of figures or with a complicated scheme of 
headings and layout, the system known as formatting should be used. This is extremely flexible 
and well repays the small effort required in learning its special language. Instead of print, the pro­
cedures 'outf' or 'out' are used. The difference between these alternative procedures is that outf 
must be supplied with the required format as one of its parameters, whilst out uses a format set 
up in advance. A format can specify a different style of printing for every value and include in­
structions about layout. 

Although mainly useful for output, formats can also be used for input with the procedures 'inf' 
or 'in'. The style and layout of the data presented to the computer must then conform exactly to 
the specification. This extra checking may often be desirable, particularly for data which has been 
generated by a machine, but for general use the most flexible combination is input in free format 
using the procedure 'read' and formatted output by 'outf' or 'out'. 

Most simple problems can be programmed to use only one channel each of input and output. 
The procedures read and print automatically select standard channels, but the formatted proce­
dures have parameters for selecting any one of a number of channels. For the standard channels, 
the selection parameter is given as the library identifier 'standin' for input and 'standout' for 
output. In this Guide, no other options are described. The use of the standard channels is assumed 
throughout. 
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12.1 The transput parameter 

Every transput procedure has a parameter which lists the items to be transput. For output, this 
transput parameter is described as the value-list and consists of a list of the values to be printed, or 
expressions which deliver them. For input, the parameter is a variable-list giving destinations for 
the values read in. The items in a variable-list can be plain variables or-less commonly-ex­
pressions which deliver variables. 

As an example, let us read in two integers and print their sum and difference with headings. 

INT i,j; 
read ( ( i, j)) ; {note the double brackets} 
print(("SUM =", i + j, newline, "DIF =", i - j)) 

The item 'newline' takes a new line where it occurs; this method of inserting layout is detailed in 
12.3.3. Typically the output from this program would appear as 

SUM = +346 
DIF +8 

The double brackets arise from the need to bracket lists. The outer brackets are those belonging 
to the procedure call and the inner ones are part of the parameter. A list of only one item does not 
need these extra brackets; thus the call of read in the above example could have been expressed as 
two separate calls, read (i); read G)-bracketed lists are only a way of abbreviating repeated calls 
of the transput procedure. There is no constraint on the number of items or mixture of modes 
in the list. 

When reading data, the correct number of values for the variable list must of course be present in 
the data stream, in the right order and represented in the appropriate style for the mode of the 
value. For example 

STRUCT ([1 :3] REAL p, INT i)s; 
read(s) 

expects three reals and one integer on the data-stream, all o.fwhich will be input by the call read(s). 

References cannot be transput. Just as there are no denotations for references in a progra..111, there 
are no representations externally. When a variable is used in a value-list, however, the fact that 
it has a REF mode does not cause trouble. It is automatically dereferenced. Such dereferencing 
does not occur inside arrays or structures; to print the two integers from an object declared as 

STRUCT(INT direct, REF INT indirect) object ; 

it is necessary to decompose the structure and write 

print(( direct OF object, indirect OF object)) 

A call ofprint(object) would cause a fault, for although 'object' itself is dereferenced automati­
cally, the reference field within it is not. (It would be misleading if a structure of this kind were 
printed as though the two fields both had mode INT.) 
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The question of dereferencing will occasionally arise in connexion with input. If the variable is a 
multiple reference, it will be stripped of all REF's but one. As an example, consider 

INTi; 
REF INT ii : = i ; 
read(ii) 

The effect of this will be to dereference ii once, giving i. The integer on the data stream will there­
fore be put into i. This only works by virtue of the previous assignment, for there must always be 
some actual space to receive the value; no input procedure will generate space for itself. 

12.2 The read procedure 

This section includes the permitted forms for values in the data stream when input by the read 
procedure. It must be emphasized that these forms apply only to data streams-they are not to be 
confused with denotations for constants in a program (see 1.1). 

Most values in a data stream are composed of several characters, so it is important to know the 
rules which decide where one item ends and the next begins. These are particularly simple for 
numerical values, several of which can be written on the same line or card provided that they are 
separated by one or more spaces. The end of the line must not split a value, as it is an alternative 
way of indicating the end of one value and the start of the next. The general principle is that the 
read procedure will read as many characters as it needs to complete a value. It does this by looking 
to see if the next character would be a legal continuation or not. If not, the value is terminated and 
the character which would have been illegal is left unread. However, it is not discarded; it becomes 
the first character of the next item. For example, if the data stream contained the integers 24 and 
25 separated by one space, the space would indicate the end of 24 and be read as the first character 
of the value 25. Preliminary spaces and new lines are ignored for numerical values, so any amount 
of layout can be placed between such items. 

Especial care is necessary when reading literal character sequences, that is to say items of modes 
BYTES and [ ] BYTES, including the LONG forms, and STRING and [ ] CHAR. For these items 
spaces are read as characters and all the characters of the item must be on the current line or card. 
This rule has an important consequence, for the reading position will very often be at the end of 
a line after reading an item of data. It will never be at the beginning of a new line after reading in a 
value. If our literal character sequence is on the next line, the reading position does not go to the 
new line automatically as it would for a numerical value. The position must be moved to the start 
of the new line explicitly, by including 'newline' at the appropriate place in the variable-list or by 
writing read(newline) as a separate call. It is worth showing an example of this. Suppose we have 
to read alternate BYTES and INT values in pairs on separate lines: 

JACK 30 
JILL 26 
etc 

This could be programmed as 

[l :n]STRUCT (BYTES name, INT age) person; 
FORi TOnDO 
read ( (newline, person[i])) 
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It is also instructive to consider an alternative arrangement, in which the fields are interchanged 
and separated by one space: 

30 JACK 
26 JILL 
etc 

This character stream could be read by 

FORiTOnDO 
read ( (age OF person [i], space, name OF person [i])) 

The 'space' in the variable-list is important for moving the reading position to the start of the 
name. No newline is necessary, because it is taken automatically when a numerical value is ex­
pected as the next item. 

12.2.1 Forms required by the read procedure 

In the following, curly brackets are placed round components which may optionally be omitted, 
and 'layout' means spaces, new lines or new pages. 

REAL 
All layout is ignored until the first non-space character is read. This must be a sign or a digit. 

Form {sign}decimalnumber{ &{sign}digits} 

where decimal number is a sequence of digits possibly including a point. The symbol '&' 
means 'times 10 to the power'. Spaces may optionally be included after +, - , or &. Else­
where a space or new line will terminate the number. The limits of a real are approximately 
5&- 78 to 5&76. 

Examples 123 123&4 123.4 -123.45&-6 

COMPLEX 

INT 

Form REAL{layout} ?{layout}REAL 
Example 123.4&-5 ? -23.4&-5 

All layout is ignored until the first non-space character is read. This must be a sign or a digit. 

Form {sign{spaces}}digits 
Examples 8388607 (largest positive INT) 

- 8388608 (most negative !NT) 

LONG INT 
As for INT, with limits ± (246 -1) 

BITS 
All layout is ignored until the first non-space character is read. 

Form 24 O's or l's 
Example 101010101010101010101010 

BOOL 
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CHAR 
If the reading position is at the end of a line or page, read takes a new line or page first. (This 
does not apply to arrays of characters-see separate headings below.) Space is a character, 
but newline is not. 

Form One character (not in quotes) from the table displayed under CHAR in Appendix 1. 
Ignore the remarks before and after the table, which apply to denotations only. 

BYTES 
If the reading position is at the end of a line (or page), read does not take a new line (or page) 
first. This must be done independently, for example by read(newline). 

Form 4 characters 
Example 100 % 

LONG BYTES 
As for BYTES, but 8 characters. 

LONG LONG BYTES 
As for BYTES, but 12 characters. 

STRING 
Form Any number of characters up to the end of the current line 
Example USERS GUIDE TO ALGOL 68-R 

An object of mode STRING is an array of characters with flexible bounds. The characters 
on the data stream are therefore read up to the end of the current line, after which the lower 
bound of the string will be 1 and the upper bound will be the number of characters read, 
regardless of what it was previously. 

If the reading position is at the end of a line and the string starts on the next line, read(newline) 
must be carried out first. Otherwise no characters will be read and the upper bound will become 
zero. 

The use of STRING entails heap storage; in work of a mainly numerical nature the mode 
[ ] CHAR without flexible bounds is usually adequate, and more efficient. 

ARRAY OF CHARACTERS 
Forni The number of characters in the array, or less (see below) 

The characters must be on the current line, as no new lines are taken when reading arrays of 
characters. Sufficient characters will be read to fill the array if possible. If the end of the line 
is reached first, the upper bound will be reduced to suit the number of characters actually read. 

If the reading position is at the end of a line and the array of characters starts on the next line, 
read(newline) must be carried out first. Otherwise no characters will be read, and the upper 
bound will be reduced to one less than the lower bound, eg 0 if the lower bound was 1. 

OTHER ARRAYS 
Apart from STRING and [ ] CHAR, the reading of any array is equivalent to a succession 
of reads, one for each array element. Thus, 

[3:5]BYTES b; read(b) 

is equivalent to read((b [3], b [4], b [5])). In this example, all 12 characters must be consecu­
tive on the current line, but for numerical arrays, the elements can always be separated by 
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spaces or new lines. For multi-dimensional arrays, the elements are taken in lexicographic 
order, eg 

[1 :2, 1 :3]INT a ; read(a) 

is equivalent to read( (a [1, I], a [1, 2], a [l, 3], a [2, 1 ], a [2, 2], a [2, 3]) ). 

12.3 The print procedure 

12.3.1 Items printed with layout 

For the following items, ifthere is not enough room on the line, a new line is taken automatically 
before the value is printed. 

REAL 
Except at the beginning of a line, each complete value is preceded by one space. The length is 
18 characters, or 17 at the start of a line. 

Examples + 1.0123456789& +O 
-1.0123456789&-12 

COMPLEX 
Except at the beginning of a line, the complex value is preceded by one space. The length is 
37 characters, or 36 at the start of a line. 

Example + 1.0123456789&+ 12 ?-1.0123456789& -2 

INT 
Except at the start of a line, the integer is preceded by one space. The length is 9 characters, 
or 8 at the start of a line, of which up to 7 are digits. 

Examples - 8388608 
+8388607 

-123 

LONG/NT 
As for INT, but 7 digits longer. 

BOOL 
Except at the start of a line, the value T (for true) or F (for false) is preceded by one space. 

BITS 
Except at the start of a line, the item is preceded by one space. Then 24 binary digits are 
printed consecutively. 

ARRAYS OF ABOVE ITEMS 
Arrays are printed as a succession of elements, in lexicographic order ofindices. For example, 

[1 :2, 1 :2]INT a ; print (a) 

is equivalent to print ((a[l, l], a[l, 2], a[2, 1], a[2, 2])). For strings and arrays ofcharac­
ters, see 12.3.2. 

CHAR 
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12.3.2 Items printed with no layout 

Items of the following modes are printed as plain sequences of characters on the current line. No 
new line is taken automatically, and overshooting the end of the line will cause a fault. (The num­
ber of characters is shown in brackets.) 

BYTES(4) 
LONG BYTES (8) 
LONG LONG BYTES (12) 
ARRAYS OF BYTES (according to size of array) 
STRING (according to current bounds) 
ARRAY OF CHARACTERS (according to size of array) 

12.3.3 Layout procedures 

The following procedures may be used as items in the variable-list of read or the value-list of print. 

space 

Moves the reading or printing position ahead by one character, without reading or printing. 
Each new line of output is initially filled with spaces, and the gap in printing will therefore 
contain a space already, unless printing has already been carried out and backspace has been 
used. Under these circumstances, print(space) does not overwrite the old character, but 
print(" ") does. For reading, space has the effect of ignoring one character. 

backspace 

Moves the reading or printing position back by one character, enabling a character to be 
read twice or overprinting to be carried out. When overprinting, the old character is replaced 
by the new one on the printed output. 

newline 

Moves the reading or printing position to the start of the next line. The call read(newline) is 
used mainly for preparing to read an array of characters on the next line, or for ignoring 
comment on the remainder of the current line. 

newpage 

Moves the reading or printing position to the start of the first line on the next page, ie causes 
a new page to be taken when printing. The call read ( newpage) is only applicable when reading 
data previously output with pages. 
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12.4 Formatted transput 

The remainder of this chapter deals with formatting, which is most easily introduced in terms of 
output. Input can be related to the description afterwards, for it works on exactly the same lines 
and uses the same notation. 

Two procedures are available for formatted output, 'outf' and 'out'. For the time being we shall 
concentrate on outf, which takes three parameters, 

standout- the library identifier to be supplied in order to select the standard output 
channel, 

a format- usually supplied as a format denotation, which is bracketed between a pair 
of $ symbols, 

a value-list- expressed in the same form as the transput parameter for the print procedure 
(section 12.1). 

The general idea is as follows. The format can be thought of as a program of instructions which 
outf must obey in synchronism with its progress through the value-list: 

outf(standout, $ ... , ... , ... , ... $, ( ... , ... , ... , ... )) 

progression through progression through 
the format the value-list 

The items between commas in the value-list can be of mixed types, including arrays and structures, 
and each item can therefore produce one or more basic values. Items separated by commas in 
the format denotation are known as pictures and for every basic value printed, one picture is 
obeyed. Each picture describes 

a the style of representation of the value, such as the number of digits before and after the point; 
this is known as the pattern for the value 

b any layout to be done at the same time as the value is printed, such as headings, spaces or new 
lines before or after the value itself; these are described as insertions and placed where they 
are wanted in the picture. In formatted transput, new lines are never taken automatically. 
New line insertions must be used to ensure that no output value overshoots the end of a line. 

A picture thus comprises a pattern and insertions. When a value is ready for output, the whole of 
the corresponding picture is obeyed. If a picture happens to contain insertions but no pattern, 
the insertions are not obeyed until the next pattern is dealt with. 

To illustrate the method, consider the problem of reading an array and priniing its eiements on 
separate lines. The program could be 

(1 :3]REAL v; 
read(v) ; 
outf (standout, $1<1.3>, l<I.3>, l<l.3>$, v) 
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and the output would appear in the form 

1.000 
1.414 
1.732 

The format here contains three identical pictures, one for each value. The use of italic type has 
no significance except to make a clear distinction between land 1, and to distinguish the special 
formatting symbols. In actual program preparation, ordinary characters must be used. 

The example uses the insertion l which stands for new line, and the pattern <1.3> which specifies 
1 digit before the point and 3 after it. Repetition of the same picture can usually be avoided, and 
in this case very simply. The call of outf could equally well have been 

outf(standout, $ l <1.3> $, v) 

with only one picture in the format. If the pictures in a format are exhausted before all the values 
have been dealt with, the format starts again at its first picture. Care must be taken always to en­
sure that the format is completed a whole number of times in any one call of outf. If it is left only 
partly completed, any subsequent attempt to use the format-as would occur if outf were in a 
program loop-would cause a fault. This is intended to guard against mistakes in format writing, 
which can cause the pictures to get out of step with values. 

The format shown above could be used to input the same array of reals 

1.000 
1.414 
1.732 

since input is compatible with output unless otherwise stated. The procedure corresponding to 
outf is inf, and its call would be 

inf(standin, $1<1.3>$, v) 

However, it should be realized that this imposes tight constraints on the way the data is repre­
sented-for that is its purpose. The reading of each number would be preceded by the taking of a 
new line, and it would be essential to ensure that the reading position was on the immediately 
preceding line before the first number was input. The values themselves would have to start with 
a space or a minus sign, have 1 digit before the point and at least 3 afterwards. Only 3 digits after 
the point would be read; any further digits would be ignored because input of the next value 
begins by taking a new line. In spite of the constraints, formatted input has some valuable uses. 
It can act as a check on mass-produced data, and it can be used for recognizing control messages 
in a convenient way (section 12.8). 

Within a format denotation, the ordinary rules of program layout still hold good. Spaces and new 
lines are ignored, though within string quotes spaces will, of course, be treated as characters. 
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12.5 Simple number patterns, insertions and replication 

For transput of integers and reals, there are four simple patterns, exemplified by 

<5> an integer pattern, describing a 5-digit integer preceded by space or minus. The 
number 5 is only an example, but must always be numerical-a variable cannot 
be used. This integer pattern cannot be used for transput of a real value. 
Examples - 12345 

-2 

<3.2> a real pattern, describing a value with three digits before the point and two after. 
The sign is represented by space or minus. 
Examples -123.45 

0.10 

<1.2&1> a real pattern with an exponent part. The exponent consists of&, plus or minus 
and one digit. Exponents cannot have more than 2 digits. 
Example -3.48&+2 

<3&2> a real pattern with an exponent part but no decimal point. 
Example -123&+ 12 

The pattern for a complex number is made up of two real patterns separated by i, which is the for­
mat symbol corresponding to the 'imaginary' symbol (?) in the data stream. For example, 
<2.1> i <2. l> describes a number like 12.3? -45.6 

In all cases, leading zeros are replaced by spaces and the sign is displaced to the right so that it 
comes immediately in front of the first digit. 

Insertions for headings and layout can be placed before or after any pattern, but not inside the 
pointed brackets. The notation used is: 

x 
y 
I 
p 
k 
II 

space 
backspace 
new line 
new page 
sets character position (see text) 

11 the characters inside the quotes are inserted. Within the string, two quote symbols 
in succession are taken to mean that the quote character is to be transput. Two 
string insertions must not·occur one after the other. 

These insertions can be pm~:eded by a (numerical) integer known as a replicator. For example 3x 
means 3 spaces, 3lx means 3 new lines and a space, 312x three new lines and 2 spaces. Before k, 
a replicator specifies a ch,aracter position in the line; the first character in a line is at position 1. 
Thus 5kmoves the reading or printing position forwards or backwards to position 5. The absence 
of a replicator is the same as a replicator of 1. Variable replication is described later in this section. 

Although insertions can be replicated, patterns cannot be. On the other hand, whole pictures or 
sequences of pictures can be replicated to give the effect oflooping in the format. The pictures to be 
replicated are enclosed in round brackets with a replicator in front. Thus, in the format 

$ ... ' 3 ( ... ' ... ), ... $ 

there are three items, a simple picture, a composite picture and a simple picture. The composite 
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picture which contains two simple pictures is repeated three times over, and the format as a whole 
therefore handles eight values altogether. To repeat a single picture, brackets must still be used, as 
Ill 

$2( ... ),3( ... )$ 

which deals with the transput of five values. Insertions can be placed before or after a composite 
picture. Before it, they are obeyed as part of the first picture (first time round) and after it as part 
of the last picture (last time round). For example, 

$/"MATRIX" 17"-" l 2(<l>3x, <l>/) 7"-" $ 

is equivalent to 

$/"MATRIX" 17"-" I <l> 3x, <l> /, <l> 3x, <l> / 7"-" $ 

and, given four small integer values, produces output of the form 

MATRIX 

-2 4 
0 -2 

Formatting is particularly useful for output of arrays of one or more dimensions because layout 
can so easily be inserted between array elements without having to list them all separately in the 
value-list. With unformatted transput, the need for layout between elements usually does make 
this necessary. 

Arrays are often of unknown size, because the bounds have been input or computed in the course 
of the program. In such cases, it may be necessary to have an unknown number of replications of 
a simple or composite picture. Variable numbers of insertions can also be useful. A variable re­
plicator is written in the form 

n(serial clause) 

The letter n is a symbol of the formatting language, and must always be followed by a bracketed 
variable, expression or serial clause to deliver the integer value of the replicator. (If a negative 
value is delivered, there will be zero replications.) The serial clause is obeyed at the time when the 
picture is obeyed, no sooner. To emphasize this fact, variable replication is usually described as 
dynamic. Dynamic replication can be illustrated by repeating the last example for a matrix of 
size n by m. For the sake of definiteness, we assume that the array elements are one-digit integers, 
as before. The fancy lines above and below the matrix, now consisting of 5m-3 dashes, are re­
tained as an example of dynamically replicated insertions. 

[1 :n, 1 : m] INT matrix ; 
read(matrix) ; {or assign values in some other way} 
outf(standout, $/"MATRIX" I n(5 * m - 3)"-" I 

n(n) (n(m)(<1>3x)l) n(5 * m - 3) "-" $, matrix) 

The essential part of the example is 

n(n)(n(m)(<l>3x)/) 

which deals with the layout of the numerical data in rows and columns. 
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12.6 Patterns for booleans and characters 

The pattern for anyvaluemustconform to the mode of that value. We have seen that integers and 
reals have their own distinct patterns; those for values of other modes are listed below. The in­
clusion of the modes STRING and [ ] CHAR is occasioned by the fact that sequences of charac- . 
ters are treated as 'basic values' for transput purposes. A sequence of characters is transput under 
the control of a single picture. For all other arrays, including arrays of BYTES, LONG BYTES 
and LONG LONG BYTES, each array element has a picture of its own. 

mode 
BOOL 

CHAR 

BYTES 

LONG BYTES 

pattern 
b 

a 

4a 

8a 

LONG LONG BYTES 12a 

STRING t 

[]CHAR t 

TorF 

one character 

4 characters 

8 characters 

12 characters 

on output, the number of characters in the string, and on 
input, all characters from the current reading position 
to the end of the line. 

on output, the number of characters in the array, and 
on input, sufficient characters to fill the array unless the 
end of the line comes first. The upper bound is then re­
duced automatically to suit. 

The use oft is equivalent to unformatted transput, as the pattern gives no explicit indication of the 
number of characters to be input or output. The main disadvantage of this is apparent when we 
recall that a fault is caused by attempting to output a sequence of characters which is too long for 
the current line. An alternative system for dealing with strings and rows of characters overcomes 
this difficulty. Instead of using t, we can use replicated a's to form the pattern for any character 
sequence, and the pattern can be interrupted by insertions for layout. For example, an array of 
100 characters can be transput with the picture 

l 25a l 25a l 25a l 25a 

in which there are four new line insertions. The remainder of the picture is a broken-up form of the 
pattern lOOa. When this system is used for strings or arrays of characters, the sum of the a-replica­
tors must be exactly equal to the size of the array, both for input and output; otherwise a fault will 
occur. The same system can be used to break up the patterns 4a, 8a and 12a in the transput of 
bytes. 

It is instructive to consider the question of whether the repetition of 25al could be avoided, in the 
example given above, by some form of replication. In fact, it cannot be shortened. The temptation 
to write 4(l25a) must be resisted, as this is a way of expressing four separate pictures. It would 
therefore expect four separate arrays of 25 characters each in the transput parameter. 
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12. 7 The g pattern 

Formatting is less convenient for input than for output in most ordinary applications because 
every character in the data stream must be in exactly the right place and on the right line. Spaces 
and new lines in front of numbers are not ignored. It is possible to have the best of both worlds by 
using the g pattern, which causes a value of any mode to be transput as though by read pr print. 
This does not necessarily make the format entirely pointless, for on input there are places where 
new lines must always be taken, and formatting may be worthwhile for this convenience alone. 
For example, consider how to read data such as 

BRASS 
IRON 
WOOD 
GLASS 

23.5&-4 
2.86&-4 
0.02 
15.0 

into a variable declared as 

[1 :4]STRUCT(LONG BYTES substance, REAL coefficient)data; 

The format in 

inf(standin, $18a, g$, data) 

takes the new lines required before reading the LONG BYTES items, and saves us from having 
to decompose the array in the variable-list. At the same time, the numerical values can be expres­
sed in freely varying styles. 

12.8 Choice patterns 

Formatting provides the useful facility of representing boolean values and integers in ways other 
than T, F, 1, 2, 3 etc. Arbitrary character sequences can be specified instead, for example TRUE, 
FALSE, ONE, TWO, THREE. 

To transput boolean values as arbitrary strings, the pattern is 

b(" " " ") . . . ' ... 
The characters in the first string denotation are taken as the representation of true, and the 
characters in the second represent false. For example, 

BOOL female : = FALSE; 
outf(standout, $/"THERE ARE" <2>, xb("GIRLS", "BOYS")x 

"IN THE CLASS"$, (24, female)) 

gives the output 

THERE ARE 24 BOYS IN THE CLASS 

The same format could be used for input of the values embedded in this sentence. The wording 
would have to be reproduced exactly, with freedom only to vary the 2-digit integer and write 
GIRLS instead of BOYS. When a choice pattern is used for input, the second string must not 
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start with the first. For example 

b("WITH", "WITHOUT") 

would be useless, because the input stream would match the first string as soon as four characters 
had been read. The answer is to reverse the order and adjust the program accordingly. 

Exactly the same technique can be used for integer values by means of the pattern 

( If If II II II If t ) c ... , ... , ... ,ec 

the strings representing 1, 2, 3, etc. As in the case of boolean choice patterns, when used for input 
the first of the strings to match the characters in the data stream determines the value read in. 
Care must be taken to see that no string is the start of a later one. On output, the integer value must 
be equal to or greater than I, and must not exceed the number of strings given, otherwise a fault 
will occur. 

One of the most useful applications of choice patterns is to interpret control information on an 
input data stream, as illustrated by the following example. 

REALx, y; 
INTn; 
WHILE inf(standin, $ c("END", " ", "X = ", "Y = ", "RUN", "")$, n) ; 

n>l 
DO CASE n-1 IN 

SKIP, read(x), read(y), serial clause, read(newline)ESAC 

Note the use of an empty string as the final item of the choice pattern. This acts as a default 
condition; if none of the preceding patterns has been matched by the input, the empty string is 
taken as the match and nothing is actually read. In this particular example, the resulting action 
is to take a new line. The variables x and yin the program will be set by 'commands' like 

Y =0.538, (the comma and this comment will be ignored) 

in the data stream. The serial clause will be obeyed by the command 

RUN 

and the program will be stopped by the command 

END 

Spaces before commands will be ignored, and so also will whole lines which do not start like 
commands. 

12.9 The procedures in, out and format 

The procedures inf and outf are simple to understand and use because the format for each call is 
supplied alongside the variable-list or value-list. This keeps related items close together and makes 
the program easy to follow. But there is a drawback. The format must be left in a completed state 
at the end of each call, and in some applications this can be too restrictive. This section describes 
an alternative method. 
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For output, the format is specified in advance by a call of the procedure 'format' which takes two 
parameters: 

format(standout,format) 

This call does not cause any transput to take place; it simply attaches the required format to the 
standard output channel. The procedure 'format' must not be called a second time until the for­
mat has been completed once or more times. The actual printing is effected by calls of 

out(standout, value-list) 

which work through the given format progressively, each call carrying on where the previous one 
left off. Input works in a similar way. The input format is attached by 

format(standin,format) 

and transput effected by calls of 

in(standin, variable-list) 

This method of formatting is most useful when the call of in or out occurs in a program loop 
and the format is set up outside the loop. For example, consider the problem of printing the inte­
gers 1 to max on separate lines, with a blank line after 5, 10, 15 etc, and assume for the present 
that max is an exact multiple of 5. Using outf, the programming is cumbersome (to say the least), 
as may be judged by comparing the two solutions: 

layout of a table using 'outf' 

FOR integer TO max DO 
outf(standout, $ <3> n (I + ABS (integer= integer '/' 5 * 5)) l $, integer) 

the same using 'format' and 'out' 

format(standout, $ 5(<3>/)/ $) ; 
FOR integer TO max DO out(standout, integer) 

The obscurity of the first solution is a result of the fact that only one value can be formatted at a 
time. A test must be devised so that a new line is replicated twice or once according to whether 
'integer' is a multiple of 5 or not. The details of this test are an exercise in the use of operators. In 
the second solution, the format can embrace 5 values at a time even though 'out' deals with them 
singly. 

If max is not an exact multiple of 5 in the second solution, the format will be left uncompleted. Any 
attempt to repeat this piece of program in a loop would then cause a fault, as the procedure 'for­
mat' cannot be called a second time if the format is not ready to start at its beginning. This difficulty 
can, if necessary, be overcome by artificially clearing the format before setting it up. The method is 
shown by 

format(standout, clear format($ 5(<3>/)/ $)) ; 
FOR integer TO n DO out(standout, integer) 

The procedure 'clear format' takes a format as its parameter, clears it, and delivers it ready for use 
from its beginning. 
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13 

Formats Continued 

The previous chapter provides sufficient information for the use of formatted transput in many 
applications, but for more challenging work there are further possibilities. The present chapter 
introduces the concept of formats as objects, similar in many ways to procedures. Objects have 
modes, and all the facilities of Algol 68 can be applied to them. In the last part of this chapter, the 
topic is extended in the opposite direction, by going into the finer details of format denotations. 
It will be shown that a format can be built up from units smaller than patterns. These are known 
as frames, and can be used to construct patterns for numerical values character by character, so 
providing many alternatives to the simple patterns defined in the previous chapter. 

13.1 Formats as objects 

A format is an object of mode FORMAT, which means that identifiers can be declared with modes 
such as FORMAT or REF FORMAT, that procedures can be declared with formats as para­
meters, and so on. 

It should be understood from the outset that a format is a piece of program for which-as in the 
case of a procedure-the denotation constitutes the only copy. We shall see why this is important 
later. Meanwhile, consider the declarations 

FORMAT style 1 : = $ l<l.4>, lOk<l.4>, 20k<l.4>$, 
style 2 : = style 1 ; 

These two variables refer to the one and only copy of the format. By contrast, 

FORMAT copy 1 : == $ l<l.4>, lOk<l.4>, 20k<l.4>$, 
copy 2 := $ l<l.4>, lOk<l.4>, 20k<l.4>$; 

provides two similar but distinct formats. The same considerations apply to identity declarations. 
No amount of naming or re-naming will produce extra copies of a format from one denotation. 

The number of copies is important because a format in Algol 68-R cannot be attached simul­
taneously to more than one channel. In order to progress through a given format for input and 
output in parallel, a different copy is needed for each channel. This is illustrated by 

82 

[1: 3] REAL vector ; 
format(standin, copy 1) ; 
format(standout, copy 2) ; 
FORiT03DO 
BEGIN in(standin, vector [i]) ; 

. . . ' 
out (standout, vector [i]) 

END 



However, the same copy of a format can always be attached to different channels at different 
times, provided it is used to completion (or not at all) each time. If, instead of interleaving the 
input and output of the elements of 'vector', we input the whole vector to complete the format 
before starting on the output, one copy will do; thus 

format(standin, copy 1) ; in(standin, vector) ; 
format(standout, copy 1) ; out(standout, vector) 

In this example, inf and outf could well have been used, as inf is identical to a call of format 
followed by a call of in, and outflikewise. The above lines of program are identical to 

inf(standin, copy 1, vector) ; 
outf(standout, copy 1, vector) 

It is safer, when sharing a format between different channels, to use inf and outf if possible, as 
these procedures are designed to attach the format to a specified channel afresh each time and use 
it to completion. 

The ability to name formats, as we have now seen, enables the same format to be used in several 
contexts, and a context often required is within a larger format. A named format can then 
serve as a 'procedure' within the framework of the formatting language. The construction which 
allows this is 

/(serial clause delivering a format) 

This can be placed inside a format (with insertions before and after) to make one picture. It cannot 
be replicated, but it is a composite picture in the sense that the format delivered can contain 
several pictures. As an example, 

STRUCT(INT day, month, year) date 1, date 2; 
... ' 
FORMAT datestyle = $ <2>, "/" <2>, "/" <2>x $ ; 
outf(standout, $I "THE CONCERT ON" /(datestyle), 

"IS POSTPONED UNTIL"/(datestyle)$, (date 1, date 2)) 

When using the f construction (as with the n construction described in 12.5), it is important to 
remember that a format is not obeyed until transput actually takes place. Any non-local variables 
used withinf(serial clause) will therefore refer to the values they have at this time. 

13.2 Scope of a format denotation 

A format denotation may be written at one place in a program and obeyed at another. This is due 
to the fact that the denotation is not obeyed until transput actually takes place. Care must then 
be taken to see that the denotation is properly in scope when it is obeyed. 

The critical parts of the denotation are the serial clauses in the f and n constructions, which are 
obeyed as part of the format. Such clauses are almost certain to use non-local identifiers, and these 
must be in scope at the relevant time. If not, the format denotation as a whole is out of scope and 
cannot meaningfully be obeyed. Consider, for example, 
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BEGIN INT m := 3; 

END; 

format(standout, $ ..• n(m) ... $) ; 
out(standout, ... ) 

wrong} out(standout, ... ) 

The format denotation uses the program variable m, whose scope is bounded by the BEGIN and 
END. The format can therefore be obeyed in the first call of out, but not in the second. This is, 
perhaps, a rather unlikely mistake to make. The following is more easily done, and equally wrong. 

{wrong} PROC char display = (INT m)FORMAT:($n(m)a3x$) ; 
outf(standout, char display(p), s) 

The error is in the procedure denotation, which attempts to deliver a format containing the para­
meter m. The scope of the parameter is restricted to the procedure body; outside it, m has no 
existence. The format delivered by this procedure is therefore meaningless. There are, of course, 
correct ways of achieving the desired effect, such as 

[1 :p]CHAR s; 
... ' 
FORMAT char display = $n(p)a3x$; 
outf(standout, char display, s) 

This is correct in that p, assumed to be in scope in the first line, is still in scope when transput 
actually takes place. 

13.3 Frames 

There are occasions when the simple number patterns described in the previous chapter may prove 
inadequate for some particular purpose, especially on output. The remainder of the present 
chapter conveys a flavour of the facilities available in Algol 68-R for constructing arbitrary num­
ber patterns from suitably chosen frames, which apply to individual characters. It will be recalled 
that the pattern for a row of characters can be made up from replicated a's; similarly the pattern 
for a number can be made up from replicated digit frames. Insertions can then be placed within the 
pattern if required. 

The frames needed for numerical values are listed below; in the descriptions the word 'number' 
should be understood to apply to a complete integer, or separately to the two parts of a real. Thus 
the real value 1.23&4 is made up of two separate numbers, 1.23 and the integer exponent 4. 

84 

+ frame for the sign, indicating that a positive number is to have a plus sign (and a negative 
number a minus) 
alternative sign frame, indicating that a negative number is to have a minus, but a 
positive number a space 

d one digit-this frame can be replicated 
u one digit, but zero is suppressed (replaced by space) if it is the first digit of a number or 

if the previous digit of the number was a suppressed zero. This frame can be replicated. 
frame for the decimal point(.) 

e frame for the exponent symbol(&) 
frame for the imaginary symbol ( ?) between two real patterns 



The pattern for an INT value is constructed from a sign frame, which is optional, and frames for 
the digits. If the sign frame is omitted, there will be no sign or space and negative values cannot 
then be transput. The pattern for a REAL value has, in addition, frames for a decimal point or 
an exponent symbol or both. 

Examples of integers 24 and 0 with various patterns 4 characters wide 

+3d 

+024 
+000 

+3u 

+ 24 
+ 

-3u 

24 

-2ud 

24 
0 

Examples of reals 24.0 and 0.0 with various patterns 

+ud.d 

+24.0 
+ 0.0 

+d.de+d 

+2.4&+1 
+O.O&+O 

+d.de-d 

+2.4& 1. 
+O.O& 0 

It will be seen that the effect of using u to obtain zero suppression is to isolate the sign from the 
number, as the spaces occupy the positions vacated by the leading zeros. This can be remedied by 
writing the sign frame after the u frame rather than before it; the sign is then placed immediately 
in front of the first actual digit without altering the total width of the number. For example, the 
effect of 3 u + d on the integer value zero would be + 0 with three spaces before the sign. 

The following complete program shows the use of insertions to obtain digit grouping, as usually 
found in published tables. 

program 
comrie 
BEGIN PROC factorial = (INT n)INT: 

((n = Ol 1 In* factorial(n-1))) ; 
format(standout, $5(ud2x, ux3ux3ul)l$) ; 
FOR i FROM 0 TO 10 DO 
out(standout, (i, factorial(i))) 

END FINISH 

output produced 

0 1 
1 1 
2 2 
3 6 
4 24 

5 120 
6 720 
7 5040 
8 40320 
9 362 880 

10 3 628 800 
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Octal integers (and octal long integers) can be transput by placing 8r in front of an integer pattern; 
this does not apply to the simple patterns given in 12.5. If no sign frame is given after 8r, the value 
is the direct octal representation of the word in the computer. 

13.4 Frame suppression 

It is possible to suppress a character which would normally be printed, or expected for input, by 
prefixing its frame with the letters. Used in conjunction with insertions, this facility enables a 
standard character such as decimal point to be replaced by a character of one's own choice. Any 
of the frames described in the previous section, except for the sign frame, can be treated in this 
way, though su is available only for output. The effects are as follows 

se s. si on output the character is omitted and on input nothing is read 
3sd on output, causes omission of the 3 digits; when used for input, the 3 missing 

digits are assumed to have been zeros 
3su available only on output, this does not suppress any digits; it removes spaces 

which have resulted from suppression of leading zeros 

The 3's above are simply examples. Any replicator would have done, or no replicator at all (equi­
valent to replicator of 1). As an example of hows can be used, the pattern 

$"£"2suds." - "2d$ 

causes any positive reals up to 999.99 to be printed in forms such as 

£100-00 
£20-50 
£0-00 

with no hidden or other spaces at all. 
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14 

Program Segmentation 

A program need not be written in one unit, but can be made up of separately compiled segments, 
each of which can use identifiers, operators or modes declared in previous segments. There are 
two main applications of this facility: 

each programmer can build up his own private library of compiled procedures (etc) to 
supplement the system library 

ii long programs can be divided up into manageable portions for separate compilation 

A programmer's compiled segments can be kept in a file known as an album; the Algol 68-R 
system also allows a party of programmers, each with his own album, to share in addition a 
common album, a principle which can be extended in a hierarchical manner if necessary. The 
system library can be regarded as an album which is common to everybody. 

14.1 Keeping names 

A compiled program is expressed in machine language; the names used in the original Algol text 
have disappeared. When a segment of program is compiled, however, it is essential to make pro­
vision for subsequent segments to use its names. A special record of such names must be kept along 
with a compiled segment. To bring this about, any names to be kept for further use are listed 
between END and FINISH as shown here: 

title of segment 
BEGIN serial clause END 
KEEP name, name, ... name 
FINISH 

As an example, the following segment defines the mode VECTOR, the operators + (for sums of 
vectors) and* (for products and scalar products), and unit vectors ux, uy and uz. 
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vectorseg 
BEGIN MODE VECTOR = STRUCT(REAL x, y, z) ; 

OP + = (VECTOR a, b)VECTOR: 
((x OF a + x OF b, 

yOFa + yOFb, 
zOFa + zOFb)); 

OP* (REAL a, VECTOR b)VECTOR: 
((a* x OF b, 

a* yOFb, 
a* z OF b)); 

OP* (VECTOR a, b)REAL: 
(xOFa * xOFb 

+ yOFa *YOFb 
+ z OF a* z OF b); 

VECTOR ux = (1.0, 0.0, 0.0) ; 
VECTOR uy = (0.0, 1.0, 0.0) ; 
VECTOR uz = (0.0, 0.0, 1.0) ; 
SKIP 

END 
KEEP VECTOR, +, *• ux, uy, uz 
FINISH 

The order of the names in the KEEP list (i.e. VECTOR, +, *• ux, uy, uz) is immaterial, and need 
not correspond to the order of declaration. Names kept can only be those of objects declared in 
the outermost level of the segment. 

14.2 Requesting previously compiled segments 

Suppose that segments entitled segl, seg2 and seg3 have been compiled and entered into an album 
with the name filel. A program, tryout, embodying these segments would be written 

tryout WITH segl, seg2, seg3 FROM file I 
BEGIN serial clause END 
FINISH 

This becomes one unified program 

segl ; 
seg2; 
seg3 ; 
serial clause 

which is obeyed from the beginning of segl. We shall say that tryout 'requested' segl, seg2 and 
seg3 (becaus.e their names were included after WITH). 

We have described tryout as a program because it gets assembled as four segments; in terms of 
source text it is really the title of the final segment. 
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In addition to the requests issued by tryout itself, there may be other requests. For instance, 
seg2 may have requested segl in order that it might use names from segl. Although this would 
not cause segl to appear twice over in the program tryout, the question arises of whether tryout 
need request segl if seg2 has already done so. The answer is that seg2's request would ensure 
the presence of seg 1, but if the keep list of seg 1 is relevant to the tryout segment, then tryout 
must explicitly request segl. The linkage of any name is established by a keep, and a direct request 
for the segment which kept it. 

If the above rules should result in some segment being requested twice over, or more, there may 
be some doubt about the order in which the various segments are finally assembled. This will 
always correspond to the filing order, which in simple cases where albums are not nested, corre­
sponds to the order in which the segments were compiled and entered into the album. The order 
in which segment names are listed after WITH must correspond to the order in which those seg­
ments were filed. 

89 



Appendix 1 

INT 

LONG INT 

REAL 

BOOL 

CHAR 

BITS 

BYTES 

LONG BYTES 

LONG LONG BYTES 

FORMAT 

90 

List of Basic Modes 

Integers can be denoted in the normal scale of 10, or with radix 2, 4 or 8. The follow­
ing are equivalent integer denotations: 

128,2r10000000,4r2000,8r200 

The limits of INT values for ICL 1900 machines are 

- 223 to 223 - 1 (inclusive) 

The denotations with radix 2, 4 or 8 can be used for negative integers. For example 
8r77777777 is equivalent to the integer -1. There is no decimal denotation for a 
negative integer. 

A long integer takes twice the computer space of an INT. Its denotation is the 
word LONG followed by a radix 10 integer denotation. The limits on ICL 1900 
machines are 

- 246 to 246 -1 (inclusive). 

The denotation must contain either a decimal point or a tens exponent or both, eg 

5.1or51&-l or0.51&1 

A decimal point must always be followed by a digit. 
The limits of reals in ICL 1900 machines are approximately 5&-78 to 5&16, and 
the accuracy is limited to just over 11 decimal figures. 

The two boolean values have denotations TRUE and FALSE. 

A character is denoted in quotes CU), and is one of the set: 

0 1 2 3 4 5 6 7 8 9 

< > ? sp # 

£ % & ' ( ) + * 
I @ A B c D E F G 

H I J K L M N 0 p Q 
R s T u v w x y z 
$ ] t +-

The exception to the quote rule (eg H A0 ) is the denotation for the quote character 
;+"'o.1-" 'r,..t....:-t. ! .. NUNN 
.U.'3'"'.1.1' WU.l\.-1J. I~ • 

Indicates a value consisting of 24 binary digits. There is no denotation for BITS 
values, but in most contexts an integer denotation will be automatically coerced 
to mode BITS when required. See INT, above. 

A value of mode BYTES is a unit of 4 characters, and is denoted in quotes, eg 
0 ABCD0 • A quote character in the BYTES value is written as a pair of quotes, 
eg 0 AB00D" is the denotation for the four characters A, B, 0 , D. An individual 
character may be selected from a BYTES value by means of the operator ELEM 
(see Appendix 2); a BYTES denotation cannot be indexed. 

As above, but the unit is 8 characters. 

As above, but 12 characters. 

See chapter 12. 



The following modes, though strictly not 'basic' modes, are included here for the sake of completeness: 

COMPLEX 

STRING 

Equivalent to STRUCT(REAL re, im). There is no denotation for a complex num­
ber; it is written in a program as a pair of real numbers with the operator? between 
them, eg 

1.234 ? 5.678 or x ? y 

Equivalent to [1 : 0 FLEX] CHAR. The denotation for a string is a sequence of charac· 
ters enclosed in quotes, where the number of characters is not 4, 8 or 12 (see BYTES 
above). A quote character in the string must be written as a pair of quote symbols. 
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Appendix 2 Standard Constants, Procedures 
and Operators 

Standard constants, procedures and operators can be used in any program without declaration; the same is also 
true for all entities defined in the Algol 68-R system library. Modes and procedures concerned with standard 
transput are not included in this Appendix but are grouped with the system library, for which documentation is 
available at user installations. 

Constants 

Functions 

REAL pi = 3.1415 9265 359 

sqrt 
exp 
In 
sin 
cos 
tan 
arcs in 
arccos 
arc tan 

square root 
exponential function 
natural logarithm 
sine 
cosine 
tangent 
inverse sine in range ( - pi/2, pi/2) 
inverse cosine in range (0, pi) 
inverse tangent in range ( - pi/2, pi/2) 

All of the above are of mode PROC(REAL)REAL. 

Random numbers 
The procedure "random'', mode PROC REAL, delivers a pseudo-random number in the range (0.0, 1.0), with a 
non-repeatable pseudo-random starting point in every program run. 

Operators 
The integer following the operator gives its priority. The larger the integer, the more tightly the operator binds to 
its operands. Priorities of dyadic operators are in the range l to 9; the highest priority (10) applies only to monadic 
definitions. 

Arithmetical 

t 

;} 
I/' 

~} 
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8 

7 

7 

6 

xtn gives x raised to the power n, where n must be an INT. If x is REAL, the result is 
REAL; if xis INT, the result is INT. 

times and divide, between INT, REAL or COMPLEX in any combination, and between 
LONG INT numbers. The quotient of two integers is REAL. 

between n and m of mode INT, gives result ENTIER(n/m), mode INT. Similarly for 
LONG INT, with LONG INT result. 

plus and minus, between INT, REAL or COMPLEX in any combination, and between 
two LONT INT numbers. May also be used monadically (priority 10). 



Arithmetical comparisons 

~=} 
>= 

;} 

5 

4 

less, less or equal, greater and greater or equal, between INT or REAL in any combina­
tion, and between two LONG INT numbers. BOOL result. 

equals and not equals, between two INT numbers or between two LONG INT numbers. 
BOOL result. 

Arithmetical assignments 

PLUS 

MINUS 

TIMES 

DIV 

'/:=' 

x PL US y means x : = x + y, where xis REF INT, REF REAL or REF COMPLEX, and 
x + y must deliver a result suitable for assignment. (For example, if xis REF INT, y must 
not be REAL.) 

x MINUS y means x : = x -y and similar remarks apply. 

x TIMES y means x : = x * y, where xis REF INT or REF REAL, and x * y must deliver 
a result suitable for assignment. (For example, if xis REF INT, y must not be REAL.) 

x DIV y means x : = x/y, where x must be REF REAL and y may be INT or REAL. 

used between n and m, where n has mode REF INT, and m has mode INT, performs the 
assignment n : = ENTIER(n/m) and delivers the remainder with the same sign as m. 
For example, if n refers to - 7 and mis 3, it would assign - 3 ton and deliver + 2. 

Other numerical operators 

ABS 

SIGN 

ODD 

ROUND 

ENTIER 

LENG 

SHORT 

? 

ARG 

CONJ 

10 

10 

10 

10 

10 

10 

10 

9 

10 

10 

modulus of an INT, REAL or COMPLEX. 

applied to INT or REAL, gives + 1 for positive operand, 0 for zero operand and - 1 for 
negative operand. INT result. 

applied to INT, gives TRUE if the operand is odd, and FALSE otherwise. 

applied to REAL, gives the nearest INT. In critical cases, rounds up. 

applied to REAL, gives largest INT less than or equal to the REAL. 

applied to an INT value, delivers the LONG INT value. 

applied to a LONG INT value, delivers the INT value. 

used between INT or REAL in any combination, delivers a COMPLEX such that the 
left operand is the real part and right operand the imaginary part. 

applied to COMPLEX, delivers the argument, ie phase, in the range ( - pi, pi), mode 
REAL. 

applied to COMPLEX, delivers the conjugate. 

Operations on Booleans 

NOT 

AND 

OR 

;} 
ABS 

10 

3 

2 

4 

10 

delivers TRUE if the operand is FALSE and vice versa. 

delivers TRUE if both operands are TRUE, otherwise delivers FALSE. 

delivers TRUE if at least one operand is TRUE, otherwise delivers FALSE. 

equals and not equals; delivers TRUE if the relation is true, otherwise delivers FALSE. 

delivers integer 1 if operand is TRUE, otherwise delivers integer 0. 
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Operations on arrays 

LWB 10 

UPB 10 

LWB 8 

UPB 8 

FLEXIBLE 10 

CLEAR 10 

applied to an array, gives the lower bound of its first dimension as an INT. 

applied to an array, gives the upper bound of its first dimension as an INT. 

m LWB p, where mis INT and pan array, gives the lower bound of the mth dimension of 
p. Hence 1 LWB p gives the same value as L WB p. 

similar to LWB, but upper bound. 

applied to an array, delivers TRUE if the array has flexible bounds, otherwise delivers 
FALSE. 

applied to a reference to an array with any number of dimensions, 'clears' the array. For 
the following modes of array element the resulting values are as shown: 

INT 
LONG INT 
REAL 
COMPLEX 
BOOL 
BITS 
CHAR 
BYTES 
LONG BYTES 
LONG LONG BYTES 

0 
LONGO 
0.0 
0.0 ?0.0 
FALSE 
BINO 
space character 
noooon 
"00000000° 
0 000000000000" 

Operations with characters and bytes 

ABS 

REPR 

~=} 
>= 

CTB '\ 
CTLB ~ 
CTLLBJ 

ELEM 

10 

10 

5 

4 

10 

7 

Operations with bits 

ABS 

BIN 

NOT 
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10 

10 

10 

applied to a CHAR, gives the internal integer form in the range 0 to 63, corresponding to 
the position in the CHAR table in Appendix 1. 

applied to an INT in the range 0 to 63, gives the corresponding CHAR from the table in 
Appendix 1. 

less than, less than or equal, greater than and greater than or equal, between CHAR, 
[ ]CHAR, STRING, BYTES, LONG BYTES or LONG LONG BYTES in any combina­
tion, delivering TRUE or FALSE. If c and d are characters, 

c<d means ABSc< ABSd 

When comparing sets of characters, successive characters from each set are compared until 
a decision is made or the smaller set is exhausted. The ordering is lexicographic, ie "AA" < 
"AAA0 is TRUE, and "AAB" <"AB" is TRUE. 

equals and not equals, between operands with modes as above. 

applied to words of 4, 8 or 12 characters respectively, delivers the characters as a BYTES, 
LONG BYTES or LONG LONG BYTES value. 

used between m and c, where m is an INT and c is a BYTES, LONG BYTES or LONG 
LONG BYTES, gives the mth character of c. The characters are numbered from 1 to 4, 
8 or 12 respectively, starting from the left. 

applied to a BITS value gives the corresponding signed INT value. 

applied to an INT, gives the BITS value which represents that integer. 

applied to a BITS value, delivers the BITS value with every digit reversed. 



AND 3 

OR 2 

SL 7 

SR 7 

SLC 7 

SRC 7 

<=} 5 
>= 

;} 4 

ELEM 7 

SET 7 

CLEAR 7 

used between two BITS values, delivers the BITS value obtained by applying 'and' to each 
binary digit: 0 1 

010 0 
1 0 1 

used between two BITS values, delivers the BITS value obtained by applying 'or' to each 
binary digit: 

0 

010 
1 1 

shift left. b SL m, where bis a BITS value and ma positive INT, gives the BITS value ob­
tained by shifting b left m places. Binary digits are lost on the left, and zeros introduced on 
the right. 

shift right; similar to SL. 

shift left cyclically. Operands as for SL, but binary digits lost on the left are introduced on 
the right. 

shift right cyclically, similar to SLC. 

between BITS values, delivers a BOOL result. p<=q is TRUE if each binary digit which 
is 1 in p is also 1 in q. 

between BITS values, delivers TRUE if the relation is true, and FALSE otherwise. 

m ELEM b, where mis an INT and b is a BITS value, delivers TRUE if the mth binary 
digit of b is 1, and FALSE if it is 0. 

m SET b, where m is an INT and b a BITS value, delivers the bit-pattern b but with the 
mth binary digit as 1. 

m CLEAR b, where m is an INT and b is a BITS value, delivers the bit-pattern b but with 
the mth binary digit as 0. 

Default priorities 
If one of the standard operator symbols is re-declared dyadically in a program and no priority declaration is given, 
the standard dyadic priority of the operator applies. If there is no standard dyadic priority, the default priority is 1, 
with the exception of ENTIER, which will have priority 8. For example, if NOT is declared as a dyadic operator, 
its default priority is 1(not10). The complete table of default priorities for dyadic use is as follows: 

ABS 1 NOT 1 ? 9 
AND 3 ODD 1 t 8 
ARG 1 OR 2 * 7 
BIN 1 PLUS 1 I 7 
CLEAR 7 REPR 1 '/' 7 
CONJ 1 ROUND 1 + 6 
CTB 1 SET 7 6 
CTLB 1 SHORT 1 < 5 
CT LLB 1 SIGN 1 <= 5 
DIV 1 SL 7 > 5 
ELEM 7 SLC 7 >= 5 
ENTIER 8 SR 7 4 
FLEXIBLE 1 SRC 7 # 4 
LENG 1 TIMES 1 '/:= ' 1 
LWB 8 UPB 8 
MINUS 1 
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Appendix 3 Syntax of Algol 68-R 

Each line represents a separate grammatical alternative, with optional parts in curly brackets. 
Symbols (except hyphens) and upper case words stand for themselves; etc when not preceded 
by a comma indicates the possibility of repetition from the last unmatched { ( or [. Otherwise, n 
hyphens, etc means that the previous n items may be repeated with comma separation, where an 
item is a word, symbol, thing in curly brackets or repeated item. 

segment 
title{WITH title-, etc FROM album} (sec){KEEP name-, etc} FINISH 

sec (short for serial clause) 

{declaration; {unc; etc} etc}unclist 

uncJist 
{{Jabel: etc}unc; etc}{label: etc}unc{EXIT label: unclist} 

unc (short for unitary clause) 

expression : = unc 
{FOR identifier}{FROM unc}{BY unc}{TO unc}{WHILE sec}DO unc 
GOTO label 
expression IS expression 
expression ISNT expression 
proceduredenotation 
modeVALunc 
expression : : = unc 
expression : : unc 
(expression-, etc) ::= unc 
(expression-, etc) :: unc 
expression 

expression 
primary 
combination of primaries and operators 
{LOC}mode§ 

primary 

96 

identifier 
denotation 
primary(unc-, etc) 
primary [indexer-, etc] 
selector OF primary (brackets bind more tightly than OF) 
IF sec THEN sec {ELSE sec} FI 
CASE sec IN sec-, etc {OUT sec} ESAC 
(sec) 
(sec, sec-, etc) 



indexer 
unc 
{{unc} : {unc}}{AT unc} 

declaration 
mode§ identifier{:= unc}--, etc 
PROC identifier = proceduredenotation 
PROC identifier : = proceduredenotation 
mode identifier = unc---, etc 
MODE modename { = mode§}--, etc 
PRIORITY opsymbol = digit---, etc 
OP opsymbol = proceduredenotation 
OP(mode){mode}opsymbol = unc 
OP(mode, mode){mode}opsymbol = unc 

proceduredenotation 
(mode identifier-, etc--, etc){mode}: (sec) 
mode: (sec) 

mode 
[{,} etc]notarraymode 
notarraymode 

notarraymode 
STRUCT(mode selector-, etc--, etc) 
simplemode 

simplemode 
basicmode (see Appendix 1) 
modename 
REF mode 
PROC(mode-, etc){mode} 
PROCmode 
UNION(mode-, etc) 
VOID (VOID is used only for mode of result o.f procedure or operator) 

album a file identifier of the operating system 

denotation see Appendix 1 

digit digit in the range 1-9 inclusive 

identifier see 1.2 

modename any upper case word not already defined as a word in the language 

name occurring after KEEP, this can be an identifier, opsymbol or modename 

opsymbol see 8.3 

title, label and selector each have the same form as an identifier 

§If this mode contains square brackets, bounds in the form unc:unc{FLEX} are needed for each dimension 
in the places described in 6.4. 
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Numbers refer to sections, A standing for 
Appendix. 

Actual parameter 7.2, 7.5 
album 14 
array 5, 6.3, 7.5.3 
assignment 1.3, 3.3, 4.2, 5, 7.8, 10.5 
AT5.2 

Basic mode Al 
BEGIN 1.4, 1.5 
binding 4.1.2, 8.2 
body (of procedure) 7.6 
BOOL 4.1.2, 4.3.1 
bounds 5.1, 5.2, 6.2, 6.4, 7.5.3 
brackets 1.5 
bracketing 4.1.1, 6.3, 10.2, 12.1 
BYTES 5.3 

Call (of procedure) 7.2 
CASE 4.3.2, 9.1.5.1, 12.8 
chaining (of data) 10.4 
CHAR5.3 
character set (data) Al 
character set (program) 1.5 
character transput 12 
choice pattern 12.8 
clause 1.4, 1.6, 2.2, 4 
clear format (procedure) 12.9 
coercion 4.1.3, 9 
collateral 5.1, 5.2, 6.1 
comment 1.5 
COMPLEX 6.2, Al 
conditional 2.1, 4.3, 9.2.6 
conformity 9.1.5.1 

Data structuring 5, 6, 10 
data transput 12 
declaration 1.2, 1.6, 2.3, 3 

-array 5.1 
- identity 3.1, 5.1, 6.4 
-mode6.2 
- operator 8.1 
- priority 8.2 
- procedure 7.4 
-variable 3.2, 5.1, 6.4 

denotation 1.1, 7.3, 12.4, Al 
deproceduring 9.1.1, 9.1.7 
dereferencing 4.1.3, 4.2, 9.1.2, 12.1 
D04.4 
dyadic 4.1.2 

Element (of array) 5.2 
END 1.4, 1.5 
EXIT7.7 
expression 2.2, 4.1 
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FI 4.3.1 
field (of structure) 6.1 
FINISH 1.4 
FLEX5.3 
FOR4.4 
formal parameter 7.3, 7.5 
FORMAT13.1 
formatting 12.4 et seq 
formula 4.1.2 
frame 13.3, 13.4 

Generator 1.3, 2.3, 5.1, 5.4, 10.3 
global (generator) 10.3 
global (scope) 2.3 
GOTO 2.4, 7.5.4, 9.1.6 
grammar 3.1, 4.1.1, 4.5, A3 

Heap 5.1, 5.3, 10.3 

Identifier 1.2, 2.3 
identity declaration 3.1, 5.1, 6.4 
IF 4.3.l 
in (procedure) 12.9 
indexing 5.2 
inf (procedure) 12.4 
insertion (in format) 12.4, 12.5 
IS 10.2 

Jump 2.4, 7.5.4 

KEEP 14.1 

Label 2.4 
layout (of program) 1.5 
list-processing 10.4, 11.2 
LOC 1.3, 2.3, 5.1, 5.4, 10.3 
local 2.3 
loop 4.4 

Mode 1.1, 3, 4.1.3, 4.2, 5.1, 6.1, 7.1, 9, Al 
mode name 6.2, 11.2 
monadic 4.1.2 
multiple assignment 4.2.1 

Name (kept) 14.1 
NIL 10.4 
non-local 2.3 
number pattern 12.5, 13.3 

Object 1.1 
octal 13.3, Al 
OD Preface 
OF 6.1, 6.3 
operand 4.1.2, 4.1.3 
operator 4.1.2, 4.1.3, 8, A2 
out (procedure) 12.9 
outf (procedure) 12.4 



Parameter 7.2, 7.3, 7.5 
pattern 12.4 et seq 
picture 12.4 
pointer 10.4 
primary 4.1.1 
prime symbol 1.5, 8.3 
print (procedure) 12.3 
priority (of operator) 4.1.2, 8.2, A2 
procedure 7, 7.5.4, 11.1, A2 
program 1.6, 2, 14.2 

Read (procedure) 12.2 
recursion 11 
reference 1.3, 4.2, 10 
repetition 4.4 
replicator 12.5 
result 2.2, 4.1.3, 4.2.1, 7.7, 9.2.7 
row, short for one-dimensional array 
rowing 9.1.4 

Scope 2.3, 7.7, 7.8, 10.5, 13.2 
segment 14.2 
selector 6.1 
semi-colon 1.4, 2.1, 4.2.1, 9.1.7 
serial clause 1.4, 1.6, 2.2, 4.1.1 

SKIP 4.3.2, 9.1.6 
slice 5.2 
STRING 5.3, 6.2 
strong position 9.2.1 
structure (of program) 2 
structures 6.1, 6.3 
subset of array 5.2 
syntax rules A3 

Transput 12 

UNION9.1.5 
unitary clause 1.4, 4 
uniting 9.1.5 

VAL 9.2.1, 10.2 
value 1.1 
value-list 12.1 
variable 1.3, 3.2, 5.1, 7.4.1, 7.5.2 
variable-list 12.1 
VOID 7.1, 7.4 
voiding 9.1.7 

WHILE4.4 
widening 4.2, 9.1.3 
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